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Preface to ”Big Data Analytics and Information

Science for Business and Biomedical Applications II”

This book is the second volume of Big Data Analytics and Information Science for Business and

Biomedical Applications. As with the first volume, it provides a venue for the presentation of

cutting-edge research and discussion of powerful statistical methods developed for the analysis of

Big Data in these areas. This second volume comprises nine papers showcasing both theoretical and

applied developments.

In the first article, Shahhosseini and Miranda present a review article discussing techniques for

the estimation of functional brain connectivity with an emphasis on functional magnetic resonance

imaging (fMRI) data. In the second article, Chakraborty and Shojaie discuss the problem of learning

the structure of directed acyclic graphs within the setting of non-Gaussian data. They develop

nonparametric methods and associated algorithms to learning causal structure at high dimensions.

In the third article, Fan and Bu discuss the diagnosis of lung disease from X-ray imaging using

deep neural networks and transfer learning to incorporate existing pretrained networks to handle

small sample sizes. The fourth article considers the examination of associations between longitudinal

gestational weight gain and infant birth weight. Pietrosanu et al. develop a Bayesian joint modelling

approach where parameters representing trajectories in a longitudinal model for gestational weight

gain are incorporated as predictors of infant birthweight. Naiman and Song consider high-frequency

data collected by mobile devices and develop semiparametric kernel machine regression with

variable selection for functional predictors. In the sixth article, Liu et al. present a study examining

the differences in social support communication among people with different types of cancers in

online health communities using a network analysis. In the seventh article, Söderbäck et al. develop

an improved estimation strategy for financial quantities by accounting for the high resolution and

heteroscedastic nature of intraday data from liquid financial markets. In the eight article, Opoku

et al. consider the estimation of fixed effects in the high-dimensional linear mixed model in

settings where there is some prior information in the form of linear restrictions on the parameters.

Shrinkage estimators are developed based on a full ridge regression estimator as a base model.

The final contribution focuses on denoising image sequences such as those that arise from satellite

imaging or fMRI. Yi and Qiu develop an edge-preserving image denoising procedure based on

a jump-preserving local smoothing procedure. The procedure incorporates tunning parameters

representing the bandwidths chosen to account for spatio-temporal correlation.

We hope that this second volume will continue to generate new ideas and research focussed on

the many modern problems involving big data and high-dimensional inference.

S. Ejaz Ahmed and Farouk Nathoo

Editors
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Functional Connectivity Methods and Their Applications in
fMRI Data

Yasaman Shahhosseini and Michelle F. Miranda *

Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 2Y2, Canada;
yshahhosseini@uvic.ca
* Correspondence: michellemiranda@uvic.ca

Abstract: The availability of powerful non-invasive neuroimaging techniques has given rise to
various studies that aim to map the human brain. These studies focus on not only finding brain
activation signatures but also on understanding the overall organization of functional communication
in the brain network. Based on the principle that distinct brain regions are functionally connected
and continuously share information with each other, various approaches to finding these functional
networks have been proposed in the literature. In this paper, we present an overview of the most
common methods to estimate and characterize functional connectivity in fMRI data. We illustrate
these methodologies with resting-state functional MRI data from the Human Connectome Project,
providing details of their implementation and insights on the interpretations of the results. We aim
to guide researchers that are new to the field of neuroimaging by providing the necessary tools to
estimate and characterize brain circuitry.

Keywords: fMRI; functional connectivity; brain network; Human Connectome Project; statistics

1. Introduction

Functional magnetic resonance imaging (fMRI) techniques have emerged as a powerful
tool for the characterization of human brain connectivity and its relationship to health,
behavior, and lifestyle [1]. The fMRI measurements comprise of an indirect and non-
invasive measurement of brain activity based on the blood oxygen level dependent (BOLD)
contrast [2]. Compared to alternative brain imaging modalities such as positron emission
tomography (PET) and eletroencephalography (EEG), fMRIs are non-invasive and have a
high spatial resolution, which makes them a popular choice in large brain imaging studies.
An example of such studies is the Human Connectome Project that aims at understanding
the underlying function of the brain by describing the patterns of connectivity in the healthy
adult human brain [3].

There are mainly two goals in such studies: first, to identify location signatures
in the brain that respond to external stimuli, and second, to identify brain space–time
association patterns that emerge when the brain is either at rest or performing a task.
These association patterns are measures of co-activation in functionally connected time
series of anatomically different brain regions, known as functional connectivity [4,5]. There
is evidence that individual differences in these connectivity patterns are responsible for
important differences in cognitive and behavioral functions. Therefore, understanding
these patterns can play an important role in predicting the early onset of neurodegenerative
diseases and in monitoring disease care and treatment [6,7].

Functional MRI data is often high-dimensional and consists of images of 3D brain
volumes collected over a period of time. In a typical study, the number of voxels Nv is in
the hundred of thousands, and the number of time points T is in the hundreds. Therefore,
estimating the Nv × Nv correlation matrix of voxelwise spatial connectivities is challenging
and requires a few strategies and assumptions. A simple technique is to first pre-specify
regions called seeds and then compute the cross-correlation of seeds and the functional time

Entropy 2022, 24, 390. https://doi.org/10.3390/e24030390 https://www.mdpi.com/journal/entropy1
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series of every other voxel in the brain. This seed-based approach became popular due to its
straightforward calculation and interpretation. Seeds can vary in size and be as small as
a single voxel. If the seed is a region, it is customary to average the time courses of the
region and use that as the reference time course to be correlated with all the other voxels. In
order to improve scalability, it is also common to first parcellate the brain into small regions
and use the average time series of these regions to estimate the networks. The seed-based
method can be a helpful resource when comparing patterns of neuropathologies and the
normal brain. For example, ref. [8] uses this method to show that connectivity between the
hippocampus and other brain regions change with the early signs of Alzheimer’s disease
when compared to control subjects. Despite the popularity of these approaches, there are
various criticisms to the method. First, by focusing on pre-determined seeds, potential
patterns that emerge in different brain regions are ignored [9]. Second, the method neglects
the variability across voxels by averaging the time series in the ROIs. Third, the approach
computes correlations between pairs of nodes and ignores the potential influence of other
nodes in the entire network.

In contrast to region pre-specification, dimension reduction approaches characterize
the spatial and/or temporal connectivity patterns by representing the data through a small
number of latent components [10]. Principal component analysis (PCA) and independent
component analysis (ICA) are the two most common of these methods. Both methods
project the high-dimensional imaging data into a low-dimensional subspace. In PCA,
this projection consists of orthogonal components that maximize the variance of the data
projected into the low-dimensional subspace [11]. In ICA, the projection consists of compo-
nents that are as spatially independent as possible [12]. Each of these components is then
assembled into brain maps with the value in each voxel representing the relative amount of
that particular voxel, which is modulated by the activation of that component. Compared
to the seed-based approach, both PCA and ICA have the advantage of providing automated
components with no need for the pre-specification of a seed region, i.e., these methods are
data-driven. The authors in reference [13] used ICA to decompose brain networks into
spatial sub-networks with similar functions in both the resting state and task fMRI data.

Other methods combine the brain parcellation strategy used in seed-based methods
with dimension reduction approaches to characterize brain circuitry. Reference [10] uses an
anatomical atlas to pre-determine clusters (ROIs) and then extract features from each cluster
via principal components. Multiple extracted components were then used to estimate
connectivity between these ROIs using the RV coefficient, a measure that summarizes the
correlation among sets of features.

In addition to the methods utilized to estimate connectivity, it is common to character-
ize the functional networks by using the tools of graph theory. In a graph, brain networks are
treated as a collection of nodes connected by edges. Commonly, the edges are defined by an
estimated connectivity. Following the specification of the nodes, a binary matrix is obtained
by thresholding the connectivity matrix. The binary graph is then used to compute various
graph parameters that describe the nature of the brain network. These parameters express
key characteristics of the network and usually include quantities that help determine if the
graph nodes are connected in a random or small-world order. Random networks have a
more globally connected pattern while small-world networks show a high level of local
ordering [14]. Statistical network models take these graph measures as inputs for the
prediction of global networks that characterize multiple individuals.

The goal of this paper is to provide an overview of the most commonly used methods
to estimate and characterize functional connectivity in resting-state fMRI data. We illustrate
these methods by analyzing data from a single-subject in the Human Connectome Project.
Although we do not attempt to offer an exhaustive presentation of the rapidly evolving
methods in the field, we expect that the information provided here will guide researchers
that are new to the field of neuroimaging in exploring these data.

The remainder of the paper is organized as follows: In Section 2, we describe the
different methods of estimating functional connectivity, focusing on data from a single
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subject. In Section 3, we estimate functional connectivity for a single-subject resting-state
data from the Human Connectome Project, using the methods described in Section 2. In
Section 4, we present a few multiple-subject estimation methods. In Section 5, we describe
statistical network models. Finally, in Section 6, we present some final remarks on the topic.

2. Methods for Functional Connectivity

In this section, we review the different methods to estimate functional connectivity for
single-subject data. We focus on data for a single subject and discuss group connectivity
in Section 4. For all calculations, let the matrix Y be a matrix of size T × Nv, consisting of
Nv time courses representing the BOLD signal at each voxel v = 1, . . . , Nv [2] for a single
subject. Here, for simplicity, we centralized the matrix Y by subtracting each voxel data
(column) by the average of its corresponding time course. The goal of a connectivity-based
analysis is to describe how various brain regions interact, either when the brain is resting
or performing a task [15].

2.1. Seed-Based Analysis

It is computationally expensive to compute all pairwise correlations among a large
number of voxels as it would require N2

v operations. Seed-based analysis (SBA) relies
on estimating pairwise correlations between regions of interest (ROIs) or between a seed
region and all the other voxels across the brain.

To estimate correlations between ROIs, a common approach is to divide the brain
volume according to anatomical templates, usually called brain atlases [16]. There are several
human brain atlases available, including the popular Automated Anatomical Labelling (AAL),
Tailarach Atlas, and the MN1-152 atlas [16,17]. To estimate correlations between a seed region
and the other voxels, a seed is usually selected either by expert opinion or by choosing
the voxel that shows greater activation during the fMRI experiment as the seed. The latter
is more common during experiments involving tasks. After selection, the connectivity is
estimated through a measure that quantifies correlation. Various measures were proposed
in the literature. We provide more details about these measures in the Appendix A. We can
summarize the seed-based approach the following way.

(i) Choose a seed region or voxel;
(ii) Correlate the time series of the region or voxel with all other voxels in the brain. If the

seed is a region, average the time series of the region prior to correlating that with all
other voxels in the brain. Use one of the measures described in Appendix A;

(iii) Display the 3D volumes of the correlation measure or display the thresholded correla-
tions (just the ones that are significant). Note: To determine significance, we need to
account for multiple comparisons. Bonferroni and FDR are widely used procedures.

