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Regularity in Stock Market Indices within Turbulence Periods: The Sample Entropy Approach
Reprinted from: Entropy 2022, 24, 921, doi:10.3390/e24070921 . . . . . . . . . . . . . . . . . . . . . 245

vi



About the Editor

Joanna Olbryś
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Citation: Olbryś, J. Entropy-Based

Applications in Economics, Finance,

and Management. Entropy 2022, 24,

1468. https://doi.org/

10.3390/e24101468

Received: 28 September 2022

Accepted: 8 October 2022

Published: 14 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Editorial

Entropy-Based Applications in Economics, Finance,
and Management

Joanna Olbryś

Faculty of Computer Science, Bialystok University of Technology, Wiejska 45a, 15-351 Białystok, Poland;
j.olbrys@pb.edu.pl

The concept of entropy originated from physics (precisely, from thermodynamics), but
it has been utilized in many research fields to characterize the complexity of a system and
to investigate the information content of a probability distribution. Entropy is a general
measure, and therefore, many definitions and applications of entropy have been proposed
in the literature.

This Special Issue of Entropy was intended to be a forum for the presentation of
entropy-based applications in economics, finance, and management studies. The thirteen
high-quality articles included in this Special Issue propose and discuss new tools and
concepts derived from information theory to investigate various aspects of entropy with
assorted applications.

In the first contribution [1], the authors propose a market clustering measure using
granular trading data and the maximum-entropy concept. The effect of crowded trades on
stock price stability is investigated, and the evidence is that market clustering has a causal
effect on the properties of the tails of the stock return distribution, particularly the positive
tail, even after controlling for commonly considered risk drivers. Reduced investor pool
diversity could thus negatively affect stock price stability.

The second paper [2] introduces a new methodology for the measurement of stock
market depth and market liquidity. The proposed Shannon entropy-based market depth
indicator is supported by an algorithm inferring the initiator of a trade. The findings of
empirical experiments for real high-frequency data indicate that this new entropy-based
approach can be considered as an auspicious market depth and liquidity proxy with an
intuitive base for both theoretical and empirical analyses in financial markets.

The aim of the third contribution [3] is to conduct a dynamic analysis based on
generalized vector autoregressive volatility spillover variance decomposition, construct a
complex network, and adopt the minimum spanning tree method to clarify and analyze
the risk propagation path between different bond types in China’s bond market. The
network’s structural entropy is calculated as a useful indicator of the complexity of the
network system.

The goal of the fourth paper [4] is to identify the degree of coherence of credit cycles in
the countries potentially seeking to adopt the euro with the credit cycle inside the Eurozone.
The indicators that define the credit cycle similarity and synchronicity in the selected
countries and a set of entropy-based measures (i.e., the block entropy, the entropy rate, the
Bayesian entropy) are calculated.

In the fifth paper [5], the authors try to establish the commonalities and leadership
in the cryptocurrency markets by examining the mutual information and lead–lag rela-
tionships between Bitcoin and other cryptocurrencies. The transfer entropy between the
volatility and liquidity of seven highly capitalized cryptocurrencies is calculated in order to
determine the potential direction of information flow. Empirical results suggest the gradual
increase in the role of privacy-oriented cryptocurrencies.

The sixth contribution [6] presents an extension of the Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS) method with objective criteria weights for Group
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Decision Making (GDM) with Interval Numbers (INs). The proposed method is an alterna-
tive to popular and often used methods that aggregate the decision matrices provided by
the decision makers (DMs) into a single group matrix, which is the basis for determining
objective criteria weights and ranking the alternatives. The objective criteria weights are
calculated using the interval entropy method. The numerical example shows the ease of
use of the proposed method, which can be implemented in common data analysis software.

The seventh paper [7] analyzes the changes in the financial network built using the
Dow Jones Industrial Average components following monetary policy shocks. Monetary
policy shocks are measured through unexpected changes in the federal funds rate in the
United States. The changes in the financial networks using singular value decomposition
entropy and von Neumann entropy are investigated. The results indicate that unexpected
positive shocks in monetary policy shocks lead to lower entropy.

In the eight paper [8], the main research question concerns the identification of changes
in the COVID-19 epidemiological situation using fuzzy clustering methods. The identi-
fication of country types in terms of epidemiological risk is carried out using the fuzzy
c-means clustering method. Moreover, the entropy index is used to measure the degree
of fuzziness in the classification and evaluate the uncertainty of epidemiological states.
The research concerns Europe, but the methodology is universal and can also be useful for
other countries.

The purpose of the ninth contribution [9] is to compare the risk transfer structure in
Central and Eastern European and Western European stock markets during the 2007–2009
financial crisis and the COVID-19 pandemic. A variety of methods, including mutual
information and transfer entropy, are used. The results indicate that there are significant
nonlinear correlations in the capital markets that can be practically applied for investment
portfolio optimization. The study provides an insight into the risk transfer theory in
developed and emerging markets as well as a cutting-edge methodology designed for
analyzing the connectedness of markets.

In the tenth paper [10], the authors highlight the role of theoretical assumptions of the
methods employed in the literature of energy markets. They show that the mathematical
definition of chaos and the theoretical background are able to avoid possible errors from
misleading results on the ostensible chaoticity of the price series. The findings indicate that
both chaotic and stochastic features coexist in the energy commodity markets, although the
misuse of some tests in the established practice in the literature may say otherwise.

The eleventh paper [11] focuses on the Mean Logarithmic Deviation, the measure
proposed by Theil and based on the techniques of statistical information theory. The study
investigates the role of age and education as the determinants of income inequality in
Poland. The results confirm an association between the level of education and the average
income of the groups distinguished on this basis. The study also finds that differences in
the age of the household head had a smaller effect on income inequality than the level
of education.

The twelfth paper [12] discusses the topic of uncovering causal interdependencies
from observational data with the help of an information-theoretic concept known as the
Rényi’s information measure. The authors investigate the directional information flow
between bivariate time series in terms of the Rényi’s transfer entropy. The evidence is that
the Rényi’s transfer entropy not only allows us to detect a threshold of synchronization,
but it also provides non-trivial insight into the structure of a transient regime that exists
between the region of chaotic correlations and synchronization threshold.

Finally, in the last paper of this Special Issue [13], the authors assess and compare
changes in regularity in the 36 European and the United States stock market indices
within major turbulence periods. Two periods are investigated: the Global Financial Crisis
in 2007–2009 and the COVID-19 pandemic outbreak in 2020–2021. To capture sequential
regularity in daily financial time series, the Sample Entropy algorithm is used. The empirical
findings are unambiguous and confirm that the entropy of market indices decreases during
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turbulence periods, which implies that the regularity and predictability of stock market
returns increases in such cases.

The high-quality contributions presented in this Special Issue offer a diverse and rep-
resentative portfolio of entropy-based applications in economics, finance, and management.
A wide variety of tools based on entropy confirms that entropy is presumably one of the
most intricate scientific concepts. However, its comprehension is a challenge to researchers.
As a guest editor, I hope that the readers will enjoy the papers included in this Special Issue
and will find them interesting and helpful.
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Abstract: Crowded trades by similarly trading peers influence the dynamics of asset prices, possibly
creating systemic risk. We propose a market clustering measure using granular trading data. For
each stock, the clustering measure captures the degree of trading overlap among any two investors
in that stock, based on a comparison with the expected crowding in a null model where trades are
maximally random while still respecting the empirical heterogeneity of both stocks and investors.
We investigate the effect of crowded trades on stock price stability and present evidence that market
clustering has a causal effect on the properties of the tails of the stock return distribution, particularly
the positive tail, even after controlling for commonly considered risk drivers. Reduced investor pool
diversity could thus negatively affect stock price stability.

Keywords: crowded trading; tail-risk; financial stability; entropy

JEL Classification: G02; G14; G20

1. Introduction

This paper studies the effect of market clustering on price instability. We define market
clustering as the degree to which groups of investors trade similarly. For each stock, our
market clustering model measures the degree of trading overlap among any two investors
that trade that particular stock. In general, stock prices are thought to adjust continuously
to changes in the fundamental value of the stocks. The reactions of investors to new
information determine the adjustments of prices and the resulting price dynamics. Market
clustering, however, cannot be observed by individual investors and its effect on price
dynamics can thus unfold unexpectedly.

Market clustering can be seen as a measure of the homogeneity of the investors’ pool.
Reduced diversity of the investors’ pool, i.e., when the investors show similar trading
behavior, means that coincidental overlap of trading strategies is more likely and overlap
of trades increase the chance of crowded trades and overreactions, reflected in price
fluctuations. The use of large-scale granular trading data and a novel complex network
method enables us to study the effect of market clustering on price fluctuations directly.
To the best of our knowledge, this is the first direct empirical investigation of the relation
between market clustering and price fluctuations on individual stock level.

Studying the empirical relation between market clustering and price instability is
relevant from both an academic and a supervisory point of view. First, the existing empirical
literature on the topic focuses on only indirect measures of group behavior: overlapping
portfolios [1,2], similarities in performance dynamics [3,4], dynamics of the number of

Entropy 2021, 23, 336. https://doi.org/10.3390/e23030336 https://www.mdpi.com/journal/entropy5
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owners per stock [5], or buyer and seller volume imbalance [6,7]. The suggestion that price
fluctuations originate from uncoordinated or inefficient interaction among investors seems
obvious, but due to limited data and lack of suitable methods, such effects have not yet
been investigated directly.

Second, knowledge about the implications of market clustering is relevant for regula-
tors, as market clustering can be an amplifying spillover channel for asset price fluctuations.
The general implication of a causal relation between market clustering and price instability
is that trading patterns through which investors react to incentives, matter for the efficiency
of price discovery. Although this research focuses on the effect of market clustering on
single stocks, market clustering might be a channel of volatility spillovers, because port-
folio adjustments concerning other stocks in reaction to an initial price shock are more
likely to overlap as well in a clustered trading environment. Therefore, market clustering
might not only be a source of price instability, but also a channel of volatility spillovers,
eventually resulting in correlated price jumps. In that case, market clustering would foster
systemic risks. Market clustering might be an example of an existing market structure
that can amplify seemingly unimportant events into widespread market volatility. In case
market clusters coincide with otherwise interconnected institutions, for example, banks,
common asset devaluation can be a crucial default contagion channel, as suggested in
recent interdisciplinary research [8,9].

Market clustering is expected to cause price shocks, because it amplifies the effect
of existing sources of price fluctuations. More specifically, market clustering is expected
to increase the chance of price shocks in two different situations: Firstly, when the order
deluge due to the group behavior overwhelms the supply [10,11] and, secondly, when the
supply is thin due to the homogeneity of the investors’ pool, i.e. a lack of liquidity at one
side of the order book [12]. In both situations market clustering increases the chance that
the demand exceeds the supply, either in buy or sell orders.

We start our investigation of the influence of trading patterns by studying the relation
between market clustering and the price dynamics of individual stocks. Our market
clustering measure is unique in the sense that it quantifies two aspects of group behavior:
clustering and crowdedness. We define price instability as an increase of the number
of sharp price fluctuations, such that the tails of the log return distribution are heavier.
Specifically, we investigate whether there is a causal relation between market clustering
and the skewness, kurtosis, tail indices, positive and negative outlier counts, changes in
downside risk, and upside gains.

The analysis of trading patterns depends on the ability to distinguish to what extent
the observed patterns are the result of genuinely higher-order mechanisms, like group
behavior, rather than of lower-order constraints. In this research, we represent a given
trade configuration as a bipartite network, i.e., a two-layer network where stocks are
represented as nodes in one layer, investors as nodes in the other layer, and links can only
connect nodes across the two layers. These links represent the trades during a particular
time period. We use the maximum-entropy principle to generate a null model with the
same lower-order properties as the empirical network, in this case the so-called “degree
sequence” (i.e., the vector containing the numbers of investors per stock and the numbers
of stocks per investor). Certain “apparent” network patterns can actually be explained by
the lower-order properties. Observations that deviate from the random network ensemble
are instead indications of higher-order trading patterns. Our approach builds on recent
research on the topological structure of economic and financial networks showing that
the degree sequence explains the occurrence of several higher-order structures in these
networks, while still being a local property that directly reflects the intrinsic heterogeneity
of market participants [13–15].

Our source data consist of granular trade-by-trade records of Dutch banks and invest-
ment funds. These data are reported under the Markets in Financial Instruments Directive
(MiFID). The data available to us contain all the transactions in stocks and bonds traded
by all Dutch banks and investments firms (approximately 50). These trades are either
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conducted as an agent or for own account. The set of investors per stock is incomplete, as
trades are only reported in this data set if a Dutch bank or investment firm is involved and
hence we do not observe trades between two foreign parties.

The results indicate that the prices are less (more) stable for high (low) market clus-
tering. We find evidence for a consistent and robust positive relation between market
clustering and the kurtosis of the log return distribution. Clustering thus seems to be
related to large price movements. Furthermore, we find a relation between market cluster-
ing and the tail index and outlier count for the positive tail, but interestingly not for the
negative tail. We hypothesize that the effect for the negative tail is conditional on volatility
state in the market and test this hypothesis with the dynamic panel data approach.

We use the data limitation of not observing trading among foreign investors to mimic
an experimental research design and study the causality of the relation between market
clustering and price instability. Per stock we measure what percentage of its turnover is
traded by investors included in the MiFID data set and compare the results for stocks that
are mainly traded by included investors (“treatment group”) with the results for stocks that
are mainly traded by investors elsewhere (“control group”). Under assumption that Dutch
and foreign investors trade in stocks with comparable properties, here we find evidence
for causality as our results do not hold for stocks mostly traded by non-Dutch investors.

Finally, we examine market clustering and price instability in a dynamic panel data
framework. Dynamic panel data models can account for heterogeneity bias across indi-
vidual stocks and can disentangle causality effects in the presence of simultaneity driven
endogeneity. These models show that clustering is a persistent process, affected by market
conditions, but not by stock return momentum or fundamental variables. The only stock-
related variables that matter are liquidity and market capitalization. Higher illiquidity
in low volatility periods leads to higher clustering scores, indicating the investors are
willing to take extra risks in low volatility periods. The model confirms the possibility that
crowded trades are related to fire sales as less liquid stocks are traded more in downward
markets. The relation between market capitalization and market clustering supports the
presence of flight-to-safety within equities in turmoils. Thus the results are consistent with
multiple equity market phenomena.

When we investigate the drivers of changes in Value-at-Risk (VaR) and Value-at-Luck
(VaL; upside potential, measured as VaR but for the positive side of the return distribution),
we find that our proposed clustering measure has explanatory power beyond other well-
known variables. Our conditioning variables include practically all the variables suggested
in the literature (i.e., market factor, book-to-market, dividend yield, size, Amihud (2002)
liquidity measure, momentum, and market conditions). The findings confirm that stocks’
involvement into crowded trades lead to larger price fluctuations. The effect is stronger
for the positive tail (VaL) and consistent with results from group comparisons. For the
negative tail, market clustering causes price instability during financial turmoil, but not
during calm periods.

The setup of the remainder of the paper is as follows. First, we provide a brief
overview of the relevant literature. Then, we turn to a description of the data, followed by
an explanation of the method to measure market clustering we developed. To the best of
our knowledge, both the data and the method are new contributions to the literature. We
then describe our results and close with a discussion.

2. Literature Review

The literature studying price dynamics is rich and can be classified in many ways. Our
focus here is on joint trading affecting the market in such a way that it is no longer capable
to perform two key functions: efficient price discovery and providing liquidity [16]. Several
related strands of the literature shed light on this important issue covering (1) similar shocks
on the funding side, (2) overlapping portfolios, (3) exogenous requirements, (4) market
microstructure design issues, and (5) complexity models.

7
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First, some argue that participants in the market face very similar funding shocks or,
more generally, that investment needs or beliefs are highly correlated. This affects prices
because leverage cycles result in fat tails [17]. For instance, Gorban et al. [18] suggest a
continuous-time model where beliefs of strategic informed traders about crowdedness of
trades and strategies in the market can lead to reduced liquidity on supply side and lower
market depth.

Second, given the investment needs and outlook, investors will have accumulated a
portfolio of assets that might to some degree be overlapping. With homogenous agents and
perfect information, all portfolios will approach the market portfolio. In practice, investors are
heterogeneous and information is uncertain and not freely available, thus investors will
have portfolios that overlap only partly. This does not limit itself to liquid investments
but also applies to longer term and less liquid exposures such as in the syndicated loan
market [19].

Common asset holdings have attracted considerable attention, especially in the context
of fire-sale spillovers and cascade dynamics [20–22]. Not surprisingly, studies find that more
commonality in investments increase systemic risk with an exception to Barroso et al. [23],
who discover no evidence of the relation between momentum crashes and institutional
crowding. Gualdi et al. [24] show that portfolio overlapping on aggregate level increased
slowly before the 2008 crisis, reached a peak at the start of the crisis and then triggered
fire sales. Moreover, network effects are generally important (although Glasserman and
Peyton Young [25] come to the opposite conclusion). Theoretical work has evolved from
analyzing the effect of fire sales on a single portfolio and a single asset [26] to continuous
time models with endogenous risk and spillover from fire sales across multiple assets and
multiple portfolios [27]. Empirical (stress test) exercises assess how relevant such contagion
effects are in practice. The results are highly dependent on the financial system considered
(see, for example, van Lelyveld and Liedorp [28] and Cont and Schaaning [29]).

A third area of the literature relevant for our analysis highlights fire sales caused by
an exogenous requirement. Note that fire sales are forced sales in stressed markets under
unfavorable terms and are very different compared to regular buying and selling to adjust
a portfolio. External requirements are often set by regulators to safeguard sufficient buffers
for various risks (credit risk—using both risk weighted and risk insensitive measures (i.e.,
leverage ratios), counterparty credit risk, or liquidity risk [17,29–32].

Regulatory requirements often imply cliff effects as breaching certain thresholds come
with costs. External demands leading to forced sales can sometimes also come from other
market participants. For example, counterparties can call for margin. In particular, central
clearing parties can require substantial margins to be delivered at very short notice [33].

Fourth, there is an established literature on mispricing because of market microstruc-
ture design and crowded trades [10,11,34]. Sometimes investors are prone to herding [35],
at other times, speculators try to manipulate prices by rapidly submitting orders to drive
up prices.

Finally, we develop and apply complexity models—as recently advocated by Battiston
et al. [36]. Network theory in general has many applications in finance [8] and complex
network theory offers reconstruction procedures and null models based on a maximization
of entropy [13,14]. Such models have been applied to the world trade network [15] and
banking networks [14,37–39]. A slightly different type of network emerges from order
optimization as studied by Cohen-Cole et al. [40]. In studying the DOW and the S&P
e-mini futures, they show that in these entirely electronic markets economically meaningful
networks emerge. This happens despite the fact that the interjection of an order-matching
computer makes social interaction impossible. In the method we develop here—to be
elaborated on below—we incorporate the distribution of the number of links per node
(degree distribution) but otherwise our expectation (or null model) is as random as possible.

To clarify our approach to crowded trading, we present a graphical representation of
market clustering in Figure 1. The homogeneity of the trading behavior of the investors’
pool per stock is then reflected in the market clustering measure that we will define below
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in Equation (1). In the most extreme case, the market breaks up into distinct submarkets,
consisting of groups of investors that trade only in particular stocks which are only
traded by those groups. Incorporating the effect of clustering into the measure on
individual stock level is what sets our research apart from other crowdedness measures
intended for individual stocks. For example, Yang and Zhou [6] differentiate between
seller and buyer initiated crowded trades per stock. Their measure is based on trading
volume data and thus does not reflect the (unobserved) interactions among investors.
The same applies to the quarterly measure derived from mutual funds holding data in
Zhong et al. [41]. The stocks that are largely held by actively managed mutual funds are
classified as overcrowded but the tendency of a particular stock’s owners to trade with
each other is not taken into account.

Random trades
Firms

Stocks

TradesIncentives

Clustered trades
Firms

Stocks

TradesIncentives

Figure 1. Market clustering in a bipartite network representation. The nodes in the top layer represent
the firms and the bottom layer represents the stocks. The links between the layers represent all trades
during a certain time period. Each line is a trade of the connected firm in the connected stock. In
the top network, all trades are randomly distributed over the firms and stocks. The bottom trade
network shows market clustering: Groups of firms trade in separated groups of stocks, while these
stocks are traded only by these particular firms, which results in three distinct market clusters. The
number of trades per firm and per security is the same for both random trades and the clustered
trades example.

In general, peers trading similarly are likely to share common features, i.e., in case
the group of investors that trade in a stock is very similar, then trading behavior might be
similar, too. In our current analysis we abstract from what drives common trading. We are
thus agnostic as to whether the order flows are driven by, for example, adjustments due to
common asset holdings, (too) similar investment views, or shared regulatory constraints.
Note that we do investigate what makes a particular stock attractive for involvement into
clustered trades and how that depends on market conditions.

3. Methodology

In this section, we will first discuss our novel contribution: how to define a metric
for homogeneous trading by comparing observed trade overlaps with expected overlaps
under a suitable null model. We then introduce the definition of price instability and the
cross-sectional comparison framework to assess the relation between clustering and price
instability. Finally, we present a dynamic panel data model. We implement the latter in
order to investigate the drivers of our newly defined measure as well as to show that it has
additional explanatory power over and above well established covariates in models for
downside risk and upside potential.
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3.1. Measuring Homogeneous Trading

Our first goal here is to define a measure of similar or homogeneous trading behavior.
This indicator will then be linked to the measures of price instability to investigate whether
higher order patterns affect price formation. The nexus of trades between firms and stocks
is complex and exhibits both lower- and higher-order network properties. Lower-order
properties, such as the liquidity of a particular stock, have been researched extensively
and are key determinants of price dynamics. Lower-order properties can be seen as
the exogenous causes of price instability and their effects on price dynamics are direct
and undelayed.

However, we focus on whether the market microstructure conceals particular grouping
of trades that disturb the efficiency of the market. Particular ordering of the trades, resulting
in higher-order patterns, can function as endogenous cause of price instability. Crucially,
these market features are unobservable to the investors and their effects on prices can unfold
unexpectedly. Such effects have not been investigated by use of granular trading data,
because suitable methods had yet to developed and the data have been largely unavailable.

We develop a method that incorporates the information encoded, for each month t, in
the number of unique investors per security (observed “degree” dobs

s,t of security s in month
t) and the number of unique, traded securities per firm (observed “degree” dobs

f ,t of firm f
in month t). The observed degrees of all firms and securities during month t are combined
into a vector Dobs

t representing the degree sequence observed in month t. We compare the
observed trading network to a maximally random (i.e., maximum-entropy [13]) network
ensemble based on only the observed degree sequence. The ensemble is characterized by
a different connection probability ps f ,t for each security-firm pair (s, f ) and for each time
t and, consequently, for combinations of links (i.e., “motifs”). Empirical deviations from
the maximum-entropy ensemble are indications for higher-order patterns such as peers
clustering in the same (type of) stock.

To identify market clustering, we need the observed values and the expected values
based on the benchmark model. The quantity that represents the market clustering of
security s during month t is

ms,t =
Ms,t

〈Ms,t〉 − 1, (1)

where Ms,t is the observed market clustering and 〈Ms,t〉 is the expected value based on the
maximum-entropy model that we develop below. The observed value Ms,t is divided by
the expected value 〈Ms,t〉, so that deviations from the benchmark are scaled in terms of the
expected value. The minimum value for the market clustering is minus one by definition
and a market clustering of zero means that the market clustering has the same value as the
expected value 〈Ms,t〉.

The observed market clustering Ms,t—visualized in Figure 2—is defined, for each
security s and month t, as the number of shared securities (other than s) traded by all pairs
of investors trading in s. In other words, for each pair ( f , f ′) of firms, we first establish
if they both trade in the security s during month t. If this is the case, we then count the
number of securities (other than s itself) that these two firms are also trading simultaneously
in the same month. The observed value of the market clustering Ms,t for security s during
month t is then given by

Ms,t =
nF,t−1

∑
f

nF,t

∑
f ′= f+1

(
as f ,tas f ′ ,t ∑

s′ �=s
as′ f ,tas′ f ′ ,t

)
, (2)

where the total numbers of firms and securities active in month t are denoted by nF,t and
nS,t, respectively. The summation ∑ f ∑ f ′ runs over all possible pairs of investors and
the summation ∑s′ �=s runs, per pair of investors, over all securities except security s. The
indicator as f ,t = 1 in case firm f trades in security s during month t and as f ,t = 0 otherwise.
Ms,t measures all trading combinations within the pool of investors that trade in security s,
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forming a market clustering pattern or “motif”. If investors in a security are otherwise not
trading jointly, then ms,t = −1 and we drop 3412 observations (5%) of such cases as these
observations are not relevant for our analysis.

a)

b)

c)

Firms

Securities

Trades

Firms

Securities

Trades

4 4 2 0 0 0 1 1 2Mi,t

Figure 2. Example of the calculation of the observed market clustering Ms,t. (a) A hypothetical
bipartite trading network. Each line represents a buy or sell transaction. (b) Counting the market
clustering motifs for the first security. In these four cases shown the trading pattern exist and
therefore the first security has score four. This calculation is repeated for all other securities. The
summation in Equation (2) runs over all possibilities. (c) The same hypothetical trading situation
with the observed market clustering Ms,t for each security (lines that do not contribute to the market
clustering measurements for any security are dotted).

We calculate the expected value of the market clustering based on the maximum-
entropy probability distribution P(Xt|Dobs

t ) derived in Appendix A based only on the
observed degree sequence Dobs

t . As shown in Appendix A, the distribution P(Xt|Dobs
t )

factorizes over pairs of edges, which are all mutually independent in the null model. The
expected value of the market clustering is therefore easily calculated as the sum over all
configurations weighted by the probabilities:

〈Ms,t〉 = ∑
Xt∈Gt

P(Xt|Dobs
t )Ms(Xt)

= ∑
Xt∈Gt

P(Xt|Dobs
t )

nF,t−1
∑
f

nF,t

∑
f ′= f+1

(
as f (Xt)as f ′(Xt) ∑

s′ �=s
as′ f (Xt)as′ f ′(Xt)

)
=

nF,t−1
∑
f

nF,t

∑
f ′= f+1

(
ps f ,t ps f ′ ,t ∑

s′ �=s
ps′ f ,t ps′ f ′ ,t

)
,

(3)

where we have introduced the single security-firm pair connection probability ps f ,t, defined as

ps f ,t = ∑
Xt∈Gt

P(Xt|Dobs
t )as f (Xt) (4)
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(see in Appendix A for a detailed calculation of ps f ,t from Dobs
t ) and exploited the fact that,

under the conditions s �= s′, f �= f ′ guaranteed in Equation (3),

∑
Xt∈Gt

P(Xt|Dobs
t )as f (Xt)as f ′(Xt)as′ f (Xt)as′ f ′(Xt) = ps f ,t ps f ′ ,t ps′ f ,t ps′ f ′ ,t (5)

due to the independence of distinct edges. Figure 3 illustrates the summation process graphically.

(a)

(b)

(c)

(d)

(e)

Firms

Securities

Trades

3 3 2 1 1 2 2 2 3Security degree ds,t

5 3 5 3 3Firm degree d f ,t

p13,t = 0.74Probabilities ps f ,t

p11,t p12,t p21,t p22,t = 0.13 p11,t p12,t p31,t p32,t = 0.06

Firms

Securities

5.3 5.3 2.8 0.8 0.9 2.8 2.8 2.8 5.3〈Ms,t〉
4 4 2 0 0 0 1 1 2Ms,t

−0.24−0.24−0.28 −1 −1 −1 −0.64−0.64−0.62ms,t (Equation (1))

Figure 3. Calculation of the benchmark model for the market clustering 〈Ms,t〉. (a) The same
hypothetical trading situation as in Figure 2. (b) The trading information is reduced to the degree
sequence: The number of traded securities per firm and the number of trading firms per security.
(c) The degree sequence is translated into a probability ps f ,t for each firm–security pair (i.e., the
probability of firm f trading in security s in month t). The probability and degree sequence hold
the same information, as the expected value of the number of connections for each node equals the
degree. (d) The probability of occurrence of the market clustering motifs equals the product of the four
probabilities between the four involved nodes (see in Equation (3)). The expected value of the market
clustering per security is the sum of all probabilities for motifs that are connected to the security. The
first two motifs for the first security are shown. This calculation is repeated for each security. (e) The
benchmark model market clustering 〈Ms,t〉 for each security, the observed market clustering from
Figure 2, and the final market clustering measures, according to Equation (1), respectively.

The market clustering ms,t measures the degree of clustering for security s among its
traders. Figure 4 shows examples of the performance of the method in two hypothetical
situations. First, the model assigns a lower value to securities which are involved in
multiple clusters. Arguably, the involvement in multiple clusters enhances the diversity of
the investors group and would probably stabilize the price dynamics. Second, the work in
Figure 4 shows that the model is able to indicate to what extent the security is involved in
the cluster. Homogeneous trading behavior is indicated by a relatively high percentage of
overlapping trades. Therefore, the number of trades that do not overlap must lower the
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market clustering measure. This condition is satisfied as can be seen in the second example
in Figure 4.

Example 1. Involvement
in multiple clusters lowers
ms,t.

Firms

Securities

Trades

2.6 2.6 6 2.6 2.6〈Ms,t〉 (Figure 3)
2 2 4 2 2Ms,t (Figure 2)

−0.24 −0.24 −0.33 −0.24 −0.24ms,t (Equation (1))

Example 2. Market cluster-
ing ms,t indicates the degree
of involvement in the cluster.

Firms

Securities

Trades

6.5 6.5 6.5 6.5 6.5〈Ms,t〉 (Figure 3)
7 7 7 3 0Ms,t (Figure 2)

0.08 0.08 0.08 −0.54 −1ms,t (Equation (1))

Figure 4. Example of the computation of ms,t. Example 1. The market clustering is lower when a
security is involved in multiple clusters at once. In this configuration two clusters exist: one on the
left and one on the right. The security in the middle is involved in both clusters. The final market
clustering is lower for the security in the middle, because its four connected firms are not mutually
clustered. Example 2. The market clustering ms,t indicates the involvement in the market cluster. All
securities are traded by three firms each. The left three firms are almost fully clustered. The final
market clustering ms,t indicates to which extent the securities are involved in the cluster.

3.2. Measuring Price Instability

We measure stock price instability with statistics that focus on tail behavior of the stock
return distribution. We analyze the skewness, the kurtosis, the tail indices, the number
of outliers, and the changes in the left and right 5% quantiles. The latter two can also be
interpreted as changes in downside risk and upward potential and are better manageable
on the time-series dimension. Ang et al. [42] show that sensitivities to downside market
movements are priced in addition to the common risk factors. Thus, if market clustering
leads to changes in downside risk, it implicitly shows up in the price dynamics.

Skewness and kurtosis are measures of the shape of the complete log return distribu-
tion while the outlier count and the tail index are focused on the tails of the distributions—
the extreme returns. The tail index (i.e., Hill’s estimator) measures the fatness of the tail
according to the power law distribution. We count the number of outliers by sequentially
applying the generalized Grubbs’ test until no outliers are detected. The skewness, Hill
indices and outlier count also allow us to distinguish the effect on price instability for up-
and downward shocks separately. We measure the size of the price fluctuation relative to
the yearly standard deviation of the stocks, i.e., we divide the log returns by the yearly
standard deviation per stock. Complementary to the volatility normalization, we investi-
gate the influence of market clustering on the variance and the Median Average Deviation
(MAD), which is more robust to outliers than the variance.

Value-at-Risk (VaR)—often used in risk management and regulation—is an obvious
choice for quantifying the downside risk. We focus on a single stock 5% VaR obtained via
historical bootstrap from daily returns. Historical simulation risk measures depend on the
level of volatility in the sample. However, our quantile-based variable measures change
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over time and, as such, it is not affected by volatility clustering. More precisely, for the
monthly data set we define

ΔVaRst = 100
( VaRs(t − 11, t)

VaRs(t − 12, t − 1)
− 1
)

,

where VaRs(t1, t2) denotes a 5% VaR for stock s at the end of month t2 obtained via historical
bootstrap from daily prices over the period from month t1 to month t2.

Similarly, to capture tail asymmetries, we define changes in Value-at-Luck (VaL):

ΔVaLst = 100
( VaLs(t − 11, t)

VaLs(t − 12, t − 1)
− 1
)

,

where VaLs(t1, t2) denotes a 95% VaR for stock s at the end of month t2.

3.3. Stochastic Dominance and Causality for Groups

We now compare the distributions of the price instability measures for low and high
market clustering. First, the securities are ordered according to their market clustering
measure. Second, the securities are divided into three groups: the lowest (L) and the
highest (H) 33%. We ignore the middle group in the remainder. Finally, we collect all time
series price instability measures per time window per group and assess first and second
order stochastic dominance of the distributions for group L and H.

We use three tests to indicate the differences between the distributions of groups L
and H. The Kolmogorov–Smirnov (KS) test and the Mann–Whitney–Wilcoxon (MWW) test
are both nonparametric tests for unpaired samples. The χ2 test is used instead of the KS
test in case of binned data, because the KS test is unreliable when the number of ties is high.
The KS test is sensitive to any discrepancy in the cumulative distribution function and
serves as a test for the first-order stochastic dominance. The MWW is mainly sensitive to
changes in the median and aids to evaluate the second-order stochastic dominance. We use
visual inspection of the cumulative distributions to study the nature of the discrepancies to
interpret the test results.

Using the difference-in-differences approach allows us to benefit from the partial
coverage of our data set and dispel concerns over reversed causation. A concern could be
that rather than market clustering causing price instability (null hypothesis), unstable and
risky stocks might attract traders that prefer to trade in clusters of like-minded traders. In
order to assess the effect of clustered trading in a mimicked experimental research setting,
we construct a so-called control group from the stocks that are mainly traded by investors
not included in the our data set. We look at the relation between market clustering and
kurtosis in the control group. A significant relation would be speak against causality.
The test is valid under an assumption that both groups of investors trade in stocks with
somewhat similar properties.

3.4. Dynamic Panel Data Framework

The last part of the analysis applies a dynamic unbalanced panel data model. We aim
to strengthen the high and low market clustering group results by exploring (a) the possible
drivers of the clustering measure and (b) the effect that the clustering measure has on price
instability. We tackle two questions in the model for the market clustering drivers. First, a
group of investors may choose particular stocks because of their (latent) properties. We also
include the properties that quantify a stock’s riskiness and instability as an additional test
on reverse causality, mentioned in the previous section. Second, crowded trading activity
may depend on certain market conditions. We look at the effect of the perceived trend and
volatility. In the second application, we investigate the relation between changes in left and
right quantiles of log returns distribution and clustering in individual stocks. In particular,
we are interested to see whether a higher clustering measure leads to larger changes in
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downside risk VaR and upside potential VaL after controlling for other possible individual
stock risk determinants.

The general representation of the model with both lagged dependent and independent
variables included, possibly of different depth, is

yst = ∑
r

ρrys,t−r + ∑
p

βT
pxs,t−p + αs + εst, r = 1, 2, . . . , p = 0, 1, 2, . . . , (6)

where yst is a dependent variable, i.e., the clustering measure or the price instability
measure depending on exact specification, xs,t is a vector of considered covariates, αs is
an individual effect, ρr and βp denote model parameters, εst is idiosyncratic error term,
s = 1, . . . , N, and t = 1, . . . , T.

We opt for the fixed effects model and treat αs as a set of N additional parameters.
We do not employ time dummies for two reasons: First, time dummies would preclude
including time-only varying variables of interest (like the market factor MKTF and market
volatility VIX). Second, incorporation of time dummies is more suitable for panels with
very small T. In fact, most of our efforts to run the dynamic model with both fixed and
time effects result in singularity issues. We estimate Equation (6) with the System GMM. In
particular, a two-step estimator with Windmeijer [43] correction for standard errors is used.
Estimation is carried out with the R package plm [44].

Our methodology has several attractive properties. First, individual effects are allowed
to be correlated with the covariates xst—a likely case in our data as, e.g., firms in certain
industries may have higher dividend yields or price-to-book ratios than others. Second, the
fixed effects approach accounts for unobserved heterogeneity bias. All (practically) static
cross-sectional stock features, like sector or exchange, are by default incorporated into αs
terms. Last but not least, we address potential endogeneity issue due to simultaneity. We
hypothesize that an increase in the clustering measure leads to larger changes in downside
risk. However, it is also possible that some stocks are more likely to end up in cluster
trades because of their risk profile. We disentangle the causality by producing internal
instruments for the right hand side variable CLUST that is not strictly exogenous.

A common approach is to use all possible lags and variables to construct GMM-style
instruments. Roodman [45] warns that too many instruments result in model validity
issues and, specifically, false estimation outcomes and low power of overidentification tests.
Roodman suggests collapsing the instruments and using only certain lags to overcome the
instrument proliferation. Wintoki et al. [46] show that both collapsing the instruments and
the size of cross section increase the power of Sargan-Hansen J test. We use all available
lags for selected variables and construct collapsed GMM-style instruments.

4. Data

The data have been collected as part of the Markets in Financial Instruments Directive
(MiFID). MiFID is a European Union (EU) law to regulate investment services across the
European Economic Area (EEA). The directive applies to all firms that perform investment
services and activities. Firms that only perform ancillary services are exempted. “Post-trade
transparency” is the key aspect of MiFID mandating the authorities to collect the data used
here. The post-trade transparency regulation requires all firms to report all trades in all
listed stocks, including the time, the price, and number of units to the supervisory authori-
ties immediately after the trade. MiFID only contains information about the transactions
and thus holdings that are not traded are not in the data.

Although MiFID collects data on a EU level, Dutch authorities only have access to
the transactions of Dutch banks and investment firms. In particular, the data cover the
investments in financial instruments of 86 Dutch banks and investment firms. The time
span of the data covers January 2009 through April 2015. The annual cross-sectional
analysis (see Section 5) is thus done for the period January 2009–December 2014. Only
the face-to-market firms report their transactions. The data contain trades by the reporter
as principal trader and as agents. For the market as a whole, agent trades form a limited
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part and are roughly at 10% of volume/trades. Furthermore, although we do not have
information on the identity of the clients, it is likely that they are non-financial firms or
retail clients and hence will be very heterogeneous in their trading strategies. For the
moment, we thus concentrate on trades entered into as principal. In case a principal trader
performs transactions via a broker, only the broker reports the transaction, but we do see it
in the data.

Contrary to portfolio holdings data sets, such as the ESCB Securities Holding Statistics,
which show only shifts in the portfolio holdings; the MiFID data set contains all buy
and sell transactions separately. We aggregate these transaction level data to a monthly
frequency, split by the total number of buy and sell transactions. Aggregation of data is
necessary because trading clusters do not emerge instantaneously, but rather over time.
This choice facilitates our research design, meaning that we can derive price instability
metrics from less noisy daily data instead of intra-day observations.

To improve the comparability of the price dynamics, we perform the cross-sectional
comparison only for equities and exclude bond trading. In general, the price dynamics and
trading behavior differ markedly between equity and bond markets. In contrast to equities,
most bonds are not unique as bonds issued by the same entity, but of different maturities
are to a degree interchangeable (in case no arbitrage opportunities exist). In addition, we
want to abstract from the dynamics at the beginning or end of the lifetime of a security
(e.g., an IPO or a default). Thus we select 976 equities that are traded during each month in
the period January 2009–April 2015.

The data source for the daily stock return time series is Bloomberg Professional. In
case securities in our data are traded at multiple exchanges, Bloomberg chooses between
the exchanges automatically. In case no transactions are registered during the day, the price
of the security is kept at the price of the last transaction. After inspecting the price series
for outliers, we remove two time series of penny stocks with excessive return volatility.

We apply a panel data framework for securities classified as common stocks in the
Bloomberg database. The initial sample of 976 equities contains 583 common stocks. We
remove 16 stocks for which the average price does not exceed 1 EUR, then 24 stocks which
are thinly traded (more than 10% of days during the trading period without a single
transaction), 2 stocks with non-euro currency data, and 2 stocks with suspiciously large
values for some fundamentals. Next, we apply the turnover requirements for each year
as in the first part of the analysis. Many of the stocks qualify for multiple years, in total
we have N = 269 unique stocks and T = 76 months. The number of stocks across years
fluctuates between 203 and 234.

The summary of explanatory variables and applied transformations is shown in Table 1.
We consider a wide variety of potential risk and trading behavior drivers: stock market
conditions, individual stock performance, liquidity, and fundamentals. MKTF and VIX
are only time-varying variables, LEV3 monthly values repeat for the same fiscal quarter,
and all other variables vary per stock per time period. Non-time-varying variables, like
the sector of the issuer, cannot be explicitly accommodated in a panel framework with
fixed effects.

The Fama and French market factor for Europe is downloaded from the Kenneth
French library (See https://goo.gl/pZVmqe (accessed on 18 January 2017)). The VIX index
comes from Chicago Board Options Exchange website (See https://goo.gl/zMCTa (ac-
cessed on 15 March 2017)). We obtain all stock specific information via Bloomberg terminal.
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Table 1. Description of variables.

Variable Definition

MKTF Fama and French market factor for Europe, returns in % for a month

VIX The CBOE Volatility index as a proxy to market conditions, level at the
end of a month

MOM 12/6-month average of monthly returns in % at the end of a month

MCAP Log of market capitalization in 106 EUR at the end of a month

ILLIQ
A daily ratio of absolute stock return to its euro volume, averaged over
a month, also known as Amihud [47] liquidity measure, to reduce het-
eroskedasticity we transform as log(ratio + 10−6)

PB3 Price-to-book ratio with a 3-month publication lag at the end of a month

DY 12-month trailing dividend yield, in % at the end of a month, we set not
available values to 0

LEV3 Ratio of long-term debt to capital with a 3-month publication lag at the
end of a month

Table 2 presents the descriptive statistics for variables in the panel data models. We
discuss the last two columns as they offer the most valuable insights with regard to
methodological choices. ΔVaR, the percentage point change in the VaR, has substantial
within variation of 0.356, and thus the fixed effects model seems suitable for it. ΔVaL, the
percentage point change in the upside VaR, has somewhat smaller yet acceptable within
variation. We can expect effects of MKTF, VIX, and MOM to be estimated precisely because
of (relatively) high within variation proportions of 1.000, 1.000, and 0.338. Perhaps we will
see effects of CLUST and DY as well, but the rest of the variables are likely to have high
standard errors. MCAP and ILLIQ have such high between groups variation (close to one)
that their explanatory power may be subsumed by fixed effects.

Table 2. Descriptive statistics.

N.Obs. Mean Median St.dev. Min Max Between Within

ΔVaR 16216 −0.80 0.00 7.68 −39.10 82.10 0.010 0.356
ΔVaL 16216 −0.50 0.00 7.69 −59.74 98.78 0.011 0.190
CLUST 15896 0.04 0.06 0.28 −1.00 6.58 0.245 0.041
MKTF 16216 1.09 1.02 5.97 −12.33 13.86 0.003 1.000
VIX 16216 21.09 18.38 8.12 11.40 46.35 0.052 1.000
MOM 16204 0.64 0.71 3.48 −18.88 27.71 0.106 0.338
MCAP 16216 7.06 6.99 2.15 0.93 12.21 0.970 0.004
ILLIQ 16051 −3.66 −4.40 4.47 −13.82 12.48 0.957 0.007
PB3 15025 1.95 1.35 2.50 0.05 71.67 0.470 0.010
DY 16216 2.88 2.15 4.53 0.00 157.78 0.303 0.032
LEV3 15916 26.39 25.35 20.42 0.00 159.01 0.813 0.007

For each variable the table presents the number of available observations, mean, median, standard deviation,
minimum, maximum, and the proportions of between and within variation. Note that the proportions of variation
do not add up to one because the panel is unbalanced.

Table 3 provides information about co-movements of the variables included. The
clustering measure CLUST has significant though small correlations with most variables,
except for MKTF. The largest correlation of 0.102 is observed with VIX, indicating that
the level of clustering could be dependent on market conditions. CLUST has marginally
significant positive correlations with changes in downside risk and upside potential, i.e.,
ΔVaR and ΔVaL, of 0.018 and 0.020, respectively. ΔVaR and ΔVaL are also strongly cor-
related with VIX. In the dynamic panel data models, we aim to disentangle the causality
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direction and the effect of general market volatility on both clustering and risk measures.
Furthermore, there is zero correlation between the changes in 5% quantiles in the left and
right tail of the distribution. As within variation for these variables is non-negligible, likely,
they possess very different dynamics over time supporting our choice to estimate separate
models for changes in the left and the right tail.

Table 3. Correlations of pooled variables.

ΔVaR ΔVaL CLUST MKTF VIX MOM MCAP ILLIQ PB3 DY LEV3

ΔVaR 0.000 0.018 −0.203 0.186 −0.204 −0.039 0.047 −0.006 0.063 −0.009
ΔVaL 0.293 0.020 −0.098 0.154 −0.253 −0.053 0.047 −0.010 0.081 −0.005
CLUST 0.020 0.011 0.004 0.102 −0.036 −0.041 0.058 −0.024 0.031 −0.025
MKTF 0.000 0.000 0.613 −0.245 0.026 0.015 −0.018 −0.018 −0.021 0.015
VIX 0.000 0.000 0.000 0.000 −0.315 −0.004 0.033 −0.042 0.127 0.054
MOM 0.000 0.000 0.000 0.001 0.000 0.091 −0.088 0.152 −0.202 −0.023
MCAP 0.000 0.000 0.000 0.050 0.612 0.000 −0.620 0.046 0.096 0.227
ILLIQ 0.000 0.000 0.000 0.027 0.000 0.000 0.000 −0.069 −0.036 −0.165
PB3 0.468 0.208 0.003 0.030 0.000 0.000 0.000 0.000 −0.039 0.015
DY 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.059
LEV3 0.276 0.501 0.002 0.062 0.000 0.003 0.000 0.000 0.065 0.000

The table presents Pearson correlations of pooled variables in the upper right triangles and the corresponding
p-values to test for zero coefficient in the lower left triangles.

The autocorrelations and partial autocorrelations (Table 4) indicate the dynamic nature
of all risk series and the clustering measure. Two lags seem an appropriate starting point
for the dynamic models explaining CLUST, ΔVaR, and ΔVaL.

Table 4. Percentage of significant ACFs and PACFs for ΔVaR, ΔVaL, and CLUST.

Lag
ΔVaR ΔVaL CLUST

ACF PACF ACF PACF ACF PACF

1 43.49 43.49 35.69 35.69 38.29 38.29
2 17.10 5.20 18.59 5.58 27.14 11.52
3 5.20 2.97 8.18 2.60 24.16 10.41
4 0.74 0.74 2.23 1.12 18.96 4.83
5 0.37 1.12 1.12 0.74 12.64 2.60
6 0.00 0.37 0.37 1.12 8.92 1.49
7 1.12 0.74 0.00 0.74 5.95 1.12

We obtain the autocorelations and partial autocorrelations for 269 time series per variable in the panel data set.
The table contains the percentages of cases with significant coefficients for the first seven lags.

5. Results

5.1. Group Comparison

We compare distributions of price instability measures between the buckets of stocks
with high and low market clustering. Our first key observation is that there seems to
be a relation between the kurtosis of the log return time series and market clustering.
Table 5a shows an overview of the results of the 24 test cases (MAD, variance, skewness,
kurtosis where in each cell we show the results of the Kolmogorov–Smirnov (KS) test, and
the Mann-Whitney-Wilcoxon (MWW) test). For all six years, both tests give significant
indication for a positive relation between market clustering and the kurtosis (with sig-
nificance level of 2.5%). The test results are confirmed visually by the distance between
the graphs of the cumulative kurtosis distribution for low and high market clustering
(see Figure A1) (Appendix B). The cumulative distribution of the kurtosis in high market
clustering group stochastically dominates the cumulative distribution of the kurtosis in
low market clustering group. As the sample kurtosis is a measure of tail extremity and
peakedness, the stocks with a higher (lower) market clustering tend to have log return
distributions which are more (less) peaked and have (less) fat tails.
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Table 5. Testing for a relation between market clustering and price instability—annual window.

2009 2010 2011 2012 2013 2014

(a)

MAD == == == == == ++
Variance + = = + ++ == ++ ++
Skewness + = ++ ++ == ++ ++
Kurtosis ++ ++ ++ ++ ++ ++

(b) Hill index neg. − = == = − == == ==
Hill index pos. −− −− −− == −− −−

(c) Outliers neg. �== == == == == �==
Outliers pos. �=+ �=+ �=+ == �=+ �=+

We compare the distributions of the four time series measures (a), the Hill indices of the negative and positive tails (b), and the
number of outliers per time series (c) over six years between two groups of stocks: the lowest 33% and the highest 33% of the stocks,
ranked according to their market clustering measure. The table shows for each comparison two test results. In panels a and b,
the first is the Kolmogorov-Smirnov (KS) test and the second is the Mann-Whitney-Wilcoxon (MWW) test. The critical value is
0.025 for both tests. A “+”/“−”/“=” sign means that the distribution for high market clustering exceeds/undercuts/is equal to the
distribution for low market clustering. In panel c the first is the χ2-test (critical value: 0.05) and the second is the MWW test (critical
value: 0.025). Contrary to the KS test, the χ2 test results indicates only whether the hypothesis of homogeneity is accepted (“=”) or
rejected (“ �=”). Note that we do not show 2015 because the comparison with other years would be difficult as we have significantly
fewer observations.

The stochastic dominance of distributions of considered price instability measures condi-
tional on positive and negative tail in high vs. low market clustering groups indicate that market
clustering relates to a relatively heavier tail for the positive tail of the log return distribution
and not for the negative tail. The results for the Hill indices (Table 5b and Figure A2) show that
only the fatness of the positive tail relates to market clustering. Distribution of positive
tail index in low clustering group dominates distribution of positive tail index in high
clustering group. Here, a lower index implies fatter tails. The results for the outlier count
(Table 5c and Figure A2) also show a clear relation between the number of positive outliers
and market clustering and not for the number of negative outliers. Distribution of positive
outliers in high clustering group stochastically dominates distribution of positive outlier
in low clustering group. The stochastic dominance of distributions of price instability
measures for the negative tail cannot be established. The tests in Table 5 provide evidence
for neither first nor second order stochastic dominance.

The positive relation between the skewness and market clustering in Table 5 and
Figure A1 is in accordance with the observation that the market clustering relates to a
relative increase of only the upward price fluctuations. However, this does not mean that
the kurtosis results in Table 5 are solely caused by the upper tail. The robustness checks in
Table A1 (Appendix C) for partial data show that the relation between market clustering
and the kurtosis is also significant when the tail observations of the log return distributions
are left out of the analyses. Furthermore, the lack of clear unconditional relation of price
instability and market clustering in the negative tail does not preclude a possibility of a
conditional relation. We investigate market conditions as a possible confounding factor in
the panel data framework.

The significance of the relation between market clustering and price instability varies over
time, as the test results for shorter time spans indicate. Table 6 repeats the results of Table 5a
for a time window of two months. Approximately half of the kurtosis test results for a time
window of two months are the same as in the yearly results. For 2009, Table 6 shows a clear
positive relation between the kurtosis and market clustering. During the period 2010–2011,
the positive relation seems to apply to the end of 2010 and the first half of 2011. In 2012 and
the first half of 2013, no consistent relation exists for any of the measures or time window.
For the end of 2013 until the end of the sample, the kurtosis results are mostly positive. The
significance of the results at shorter time scales is reduced because the time series measures
have a higher spread at shorter time scales, while the number of observations stays the
same. The significance of the relation between market clustering and price instability might
vary because the samples within the time windows are too small. Nevertheless, the relation
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between market clustering and the kurtosis is positive in more than half the test statistics
for the two month time windows.

Table 6. Testing for a relation between market clustering and price instability—2-month window.

2009 2010

1 3 5 7 9 11 1 3 5 7 9 11

MAD == + = == == == = − −− = − ++ ++ ++ = +
Variance == ++ ++ = + ++ == == == ++ ++ ++ ++
Skewness == == == ++ == == + = == == == ++ ++
Kurtosis ++ == ++ ++ ++ + = + = ++ == == ++ ++

2011 2012

1 3 5 7 9 11 1 3 5 7 9 11

MAD == == == ++ == ++ == == == == == ==
Variance == == == ++ ++ ++ == + = == == == + =
Skewness ++ == ++ ++ ++ == == == == == == ==
Kurtosis ++ ++ ++ + = == == == == == == == ==

2013 2014

1 3 5 7 9 11 1 3 5 7 9 11

MAD ++ == == = + == ++ ++ ++ ++ ++ ++ ==
Variance ++ ++ ++ ++ + = ++ ++ ++ ++ ++ ++ + =
Skewness == == + = == ++ == ++ ++ == ++ + = + =
Kurtosis == + = ++ == ++ ++ ++ ++ = + ++ ++ ==

Repetition of Table 5a for time windows of two months instead of one year. Contrary to Table 5, here the critical value is 0.05. The dates
in the first line indicate the first month of each time window.

The results for the skewness, kurtosis, and outlier count are normalized by the
volatility. We show the relation between the variance and market clustering separately
in Tables 5 and 6 and Figure A1. In addition, we analyze the results for the MAD. We
find no consistent relation between market clustering and the yearly MAD. We find a
weak but consistent positive relation between market clustering and the yearly variance.
Figure A1 shows that the discrepancy between the distributions is smaller for the MAD and
variance than for the kurtosis. The results for time spans of two months (see Table 6) show
an increase in the MAD and variance during the periods where the kurtosis results are
consistently positive. The relation between market clustering and the MAD and variance is
not informative in itself, as the stocks are traded in different markets. The observation that
more (less) market clustering relates to stronger (weaker) price fluctuations is in accordance
with the observation that market clustering relates relatively more to the variance than the
MAD, because the MAD is more robust to outliers than the variance. Market clustering
relates also to price instability measured relative to time-varying volatility. Table A3 shows
the relation between market clustering and the yearly kurtosis of log returns normalized by
the conditional standard deviation estimated by various GARCH models. This indicates
that the relation between market clustering and price instability is not confined to periods
of high volatility.

Using the partial coverage of our data set we can dispel concerns over reversed
causation. Rather than market clustering causing price instability, unstable stocks might
attract traders that prefer to trade in clusters. If the latter holds, then the relation between
kurtosis and market clustering would be independent of what percentage of the total
turnover traded is included in the data set. Table 7 shows that the relation between market
clustering and the kurtosis vanishes for stocks that are mainly traded by investors which are
not included in the MiFID data set. The relation between the kurtosis and price instability
is (not) significant for stocks with a high (low) percentage of the turnover traded within
the data set. By difference-in-differences logic, these results indicate that market clustering
leads to price instability and not the other way round.
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Table 7. Relation between market clustering and price instability for stocks mainly traded by investors
outside MiFID data set.

2009 2010 2011 2012 2013 2014

Mean == = − = − == − = ==
Variance == == == == == = +
Skewness == == == == = − ==
Kurtosis + = == == == == = −

Repetition of Table 5a for the stocks for which less than 10% of the total yearly turnover is covered by the
investors in the MiFID data set. This category contains on average 434 stocks, which is 44.5% of the total group of
selected stocks.

5.2. Drivers of Market Clustering

An important question is whether our proposed clustering measure actually captures
new, previously ignored information. To investigate which observable drive investors’
pool diversity we use a dynamic panel data framework. Estimated models, shown in
Table 8, suggest that clustering is quite a persistent process. Thus, if at time t clustering
is high (low), it is likely to be high (low) at t + 1, too, mainly driven by commonalities,
illiquidity, and size. Other stock specific variables have little to no effect in our setting. No
more than 20% of the clustering measure variation can be explained by characteristics that
would proxy for investor preferences. Thus, a large part of the clustering measure variation
remains unexplained and is likely due to accidental portfolio overlap.

Table 8 demonstrates that crowded trading is a persistent feature as the clustering
measure exhibits significant positive dependence on the lagged values of market clustering
in all models. Herding, lasting for at least multiple months in upward markets, could be
one of the mechanisms related to clustering. If market clustering results from accidental
portfolio overlaps, continuing clustering may be observed due to spreading the orders over
time to reduce market impact. The persistence of market clustering suggests the need for
further research with adjusted measures of market clustering that differentiate between buy
and sell orders. Furthermore, investigation of the stability of the investors’ pools involved
in clustered trades would be helpful in understanding the effects of market clustering.

There is little evidence that individual downside risk affects the clustering measure.
Lagged ΔVaR is marginally significant in Models 1 and 3; thus, there is not sufficient
evidence to conclude that market clustering is stronger for the stocks with increasing
downside risk. All of the three models in Table 8 consider downside risk as endogeneous
variable in line with our hypothesis that market clustering causes price instability.

Market direction and market risk affect market clustering in multiple ways. First,
all models indicate that increase (decrease) in market returns or market volatility in the
previous month lead to significantly more (less) clustering per average stock. We added
VIX to the GMM-style instruments to correct for potential VIX endogeneity, i.e., that
clustering feeds aggregate market volatility. Second, lagged general market uncertainty
(VIXt−2) has a negative effect. We interpret this as a short-term corrective mechanism:
when increased market volatility leads to more crowded trades, then a month afterwards
the trading subsides (because the funds are used up, the interest is transferred elsewhere,
investors get scared of continuing uncertainty, or some other reason) and so do the clustered
activities. Third, market conditions play a role through asymmetric effects of stock size and
illiquidity on clustering measure. Model 2 looks at the effect for high and low volatility
states, and Model 3 shows the differences across up and down markets. The specifics of
these asymmetries and implications are discussed further in the next paragraph.

21



Entropy 2021, 23, 336

Table 8. Estimation results of dynamic panel data models for the clustering measure.

Model 1 Model 2 Model 3

GMM IV lags
CLUST 2:75 2:75 2:75
ΔVaR 1:75 1:75 1:75
VIX 1:75 1:75 1:75

CLUSTt−1
0.122 *** 0.125 *** 0.122 ***
(0.014) (0.014) (0.014)

CLUSTt−2
0.075 *** 0.078 *** 0.075 ***
(0.014) (0.014) (0.014)

ΔVaR 0.025 −0.007 0.010
(0.030) (0.030) (0.030)

ΔVaRt−1
0.080 ** 0.046 0.064 **
(0.033) (0.032) (0.032)

MKTF 0.097 ** 0.044 0.241***
(0.048) (0.049) (0.064)

MKTFt−1
0.172 *** 0.116 *** 0.175 ***
(0.042) (0.045) (0.041)

VIX 0.082 −0.028 0.165 ***
(0.064) (0.080) (0.064)

VIXt−1
0.305 *** 0.333 *** 0.302 ***
(0.093) (0.094) (0.092)

VIXt−2
−0.282 *** −0.245 *** −0.276 ***

(0.063) (0.066) (0.063)

MOM −0.105 MOMhigh −0.234 MOMup −0.097
(0.121) (0.185) (0.118)

MCAP 0.339 ** MOMlow 0.017 MOMdown −0.055
(0.168) (0.122) (0.146)

ILLIQ 0.277 ** MCAPhigh 0.734 *** MCAPup −0.127
(0.108) (0.249) (0.156)

MCAPlow 0.367 ** MCAPdown 0.235
(0.175) (0.148)

ILLIQhigh 0.133 ILLIQup 0.159
(0.134) (0.113)

ILLIQlow 0.346 *** ILLIQdown 0.318 ***
(0.115) (0.104)

No. IVs 237 243 243
Sargan stat 246.290 245.255 245.197

DF 225 228 228
p-value 0.157 0.206 0.207
AR(1) 0.000 0.000 0.000
AR(2) 0.383 0.321 0.350

corr2(y, ŷ) 0.198 0.191 0.197

This table contains estimation results of Equation (6) using a two-step system GMM approach with collapsed
GMM-style instruments. The dependent variable is the clustering measure. Coefficients for the price-to-book
ratio (PB3), trailing dividend yield (DY), and the leverage ratio (LEV3) are insignificant in all models and are
not reported to conserve space. Here, CLUST is multiplied by 100, and the number of stock-month observations
is 27031. Variables with suffixes “high”, “low”, “up”, and “down” are interacted with �(VIX≥25), �(VIX<25),
�(MKTF≥0), and �(MKTF<0), respectively. Standard errors are in parentheses below the estimates. Coefficients
significant at 5, and 1% level are marked with **, and ***, respectively. Obvious subscripts s and t are omitted
for brevity. At the end of the table, usual dynamic panel data model diagnostics are provided: Sargan’s test and
p-values for Arellano–Bond test for serial correlation. corr2

y,ŷ measures squared correlation between the dependent
variable and the fitted values from the model.

Illiquidity and size are the only two stock-specific variables that affect clustering, while
momentum, price-to-book ratio, dividend yield, and leverage do not yield a significant
coefficient in any of the models. To better understand illiquidity and size effects, we
investigate asymmetries across market conditions (Models 2 and 3). We find that in quiet
times market participants tend to cluster around less liquid stocks (significant coefficients
for ILLIQlow and insignificant for ILLIQhigh), perhaps because they are willing to take
more risks. Less liquid stocks end up in clustered trades in downward markets, too
(Model 3). This resulting pattern is consistent with fire sales. When the stock owner’s
pool is homogeneous and the pressure to sell arises due to, for example, margin calls,
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selling less liquid stocks leads to higher price impact, further fueling margin calls and stock
sales. Market capitalization (MCAP) has (marginally) significant coefficients in Models
1 and 2. In high volatility markets large firms attract more crowded attention than they
do in low volatility markets (coefficients of 0.734 vs. 0.367). Large stocks are frequently
dividend paying, are likely index constituents, and are considered less risky, thus such
trading behavior may be viewed as a flight-to-safety within equities.

To summarize the insights from this section, the results support theories that market
clustering could be a consequence of multiple mechanisms. For one, herding induces
persistence in the clustering measure time series. Next, willingness to take up more risks
in low volatility markets and fire sales in downward markets both manifest as increased
clustering around less liquid stocks. Finally, more clustered trades with higher market
capitalization in high volatility period can be interpreted as flight-to-safety phenomenon.
Interestingly, we see no evidence that stock selection based on fundamental characteristics
would lead to market clustering.

5.3. Downside Risk, Upside Potential, and Clustering

We now turn to the causal analysis of market clustering and price instability. We
employ a dynamic panel data model to analyze whether our newly proposed measure
actually has additional explanatory power in modeling changes in the downside risk and
the upside potential in addition to all commonly used conditioning variables (as discussed
in Section 4). In short, we find that market clustering indeed causes price instability, but
the effect is conditional on the volatility state in the market.

Table 9 contains the results. All of the models consider the price instability measure as
an endogenous variable in line with our concerns that price instability could lead to market
clustering. Models 1 and 2 look at changes in the downside risk, and Models 3 and 4 look
at changes in the upside potential. All models include current and lagged (conditional)
values of CLUST.

Consistent with the outcome of stochastic dominance analysis, there is no causal
relation between CLUST and price instability in the negative tail (Model 1). Model 2,
however, reveals that in high volatility markets the relation is significant. This makes
crowded trading a dangerous phenomena, likely fostering contagion. On the positive side
of the return distribution (Models 3 and 4), clustering leads to price instability in both
high and low volatility periods. Based on the squared correlation between the dependent
variable and fitted values, the positive tail is harder to explain, nonetheless. Lagged
CLUST yields insignificant coefficients in all models; thus, the direct causation for the
positive tail as well as for the negative tail is contemporaneous and we find no evidence of
predictive relation.

Other coefficients have the expected signs or are insignificant. Strongly significant
variables come from two categories: aggregate market related (MKTF and VIX) and derived
from returns (MOM, MCAP, and ILLIQ). Upward movement and trend in the market index
lead to smaller individual risks (thus negative changes in VaR) and more gradual price
increases (thus slightly negative changes in VaL). Current increase in volatility also increases
changes in downside risk. For the positive tail of the distribution we again see the short-
term corrective mechanism: higher volatility at time t implies higher average change in
upside potential, but taking advantage of this will result in reducing the upside potential for
the next period. Positive momentum, higher market capitalization, and higher illiquidity
have negative effect on the changes in log return distribution quantiles. Fundamental
characteristics (PB3, DY, and LEV3) do not consistently contribute to explaining the time
variation in positive and negative quantiles of return distribution.

All in all, we show that market clustering causes contemporaneous price instabil-
ity. The relation is present in the negative tail during turmoil and in the positive tail
independent of the volatility level.
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Table 9. Estimation results of dynamic panel models for ΔVaR and ΔVaL.

ΔVaR ΔVaL

Model 1 Model 2 Model 3 Model 4

yt−1
0.136 *** 0.131 *** 0.103 *** 0.100 ***
(0.012) (0.013) (0.017) (0.017)

yt−2
0.095 *** 0.090 *** 0.073 *** 0.071 ***
(0.011) (0.011) (0.011) (0.011)

CLUST 1.598 6.150 ***
(1.209) (1.462)

CLUSTt−1
0.179 −0.192

(0.401) (0.387)
CLUSTlow 1.398 3.055 **

(1.352) (1.44)
CLUSTlowt−1

−0.079 −0.001
(0.469) (0.481)

CLUSThigh 5.315 ** 7.341 ***
(2.176) (2.121)

CLUSThight−1
1.239 −0.214

(0.975) (0.701)
MKTF −0.303 *** −0.307 *** −0.047 *** −0.050 ***

(0.016) (0.016) (0.016) (0.015)
MKTFt−1

−0.144 *** −0.146 *** −0.107 *** −0.105 ***
(0.010) (0.010) (0.011) (0.011)

VIX 0.117 *** 0.095 *** 0.158 *** 0.141 ***
(0.024) (0.027) (0.024) (0.026)

VIXt−1
0.009 0.01 −0.113 *** −0.107 ***

(0.023) (0.024) (0.023) (0.024)
MOM −0.303 *** −0.301 *** −0.416 *** −0.412 ***

(0.030) (0.030) (0.036) (0.034)
MCAP −0.337 *** −0.294 *** −0.213 *** −0.175 ***

(0.038) (0.043) (0.046) (0.049)
ILLIQ −0.060 *** −0.049 *** −0.046 *** −0.027

(0.015) (0.016) (0.018) (0.017)
PB3 0.008 0.013 0.087 0.085

(0.053) (0.051) (0.056) (0.053)
DY 0.016 0.019 0.013 0.022

(0.023) (0.022) (0.033) (0.029)
LEV3 −0.008 ** −0.007 ** −0.001 0.000

(0.003) (0.003) (0.004) (0.003)

No. IVs 241 316 241 316
Sargan stat 239.556 242.341 240.421 237.452

DF 227 300 227 300
p-value 0.271 0.994 0.258 0.997
AR(1) 0.000 0.000 0.000 0.000
AR(2) 0.265 0.146 0.355 0.504
corr2

y,ŷ 0.151 0.150 0.070 0.083

This table contains the estimation results of Equation (6) using a two-step system GMM approach. All available
lags for dependent variable, (conditional) CLUST, and VIX are used as collapsed GMM instruments. Here,
the number of stock-month observations is 27295. Models 1 and 2 use dependent variable yst = ΔVaRst and
Models 3 and 4 use yst = ΔVaLst. Models 2 and 4 introduce CLUSTlow = CLUST × �(VIX<25) and CLUSThigh =

CLUST × �(VIX≥25) to account for asymmetric effects. Standard errors are in parentheses below the estimates.
Coefficients significant at 5, and 1% level are marked with **, and ***, respectively. Obvious subscripts s and t are
omitted for brevity. At the end of the table, usual dynamic panel data model diagnostics are provided: Sargan’s
test and p-values for Arellano–Bond test for serial correlation. corr2

y,ŷ measures squared correlation between the
dependent variable and the fitted values from the model.

6. Discussion

We have shown some suggestive evidence for a causal relation between market
clustering and price instability on the individual stock level. There seems to be a consistent
and robust positive relation between market clustering and the kurtosis, the skewness, the
positive tail index, the positive outlier count, and the right 5% quantile of the log return
distribution. The positive relation between market clustering and the left 5% quantile of
the log return distribution is conditional on periods of high volatility. Focusing on extreme
price fluctuations, that is, the tails of the normalized log return distribution, we find that
market clustering generally causes an increase of large upward price shocks. Increases of
large downward shocks due to market clustering turns out to be present only in financial
turmoil. Findings on the positive tail are consistent with herding, while findings on the
negative tail are consistent with fire sales.

We also provide some insights into investor behavior that likely lead to market
clustering. The persistence of our market clustering measure could be explained by herding
and order spreading over time. Market conditions obviously affect trading decisions. We
find an indication that the homogeneity of the investors’ pool per stock increases if there is a
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positive trend in the market or increase in aggregate volatility. However, the volatility effect
is short-term and reverses in the month afterwards. Furthermore, we find asymmetries
across market conditions. In quiet times, investors prefer less liquid stocks. Consistent with
fire sales, less liquid stocks are also traded by more homogeneous groups in downward
markets. We discover behavior that is consistent with flight-to-safety within equities in the
sense that in high volatility markets large firms attract more crowded attention.

Our analysis contributes to the existing literature on three levels. First, we study the
influence of trading behavior on price dynamics using novel granular trading data. To our
knowledge, the MiFID data set has not been used for this type of market microstructure
research before. Second, the idea and method to measure market clustering and its impact
on price instability are new to market microstructure research. The use of complex network
theory makes the method suitable for large-scale data. The methodological framework can
be extended to study the effects of any feature of the market microstructure. Third, the
main contribution is the indication of a causal relation between the market clustering and
price instability shown in a dynamic panel data model.

The use of network theory in identifying meaningful motifs in market microstructure
research is promising because the model is applicable to all types of market microstructure
patterns. First, the influence of trading behavior on price dynamics can be investigated
using other microstructure motifs, for example, the influence of the diversification of the
investors on the price dynamics of the traded stocks. Differentiation between buy and sell
orders would enhance the understanding of the difference in dependence between the
positive and negative tail of the price dynamics. The persistence of the market clustering
measure—evident in consistent positive dependence on past, lagged values of market
clustering—is worthy of further investigation of the time dependence of the configuration
of the investors’ pools involved in clustered trades. Moreover, the role of news should be
investigated further. It is widely accepted that negative news has a much larger impact
compared to positive news. To this end, we should analyze the results on a much shorter
time scale to see if common information drives clustering. Second, the method can be
used for portfolio holdings data and could, for example, contribute to the literature on
price comovements due to common active mutual fund owners [1]. Third, the method
can be used to study trading patterns separate from price dynamics, for example, the
evolution of clustering patterns over time. Furthermore, the relation between clustering
and current market conditions needs further attention, for example, what is the mechanism
of spillovers in each case.
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Appendix A. Construction of the Maximum-Entropy Ensemble of Networks with

Given Expected Degree Sequence

We define a bipartite network that describes the aggregate trading behavior during
a particular month. For each month, t, the investment behavior comprised by the data is
represented in a binary bipartite graph. The bipartite network has two (say, bottom and top)
layers with edges between the two layers. No edges occur between two nodes in the same
layer. The nodes of the first (say, bottom) layer represent the set St of securities that are
traded during month t. The nodes of the second (say, top) layer represent the set Ft of firms
that perform trades during month t. The individual securities are indicated by the label s
each month separately, such that s ∈ St. The label can take the values s = 1, ..., nS,t with
nS,t = |St| the number of elements in St. Similarly, the individual firms are indicated by the
label f each month separately, such that f ∈ Ft. The label can take the values f = 1, ..., nF,t
with nF,t = |Ft| the number of elements in Ft.

The performed transactions are represented by the edges between the firms and
the securities, denoted by the rectangular binary adjacency matrix (sometimes called
“bi-adjacency matrix”) At with elements as f ,t. The size of matrix At is nS,t × nF,t. The
transactions are represented as follows: as f ,t = 1 in case firm f traded in security s during
month t and as f ,t = 0 otherwise. The observed degree of firm f during month t is given by

dobs
f ,t =

nS,t

∑
s=1

as f ,t (A1)

and the observed degree of security s is given by

dobs
s,t =

nF,t

∑
f=1

as f ,t. (A2)

The set Dobs
t contains the observed degrees of all nodes in month t, such that

dobs
s,t , dobs

f ,t ∈ Dobs
t ∀ f , s (A3)

Note that the graph indicates only whether a trade of a firm in a security occurs. None of the
following quantities are represented: the number of transactions, the number of underlying
securities, or the turnover. Furthermore, the graph does not distinguish between buy and
sell transactions or between agency and principal transactions.