Alternatively, after dividing the brain into various ROIs using an atlas, we can sum-
marize the time series of that region, either by averaging across voxels or by calculating the
first principal component [15]. Next, we use those summary time series to be correlated
between all regions. We illustrate both options in Section 3.

2.2. Decomposition Methods

Although seed-based methods have a straightforward interpretation, they are biased
to the seed selection technique [18] and, therefore, should be used with caution. Princi-
pal component analysis and independent component analysis aim at solving the issue
by providing a data-driven approach to functional connectivity. These decomposition
methods play many roles in functional neuroimaging applications. They are used in the
pre-processing steps to remove data artifacts and to reduce data dimensionality, and they
will likely appear in at least one step of estimating functional connectivity in various pop-
ulations. In this section, we will focus on their role as a method to describe functional
connectivity in single-subject fMRI data, while in Section 4, we explore their contribution
in multi-subject analysis.

3
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As an alternative to seed-based analysis, the goal of the decomposition methods is
to represent the voxel domain as a smaller subset of spatial components. Each spatial
component has a separate time course and represents simultaneous changes in the fMRI
signals of many voxels [12]. In this section, we assume that for each column of Y the
average was subtracted from the data.

2.2.1. Principal Component Analysis (PCA)

PCA is a common method to reduce data dimensionality while minimizing the loss
of data information and maximizing data variability [11]. The principal components are
obtained either by the eigendecomposition of the sample covariance matrix YTY or by find-
ing the eigenvectors of the data matrix Y using the theory of singular value decomposition
(SVD). The rank of the data matrix is r = min{T, Nv} (usually T < Nv and r = T) and
therefore we can find r principal components through the decomposition

Y = UΣW T =
r

∑
k=1

σkukwT
k , (1)

where the T × r matrix U contains an orthonormal left singular vector uk ∈ �T , the r× Nv
matrix W contains orthonormal right singular vectors wk ∈ �Nv , and the r× r diagonal ma-
trix Σ contains the ordered singular values [11,15,19]. Notice that the eigendecomposition
of YTY is defined as W TΣ2W . The orthonormal rows of the r× Nv matrix W are referred
to as eigenimages and can be assembled into brain maps, each representing the relative
amount from a given voxel that is modulated by the activation of that component.

A different approach is to project the original fMRI data into the space spanned by
the first p principal components, where the choice of p is based on the amount of data
variability explained by the component. The projected data matrix, YW , consists of the time
series of regions in this new subspace. The authors in reference [20] used this idea to reduce
the dimensionality of the fMRI data in certain ROIs and then applied a Granger causality
analysis on the block time series of two brain regions to infer directional connections.
Although it is possible to compute correlations using the time series of these projected data
points, the results have no clear interpretation since each of these spatial regions in the new
subspace represent a linear combination of different voxels in the original data space.

2.2.2. Independent Component Analysis (ICA)

ICA aims at representing the brain data using a latent representation of independent
factors. Differently from PCA, the goal is to decompose Y as a product of a mixing matrix
and a combination of spatially independent components (ICs).

Y = MC + E =
K

∑
k=1

mkck + E, (2)

where M is the T × K mixing matrix with columns mk, and the K × Nv matrix C is the
matrix of independent components with rows ck, where each ck contains brain networks
corresponding to component k for a total of K independent components. These components
represent the networks of various functions, such as motor, vision, auditory, etc. The
elements of the matrix E are independent Gaussian noises.

It is assumed that the component maps, ck, k = 1, . . . , K represent possible overlapping
and statistically dependent signals, but the individual component map distributions are
independent, i.e., if P(ck) represents the probability distribution of the voxels values in the
kth component map, we have

P(c1, c2, . . . , cK) =
K

∏
k=1

P(ck). (3)

4
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Each independent component ck is a vector of size Nv and can be assembled into brain maps.
As in PCA, these maps represent the relative amount of a given voxel that is modulated by
the activation of that component.

2.3. Computational Aspects

In imaging applications, estimating the principal components requires the decom-
position of the Nv × Nv matrix YTY , which is usually unfeasible. Many algorithms were
proposed in the literature to efficiently estimate the components in such high-dimensional
settings. Ref. [21] develops the sparse PCA (SPCA), which is based on a regression opti-
mization problem using a lasso penalty, [22] a multilevel functional principal component
for high-dimensional settings, and [23] estimate a sparse set of principal components
through an iterative thresholding algorithm. Some of these toolboxes are easy to access and
available for downloading at the authors’ website.

Similarly, estimating the independent components is not straightforward, and ranking
the components is challenging because the ICs are usually not orthogonal, and the sum of
the variances explained by each component will not sum to the variance of the original data.
One of the first algorithms was the Infomax, which aims at maximizing the joint entropy of
suitably transformed component maps [12,24]. Recently, more modern algorithms focus on
extracting a sparse set of features from data matrices containing a very large number of
features. Examples are the ICA with a reconstruction cost (RICA) proposed by [25], which
is available as a Matlab toolbox.

2.4. A Hybrid Method

A different approach to estimate functional connectivity is given by reference [10].
The authors propose a multi-scale model based on networks at multiple topological scales,
from voxel level to regions consisting of clusters of voxels, and larger networks consisting
of collections of those regions. In practice, these collections of voxels are pre-specified
and usually taken as anatomical ROIs. These anatomical ROIs can be then combined to
form clusters of ROIs. Their approach consists of a dimension reduction step through to a
factor model within each ROI. Let r represent the r-th ROI and Yr be a T × pr data matrix
consisting of the time series of voxels belonging to the r-th ROI (containing a total of pr
voxels, where ∑R

r=1 pr = Nv and R is the total number of ROIs). Then, we write

Yr(t) = Qr f r(t) + Er(t), (4)

where Yr(t) is a column vector of size pr, fr(t) is a mr × 1 vector of latent common
factors with a number of factors mr � pr, Qr is a pr × mr factor-loading matrix that
defines the dependence between the pr voxels through the mixing of fr, and Er(t) =
[er1(t), . . . , erpr (t)]

′ is a pr × 1 vector of white noise with E(Er(t)) = 0 and ΣEr ,Er =
Cov(Er(t)) = diag(σ2

er1
, . . . , σ2

erpr
).

These factor models are then concatenated to define

Y(t) = Q f (t) + E(t), (5)

where Y(t) is a column vector of size ∑R
r=1 pr = Nv, Q = diag(Q1, . . . , QR) is a ∑R

r=1 pr ×
∑R

r=1 mr block-diagonal mixing matrix and f (t) = [ fr(t), . . . , fR(t)]′ is a ∑R
r=1 mr × 1 vector

of aggregated latent factors.
Network covariance matrices in these different topological scales are estimated using

the low-rank matrix in the following way. Let ΣYrYr be the covariance matrix within ROI r.
Model (4) implies the following decomposition

ΣY rY r
= QrΣ fr fr Q′

r + ΣErEr
. (6)

Similarly, from Model (5) we have

5
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ΣYY = QΣ f f Q′ + ΣEE. (7)

The low-dimensional factor covariance matrix Σ f f is a block matrix used to estimate
the lag-zero dependency between ROIs as follows.

Σ f f =

⎛⎜⎝ Σ f1 f1 Σ f1 fR
. . .

Σ fR f1 Σ fR fR

⎞⎟⎠
The diagonal blocks Σ fr fr , r = 1, . . . , R are diagonal covariance matrices, capturing the

total variance of factors within each ROI. The off-diagonal blocks Σ fk fj
, j �= j are cross-covariance

matrices between factors and summarize the dependence between clusters j and k.
The authors summarize the dependence between ROIs using the RV coefficient, a mul-

tivariate generalization of the squared correlation coefficient. The RV coefficient between
factors in clusters j and k is defined by

RV =
tr(C fk fj

, C f j fk
)√

tr(C jk fj
, C f j f j

)tr(C fk fk
, C fk fk

)
, (8)

where C f j fk
= (Σ f j f j

)−
1
2 Σ f j fk

(Σ fk fk
)−

1
2 .

In practice, the authors apply this model to estimate resting-state networks. They
estimate the factors fr and matrices Qr using PCA and pre-specify the ROIs based on an
anatomical atlas. The authors in reference [26] use this approach to estimate background
functional connectivity between ROIs using data from the Working Memory Task in the
Human Connectome Project.

2.5. Brain Networks

It is common to represent the brain using tools from graph theory. In this framework,
we can think of functional connectivity as a network represented by a graph, where the
spatial units are the nodes and the connection between them are the edges. Networks are
treated as a collection of nodes (vertices) connected by links (edges). The graph (network)
is represented as the pair G = (V, E), where V and E are the sets of vertices and edges,
respectively. In addition, graphs may be weighted and, in such cases, will be denoted by
the triple G = (V, E, W), with W(E) indicating the weight for each edge.

The first decision to make is the selection of the nodes of the network. Similar to the
seed-based connectivity, these nodes are defined by either voxels or the ROI parcellations
given by anatomical atlases. Following the specification of the nodes, their edges (links)
must be determined. These edges quantify the strength of association between these
different nodes, i.e., they are the functional connectivity. The same measures discussed
previously for functional connectivity and described in Appendix A are used to quantify
the strength of the edges.

Most of the standard tools of graph theory have been developed for binary networks,
where each edge is either present or not. A binary matrix, usually called an adjacency matrix,
is obtained by thresholding the connectivity matrix. Although it is convenient to threshold
the weighted graphs to apply the standard graph theoretical machinery, information about
the original signal is discarded in the process. Moreover, in most situations, the choice of
a threshold is not unique, and such a decision may be difficult to justify. One strategy is
the use of a mass-univariate approach, in which a statistical test is performed for every
possible edge in the network and then corrected for multiple comparisons using standard
techniques, such as the Bonferroni correction or the false discovery rate (FDR) [27,28].

After the network is estimated, some descriptive measures are calculated as means to
describe the topological graph properties. In brain networks, the popular metrics are the

6
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characteristic path length, the clustering coefficient, and the degree distribution. For a list
of the comprehensive topological measures used in neuroimaging, see reference [29].

Characteristic path length. Paths are the sequences of distinct nodes that represent the
potential flow of information between pairs of brain regions with shorter paths, im-
plying stronger potential for integration. The length of a path estimates the potential
for functional integration between brain regions. One of the most commonly used
measures of functional integration is the average shortest path length between all
pairs of nodes in the network, which is defined as the characteristic path length [15].
Paths between disconnected nodes are defined to have infinite length, which is a
problem when calculating this measure, especially in sparse networks such as in func-
tional connectivity. In practice, we take the average only between the existing paths,
which can be a problem. For a discussion on this issue please refer to reference [29].