For a given t, our goal is to find the probability distribution Pt(Xt) = P(Xt|Dobs
t ) over

an allowed set of alternative trading configurations, such that the ensemble of bipartite
graphs generated by Pt is maximally random, apart from ensuring that the expected value
〈Dt〉 of the degree sequence under Pt equals the observed value Dobs

t , i.e.,

〈Dt〉 = Dobs
t . (A4)

This prescription ensures that, besides the information about the observed degree sequence,
all other empirical information about the actual placing of the trades is not used to deter-
mine Pt and cannot be retrieved form it. To further ensure that the inference of higher-order
properties obtained using Pt is unbiased, we apply the maximum-entropy method [13] and
look for the distribution Pt(Xt) that maximizes Shannon’s entropy functional

St[Pt] = − ∑
Xt∈Gt

Pt(Xt) ln Pt(Xt) (A5)
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where the sum runs over the ensemble of graphs Gt containing all binary, bipartite networks
where the number of elements in the top layer is nF,t and the number elements in the bottom
layer is nS,t. The resulting ensemble is a canonical one [13], which means that all the allowed
graphs have the same number of nodes as the original empirical network but the number
of links varies between zero and nS,t nF,t. An element Xt ∈ Gt is a nS,t × nF,t adjacency
matrix encoding the configuration of a possible bipartite network in the ensemble. There
are 2nS,tnF,t possible such configurations. Each configuration Xt contains, for each security–
firm pair (s, f ), the information whether the firm trades the security (as f (Xt) = 1) or not
(as f (Xt) = 0) during month t. Xt does not denote the observed graph configuration, but a
generic allowed configuration in Gt. Among these configurations, a particular one Xobs

t is
the observed one, i.e., as f (Xobs

t ) = as f ,t for all s, f .
Shannon’s entropy can be seen as the “degree of uncertainty” encoded in the proba-

bility distribution Pt and is a weighted average of the amount of information required to
identify a specific graph in the ensemble. For example, in case of no constraints, Shannon’s
entropy would be maximized when each configuration Xt occurs with equal probability
Pt(Xt) = 2−nS,tnF,t and its value would be St[Pt] = ln 2nS,tnF,t . In our case, or a given
month t, we instead need to maximize St[Pt] under the constraints imposed by the degree
sequence, i.e., Equation (A4), which we rewrite as

〈d f ,t〉 = dobs
f ,t , 〈ds,t〉 = dobs

s,t ∀ f , s, (A6)

where

〈d f ,t〉 = 〈d f (Xt)〉 = 〈
nS,t

∑
s=1

as f (Xt)〉, 〈ds,t〉 = 〈ds(Xt)〉 = 〈
nF,t

∑
f=1

as f (Xt)〉. (A7)

Note that in total there are nF,t + nS,t + 1 constraints for each t:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dobs
f ,t = ∑

Xt∈Gt

Pt(Xt)d f (Xt) ∀ f ,

dobs
s,t = ∑

Xt∈Gt

Pt(Xt)ds(Xt) ∀s,

1 = ∑
Xt∈Gt

Pt(Xt),

(A8)

where the last expression is the normalization of the probability distribution. We there-
fore introduce nF,t + nS,t + 1 Lagrange multipliers {β f ,t}nF,t

f=1, {βs,t}nS,t
s=1, αt (one for each

constraint) and look for the probability distribution Pt optimizing the Lagrange function

Lt[Pt] = St[Pt] + αt

(
1 − ∑

Xt∈Gt

Pt(Xt)
)

+
nF,t

∑
f=1

β f ,t

(
dobs

f ,t − ∑
Xt∈Gt

Pt(Xt)d f (Xt)
)

+
nS,t

∑
s=1

βs,t

(
dobs

s,t − ∑
Xt∈Gt

Pt(Xt)ds(Xt)
)

. (A9)

Taking the functional derivative, we get

δLt

δPt(Xt)
= ln Pt(Xt) + 1 + αt +

nF,t

∑
f=1

β f ,td f (Xt) +
nS,t

∑
s=1

βs,tds(Xt). (A10)

Now the probability distribution Pt(Xt) = P(Xt|Dobs
t ) is determined by the optimum:

δLt

δPt(Xt)
= 0 ↔ P(Xt|Dobs

t ) =
e−Ht(Xt)

Zt
, (A11)
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with Ht(Xt) the so-called Hamiltonian

Ht(Xt) =
nF,t

∑
f=1

β f ,td f (Xt) +
nS,t

∑
s=1

βs,tds(Xt), (A12)

and Zt the so-called partition function

Zt = e1+αt = ∑
Xt∈Gt

e−Ht(Xt). (A13)

The partition function can be written as [13]

Zt = ∑
Xt∈Gt

e−∑ f β f ,t ∑s as f (Xt)−∑s βs,t ∑ f as f (Xt) (A14)

= ∑
Xt∈Gt

∏
s, f

e−β f ,tas f (Xt)−βs,tas f (Xt) (A15)

= ∏
s, f

(
1 + e−β f ,t−βs,t

)
. (A16)

Now, we rewrite P(Xt|Dobs
t ) in a factorized form that shows the probabilistic indepen-

dence of all edges of the network (note that this independence is not an assumption or
simplification, as it follows mathematically from our choice of the constraints):

P(Xt|Dobs
t ) = ∏

s, f
p

as f (Xt)

s f ,t (1 − ps f ,t)
1−as f (Xt), (A17)

where we have introduced the security-firm connection probability

ps f ,t = P(as f (Xt) = 1|Dobs
t ) =

x f ,txs,t

1 + x f ,txs,t
, (A18)

the complementary (no connection) probability

1 − ps f ,t = P(as f (Xt) = 0|Dobs
t ) =

1
1 + x f ,txs,t

, (A19)

and the reparametrization {
x f ,t = e−β f ,t

xs,t = e−βs,t
. (A20)

The variables x f ,t and xs,t are also called “hidden variables” [13]. Their numerical value is
found by solving, for each t, the nF,t + nS,t coupled nonlinear Equation (A6) realizing the
value of the imposed constraints. Noticing that

〈as f (Xt)〉 = ∑
Xt∈Gt

Pt(Xt)as f (Xt) = ps f ,t, (A21)

those equations can be rewritten explicitly in terms of the hidden variables as follows:

nS,t

∑
s=1

x f ,txs,t

1 + x f ,txs,t
= dobs

f ,t ,
nF,t

∑
f=1

x f ,txs,t

1 + x f ,txs,t
= dobs

s,t ∀ f , s. (A22)

It can be proven in general [13] that the values solving the above equations are unique and
correspond to the values that maximize the likelihood Pt(At) = P(At|Dobs

t ) of generating
the observed network At, given the model parameters. Various efficient codes are available
for solving the above type of equations [48].
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Appendix B. Stochastic Dominance of Price Instability Measures

In this appendix, we report (see Figures A1 and A2) the cumulative distributions,
for low and high market clustering, for all the time series measures (MAD, variance,
skewness, kurtosis, number of negative outliers, number of positive outliers, Hill index for
the negative tail, and Hill index for the positive tail) and all years.

Figure A1. Cumulative distributions for low and high market clustering per time series measure
(MAD, variance, skewness, and kurtosis) and per year. The space in between the distributions for
low and high market clustering is colored to indicate which distribution is higher. Red means that
distribution H (high market clustering) exceeds distribution L (low market clustering), and vice versa
for blue.
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Figure A2. Cumulative distributions for low and high market clustering per time series measure
(number of negative outliers, number of positive outliers, Hill index for the negative tail, and Hill
index for the positive tail) and per year. See Figure A1 for explanation.

Appendix C. Robustness Checks

Table A1 shows the results for the relation between market clustering and the kurtosis
for various segments of the log return distribution. The results for the kurtosis do not
depend in particular on the tails of the log return distribution.

Table A1. The kurtosis results from Table 5 for partial data.

2009 2010 2011 2012 2013 2014

10–90 ++ ++ ++ ++ ++ + =
20–80 ++ ++ ++ ++ ++ ==
30–70 ++ ++ ++ ++ ++ ==
40–60 ++ = + ++ = + ++ ++

First, we order the log returns time series per stock and per year in ascending order. Second, we select the
segments of the log return distribution as shown in the left column (in percentages). For example, the last line
shows the results for the segment 40–60% (the middle part), which means that we remove the first 40% and the
last 40% of the ordered log return distribution.

Table A2 shows the relation between market clustering and the kurtosis for different
cross-sections of the market clustering distribution. The critical value is 0.025 in all tables.
The results show no consistent variation over the different cross sections.
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Table A2. The relation between market clustering and the kurtosis for different cross sections of the
market clustering distribution.

2009 2010 2011 2012 2013 2014

0–10 and 90–100 ++ == + = ++ ++ ++
10–30 and 70–90 ++ == ++ == = + ++
0–50 and 50–100 ++ ++ + = ++ ++ ++
20–50 and 50–80 == = + == == ++ = +

For comparison, Table 5 shows the results for the highest 33% and the lowest 33% of the stocks, ranked according
to their market clustering measure, i.e., the selected regions are 0–33% and 67–100%.

Table A3 shows the result for normalization by the time-varying standard deviation,
estimated by various GARCH-type models. Normalization by the time-varying volatility
means that the weight of the price fluctuations in periods of high volatility is effectively
reduced in favor of the weight of the price fluctuations during tranquil periods. We estimate
for each stock the conditional volatility time series for the complete log return time series
at once instead of each year separately. The EGARCH model allows the sign and the
magnitude of the log returns to have separate effects on the volatility. In the GJR-GARCH
model, the effects of the positive and negative log returns are estimated separately. The
EGARCH models are exponential and therefore less sensitive to outliers than the GJR-
GARCH models. The addition of extra lags allows the volatility to vary on both shorter and
longer time scales. For all GARCH models we we assume conditional normal distribution
for the error term: εs,t ∼ N (0, σ2

s,t). This assumption is probably violated for some of the
stocks. We assume that the consequences of this violation are limited.

The relation between market clustering and price instability remains consistently
positive when we account for the time-varying volatility. We find no apparent variation
of the results for the relation between market clustering and price instability for the
different GARCH models for the conditional volatility. Apparently, market clustering
causes downward price shocks not only during volatile periods but also when the price is
more stable.

Table A3. The results for the yearly kurtosis of the log returns, normalized by the conditional
standard deviation estimated by various GARCH models.

2009 2010 2011 2012 2013 2014

GARCH(1,1) ++ ++ == ++ ++ ++
GARCH(2,2) ++ == == ++ ++ ++

EGARCH(1,1) ++ ++ == ++ ++ ++
GJR-GARCH(1,1) ++ ++ == ++ ++ ++
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Abstract: The aim of this study is to investigate market depth as a stock market liquidity dimension.
A new methodology for market depth measurement exactly based on Shannon information entropy
for high-frequency data is introduced and utilized. The proposed entropy-based market depth
indicator is supported by an algorithm inferring the initiator of a trade. This new indicator seems
to be a promising liquidity measure. Both market entropy and market liquidity can be directly
measured by the new indicator. The findings of empirical experiments for real-data with a time
stamp rounded to the nearest second from the Warsaw Stock Exchange (WSE) confirm that the new
proxy enables us to effectively compare market depth and liquidity for different equities. Robustness
tests and statistical analyses are conducted. Furthermore, an intra-day seasonality assessment is
provided. Results indicate that the entropy-based approach can be considered as an auspicious
market depth and liquidity proxy with an intuitive base for both theoretical and empirical analyses
in financial markets.

Keywords: entropy; market microstructure; dimensions of market liquidity; market depth;
high-frequency data; intra-day seasonality

1. Introduction

The original idea of entropy dates back to the fundamental Shannon’s theory of
communication and information [1]. Entropy was defined by Shannon as a measure of
information, choice and uncertainty. The concept of entropy originates from thermody-
namics, but it has been utilized in many research fields to characterize the complexity of a
system and to investigate the information content of a probability distribution. Entropy
is a general measure, and therefore, many definitions and applications of entropy have
been proposed in the literature. Since the aim of this paper is to introduce and utilize a new
entropy-based estimator of stock market depth as one of stock market liquidity dimensions,
the brief literature review focuses on selected entropy-based applications in economics,
finance, and management. Theoretical, empirical, and experimental aspects of entropy
utilization are highlighted.

Firstly, there are quite many entropy-based applications in portfolio selection, asset
pricing, and risk management, including the entropy optimization approach. Zhou et al. [2]
presents a comprehensive review of applications of entropy in finance. Both primary and
recent studies are included. For instance, the pioneering work of Philippatos and Wilson [3]
proposed the mean-entropy concept in the efficient portfolio selection problem. The main
contribution of this primary research lies in the conclusions that mean-entropy portfolios
are consistent with the Markowitz and Sharpe models.

In light of the recently growing literature on the entropy-based applications, the topic
concerning portfolio selection is very popular. Among others, Usta and Kantar [4] present
a multi-objective method based on a mean-variance-skewness-entropy portfolio selection
model to generate a well-diversified portfolio. Zhang et al. [5] deal with a multi-period
portfolio selection problem with fuzzy returns. In this paper, the diversification degree of a
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portfolio is measured by the originally presented possibilistic entropy. Huang [6] proposes
two types of credibility-based fuzzy mean-entropy models for fuzzy portfolio selection,
and entropy is used as the measure of risk. Yu et al. [7] evaluate the performance of the
portfolio models that are used to rebalance with short selling, considering transaction costs,
minimizing portfolio risk, and utilizing entropy in modeling asset allocation. Zhou et al. [8]
systematically explore the properties of six kinds of entropy-based risk measures, and
develop and compare several portfolio models based on different risk measures. Yang
and Qiu [9] extend the classical decision model under risk to a more general case. They
propose an expected utility-entropy measure of risk and a decision-making model based
on expected utility and entropy. Pele et al. [10] investigate relationship between the
information entropy of the distribution of intraday returns, and intraday and daily proxies
of financial market risk. They use Value-at-Risk and Expected Shortfall as risk measures
for the EUR/JPY exchange rate. Gradojevic and Caric [11] concentrate on quantifying the
behavioral aspects of systematic risk by utilizing a novel entropy-based approach. Their
empirical results confirm the predictive usefulness of new entropy setting in stock market
risk management.

In the mathematical finance literature, there are several papers dealing with entropy
as an optimization criterion, especially in the context of asset and option pricing. For ex-
ample, Fritelli [12] investigates the properties of the minimal entropy martingale measure,
and shows that the minimization of relative entropy is equivalent to the maximization of
expected exponential utility of wealth. Stutzer [13] proposes relative entropy minimization
approach to derivation of a generalized Black-Scholes option pricing model. In their theo-
retical research concerning risk management, Geman et al. [14] use entropy maximization
approach to recognize the uncertainty of asset distribution. Xu et al. [15] propose a contin-
uous maximum entropy method to analyze the robust optimal portfolio selection problem
in the case of the market with transaction costs and dividends. Brody and Hughston [16]
introduce a new term structure calibration methodology based on maximization of entropy,
and present some new models of interest rate. Gulko [17,18] applies the Entropy Pricing
Theory to introduce new formulas for pricing European stock and bond options.

Another broad research field is information and entropy econometrics that directly or
indirectly builds on the foundations of information theory and the principle of maximum
entropy. Among other topics, Golan and Perloff [19] deeply investigate the generalized
maximum entropy estimation method. Ullah [20] provides the uses of entropy and di-
vergence measures for evaluating econometric approximations and inference. Kitamura
and Stutzer [21] develop the relationship between entropic and linear projections in asset
pricing estimation based on stochastic discount factor models. Maasoumi and Racine [22]
examine the predictability of stock market returns by employing a new metric entropy mea-
sure and compare their results with a number of traditional measures. Bera and Park [23]
use maximum entropy portfolio selection method in the optimal portfolio diversification
problem, and their approach can be viewed as a shrinkage estimation of portfolio weights.

According to the literature, several studies propose entropy-based methods to investi-
gate groups of stock markets in the world, especially in the context of various common
features, relationships and interdependences between them. For instance, Billio et al. [24]
use different entropy measures and new early warning indicator for banking crises to
analyze the time evolution of systematic risk in Europe. They focus on the euro zone and
analyze a total of 437 European financial institutions. Zhao et al. [25] propose copula en-
tropy models to measure dependence in stock markets. The Authors provide an algorithm
for the copula entropy approach to obtain the numerical results, and they approve the
validity of the proposed method. Zunino et al. [26] introduce two quantifiers for a stock
market inefficiency: the number of forbidden patterns and the normalized permutation
entropy. The Authors analyze equity indexes and returns for 32 different stock exchanges.
They point out that their empirical findings suggest that the proposed physical tools are
helpful to discriminate the stage of stock market development.
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Another promising strand of the literature concerns network entropy since Man-
tegna [27] first represented the financial market as a network. Financial markets are
complex systems and can be represented as complex networks. Network entropy can be
treated is a measure of information contained in the system [28,29].

It is worth noting that quite extensive studies consider the concepts of mutual informa-
tion and transfer entropy. These tools enable us to investigate the information flow between
time series and are especially useful in economic and financial applications [30–38].

The literature contains several theoretical, empirical, and experimental studies con-
cerning entropy-based applications in market microstructure research. For instance,
Liu et al. [39] use entropy-based measures to identify various types of trading behav-
iors. Albeit, the papers regarding dimensions of market liquidity are relatively scarce. For
instance, McCauley [40] points out that interest in thermodynamic analogies in economics
and finance is older than the idea of von Neumann to look for market entropy in liquid-
ity. McCauley assumes that the definition of an asset’s liquidity is analogous to this of
stock market depth. However, he concludes that real financial markets cannot behave
thermodynamically because they are unstable.

Order imbalance has a significant influence on stock illiquidity, considerably more
important even than volume. In the recent paper, Lu et al. [41] proposed an indicator
called polarity to investigate trading imbalance in Chinese stock market. This indicator
is based on high-frequency transaction data. However, the definition of polarity is very
similar to this of order ratio, which is well known and broadly used in the literature as an
indicator of stock market depth and market illiquidity (see e.g., [42,43] and the references
therein). Therefore, the aforementioned paper was our research inspiration and motivation
for taking and exploring the subject of an entropy-based approach to measurement of stock
market depth as one of market liquidity dimensions [44].

The aim of this study is to introduce a new entropy-based market depth proxy that
is exactly based on the definition of Shannon information entropy [1]. Our proposition
substantially differs from the entropy-based indicator of trading imbalance presented
in [39] because we employ the Lee and Ready [45] algorithm inferring the initiator of a
trade to distinguish between so-called buyer- and seller-initiated trades.

The value-added of this research derives both from the new methodology and novel
empirical findings. There are some advantages of the proposed indicator. Firstly, it can be
treated as a new measure of stock market liquidity. The values of the entropy-based market
depth are decimal fractions that vary between zero and the exactly defined maximal value
equal to one. Therefore, the entropy-based market depth values calculated for different
equities can be effectively compared to each other.

Moreover, based on the Shannon entropy definition, the entropy-based market depth
indicator can be used to summarize the information content of a probability distribution,
and it can be treated as a measure of stock market efficiency according to the Efficient
Market Hypothesis (EMH). High values of entropy are related to randomness in the
evolution of stock prices [26]. Higher values of market entropy inform about higher market
efficiency, and are coupled with higher values of stock liquidity. Therefore, both market
entropy and market liquidity can be directly measured by the proposed new indicator.

Empirical experiments on financial markets depend on data availability. Therefore,
the real-data experiments and statistical analyses are conducted for high-frequency data
with a time stamp rounded to the nearest second from the Warsaw Stock Exchange (WSE).
Stability and robustness tests are conducted. Moreover, an intra-day seasonality assessment
is provided to recognize intra-day hourly patterns in new entropy-based market depth
indicator. Results indicate that this indicator can be considered as an auspicious market
depth measure with an intuitive base for both theoretical and empirical analyses in financial
markets. The proposed entropy-based indictor can be successfully utilized using intra-
day data from other stock markets in the world, and the results could be interesting
for investors.
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The remainder of the study is organized as follows: Section 2 specifies the method-
ological background of measurement of market depth in the context of the broad topic
concerning dimensions of stock market liquidity. Section 3 contains real-data description
and presents the findings of some empirical experiments, statistical analyses, and robust-
ness tests for high-frequency data. In Section 4, we discuss and conclude the results and
propose several directions for further research.

2. Methods

2.1. Depth as One of Stock Market Liquidity Dimensions

Generally speaking, stock market liquidity is not a one-dimensional variable. The
literature concerning the dimensions of market liquidity has continued to grow since
Kyle [44] first distinguished between three dimensions: depth, tightness, and resiliency.
Depth can be defined as the ability to buy or sell a certain amount of an asset without
influence on the quoted price. In other words, the depth of market captures the relation
between order flow and price changes. When demand (buy) and supply (sell) sides are
quantitatively the same, the quoted price will not change (there is no impulse to price
changes). The definition of tightness states that this is the ability to buy and to sell an asset
at about the same price at the same time. One of definitions of market resiliency specifies
that this is the ability to buy or to sell a certain amount of an asset with little influence on
the quoted price. Theoretical and empirical findings of research on liquidity dimensions in
several stock markets in the world are reported in [46–52].

It is pertinent to notice that the studies that explore depth, tightness, and resiliency
as dimensions of stock market liquidity on the WSE are rather scarce. For instance, order
imbalance as a measure of market depth is assessed in the papers [42,43,53]. Market
tightness as the cost of turning around a position over a short period of time on the WSE
is investigated in the works [42,43]. Moreover, two new methods for measurement of
intraday stock market resiliency based on the Discrete Fourier Transform and Short-Time
Fourier Transform approaches are introduced and utilized for high-frequency data from
the WSE in the recent papers [54,55].

2.2. Measuring Stock Market Depth

Related literature proposes various proxies of stock market depth, and a comprehen-
sive review of them is presented e.g., in [42]. In general, the measures of order imbalance
are the most frequently used.

To introduce a new entropy-based method, firstly we propose a supporting modified
version of the Order Ratio (OR) indicator as a refined proxy of market depth which
accurately captures market order imbalance. It is defined by the following Equation (1):

OR =
|CTVb − CTVs|
CTVb + CTVs

, (1)

where OR ∈ [0, 1] and the sums CTVb ∑m
i=1 Vbuyi, CTVs ∑k

j=1 Vsellj denote the cumulated
trading volume related to transactions classified as buyer- or seller-initiated trades, respec-
tively. The modification lies in the denominator ∑m+k

n=1 Vn = CTVb + CTVs which denotes
the cumulated trading volume for all classified transactions within a particular period of
time (in the frequently used version of the OR indicator, the denominator includes the
cumulated trading volume for all transactions within an investigated period of time).

The OR indicator can be calculated within various time intervals, for example in
30-min, hourly or daily manner because the Formula (1) is the general one. The order ratio
informs about imbalance in the market since it rises when the difference in the numerator
rises, and therefore it measures illiquidity. High values of the order ratio indicate low
market depth and low liquidity. Conversely, small values of this indicator denote high
market depth and high liquidity. According to definition (1), the order ratio value is non-
negative and it is equal to zero when cumulated trading volumes related to transactions
classified as buyer- or seller-initiated trades are equal within a particular time interval. The
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order ratio value given by Equation (1) is not defined for the following two cases: (1) when
all transactions within an analyzed time period are unclassified, and (2) an analyzed time
period is a zero-volume period, which means the total lack of transactions. In such cases,
the total trading volume in the denominator is equal to zero. The OR value is equal to one
when all transactions within an analyzed time period are classified in the same manner
(i.e., as only buyer- or only seller-initiated trades).

In the next step, the definitions of cumulated trading volumes related to transactions
classified as buyer- or seller-initiated trades are used to define the probabilities and the
entropy-based proxy of stock market depth. In light of the recently growing literature,
entropy is a widely accepted measure of a generally understood diversity and disorder.
In this context, an entropy-based indicator could represent the unevenness of buying and
selling in trading decisions on a stock market [41]. Shannon [1] proves that quantities of
the form H = −K·∑n

i=1 pi· log(pi), where K is a positive constant that amounts to a choice
of a unit of measure, play a central role in information theory as measures of information,
choice, and uncertainty. Exactly based on the definition of Shannon information entropy [1]
(p. 394) we propose the following new Entropy-based Market Depth (EMD) indicator given
by Equation (2):

EMD =
−1

log(2)

(
Pbuy· log

(
Pbuy

)
+ Psell · log(Psell)

)
, (2)

where:
Pbuy =

CTVb
CTVb + CTVs

∈ [0, 1], (3)

Psell = 1 − Pbuy =
CTVs

CTVb + CTVs
∈ [0, 1]. (4)

According to the Shannon definition, the EMD indicator (2) measures the entropy in
the case of two possibilities with probabilities defined by Equations (3) and (4). It is scaled
to obtain the EMD values that belong to the [0; 1] interval (without the normalization, the
maximal EMD value is equal to log(2) ≈ 0.301, and it is obvious based on the properties of
the Shannon information entropy [1], p. 394). According to Equation (2), the EMD value is
non-negative, and it is defined as equal to zero in the following two cases:

(1) If CTVb = 0 ⇔ Pbuy = 0 ⇔ Psell = 1 ⇔ log(Psell) = 0 ⇔ EMD = 0 ;

(2) If CTVs = 0 ⇔ Psell = 0 ⇔ Pbuy = 1 ⇔ log
(

Pbuy

)
= 0 ⇔ EMD = 0 .

The EMD value given by Equation (2) is not defined for the following two cases:
(1) when all transactions within an analyzed time period are unclassified, and (2) an
analyzed time period is a zero-volume period, which means the total lack of transactions.
In such cases, the total trading volume in the denominator in Equations (3) and (4) is equal
to zero. Appendix A contains further justification for the EMD indicator in the context of
the Shannon information entropy definition.

To calculate both the OR (1) and EMD (2) indicators using intraday data it is essential
to recognize the side initiating a transaction. Although the WSE is a pure order-driven
market with an electronic order book, information of the order book database is not publicly
available. Thus, the side initiating a trade cannot be directly identified from a raw data set.
Therefore, the Lee and Ready (LR) [43] algorithm inferring the initiator of a trade is used to
distinguish between so-called buyer- and seller-initiated trades. Although several trade-
side classification rules have been proposed in the literature, Olbryś and Mursztyn [56]
confirm that the LR algorithm performs better than other procedures on the Polish stock
market. For details about the LR algorithm see Table A1, in Appendix B.

As the EMD is a new both market depth and market liquidity indicator which is indi-
rectly connected (via the probabilities defined by Equations (3) and (4)) with the supporting
modified version of the OR proxy, it would be useful and informative to compare the OR
and EMD values. Table 1 presents simple illustrative examples of calculations of both
indicators for four selected cases within the same time period. Example 1 shows that the
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minimal OR value equal to zero is coupled with the maximal EMD value equal to one. In
general, as the EMD values are decimal fractions that belong to the [0; 1] interval, the EMD
values calculated for different equities can be easily compared to each other. Furthermore,
Examples 2–3 illustrate that increasing values of the OR are coupled with decreasing values
of the EMD indicator, and vice versa. Example 4 shows that the maximal OR value equal
to one is coupled with the minimal EMD value equal to zero. It means that, on an intuitive
base, the maximal value of trading imbalance indicates the lack of liquidity.

Table 1. Simple illustrative examples of the OR and EMD values for four selected cases and the same time period.

Possibilities Probabilities OR Indicator EMD Indicator

Example 1—min OR and max EMD

CTVb + CTVs = 1000 Pbuy = 500
1000 = 0.5

OR = |500−500|
1000 = 0 EMD = −1

log(2) (2·0.5·log(0.5)) =1CTVb = 500 Psell =
500
1000 = 0.5

CTVs = 500

Example 2

CTVb + CTVs = 1000 Pbuy = 600
1000 = 0.6

OR = |600−400|
1000 = 0.2 EMD = −1

log(2) (0.6·log(0.6) + 0.4·log(0.4)) ≈ 0.971CTVb = 600 Psell =
400
1000 = 0.4

CTVs = 400

Example 3

CTVb + CTVs = 1000 Pbuy = 900
1000 = 0.9

OR = |900−100|
1000 = 0.8 EMD = −1

log(2) (0.9·log(0.9) + 0.1·log(0.1)) ≈ 0.469CTVb = 900 Psell =
100
1000 = 0.1

CTVs = 100

Example 4—max OR and min EMD

CTVb + CTVs = 1000 Pbuy = 1000
1000 = 1

OR = |1000−0|
1000 = 1 EMD = −1

log(2) (1· log 1 + 0) = 0CTVb = 1000 Psell =
0

1000 = 0
CTVs = 0

Figure 1 depicts the relationship between OR and EMD indicators. To sum up, the
examples presented in Table 1 and Figure 1 show that low Order Ratio values are accompa-
nied by high values of the Entropy-based Market Depth indicator. Otherwise, high ORs are
accompanied by low values of the EMD indicator. This evidence is consistent with overall
relations between these two depth estimates.

Figure 1. The relationship between the Entropy-based Market Depth (EMD) and Order Ratio
(OR) indicators.
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Table 2 briefly summarizes basic relationships between the indicators (1) and (2),
market depth, market liquidity, and market entropy. As one can observe, the OR proxy
is only a measure of depth and illiquidity, while the EMD can be treated as a measure
of market depth, market liquidity and market entropy, which is the advantage of this
new indicator.

Table 2. Overall relationships between two market depth indicators, market depth, market liquidity, and market entropy.

Indicator Market Depth Market Liquidity Market Entropy

High order ratio (OR) Low market depth Low liquidity –
Low order ratio (OR) High market depth High liquidity –

High Entropy-based Market Depth (EMD) High market depth High liquidity High entropy
Low Entropy-based Market Depth (EMD) Low market depth Low liquidity Low entropy

3. Empirical Experiments for High-Frequency Intraday Data

As empirical experiments on financial markets depend on data availability, this section
is devoted to the comparative and comprehensive investigation of the OR and EMD
indicators on the Polish stock market. It presents findings of several empirical experiments
and statistical analyses for high-frequency data from the Warsaw Stock Exchange. The
database is large. It contains 21,010,718 records in total (see Table 3). Therefore, all
computations were performed using a customized program (language C++, system: Linux,
processor 3.6 GHz, RAM 4 GB).

Table 3. The averaged daily values of the Order Ratio (OR) and Entropy-based Market Depth (EMD) indicators within the
whole sample period and three sub–periods for the group of 20 WSE–listed companies.

Company MV PLN m
No. of Records
in the Database

OR indicator EMD Indicator

WS S1 S2 S3 WS S1 S2 S3

1 PKN 36483.58 2739243 0.19
(0.13)

0.19
(0.13)

0.20
(0.14)

0.21
(0.13)

0.96
(0.05)

0.96
(0.05)

0.96
(0.05)

0.96
(0.05)

2 PKO 35175.00 3725299 0.19
(0.14)

0.24
(0.16)

0.21
(0.14)

0.20
(0.14)

0.96
(0.06)

0.94
(0.08)

0.95
(0.06)

0.96
(0.06)

3 PEO 33018.73 2210764 0.21
(0.16)

0.25
(0.19)

0.21
(0.15)

0.21
(0.15)

0.95
(0.08)

0.93
(0.11)

0.95
(0.06)

0.95
(0.06)

4 BZW 31358.11 996852 0.32
(0.25)

0.32
(0.23)

0.25
(0.18)

0.27
(0.19)

0.86
(0.21)

0.88
(0.17)

0.93
(0.10)

0.92
(0.10)

5 ING 20998.14 191091 0.48
(0.30)

0.60
(0.31)

0.55
(0.30)

0.44
(0.27)

0.73
(0.28)

0.60
(0.33)

0.67
(0.30)

0.78
(0.24)

6 KGH 18496.00 4582816 0.17
(0.13)

0.17
(0.12)

0.19
(0.14)

0.19
(0.13)

0.98
(0.05)

0.97
(0.05)

0.96
(0.05)

0.96
(0.05)

7 MBK 14174.12 930982 0.29
(0.21)

0.40
(0.27)

0.28
(0.21)

0.25
(0.17)

0.90
(0.14)

0.81
(0.22)

0.90
(0.13)

0.93
(0.08)

8 LPP 10412.23 275452 0.50
(0.33)

0.68
(0.32)

0.56
(0.31)

0.62
(0.33)

0.68
(0.35)

0.47
(0.38)

0.64
(0.33)

0.56
(0.36)

9 BHW 9981.09 498427 0.38
(0.27)

0.49
(0.30)

0.48
(0.29)

0.50
(0.29)

0.83
(0.23)

0.72
(0.29)

0.74
(0.27)

0.72
(0.27)

10 OPL 7231.09 2055914 0.22
(0.16)

0.20
(0.15)

0.20
(0.15)

0.22
(0.17)

0.95
(0.08)

0.95
(0.07)

0.95
(0.06)

0.94
(0.08)

11 MIL 6296.08 547539 0.34
(0.24)

0.40
(0.27)

0.39
(0.26)

0.30
(0.21)

0.86
(0.18)

0.81
(0.22)

0.82
(0.20)

0.90
(0.13)

12 SNS 6034.02 678481 0.32
(0.23)

0.43
(0.25)

0.39
(0.26)

0.36
(0.24)

0.88
(0.17)

0.80
(0.21)

0.82
(0.21)

0.85
(0.18)

13 BDX 5053.68 208574 0.45
(0.29)

0.58
(0.31)

0.52
(0.31)

0.46
(0.28)

0.76
(0.28)

0.62
(0.33)

0.69
(0.31)

0.76
(0.25)
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Table 3. Cont.

Company MV PLN m
No. of Records
in the Database

OR indicator EMD Indicator

WS S1 S2 S3 WS S1 S2 S3

14 ZWC 4550.20 22181 0.65
(0.34)

0.67
(0.33)

0.63
(0.34)

0.62
(0.33)

0.50
(0.40)

0.48
(0.40)

0.53
(0.39)

0.55
(0.39)

15 CAR 3932.36 66432 0.60
(0.32)

0.62
(0.32)

0.57
(0.32)

0.59
(0.32)

0.59
(0.35)

0.56
(0.37)

0.63
(0.33)

0.60
(0.34)

16 GTC 3773.78 787020 0.32
(0.25)

0.35
(0.28)

0.25
(0.17)

0.26
(0.19)

0.86
(0.20)

0.84
(0.24)

0.93
(0.08)

0.92
(0.10)

17 KTY 3668.03 155110 0.49
(0.30)

0.45
(0.28)

0.53
(0.30)

0.52
(0.31)

0.73
(0.29)

0.76
(0.26)

0.69
(0.29)

0.69
(0.30)

18 ORB 3363.62 101850 0.55
(0.31)

0.47
(0.29)

0.52
(0.29)

0.57
(0.31)

0.65
(0.33)

0.75
(0.27)

0.70
(0.28)

0.64
(0.32)

19 STP 2929.64 74227 0.54
(0.32)

0.50
(0.31)

0.52
(0.32)

0.50
(0.31)

0.66
(0.34)

0.70
(0.31)

0.68
(0.32)

0.70
(0.32)

20 ECH 2104.99 162464 0.48
(0.31)

0.54
(0.32)

0.40
(0.27)

0.45
(0.28)

0.72
(0.30)

0.65
(0.33)

0.81
(0.22)

0.77
(0.25)

Total 259034.50 21010718 -

Notes: The 20 WSE–listed companies are labeled by ticker symbols and reported in decreasing order of the market value (MV) at the
end of 2016. WS—the whole sample period 2 January 2005–30 December 2016; S1–the pre-crisis sub-period 6 September 2005–31 May
2007; S2—the crisis sub-period on the WSE 1 June 2007–27 February 2009; S3—the post-crisis sub-period 2 March 2009–19 November 2010.
Standard deviations are given in parentheses.

3.1. Real-Data Description

The sample contains high-frequency data for 20 WSE-listed companies with the largest
market capitalization (MV) at the end of 2016. Tick-by-tick transaction data is not publicly
available for the WSE. Thus, in this research transaction prices and volume records with
a time stamp rounded to the nearest second, for each security over one unit of time are
used. The data comes from the Bank for Environmental Protection (BOS) brokerage house
(available at http://bossa.pl; accessed date 5 January 2017). All stocks included in the
database have been incessantly listed on the WSE through the whole sample period. This
study is the continuation and extension of the research on dimensions of market liquidity
on the WSE presented in the papers [54,55], and therefore the database is the same.

The sample period ranges from 2 January 2005 to 30 December 2016 (3005 trading
days). To verify the robustness of the empirical findings, the calculations are provided both
for the whole sample and over three consecutive sub-samples of equal length (436 trading
days) [54]:

(1) The pre-crisis sub-period from 6 September 2005 to 31 May 2007 (S1);
(2) The crisis sub-period on the WSE from 1 June 2007 to 27 February 2009 (S2);
(3) The post-crisis sub-period from 2 March 2009 to 19 November 2010 (S3).

The crisis sub-period on the WSE connected to the 2007–2009 Global Financial Crisis
(GFC) period was formally defined based on the paper [57], in which the statistical method
for the quantitative identification of market states is used.

3.2. Estimation Results of the Order Ratio and Entropy-Based Market Depth

This subsection includes brief information on the group of 20 WSE-traded companies
that are analyzed in this research (Table 3). The companies are labeled by ticker symbols
and presented in decreasing order of the market value (MV) at the end of 2016. Table 3
reports the numbers of records in the database for each stock and the averaged daily
values of the OR and EMD indicators. Standard deviations are given in parentheses. The
evidence is that for the most liquid equities with the largest numbers of records in the
database (namely PKN, PKO, PEO, KGH, OPL) the averaged daily values of the OR and
EMD indicators and standard deviations of these values are stable in time. The findings
confirm high market depth and high liquidity of these stocks as the averaged EMD proxy
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is approximately equal to one and accompanied by very low standard deviations. What is
important, the experimental results reported in Table 3 show that the precise ranges of OR
[0.17; 0.68] and EMD [0.47; 0.98] are equally broad (0.51 for OR and 0.51 for EMD).

Table 4 reports Pearson correlation coefficients calculated for series of daily market
depth estimators given by Equations (1) and (2), for each asset separately. This table
presents the results for the whole sample (WS) and three sub-samples S1, S2, S3. All
correlations are significantly negative and their absolute values are very high. This evidence
confirms that the information content of both market depth proxies is the same, while the
main advantage of the EMD indicator is that it measures liquidity (not illiquidity, like the
OR estimate). This evidence is consistent with the relationship presented in Figure 1.

Table 4. Pearson correlation coefficients between daily market depth values calculated using the alternative indicators (1)
and (2).

PKN PKO PEO BZW ING KGH MBK LPP BHW OPL

WS −0.927 −0.920 −0.922 −0.923 −0.946 −0.913 −0.922 −0.950 −0.938 −0.929
S1 −0.928 −0.936 −0.929 −0.934 −0.956 −0.912 −0.940 −0.955 −0.950 −0.918
S2 −0.934 −0.941 −0.944 −0.922 −0.948 −0.945 −0.925 −0.949 −0.945 −0.925
S3 −0.947 −0.931 −0.942 −0.943 −0.946 −0.944 −0.945 −0.953 −0.948 −0.929

MIL SNS BDX ZWC CAR GTC KTY ORB STP ECH
WS −0.935 −0.929 −0.940 −0.953 −0.950 −0.928 −0.944 −0.948 −0.946 −0.944
S1 −0.946 −0.944 −0.949 −0.956 −0.952 −0.937 −0.939 −0.955 −0.943 −0.949
S2 −0.941 −0.941 −0.948 −0.952 −0.947 −0.944 −0.950 −0.946 −0.947 −0.940
S3 −0.938 −0.931 −0.945 −0.948 −0.952 −0.937 −0.950 −0.949 −0.946 −0.948

Notes: Notation as in Table 3.

3.3. Robustness Tests of Entropy-Based Market Depth

Various robustness analyses are standard procedures for testing stability of stock mar-
ket characteristics, especially in the context of crises periods, e.g., [24,41,54,55]. The existing
studies indicate that the empirical results could be diverse and economic interpretations are
needed in such cases. The Entropy-based Market Depth (EMD) indicator (2) is proposed as
a new estimator of a stock market depth and market liquidity. Therefore, the stability of
estimation results by time periods could be assessed. To address this issue, the robustness
tests over the whole sample period and three sub-periods are provided. The goal is to
investigate whether the mean results of stock depth and liquidity approximated by EMD
within the analyzed periods (reported in Table 3) significantly differ between each other.
The following two-tailed hypothesis is tested:

H0 : μ1 = μ2
H1 : μ1 �= μ2

, (5)

where μ1, μ2 are the expected values of depth for each equity within the compared periods,
and the null hypothesis assumes that two expected values are equal.

To verify the hypotheses, the Z-statistic for independent large sample means is used:

Z =
x1 − x2√

s2
1

n1
+

s2
2

n2

, (6)

where x1, x2 are sample means, s2
1, s2

2 are sample variances, and n1, n2 denote a sample
size, respectively. The numbers n1, n2 of trading days for each stock within each period
are reported in Table A2, Appendix C. The average daily values of the EMD and standard
deviations of these values are documented in Table 3. To address the multiple testing
problem, the Bonferroni correction is used, and therefore the significance level is equal to
α = 0.0025. The critical value of Z-statistic (6) at 0,25% significance level is equal to 3.03 for
each test (we thank an anonymous referee for this suggestion).
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Six pairs of periods are investigated, i.e., WS/S1, WS/S2, WS/S3, S2/S1, S2/S3, and
S1/S3. Summarized findings for the whole group of companies are presented in Table 5 and
they require some comments and economic interpretations. The hypothesis H0 indicates
that the average EMD values are stable in time within compared periods. One can observe
that for the companies PKN, OPL, ZWC, CAR, STP there are no reason to reject H0 for
all six cases, for the KGH—for five cases, and for KTY—for four cases. However, for the
remaining equities the results are more diverse. After deep investigation of the obtained
results we can assert that there are three main reasons of this phenomenon.

Table 5. Summarized results of the significance test for the difference between two means of daily Entropy-based Market
Depth (EMD) values for the group of 20 WSE–listed equities.

PKN PKO PEO BZW ING KGH MBK LPP BHW OPL No. of H0

WS/S1 H0 H1 H1 H0 H1 H0 H1 H1 H1 H0 4
WS/S2 H0 H0 H0 H1 H1 H1 H0 H0 H1 H0 6
WS/S3 H0 H0 H0 H1 H1 H0 H1 H1 H1 H0 5
S2/S1 H0 H1 H1 H1 H1 H0 H1 H1 H0 H0 4
S2/S3 H0 H0 H0 H0 H1 H0 H1 H1 H0 H0 7
S1/S3 H0 H1 H1 H1 H1 H0 H1 H1 H0 H0 4
No. of

H0
6 3 3 2 0 5 1 1 3 6 30

MIL SNS BDX ZWC CAR GTC KTY ORB STP ECH No. of H0

WS/S1 H1 H1 H1 H0 H0 H0 H0 H1 H0 H1 5
WS/S2 H1 H1 H1 H0 H0 H1 H0 H1 H0 H1 4
WS/S3 H1 H0 H0 H0 H0 H1 H0 H0 H0 H1 7
S2/S1 H0 H0 H0 H0 H0 H1 H1 H0 H0 H1 7
S2/S3 H1 H0 H1 H0 H0 H0 H0 H0 H0 H0 8
S1/S3 H1 H1 H1 H0 H0 H1 H1 H1 H0 H1 3
No. of

H0
1 3 2 6 6 2 4 3 6 1 34

Notes: Notation as in Table 3. The critical value of Z-statistic at 0.25% significance level is equal to 3.03 for each test.

Firstly, although Table 3 documents that for the most liquid equities the averaged daily
values of the EMD indicator are high and approximately the same, the values of standard
deviation and the significantly diverse number of trading days within the analyzed periods
(reported in Table A2, Appendix C) leads to rejection of the null hypothesis (5) for some
isolated cases (for instance, for PKO and PEO).

Moreover, the results depend on the pair of the sub-periods. It is important to remind
that the pre-crisis (S1), crisis (S2), and post-crisis (S3) periods on the WSE are investigated,
and the crisis sub-period on the WSE is connected to the 2007–2009 Global Financial Crisis
(GFC). Therefore, the findings inform whether the mean results of market depth and
liquidity during the GFC period on the WSE significantly differ compared to the other
periods. One can observe that in the case of the pairs: S2/S1 (crisis/pre-crisis), and S2/S3
(crisis/post-crisis), the hypothesis H0 is outweighed by the hypothesis H1 in 9 out of
20 and 5 out of 20 cases, respectively. Moreover, for the pair WS/S2 (whole sample/crisis)
the number of H1 is equal to 10. Therefore, we can conclude that the visible influence of
the GFC on market depth and liquidity was present for the following equities, including
five banks: BZW, ING, MBK, LPP, BHW, MIL, SNS, BDX, GTC, ORB, ECH. In general,
market depth and liquidity significantly differed during the crisis sub-period on the WSE
for several analyzed companies, but not for all of them. The EMD values for the most
liquid companies were much more stable. This evidence is consistent with the studies that
have utilized other liquidity proxies to assess stock market liquidity dimensions on the
WSE during the GFC (e.g., [42,43]).

Furthermore, the whole sample period (WS) is long (12 years), and it includes the
years of substantial changes in market liquidity. The WSE was a medium-size emerging
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stock market during this period. Especially, the level of liquidity within the pre-crisis
period (S1) was lower compared to other periods for several companies, e.g., ING, MBK,
LPP, BDX, ECH (see Table 3), while the level of liquidity during the post-crisis period (S3)
was higher for many stocks. As a consequence, the hypothesis H0 is outweighed by the
hypothesis H1 in 11 out of 20 (for the pair WS/S1) and 13 out of 20 cases (for the pair S1/S3).
The total number of H1 is equal to 57 out of 120. In conclusion, the results reported in
Table 5 are not homogenous but they can be explained based on the WSE liquidity behavior
within the whole sample period and remaining sub-periods.

3.4. Intra-Day Seasonality in Entropy-Based Market Depth

The aim of this subsection is to assess intra-day seasonality and recognize intra-day
hourly patterns in the EMD indicator of market depth. According to the literature, there
are some possible shapes of intra-day patterns in various stock market characteristics such
as volumes, depths, spreads, returns, transaction costs, order flows, market resiliency, etc.
(see e.g., [55,58–68] and the references therein). Goodhart and O’Hara [58] emphasize
that a fundamental property of high-frequency data is that observations can occur at
varying time intervals. Therefore, trades are not equally spaced over the day, which may
result in intra-day ‘seasonal’ patterns in stock market activity. Empirical investigation and
visualization of these patterns may be a useful tool for decision-making process and can
help an investor to state how particular characteristics vary over a session. Some shapes of
intra-day patterns in stock market are possible but it is not surprising that perfectly shaped
visual patterns rarely appear. There are several attributes that help to differentiate the
most important shapes such as: M-similar, U-similar, W-similar, inverted-U, J-similar, and
inverted-J patterns [55].

To explore intra-day patterns in the EMD indicator, the average hourly values of this
indicator are calculated for each equity within the whole sample period (WS) and three
sub-periods (S1, S2, S3). The WSE is an order-driven market with an electronic order book.
Therefore, liquidity is provided only by limit orders submitted by investors and there are
no market makers who support liquidity. Table 6 presents short market trading schedule
on the WSE and the notation concerning the trading hours (H1–H8).

Table 6. Market trading schedule on the WSE equities–continuous trading system.

Market Phase Time Hours

Opening call 8:30 am–9:00 am
Opening auction 9:00 am

Continuous trading
Closing call

9:00 am–4:50 pm
4:50 pm–5:00 pm

H1: 9:00 am–10:00 am
H2: 10:00 am–11:00 am
H3: 11:00 am–12:00 am
H4: 12:00 am–1:00 pm
H5: 1:00 pm–2:00 pm
H6: 2:00 pm–3:00 pm
H7: 3:00 pm–4:00 pm
H8: 4:00 pm–5:00 pm

Closing auction 5:00 pm
Trading at last 5:00 pm–5:05 pm

ource: The WSE website (https://gpw.pl/session-details; accessed date 15 February 2021).

Figure 2 illustrates hourly patterns in the EMD values within the whole sample period.
The EMD intra-day behavior during remaining periods is presented in Figures A2–A4,
Appendix D. Table 7 reports summarized findings of hourly patterns in the EMD indicator
for the whole group of 20 WSE–listed equities investigated in this research. The trading
hours H1–H8 based on Table 6.
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It is important to notice that the results are homogenous. Except for isolated cases
(e.g., LPP, ZWC), the M-similar and U-similar (with a decrease during the last hour H8)
patterns dominate for the vast majority of stocks.

The M-shaped pattern depicts lower EMD values during the beginning and the ending
of a session with the highest values slightly after the beginning and before the end. It is
also marked by distinctively low value in the middle of a session.

The U-shaped pattern means that the value of the EMD decreases after the first hour.
It then stays more or less constant, and increases during the last hour. In this context, the
evidence concerning the U-similar pattern with a visible increase within the hour H7 and a
pronounced decrease during the last hour H8 requires some explanations. It seems that
this pattern is common for the most equities on the WSE. After deep investigation of the
obtained empirical findings we can assert that the main reason of this phenomenon lies
in the trade side classification results. Based on the Lee-Ready procedure presented in
Appendix B (Table A1), two possible cases dominate within the last hour H8 on the WSE:

(1) The transactions are classified in the same manner (i.e., as only buyer- or only seller-
initiated trades), which leads to EMD = 0 based on definition (2), and consequently
decreases the average hourly value of the EMD. It’s common especially for less liquid
companies with a small number of transactions in H8,

(2) The transactions classified as buyer- or seller-initiated trades dominate, which leads
to small EMD values approx equal to 0 (see Table 1), and as a consequence decreases
the average hourly value of the EMD.

Based on the summarized findings presented in Table 7 one can observe that, in
general, the M-similar pattern dominates within the sub-periods S1 (pre-crisis) and S2
(crisis), while the U-similar pattern appears for vast majority of equities during the whole
sample period and the sub-period S3 (post-crisis). In our opinion, the main reason of this
phenomenon can be a higher level of market liquidity on the WSE after the GFC period.

It is worthwhile to emphasize that our results concerning intra-day behavior of the
EMD indictor as a measure of liquidity are consistent with the literature. For instance,
Jain and Joh [60] study joint characteristics of hourly common stock trading volume and
returns and they find the U-shaped pattern in volume over the trading day on the New
York Stock Exchange (NYSE). They emphasize that average volume as a liquidity proxy
reveals significant hour of the day effect. McInish and Wood [62] show that number of
shares traded as a liquidity estimate has a U-shaped intra-day pattern for all stocks listed
on the Toronto Stock Exchange. Vo [64] also assess the intra-day behavior of market activity
on the Canadian stock exchange in Toronto. The results confirm that spread follows U-
shaped pattern, while volume is low at the open, stable during the day, and increases at
the close. Ahn and Cheung [67] investigate the Stock Exchange of Hong Kong which is a
pure electronic order-driven market without market makers.

The authors find the U-shaped patterns in spread and trading volume. As for the
Polish stock market, Olbryś and Oleszczak [68] conduct empirical experiments for real-data
from the WSE and they document that intra-day trading volume reveals U-similar or M-
similar hourly patterns in the case of all investigated equities and for all analyzed periods.

4. Discussion and Conclusions

Concept of market depth focuses on the volume which can be observed at the current
price level [49]. From investors’ and stock market analysts’ point o view, market depth is
crucial because it can be treated as quantity dimension of market liquidity [51]. Harris [69]
points out that the topic concerning dimensions of liquidity is especially interesting for
practitioners as they often think about liquidity quite intuitively. Thinking about liquidity,
investors usually think about trading quickly, trading large size, or trading at low costs.

According to the literature related to the microstructure of markets, several proxies of
market depth are proposed: (1) depth as a number of units offered at the ask price plus a
number of units at the bid price (e.g., [46,51,52]), (2) dollar depth calculated in currency
terms (e.g., [70]), (3) an average depth of the ask and the bid (e.g., [71]), (4) an average
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dollar depth measured in currency terms (e.g., [71]), (5) various versions of order ratio
as a proxy of realized market depth (e.g., [43,49,51–53]). The vast majority of these depth
proxies require information about ask and bid prices.

However, although the WSE is a pure order-driven market with an electronic order
book, information about ask and bid prices is not publicly available. Therefore, the side
initiating a transaction cannot be directly identified from a data set. This problem concerns
many emerging markets in the world, and a procedure inferring the initiator of a trade is
needed in such cases.

Taking the above into consideration, this research contributes to the existing literature
regarding dimensions of market liquidity by introducing and utilizing a new methodology
for estimation of market depth and liquidity with the EMD indicator based on the Shannon
entropy and supported by an algorithm inferring the initiator of a trade. The advantage of
the EMD is that it measures liquidity, and the min and max values are in accordance with
an investor’s intuition, i.e., EMD = 0 in the case of total illiquidity and EMD = 1 in the case
of total liquidity. Hence, depth and liquidity calculated using the EMD for different stocks
can be easily interpret and compared to each other. Moreover, the EMD can be treated as a
measure of both market liquidity and market entropy. This is the advantage of this new
indicator because higher values of entropy inform about higher market efficiency (in the
sense of the EMH), and are coupled with higher values of stock liquidity.

Furthermore, intra-day behavior of the EMD indicator has been assessed and empirical
findings concerning intra-day seasonal patterns in the EMD are homogenous and consistent
with the existing studies on other liquidity proxies.

It is well documented in the literature that market depth varies with spread, volume,
transactions, and volatility (see e.g., [49,51,70]). Therefore, one possible direction for future
study could be an extensive econometric analysis of relationships between various stock
market characteristics using the new EMD indicator as market depth proxy. Subject to data
availability provision, the proposed entropy-based indictor could be utilized using high-
frequency data from other stock markets in the world, and the results might be interesting
for practitioners.

Another promising direction for further research might be to perform a theoretical
analysis of the new entropy-based indictor from the perspective of the properties of ex-
tropy [72]. As the entropy and the extropy of a binary distribution are identical, the
EMD indicator can be regarded also as an extropy measure (we would like to thank an
anonymous referee for this valuable suggestion.).
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Appendix A

Entropy is a measure that is used to summarize the information content of a proba-
bility distribution. Specifically, the Shannon information entropy quantifies the expected
value of information contained in a discrete distribution [10]. The entropy in the case of
two possibilities with probabilities p and 1 − p can be represented as a function of p [1]
(p. 394). Given the probabilities defined by Equations (3) and (4), we can set Pbuy = p
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and Psell = 1 − p, and then the EMD indicator (2) can be directly written as the function of
probability p = Pbuy:

EMD = −1
log(2)

(
Pbuy· log

(
Pbuy

)
+ Psell · log(Psell)

)
= −1

log(2) (p log(p) + (1 − p) log(1 − p)) = f (p)
(A1)

By analogy with the Shannon entropy, the f (p) function (A1) has several important
properties which substantiate it as a reasonable measure of choice or information, and all of
them are documented in [1]. In this paper, we focus on some basic properties, especially in
the context of a binary distribution, and most of them are analyzed in Section 2.2. However,
it is crucial to add that the f (p) function (A1) is non-negative, continuous and differentiable
at each point in its domain. For instance, these properties allow us to assess the sensitivity
of the EMD to changes in probability p as the argument of function f (p). The results could
be interesting for practitioners as, from an investor’s point of view, it is important to know
how do changes in probability p = Pbuy (connected with cumulated trading volume) affect
the EMD value (it could be a possible direction for further investigation).

Figure A1 illustrates the plot of the EMD as the function of probability p = Pbuy. It is
important to notice that the EMD plot is identical with the plot of entropy presented in the
Shannon’s seminal paper [1] (p. 394), and it confirms that the EMD measures both market
liquidity and market entropy.

Figure A1. The Entropy-based Market Depth (EMD) as the function of probability p = Pbuy.

Appendix B

Table A1 presents the Lee and Ready [45] algorithm inferring the initiator of a trade.
The midpoint price Pmid

t at time t is calculated as the arithmetic mean of the low price

PL
t and the high price PH

t at time t, i.e., Pmid
t =

PL
t +PH

t
2 . The transaction price Pt at time t

is approximated by the closing price. The opening trade is treated as being unclassified
according to the LR procedure.
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Table A1. The Lee-Ready algorithm inferring the initiator of a trade.

Conditions

Stage I

Pt > Pmid
t Trade is classified as buyer-initiated

Pt < Pmid
t Trade is classified as seller-initiated

Pt = Pmid
t Then:

Stage II

Pmid
t > Pt−1 Trade is classified as buyer-initiated

Pmid
t < Pt−1 Trade is classified as seller-initiated

Pmid
t = Pt−1

The decision is taken using the sign of the
last non-zero price change Pt−k.
Pt > Pt−k Trade is classified as

buyer-initiated
Pt < Pt−k Trade is classified as

seller-initiated

Source: [56] (p. 6).

Appendix C

Table A2 reports the number of trading days for each company and investigated
period excluding the days when all of the transactions within a day are unclassified based
on the Lee and Ready [45] algorithm inferring the initiator of a trade. These numbers
are necessary to test the hypothesis (5) as the OR and EMD indicators are not defined
when: (1) all transactions within an analyzed time period are unclassified, and (2) an
analyzed time period is a zero-volume period, which means the total lack of transactions.
Additionally, one can observe that for the most liquid companies (namely PKN, PKO, PEO,
ING, KGH, MBK, BHW, OPL, MIL, SNS, GTC) the numbers of days reported in Table A2
are equal (or almost equal) to the particular sample size, respectively.

Table A2. The number of trading days excluding the days when: (1) all of the transactions within a day are unclassified,
and (2) total daily trading volume is equal to zero.

PKN PKO PEO BZW ING KGH MBK LPP BHW OPL

WS 3005 3004 3005 2979 3004 3005 3005 2931 3004 3005
S1 436 436 436 436 436 436 436 411 436 436
S2 436 436 436 436 436 436 436 430 436 436
S3 436 436 436 436 436 436 436 424 436 436

MIL SNS BDX ZWC CAR GTC KTY ORB STP ECH
WS 3005 3005 2983 2433 2867 3003 2977 2962 2884 2967
S1 436 436 432 354 400 436 435 436 416 426
S2 436 436 435 385 433 436 436 436 432 436
S3 436 436 435 392 427 436 434 434 435 436

Notes: Notation as in Table 3. The sample size: WS (3005 trading days); S1, S2, S3 (436 trading days).

Appendix D

Figures A2–A4 illustrate intra-day seasonality results within three sub-periods S1, S2,
S3 for the whole group of 20 WSE–listed companies investigated in this study. Notation as
in Table 3. Information about trading hours H1–H8 based on Table 6.
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Figure A2. Intra-day hourly patterns of the EMD indicator within the pre-crisis period (S1) for the whole group of
20 WSE–listed stocks. Notation as in Tables 3 and 6.
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Figure A3. Intra-day hourly patterns of the EMD indicator within the crisis period (S2) for the whole group of 20 WSE–listed
stocks. Notation as in Tables 3 and 6.
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Figure A4. Intra-day hourly patterns of the EMD indicator within the post-crisis period (S3) for the whole group of
20 WSE–listed stocks. Notation as in Tables 3 and 6.
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Abstract: Since 2018, the bond market has surpassed the stock market, becoming the biggest in-
vestment area in China’s security market, and the systemic risks of China’s bond market are of
non-negligible importance. Based on daily interest rate data of representative bond categories, this
study conducted a dynamic analysis based on generalized vector autoregressive volatility spillover
variance decomposition, constructed a complex network, and adopted the minimum spanning tree
method to clarify and analyze the risk propagation path between different bond types. It is found
that the importance of each bond type is positively correlated with liquidity, transaction volume,
and credit rating, and the inter-bank market is the most important market in the entire bond market,
while interest rate bonds, bank bonds and urban investment bonds are important varieties with great
systemic importance. In addition, the long-term trend of the dynamic spillover index of China’s
bond market falls in line with the pace of the interest rate adjustments. To hold the bottom line of
preventing financial systemic risks of China’s bond market, standard management, strict supervision,
and timely regulation of the bond markets are required, and the structural entropy, as a useful
indicator, also should be used in the risk management and monitoring.

Keywords: bond market; fixed income security; risk spillovers; structural entropy; generalized
variance decomposition; complex network

1. Introduction

From 2007 onwards, the Subprime Crisis brought about drastic changes in the global
economic and financial system, exposing a series of loopholes in traditional financial
institutions and regulatory systems, as well as showing a rising trend of cross-country risk
contagion overtime [1]. Because of the down-speed shifting of economic development with
a new normal medium speed after decades of high-speed and extensive growth, China’s
government now emphasizes quality of economic development and views financial risk
management as a more important consideration than ever before.

Despite the outbreak and spread of the COVID-19 pandemic, the decoupling of the
global economy, and the rise of populism having had a major impact on the global economy,
China’s domestic economy has endeavored to deepen supply-side structural reforms,
which give full play to China’s ultra-large-scale market advantages and domestic demand
potential, and build new development that promotes both domestic and international
cycles, as well as keeping China’s economy energetic. At this stage of the pattern, China’s
financial system has entered a new period full of volatility and uncertainty after the long-
term accumulation of systemic risks. In keeping with the findings from the research of
Fang et al. [2], with the increasing openness of the Chinese economy, Chinese financial
markets are becoming more integrated with those of developed markets, and Chinese
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financial markets are demonstrating a growing impact on global financial markets over
time, especially during periods of turbulence.

Macroeconomic variables often suffer from structural changes due to changes in
institutional reforms, policies, crises, and other factors [3], while systematic macroeconomic
risks often tend to accumulate in the form of bubbles silently [4], only bursting with the
outbreak of a crisis. When the bubble bursts, the spillover effect among institutions
involved in the economic activities would become significant, expanding the range of the
damage, so the systematic risks caused could not be ignored. So, understanding the risk
contagion mechanism of the shocks in the financial market is significantly helpful, as well
as crucial for investors for the purposes of asset allocation, asset pricing, risk management,
and arbitrage trading. Generally, the investors who face asset price fluctuation, including
both institute investors and individual investors, mostly use negatively correlated assets to
complete their asset allocation, minimizing the portfolio risks. However, few investment
institutions realize that to avoid systemic risks from being transmitted to themselves,
identifying systemic risks and related systemically important institutions is a crucial step.
Obviously, it is essential for regulators and governments to understand the transmission
mechanism of financial shocks, since extreme volatility shock spillover causes financial
unpredictability and brings about unexpected market impacts. In order to stabilize the
price fluctuation in financial markets, ensuring that it is in a better condition to serve the
real economy, the policymaker should develop appropriate policies to prevent large market
impacts of volatility shocks from extreme events [5].

As Figure 1 shows, up until 28 October 2020, China’s bond market has a tremendous
scale of RMB 112 trillion, accounting for 52.41% of China’s entire securities market. Accord-
ing to this fast-growing and tremendous volume, the bond market is almost the biggest
investment area in China, only second to the real estate market. Although there are few
individual investors in the bond market, the importance of the prosperity and stability
of China’s bond market cannot be emphasized too much, as well as the significance of
controlling the volatility and risk of this market.

Figure 1. The scale of China’s security market, as of 28 October 2020 (Unit: RMB billion).

However, few studies have focused on the inner dynamics of China’s bond market.
In our research, we innovatively combine the methodology of complex networks and the
traditional econometric method, and instead of using the indices data of the financial
market, we pioneeringly use the interest rate data of different bond types in China’s bond
market, which provide a better representation of the inner factors of China’s bond market
in a relatively micro view, instead of traditional quarterly data from the balance sheets of
financial institutes.
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There are 23 types of bonds included in our research. Using the traditional econometric
model will face the problem of degrees of freedom caused by too many variables, so the
complex network method will be more appropriate. In this paper, the bond market is
regarded as a complex system that includes different types of bonds as nodes. The spillover
indexes among the exchange rate fluctuations are used to construct the network. To make
the relationship among bonds more intuitive and clearer, and to show the most effective
path in the risk contagions process, the minimum spanning tree (MST) method is applied
to analyze the influence structure. Thus, the key nodes and the key path of volatility risk
contagion can be detected. This paper is organized as follows: the first section introduces
the background to our research; the data are briefly introduced in Section 2; the techniques
of network analysis and the results are discussed in Section 3; and finally, we end with a
conclusion in Section 4.

2. Literature Review

The current economic crisis illustrates a critical need for new and fundamental un-
derstanding of the structure and dynamics of economic networks. Economic systems are
increasingly built on interdependencies, implemented through trans-national credit and
investment networks, trade relations, or supply chains that have proven difficult to predict
and control [6]. For investigation of the risk in financial markets, various methods have
been used in related research, and the simulation approach is often used, especially when a
financial network is involved. Battiston and Caldarelli [7] used the simulation approach
and stress tests to focus on the role of linkages within the two dimensions of contagion
and liquidity, and to examine the mechanism of the contagions of systemic risk in financial
networks, and they found that with respect to the issue of the determination of systemically
important financial institutions, the findings indicate that both from the point of view of
contagion and from the point of view of liquidity provision, there is more to systemic im-
portance than just size. Ponta and Cincotti [8] presented and studied an information-based
multi-asset artificial stock market characterized by different types of stocks and populated
by heterogeneous agents to determine the influences of agents’ networks on the market’s
structure. They concluded that the network is necessary in order to achieve the ability to
reproduce the main stylized facts, but also that the market has some characteristics that are
independent of the network and depend on the finiteness of traders’ wealth.

The research on financial market contagion or spillover effects has been widely studied
in the economic and management aspects, and is also used in our research for its robustness
and interpretability. For example, Diebold and Yilmaz [9] proposed several connectedness
measures built from pieces of variance decompositions, and they argued that they provide
natural and insightful measure connectedness among financial asset returns and volatilities
by using directed networks to make the relationship more clear. Su [10] used the MHS-
EGARCH model, finding that there are negative return and volatility spillover effects
between currency and stock markets, and the stock indices in emerging markets have
a higher return and a higher risk. Dey and Sampath [11] analyzed spillovers in returns
and volatility among five major financial assets in India, especially the shock from the
USA, by using a generalized vector autoregressive model, and they find that banking, real
estate and gold matter the most for India. There are a number of similar studies such as
Georgiadis [12], Yang and Zhou [13], and Miranda-Agrippino and Rey [14] that show that
the US monetary policy could cause a considerable spillover impact in the global financial
market. Morana and Bagliano [15] analyzed business cycle spillovers and synchronization
within groups of old and new European Union countries and found out that spillovers
are beneficial for the common monetary policy of the European Union. Lyocsa et al. [16]
studied the connectedness of a sample of 40 stock markets across five continents using
daily dosing prices and return spillovers based on Granger causality by building a complex
network of the global stock market. In conclusion, they found that the probability of return
spillover from a given stock market to other markets increases with market volatility and
market size and decreases with higher foreign exchange volatility.
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In addition, closing hours are important for information propagation. The research of
Tsai and I-Chun [17] is interesting, as they used the data of economic policy uncertainty
(EPU) in four countries or regions, finding that EPU in China is the most influential, and
its contagion risk spreads to different regional markets, except for Europe; the effect of
EPU in the United States is inferior to that in China; EPU in Japan merely influences
contagion risk in emerging markets; contagion risk in European markets is not influenced
by the four EPU indices; and EPU in Europe is not influenced by contagion risk in the
global stock market. Huo and Ahmed [18] examined the impact of the Shanghai-Hong
Kong Stock Connect by using the BEKK GARCH model. They found that the new Stock
Connect does contribute to the increasing importance of the Chinese mainland stock
market and economic activity, and found a leading role of the Shanghai stock market in
the Hong Kong stock market in terms of both mean and volatility spillover effects after
the Stock Connect. Narayan et al. [19] examined the relationship between stock returns
and mutual fund flows in India by applying a generalized VAR model. In addition, it
was also found that the spillover index defined in their research could be used to predict
stock returns and mutual fund flows. Mensi et al. [20] studied the linkages both within
and between stock and foreign exchange (FX) markets via three higher moments of return
distributions (volatility, skewness and kurtosis), finding that cross-asset market linkages are
of a similar magnitude to intra-asset-market linkages within emerging market, but the latter
are stronger in developed markets. Christiansen [21] used a GARCH volatility–spillover
model to analyze the volatility spillover from the US and aggregate European bond markets
into individual European bond markets, and the weekly data of multiple bond indices
issued by JPMorgan were used in his research. In his conclusion, strong statistical evidence
of volatility spillover from the US and aggregate European bond markets was found.
Additionally, it is interesting to find that the bond markets of EMU countries became
much more integrated after the Euro was first issued, and this was mainly driven by
the convergence in interest rates under the unified monetary policy [22], documented
asymmetry in return and volatility spillover between equity and bond markets in Australia
for daily returns during the period 1992–2006 by using a bivariate GARCH modelling
approach. The illuminative result from their research is that negative bond market returns
spillover into lower stock market returns, whereas good news originating in the equity
market leads to lower bond returns, and the spillover effects are stronger in a one-way
channel from the bond market to the equity market.

There are plenty of studies using matrices and network methods to study financial
markets. Junior and Franca used the eigenvalues and eigenvectors of the correlations
matrices of some of the main financial market indices in the world, showing that the high
volatility of markets is directly linked with strong correlations between them, and their
conclusion provided a good explanation of the major financial market crises that occurred
between 1987 and 2008 [23]. Matesanz’s team analyzed co-movements in a wide group
of commodity prices during the time period 1992–2010. Their methodological approach
was based on the correlation matrix and the networks inside. Through this approach, they
were able to summarize global interaction and interdependence, capturing the existing
heterogeneity in the degrees of synchronization between commodity prices. Their results
suggest that speculation and uncertainty are drivers of the sharp slump in commodity
prices’ synchronization [24]. There are also several studies on the inter-market spillover
effect in China, such as the research of Zhu et al. [25], or about inter-bank spillover effect,
such as the research of Bao, Wu and Li [26].

It is worth mentioning that the hybrid methods such as structural entropy have gradu-
ally become more commonly used in financial research: Murialdo and Ponta [27] presented
a perspective on the intangible complexity of economic and social systems by investigating
the dynamical processes producing, storing and transmitting information in financial time
series by using the moving average cluster entropy approach. Shi et al. [28] used gray
relational analysis and empirical mode decomposition to decompose and reconstruct the
sequences to obtain the evolution trend and periodic fluctuation of systemic risk, and used
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structural entropy as a measurement to verify the results, showing that the systemic risk of
China’s stock market as a whole shows a downward trend, and the periodic fluctuation of
systemic risk has a long-term equilibrium relationship with the abnormal fluctuation of
the stock market. Bielik [29] used entropy combined with technical indicators of the stock
market, such as MACD, to find predictable market parts and improve the automated and
non-automated trading strategies in the financial market.

Except for the methods mentioned above, the rise of econophysics, a fundamentally
new approach in finance, suggests that the influence between the two disciplines has
become less unilateral than in the past. Jovanovic’s research aimed at analyzing the
unexpected influence of financial economics on physics. With this purpose, their study
went one step further in the dialogue between econophysics and economics. Indeed, by
investigating the reciprocal influence between the two fields, their paper identified some
areas for a better cross-fertilization between the fields [30]. Kutner’s research presented
some of the achievements of econophysics and sociophysics which appear to us to be
the most significant [31], and Schinckus’ study aimed at analyzing how econophysicists
implicitly promote a Duhemian way of perceiving scientific research by expanding their
work into economics [32].

3. Methodology

3.1. Generalized Vector Autoregressive Forecast Error Variance Decomposition

To measure the risk spillover effect of the complex network of bond markets, we
calculated the volatility spillover indices based on a generalized VAR in which the FEVD is
invariant to the variable ordering initially proposed by Francis et al. [33] and Diebold and
Yilmaz [34]. The details are shown as follows:

At the very first beginning, it is necessary to establish a VAR model with N variables
in the lagging P period with stable covariance:

xt =
p

∑
i=1

φixt−i + Òt (1)

where xt = (x1t, x2t, · · · , xNt) is a vector with N endogenous variables, φi, i = 1, 2, · · · , p
is a N-dimensional autoregressive coefficient matrix, the mean of the error vector Òt is
zero, and the covariance matrix is denoted as Σ. When the VAR model is stationary, the (1)
could be convert to a moving average formula:

xt =
∞

∑
j=0

AjÒt−j (2)

Ai should meet the condition that Ai = φ1 Ai−1 + φ2 Ai−2 + · · · φn Ai−n, and A0 is a
N-dimensional unit matrix, and when j < 0, Ai = 0.

Secondly, in order to measure the spillover effect between variables and the total
spillover effect, this study defines the spillover effect between variables: the spillover effect
of variable xj on variable xi is defined as the variance of the H-step prediction error of xi
that is impacted by the xj part where i �= j. The H-step represents the time span of the
forecast error of the VAR model—that is, the number of periods of variance decomposition,
which can be represented by Formula (3):

θH
ij =

σ−1
jj ∑H−1

h=0

(
e′i Ah ∑ ej

)2

∑H−1
h=0

(
e′i Ah ∑ A′

hei
) (3)

While σ−1
ij is the standard deviation form of the prediction error of the jth variable,

ei is a N × 1 vector, where the ith element is 1, and the rest are zero. θH
ij represents the
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spillover effect of variable xj on variable xi, with it being noted that ∑N
j=1 θH

ij , so θH
ij should

be standardized:

θ̂H̃
ij =

θH
ij

∑N
j=1 θH

ij
(4)

and now
N
∑

j=1
θH

ij = 1,
N
∑

i,j=1
θH

ij = N. The matrix θH =
[
θ̃H

ij

]
shows the spillover effect

among N variables, and the main diagonal element represents the overflow effect of the
variable itself, while the non-diagonal element represents the overflow effect between
different variables.

The percentage form of the total spillover effect can be obtained from Formula (4):

TS =
∑N

i,j=1,i �=j θH̃
ij

∑N
i,j=1 θH̃

ij

× 100 =
∑N

i,j=1,i �=j θH̃
ij

N
× 100 (5)

Regarding the total spillover index TS, add the non-diagonal elements in the resulting
matrix θH̃ = θH̃

ij as the numerator of the total spillover index, and the denominator of the
total spillover index is obtained by adding up all the elements in the matrix. In this way,
the total spillover effect index measures the degree of the total spillover effect between
in bond markets, so it can be used as a quantitative indicator to measure the degree of
bond market correlation, as well as its risk of spreading. The bigger the spillover index is,
the greater the volatility of the bond market due to the risk spillovers between different
bond varieties will be, which in turn shows that the links between financial markets are
very close.

3.2. The Complex Network, the MST Method and Structural Entropy

A complex network generally comprises several nodes and edges linking them. The
node is the basic unit of a complex network, which is the abstract expression of an “indi-
vidual” in the real world [35]. The edge is an expression of the relationship between the
units and could be given weight accordingly to describe the extent of the relationships
quantitatively [36]. In human social activities, the most common complex network is the
small world network [37]; while talking about the Internet, scholars of complex networks
usually define it as a scale-free network [38]. Different types of complex networks usually
have different characteristics of their edges and nodes [39], and here in our research, wij
represents the weight of the edge linking node i and node j, where i = 1, 2, 3, . . . , n, j = 1, 2,
3, . . . , n, where n is the amount of nodes in a certain network. For an undirected network,

wij = wji (6)

The research also uses the weighted degree to represent the importance of nodes,
which is defined as:

dwi = ∑
j∈v(i)

wij (7)

where v(i) is the set of nodes linking to node i. The stronger the degree of correlation with
other nodes is, the more important the node is.

In our study, the spillover index of 1st difference to the interest rate data has been
used, shown as:

wij = (spillover index)i to j (8)

It should be noted that wij here represents the weight of the edge from i to j in a directed
network, and the (spillover index)i to j here could be calculated from θH

ij in Formula (3),
and vice versa.

To detect a clearer structure of the complex network of bond market, we apply the
minimum spanning tree (short as MST) method [40] that has been previously applied to this
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research aspect [41,42]. This method selects the indices with the closest interactions among
all the indices and generates a visual presentation of the relationship with n − 1 edges in
the tree. When using the MST method, the relatively insignificant edges are discarded and
there is only one route between any two nodes, which means that the complex network
constructed by the MST shows more concise and clearer risk contagion relationships in
China’s bond market, and that it is easier to discern the key bond types in the risk spillover
complex network.

To construct the MST, the spillover index firstly needs to be converted into a “distance”
coefficient as the input of the Kruskal algorithm. Following these references [28,43], we use
nonlinear mapping:

dij =

√
2
(

1 − (spillover index)ij

)
(9)

to obtain the distance dij, noting that dij = dji in the undirected graph, and (spillover index)ij
could be defined as:

(spillover index)ij =
(
(spillover index)i to j + (spillover index)j to i

)
/2 (10)

and (spillover index)i to j here represents the spillover index from node i to node j, and
vice versa. It should be pointed out that the index here represents the percentage of the
spillover of node i to node j to the total impact of j by the volatility spillover. The Kruskal
algorithm [44] is used in this paper to construct the MST complex network.

dij represents the “distance” coefficient, which should be used as input of the Kruskal
algorithm to generate an MST complex network. In an MST complex network, the relatively
insignificant edges are discarded and there is only one route between any two nodes, and
the weights of the edges are inversely proportional to dij.