Degree distribution. A measure of centrality, the degree of an individual node is equal to
the number of links connected to that node, i.e., the number of neighbors of the node.
The degree distribution is, therefore, the distribution of the degrees of all the nodes
in the network. In functional connectivity, nodes with a high degree are interacting
functionally with many other nodes in the network [29] and are referred to as hubs.

Clustering coefficient. A measure of segregation, the clustering coefficient is the fraction
of the node’s neighbors that are also neighbors of each other, which in graph theory
is the fraction of triangles around an individual node. The presence of clusters in
functional networks suggests an organization of statistical dependencies indicative
of segregated functional neural processing, which is the ability for specialized pro-
cessing to occur within densely interconnected groups of brain regions. The mean
clustering coefficient for the network reflects, on average, the prevalence of clustered
connectivity around individual nodes. The mean clustering coefficient is normalized
individually for each node and can disproportionately be influenced by nodes with a
low degree.

Many other network measures are greatly influenced by basic network characteris-
tics, such as the number of nodes and links and the degree of distribution presented in
this section.

3. Real Data Example

We analyzed the resting-state data from the Human Connectome Project (HCP). We
chose to work with the data that had been previously denoised using the FIX pipeline [30].
This pipeline uses a gentle high-pass temporal filter, performs motion regression (i.e., the
regression of 24 movement parameters: six rigid-body motion parameters, their backward
temporal derivatives, and squares of those 12 time series), and applies a regression based
on ICA to remove the variance in noise components that was orthogonal to signal compo-
nents [31]. For the single-subject analysis, we considered the volumes collected from the
right–left phase of the example, Subject 100307. Volumes of fMRI were obtained every 720
ms. Each volume consisted of images of size 91× 109× 91 for a total of 1200 time frames.

3.1. Single-Subject Examples
3.1.1. ROI-Based Connectivity

We partitioned the brain into ROIs using the AAL Atlas version that was registered
into the MNI152 space. We considered a total of 166 ROIs and estimated the connectivity
using the following methods:

(a) Cross correlation of the average time series in each ROI;
(b) Partial correlation of the average time series in each ROI;
(c) Cross correlation of the time series of the ROI data projected into the space of its first

principal component;
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(d) Partial correlation of the time series of the ROI data projected into the space of its first
principal component;

(e) For each ROI, we consider the principal components that account for 20% of the ROI
variability and calculate the RV coefficient as described in Equation (8).

The results for the estimated connectivity values are shown in Figure 1. Inspecting
Figure 1 reveals that cross-correlation measures in panels (a) and (c) capture larger cor-
relations than their corresponding partial cross-correlation measures (panels (b) and (d)).
The RV coefficient from the method described in (e) seems to be able to capture a large
number of small correlations among ROIs. Before drawing any conclusions from the figure,
we should first test whether these values are significant. For the first four matrices, the
test is done by first transforming these values to z-scores and then thresholding them to
identify important correlations. For the RV coefficient in panel (e), significance is based on
the asymptotic distribution of the coefficient as detailed in reference [10].

Next, we used these connectivity matrices to obtain a binary graph with the edges
determined based on the p-values obtained from the z-scores of the correlation coefficient,
as described in Appendix A, Equation (A2). The p-values were thresholded based on the
Bonferroni correction and a significance of 5%. For the RV coefficient in panel (e), we
use the asymptotic distribution of the coefficients to convert the values to z-scores and
thresholded based on the Bonferroni correction to find the quantile of the standard normal
distribution with a significance of 5%. Considering this criteria, we compute the adjacency
matrices shown in Figure 2.

Figure 1. Estimated connectivity for the ROIs based on the AAL parcellation. Panel (a) depicts the
cross-correlation for the average time series of the ROIs, panel (b) depicts the partial cross correlation
for the average time series of the ROIs, panel (c) depicts the cross correlation for the time series of the
ROI data projected with the first PC, panel (d) depicts the partial cross correlation for the time series
of the ROI data projected with the first PC, and panel (e) represents the RV coefficient with each ROI
retaining the principal components that explain 20% of its variability.

Inspecting Figure 2 reveals the presence of a large number of edges for both (a) and (c)
graphs. This indicates a high level of interaction between the different anatomical regions.
This high-interaction level was not found in graphs (b) and (d). In panel (e), we observe a
moderate level of interaction with a few ROIs connecting with many others, while some
regions are quiet during the resting-state experiment.
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Figure 2. Binary Graphs obtained from the thresholded connectivities matrices of Figure 1. For
all panels, the white color indicates an edge between the ROIs. Panel (a) is the graph obtained by
thresholding the cross correlation of the average time series of the ROIs, panel (b) depicts the graph
from the thresholded partial cross correlation for the average time series of the ROIs, panel (c) depicts
the graph obtained by thresholding the cross correlation for the time series of the ROI data projected
with the first PC, panel (d) depicts the graph obtained by thresholding the partial cross correlation
for the time series of the ROI data projected with the first PC, and panel (e) represents the graph
obtained by thresholding the RV coefficient.

3.1.2. Network Summary Measures

We used the binary graphs obtained above to estimate a few summary measures,
using graph theory as described in Section 2.5. The formulas used in each calculation are
detailed in Appendix B. Table 1 shows the results. CPL is the characteristic path length
excluding all infinity paths from the network, DG is the average degree of the network,
where the degree indicates the number of links in each node, CC is the average clustering
coefficient of the network, and Inf is the number of infinity paths in the network. The
quantities in Table 1 reflect what we observe in Figure 2. The degree indicates the number
of connections between regions. As noticed before, the graphs in panels (a) and (c) indicate
a high degree, with many interactions between ROIs. The characteristic path length (CPL)
of the RV coefficient indicates that on average the network has a short path length, with a
value that is comparable to the networks in panels (a) and (c) of Figure 2. This indicates
that despite few regions being connected, the ones that are connected are near each other.

Table 1. Network summary measures.

(a) Av. CCorr (b) Av. Pcorr (c) PC1 Ccorr (d) PC1 Pcorr (e) RV

CPL 2.137 5.029 1.508 3.9685 1.8789
DG 34.193 1.313 69.518 1.386 4.217
CC 0.640 0.072 0.825 0.179 0.820
Inf 2963 11,239 2964 11,789 12,366

3.1.3. Volume-Based Connectivity

Seed-Based Analysis. For seed-based analysis, we chose the left pars opercularis (left
interior frontal gyrus) as the seed [32]. We take the average time series for this region
and compute the cross correlation with the remaining voxels. We perform a Bonferroni
correction considering α = 0.05 to threshold the correlation values. Figure 3 shows the
resulting brain map. We display clusters bigger than 125 as significant voxels, and their
mask is overlaid on a template brain consisting of the average time points of the example
subject data used here.

Figure 3. Seed- based connectivity of the left pars opercularis. Figure shows sagittal slices with voxels
that have a significant connection with the seed ROI depicted in red.
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Decomposition Methods. We first obtain the principal components of the data matrix Y .
It is important to notice that a large number of principal components is needed to represent
data variability and that traditional principal components have the issues discussed in
Section 2.3. For this particular data, 150 components are needed to represent 20% of the
data variability and 463 are needed to represent 50%. We illustrate the first five components
scaled by their eigenvalues (i.e., the loadings) in Figure 4.

Next, to estimate the independent components, we use the probabilistic indepen-
dent components analysis proposed in reference [33] and implemented in the MELODIC
(multivariate exploratory linear optimized decomposition into independent components)
function in FSL. Figure 5 depicts the results.

For illustration purposes, we present the components without thresholding their
values. It is more common to use the individual components’ maps as inputs in a multi-
subject approach and then perform thresholding in the group components to identify a
group network. We comment more on the topic in the next section.

Figure 4. Sagittal view of the ordered principal components’ maps from first (top) to fifth (bottom).
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Figure 5. Sagittal view of the independent components’ maps ordered based on increasing amounts
of uniquely explained variance from first (top) to fifth (bottom).

4. Multiple-Subject Functional Connectivity

When modeling functional MRI, an important goal is to identify the functional con-
nectivity structure in multi-subject data by leveraging a shared structure across subjects.
Multi-subject functional connectivity models can range from constrained tensor decomposi-
tion models, e.g., PARAFAC, to more flexible approaches where subject-specific connectivity
matrices or PCA and ICA models are estimated first, and their concatenated results are
used as inputs on a group-based estimation. The optimal model will depend on which
level of flexibility best captures the functional connectivity features within the group [34].

In multi-subject ICA models, a simple procedure is to estimate the single-subject
connectivity matrix using pre-specified ROIs, as in the seed-based approach described
in Section 2, and then aggregate those results into a single matrix, subsequently further
decomposing this matrix using principal components. The principal components can
then be mapped to estimate a group-based functional connectivity. Ref. [35] used this
idea to estimate a dynamical group-based resting-state connectivity of minimally disabled
relapsing–remitting patients.

A multi-stage approach is implemented in reference [36] to compare functional con-
nectivity between subjects at a high familial risk for Alzheimer’s disease that are clini-
cally asymptomatic versus matched controls. The method follows four steps, including
subject-specific SVD, a population-level decomposition of aggregated subject-specific eigen-
vectors, a projection of the subject-level data onto the population eigenvectors to obtain
subject-specific loadings, and the use of the subject-specific loadings in a functional logistic
regression model.

A group of methods propose a group ICA approach, where fMRI data is either tem-
porally concatenated across subjects or taken as a multi-dimensional array. The FMRIB
Software Library (FSL), a software library containing image analysis and statistical tools for
various imaging data, provides group ICA and tensorial ICA in its MELODIC function.This
section will focus on these two approaches.
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4.1. Group ICA

Ref. [37] proposed for the first time an approach to perform ICA on fMRI data
from a group of subjects. Suppose we observe fMRI data from n subjects. Let Y i be a
matrix of size T × Nv consisting of Nv time courses representing the BOLD signal at each
voxel v = 1, . . . , Nv for subject i = 1, . . . , n. Their model involves a multi-stage approach
as follows.

1. Subject-level data reduction. In this step, reduction is applied in the temporal domain.
For each subject i = 1, . . . .n, the reduced data is given by

X i = F−1
i Y i,

where F−1
i is a L × T reducing matrix and X i is a L × Nv matrix representing the

reduced data. In practice, F−1 is obtained by PCA decomposition;
2. Data reduction of the aggregated subject-level data. Data reduction is applied to the

NL × Nv matrix [XT
1 , . . . , XT

N ]
T to obtain a K × Nv matrix X = G−1[XT

1 , . . . , XT
N ]

T ,
where K is the number of components to be obtained and G−1 is a K× NL-reducing
matrix that is in practice obtained by principal components;

3. Estimation of independent sources. An ICA decomposition is applied to the matrix X,
as described in Section 2.2.2.

X = MC,

where M is a K × K-mixing matrix and C is a K × Nv component map matrix. The
resulting group ICA components can be thresholded by first converting them into
Z-scores.

Individual maps can be obtained by partitioning GM (where G = (G−1)T) by subject and
going back along the previous steps as follows.

GX = GMC =

⎡⎢⎣ F−1
1 Y1
. . .

F−1
N Y N

⎤⎥⎦.

Based on these steps, the matrix GMC is a matrix of size NL× Nv of individual maps and
can be partitioned such that Gi MiCi = F−1

i Y i, and Ci contains the individual maps.

4.2. Tensorial ICA

The tensor ICA is based on tensor decomposition, which obtains a low-rank represen-
tation of a multi-dimensional array. PARAFAC is a common decomposition method [38].
Let X ∈ RT×Nv×N be an array with fMRI data and dimension times, voxels, and subjects,
respectively. The three-dimensional array X can be decomposed as a sum of R outer
products in the following way

X =
R

∑
r=1

ar ◦ br ◦ cr,

where ar ∈ RT , Br ∈ RNV , and cr ∈ RN . This decomposition implies that each element in
the array X can be written as

{xijk} =
R

∑
r=1

airbjrckr.

The vectors in the decomposition can be represented in matrices, e.g., A = [a1a2 . . . aR],
and likewise to obtain matrices B and C. The three-dimensional array can be unfolded into
matrices in a process called matricization. The unfolding can happen in any of the three
dimensions. On the second dimension, X(2) ∈ RNv×NT is the mode-two matricization of X.
Similarly, we can use the unfolding to generate mode-two and mode-three matrices. For
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details on the PARAFAC decomposition and matricization, please refer to reference [38].
Using these definitions, we can write:

X(2) = B(C� A)T ,

where � denotes the Katri–Rao product. In reference [39], the authors propose an ICA
decomposition of the form

X∗ = (C� A)BT + E,

where X∗ = XT
(2) and the mixing matrix M = (C � A) and component matrix BT are

estimated as in reference [33].

5. Statistical Network Models

In this section, we follow the notation in reference [40] to describe statistical network
models with the purpose of characterizing brain circuitry. In these models, individual
functional connectivity is estimated first, using the techniques described in Section 2. After
individual estimation, the effects of multiple variables of interest and topological network
features are taken into account on the overall network structure.

Let (Yi,Xi) represent the network and covariates for subject i, respectively. The
probability density function of the network given the covariates is denoted by P(Yi|Xi, θi),
where θi describes the relationship of Yi and Xi. These covariates can be node-specific
covariates, such as brain location and also functions of the network Yi, such as the path
length or other metrics described in Section 2.5. Popular ways of modeling the density
function include exponential random graph models (ERGMs) and mixed models [40].

In ERGMs, we consider binary graphs and the models are fitted for each subject
individually as follows. Let Y〉 be a network consisting of R× R nodes. Then, Yijk = 1 if a
link exists between nodes j and k, and Yijk = 0 otherwise. The probability mass function
has the form of a regular exponential family:

P(Yi = yi|Xi) = κ(θ)−1exp
{

θT g(yi,Xi)
}

.

The estimation of the parameters θ is done by MCMC MLE. In reference [41], they identify
the most important explanatory metrics g(yi) for each subject’s network. Next, the authors
create a group-based summary measure of the fitted parameter values θ for all subjects.
They use these group-based explanatory metrics and parameters to fit a group-based
representative network via ERGMs.

One limitation of the current estimation methods for ERGMs is scalability. The major
issue is not the number of ROIs per se but the edge structure of the network, which can
cause convergence problems. Moreover, most models were developed for binary graphs
and are not well-suited for link-level examination [40].

As an alternative to ERGMs, mixed models allow for both link-level examination
and multiple-subject comparisons. The framework defines a two-part mixed effect that
models both the probability of a connection being present or absent and the strength of a
connection if it exists. Let Yi be a representation of the functional connectivity strength
given by one of the correlation measures listed in Appendix A, and letRijk be an indicator
of whether a connection between j and k is present. Then the conditional probabilities are

P(Rijk = rijk|βr; bri) =

{
1− pijk(βr; bri), if rijk = 0
pijk(βr; bri), if rijk = 1,

where βr are the vector of fixed effects that relate the covariates Xijk for each participant
and pair of nodes, and bri are random effects representing subject-specific and node-specific
parameters.
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Let Zijk be the design matrix associated with the random effects bri; the models are
divided into two parts. The first part of the model uses a logit link function to relate the
probability of connection between nodes j and k to the covariates as follows.

logit(pijk) = X ′ijkβr + Z′ijkbri.

The second part models the strength of the connection between nodes j and k given
that the connection is present, by linearly linking the Fisher’s Z-transform of the correlation
coefficient between nodes i and j and the covariates. Let Sijk = Yijk|Rijk = 1, then

Fisher’s Z-transform(Sijk) = X ′ijkβs + Z′ijkbsi + eijk,

where βr is a vector of population parameters that related the strength of connection to
the same set of covariates Xijk for each participant and pair of nodes, bsi is a vector of
subject and node-specific parameters that capture how this relationship varies about the
population average βs, and eijk is the random noise for subject i and nodes j and k. Details
of the two-parts modeling approach is presented in reference [42].

One issue that arises from these models is that thresholding choices based on the
connectivity weights will impact the network topology, even if multiple comparisons are
taken into account. The authors in reference [40] argue that persistent homology provides
a multi-scale hierarchical framework that addresses the threshold issue. The method is a
technique of computational topology that provides a coherent mathematical framework for
comparing networks. Instead of looking at the networks at a fixed threshold, persistent
homology records the changes in topological network features over multiple resolutions
and scales. By doing so, it reveals the features that are robust to noise, i.e., the most
‘persistent’ topological features.

6. Summary

In this paper, we have reviewed the most common methods to estimate functional
connectivity in fMRI data. For single-subject data, estimation can be done by directly
quantifying correlations across regions of interest and/or seed regions, or by finding a
set of latent components that represent simultaneous activity, and while interpretation is
straightforward for the former approach, it is not as clear for the later. In the example
provided, the number of component maps needed to represent the data variability is very
high and, therefore, the investigation of only a few components might not reflect the whole
picture of the brain network.

The results obtained in Section 2 indicate that even if the regions are defined in
an equivalent way, different estimation procedures of connectivity will lead to different
interpretations of the networks. Therefore, it is of great importance to be aware of the
limitations of each approach, especially when interpreting results from individual datum.

Despite the challenges with the single-subject analysis, a consistent procedure, applied
to various subjects, might translate into a successful representation of multiple-subject
networks. This is specially true if the method does not require a multi-stage approach and
performs, instead, a joint estimation as in the tensorial ICA framework. Other emerging
multi-subject network methods, such as persistent homology, are a promising way to
estimate brain circuitry, especially if scalability can be achieved.

Funding: This research was funded by Natural Sciences and Engineering Research Council grant
number RGPIN-2020-06941.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Methods to Quantify Correlation

Cross Correlation. Cross correlation measures the (lagged) temporal dependencies
between two signals, and it was first proposed by reference [43] as an effective way to
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describe functional connectivity. Suppose we want to calculate the correlation between
the BOLD time series for a given voxel v, i.e., yv(t), t = 1, . . . , T and a reference time series
rv′(t), t = 1, . . . , T for v �= v′. Let μy and μr be the average value of the vectors yv and rv′ ,
respectively. Then, the cross correlation between the vectors yv and rv′ is defined as

ccy,r =
∑T

t=1(yv(t)− μy)(rv′(t)− μr)√
∑T

t=1(yv(t)− μy)2
√

∑T
t=1(rv′(t)− μr)2

(A1)

The reference vector can be a pre-selected voxel, the seed, or it can be an average of
time series in a certain region. For cross correlation between ROIs, both y(t), t = 1, . . . , T
and r(t), t = 1, . . . , T can be the average time series in the pre-determined regions y and r,
respectively.

It is common to transform the correlation coefficient obtained in (A1) using a Fisher’s
Z-transformation for each correlation coefficient as follows

z-score =
ln(1 + ccy,r)− ln(1− ccy,r)

2
. (A2)

These coefficients are approximately normally distributed, and cutoff values are obtained
from the standard normal distribution.

Partial Cross Correlation. Cross correlation quantifies only the marginal linear de-
pendence between two signals and does not consider the effect of a third signal [15,44]. To
remove the linear influence of a third signal k(t) we define the partial correlation as follows.

PCCy,r|k =
ccy,r − ccy,kccr,k√
1− cc2

y,k

√
1− cc2

r,k

. (A3)

Partial cross correlation is a valuable metric for estimating brain networks because it can
estimate the direct relationship between two signals [15].

The calculation of cross correlation and partial cross-correlation measures assumes the
signals to be stationary. When this assumption is not satisfied, detrended cross correlation
and detrended partial cross correlation should be used instead [45].

Time-varying connectivity. It is possible to obtain a dynamical functional connectivity
to understand its pattern over time. Both static measures mentioned in this section have a
natural time-varying analogue in conjunction with a sliding window [15].

The concept of the sliding window is simple. Starting from the first time point, a
window (a fixed number of time points) is selected, and all data points within the window
are used to estimate the FC. This window is then shifted a certain number of time points,
and the FC is estimated on the new set of data points. The process is repeated until the end
of the time course. The series of estimated FC over time is the time-varying FC.

Appendix B. Calculation of Network Measures

For completeness, we present the mathematical definitions of the network measures
presented in Section 2.5. For a complete list of network measures, please refer to refer-
ence [29].

We use the graph notation as defined in Section 2.5. Let n be the number of nodes in
the network and N be the set of all nodes. Let l be the number of links in the network and
L be the set of all links. Then, (i, j) is a link between nodes i and j and aij = 1 when there is
a link (i, j). We define l = ∑i,j aij (counting each indirect link twice).

Degree of a node. The degree of a node i is the sum of all the links connected to the node
and is defined as

ki = ∑
j∈N

aij.
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Shortest path length. The shortest path length measures the shortest distance between
nodes i and j and is defined as:

dij = ∑
auv∈gi↔j

auv,

where gi↔j is the shortest distance between i and j. For all disconnected pairs (i, j),
dij = ∞.

Characteristic path length. Let Li be the average distance between node i and all other
nodes. The characteristics path length is defined as

L =
1
n ∑

i∈N
Li =

1
n ∑

i∈N

∑j∈N,j �=i dij

n− 1
.