In addition, for a better vision to observe the network’s dynamics, the network’s
structural entropy was calculated in this study, which is often used as a quantitative
measurement of the complexity of the complex network system [45]. Generally, a non-fully
connected network structural entropy Edegree could be calculated as follows:

Edegree = −
N

∑
i=1

pilogpi (11)

where N is the total number of the nodes in the complex network, and pi in (11) could be
calculated by the degree of node i, just as follows:

Pi =
degree(i)

∑N
i=1 degree(i)

(12)

After the complex network has been constructed, some useful indicators can be used
to analyze the characteristics of the network, such as degree and centrality. For node i
in the complex network, the degree of node i represents the number of its neighboring
nodes. Compared with the node’s degree, the centrality is a relatively complicated indicator
type, which is usually used to measure the node’s relationship with the other nodes in
some aspect. In this research, three kinds of centrality are mentioned: closeness centrality,
betweenness centrality and eigenvector centrality [46].

Closeness centrality is an indicator that the higher the closeness centrality a node
has, the closer the distance from the node to other node in the complex network, and vice
versa [47]. The closeness centrality Cv could be calculated as follows:

Cv =
V − 1

∑N
i �=v dvi

(13)

where dvi represents the shortest distance from node v to node i, and V is the total number
of nodes.
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The betweenness centrality is usually used to measure the node’s central significance
to a complex network; the greater the number of shortest paths passing through a node, the
higher its betweenness centrality [48]. The formula of calculating betweenness centrality of
node i, which is denoted as Bi, is as follows:

Bi =
SPi

SPtotal
(14)

where SPi represents the number of the shortest paths passing through node i, while
SPtotal stands for the total number of the shortest paths in the complex network.

The eigenvector centrality, shortened to eigen centrality, is an indicator often used to
measure the number and the importance of its neighboring nodes [49]. The most famous
algorithm used in search engine, called PageRank, is one kind of eigenvector centrality.
The greater the number of nodes and the more important neighboring nodes the node
has, the higher the eigen centrality of the node has, and the highest eigen centrality in the
complex network is set as 1 by normalization. For a given graph G with v number of nodes,
let A = (avt) be the adjacency matrix, and the eigen centrality ECi of node i can be defined
as [50]:

ECi = xv =
1
λ ∑

t∈M(v)
xt =

1
λ ∑

t∈G
av,txt (15)

where M(v) is a set of the neighbors of v and λ is a constant. With a small rearrangement,
this can be rewritten in vector notation as the eigenvector equation:

Ax = λx (16)

4. Data Description

The primary goal of this study is to provide a historical narrative on the dynamics of
risk spillover networks of China’s bond market. For this purpose, data preprocessing of
this research is shown as follows:

At the very beginning of our research, proper data type and bond maturity should be
chosen. We first studied the size and liquidity of different bond type to obtain a holistic
view of China’s bond market today. After obtaining data from WIND, we present the data
in Figure 2.

To take the multiple fundamental elements of bonds into consideration, and in order
to control some factors to concentrate on the evolution of risk and volatility spillover in the
network of bond markets, 23 types of bond interest rate data were chosen, including the
credit spread of SOE, R007, DR007, and SHIBOR, as the benchmark interest rate data. In
addition, in order to obtain a good representation of the results, and avoiding the potential
price distortion of low credit rating bonds, this study mainly focuses on relatively high
credit rating bonds in China, with a rating higher than AA (AA included) generally. For
the same reason, this study mainly chooses the bonds which have 1 year of remaining
maturity, because these bonds could reflect the features of both the monetary market and
the capital market. The time interval is from 15 December 2014 to 28 October 2020, which is
the time interval that guarantees that the above interest rate data could be obtained, and it
is believed that the daily data, which cover almost last 6 years, ensure a good performance
and representation. As Table 1 shows, all the data are stationary or stationary after the
first difference, and the generalized vector autoregressive volatility spillover variance
decomposition model is based on the first differenced data.
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Figure 2. The percentage of the remaining size of different bond types in China’s bond market (all
maturities), the upper figure shows bonds with all maturity, the lower figure shows bonds with
1 year of remaining maturity; as of 28 October 2020.

Table 1. The interest data of bonds chosen by this study.

Bond Type (Remaining Maturity:
1 Year If Not Mentioned)

Details and Description Abbreviation

Commercial Banks Bonds Commercial Banks Bonds (Rating: AAA) BANKAAA

Corporate Bonds
Corporate Bonds (Rating: AAA) CORPAAA
Corporate Bonds (Rating: AA+) CORPAAP
Corporate Bonds (Rating: AA) CORPAA

Treasury China’s Treasury TREASURY

Financial Bonds of Policy Banks
China’s National Development Bond CDB

China’s Agricultural Development Bond ADB
China’s Export-Import Bank Bond IEB

Short- and Medium-Term Notes
Short and Medium Term Notes (Rating: AAA) STNAAA
Short and Medium Term Notes (Rating: AA+) STNAAP

NCD (Interbank negotiable certificates of deposit) Interbank negotiable certificates of deposit (Rating: AAA) BANKIDCAAA
Interbank negotiable certificates of deposit (Rating: AA+) BANKIDCAAP

Consumer Financial Asset-backed Securities
Consumer Financial Asset-backed Securities (Rating: AAA) CFABSAAA
Consumer Financial Asset-backed Securities (Rating: AA+) CFABSAAP
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Table 1. Cont.

Bond Type (Remaining Maturity:
1 Year If Not Mentioned)

Details and Description Abbreviation

General Corporate Asset-backed Securities General Corporate Asset-backed Securities (Rating: AAA) ABSAAA

China’s Railway Bond China’s Railway bond RAILWAYB

Local Government Bond Local Government Bond (Rating: AAA) GOVAAA

Urban Investment Bond
(Chengtou Bond)

Chengtou Bond (Rating: AAA) CTBAAA
Chengtou Bond (Rating: AA+) CTBAAP

Credit Spread of State-owned Enterprises Credit Spread of SOE CSPREADSOE

R007 (remaining maturity: 7 days) Seven-day repurchase rate R007

DR007 (remaining maturity: 7 days) Seven-day repurchase rate between deposit institutions DR007
SHIBOR Shanghai Interbank Offered Rate SHIBOR1Y

To take the several fundamental elements of bonds into consideration, and in order
to control some factors, such as credit rating and term structure, to concentrate on the
evolution of risk and volatility spillover network of bond markets as mentioned before, the
descriptive statistical analysis of first differenced data are as follows in Table 2, where the
t-statistics come from the Dickey–Fuller unit root test (AIC):

Table 2. The statistic feature of the bond market’s interest data.

Series T-Stats Mean Std Error Minimum Maximum Skewness Kurtosis Stationary

BANKAAA −30.887 −0.0010 0.0415 −0.4156 0.2500 −1.3653 17.5455 1st difference
CORPAAA −24.226 −0.0011 0.0368 −0.2350 0.2292 −0.0761 6.7735 1st difference
CORPAAP −24.188 −0.0014 0.0377 −0.2350 0.2292 −0.0117 5.5615 1st difference
CORPAA −25.260 −0.0016 0.0391 −0.2350 0.2292 0.1380 5.0190 1st difference

TREASURY −26.710 −0.0004 0.0335 −0.3100 0.3500 0.1439 20.1279 1st difference
CDB −26.968 −0.0009 0.0400 −0.3529 0.2697 −0.7940 12.5871 1st difference
ADB −23.285 −0.0009 0.0420 −0.2972 0.3673 −0.1849 13.8221 1st difference
IEB −21.325 −0.0009 0.0403 −0.2972 0.3673 0.0009 13.2908 1st difference

STNAAA −22.061 −0.0011 0.0368 −0.2350 0.2292 −0.0905 6.6818 1st difference
STNAAP −22.915 −0.0014 0.0379 −0.2350 0.2292 −0.0455 5.4097 1st difference

BANKIDCAAA −25.728 −0.0011 0.0414 −0.4130 0.2500 −1.3529 17.5522 1st difference
BANKIDCAAP −25.493 −0.0010 0.0416 −0.4030 0.2500 −1.1148 15.1680 1st difference

CFABSAAA −26.411 −0.0013 0.0421 −0.4088 0.2574 −0.7591 11.7487 1st difference
CFABSAAP −26.406 −0.0015 0.0446 −0.4359 0.2744 −0.7592 12.0034 1st difference

ABSAAA −26.326 −0.0013 0.0403 −0.3970 0.2500 −0.8645 12.9141 1st difference
RAILWAYB −22.713 −0.0010 0.0366 −0.2325 0.2159 −0.2254 5.7954 1st difference
GOVAAA −24.470 −0.0005 0.0323 −0.2486 0.3500 0.6673 17.5992 1st difference
CTBAAA −24.195 −0.0012 0.0363 −0.2531 0.2889 0.0380 9.2296 1st difference
CTBAAP −24.395 −0.0015 0.0366 −0.2531 0.2889 0.1237 8.0929 1st difference

CSPREADSOE −60.674 −0.0002 0.1163 −0.8625 0.8883 −0.1068 33.1377 yes
R007 −30.752 −0.0004 0.2417 −2.3025 1.8934 −0.7548 20.5438 1st difference

DR007 −30.809 −0.0007 0.1125 −0.6976 1.3919 1.1032 22.9221 1st difference
SHIBOR1Y −11.817 −0.0010 0.0153 −0.1740 0.0850 −2.8415 24.3002 1st difference

It can be clearly seen from Table 2 that all the data are stationary. In the same scale,
the mean values of the data are all near zero and are all less than zero, which is mainly
because the risk-free rate had a declining trend in this period, which could be indicated by
the mean value of TREASURY and CDB.

5. Empirical Results

5.1. Static Spillover Effect Analysis

By using the model mentioned in Section 2, firstly, the full-sample spillover index
is based on the FEV decomposition 12 days in advance. Each variable is related to the
sequence of daily changes in bonds’ interest rates. Therefore, the measurement of the
diagonal element i = j is the spillover effect within a certain type of bond, while the non-
diagonal element (i �= j) captures the spillover effect between different bond categories, and
the last line is the acquisition of each variable Additionally, the total spillover effect passed.

As is shown in Table 3, it can be concluded that:
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For bond varieties with a high liquidity and large trading volume, such as financial
bonds, government bonds, short- and medium-term notes and other mainstream varieties
traded in the inter-bank bond market, the volatility spillover effects of these varieties
are significantly higher. The volatility of the entire bond market overflows the complex
network of greater systematic importance, mainly because the price of these bonds has
become the benchmark of similar bonds to some extent.

For the same types of bonds with the same maturity, the sub-categories with high credit
ratings have higher spillover effects, greater system importance, and a deeper influence on
the system, compared with the low-credit rating bonds. This might be attributed to the
high-credit rating bonds having better liquidity and the risk aversion of investors, and,
furthermore, there may be some internal regulation and guidance in investment institutions
that mean that the trader could only buy bonds which have a credit rating of AAA or
AA+, which might enhance these effects. This can be clearly seen from related corporate
bonds, medium- and short-term notes, and urban investment bonds as to their total static
spillover effect, where the high-rating bonds have a bigger contribution to others than
low-rating bonds.

For the purpose of a better illustration of the result of the study regarding the mech-
anisms of the complex network of risk spillovers in China’s bond market, we used the
static spillover index to construct the relevant complex network and used Gephi to draw
Figure 3a as follows, noting that the size of nodes corresponds with the importance of the
bond: the bigger the node is, more important the bond is in the complex network. The
thickness of the link between the nodes indicates the strength of the influence of one bond
on the other bond, in the direction of the linkage.

Figure 3. The complex network of bond markets constructed by the static spillover index of the
full sample: (a) is the fully connected graph, (b) is the MST graph (the nodes which represent bond
varieties traded in the inter-bank market are colored as red, noting that self-loops here mean the
spillover effect from historical data of itself).
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It can be seen from the complex network diagram in Figure 3a that as a result of
their large trading volume (accounting for nearly 90% of the entire bond trading volume),
good liquidity, and relatively fairer pricing, meaning they are preferred by investors,
the mainstream trading bond types in the inter-bank market are more influential in the
generalized volatility spillover variance decomposition network of bond markets.

It should also be noted that Figure 3b is an undirected graph. In addition, the link
between the nodes means that the influence is a two-way transmission. As is shown in
Figure 3b, the biggest node is CDB, which is also the most traded variety of all in China’s
bond market, and as the central node, it is linked with another two policy banks: ADB and
IEB. CTBAAA and STNAAA are also important nodes thanks to their large trading volume.

The red nodes occupy the mainstream chain and are very closely connected, the
trading volume of the inter-bank market is tremendous, and the weight of its main trading
varieties is extremely significant.

After the analysis of Figure 3, the result of the MST complex network can be clearly
seen in Table 4, corresponding with Figure 3.

Table 4. The statistical features of the MST complex network of China’s bond market.

Bond Degree
Closeness
Centrality

Betweenness
Centrality

Eigen
Centrality

CDB 5 0.38 0.72 1.00
ADB 3 0.36 0.54 0.73

STNAAA 4 0.32 0.50 0.65
CTBAAA 3 0.32 0.39 0.63

TREASURY 2 0.29 0.17 0.47
R007 2 0.29 0.09 0.44

BANKIDCAAA 3 0.27 0.32 0.44
CORPAAA 3 0.26 0.26 0.41

CSPREADSOE 1 0.28 0.00 0.37
IEB 1 0.27 0.00 0.27

STNAAP 1 0.25 0.00 0.25
RAILWAYB 1 0.25 0.00 0.25
ABSAAA 2 0.22 0.17 0.25
CTBAAP 1 0.24 0.00 0.24
GOVAAA 2 0.23 0.09 0.22
CORPAAP 2 0.21 0.09 0.21

BANKIDCAAP 1 0.22 0.00 0.18
DR007 1 0.22 0.00 0.17

BANKAAA 1 0.21 0.00 0.17
CFABSAAP 2 0.19 0.09 0.15

CORPAA 1 0.18 0.00 0.09
SHIBOR1Y 1 0.19 0.00 0.09

CFABSAAA 1 0.16 0.00 0.07

It is worth mentioning these new emerging indicators, especially the centrality. In a
holistic view of the results in Table 4, CDB is undeniably the most important node in the
MST complex network of China’s bond market, due to its dominant position in relation to
all four indicator rankings, including degree, closeness centrality, betweenness centrality
and eigen centrality, showing that CDB not has only the most edges, but also the most
influential neighbor nodes and the minimum average distance, proving that it is actually
the central node of this complex network, thus demonstrating the systemic significance of
China Development Bank. ADB is second to CDB, having the second highest centrality
indicator performance, with a degree of 3. From the positions of CDB and ADB, it can
clearly be seen that the bonds issued by China’s policy banks have great influence in the
bond market, and are also frequently traded in the inter-bank market. However, the third
highest ranking bond according to all the indicators is a bond issued by the left policy bank
named Export-Import Bank of China (short as IEB); the main reason for this might be that
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the trading volume of IEB is slightly smaller than CDB and ADB. STN occupies second
place in degree ranking and third place in all the centrality indicator rankings. This might
also be thanks to the fact that medium- and short-term notes (short as STN) exist as a type
of bond, akin to a bridge between short-term bonds and long-term bonds. The ranking
of the other bonds are mainly positively related to the liquidity and trading volume, in
line with common sense regarding bond trading activities, and tin varieties traded in the
inter-bank market have obvious privilege.

Combined with Figure 3 and Table 4, from the perspective of the importance of bonds
issued by financial institutions, the ranking is as follows: China Development Bank (bond)
> Agricultural Development Bank (bond) ≈ bonds issued by banks and short- and medium-
term notes with a rating of AAA (one of the most important inter-bank market trading type)
>= Export-Import Bank (bond). In terms of institutional systemic importance, the regulator
and policymaker must guarantee the capital adequacy ratio of these core institutions and
the requirements of the Basel III, which also called «International Convergence of Capital
Measurement and Capital Standards».

As the most influential type of credit bond which could also be traded in the inter-
bank bond market, urban investment bonds have their own special advantages called
“urban investment beliefs” and a large transaction volume. These “beliefs” stem from the
implicit guarantee from the local governments, and urban investment bonds are usually
invested in government-related construction projects. To prevent systemic financial risks,
the default risk of urban investment bonds needs to be carefully considered in the position
of systemic importance, especially there are already a few urban investment bonds which
have technically defaulted recently.

5.2. Dynamic Spillover Effect Analysis

It is generally accepted that the spillover effect will change over time, and the relevance
of different markets may intensify or decrease under uncertain conditions and unexpected
shocks. In other words, the full-sample spillover index mentioned in the previous section is
static, and might ignore the impact brought about by various political and financial events,
such as the European sovereign debt crisis in 2009 and the violent fluctuations and crash of
the Chinese stock market in 2015. The impact of these events during the sample period
will exacerbate the spillover effect between different participants in the market and the risk
crossing into different markets.

Taking the possibilities mentioned above into account, it seems that any static model
with a single fixed parameter cannot reflect the evolution of the entire interval of the
sample over time. Therefore, this research uses the sliding window method to study the
time-varying spillover effects of different bonds, and through the total spillover index
corresponding to the time series evaluates the degree and main characteristics of dynamic
spillover effects. From the perspective of econometrics, the forecast step and the accuracy
are negatively correlated. Perron and Qu’s research [51], which identified the structural
change points of the dynamic spillover index series by the unit root test, used a 200-
day sliding window and a 12-day forecast step. Taking the limitation of the number of
observation points in the entire sample into account, retaining more instant spillover effect
information in the bond market, this study uses a 150-day sliding window and a time-
varying model with a 5-day forecast step to construct a dynamic volatility spillover index.

As Figure 4 depicts, the volatility of China’s bond risk spillover index from 2015 to
2020 can be divided into three stages: (1) deleveraging policy proposed by state coun-
cil, (2) China–US trade disputes, and (3) outbreak of COVID-19. From the perspective
of bond systemic risks represented by changes in dynamic volatility spillover variance
decomposition coefficients, with the expansion of China’s bond market and the continuous
improvement of regulations issued by the governments, as well as with the gradual decline
of real interest rates, the overall systemic risk trend falls slightly, and it is undeniable that
the “Deleveraging policy” proposed by State Council played an important role in this
process. However, it can also be seen that the shock caused by the rapid spread of coron-
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avirus (COVID-19) has had dramatic impacts on financial markets all over the world [52].
It has created an unprecedented level of risk, causing investors to suffer significant loses
in a very short period of time. With the tight liquidity and related expectations of the
financial market, the systemic risk of China’s bond market has actually increased, while the
risk has slightly decreased with the government’s macro-control after a short time, while
finally, with the overall economic expectations moving toward pessimism and the rise of
the global epidemic, the systemic risks have demonstrated a raising trend again. These
pronounced and persistent impacts of the coronavirus pandemic upon Chinese financial
markets correspond with recent research [53,54]. At the same time, systemic risks show
a certain seasonal effect, which is related to the characteristics of liquidity changes in the
bond market itself.

Figure 4. The dynamic evolution and trend of spillover effect of China’s bond market, including description of shock events
(15 December 2014–28 October 2020).

To test the robustness of the results of dynamic spillover effect analysis, several
hyperparameters were applied for comparison: forecast horizons (i.e., h = 4, 5, 6 days)
and rolling window width (i.e., w = 140, 150, 160 days). In Figure 5, it is shown that the
spillover index of China’s bond market follows a similar volatility pattern for the different
values of h and w, concluding that the results of the study are robust regarding consistency.

In addition, to make the results more convincing and robust, possible future research
could be expanded into several areas, such as the robustness of other methods or conducting
dynamic analysis of networks [55].

To verify the analysis of the dynamic spillover effect of China’s bond market and
to discover the complexity of the bond market as a complex system, we calculated the
structural entropy in a moving time window, which has a length of 150 days with a step
size of 1 day, meaning that 1326 observations of structural entropy were generated. It is
worth mentioning that from Figure 3a and Table 3, we can see that the complex network is
an all-connected network, which means that the structural entropy of the network would
be constant, making it worthless for the study, so the authors decided to cut some edges of
weak connections, standing for the low spillover effect, to calculate the structural entropy.
After observing the spillover coefficient distribution in Table 3, combining the analysis
of the data correlation coefficient distribution and multiple adjustment attempts, it was
found that the empirical result is relatively clear when the threshold is set to 5 percent,
so the threshold was set at 5 percent, which means the edge between node i and j would
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exist only if wij in Formula (8) ≥ 5 percent, otherwise the edge would be cut off. After the
calculation from Formula (11), the result is shown as Figure 6:

Figure 5. Robustness result of dynamic spillover effect of China’s bond market, with forecast step = 4, 5, 6 days and time
window = 140, 150, 160 days.

Figure 6. The complexity of the network of China’s bond market and the dynamic spillover effect of China’s bond market,
represented by the structural entropy and the spillover index, respectively.

In this study, the node number of the complex network is always 23; that is, the
increase in system complexity caused by the increase in the number of the nodes, which
is a very common phenomenon as an interference, does not appear in the research [21].
From Figure 6, we can see that the structural entropy and the dynamic spillover index has
the similar pattern of the fluctuation. The correlation between the structural entropy and
the spillover index is 0.451, and the p-value of the correlation is 0.0000, which means that
the complexity of the complex network is statistically significantly positively correlated
with the spillover index, and the result is statistically reliable. From this result, it can be
concluded that, with the strengthening of the node connections within the network, the
structural entropy, standing for the complexity of the complex network, will rise, while
the systemic risk of China’s bond market also increases. The structural entropy could also
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be used as an effective indicator to measure the systemic risk, especially in the financial
systems, which means that structural entropy could be used as a useful risk indicator to
guide investment activities and show investors changes in the financial market or risk in
their investment portfolio. In the meantime, structural entropy could also be an important
reference for financial market regulators to assess financial risks.

6. Discussion and Conclusions

In this research, we document the evolution of the dynamics of risk spillover networks
based on the complex network of China’s bond market by using daily interest rate data
of representative bond categories in the Chinese bond market. At the very beginning,
we construct an innovative correlation complex network and an MST network of China’s
bond market, and these studies conduct a dynamic analysis based on a generalized vector
autoregressive model, for which the volatility spillover variance decomposition method
has been used to construct a complex network, and we adopt the minimum spanning tree
method to analyze the clear transmission path of each bond’s interest rate and its volatility.
Here are the main conclusions:

Firstly, it has been concluded that the importance of each bond type in the Chinese
bond market is positively correlated with the main characteristics of bond-like liquidity,
transaction volume, and credit rating, etc.

Secondly, the inter-bank market is the most important market in China’s entire bond
market, without any doubt. In addition, interest rate bonds, commercial bank bonds and
urban investment bonds are important bond types with systemic importance, which can
be clearly seen in the complex networks constructed by the static spillover index.

Thirdly, from Figures 4 and 6, we can see that the long-term trend of the dynamic
spillover index of China’s bond market falls in line with the pace of interest rate adjustments,
while several macro events such as the COVID-19 epidemic could bring instant shock which
might cause systemic risk in China’s bond market, and furthermore, systemic risks show
a certain seasonal effect. To hold the bottom line of preventing financial systemic risks
in China’s bond market, standard management, strict supervision, and timely regulation
of the bond markets are required, and the structural entropy, as a useful indicator for
the complex network of the financial system, also should be used in risk management
and monitoring.

Based on the conclusions above, corresponding policy recommendations can be
put forward:

First, it is recommended to strengthen the monitoring and early warning systems
of the fluctuations of China’s bond market, especially for the inter-bank market. The
inter-bank market has the characteristics of large transaction volumes, a variety of bond
trading types, and an upstream position of the capital. Drastic fluctuations in the inter-bank
market will be transmitted to the downstream financial market, and even the real economy
would be affected. In order to serve the real economy better, the supervision and regulation
of the inter-bank market should be one of the top priorities in the work of policymakers,
implementers and regulators.

Second, for issuers of the bonds with systemic importance in the volatility spillover
network, the government and regulatory agencies of China should regard them as sys-
temically important institutions in the network of bond market participants such as bond
traders and market makers, and they need to propose higher standards of capital adequacy
ratio and other requirements, to ensure that it can fully comply with the requirements of
the Basel Agreement.

Third, investors in China’s bond market need to pay more attention to the credit rating
and liquidity of bonds. Moreover, they need to pay more attention to bonds that are traded
in the inter-bank market, such as commercial bank bonds and urban investment bonds.

The above conclusions have profound policy-guiding significance. On the one hand,
China’s policymakers could comprehensively consider financial decisions related to China’s
bond market from a networked perspective, thereby optimizing relevant decisions; on the
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other hand, from the standpoint of the China’s government, identifying economic areas
which are closely related to China’s bonds market and financial institutes which have
systemic importance in a timely manner has great forward-looking guiding significance
for China’s government’s goal of maintaining the bottom line of preventing systemic
financial risks.
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Abstract: The pattern of financial cycles in the European Union has direct impacts on financial
stability and economic sustainability in view of adoption of the euro. The purpose of the article is to
identify the degree of coherence of credit cycles in the countries potentially seeking to adopt the euro
with the credit cycle inside the Eurozone. We first estimate the credit cycles in the selected countries
and in the euro area (at the aggregate level) and filter the series with the Hodrick–Prescott filter for
the period 1999Q1–2020Q4. Based on these values, we compute the indicators that define the credit
cycle similarity and synchronicity in the selected countries and a set of entropy measures (block
entropy, entropy rate, Bayesian entropy) to show the high degree of heterogeneity, noting that the
manifestation of the global financial crisis has changed the credit cycle patterns in some countries.
Our novel approach provides analytical tools to cope with euro adoption decisions, showing how
the coherence of credit cycles can be increased among European countries and how the national
macroprudential policies can be better coordinated, especially in light of changes caused by the
pandemic crisis.

Keywords: credit-to-GDP gap; coherence; similarity; synchronicity; Central and Eastern European
countries; entropy

1. Introduction

Lending activity, which is subject to medium-term fluctuations, is one of the determin-
ing factors influencing financial stability, with excessive growth in lending activity over
a period being an important signal of risk accumulation. Under the European economic
integration process, financial stability and the dynamics of financial activity have increased
importance. In addition to the traditional criteria of nominal economic convergence, euro
area candidate countries should also take into account how their economies are prepared
to join the monetary union. The synchronization of business cycles is already a much
debated issue as a criterion for achieving an optimal monetary area, both theoretically
and in practice, as discussed in many empirical studies; however, the synchronization of
financial cycles in a monetary area is a relative recent topic. The global financial crisis has
been a key factor in the increasing interest in the dynamics of lending and the financial
cycle, including in European countries.

The credit cycle, which is a common way to empirically measure the financial cycle [1],
is an important element that can explain the differences between countries both in terms
of economic growth and stability, as well as the effects of political decisions. Moreover,
Borio [1] emphasizes the importance of understanding the manifestation of the financial
cycle, which is best evidenced by fluctuations in lending activity and property prices, as
a premise for understanding fluctuations in economic activity and political challenges.
The financial cycle was closely linked to increases in financing and intermediation in the
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advanced economies in the 1970s, which caused severe recessions, boom and bust cycles,
and financial instability, and also to an exponential increase in cross-border lending [2].

At the level of a monetary area, the analysis of the coherence of economic and financial
cycles is particularly relevant, given the conditions of the single monetary policy regime.
Differences between countries in terms of business cycles increase the need for the central
bank to act in accordance with the “one-size-fits-all” principle for monetary policy decisions,
given that the same decision produces different effects. In this way, the divergence between
economic and financial cycles can be deepened, affecting the stability of the monetary
area. Moreover, the financial cycle can affect the process of convergence in a monetary
area by misallocating resources to less developed countries in the union if boom–bust
cycles occur, as reflected by very large amplitudes. In this regard, Oman [2] points out that
the financial cycle could have played an important role in the real economic divergence
between the euro area member countries since the introduction of the euro. As a result of
the boom–bust lending cycles in the peripheral countries of the Eurozone, resources have
been misallocated in these economies, with productivity gains being affected.

In addition to the differences between business and financial cycles, there is also the
problem of differences among countries and within them, because they can create tensions
and can affect the objectives of macroeconomic stabilization and financial stability.

The synchronization of financial cycles is important in the process of joining a mone-
tary area, in implementing the macroprudential policy, and in the relationship between the
macroprudential authorities at the national level and those at the level of the monetary area.

A relatively recent study by Samarina et al. [3] addressed the issue of the coherence
of financial cycles within the euro area, although it would be interesting to address this
issue for euro area candidate countries, given that they are in the process of joining the
monetary union.

Based on the above observations and the importance of the coherence of financial
cycles within a monetary area, this article aims to determine the degree of coherence of
credit cycles in euro area candidate countries with the euro area credit cycle, which is
taken as a reference. As described in the literature [3], the terms financial cycle and credit
cycle are frequently used interchangeably, and for this reason we also adopt this approach,
without excluding other empirical estimation methods; however, we often use the credit
cycle wording to emphasize the chosen estimation method.

After estimating the credit cycles in the selected countries and in the euro area (at
aggregate level) by using the Hodrick–Prescott filter, similarity and synchronicity indicators
are calculated in the selected countries for the period 1999Q1–2020Q4. The investigation of
the dynamics of these variables is further developed by using a set of entropy measures
designed for certain time series. Our objectives are three-fold: first, we compute entropy
measures for the filtered individual series of credit-to-GDP gap variables for the six euro
area candidate countries addressed in our analysis (the block entropy and the entropy
rate); second, we compute measures of entropy (transfer entropy) for the same variables
in combination with the filtered credit-to-GDP indicator for the euro zone level; third, we
estimate a Bayesian entropy measure for the similarity indicators of credit cycle gaps with
respect to the euro zone.

The results show that a long period of low entropy before the commencement of the
financial crisis matches the period in which the coherence of credit cycles of the euro area
candidate countries is lower. After the crisis, the entropy is heightened, along with the
degree of credit cycle coherence, particularly in terms of synchronization. We provide
evidence of a high degree of heterogeneity in the dynamics of these variables and develop
an analysis toolkit that is necessary to support euro adoption decisions. This data-driven set
of indicators will enhance the current convergence gauges and provide new perspectives
on the success of euro adoption scenarios.

In this article, we present the main landmarks from the literature in Section 2, while
descriptions of the methodology and data used are given in Section 3. The obtained results
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are presented and interpreted in Section 4, while the main conclusions of the study are
presented in Section 5.

2. Literature Review

The first studies on financial cycles were conducted by Borio et al. [4] and Borio et al. [5],
although concerns have intensified since the onset of the global financial crisis. Come
studies have addressed the issue of how to measure financial cycles, while others have
analyzed the degree of synchronization in a group of countries [6,7], including at the level of
a monetary area [3,8]. In addition, some papers have analyzed the synchronization between
business and financial cycles. Among these, we mention the work of Oman [2], who focused
on developed European countries, namely those that are in the euro area, as well as the
work of Miteski and Georgievska [9], who analyzed emerging European countries.

A number of recent studies involving the measurement of the financial or credit cycle
have differed in terms of the indicators used (credit-to-GDP or real credit in log) and the
method used to obtain the credit cycle; thus, similar methods are used to measure the
credit cycle to those used to measure business cycles, either by applying the turning points
method [10] or frequency-based (band pass) filters [11]. Other studies have also used more
complex methodologies, as mentioned by Schüler et al. [6] and Borio et al. [12].

Among the studies dedicated to the analysis of financial cycles, it is important to
mention those that have analyzed European countries as benchmarks for this article. The
paper by Samarina et al. [3] was particularly noteworthy, which aimed to find out whether
the adoption of the euro has led to convergence of financial cycles between member states.
The analysis took into account 16 Eurozone member states, including new member states
(Slovakia, Slovenia, Malta, and Estonia), for a period of 25 years (1990–2015). The lending
cycle was broken down into three components: total bank credit, household mortgage
lending, and non-financial business loans. The authors concluded that in recent decades,
both mortgage and corporate loan cycles have diverged. The study emphasized the
importance of differentiating by types of credit to gain knowledge of the credit cycle,
along with the importance of differentiating the transmission channels of the effects of
euro adoption.

For the European Union countries, Stremmel and Zsámboki [7] noted that the am-
plitude of the financial cycle is largely determined by the structural characteristics of
the financial sector in these states, namely the degree of concentration, share of foreign
banks in the banking system, level of lending, the structure of bank loans, as well as
financial integration.

Analyzing the evolution of financial and business cycles in the period 1971–2015 (on
the basis of quarterly data) for the founding member countries of the Eurozone (except
Luxembourg), Oman [2] showed that indigenous financial cycles (specific to each country)
tend to be much broader than business cycles, noting the concordance with the results
obtained by Drehmann et al. [10] and Galati et al. [13]. Additionally, during the period
under review, the synchronization of financial cycles in euro area countries was weaker than
that of business cycles. After the introduction of the euro, the degree of synchronization of
the business cycles as an average measure of the euro area countries increased over time,
while the synchronization of the financial cycles decreased on average.

Regarding the characteristics of financial cycles in euro area countries, recent re-
sults [2,6] have shown the existence of a high level of heterogeneity of financial cycles
between European countries. On the other hand, Oman [2] pointed out that during the
financial crisis, the synchronization of the financial cycle increased on average for their
sample, reinforcing the observation made by Stremmel and Zsámboki [7], namely that
the euro area countries have a lower degree of divergence, while in normal periods that
financial cycles have a lower degree of synchronization.

The heterogeneous nature of financial cycles is also noticeable for other monetary
areas. For example, by analyzing the issue of the coherence of financial cycles within the
West African Economic and Monetary Union (WAEMU), Gammadigbe [8] showed that
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during the period 2005Q1–2020Q4, the national financial cycles were heterogeneous in
terms of both duration and amplitude, with no convergence of financial cycles.

Some of the important benchmarks in the literature for our research are the methods
used to measure the coherence of financial cycles. Aikman et al. [11] used the standard cor-
relation coefficient of credit deviation, while Meller and Metiu [14] applied a concordance
index. As mentioned by Samarina et al. [3], the disadvantage of these methods is the fact
that the two dimensions of a cycle (amplitude and frequency) are not considered separately.

Regarding the issue of business cycle coherence, the studies by Harding and Pagan [15]
and Mink et al. (2011) are good benchmarks for measuring the coherence of financial
cycles, given that the two dimensions that define the coherence or concordance of cycles—
synchronization and similarity—are assessed separately using the proposed methodologies.
While cycle synchronization refers to the frequency of fluctuations, similarity is defined by
the amplitude of the fluctuations. The difference between the two methodologies lies in
the chosen indicator—while Harding and Pagan (2006) use the level of GDP to determine
the business cycle, Mink et al. [16] use the deviation of the GDP (output gap).

The importance of financial cycles can also be seen from the perspective of the applica-
tion of macroprudential instruments meant to correct possible threats to financial stability,
as signaled by the evolution of the financial cycle [1]. In this sense, Samarina et al. [3]
emphasized the need to capitalize on macroprudential policy instruments, given that the
results of their study showed a fairly large divergence of lending cycles in the euro area.
Oman [2] showed that the macroprudential instruments used for correcting the financial
cycle complement those intended to correct the business cycle, especially since the two are
not always synchronized.

The role played by entropy in financial research has been shown by Zhou, Cai, and
Tong [17]. The authors emphasized the use of information and probability entropy as
important instruments for portfolio selection issues and asset pricing, although they en-
couraged a wider application of different types of entropy in finance, as the results were
mostly consistent with the original models, which opened up new investigation directions.
With the aim of constructing a network of influences in the global financial sector, San-
doval [18] performed transfer entropy measures, showing that the 197 largest financial
companies are related and obtaining stricter results than those that were obtained when
the companies were analyzed through correlations. In order to compute a system credit
factor, Xu and Ren [19] used the cross entropy, with their results supporting the idea of
applying entropy measures to study credit cycles. In another study, the synchronization
of business cycles was analyzed via the implementation of a pairwise maximum entropy
model for the G7 member countries [20], showing that this is an appropriate method for
small economic systems.

From the analysis of the literature, it is noted that most of the previous studies have
taken into account countries with advanced economies. From this point of view, this article
expands the research area in this field. Moreover, the topic of cycle coherence is relevant
not only in the case of a monetary union such as the euro area, but also for countries that
are about to join a monetary union, namely candidate countries for the euro area.

3. Materials and Methods

The analysis of the financial cycle in the euro area candidate countries took into
account bank lending, considering the predominance of this sector in these countries,
namely Bulgaria, Croatia, Czech Republic, Hungary, Poland, and Romania.

Quarterly data were extracted from the central banks’ statistics for the selected coun-
tries (regarding the bank credit to the private non-financial sector) and from the Eurostat
database (for GDP) for the period 1999Q1–2020Q2. Data for the euro area at the aggregate
level were taken from the BIS database.

This paper had three research topics:
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(1) Assessing the trajectory of credit cycles in euro area candidate countries;
(2) Assessing the coherence levels of the credit cycles in these countries with the euro

area credit cycle;
(3) Performing an entropy analysis.

3.1. Estimation of the Credit Cycle

Statistical data were taken from the Eurostat and central bank databases for the period
1999–2020. In our analysis, bank credit was considered, given that in the selected countries
the banking system is dominant in relation to the non-banking system [9]. Quarterly and
seasonally unadjusted GDP data were taken from the Eurostat database, while the volume
of bank lending to the private non-financial sector was calculated based on data provided
by the central banks of the euro area candidate countries. In order to avoid the transition
period, marked by major changes in the profiles of the selected economies, the time interval
of 1999Q1–2020Q4 was chosen.

The credit cycle was estimated using the Hodrick–Prescott (HP) filter method. The
HP filter estimates the credit cycle for euro area candidate countries by computing the
credit-to-GDP gap.

The HP filter isolates the cyclical component (ct) from the trend (Trendt) of a non-
stationary series

(yt)
n
t=0 (1)

so that
yt = Trendt + ct. (2)

This isolation method is based on a minimization problem of the form:

min
T1,...,T1

{
n

∑
t=1

(yt − Trendt)
2 + λ

T−1

∑
t=2

[(Trendt+1 − Trendtct)− (Trendt − Trendt−1)]
2

}
(3)

The adjustment parameter or smoothing factor λ corrects the deviations from the
trend and is a factor chosen by the user, depending on the frequency of the data. The
following values are used for the business cycle: λ =100 (for annual data), λ = 1.600 (for
quarterly data), λ = 14.400 (for monthly data).

According to the literature, the indicator that reflects the credit cycle very well is the
credit-to-GDP gap or the deviation of the Basel indicator from the long-run statistical trend,
which is performed following three steps:

(1) Computing the credit-to-GDP percentage ratio in year T;
(2) Estimating the credit-to-GDP trend;
(3) Finding the “Basel gap”.

Equation (4) describes the credit-to-GDP ratio at the quarterly level, qt, as the ratio
between the bank lending to the private non-financial sector (firms and households) in the
qt quarter and the cumulated GDP for four quarters prior to the quarterly credit calculation
date, according to the methodology used by the Bank for International Settlements (BIS):

(Credit/GDP)qt
=

Cbp[qt(T)]

∑t+3
n=t GDPn(T − 1)

∗ 100, (4)

where:

• qt = quarter t, t ∈ {1; 2; 3; 4};
• T = year T, T ∈ {1999; 2000; . . . 2020};
• Cbp = bank credit to the private non-financial sector
• GDPn = quarterly and seasonally unadjusted GDP data.

For this estimation, a higher adjustment parameter was used for the credit cycle
(λ = 25,000) compared to the business cycle case, in which the parameter corresponding to
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the quarterly period was lower (λ = 1600). This was justified by the fact that the financial
cycle (with the credit cycle being a major component of the financial cycle) generally lasts
about four times longer than the business cycle. On the other hand, BIS recommends a
much higher parameter (λ = 400.000) for longer time series over 20 years. Moreover, recent
research [21] confirmed the need to use a lower smoothing factor (λ) than that proposed by
the BIS for economies with shorter financial cycles or lower levels of financial development
(short financial depth), such as the emerging European countries or the transition countries.
For the euro area, taken as a reference here, the smoothing factor is the one recommended
by the BIS.

The credit-to-GDP gap is measured in GDP percentage units, according to the formula:

(
Credit
GDP

)
gapqt = −

⎡⎢⎣1 −
R
(

Credit
GDP

)
qt

Trend
(

Credit
GDP

)
qt

⎤⎥⎦, (5)

where:

R
(

Credit
GDP

)
qt

(6)

is the actual credit-to-GDP ratio in qt and:

Trend
(

Credit
GDP

)
qt (7)

is the long-term trend for credit-to-GDP ratio in qt (estimated according to the HP filter for
λ = 25.000).

3.2. The Credit Cycle Coherence

The credit cycle coherence is estimated following the methodology used by Mink et al. [16]
considering the two components, i.e., the degrees of synchronization and similarity, while
the benchmark used for this measurement is the euro area, as the region in which the
countries from our sample are to be integrated.

We note ci(t) as the credit deviation for country i in period t (quarter) and cr(t) as the
credit deviation for the euro area, taken as reference r, in the same period t.

The degree of synchronization between the credit cycle of a country i, ci(t), and the
reference (cr(t)) at time t is given by the formula:

synir(t) =
ci(t)cr(t)
|ci(t)cr(t)| . (8)

The value of the coefficient, ±1, indicates the direction of the credit cycle for i with
respect to the reference. The positive value shows synchronization, while the negative
value shows desynchronization (the two trajectories move in opposite directions). The
degree of synchronization over 1999Q1–2020Q4 is calculated as the arithmetic mean of the
values registered during this period.

The degree of similarity (symir(t)) is the difference in amplitude between the credit
deviation for i and the reference deviation, according to the formula:

symir(t) = 1 − ci(t)− cr(t)
1
n ∑n

i=1|ci(t)|
, symir(t) ∈ [1 − n; 1] (9)

A value of 1 shows that the two compared credit cycles (of country i and of reference
r) have the same amplitude. The value of 1 − n is recorded when the values of the two
indicators (country i and reference r) have opposite signs and the gap for all other countries
is zero.
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3.3. The Entropy Approach

As recently emphasized [22], the application of the entropy approach in economics
is considered a ”factor of progress”, while mixing standard economic methodological
approaches with natural science investigation tools is perceived as a factor for economic
research development [23].

Block entropy is based on Shannon entropy [24], which is implemented on time series
with k histories and is calculated as follows:

H
(

X(k)
)
= − ∑

x(k)i

p
(

x(k)i

)
log2 p

(
x(k)i

)
, (10)

where X is a random variable, xi is the iteration i of the time series described by the variable
X, and k denotes the histories of the time series (the block size). The probability of observing
x(k)i is itemized p

(
x(k)i

)
. According to this specification, Hlavackova-Shindler et al. [25]

interpreted the Shannon entropy indicator as the “quantity of surprise one should feel
upon reading the result of a measurement”, which is directly proportional to uncertainty.
For the application on the time series, we will interpret this indicator as the level of surprise
to expect at each moment in time.

The entropy rate, also known as the source information rate, represents the entropy
of the time series, in this case conditioned by the k-histories. In other words, it measures
the quantity of needed information in order to display the X(k) observations. The global
entropy rate is obtained from the average of the local entropy:

HX(k) = hX,i(k)i = ∑x(k)i , xi+1
p
(

x(k)i , xi+1

)
log2

p
(

x(k)i , xi+1

)
p
(

x(k)i

) , (11)

as suggested by Cover and Thomas [26].
Two decades ago, Schreiber [27] led in the transfer entropy to measure the infor-

mation that is transferred between the source and destination, taking into account the
background of the system, denoted with W [28]. A local time variant is used to define the
transfer entropy:

tX→Y,W,i(k) = log2

p
(

yi+1, xi

∣∣∣y(k)i , W{1,i}), . . . , W{l,i}

p
(

yi+1

∣∣∣y(k)i , W{l,i}
)

p(xi

∣∣∣y(k)i , W{1,i}, . . . , W{l.i})
. (12)

The methodology for Bayesian entropy was previously described by Lupu et al. [29],
following the study by Archer, Park, and Pillow [30]. In the estimation process of the
Bayesian entropy (denoted H), we take into account that this is a deterministic function
of a discrete distribution (π), which is influenced by parameter θ. Given that p(π) is a
prior distribution, p(π|x) represents the posterior distribution over π, p(x|π) designates
the discrete likelihood, and H has a deterministic relation with π, we may consider the
following expressions:

p(H |π ) = δ
(

H + ∑i πi logπi

)
(13)

Ĥ(x) = E[H|x] =
∫

H(π)p(H
∣∣∣∣π)p(π∣∣∣∣x)dπ, (14)

where the last expression is the form for Bayes’ least squares estimators.
The computation of these entropy indicators required the discretization of our data,

for which we followed the method of Archer, Park, and Pillow [30]. The dynamic values
were obtained by using a rolling window of four observations, which was equivalent to
one year, given that we used quartrly data.
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4. Results

The results obtained based on the HP filter method showed a rather varied picture of
credit cycles in the countries considered (see Figure 1).

Figure 1. The bank credit cycle in the euro area candidate countries.
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According to these charts (Figure 1), similar curves can be seen for Bulgaria, Croatia,
Hungary, and Romania in an ascending–descending pattern, while on the other hand the
Czech Republic and Poland show an ascending pattern throughout the period, especially
after 2001.

Croatia, Poland, and the Czech Republic show small deviations from the trend
throughout the period under review. In Hungary, there are higher levels of credit-to-GDP
gaps after 2007 as compared to those recorded in the first part of the analyzed interval.

Although overall the euro area candidate countries do not have synchronized credit
trajectories, it can be observed that the periods in which the credit-to-GDP gaps are positive
re relatively the same for Bulgaria, Romania, and the Czech Republic (1999–2001 and 2007–
2014, respectively), provided that the amplitudes are different. The highest amplitudes are
shown for Bulgaria and Romania, especially in the first year (see Figure 1).

The Shannon entropies computed over the preceding year (previous four observations)
for each of the six countries with filtered credit gaps provide information about the level of
surprise to expect at each moment in time (Figure 2). We note that there are approximately
three main regimes for Croatia and Romania, four main regimes for Bulgaria and Czech
Republic, and even more for Hungary and Poland.

The most volatile series belongs to the Croatian credit-to-GDP gaps, while in Romania
the stable stages are longer. We notice that these regimes do not exhibit a simultaneous
structure, i.e., the credit cycles tend not to be very entropic or less entropic in the same
time across these countries. For instance, the COVID-19 period tends to produce large
levels of entropy in Croatia, the Czech Republic, Poland, and Hungary, but not so much in
Bulgaria and Romania, which seem to continue the dynamics described by the HP filter.
If we connect the concept of entropy with the idea of uncertainty, then we can say that,
except for Bulgaria and Romania, the countries in our sample exhibit higher uncertainty
during the pandemic period.

Further data can be revealed by observing the entropy rate, which shows the amount
of information needed to describe the values of a certain variable given a sequence of
observations (rolling window) from its past. The size of the rolling window is four in our
case, which extends to the length of one year. Under this specification, the high levels of
this indicator will correspond to situations where uncertainty existing in the data series
is elevated, depicting a moment when the time series are impacted by factors that are
suddenly activated or deactivated.

We note that for each of the series of gaps from credit-to-GDP variables, the values are
quite volatile (Figure 3).

High levels of volatility are especially observed for Croatia, Hungary, and Poland.
Romania, on the other hand, exhibits only two spikes in the dynamics of its corresponding
series, revealing a rather steady entropy rate that could be caused by the fact that it has the
lowest credit-to-GDP ratio among the countries in our sample.

As in the previous analysis (the Shannon entropy), no simultaneity effects can be
observed for the large values of the entropy rate; however, except for Romania and Bulgaria,
the pandemic period exhibits either spikes or increased volatility of this indicator.

Noting the scale of the vertical axes for these charts, we can conclude that volatility
compensate for jumps. In other words, the large volatility (present for Croatia, Hungary,
and Poland) also reduces the large values, as these variables do not show such large
extremes as the other three countries (Figure 3).

The coherence of the credit cycles in terms of synchronicity and similarity is displayed
both in Table 1, as the average values over 1999Q1–2020Q4 for these two variables, and
in Table 2, with the values computed for two sub periods, i.e., before and after the global
financial crisis.
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Figure 2. Shannon entropies for filtered credit gaps.
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Figure 3. The entropy rates for filtered credit gaps.
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Table 1. The credit cycle coherence levels for euro area candidate countries with the euro area for
1999Q1–2020Q4 1.

Synchronicity Similarity

Croatia 0.773 0.638
Romania 0.545 −0.072
Bulgaria 0.523 −0.114
Hungary 0.500 −0.043

Czech Republic 0.455 0.274
Poland 0.364 0.321

1 The means of values registered over 1999Q1–2020Q4.

Table 2. The credit cycle coherence levels of euro area candidate countries with the euro area, before and after the onset of
the global financial crisis 1.

1999–2007 2008–2020

Synchronicity Similarity Synchronicity Similarity

Hungary 0.833 0.692 Croatia 0.875 0.650
Croatia 0.667 0.620 Bulgaria 0.708 0.162

Romania 0.500 −0.355 Poland 0.708 0.547
Bulgaria 0.278 −0.513 Czech Republic 0.667 0.630

Czech Republic 0.167 −0.241 Romania 0.583 0.123
Poland −0.111 −0.007 Hungary 0.333 −0.552

1 The means of values registered over the two periods.

According to the data displayed in Table 1, the highest degrees of synchronicity and
similarity with the euro area credit cycle over 1999–2020 are noted for Croatia, while the
lowest levels of similarity (negative levels) are recorded for Bulgaria, Romania, and Hungary.

Overall, the countries have relatively good synchronization with the euro area com-
pared to the level of similarity, which is quite low. The large differences in amplitudes
between countries in terms of lending activity can be explained by the lower levels of
economic and financial development of these countries compared to the euro area.

An analysis at the level of the two-time intervals (before and after the onset of the
global financial crisis) could point out the extent to which these countries are going through
a process of convergence in lending activity.

As can be seen in Table 2, before the onset of the global financial crisis, Hungary
shows the highest level of credit cycle coherence with the euro area, both in terms of
synchronicity and similarity. It is noteworthy that after 2008, Hungary suffers a significant
desynchronization from the reference and a reduction in the level of similarity.

Although in the second part of the sampled period, Croatia does not register significant
increases of the two indicators, it maintains its best position among the six states. Instead,
Poland, the Czech Republic, and Bulgaria show improvements in both indicators during
this period. Romania shows better results in terms of synchronicity and poorer results in
terms of similarity with the euro area.

The better synchronization of credit cycles in the aftermath of the global financial
crisis is consistent with the observation made by Omen [2] and Stremmel and Zsámboki [7]
for euro area countries, namely that the financial cycle synchronization increases in times
of financial stress.

These observations are also highlighted in Figure 4, where we compare the credit
cycles for each of the six countries with the euro area credit cycle. It is noted that the
credit cycles in all six countries have a longer time of synchronization with the Eurozone
after the global financial crisis outbreak (2007–2014). In the Czech Republic and Poland,
the synchronization periods are longer at nine years (2006–2015) and ten years (2008–
2017), respectively.
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Figure 4. Credit cycles for 1999Q1–2020Q4.

Moreover, after the global financial crisis, the narrowing of the credit cycle gaps in
our sample compared to the reference (euro area) is emphasized, especially for the Czech
Republic and Poland and less so for Bulgaria and Romania, given the wider variation range
of the credit-to-GDP gaps for these two countries (see Figure 4).
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An insight into the extent to which the dynamics of the gaps in the credit-to-GDP rates
for each individual series depends on the corresponding euro area values is reflected by the
transfer entropy measure. As previously stated, this indicator measures the information
that is transferred between the source and destination, taking into account the background
of the system. Here, we consider the source to be the series of credit-to-GDP gaps for the
Eurozone and the destination to be the corresponding variables for each of the countries.

In keeping with this paradigm, we interpret the transfer entropy measure as the level
by which the uncertainty reduced for the credit-to-GDP gaps for each of the six countries
through knowledge of the past values of the credit-to-GDP gap for the Eurozone. From
this perspective, we can conjecture that the positive values reflect reductions in uncertainty,
while the negative values expose increases in uncertainty.

The series with very few and lower negative values are those reflecting the credit-
to-GDP gaps in Croatia, which is a country whose credit cycles seems to feature a high
level of resemblance with the Eurozone (Figure 5). The negative values are also a sign
of idiosyncrasy. The fact that the Eurozone induces uncertainty in the evolution of the
credit-to-GDP gaps reflects the particularities of each of these countries, their cultural
interpretation of credit, and their propensity to use credit for business development. We
note that the negative values are not simultaneous across countries, which is another sign
of these idiosyncratic effects.

The spike at the end of the series corresponds to the pandemic period. These large
values reveal that the credit-to-GDP pattern in the Eurozone is informative for the evolution
of the credit cycles in all countries in our sample (Figure 5).

Another perspective of the extent to which these six countries have similar credit
cycles with the Eurozone is revealed by the measurement of the Bayesian entropy across all
six similarity measures at each point in time. We note the existence of two regimes in the
evolution of this system, with a long period of low entropy just before the large financial
crisis and a long period of large entropy during 2015–2018 (Figure 6). The volatility in the
last two years can first be attributed to the rather calm period in 2019 and to the start of the
pandemic episode in 2020.

It should be noted that the long period of low entropy before the onset of the financial
crisis corresponds to the period in which the coherence of credit cycles of the euro area
candidate countries is lower, while after the crisis the entropy is increased, as well as the
degree of the credit cycle coherence, especially in terms of synchronization.

The obtained results for our sample can also be seen through the lens of the differences
regarding the monetary regime and the monetary policy strategy and the institutional
arrangements regarding the macroprudential policy and their reporting and responsibility
towards this policy. The main objective of the central banks from these countries is price
stability, although the path is adapted differently to the domestic economic situation and
to the history of macroeconomic imbalances. If this objective is pursued on the basis of an
inflation targeting strategy for the monetary authorities of the Czech Republic, Hungary,
Poland, and Romania, the emphasis is on the stability of the national currency for the
central banks of Croatia and Bulgaria. With the exception of Bulgaria, which has a fixed
exchange rate regime against the euro, the other countries have a more or less flexible
exchange rate regime. Regarding the macroprudential policy, the profiles of the central
banks are even more diverse. On the other hand, these countries are exposed to a number
of common challenges they face from their current status as European Union member
countries or as candidate countries for the euro area.
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Figure 5. The transfer entropy values for filtered credit gaps in correspondence with euro area values.
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Figure 6. The Bayesian entropy values across all the six similarity measures.

5. Discussion and Conclusions

As a general conclusion that emerges from this study, the heterogeneous character of
lending activity across the euro area candidate countries is highlighted, both in terms of
the entropy of credit cycles and their coherence in relation to the euro area reference.

Based on the entropy measurement results, Croatia has the most volatile series (Shan-
non entropy) with highest level of volatility, although lower entropy rate values, as can
be seen from the credit-to-GDP gap results obtained based on the HP filter method. In
Poland and Hungary, the Shannon entropy also shows high levels of volatility. Unlike
Poland, which has higher levels in the first half of the sampled period, Hungary shows
higher entropy, especially after 2006.

Over the entire period, better coherence in terms of both synchronicity and similarity
with the euro area credit cycle is shown for Croatia, while the lowest levels of similarity
(negative levels) are shown for Bulgaria, Romania, and Hungary; however, separate
analysis over the two-time intervals (before and after the onset of the global financial
crisis) shows certain differences in the dynamics of this coherence of the countries towards
the euro area. In this regard, before the onset of the global financial crisis, Hungary
shows the highest level of credit cycle coherence with the euro area, both in terms of
synchronicity and similarity, although after 2008 it suffers significant desynchronization
from the reference area and a decrease in the level of similarity, which is more accentuated
after 2014 and during the pandemic. In Hungary, the role of the central bank was neutral
in adopting macroprudential policies in the lead up to the global financial crisis, while the
authorities responsible for banking supervision considered “expansive” lending to be a
normal reaction to the convergence process with the European Union. Although there were
concerns about the expansion of foreign currency lending and mortgages, the authorities
did not impose restrictions for political and social reasons. Macroprudential measures
were applied more intensely during the crisis period than before the crisis in response to
growing concerns about the risks to financial stability associated with foreign currency
mortgages, which blocked the banks’ operations.

Although in the second part of the sampled period, Croatia, a country with a high
degree of euroization in the economy, does not show significant increases of the two
indicators, it still holds the best position among the six states.

The data on the entropy transfer show that the credit cycle in Croatia has a high level
of resemblance with the euro area, confirming its better coherence, as reflected by having
the highest levels of similarity and synchronicity. It is noted that the credit cycle in Croatia
has a stable path concerning the coherence with the euro area throughout the period.
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It is noted that the credit cycles in all six countries have longer periods of synchroniza-
tion with the Eurozone during the global financial crisis and in the first years after its onset
(2007–2014). The better synchronization of the credit cycles, as perceived in the aftermath
of the global financial crisis, confirms the idea mentioned in the literature, namely that
financial cycle synchronization increases in times of financial stress. Overall, the countries
show relatively better synchronization with the euro area than similarity. Simultaneously,
during the 2007–2013 period, as compared with the period before the financial crisis, the
use of macroprudential instruments is more intense, reflecting an increase in central bank
activism in this regard, counteracting the effects of the crisis. This intensification is more ev-
ident for the countries that had already had similar experiences (Croatia, Bulgaria, Poland,
and Romania). In addition, greater involvement is shown for Hungary as a result of the in-
creasing role of the central bank in its macroprudential policy; however, the Czech National
Bank maintained its relatively “neutral” position on the use of macroprudential measures.

This topic will remain of interest in the next future, considering not only the process
of preparation for the accession to the euro area for these six countries, but also the
manifestation of the COVID-19 crisis, which is supposed to change the trajectory of the
financial cycles.

Credit cycle coherence with the euro area is not automatically attained by simply join-
ing the monetary union. This observation has been mentioned in recent studies, according
to which the adoption of the euro has not led to the synchronization of financial cycles in
the euro area. Assuming that macroprudential policy is one of the main macroeconomic
policy instruments that can influence the dynamics of the financial cycle, it is expected
that better coherence of credit cycles in a monetary area will be obtained through better
coordination of national macroprudential policies.

The obtained results should also be analyzed in comparison with the other components
of the financial market, namely the financial assets market and the real estate market.
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Citation: Będowska-Sójka, B.; Kliber,

A.; Rutkowska, A. Is Bitcoin Still a

King? Relationships between Prices,

Volatility and Liquidity of

Cryptocurrencies during the

Pandemic. Entropy 2021, 23, 1386.

https://doi.org/10.3390/e23111386

Academic Editor: Joanna Olbryś
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Abstract: We try to establish the commonalities and leadership in the cryptocurrency markets by
examining the mutual information and lead-lag relationships between Bitcoin and other cryptocur-
rencies from January 2019 to June 2021. We examine the transfer entropy between volatility and
liquidity of seven highly capitalized cryptocurrencies in order to determine the potential direction of
information flow. We find that cryptocurrencies are strongly interrelated in returns and volatility
but less in liquidity. We show that smaller and younger cryptocurrencies (such as Ripple’s XRP or
Litecoin) have started to affect the returns of Bitcoin since the beginning of the pandemic. Regard-
ing liquidity, the results of the dynamic time warping algorithm also suggest that the position of
Monero has increased. Those outcomes suggest the gradual increase in the role of privacy-oriented
cryptocurrencies.

Keywords: cryptocurrencies; mutual information; transfer entropy; dynamic time warping

1. Introduction

Bitcoin is the most noticeable cryptocurrency in the fast-growing market [1]. However,
because the number of currencies has been rapidly growing and investors face different
investment opportunities, its dominance is disputable. This paper aims to analyse the links
between leading cryptocurrencies. These links are measured by the amount of information
shared and transmitted before and during the pandemic. We also verify possible lead-lag
relationships within the sample. We study seven cryptocurrencies of the highest market
capitalization and a relatively long history of market quotations. The coronavirus pan-
demic and the resulting unprecedented crisis has affected the entire investment community,
and many assets and commodities significantly dropped in value. We focus on cryptocur-
rencies that—on the contrary—experienced an increase in their value (at the beginning of
2020, Bitcoin price oscillated around 7200 USD). Already in April 2021, it exceeded 61,500
USD (according to coinmarketcap.com, accessed: 21 October 2021). We observe a similar
enormous growth in the prices of other cryptocurrencies too. Although the prices had
fallen at the end of Spring 2021, at the moment of writing this article, they still surpassed
the beginning of the 2020 level).

We analysed the returns based on the closing prices, volatility approximated by
Garman–Klass estimator [2] and liquidity approximated by the closing quoted spread
of Chung and Zhang [3]. We calculated the amount of mutual information contained in
the returns of the cryptocurrencies, their volatility and liquidity. We also examined the
information transfer between them, both in the pre-COVID-19 and within the COVID-19
period. Our results are validated using the modified DTW algorithm.

Our contributions are threefold. First, we concentrate not only on the volatility but
also on the liquidity of the cryptos. The former is no less important from the investors’
perspective during the portfolio selection process. Secondly, we find that the amount of
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mutual information included in returns and volatility is much higher than the one in liquid-
ity. The latter seems to affect the lead-lag relationships—they are indistinguishable in daily
returns and volatility but relatively clear in liquidity. The amount of mutual information
contained in liquidity has increased beginning from the pandemic. Moreover, there is no
definite leader among cryptocurrencies when it comes to information transfer. We observe
the growing role of Ripple in this process, and we link it to the fast transaction processing
algorithm of this coin. According to the DTW results, Bitcoin leads all cryptocurrencies in
terms of liquidity, but we observe that Monero is its close follower (probably due to the
growing interest in more privacy-oriented cryptocurrencies).

Through the study, we enrich our understanding of the information transmission
mechanisms in the cryptocurrency market. We also provide some practical information for
market participants about the possible benefits of portfolio diversification. Thus, our results
are of special importance for the investors. Investment strategies (in any cryptocurrency
and not necessarily in Bitcoin) should depend on the observation of prices of a set of
cryptocurrencies and not only the most popular one.

2. Literature Review

When measuring the dominance of one financial instrument (or market) over another,
the most common approach is to investigate the contagion in returns or volatility. With re-
spect to cryptocurrencies, Yi et al. (2018) [1] analysed whether Bitcoin was a dominant
cryptocurrency over the period December 2016–April 2018. They found that cryptocurren-
cies with high market capitalization (namely Bitcoin, Litecoin and Dogecoin) propagate
large volatility shocks, while small-cap cryptocurrencies are more likely to receive volatil-
ity shocks from others. Although Bitcoin plays an important role and generates strong
volatility shocks to other cryptocurrencies, it does not play a role of the ‘clear’ leader on
the market in terms of volatility connectedness.

In a similar vein, Ji et al. (2019) [4] applied the measures developed by [5] and found
that the return shocks arising from Bitcoin and Litecoin had the most profound effect on
the returns of other four large cryptocurrencies between 2015 and 2018. XRM and Ether
mostly reacted to negative shocks, while Dash and Ether were weakly reacting to positive
returns. In terms of volatility spillovers, Bitcoin was the most powerful and was followed
by Litecoin. Ciaian et al. [6] reinforced the conclusion of the lack of the dominant position
of Bitcoin. They show that the changes of prices of alternative coins (so-called altcoins) are
driven by the development of Bitcoin in the short-run (for 15 out of 16 examined altcoins)
but not in the longer term (for only four altcoins).

More closely related work to ours is [7], as that study aimed to detect the informational
leadership among four cryptocurrencies, Bitcoin, Ether, Litecoin and XRM. The authors
showed that the relationships between cryptocurrencies are nonlinear. Therefore, one
should not apply the Granger causality or similar tools that assume linear dependencies
in investigating interrelationships among such assets. The scholars utilize a method quite
common in econophysics, that is, the group transfer entropy. Their findings indicate that
Bitcoin is not a dominating cryptocurrency—it does not lead the information process.

In a more recent paper, Aslanidis et al. [8] documented that the cryptocurrency market
experienced a strong overall increase in the connectedness both in terms of returns and
volatility. In most cases over the period 2015–2020, shocks were transmitted to the other
cryptocurrencies and had a short-term effect on the returns. The scholars also found
evidence that the volatility transmission in the high-frequency domain becomes more
important than in the low-frequency one. By analysing samples year by year, they found
that the variance explained by the first principal component increased over the period both
for returns and for volatility. Although over the year ending in August 2016, the percentage
of variance explained by the first PC amounted 76% for Bitcoin (the values for Litecoin
and Ether were 68% and 7%, respectively); in the year ending in July 2020, the first PC
represented 86% of the Bitcoin variance, and the latter was exceeded by Litecoin (91%) and
Ethereum (93%). Thus, Bitcoin seems to lose its superior position over time.
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The goal of our analysis is to verify whether we can distinguish a leading cryptocur-
rency. In other words, we are interested on whether cryptocurrencies followed Bitcoin (and
we observed causality) during the pandemic and before or the simultaneous increase in
the prices of cryptocurrencies reflected the phenomenon of co-occurrence.

3. Data

We analyse daily closing prices of the following cryptocurrencies: Bitcoin (BTC), Ether
(ETH), Ripple’s XRP, Dash (DSH), Litecoin (LTC), Monero (XMR) and Iota (IOT). These
cryptocurrencies vary in terms of the speed of transaction processing, privacy orientation
and usage. In the investigated set, Dash and Monero are the leading privacy-oriented
cryptos, while Ripple’s XRP processes transactions the fastest. As literature concerning
Bitcoin is already saturated [1,4,9], we focus here on the potential successors.

Ether is probably the biggest competitor of Bitcoin. At the moment of writing this
article, Ether was the second-largest virtual currency by market capitalization in the world.
The name Ether refers to the token (or ’coin’) used through the Ethereum network, launched
in 2015. Ether is a medium of exchange similarly to other cryptocurrencies. What sets them
apart is that Ether tokens can be used only for one specific purpose: to facilitate the compu-
tation of decentralized applications on the Ethereum network [10]. It is possible to exchange
different cryptocurrencies for Ether tokens. However, the latter cannot be substituted with
other cryptocurrencies to provide computing power for Ethereum transactions.

XRP launched in 2012, and it is a cryptocurrency for products developed by Ripple
Labs, and that is why these two names, XRP and Ripple, are often used interchangeably.
One can use XRP coins for payment settlements, asset exchange and remittance systems.
The network RippleNet is utilized by some major banks and financial institutions, e.g.,
Santander or American Express (see: https://www.ig.com/en/cryptocurrency-trading/
cryptocurrency-comparison for details; accessed: 21 October 2021). XRP itself is pre-mined.
It uses a less complicated mining method than Bitcoin, which makes the transactions much
faster and of a much lower cost [11]. In July 2021, XRP was ranked sixth in terms of total
market capitalization (according to coinmarketcap.com).

Dash was launched in 2014 and designed to ensure users’ privacy and anonymity.
Currently, Dash aims to become a medium for daily transactions, i.e., a digital currency that
can be used as cash, credit card or via PayPal [12]. The main difference between Dash and
Bitcoin lies in the algorithms applied to mining coins. They also have a different system
of validating transactions: In the case of Bitcoin, all the nodes within a network need to
validate the transaction, while Dash relies on a specific set of nodes called masternodes.
The latter feature enables it to speed up the transaction process [13].

Litecoin was founded in 2011 by Christopher Lee. It is called the silver to Bitcoin gold.
Its infrastructure is very similar to Bitcoin’s (although the transaction processing speed is
faster), so it was used as a test-net for improvements that later were applied to Bitcoin [14].
The limit of LTC coins is 84 Million (than compared to 21 Million of Bitcoin). According
to coinmarketcap.com, Litecoin ranked fourteenth in terms of market capitalization in
July 2021.

Monero is known as the most privacy-oriented cryptocurrency. It was launched in
2014, and its popularity stems from its anonymity orientation [15]. The capitalization of
Monero in July 2021 made it 27th among the cryptocurrencies—refer to coinmarkedcap.
com.

IOTA was launched in 2016. The acronym stands for Internet of Things Application.
IOTA is a distributed ledger that handles transactions between connected devices in the
IoT. Its cryptocurrency is known as mIOTA [16]. mIOTQ is pre-mined. The method of
confirming a transaction results is based on the Tangle infrastructure, with no fees and low
power consumption.

Figure 1 presents the volume of trade of the analysed cryptocurrencies, while Figure 2
shows their closing prices. Both prices and volumes are from the Bitfinex exchange. However,
as [17] demonstrated, all the crypto-exchanges are very closely linked one to another, and
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information spills over them almost immediately. Therefore, we can assume that Bitfinex,
which has the highest volume of USDBTC trade, can be representative of the market.

What we observe is the peak of volume in each cryptocurrency in March 2020. In the
case of BTC, ETH and XMR, that peak is also the maximum observed in the entire analysed
period. For the rest of the cryptocurrencies, the maximums of volume traded were present
in 2021 (see Figure 1). However, when we compare this picture with Figure 2, we notice
that this March 2020 peak was followed by a price drop. Nevertheless, the prices of all
cryptocurrencies started to grow steadily, reaching their maximums in 2021.

In Table 1, we provide descriptive statistics of the returns of the analysed cryptocurren-
cies: mean, standard deviation and kurtosis in two subperiods. The table is accompanied
by Figure 3. For mean and standard deviation, we also provide the results of the tests
for the equality of the two moments in the analysed subperiods. We conclude that the
means were equal in both periods, but standard deviations increased during the pandemic.
That is especially visible in Figure 3—we observe an erratic behaviour of returns following
the March 2020 price drop. Eventually, we note an interesting phenomenon considering
kurtosis. It grew for all the coins, except for Dash. Thus, almost all cryptocurrencies
experienced more cases of extreme returns during the pandemic than before it.

Figure 1. The volume of trade of the analysed cryptocurrencies. Note: The graphs are shown in the following order: (a) BTC,
(b) ETH, (c) XRP, (d) DSH, (e) LTC, (f) XMR and (g) IOT.

98



Entropy 2021, 23, 1386

Table 1. Descriptive statistics of cryptocurrencies’ return series.

Moment Period BTC ETH XRP DSH LTC XMR IOT

mean μ
pre-COVID 0.002 0.001 −0.001 0.000 0.001 0.001 −0.001
COVID 0.003 0.005 0.002 0.001 0.002 0.002 0.003

p-val for H0: μ1 = μ2 0.687 0.253 0.377 0.792 0.900 0.580 0.250

st.dev. σ
pre-COVID 0.033 0.043 0.040 0.050 0.051 0.041 0.045
COVID 0.042 0.056 0.075 0.068 0.059 0.057 0.064

p-val for H0: σ1 = σ2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

kurtosis pre-COVID 3.428 3.910 5.633 14.300 4.313 1.505 4.185
COVID 8.989 8.281 11.127 8.669 7.598 12.223 6.337

Note: μ denotes mean, while σ standard deviation. The data are taken daily.

Figure 2. Closing prices (in USD) of the analysed cryptocurrencies. Note: The graphs are shown in the following order:
(a) BTC, (b) ETH, (c) XRP, (d) DSH, (e) LTC, (f) XMR and (g) IOT.
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Figure 3. Log-returns of the analysed cryptocurrencies. Note: The graphs are shown in the following order: (a) BTC,
(b) ETH, (c) XRP, (d) DSH, (e) LTC, (f) XMR and (g) IOT.

4. Methods

4.1. Volatility and Liquidity Measures

There are various methods to approximate liquidity and volatility. Based on the
results presented in [18], we decided to use a Garman–Klass estimator to approximate
volatility and the closing quoted spread of Chung and Zhang [3] to approximate liquidity
of each cryptocurrency. Both measures require only daily prices; for the Garman and Klass
estimator, high-low-open-close prices are employed, while in the case of the closing quoted
spread, bid and ask prices are utilized.

To obtain the measures, we used the following formulas:

• The Garman–Klass ([2]) volatility estimator:

GK =

√
0.5
[

log
(

Ht

Lt

)]2
− (2 log(2)− 1) ·

[
log
(

Ct

Ot

)]2
(1)

where Ht, Lt, Ot and Ct are the high, low, open and close prices in day t, respectively.
• The closing quoted spread of [3]:

CQSt =
At − Bt

0.5(At + Bt)
. (2)

where Bt and At are the bid and the ask prices, respectively, at the end of the given
day t.

We calculate both the Garman–Klass estimator and the closing quoted spread for each
day and each cryptocurrency.
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4.2. Mutual Information
4.2.1. The Entropy

Mutual information measures the information of a random variable contained in
another random variable [19]. It is based on the concept of entropy—i.e., the measure
of the uncertainty associated with a random variable (so called Shannon or information
entropy [20]).

Let us denote by X and Y two random variables and assume that each of them can be
described by their probability distributions (PX and PY, respectively). The self-information
of measuring X as outcome x is defined as follows [21]:

IX(x) = − log2(PX(X = x)) = log2
1

PX(X = x)
. (3)

According to [20], for a discrete random variable X with probability distribution
PX, the average number of bits required to optimally encode independent draws can be
calculated as follows:

HX(X) = −∑
x

PX(X = x) log2 PX(X = x) = E[IX(x)], (4)

where pX(x) denotes a probability density function. The choice of the logarithm’s base only
impacts the unit of measurement. Base logarithm indicates bits and base digits, and the
base of the natural logarithm yields nats [21]).

If we denote the joint distribution of X and Y by pXY, then we can define the joint
entropy by the following:

H(X, Y) = −∑
x

∑
y

PX,Y(X = x, Y = y) log2(PX,Y(X = x, Y = y)) (5)

Based on the two measures, one can define conditional entropy as follows:

H(Y|X) = H(X, Y)− H(X). (6)

and analogously H(X|Y).
4.2.2. Mutual Information and Global Correlation

Based on the concept of entropy and self-information, one can define mutual informa-
tion as the following:

I(X, Y) = H(X)− H(X|Y) = H(Y)− H(Y|X) = H(X) + H(Y)− H(X, Y). (7)

Mutual information measures the reduction in uncertainty about variable X from ob-
serving variable Y. We will denote it by I(X, Y). Mutual information is positive I(X; Y) ≥ 0.
It is equal to 0 if and only if X and Y are independent.

It is important that mutual information does not imply causality. To account for such
a feature, one would need to use transfer entropy (see Section 4.3).