Number of triangles. The number of triangles of a node i is defined as

ti =
1
2 ∑

j,h∈N
aijaihajh.

Clustering coefficient. The clustering coefficient of the network is defined as

C =
1
n ∑

i∈N
Ci =

1
n ∑

i∈N

2ti
ki(ki − 1)

.
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Abstract: The PC and FCI algorithms are popular constraint-based methods for learning the structure
of directed acyclic graphs (DAGs) in the absence and presence of latent and selection variables,
respectively. These algorithms (and their order-independent variants, PC-stable and FCI-stable)
have been shown to be consistent for learning sparse high-dimensional DAGs based on partial
correlations. However, inferring conditional independences from partial correlations is valid if the
data are jointly Gaussian or generated from a linear structural equation model—an assumption that
may be violated in many applications. To broaden the scope of high-dimensional causal structure
learning, we propose nonparametric variants of the PC-stable and FCI-stable algorithms that employ
the conditional distance covariance (CdCov) to test for conditional independence relationships. As the
key theoretical contribution, we prove that the high-dimensional consistency of the PC-stable and FCI-
stable algorithms carry over to general distributions over DAGs when we implement CdCov-based
nonparametric tests for conditional independence. Numerical studies demonstrate that our proposed
algorithms perform nearly as good as the PC-stable and FCI-stable for Gaussian distributions, and
offer advantages in non-Gaussian graphical models.

Keywords: causal structure learning; consistency; FCI algorithm; high dimensionality; nonparametric
testing; PC algorithm

1. Introduction

Directed acyclic graphs (DAGs) are commonly used to represent causal relationships
among random variables [1–3]. The PC algorithm [3] is the most popular constraint-
based method for learning DAGs from observational data under the assumption of causal
sufficiency, i.e., when there are no unmeasured common causes and no selection variables.
It first estimates the skeleton of a DAG by recursively performing a sequence of conditional
independence tests, and then uses the information from the conditional independence
relations to partially orient the edges, resulting in a completed partially directed acyclic
graph (CPDAG). In Section 2, we provide a review of these and other notions commonly
used in the graphical modeling literature that are relevant to our work. In addition, we
refer to estimating the CPDAG as structure learning of the underlying DAG throughout
the rest of the paper.

Observational studies often involve latent and selection variables, which complicate
the causal structure learning problem. Ignoring such unmeasured variables can make the
causal inference based on the PC algorithm erroneous; see, e.g., Section 1.2 in [4] for some
illustrations. The Fast Causal Inference (FCI) algorithm and its variants [3–6] utilize similar
strategies as the PC algorithm to learn the DAG structure in the presence of latent and
selection variables.

Both PC and FCI algorithms adopt a hierarchical search strategy—they recursively
perform conditional independence tests given subsets of increasingly larger cardinalities
in some appropriate search pool. The PC algorithm is usually order-dependent, in the
sense that its output depends on the order in which pairs of adjacent vertices and subsets
of their adjacency sets are considered. The FCI algorithm suffers from a similar limitation.
To overcome this limitation, Ref. [7] proposed two variants of the PC and FCI algorithms,
namely the PC-stable and FCI-stable algorithms that resolve the order dependence at
different stages of the algorithms.

Entropy 2022, 24, 351. https://doi.org/10.3390/e24030351 https://www.mdpi.com/journal/entropy19



Entropy 2022, 24, 351

In general, testing for conditional independence is a problem of central importance in
the causal structure learning. The literature on the PC and FCI algorithms predominantly
uses partial correlations to infer conditional independence relations. It is well-known that
the characterization of conditional independence by partial correlations, or, in other words,
equivalence between conditional independence and zero partial correlations only holds for
multivariate normal random variables. Therefore, the high-dimensional consistency results
for the PC and FCI algorithms [4,8] are limited to Gaussian graphical models, where the
nodes correspond to random variables with a joint Gaussian distribution. Although the
Gaussian graphical model is the standard parametric model for continuous data, it may not
hold in many real data applications. Although this limitation can be somewhat relaxed by
considering linear structural equation models (SEMs) with general noise distributions [9],
linear SEMs and joint Gaussianity are essentially equivalent [10]. Moreover, neither ap-
proach is appropriate when the observations are categorical, discrete, or are supported on
a subset of the real line. In Section 4.3, for example, we present a real application where
all the observed variables are categorical, and therefore far from being Gaussian. As an
improvement, ref. [11] used rank-based partial correlations to test for conditional indepen-
dence relations, showing that the high-dimensional consistency of the PC algorithm holds
for a broader class of Gaussian copula models. Some nonparametric versions of the PC
algorithm have been also proposed in the literature via kernel-based tests for conditional
independence [12,13]; however, they lack theoretical justifications of the correctness of the
algorithms, and are not studied in high dimensions.

This work aims to broaden the applicability of the PC-stable and FCI-stable algorithms
to general distributions by employing a nonparametric test for conditional independence
relationships. To this end, we utilize recent developments on dependence metrics that
quantify nonlinear and non-monotone dependence between multivariate random variables.
More specifically, our work builds on the idea of distance covariance (dCov) proposed
by [14] and its extension to conditional distance covariance (CdCov) by [15] as a nonpara-
metric measure of nonlinear and non-monotone conditional independence between two
random vectors of arbitrary dimensions given a third. Utilizing this flexibility, we use
the conditional distance covariance (CdCov) to test for conditional independence relation-
ships in the sample versions of the PC-stable and FCI-stable algorithms. The resulting
algorithms—which, for distinction, are termed nonPC and nonFCI—facilitate causal struc-
ture learning from general distributions over DAGs and are shown to be consistent in sparse
high-dimensional settings. We establish the consistency of the proposed algorithms using
some moment and tail conditions on the variables, without requiring strict distributional
assumptions. To our knowledge, the proposed generalizations of PC/PC-stable or the
FCI/FCI-stable algorithms provide the first general nonparametric framework for causal
structure learning with theoretical guarantees in high dimensions.

The rest of the paper is organized as follows: In Section 2, we review the relevant
background, including preliminaries on graphical modeling (Section 2.1), an outline of
the PC-stable and FCI-stable algorithms (Section 2.2) and a brief overview of dCov and
CdCov (Section 2.3). The nonparametric version of the PC-stable algorithm is presented in
Section 3.1. As a key contribution of the paper, we establish that the algorithm consistently
estimates the skeleton and the equivalence class of the underlying sparse high-dimensional
DAG in a general nonparametric framework. We then present the nonparametric version
of the FCI-stable algorithm in Section 3.2 and establish its consistency in sparse high-
dimensional settings. As the FCI involves the adjacency search of the PC algorithm, any
improvement on the PC/PC-stable directly carries over to the FCI/FCI-stable as well. In
Section 4, we compare the performances of our algorithms with the PC-stable and FCI-
stable using both simulated datasets (involving both Gaussian and non-Gaussian examples),
as well as a real dataset. These numerical studies clearly demonstrate that nonPC and
nonFCI algorithms are comparable with PC-stable and FCI-stable for Gaussian data and
offer improvements for non-Gaussian data.
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2. Background

2.1. Preliminaries on Graphical Modeling
We start with introducing some necessary terminologies and background information.

Our notations and terminologies follow standard conventions in graphical modeling (see,
e.g., [3]). A graph G = (V, E) consists of a vertex set V = {1, . . . , p} and an edge set
E ⊆ V × V. In a graphical model, the vertices or nodes are associated with random
variables Xa for 1 ≤ a ≤ p. Throughout, we index the nodes by the corresponding
random variables. We also allow the edge set E of the graph G to contain (a subset of) the
following six types of edges: → (directed), ↔ (bidirected), − (undirected), ◦−◦ (nondirected),
◦− (partially undirected) and ◦→ (partially directed). The endpoints of an edge are called
marks, which can be tails, arrowheads or circles. A “◦” at the end of an edge indicates it
is not known whether an arrowhead should occur at that place. We use the symbol ‘�’ to
denote an arbitrary edge mark; for example, the symbol �→ represents an edge of the type
→, ↔ or ◦→ in the graph. A mixed graph is a graph containing directed, bidirected and
undirected edges. A graph containing only directed edges (→) is called a directed graph,
one containing only undirected edges (−) is called an undirected graph, and one containing
directed and undirected edges is called a partially directed graph.

The adjacency set of a vertex Xa in the graph G = (V, E), denoted adj(G, Xa), is the set
of all vertices in V that are adjacent to Xa, or, in other words, are connected to Xa by an edge.
The degree of a vertex Xa, |adj(G, Xa)|, is defined as the number of vertices adjacent to it.
A graph is complete if all pairs of vertices in the graph are adjacent. A vertex Xb ∈ adj(G , Xa)
is called a parent of Xa if Xb → Xa, a child of Xa if Xa → Xb and a neighbor of Xa if Xa − Xb.
The skeleton of the graph G is the undirected graph obtained by replacing all the edges of
G by undirected edges, in other words, ignoring all the edge orientations. Three vertices
〈Xa, Xb, Xc〉 are called an unshielded triple if Xa and Xb are adjacent, Xb and Xc are adjacent,
but Xa and Xc are not adjacent. A path is a sequence of distinct adjacent vertices. A
node Xa is an ancestor of its descendent Xb, if G contains a directed path Xa → · · · → Xb.
A non-endpoint vertex Xa on a path is called a collider on the path if both the edges
preceding and succeeding it have an arrowhead at Xa, or, in other words, the path contains
�→ Xa ←�. An unshielded triple 〈Xa, Xb, Xc〉 is called a v-structure if Xb is a collider on the
path 〈Xa, Xb, Xc〉.

A cycle occurs in a graph when there is a path from Xa to Xb, and Xa and Xb are adjacent.
A directed path from Xa to Xb forms a directed cycle together with the edge Xb → Xa, and it
forms an almost directed cycle together with the edge Xb ↔ Xa. Three vertices that form a
cycle are called a triangle. A directed acyclic graph (DAG) is a directed graph that does not
contain any cycle. A DAG entails conditional independence relationships via a graphical
criterion called d-separation (Section 1.2.3 in [16]). Two vertices Xa and Xb that are not
adjacent in a DAG G are d-separated in G by a subset XS ⊆ V\{Xa, Xb}. A probability
distribution P on Rp is said to be faithful with respect to the DAG G if the conditional
independence relationships in P can be inferred from G using d-separation and vice versa;
in other words, Xa ⊥⊥ Xb|XS if and only if Xa and Xb are d-separated in G by XS.

A graph that is both (partially) directed and acyclic is called a partially directed acyclic
graph (PDAG). DAGs that encode the same set of conditional independence relations form a
Markov equivalence class [17]. Two DAGs belong to the same Markov equivalence class if
and only if they have the same skeleton and the same v-structures. A Markov equivalence
class of DAGs can be uniquely represented by a completed partially directed acyclic graph
(CPDAG), which is a PDAG that satisfies the following: (i) Xa → Xb in the CPDAG if
Xa → Xb in every DAG in the Markov equivalence class, and (ii) Xa − Xb in the CPDAG
if the Markov equivalence class contains a DAG in which Xa → Xb as well as a DAG in
which Xa ← Xb.

2.2. The PC-Stable and FCI-Stable Algorithms
In this section, we provide an outline of the PC/PC-stable and FCI/FCI-stable algo-

rithms. Estimation of the CPDAG by the PC algorithm involves two steps: (1) estimation
of the skeleton and separating sets (also called the adjacency search step); and (2) partial
orientation of edges; see Algorithms 1 and 2 in [8] for details.
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Intuitively, the PC algorithm works as follows. In the first step (the adjacency search
step), the algorithm starts with a complete undirected graph Then, for conditioning sets of
increasing cardinality, k = 0, 1, . . ., the algorithm removed an edge Xa − Xb if Xa and Xb are
conditionally independent given a subset S of size k chosen among the current neighbors
of nodes a and b. This process continues up to the order q− 1, where q is the maximum
degree of the underlying DAG. By searching over the neighboring nodes, the algorithm
is adaptive and can efficiently infer sparse high-dimensional DAGs, where the sparsity is
characterized by the maximum node degree, q.

In the presence of latent and selection variables, one needs a generalization of an
DAG, called a maximal ancestral graph (MAG). A mixed graph is called an ancestral graph if
it contains no directed or almost directed cycles and no subgraph of the type Xa − Xb ←
� Xc. DAGs form a subset of ancestral graphs. A MAG is an ancestral graph in which
every missing edge corresponds to a conditional independence relationship via the m-
separation criterion [18], a generalization of the notion of d-separation. Multiple MAGs
may represent the same set of conditional independence relations. Such MAGs form a
Markov equivalence class which can be represented by a partial ancestral graph (PAG) [19];
see [18] for additional details.

Under the faithfulness assumption, the Markov equivalence class of a DAG with latent
and selection variables can be learned using the FCI algorithm (e.g., Algorithm 3.1 in [4]),
which is a modification of the PC algorithm. The FCI algorithm first employs the adjacency
search of the PC algorithm, and then performs additional conditional independence queries
because of the presence of latent variables followed by partial orientation of the edges,
resulting in an estimated PAG. The FCI algorithm adopts the same hierarchical search
strategy as the PC algorithm: It starts with a complete undirected graph and recursively
removes edges via conditional independence queries given subsets of increasingly larger
cardinalities in some appropriate search pool.

The PC algorithm is usually order-dependent, in the sense that its output depends
on the order in which pairs of adjacent vertices and subsets of their adjacency sets are
considered. The FCI algorithm suffers from a similar limitation, as it shares the adjacency
search step of the PC algorithm as its first step. To overcome this limitation, ref. [7] proposed
variants of the PC and FCI algorithms, namely the PC-stable and FCI-stable algorithms
that resolve the order dependence at different stages of the algorithms. The basic difference
between the PC algorithm and the PC-stable algorithm is that, in the adjacency search
step, the latter computes and stores the adjacency sets of all the variables after each new
cardinality, k = 0, 1, . . ., of the conditioning sets. These stored adjacency sets are then used
to search for conditioning sets of this given size k. As a consequence, the removal of an
edge no longer affects which conditional independence relations need to be checked for
other pairs of variables at this given size of the conditioning sets.

We would refer the reader to Appendix A, where we provide in full detail the pseu-
docodes of the oracle versions of the PC-stable and FCI-stable algorithms. In the oracle
versions of the algorithms, it is assumed that perfect knowledge is available about all the
necessary conditional independence relations. As such, conditional independence relations
are not estimated from data. Of course, this perfect knowledge is not available in practice.
Sample versions of the PC-stable and FCI-stable algorithms can be obtained by replacing
the conditional independence queries by a suitable test for conditional independence at
some pre-specified level. For example, if the variables are jointly Gaussian, one can test for
zero partial correlations (see, e.g., [8]). The next subsection is devoted to discussions on
nonparametric tests for independence and conditional independence.

2.3. Distance Covariance and Conditional Distance Covariance
We start by describing the notation used throughout the paper. We denote by ‖ · ‖p

the Euclidean norm of Rp and use ‖ · ‖ when the dimension is clear from the context. We
use X ⊥⊥ Y to denote the independence of X and Y and use EU to denote expectation with
respect to the probability distribution of the random variable U. For any set S, we denote
its cardinality by |S|.

We use the usual asymptotic notation, ‘O’ and ‘o’, as well as their probabilistic coun-
terparts, Op and op, which denote stochastic boundedness and convergence in probability,
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respectively. For two sequences of real numbers {an}∞
n=1 and {bn}∞

n=1, an � bn if and only
if an/bn = O(1) and bn/an = O(1) as n → ∞. We use the symbol “a � b” to indicate
that a ≤ C b for some constant C > 0. For a matrix A = (akl)

n
k,l=1 ∈ Rn×n, we denote its

determinant by |A| and define its U -centered version Ã = (ãkl)
n
k,l=1 as

ãkl =

⎧⎪⎨⎪⎩akl −
1

n− 2

n

∑
j=1

akj −
1

n− 2

n

∑
i=1

ail +
1

(n− 1)(n− 2)

n

∑
i,j=1

aij, k �= l,

0, k = l,
(1)

for k, l = 1, . . . , n. We denote the indicator function of any set A by 1(A). Finally, we denote
the integer part of a ∈ R by �a�.

Ref. [14], in their seminal paper, introduced the notion of distance covariance (dCov,
henceforth) to quantify nonlinear and non-monotone dependence between two random
vectors of arbitrary dimensions. Consider two random vectors X ∈ Rp and Y ∈ Rq with
E‖X‖p < ∞ and E‖Y‖q < ∞. The distance covariance between X and Y is defined as the
positive square root of

dCov2(X, Y) =
1

cpcq

∫
Rp+q

| fX,Y(t, s)− fX(t) fY(s)|2

‖t‖1+p
p ‖s‖1+q

q
dtds

where fX, fY and fX,Y are the individual and joint characteristic functions of X and Y,
respectively, and cp = π(1+p)/2/ Γ((1 + p)/2) is a constant with Γ(·) being the complete
gamma function.

The key feature of dCov is that it completely characterizes the independence between
two random vectors, or in other words dCov(X, Y) = 0 if and only if X ⊥⊥ Y. According to
Remark 3 in [14], dCov can be equivalently expressed as

dCov2(X, Y) = E ‖X− X′‖p‖Y−Y′‖q + E ‖X− X′‖p E ‖Y−Y′‖q

− 2E ‖X− X′‖p‖Y−Y′′‖q .

This alternate expression comes handy in constructing V or U-statistic type estimators
for the quantity. For an observed random sample (Xi, Yi)

n
i=1 from the joint distribution of

X and Y, define the distance matrices dX =
(
dX

ij
)n

i,j=1 and dY =
(
dY

ij
)n

i,j=1 ∈ Rn×n, where

dX
ij := ‖Xi−Xj‖p and dY

ij := ‖Yi−Yj‖q. Following the U -centering idea in [20], an unbiased

U-statistic type estimator of dCov2(X, Y) can be expressed as

dCov2
n(X, Y) := (d̃ X · d̃ Y) :=

1
n(n− 3) ∑

i �=j
d̃ X

ij d̃ Y
ij , (2)

where d̃ X = (d̃ X
ij )

n
i,j=1 and d̃ Y = (d̃ Y

ij )
n
i,j=1 are the U -centered versions of the matrices d X

and d Y, respectively, as defined in (1).
Ref. [15] generalized the notion of dCov and introduced the conditional distance co-

variance (CdCov, henceforth) as a measure of conditional dependence between two random
vectors of arbitrary dimensions given a third. CdCov essentially replaces the characteristic
functions used in the definition of dCov by conditional characteristic functions. Consider a
third random vector Z ∈ Rr with E(‖X‖p + ‖Y‖q | Z) < ∞. Denote by fX,Y|Z the condi-
tional joint characteristic function of X and Y given Z, and by fX|Z and fY|Z the conditional
marginal characteristic functions of X and Y given Z, respectively. Then, CdCov between
X and Y given Z is defined as the positive square root of

CdCov2(X, Y|Z) = 1
cpcq

∫
Rp+q

| fX,Y|Z(t, s)− fX|Z(t) fY|Z(s)|2

‖t‖1+p
p ‖s‖1+q

q
dtds.
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The key feature of CdCov is that CdCov (X, Y|Z) = 0 almost surely if and only if
X ⊥⊥ Y|Z, which is quite straightforward to see from the definition.

Similar to dCov, an equivalent alternative expression can be established for CdCov
that avoids complicated integrations involving conditional characteristic functions. Let
{Wi = (Xi, Yi, Zi)}n

i=1 be an i.i.d. sample from the joint distribution of W := (X, Y, Z).
Define dijkl :=

(
dX

ij + dX
kl − dX

ik − dX
jl
) (

dY
ij + dY

kl − dY
ik − dY

jl
)
, which is not symmetric with

respect to {i, j, k, l}, and therefore necessitates defining the following symmetric form:
dS

ijkl := dijkl + dijlk + dilkj. Lemma 1 in [15] establishes an equivalent representation of

CdCov2(X, Y|Z = z) as

CdCov2(X, Y|Z = z) =
1
12

E
[
dS

1234 | Z1 = z, Z2 = z, Z3 = z, Z4 = z
]

. (3)

Remark 1. In a recent work, [21] explore the connection between conditional independence mea-
sures induced by distances on a metric space and reproducing kernels associated with a reproducing
kernel Hilbert space (RKHS). They generalize CdCov to arbitrary metric spaces of negative type—
termed generalized CdCov (gCdCov)—and develop a kernel-based measure of conditional indepen-
dence, namely the Hilbert–Schmidt conditional independence criterion (HSCIC). Theorem 1 in their
paper establishes an equivalence between gCdCov and HSCIC, or, in other words, between distance
and kernel-based measures of conditional independence.