In order to normalize mutual information to take values from 0 to 1 (and be an
alternative measure to linear correlation coefficient), Ref. [19] suggested to transform it to
the so called global correlation coefficient λ:

λ(X, Y) =
√

1 − exp (−2I(X, Y)) (8)

The function λ(X, Y) captures the overall dependence: both linear and non-linear
between X and Y. It can be interpreted as predictability of Y by X, where the measure of
predictability is based on empirical probability distributions and is model-independent.
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4.3. Transfer Entropy

Let us assume X and Y are Markov processes of order k and l, respectively. Thus,
the probability to observe X at time t + 1 in state s conditional on the k previous observa-
tions is as follows:

PX(Xt+1 = s|xt, ..., xt−k+1) = PX(Xt+1 = s|xt, ..., xt−k). (9)

The average number of bits needed to encode the observation in the moment t + 1,
once the previous k values are known, is given by the following:

hX(k) = −∑
x

PX

(
Xt+1 = s, x(k)t

)
log2 PX

(
Xt+1 = s|x(k)t

)
, (10)

where x(k)t = xt, ..., xt−k+1.
The information flow from process Y to process X is measured by quantifying the

deviations from the generalized Markov property:

PX(Xt+1 = s|x(k)t ) = PX(Xt+1 = s|x(k)t , y(l)t ).

The Shannnon transfer entropy measures the information flow from Y to X and is
calculated as the following:

TY→X(k, l) = ∑ PX

(
Xt+1 = s, x(k)t , y(l)t

)
log2

PX

(
Xt+1 = s|x(k)t , y(l)t

)
PX

(
Xt+1 = s|x(k)t

) . (11)

To calculate the dominant direction of the information flow, one calculates the differ-
ence between TY→X and TX→Y.

Transfer entropy can also be based on Rényi entropy and is described as follows:

Hq
X(X) =

1
1 − q

log2 ∑
x

Pq
X(X = x). (12)

It strongly depends on a weighting parameter q : q > 0. For q → 1, Rényi entropy
converges to Shannon entropy. If we take 0 < q < 1, then events of a low probability will
receive more weight. For q > 1, the weights favor outcomes with higher initial probabilities
(for further details see: [21]). In the case of financial time series, important information
comes in tails. Thus, the authors recommend using small values of q and to give more
weight to extreme events.

The transfer entropy estimators are biased in small samples. To overcome this problem,
one can use the effective entropy measure. It allows for correcting the bias [22]. The effective
transfer entropy is defined as follows:

ETY→X(k, l) = TY→X(k, l)− TYsh→X(k, l) (13)

where TYsh→X(k, l) indicates transfer entropy and is calculated using a shuffled version of
the time series Y. This means that the values from the observed time series Y are drawn
randomly, and they are realigned to generate a new time series.

Rényi transfer entropy is calculated as [21] the following:

RTY→X =
1

1 − q
log2

∑x φq

(
x(k)t

)
PX

(
xt+1|x(k)t

)
∑x,y φq

(
x(k)t , y(l)t

)
PX

(
xt+1|x(k)t , y(l)t

) , (14)

where the following is called escort distribution [21,23]:

102



Entropy 2021, 23, 1386

φq(x) =
Pq

X(x)

∑x Pq
X(x)

(15)

If the values of Rényi transfer entropy are negative, then this means that the history of
Y results in even greater uncertainty than only knowing the history of X alone [21].

We calculated transfer entropy and effective transfer entropy by using R package
RTransferEntropy [21], and mutual information measure using Infotheo [24].

4.4. Dynamic Time Warping

Dynamic Time Warping (futher DTW) is an algorithm used for measuring similarity
between two temporal sequences. The goal of the algorithm is to find an optimal align-
ment between two time series. By optimal alignment, we understand that it achieves the
minimum global cost (distance) while ensuring time continuity. The global cost is the
summation of the cost between each pair of points in the alignment. The algorithm was
first used in speech recognition, where the same signals may differ in speed. It allows for a
non-linear mapping of one signal to another by minimizing the distance between the two.
The algorithm, unlike econometric methods, does not assume a single delay in the entire
period; time series may have different delays at different times. It tries to find the smallest
distance among different lags.

Let us assume that we want to compare two time series: a test/query X = (x1, x2, . . . , xN)
of the length N and a reference Y = (y1, y2, . . . , yM) of length M. We choose a non-negative,
local dissimilarity function f between any pair of elements xi and yj:

d(i, j) = f (xi, yj) ≥ 0. (16)

where d(i, j) is small (i.e., low cost) if xi and yj are similar to each other, otherwise d(i, j)
is large (i.e., high cost). When employing one of the distance measure (most common
Euclidean or Manhattan), the local cost measures for each pair of elements of the sequences
X and Y are evaluated and presented in a cost matrix C ∈ RN+M. A warping path φ is a
contiguous set of matrix elements that defines a mapping between the time indices of X
and Y that satisfies the boundary, monotonicy and continuity conditions. Given φ, the total
cost dφ and the average normalized accumulated cost d̄φ between the warped time series
X and Y is computed as follows:

dφ(X, Y) =
T

∑
k=1

d(φk), (17)

d̄φ(X, Y) =
T

∑
k=1

d(φk)mφ

Mφ
, (18)

where mφ is a per-step weighting coefficient and Mφ is the corresponding normalization
constant. The goal is to find an alignment between X and Y having a minimal average
accumulated cost:

DTW(X, Y) = minφ{dφ} (19)

The optimal path is computed in the reverse order of the indices, starting with (N, M).
In this study, we used extension for this algorithm that is proposed in [25] to check

if one time series is forward or backward against the other. We calculated separate DTW
distances with windows proposed in [25], finding an optimal path only in the upper
triangular cost matrix, within different but always forward shift (called further forward
distance d f ), and in the lower triangular cost matrix, within backward shift (db).

Let us denote two analysed time series by A and B, the distance measured between
each element of A and the lagged value of B by d f and the distance between the lagged
value of A and each element of B by db. If the distance d f < db, the alignment according to
the forward DTW is better, and we call A the ’lead’.
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5. Results

5.1. Amount of Information Shared by the Cryptocurrencies

In Table 2, we present bootstrapped values of the 95% confidence intervals of global
correlation coefficients calculated for each pair of the cryptocurrencies. The coefficient
measures the amount of the mutual information shared by the returns of each pair of
cryptocurrencies. In general, the correlations are high. We observe that in the pre-COVID
period, the highest amount of mutual information was shared between XRP and ETH (95%
confidence interval of (0.81, 0.86)), BTC and ETH (0.8, 0.86) and LTC and ETH (0.78, 0.85).
The pairs XMR and IOT (0.64, 0.76); BTC and IOT (0.66, 0.77); and DSH and IOT (0.66, 0.78)
held the lowest amounts of mutual information. The numbers in the lower panel of Table 2
refer to the COVID-19 period. We observe a decline in the value of mutual information
shared by the pairs BTC-XMR (0.65, 0.76), ETH-XRP (0.72, 0.8), EHT-XMR (0.66, 0.76)
and XRP-XMR (0.63, 0.72), while an increase was observed for DSH-LTC (0.79, 0.86) and
DSH-IOT (0.74, 0.82). During this period, the highest amount of information was shared by
ETH and LTC (0.8, 0.87), DSH and LTC (0.79, 0.86) and BTC and LTC (0.77, 0.84), whereas
the BTC-ETH pair took fourth place (0.77, 0.83).

Table 2. Global correlation coefficient for cryptocurrencies’ returns: before and during pandemic.

From 1 January 2019 to 1 March 2020

ETH XRP DSH LTC XMR IOT

BTC (0.8, 0.86) (0.71, 0.81) (0.73, 0.81) (0.72, 0.82) (0.76, 0.84) (0.66, 0.77)
ETH – (0.81, 0.86) (0.74, 0.82) (0.78, 0.85) (0.72, 0.81) (0.71, 0.81)
XRP – – (0.71, 0.79) (0.74, 0.83) (0.69, 0.78) (0.73, 0.82)
DSH – – – (0.68, 0.79) (0.7, 0.8) (0.66, 0.78)
LTC – – – – (0.68, 0.78) (0.69, 0.78)
XMR – – – – – (0.64, 0.76)

From 1 March 2020 to 30 June 2021

BTC (0.77, 0.83) (0.68, 0.77) (0.73, 0.82) (0.77, 0.84) (0.65, 0.76) (0.68, 0.76)
ETH – (0.72, 0.8) (0.75, 0.82) (0.8, 0.87) (0.66, 0.76) (0.72, 0.79)
XRP – – (0.73, 0.81) (0.74, 0.81) (0.63, 0.72) (0.72, 0.79)
DSH – – – (0.79, 0.86) (0.67, 0.75) (0.74, 0.82)
LTC – – – – (0.67, 0.77) (0.73, 0.8)
XMR – – – – – (0.65, 0.74)

Note: In the table, we present the bootstrapped 95% confidence intervals of the global correlation coefficient
(in nats) calculated according to Equation (8). Values closer to 1 denote a higher reduction in uncertainty when
observing the returns of the cryptocurrency from the row. The global correlation coefficient is a measure of
interdependence but not causality. The data have been discretized by using equal frequencies binning algorithm,
and the number of bins was set to 3√N, where N is the sample length.

In Table 3, we present 95% confidence intervals of the global correlation coefficient
calculated for volatility. In the pre-COVID-19 period, we observed the highest value of
λ for each pair where Ether was present: from (0.66, 0.75) for the pair ETH-XMR to (0.73,
0.81) for ETH-LTC. The values in the pandemics were slightly higher. The only decrease
was for the pair ETH-XRP and ETH-IOT. However, we observed the highest increase in
linkages for all pairs where LTC, DSH, XMR and IOT were included. This indicates the
increase in the importance of these altcoins.

Eventually, in Table 4, we present the analogous calculations for the liquidity of the
cryptocurrencies approximated by the CQS measure. In this case, we observe significant
growth of relationships. The values of mutual information shared by the liquidity of the
cryptocurrencies were rather low before the pandemic. The 95% confidence intervals
ranged from (0.24, 0.4) for XRP-BTC to (0.43, 0.57) for IOT-DSH. In the pandemic period,
the respective intervals were (0.44, 0.56) for BTC-IOT and (0.6, 0.71) for IOT-DSH. We
observed that the leading pair did not change between the periods, but the amount of
mutual information shared by it grew. The increase in mutual information shared by
liquidity may indicate the overall growth of interest in cryptocurrency trade.
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Table 3. Global correlation coefficients for cryptocurrencies volatility approximated by the Garman–
Klass [2] estimator.

From 1 January 2019 to 1 March 2020

ETH XRP DSH LTC XMR IOT

BTC (0.68, 0.78) (0.61, 0.73) (0.58, 0.7) (0.65, 0.75) (0.68, 0.78) (0.61, 0.71)
ETH – (0.71, 0.79) (0.67, 0.76) (0.73, 0.81) (0.66, 0.75) (0.7, 0.79)
XRP – – (0.6, 0.72) (0.65, 0.74) (0.65, 0.73) (0.69, 0.77)
DSH – – – (0.62, 0.73) (0.62, 0.73) (0.62, 0.72)
LTC – – – – (0.63, 0.73) (0.64, 0.74)
XMR – – – – – (0.6, 0.71)

From 1 March 2020 to 30 June 2021

BTC (0.74, 0.81) (0.67, 0.75) (0.71, 0.79) (0.74, 0.8) (0.72, 0.79) (0.67, 0.75)
ETH – (0.68, 0.75) (0.71, 0.8) (0.75, 0.82) (0.7, 0.78) (0.7, 0.77)
XRP – – (0.74, 0.81) (0.79, 0.84) (0.66, 0.75) (0.71, 0.79)
DSH – – – (0.79, 0.85) (0.74, 0.8) (0.74, 0.81)
LTC – – – – (0.71, 0.79) (0.73, 0.8)
XMR – – – – – (0.7, 0.79)

Note: In the table, we present bootstrapped 95% confidence intervals of the global correlation coefficient (in nats)
calculated according to Equation (8). Values closer to 1 denote a higher reduction in uncertainty when observing
the volatility—Equation (1)—of the cryptocurrency from the row. The global correlation coefficient is a measure of
interdependence but not causality. The data have been discretized by using equal frequencies binning algorithm,
and the number of bins was set to 3√N, where N is the sample length.

Table 4. Global correlation coefficient for cryptocurrencies liquidity approximated by the closing
quoted spread of [3] (CQS).

From 1 January 2019 to 1 March 2020

ETH XRP DSH LTC XMR IOT

BTC (0.31, 0.52) (0.24, 0.4) (0.29, 0.47) (0.3, 0.45) (0.33, 0.49) (0.29, 0.45)
ETH – (0.3, 0.46) (0.3, 0.49) (0.31, 0.5) (0.3, 0.49) (0.32, 0.5)
XRP – – (0.33, 0.48) (0.36, 0.51) (0.36, 0.51) (0.35, 0.5)
DSH – – – (0.38, 0.52) (0.37, 0.52) (0.43, 0.57)
LTC – – – – (0.32, 0.49) (0.37, 0.52)
XMR – – – – – (0.36, 0.5)

From 1 March 2020 to 30 June 2021

BTC (0.52, 0.64) (0.5, 0.61) (0.4, 0.54) (0.51, 0.63) (0.49, 0.62) (0.44, 0.56)
ETH – (0.58, 0.69) (0.53, 0.65) (0.57, 0.69) (0.59, 0.69) (0.54, 0.65)
XRP – – (0.55, 0.67) (0.59, 0.69) (0.56, 0.67) (0.53, 0.66)
DSH – – – (0.54, 0.66) (0.56, 0.67) (0.6, 0.71)
LTC – – – – (0.52, 0.63) (0.5, 0.62)
XMR – – – – – (0.59, 0.7)

Note: In the table, we present bootstrapped 95% confidence intervals of the global correlation coefficient (in nats)
calculated according to Equation (8). Values closer to 1 denote a higher reduction in uncertainty when observing
the liquidity—Equation (2)—of the cryptocurrency from the row. The global correlation coefficient is a measure
of interdependence but not causality.The data have been discretized using equal frequencies binning algorithm,
and the number of bins was set to 3√N, where N is the sample length.

5.2. Information Flow between Cryptocurrencies

The analysis of mutual information shared by the cryptocurrencies allows us to
conclude that they are strongly interrelated concerning prices and volatility and less interre-
lated when concerning liquidity. In this section, we verify whether the relationships result
in causality. We will concentrate on the causality to and from Bitcoin in the two periods.

In Figure 4, we present the point values of entropy transfer together with their 95%
confidence intervals. If the interval covers 0, we conclude that the amount of information
transferred is insignificantly different from 0. The calculated entropy was the Renyi one,
with q = 0.1, i.e., stressing the information in tails. The estimates are each time ordered by
the amount of the information flow from BTC.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Effective Renyi entropy transfer from Bitcoin (BTC) to other cryptocurrencies and from those to BTC. Note: In the
figure, we present the values of effective transfer entropy between the returns (a,b), volatilities (c,d) and liquidities (e,f) of
cryptocurrencies calculated according to Equation (14) for q = 0.1, and the Markov order is set to 1 for each coin. The point
values are accompanied by 95% confidence bands. Intervals covering positive values denote statistically significant causality.
The negative ones indicate the increase in uncertainty when accounting for the history of other cryptocurrencies. If the
intervals cover 0, we interpret it as a lack of a statistically significant relationship. The left column refers to the pre-COVID-19
period, while the right refers to the COVID-19 one. The currencies on the x-axis are ordered by the growing amount of the
transfer entropy. Therefore, the order of the cryptocurrencies differs between the periods. The data have been discretized
using quantiles methodology.
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We observe that the causality relationships between Bitcoin and the other cryptocurren-
cies are in most cases insignificant, regardless of the medium of interest (returns, volatilities
or liquidity). In the pre-COVID-19 period, the information from BTC flew through returns
to XMR only. That changed in the COVID-period when the amount of information trans-
mitted to XMR became insignificant. Moreover, the value of the transfer entropy became
negative when we analysed the direction from BTC to XRP.

When it comes to volatility and liquidity, we observed no significantly positive infor-
mation transfer from BTC in any period. On the contrary, in the pre-COVID one, the values
of the transfer entropy were negative for the information transfer from BTC to XMR through
volatility and liquidity and to IOT through liquidity. In the COVID period, all the values
became insignificantly different from 0.

When it comes to information transfer to BTC through returns, we noted positive
values in the pre-COVID-19 period for XMR and in the COVID-19 one for LTC only.
The transfer entropy from DSH was significantly negative. We also emphasize that some
negative values of transfer entropy observed in volatility (transfer from XMR and LTC)
became insignificant in the second period. The fact that some values of transfer entropy
were negative implies that any investment strategy based on inferring the returns or
volatility of Bitcoin based on the historical returns or volatility dynamics of any other from
our set may be ineffective.

Eventually, when we concentrate on liquidity, we observe that, during the pandemic,
the values of transfer entropy were the highest in the case of XRP (the 95% interval limit
still covers 0, but the part of the interval taking negative values is the shortest among all the
cryptocurrencies). We explain this result by the fact that XRP is characterized by the fastest
transaction processing algorithm and has the potential to lead the information process in
liquidity. Moreover, interest in this cryptocurrency is steadily growing.

By summarizing the results and comparing the values of the transfer entropy to and
from Bitcoin, we can say that in terms of returns, BTC is the information receiver and that
returns dynamic from smaller coins influence the dynamics of the big one more than the
other way round.

5.3. Lead-Lag Relationships

In order to extend the results obtained by analysing transfer entropy, we also calculated
the lead-lag relationships between the cryptocurrencies using the DTW algorithm. When
analysing the transfer entropy, we allowed for one lag only, while in the DTW algorithm,
we took into account the 7-day history.

In Tables 5–7, we present the differences between the forward and the backward
distances for returns, volatilities and liquidities, respectively. The negative values in
Tables 5–7 denote that we can treat the currency in the column as the leading one relative
to the one from the row. The table can be read in two directions so that the positive value
shows that the currency in the row can be read as a leader. The gray colour indicates that
the currency from the column switched its role from leader to follower compared to the
pre-pandemic period. The orange colour signifies the change in the opposite direction.

To render the information in the tables clearer, let us concentrate on the relationship
in volatility between BTC and ETH from 1 January 2019 to 1 March 2020. The forward
DTW distance of the BTC to ETH takes into account the alignment of the current volatility
of BTC with the future volatility of ETH, accounting for different shifts from 1 to 7 days.
It amounted to 0.0080 (not included in the table). The backward DTW (the current BTC
volatility match with past ETH volatility with different lags from 1 to 7 days) amounted
to 0.0071. In the Table 6, we display the difference (multiplied by 100) between the two
values, which are equal to 0.09. The positive sign means that BTC is the leading currency
in this pair. The absolute value of these differences is not high, but we can observe that
from 1 March 2020 to 30 June 2021 the value rose to 0.19. The difference has more than
doubled; thus, we can conclude that the position of BTC as a volatility-leader against ETH,
has strengthened.
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We note two facts. First of all, the numbers presented in the tables represent differences
between the distances and not the estimates of parameters. Therefore, we do not present
here the significance tests. Instead, we can comment on the magnitude of the numbers.
All the numbers in the tables are multiplied by 100. The differences between returns and
volatilities are very small. That can suggest that daily data were not enough to capture the
lead-lag relationships in returns and volatilities. It is likely that such relationships are more
pronounced in intra-daily data. On the contrary, the differences between liquidities are
relatively high.

The results corroborate with the one obtained by the analysis of mutual information.
The highest amount of mutual information is shared by returns and volatilities. This is
likely why we observed such small differences between forward and backward distances in
Tables 5 and 6. Since the amount of mutual information contained in liquidities is smaller
(see Table 4), clearer lead-lag relationships can be observed.

Let us concentrate on Table 5. In both periods, BTC slightly leads; however, the abso-
lute value of the difference between the forward and backward distances is higher during
the pandemic period for the relationship with ETH (0.04 versus 0), XRP(0.29 versus 0.05),
DSH (0.2 versus 0.08) and XMR(0.02 versus 0) but not for IOT (0.19 versus 0.22) and LTC
(0 versus 0.24). In the pandemic period, ETH is a little ‘lagged’ relative to XRP, BTC but
also XMR. The absolute value of differences between the forward and backward distances
between LTC and other cryptocurrencies decreased a little during the pandemic.

Table 5. Differences between forward and backward DTW measures of the returns.

ETH XRP DSH LTC XMR IOT

from 1 January 2019 to 1 March 2020

BTC 0.00 0.05 0.08 0.24 0.00 0.22
ETH −0.06 0.05 0.01 0.02 0.00
XRP 0.00 0.14 0.04 −0.01
DSH 0.04 0.00 0.05
LTC −0.10 −0.05

XMR 0.00

from 1 March 2020 to 30 June 2021
BTC 0.04 0.29 0.20 0.00 0.02 0.19
ETH −0.01 0.02 0.00 −0.03 0.03
XRP 0.05 0.02 −0.03 0.00
DSH 0.05 0.01 0.06
LTC 0.03 0.01

XMR −0.01
Note: In the table, we present the differences between forward and backward distances (multiplied by 100 for
clarity). The negative values denote that we can treat the currency in the column as the leading one relative to
the one from the row. Gray colour indicates the switch of the relationship from leaders to followers during the
pandemic compared to the pre-pandemic period, while orange means changes in the opposite direction.

The results for the volatility are presented in Table 6. In the pandemic period, ETH
became a slight leader relative to XRP (−0.34), DSH (−0.03), XMR (−0.01) and IOT (−0.14).
LTC volatility became forward relative to ETH (−0.03), XRP (−0.22), XMR (−0.02) and IOT
(−0.09), while XRP became a little backward compared to all others.

Eventually, in the case of liquidity analysis (cf. Table 7), we can draw much stronger
conclusions as the numbers are much higher. BTC is forward relative to all others cryp-
tocurrencies before as well as during the pandemic. XMR is a leader relative to all others,
despite BTC in the pandemic period.
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Table 6. Differences of forward and backward DTW distances of cryptocurrencies’ volatility.

ETH XRP DSH LTC XMR IOT

From 1 January 2019 to 1 March 2020

BTC 0.09 0.10 0.17 0.26 0.00 0.23
ETH −0.05 −0.03 0.14 −0.05 0.00
XRP 0.01 0.16 0.02 0.10
DSH 0.13 −0.05 0.04
LTC −0.18 −0.09

XMR 0.09

From 1 March 2020 to 30 June 2021

BTC 0.19 0.66 0.18 0.18 0.13 0.30
ETH 0.34 0.03 −0.03 0.01 0.14
XRP −0.18 −0.22 −0.34 −0.07
DSH 0.01 0.00 0.00
LTC 0.02 0.09

XMR 0.15
Note: In the table we present the differences between forward and backward distances (multiplied by 100 for
clarity). The negative values denote that we can treat the currency in the column as the leading one relative to
the one from the row. Gray colour indicates the switch of the relationship from leaders to followers during the
pandemic compared to the pre-pandemic period, while orange means changes in the opposite direction.

Table 7. Differences of forward and backward DTW distances of the cryptocurrencies’ liquidity.

ETH XRP DSH LTC XMR IOT

From 1 January 2019 to 1 March 2020

BTC 43.89 47.15 7.19 51.93 10.14 52.94
ETH 61.13 4.17 17.14 −0.17 66.92
XRP 69.65 36.22 117.58 −2.78
DSH 20.91 2.52 −64.31
LTC −19.74 −34.53

XMR −112.67

From 1 March 2020 to 30 June 2021

BTC 83.81 121.13 60.70 78.80 52.06 106.64
ETH 95.25 −10.60 6.26 −8.90 80.76
XRP 8.65 −39.52 −39.50 −6.00
DSH 13.30 −0.49 −23.75
LTC −15.17 20.61

XMR 24.05
Note: In the table we present the differences between forward and backward distances (multiplied by 100 for
clarity). The negative values denote that we can treat the currency in the column as the leading one relative to
the one from the row. Gray colour indicates the switch of the relationship from leaders to followers during the
pandemic compared to the pre-pandemic period, while orange means changes in the opposite direction.

6. Discussion and Conclusions

In the article, we present the results of the analysis of mutual information, information
transfer and lead-lag relationships between returns, volatility and liquidity of cryptocurren-
cies. We found that cryptocurrencies share a relatively high amount of mutual information
(especially in returns and volatility), while information transfer between them is limited.
Moreover, we observed that mutual information shared in liquidity has increased since the
beginning of the pandemic. The lead-lag relationships between Bitcoin and other cryptocur-
rencies in terms of returns and volatility are almost indistinguishable in daily data, which
is probably related to the high amount of mutual information shared by these measures.
Additionally, using dynamic time warping, we have found that changes in the liquidity
of Monero (XMR) started to precede the changes in liquidity of all other cryptocurrencies,
apart from Bitcoin.

109



Entropy 2021, 23, 1386

Our results partially corroborate with the ones presented in the previous studies and
obtained with different econometric methods. Similarly to [1,6,7], we show that the domi-
nance of Bitcoin is not definite, although it has been the most recognizable cryptocurrency.
Demonstrating the significant information transfer from Litecoin to Bitcoin through re-
turns, we also corroborate the results presented in [4]. We confirm that high-capitalization
cryptocurrencies (Bitcoin, Ether and Litecoin) share a large amount of mutual information
with others. However, over time, the relationships become weaker. Moreover, it is most
visible in returns.

We note that mutual information contained in volatility and returns is higher than
the one in liquidity, and the maximal numbers are reached for returns. The latter suggests
that although all cryptocurrencies may experience similar price dynamics, the market
values their risk differently. We can also infer that the cryptocurrency market is divided
into segments with different groups of investors. In general, the investment strategy in
alternative coins based on observing Bitcoin seems to be inadequate. Investors should take
into account the information flow from other currencies as well.

In future work, we plan to repeat the research for a longer time frame in order to verify
the stability of the results in time. Together with extending the period of the study, we aim
to include more altcoins in our research. We intend to verify the possibility of hedging the
investment in the dominating cryptocurrencies with altcoins in the long run.
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The following abbreviations are used in this manuscript:

BTC Bitcoin;
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IOT mIOTA, cryptocurrency used in Internet of Things Application;
GK Garman–Klass volatility estimator;
CQS Closing quoted spread liquidity estimator;
DTW Dynamic time warping algorithm.
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Abstract: This paper presents an extension of the Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) method with objective criteria weights for Group Decision Making (GDM) with
Interval Numbers (INs). The proposed method is an alternative to popular and often used methods
that aggregate the decision matrices provided by the decision makers (DMs) into a single group
matrix, which is the basis for determining objective criteria weights and ranking the alternatives.
It does not use an aggregation operator, but a transformation of the decision matrices into criteria
matrices, in the case of determining objective criteria weights, and into alternative matrices, in the
case of the ranking of alternatives. This ensures that all the decision makers’ evaluations are taken
into account instead of their certain average. The numerical example shows the ease of use of the
proposed method, which can be implemented into common data analysis software such as Excel.

Keywords: interval numbers; MCGDM; TOPSIS; entropy; objective weights

1. Introduction

Recent years show that Multiple Criteria Decision Making (MCDM) methods are
increasingly used to solve real decision-making problems concerning various aspects
of human life [1–3]. The main application areas for these methods are supply chain
management [4], logistics [5], engineering [6], technology [7], and many others. The
complexity and diversity of MCDM problems have resulted in the development of a variety
of methods to solve them [2]. One group of these methods are methods based on reference
points. Historically, the first method which belongs to this group is the Hellwig method [8].
It uses a single reference point, called a “pattern”. It is an artificial solution that maximizes
benefit criteria and minimizes cost criteria. The computed synthetic indicator “proximity”
of the alternatives to the “pattern” allows for their linear ordering and the identification
of the best one. However, the most recognized and regularly used method in this group
is TOPSIS, developed by Hwang and Yoon [9]. It uses two artificial solutions called the
Positive Ideal Solution (PIS) and the Negative Ideal Solution (NIS). The PIS is equivalent
to the “pattern” in Hellwig’s method. In turn, the NIS minimizes the benefit criteria and
maximizes the cost criteria. Taking into account the separation of the alternatives from the
PIS and NIS, the Relative Closeness Coefficients (RCCs) to the PIS are calculated, which
allows for the ranking of the alternatives.

The applications of the TOPSIS method are very diverse. Apart from the main ap-
plications of MCDM mentioned above, it is used in more and more new areas, such as
flow control in a manufacturing system [10], the selection of sustainable acid rain control
options [11], the selection of the best employees using decision support systems in internal
control [12], credit risk evaluations for strategic partners [13], the investigation of aggre-
gated social influence [14], the selection of stocks before the formation of a portfolio based
on a company’s financial performance [15], the identification of the best wind turbines for
different locations [16], the ranking of the developmental performance of nations [17], the
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evaluation of the quality of institutions in the European Union countries [18], the evaluation
of technologies improving the quality of life of elderly people [19], and many others.

In real-life problems, it may be difficult to measure data accurately or present the
preferences of the DMs by real numbers; it may also happen that DMs use linguistic
variables, in which case we can use another format of data. In such situations, MCDM
methods, including TOPSIS, should be extended from real numbers to the new type of
data. In the literature, we can find a number of extensions of the TOPSIS method for
different types of data: fuzzy numbers [20], ordered fuzzy numbers [21], hesitant fuzzy
sets [22], intuitionistic fuzzy sets [23], hesitant Pythagorean fuzzy sets [24], interval-valued
fuzzy sets [25], interval neutrosophic sets [26], and others. This shows that researchers are
developing new ways of presenting data to allow DMs to formulate their preferences more
effectively. We can say that the choice of a data presentation method is an MCDM problem.

In this paper we use INs. An extension of the TOPSIS method to MCDM problems
with INs was developed by Jahanshahloo et al. [27]. A limitation of this approach is the
definitions of the PIS and NIS. These reference points are represented by real numbers
selected from the lower and upper endpoints of the INs in the decision matrix, rather
than by INs themselves. This can lead to incorrect results [28]. In the literature, various
methods for determining the PIS and NIS for INs have been proposed. In [29,30], they are
represented by real numbers instead of intervals, as in [27]. In [31,32], the PIS is defined as
an interval whose endpoints are the maximum values from the lower and upper endpoints
of the intervals, respectively, while for the NIS we take the minimum values of these
endpoints. In [33], the PIS is the average of intervals, while for the NIS, the lower endpoints
are the minimum of the lower endpoints of the intervals and the upper endpoints are the
maximum of the upper endpoints of the intervals, respectively. The main limitation of
these methods is that the determined elements of the PIS and NIS may not be elements of
the decision matrix. Dymova et al. [28] presented a method of comparing INs to determine
the minimum and maximum elements from the decision matrix. It is based on determining
the distance between the midpoints of the INs being compared. In the proposed approach,
we will use an analogous method of comparing INs, as proposed by Hu and Wang [34].

An important step in MCDM methods, including the TOPSIS method, is the de-
termination of criteria weights. These describe the importance of each criterion in the
decision-making process and have a key influence on the final result. We usually use sub-
jective or objective weights in solving MCDM problems. Subjective weights are determined
by the DM or an expert, using their knowledge, experience, skills, etc. In situations where
we cannot obtain the appropriate weights or the cost of obtaining them is too high, we can
use objective weights. These are determined by using mathematical methods based on
the decision matrix. One of the popular methods for determining objective weights is the
entropy method [9]. It assigns a higher weight to the given criterion, regarding which the
evaluations of alternatives are more diversified. Hosseinzadeh Lotfi and Fallahnejad [35]
proposed an extension of the entropy method to data in the form of INs. As a result, we
can obtain objective criteria weights, also in the form of INs.

Because of the increasing complexity of decision-making problems, they are often
analyzed by a group of DMs, which leads to the development of so-called Multiple Criteria
Group Decision Making (MCGDM). In such situations, each member of the group defines
an individual decision matrix. A common technique is to determine the aggregate (group)
matrix from the individual matrices using a selected aggregation operator. This matrix
is the basis for determining objective criteria weights and ranking the alternatives. One
of the most popular aggregation operators is the arithmetic mean. Note, however, that
this may not reflect the preferences or judgments of DMs [36]. To better explain this
limitation, we present two simple numerical examples. We consider a group of two
decision makers {DM1, DM2} who evaluate three alternatives {A1, A2, A3} with respect
to two benefit criteria {C1, C2} using the following scale: {1, 2, 3, 4, 5}. Their evaluations of
the alternatives with respect to the criteria are in the form of individual decision matrices
X1 and X2; by XART we denote the aggregation results using the arithmetic mean.
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Example 1. The ratings of the alternatives with respect to the criteria provided by the DMs are:

X1 =

DM1 C1 C2
A1
A2
A3

⎛⎝ 1 1
2 2
4 3

⎞⎠ , X2 =

DM2 C1 C2
A1
A2
A3

⎛⎝ 3 3
2 2
1 1

⎞⎠ .

Let us note that regardless of whether the ratings of the alternatives with respect to a criterion are in
the form “1 and 3”, “2 and 2”, or “3 and 1”, the aggregation results are the same and equal to “2”.
The aggregation results are:

XAGG =

C1 C2
A1
A2
A3

⎛⎝ 2 2
2 2

2.5 2

⎞⎠ .

Based on matrix XAGG, and using the entropy method, we can calculate the criteria weights,
obtaining the following vector:

wAGG = (1, 0) .

This means that criterion C2 has no influence on the ranking of the alternatives and can be omitted.
On the other hand, using the proposed approach to the matrices X1 and X2, we obtain the following
vector of criteria weights:

w = (0.5921, 0.4079) .

Example 2. The ratings of the alternatives with respect to the criteria provided by the DMs are:

X1 =

DM1 C1 C2
A1
A2
A3

⎛⎝ 5 1
3 2
1 3

⎞⎠ , X2 =

DM2 C1 C2
A1
A2
A3

⎛⎝ 1 3
3 2
5 1

⎞⎠ .

The aggregation results are:

XAGG =

C1 C2
A1
A2
A3

⎛⎝ 3 2
3 2
3 2

⎞⎠ .

Matrix XAGG shows that all three alternatives{A1, A2, A3} are equivalent (i.e., they have the same
aggregate rating) and we cannot calculate the vector of criteria weights using the entropy method.
However, if we use the proposed approach, we obtain the following vector of criteria weights:

w = (0.6497, 0.3503) .

From Examples 1 and 2, we can conclude that such an averaged result does not reflect
the discrepancies between the individual decisions (the preferences of the DMs) and the
fact that using such averaged information may lead to an incorrect final decision.The
aim of this paper is to present a new approach for GDM using the TOPSIS method and
objective criteria weights with INs. The first main contribution of this paper is a method
for determining the objective criteria weights for GDM without aggregating individual
decision matrices. The method involves transforming the individual decision matrices
into criteria matrices and using the interval entropy and the interval TOPSIS methods to
determine the objective criteria weights. In this method, unlike in the method proposed by
Hosseinzadeh Lotfi and Fallahnejad [35], as the final result, we receive the weights in the
form of real numbers. The second main contribution of this paper is the TOPSIS method for
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GDM, also without the aggregation of individual decision matrices. This method involves
transforming the decision matrices into matrices of alternatives and then using a new
interval TOPSIS method for the ranking of alternatives.

The remainder of the paper consists of the following sections. Section 2 presents basic
information about INs and a description of the classical TOPSIS method and the classical
entropy method. The main section of the paper, i.e., Section 3, presents the algorithm of the
proposed method in detail. Next, the proposed method is used in a numerical example and
compared with other, similar approaches which are based on the aggregation of individual
matrices. The paper ends with the conclusions.

2. Preliminaries

In the following, we present some basic information about INs, the classical TOPSIS
method, and the entropy method of determining criteria weights.

2.1. Interval Numbers

Definition 1. As proposed by [37]: The closed IN, denoted by [a, a], is the set of real numbers
given by:

[a, a] = {x ∈ R : a ≤ x ≤ a} . (1)

Throughout this paper, INs will be used in the interval TOPSIS and interval entropy
methods, so we assume that they are positive INs, i.e., a > 0.

Definition 2. As proposed by [37]: Let [a, a] and
[
b, b
]

be two positive INs, and λ > 0 be a real
number. Then:

[a, a] =
[
b, b
]

i f a = b and a = b,

[a, a] +
[
b, b
]
=
[

a + b, a + b
]
,

[a, a]−
[
b, b
]
=
[

a − b, a − b
]
,

[a, a] ·
[
b, b
]
=
[

a · b, a · b
]
,

[a, a]/
[
b, b
]
=
[

a/b, a/b
]
,

λ·[a, a] = [λ · a, λ · a] .

The TOPSIS method requires the determination of the minimum and maximum
elements. To compare INs, we apply the method developed by Hu and Wang [34]. It is
based on a different description of INs than Equation (1) used in Definition 1.

Definition 3. As proposed by [34]: The IN [a, a] is represented in the form:

〈m([a, a]); w([a, a])〉 (2)

where m([a, a]) and w([a, a]) are its mid-point and half-width, respectively, determined as follows:

m([a, a]) =
a + a

2
, (3)

and:
w([a, a]) =

a − a
2

. (4)

Using the representation from Equation (2), Hu and Wang defined the order relation
“≺=” for INs as follows.
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Definition 4. As proposed by [34]: Let [a, a] and
[
b, b
]

be two INs. Then:

[a, a] ≺=

[
b, b
]

i f f

⎧⎪⎨⎪⎩
m([a, a]) < m

([
b, b
])

, i f m([a, a]) �= m
([

b, b
])

w([a, a]) ≥ w
([

b, b
])

, i f m([a, a]) = m
([

b, b
]) . (5)

and:
[a, a] ≺

[
b, b
]

i f f [a, a] ≺=

[
b, b
]

and [a, a] �=
[
b, b
]
. (6)

2.2. The Classical TOPSIS Method

Suppose an MCDM problem is given. The solution of the problem involves the linear
ordering of the set of possible alternatives {A1, A2, . . . , Am} and the indication of the best
one. The alternatives under consideration are evaluated with respect to a set of criteria
{C1, C2, . . . , Cn} that determine the choice of a solution. An MCDM problem is represented
by a decision matrix X, of the form:

X =

⎛⎜⎜⎜⎝
x11 x12
x21 x22

· · · x1n
· · · x2n

...
...

xm1 xm2

. . .
...

· · · xmn

⎞⎟⎟⎟⎠ (7)

where xij for i = 1, 2, . . . , m and j = 1, 2, . . . , n represents the evaluation of the ith alternative
with respect to the jth criterion. In addition, we determine the vector criteria weights
w = (w1, w2, . . . , wn). The classical TOPSIS method developed by Hwang and Yoon
consists of the following steps [9]:

Step 1. The normalization of the decision matrix X and calculation of the matrix Y, of
the form:

Y =

⎛⎜⎜⎜⎝
y11 y12
y21 y22

· · · y1n
· · · y2n

...
...

ym1 ym2

. . .
...

· · · ymn

⎞⎟⎟⎟⎠ (8)

using, for j = 1, .., n, the following formula:

yij =
xij√

∑m
i=1 x2

ij

. (9)

Step 2. The calculation of the weighted normalized decision matrix V, of the form:

V =

⎛⎜⎜⎜⎝
v11 v12
v21 v22

· · · v1n
· · · v2n

...
...

vm1 vm2

. . .
...

· · · vmn

⎞⎟⎟⎟⎠ (10)

where vij = wj·yij for i = 1, 2, . . . , m and j = 1, 2, . . . , n.
Step 3. Determination of the PIS (A+), of the form:

A+ =
(
v+1 , v+2 , . . . , v+n

)
=

{(
max

i
vij | j ∈ B

)
,
(

min
i

vij | j ∈ C
)}

, (11)
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and of the NIS (A−), of the form:

A− =
(
v−1 , v−2 , . . . , v−n

)
=

{(
min

i
vij | j ∈ B

)
,
(

max
i

vij | j ∈ C
)}

, (12)

where B and C are associated with benefit and cost criteria, respectively.
Step 4. The calculation of the distance of each Ai (i = 1, . . . , m) from the PIS:

d+i =

√
∑n

j=1

(
vij − v+j

)2
, (13)

and from the NIS:

d−i =

√
∑n

j=1

(
vij − v−j

)2
. (14)

Step 5. The calculation of the coefficients RCCi (i = 1, 2, . . . , m) of relative closeness to the
PIS for each alternative Ai (i = 1, . . . , m), using the following formula:

RCCi =
d−i

d+i + d−i
. (15)

Step 6. The ranking of alternatives in descending order, using RCCi, and the determination
of the best one (the one with the highest value of RCCi).

2.3. The Entropy Method

The starting point for determining objective criteria weights by the entropy method is
the decision matrix, Equation (7) (see Section 2.2). It consists of the following steps [9]:

Step 1. The normalization of the decision matrix X and the calculation of the matrix Y, of
the form:

Y =

⎛⎜⎜⎜⎝
y11 y12
y21 y22

· · · y1n
· · · y2n

...
...

ym1 ym2

. . .
...

· · · ymn

⎞⎟⎟⎟⎠ (16)

using the following formula for j = 1, .., n:

yij =
xij

∑m
i=1 xij

. (17)

Step 2. The calculation of the vector of entropy e = (e1, e2, . . . , en), using the following
formula for j = 1, . . . , n:

ej = − 1
ln m ∑m

i=1 yij ln yij. (18)

Moreover, when yij = 0 for some i, the value of yij ln yij is taken as 0, which is consistent
with lim

x→0+
x ln x = 0.

Step 3. The calculation of the vector of diversification d = (d1, d2, . . . , dn), using the
following formula for j = 1, . . . , n:

dj = 1 − ej. (19)

Step 4. The calculation of the vector of objective criteria weights w = (w1, w2, . . . , wn), where:

wj =
dj

∑n
j=1 dj

. (20)
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3. The Proposed Approach

The proposed extension of the TOPSIS method with objective criteria weights based
on interval data for GDM consists of three major stages:

• The preparation of the data;
• The calculation of the objective criteria weights using the interval entropy method and

the interval TOPSIS method, without the aggregation of individual decision matrices;
• The linear ordering of alternatives using the extended TOPSIS method, based on

interval data, without the aggregation of individual decision matrices.

A flow chart and a graphical scheme of the proposed method are shown in
Figures 1 and 2, respectively.

Stage 1: The preparation of the data. As in Section 2.2., suppose an MCDM problem for
GDM is given, which consists of a set of possible alternatives {A1, A2, . . . , Am} and a set
of criteria {C1, C2, . . . , Cn}. In this case, the evaluation of alternatives, with respect to the
criteria, is performed by a group of DMs or experts {DM1, DM2, . . . , DMK}. In the process
of GDM, each DMk (k = 1, 2, . . . , K) constructs a matrix, called the individual decision
matrix, of the form:

Xk =

DMk C1 C2 · · · Cn

A1

A2
...

Am

⎛⎜⎜⎜⎜⎜⎝
xk

11 xk
12

xk
21 xk

22

· · · xk
1n

· · · xk
2n

...
...

xk
m1 xk

m2

. . .
...

· · · xk
mn

⎞⎟⎟⎟⎟⎟⎠
. (21)

In the proposed approach, each element xk
ij for i = 1, 2, . . . , m and j = 1, 2, . . . , n of the

matrix Xk is in the form of an IN, i.e., xk
ij =

[
xk

ij, xk
ij

]
, and represents the evaluation of the

kth DM of the ith alternative with respect to the jth criterion.

Stage 2: The calculation of the objective criteria weights for GDM, without the aggregation
of individual decision matrices. The proposed method of calculation of the objective criteria
weights based on interval entropy and interval TOPSIS consists of the following steps.

Step 1. The normalization, for each decision maker DMk (k = 1, 2, . . . , K), of their individ-
ual decision matrix, as given by Equation (21), and obtaining the matrix Yk, of the form:

Yk =

DMk C1 C2 · · · Cn

A1

A2
...

Am

⎛⎜⎜⎜⎜⎜⎝
yk

11 yk
12

yk
21 yk

22

· · · yk
1n

· · · yk
2n

...
...

yk
m1 yk

m2

. . .
...

· · · yk
mn

⎞⎟⎟⎟⎟⎟⎠
(22)

using the following formula for j = 1, .., n [35]:

yk
ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[

xk
ij

∑m
i=1 xk

ij
,

xk
ij

∑m
i=1 xk

ij

]
if j ∈ B[

1/xk
ij

∑m
i=1 1/xk

ij
,

1/xk
ij

∑m
i=1 1/xk

ij

]
if j ∈ C

. (23)
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The extended TOPSIS for GDM

Determination of the MCGDM problem

Determination of the group of DMs

Selection of all the feasible alternatives

Selection of all the important criteria

Construction of decision matrices by each of the DMs

Preparation of data

Calculation of the objective criteria weights

Normalization of decision matrices for all DMs

Construction of normalized decision matrices for each criterion

Calculation of the vector of entropy for each criterion

Calculation of the vector of diversification for each criterion

Construction of the diversification matrix

Interval entropy

Determination of the MIC and the LIC

Calculation of the distance of each row of the diversification matrix from 
MIC and LIC

Calculation of RCC from MIC for each row of the diversification matrix

Calculation of the vector of objective criteria weights 

Interval TOPSIS

Normalization of decision matrices for all DMs

Calculation of the weighted normalized decision matrices

Construction of normalized decision matrices for each alternative

Determination of the PIS and the NIS

Calculation of the distance of each matrix for alternative from PIS and NIS

Calculation of RCC from PIS for each matrix for alternative

Ranking of alternatives 

Figure 1. The conceptual framework of the proposed method.
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Figure 2. Hierarchical structure of the proposed method.
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Step 2. The construction, for each criterion Cj (j = 1, 2, . . . , n), of the matrix Vj, of the form:

Vj =

Cj DM1 DM2 · · · DMK

A1

A2
...

Am

⎛⎜⎜⎜⎜⎜⎜⎝

y1
1j y2

1j

y1
2j y2

2j

· · · yK
1j

· · · yK
2j

...
...

y1
mj y2

mj

. . .
...

· · · yK
mj

⎞⎟⎟⎟⎟⎟⎟⎠
. (24)

Step 3. The calculation, for each criterion Cj (j = 1, 2, . . . , n), of the entropy vector ej, of
the form:

ej =
(

e1
j , e2

j , . . . , eK
j

)
(25)

based on the matrix Vj, where ek
j =

[
ek

j , ek
j

]
for k = 1, 2, . . . , K and:

ek
j = min

{
− 1

ln m ∑m
i=1 yk

ij
ln yk

ij
,− 1

ln m ∑m
i=1 yk

ij ln yk
ij

}
, (26)

and:

ek
j = max

{
− 1

ln m ∑m
i=1 yk

ij
ln yk

ij
,− 1

ln m ∑m
i=1 yk

ij ln yk
ij

}
, (27)

and yk
ij

ln yk
ij

or yk
ij ln yk

ij is defined to be 0 if yk
ij
= 0 or yk

ij = 0 [35], respectively.

Step 4. The calculation, for each criterion Cj (j = 1, 2, . . . , n), of the diversification vector
dj, of the form:

dj =
(

d1
j , d2

j , . . . , dK
j

)
(28)

where dk
j = 1 − ek

j =
[
1 − ek

j , 1 − ek
j

]
for k = 1, 2, . . . , K, and the construction of diversifica-

tion matrix D, of the form:

D =

DM1 DM2 · · · DMK

C1

C2
...

Cn

⎛⎜⎜⎜⎜⎜⎝
d1

1 d2
1

d1
2 d2

2

· · · dK
1

· · · dK
2

...
...

d1
n d2

n

. . .
...

· · · dK
n

⎞⎟⎟⎟⎟⎟⎠
. (29)

Step 5. The determination of the Most Important Criterion (MIC):

C+ =
(
c+1 , c+2 , . . . , c+K

)
(30)

where c+k = max
j

dk
j for k = 1, 2, . . . , K, and of the Least Important Criterion (LIC):

C− =
(
c−1 , c−2 , . . . , c−K

)
(31)

where c−k = [0, 0] for k = 1, 2, . . . , K, based on the matrix D.
Step 6. The calculation of the distance of each diversification vector dj, representing the
weight of criterion Cj (j = 1, 2, . . . , n), from the MIC:

dC+
j =

√
∑K

k=1

[(
dk

j − c+k
)2

+
(

d
k
j − c+k

)2
]

, (32)
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and from the LIC:

dC−
j =

√
∑K

k=1

[(
dk

j − c−k
)2

+
(

d
k
j − c−k

)2
]

. (33)

Step 7. The calculation of the coefficients RCCC
j (j = 1, 2, . . . , n) of relative closeness to the

MIC for each diversification vector dj, using the following formula:

RCCC
j =

dC−
j

dC+

j + dC−
j

. (34)

Step 8. The calculation of the vector of objective criteria weights:

w = (w1, w2, . . . , wn) (35)

where:

wj =
RCCC

j

∑n
j=1 RCCC

j
(36)

for j = 1, 2, . . . , n.

Stage 3: The extended TOPSIS method for GDM without the aggregation of individual
decision matrices.

The developed extended TOPSIS for GDM without the aggregation of individual
decision matrices consists of the following steps.

Step 1. The normalization, for each decision maker DMk (k = 1, 2, . . . , K), of their individ-
ual decision matrix, as given by Equation (21), and obtaining the matrix Yk, of the form

Yk =

DMk C1 C2 · · · Cn
A1

A2
...

Am

⎛⎜⎜⎜⎜⎝
yk

11 yk
12

yk
21 yk

22

· · · yk
1n

· · · yk
2n

...
...

yk
m1 yk

m2

. . .
...

· · · yk
mn

⎞⎟⎟⎟⎟⎠ (37)

using the following formula for j = 1, . . . , n [38]:

yk
ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[

xk
ij

∑m
i=1 xk

ij
,

xk
ij

∑m
i=1 xk

ij

]
if j ∈ B[

1/xk
ij

∑m
i=1 1/xk

ij
,

1/xk
ij

∑m
i=1 1/xk

ij

]
if j ∈ C

. (38)

Remark 1. Note that the normalization method, Equation (38), used above does not provide the
property that the normalized elements yk

ij belong to the interval [0, 1]. If we require this property to

be satisfied, the elements of the matrix Yk can be recalculated using the following formula [38]:

zk
ij =

⎡⎢⎢⎢⎢⎣
yk

ij√
∑m

i=1

[(
yk

ij

)2
+
(

yk
ij

)2
] ,

yk
ij√

∑m
i=1

[(
yk

ij

)2
+
(

yk
ij

)2
]
⎤⎥⎥⎥⎥⎦. (39)

123



Entropy 2021, 23, 1460

As the final result, we obtain normalized decision matrices Zk (k = 1, 2, . . . , K):

Zk =

DMk C1 C2 · · · Cn
A1

A2
...

Am

⎛⎜⎜⎜⎜⎝
zk

11 zk
12

zk
21 zk

22

· · · zk
1n

· · · zk
2n

...
...

zk
m1 zk

m2

. . .
...

· · · zk
mn

⎞⎟⎟⎟⎟⎠ (40)

Step 2. The calculation of the weighted normalized individual matrices Vk (k = 1, 2, . . . , K):

Vk =

DMk C1 C2 · · · Cn
A1

A2
...

Am

⎛⎜⎜⎜⎜⎝
vk

11 vk
12

vk
21 vk

22

· · · vk
1n

· · · vk
2n

...
...

vk
m1 vk

m2

. . .
...

· · · vk
mn

⎞⎟⎟⎟⎟⎠ (41)

where:
vk

ij = wjzk
ij =

[
wjzk

ij, wjzk
ij

]
(42)

and wj (j = 1, 2, . . . , n) are the objective criteria weights obtained in Stage 2.
Step 3. The construction, for each alternative Ai (i = 1, 2, . . . , m), of the matrix Ai:

Ai =

Ai C1 C2 · · · Cn
DM1

DM2
...

DMK

⎛⎜⎜⎜⎜⎝
v1

i1 v1
i2

v2
i1 v2

i2

· · · v1
in

· · · v2
in

...
...

vK
i1 vK

i2

. . .
...

· · · vK
in

⎞⎟⎟⎟⎟⎠ . (43)

Step 4. The determination of the PIS (A+):

A+ =

C1 C2 · · · Cn

DM1

DM2
...

DMK

⎛⎜⎜⎜⎜⎝
v1+

1 v1+
2

v2+
1 v2+

2

· · · v1+
k

· · · v2+
n

...
...

vK+
1 vK+

2

. . .
...

· · · vK+
n

⎞⎟⎟⎟⎟⎠ (44)

where vk+
j = max

i
vk

ij for j = 1, 2, . . . , n and k = 1, 2, . . . , K and of NIS (A−):

A− =

C1 C2 · · · Cn

DM1

DM2
...

DMK

⎛⎜⎜⎜⎜⎝
v1−

1 v1−
2

v2−
1 v2−

2

· · · v1−
k

· · · v2−
n

...
...

vK−
1 vK−

2

. . .
...

· · · vK−
n

⎞⎟⎟⎟⎟⎠ (45)

where vk−
j = min

i
vk

ij for j = 1, 2, . . . , n and k = 1, 2, . . . , K.

124



Entropy 2021, 23, 1460

Step 5. The calculation of the distance of each matrix Ai, representing the alternative Ai
(i = 1, . . . , m), from the PIS:

dA+
i =

√
∑K

k=1 ∑n
j=1

[(
vk

ij − vk+
j

)2
+
(

vk
ij − vk+

j

)2
]

, (46)

and from the NIS:

dA−
i =

√
∑K

k=1 ∑n
j=1

[(
vk

ij − vk−
j

)2
+
(

vk
ij − vk−

j

)2
]

. (47)

Step 6. The calculation of the coefficients RCCA
i (i = 1, 2, . . . , m) of relative closeness to

the PIS for each alternative Ai (i = 1, . . . , m), using the following formula:

RCCA
i =

dA−
i

dA−
i + dA+

i

. (48)

Step 7. The ranking of alternatives in descending order, using RCCA
i , and the determination

of the best one.

4. A Numerical Example and Results

The approach proposed in Section 3 will now be illustrated with a numerical example,
taken from [38], related to the evaluation of the authorities of a university in China. The
set of alternatives {A1, A2, A3} consists of the president and two vice presidents, who are
evaluated by teams of teachers, DM1, researchers, DM2, and undergraduates, DM3. The
DMs evaluate the presidents with respect to leadership, C1, performance, C2, and style
of work, C3, using a point scale from 0 to 100. The team ratings are represented by INs,
where the lower end is the minimum and the upper end is the maximum ratings among
the group members. The individual decision matrices are presented in Table 1.

Table 1. Individual decision matrices.

C1 C2 C3

DM1

A1 [60, 90] [72, 86] [85, 92]

A2 [77, 81] [69, 93] [83, 88]

A3 [80, 96] [59, 87] [68, 85]

DM2

A1 [77, 83] [68, 86] [82, 90]

A2 [93, 98] [76, 86] [65, 87]

A3 [79, 85] [72, 92] [81, 97]

DM3

A1 [85, 86] [76, 86] [80, 97]

A2 [79, 87] [75, 89] [81, 93]

A3 [62, 82] [84, 89] [78, 82]

The first main step of the proposed approach is to determine the objective criteria
weights, as described in Stage 2 of Section 3. The individual decision matrices are normal-
ized (see Table 2) and then transformed into matrices of criteria (see Table 3). Next, for each
criterion matrix, the entropy and diversification vectors are determined (see Tables 4 and 5).
Using the diversification vectors, we construct a diversification matrix, which is the basis
for calculating the objective criteria weights using the interval TOPSIS method. Table 6
presents reference points—in this case, the MIC and LIC. After calculating the distance
of each row of the diversification matrix from the MIC and LIC, the RCCs are calculated
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(see Table 7). These coefficients, after normalization, are the objective criteria weights (see
Table 7 and Figure 3). In our example, we obtain the following vector:

w = (0.3049, 0.4372, 0.2579).

Table 2. Normalized individual decision matrices for the calculation of criteria weights.

C1 C2 C3

DM1

A1 [0.2247, 0.3371] [0.2707, 0.3233] [0.3208, 0.3472]

A2 [0.2884, 0.3034] [0.2594, 0.3496] [0.3132, 0.3321]

A3 [0.2996, 0.3596] [0.2218, 0.3271] [0.2566, 0.3208]

DM2

A1 [0.2895, 0.3120] [0.2576, 0.3258] [0.2993, 0.3285]

A2 [0.3496, 0.3684] [0.2879, 0.3258] [0.2372, 0.3175]

A3 [0.2970, 0.3195] [0.2727, 0.3485] [0.2956, 0.3540]

DM3

A1 [0.3333, 0.3373] [0.2879, 0.3258] [0.2941, 0.3566]

A2 [0.3098, 0.3412] [0.2841, 0.3371] [0.2978, 0.3419]

A3 [0.2431, 0.3216] [0.3182, 0.3371] [0.2868, 0.3015]

Table 3. Matrices for each criterion.

DM1 DM2 DM3

C1

A1 [0.2247, 0.3371] [0.2895, 0.3120] [0.3333, 0.3373]

A2 [0.2884, 0.3034] [0.3496, 0.3684] [0.3098, 0.3412]

A3 [0.2996, 0.3596] [0.2970, 0.3195] [0.2431, 0.3216]

C2

A1 [0.2707, 0.3233] [0.2576, 0.3258] [0.2879, 0.3258]

A2 [0.2594, 0.3496] [0.2879, 0.3258] [0.2841, 0.3371]

A3 [0.2218, 0.3271] [0.2727, 0.3485] [0.3182, 0.3371]

C3

A1 [0.3208, 0.3472] [0.2993, 0.3285] [0.2941, 0.3566]

A2 [0.3132, 0.3321] [0.2372, 0.3175] [0.2978, 0.3419]

A3 [0.2566, 0.3208] [0.2956, 0.3540] [0.2868, 0.3015]

Table 4. Vectors of entropy.

e1 ([0.9605, 0.9978], [0.9893, 0.9975], [0.9767, 0.9997])

e2 ([0.9446, 0.9995], [0.9669, 0.9995], [0.9834, 0.9999])

e3 ([0.9807, 0.9995], [0.9672, 0.9990], [0.9820, 0.9977])

Table 5. Vectors of diversification.

d1 ([0.0022, 0.0395], [0.0025, 0.0107], [0.0003, 0.0233])

d2 ([0.0005, 0.0554], [0.0005, 0.0331], [0.0001, 0.0166])

d3 ([0.0005, 0.0193], [0.0010, 0.0328], [0.0023, 0.0180])

Table 6. MIC and LIC.

C+ ([0.0005, 0.0554], [0.0010, 0.0328], [0.0003, 0.0233])

C− ([0, 0], [0, 0], [0, 0])
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Table 7. Objective criteria weights.

dC+
j dC−

j RRCC
j wj

C1 0.0272 0.0472 0.6340 0.3049

C2 0.0067 0.0666 0.9091 0.4372

C3 0.0365 0.0422 0.5362 0.2579

 

Figure 3. Objective criteria weights.

The second main step of the proposed approach is to use an extension of the TOPSIS
method for GDM without the aggregation of individual matrices, as described in Stage 3
of Section 3. The individual decision matrices (see Table 1) are normalized (see Table 8)
using Equation (38) and then Equation (39). Using objective criteria weights (see Table 7),
we calculate the weighted normalized decision matrices (see Table 9). These matrices are
the basis for constructing the matrix for each alternative (see Table 10) of the form (43).
Now, we apply the extended TOPSIS method for the matrices of alternatives for ranking
the alternatives. Table 11 presents reference points—in this case, the PIS and NIS. Finally,
the distances of the alternatives from the PIS and NIS and the RCCs are calculated (see
Table 12). Based on these coefficients, the ranking of the alternatives is as follows:

A3 ≺ A1 ≺ A2

where “ ≺ ” means “inferior to” (see Table 12 and Figure 4). It means that the highest rating
is given to the vice president, A2. The symbol J in Table 12 represents the normalized RCCs.

Table 8. Normalized individual decision matrices for the TOPSIS method.

C1 C2 C3

DM1

A1 [0.1572, 0.2902] [0.1876, 0.2980] [0.2260, 0.2747]

A2 [0.2018, 0.2611] [0.1798, 0.3223] [0.2207, 0.2628]

A3 [0.2096, 0.3095] [0.1537, 0.3015] [0.1808, 0.2538]

DM2

A1 [0.2045, 0.2354] [0.1803, 0.2787] [0.2098, 0.2768]

A2 [0.2470, 0.2780] [0.2015, 0.2787] [0.1663, 0.2676]

A3 [0.2098, 0.2411] [0.1909, 0.2982] [0.2073, 0.2983]

DM3

A1 [0.2348, 0.2681] [0.2029, 0.2579] [0.2071, 0.2858]

A2 [0.2183, 0.2712] [0.2002, 0.2669] [0.2097, 0.2740]

A3 [0.1713, 0.2556] [0.2242, 0.2669] [0.2019, 0.2416]
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Table 9. Weighted normalized individual decision matrices for the TOPSIS method.

C1 C2 C3

DM1

A1 [0.0479, 0.0885] [0.0820, 0.1303] [0.0583, 0.0708]

A2 [0.0615, 0.0796] [0.0786, 0.1409] [0.0569, 0.0678]

A3 [0.0639, 0.0944] [0.0672, 0.1318] [0.0466, 0.0655]

DM2

A1 [0.0623, 0.0718] [0.0788, 0.1219] [0.0541, 0.0714]

A2 [0.0753, 0.0848] [0.0881, 0.1219] [0.0429, 0.0690]

A3 [0.0640, 0.0735] [0.0835, 0.1304] [0.0535, 0.0769]

DM3

A1 [0.0716, 0.0817] [0.0887, 0.1128] [0.0534, 0.0737]

A2 [0.0666, 0.0827] [0.0875, 0.1167] [0.0541, 0.0707]

A3 [0.0522, 0.0779] [0.0980, 0.1167] [0.0521, 0.0623]

Table 10. Matrices of alternatives.

C1 C2 C3

A1

DM1 [0.0479, 0.0885] [0.0820, 0.1303] [0.0583, 0.0708]

DM2 [0.0623, 0.0718] [0.0788, 0.1219] [0.0541, 0.0714]

DM3 [0.0716, 0.0817] [0.0887, 0.1128] [0.0534, 0.0737]

A2

DM1 [0.0615, 0.0796] [0.0786, 0.1409] [0.0569, 0.0678]

DM2 [0.0753, 0.0848] [0.0881, 0.1219] [0.0429, 0.0690]

DM3 [0.0666, 0.0827] [0.0875, 0.1167] [0.0541, 0.0707]

A3

DM1 [0.0639, 0.0944] [0.0672, 0.1318] [0.0466, 0.0655]

DM2 [0.0640, 0.0735] [0.0835, 0.1304] [0.0535, 0.0769]

DM3 [0.0522, 0.0779] [0.0980, 0.1167] [0.0521, 0.0623]

Table 11. PIS and NIS.

C1 C2 C3

A+

DM1 [0.0639, 0.0944] [0.0786, 0.1409] [0.0583, 0.0708]

DM2 [0.0753, 0.0848] [0.0835, 0.1304] [0.0535, 0.0769]

DM3 [0.0716, 0.0817] [0.0980, 0.1167] [0.0534, 0.0737]

A−
DM1 [0.0479, 0.0885] [0.0672, 0.1318] [0.0466, 0.0655]

DM2 [0.0623, 0.0718] [0.0788, 0.1219] [0.0429, 0.0690]

DM3 [0.0522, 0.0779] [0.0887, 0.1128] [0.0521, 0.0623]

Table 12. The ranking of the alternatives—R.

dA+
j dA−

j RCCA
j R J

A1 0.0313 0.0322 0.5076 2 0.3322

A2 0.0255 0.0364 0.5884 1 0.3851

A3 0.0340 0.0258 0.4318 3 0.2826
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Figure 4. The ranking of the alternatives.

5. Comparison of the Proposed Method with Other, Similar Approaches

In the following, the approach proposed in Section 3 will be compared with other, sim-
ilar approaches. In practice, the most common methods for GDM use a certain operator to
aggregate the individual decision matrices, given by Equation (21), into a group matrix X of
the form Equation (7), which is the starting point for the ranking of alternatives. To compare
the results obtained by the proposed method (PM), we use the following operators:

• AM—arithmetic mean, defined by:

xij =
1
K ∑K
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[
1
K ∑K

k=1 xk
ij,

1
K ∑K
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ij

]
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ij

) 1
K
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∏K

k=1 xk
ij

) 1
K ,
(
∏K

k=1 xk
ij

) 1
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)

;

• WM—weighted mean, defined by:

xij =
K

∑
k=1

λkxk
ij =

(
K

∑
k=1

λkxk
ij,

K

∑
k=1

λkxk
ij

)

where λk are weights that determine the importance of the DMs, such that λk ∈ [0, 1]
and ∑K

k=1 λk = 1.

In the WM method, the vector of DM weights λ = (0.2661, 0.3573, 0.3766) is deter-
mined by the method proposed by [38]. Next, based on the matrix X, we determine the
objective criteria weights using the method proposed by Lotfi and Fallahnejad [35]. In
this case, the criteria weights are in the form of INs, so we do not compare them with
the criteria weights obtained by the proposed method described in Stage 2 of Section 3
and presented in Table 7. To obtain the ranking of the alternatives, we use the normaliza-
tion method proposed by Jahanshahloo et al. [27]; the PIS and NIS are determined using
Equations (5) and (6), whereas the distances of the alternatives from the PIS and NIS are
calculated using Equations (46) and (47), where K = 1. Because the analyzed methods
are significantly different, to compare the final results we use the indicator J instead of
the RRCs. Table 13 and Figure 5 present the results obtained. We can notice that all the
analyzed methods indicated alternative A2 as the best one, and the obtained values of the
indicator J are similar. On the other hand, methods that use an aggregation operator give a
different ranking than the proposed method, of the form:

A1 ≺ A3 ≺ A2
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where alternatives A1 and A3 are swapped.

Table 13. Comparison of results.

PM AM GM WM

A1 0.332244 0.291138 0.297903 0.297472

A2 0.385121 0.385427 0.384682 0.385048

A3 0.282635 0.323435 0.317416 0.317480

 

Figure 5. Comparison of results.

6. Conclusions

This paper presents a new extension of the TOPSIS method for GDM, using INs. It
is an alternative to methods based on the aggregation of individual matrices. It uses the
transformation of decision matrices into criteria matrices to determine objective criteria
weights, while it uses alternatives matrices to create rankings of alternatives. The numerical
example shows that the results obtained by the proposed method differ from the results
obtained by the methods based on the aggregation of individual matrices using the arith-
metic mean, geometric mean, and weighted mean (with weights reflecting the importance
assigned to the DMs).

However, it is worth noting that the proposed method has some limitations, as it uses
data in the form of INs. This implies the necessity of extending the proposed method to
other types of imprecise data, which will be the subject of further research. Furthermore,
the proposed method should be extended by taking into account the subjective criteria
weights and the subjective and objective weights of the DMs, to ensure that all key elements
in the decision-making process are taken into account.
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Abbreviations

TOPSIS Technique for Order Preference by Similarity to Ideal Solution
GDM Group Decision Making
IN Interval Number
DM Decision Maker
MCDM Multiple Criteria Decision Making
PIS Positive Ideal Solution
NIS Negative Ideal Solution
RCC Relative Closeness Coefficient
MCGDM Multiple Criteria Group Decision Making
MIC Most Important Criterion
LIC Least Important Criterion
PM Proposed Method
AM Arithmetic Mean
GM Geometric Mean
WM Weighted Mean
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Abstract: We analyze the changes in the financial network built using the Dow Jones Industrial
Average components following monetary policy shocks. Monetary policy shocks are measured
through unexpected changes in the federal funds rate in the United States. We determine the changes
in the financial networks using singular value decomposition entropy and von Neumann entropy.
The results indicate that unexpected positive shocks in monetary policy shocks lead to lower entropy.
The results are robust to varying the window size used to construct financial networks, though they
also depend on the type of entropy used.

Keywords: entropy; financial markets; monetary policy; networks

1. Introduction

With the rapid increase of the use of network based approaches in economics, more
and more key questions are approached from this perspective. The applications are diverse,
and many times, they bring new insights. Without trying to exhaust an already large
literature, we can mention the applications to business cycles [1], systemic risk [2–6], and
contagion and spillovers [7–9].

In this paper, we aim at studying a less discussed topic from a network perspective.
We aim at analyzing the transmission of monetary policy shocks to the financial markets.
In this sense, we look at the way financial networks modify following monetary policy
shocks. To measure the change, we use an entropy measure of networks based on singular
value decomposition and on von Neumann entropy. The main question of this paper is as
follows: do monetary policy shocks impact the financial networks?

There are several directions in which we contribute to the literature. Our first con-
tribution is related to the analysis of monetary policy shocks in the context of networks.
There is a rapidly growing literature, with contributions mainly focusing on the role of
production networks. A reference paper in this direction is one published by Weber and
Ozdagli [10], who used the spatial structure of production in the United States (based on
the input–output structure) to measure how this affects the transmission of monetary policy
shocks. We can also mention Caraiani et al. [11], who studied the propagation of monetary
policy shocks using specific measures of production networks such as upstreamness and
downstreamness, finding that they matter for the transmission of monetary policy shocks.
In a related paper [12], Caraiani studied in an international context the transmission of oil
shocks using network measures such as density and skewness of links, finding again that
the network structure matters significantly for the transmission of (oil) shocks.

A second contribution is to the field of financial networks. We have already cited
some reference papers applying networks approaches to the financial markets. Here, we
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contribute to the understanding of the relationship between monetary policy shocks and
the stock market, but we also quantify the structural changes in the financial markets
networks using an entropy measure.

Finally, our last contribution is related to the use of entropy in measuring the changes
in the financial markets networks following a particular shock—here, a monetary policy
shock. There are various ways to measure the entropy of financial markets. A discussion of
the various ways to measure entropy in financial networks is conducted in [13]. Below, we
also review a few contributions on this topic and outline our contribution in this direction.

A significant contribution was made by [14], who applied transfer entropy to study
the relationships between 187 companies in the world. This approach allowed him to
identify a central role for insurance companies from large economies such as the United
States and the Euro Area.

A different contribution looked at the ability of singular-value-based entropy of
financial markets to signal the state of the market. In [15], entropy is measured using a
singular value decomposition of the matrix of correlations of financial stock. Caraiani
also showed that this entropy measure has predictive ability for the dynamics of the stock
market. More recently, Caraiani [16] extended the work to the case of international financial
markets, showing that there are spillovers of entropy between the big financial markets,
with entropy measured again based on the singular value based decomposition of the
financial stock.

Another contribution on the use of entropy was given by Bekiros et al. [17], who used
entropy measures of the financial markets to show that there is a decoupling between
commodity and equity markets. Another approach consisted of showing that we can use
permutation entropy to analyze how the degree of information changes during a market
crash [18]. The main result of this latter paper was that during financial market crashes,
the permutation entropy decreases.

In this paper, we extend previous research from several literature strands (i.e., net-
works and monetary policy, financial networks, and entropy of financial networks) by
making several contributions. First, we show that we can approach the topic of the changes
in the financial networks following monetary policy shocks using networks measures.
As far as we know, this has not been studied extensively before. There are, however, a
few studies that are close to ours. For example, Beltran et al. [19] found that Fed Funds
networks (along with abundant reserves) tend to dampen the impact of monetary policy
transmission. In a different framework, using agent-based modeling, Riccetti et al. [20]
found a significant role for a financial accelerator that was founded on three dimensions:
a leverage one, a stock market one, and a network one. We can also mention the study
by Silva et al. [21], who consider a granular approach that takes into consideration the
network relationships between agents, along with the balance sheets compositions. The
inclusion of network data allowed them to study contagion effects as well. They applied
their model to Brazilian data. However, our focus is rather on detecting the changes in
financial networks following monetary policy shocks.

Second, we quantify the changes in the financial markets networks based on different
measures of entropy. Different from previous studies, we focus on event studies with
monetary policy shocks precisely identified following FED communications. Thus, we can
to isolate the impact of such announcements by considering the changes in entropy. Since
we consider windows of data before and after these announcements, we can isolate the
impact solely of these announcements.

The paper is structured as follows. We first discuss the methodology used throughout
the paper in the following section. In the third section, we present the data used in the
empirical analysis. In the fourth section, we perform the empirical analysis by looking at
the impact of monetary policy shocks on financial networks. Finally, in section five, we
discuss the results and suggests possible extensions of the present result.
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2. Methodology

We detail here the main tools used in the empirical analysis. While most of the
methods applied here have been extensively used in the literature, they might still be
unknown to some readers.

Our research builds on the recent work on financial networks and measuring the key
properties of networks by applying network-based measures of entropy. We use these
well-studied and understood methods to approach the impact of monetary policy shocks
on financial networks in a novel manner.

2.1. Correlation Networks of Stocks

In the first stage, we construct correlation-based networks. Since our sample of
financial series comprises the components of the Dow Jones Industrial Average index
(while considering also the historical changes in its composition; see Appendix A for the
composition of the DJIA index), we construct time-varying correlation matrices of the
returns. Returns for a stock i, ri, are measured through the log-difference in prices at time t,
i.e., Pi(t), namely:

ri(t) = log[Pi(t)]− log[Pi(t − 1)] (1)

We further compute the standard correlation between two stocks using:

ρi,j =
cov(ri, rj)

σri σrj

(2)

Here, ri represents again the return of the stock i. σri is the standard deviation for the
return of the stock i.

Our approach to constructing networks relies on correlations. While we admit that
there are other approaches, this approach remains one of the standard ones. Further
discussions on this can be found in [22], in which the authors discuss various approaches
based on correlations, and also in [23], in which the authors use VAR models and compute
the financial networks based on the variance decomposition.

Once correlation matrices are obtained, we can derive the corresponding adjacency
matrix and build the financial networks. Our focus is on measuring the structural change
in financial networks (and their corresponding adjacency matrices) following changes in
monetary policy, as revealed by the series in monetary policy announcements (see below).

2.2. Singular-Value-Decomposition-Based Entropy

Many measures can be used to characterize a (financial) network quantitatively. Here,
we focus on a simple measure that measures the degree of entropy in a (financial network).
This measure has been used in the past, and it was shown to have significant predictive
and/or informational content for a financial network (see [15,16]).

We start from a standard singular value decomposition (SVD, hereafter) applied to
the adjacency matrix that we have obtained:

A = USVT (3)

The SVD decomposition is applied to the adjacency matrix of returns as computed in
Section 2.1, denoted by A, characterized by n rows and n columns (the matrix is square).
Furthermore, the resulting matrix U has n rows and n columns, and the matrix V has n
rows and n columns. We can further write the matrix S as follows:

S = diag(λ1, λ2, . . . , λn) (4)

The literature shows that the resulting matrix consists only of positive elements, which
are also ordered decreasingly.
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We further employ the SVD decomposition to measure the entropy of the adjacency
matrix and, implicitly, of the financial networks that we built. There are many ways
to measure the entropy of a financial network and market; for examples, see the recent
contributions by Nie and Song [13] and Anand and Bianconi [24]. The approach employed
here is based on the key contribution by [25] as well as the more recent application by [26].

To measure the entropy, we use the approach employed in [15,26,27] in the context of
financial networks. Based on the singular value derived above, λn, we first compute the
normalized values using:

λ̄k =
λk

∑ λk
(5)

In the next step, we measure the entropy employing the normalized singular values
as follows:

En = −∑ λ̄kln(λ̄k) (6)

Our key measure of interest is En, which stands for the singular-value-decomposition-
based entropy. We can measure the entropy for each financial network that we construct.
As explained in the empirical part, we will aim to measure the changes in the financial
networks following monetary policy shocks. Details about constructing the change in the
entropy are given in Section 4.1.

2.3. Von Neumann Entropy

To obtain the von Neumann entropy, denoted by Envne, we use the Laplacian matrix
of the graph, denoted by L. If Λ is the spectrum (or the set of eigenvalues) of the Laplacian
matrix, we can compute the von Neumann entropy via a similar formula:

Envne = − ∑
λ∈Λ

λkln(λk) (7)

We also consider the normalized Laplacian, L̄ for which we compute the set of eigen-
values Λ̄, and derive a normalized measure of entropy (denoted by Envnen):

Envnen = − ∑
λ∈Λ̄

λ̄kln(λ̄k) (8)

3. Data

We selected data for the stock components of the Dow Jones Industrial Average Index,
DOW30 (see Appendix A). We selected daily data to ensure larger samples and thus to
construct financial networks before and after monetary policy announcements. Contrary to
previous studies (see, for example, [15]), we also account for the time changes in the Dow
Jones structure since the index is updated constantly. Given the components’ historical
changes, we update the series used following the official date when changes occurred. To
simplify the analysis, we focus only on data starting with 2000.

A second series we use is that of monetary policy announcements. This is based on
the study by [28]. We then use the updated data set of announcements as in [29]. The data
set spans from 1990 to 2016, but we focus only on 2000 to 2016. Appendix B, Figure A1
displays the monetary policy shocks series. The time x-axis indicates the observations that
we have on the dates shocks produce. Shocks are produced at irregular dates. The y-axis
stands for the magnitude of the shock that is observed.

4. Results

4.1. Measuring the Entropy

In this section, we derive the measure of entropy that we are interested in. In contrast
to previous contributions that have also used singular-value-based entropy to characterize
financial networks (see [15] or [16]), we focus here on measuring the change in the singular-
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value-based or von Neumann entropy in pre- versus post- dates when the monetary policy
shocks occur.

An informational issue is also critical to ensure that the change in the financial net-
work(s) comes only from the current monetary policy shock. To counter this effect, we
isolate the impact of each monetary policy shock by considering the state of the financial
network (as characterized by the entropy) before and after each event (or monetary policy
shock). The informational issue that we discuss is represented below, see Figure 1:

Figure 1. The informational timing. Note: T0 is the moment the monetary policy is produced,
T−30 − T0 is the window of 30 days before the event, and T0 − T+30 is the window after the monetary
policy shock. The size of the window is varied for robustness reasons.

While previous studies (see [15,16]) relied on a sliding window, here, we compute for
each monetary policy shock that entropy for the financial networks before the event and
after the event. We consider a window for which the financial network is derived. This is
used only before and after the event. Thus, the resulting series is the series of changes in
the singular-value-based entropy ex post compared to ex ante.

To control for the robustness of the results to the size of the window used, we vary the
window’s dimension and consider windows of 20, 30, and 45 days (these correspond to
calendar days, while the trading days are just at most five each week). Our main interest
relies on financial networks that are affected only by the events we consider, i.e., monetary
policy shocks. In this sense, considering that only windows of 20, 30, or 45 days fulfills this
essential criterion while ensuring enough observations to construct the financial networks.
We also consider a larger window of 60 days (with the results available at request) for
robustness. However, it might sometimes overlap with previous or subsequent monetary
policy shocks, but this should be taken only as additional evidence.

In Appendixes B and C, we show the log-difference of the Shannon entropy measure
for the different window sizes used, namely for 20, 30, and 45 days (the figures for von
Neumann entropy are similar, and they are available at request). Our data start from 2000,
ensuring that there are enough observations to carry the statistical analysis. The dot-com
crisis from 2001 is marked through a decreasing value of entropy. A similar pattern is
noticed after about eight years, corresponding to the timing of the great financial crisis.
The x-axis is interpreted as showing the observations on entropy changes, while the y-axis
shows the magnitude of the change.

4.2. The Impact of Monetary Policy Shocks on Financial Networks

This section aims to answer the paper’s central research question: do monetary policy
shocks impact the financial networks? We use the singular-value-based entropy and von
Neumann entropy measures derived in the last section to answer this question. We test
the hypothesis of whether monetary policy shocks have a significant impact on financial
networks as measured through the change in the entropy of the financial networks.

We consider the following basic regression models. The model aims at capturing the
relations between the shocks (the change in the monetary policy stance) and the entropy of
the financial markets.

dEnt = c + MPt + ut (9)

137



Entropy 2021, 23, 1465

Here, dEnt is the change in the entropy, while MPt are the monetary policy shocks. c is
a constant, while ut are the residuals of the regression. For robustness, we use the Shannon
entropy and the von Neumann entropy, including one based on a normalized version of
the Laplacian.

Before performing the regression, we also test for the unit root in both monetary policy
shocks and the change in entropy for various window sizes. The results are shown in
Appendix D. The unit root hypothesis is strongly rejected in each case, for either of the
monetary policy shocks, for the different measures of entropy based on different approaches
and window sizes.

Table 1 shows the regression results described in Equation (1) for the Shannon entropy
for the various window sizes considered: 20, 30, and 45 days. Although the R2 is low,
the F-test indicates that the model is significant from a statistical point of view (For those
not familiar with the regression analysis, the F-test is an overall test of significance for
the estimated regression. The null hypothesis is that the model does not have significant
explanatory power).

However, the key result is the statistically significant and negative coefficient associ-
ated with the MP shock in each case considered. In other words, monetary policy shocks
lead to a reduction in the financial network’s entropy, as measured by the change in the
singular-value-based entropy. The results are robust to the window size used, and they
tend to become stronger for larger windows.

Additionally, we consider in Tables 2 and 3 the von Neumann entropy, varying the
window size as well. However, the results are not statistically significant.

Table 1. Monetary policy shocks and the change in Shannon entropy for different window sizes.

Variable Entropy +/− 20 Days Entropy +/− 30 Days Entropy +/− 45 Days

Intercept −0.06351 ** −0.05160 −0.01865
MP shock −1.28732 ** −1.58216 ** −1.55791 **

R2 0.04149 0.04576 0.04374

F-test 6.06 ** 6.714 ** 6.403 **
Note: * denotes statistical significance of the F-test at the 0.10 level, ** statistical significance at the 0.05 level, and
*** at the 0.01 level.

Table 2. Monetary policy shocks and the change in von Neumman entropy for different window
sizes: normalized.

Variable Entropy +/− 20 Days Entropy +/− 30 Days Entropy +/− 45 Days

Intercept 0.006243 0.001215 −0.0005439
MP shock 0.106932 0.070585 0.0608659

R2 0.01106 0.007153 0.008522

F-test 1.566 1.009 1.203
Note: * denotes statistical significance of the F-test at the 0.10 level, ** statistical significance at the 0.05 level, and
*** at the 0.01 level.

Table 3. Monetary policy shocks and the change in von Neumman entropy for different window
sizes: not normalized.

Variable Entropy +/− 20 Days Entropy +/− 30 Days Entropy +/− 45 Days

Intercept 0.006880 0.001546 0.000870
MP shock 0.135886 0.089820 0.089003

R2 0.01425 0.01599 0.01261

F-test 2.024 2.016 1.788
Note: * denotes statistical significance of the F-test at the 0.10 level; ** statistical significance at the 0.05 level, and
*** at the 0.01 level.
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In Appendix E, we further test whether controlling for the correlation threshold
changes the results for the Shannon entropy (we set the correlation weaker than 0.30 to 0).
We were able to derive the results only for two types of windows of 20 and 30 observations.
The results remain negative and statistically significant, and the magnitude is even larger
than for the baseline case. We tried the same exercise for the von Neumann entropy;
however, the results remained the same.

5. Discussion

In this paper, we aimed at approaching the issue of monetary policy effects on the
financial markets from a network perspective. We analyzed whether monetary policy
shocks statistically impact the financial networks (as constructed from the Dow Jones
Industrial Average components). To measure the change in the financial networks, we used
the change in the entropy (either singular-value-based or von Neumann).

The main contribution of this paper was to show that monetary policy shocks have
indeed a statistically significant impact on financial networks: a positive monetary policy
shock (corresponding to a tightening of the monetary policy and a higher interest rate)
had a negative impact on the singular-value-based entropy of the financial networks. Our
results are robust to varying the size of the window used to construct the financial networks.
They are also robust to controlling for the significance of correlation. However, the results
using the von Neumann entropy are not statistically significant.

The interpretation of the result is that the release of the new information through
the Fed communications on the interest decreases the entropy of the financial market
networks. This is a somewhat expected result since it reduces the degree of uncertainty in
the financial markets.

There are a few novel results that can be outlined. First, we highlight the fact that
monetary policy shocks do affect the financial networks. Previous studies (see [10,12,16])
considered (production) networks that are invariant to changes in aggregate shocks, includ-
ing monetary policy shocks. Our focus was on financial networks and how they respond
to monetary policy shocks. Second, we also show that entropy measures of networks can
be used to detect the changes in financial networks. This has been used before in a few
studies; however, in this paper, we show that event studies can be combined with entropy
to evaluate the impact of financial networks.

The results here can be further extended in various ways. For example, one can
consider different ways to construct entropy from financial networks. Furthermore, fi-
nancial networks can also be characterized in many ways, including based on measures
that are more intuitively linked to financial and economic concepts (such as risk, for ex-
ample), which can be further used to analyze the impact of monetary policy shocks in a
network context.

Author Contributions: P.C. and A.V.L. wrote the paper. P.C. gathered the data and performed the
technical work. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a grant of the Romanian Ministry of Education and Research,
CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2020-0557, within PNCDI III, contract number
112/2021.

Conflicts of Interest: The authors declare no conflict of interest.

139



Entropy 2021, 23, 1465

Abbreviations

The following abbreviations are used in this manuscript:

DJIA Dow Jones Industrial Average
SvdEn Singular Value Decomposition Entropy
MP Monetary Policy
ADF Augmented Dickey–Fuller
PP Phillips–Perron

Appendix A. DJIA Index Components

Table A1. DOW Jones Industrial Average Components as of end of 2015.

Company Abbreviation

3M Company MMM

American Express Company AXP

Apple Inc. AAPL

Boeing Company BA

Caterpillar, Inc. CAT

Cisco Systems, Inc. CSCO

Chevron Corporation CVX

Dow Chemical Company DD

Exxon Mobil Corporation XOM

General Electric Company GE

The Goldman Sachs Group, Inc. GS

Home Depot, Inc. (The) HD

Intel Corporation INTC

International Business Machines IBM

Johnson & Johnson JNJ

JP Morgan Chase & Co. JPM

Coca-Cola Company (The) KO

McDonald’s Corporation MCD

Merck & Company, Inc. MRK

Microsoft Corporation MSFT

Nike, Inc. NKE

Pfizer, Inc. PFE

Procter & Gamble Company (The) PG

Raytheon Technologies RTX

The Travelers Companies, Inc. TRV

United Health Group Inc. UNH

Verizon Communications Inc. VZ

Visa Inc. V

WalMart Stores, Inc. WMT

Walt Disney Company (The) DIS
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Appendix B. Monetary Policy Shocks and Entropy

Figure A1. Monetary policy shocks.

Figure A2. The change in singular-value-based entropy-20 days window.
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Appendix C. Entropy at 30 and 45 Days Windows

Figure A3. The change in singular-value-based entropy-30 days window.

Figure A4. The change in singular-value-based entropy-45 days window.

Appendix D. Unit Root Tests

Table A2. Unit Root Tests: Shannon Entropy.

Country ADF Test PP Test

Monetary Policy Shock −5.7318 ** −124.91 **
Entropy—20 days window −4.8608 ** −136.29 **
Entropy—30 days window −5.4853 ** −159.48 **
Entropy—45 days window −5.7318 ** −162.22 **

Note: * denotes statistical significance of the unit root test at 0.10 level; ** at 0.05 level; *** at 0.01 level.
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Table A3. Unit Root Tests: Von Neumann Entropy—normalized.

Country ADF Test PP Test

Entropy—20 days window −4.7529 ** −121.16 **
Entropy—30 days window −4.555 ** −186.99 **
Entropy—45 days window −5.0434 ** −172.26 **

Note: * denotes statistical significance of the unit root test at the 0.10 level, ** at the 0.05 level, and *** at the
0.01 level.

Table A4. Unit Root Tests: Von Neumann Entropy—not normalized.

Country ADF Test PP Test

Entropy—20 days window −4.8207 ** −116.98 **
Entropy—30 days window −4.4355 ** −185.88 **
Entropy—45 days window −5.0565 ** −170.02 **

Note: * denotes statistical significance of the unit root test at the 0.10 level, ** at the 0.05 level, and *** at the
0.01 level.

Appendix E. Robustness Exercise: Taking into Account a Correlation Threshold

Table A5. Monetary policy shocks and the change in Shannon entropy for different window sizes.
Controlling for correlation threshold.

Variable Entropy +/− 20 Days Entropy +/− 30 Days

Intercept 0.11335 *** 0.15085 ***
MP shock −1.72342 ** −1.88651 ***

R2 0.04601 0.0483

F-test 6.75 ** 7.125 ***
Note: * denotes statistical significance of the F-test at the 0.10 level, ** statistical significance at the 0.05 level, and
*** at the 0.01 level.
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Abstract: The main research question concerned the identification of changes in the COVID-19
epidemiological situation using fuzzy clustering methods. This research used cross-sectional time
series data obtained from the European Centre for Disease Prevention and Control. The identification
of country types in terms of epidemiological risk was carried out using the fuzzy c-means clustering
method. We also used the entropy index to measure the degree of fuzziness in the classification and
evaluate the uncertainty of epidemiological states. The proposed approach allowed us to identify
countries’ epidemic states. Moreover, it also made it possible to determine the time of transition from
one state to another, as well as to observe fluctuations during changes of state. Three COVID-19
epidemic states were identified in Europe, i.e., stabilisation, destabilisation, and expansion. The
methodology is universal and can also be useful for other countries, as well as the research results
being important for governments, politicians and other policy-makers working to mitigate the effects
of the COVID-19 pandemic.

Keywords: fuzzy c-means classification method; entropy; COVID-19; epidemic states; Europe

1. Introduction

In the recent past, the coronavirus has become an anomalous part of everyday life
worldwide. Moreover, it deepens a sense of insecurity in society and brings confusion due
to the lack of standards and rules to fit the new reality. The spread rate of the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19 and its scale has
clearly made everyone aware of how powerful the phenomenon we are dealing with is.
In the macro-social dimension, it was associated with disturbances in the economy, i.e.,
an increase in unemployment, inflation, the budget deficit or a decrease in GDP cf. [1].
On the one hand, people were looking for solutions that would rationalise their everyday
life, consisting in a change in everyday functioning, reorganisation of professional life, or
changes in the education system. On the other hand, the authorities, started actions aimed
at counteracting the unfavourable phenomena in the economy and society. There are many
studies and articles on COVID-19 that point to different human behaviour, adaptation to
COVID reality, and people’s fear of changes, as well as the process of entering the “new
normality” but also negating this phenomenon [2–25]. These papers contribute to the
literature on the potential healthcare, financial, social, and economic impacts of the COVID-
19 pandemic. The importance of this research is highlighted by the European Commission’s
“Sustainable Europe 2030”, in which more than half of the ten essential changes needed
in the fight the pandemic are economic. These include support for restoring the economy;
job protection; financial aid for EU member states; broadening European solidarity, and
assisting the economic sectors hit hardest. This goes to show just how vital it is to research
the pandemic’s effects.
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There are analyses of the situation in countries such as Italy [26], the United States [27,28],
United Kingdom [4], Poland [10], Russia [29], Germany [30], China [21,31], Lebanon [23],
Kenya [22], Uganda [22,32], Brazil [33], and India [6]. Analyses in these countries reveal
various problems, such as rural areas with fewer opportunities for medical services, poorer
health and sanitation infrastructure, insufficient social care and numerous problems in
managing rural areas, and sometimes endemic poverty. In many countries, such as Canada,
the United States, Australia, and Norway, people escaping to the countryside from cities is
also a problem, because rural areas have been recognised as places of relative safety [34].

Some studies address issues of studying COVID-19 and its consequences using various
mathematical models. Many possible approaches for this modelling can be considered, i.e.,
non-linear regression, Markov models, differential equation systems (continuous time), and
difference equations (discrete time). There are many infectious disease-spread models, such
as SIR, SIS, SIRS, SEIR, SEIRD, and SEIHR see e.g., [35,36]. Ivorra et al. [31] developed a
mathematical model for the spread of the coronavirus. They proposed the θ-SEIHRD model
based on the Be-CoDiS model. Rajaei et al. [37] proposed a different type of nonlinear model
for COVID-19. They used a state-estimation-based nonlinear robust control method for
state estimation, tracking control, and robustness against uncertainties. Earlier, Sharifi and
Moradi [38] proposed a nonlinear epidemiological model of influenza. Shadabfar et al. [28]
proposed a probabilistic method to predict the spreading profile of the coronavirus. Their
research applied an extended susceptible-exposed-infected-vaccinated-recovered (SEIVR)
epidemic model. Moreover, Monte Carlo sampling was used to calculate the exceedance
probabilities for three parameters, i.e., the final number of deaths and recovered cases, as
well as the maximum number of the infected cases. Moreover, artificial intelligence was
applied “in battling against the difficulties the outbreak has caused” [39].

However, there is little research on multiple country analyses together. An interesting
example is research by Mahmoudi et al. [40], who studied the situation in the United
States, Spain, Italy, Germany, the United Kingdom, France, and Iran. They used a fuzzy
clustering technique to compare and cluster the distributions of the spread of COVID-19. It
should be noted that, recently, approaches based on soft clustering algorithms have become
more popular, having fewer limitations and disadvantages than traditional hard clustering
algorithms. Just and Łuczak [41] stated that the “application of classical clustering methods
is burdened with some restrictions, which often result in an oversimplification of the actual
course of investigated phenomena”. They also added that “the clustering methods based
on fuzzy sets provide a much greater amount of information on clustering of objects than
classical methods, which only allow the unambiguous assignment each element to one of
the clusters”.

Mirkin [42] pointed out that it is possible to “distinguish two overlapping mainstreams
potentially leading to bridging the gaps within the clustering discipline. One is related
to modeling cluster structures in terms of observed data, and the other is connected with
analyzing particular kinds of phenomena”. It is worth adding an observation by Sato-
Ilic and Jain [43] that “fuzzy clustering is one method which can capture the uncertainty
situation of real data and it is well known that fuzzy clustering can obtain a robust result as
compared with conventional hard clustering”.

The statement of these facts leads to reflection on the current situation countries and
its changes during the COVID-19 pandemic. Research gaps were identified based on a
broad review of the source literature on the classification of objects and studies related to
the COVID-19 pandemic. Our goal was to fill a significant research gap in the assessment of
the epidemiological situation and its changes in European countries during the coronavirus
pandemic on the basis of empirical studies and on this basis to formulate answers to the
following research questions:

Q1. What were the typical epidemiological states in Poland and other European
countries, from 4 March to 24 June 2020?

Q2. What was the variability of the epidemiological states in the countries analysed
from the beginning of the epidemic in Poland until the end of the second stage of the survey?
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Q3. Were epidemiological states clearly recognizable in the countries analysed during
the given time period?

The main objective of this paper is to identify the epidemic states in the countries
investigated from 4 March 2020 (the beginning of the epidemic in Poland) to 24 June 2020
(the first phase—the abolition of most restrictions related to COVID-19 in Poland). Fur-
thermore, the following research hypothesis was formulated: the epidemiological situation
in Poland in the period from 4 March to 24 June 2020 was stable compared to other Euro-
pean countries.

To fill the existing research gap, our study identified epidemic states in European
countries using the fuzzy c-means classification method. The proposed approach not only
makes the identification of epidemic states possible, but also provides information on the
time of transition from one state to another. Thus, this paper is an important complement
to and extension of existing studies on changes in the situation of countries affected by the
COVID-19 epidemic. Other authors’ contribution concerned the ability of the entropy of
the classification to signal the uncertainty of epidemiological states.

Apart from the introduction, the paper is composed as follows: part 2 presents the
methods and data used in the empirical study; part 3 presents the results of the research
on the epidemiological situation and its changes in European countries. The final parts
(5–7) of the paper present a discussion of the research together with conclusions and
recommendations.

2. Materials and Methods

The study includes the identification of epidemic states, as well as their changes in
European countries from the beginning of the epidemic in Poland (4 March 2020) until the
abolition of most restrictions related to COVID-19 in Poland (24 June 2020). The country
types were distinguished regarding their epidemiological risk. The cross-sectional time
series data from the European Centre for Disease Prevention and Control [44] constitute the
empirical basis of the study. Changes in the countries’ epidemic states were identified using
the fuzzy c-means clustering (FCM) method. FCM “is one of the most classical prototype-
based clustering methods” [45]. Yang and Sinaga [46] noted that this method has been
“widely extended and applied in various real-world problems, such as pattern recognition,
image segmentation, medical diagnostic, economics, cell formation, gene expression, and
data mining”.

A methodological approach based on clustering methods was proposed (Figure 1). The
clustering process consists in the grouping of similar objects [47]. “Clustering mainly aims
to partition data into clusters with a maximum similarity in a cluster (homogeneous), as
well as a maximum dissimilarity between clusters (heterogeneous)” [48] (p. 297). In other
words, Liao [49] (p. 1857) states that “the within-group-object similarity is minimized
and the between-group-object dissimilarity is maximized”. It aims to identify relatively
homogeneous groups of objects in terms of similar characterising variables. The most
frequent clustering methods are the disjoint methods, where each object is assigned only
to one class. This indicates that each object is assigned properties of only one type. Such
an identification of types is a great simplification of the state of the objects examined, as
they frequently possess variables of many types. Methods based on the fuzzy-sets theory
help to resolve this issue [50]. This theory was developed to describe highly complex
phenomena or poorly defined concepts which cannot be precisely described by the classical
mathematical apparatus. In fuzzy-clustering methods, objects may belong to different
classes. These methods make it possible to assign objects to all classes with a certain degree
of membership.

Prior to the clustering process, it is necessary to establish the main criterion regarding
the process (e.g., identification of pandemic states), as well as the objects (e.g., coun-
tries) intended for clustering (stage 1). An important stage in the clustering process
comprises an appropriate selection of variables (stage 2), which is based on substantive
and statistical analyses. The established values of the K variables for n countries and T
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moments in time are compiled in T · N×K dimensional data matrix X∗ =
[
x∗tik
]
, where x∗tik

(t = 1, 2, . . . , T; n = 1, 2, . . . , N; k = 1, 2, . . . , K ) is the value of the k-th variable for the
i-th country at time t.

Figure 1. Stages of the clustering process. Source: Own elaboration based on Wysocki [51].

Variables describing the objects examined may assume a different nature and their
range of maximum and minimum values also varies. The values of variables should be
standardised to ensure comparability of data (stage 3). The standardisation, recorded in
the form of a matrix X∗, is conducted according to the formula:

xtik =
x∗tik − x∗k

s∗k
(t = 1, 2, . . . , T; i = 1, . . . , N; k = 1, . . . , K), (1)

where xtik—the standardised value of the k-th variable for the i-th object at time t, x∗tik—an
initial value of the k-th variable for the i-th object at time t, x∗k —arithmetical mean of the
k-th variable, and s∗k —a standard deviation of the k-th variable.

The clustering process is based on the distances between pairs of the multi-variable ob-
jects [51–53]. The most frequently applied distance measure is the Minkowski distance [52]:

dts =
{
∑K

k=1|xtik − xsik|p
}1/p

(t, s = 1, . . . , T; i = 1, . . . , N) (2)

The formula (2) for p = 1 comprises a city block (taxicab, Manhattan) distance,
which for p = 2 is referred to as a Euclidean distance, while for p → ∞ as a Chebyshev
distance. The application of the city block distance results in cubic clustering, while
spherical clustering is identified for Euclidean distances. It should be emphasised that the
Minkowski distance is employed to study the similarity of objects with regard to the level
of the variable values.

Moreover, it is necessary to add that it is not possible to indicate a universal clustering
method. All methods involve a limitation related to the interpretation of the results ob-
tained, which decreases with the number of objects classified. The most common clustering
methods include the k-means method and its rarely used fuzzy c-means version, both
of which were used in this study (stage 4). Knowledge regarding the number of classes,
as well as the initial clustering of objects, is required in case of the application of these
methods. In the subsequent stages of the clustering process, objects are transferred from
one class to another in a way that enables them to minimise the difference from certain
class variables (prototypes) within the specific class. The iterative process is repeated until
the clustering approaches the assumed level of stability [43,51,54,55].

The clustering of objects requires the number of classes to be determined (stage 5),
which may be established by different methods [56,57]. In this paper, the number of classes
was determined in two steps. In the initial step, separable clustering was generated using
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the k-means method, then assessed with the Krzanowski–Lai [58] clustering quality index
calculated according to the formula

KL(G) =

∣∣∣∣ DIFF(G)

DIFF(G + 1)

∣∣∣∣, KL(G) ∈ R (3)

where DIFF(G) = (G − 1)2/KtrW(G − 1)− G2/KtrW(G). When KL(G) reaches the first
local maximum for the number of clusters G *, the best partition of the population is into
G * clusters.

In the fifth stage of the clustering, the number of classes adopted was determined by
the chosen disjoint clustering method for the identical data matrix. Next, the clustering
was conducted using the fuzzy c-means method [59–61]. The problem of fuzzy clustering
was presented as a non-linear issue of mathematical programming [59–61]:

Minimise Jm(U, C, X) = ∑T
t=1 ∑N

i=1 ∑G
g=1 um

tig ∑K
k=1 (xtik − cgk)

2 (4)

Subject to:

∑G
g=1 utig = 1 (t = 1, . . . , T; i = 1, . . . , N) (5)

∑T
t=1 ∑N

i=1 utig > 0 (g = 1, . . . , G), (6)

utig ≥ 0 (t = 1, . . . , T; i = 1, . . . , N; g = 1, . . . , G), (7)

where T—the number of moments in time (e.g., days), N—the number of objects (e.g.,
countries), G—the number of fuzzy classes, K—the number of variables, m—the parameter
which regulates the degree of fuzziness of the clustering process, U =

[
utig
] − (T·N × G),

a dimensional matrix of the degrees of membership of objects belonging to fuzzy classes,
C =

[
cgk

]
− (G × K), a dimensional matrix of the centroids (centres of gravity) of classes,

and X = [xtik] − (T·N × K), a dimensional data matrix, where xtik represents the standard-
ised value of the k-th variable in the i-th object at time t.

As a result of the fuzzy clustering process, each object (e.g., a country at a given
moment of time) is classified into each class (epidemic states) with a certain degree of
membership, that is, a number between 0 and 1. Additionally, the sum of degrees of
membership for each object equals one. The degree of membership determines the strength
with which a given object belongs to a particular class (epidemic states). The higher the
degree of membership, the more strongly the object is characterised by the variables of
a given state. Fuzzy clustering methods provide more information on the clustering of
objects than classical methods, which only make it possible to unambiguously assign each
object to one of the classes (states) created. The proposed approach not only allows for the
identification of epidemic states but also provides information on the time of transition
from one state to another, as well as presenting the opportunity to illustrate the fluctuations
occurring when states change.

The next stage of the procedure is to identify epidemic states (stage 6). The identifica-
tion of states may be divided into the formal and the substantive. Formal identification
consists of determining the name, while substantive identification involves descriptive
statistics of indicators. It is likewise worth paying attention to the fuzziness degree of the
classification—we used the entropy index to measure this and at the same time to assess
the uncertainty of epidemiological states. Entropy is a measure of the indeterminacy, chaos,
and degree of disorder in a structure. It is greater when the states are more equal, and
smaller when one state is more pronounced. The entropy of a fuzzy set [62] is a measure
of the total amount of information in the missing fuzzy structure, given by a fuzzy set, to
such a state that there is no uncertainty in the classification of the elements. The research
used the normalized entropy index see [53,60,63,64]:

Hi =
1
T ∑T

t=1 ∑G
g=1 h

(
utig
)
(i = 1, . . . , N) (8)
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where:

h
(
utig
)
=

{ −utig loga utig for utig > 0
0 for utig = 0

(9)

utig is the degree of membership of the i-th object (country) at time t belonging to g-th fuzzy
class, and a ∈ (1, ∞ ), but usually a = G. Then, this index ranges from 0 to 1. The lower the
entropy value, the lower the hesitancy of the states in the period analyzed. In other words,
the lower the entropy, the more pronounced is one state, while the higher the entropy, the
higher the uncertainty states.

We also determine the changes in the epidemiological states using the daily entropy index:

Hti =
G

∑
g=1

h
(
utig
)

(10)

Equation (10) “represents Shannon’s measure of statistical uncertainty” [65]. The daily
entropy is computed similarly to the normalized entropy index, but aggregating per day.
The greater Hti, the greater the uncertainty of fuzzy classification; the greater the fuzziness,
and the greater the uncertainty in the identification of epidemiological states. It is worth
noting that in two extreme cases, if Hti = 0 then there is no uncertainty in the identification
of states, and if Hti = 1 then we identify the most uncertain situation.

3. Results

The examination of the epidemiological situation, as well as its changes, initiates the
adoption of the main objective of the clustering process, comprising the identification of
epidemic states. The study covered the European countries and was based on daily data
from 4 March to 24 June 2020. A set of four variables (indicators) was selected to identify
the epidemic states in the countries studied, as follows:

• COVID-19 cases per 100,000 population (x1),
• COVID-19 deaths per 100,000 population (x2),
• share of COVID-19 deaths in COVID-19 cases (%) (x3),
• active cases—cumulative number for 14 days of COVID-19 cases per 100,000 (x4).

A statistical description of the variables was presented in Table 1. On this basis, it may
be concluded that the variables selected significantly differentiate the countries analysed.
Such a conclusion is indicated by a significant range between the maximum and minimum
values, as well as by the analysis of the variation coefficient. The largest diversity of
values characterised the x2 COVID-19 deaths per 100,000 population, in which the average
diversity of values of this variable in European countries was 339.94%. In European
countries, the coefficient of variation of the x1 COVID-19 cases per 100,000 population was
also high (329.17%). The analysis of the variable values based on positional statistics reveals
a slightly lower differentiation in their values.

Selected diagnostic variables constitute important information on the epidemiological
situation of the countries studied. Initially, sequences of disjoint classifications from 2 to
10 classes were generated using the k-means method. The calculations were performed
in the R program [66] with the clusterSim package [67]. As part of this package, we
used a function of the same name, cluster. Sim, for a k-means method with the classical
standardisation formula for data. The divisions were assessed using the Krzanowski–
Lai index, which achieved the first local extremum for three classes. It was therefore
assumed that three epidemiological states would be identified in the countries analysed.
Subsequently, applying information from the previous research stage, the fuzzy clustering
of objects was conducted based on the fuzzy c-means method. The calculations were
performed in the R program with the fclust package [68]. We used the FKM procedure
including the fuzzy c-means clustering algorithm. The results of the state identification in
the countries analysed are presented in Figure 2.
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Table 1. Values of the selected descriptive statistics of variables characterising the epidemiological
situation in the countries examined from 4 March to 24 June 2020.

Variables
Classical Measures Positional Measures

min mean max SD CV Q1 Q2 Q3 IQR QCOD

x1 0.00 3.04 490.80 10.00 329.17 0.16 0.82 2.65 2.48 88.41
x2 0.00 0.16 17.42 0.53 339.94 0.00 0.01 0.09 0.09 100.00
x3 0.00 6.07 400.00 16.27 268.05 0.00 0.72 6.39 6.39 100.00
x4 0.00 39.80 858.90 74.90 188.20 3.77 12.74 40.78 37.02 83.09

Note: SD—standard deviation, CV—coefficient of variation (%), Q1—1st quartile, Q2—median, Q3—3rd quartile,
IQR—interquartile range, QCOD—quartile coefficient of dispersion (%). Source: own calculation based on
statistical data from [44].

Figure 2 presents the degrees of membership of countries to the three epidemic states
in the period examined. The closer the line is to 1, the more identifiable is the state. The
change in the membership degrees of countries to specific states indicates a change in
the epidemiological state. The method applied makes it possible not only to identify the
epidemic states but also provides information on the time of transition from one state
to another.

We observed that for Germany, from 20 March 2020 the values of the degrees of mem-
bership of the stabilisation state began to decline. This situation lasted until 30 March 2020,
with slight fluctuations in the degrees of membership to the stable state. The transition time
from stable to destabilisation in Germany was 11 days. On 31 March the degrees of member-
ship to the state of stabilisation and destabilisation were identical at 0.48. From 1 April 2020
Germany entered the state of destabilisation, which finished on 16 April 2020. For the next
19 days, the situation was unstable, and on 5 May (as on March 31), there was no single
dominant state and the degrees of membership to the stabilisation and destabilisation
states were 0.48. It was only on 6 May that Germany entered the state of stabilisation of the
epidemiological situation.

In France, too, the situation began to destabilise around 20 March 2020. The state
of destabilisation began after a week. Although this state prevailed until 9 May 2020,
sometimes it was only partial (a degree of membership less than 0.5). The situation was
ambiguous for the 19 days following 10 May 2020. Only on 29 May 2020 did France enter a
state of relative stabilisation of the epidemiological situation. Until the end of the period
studied, one can observe a quite regular—about a week apart—sharp decrease in the degree
of membership of the state of stabilisation.

In Italy, from 9 March a decrease in the degree of membership of the stabilisation state
was observed, lasting about a week. From 16 to 23 May 2020, a state of destabilisation
was observed. However, for 23 days from the beginning of May, declining degrees of
membership of this state was mostly identified, indicating a potential change in state.
For three weeks from 24 May 2020, the situation was unclear. The state of epidemiological
stabilisation was mostly identified, but to a large extent it was partial. For three more
weeks the situation was not clear. It was only from 14 June that the situation began to
stabilise. It should be noted that in Germany, France and Italy the transition from stabilised
to destabilised was faster than the other way around.

In Spain, the situation was more complicated. On 16 March 2020 there was a sharp
decline in the degree of membership. However, from 12 March a slight decrease in the
values of membership degrees was already observed. After about a week, Spain went into
a destabilised state. After another week, the expansion of the epidemiological situation
already dominated and was identified until 13 April 2020. From 14 April a partial state
of destabilisation began to manifest itself, which after a week was already quite intense
(membership degrees above 0.7). After another week (27 April 2020), there was a one-day
breakdown, followed by a state of destabilisation for the next 19 days. From 17 May 2020
the situation began to stabilise for nine days. This was clear until the end of the period
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analysed, excluding 16 June 2020, where the degrees of membership to the states were
similar (approximately 0.3).
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Figure 2. Epidemic states in selected European countries from 4 March to 24 June 2020. Note: The
ordinate axis shows the membership degrees of a country for states of the epidemic. Source: own
elaboration based on statistical data from [44].

Some countries displayed a stable state throughout the study period. These include
Poland, the Czech Republic, and Slovakia. However, Greece was dominated by one epi-
demiological state—stabilization, but sometimes it was only partial (degrees of membership
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less than 0.5). This was especially visible in two-week intervals, from 7 to 21 April, from 5
to 19 May and from 22 May to 2 June at intervals of two to four days.

However, in the latter two countries, a less stable dominant state, as well as small
periodic fluctuations were observed. Additionally, Figures 3 and 4 show the values of the
COVID-19 cases and present deaths per 100,000 population.
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Figure 3. COVID-19 cases per 100,000 population in selected European countries from 4 March to
24 June 2020. Source: own elaboration based on statistical data from [44].
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Figure 4. COVID-19 deaths per 100,000 population in selected European countries from 4 March to
24 June 2020. Source: own elaboration based on statistical data from [44].

Table 2 presents the affiliation of countries to specific states in three crucial periods:
4 March 2020 (the start of the epidemic in Poland), 15 April 2020, and 24 June 2020. The
study identified three main epidemic states in the European countries defined as follows:
stabilization, destabilization, and expansion of COVID-19. A state was defined as partial,
provided that the highest membership degree of the country was less than 0.5. The degree of
membership determines the strength with which a country belongs to a particular epidemic
state. The higher the degree of membership, the more strongly the country is characterised
by the variables of a given state. The typology of states was conducted using the average
values of variables for epidemic states identified in European countries (Table 3).
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Table 2. Pandemic states in European countries in crucial study periods.

Date States Types of State (1) Countries (2)

4 March 2020

1 destabilisation not identified

2 expansion not identified

3 stabilisation

France (0.98) (3), Austria (0.97), Belarus (0.97), Belgium (0.97), Croatia
(0.97), Czechia (0.97), Denmark (0.97), Estonia (0.97), Finland (0.97),

Germany (0.97), Iceland (0.97), Ireland (0.97), Italy (0.97), Netherlands
(0.97), Norway (0.97), Poland (0.97), Portugal (0.97), Romania (0.97),

Russia (0.97), Spain (0.97), Sweden (0.97), Switzerland (0.97), Ukraine
(0.97), United Kingdom (0.97), San Marino (0.84)

15 April 2020

1
destabilisation

Germany (0.89), Netherlands (0.89), Switzerland (0.87), Portugal (0.8),
Sweden (0.76), Italy (0.69), France (0.63), Denmark (0.62), Norway

(0.59), Czechia (0.51)

partial destabilisation United Kingdom (0.48), Iceland (0.46), Luxembourg (0.43)

2
expansion Ireland (0.70), San Marino (0.57),

partial expansion Belgium (0.49), Spain (0.46)

3 stabilisation

Armenia (1.00), Kosovo (0.99), Russia (0.99), Slovakia (0.99), Ukraine
(0.99), Bosnia and Herzegovina (0.99), Georgia (0.98), Lithuania (0.98),
Latvia (0.98), Poland (0.96), Greece (0.94), Liechtenstein (0.94), Finland
(0.92), Belarus (0.9), Malta (0.88), Bulgaria (0.87), Albania (0.82), Cyprus
(0.81), Romania (0.79), Slovenia (0.79), Croatia (0.77), Moldova (0.77),

Montenegro (0.72), Monaco (0.63), Serbia (0.63), Austria (0.62),
Hungary (0.61), Estonia (0.54), North Macedonia (0.53),

24 June 2020

1
destabilisation Moldova (0.65), North Macedonia (0.65), Sweden (0.51), Belarus (0.51)

partial destabilisation Ireland (0.48), Russia (0.48), Lithuania (0.47)

2 expansion Armenia (0.85)

3 stabilisation

Belgium (1.00), Czechia (1.00), Denmark (1.00), Germany (1.00),
Bulgaria (0.99), Serbia (0.99), Spain (0.99), Albania (0.98), Bosnia and

Herzegovina (0.98), Croatia (0.98), Cyprus (0.98), Estonia (0.98), Finland
(0.98), Georgia (0.98), Greece (0.98), Iceland (0.98), Luxembourg (0.98),
Malta (0.98), Monaco (0.98), Montenegro (0.98), Norway (0.98), Poland
(0.98), Switzerland (0.98), Ukraine (0.98), Hungary (0.97), Latvia (0.97),

Liechtenstein (0.97), Slovakia (0.97), San Marino (0.96), Netherlands
(0.94), Romania (0.93), Austria (0.90), Portugal (0.85), France (0.84),
United Kingdom (0.80), Kosovo (0.76), Italy (0.72), Slovenia (0.72)

Note: (1) A type of state was defined as partial, provided that the highest membership degree of the country to
a specific state amounted to less than 0.5. The research also included: Armenia, Kosovo, Georgia and Cyprus.
(2) Countries reporting COVID-19 in a particular period. (3) The highest membership degree of a country to the
specific state. The calculations were performed with the fclust package [68] in R. Source: own elaboration based
on statistical data from [44].

Table 3. The average values of variables for epidemic states identified in European countries (average
values for fuzzy classes).

Specification
Variables

x1 x2 x3 x4

State 1 5.66 0.39 13.55 76.73
State 2 13.70 0.67 14.23 183.62
State 3 1.57 0.06 3.65 19.64

Mean 3.04 0.16 6.07 39.80
Source: own elaboration based on statistical data from [44].

The analysis of the variable values in the period examined made it possible to identify
three epidemic states in Europe. The first state was defined as a total or partial destabilisa-
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tion. Such a nomenclature was influenced by high values of the indicators. Each of these
exceeded the average for Europe as a whole. The number of COVID-19 cases amounted
to 5.66 per 100,000 population, with the average for European countries close to 3. It
should be noted that there were almost 4 COVID-19 deaths per 1 million population, which
represented more than 13.5% of the total COVID-19 cases (%). Simultaneously, the active
number of cases within the destabilisation state amounted to nearly 77 COVID-19 cases
per 100,000 population. This state constitutes a threat to countries’ economies; however,
the level of variables associated with infections and deaths allows for a certain limited
functioning of economies.

We called the second state expansion, which constitutes an escalation of the phe-
nomena, noticeable in various intensities. The indicators for state 2 assume significantly
worse values than for state 1. The state of expansion was characterised by more than
twice as many COVID-19 cases than the state of destabilisation. In the state of coronavirus
expansion, the number of active cases increased rapidly, amounting to over 183 COVID-19
cases per 100,000 population. The values of indicators enabled the formulation of a the-
sis assuming that the situation threatens the country’s stability. They also comprise the
basis for social and economic restrictions, resulting in a loss of economic security in the
micro- and macro-economic dimensions. Such a state should constitute a premise for a
complete or significant closure of the economy to prevent a further uncontrolled expansion
of the disease.

In state 3—stabilisation—the values of the indicators were below the European average.
The number of COVID-19 cases amounted to 1.57 per 100,000 population, while deaths
were at 1 person in over a million. The number of active cases was therefore low (19.64 per
100,000 population), with the European average at 39.8. State 3 does not pose a significant
threat to national economies. It appears to constitute a premise for complying with certain
hygiene and safety standards, such as the use of masks, hand-washing, and refraining
from shaking hands; however, it should not result in a freeze of the national economies.
Unfortunately, the absence of recognition of the disease’s effects caused many countries to
introduce lockdowns at this level, which resulted in their economic destabilisation.

Figure 5 shows values of the normalised entropy index in selected European countries.
A high value of the entropy index was revealed for Italy (0.653). This proves the high
uncertainty of the epidemiological situation in the period analysed. A slightly lower value
of the entropy index was identified for France (0.537) and Spain (0.510). A very low entropy
index value and, at the same time, the most stable epidemiological situation was observed
in Poland (0.084). In even greater detail, the uncertainty in the epidemiological situation of
countries is shown in the daily entropy index (Figure 6). The results showed that a period
of low entropy in countries primarily matches the epidemiological state of stabilisation.
This situation was observed especially in Poland (during almost the entire period analysed),
Czechia, and Slovakia (from March to until around mid-April and from the end of May
to June).
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Figure 5. Values of normalised entropy index in selected European countries. Source: own elaboration
based on statistical data from [44].
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Figure 6. Changes in daily entropy index in selected European countries from 4 March to 24 June 2020.
Source: own elaboration based on statistical data from [44].

After COVID-19 cases and deaths increased, the entropy was heightened. This shows
a destabilisation of the epidemiological situation in Germany, France, Italy, and Spain
during almost the entire period considered. In Germany, France, and Italy, during the
period studied, there was a transition from a stabilization state (with fewer COVID-19 cases
and deaths) to destablilization (with a sharp increase in COVID-19 cases and deaths) and
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back to a stabilization state (Figure 2). In Spain, the situation was similar, but the state of
expansion was also partially identified. Moreover, since the end of May, when the number
of COVID-19 cases and deaths was lower, the stabilization state was identified (Figure 2),
and the daily entropy index was predominantly at a very low level (Figure 6).

In Greece, the situation was quite different. In this case entropy measure describes
the high degree of chaoticity. Although the epidemiological state in the country was
mainly identified as stabilization (Figure 2), and the entropy index is quite low—0.243
(Figure 5), the daily entropy shows great variability. This demonstrates the instability of
the epidemiological state, despite the country keeping closer to the state of stabilization.

4. Discussion

Some studies use models (e.g., the recursive bifurcation model) to describe the infection
processes as first- and second-order phase transitions. Such approaches make it possible to
show two states, i.e., “the possibility of the population returning to a state with a low level
of cases or the epidemic returning” [35]. The advantage of our approach is that more than
two states of the epidemic can be revealed. In addition, the proposed fuzzy technique also
makes it possible to observe the fluctuations and transition times from one state to another.
Variability of states shows the intensity of the process and the hidden diversity in phases of
the pandemic.

Moreover, the idea of the proposed fuzzy clustering approach proposed is based on
more complex mathematical modelling then in the case of traditional clustering. Important
in this approach is the concept of partial membership of a country in more than one class
(state). Each country can belong to more than one epidemic state at the same time, but one
state a day tends to predominate. The transition from membership to non-membership is
gradual. An abrupt transition from one state to another is less common. This relates to
the fuzziness of the degree of membership, because “the essence of fuzzy clustering is to
consider not only the belonging status to the clusters, but also to consider to what degree
do the objects belong to the clusters” [43].

Mahmoudi et al. [40] compared and clustered selected countries using the fuzzy
clustering approach. This work describes the distributions of the spread of COVID-19. They
also state that “to determine the policies and plans, the study of the relations between the
distributions of the spread of this virus in other countries is critical”. Although our research
differs, we agree with this statement. It should be emphasised that our research brings a
new quality by proposing a fuzzy classification approach to the study of epidemic states in
European countries. This approach makes it possible to identify states of pandemic and
define the time of transition from one state to another. Our manuscript presents research
on the situation of selected European countries, but the research has been conducted
for all other countries for which data were available. Our research complements other
studies around the world. It outlines the most important background aspects on the
epidemiological situation and changes in European countries.

D’Urso et al. [69] used spatial robust fuzzy clustering to identify a clustering structure
for the 20 Italian regions according to the main variables related to the COVID-19 pandemic.
The exponential distance-based fuzzy c-medoids clustering algorithm based on B-splines
with a spatial penalty term was applied to the clustering of time series. Although a different
fuzzy approach was used and objects at the regional level were studied, three clusters were
identified, similar to our study at the European country level. D’Urso et al. [69] obtained
“on the entire period almost the same partition”. Our research showed that the variability
of epidemic states differed depending on the country. According to our research, in Italy,
epidemic states fluctuated even in the initial months of the epidemic.

We should also mention interesting research carried out by Afzal et al. [70]. They
used c-means and fuzzy c-means algorithms for partitioning COVID-19 data. Their results
focused mainly on the comparison of the optimum cluster size obtained using both methods.
They stated that “the clustering of COVID-19 data from the available data revealed that
there were five optimal clusters based on the location and the cases observed so far”, but
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that “the three main COVID-19 clusters have been identified”. The main number of clusters
is therefore in line with our research, although the characteristics of the classes are different
and, in our case, more detailed and specific. In our opinion our research allows for a more
complex analysis.

Moreover, Ghanbari et al. [71] mentioned that “entropy is related to the missing
information on the concrete state of a system and it shows a measure of the disorder of a
system”. In that sense we point out that entropy of fuzzy classification can be an effective
measure for assessment of an epidemiological situation in a country because it can express
a grade of uncertainty (or sometimes stability) of the situation as a single number per day
or in a given time period.

It should be emphasised that our research can be extended to include other elements.
The research is ongoing and in our opinion, it is interesting to find a connection between
studies from the initial pandemic period, which we present in this manuscript, and further
studies covering the later phases of the pandemic (e.g., from an annual perspective) and
other types of research during the COVID-19 pandemic.

5. Conclusions

The study attempted to identify of the COVID-19 epidemic states in European coun-
tries. During the period studied, epidemic states and their changes in Poland and other
European countries were therefore identified. The fuzzy c-means clustering method al-
lowed us to identify countries’ epidemic states. This approach also made it possible to
determine the time of transition from one state to another, as well as to observe fluctuations
during changes of state. The innovation is the application of fuzzy clusters, which are more
appropriate for the characteristics of the variability epidemic states because they avoid a
binary split between membership and non-membership.

With this work, we have demonstrated that the entropy analysis of fuzzy classification
can contain relevant information concerning the epidemiological states of COVID-19.
We demonstrated that the entropy measure of classification can be used to detect the
grade of uncertainty in countries’ epidemiological situations. The greater value of the
entropy index for a country, the more equal the degrees of membership and, consequently,
epidemiological states are less unrecognized (i.e., no one state predominates); the smaller
the entropy, the more pronounced is one state. It proved possible to positively verify the
paper’s research hypothesis, which stated that the epidemiological situation in Poland
from 4 March to 24 June 2020 was stable compared to the other European countries. Three
COVID-19 epidemic states were identified in Europe, i.e., stabilisation, destabilisation,
and expansion. Our research revealed that one state, defined as stability, dominated the
period studied in Poland. The Czech Republic and Slovakia displayed a similar state;
however, they had greater fluctuations in the values of the indicators analysed during
the same period. Additionally, we also propose a simple way of visualising the countries’
epidemic trajectories in order to enable trend observation and easy comparison. The graphic
representation allows for day-by-day monitoring of the epidemic state and its changes.

The message of this research is also that the new public policies currently being
introduced have positive but insufficient effects on preventing the spread of COVID-19, and
increasing their effectiveness is a must. Hence, the search for new solutions through various
types of analysis and research paths concerning the assessment of the epidemiological
situation of countries, including changes in their states and dynamics, is very important.
Quickly recognising not only states but also the timing of changes from one state to another
is extremely important in regard to the authorities’ possible reactions. Producers and
consumers alike react to these changes, trying to adapt to them to a certain extent. The
accurate identification of any dependencies will, in the future, allow faster responses to
threats at an earlier stage.

We believe that research into the epidemiological situation in countries is important in
order to understand the trajectory of the COVID-19 pandemic. We believe that scientific
analysis and understanding of the various changes in the COVID-19 pandemic can help
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society better prepare for future outbreaks and support informed decision making in light
of societal values. In addition, it should be added that the research results are important
for governments, politicians, and other decision-makers who are involved in the process of
preventing and reducing the effects of the COVID-19 pandemic.

6. Recommendations

The research results can be useful in deepening the understanding of the phenomenon
of the COVID-19 pandemic. Above all, the research is significant in illustrating the links
between theory and practice in terms of the study of the epidemiological situation in
countries. Understanding states of COVID-19 as well as their evolution is of paramount
importance for controlling and preventing this disease, and also mitigating the devastating
effects of the pandemic. They can therefore be useful in diagnosing and solving real
problems, and thus will be useful for decision-makers and politicians involved in the
process of developing and implementing COVID-19 prevention policies. Undoubtedly, our
research may be useful because it allows us to classify certain groups of countries, to which
aid as well as tools for counteracting unfavourable circumstances within the economy and
society can, to a greater extent, be standardised. The research makes it possible to get to
know the essence of the phenomenon and, as a result, create strategies to prevent threats
from occurring or, at the very least, mitigate their effects in the future.

The research concerned European countries, but the results may also be useful for
other countries. It is emphasised that the results of this research are based on the state
of the COVID-19 pandemic in European countries during its first months, but we are
also convinced that the results of this study can be useful for further research during its
future phases.
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Abstract: The purpose of this research is to compare the risk transfer structure in Central and Eastern
European and Western European stock markets during the 2007–2009 financial crisis and the COVID-
19 pandemic. Similar to the global financial crisis (GFC), the spread of coronavirus (COVID-19)
created a significant level of risk, causing investors to suffer losses in a very short period of time.
We use a variety of methods, including nonstandard like mutual information and transfer entropy.
The results that we obtained indicate that there are significant nonlinear correlations in the capital
markets that can be practically applied for investment portfolio optimization. From an investor
perspective, our findings suggest that in the wake of global crisis and pandemic outbreak, the benefits
of diversification will be limited by the transfer of funds between developed and developing country
markets. Our study provides an insight into the risk transfer theory in developed and emerging
markets as well as a cutting-edge methodology designed for analyzing the connectedness of markets.
We contribute to the studies which have examined the different stock markets’ response to different
turbulences. The study confirms that specific market effects can still play a significant role because of
the interconnection of different sectors of the global economy.

Keywords: stock market; market connectedness; mutual information; transfer entropy; COVID-19;
crisis

1. Introduction

Correlation estimates are crucial not only for asset allocation decisions but also for
risk management and hedge. Following the global financial crisis (GFC), we have another
critical period in the financial market—global outbreak of the coronavirus (COVID-19) [1].
The pandemic is influencing a number of channels, including commercial activities, con-
sumption, labor markets, and international supply chains. Among these channels, one of
the most important components is the stock markets [2,3].

As a result, investors are more active and efficient in transferring their investments
from one market to another in the event of a financial crisis, particularly at the first signs of
economic or political instability. However, at a time when financial crises and pandemic
turbulences are systemic in nature, the process of international diversification of assets
may not fulfill its basic role—risk reduction. Additionally, empirical studies confirm that
correlations between markets change over time, which makes the benefits of the theory
of diversification of investment portfolio selection questionable [4]. The main goal of this
paper is to verify the risk transfer between US stock market indices and six European stock
market indices under the 2007–2009 global financial crisis and COVID-19 outbreak.

In our study, we compare the Central and Eastern European (CEE) and Western
European markets, even though these countries are forming a common area of the European
Union together. The motivation to perform this division is to compare markets from
countries with different levels of economic development, including the financial market.
Keeping this in mind, the risk transfer structure may be different for these two regions.
Our previous research confirms this relationship [5]. Our interest in that group of countries
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stems from several insights. Firstly, CEE countries have made major structural changes
and reforms to integrate into European structures. Therefore, verification of how the
financial markets of transition countries interact with other markets is an interest for
both policy makers and investors. Secondly, CEE countries offer high returns on capital
market investments with relatively low risk. Additionally, as the financial systems of
CEE countries are strongly bank-based, an analysis of stock market development may still
provide useful information.

The main contributions of this paper could be capitulated as follows. Firstly, we
contribute to the studies which have examined the different stock markets’ response
to different turbulences (financial crisis and pandemic outbreak). Thus, we answer the
question whether they can be equally responsible for the intensification of the impact of
the US stock market on the stock exchanges of Central and Eastern Europe. Secondly,
we employ a variety of methods to separately analyze the linear and nonlinear effect of
connectedness structures for international equity markets. The area of transfer entropy
has not been explored in depth. Therefore, using linear and nonlinear methodology, we
can compare the complexity of the behavior of stock markets. Interesting results were
obtained by Olbryś and Majewska [6], who examined the benefits of diversifying their
international portfolio to the largest European stock markets (i.e., the UK, France, and
Germany) during the period 2003–2013. To the best of our knowledge, no current study
has analyzed connectedness structures by verifying the linear and nonlinear effect in CEE
stock markets compared to Western European markets during the COVID-19 pandemic.

Thirdly, we can observe that the correlations between US and other European markets
are unstable. Additionally, we confirm that Western European markets displayed higher
results of the correlations with the US stock market in comparison to CEE [7].

Fourthly, the study emphasizes that while globalization has contributed to a more
integrated financial system, specific market effects can still play a significant role because
of the interconnection in different countries of the global economy. From an investor
perspective, our findings suggest that in the wake of the global crisis and pandemic
outbreak, the benefits of diversification will be limited by the transfer of funds between
developed and developing country markets.

The analysis by Gao and Mei [8] examined the structure of the correlation between the
US and Asian stock indices during the global financial crisis of 2007–2009 with the use of a
sliding window. As part of our article, we carried out verification of the method used by
Gao and Mei [8] in relation to European indices, extending the research sample to the period
of the COVID-19 pandemic. The sliding window is a technique used by [8–10] to obtain
dynamically changing results in observation windows. Using various parameters of sliding
windows allowed for receiving distinctive outputs that presented slightly different trends in
the time series. Using the methods of linear correlations, mutual information, and transfer
entropy, which take into account the sliding window, it was possible to build a network
of risk transfer structure relationships for the daily rates of return of selected Western
European markets and Central and Eastern European equity markets. We show that these
networks detect significant differences in the behavior of individual stock indices, especially
in turbulent market periods, thus highlighting the strongly changing relationships between
stock markets in different countries.

The rest of the paper is organized as follows. Section 2 presents the literature review,
while Section 3 provides the description of the data. Section 4 presents methodology.
Section 5 analyzes the results of the linear and nonlinear effect in connectedness structures.
Finally, Section 6 concludes with some discussion regarding the implications of the findings
and possible extensions to future work.

2. Literature Review

Although there is no consensus in studies on the reasons for increasing inter-market
correlations in times of market turbulences, most researchers accept that correlations change
fundamentally during market crises. The empirical results of Boubaker and Raza [4]
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provide strong evidence of cross-market movement between US and CEE stock markets
and show that joint movement exhibits large time differences and asymmetry in the tails of
return distributions. The analysis demonstrated that changes in volatility in the US and the
euro area are relevant factors causing risk shocks in European markets.

Studies on the impact of COVID-19 on the financial market spread rapidly; however,
they still do not cover all economic aspects of the pandemic. The overall economic impacts
are not yet straight, and there is no consensus in the research. For example, Ashraf [11],
Zhang et al. [12], Akhtaruzzaman et al. [13], and Zaremba et al. [14] confirm that the
last pandemic has led to a growth in global financial market risk. On the other hand,
Sharif et al. [15] indicate that the COVID-19 pandemic affects the US economic risk much
less than the geopolitical risk. Given a slower economic growth and relatively not liquid
capital markets, it is possible that emerging markets have limited resources to cope with
the pandemic. According to Topcu and Gulal [16], the negative impact of COVID-19 on
emerging stock markets has gradually fallen and began to taper off by mid-April 2020. The
recent result of the TGARCH model estimated in Visegrad group countries’ markets reveals
that there is a negative link between the stock market indices and COVID-19 spread [17].

Even though the correlation coefficient and regression models are measures of linear
relation between the markets, there are also nonlinear effects that may not be captured
with the linear methods. The vast majority of research in transfer entropy estimation
concerns developed markets. For example, Qiu and Yang [18] verify the estimation of
transfer entropy for short time sequences, using 38 important stock market indices from
four continents to create further financial networks, omitting nevertheless Central and
Eastern European markets. Similarly, Kuang [19] aims to construct the information flow
networks on multi-time-scales among 31 international stock markets between 2007 and
2018, finding that developed markets are more dominant but vulnerable to short-term risk
contagion. An interesting study was conducted by Karaca, Zhang, and Muhammad [20]
to optimize the stock indices’ forecasting model in the stock indices dataset; however, in
their study, they used only the French and German indices. Nevertheless, developing
stock market connectedness based on nonlinear methods such as mutual information and
transfer entropy is still at a very early stage [21–27].

Mutual information and entropy transfer are frequently used methods to study the
effect of long-memory volatility. Long-memory volatility can be seen as evidence of market
participants’ inability to use the information available on the market and can, therefore, be
linked to the issue of (not) market efficiency. For example, Dima and Dima [28] analyze
the case of the Bucharest stock exchange, where they suspect endogenous and exogenous
causes of nonlinear volatility effects. They suggest that mutual information can be an
alternative method of checking persistence, which can be understood as evidence of long
memory in the financial market. Caginalp and Desantis [29] emphasize that the role of
long-term volatility is not the explicit opposite of a risk/return relationship but rather that
there is an ambiguous and complex relationship between volatility and return. Khoojine
and Han [30] used the mutual information method to build a structure describing the
return and trading volume network of the Chinese stock. You, Fiedor, and Hołda [24] use
mutual information to analyze the correlation structure of the stock market in Shanghai and
find that the Chinese stock market is not structurally riskier than US and Western Europe
markets. Barbi and Prataviera [21] study nonlinear dependencies on the Brazilian equity
network and underline the particular benefit of mutual information network analysis to
identify the characteristics of financial markets due to nonlinear relationships. Ferreira,
Dionísio, Almeida, Quintino, and Aslam [31] review the influential dynamics of CEE stock
indices as well as US, German, UK, and Chinese indices and find strongly influential
correlations between some CEE indices and the impactful character of the US index. They
argue that the COVID-19 pandemic could intensify the influence of Chinese and US indices.

Thus, we believe that there is a need for development of a study that provides an
insight into the cutting-edge methodology for analyzing the connectedness of stock markets,
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together with a structural and time analysis of the stock exchange in CEE and Western
Europe comparing the 2007–2009 financial crisis and the COVID-19 pandemic outbreak.

3. Data Characteristics

The data used in this study were taken from the Stooq website and consist of daily
logarithmic returns of one US stock market index: SPX (S&P500 Index–New York) and six
European market indices, of which three are from developed countries: UKX (FTSE 100
Index–London), CAC (CAC40 Index–Paris), DAX (DAX Index–Frankfurt), and three are
from developing countries: WIG20 (WIG20 Index–Warsaw), PX (PX Index–Praha), BUX
(BUX Index–Budapest). The allocation was made in accordance with the classification used
by MSCI Inc. [32].

There are 4773 observations for each time series in the period between January 2000
and August 2020. Table 1 presents preliminary statistics of the daily logarithmic returns for
all indices. The measure of skewness demonstrates that all-time series are skewed. On the
basis of excess kurtosis, we can see that almost all series are highly leptokurtic with respect
to the normal distribution. The Doornik–Hansen tests show a rejection (at the 5% level) of
the null hypothesis of normality for each of the return series.

Table 1. Summarized statistics for daily returns.

Index Mean
Standard
Deviation

Skewness
Excess

Kurtosis
Doornik–Hansen

Test

SPX 0.0001839 0.0131 −0.482 [0.000] 10.584 [0.000] 4805.214 [0.000]
UKX −0.0000148 0.0124 −0.289 [0.000] 7.956 [0.000] 1515.870 [0.000]
CAC −0.0000208 0.0152 −0.297 [0.000] 6.630 [0.000] 1892.501 [0.000]
DAX 0.0001436 0.0156 −0.251 [0.000] 5.931 [0.000] 2270.681 [0.000]

WIG20 0.0000092 0.0157 −0.288 [0.000] 5.111 [0.000] 819.241 [0.000]
PX 0.0001328 0.0143 −1.041 [0.000] 19.041 [0.000] 7536.307 [0.000]

BUX 0.0003067 0.0156 0.123 [0.000] 13.298 [0.000] 3660.866 [0.000]

4. Methods

4.1. Cross-Market Correlations

As a first step, we use the Pearson correlation coefficient to measure the linear rela-
tionship. Next, we proposed an adjusted correlation coefficient following studies by Forbes
and Rigobon [33], Olbryś and Majewska [6], and Rigobon [34]:

ˆρVA =
ρ̂C√

1 + δ
[
1 − (ρ̂C)

2
] (1)

where:
ˆρVA—the adjusted correlation coefficient;

ρ̂C—the conditional (unadjusted) correlation coefficient;
δ—the change in turbulent period (crisis) volatility compared to the tranquil period
(pre-crisis):

δ =
σ̂2

C
σ̂2

PC
− 1 (2)

where σ̂2
C, σ̂2

PC are the variances in the turbulent and tranquil periods.
Following that, the formula to transform Pearson correlations to a Fisher Z transfor-

mation is [35]:

ρVA∗ =
1
2
[ln(ρ̂C + 1)− ln(ρ̂C − 1)] (3)
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To obtain approximately standard normal distributed z-statistic values, the difference
is formed as follows:

Z =
(ρC − ρPC)√

1
nC−3 + 1

nPC−3

(4)

where ρC, ρPC are the cross-correlation coefficient in the turbulent and tranquil periods
and nC and nPC are the sample sizes of the turbulent periods and tranquil period.

To verify the existence of significant change in cross-market correlations, we can test
the hypotheses as follows:

H0 : ρVA = ρPC H1 : ρVA �= ρPC (5)

where H0 states that there are no significant changes in adjusted correlation.

4.2. Larntz–Perlman Procedure

We used the Larntz–Perlman procedure [36] for testing the equality of correlation
matrices computed over non-overlapping subsamples: the pre-crisis and crisis periods in
the group of markets investigated. Longin and Solnik [37] affirmed that the knowledge
about international covariance and correlation matrices of asset returns and their behaviors
is essential for the calculation of portfolios.

To examine the equality of correlation matrices, we can test the pair of hypotheses:

H0 : PC = PPC H1 : PC �= PPC (6)

where PC and PPC are population correlation matrices in the turbulent and tranquil periods.
Rejection of the H0 indicates lack of equality of correlation matrices in a turbulent episode.

In this article, we used the test statistic proposed by Larntz and Perlman [36]:

TLP =

√
n − 3

2
∗ max

1≤i<j≤p

∣∣∣zC
ij − zPC

ij

∣∣∣ (7)

where zC
ij and zPC

ij are the Fisher z-transformed correlation between ρ̂C
ij and ρ̂PC

ij .

4.3. Mutual Information

Mutual information (MI) is a measure of statistical independence between two random
variables, and it has its usage in evaluating both linear and nonlinear relationships [9]. More-
over, MI is defined as the amount of information transferred between studied systems [27].

There is no single commonly used MI estimator, but there are studies that compare
them [38–44]. Determined by the sample size and underlying distribution or process,
the MI rises with partition of an interval for time series. There are three main groups of
estimators: histogram-based estimators, k-nearest neighbors, and kernel estimators [39,40].
Among histogram-based estimators we can distinguish three main subgroups: equidistant
partitioning—bins of equal length [44]; equiprobable partitioning—each bin has the same
occupancy, i.e., marginal equiquantization [45]; and adaptive partitioning as an extension
of the previous two proposed by Darbellay and Vajda [41]. The k-nearest neighbors method
takes into account the probability distributions for the distance between the point at which
the density is to be estimated and its k-th nearest neighbor [40]. Another approach is to
apply the kernel mutual information estimator constructed by Moon et al. [39] to centering
kernel function at the data samples. According to the approach proposed by Darbellay [45],
the marginal equiquantization estimation process allows one to maximize mutual infor-
mation. Furthermore Dionísio et al. [46] emphasize that the comparison of MI is difficult
in some contexts; therefore, it should apply a normalized measure of MI. Nevertheless,
in order to ensure the comparability of our results with the study conducted by Gao and
Mei [8], we will use the equidistant partitioning estimation process for our calculations.
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In the study of MI, the selected method to discretize the time series is the bin-
ning method [9]. We fragmentize the range of the time series into n disjoint intervals
xn(n = 1, 2, 3, . . . , N; xn = 0, 1, 2, 3) with fraction of all measurements equal to p(xn) = 1/n.
By grouping the time series into bins I : xn(n = 1, 2, 3, . . . , N; xn = 0, 1, 2, 3) and J :
yn(n = 1, 2, 3, . . . , N; yn = 0, 1, 2, 3) that share identical length N, we create two discrete
processes. The MI is given as:

M(X; Y) = ∑
xn ,yn

p(xn, yn)log
p(xn, yn)

p(xn)p(yn)
(8)

4.4. Transfer Entropy

Transfer entropy (TE) was introduced by Schreiber [47] as an approach to measuring
the direct exchange of the flow of information between two systems evolving in time. Con-
sidering two stationary and discrete processes I : xn(n = 1, 2, 3, . . . , N; xn = 0, 1, 2, 3) and
J : yn(n = 1, 2, 3, . . . , N; yn = 0, 1, 2, 3) that share identical length N, we measure the TE
with J → I as the deviation of information collected from the previous state of I that comes
purely from the latest state of I, which in turn was received from the last joint state of I and
J [8,48]. The information propagation about the subsequent state of xn+1 of I was received
from the last joint state of I and J:

h1 = − ∑
xn+1

p(xn+1, xn, yn) ∗ log p(xn+1|xn, yn) (9)

The state of the subsequent observation xn+1 of I is not based on the state of J; therefore,
the information was received only from the state of I:

h2 = − ∑
xn+1

p(xn+1, xn) ∗ log p(xn+1|xn) (10)

The transfer entropy with processes J → I :

TJ→I = h2 − h1 = ∑
xn+1,xn ,yn

p(xn+1, xn, yn) ∗ log
p(xn+1|xn, yn)

p(xn+1|xn)
(11)

4.5. Summary of Methods

We would like to use a variety of methods, such as the cross-correlation, volatility-
adjusted cross-correlation, Larntz–Perlman procedure [36], and the mutual information
and transfer entropy approaches, to separately analyze the correlation structures for testing
the linear and nonlinear relationships in returns between selected markets. Each method
has advantages and disadvantages.

There is a sizeable empirical literature that presents nonlinear effects in financial time
series [9]. It is not possible to model such behavior in a sufficient manner using Pearson
correlation, due to the fact that it explores only linear relationships, ignoring a meaningful
amount of information [49]. For this reason, it would be favorable to model both linear and
nonlinear information using different methods.

Mutual information has solid foundations in the mathematical concept of information
theory and can be used to model both linear and nonlinear connections but is easily
influenced by dependencies that are not found in the covariance [40]. On the other hand,
MI does not provide directional or dynamical information because of its static, symmetric
property [47]. Furthermore, the amount of received information relies on discretization
algorithms and bin size [9]. In comparison to MI, transfer entropy is more adequate for
detecting the direct exchange of information between two systems, but, as Kaiser and
Schreiber [50] pointed out, no similar monotonic convergence seems to hold. In contrast
to MI, transfer entropy is created to avoid static correlations due to the common input
signals [47]. This tool is widely used due to its close relationship to the concept of Granger
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causality [51], which is the cause for combining two approaches (information-theoretic and
predictive) to analyze directional relations between processes [52].

5. Results

5.1. Cross-Market Correlations

In the first step, using linear correlations, we examine whether the degree of stock
market connectedness between the US stock market and CEE differs from that in developed
markets. Figure 1 shows the mean linear correlations between each index and the rest
of the indices received by using overlapping windows. We split the time series into
sequence based on the fixed-size sliding window of 220 days (up) and 1000 days (down),
with 1 trading day window step length. After exploring different values, we identified
the optimal parameters that ensure smoothly but dynamically changing results. Using
various parameters of sliding windows allowed for receiving distinctive outputs that
presented slightly different trends in the time series. The selected values are similar to
Onnela, Chakraborti, Kaski, Kertész, and Kanto [10]. The mean linear correlations of the
Western European markets are higher than in CEE indices. We can observe that UKX,
CAC, and DAX indices move together throughout the complete sample, and the mean
linear correlation of the CAC index is the highest. On the other hand, the mean linear
correlation of the UKX index from 2016 (Brexit) to March 2020 (COVID-19 pandemic) has a
weaker relationship with other Western European indices. The relationship between the
mean linear correlations of CEE markets fluctuates during the whole period. In the time of
the crisis, the mean linear correlation of the BUX index rose until 2013 and then dropped
dramatically. Between 2009 and 2015, the mean correlation of the WIG20 is higher than
other CEE indices. From 2016, the mean correlation of the PX index is higher than the
WIG20 and BUX. Out of the CEE markets, the mean correlation of the BUX index increased
the most during the COVID-19 pandemic. This evidence is consistent with the study on
CEE indices during the COVID-19 period [17]. When the fixed-size sliding window is 220
days, the mean linear correlations of European markets bounce after falling in 2005, 2015,
2018, and in early 2020. The mean linear correlation of stock exchanges in the US (presented
as a black line) declined from 2007 to 2009 and then began to rise again. Even with the
1000-day fixed size sliding window, it is still clear that the trend is going up, especially
starting from March 2020.

For further observation, the data were split into five short, distinctive periods: pre-
crisis (1 September 2006 to 30 November 2007), crisis (1 December 2007 to 28 February
2009), post-crisis (1 March 2009 to 25 May 2010), pre-COVID-19 (30 September 2019 to
11 March 2020), and COVID-19 (12 March 2020 to 14 August 2020) in order to provide
information on the strength and direction of the linear relationship. The results of the
preliminary analysis are presented in Figure 2. We can see there that in all analyzed periods,
linear correlations between the SPX and Western European indices achieve higher values
than with CEE indices in all periods. The results show that COVID-19 has a considerable
impact on all analyzed indices. The mean linear correlations of European and US markets
prove to be higher during the COVID-19 period than in the crisis period. Furthermore,
Western European indices are more affected by COVID-19 compared to CEE indices. During
the COVID-19 period, the highest value of the correlation coefficient was observed in three
cases: between the SPX and UKX, the SPX and CAC, and the SPX and DAX. In the group of
CEE indices in the pre-crisis period, the linear correlation coefficients between the US and
the WIG20 were at the highest level. During the crisis, this role is taken over by the BUX
index; after the crisis, the PX index; and after that, during pre-COVID-19 and COVID-19
periods, again by the BUX index. Excluding the BUX index, all linear correlation coefficients
between the US equity markets and selected European stock exchanges were higher in the
post-crisis period than during and before the crisis. It is worth noting that only the linear
correlation coefficient between the US equity markets and UKX index was lower in the
COVID-19 period than in the pre-COVID-19 period.
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Figure 1. The mean linear correlations between each index and the rest of the indices using overlap-
ping windows. The upper part is a 220-day fixed-size sliding window (a), and the one below is a
1000-day fixed-size sliding window (b).

Figure 2. The linear correlations between the US and European stock market indices in the selected periods.
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Table 2 shows the standard contemporaneous cross-market correlations and adjusted
correlation coefficients, as seen in (1), of daily logarithmic returns on pairs of indices—the
SPX/stock market index. We take into consideration the dependencies in the complete
sample (January 2000–mid-August 2020) as well as in two equally sized subsamples:
the pre-crisis period, September 2006–November 2007 (290 days), and the crisis period,
December 2007–February 2009 (290 days). We analyze the changes in cross-market linkages
after the economic shock to the US financial market. The supporting values are equal
to: σ̂2

C = 0.0006661542 (the variance in the turbulent period in the US stock market) and
σ̂2

PC = 0.0000864396 (the variance in the tranquil period in the US stock market), while the
relative increase in the variance of the SPX returns, given by (2), is equal to δ = 6.706584.

Table 2. Contemporaneous cross-correlations and adjusted correlations of daily logarithmic returns
in pairs—the SPX/stock market index—subsamples: the pre-crisis and crisis.