For w ∈ Rr, let KH(w) := |H|−1 K(H−1w) be a kernel function, where H is the
diagonal matrix diag(h, . . . , h) determined by a bandwidth parameter h. KH is typically
considered to be the Gaussian kernel KH(w) = (2π)−

r
2 |H|−1 exp

(
− 1

2 wT H−2w
)
, where

w ∈ Rr.
Let Kiu := KH(Zi − Zu) = |H|−1 K(H−1(Zi − Zu)) and Ki(Z) := KH(Z − Zi) for

1 ≤ i, u ≤ n. Then, by virtue of the equivalent representation of CdCov in (3), a V-statistic
type estimator of CdCov2(X, Y|Z) can be constructed as

CdCov2
n(X, Y|Z) := ∑

i,j,k,l

Ki(Z)Kj(Z)Kk(Z)Kl(Z)

12
(

∑n
i=1 Ki(Z)

)4 dS
ijkl . (4)

Under certain regularity conditions, Theorem 4 in [15] shows that, conditioned on Z,

CdCov2
n(X, Y|Z) P−→ CdCov2(X, Y|Z) as n → ∞.

3. Methodology and Theory

3.1. The Nonparametric PC Algorithm in High Dimensions
To obtain a measure of conditional independence between X and Y given Z that is

free of Z, we define

ρ∗0 (X, Y|Z) := E
[
CdCov2

n(X, Y|Z)
]

. (5)

Clearly, ρ∗0 (X, Y|Z) = 0 if and only if X ⊥⊥ Y | Z. Consider a plug-in estimate of
ρ∗0 (X, Y|Z) as

ρ̂ ∗(X, Y|Z) :=
1
n

n

∑
u=1

CdCov2
n(X, Y|Zu) =

1
n

n

∑
u=1

Δi,j,k,l;u

where Δi,j,k,l;u := ∑
i,j,k,l

Kiu Kju Kku Klu

12
(

∑n
i=1 Kiu

)4 dS
ijkl .

(6)

We reject H0 : X ⊥⊥ Y|Z vs HA : X �⊥⊥ Y|Z at level α ∈ (0, 1) if ρ̂ ∗(X, Y|Z) > ξα,
for a suitably chosen threshold ξα. In Appendix A, we present a local bootstrap procedure
for choosing ξα in practice, which is also used in our numerical studies. Henceforth, we will
often denote ρ∗0 (X, Y|Z) and ρ̂ ∗(X, Y|Z) simply by ρ∗0 and ρ̂ ∗ respectively for notational
simplicity, whenever there is no confusion.
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In view of the complete characterization of conditional independence by ρ∗0, we
propose testing for conditional independence relations nonparametrically in the sample
version of the PC-stable algorithm based on ρ∗0, rather than partial correlations. We coin
the resulting algorithm the ‘nonPC’ algorithm, to emphasize that it is a nonparametric
generalization of parametric PC-stable algorithms.

The oracle version of the first step of nonPC, or the skeleton estimation step, is exactly
the same as that of the PC-stable algorithm (Algorithm A1 in Appendix A). The second
step, which extends the skeleton estimated in the first step to a CPDAG (Algorithm A2
in Appendix A), is comprised of some purely deterministic rules for edge orientations,
and is exactly the same for both the nonPC and PC-stable as well. The only difference
lies in the implementation of the tests for conditional independence relationships in the
sample versions of the first step. Specifically, we replace all the conditional independence
queries in the first step by tests based on ρ∗0 (X, Y|Z). At some pre-specified significance
level α, we infer that Xa ⊥⊥ Xb |XS when ρ̂ ∗(Xa, Xb|XS) ≤ ξn,α, where a, b ∈ V and S ⊆ V,
|S| �= φ. When |S| = φ, ρ̂ ∗(Xa, Xb|XS) = dCov2

n(Xa, Xb) and ρ∗0 (X, Y|Z) = dCov2(X, Y).
The critical value ξn,α in this case is obtained by a bootstrap procedure (see, e.g., Section 4
in [22] with d = 2).

Given that the equivalence between conditional independence and zero partial correla-
tions only holds for multivariate normal random variables, our generalization broadens the
scope of applicability of causal structure learning by the PC/PC-stable algorithm to general
distributions over DAGs. This nonparametric approach is thus a natural extension of
Gaussian and Gaussian copula models. It enables capturing nonlinear and non-monotone
conditional dependence relationships among the variables, which partial correlations fail
to detect.

Next, we establish theoretical guarantees on the correctness of the nonPC algorithm
in learning the true underlying causal structure in sparse high-dimensional settings. Our
consistency results only require mild moment and tail conditions on the set of variables,
without making any strict distributional assumptions. Denote by mp the maximum car-
dinality of the conditioning sets considered in the adjacency search step of the PC-stable
algorithm. Clearly, mp ≤ q, where q := max1≤a≤p |adj(G, a) | is the maximum degree of
the DAG G. For a fixed pair of nodes a, b ∈ V, the conditioning sets considered in the
adjacency search step are elements of J

mp
a,b := {S ⊆ V\{a, b} : |S| ≤ mp}.

We first establish a concentration inequality that gives the rate at which the absolute
difference of ρ∗0 (Xa, Xb|XS) and its plug-in estimate ρ̂ ∗(Xa, Xb|XS) decays to zero, for any
fixed pair of nodes a and b ∈ V and a fixed conditioning set S. Towards that, we impose
the following regularity conditions.

(A1) There exists s0 > 0 such that, for 0 ≤ s < s0, sup
p

max
1≤a≤p

E exp(sX2
a) < ∞.

(A2) The kernel function K(·) is non-negative and uniformly bounded over its support.

Condition (A1) imposes a sub-exponential tail bound on the squares of the random
variables. This is a quite commonly used condition, for example, in the high-dimensional
feature screening literature (see, for example, [23]). Condition (A2) is a mild condition on
the kernel function K(·) that is guaranteed by many commonly used kernels, including
the Gaussian kernel. Under conditions (A1) and (A2), the next result shows that the
plug-in estimate ρ̂ ∗(Xa, Xb|XS) converges in probability to its population counterpart
ρ∗0 (Xa, Xb|XS) exponentially fast.

Theorem 1. Under conditions (A1) and (A2), for any ε > 0, there exist positive constants A, B
and γ ∈ (0, 1/4) such that

P(| ρ̂ ∗(Xa, Xb|XS)− ρ∗0 (Xa, Xb|XS) | > ε) ≤ O
(

2 exp
(
−A n1−2γ ε2

)
+ n4 exp

(
− B nγ

))
.

The proof of Theorem 1 is long and somewhat technical; it is thus relegated to
Appendix B. Theorem 1 serves as the main building block towards establishing the consis-
tency of the nonPC algorithm in sparse high-dimensional settings.
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For notational convenience, henceforth, we denote ρ∗0 (Xa, Xb|XS) and ρ̂ ∗(Xa, Xb|XS)
by ρ∗0 ; a b|S and ρ̂ ∗ab|S, respectively. In Theorem 2 below, we establish a uniform bound for
the errors in inferring conditional independence relationships using the ρ∗0-based test in the
skeleton estimation step of the sample version of the nonPC algorithm.

Theorem 2. Under conditions (A1) and (A2), for any ε > 0, there exist positive constants A, B
and γ ∈ (0, 1/4) such that

sup
a,b∈V
S∈J

mp
a,b

P
(
| ρ̂ ∗ab|S − ρ∗0 ; ab|S | > ε

)
≤ P

(
sup

a,b∈V
S∈J

mp
a,b

| ρ̂ ∗ab|S − ρ∗0 ; ab|S | > ε
)

≤ O
(

pmp+2 [ 2 exp
(
− A n1−2γ ε2) + n4 exp

(
− B nγ

)])
.

(7)

Next, we turn to proving the consistency of the nonPC algorithm in the high-dimensional
setting where the dimension p can be much larger than the sample size n, but the DAG is
considered to be sparse. We impose the following regularity conditions, which are similar
to the assumptions imposed in Section 3.1 of [8] in order to prove the consistency of the
PC algorithm for Gaussian graphical models. We let the number of variables p grow with
the sample size n and consider p = pn, and also the DAG G = Gn := (Vn, En) and the
distribution P = Pn.

(A3) The dimension pn grows at a rate such that the right-hand side of (7) tends to zero as
n → ∞. In particular, this is satisfied when pn = O(nr) for any 0 ≤ r < ∞.

(A4) The maximum degree of the DAG Gn, denoted by qn := max1≤a≤pn |adj(Gn, a) |,
grows at the rate of O(n1−b), where 0 < b ≤ 1.

(A5) The distribution Pn is faithful to the DAG Gn for all n. In other words, for any a, b ∈ Vn

and S ∈ J
mpn
a,b ,

Xa and Xb are d-separated by XS ⇐⇒ Xa ⊥⊥ Xb |XS ⇐⇒ ρ∗0 ; a b|S = 0 .

Moreover, ρ∗0 ; a b|S values are uniformly bounded both from above and below. Formally,

Cmin : = inf
a,b∈Vn
S∈J

mpn
a,b

ρ∗0 ; ab|S �=0

ρ∗0 ; ab|S ≥ λmin λ−1
min = O(nv)

and Cmax : = sup
a,b∈Vn
S∈J

mpn
a,b

ρ∗0 ; ab|S ≤ λmax

where λmax is a positive constant and 0 < v < 1/4.

Condition (A3) allows the dimension to grow at any arbitrary polynomial rate of the
sample size. Condition (A4) is a sparsity assumption on the underlying true DAG, allowing
the maximum degree of the DAG to also grow, but at a slower rate than n. Since mp ≤ qn,
we also have mp = O(n1−b). Finally, Condition (A5) is the strong faithfulness assumption
(Definition 1.3 in [24]) on Pn and is similar to condition (A4) in [8]. This essentially requires
ρ∗0 ; ab|S to be bounded away from zero when the vertices Xa and Xb are not d-separated by
XS. It is worth noting that the faithfulness assumption alone is not enough to prove the
consistency of the PC/PC-stable/nonPC algorithms in high-dimensional settings, and the
more stringent strong faithfulness condition is required.

Remark 2. For notational convenience, treat Xa, Xb and XS as X, Y and Z, respectively, for any
a, b ∈ Vn and S ∈ J

mpn
a,b . From Equation (3), we have

CdCov2(X, Y|Z) =
1
12

E
[

dS
1234 |Z1 = Z, . . . , Z4 = Z

]
,
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which implies

ρ∗0 = E [CdCov2(X, Y|Z)] =
1
12

E
[

dS
1234

]
=

1
12

E
[

d1234 + d1243 + d1432
]

.

Condition (A1) implies sup
p

max
1≤a≤p

E X2
a < ∞. With this and the definition of dijkl in Section 2.3, it

follows from some simple algebra and the Cauchy–Schwarz inequality that ρ∗0 < ∞. This provides a
justification for the second part of Assumption (A5) that sup

a,b∈Vn
S∈J

mpn
a,b

ρ∗0 ; ab|S ≤ λmax for some positive

constant λmax.