Index

Contemporaneous Cross-Correlations Adjusted Correlations ([33])

Complete
Sample (1)

Pre-Crisis
(2)

Crisis (3) Crisis (3)

^
ρ

^
ρPC

^
ρC

Change
Compared to
the Period (2)

Z-Statistic Hypothesis ^
ρVA

Change
Compared

to the
Period (2)

Z-Statistic Hypothesis

UKX 0.598 [0.000] 0.595 [0.000] 0.600 [0.000] 0.008 0.089 H0 0.261 −0.562 −5.011 H0
CAC 0.615 [0.000] 0.598 [0.000] 0.618 [0.000] 0.034 0.382 H0 0.273 −0.544 −4.917 H0
DAX 0.634 [0.000] 0.568 [0.000] 0.640 [0.000] 0.127 1.366 H0 0.287 −0.494 −4.175 H0

WIG20 0.407 [0.000] 0.452 [0.000] 0.464 [0.000] 0.027 0.182 H0 0.185 −0.590 −3.586 H0
PX 0.382 [0.000] 0.366 [0.000] 0.424 [0.000] 0.157 0.816 H0 0.166 −0.546 −2.592 H0

BUX 0.395 [0.000] 0.246 [0.000] 0.524 [0.000] 1.130 3.960 H1 0.216 −0.121 −0.376 H0

Notes: The table presents the data received through the analysis of the complete sample period of January
2000–December 2019 (4623 days); the pre-crisis period of September 2006–November 2007 (290 days); and the
crisis period of December 2007–February 2009 (290 days). The numbers in brackets are p-values. Fisher Z-
statistic tests were null for no changes in correlation. Critical value of Student’s t distribution is 1.711 (at the 10%
significance level).

The results received in Table 2 for the crisis period indicate that the contemporaneous
correlations between the US and other stock exchanges were higher than during the pre-
crisis period, but the differences were low. In both periods, the values of contemporaneous
correlations were higher in Western Europe than in CEE. The results of the Forbes and
Rigobon methodology [33] show the absence of significant changes in cross-market linkages.
The value of adjusted correlation between US and European stock markets decreased during
crisis. There is no reason to reject the null hypothesis that states that there are no significant
changes in the adjusted correlation for all analyzed markets. For this method as well, the
values of adjusted correlations were higher in Western Europe than in CEE.

Moreover, we take into consideration the dependencies in the complete sample (Jan-
uary 2000–mid-August 2020) as well as in two equally sized subsamples: the pre-COVID-
19 period of 30 September 2019–11 March 2020 (103 days) and the COVID-19 period of
12 March 2020–14 August 2020 (103 days). As shown in Table 3, we analyze the changes in
cross-market linkages after the COVID-19 shock to the US financial market. The supporting
values are equal to: σ̂2

C = 0.0008037915 (the variance in the COVID-19 period in the US
stock market) and σ̂2

PC = 0.0002521314 (the variance in the tranquil period in the US stock
market), while the relative increase in the variance of the SPX returns, given by (3), is equal
to δ = 2.187987.
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Table 3. Contemporaneous cross-correlations and adjusted correlations of daily logarithmic returns
in pairs—the SPX/stock market index—subsamples: pre-COVID-19 and COVID-19.

Index

Contemporaneous Cross-Correlations Adjusted Correlations ([33])

Complete
Sample (1)

Pre-COVID-19
(2)

COVID-19 (3) COVID-19 (3)

^
ρ

^
ρPC

^
ρC

Change
Compared to
the Period (2)

Z-Statistic Hypothesis ^
ρVA

Change
Compared

to the
Period (2)

Z-Statistic Hypothesis

UKX 0.598 [0.000] 0.726 [0.000] 0.725 [0.000] −0.001 1.651 H0 0.508 −0.300 −0.882 H0
CAC 0.615 [0.000] 0.693 [0.000] 0.729 [0.000] 0.051 1.674 H0 0.512 −0.261 −0.878 H0
DAX 0.634 [0.000] 0.657 [0.000] 0.729 [0.000] 0.110 1.990 H1 0.512 −0.221 −0.559 H0

WIG20 0.407 [0.000] 0.619 [0.000] 0.650 [0.000] 0.050 2.046 H1 0.432 −0.302 −0.169 H0
PX 0.382 [0.000] 0.608 [0.000] 0.630 [0.000] 0.036 2.529 H1 0.414 −0.319 0.397 H0

BUX 0.395 [0.000] 0.622 [0.000] 0.658 [0.000] 0.058 3.805 H1 0.440 −0.293 1.560 H0

Notes: The table presents the data received through the analysis of the complete sample period of January
2000–mid-August 2020 (4773 days); the pre-COVID-19 period of 30 September 2019–11 March 2020 (103 days);
and the COVID-19 period of 12 March 2020–14 August 2020 (103 days). The numbers in brackets are p-values.
Fisher Z-statistic tests were null for no changes in correlation. Critical value of Student’s t distribution is 1.711 (at
the 10% significance level).

The results received in Table 3 for the COVID-19 period indicate that the contempora-
neous correlations between the US and other stock exchanges (except UKX) were higher
than during the pre-COVID-19 period; however, the differences were low. These results
provide support for the theory of Ferreira, Dionísio, Almeida, Quintino, and Aslam [31]
that the pandemic crisis may be a factor for the intensification of US indices. Similar results
were obtained in the study by Czech, Wielechowski, Kotyza, Benešová, and Laputková [17]
and Aslam et al. [53], who emphasize that the COVID-19 pandemic caused great impacts
on CEE stock markets. In both periods, the values of contemporaneous correlations were
higher in Western Europe than in CEE. For DAX, WIG20, PX, and BUX, we reject the null
hypothesis, which suggests the existence of changes in correlation. On the other hand, the
results of the Forbes and Rigobon methodology [33] show the absence of significant changes
in cross-market linkages. The value of adjusted correlation between US and European stock
markets decreased during the pandemic. There is no reason to reject the null hypothesis
that states that there are no significant changes in the adjusted correlation for all analyzed
markets. For this method as well, the values of adjusted correlations were higher in Western
Europe than in CEE.

We observed that, compared to the 2007–2009 crisis, contemporaneous correlations
between the US and other stock exchanges increased significantly during the pre-COVID-19
and COVID-19 periods (Tables 2 and 3). In the case of the 2007–2009 crisis, we find one
market (BUX) which indicates the lack of equality of correlation matrices, while during the
COVID-19 period we find as many as four markets (DAX, WIG20, PX, BUX).

5.2. Larntz–Perlman Procedure

Table 4 summarizes the Larntz–Perlman test [36] performed on the SPX and the six
European stock indices. We have reason to reject the null hypothesis (6), which suggests
the stability of the correlation matrix via three adjacent sub-periods:

• the pre-crisis period, September 2006–November 2007 (290 days), and the crisis period,
December 2007–February 2009 (290 days);

• the crisis period, December 2007–February 2009 (290 days), and the post-crisis period,
March 2009–May 2010 (290 days); and

• the pre-COVID-19 period, 30 September 2019–11 March 2020 (103 days), and the
COVID-19 period, 12 March 2020–14 August 2020 (103 days).
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Table 4. Results of the Larntz–Perlman test.

Test Periods
Larntz–Perlman Test

Test Statistic TLP bα Critical Value (5%) bα Critical Value (10%)

September 2006–November 2007 and
December 2007–February 2009 5.257 2.63 H0 2.38 H0

December 2007–February 2009 and
March 2009–May 2010 3.076 2.63 H0 2.38 H0

30 September 2019–11 March 2020 and
12 March 2020–14 August 2020 3.006 2.63 H0 2.38 H0

5.3. Mutual Information

Figure 3 shows the outcome of average mutual information evolving in time. When
the fixed-size sliding window equals 220 days, the average mutual information of European
markets bounced after the fall that happened at the end of 2005, which is consistent with
the mean linear correlation. Starting from March 2020, we can observe another soaring
growth in the average mutual information of European markets. For the 1000-day fixed-
size sliding window, the average mutual information showed an upward trend until 2013,
when it peaked. It is worth noting that, starting from March 2020, we can see the growing
tendency again; however, the UKX index is no longer so closely associated with other
Western countries. Our main interest is in analyzing the connection between the US equity
markets and European stock exchanges in the financial crisis of 2007–2009 and during
the COVID-19 pandemic. The results received by comparing the MI in pre-crisis, crisis,
and post-crisis periods are shown in Figure 4. Except for Hungary’s stock exchange, the
MI between the US equity markets and other European stock indices is lower during the
crisis in comparison to the pre-crisis period. We observe similar results for COVID-19
in comparison to the pre-COVID-19 period, except for Hungary’s and Czech Republic’s
stock exchanges.

5.4. Transfer Entropy

Figure 5 presents quickly changing outcomes of the average transfer entropy. We can
observe that the average transfer entropy of the US stock market index reaches higher levels
in comparison to the other markets. When the fixed-size sliding window is 220 days, the
average transfer entropy of the US stock market index before January 2009 soars, but the
peaks that it exhibits are sharp and narrow. A similar situation can be observed in March
2020. When the fixed-size sliding window is 1000 days, the average transfer entropy of the
US stock market index grows continuously, then starts to decline after 2009, and rises again
in March 2020. Figure 6 shows the outcomes of the TE values of the US equity markets of
six European stock exchanges during the pre-crisis, crisis, post-crisis, pre-COVID-19, and
COVID-19 periods. The TE from the US equity markets to Western Europe stock indices
present higher values than CEE ones in the pre-crisis period. We observe the opposite
situation in the pre-COVID-19 period. On the other hand, the TE from the US equity
markets to CEE stock indices in the crisis period is higher than to Western Europe indices.
In the COVID-19 period, the TE from the US equity markets to DAX and BUX stock indices
was the highest. In the pre-crisis period, the TE from the US equity market to Poland
is the weakest in comparison to other countries, but, during the crisis, it increased the
most, reaching a level similar to Western Europe. On the other hand, in the pre-COVID-19
period, the TE from the US equity market to Germany is the weakest in comparison to
other countries, but during the pandemic it increased the most. The TE from the US equity
markets to selected European stock indices in the crisis period reaches a higher level in
comparison to the pre-crisis period, with France being the exception. Contrary to that,
the TE from the US equity markets to selected European stock indices in the COVID-19
period reaches lower levels in comparison to the pre-COVID-19 period, with Germany
being the exception. During the crisis, the TE from the US equity markets to the BUX
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index is the highest in the group of CEE countries and the UKX index in the group of
Western Europe. In the post-crisis period, the TE from the US equity markets to other
indices decreased dramatically, especially the BUX and UKX indices. During COVID-19,
the TE from the US equity markets to the BUX index is the highest in the group of CEE
countries and the DAX index in the group of Western Europe. Based on the presented
outcomes, we deduce that when the fixed-size sliding window equals 1000 days, the growth
of mean linear correlations slows down considerably after 2009. At the same time, the
average mutual information continues to rise until it peaks around 2013. Thus, we conclude
that the stronger dependencies between all indices that can be observed after 2009 are
due to the nonlinear effect. Similar results have been obtained by Gao and Mei [8] and
Haluszczynski et al. [9].

Figure 3. The average mutual information between each index and the rest of the indices using
overlapping windows. The upper part is a 220-day fixed-size sliding window (a), and the one below
is a 1000-day fixed-size sliding window (b).
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Figure 4. The mutual information between the US stock index and six European stock indices during
the selected periods.

Figure 5. The average transfer entropy between each index and the rest of the indices using overlap-
ping windows. The upper part is a 220-day fixed-size sliding window (a), and the one below is a
1000-day fixed-size sliding window (b).
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Figure 6. The transfer entropy from the US equity markets to six European equity markets during
selected periods.

5.5. Comparison of Results

We would like to model linear and nonlinear behavior in financial time series through
the evaluation of information on dynamic correlations. Due to that, we used not only
linear Pearson correlation but also mutual information, which can be used both for linear
and nonlinear connections, as well as transfer entropy, which allows one to examine
nonlinear connections.

Table 5 shows the comparison of different methods used to measure the dependence
between the US stock index and selected European stock indices. For each of the three
methods, we compute the values for pre-crisis, crisis, post-crisis, pre-COVID-19, and
COVID-19 periods. The correlation coefficient values range from 0.246 to 0.729. In the case
of examined countries, there is a clear separation between two strongly connected groups:
Western European indices and CEE indices. We recognize that Western Europe has higher
linear correlation coefficient values (from 0.568 to 0.729) than CEE (from 0.246 to 0.658). The
levels of correlation increased significantly in the pre-COVID-19 and COVID-19 periods in
all markets (the highest for CAX and DAX indices from Western Europe and for PX and
BUX from CEE in the COVID-19 period). The results confirm that the COVID-19 pandemic
has led to a growth in European financial market risk, which is in line with Zhang et al. [12],
Akhtaruzzaman et al. [13], Shehzad et al. [54], and Zaremba et al. [14]. It should be stressed
that the amplitude of growth was much higher in CEE markets, which is similar to the
findings of Topcu and Gulal [16] and Tilfani, Ferreira, and Boukfaoui [55]. The most stable
level of correlation in all analyzed periods is presented by the UKX index (from 0.595 to
0.726) and the CAC index (from 0.598 to 0.729). On the other hand, BUX increased the most
between pre-crisis and crisis periods (from 0.246 to 0.524). After the crisis, BUX began to
behave like other CEE countries. Overall, relationships between local centers are greater
within these groups than between them. These results are in line with those obtained by
Stoica and Diaconas, u [56] and Gradojević and Dobardžić [57]. The results demonstrated
that regional market integration is strengthened in times of crisis or pandemic.
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Table 5. Comparison of different methods used to measure the dependence between the US stock in-
dex and European indices during pre-crisis, crisis, post-crisis, pre-COVID-19, and COVID-19 periods.

Period Group of Countries Index Linear Correlations Mutual Information Transfer Entropy

Pre-crisis

West Europe
UKX 0.595 0.146 0.055
CAC 0.598 0.192 0.073
DAX 0.568 0.203 0.051

CEE
WIG20 0.452 0.103 0.021

PX 0.366 0.058 0.041
BUX 0.246 0.035 0.048

Crisis

West Europe
UKX 0.600 0.113 0.062
CAC 0.618 0.137 0.060
DAX 0.64 0.146 0.060

CEE
WIG20 0.464 0.058 0.059

PX 0.424 0.057 0.074
BUX 0.524 0.080 0.079

Post-crisis

West Europe
UKX 0.717 0.219 0.015
CAC 0.721 0.227 0.025
DAX 0.723 0.187 0.018

CEE
WIG20 0.483 0.080 0.018

PX 0.489 0.058 0.031
BUX 0.434 0.103 0.024

Pre-COVID-19

West Europe
UKX 0.726 0.243 0.058
CAC 0.693 0.315 0.038
DAX 0.657 0.295 0.038

CEE
WIG20 0.619 0.167 0.062

PX 0.608 0.160 0.068
BUX 0.622 0.163 0.065

COVID-19

West Europe
UKX 0.725 0.169 0.015
CAC 0.729 0.195 0.022
DAX 0.729 0.222 0.054

CEE
WIG20 0.650 0.159 0.017

PX 0.630 0.173 0.029
BUX 0.658 0.167 0.034

Notes: The rows of a heat map represent stock indices in specific periods, and the columns represent the methods
used to measure the dependence between the US stock index and six European stock indices during pre-crisis,
crisis, post-crisis, pre-COVID-19, and COVID-19 periods. Each cell in the particular methods is colorized based on
the values (from green for the lowest values to red for the highest ones).

As can be observed in Table 5, similar conclusions to those received by using linear
correlation can be obtained with mutual information. For both methods, Western Europe
is the region that attains the largest values. Furthermore, the highest values of mutual
information are achieved in the pre-COVID-19 period for Western Europe and in the
COVID-19 period for CEE regions. It is interesting to note that the transfer entropy presents
slightly different results. The values of transfer entropy in CEE are higher (from 0.017 to
0.079) than in Western Europe (from 0.015 to 0.025), which can be especially observed in
the crisis and pre-COVID-19 periods. As per our results, notable information cannot be
expressed well by linear measure, hence the usage of different methods that intercept linear
and nonlinear correlations. In conclusion, our analysis suggests that stock indices quickly
responded to the GFC as well as the COVID-19 pandemic, and these responses changed
over time depending on the information flowing through markets.

6. Discussion and Conclusions

This study provides an analysis of the effect of the GFC and the COVID-19 pandemic
on European stock markets. The main goal of this paper is to compare the risk transfer
between US stock market indices and six European stock market indices before, during,
and after the GFC, as well as before and during the COVID-19 outbreak. In our study,
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we also emphasize the differences in the correlation structure between CEE and Western
European markets. We used a variety of methods to separately analyze the correlation
structures for testing the linear and nonlinear structure of relationships in returns between
the US stock index and selected European stock indices.

Testing the connectedness during the crisis period, the correlation between SPX and
CEE indices changed more in terms of growth than in Western European indices. This is
only a partial confirmation of earlier research [7], stating that the CEE stock exchanges
are not more vulnerable to contagion, even if they are less liquid than Western European
markets. Additionally, our findings stress that the amplitude of growth in the pre-COVID-
19 period is much higher in CEE markets. Given a slower economic growth and relatively
not liquid capital markets, emerging markets have probably limited resources to cope with
the pandemic.

Nevertheless, the relationship between the mean linear correlations of CEE markets
fluctuates during the whole period. In the years 2009–2015, the mean linear correlation for
WIG20 is higher than for other CEE indices, but, starting from 2016, the correlation index
for the PX is higher than for the WIG20 and the BUX. In the analyzed period, the stock
markets in CEE were not stable or resistant to crisis shocks. This result may be explained
by the smaller integration of CEE stock markets with global capital markets. For investors,
this means another source of risk diversification in CEE markets.

Comparing to the GFC, our findings emphasize that the linear correlations between
the S&P 500 and all European indices increased significantly in the pre-COVID-19 period.
The negative impact of COVID-19 on stock markets continued or slightly increased by
mid-August 2020. The results show that the COVID-19 pandemic has led to a growth in
European financial market risk. These findings confirm those of earlier studies, such as
Ferreira [58] and Grabowski [59]. An analysis of the volatility spillovers indicates that CEE
markets are the recipients of volatility. As opposed to the previous research of Topcu and
Gulal [16], our findings do not confirm that the influence of COVID-19 on emerging stock
markets has gradually fallen and began to taper off by mid-April 2020.

The results that we obtained indicate that there are relatively significant differences
between linear and nonlinear estimation. The transfer entropy from the US equity markets
to CEE stock indices during the crisis is higher than to Western Europe indices. Before the
crisis, the transfer entropy from the US equity market to Poland is the weakest compared to
other countries, but, during the crisis, it increased the most. During the crisis, the transfer
entropy from the US equity market to Poland is similar to Western Europe. Additionally,
we infer that nonlinear effects lead to stronger dependencies between all indices after
2009. Starting from the COVID-19 pandemic period, we can observe soaring growth in the
average mutual information and transfer entropy of all European markets.

Our study of European stock markets shows that cases of intensified and broken links
between markets are particularly visible in CEE countries. This evidence may suggest that
emerging equity markets are increasingly integrated into mature markets, thus becoming
dependent on certain crises and pandemic outbreaks. This may be explained by short-term
capital flows from less stable markets, changing political circumstances. Undoubtedly,
research should provide an interesting insight for potential investors diversifying their
stock portfolio. Our research has implications for risk management and asset pricing. Al-
though CEE countries are considered a homogeneous group by international investors, the
financial markets of these countries show varying degrees of integration. Therefore, from a
portfolio diversification perspective, less developed markets may offer risk diversification
opportunities that investors can capitalize on. For the purpose of portfolio risk manage-
ment, information about the linkages between markets can be important for investors
in making decisions. In addition, information on the increasing connectedness between
markets may be relevant when portfolios are reallocated.

We believe that this study may be a benchmark for financial market network structure
for further research in this area. Therefore, future researchers should test whether the
results remain insignificant over a longer time horizon. Additionally, similar to the vast
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majority of research on contagion in emerging economies, our research focuses on the
analysis of daily and weekly data. However, it would be worthwhile to investigate the
connectedness of European stock markets with high-frequency information.
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Abstract: As pointed out by many researchers, replication plays a key role in the credibility of applied
sciences and the confidence in all research findings. With regard, in particular, to energy finance
and economics, replication papers are rare, probably because they are hampered by inaccessible
data, but their aim is crucial. We consider two ways to avoid misleading results on the ostensible
chaoticity of price series. The first one is represented by the proper mathematical definition of chaos
and the related theoretical background, while the latter is represented by the hybrid approach that
we propose here—i.e., consisting of considering the dynamical system underlying the price time
series as a deterministic system with noise. We find that both chaotic and stochastic features coexist
in the energy commodity markets, although the misuse of some tests in the established practice in
the literature may say otherwise.
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1. Introduction

As pointed out by many researchers (see, for example, [1]), replication is the key
to credibility in applied sciences and confidence in all research findings. With regard in
particular to energy finance and economics, replication papers are rare, probably because
they are hampered by inaccessible data [1], but their aim is crucial and twofold. First, they
wonder if the old results resist if more recent data are added and if the methods are updated,
and if not, why this is so. Second, they take into account a large number of recent (or older)
articles to check whether the results are still valid when compared with other contributions.

For instance, the same data may be examined by different authors with different
methodological approaches. Can the difference in results be explained? Is it possible to
distinguish credible results from others that are less so?

Recently, we started to focus on this question by considering, in particular, the findings
of the so-called “chaos theory” on the energy commodity markets [2–4]. An important
reason to be interested in chaotic behavior is that it resembles random behavior (even if
they cannot be treated as the same).

In particular, it is interesting to know whether the fluctuations in many time series are
really random or they are instead the product of a (complex) deterministic system [3–6].
The behavior of a completely random system is not predictable anyway. Otherwise, if
it were completely deterministic, even if chaotic, its behavior could be predicted in the
short term.

It is straightforward that evidence on deterministic chaos would have important
implications for regulators and short-term trading strategies, in all financial markets and in
particular in energy markets.

Energy commodity prices have been examined over the last 20 years to detect the
presence of chaos as an alternative to stochastic models, but they revealed contrasting
results: some papers highlighted the presence of chaos, while some others did not, and

Entropy 2022, 24, 701. https://doi.org/10.3390/e24050701 https://www.mdpi.com/journal/entropy183



Entropy 2022, 24, 701

this has led to a gradual loss of interest in the chaos theory applied to energy commodity
markets. For example, the papers we have examined in this field—we have selected only
those relating to crude oil, diesel, natural gas and copper—are refs. [7–17], but eight of
them fall before 2009 and only three after. (For the discussion of the previous literature,
see [2–4]).

The conflicting results of identifying chaos in the energy commodity markets can be
seen as a replication problem.

Hence, in this paper, we highlight the role of theoretical assumptions of the methods
employed in the literature of energy markets. In particular, we show that the mathematical
definition of chaos and the theoretical background recalled and discussed here are able to
avoid possible errors from misleading results on ostensible chaoticity of the price series.

After showing the importance of the theoretical background in the light of the problem
of replication, we also discuss the hybrid approach introduced in [3,4]—i.e., consisting
in considering the dynamical system underlying the price time series as a deterministic
system with noise—in order to re-evaluate the presence of a chaotic feature in the energy
commodity markets. This hybrid approach is based on the introduction of tools that take
into account the co-existence of stochastic and chaotic behavior in the same time series,
such as modified correlation entropy, noise level estimation and recurrence analysis.

The result is that chaotic characteristics coexist with stochastic ones in the time series
of energy commodity prices.

The remainder of this article is structured as follows. Section 2 introduces the chaos
definition. Section 3 presents the tools we employ in our analysis, while Section 4 discusses
the results. In addition, Section 5 provides the conclusions of our paper.

2. The “Core” of Chaos: Its Definition

Who remembers Ian Malcolm, the mathematician of Jurassic Park? In a scene where
he tries to explain the chaos theory to Ellie Sattler, he says: “It simply deals with unpre-
dictability in complex systems. The shorthand is the Butterfly Effect. A butterfly can flap
its wings in Peking and in Central Park you get rain instead of sunshine.” That is very
effective, simple and straightforward.

The chaos definition, however, goes deeper. According to one of the most widely
accepted definitions of chaos, introduced by Robert L. Devaney [18] (hence known as
Devaney’s chaos definition), sensitive dependence on initial conditions, topological transitivity
and density of periodic points are the “ingredients” of chaos (for the self-consistency
of Devaney’s definition, see the references in [2]). The intuitive meaning of sensitive
dependence on initial conditions is straightforward: tiny differences become amplified. It is
the most popular property of a chaotic system. Also called “butterfly effect”, it is immediate
enough to be cited in a popular film, as we said. This is probably why the “butterfly effect”
becomes so predominant that in many contexts, it constitutes, itself, a definition of chaos.
There is a lot of numerical evidence for this experimental definition of chaos, but it is not
satisfactory, both theoretically and experimentally.

From a theoretical point of view, see, for example, the counterexample 3.3 introduced
by Martelli et al. in [19]. Their counterexample shows that, although the “experimental”
definition of chaos is easy to check, it defines as chaotic systems those which are not.

As far as the experimental point of view is concerned, however, it has been noted
that the time series generated by stochastic systems can also show a sensitive dependence
on the initial conditions [20–22] and, since chaos theory is an alternative paradigm to the
stochastic approach, a problem arises with the definitions—what is chaotic and what is not.

In addition, while some tests for sensitive dependence on initial conditions have been
introduced, for the other two properties that build the Devaney chaos definition, we have
far fewer tests, and further, no tests for transitivity conditions of the chaos definition have
been found [23].

For this reason, it is inappropriate to talk about chaos tests. We should instead refer to
the specific property we are going to test. For example, all the papers considered in this
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article [7–17] resort to the experimental definition of chaos, testing sensitive dependence
on initial conditions. However, the implications that the butterfly effect may have in the
energy markets make this property interesting to study, as remarked in [2], but. . . how?

Is there a dichotomy between the butterfly effect and stochastic features? Or is it
possible to think of a paradigm that can include both? The answer to this question is,
yes, this dichotomy does not need to be a strict rule, as proved in [3,4]. Hence, in the
following, we propose a systematic approach to detect the correct tests to work in this
“hybrid” framework.

3. Methodologies

In this paper, entropy and recurrence analysis tools represent the key methodologies
to assess the presence of the butterfly effect. Moreover, we extend some of them in order to
deal with the coexistence of chaotic and stochastic behaviors.

In the following, pt and κt = ln pt
pt−1

are, respectively, the price and log returns at time
t. The time series we will work on is defined as follows: {κt, t = 1, 2, . . . , n}, n ∈ N.

3.1. Phase Space Reconstruction

Embedding the time series in a phase space is an important research topic on chaotic
time series analysis [24]. In this case, the time evolution of returns is represented by
the dynamical system that comes out of the phase space independent variables. The
asymptotic behavior of the dynamical system is described by an attractor, whose dimension
provides a measure of the minimum number of independent variables able to describe the
dynamical system.

The scalar time series is topologically equivalent to the attractor, which can be recon-
structed from a time series by using the method of the time delay coordinate [25,26]. The
reconstructed attractor of the original system is given by the vector sequence

ζ(i) =
(

κi, κi+τ , κi+2τ , . . . , κi+(m−1)τ

)
(1)

where m is the embedding dimension, and τ is an appropriate time delay.
The choice of the time delay τ could be a potential issue. For example, the authors

in [27] showed that the chaos measures estimation for stock price data is affected by the
wrong choice of τ.

The authors in [8] estimated the optimal time delay as the one where average mutual
information reaches its first minimum, obtaining a time lag greater than 1.

In [3,4], we employed the average mutual information (AMI) technique to select a
proper value of τ. A proper value of τ can be determined using the first minimum of
average mutual information (AMI) function, as done in [8]. The method of false nearest
neighbors (FNN), introduced by [28], is an algorithm to estimate the minimal embedding
dimension m. Let r be the threshold on the distance between two neighboring points, k(i)
be the index of the time series element for which we have the minimum |ζ(k(i))− ζ(i)|,
ζ(k(i))(m) be the closest neighbor to ζ(i) in m dimensions, σ be the standard deviation of
the data, and Θ(·) the Heaviside step function, i.e.,

Θ(x) =

{
0, x < 0,
1, x ≥ 0.

Hence, the false nearest neighbor (FNN) metric is defined as

FNN(r) =
∑n−m−1

i=1 Θ
(

|ζ(i)(m+1)−ζ(k(i))(m+1) |
|ζ(i)(m)−ζ(k(i))(m) | − r

)
Θ
(

σ
r − |ζ(i)(m) − ζ(k(i))(m)|

)
∑n−m−1

i=1 Θ
(

σ
r − |ζ(i)(m) − ζ(k(i))(m)|) , (2)
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A proper value of m can be selected by imposing a threshold FNN∗ (in our case
FNN∗ = 0.5%, as done in [3,4]) so that, if FNN is larger than FNN∗, the neighbor is
false. Since the FNN decreases with the threshold r, this is the equivalent of selecting as the
embedding dimension the minimum value of m such that FNN < FNN∗.

3.2. Modified Correlation Entropy

Let {κi} be the result of phase space reconstruction described by Equation (1). Hence,
the authors in [29] showed that the Kolmogorov–Sinai (KS) entropy can be approximated
by the correlation sum

Cm(r) =
1

n(n − 1)

n

∑
i,j=1
i �=j

Θ(r − ‖ζ(i)− ζ(j)‖) , (3)

where the distance metric is given by the Euclidean norm. From Equation (3), it is possible
to achieve an early estimate of the KS entropy

K � 1
τ

ln
Cm(r)

Cm+1(r)
. (4)

and its adjusted estimation

K � 1
τ

ln
Cm(r)

Cm+1(r)
− D

2τ
ln

m + 1
m

. (5)

given by [30], where D is the correlation dimension.
Nevertheless, the computation of the correlation sum is affected by noise, which

produces errors in these formulas, used instead in the literature so far.
The authors in [31] introduced the modified correlation entropy (MCE), which estimates

the KS entropy for noisy time series. It is based on the correlation integral derived in [32]
and assumes the presence of Gaussian additive noise.

3.3. Noise Level

Let 0.1 = r1 < r2 < · · · < ri < · · · < rL = 0.3 with a uniform step Δr = ri+1 − ri. The
noise level is estimated by means of a linear least-squares method

σ̄2 =
∑L−2

i=2 (vi+1 − vi)(ui+1 − ui)

2 ∑L−2
i=2 (ui+1 − ui)2

. (6)

as obtained in [33]. It is based on an auxiliary time series (ui, vi), i = 1, . . . , L

ui =
(m − 1)Δr(ci − ci−1)− ri(ci−1 − 2ci + ci+1)− ri(ci − ci−1)

2

ri(Δr)2

vi = ri
ci − ci−1

Δr
,

(7)

where ci = ln C0(ri).

3.4. Recurrence Analysis

Recurrence quantification analysis (RQA) can be considered as another important tool in
chaotic time series analysis [34,35]. The recurrence plot (RP), introduced by [36], is defined
by the matrix

Mij = Θ(ε − ‖ζ(i)− ζ(j)‖) , (8)
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where ε is a tolerance parameter to be chosen and ζ(i) is derived by Equation (1). Since
the distance is symmetric, we have that the matrix M is in turn symmetric and, then, the
recurrence plot is symmetric with respect to the diagonal, by definition.

The parameter ε, which determines the density of RP, can be selected according to the
criterion introduced in [37]:

ε = k · max
i,j

‖ζ(i)− ζ(j)‖. (9)

provided that k < 10% [34,38,39].
Related to the RP is the recurrence rate [34], which can be defined as follows:

RR(τ) =
1

N − τ

N−τ

∑
i=1

Mij. (10)

The recurrence quantification analysis contains several measures of complexity. Its aim is to
go beyond the visual impression yielded by RPs [34].

Some of them resort to the histogram P(l) of diagonal lines of length l, i.e.,

P(l) =
N

∑
i,j=1

(
1 − Mi−1,j−1

)(
1 − Mi+l,j+l

) l−1

∏
k=0

Mi+k,j+k .

As recalled in [34], “processes with uncorrelated or weakly correlated, stochastic or chaotic
behaviour cause none or very short diagonals, whereas deterministic processes cause longer
diagonals and less single, isolated recurrence points”. From this, it is natural to take

DET =
∑N

l=lmin
lP(l)

∑N
l=1 lP(l)

(11)

as a measure for determinism of the system—percentage of recurrence points which form
diagonal structures (of at least length lmin) over the total number of recurrence points.

Moreover, given the histogram P(v) of vertical lines of length v, i.e.,

P(v) =
N

∑
i,j=1

(
1 − Mi,j

)(
1 − Mi,j+v

) v−1

∏
k=0

Mi,j+k .

it is possible to define the percentage of recurrence points which form vertical structures in
the RP, the so-called laminarity:

LAM =
∑N

v=vmin
vP(v)

∑N
v=1 vP(v)

whereas the average length of vertical structures is given by

TT =
∑N

v=vmin
vP(v)

∑N
v=vmin

P(v)

and is called the trapping time.

4. Implications of the New Approach

We now turn to recall the main findings enclosed in [3,4], discussing them in the
framework of our approach, i.e., the coexistence of the stochastic and chaotic paradigms.

Before embracing this hybrid paradigm for energy markets, it is very important to
determine the two embedding parameters for the reconstruction of the phase space, namely,
the time delay τ and the embedding dimension m. In Table 1, we recall the embedding
parameters of some of the future contracts analyzed in [4], as collected by the U.S. Energy
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Information Administration (EIA). As we can see, the optimal time lags are not always
equal to 1.

Table 1. τ and m for futures prices (FNN∗ = 0.5%).

Futures Contract Time Delay Embedding Dimension

Crude oil Contract 1 4 11
Crude oil Contract 3 4 10

Heating oil Contract 1 1 13
Heating oil Contract 3 1 11

Natural gas 1 14

According to our framework, the impact of the stochastic component can be initially
estimated through the modified correlation entropy. An example of MCE estimation is
depicted in Figure 1, where MCE and CE are compared depending on the threshold r [4].
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Figure 1. MCE vs. CE; Cushing Crude Oil Contract 1 (on the left) and Natural Gas (on the right).

In Figure 1, we see the following:

• The KS entropy estimated with a noise-oblivious approach is much smaller than
the MCE;

• The CE decays as the size of the correlation window increases, whereas the MCE is
rather steady.

Since MCE ≡ CE for noise-free data, these two points show the relevance of the stochas-
tic component in our dataset of prices. The steadiness of MCE is typical of deterministic
systems with noise (see Figure 11.3 of [40]).

Connected to this point is the noise level estimation. Few examples of noise level
estimation are represented in Table 2 and, as discussed in [4], it shows that the level of noise
cannot be ignored.

Table 2. Noise level estimation.

Commodity Contract σ̄ Noise Level %

Crude oil C1 0.02363634 57.9%
Crude oil C3 0.02432642 57.1%

Heating oil C1 0.02032667 51.7%
Heating oil C3 0.02334584 53.5%

Natural gas 0.02591293 40.1%

We now turn to prove these insights through the use of recurrence analysis. We show
an example of the recurrence plot for copper dataset, examined in [3], in Figure 2, for
ε = 6%.
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Figure 2. Recurrence plot, copper (6%).

In Figure 2, black rectangles and single dots alternate along the entire picture. In the
recurrence analysis, single points denote noisy behavior [34] because they indicate strongly
uncorrelated, fluctuating data, whereas black rectangles characterize laminar behaviors.
The latter are indicative of states that do not change or change slowly for some time [34,41].
Therein, periods are related to intermittency, a behavior of dynamical systems which has
been extensively studied in the literature [42–45].

In economics and finance, intermittency results in the irregular alternation of phases
of boom and of depression [46,47].

The authors in [48] showed “how economic intermittency is induced by an attrac-
tor merging crisis and how to recognize different recurrent patterns in the intermittent
time series of economic cycles by separating them into laminar (weakly chaotic) and
bursty (strongly chaotic) phases”. Moreover, intermittency is related to the emergence
of bubbles [3,35,49,50].

Intermittency is one of the common routes to chaos [51]. In such a state, the dynamical
system switches between two different kinds of behavior called phases. Complex systems
which exhibit intermittency can be described by a control parameter p. It is characterized
by a critical threshold pT , which marks the switch from different dynamic regimes [51].
For example, the dynamical system underlying the copper time series is such that p > pT ,
because the laminar phases in Figure 2 are still pretty recognizable ([3]).

White areas or bands in the RPs are caused by abrupt changes and extreme events in
the dynamics (disrupted typology [36]). They are indicative of transient activities and may
reflect an underlying state change [34]. White bands with no recurrent points appear in
Figure 2.

Pomeau and Manneville introduced three types of intermittency [42], whose structure
were examined in [52] afterwards. According to [52], it is possible to distinguish the kind of
intermittency showed by the system by looking at the patterns of RPs. Hence, following [52],
the pattern in Figure 2 suggests the presence of a type I intermittency (Figure 3).
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Figure 3. Type I intermittency, positioning of the rectangles in the RP (see Figure 8 in [52]).

Quite different is the RP depicted in Figure 4, for natural gas. We can spot the presence
of a larger number of black rectangles, even if they are smaller.

Figure 4. Recurrence plot, natural gas (6%).

Then it is clear that, in this context, we cannot talk about purely chaotic (or stochastic)
time series and that the energy commodity markets follow instead a hybrid paradigm—both
chaotic and stochastic. However, do you remember Ian Malcolm’s words? Rearranging
them, the shorthand of chaos is the butterfly effect. In Section 2, we explained why this
cannot be true, and the energy commodity markets give us a counterexample. Actually,
we estimated the maximal Lyapunov exponent (MLE) for some of the datasets previ-
ously examined in [3,4] obtaining: MLE (copper) = −0.78; MLE (oil contract 1) = −0.68;
MLE (natural gas) = 0.14. From these findings, according to the experimental definition of
chaos, we may infer that the natural gas time series is chaotic [2].

MCE, noise level estimation and RP tell us a different story: the stochastic component
is too large to be neglected. This result is also confirmed by the measure for determinism
enclosed in Equation (11). For natural gas, DET= 0.22, which denotes a very high level of
stochastic component. The choice of lmin = 10 satisfies the suggestions contained in [34,40];
the choice of ε (k = 6%) follows the criterion fixed by (9).
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5. Conclusions

As pointed out by many researchers, replication is the key to credibility in applied
sciences and confidence in all research findings. With regard, in particular, to energy
finance and economics, replication papers are rare, probably because they are hampered by
inaccessible data, but their aim is crucial and twofold. First, they wonder if the old results
resist the addition of more recent data and the updating of new methods and, if not, why
this is so. Second, they take into account a large number of recent (or older) articles to check
whether the results are still valid when compared with other contributions.

While in [3,4] we proved that the contrasting results in chaos theory applied to energy
economics are due to replication issues, in this paper, we consider two ways to avoid
misleading results on the ostensible chaoticity of price series. The first one is represented by
the proper mathematical definition of chaos and the related theoretical background, while
the latter is represented by the hybrid approach that we propose here—which consists in
considering the dynamical system underlying the price time series as a superposition of
deterministic and stochastic systems. This hybrid approach is based on the introduction
of tools that take into account the co-existence of stochastic and chaotic behaviors in
the same time series, such as modified correlation entropy, noise level estimation and
recurrence analysis.

We find that the chaotic and stochastic features coexist in the energy commodity
markets, although the misuse of some tests in the established practice in literature—like CE
or MLE—may say otherwise.

Our results are in line with the seminal paper by Barnett and Serletis who, more than
20 years ago, conjectured that controversies concerning the application of chaos theory in
economics “might stem from the high noise level that exists in most aggregated economic
time series and the relatively low sample sizes that are available with economic data” [53].
However, we should observe that the long debate produced by this paper did not answer
the question, and, instead, papers dealing with the existence of chaos in economic and
financial data continued to be published in the subsequent years [3,4]. Moreover, we do not
completely agree with the conclusions enclosed in [53]: “However, it also appears that the
controversies are produced by the nature of the tests themselves, rather than by the nature
of the hypothesis, since linearity is a very strong null hypothesis, and hence should be easy
to reject with any test and any economic or financial time series on which an adequate
sample size is available”. We do not believe that “the controversies are produced by the
nature of the tests themselves”, and instead we showed here that it would be more correct
to speak of the superposition of chaotic and stochastic systems.

The consequences of such findings, though not investigated here, deserve further
investigations and suggest, for future works, the adoption of different approaches to
predict the behavior of energy commodity prices.

As for future works, artificial intelligence (AI) methods, such as machine learning, offer
new possibilities to forecast energy consumption prices. Unlike conventional algorithms,
which tend to follow explicit instructions to perform a specific task, machine learning (ML)
takes into account various context variables and their mutual relationship while training.
For example, in price prediction, supervised learning algorithms can already produce good
results, which in turn are applied to time series data. There are already several studies
on the predictability of time series data for various applications, including in the energy
sector [54–57].

For the future, it would be therefore good to address these AI/ML-driven techniques
for a robust evaluation and estimation of energy consumption prices in the outlook.
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Abstract: Measures of inequality can be used to illustrate inequality between and within groups,
but the choice of the appropriate measure can have different implications. This study focused on
the Mean Logarithmic Deviation, the measure proposed by Theil and based on the techniques of
statistical information theory. The MLD was selected because of its attractive properties: fulfillment
of the principle of monotonicity and the possibility of additive decomposition. The following study
objectives were formulated: (1) to assess the degree of inequality in the population and in the
distinguished subgroups, (2) to determine the extent to which education and age influence the level of
inequality, and (3) to ascertain what factors contribute to changes in the level of inequality in Poland.
The study confirmed an association between the level of education and the average income of the
groups distinguished on this basis. The education level of the household head remains an important
determinant of household income inequality in Poland, despite the decline in the “educational bonus”.
The study also found that differences in the age of the household head had a smaller effect on income
inequality than the level of education. However, it can be concluded that the higher share of older
people may contribute to an increase in income inequality between groups, as the income from
pension in Poland is more homogeneous than the income from work in younger groups. Moreover,
the current paper seeks to situate Theil’s approach in the context of scholarly writings since 1967.

Keywords: Mean Logarithmic Deviation; Shannon entropy; income inequality; household income;
decomposition of income inequality; EU-SILC

1. Introduction

It is well-known that entropy can be considered a measure of uncertainty in probability
distribution [1]. Historically, numerous definitions of entropy have been advanced [2–8]
that subsequently are encountered in numerous contexts (thermodynamics, statistical
mechanics, information theory, topological dynamics, economy, etc.). The most broadly
recognized is Shannon’s information entropy [5]. Statistical entropy introduced by Shannon
is an essential concept in information theory, quantifies the unevenness of the probability
distribution [9], and may be interpreted as an index of concentration [10]. Furthermore,
it needs the straightforward condition of being additive, which was adopted as one of
the functional requirements of entropy. According to Theil [11], these properties made it
legitimate for entropy to be employed to devise measures that served to quantify income
inequality, while the indexes the latter introduced, i.e., the Theil index (TI) and the Mean
Logarithmic Deviation (MLD), entered widespread application as instruments for comput-
ing concentration and inequality of income distribution. Then, by subtracting Shannon’s
entropy of the actual distribution of income shares from the maximum possible value of this
entropy, one arrives at the Theil index. Both the TI and the MLD are instances of application

Entropy 2022, 24, 773. https://doi.org/10.3390/e24060773 https://www.mdpi.com/journal/entropy195



Entropy 2022, 24, 773

of relative entropy or Kullback–Leibler divergence between two income distributions, i.e.,
actual distribution and equal distribution. Simultaneously, relative entropy introduces
alternative variants of the comparative distribution for each Theil measure [12].

Having advanced income inequality measures based on the techniques of statistical
information theory, Theil put forward another intellectual concept to define and measure
inequality. Not only did he pioneer using entropy to determine inequality, but he also
contributed an important set of functional forms by which inequality could be modeled
and analyzed. Thanks to Theil, the concepts of information theory became the cornerstone
of a new understanding of inequality in income distribution, where it was construed as a
discrepancy between the actual income distribution and an implicitly egalitarian reference
distribution or some other distribution of economic relevance. In a sense, Theil focused
on inequality as a “by-product” of the information content in the income distribution
structure. Cowell [13] goes as far as stating that this landmark in comprehending inequality
may not have been fully appreciated for some time, and Theil’s contribution may have
been more far-reaching than usually assumed. Indeed, there is an extensive amount
of works in the literature offering cogent arguments favoring the information theory
techniques Theil innovatively employed in studying income inequality. Theil’s proposal
engendered a discussion on various theoretical aspects resulting from using information
theory methods in the study of inequality. First, one could cite a more flexible general
class of measures introduced by Cowell [12] and Cowell and Kuga [14] known as the
Generalized Entropy (GE) measures, in which the two Theil indices are special instances.
The GE measures constitute the single-parameter entropy family, and their concept is based
on comparing observed income distribution with a reference distribution using Csiszár’s
divergence (f-divergence) [15]. Talih [16] observes that the GE class is a special case of alpha
divergence. The idea of applying dissimilarity measures deriving from the information
theory in the study of income inequality was elaborated by References [17–23]. Second,
numerous papers have been devoted to the axiomatization of Theil indices [14,24,25]
and, in particular, to the capacity of GE measures (including the TI and the MLD) to
additively decompose into within-group and between-group inequalities [17,26–28]. Third,
the innovative methods introduced by Theil led to a debate on measures of inequality
derived from information theory from “ethical” (or prescriptive), as well as “statistical” (or
descriptive) standpoints [13,29].

One common application of Theil indices involves the relation between inequality of
total income and the values obtained for population subgroups. Theil indices can be easily
resolved into terms interpreted as measures of within-group and between-group inequality
for population subgroups. This property of additive decomposition is an attractive feature
of both Theil indices, promoting numerous applications of the TI and the MLD in the study
of the degree of inequality and when examining the factors behind it [27,30–34].

The total income inequality of a population is generated within groups (sub-populations)
and between groups. Following this premise, measures based on entropy—which can
be easily aggregated (and disaggregated)—are extremely useful for analyzing income
inequality in a population divided according to identifiable sociodemographic character-
istics such as place of residence, race, gender, age, education, labor market status, etc.
The decomposition of an inequality measure enables one to determine how much of the
total income inequality can be attributed to variation within groups or, alternatively, to
differences between groups. The emergence of comprehensive and detailed micro-data
sets made it possible to examine the extent of inequality between people or households.
In this study, attention was focused on the equivalized income among Poles in 2005 and
2019. Using EU-SILC data, the age and education of the household head were considered
as potential factors of income inequality. Taking these circumstances into account, the
following study objectives were formulated: (1) to assess the degree of inequality in the
population and in the distinguished subgroups, (2) to determine the extent to which edu-
cation and age influence the level of inequality, and (3) to ascertain what factors (changes
in population structure and changes in income distribution and/or income inequality
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within subgroups) contribute to changes in the level of inequality in Poland. Therefore, the
following hypotheses were formulated:

1. Changes in the age structure of the population in Poland (population aging) increase
the importance of age as a determinant of income inequality.

2. Due to the increase of well-educated persons in the share of population, the effect of
differences in the level of education on the level of income inequality decreases.

Moreover, the current paper seeks to situate Theil’s approach in the context of schol-
arly writings since 1967. Specifically, the Mean Logarithmic Deviation is considerably
highlighted, given that the Theil index treats differences in all parts of the distribution
equally, while the MLD is more responsive to changes at the bottom tail [35]. The Mean
Logarithmic Deviation was selected from among all additively decomposable inequality
measures because it is the sole measure that allows unequivocal partitioning of the total
inequality due to differences between subgroups [27]. The decomposition methodology
relies on an a priori approach which derives from theoretical axioms and employs a de-
composition technique by population subgroups consistent with Shorrocks [17,27] and
Mookherjee and Shorrocks [36].

The structure of this paper is as follows: Section 2 outlines the conceptual background,
particularly the intellectual basis for defining the MLD, along with its properties and
decomposition techniques based on the axiomatic approach. Section 3 describes the dataset
used in the study. The subsequent section provides the results of the empirical analysis,
while the conclusions are stated in the final section.

2. Conceptual Background

2.1. Notation and Concepts

To clarify the notation used throughout the paper, let yi ∈ R+ represent the (posi-
tive) individual income of a person i (i = 1, 2, . . . , n), and y := (y1, y2, . . . , yn) ∈ Rn

+ is
the income distribution vector for a population of n individuals. The set of all possible
income distributions, D, was also defined with specific income distribution, y ∈ Rn

+, and
mean income level, μ = μ(y) = Y

n , where Y = ∑n
i=1 yi denotes the total number of in-

come units. A parameter vector θ(y) = (μ(y), n(y)) of the distribution y is introduced
following Shorrocks [17], where n(y) = n denotes the dimension of any vector y (i.e., the
population size).

Mean income is most often adopted as a natural point of reference in the study of
income inequality [37]. For this reason, vector y := (μ, μ, . . . , μ) ∈ Rn

+ will be employed to
signify the equalized version of y. Vector y represents a perfectly equal distribution in a
situation in which the income of all persons is equal. The mean vector, y, shall be referred
to as the reference distribution for perfect equality.

The connection between information theory and the economic interpretation of income
distributions is established by exploiting the close relationship between entropy measures
(based on probability distributions) and measures of inequality (based on distributions
of income shares) (Reference [22], p. 422). Therefore, based on individual income for
each i person, it is possible to determine their share in total income, Y: qi =

yi
Y . The actual

vector of income shares is structured as q :=
( y1

Y , y2
Y , . . . , yn

Y
)
=
(

y1
nμ , y2

nμ , . . . , yn
nμ

)
, whereas

the vector of equal income shares is as follows: p :=
(

1
n , 1

n , . . . , 1
n

)
.

Finally, the designated notation will be used to describe the division of n income-
receiving units into G ≥ 2 mutually exclusive and exhaustive subgroups (e.g., by education,
age, gender, race, occupation, or region). The overall distribution, y, is partitioned into
G subgroup distributions: y =

(
y1, y2, . . . , yG). The mean income of the g subgroup is

denoted as μg = μ(yg), while ng = n(yg) describes its numerical strength (∑G
g=1 ng = n).

Let μ =
(
μ1, μ2, . . . , μG), and n =

(
n1, n2, . . . , nG) represents the vectors of subgroup means

and population sizes, respectively. For each distribution yg (g = 1, . . . , G), the parameter
vector is as follows: θg(yg) = (μ(yg), n(yg)) = (μg, ng). Furthermore, vg = ng

n denotes
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subgroup population shares, λg = μg

μ stands for relative mean income, and θg = vgλg

signifies g group income share in the income of the entire population.
An inequality measure is normally a real-valued function, I(y) : D → R , which is

given meaning by axioms that integrate criteria derived from ethics, intuition, or mathe-
matical convenience [13]. In the pertinent literature, the Mean Logarithmic Deviation index
is most often presented by using the formula below:

MLD =
1
n ∑n

i=1 ln
μ

yi
= − 1

n ∑n
i=1 ln

yi
μ

. (1)

However, for a comprehensive picture of inequality in income distribution as a concept
of disparity between the actual income distribution, y, and the equal distribution, y, based
on information theory techniques, Formula (1) is expressed as follows:

MLD =
1
n ∑n

i=1[ln μ − ln yi] (2)

or

MLD =
1
n ∑n

i=1 ln
μ

yi
=

1
n ∑n

i=1 ln
yi

nqi

yi
=

1
n ∑n

i=1 ln
1

nqi
=

1
n ∑n

i=1

[
ln

1
n
− ln qi

]
. (3)

Formula (2) represents the average deviation between average income logarithm,
μ, and income logarithm, yi. In turn, Formula (3) analogously allows for the combined
concept of distance between vectors q and p. It may thus be said that it represents the
average deviation between the income share logarithm and the logarithm of shares which
would constitute perfect equality.

Straightforward conversions of the Formula (2) make it possible to demonstrate that
the MLD index is the difference between the logarithm of the arithmetic mean of income
(μ) and the logarithm of the geometrical mean (μg):

MLD = 1
n ∑n

i=1[ln μ − ln yi] =
1
n ∑n

i=1 ln μ − 1
n ∑n

i=1 ln yi
= ln μ − 1

n ln(∏n
i=1 yi) = ln μ − ln μg.

(4)

Ultimately, it may be shown that the Mean Logarithmic Deviation is simply tanta-
mount to the Kullback–Leilber divergence (KL divergence), in which prior distribution
constitutes the actual vector of income shares, q =

(
y1
nμ , y2

nμ , . . . , yn
nμ

)
, whereas posterior

distribution is the vector of equal income shares, p :=
(

1
n , 1

n , . . . , 1
n

)
:

D(p‖q) = ∑n
i=1 pi ln

(
pi
qi

)
= ∑n

i=1
1
n

ln

(
1
n
yi
nμ

)
= ∑n

i=1
1
n

ln
μ

yi
= MLD. (5)

D(p‖q) measures the divergence between actual income distribution, q, and the per-
fectly equal distribution, p. Taking advantage of the interpretation known in information
theory, it may be said that D(p‖q) quantifies the amount of information obtained following
a transformation of the prior distribution (q) into posterior distribution (p). D(p‖q) is a
measure of the information lost when q is used to approximate p. The Kullback–Leilber
divergence may also be construed as a measure of surprise [38]. Therefore, the MLD is
the surprise in transitioning from the income distribution one actually has to a hypothet-
ical equal distribution. As is commonly known, the KL divergence is non-symmetric:
(D(p‖q) �= D(q‖p)) and D(p‖q) ≥ 0, whereby its value is equal to 0 when the compared
distributions are identical. When quantifying the level of income inequality, if it is assumed
that the reference distribution is even, it is evident that D(p‖q) = 0 when the examined
distribution is q =

(
1
n , 1

n , . . . , 1
n

)
. Consequently, the MLD index assumes 0 value if (and
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only if) income distribution, y, is completely equal, meaning that the MLD index meets the
property known as normalization.

The Kullback–Leibler divergence does not have an upper-bound. The maximum value
of the MLD depends on how small an income is determined for yi. This may be a certain
shortcoming of the MLD index in the assessment of income inequality, in particular when
contrasted with the Gini coefficient, for example, which also easily yields to interpretation.
Nonetheless, the many attractive properties of the MLD that come to light in the next
section have made it one of the commonly used measures of inequality.

The Mean Logarithmic Deviation belongs to a more flexible general family of inequality
measures. Cowell extended the class of inequality measures based on information theory
techniques to the Generalized Entropy measures [12,14]:

GEα(y) =

⎧⎨⎩∑n
i=1
(
(yi/μ)α)/n

(
α2 − α

)
α �= 0, 1

−∑n
i=1 ln(yi/μ)/n α = 0

∑n
i=1(yi/μ) ln(yi/μ)/n α = 1

, (6)

where αε(−∞,+∞) is a parameter capturing the sensitivity of a particular GE measure
to different parts of the distribution. This class includes, as is widely acknowledged, the
Theil index (for α = 1), the Mean Logarithmic Deviation (for α = 0), and monotonic
transformations of the coefficient of variation of the entire Atkinson family of indices. The
GE measures constitute a class of relative indices which are normalized by the mean.

The Generalized Entropy measures offer the ability to examine the effects of inequal-
ities in different areas of the income spectrum, enabling more meaningful quantitative
assessments of qualitatively different inequalities. As α decreases, the measure’s sensitivity
to the lower tail, i.e., the poor, increases. Cowell [13] observes that GE is more sensitive to
income variation in the upper tail of distribution for high and positive α, whereas, with
negative α, the index becomes sensitive to income variation in the lower tail of distribution.
In particular, the MLD displays greater sensitivity to changes at the bottom tail.

2.2. Axiomatic Approach

Comparative reference, which provides the basis for inequality measurement us-
ing techniques of the statistical information theory, is usually a permanent component
of investigations into inequality. Often enough, it is not transparent without verifying
mathematical properties which lie at the foundation of the structure of a given inequality
measure. Roberto [39] argues that there are many measures which operationalize any given
dimension of inequality and divides inequality measures with respect to two dimensions:
evenness and diversity. Coulter [40], on the other hand, split inequality measures into
four categories in accordance with their basic mathematical model: combinatorics, entropy,
deviations, and social-welfare function. However, the most widely adopted classification
criterion is the link between measures of inequality and the concept of social welfare. Ac-
cording to Sen [41], measures of inequality can be divided into two broad classes: normative
and positive. The former measure the level of inequality in terms of the normative notion
of social welfare and the loss incurred as a result of unequal income distribution. They rely
on the “ethical” link to social-welfare functions developed by Kolm [42], Atkinson [43],
and Sen [41] and are thus informed by value judgements. Conversely, positive measures
do not make explicit use of the concept of social welfare and serve only a descriptive
function, suitably conveying the degree of inequality in an appropriate way and help one
to assess the significance of the impact of various factors. However, Sen [41] notes that this
division is not precise since any positive measure of inequality is always entangled with
a social welfare function. He cites the Theil index, which, in terms of form, almost fully
corresponds with the utilitarian social-welfare function, as a result of which individual
welfare components are equal to yi ln

(
1
yi

)
(see Reference [41], p. 43). Shorrocks [29] adds

that the descriptive and ethical aspects of inequality measures are complementary.
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In describing the properties of the MLD index, an axiomatic approach will be used
which seeks to characterize measures that satisfy relevant properties in the context of
income inequality analysis. Magdalou [44] underlines that such an approach usually yields
a unique class of indices which the Generalized Entropy measures represent.

The MLD index satisfies five key axioms: symmetry, the principle of population replica-
tion, scale invariance, the Pigou–Dalton transfer principle, and an additive decomposition
property. It may be interesting to note that any inequality measure that satisfies these
axioms must belong to the Generalized Entropy class or its ordinal transformations [27].

1. Symmetry. Let y′ = (y′1, y′2, . . . , y′n) ∈ D, which is obtained from y = (y1, y2, . . . , yn)
∈ D by a permutation of incomes yi. MLD(y′) = MLD(y) whenever y′ is obtained
from y by a permutation.

2. Principle of Population Replication (Replication Invariance). Let x = (y, y, . . . , y) ∈ D,
which is obtained from y = (y1, y2, . . . , yn) ∈ D by a replication. The incomes in x
are simply the incomes in y repeated a finite number of times. If x is obtained from y
by a replication: MLD(x) = MLD(y) whenever x is obtained from y by a replication.

3. Scale Invariance (Scale Independence). Let x = (αy) = (αy1, αy2, . . . , αyn) ∈ D, which is
obtained from y = (y1, y2, . . . , yn) ∈ D by a scalar multiple for some positive real α.
MLD(x) = MLD(y) whenever x is obtained from y by a scalar multiple.

4. The Pigou–Dalton Transfer Principle. Let x =
(

x1, x2, . . . , yi − t, . . . , yj + t, . . . , xn
) ∈ D,

which is obtained from y =
(
y1, y2, . . . , yi, . . . , yj, . . . , yn

) ∈ D by regressive transfer
t > 0. This means that, for any given income value, yi and yj, which satisfy yi < yj,
transfer t > 0 proceeds as follows: yi − t = xi and yj + t = xj, xi ≤ xj, whereas, for
any given k �= i, j, we obtain xk = yk (yi − xi = xj − yj > 0). MLD(x) = MLD(y)
whenever x is obtained from y by a regressive transfer.

5. Additively decomposable. Suppose that the overall distribution y is partitioned into
G subgroup distributions: y =

(
y1, y2, . . . , yG). Additive decomposition property is

defined according to References [20,27,45]. The decomposition formula will make
use of a parameter vector θ = (μ, n) ∈ RG

+ × NG for both the weights employed
in the within-group term and the distribution used to define the between-group
term. For each vector θ = (μ, n) ∈ RG

+ × NG, let us define a weighting function,
w(μ, n) :=

(
w1(μ, n), w2(μ, n), . . . , wG(μ, n)

)
, for which wg(μ, n) ≥ 0 is the weight at-

tached to the g subgroup inequality, assuming that it depends on μ and n. The between-
group term is based on the smoothed distribution, χ(μ, n) :=

(
μ11n1

, μ21n2
, . . . , μG1nG

)
,

which replaces the income of each person in the g subgroup with a correspondingly
mean subgroup income, μg (1ng

is ng-coordinated vector of ones).

The MLD is additively decomposable, as shown below:

MLD
(

y1, y2, . . . , yG
)
= ∑G

g=1 wg(μ, n)MLD(yg) + MLD(χ(μ, n)). (7)

Belonging to the family of Generalized Entropy measures, the MLD satisfies the
above measure properties for that class. Still, the MLD is a particular instance of median-
normalized inequality measures suggested by Reference [37]. These measures were devised
by using the median (m) as the equality reference point; in contrast, mean income is adopted
as a reference point for the mean-normalized GE.

A median-based class of Generalized Entropy inequality measures is defined as follows:

Iα(y/m; μ) :=
1

α(α − 1)
1
n ∑n

i=1

[(yi
m

)α −
( μ

m

)α]
, α �= 0, 1. (8)

By applying de l’Hôpital’s rule for α = 0 and α = 1, we obtain the following, respectively:

I0(y/m; μ) := − 1
n ∑n

i=1 ln
yi
μ

, (9)
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I1(y/m; μ) :=
1
n ∑n

i=1
yi
m

ln
yi
μ

. (10)

Let us note that the particular case of the median-normalized inequality measures
for α = 0 is independent of the median, and Formula (9) describes the Mean Logarithmic
Deviation index.

Cowell and Flachaire [37] demonstrated that the median-normalized inequality mea-
sures satisfy the property known as monotonicity in distance for α ≥ 0. The principle of
monotonicity in distance was advanced by Cowell [18] as a certain generalization of the
transfer principle. Magdalou and Nock [21] draw attention to the fact that the property is
“quite demanding”. The principle of monotonicity in distance means that a departure of any
income, yi, from the reference point, e, should be interpreted as an increase of inequality.

2.3. The MLD Decomposition by Subgroups

The decomposition criterion is to be met by inequality measures when the assessment
of the level of income inequality in a population involves the premise that inequality is
not an inherent characteristic of the community but a certain function of its component
elements. It is assumed that the level of inequality in the entire society is contingent on the
degree of inequality in the subgroups isolated on the basis of certain traits, and precisely
those traits. This study sought to establish how the overall level of inequality may be
decomposed into contributions resulting from (1) income inequality within each subgroup
and (2) inequality between groups that arise from differences between the mean level of
income in those subgroups.

Shorrocks [27] identified a class of relative inequality measures which are additively
decomposable by subgroups. The Generalized Entropy measures—inclusive of the MLD—
constitute a family of those measures. Subgroup decomposable indices are also known in
the literature as additively decomposable or, more concisely, additive indices [45].

Let us assume yet again that the studied population into G of mutually exclusive and
exhaustive subgroups. The Mean Logarithmic Deviation is additively decomposable in
accordance with Formula (7), in which weights wg(μ, n) linked to the g subgroup income
level equal vg = ng

n . In other words, the within-group term MLDW is a weighted sum of
inequalities in subgroups, and it is expressed in the following formula:

MLDW = ∑G
g=1 wg(μ, n)MLD(yg) = ∑G

g=1

ng

n
MLD(yg). (11)

The within-group component describes a part of the overall inequality which is due to
the inequalities in the subgroups.

Between-group term MLDB quantifies income inequalities in the smoothed distribu-
tion

(
μ11n1

, μ21n2
, . . . , μG1nG

)
, which would result from replacing each income, yi, with the

g subgroup mean income, in which the i person is classified. Therefore, the between-group
component MLD(χ(μ, n) found in Formula (7) may be expressed as follows:

MLDB = ∑G
g=1

ng

n
ln
(

μ

μg

)
. (12)

In other words, the between-group component describes the scale of inequality re-
sulting exclusively from the differences in mean income of the subgroups. The ratio of
inequality between subgroups to overall inequality reflects the extent to which the feature
on the basis of which the subgroups are distinguished contributes to household income
inequality [46].

Theil [11] formulated a vital requirement that subgroup decomposable inequality
measures should satisfy. Specifically, the within-group and their associated weights should
be independent of the between-group component. This is because a major problem arises
when mutually independent within-group and between-group terms cannot be defined.
Shorrocks [27] and Anand [47] also highlight the problem, stressing that changes in inequal-
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ity between groups can induce modifications not only in the between-group component
but also in the within-group component, even if within-group income inequality has regis-
tered no change. With the issue in mind, Foster and Shneyerov [48] examine an additive
decomposition property which they refer to as “path independent decomposability”. This
property requires that the between-group and within-group components be independent.
Foster and Shneyerov [48] introduced a class of inequality measures which satisfy this prop-
erty, designated as path-independent indices. Path-independent inequality measures have
within-group terms that can be expressed as population-share weighted sums of the sub-
group inequalities. Path-independent inequality measures have within-group terms that
can be expressed as population-share weighted sums of the subgroup inequalities. The re-
searchers demonstrate that the Mean Logarithmic Deviation and the variance of logarithms
VL = ∑n

i=1
(
ln yi − ln μg

)2/n belong to this class and, thus, satisfy the path-independent
decomposability property. The MLD index has a path-independent decomposition that
uses the arithmetic mean as the representative income, while the variance of logarithms is
path-independent relative to the geometric mean.

Another relevant issue involved in the interpretation of the results obtained from
the decomposition of inequality measures was identified by Shorrocks [27]. This prob-
lem concerns the interpretation of statements such as “X per cent of inequality is due
to Y”. To understand this issue better, let us consider a possible answer to the question
“What proportion of total inequality is due to income differences due to attribute (charac-
teristic) Y?” This may be interpreted as follows: (1) What decrease in inequality will be
observed if differences in the studied attribute Y are the only source of income differences?
(2) How far will inequality decrease if income differences due to attribute Y disappear?
Since these interpretations are equivalent modes of answering the same question, the
inequality measure is expected to yield the same answer for both cases (1) and (2). Only
inequality measures for which the weights of the within-group expressions do not depend
on the subgroup means will generate the same answer for (1) and (2). Given that GEs are

additively decomposable with weights wg(μ, n) =
(

ng

n

)(
μg

μ

)α
[20,27], there is only one

member of the Generalized Entropy family to satisfy this property, namely the MLD. There-
fore, Shorrocks (Reference [27], p. 625) underlines that the MLD “is the most satisfactory of
the decomposable measures, allowing total inequality to be unambiguously split into the
contribution due to differences between subgroups”.

The decomposition of inequality indices by population subgroups has often been used
to explain trends in income distribution. With the population divided into subgroups, the
decomposed inequality (into within- and between-group components) in a given year may
be expressed as a function of three components: subgroup population shares, subgroup
mean incomes, and subgroup inequalities. The change in inequality between the two
examined periods can therefore be linked to changes in these three components. Therefore,
three main components are identified in the decomposition of the inequality trend, cor-
responding respectively to the following: changes in population structure (Δvg), relative
fluctuations in subgroup mean incomes (Δ ln μg), and changes in subgroup inequality
values (ΔMLD(yg)) [36]. Since the MLD is an index for which indices expressing subgroup
inequality are weighted by subgroup shares in a population, Mookherjee and Shorrocks [36]
show that changes in inequality between two periods (t0 and t1) can be noted as follows:

ΔMLD = MLD(t1)− MLD(t0)

= ∑G
g=1 vgΔMLD(yg) + ∑G

g=1 MLD(yg)Δvg − ∑G
g=1 ln λgΔvg − ∑G

g=1 vgΔ ln λg, (13)

where Δ is the difference operator, and a bar over variables indicates an average of base
and current period value (vg = (vg(t0) + vg(t1))/2, etc.).

The MLD can be approximately decomposed into the contributions of changes in
inequality within groups, changes in inequality between groups, changes in the population
share of each group, and changes in the subgroup means:
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≈ ∑G
g=1 vgΔMLD(yg) +∑G

g=1 MLD(yg)Δvg

[termA] [termB]
+∑G

g=1

(
λ

g − ln λg
)

Δvg +∑G
g=1

(
θ

g − vg
)

Δ ln μg

[termC] [termD]
, (14)

The term A of the expression (14) represents the impact of changes in within-subgroup
inequality (“pure” inequality changes); terms B and C indicate the effect of changes in the
population shares on the within-group and between-group components (allocation effect);
and term D (income effect) is the contribution to overall inequality change attributable to
relative changes in the subgroup means [34,36].

Formula (14) is employed to assess changes in inequality, because, as Jenkins [34]
argues, “the approximation is more useful than the exact decomposition because it relates
inequality changes to changes in subgroup inequalities, shares and means (rather than
relative means)”.

3. Data

The current study employed data from the EU-SILC survey conducted by Eurostat.
The EU-SILC is an annual EU-wide household survey which provides information on the in-
come and living conditions of a sample of households. The micro-data were obtained under
the project entitled Income and inequality of income of European households (RPP 162/2018-
EU-SILC). The current study used data extracted from the cross-sectional database of the
EU-SILC 2019 (version as of March 2021). As the EU-SILC adopts the preceding year as
the income reference period for the vast majority of countries, including Poland, the data
taken from 2005 and 2019 surveys cover information about incomes achieved by individual
members of Polish households in 2004 and 2018, respectively.

Considering data availability, in 2005 and 2019, the samples of raw micro-data ob-
tained from the cross-sectional EU-SILC data set spanned 16,263 households, i.e., 49,044
individuals and 19,874 households with 50,788 persons, respectively. Due to the lack of
information on the education and age of the household head, the number of observations
was limited to 48,916 individuals in 2005 and 43,935 persons in 2019. In the analysis,
the authors also omitted 117 observations with zero and negative incomes in 2005 and
disregarded 103 such observations in 2019. All the inequality measures reported in the
study were calculated by using personal cross-sectional weights.

Throughout the empirical analysis, the authors employed the annual equivalized
household disposable income per household member. The total household disposable
income was calculated as a sum of gross personal income components for all household
members and gross income components at the household level reduced by taxes, social
insurance contributions, and inter-household cash transfers paid. To compensate for differ-
ent household structures and possible economies of scale within households, household
income was size-adjusted by dividing total income by the equivalized household size
and assigning this value to each household member. To size-adjust household disposable
income, the study used the OECD-modified equivalence scale, which assigns a weight of
1.0 to the head of household, 0.5 to every household member aged 14 or more, and 0.3
to each child aged under 14. Summing up the individual weights gives the equivalized
household size.

For years, income inequality (as well as its sources) has been the subject of numerous
studies. The micro-determinants of household income inequality, referred to in the relevant
literature, can be assembled into two groups: sources of household income and sociodemo-
graphic attributes associated with the household and its members. In the current study,
we focused on the personal characteristics of household members, specifically the head of
household, and considered two possible drivers of inequality: the level of education and
the age of the household head.

Various approaches to selecting the head of the household can be found in empirical
research. Very often, the household head was considered to be the member of the household
who had made the largest contribution to the household income [33,49]. Kranziger [50]
designated the oldest member of the household as its head, while, in Papatheodorou’s anal-
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ysis [51] of inequality in Greece, the male was presumed to be the head of the household. In
the current study, Medgyesi’s approach [52] was employed; it defined the household head
on a demographic basis. The oldest male of working age (16–64 years old) in the household
was considered to be the head of the household. In case there was no such individual, the
oldest working-age female was taken as the household head. If no working-age persons
resided in the household, the oldest male member was considered the household head, or,
alternatively, the oldest female was. We decided to follow Medgyesi because, due to the
economic situation in Poland, housing shortages, as well as Polish culture, many young,
well-educated people with high incomes share dwellings with their relatives. Even if their
income exceeds that of their parents, the oldest working male (usually the father) is still
considered the head of the household.

For the age of the head of household, the following household subgroups were
distinguished: 18–35, 36–49, 50–64, and above 65 years of age. Figure 1a,b presents the
estimation of the Kernel density of equivalized disposable income for the subgroups, which
were distinguished based on the age of the household head in 2005 (Figure 1a) and 2019
(Figure 1b), respectively.

  
(a) (b) 

  
(c) (d) 

Figure 1. The Kernel density estimates of equivalized disposable income for the subgroups were
distinguished based on the age of the household head in 2005 (a) and 2019 (b), and for the subgroups
distinguished by the education of the household head in 2005 (c) and 2019 (d), respectively. Source:
Own elaboration based on the EU-SILC data.

The estimation of the Kernel density of equivalized disposable income for the sub-
groups distinguished by the education of the household head in 2005 (Figure 1c) and 2019
(Figure 1d), respectively, is presented in Figure 1c,d.

In the SILC, the level of education is assigned according to the International Standard
Classification of Education (ISCED 2011), which comprises nine categories of educational
attainment. In the current analysis, it was decided to merge certain education levels and
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create three subgroups of households with low, medium, and high education levels of
the household head. The first subgroup (low level) included early childhood education,
primary, and lower secondary education. The subgroup of medium educational level would
have completed upper-secondary and post-secondary education. The last subgroup (high
level) included short-cycle tertiary, bachelor’s, master’s, doctoral, or equivalent education.

4. Empirical Analysis

The first step in the analysis was to estimate the level of household income inequality
in Poland in both examined years. The level of income inequality measured by the value of
the MLD of equivalized household disposable income amounted to 0.2319 in 2005 and to
0.1465 in 2019. Although the level of income inequality in both years can be considered
moderate, there has been a significant decline in inequality between the years in question.

In analyzing income inequality in the current study, the authors focused on the
personal attributes of the household head (age and education) as the possible determinant
of income disparities between households. An attempt was made to assess the extent to
which the selected factors affect household income inequality, as well as whether their
impact is stable over time.

Table 1 presents the summary statistics on equivalized disposable income and popula-
tion of the subgroups of households distinguished relative to the age of the household head.

Table 1. Summary statistics for the subgroups were distinguished based on the age of the
household head.

Age
Population Share Income Share Relative Mean MLD

2005 2019 2005 2019 2005 2019 2005 2019

18–35 0.170 0.121 0.177 0.138 1.038 1.142 0.276 0.158
36–49 0.378 0.345 0.361 0.364 0.957 1.054 0.257 0.156
50–64 0.369 0.424 0.378 0.407 1.025 0.960 0.215 0.138

above 65 0.083 0.109 0.084 0.090 1.004 0.825 0.097 0.103

Source: Own computations based on the EU-SILC data.

After dividing the households into four subgroups by the age of the household head,
it was found that, in 2005, households headed by a person aged 36–49 were as common
as households run by a person aged 50–64. Their share in the population was 37.8% and
36.9%, respectively. In 2005, the smallest share of the population (8.3%) lived in households
run by a person aged above 65. While in the first year under study, two subgroups of
household accounted for the dominant share of the population, in the second year, there
were greater disparities in the proportion of the population. In 2019, the most numerous
group of households was headed by a person aged 50–64, comprising over 42% of the
population. The share of households run by the oldest persons (above 65) also increased.
On the other hand, the shares of households headed by persons aged 36–49 and 18–35
decreased to 34.5% and 12.1%, respectively. The changes observed in the structure of
households confirm the aging of Polish society.

An examination of the level and structure of income indicated that, in 2005 the average
income of the defined subgroups was very close to the Polish average. The youngest
households achieved the highest average income, but it was only 3.8% higher than the
national average. The lowest average income was achieved by households run by a person
aged 36–49. Their average income was 4.3% lower than the national one. A different
situation was observed in 2019, when there was a negative correlation between the age of
the household head and the average income in the subgroups. The youngest households
achieved the highest average income, exceeding the national by 14.2%. The average income
of households headed by a person aged 36–49 was also higher than the national average,
but only by 5.4%. The remaining subgroups, run by people aged 50–64 and above 65,
achieved lower average income than the national average by 4% and 17.5%, respectively.
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The unfavorable changes observed in the case of households headed by the oldest persons
indicate a deterioration of their relative income situation.

It was also found that, in 2005, the structure of income corresponded to the structure
of the population. The largest proportion of income was distributed among the most
numerous subgroups, where household heads were aged 36–49 and 50–64, with a slight
advantage of the latter. Their shares in the structure of income amounted to 36.1% and
37.8%, respectively. In 2019, households headed by a person aged 50–64 increased their
share in the income structure to over 40%, while the share of the youngest households
decreased by approximately 4 percentage points. The shares of households run by people
aged 36–49 and aged above 65 remained almost unchanged.

The overall income inequality consists of both the differences between average income
in the distinguished subgroups and the differentiation of income within these subgroups.
Despite the differences in average incomes of the subgroups distinguished by the age of the
household head, more inequality was observed within the subgroups than between them.
In both examined years, the only subgroup with significantly lower inequality than overall
inequality was that of the oldest households. It was also the only subgroup in which there
was a slight increase in inequality between the studied years.

With respect to the level of income inequality within the distinguished subgroups,
a negative correlation was found between the age of the household head and the level
of inequality; that is, the older the head of the household, the lower the level of income
inequality within the subgroup. It was also observed that in 2019 a higher average income
of the subgroup was accompanied by a higher level of inequality.

To assess whether the age of the household head contributes to household income
inequality, we employed the ratio of inequality between subgroups to overall inequality.
The results of the MLD decomposition are presented in Table 2.

Table 2. Results of the MLD static decomposition.

2005 2019

MLDW MLDB Ratio MLDW MLDB Ratio

Age 0.2313 0.0006 0.3% 0.1427 0.0039 2.6%
Education 0.1953 0.0365 15.8% 0.1231 0.0234 16.0%

Source: Own computations based on the EU-SILC data.

It was determined that the age of the household head was of negligible importance
in 2005, and it accounted for 0.3% of overall inequality. However, the importance of this
determinant increased significantly in 2019, and the ratio of the between-group component
to overall inequality was almost tenfold higher. It may be expected that the observed
process of the aging of society will entail a further increase in the importance of the age of
the household head as a factor in household income inequality.

The level of education of the household head was the second factor to be analyzed.
The summary statistics reflecting equivalized disposable income and population of the
subgroups of households distinguished by education of the household head are presented
in Table 3. As a result of dividing households on this basis, three subgroups of households
were obtained with a “low”, “medium”, or “high” education level of the household head.
As regards the structure of the household population, it was found that the subgroup of
households run by a person with a medium level of education was the most numerous in
both examined years. While the dominant share of households with medium education of
the household head was expected, substantial changes were noted in the proportions of the
population in the remaining subgroups between the studied years. In 2005, households
run by a person with a low level of education accounted for 21.5%, whereas households
headed by a person with a high education level constituted 12.7%. In 2019, the opposite
was observed. The share of households with a low-educated household head decreased to
11%, while the proportion of households headed by a highly educated person rose to 23%.
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The observed changes may have been due to “the fashion for having higher education”
(even inconsistent with one’s adopted profession) prevailing in Poland in the first decade
of the 21st century.

Table 3. Summary statistics for the subgroups distinguished by the education of the household head.

Education
Population Share Income Share Relative Mean MLD

2005 2019 2005 2019 2005 2019 2005 2019

Low 0.215 0.110 0.156 0.077 0.725 0.701 0.162 0.104
Medium 0.659 0.660 0.620 0.601 0.941 0.911 0.204 0.116

High 0.127 0.230 0.224 0.322 1.773 1.398 0.206 0.153

Source: Own computations based on the EU-SILC data.

As for the distribution of income among the distinguished subgroups, the share of
income of the “medium” group corresponded to its share in the population. Households in
this subgroup accounted for 66% of the population and accumulated over 60% of income.
The smallest part of income belonged to households headed by a person with a low level
of education. In 2005, the share of this subgroup in income accounted for 15.6% and
decreased twofold between the studied years, as did its share in the population. A reverse
tendency was observed in the subgroup of households run by a person with a high level
of education. As in the population, the income share of the “high” subgroup rose by ten
percentage points.

The average income of a household run by persons with a low or medium level of
education was lower than the average income in Poland and amounted to 70% and 90% of
the national average, respectively. The highest average income was observed in the “high”
subgroup, although the advantage in relation to the national average decreased by almost
half in the examined years, from 77% to 40%. When comparing the average income in the
defined subgroups, we found a positive correlation between income and education, and
a higher education level of the household head coincided with a higher level of income
inequality within the subgroup. In the examined years, the level of within-group inequality
decreased significantly. The most substantial drop (over 43%) was recorded in the subgroup
of households run by a person with a medium level of education. In the subgroups of
households with “low” and “high” education level of the household head, the declines
were also considerable, but not that high, and amounted to 36% and 26%, respectively.

The ratio of inequality between subgroups to overall inequality was 16% in both
analyzed years (Table 2). This means that, if the average incomes of the subgroups distin-
guished on the basis of the education of the household head were equal, and within-group
inequality remained unchanged, the level of overall income inequality would decrease by
16%. The high ratio confirmed the role of education as a determinant of income inequality.
In 2005, the impact of education of the household head on household income inequality
was significant, and its importance did not change over time.

In order to identify the factors associated with changes in income inequality in 2005–2019,
a dynamic decomposition of the MLD was used. The results are presented in Table 4.

Table 4. Results of the MLD dynamic decomposition.

Within-Group Component Between-Group Component

Inequality Effect Allocation Effect Income Effect

Age −98.1% −5.8% 0.0% 3.9%
Education −92.4% 5.8% 9.9% −23.2%

Source: Own computations based on the EU-SILC data.

The overall change in income inequality was partitioned into four components. The
first component, showing the effect of inequality, described the impact of changes on within-
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group inequality. The allocation effect, broken down into two components, showed how
changes in population shares affected the within-group and between-group component,
respectively. The latter component represented the income effect. It showed the impact of
relative changes in the average incomes of the distinguished subgroups.

In the study, the level of household income inequality was analyzed in two distribu-
tions: by age and by the level of education of the household head. As shown in Table 4,
the decline in household income inequality in Poland in both distributions resulted chiefly
from the decline in within-group inequality. Changes in the population structure by age,
i.e., an increase in the share of households run by persons aged 50+, contributed to a decline
in the level of income inequality, reducing the within-group component. On the other hand,
relative changes in the average income of the age subgroups fostered an increase in the
level of inequality. The changes observed in the structure of the household population
with respect to the education of the household head adversely affected the level of income
inequality, contributing to its increase and adding to the within-group and between-group
component alike. However, relative changes in the average income of the subgroups
distinguished by education supported a decrease in the level of inequality.

5. Discussion and Conclusions

The empirical aim of the study was to assess the extent to which education and age
affect household income inequality, as well as whether their impact is stable over time.
Therefore, in order to attain the aim, our analysis was based on micro-data obtained from
the EU-SILC database and employed MLD as a research tool.

The literature on the subject indicates education as one of the most crucial factors
influencing income inequality. However, the impact of education on income inequality is
yet to be fully understood and may differ from economy to economy. The association of
education and income inequality is also frequently examined in empirical studies, and their
results—sometimes contradictory—reflect the complexity of the discussed issue. Chevan
and Stokes [53] even refer to education as “the Pandora’s box of income inequality”, claim-
ing that both low and high levels of education can foster income inequality. Checchi [54]
claims that facilitated access to tertiary education can increase earning opportunities of
the poorest groups of the population and can lead to a reduction of income inequality.
Moreover, Rodríguez-Pose and Tselios [55] confirm that education is considered one of
the most powerful known instruments for reducing income inequality. However, they
emphasize that an increase in the share of the population with tertiary education leads to a
reduction of the value of education and, in the longer term, to a decrease in the wages of
some workers with tertiary education.

The current study confirmed an association between the level of education and the
average income of the groups distinguished on this basis. Based on the obtained results,
it can be concluded that the education level of the household head remains an important
determinant of household income inequality in Poland, despite the decline in the “educa-
tional bonus”. Although the predominance of average income of households with “high”
education of the household head, over the national average, has almost halved (from 77%
to 40%), the differences in the level of education still account for 16% of income inequality.
The current results are in line with the results of other empirical studies on the causes of
income inequality [32,52,56]. All of these studies confirmed that, in the post-transition
countries, the level of education remains one of the important sources of income inequality.

The current study also found that differences in the age of the household head had
a smaller effect on income inequality than the level of education. Since the results have
shown that only 2.6% of income inequality can be explained by the age of the household
head, the contribution of this characteristic to total income inequality may seem to be
negligible. However, the results prove that the aging of the population can foster income
inequality in Poland and may increase the impact of age on income inequality. The results
achieved are in line with the report of the RAND Corporation [57], which points out that
income inequality in Europe is sensitive to an aging of population.
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Brandolini and D’Alessio [58] indicate that the age structure of population can affect
income inequality because the amount and composition of personal incomes (from work,
property, and transfer) vary over life, and also because individual experiences mirror the
different historical periods. Typically, an individual’s income over the entire life is hump-
shaped: it usually increases from the moment of entering the labor market to approximately
the age of 65 and then decreases when the income from work is replaced by the income
from pension. However, a precise form of the hump-shaped curve is not fixed and responds
to redistribution between generations due to changes in labor market relations and the
trends in economic and social policies. The current study does not reveal the inverted
U-shape (hump-shaped) pattern in household incomes in Poland, but it does confirm the
deterioration of the relative income situation in the case of households headed by the
oldest persons.

Household income may not confirm the hump-shaped pattern due to the fact that
the household, by accumulating and redistributing the income of its members, acts as a
redistributor of resources [59]. Households combine the incomes of all their members,
thereby equalizing their level and eliminating the income disparities within the household,
and this, in turn, reduces the income inequality between households.

However, the aging of the population may substantially reduce the redistributive role
of the household. Therefore, it can be concluded that the higher share of older people may
contribute to an increase in income inequality between groups, as the income from pension
in Poland is more homogeneous than the income from work in younger groups.

In addition to empirical research, the current paper sought to situate Theil’s approach
in the context of scholarly writings since 1967, and the Mean Logarithmic Deviation was
selected because of its attractive properties. Firstly, the choice of the MLD resulted from
an emphasis on the sensitivity of this measure to the lower tail of the income distribution.
Secondly, as discussed at length in this paper, the MLD shares many of the well-established
properties of the Generalized Entropy measures, the median-normalized inequality mea-
sures, and path-independent inequality measures. The MLD also respects the principle
of monotonicity in distance and is decomposable for arbitrary partitions with the path-
independence property. As Cowell and Flachaire [37] showed, the lack of the principle of
monotonicity in distance may have strong implications in empirical studies. Moreover, the
properties of additive decomposition fulfilled by MLD cannot be overestimated, namely
the between-group and within-group components are independent, and the weights of the
within-group expressions do not depend on the subgroup means.

The empirical study was based on the income data derived directly from the household
survey. When using such data, it should be remembered that low- and high-income
households can be underrepresented in the survey data due to the fact that people often
refuse to provide any information about their income or understate it. As a result, the
measures of income inequality can be underestimated. Furthermore, different approaches
to selecting the head of the household can affect the results of empirical studies.
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Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. Data were obtained
from Eurostat and are only available from Eurostat.

209



Entropy 2022, 24, 773

Acknowledgments: This paper was developed as part of the research project Income and Inequality of
Income of European Households (Eurostat, No. 162/2018-EU-SILC) and is based on data from Eurostat,
EU Statistics on Income and Living Conditions—EU-SILC CROSS-SECTIONAL UDB 2019–version
2021-03. The responsibility for all conclusions drawn from the data lies entirely with the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, Q.A. Probability distribution and entropy as a measure of uncertainty. J. Phys. A Math. Theor. 2008, 41, 065004. [CrossRef]
2. Clausius, R. The Mechanical Theory of Heat; McMillan and Co.: London, UK, 1865; pp. 1–376.
3. Boltzmann, L. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Kinet. Theor. II WTB Wiss. Taschenb. 1970, 67,

111–225. [CrossRef]
4. Gibbs, J.W. Elementary Principles in Statistical Mechanics—Developed with Especial References to the Rational; C. Scribner’s Sons: New

York, NY, USA, 1902; pp. 1–207.
5. Shannon, C.A. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
6. Kolmogorov, A.N. A new metric invariant of transitive dynamical systems and Lebesgue space. Dokl. Russ. Acad. Sci. 1958, 119,

851–864.
7. Rényi, A. On measures of entropy and information. In Berkeley Symposium on Mathematical Statistics and Probability; Neyman, J.,

Ed.; University of California Press: Berkeley, CA, USA, 1961; pp. 547–561.
8. Tsallis, C. Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [CrossRef]
9. Lesne, A. Shannon entropy: A rigorous notion at the crossroads between probability, information theory, dynamical systems and

statistical physics. Math. Struct. Comput. Sci. 2014, 24, e240311. [CrossRef]
10. Chakravarty, S.R.; Weymark, J.A. Axiomatizations of the entropy numbers equivalent index of industrial concentration. In

Measurement in Economics. Theory and Applications of Economic Indices; Eichhorn, W., Ed.; Springer: Berlin/Heidelberg, Germany,
1988; pp. 383–398.

11. Theil, H. Economics and Information Theory; North-Holland Publishing Company: Amsterdam, The Netherlands, 1967; pp. 1–488.
12. Cowell, F.A. Generalized entropy and the measurement of distributional. Eur. Econ. Rev. 1980, 13, 147–159. [CrossRef]
13. Cowell, F.A. Theil, Inequality and the Structure of Income Distribution. DARP Discussion Paper 2003. Available online: http:

//eprints.lse.ac.uk/2288/1/Theil%2C_Inequality_and_the_Structure_of_Income_Distribution.pdf (accessed on 20 February 2022).
14. Cowell, F.A.; Kuga, K. Additivity and the entropy concept: An axiomatic approach to inequality measurement. J. Econ. Theory

1981, 25, 131–143. [CrossRef]
15. Csiszár, I. Information-Type Measures of Difference of Probability Distributions and Indirect Observations. Studia Sci. Math.

Hung. 1967, 2, 299–318.
16. Talih, M. A reference-invariant health disparity index based on R’enyi divergence. Ann. Appl. Stat. 2013, 7, 1217–1243. [CrossRef]
17. Shorrocks, A.F. Inequality Decomposition by Population Subgroups. Econometrica 1984, 52, 1369–1385. [CrossRef]
18. Cowell, F.A. Measures of distributional change: An axiomatic approach. Rev. Econ. Stud. 1985, 52, 135–151. [CrossRef]
19. Jenkins, S.P.; O’Higgins, M. Inequality measurement using ‘norm incomes’: Were Garvy and Paglin onto something after all? Rev.

Income Wealth 1989, 35, 265–282. [CrossRef]
20. Foster, J.E.; Shneyerov, A.A. A general class of additively decomposable inequality measures. Econ. Theory 1999, 14, 89–111.

[CrossRef]
21. Magdalou, B.; Nock, R. Income Distributions and Decomposable Divergence Measures. J. Econ. Theory 2011, 146, 2440–2454.

[CrossRef]
22. Cowell, F.A.; Flachaire, E.; Bandyopadhyay, S. Reference distributions and inequality measurement. J. Econ. Inequal. 2013, 11,

241–437. [CrossRef]
23. Rodhe, N. J-divergence measurements of economic inequality. J. R. Stat. Soc. Ser. A 2016, 179, 847–870. [CrossRef]
24. Foster, J.E. An axiomatic characterization of the Theil measure of income inequality. J. Econ. Theory 1983, 31, 105–121. [CrossRef]
25. Lasso de la Vega, C.; Volij, O. A simple proof of Foster’s (1983) characterization of the Theil measure of inequality. Econ. Model.

2013, 35, 940–943. [CrossRef]
26. Bourguignon, F. Decomposable Income Inequality Measures. Econometrica 1979, 47, 901–920. [CrossRef]
27. Shorrocks, A.F. The Class of Additively Decomposable Inequality Measures. Econometrica 1980, 48, 613–625. [CrossRef]
28. Elbers, C.; Lanjouw, P.; Mistiaen, J.A.; Özler, B. Reinterpreting between-group inequality. J. Econ. Inequal. 2008, 6, 231–245.

[CrossRef]
29. Shorrocks, A.F. Aggregation Issues in Inequality Measurement. In Measurement in Economics. Theory and Applications of Economic

Indices; Eichhorn, W., Ed.; Springer: Berlin/Heidelberg, Germany, 1988; pp. 429–451.
30. Shorrocks, A.F. Inequality Decomposition by Factor Components. Econometrica 1982, 50, 193–211. [CrossRef]
31. Paulus, A. Income inequality and its decomposition: The case of Estonia. In Modelling the Economies of the Baltic Sea Region; Pass,

T., Tafenau, E., Eds.; Tartu University Press: Tartu, Estonia, 2004; pp. 206–235.
32. Militaru, E.; Stanila, L. Income variability in Romania: Decomposing income inequality by household characteristics. Procedia

Econ. Financ. 2015, 26, 227–233. [CrossRef]

210



Entropy 2022, 24, 773
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Abstract: Uncovering causal interdependencies from observational data is one of the great challenges
of a nonlinear time series analysis. In this paper, we discuss this topic with the help of an information-
theoretic concept known as Rényi’s information measure. In particular, we tackle the directional
information flow between bivariate time series in terms of Rényi’s transfer entropy. We show that
by choosing Rényi’s parameter α, we can appropriately control information that is transferred only
between selected parts of the underlying distributions. This, in turn, is a particularly potent tool for
quantifying causal interdependencies in time series, where the knowledge of “black swan” events, such
as spikes or sudden jumps, are of key importance. In this connection, we first prove that for Gaussian
variables, Granger causality and Rényi transfer entropy are entirely equivalent. Moreover, we also
partially extend these results to heavy-tailed α-Gaussian variables. These results allow establishing a
connection between autoregressive and Rényi entropy-based information-theoretic approaches to data-
driven causal inference. To aid our intuition, we employed the Leonenko et al. entropy estimator and
analyzed Rényi’s information flow between bivariate time series generated from two unidirectionally
coupled Rössler systems. Notably, we find that Rényi’s transfer entropy not only allows us to detect a
threshold of synchronization but it also provides non-trivial insight into the structure of a transient
regime that exists between the region of chaotic correlations and synchronization threshold. In
addition, from Rényi’s transfer entropy, we could reliably infer the direction of coupling and, hence,
causality, only for coupling strengths smaller than the onset value of the transient regime, i.e., when
two Rössler systems are coupled but have not yet entered synchronization.

Keywords: Rényi entropy; Rényi transfer entropy; Rössler system; multivariate time series

1. Introduction

The time evolution of a complex system is usually recorded in the form of a time
series. Time series analysis is a traditional field of mathematical statistics; however, the
development of nonlinear dynamical systems and the theory of deterministic chaos have
opened up new vistas in the analysis of nonlinear time series [1,2]. The discovery of
the synchronization of chaotic systems [3] has changed the study of interactions and
cooperative behavior of complex systems and brought new approaches to studying the
relations between nonlinear time series [4]. During the process of synchronization, two
systems can either mutually interact or only one can influence the other. In order to
distinguish these two ways, and to find which system is the driver (“master”) and which
is the response (“slave”) system, a number of approaches from the dynamical system
theory have been proposed [5–8]. The aforementioned problem of synchronization can
be seen as part of a broader framework known as causality or causal relations between
systems, processes, or phenomena. The mathematical formulation of causality, in terms
of predictability, was first proposed by Wiener [9] and formulated for the time series by
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Granger [10]. In particular, Granger introduced what is now known as Granger causality,
which is a statistical concept of causality that is based on the evaluation of predictability in
bivariate autoregressive models.

Extracting causal interdependencies from observational data is one of the key tasks in
a nonlinear time series analysis. Apart from the linear Granger causality and various nonlin-
ear extensions thereof [11–13], existing methods for this purpose include state-space-based
approaches, such as conditional probabilities of recurrence [14–16], or information-theoretic
quantities, such as conditional mutual information [17,18] and transfer entropies [2,19–21].
In particular, the latter information-theoretic quantities represent powerful instruments in
quantifying causality between time-evolving systems. This is because ensuing information-
theoretic functionals (typically based on Shannon entropy) quantify—in a non-parametric
and explicitly non-symmetric way—the flow of information between two (or more) time
series. In particular, transfer entropies (TEs) have recently received considerable attention.
The catalyst was the infusion of new (numerical and conceptional) ideas. For instance, the
performances of the Shannon entropy-based conditional entropies and conditional mutual
entropies have been, in recent years, extensively tested using numerically-generated time
series [17,22]. Sophisticated algorithms have been developed to uncover direct causal
relations in multivariate time series [23–25]. In parallel, increasing attention has been
devoted to the development of reliable estimators of entropic functionals to detect causality
from nonlinear time series [26]. At the same time, it has been recognized that information-
theoretic approaches play important roles in dealing with complex dynamical systems that
are multiscale and/or non-Gaussian [21,27–29]. The latter class includes complex systems
with heavy-tailed probability distributions epitomized, e.g., in financial and climatological
time series [30,31].

In this paper, we extend the popular Shannon entropy-based TE (STE), which repre-
sents a prominent tool for assessing directed information flow between joint processes, and
quantifies information transfer in terms of Rényi’s TE (RTE). RTE was introduced by one
of us (PJ) in reference [21] in the context of a bivariate financial time series. The original
idea was to use the RTE in order to exploit the theoretical formulation that could identify
and quantify peculiar features in multiscale bivariate processes (e.g., multiscale patterns,
generalized fractal dimensions, or multifractal cross-correlations) that are often seen in
finance. In contrast to [21], where the focus was mostly on qualitative aspects of Rényian
information flow between selected stock-market time series, in the present work, we wish to
be more quantitative by analyzing coupled time series that are numerically generated from
known dynamics. Specifically, we demonstrate how the RTE method performs in the detection
of the coupling direction and onset of synchronization between two Rössler oscillators [32] that
are unidirectionally coupled in the first variable x. The Rössler system (RS) is a paradigmatic
and well-studied low-dimensional chaotic dynamical system. When coupled, RSs allow
for synchronization as well as a subtle phenomenon known as “phase synchronization”,
i.e., when the amplitudes of both systems are not correlated while the phases are approxi-
mately equal. In this respect, the synthetic bivariate time series (generated from coupled
RSs) serves as an excellent test-bed, allowing to numerically analyze, e.g., drive–response
relationships or identify the ensuing onset (or threshold) of synchronization. In doing so,
we identify factors and influences that can lead to either decreases in the RTE sensitivity
or false detections and propose some ways to cope with them. The aforementioned issues
have not been explicitly studied in the framework of the RTE; this work presents the first
attempt in this direction.

To set the stage, we shall first, in Section 2, provide the information-theoretic back-
ground on Rényi entropy (RE), which will be needed in the main body of the text. For
self-consistency of our exposition, we briefly review Shannon’s transfer entropy of Schreiber
and motivate and derive the core quantity of this work—the Rényi transfer entropy. The
issue of causality (and its connection to RTE) is examined in Section 3. In particular, we
prove that the Granger causality is entirely equivalent to the RTE for Gaussian processes
and show how the Granger causality and the RTE are related in the case of heavy-tailed
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(namely α-Gaussian) processes. Section 4 is dedicated to derived information-theoretic
concepts, such as the balance of transfer entropy and effective transfer entropy that will be
employed in our analysis. The proposed framework is then illustrated on two unidirection-
ally coupled Rössler systems as a paradigmatic example. To cultivate our intuition about
the latter RSs, we discuss in Section 5 the inner workings of such RSs in terms of simple
numerical experiments. The ensuing numerical analysis is presented in Section 6, where
we discuss how the RTE can be used to detect causality and the onset of synchronization in
the two coupled RSs. We also demonstrate how the RTE provides non-trivial insight into
the structure of a transient regime that exists between the regions of chaotic correlations
and the onset of synchronization. Finally, Section 7 summarizes our theoretical and nu-
merical findings and discusses possible extensions of the present work. For the reader’s
convenience, we relegate some technical issues concerning the RE estimator employed and
the statistical significance of results presented to Appendices A and B.

2. Rényi Entropy

Information theory approaches based on Shannon entropy currently belong in the
portfolio of techniques and tools that are indispensable in addressing causality issues in
complex dynamical systems. At the same time, Shannon’s information theory is limited in
its scope. In fact, since Shannon’s seminal papers [33], it has been known that Shannon’s
information measure (or entropy) represents mere idealized information, appearing only
in situations when the buffer memory (or storage capacity) of a transmitting channel is
infinite. In particular, Shannon’s source coding theorem (or noiseless coding theorem),
which establishes the limits to possible data compression and, thus, provides operational
meaning to the Shannon entropy, assumes that the cost of a codeword is a linear function of
its length (so the optimal code has a minimal cost out of all codes). However, the linear
costs of codewords are not always desirable. For instance, when the storage capacity is
finite one would aim to penalize excessively lengthy codewords with a price that is, e.g.,
exponential rather than the linear function of the length.

For these reasons, information theorists have devised various remedies to deal with
such cases. This usually consists of substituting Shannon’s information measure with
information measures of other types. Consequently, numerous generalizations of Shannon’s
entropy have started to proliferate in the information-theory literature, ranging from
additive entropies [34,35] to a rich class of non-additive entropies [36–40], to more exotic
types of entropies [41]. The one-parametric class of information measures, known as Rényi
entropies, introduced by Hungarian mathematician and information theorist Alfred Rényi in
the early 1960s [42,43], is particularly prominent among such generalizations. Applications
of RE in information theory, namely its generalization to coding theorems, were carried
over by Campbel [44], Csiszár [45,46], Aczél [47], and others. In a physical setting, RE
was popularized in the context of chaotic dynamical systems by Kadanoff et al. [48] and in
connection with multifractals by Mandelbrot [49]. RE is also indispensable in the quantum
information theory where it quantifies multipartite entanglement [50].

In its essence, REs constitute a one-parametric family of information measures labeled
by parameter α, fulfilling the additivity with respect to the composition of statistically
independent systems. The special case with α = 1 corresponds to ordinary Shannon’s
entropy. REs belong to a broader class of so-called Uffink entropic functionals [51,52], i.e.,
the most general class of solutions that satisfy Shorem–Johnson axioms for the maximum
entropy principle in the statistical estimation theory. Moreover, it might be shown that
Rényi entropies belong to the class of the so-called mixing homomorphic functions [53]
and that they are analytic for α ∈ CI∪IV , cf. [34].

2.1. Definition

RE is defined as an exponentially weighted mean of the Hartley information measure
−log p (i.e., elementary measure of information) [54]. In fact, it was shown by Rényi that,
except for a linearly-weighted average (which leads to Shannon entropy), exponential
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weighting is the only possible averaging that is both compatible with the Kolmogorov–
Nagumo average prescription and leads to entropies that are additive, with respect to
independent systems [42,43]. RE, associated with a system described with a probability
distribution P , reads

Hα[P ] =
1

1 − α
log2

n

∑
i=1

pα
i . (1)

RE has the following properties [34,43]:

• RE is symmetric, i.e., Hα[{p1, . . . , pn}] = Hα[{pπ(1), . . . , pπ(n)}];
• RE is non-negative, i.e., Hα ≥ 0;
• limα→1 Hα = H1, where H1 = H is the Shannon entropy;
• H0 = log2 n is the Hartley entropy and H2 = − log2 ∑n

i=1 p2
i is the Collision entropy;

• 0 ≤ Hα[P ] ≤ log2 n;
• Hα is a positive, decreasing the function of α ≥ 0.

Let us mention that Hα[P ] with different αs complement each other. This is because
for each specific α, the ensuing Hα[P ] carries extra information that is not present in any
other Hβ[P ] with β �= α. In information theory, this fact is known as the reconstruction
theorem, namely, the underlying distribution P can be uniquely reconstructed only if all
Hα[P ] are known, [21,34,55]. In chaotic dynamical systems, the reconstruction theorem
goes under the name complementary generalized dimensions [56] (cf. also next subsection).

2.2. Multifractals, Chaotic Systems, and Rényi Entropy

Another appealing property of the Rényi entropy is its close connection to multifractals,
i.e., the mathematical paradigm that is often encountered in complex dynamical systems
with examples ranging from turbulence and strange attractors to meteorology and finance,
see, e.g., [57]. The aforementioned connection is established through the so-called generalized
dimensions, which are defined as [2,48]

Dα = − lim
δ→0

Hα(δ)

log δ
(2)

where δ is a size of a δ−mesh covering of a configuration space of a system. General-
ized dimensions Dα are conjugate to the multifractal spectrum f (β) through the Legendre
transform [48]

(α − 1)Dα = αβ − f (β). (3)

The function f (β) is called the multifractal spectrum because β plays the role of the scaling
exponent in the local probability distribution, e.g., distribution with support on the i-th
hypercube of a mesh size δ scale, as pi(δ) ∼ δβi . The key assumption in the multifractal
analysis is that in the small δ− limit, the local probability distribution depends smoothly
on β. It can be argued that f (β) corresponds to the (box-counting) fractal dimension of the
portion of the configuration space where local probability distributions have the scaling
exponent β, cf., e.g., reference [34]. In this way, the multifractal can be viewed as an
ensemble of intertwined (uni)fractals, each with its own fractal dimension f (β).

The multifractal paradigm is particularly pertinent in the theory of chaotic systems. For
instance, chaotic dynamics and strange attractors, in particular, are uniquely characterized
by the infinite sequences of generalized dimensions Dα, cf. reference [56]. In particular, the
generalized dimensions can help to recognize (in a quantitative way) the main geometric
features of chaotic systems. For instance, they may help to distinguish chaotic behavior
from noisy behavior, determine the number of variables that are needed to model the
dynamics of the system or classify systems into universality classes. On the other hand,
dynamical features of chaotic systems are often analyzed through such quantifiers as
Lyapunov exponent, which is a measure of the divergence of nearby trajectories, or ensuing
Kolmogorov-Sinai entropy rate (KSE), which quantifies the change of entropy as the system
evolves and is given by the sum of all positive Lyapunov exponents. The connection
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between KSE and the time evolution of the information-theoretic or statistical entropy is
quite delicate, see, e.g., the discussion in reference [58], though the upshot is clear, in order
to describe the dynamics of a (complex) system, the temporal change or the difference
in entropy is more relevant than the entropy itself. Consequently, while RE (alongside
with Dα) is a suitable quantifier of geometric properties of chaotic systems, its temporal
differences or temporal rates are useful for the description of the dynamics of such systems.
Rényi’s transfer entropy follows the latter route.

2.3. Shannon Transfer Entropy

In order to understand the concept of Rényi transfer entropy, we recall first its Shan-
non’s counterpart.

Let X = {xi}N
i=1 be a discrete random variable with ensuing probability distribution

PX , then the Shannon entropy of this process is

H(X) ≡ H(PX) = − ∑
x∈X

p(x) log2 p(x) . (4)

Let Y = {yi}N
i=1 be another random variable, then mutual information between X and Y is

I(X :Y) = ∑
x∈X, y∈Y

p(x, y) log2
p(x, y)

p(x)p(y)

= H(X) − H(X|Y) = H(Y) − H(Y|X) , (5)

where quantity H(X|Y) is the conditional entropy, defined as

H(X|Y) = − ∑
x∈X, y∈Y

p(x, y) log2 p(x|y) . (6)

Mutual information quantifies an average reduction in uncertainty (i.e., gain in information)
about X resulting from the observation of Y, or vice versa. Since I(X : Y) = I(Y : X), it
cannot be used as a measure of directional information flow. Note also that the amount of
information contained in X about itself is just the Shannon entropy, i.e., I(X : X) = H(X).

The mutual information between two processes X and Y conditioned on the third
process Z is called conditional mutual information and is defined as

I(X : Y|Z) = H(X|Z) − H(X|Y, Z) = I(X : (Y, Z)) − I(X : Y) . (7)

Let us now consider two time sequences (e.g., two stock market time series) described by
stochastic (possibly vector-type) random variables Xt and Yt. Let us assume further that the
time steps (e.g., data ticks) are discrete with the time step τ and with tn = t0 + nτ where t0
is some reference time. For practical purposes, it is also useful to assume that Xt and Yt
represent discrete-time stochastic Markov processes of order k and l, respectively.

We wish to know what information will be gained on Xtn+1 by observing Yt up to time
tn. To this end, we introduce the joint process Xtn , Xtn−1 , . . . , Xtn−k+1 , which we denote as

X(k)
n , and similarly, we define the joint process Y(l)

n ≡ Ytn , Ytn−1 , . . . , Ytn−l+1 . By replacing

X in (7) by Xtn+1 , Y by Y(l)
n , and Z by X(k)

n , we obtain the desired conditional mutual
information

I(Xtn+1 : Y(l)
n |X(k)

n ) = H(Xtn+1 |X(k)
n ) − H(Xtn+1 |Y(l)

n , X(k)
n )

= ∑
x(k)n ∈X(k)

n+1, y(l)n ∈Y(l)
n

p(xn+1, x(k)n , y(l)n ) log2

(
p(xn+1|x(k)n , y(l)n )

p(xn+1|x(k)n )

)
. (8)

The conditional mutual information (8) is also known as Shannon transfer entropy from
Yt to Xt (or simply from Y to X) and as a measure of the directed (time asymmetric) infor-
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mation transfer between joint processes, it was introduced by Schreiber in reference [19].
The latter is typically denoted as

TY→X(k, l) ≡ I(Xtn+1 : Y(l)
n |X(k)

n ) . (9)

As already mentioned, for independent processes, TE is equal to zero. For a non-zero
case transfer, entropy measures the deviation from the independence of the two processes.
An important property of the transfer entropy is that it is directional, i.e., in general,
TY→X �= TX→Y.

2.4. Rényi Transfer Entropy

In the same manner as in (7), we can introduce the Rényi transfer entropy of order α from
Y to X (see also reference [21]) as

TR
α,Y→X(k, l) = Hα(Xtn+1 |X(k)

n ) − Hα(Xtn+1 |X(k)
n , Y(l)

n )

= Iα(Xtn+1 : Y(l)
n |X(k)

n ) , (10)

where Hα(X|Y) is the conditional entropy of order α and Iα(X : Y) is the mutual information of
order α. These can be explicitly written as [21,43]

Hα(X|Y) =
1

1 − α
log2

∑x∈X,y∈Y pα(x, y)

∑y∈Y pα(y)
,

Iα(X : Y) =
1

1 − α
log2

∑x∈X,y∈Y pα(x)pα(y)

∑x∈X,y∈Y pα(x, y)
. (11)

It can be checked (via L’Hospital’s rule) that Rényi’s transfer α-entropy reduces to Shannon
TE in the α → 1 limit, i.e.,

lim
α→1

TR
α,Y→X = TY→X . (12)

From (10), we see that TR
α,Y→X(k, l) may be intuitively interpreted as the degree of ignorance

(or uncertainty) about Xtn+1 resolved by the past states Y(l)
n and X(k)

n , over and above the
degree of ignorance about Xtn+1 already resolved by its own past state alone. Here, the
ignorance is quantified by the Rényi information measure (i.e., RE) of order α.

Rényi TE can also be negative (unlike the Shannon TE). This means that the uncer-
tainty of the process Xt becomes bigger knowing the past of Yt, i.e., Hα(Xtn+1 |X(k)

n ) ≤
Hα(Xtn+1 |X(k)

n , Y(l)
n ). If Xt and Yt are independent, then TR

α,Y→X = TR
α,X→Y = 0. However,

in contrast to Shannon’s case, the fact that TR
α,Y→X = 0 does necessarily imply the indepen-

dence of the two underlying stochastic processes. Nonetheless, in Section 3, we prove that
in case of Gaussian (Wiener) processes, 0-valued RTE is a clear signature of independence.

Due to the reconstruction theorem mentioned in Section 2.1, RTE TR
α,Y→X conveys for

each α a different type of directional information from Y to X. The essence of this statement
can be understood qualitatively by introducing the so-called escort distribution.

2.5. Escort Distribution

Because of the nonlinear way in which probability distributions enter in the definition
of RE, cf. Equation (1), the RTE represents a useful measure of transmitted information that
quantifies the dominant information flow between certain parts of underlying distributions.
In fact, for 0 < α < 1, the corresponding information flow accentuates marginal events,
while for α > 1, more probable (close-to-average) events are emphasized [21]. In this
respect, one can zoom or amplify different parts of probability density functions involved
by merely choosing appropriate values of α. This is particularly useful in studies of time
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sequences, where marginal events are of crucial importance, for instance, in financial
time series.

In order to better understand the aforementioned “zooming” property of RTE, we
rewrite (10) in the form

TR
α,Y→X(k, l) =

1
1 − α

log2

⎛⎜⎜⎝ ∑ pα(x(k)n )

∑ pα(x(k)n )
pα(xn+1|x(k)n )

∑ pα(x(k)n ,y(l)n )

∑ pα(x(k)n ,y(l)n )
pα(xn+1|x(k)n , y(l)n )

⎞⎟⎟⎠ . (13)

This particular representation shows how the underlying distribution changes (or deforms)
with the change of parameter α. The numerator and denominator inside the log-function
contain the so-called escort (or zooming) distributions ρα

ρα(x) ≡ pα(x)
∑x∈X pα(x)

, (14)

which emphasize less probable events for 0 < α < 1 and more probable events when α > 1,
see Figure 1.

Figure 1. Illustration of the concept of escort distribution ρα on histograms. The left figure depicts
log-scaled normal distribution N (0, 1), while in the right figure, we show the log-scaled histogram
for x1−projection increments from the Rössler system (51). Both figures demonstrate that the escort
distribution deforms the original distribution (α = 1) so that 0 < α < 1 less probable events
are emphasized (the smaller, α the greater emphasis) while high probable events are accordingly
suppressed. For α > 1, the situation is reversed.

Note also that ρα(x(k)n , y(l)n ) is not the joint probability distribution of X(k)
n and Y(l)

n as
it does not satisfy the Kolmogorov–de Finetti relation for conditional probabilities [59].

In connection with (13), we may note that for 0 < α < 1 the multiplicative factor is
positive, and so the RTE is negative if, by learning Y(l)

n , the rare events are (on average)
more emphasized than in the case when only X(k)

n alone is known. Analogically, for α > 1
the RTE can be negative when—by learning Y(l)

n —the more probable events are (on average)
more accentuated in comparison with the situation when Y(l)

n is not known. It should be
stressed that the analogous situation does not hold for Shannon’s TE. This is because in
the limit α → 1 we regain expression (8), which is nothing but relative entropy, and as
such, it is always non-negative due to Gibbs inequality. At the same time, Shannon’s TE is,
by its very definition, also mutual information. While RTE is also defined to be a mutual
information, it is not relative entropy (in the RE case, those two concepts do not coincide).
It can be shown (basically via Jensen’s inequality) [34] that the relative entropy based on
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RE is also non-negative but this is not true for ensuing mutual information, which serves
as a conceptual basis for the definition of RTE.

3. Rényi Transfer Entropy and Causality

As already seen, Rényi TE (analogously to Shannon TE) is a directional measure
of information transfer. Let us now comment on the connection of the RTE with the
causality concept.

3.1. Granger Causality—Gaussian Variables

The first general definition of causality, which could be quantified and measured
computationally was given by Wiener in 1956, namely “. . . For two simultaneously measured
signals, if we can predict the first signal better by using the past information from the second
one than by using the information without it, then we call the second signal causal to the first
one. . . ” [9].

The introduction of the concept of causality into the experimental practice, namely into
analyses of data observed in consecutive time instants (i.e., time series), is due to the Nobel
prize winner (economy, 2003) C.W.J. Granger. The so-called Granger causality is defined so
that the process Yt Granger causes another process Xt if, in an appropriate statistical sense,
Yt assists in predicting the future of Xt beyond the degree to which Xt already predicts its
own future.

The standard test of the Granger causality was developed by Granger himself [10] and
it is based on a linear regression model, namely

Xt = a0t +
k

∑
�=1

a1�Xt−� +
l

∑
�=1

a2�Yt−� + et , (15)

where a0, a1�, a2� are (constant) regression coefficients, l and k represent the maximum
number of lagged observations included in the model (i.e., memory indices), t is a discrete
time with the time step τ (� is also quantified in units of τ) and et is the uncorrelated
random variable (residual) with zero mean and variance σ2. The null hypothesis that Yt does
not cause Xt (in the sense of Granger) is not rejected if and only if a2� = 0 for � = 1, . . . , l.
In the latter case, we will call the ensuing regression model the reduced regression model.

It is not difficult to show that for Gaussian variables, the RTE and Granger causality
are entirely equivalent. To see this, we use the standard measure of the Granger causality,
which is defined as [60]

F (k,l)
Y→X = log2

|Σ(e′t)|
|Σ(et)| , (16)

where Σ(. . .) is the covariance matrix, | . . . | denotes the matrix determinant, and et, e′t are
residuals in the full and reduced regression model, respectively. We chose the logarithm to
the base 2, rather than e for technical convenience. We now prove the following theorem:

Theorem 1. If the joint process Xt, Yt is Gaussian, then there is an exact equivalence between the
Granger causality and RTE, namely

F (k,l)
Y→X = 2TR

α,Y→X(k, l) . (17)

This can be proved in the following way (for an analogous proof for Shannon’s TE,
see [61]). We first define the partial covariance as

Σ(X|Y) = Σ(X) − Σ(X, Y)Σ(Y)−1Σ(X, Y)� , (18)

where Σ(X)ij = cov(Xi, Xj) and Σ(X, Y)ij = cov(Xi, Yj) with X and Y being random vector
(or multivariate) variables. Let X and Y be jointly distributed random vectors in the linear
regression model
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X = a + YA + e . (19)

Here, a is a constant vector, A contains regression coefficients, and e is a residual random
vector with zero mean. In the subsequent, we will identify both X and Y with stochastic
vectors (see text after Equation (28)). In such a case, one can always choose a specified
number of time lags, so that system (19) (or better (23) and, consequently, (22)) is uniquely
solvable, as neither vector a nor matrix A are time-dependent.

We now apply the least square method to the mean square error

E2 ≡ ∑
i
E(e2

i ) = ∑
i
E

[
(X − YA− a)2

i

]
, (20)

Here, E(. . .) denotes the average value. The ensuing least square equations

∂E2

∂Aij
= 0 and

∂E2

∂ak
= 0 , (21)

yield

al = E(Xl) − ∑
k
E(Yk)Akl , (22)

Ali = ∑
j
[Σ(X)]−1

l j Σ(Y, X)ji . (23)

From (19) follows that

E(XiXj) = E
[
(a + YA + e)i(a + YA + e)j

]
, (24)

which after employing (22) can be equivalently rewritten as

cov(Xi, Xj) = ∑
l,k

cov(Yl , Yk)AliAkj + cov(ei, ej) , (25)

or equivalently

Σ(X) = A
�Σ(Y)A + Σ(e) . (26)

If we now insert (23)–(26), we obtain

cov(ei, ej) = cov(Xi, Xj) − cov(Xi, Yk)[cov(Yk, Yi)]
−1[cov(Xi, Yj)]

� , (27)

which might be equivalently written as

Σ(e) = Σ(X|Y) . (28)

If we now take X = (Xtn+1), a = (a0), Y = (X(k), Y(l)), A = diag(a(k)1n , a(l)2n ) for the full

regression model and Y = (X(k)
n ), A = diag(a(k)1 ) for the reduced regression model, we

might write that

F (k,l)
Y→X = log2

|Σ(e′t)|
|Σ(et)| = log2

(
|Σ(Xtn+1 |X(k)

n )|
|Σ(Xtn+1 |X(k)

n , Y(l)
n )|

)
. (29)

At this stage, we can use the fact that RE of the multivariate Gaussian variable X is [62]

Hα(X) =
1
2

log2 |Σ(X)| +
D

X

2
log2

(
2παα′/α

)
. (30)
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Here, D
X

is the dimension of X and α′ is a Hölder dual variable to α (i.e., 1/α + 1/α′ = 1).
In particular, for jointly multivariate Gaussian variables X and Y, we can use (11) to write

Hα(X|Y) =

[
1
2

log2 |Σ(X ⊕ Y)|+ D
X
+ D

Y

2
log2

(
2παα′/α

)]
−

[
1
2

log2 |Σ(Y)|+
D

Y

2
log2

(
2παα′/α

)]
=

1
2

log2 |Σ(X|Y)| +
D

X

2
log2

(
2παα′/α

)
. (31)

Here, ⊕ denotes the direct sum. Employing finally the defining relation (10), we obtain

TR
α,Y→X(k, l) = Hα(Xtn+1 |X(k)

n ) − Hα(Xtn+1 |X(k)
n , Y(l)

n )

=
1
2

log2

(
|Σ(Xtn+1 |X(k)

n )|
|Σ(Xtn+1 |X(k)

n , Y(l)
n )|

)
. (32)

This confirms the statement of Theorem 1. In addition, since the standard measure of
Granger causality (16) is typically defined only for the univariate target and source variables
Xt and Yt, we can omit | . . . | in (29) and (32).

Theorem 1 deserves two comments. First, the theorem is clearly true for any α. In fact,
it is α independent, which means that for Gaussian processes we can employ any RTE to test
the Granger causality. This naturally generalizes the classical result of Barnett et al. [61] (see
also [1]) that is valid for Shannon’s TE. When TE is phrased in terms of the Shannon entropy,
it is typically easier to use various multivariate autoregressive model fitting techniques
(e.g., the Lewinson–Wiggins–Robinson algorithm or the least-squares linear regression
approach [63]) to derive F (k,l)

Y→X more efficiently than by employing direct entropy/mutual
information-based estimators. On the other hand, since the efficiency and robustness of
RTE estimators crucially hinge on the parameter α employed [64] (see also our discussion
in Section 4), it might be, in many cases, easier to follow the information-theoretic route to
the Granger causality (provided the Gaussian framework is justified). One can even test
the Gaussian assumption in the actual time series by determining the RTE for various α
parameters and checking if the results are α independent.

Second, the exact equivalence between the Granger causality and RTE can be (in
the Gaussian case) retraced to the fact that in Equation (30) the second additive term
on the RHS is proportional to DX. It is not difficult to see (by a direct inspection) that
this proportionality will be preserved in many other exponential distributions that satisfy
the Markov factorization property. In these cases, the equivalence between the Granger
causality and RTE statistics will also be preserved. However, for generic distributions, the
additive term in (30) will no longer be a linear function of DX and, hence, it will not be
canceled. This, in turn, spoils the desired equivalence. In the following section, we will
discuss one possible generalization of Theorem 1 in the context of heavy-tailed distributions.

3.2. Granger Causality—Heavy-Tailed Variables

It is not difficult to find relations analogous to (32) in a more general setting. Here, we
will illustrate this point with heavy-tailed (namely α-Gaussian) random variables, where
computations can be conducted analytically.

It is well known that if variance and mean are the only statistical observables, then
the conventional maximum entropy principle (MaxEnt) based on Shannon entropy yields
Gaussian distribution. Similarly, if the very same MaxEnt is applied to Rényi entropy Hα,
one obtains the so-called α-Gaussian distribution [34] (cf. also Figure 2)

pi =
1
Zα

[
1 − β(α − 1)x2

i

]1/(α−1)

+
, (33)
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that decays asymptotically following power law. Here, β ∈ R+ and [z]+ = z if z ≥ 0 and 0,
otherwise, Zα is the normalization factor. It is more conventional to write (33) as

pi = Z−1
α exp{2−α} (−βx2

i ) , (34)

where

ex
{α} = [1 + (1 − α)x]1/(1−α)

+ , (35)

is the Box–Cox α-exponential [30].

Figure 2. Comparison of the escort distributions ρα of the Gaussian (normal) distribution N (0, 1) and
α-Gaussian distributions (in log-linear plots) with a choice of β in (33), such that variances are the
same for equal αs. For α = 1, the two distributions correspond to the Gaussian distribution N (0, 1).
Even though ρα and α-Gaussian distributions deform the same underlying Gaussian distribution
N (0, 1), α-Gaussian is (save for α = 1) heavy-tailed, while ρα remains Gaussian.

α-Gaussian distribution (33) has finite variance (and, more generally, the covariance
matrix) for D

2+D < α ≤ 1. Let us now assume that Granger’s linear (full/reduced) regression
model is described by joint processes Xt and Yt that are α-Gaussian. We now prove the
following theorem:

Theorem 2. If the joint process Xt, Yt is α-Gaussian with α ∈
(

1+k+l
3+k+l , 1

]
(i.e., a finite covariance

matrix region) then F (k,l)
Y→X − 2TR

α,Y→X(k, l) is a monotonically decreasing function of α (at fixed k
and l) with zero reached at a stationary point α = 1. The leading-order correction to the Granger
causality is “k”-independent and has the form

F (k,l)
Y→X = 2TR

α,Y→X(k, l) +
l(α − 1)2

4
+ O((α − 1)3) . (36)

This result explicitly illustrates how certain “soft” heavy-tailed processes can be related
to the concept of the Granger causality via universal types of corrections that are principally
discernible in data analysis.

Theorem 2 can be proved in close analogy with our proof of Theorem 1. In fact, all
steps in the proof are identical up to Equation (29). For the D-dimensional α-Gaussian
process, the scaling property (30) reads

Hα(X) =
1
2

log2 |Σ(X)| + Hα(Z
1,D
α ) . (37)
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Here, Z1,D
α represents an α-Gaussian random vector with zero mean and unit (D × D)

covariance matrix. Relation (37) results from the following chain of identities

Hα(X) = Hα(
√

Σ(X)Z1,D
α )

=
1

1 − α
log2

∫
RD

dDy

(∫
RD

dDz δ

(
y −

√
Σ(X)z

)
F (z)

)α

=
1

1 − α
log2

[
|Σ(X)|(1−α)/2

∫
RD

dDyF α(y)

]
(38)

=
1
2

log2 |Σ(X)| + Hα(Z
1,D
α ) ,

which is clearly valid for any non-singular covariance matrix. The derivation F (. . .)
denoted the α-Gaussian probability density function with the unit covariance matrix and
zero mean. We can now use the simple fact that

Hα(Z
1,D
α ) = log2

⎡⎣( π

b(1 − α)

)D/2 Γ
(

1
1−α − D

2

)
Γ
(

1
1−α

) (
1 − D

2α
(1 − α)

)1/(α−1)
⎤⎦

=
D
2

log2[2πα] + log2

⎡⎣ Γ
(

1
1−α − D

2

)
(1 − α)D/2Γ

(
1

1−α

)
⎤⎦ + log2

[(
1 − D

2α
(1 − α)

) D
2 − 1

1−α

]
, (39)

(where b = [2α − D(1 − α)]−1), to write

Hα(X|Y) =
1
2

log2 |Σ(X|Y)| + Hα(Z
1,D

X
+D

Y
α ) − Hα(Z

1,D
Y

α ) . (40)

At this stage, we note that

Hα(Z
1,D

X
+D

Y
α ) − Hα(Z

1,D
Y

α ) − Hα(Z
1,D

X
α )

= Hα(Z
1,D

X
α |Z1,D

Y
α ) − Hα(Z

1,D
X

α ) , (41)

which is not zero as it was in the case of the Gaussian distribution. In fact, from the
foregoing discussion, it is clear that for the α-Gaussian random variables, we can write the
RTE in the form

TR
α,Y→X(k, l) = Hα(Xtn+1 |X(k)

n ) − Hα(Xtn+1 |X(k)
n , Y(l)

n )

=
1
2

log2

(
Σ(Xtn+1 |X(k)

n )

Σ(Xtn+1 |X(k)
n , Y(l)

n )

)
+ Hα(Z

1,1
α |Z1,k

α ) − Hα(Z
1,1
α |Z1,k+l

α ) (42)

=
1
2
F (k,l)

Y→X + Iα(Z
1,1
α : Z1,l

α |Z1,k
α ) .

Here, we have set Z1,1
α to correspond to the random variable Xtn+1 with unit variance. Simi-

larly, Z1,k
α and Z1,l

α correspond to unit covariance random variables X(k)
n and Y(l)

n , respectively.
Clearly, when Yt and Xt processes are independent (and, hence, not causal in the

Granger sense), their joint distribution factorizes and, thus, Hα(Z
1,D

X
+D

Y
α ) �→ Hα(Z

1,D
X

α ×
Z

1,D
Y

α ). Additivity of the RE then ensures that Hα(Z
1,1
α |Z1,k

α )=Hα(Z
1,1
α |Z1,k+l

α ) and, hence,
Iα(Z

1,1
α : Z1,l

α |Z1,k
α ) is zero. In other words, when two processes are not Granger causal, their

RTEs are zero. Actually, it is not difficult to see that this is true irrespective of a specific
form of the distribution involved. However, the opposite is not true since Iα(Z

1,1
α : Z1,l

α |Z1,k
α )

might be (unlike in Shannon’s case) negative; consequently, TR
α,Y→X(k, l) can be zero even if
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F (k,l)
Y→X is not. To understand this point better, we explicitly evaluate Iα(Z

1,1
α : Z1,l

α |Z1,k
α ) for

our α-Gaussian random variables. Using (39), we can write

Iα(Z
1,1
α : Z1,l

α |Z1,k
α ) = log2

⎡⎣Γ
(

1
1−α − 1+k

2

)
Γ
(

1
1−α − k

2

) Γ
(

1
1−α − k+l

2

)
)

Γ
(

1
1−α − 1+k+l

2

)
⎤⎦

+ log2

⎡⎢⎢⎣
(

α
1−α − 1+k

2

) 1+k
2 − 1

1−α

(
α

1−α − k
2

) k
2− 1

1−α

(
α

1−α − k+l
2

) k+l
2 − 1

1−α

(
α

1−α − 1+k+l
2

) 1+k+l
2 − 1

1−α

⎤⎥⎥⎦. (43)

By setting ζ = 1
1−α − k

2 and ξ = 1
1−α − k+l

2 , we can rewrite (43) as

Iα(Z
1,1
α : Z1,l

α |Z1,k
α ) = log2

⎡⎣Γ
(

ζ − 1
2

)
Γ(ζ)

(ζ − 1)ζ(
ζ − 3

2
)ζ− 1

2
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Γ
(
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) (ξ − 3
2
)ξ− 1

2

(ξ − 1)ξ

⎤⎦
= log2

⎡⎣Γ
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2
)
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ζ − 3

2
)ζ− 3

2

Γ(ξ − 1)
Γ
(
ξ − 3

2
) (ξ − 3

2
)ξ− 3

2

(ξ − 1)ξ−1

⎤⎦ (44)

≤ −1
2

log2

[
(ξ − 1)(
ξ − 3

2
)] ≤ 0 ,

where on the last line we use the Kečkić–Vasić inequality [65]

(x + 1)x+1

(x + s)x+s es−1 ≤ Γ(x + 1)
Γ(x + s)

≤ (x + 1)x+ 1
2

(x + s)x+s− 1
2

es−1 , (45)

valid for s ∈ (0, 1). In addition, it can be numerically checked that dIα(Z
1,1
α :Z1,l

α |Z1,k
α )

dα > 0, for
all l, k from the definition, so the maximum of Iα(Z

1,1
α : Z1,l

α |Z1,k
α ) is attained at α = 1, see

Figure 3. When α is close to 1, then one can employ the asymptotic relation Γ[x + γ] ∼
Γ[x]xγ valid for x � 1, γ ∈ C, and rewrite (39) in the form (D/2) log2[2παeα]. In this
case, (43) tends to zero and we obtain equivalence between TE and the Granger causality.
This result should not be so surprising because in the limit α → 1, RE tends to Shannon’s
entropy and the α-Gaussian distribution tends to the Gaussian distribution.

The leading order behavior near α = 1 can be obtained directly from (43). The ensuing
Taylor expansion gives

Iα(Z
1,1
α : Z1,l

α |Z1,k
α ) = − l(α − 1)2

8
+ O((α − 1)3) , (46)

so, the point α = 1 is a stationary point of Iα(Z
1,1
α : Z1,l

α |Z1,k
α ). This closes the proof.
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Figure 3. Example of Iα(Z
1,1
α : Z1,l

α |Z1,k
α ) for l = 2 and k = 1, 2, . . . , 10. Range validity of α is thus

between 3+k
5+k and 1.

4. Estimation of Rényi Entropy

4.1. RTE and Derived Concepts

From a data analysis point of view, it is not very practical to use the full joint processes
X(k)

n and Y(l)
n (cf. the defining relation (10)) because (possibly) high values of k and l

negatively influence the accuracy of estimation of RTE. In the following sections, we will
thus switch to a more expedient definition of RTE given by

TR
α,Y→X({k}, {m}, {l}) = Hα(X{m},+

n |X{k},−
n ) − Hα(X{m},+

n |X{k},−
n , Y{l},−

n )

= Iα(X{m},+
n : Y{l},−

n |X{k},−
n ) , (47)

where X{k},Ω
n is a subset of past (Ω = −) or future (Ω = +) values of Xtn with the

number of elements equal to k, such that {k} = {κ1, ..., κk} is a set of indices and X{k},Ω
n ≡

XtnΩκ1
, XtnΩκ2

, . . . , XtnΩκk
is a selected subsequence of Xtn , i.e., nX-dimensional vectors. The

same notational convention applies to Y{l},Ω
n as a subsequence of Ytn , i.e., nY-dimensional

vectors. In definition (47), we added a third parameter, m—the so-called future step. Though
such a parametrization is often used in the literature on Shannon’s TE, cf., e.g., reference [17],
we will (in the following) only employ m = {1} so as to conform with the definition (10).
In such a case, we will often omit the middle index in TR

α,Y→X({k}, {1}, {l}).

4.1.1. Balance of Transfer Entropy

In order to compare RTE that flows in the direction from Y → X with the RTE that
flows in the opposite direction X → Y, we define the balance of transfer entropy

TR, balance
α,Y→X ({k}, {l}) = TR

α,Y→X({k}, {l}) − TR
α,X→Y({k}, {l}) . (48)

4.1.2. Effective Transfer Entropy

To mitigate the finite size effects, we employ the idea of a surrogate time series. To this
end, we define the effective transfer entropy

TR, effective
α,Y→X ({k}, {l}) = TR

α,Y→X({k}, {l}) − TR
α,Y(sur)→X({k}, {l}) , (49)

where Y(sur) stands for the randomized (reordered) time series—the surrogate data se-
quence. Such a series has the same mean, the same variance, the same autocorrelation
function and, therefore, the same power spectrum as the original sequence, but (nonlinear)
phase relations are destroyed. In effect, all the potential correlations between X{k}

n and Y{l}
n
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are removed, which means that TR
α,Y(sur)→X

({k}, {l}) should be zero. In practice, this is not
the case, despite the fact that there are no obvious structures in the data. The non-zero value
of TR

α,Y(sur)→X
({k}, {l}) must then be a byproduct of the finite data set. Definition (49) then

ensures that spurious effects caused by finite k and l are removed. In our computations, we
used the Fisher–Yates algorithm [66] together with Mersenne twister random generation
algorithm [67] for the randomized surrogates. For a more technical exposition, see, e.g.,
refs. [68–70].

4.1.3. Balance of Effective Transfer Entropy

Finally, we combined both previous definitions to form the balance effective transfer
entropy

TR, balance, effective
α,Y→X ({k}, {l}) = TR, effective

α,Y→X ({k}, {l}) − TR, effective
α,X→Y ({k}, {l})

= TR
α,Y→X({k}, {l}) − TR

α,Y(sur)→X({k}, {l}) (50)

− TR
α,X→Y({k}, {l}) + TR

α,X(sur)→Y({k}, {l}) ,

to quantify the direction of flow of transfer entropy without finite size effects.

4.1.4. Choice of Parameters k and l

The choice of the parameters k and l is essential to reliably analyze the information
transfer between variables in a system. So, a natural question arises as to how one should
choose such parameters.

The order of k and l, both in the RTE and Shannon’s TE, but also in approximating
autoregression in the Granger case, is often (in practice) set rather arbitrarily at some
moderately high number. In the literature, there are theoretical criteria for optimal choices
of k and l—with no unique answer. In our numerical simulations, we employed two
pragmatic criteria: (a) results should be stable under the increase of k and l and, additionally,
(b) k, and l should be equal to—or higher than—those used in the literature for the analysis
of Shannon’s TE in Rössler systems, e.g., references [18,22], so that we could make a
comparison with the existence results. The chosen values ({k}, {l}) ≡ ({k}, {1}, {l}) =
({0, 1}, {1}, {0}) often well-satisfied both aforementioned conditions. In Section 6.3, it was
sufficient to set {k} = {0} and {l} = {0}, in agreement with [18]. When a need has arisen
to emphasize some finer details in the behavior of the RTE (cf. Figures 6 and 10), {k} was
chosen to be {0, 1, 2, 3, 4} or even {0, 1, 2, 3, 4, 5, 6}.

5. Rössler System

5.1. Equations for Master System

In order to illustrate the use of RTE, we considered two unidirectionally coupled
Rössler systems (oscillators). These often serve as testbeds for various measures of syn-
chronization, including Shannon’s TE [71–73]. Rössler’s system is described by three
non-linearly coupled partial differential equations

ẋ1 = −ω1 x2 − x3 ,

ẋ2 = ω1 x1 + ax2 , (51)

ẋ3 = b + x3(x1 − c) ,

with four coefficients ω1, a, b, and c. Strictly speaking, only three coefficients are indepen-
dent, as ω1 can be set to one by appropriately rescaling x2. RS was invented in 1976 by
O.E. Rössler [32] and it likely represents the most elementary geometric construction of
chaos in the continuous systems. In fact, since the Poincaré–Bendixson theorem precludes
the existence of (other than) steady, periodic, or quasi-periodic attractors in autonomous
systems, defined in one- or two-dimensional manifolds, the minimal dimension for chaos
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is three [74]. The simplicity of the RS is bolstered by the fact that it only has one nonlinear
(quadratic) coupling.

RS classifies as the continuous (deterministic) chaotic system, and more specifically as
the chaotic attractor. The word “attractor” refers to the fact that whatever is the initial
condition for the solution of the differential Equation (52), the trajectory x(t) ends up
(after a short transient period) at the same geometrical structure (see Figure 5), which is
neither a fixed point nor a limit cycle. This attractive geometrical structure is known as the
Rössler attractor.

For future convenience, we will call the RS (51) as driving or master system and denote
it as {X}.

5.2. Equations for the Slave System

In the following, we investigate RTE between two Rössler systems that are unidirec-
tionally coupled in the variable x1 via a small adjustable parameter ε. The corresponding
second RS—driven or slave system, is defined as

ẏ1 = −ω2 y2 − y3 + ε(x1 − y2) ,

ẏ2 = ω2 y1 + ay2 , (52)

ẏ3 = b + y3(y1 − c) .

Here, we fix the coefficients so that a = 0.15, b = 0.2, c = 10.0, and frequencies ω1 = 1.015 and
ω2 = 0.985, and initial conditions (x1(0), x2(0), x3(0)) = (0, 0, 0) and (y1(0), y2(0), y3(0)) =
(0, 0, 1). This parametrization is adopted from reference [18] where Shannon’s TE between
systems (51) and (52) was studied. In the following, we will denote the slave system also
as {Y}.

5.3. Numerical Experiments with Coupled RSs

Before we embark on the RTE analysis, let us first take a look at the phenomenology
of the coupled RSs (51) and (52) by means of simple numerical experiments. In our
numerical treatment, we simulate coupled RSs by using the integration method, which is
implemented in a package SciPy named solve_ivp with the LSODA option that exploits
the Addams/BDF method, see, e.g., reference [75]. Projections of the ε-dependent RSs
dynamics to various planes are presented in Figure 5. For visualization purposes, we
used the toolkit Matplotlib [76] that exploits toolkit NumPy [77]. The sources are part
of the Pyclits project [78]. In the future, the work can be rebased. The resulting data set
analyzed consisted of 100,000 data points. To gain insight into the transient region, we
chose shorter time lags in the data set generated from RS with 0.1 ≤ ε ≤ 0.15, namely, we
reduced the time steps from 0.01 to 0.001. In parallel, we display in Figure 4 the behaviors
of the corresponding Lyapunov exponents, as adapted from [22], which help to elucidate
our discussion.
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Figure 4. The two largest Lyapunov exponents of the master system (constant—violet and green)
and the slave system (decreasing—red and yellow). So, for small ε, the signature of LE is ++ 00 −−,
while after synchronization, we end up with the signature +0 −−−−. After synchronization, there is
a “collaps” of the dimension, in the sense that the slave system is completely dependent on the master
system, so that there is only one dimension (direction) in which there is an expansion. Accordingly,
there is only one LE with a positive sign. The LEs are measured in nats per time unit.

Projections

Instead of a conventional stereoscopic plotting, we found it more convenient (and
illuminating) to focus on various plane projections of the coupled RSs. First, we noticed that,
in Figure 5, the projections of RSs on the x2- x1, x3-x2, and x1-x3 planes do not depend on
the coupling between systems (i.e., they are ε-independent), as expected, because the slave
system (52) does not influence dynamics of the master system (51), which is autonomous
(irrespective of ε). However, it is clear that signatures of the interaction between non-
symmetrically coupled RSs (51) and (52) will show up in projections on the xi-yj and
yi-yj planes.

Secondly, when the RSs are not coupled (i.e., when ε = 0), we have two autonomous
RSs—in fact, two strange attractors that differ only by values of their frequency coefficients
and initial values. The autonomies of the respective RSs are clearly seen in projections
on the xi-xj and yi-yj planes (cf. Figure 5). A different density of trajectories (in a given
time window t = 100,000) can be ascribed to the frequency mismatch. Projections on the
x1-y1 and x2-y2 planes show how the ensuing chaotic and (component-wise) uncorrelated
trajectories fill their support regions. In particular, we can observe that on the background
of densely packed chaotic trajectories, clear vertical stripes of dominantly-visited regions
appear in the slave system. Vertical stripes are clearly visible because limit cycles in the
autonomous slave system are far more localized than in the master system. The projection
on the x3-y3 plane indicates that (most of the time) the master system orbits venture to the
x3 direction, the slave system orbits are in the vicinity of the y1-y2 plane, and vice versa.

By continuously increasing the coupling strength ε from the zero value, we can observe
that, already, a small interaction significantly changes the evolution of the slave system.
For instance, in Figure 5, we see that when ε = 0.01 , then the diffusive term ε(x1 − y2)
significantly disperses the limit cycles in the slave system. This is reflected not only in
all projections on the yi-yj planes but also in projections on the x1-y1 and x2-y2 planes. In
the latter two cases, the diffusion causes that horizontal stripes to completely disappear.
Finally, the projection on the x3-y3 plane does not change significantly from the ε = 0 case.
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Figure 5. Projections of the RSs (51) and (52) on various planes. For each fixed ε, we depict nine
figures that correspond (from top to bottom and left to right) to projections on the x2-x1, x3-x2, x1-x3,
x1-y1, x2-y2, x3-y3, y2-y1, y3-y2, and y1-y3 planes. In the figure, we display, altogether, nine values of
ε corresponding (from left to right and top to bottom) to ε = 0, 0.01, 0.1, 0.14, 0.16 and 0.5. The initial
values are chosen as x1(0), x2(0), x3(0) = 0, y1(0), y2(0) = 0, and y3(0) = 1. Further projections for
the transient region 0.12 � ε � 0.15 are shown in Figure 8. All RSs are depicted in the time window
t = 10,000.

When we further increase ε, we see that the behavior of the slave system starts to
qualitatively depart from that of the master system. For ε, around 0.1, the slave system orbit
diffuses to the region around the origin that is basically not visited (apart from an initial
transient orbit) by the master system orbit (cf. projections on the yi-yj planes). In addition,
projections on the x1-y1 and x2-y2 planes disclose that the ensuing support areas are not
filled anymore. In fact, we can see a development of a slant stripe structure. On the other
hand, the projection on the y3-x3 plane reveals that the slave system orbits stop visiting
regions further from y3 = 0. A yet higher ε (around 0.14) orbit of the system {Y} first
converges to a single limit cycle before it makes (again) a transition into a chaotic regime.
Finally, we can observe that at ε∼0.14, the slave system rarely deviates far from y3 = 0 and
spends most of its time in the close vicinity of the y1-y2 plane—its evolution is “flattened”.

Moreover, at ε∼0.14 , we can also notice that projections on the y1-x1 and y2-x2 planes
underwent a change in topology (in fact, this happened already at around ε ∼ 0.12). The
onset of this “topological phase transition” is closely correlated with the behavior of the
largest Lyapunov exponent (LE) of the slave system. In fact, coupled RSs altogether have
six Lyapunov exponents. The ε = 0 one has two autonomous RSs each with three LEs—one
positive, one zero, and one negative (signature +0− is a typical hallmark of a strange
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attractor in three dimensions). While at ε = 0, the signature of LEs is ++ 00 −−, increasing
ε all three LEs associated with {Y} decreasing (initially) monotonically, cf. Figure 4. After a
transient negativity and a return to zero (red curve in Figure 4), the originally positive LE
of the slave system monotonically decreases and the negative for ε � 0.15. In particular,
we see that the critical value ε ∼ 0.12 at which the “topological phase transition” occurs
coincides with the value at which the largest LE of the system {Y} crosses zero.

What is particularly noteworthy is an abrupt (non-analytic) change in the behavior of
LEs at the value ε∼0.145. At this value, the LE changes direction and starts to increase with
increasing ε. The increase stops at ε∼0.15 when the yellow-colored LE in Figure 4 reaches
(approximately) value zero, after which it monotonically decreases. Such a decrease also
starts for the second red-colored LE, but at a slightly different value of ε.

For stronger interactions with 0.15 � ε � 0.2, we see (cf. Figure 5 with ε = 0.16) that
the slave system starts to approach the structure of the master system strange attractor (cf.
xi-xj and yi-yj projections). From the tilt and thinning of projections on the x1-y1 and x2-y2
planes, one may deduce that the amplitude synchronizations in the x1 and y1 (as well as x2
and y2) directions increase. Projection on the x3-y3 plane shows that amplitudes in the x3
and y3 directions are also synchronized (being roughly a half-cycle behind each other).

Finally, for very strong interactions, e.g., for ε ∼ 0.5, the synchronization is almost
complete: the system {Y} basically fully emulates the master system’s behavior with both
systems now being structurally identical (cf. xi-xj and yi-yj projections). Full synchroniza-
tion is nicely seen in projections on the x1-y1 and x2-y2 planes. Note that the amplitudes in
the x3 and y3 directions start to synchronize.

6. Numerical Analysis of RTE for Coupled RSs

In the previous section, we learned some essentials about the coupled RS (51) and (52).
In order to demonstrate the inner workings of the RTE and to gain further insight into
how the two RSs approach synchronization, we compute here the RTE for various salient
situations, such as the RTE between the x1- and y1-component, between the x1- and y3-
component, or RTE between the full master and slave system. In our numerical analysis,
we employed the RE estimator introduced by Leonenko et al. [26]. Some fundamentals
associated with this estimator are relegated to Appendix A.

6.1. Effective RTE between x1 and y1 Directions

In order to understand the dynamics of the two coupled nonlinear dynamical systems
(51) and (52) on their routes to synchronization, we first analyzed the effective RTE between
the x1 and y1 components. Corresponding plots for different coupling strengths ε and
different orders α are depicted in Figure 6. We can observe first that the effective RTE from
x1 to y1 gradually increases with the increasing coupling strength until ε∼0.12. The regime
between ε∼0.12 and ε∼0.15, as seen from Figure 5, corresponds to a transient synchroniza-
tion behavior, which stabilizes only after ε∼0.15. This can also be seen from the behavior
of the LEs at Figure 4. It should also be noted that the behavior of effective RTEs in the
transient regime is apparently almost identical for all α in both TR, effective

α,x1→y1 ({0, 1}, {1}, {0})
and TR, effective

α,y1→x1 ({0, 1}, {1}, {0}). This would, in turn, indicate that the information transfer
is the same across all sectors of the underlying probability distributions. Upon closer
inspection though, such a highly correlated behavior will disappear when more his-
toric data on {X} and {Y} are included (cf. TR, effective

α,x1→y1 ({0, 1, 2, 3, 4, 5, 6}, {1}, {0}) and
TR, effective

α,y1→x1 ({0, 1, 2, 3, 4, 5, 6}, {1}, {0}) in Figure 6).
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Figure 6. Effective RTE between x1 and y1 for two different histories of x1, i.e.,
TR, effective

α,x1→y1 ({0, 1}, {1}, {0}), TR, effective
α,x1→y1 ({0, 1, 2, 3, 4, 5, 6}, {1}, {0}), TR, effective

α,y1→x1 ({0, 1}, {1}, {0}),
TR, effective

α,y1→x1 ({0, 1, 2, 3, 4, 5, 6}, {1}, {0}), respectively, from left to right and top to bottom. RTE is
measured in nats.

The same conclusion can be reached when the effective RTEs for the full six-dimensional
systems are considered, cf. Figure 7.

Figure 7. Effective transfer entropy for the full system (nX = 3 and nY = 3) and for differ-
ent values of α as functions of the coupling ε. We depict TR, effective

α,X→Y ({0}, {1}, {0}) (left) and

TR, effective
α,Y→X ({0}, {1}, {0}) (right). RTE is measured in nats.

Nevertheless, from Figure 6, it can clearly be inferred that—in the transient region—
strong correlations do exist, albeit not for all αs. In particular, one starts with the correlated
flow for α � 1.2, which becomes stronger as ε increases. On the other hand, as ε ap-
proaches 0.15, the information flow decreases for α � 1. This can be seen clearly in both
Figures 6 and 7. At ε = 0.15, the information flow abruptly increases for all αs. This is
similar to a first order phase transition in statistical physics. In this respect, our “topological
phase transition” would be more similar to a second order phase transition due to a smooth
change in the entropic flow across the critical point ε = 0.12. This scenario is also supported
by Figure 8, where the actual behavior of the RS between the two critical points for four
selected values of ε’s is depicted. Note, in particular, how the increase in the RTE for
α � 1.2 (as well as the decrease of RTE for α � 1) are reflected in the contractions (measure
concentrations) of the regions with denser orbit populations in the slave system. This, in
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turn, reinforces the picture that RTEs with higher αs describe the transfer of information
between more central parts of underlying distributions, which, in this case, relate to higher
occupation densities of the {Y} system orbit. From Figure 8, we can also note that, at the
critical point ε = 0.15, the contracted orbit regions abruptly expand and the slave system
starts its way toward full synchronization with the master system. This is again compatible
with the fact that the RTE abruptly increases for all αs at this point—i.e., all parts of under-
lying distributions participate in this transition and, consequently, the occupation density
of the {Y} system orbit spreads. In this respect, point ε = 0.15 represents the threshold to
full synchronization while point ε = 0.12 denotes the threshold to transient behavior prior to full
synchronization. The latter can be identified with a phase synchronization threshold, which
should be at (or very close to) this point [22].

Figure 8. Four projections of the RSs (51) and (52) in the transient region 0.12 � ε � 0.15. Depicted
are projections (from left to right, from top to bottom) with ε = 0.12, 0.13, 0.14, and 0.15. With
increasing ε, one can observe the contractions (measure concentrations) of the regions with denser
orbit populations in the slave system. At the critical point ε = 0.15, the contracted orbit regions
abruptly expand and the slave system starts its way toward full synchronization with the master
system (cf. also Figure 5). All RSs are depicted in the time window t = 10,000.

After the critical point ε ∼ 0.15, both RSs enter full synchronization. In fact, the full
synchronization starts when the information flow from all sectors of underlying distri-
butions (i.e., for all αs) starts to be (almost) ε-independent and when TR, balance, effective

α,X→Y
approach zero—so there is a one-to-one relation between the states of the systems, and the
time series of the {X} system can be predicted from the time series {Y} system, and vice
versa. Indeed, from Figure 6 (cf. also Figures 7 and 9), we see that all TR, effective

α,Y→X proceed in
a slow increase toward their asymptotic values in the fully-synchronized state.
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Figure 9. Balance of effective RTEs from x1 to y1 TR, balance, effective
α,x1→y1 ({0, 1}, {1}, {0}) (left, nx1 = 1 and

ny1 = 1) and the balance of effective RTEs for the full system TR, balance, effective
α,X→Y ({0}, {1}, {0}) (right,

nX = 3 and nY = 1) with Y being y1.

6.2. Effective RTE between x3 and y3 Directions

As already seen from Figures 5 and 8, projections in the x3-y3 plane are particularly
distinct. In Figure 10, we see the ensuing effective RTE between x3 and y3 directions.

Figure 10. Effective RTE between x3 and y3 directions. From left to right:
TR,effective

α,x3→y3 ({0, 1, 2, 3, 4}, {1}, {0}) and TR,effective
α,y3→x3 ({0, 1, 2, 3, 4}, {1}, {0}). Note a sudden in-

crease in entropy transfer from the master to slave system at ε = 0.12 (i.e., threshold to transient
behavior) for α < 1. RTE is measured in nats.

What is particularly noticeable is a sudden increase in entropy transfer from the
master to slave system at ε = 0.12 (i.e., at the threshold to transient behavior) for α < 1.
No comparable increase is observed from slave to master. This, might be explained as
an influx of information needed to organize the chaotically correlated regime that exists
prior the (correlated) transient regime (cf. xi–yi projections in Figures 5 and 8). It should
also be noticed that ordinary Shannonian TE (α = 1) is completely blind to such an
information transfer.

As for the transient region, we can observe that the effective RTE has qualitatively
very similar behavior to the effective RTE between x1 and y1, namely a distinct decrease in
the information transfer for α < 1 and an increase for α > 1. This again reveals a measure
concentration. In this case, the orbit occupation density concentrates around the y1-y2 plane
of the slave systems, cf. projections depicted in Figure 8. The situation abruptly changes at
the synchronization threshold ε = 0.15 after which the effective RTE approaches for each α

a fixed asymptotic value that turns out to be the same for both TR,effective
α,x3→y3 and TR,effective

α,y3→x3 .

6.3. Effective RTE for the Full System

In general, for a reliable inference, it is desirable that the conditioning variable in
the definition or RTE (10) contains all relevant information about future values of the
system or processes generating this variable in the uncoupled case. So, it should be a full
three-dimensional vector X or Y in the case of RS. To this end, we display in Figure 7 the
effective RTE for the full six-dimensional RS with information transfers in both X → Y
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and Y → X directions. Corresponding plots are depicted for different coupling strengths ε,
different order αs, and different memories.

In particular, we can see that the information flow in the transient region starts after
a brief decrease at around ε∼ 0.12 and sharply increases (in both directions) for α � 1.2.
This implies that there is an increase in the correlating activity in between regions with
higher occupation densities in both REs. The behavior depicted in Figure 8 can help us
to better understand this situation. In particular, we see that in the transient region the
{Y} system reshapes its orbit occupation density so that the ensuing measure concentrates
more around its peak while its tail parts are thinner. In fact, Figure 8 also shows that this
measure concentration increases until almost ε ∼ 0.15. The measure concentration behavior
is reflected by the decrease of the RTE for α � 1, i.e., decreasing information transfers
between tail parts. This situation is even more pronounced when more memory is included
in the effective RTEs, cf. both right pictures in Figure 7.

At the synchronization threshold ε = 0.15, the information flow abruptly changes for
all αs, with a particularly strong increase for α � 1. This indicates that the orbit occupa-
tion density of the {Y} system abruptly reshapes by lowering the measure concentrated
around its peak and broadening it in tails, so that the tail parts may also enter the full
synchronization regime.

Let us finally comment on the issue of bidirectional information flown for single-
component RTEs. By envisioning the discretized versions of RSs, (51) and (52), one can
see that RTE from the slave to the master system (e.g., between the x3 and y3 direction)
cannot easily be zero. This is because Hα(X3,tn+1 |X(k)

3,n , Y(l)
3,n) in the relation (10) is not simply

Hα(X3,tn+1 |X(k)
3,n). Note that due to the nonlinear nature of the coupled RSs, y3(tn) depends

both on y1(tn) and y1(tn−1) (via the third equation in (52)), while y1(tn) depends on x1(tn)
and x1(tn−1) (via the first equation in (52)); finally, x1(tn) depends on x3(tn) and x3(tn−1)
and also x2(tn) and x2(tn−1) (via the first equation in (51)); hence, y3(tn) depends not only
on x3(tn), x3(tn−1), x3(tn−2) and x3(tn−3) but also on historical values of x2. In this way,
Hα(X3,tn+1 |X(k)

3,n , Y(l)
3,n(X)) is not simply Hα(X3,tn+1 |X(k)

3,n), as other components beyond X3,n
are also needed. Consequently, when single-component RTEs for RS are computed, we
inevitably find a non-zero information transfer from the slave to the master system. The
latter is not so much a problem of k and l but rather the fact that we did not account for all
relevant components (we simply missed some information).

It is true that for a reliable inference, in general, it would be desirable to obtain
a zero value in the uncoupled direction Y → X. This should be attained by proper
conditioning—the conditioning variable should contain full information about future
values of the system or processes generating this variable in the uncoupled case. So, it
should be a three-dimensional vector X or Y for RS. Here, we computed effective RTE for
the full six-dimensional system (vectors X and Y). From Figure 7, we can see that TR, effective

α,Y→X
in the uncoupled direction stays at the zero value (particularly for larger values of α) up
to close to the synchronization threshold (ε = 0.12), while TR, effective

α,X→Y is distinctly positive
there. So, RTE is a good causal measure only if the conditioning has a sufficient dimension
(in our case, 3); otherwise, it can be viewed only as a measure of dependence.

6.4. Balance of Effective RTE

In order to quantify the difference between coupled (X→Y) and uncoupled (Y→X)
information flow directions, we depict in Figure 9 the balance of effective RTEs between
TR, effective

α,X→Y and TR, effective
α,Y→X for two different situations. Let us first concentrate on the

balance of effective RTE TR, balance, effective
α,x1→y1 ({0, 1}, {1}, {0}). There, we can clearly see that

before the synchronization threshold (“topological phase transition”), i.e., for ε � 0.12,
we have TR, effective

α,x1→y1 > TR, effective
α,y1→x1 , which indicates the correct direction of coupling. The

fact that for α > 1.6 and ε � 0.04 one has TR, balance, effective
α,x1→y1 ({0, 1}, {1}, {0}) < 0 can be

attributed to smaller reliability of the estimator in this region, cf. Figure 11 for estimation of
ensuing the standard deviations. We can also observe that the synchronization threshold
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TR, balance, effective
α,x1→y1 ({0, 1}, {1}, {0}) changes sign and slowly return back to positive values

in the fully synchronized regime. Similar behavior was reported in [22] for Shannon’s TE.
Moreover, in this transient region, the effective RTEs have the same values irrespective of
α, or, in other words, information transfer is the same across all sectors of the underlying
probability distributions. This is akin to the behavior, which, in statistical physics, is
typically associated with phase transitions—except for the fact that now we have a critical
line rather than a critical point. However, as we already mentioned in the previous two
paragraphs, this degeneracy is only spurious and will be removed by considering either
the effective RTE for the full (six-dimensional) RS or longer memory.

After ε ∼ 0.15, the approach to full synchronization proceeds at slightly different
rates for different αs. This can equivalently be restated as saying that different parts of
the underlying distributions enter synchronization differently. The dependence of the
balance of effective RTE for the full (six-dimensional) system is shown on the right in
Figure 9. Here, the behavior is less reliable for larger values of α (α � 1.2) and for smaller
αs (α � 0.8), cf. Figure 11. In the region of reliable αs, the behavior is qualitatively
similar to that of TR, balance, effective

α,x1→y1 ({0, 1}, {1}, {0}). On the other hand, apart from the
region of a transient synchronization, we clearly have TR, effective

α,X→Y > TR, effective
α,Y→X , which

implies the correct direction of coupling. The approach to full synchronization is also
easily recognized—the RTEs saturate to constant values (i.e., information transfer is ε-
independent) and both TR, effective

α,X→Y and TR, effective
α,Y→X start to approach each other. In this

respect, RTEs with lower αs enter the synchronization regime slower than RTEs with larger
αs. In other words, events described by the tail parts of the distributions p(xn+1|x(k)n ) and
p(xn+1|x(k)n , y(l)n ) (corresponding to α < 1) will fully synchronize at higher values of ε than
corresponding events described by central parts (α > 1).

In passing, we might notice that since both TR, effective
α,X→Y and TR, effective

α,Y→X approach each
other in the fully synchronized state, both the {X} and {Y} systems have to have the same
underlying distributions (due to the reconstruction theorem for REs [21,34]) and, hence,
they are indistinguishable, as one would expect.

Figure 11. Dependence of standard deviation of the balance of effective RTEs
TR, balance, effective

α,x1→y1 ({0, 1}, {1}, {0}) (left) and TR, balance, effective
α,X→Y ({0}, {1}, {0}) (right).

7. Discussion and Conclusions

7.1. Theoretical Results

How one discerns ‘cause’ from ‘effect’ is the main question in many scientific areas.
The seminal contribution of Wiener and Granger led to the so-called Granger causality
principle and time series analysis method for inference of causality from experimental
data. The traditional Granger causality method is based on linear autoregressive processes.
However, nonlinear complex systems cannot be well-described by linear autoregressive
models and require appropriate generalizations of the Granger causality method. One
successful generalization stems from information theory, using a form of conditional mutual
information, also known as transfer entropy. Shannon entropy-based TE has become a
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standard tool used for inferring causality from time series in all areas of science (including
finance, climatology, neuroscience, etc.).

In this paper, instead of the Shannon entropy, we employed yet another information
quantity, namely Rényi entropy. The ensuing RTE has the principal advantage that it is
based on a bona fide information measure. In this way, one has a clear quantifier of the
conveyed directional information (measured in bits or nats). Consequently, statements,
such as: “the conveyed directional information from a tail part of the distribution is
comparable with information from central part of distribution” or “information transfer
is small/large (or good/bad)” are meaningful. RE is a measurable quantity; in principle,
it can be measured directly (similar to Clausius entropy or Shannon entropy) without
invoking the concept of the underlying distribution. This is because RE has an operational
meaning given by various coding theorems. In practice, this is how RE is measured, e.g., in
quantum optics (or more generally quantum information theory) [50,55]. In a conventional
time series, one does not proceed this way because coding theorems (such as the Campbell
coding theorem [44]) are difficult to implement for a large number of data.

As a proof of principle, we tested the concept of RTE on two unidirectionally coupled
Rössler systems. The idea was to illustrate how the RTE can deal with such issues as
synchronization and, more generally, causality in systems that are complex enough and
yet amenable to a numerical analysis. Coupled RS is one of a handful of (simple) coupled
chaotic systems that have been studied in the literature by means of Shannon’s TE. This
point is particularly important because we needed a gauge to which we could compare our
results (and to which our results should reduce for α = 1). Despite the earlier applications
of the RTE in bivariate (mostly financial) time series, many questions remained unanswered
about how to properly qualify and quantify the results obtained. Here, we went ‘some way’
toward this goal.

First, we showed that the concept of the Granger causality is exactly equivalent to the
RTE for Gaussian processes, which may, in turn, be used as a test of Gaussianity. This is
because RTEs are in the Gaussian framework all the same, and, hence, the results should be
α-independent. On the other hand, since the efficiency and robustness of RTE estimators
crucially hinge on the parameter α employed, it might be (in many cases) easier to follow
the information-theoretic route to Granger causality (provided the Gaussian framework
is justified).

Second, we demonstrated that the equivalence between the Granger causality and RTE
can also be established for certain heavy-tailed processes—for instance, for soft α-Gaussian
processes. In particular, in this latter case, one could clearly see the connection between
Granger causality, Rényi’s parameter α, and the heavy-tail power.

7.2. Numerical Analysis of RTE for Rössler Systems

In order to estimate the RTE, we employed the �-nearest-neighbor entropy estimator
of Leonenko et al. [26]. The latter is not only suitable for RE evaluation but it can also be
easily numerically implemented to RTEs so that these can be computed almost in real
time, which is relevant, e.g., in finance, regarding various risk-aversion decisions. Spurious
effects caused by the finite size of the data set were taken into account by working with
effective RTEs.

In order to gain further insight into the practical applicability and efficiency of the RTE,
we tested it on two unidirectionally coupled Rössler systems—the master and slave system.
To have a clear idea about what to expect, we first looked at the phenomenology of the cou-
pled RSs by means of simple numerical simulations (presented in Figure 5). This was also
accompanied by comparisons with Lyapunov exponents computed in references [18,22]
and reproduced in Figure 4. In particular, we could clearly observe how the RSs syn-
chronized with the increasing value of coupling strength. In this connection, we also
identified critical values of coupling strengths at which thresholds to transient behavior (or
the “topological phase transition”) and the threshold to full synchronization occurred.
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More specifically, we were particularly interested in the transient region between
chaotic correlation regimes and full synchronization, which had not as yet been discussed
in the literature. To gain a better understanding of this region, we employed in the range
ε ∈ [0.1, 0.15] a higher frequency sampling, namely 0.001, in contrast to the standard 0.01
one used for other εs. The threshold to transient behavior was identified at the scale ε = 0.12
where the positive LE crossed to negative values and where the projection on the x1-y1
and x2-y2 planes underwent topology changes (cf. Figure 5). From the point of view of
RTEs, this threshold behavior was reflected in peaking the information flow in various
directions. The increase in the effective RTE between x1 and y1 (in both directions) for
α > 1 was pronounced, in particular, which reflected the increase in orbit occupation
density around the peak in the y1-y2 plane in the slave system. Even more marked was the
high peak in information flow from x3 to y3 for α < 1 (see Figure 10), which described an
influx of information needed to “organize” chaotic correlations that existed between the x3
and y3 directions prior to ε � 0.12. Furthermore, the RTE was especially instrumental in
understanding the measure concentration phenomenon in the transient regime. Finally,
after a sharp “first-order-type” transition at the threshold of synchronization, the effective
RTEs slowly approached their asymptotic values (distinct for each α) in the synchronized
state. In addition, in the synchronized state, both TR, effective

α,X→Y and TR, effective
α,Y→X approached

each other, which reveals that both {X} and {Y} systems have the same underlying
distributions and, hence, they are indistinguishable.

As for the causality issue, we observed that the RTE is a good causal measure only if
the conditioning has a sufficient dimension (in our case 3); otherwise, it is merely a measure
of dependence. By employing effective RTE for the full system, we could reliably infer the
coupling direction but only until ε � 0.12, i.e., until the threshold to transient behavior.
After this value, the RSs started to synchronize, first partially (in the transient regime)
and then fully ε = 0.15. In fact, the full synchronization started when the information
flows from all sectors of underlying distributions (i.e., for all αs) began to be (almost) ε

independent and when TR, balance, effective
α,X→Y approached zero— so there was a one-to-one

relation between the states of the systems and the time series of the {X} system could be
predicted from the time series {Y} system, and vice versa; hence, one could not make any
statement about the coupling direction.

We should also reemphasize that the standard deviation of the RTE importantly
depends on α, cf. Equation (11). For instance, the balance effective RTE for the full system is
around the transient region quite reliably described by 0.8 � α � 1.25, though the minimal
noise value is not attained at α = 1 (Shannon transfer entropy) but at α = 1.16. Clearly, the
α-dependence of fluctuations is generally dynamics-dependent, and in many interesting
real-world processes, it is simply more reliable to utilize non-Shannonian TEs.

7.3. Conclusions

In this paper, we discussed the Rényi transfer entropy and its role in the inference of
causal relations between two systems, i.e., in the identification of the driving and driven
systems from the experimental time series. On the theoretical side, our focus was on
understanding the connection between RTE and Granger causality. In particular, we
proved that the Granger causality is entirely equivalent to the RTE for Gaussian processes.
This generalizes the classic result of Barnett et al. [61] that is valid for Shannon’s TE.
Furthermore, we have also shown how the Granger causality and the RTE are related in the
case of heavy-tailed (namely α-Gaussian) processes. These results allow one to bridge the
gap between autoregressive and Rényi entropy-based information-theoretic approaches.

On the experimental side, we illustrated the inner workings of the RTE by analyzing
RTE between the synthetic time series generated from two unidirectionally coupled Rössler
systems that are known to undergo synchronization. The route to synchronization was
scrutinized by considering the effective RTE (and other derived concepts) between various
master–slave components as well as between the full master and slave systems. We
observed that with the effective RTE one could clearly identify a transient synchronization
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region (in the coupling strength), i.e., the regime between chaotic (master–slave) correlations
and the synchronization threshold. In the transient region, the effective RTE allowed
inferring the measure concentration for the orbit occupation density. It is noteworthy to
mention that the latter cannot be deduced from Shannon’s TE alone.

We also saw that the direction of coupling and, hence, causality, could be reliably
inferred only for coupling strengths ε < 0.12 (the onset of the transient regime), i.e., when
two RSs were coupled, but not yet fully. This is in agreement with earlier observations,
cf., e.g., reference [22]. As soon as the RSs were synchronized, they produced identical
time series; hence, there is no way to infer the correct causality relation solely from the
measured data.

We conclude with a general observation—a clear conceptual advantage of information-
theoretic measures in general, and RTE in particular, as compared to the standard Granger
causality, are sensitive to nonlinear signal properties, as they do not rely on linear regression
models. On the other hand, a clear limitation of RTEs, in comparison to the Granger
causality, is that they are—by their very formulation—restricted to bivariate situations
(though multivariate generalization is possible, it substantially increases dimensionality in
the estimation problem, which might be hard to solve with a limited amount of available
data). In addition, the RTEs often require substantially more data than regression methods.
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Abbreviations

The following abbreviations are used in this manuscript:

RE Rényi entropy
TE transfer entropy
RTE Rényi transfer entropy
PDF probability density function
ITE information-theoretic entropy
RS Rössler system
KSE Kolmogorov–Sinai entropy rate
LE Lyapunov exponent

Appendix A

Here, we provide a brief technical exposition of the RE estimator employed.
Finding good estimators for the RE is an open research area. The estimators for the

Shannon entropy based on �-nearest-neighbor in one-dimensional spaces were studied in
statistics almost 60 years ago by Dobrushin [79] and Vašíček [80]. One disadvantage of these
estimators is that they cannot easily be generalized to higher-dimensional spaces, so they
are inapplicable to the TE calculations. Nowadays, there are many usable frameworks—
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most of them, of course, in the Shannonian setting (see reference [2] for a recent review).
However, it is important to stress that the naive estimation of TE by partitioning of the state
space is problematic [19] and that such estimators frequently fail to converge to the correct
result [81]. In practice, more sophisticated techniques, such as kernel [82] or �–nearest-
neighbor estimators [83,84], need to be utilized. However, the latter techniques may bring
about their own assumptions about the empirical distributions of the data (see [81] for a
discussion about the issues involved).

In our work, we used the �-nearest-neighbor entropy estimator for higher-dimensional
spaces introduced by Leonenko et al. [26]. This estimator is suitable for RE and it can be
effectively adapted and implemented by using formulas from the above-mentioned papers.
In particular, the approach is based on an estimator of the RE from a finite sequence of N
points that is defined as

ĤN,�,α =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α �= 1 logB((N − 1) · Vm) +
1

1−α

[
logB

Γ(�)
Γ(�+1−α)

+ logB

(
1
N ∑N

i=1

(
ρ
(i)
�

)m(1−α)
)]

α = 1 logB((N − 1) · exp(−ψ(�)) · Vm)

+ m
N ∑N

i=1 logB

(
ρ
(i)
�

) . (A1)

Here, Γ(x) is Euler’s gamma function, ψ(x) = −Γ′(x)/Γ(x) is the (negative) digamma
function, m = dim Xt is the dimension of the data set space Xt, and ρ

(i)
� is the distance from

the data i to the �-th nearest data counterpart using a metric in the space Xt. Moreover, Vm
is the size of the ball in space Xt defined via the same metric. Finally, logB is the logarithm
with base B (we typically use B = e). In our computations, we employed the Euclidean
metric, which has Vm = π

m
2 /Γ

(m
2 + 1

)
. Note that the estimator basically depends on N,

i.e., the number of data in a data set and on �, i.e., the rank of the nearest-neighbor used.
The advantages of the estimator (A1) in contrast to the standard histogram method are:

• It has relative accuracy for a small data set;
• It has applicability for high-dimensional data;
• The set estimators provide statistics for the estimation.

We should also note that, in contrast to other RE estimators, such as fixed-ball estima-
tor [2], the estimator (A1) is not confined to any specific ranges of α values, though the
efficiency of the estimator is, of course, α-dependent. We comment more on this point in
Section 6. On the other hand, the disadvantage of this method involves the computational
complexity of the algorithm and the complicated data container.

To calculate RTE and the related quantities (48)–(50), we apply the estimator
Equation (A1). Ensuing estimators to (47)–(50)—let us call them generically X—become
dependent on � (i.e., the nearest-neighbor rank). We exploit this feature and define the
mean value X and standard deviation σX with the Bessel correction, respectively, as

X =
∑nmax
�=nmin

X�

nmax − nmin + 1
, (A2)

σX =

√
∑n
�=1
(X� − X )2

nmax − nmin
. (A3)

Here, nmax and nmin are the highest and the lowest orders of the nearest data counterparts,
respectively. Theoretically, we should use nmax = M, where M stands for the number of
samples, but such a setup would require an enormous amount of computer memory to
hold the distances.

In our calculations, we used nmax = 50, which turned out to be a good compromise
between accuracy and computer time. On the other hand, for nmin, we were a little bit
restricted by the fact that nmin influenced the interval of convergence of the estimator for
various α (cf. discussion and proof in [26]). For instance, for � = 1, the estimator converged
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in the interval α ∈ [0, 1 + 1
2 dim (Xt)

], while for � > 1, one had α ∈ [0, �+1
2 ]. For our particular

purpose, it will suffice to set nmin = 5, so that the interval of convergence will be α ∈ [0, 3].
This will fully suit our needs.

Appendix B

Here, we provide the heat maps for the relevant figures from the main text. These
depict standard deviations (A2) and their dependencies on both α and ε.

Figure A1. Standard deviation of the effective RTE between x1 and y1

TR, effective
α,x1→y1 ({0, 1, 2, 3, 4, 5, 6}, {1}, {0}), and TR, effective

α,y1→x1 ({0, 1, 2, 3, 4, 5, 6}, {1}, {0}).
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Figure A2. Standard deviation of the effective RTE between x3 and y3 for
TR,effective

α,x3→y3 ({0, 1, 2, 3, 4}, {1}, {0}), and TR,effective
α,y3→x3 ({0, 1, 2, 3, 4}, {1}, {0}).
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Citation: Olbryś, J.; Majewska, E.

Regularity in Stock Market Indices

within Turbulence Periods: The

Sample Entropy Approach. Entropy

2022, 24, 921. https://doi.org/

10.3390/e24070921

Academic Editor: Damián H.

Zanette

Received: 12 May 2022

Accepted: 28 June 2022

Published: 1 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Regularity in Stock Market Indices within Turbulence Periods:
The Sample Entropy Approach
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Abstract: The aim of this study is to assess and compare changes in regularity in the 36 European
and the U.S. stock market indices within major turbulence periods. Two periods are investigated: the
Global Financial Crisis in 2007–2009 and the COVID-19 pandemic outbreak in 2020–2021. The pro-
posed research hypothesis states that entropy of an equity market index decreases during turbulence
periods, which implies that regularity and predictability of a stock market index returns increase in
such cases. To capture sequential regularity in daily time series of stock market indices, the Sample
Entropy algorithm (SampEn) is used. Changes in the SampEn values before and during the particular
turbulence period are estimated. The empirical findings are unambiguous and confirm no reason
to reject the research hypothesis. Moreover, additional formal statistical analyses indicate that the
SampEn results are similar both for developed and emerging European economies. Furthermore, the
rolling-window procedure is utilized to assess the evolution of SampEn over time.

Keywords: Sample Entropy (SampEn); stock market index; regularity; predictability; Global Financial
Crisis; COVID-19; rolling-window

1. Introduction

The vast majority of the literature in finance relies on the informational market effi-
ciency assumption, which implies unpredictability of financial markets. The concept of
informational efficiency is central in finance and it is strictly connected with the Efficient
Market Hypothesis (EMH) [1]. An efficient market is defined as one in which new informa-
tion is quickly and correctly reflected in current security prices [2]. The classic taxonomy
of information sets distinguishes between: (1) weak-form efficiency (the information set
includes only the history of prices or returns), (2) semi-strong-form efficiency (the infor-
mation set includes all public available information), and (3) strong-form efficiency (the
information set includes all information known to any market participant) [3]. Although
the EMH is simple in principle, it remains an elusive concept [4]. Therefore, testing for
efficiency and predictability of markets is difficult, which implies that empirical results are
ambiguous [2].

There is an important strand of the existing literature, known as Algorithmic Infor-
mation Theory (AIT), that explores predictability in terms of sequential regularity of time
series based on the existence of patterns. The AIT could be employed to investigate the
regularity/irregularity in data series by analyzing its entropy [5].

Entropy was defined by Shannon as a measure of information, choice and uncer-
tainty [6]. The concept of entropy has originated from physics (precisely, from thermo-
dynamics), but it has been employed in various research fields to assess the information
content of a probability distribution, and to describe the complexity of a system. En-
tropy properly characterizes the uncertainty, particularly the unpredictability, of a random
variable [7]. The highest uncertainty of the system corresponds to the highest entropy.
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Specifically, high values of entropy are related to randomness in the evolution of stock
prices [8]. In contrast, when no uncertainty exists in the system, entropy is minimized.

Entropy is an universal measure, and therefore many applications of entropy have
been proposed in the literature, including economic, finance, and management studies (for
a brief literature review see for instance [9–16] and the references therein).

It is important to emphasize that the fundamental mathematical entropy definitions,
for instance the Kolmogorov-Sinai entropy ([17,18]), were not formulated for statistical
applications. For this reason, Pincus [19] introduced the Approximate Entropy (ApEn) as a
new statistic for experimental and empirical data series. The ApEn statistic was constructed
along similar line to the Kolmogorov-Sinai entropy. Unfortunately, the ApEn procedure
has some disadvantages which make that the results suggest more regularity than there is
in reality (e.g., [5,20]).

The alternative statistic, the so-called Sample Entropy (SampEn), was proposed by
Richman and Moorman [20] to avoid the ApEn bias. The SampEn algorithm solves the
self-matching problem and eliminates the ApEn bias. The SampEn was initially used
in physiological time series analyses, but it is also a suitable indicator for economic and
financial data sets (e.g., [21,22]). Both ApEn and SampEn statistics are model-independent
measures of sequential regularity in experimental or empirical data series. They are based
on the existence of patterns. Moreover, they can quantify the regularity in time series with a
relatively small number of data. However, due to the ApEn bias reporting in the literature,
the SampEn algorithm is used in this study since it works better than the ApEn procedure
(e.g., [5,20,23]).

The terms regularity/irregularity and sequential regularity/irregularity are connected with
the terms complexity and randomness of data series [19]. The AIT procedure (ApEn or
SampEn) assigns a nonnegative number to a sequence or time series, with larger values
corresponding to greater apparent serial randomness or irregularity, and smaller values
corresponding to more instances of recognizable features in the data [24]. Pincus [25]
emphasizes that the need to assess potentially exploitable changes in serial structure is
paramount in analyses of financial and econometric data.

The goal of this research is to assess and compare changes in sequential regularity in
the 36 European and the U.S. stock market indices within major turbulence periods with
the use of the SampEn statistic. Two periods are investigated: the Global Financial Crisis
(GFC) in 2007–2009 and the COVID-19 pandemic outbreak in 2020–2021.

According to the literature, there is no unanimity in determining the phases of the
GFC among the researchers (see, e.g., [26–30] and the references therein). Therefore,
in our research, the GFC period was formally detected with the use of the Pagan and
Sossounov [31] statistical method of dividing market states into bullish and bearish markets.
The results reported in the papers [29,32,33] revealed the period from October 2007 to
February 2009 as the GFC period for the U.S. and the majority of the European financial
markets. The results are consistent with the literature (see, e.g., [26,27]).

The COVID-19 pandemic period comprised two years (2020–2021), since on 30 January
2020, the COVID-19 outbreak was declared as a Public Health Emergency of International
Concern by the World Health Organization (WHO), while on 11 March 2020, the WHO
officially declared the COVID-19 outbreak to be a global pandemic [34].

The proposed main research hypothesis states that entropy of an equity market index
decreases during turbulence periods. It means that regularity and predictability of a stock
market index increases within such periods. To examine the hypothesis, changes in the
SampEn values for the pre-turbulence and turbulence periods are estimated.

The contribution of our study is twofold. First, the empirical findings are unambiguous
and confirm no reason to reject the research hypothesis. The comparative results are
especially homogenous for the pre-COVID-19 and COVID-19 sub-periods, and they support
the evidence that regularity and predictability of the U.S. and almost all European stock
markets indices increased during the COVID-19 outbreak. Moreover, the rolling-window
approach is used to assess the evolution of entropy over time. The empirical findings
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are illustrated with the corresponding graphs which indicate that entropy (measured by
SampEn) substantially decreased during the COVID-19 pandemic, especially in March–
April 2020.

Second, the results are similar both for developed and emerging economies, and docu-
ment that entropy of European developed markets does not differ significantly compared
to the European emerging markets. Therefore, the findings do not support the hypothesis
that developed markets are generally more efficient than emerging ones (see, e.g., [35]).

The value-added of this research derives from novel empirical findings that have
not been reported in the literature thus far. These findings are important for academics
and practitioners as they support the thesis that a sequential regularity in financial time
series exists and even rises during extreme event periods, which implies a possibility of
returns prediction. To the best of the authors’ knowledge, this is the first comparative study
that investigates the group of 36 European stock markets in the context of their sequential
regularity measured by SampEn.

The rest of this study is organized as follows. Section 2 presents a brief literature review.
Section 3 describes the methodological background concerning the SampEn algorithm
and contains data description. Section 4 presents and compares empirical results on the
European stock markets and the U.S. market. The last section summarizes and discusses the
main findings and indicates some further research directions. The paper is supplemented
with three appendixes.

2. Literature Review

In light of the recently growing literature, a fairly broad research field regards assessing
informational efficiency and predictability of financial markets with various entropy-based
methods (e.g., [8,21,35–46]).

For instance, Zunino et al. [8] introduce and utilize two quantifiers for stock market
(in)efficiency, namely the number of forbidden patterns and the normalized permutation
entropy. Maasoumi and Racine [36] use a metric entropy measure of dependence to examine
predictability of stock market returns. Oh et al. [37] assess efficiency of 17 foreign exchange
markets using the approximate entropy approach. Risso ([35,38]) investigates informational
efficiency of various stock market indices utilizing the Shannon entropy and the symbolic
time series analysis. Eom et al. [39] evaluate the relationship between efficiency and
predictability in 27 stock markets. They use the Hurst exponent and the approximate
entropy procedure to analyse a long period of time. Gu [40] aims to predict the DJIA
Index values in both short-term and long-term employing the multi-scale Shannon entropy.
Ortiz-Cruz et al. [41] investigate informational complexity and efficiency of several crude
oil markets with the multi-scale approximate entropy approach. Liu et al. [42] develop the
conditional entropy and the transfer entropy to accommodate various trading activities
in the context of market efficiency. Alvarez-Ramirez et al. [46] use entropy methods
for measuring a time-varying structure of the U.S. stock market informational efficiency.
Bekiros and Marcellino [43] propose a new wavelet-based approach with minimum-entropy
decomposition to explore predictability of currency markets at different timescales. Gencay
and Gradojevic [44] use parametric and non-parametric entropy-based methods in order
to obtain an early indication of financial crisis and to predict market behavior. Wang and
Wang [45] employ a multi-scale entropy-based method to analyse efficiency of various
financial time series during the COVID-19 pandemic. Kim and Lee [21] use the approximate
entropy, the sample entropy, and the Lempel-Ziv measure for the complexity of a time
sequence to investigate predictability in cryptocurrency markets during the pandemic
period. However, studies that deeply explore wide groups of stock markets in the context
of their regularity and predictability are scarce.

3. Methodological Background and Data Description

This section presents the methodological background concerning the Sample Entropy
algorithm (SampEn) and contains the real-data description.
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3.1. The Sample Entropy Algorithm

In this research, the SampEn algorithm code in R has been implemented based on the
paper [5], and therefore the similar notation has been used.

Let us consider a time sequence u = {u(1), u(2), . . . , u(N)} of length N, an integer
0 ≤ m ≤ N, which is the length of sequences to be compared, and a real number r > 0,
which denotes the tolerance for accepting matches. The parameters N, m, and r must be
fixed for each computation.

The vectors xm(i) = {u(i), u(i + 1), . . . , u(i + m − 1)} and xm(j) = {u(j), u(j +
1), . . . , u(j + m − 1)} are defined and then the Chebyshev distance between them is calcu-
lated based on Equation (1):

d[xm(i), xm(j)] = maxk=1,2,...,m(|u(i + k − 1)− u(j + k − 1)|). (1)

The number of vectors xm(j) within r of xm(i) without allowing self-counting is
defined by Equation (2):

Bm
i (r) =

1
N − m − 1

N−m

∑
j=1,j �=i

(number of times that d[xm(i), xm(j)] ≤ r). (2)

In the next step, the total number of possible vectors Bm(r) is calculated based on
Equation (3), and it denotes the empirical probability that two sequences match for m
points:

Bm(r) =
1

N − m

N−m

∑
i=1

Bm
i (r). (3)

Analogically, the number of vectors xm+1(j) at a distance r of xm+1(i) without allowing
self-matching is defined by Equation (4):

Am
i (r) =

1
N − m − 1

N−m

∑
j=1,j �=i

(number of times that d[xm+1(i), xm+1(j)] ≤ r). (4)

Next, the total number of matches Am(r) is computed based on Equation (5), and it
denotes the empirical probability that two sequences are similar for m + 1 points (matches).

Am(r) =
1

N − m

N−m

∑
i=1

Am
i (r). (5)

Since the number of matches (Am(r)) is always less than or equal to the number of
possible vectors (Bm(r)), the ratio Am(r)

Bm(r) < 1 is a conditional probability [5].
In the last step, the SampEn value of the time sequence u is computed as follows:

SampEn(m, r, N)(u) = −log
(

Am(r)
Bm(r)

)
. (6)

The SampEn(m, r, N) given by Equation (6) is the statistical estimator of the parameter
SampEn(m, r):

SampEn(m, r) = lim
N→∞

[
−log

(
Am(r)
Bm(r)

)]
. (7)

For regular, repeating data, the term Am(r)
Bm(r) in Equation (7) nears one, and therefore

Sample Entropy nears zero [47].
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3.2. Real-Data Description

The data set includes daily observations for the 36 European stock market indices and
the S&P500 index. The sample covers the period from January, 2006 to December, 2021.
The returns of stock market indices are calculated as daily logarithmic rates of return given
by Equation (8):

rt = lnPt − lnPt−1, (8)

where Pt is the daily value of the particular market index on day t.
Table 1 presents brief information about all analyzed indices, in order of decreasing

value of stock market capitalisation in 31 December 2020, as well as the basic statistics
for daily logarithmic rates of return within the whole sample period. Several results in
Table 1 need comments. The sample means are not statistically different from zero. The
test statistic for skewness and excess kurtosis is the conventional t-statistic. The measure
for skewness indicate that almost all series are skewed at the 0.05 level of significance,
except for Cyprus (p-value 0.287) and Bosnia and Herzegovina (p-value 0.894). The values
of excess kurtosis show that all series are highly leptokurtic with respect to the normal
distribution. Furthermore, the Jarque-Bera (J-B) test [48] rejects normality for each return
series as all of the J-B statistic values are greater than 3505 with the p-value approximately
equal to zero (these values are not reported in Table 1 but are available upon a request). It
is worth noting that the obtained empirical findings are typical for return time series and
are consistent with the literature (e.g., [49]). The similar Tables A1 and A2 that report the
basic statistics for daily logarithmic rates of return within the turbulence sub-periods are
presented in Appendix A.

Table 1. The information about the analyzed stock market indices and the basic statistics for daily
logarithmic rates of return within the whole sample period.

Country Index Market Cap. Mean Std. Dev. Skewness Excess
EUR Billion (in %) (in %) Kurtosis

Dec 2020

United States S&P500 18,435.290 0.0329 1.26 −0.567 13.739

1 France CAC40 2480.404 0.0100 1.39 −0.290 8.324
2 United Kingdom FTSE100 2411.490 0.0065 1.18 −0.390 9.829
3 Germany DAX 1870.687 0.0264 1.37 −0.239 8.257
4 Switzerland SMI 1639.314 0.0130 1.11 −0.418 9.700
5 Netherlands AEX 1149.619 0.0145 1.29 −0.396 9.549
6 Sweden OMXS30 873.404 0.0229 1.37 −0.200 5.724
7 Spain IBEX35 621.765 −0.0052 1.48 −0.378 9.717
8 Italy FTSEMIB 600.652 −0.0067 1.59 −0.679 9.848
9 Russia RTSI 568.992 0.0073 2.09 −0.574 11.988
10 Denmark OMXC20 506.525 0.0385 1.28 −0.352 5.983
11 Belgium BEL20 306.132 0.0046 1.27 −0.666 10.853
12 Finland OMXH25 289.000 0.0105 1.34 −0.272 5.332
13 Norway OSEAX 273.141 0.0309 1.42 −0.705 7.149
14 Turkey XU100 194.491 0.0383 1.63 −0.467 4.479
15 Poland WIG 145.379 0.0163 1.25 −0.746 7.141
16 Ireland ISEQ 138.719 0.0033 1.47 −0.713 8.157
17 Austria ATX 108.176 0.0012 1.59 −0.515 8.205
18 Portugal PSI20 73.361 −0.0106 1.25 −0.387 7.323
19 Greece ATHEX 41.758 −0.0356 2.00 −0.478 7.140
20 Hungary BUX 22.908 0.0221 1.50 −0.274 8.436
21 Czechia PX 21.797 −0.0010 1.34 −0.628 17.455
22 Romania BET 20.895 0.0162 1.42 −0.749 12.300
23 Croatia CROBEX 18.206 0.0010 1.10 −0.502 23.966
24 Bulgaria SOFIX 14.505 −0.0065 1.11 −1.253 15.194
25 Lithuania OMXV 12.114 0.0192 0.99 −0.749 26.775
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Table 1. Cont.

Country Index Market Cap. Mean Std. Dev. Skewness Excess
EUR Billion (in %) (in %) Kurtosis

Dec 2020

26 Iceland OMXI 9.752 −0.0171 2.06 −36.153 1806.18
27 Slovenia SBITOP 6.919 0.0073 1.04 −0.716 10.209
28 Serbia BELEXLINE 4.437 −0.0032 0.81 0.156 16.365
29 Malta MSE 4.161 −0.0058 0.67 0.141 8.658
30 Cyprus GENERAL 3.844 −0.0820 2.28 0.042 7.862
31 Ukraine UX 3.615 0.0186 1.88 −0.283 9.630
32 Montenegro MONEX 3.178 0.0001 1.25 0.733 13.045
33 Estonia OMXT 3.014 0.0275 1.04 −0.412 14.786
34 Latvia OMXR 2.971 0.0152 1.24 0.080 18.658
35 Bosnia and Herzegovina BIFX 2.698 −0.0369 0.86 0.005 9.535
36 Slovakia SAX 2.648 −0.0006 1.11 −0.959 21.294

4. Results

This section presents empirical findings concerning sequential regularity and pre-
dictability of the 36 European stock markets and the U.S. market within the turbulence
periods.

4.1. Empirical Experiments

In this subsection, the research hypothesis proposed in Introduction is examined.
Changes in the SampEn values for the pre-turbulence and turbulence periods are estimated
to assess whether entropy of equity market indices decreased during extreme event periods.
To calculate the changes in entropy before and during the particular turbulence period, the
following pairs of sub-periods of equal length are investigated:

1. For the Global Financial Crisis (GFC):

• The pre-GFC period from May 2006 to September 2007 (17 months);
• The GFC period from October 2007 to February 2009 (17 months).

2. For the COVID-19 pandemic outbreak:

• The pre-COVID-19 pandemic period from January 2018 to December 2019
(24 months);

• The COVID-19 pandemic period from January 2020 to December 2021 (24 months).

As was emphasized in Introduction, the aforementioned turbulence periods are based
on the references [26,27,32–34].

An important expected feature of the SampEn algorithm is the relative consistency
(e.g., [20,50]). This property follows from the Kolmogorov-Sinai definition of entropy [17].
The notion of relative consistency was introduced by Pincus [19]. In terms of the SampEn
procedure, this can be written as the following property:

For dynamical processes A, B, if SampEn(m1, r1)(A) < SampEn(m1, r1)(B), then
SampEn(m2, r2)(A) < SampEn(m2, r2)(B).

This property means that if series A exhibits more sequential regularity than series
B for one set of the parameters (m1, r1), then this holds true for any other set (m2, r2) [20].
This expected property enables us to compare two processes for a single set (m1, r1) and
draw conclusions for all sets of input parameters.

As mentioned in Section 3.1, the SampEn statistic depends on three parameters: N, m,
and r, where N is a time series length, m is the length of sequences to be compared, and
a real number r > 0 denotes the tolerance for accepting matches. Based on the literature,
the suggestion is that m should be 1 or 2, since there are more template matches for m = 1,
but m = 2 (or greater) reveals more of the dynamics of the data. Moreover, the authors
of the SampEn procedure suggest that r should be 0.2 times the standard deviation σ of
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the empirical data set [47]. Therefore, in this research, the m = 2 and r = 0.2σ parameters
are used.

Table 2 includes the SampEn empirical findings within the Global Financial Crisis and
COVID-19 pandemic outbreak. The columns entitled ‘Change’ report changes in entropy
before and during particular turbulence period. The down arrows show entropy decrease,
while the (rare) up arrows visualize entropy increase.

Table 2. The SampEn empirical findings within the Global Financial Crisis and COVID-19 pan-
demic outbreak.

SampEn SampEn
Stock Market Pre-GFC GFC Change Pre-COVID-19 COVID-19 Change

United States 1.798 1.734 −0.064 ↓ 1.801 1.305 −0.496 ↓
1 France 1.962 1.772 −0.189 ↓ 1.972 1.489 −0.482 ↓
2 United Kingdom 1.897 1.878 −0.019 ↓ 2.107 1.481 −0.626 ↓
3 Germany 1.900 1.786 −0.115 ↓ 1.970 1.405 −0.565 ↓
4 Switzerland 1.967 1.993 0.025 ↑ 2.010 1.577 −0.432 ↓
5 Netherlands 1.950 1.773 −0.177 ↓ 1.945 1.561 −0.384 ↓
6 Sweden 1.778 1.787 0.010 ↑ 2.126 1.624 −0.502 ↓
7 Spain 1.884 1.796 −0.088 ↓ 1.901 1.673 −0.228 ↓
8 Italy 1.850 1.695 −0.155 ↓ 2.037 1.543 −0.494 ↓
9 Russia 1.803 1.278 −0.525 ↓ 2.103 1.762 −0.341 ↓
10 Denmark 1.871 1.766 −0.104 ↓ 2.010 2.001 −0.009 ↓
11 Belgium 1.980 1.812 −0.168 ↓ 2.073 1.547 −0.526 ↓
12 Finland 1.825 1.994 0.169 ↑ 2.253 1.680 −0.573 ↓
13 Norway 1.964 1.744 −0.221 ↓ 2.078 1.660 −0.419 ↓
14 Turkey 2.074 1.945 −0.129 ↓ 2.172 1.789 −0.383 ↓
15 Poland 2.054 1.991 −0.063 ↓ 2.121 1.680 −0.442 ↓
16 Ireland 1.735 1.811 0.075 ↑ 2.089 1.699 −0.390 ↓
17 Austria 1.817 1.728 −0.090 ↓ 1.950 1.584 −0.366 ↓
18 Portugal 1.787 1.700 −0.086 ↓ 2.069 1.728 −0.341 ↓
19 Greece 1.904 1.607 −0.297 ↓ 2.084 1.559 −0.524 ↓
20 Hungary 2.118 1.525 −0.593 ↓ 2.124 1.823 −0.301 ↓
21 Czechia 1.855 1.511 −0.344 ↓ 2.037 1.515 −0.522 ↓
22 Romania 2.034 1.827 −0.207 ↓ 1.672 1.498 −0.173 ↓
23 Croatia 2.053 1.505 −0.547 ↓ 2.079 1.310 −0.769 ↓
24 Bulgaria 1.730 1.499 −0.231 ↓ 1.961 1.647 −0.314 ↓
25 Lithuania 1.764 1.530 −0.234 ↓ 1.520 1.408 −0.112 ↓
26 Iceland 1.743 0.554 −1.189 ↓ 2.044 1.825 −0.219 ↓
27 Slovenia 1.693 1.386 −0.307 ↓ 2.105 1.740 −0.364 ↓
28 Serbia 1.508 1.570 0.061 ↑ 1.949 1.585 −0.364 ↓
29 Malta 1.478 1.531 0.053 ↑ 1.936 1.701 −0.236 ↓
30 Cyprus 1.739 2.078 0.339 ↑ 1.979 1.898 −0.081 ↓
31 Ukraine 1.486 1.466 −0.020 ↓ 1.201 1.858 0.658 ↑
32 Montenegro 1.740 1.480 −0.260 ↓ 1.832 1.437 −0.395 ↓
33 Estonia 1.600 1.627 0.027 ↑ 1.811 1.403 −0.408 ↓
34 Latvia 1.974 1.467 −0.507 ↓ 1.584 1.496 −0.089 ↓
35 Bosnia and Herzegovina 1.701 1.800 0.099 ↑ 0.730 0.566 −0.164 ↓
36 Slovakia 1.641 1.106 −0.534 ↓ 1.247 0.934 −0.313 ↓

Max 2.118 2.078 −0.040 ↓ 2.253 2.001 −0.253 ↓
Min 1.478 0.554 −0.924 ↓ 0.730 0.566 −0.164 ↓

Median 1.838 1.714 −0.124 ↓ 2.010 1.584 −0.426 ↓
Mean 1.829 1.648 −0.182 ↓ 1.913 1.575 −0.339 ↓

Std. Dev. 0.164 0.284 0.120 ↑ 0.310 0.258 −0.052 ↓
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The results presented in Table 2 require some explanations and interpretations. In
general, the empirical findings are unambiguous and confirm no reason to reject the research
hypothesis. The evidence is that entropy decreased within the GFC period for the U.S.
and the vast majority of the European markets, except for nine countries (i.e., Switzerland,
Sweden, Finland, Ireland, Serbia, Malta, Cyprus, Estonia, Bosnia and Herzegovina). Both
developed and emerging markets are among them. The probable reason of the differences
in the obtained results is that the GFC periods for some countries were slightly different
(for details see, e.g., [33]).

However, the comparative results for the pre-COVID-19 and COVID-19 sub-periods
are homogenous and they decidedly support the evidence that regularity and predictability
of the U.S. and almost all European stock markets (apart from Ukraine) increased during
the COVID-19 outbreak. Due to the investigated period (2020-2021), the isolated case of
Ukraine is rather coincidental and is not connected with the Russian aggression in Ukraine
on 24 February 2022.

The ranges of the SampEn values for the European market indices are: [1.478; 2.118]
(Pre-GFC), [0.554; 2.078] (GFC), [0.730; 2.253] (Pre-COVID), and [0.566; 2.001] (COVID).
The minimum, maximum, median, and mean values decreased substantially during both
extreme event periods.

To formally test whether the mean results of SampEn for the whole group of mar-
kets during the turbulence period differ significantly compared to the corresponding
pre-turbulence period, the t statistic for sample means given by Equation (9) is utilized:

t =
(x1 − x2)

√
n√

s2
1 + s2

2

, (9)

where x1 and x2 are sample means, s2
1 and s2

2 are sample variances, while n = 36 denotes
the stock markets sample size.

The following two-tailed hypothesis is tested:

H0 : μ1 = μ2
H1 : μ1 �= μ2,

(10)

where μ1 and μ2 are the expected values of SampEn for the whole group of stock market
indices during the compared periods, and the null hypothesis states that two expected
values are equal. Calculations of the t statistic values (Equation (9)) are based on the results
presented in Table 2. The null hypothesis is rejected when |t| > t∗, where the critical value
of t-statistic at the α significance level is equal to t∗ = tα;2n−2. In our research, the critical
values are equal to: t∗ = 1.667 (α = 0.10), t∗ = 1.994 (α = 0.05), and t∗ = 2.648 (α = 0.01),
respectively.

The obtained empirical t-statistics are equal to: (1) t = 3.325 > t∗ for the pair of periods
(pre-GFC, GFC), and (2) t = 5.036 > t∗ for the pair of periods (pre-COVID, COVID). This
indicates that the H0 hypothesis was rejected in both cases and the SampEn mean values
substantially differed (specifically, decreased) during both extreme event periods.

What is important, the SampEn findings are consistent with the literature as they
confirm that entropy of stock market indices usually decreases during the economic down-
turns (see, e.g., [41,45]). The equity market crash initiates a declining trend, which reduces
entropy but increases time series regularity. As a consequence, predictability of a market
increases within turbulence periods since a number of repeated patterns increases. It is
worth noting that this evidence is in accordance with investors’ intuition.

4.2. Sample Entropy of Developed versus Emerging European Stock Markets

An interesting and important question is whether developed stock markets differ sub-
stantially from emerging markets in their predictability, in the sense of their sequential reg-
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ularity. Therefore, in this subsection, the comparative assessment of regularity/irregularity
in the European developed and emerging markets is presented.

Based on the recent MSCI reports, and especially on the report “MSCI Global Market
Accessibility Review. Country comparison” [51], the following 15 European countries
are classified as developed markets (in the order of decreasing value of stock market
capitalisation in 31 December 2020 reported in Table 1): France, United Kingdom, Germany,
Switzerland, Netherlands, Sweden, Spain, Italy, Denmark, Belgium, Finland, Norway,
Ireland, Austria, and Portugal. The remaining 21 European countries are recognized
as emerging, including also frontier and stand-alone equity markets (see Table A3 in
Appendix B).

Figure 1 presents the boxplots of the SampEn results within the pre-turbulence and
turbulence periods, for two groups of the European developed (the yellow boxplots) and
emerging (the green boxplots) stock markets. The boxplots that visualize the SampEn
results are based on Tables A4 and A5 (Appendix B). The boxplot width depends on the
number of the stock market indices, and these numbers are: 15 (the European developed
markets) and 21 (the European emerging markets).

(a) (b)

(c) (d)

Figure 1. The boxplots of the SampEn results for the European developed (the yellow boxplots) and
emerging (the green boxplots) countries: (a) the SampEn within the pre-GFC period, (b) the SampEn
within the GFC period, (c) the SampEn within the pre-COVID-19 pandemic period, (d) the SampEn
within the COVID-19 pandemic period.

One can observe that entropy measured by the SampEn statistic substantially fell dur-
ing the turbulence periods compared to the pre-turbulence periods, respectively. The down
arrows in Tables A4 and A5 illustrate the substantial falls of median and percentile values.

The SampEn median for the European developed markets was equal to 1.88 (within
the pre-GFC period) versus 1.79 (within the GFC period). Similarly, the corresponding
SampEn median values for the European emerging markets were equal to: 1.74 (within the
pre-GFC period) and 1.53 (within the GFC period), respectively (see Table A4).

As for the pre-COVID-19 and COVID-19 sub-periods, the changes in entropy were
even more significant. For the European developed markets the SampEn median values
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were equal to 2.04 versus 1.58, while for the European emerging markets, 1.96 versus 1.59
(see Table A5).

To formally test the hypothesis concerning the median values within pre-turbulence
and turbulence periods, the following conditions are proposed:

H0 : Me1 = Me2
H1 : Me1 > Me2,

(11)

where Me1 is a SampEn median value before particular turbulence period, while Me2 de-
notes a SampEn median value during a turbulence period, respectively. The null hypothesis
states that two median values are equal. To examine the hypothesis, the Wilcoxon-Mann-
Whitney test [52] is used and the calculations are reported in Table 3. The numbers in
brackets are p-values. The test results indicate that the null hypothesis H0 should be re-
jected in all cases, both for developed and emerging markets. Hence, the evidence is that
the median values during the turbulence periods were significantly lower compared to the
corresponding pre-turbulence periods.

Table 3. The comparison of SampEn median values between pre-turbulence and turbulence periods—
the Wilcoxon-Mann-Whitney test summary.

Pre-GFC vs. GFC Pre-COVID vs. COVID

European developed markets 170 (0.0082) 220 (0.0000)
European emerging markets 337 (0.0014) 345 (0.0007)

The numbers in brackets are p-values.

The boxplot height means the interquartile range, which is a measure of statistical
dispersion as it is equal to the difference between Q3 (75th) and Q1 (25th) percentiles. The
evidence is that the level of entropy dispersion for the European developed market indices
was similar and low, regardless of the time period choice. The results for the European
emerging markets are mixed, but the main probable reason is that these markets are much
more diverse. However, one can observe that the interquartile range for the emerging
markets has substantially decreased during the turbulence periods (see Tables A4 and A5).

The singular points denote outliers. The SampEn outliers were: (1) within the GFC pe-
riod: Switzerland, Finland, Turkey, Poland, Cyprus (significantly higher values of the Sam-
pEn) and Slovakia (significantly lower value of the SampEn), (2) within the pre-pandemic
period: Finland (significantly higher value of the SampEn) and Bosnia and Herzegovina
(significantly lower value of the SampEn), and (3) within the pandemic period: Denmark
(significantly higher value of the SampEn) and Slovakia and Bosnia and Herzegovina (sig-
nificantly lower values of the SampEn). Within the pre-GFC period outliers did not appear.

To formally test the hypothesis concerning the comparison between the SampEn
median values of the European developed and emerging stock markets within various
sub-periods, the following H0 and H1 conditions (Equation (12)) are proposed:

H0 : Me1 = Me2
H1 : Me1 �= Me2,

(12)

where Me1 is a SampEn median value of the group of the European developed markets,
while Me2 denotes a SampEn median value of the group of the European emerging markets,
respectively. The null hypothesis states that two median values are equal. To examine the
hypothesis, the Wilcoxon-Mann-Whitney test [52] for two independent groups is used, and
the calculations are reported in Table 4. The numbers in brackets are p-values. The test
results indicate that the null hypothesis H0 should be rejected only during the GFC period
(p-value 0.0019), while there is no reason to reject the null hypothesis for other periods.
Therefore, the evidence is that the SampEn median values did not differ significantly
between developed and emerging markets during the remaining three sub-periods.

254



Entropy 2022, 24, 921

Table 4. The comparison of SampEn median values between the European developed and emerging
stock markets. The Wilcoxon-Mann-Whitney test results.

European Developed vs. Emerging Stock Markets

Pre-GFC period 203 (0.1504)
GFC period 252 (0.0019)

Pre-COVID period 202.5 (0.1533)
COVID period 160 (0.9495)

The numbers in brackets are p-values.

To summarize, the findings for both the European developed and emerging equity
markets are homogenous. The analyzed groups of market indices do not differ substantially
in their sequential regularity. The aforementioned SampEn results indicate that entropy
visibly fell during each extreme event period compared to the corresponding pre-event
period. It implies that predictability of market indices rose, which confirmed no reason to
reject the main research hypothesis.

4.3. The Evolution of Sample Entropy over Time

In this subsection, the evolution of SampEn over time is analyzed. A rolling-window
dynamic approach is employed to capture the changes in market index regularity (measured
by SampEn) through time, for daily logarithmic index returns.

In line of the existing literature, the sample size N should be within the range of
[10m, 30m] (see, e.g., [5,45]). As pointed out in Section 4.1, in this research m = 2, hence
the minimal time window length should be equal to 100. Therefore, a window N = 100
business days is utilized in this study.

The broad group of 36 stock markets is explored. The use of the rolling-window
method requires the corresponding figures that show the changes in SampEn over time.
Hence, it should be 36 × 2 = 72 figures reported in the paper as the graphic representation
of the rolling-window procedure. Therefore, only selected dynamic SampEn results for
developed and emerging markets are illustrated, i.e., the results for stock markets with
the highest absolute value of the change in SampEn (based on Table 2). Due to the space
restriction, the remaining figures are available upon a request.

Subsequent Figures 2–4 show the evolution of SampEn over time within the period
from January 2018 to December 2021 (two combined pre-COVID-19 and COVID-19 sub-
periods). Figures 2 and 3 present graphs for the European developed and emerging
markets, respectively. Finally, Figure 4 plots the dynamics of SampEn for S&P500 index.
The SampEn procedure implemented on the rolling-window scheme indicates and confirms
that entropy visibly decreased during the COVID-19 pandemic, especially in March-April
2020, both for developed and emerging markets. It is rather clear that the main reason of
such homogenous results is that all investigated stock markets have been affected by the
COVID-19 pandemic in the same time and to the similar extent.

By analogy, the rolling-window procedure is utilized to investigate the evolution of
the SampEn during the period from May 2006 to February 2009 (two combined pre-GFC
and GFC sub-periods). The findings are reported and discussed in Appendix C.
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(a) Dynamic SampEn of FTSE100 (the U.K.) (b) Dynamic SampEn of DAX (Germany)

(c) Dynamic SampEn of OMXS30 (Sweden) (d) Dynamic SampEn of FTSEMIB (Italy)

(e) Dynamic SampEn of BEL20 (Belgium) (f) Dynamic SampEn of OMXH25 (Finland)

Figure 2. Dynamic SampEn of the selected European developed market indices within the period
from January 2018 to December 2021 (two combined pre-COVID-19 and COVID-19 sub-periods):
(a) FTSE100 (the U.K.), (b) DAX (Germany), (c) OMXS30 (Sweden), (d) FTSEMIB (Italy), (e) BEL20
(Belgium), (f) OMXH25 (Finland). The rolling-window N = 100 business days.
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(a) Dynamic SampEn of WIG (Poland) (b) Dynamic SampEn of ATHEX (Greece)

(c) Dynamic SampEn of PX (Czechia) (d) Dynamic SampEn of CROBEX (Croatia)

(e) Dynamic SampEn of SBITOP (Slovenia) (f) Dynamic SampEn of OMXT (Estonia)

Figure 3. Dynamic SampEn of the selected European emerging market indices within the period
from January 2018 to December 2021 (two combined pre-COVID-19 and COVID-19 sub-periods):
(a) WIG (Poland), (b) ATHEX (Greece), (c) PX (Czechia), (d) CROBEX (Croatia), (e) SBITOP (Slovenia),
(f) OMXT (Estonia). The rolling-window N = 100 business days.
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Figure 4. Dynamic SampEn of the S&P500 index (the U.S.) within the period from January 2018 to
December 2021 (two combined pre-COVID-19 and COVID-19 periods). The rolling-window N = 100
business days.

5. Discussion and Conclusions

The goal of this empirical study was to investigate changes in sequential regularity
in the 36 European and the U.S. stock market indices within major turbulence periods.
Two periods were analyzed: the Global Financial Crisis in 2007–2009 and the COVID-19
pandemic outbreak in 2020–2021. To capture regularity in the daily time series of stock
market indices, the SampEn algorithm was utilized. Changes in the SampEn values before
and during the particular turbulence period were calculated and compared. The research
hypothesis that entropy of an equity market index decreases during turbulence periods
was examined. The main contribution of this research lies in important empirical findings
which indicate no reason to reject the research hypothesis. Our research belongs to the
strand of the literature known as Algorithmic Information Theory (AIT). The AIT explores
predictability in terms of sequential regularity in various time series based on the existence
of patterns.

The obtained results are homogenous and statistically significant for both investigated
turbulence periods, and for both independent groups of stock markets (developed and
emerging). The findings imply that regularity in stock market index returns increases
during extreme event periods.

Our results contribute to the discussion concerning predictability of financial markets.
It seems that the conclusions could be generalized as the SampEn empirical findings
are in line with the relatively scarce previous literature which documents that entropy
of various financial time series usually decreases during market crashes, financial crisis
and other turbulence periods. For instance, Ortiz-Cruz et al. [41] utilized the multi-scale
approximate entropy procedure and they indicated that returns from crude oil markets were
less uncertain during economic downturns. Wang and Wang [45] assessed informational
efficiency of S&P500 Index, gold, Bitcoin, and US Dollar Index during the COVID-19
pandemic with a multi-scale entropy-based method. They confirmed that a decline of
entropy was particularly large for S&P500 Index. Moreover, their results of dynamic
informational efficiency of the S&P500 Index are similar to ours. Risso [38] investigated
several market indices during financial crashes. He showed that short-time market trends
(both ‘up’ and ‘down’) usually reduce entropy of an index daily time series due to more
frequent patterns.

Moreover, it is worth noting that, during the turbulence periods, all public information
is especially important for investors and determines investment decisions. However, the
used information set includes only the history of index returns. Therefore, our research

258



Entropy 2022, 24, 921

relates to the literature concerning the weak form of market informational efficiency. The
obtained results indicate that informational efficiency of stock market indices decreases
during turbulence periods. This evidence is especially useful for investors as it provides
information about a possibility of financial forecasting.

The findings of our research might be interesting for academics and practitioners since
the entropy-based indicators can generate predictive signals and can be useful in predictive
modelling (see, e.g., [44,53]). Moreover, there are some innovative applications of entropy
for financial time series forecasting (see, e.g., [43,54]). Gradojevic and Caric [54] emphasize
that although volatility and entropy are related measures of market risk and uncertainty,
entropy can be more useful in predictive modelling. Taking the above into consideration, we
hope that the results of our research could be generally of special importance for investors
as the entropy-based procedures might be used as helpful tools in various systems that
support investment decisions.

Since the analyzed GFC and COVID-19 periods have affected all financial markets in
the world, the promising direction for further research could be an extensive comparative
assessment of predictability in the context of sequential regularity in time series of stock
market indices within the world, for instance in continent-based regions. Moreover, the
influence of the recent extreme event, i.e., the Russian invasion in Ukraine, could be
investigated.
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Appendix A. Basic Statistics for Sub-Periods

Tables A1 and A2 report the basic statistics for daily logarithmic rates of return within
the turbulence sub-periods. N denotes the number of observations. The stock markets are
presented in the same order as in Table 1.
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Table A1. The basic statistics for daily logarithmic rates of return within the pre-GFC and GFC
periods.

Pre-GFC GFC

Country N Mean Std. Dev. N Mean Std. Dev.
(in %) (in %) (in %) (in %)

United States 356 0.044 0.80 355 −0.210 2.37

1 France 362 0.024 1.05 360 −0.211 2.29
2 United Kingdom 358 0.017 0.97 358 −0.148 2.13
3 Germany 361 0.072 1.02 356 −0.203 2.17
4 Switzerland 355 0.028 0.93 351 −0.186 1.98
5 Netherlands 362 0.039 0.97 360 −0.253 2.39
6 Sweden 356 0.044 1.33 353 −0.185 2.36
7 Spain 362 0.055 1.02 356 −0.183 2.24
8 Italy 360 0.012 0.91 355 −0.274 2.17
9 Russia 354 0.053 1.79 346 −0.383 3.78
10 Denmark 356 0.063 1.07 351 −0.212 2.24
11 Belgium 362 0.026 0.97 361 −0.275 2.12
12 Finland 357 0.071 1.17 353 −0.290 2.20
13 Norway 356 0.053 1.45 354 −0.226 2.69
14 Turkey 359 0.057 1.87 353 −0.230 2.53
15 Poland 355 0.089 1.37 351 −0.291 1.91
16 Ireland 360 −0.001 1.20 358 −0.376 2.78
17 Austria 350 0.020 1.36 348 −0.323 2.81
18 Portugal 362 0.049 0.74 360 −0.196 1.84
19 Greece 357 0.055 1.14 350 −0.345 2.25
20 Hungary 355 0.041 1.38 348 −0.296 2.51
21 Czechia 354 0.058 1.25 354 −0.296 2.71
22 Romania 353 0.071 1.38 349 −0.469 2.64
23 Croatia 354 0.197 0.93 347 −0.374 2.39
24 Bulgaria 353 0.209 0.87 345 −0.565 2.25
25 Lithuania 346 0.093 0.93 340 −0.373 1.85
26 Iceland 353 0.105 0.94 350 −0.789 6.18
27 Slovenia 350 0.239 1.00 349 −0.319 1.99
28 Serbia 357 0.214 0.83 357 −0.432 1.47
29 Malta 350 −0.060 0.77 346 −0.159 0.68
30 Cyprus 354 0.165 1.52 344 −0.555 3.03
31 Ukraine 343 0.250 1.67 347 −0.475 2.82
32 Montenegro 348 0.377 1.66 345 −0.425 2.66
33 Estonia 358 0.085 1.02 352 −0.341 1.60
34 Latvia 354 0.051 0.80 348 −0.357 1.90
35 Bosnia and Herzegovina 357 0.186 1.42 349 −0.428 1.42
36 Slovakia 344 0.012 0.72 343 −0.077 0.95
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Table A2. The basic statistics for daily logarithmic rates of return within the pre-COVID and COVID
periods.

Pre-COVID-19 COVID-19

Country N Mean Std. Dev. N Mean Std. Dev.
(in %) (in %) (in %) (in %)

United States 502 0.036 0.94 504 0.075 1.65

1 France 509 0.024 0.86 514 0.033 1.58
2 United Kingdom 504 −0.003 0.77 506 −0.006 1.43
3 Germany 501 0.006 0.94 508 0.034 1.61
4 Switzerland 497 0.023 0.80 505 0.037 1.17
5 Netherlands 509 0.020 0.80 514 0.051 1.42
6 Sweden 499 0.023 0.92 504 0.058 1.44
7 Spain 509 −0.011 0.82 512 −0.021 1.69
8 Italy 503 0.015 1.05 510 0.027 1.74
9 Russia 504 0.053 1.28 504 0.004 2.05

10 Denmark 495 0.021 0.94 500 0.099 1.27
11 Belgium 509 −0.001 0.85 514 0.014 1.61
12 Finland 499 0.007 0.86 497 0.045 1.38
13 Norway 497 0.026 0.90 503 0.045 1.41
14 Turkey 499 −0.005 1.35 500 0.094 1.66
15 Poland 494 −0.020 0.89 502 0.032 1.51
16 Ireland 505 0.004 0.93 509 0.029 1.59
17 Austria 497 −0.016 0.95 505 0.0356 1.82
18 Portugal 509 −0.009 0.78 514 0.011 1.38
19 Greece 495 0.023 1.23 497 −0.008 2.01
20 Hungary 489 0.032 0.98 502 0.018 1.52
21 Czechia 498 0.006 0.62 500 0.048 1.24
22 Romania 497 0.047 1.04 500 0.055 1.23
23 Croatia 493 0.019 0.46 499 0.005 1.08
24 Bulgaria 491 −0.038 0.58 492 0.023 1.01
25 Lithuania 495 0.016 0.57 498 0.060 0.86
26 Iceland 494 0.033 0.80 498 0.108 1.16
27 Slovenia 490 0.031 0.55 503 0.060 1.05
28 Serbia 502 0.009 0.46 502 −0.001 0.56
29 Malta 493 0.009 0.47 493 −0.034 0.82
30 Cyprus 489 −0.012 0.83 492 0.010 1.05
31 Ukraine 488 0.024 0.95 493 0.027 1.38
32 Montenegro 493 0.024 0.63 498 −0.029 0.72
33 Estonia 500 0.004 0.45 500 0.090 1.18
34 Latvia 494 0.007 1.07 496 0.041 1.27
35 Bosnia and Herzegovina 496 0.034 0.78 502 0.004 0.37
36 Slovakia 482 0.016 0.95 490 0.026 1.07

Appendix B. Developed and Emerging Markets

Table A3 presents two groups of the investigated stock markets: (1) the European
developed markets and (2) the European emerging markets. This division is the recent
one since it is based on the report “MSCI Global Market Accessibility Review. Country
comparison” [51].

Tables A4 and A5 report the SampEn basic statistics within the pre-turbulence and
turbulence periods, respectively. Two groups of the European countries (presented in
Table A3) are explored.
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Table A3. The European developed and emerging stock markets.

European Developed Markets European Emerging Markets

France, U.K., Germany, Switzerland, Russia, Turkey, Poland, Greece,
Netherlands, Sweden, Spain, Italy, Hungary, Czechia, Romania, Croatia,

Denmark, Belgium, Finland, Norway, Bulgaria, Lithuania, Iceland, Slovenia,
Ireland, Austria, Portugal Serbia, Malta, Cyprus, Ukraine,

Montenegro, Estonia, Latvia,
Bosnia and Herzegovina, Slovakia

Based on the MSCI report [51], in the market order as in Table 1.

Table A4. The SampEn basic statistics within the pre-GFC and GFC periods for developed and
emerging European stock markets.

Pre-GFC GFC

Min Max Median Q1 Q3 Min Max Median Q1 Q3

Developed 1.74 1.98 1.88 1.82 1.96 1.69 1.99 1.79 ↓ 1.76 ↓ 1.81 ↓
markets

Emerging 1.48 2.12 1.74 1.69 1.97 0.55 2.08 1.53 ↓ 1.47 ↓ 1.63 ↓
markets

Table A5. The SampEn basic statistics within the pre-COVID-19 and COVID-19 periods for developed
and emerging European stock markets.

Pre-COVID-19 COVID-19

Min Max Median Q1 Q3 Min Max Median Q1 Q3

Developed 1.90 2.25 2.04 1.97 2.08 1.41 2.00 1.58 ↓ 1.54 ↓ 1.68 ↓
markets

Emerging 0.73 2.17 1.96 1.67 2.08 0.57 1.90 1.59 ↓ 1.44 ↓ 1.76 ↓
markets

Appendix C. Dynamic SampEn Results during the period from May 2006 to

February 2009

According to the literature, the financial crisis timeline, from the U.S. perspective,
was marked by the following events: (1) the increase in subprime delinquency rates in
the spring of 2007, (2) the ensuing liquidity crunch in late 2007, (3) the liquidation of Bear
Stearns in March 2008, and (4) the failure of Lehman Brothers in September 2008. The
U.S. economy officially slipped into a recession following the peak in December 2007.
It is important to note that the crisis began in the U.S., but initially it did not fully and
strongly affect all financial markets. For instance, Claessens et al. [30] identify five groups
of countries based on the date they were affected by the crisis. Hence, the investigated
stock markets were not affected by the GFC in the same time and to the same extent. This is
the probable reason why empirical findings of the SampEn dynamics for various countries
are ambiguous.

Figure A1 shows the dynamics of SampEn of the S&P500 index. Moreover, Figures A2
and A3 illustrate the rolling-window dynamic results of the SampEn algorithm within the
period from May 2006 to February 2009 (two combined pre-GFC and GFC sub-periods), for
selected European developed and emerging markets, respectively. The highest absolute
value of the change in SampEn (reported in Table 2) was the main criterion for the choice.

As reported in Section 4.1 (Table 2), formal statistical analyses confirm that the basic
statistics of entropy (measured by SampEn) decreased significantly during the GFC period
but, in general, the results are not such homogenous as in the case of the COVID-19
pandemic period. This evidence can be observed in Figures A1–A3.
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Figure A1. Dynamic SampEn of the S&P500 index (the U.S.) within the period from May 2006
to February 2009 (two combined pre-GFC and GFC sub-periods). The rolling-window N = 100
business days.

(a) Dynamic SampEn of CAC40 (France) (b) Dynamic SampEn of DAX (Germany)

(c) Dynamic SampEn of BEL20 (Belgium) (d) Dynamic SampEn of OSEAX (Norway)

Figure A2. Dynamic SampEn of the selected European developed market indices within the period
from May 2006 to February 2009 (two combined pre-GFC and GFC sub-periods): (a) CAC40 (France),
(b) DAX (Germany), (c) BEL20 (Belgium), (d) OSEAX (Norway). The rolling-window N = 100
business days.
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(a) Dynamic SampEn of RTSI (Russia) (b) Dynamic SampEn of BUX (Hungary)

(c) Dynamic SampEn of OMXR (Latvia) (d) Dynamic SampEn of SAX (Slovakia)

Figure A3. Dynamic SampEn of the selected European emerging market indices within the period
from May 2006 to February 2009 (two combined pre-GFC and GFC sub-periods): (a) RTSI (Rus-
sia), (b) BUX (Hungary), (c) OMXR (Latvia)), (d) SAX (Slovakia). The rolling-window N = 100
business days.
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