The next theorem establishes that the nonPC algorithm consistently estimates the
skeleton of a sparse high-dimensional DAG, thereby providing the necessary theoretical
guarantees to our proposed methodology. It is worth noting that, in the sample version of
the PC-stable and hence the nonPC algorithm, all the inference is done during the skeleton
estimation step. The second step that involves appropriately orienting the edges of the
estimated skeleton is purely deterministic (see Sections 4.2 and 4.3 in [7]). Therefore, to
prove the consistency of the nonPC algorithm in estimating the equivalence class of the
underlying true DAG, it is enough to prove the consistency of the estimated skeleton. We
include the detailed proof of Theorem 3 in Appendix B.

Theorem 3. Assume that Conditions (A1)–(A5) hold. Let Gskel,n be the true skeleton of the
graph Gn, and Ĝskel,n be the skeleton estimated by the nonPC algorithm. Then, as n → ∞,
P
(
Ĝskel,n = Gskel,n

)
→ 1.

Remark 3. In the proof of Theorem 3, we consider the threshold ξα to be of constant order. However,
the proof continues to work as long as ξα is of the same order as Cmin as n → ∞.

3.2. The Nonparametric FCI Algorithm in High Dimensions
The FCI is a modification of the PC algorithm that accounts for latent and selection

variables. Thus, generalizations of the PC algorithm naturally extend to the FCI as well.
Similar to nonPC, we propose testing for conditional independence relations nonparamet-
rically in the sample version of the FCI-stable algorithm (Algorithm A3 in Appendix A)
based on ρ∗0, instead of partial correlations. We coin the resulting algorithm the ‘nonFCI’
algorithm, to emphasize that it is a generalization of parametric FCI-stable algorithms.
Again, the oracle version of the nonFCI is exactly the same as that of the FCI-stable algo-
rithm. The difference is in the implementation of the tests for conditional independence
relationships in their sample versions. This broadens the scope of the FCI algorithm in causal
structural learning for observational data in the presence of latent and selection variables
when Gaussianity is not a viable assumption. More specifically, it enables capturing non-
linear and non-monotone conditional dependence relationships among the variables that
partial correlations would fail to detect.

Equipped with the theoretical guarantees we established for the nonPC in Section 3.1,
we establish below in Theorem 4 the consistency of the nonFCI algorithm for general
distributions in sparse high-dimensional settings. LetH = (V, E) be a DAG with the vertex
set partitioned as V = VX ∪VL ∪VT , where VX indexes the set of p observed variables, VL
denotes the set of latent variables and VT stands for the set of selection variables. LetM
be the unique MAG over VX. We let p grow with n and consider p = pn, H = Hn and
Q = Qn, where Q is the distribution of (U1, . . . , Up) := (X1 |VT , . . . , Xp |VT). We provide
below the definition of possible-D-SEP sets (Definition 3.3 in [4]).

Definition 1. Let C be a graph with any of the following edge types : ◦−◦, ◦→ and↔. A possible-
D-SEP (Xa, Xb) in C, denoted pds(C, Xa, Xb), is defined as follows: Xc ∈ pds(C, Xa, Xb) if and
only if there is a path π between Xa and Xc in C such that, for every subpath 〈Xe, X f , Xg〉 of π, X f
is a collider on the subpath in C or 〈Xe, X f , Xg〉 is a triangle in C.
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To prove the consistency of the nonFCI algorithm in sparse high-dimensional settings,
we impose the following regularity conditions, which are similar to the assumptions
imposed in Section 4 in [4].

(C3) The distribution Qn is faithful to the underlying MAGMn for all n.
(C4) The maximum size of the possible-D-SEP sets for finding the final skeleton in the

FCI-stable algorithm (Algorithm A6 in Appendix A), q′n, grows at the rate of O(n1−b),
where 0 < b ≤ 1.

(C5) For any Ui, Uj ∈ {U1, . . . , Upn} and US ⊆ {U1, . . . , Upn}\{Ui, Uj} with |US| ≤ q′n,
assume

inf
{
|ρ∗0(Ui, Uj|US)| : ρ∗0(Ui, Uj|US) �= 0

}
≥ λ′min (λ′min)

−1 = O(nv)

and sup |ρ∗0(Ui, Uj|US)| ≤ λ′max

where λ′max is a positive constant and 0 < v < 1/4.

Theorem 4. Suppose conditions (A1)–(A3) and (C3)–(C5) hold. Denote by Cn and C∗n the true
underlying FCI-PAG and the output of the nonFCI algorithm, respectively. Then, as n → ∞,
P
(
C∗n = Cn

)
→ 1.

4. Numerical Studies

4.1. Performance of the NonPC Algorithm
In this subsection, we compare the performances of the nonPC and the PC-stable algo-

rithms in finding the skeleton and the CPDAG for various simulated datasets. We simulate
random DAGs in the following examples and sample from probability distributions faithful
to them.

Example 1 (Linear SEM). We first fix a sparsity parameter s ∈ (0, 1) and enumerate the vertices
as V = {1, . . . , p}. We then construct a p× p adjacency matrix Λ as follows. First, initialize Λ as
a zero matrix. Next, fill every entry in the lower triangle (below the diagonal) of Λ by independent
realizations of Bernoulli random variables with success probability s. Finally, replace each nonzero
entry in Λ by independent realizations of a Uniform(0.1, 1) random variable.

In this scheme, each node has the same expected degree E(m) = (p − 1)s, where
m is the degree of a node and follows a Binomial (p− 1, s) distribution. Using the adja-
cency matrix Λ, the data are then generated from the following linear structural equation
model (SEM) :

X = ΛX + ε

where ε = (ε1, . . . , εp) and ε1, . . . , εp are jointly independent. To obtain samples {Xk
1, . . . , Xk

p}n
k=1

on {X1, . . . , Xp}, we first sample {εk
1, . . . , εk

p}n
k=1 from the three following data-generating

schemes. For 1 ≤ k ≤ n and 1 ≤ i ≤ p,
1. Normal: Generate εk

i ’s independently from a standard normal distribution.
2. Copula: Generate εk

i ’s as in (1) and then transform the marginals to a F1,1 distribution.
3. Mixture: Generate εk

i ’s independently from a 50–50 mixture of a standard normal and
a standard Cauchy distribution.

Example 2 (Nonlinear SEM). In this example, we first generate a p× p adjacency matrix Λ in
the similar way as in Example 1 and then generate the data from the following nonlinear SEM

(similar to [10]) : Xi = ∑j : Λij �=0 fij(Xj) + εi with εi
i.i.d.∼ N(0, 1), where 1 ≤ j < i ≤ p.

If the functions fij’s are chosen to be nonlinear, then the data will typically not correspond to a
well-known multivariate distribution. We consider fij(xj) = bij1xj + bij2x2

j , where bij1 and bij1 are
independently sampled from N(0, 1) and N(0, 0.5) distributions, respectively.

With the exception of Example 1.1, the above examples are all non-Gaussian graphical
models. We would thus expect the nonPC to perform better than the PC-stable in learning
the unknown causal structure in these examples. For each of the four data generating
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methods considered above, we compare the Structural Hamming Distance (SHD) [25]
between the estimated and the true skeletons of the underlying DAGs using the nonPC
and PC-stable algorithms. The SHD between two undirected graphs is the number of edge
additions or deletions necessary to make the two graphs match. Therefore, larger SHD
values between the estimated and the true skeleton correspond to worse estimates.

We consider 199 bootstrap replicates for the CdCov-based conditional independence
tests in the implementation of our nonPC algorithm and the significance level α = 0.05.
Table 1 presents the average SHD for the different data generating schemes over 20 simula-
tion runs, for different choices of n, p and E(m).

Table 1. Comparison of the average structural Hamming distances (SHD) of nonPC and PC-stable
algorithms across simulation studies.

Normal Copula

n p E(m) nonPC PC-stable nonPC PC-stable

50 9 1.4 3.35 3.05 5.55 5.75
100 27 2.0 14.55 11.00 25.6 28.6
150 81 2.4 53.70 43.45 97.3 121.3
200 243 2.8 186.2 183.4 331.00 471.45

Mixture Nonlinear SEM

n p E(m) nonPC PC-stable nonPC PC-stable

50 9 1.4 3.8 3.5 2.9 3.7
100 27 2.0 17.75 18.00 15.05 20.05
150 81 2.4 69.05 77.75 62.583 95.083
200 243 2.8 250.3 336.1 213.70 375.45

The results in Table 1 demonstrate that the nonPC performs nearly as good as the
PC-stable for the Gaussian data example, in terms of the average SHD. However, for
each of the non-Gaussian data examples, the nonPC performs better than the PC-stable in
estimating the true skeleton of the underlying DAGs. The improvement in SHD becomes
more substantial as the dimension grows. The superior performance of the nonPC over
PC-stable for the non-Gaussian graphical models is expected, as the characterization of
conditional independence by partial correlations is only valid under the assumption of
joint Gaussianity.

4.2. Performance of the NonFCI Algorithm
In this subsection, we compare the performances of the nonFCI and the FCI-stable algo-

rithms over various simulated datasets. We first generate random DAGs as in Examples 1 and 2.
To assess the impact of latent variables, we randomly define half of the variables with no
parents and at least one child as latent. We do not consider selection variables. We run
both the nonFCI and the FCI-stable algorithms on the above data examples with n = 200,
p = {10, 20, 30, 100, 200} and α = 0.01, using 199 bootstrap replicates for the CdCov-based
conditional independence tests. We consider 20 simulation runs for each of the data gen-
erating models. Table 2 reports the average SHD between the estimated and true PAG
skeleton by the nonFCI and FCI-stable algorithms.
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Table 2. Comparison of the average structural Hamming distances (SHD) of nonFCI and FCI-stable
algorithms across simulation studies.

Normal Copula Mixture Nonlinear SEM

p E(m) nonFCI FCI-Stable nonFCI FCI-Stable nonFCI FCI-Stable nonFCI FCI-Stable

10 2.0 7.15 7.60 1.3 1.8 5.65 6.80 7.15 8.20
20 2.0 14.55 17.60 4.55 6.85 13.65 18.55 19.0 20.8
30 2.0 27.65 33.95 5.25 10.15 19.3 27.8 33.40 37.85

100 3.0 109.30 150.35 26.95 60.05 62.25 111.10 115.2 149.0
200 3.0 287.75 371.40 76.733 157.267 136.05 255.10 289.6 354.1

The results in Table 2 demonstrate that, in both the Gaussian and non-Gaussian exam-
ples, the nonFCI algorithm outperforms the FCI-stable in estimating the true PAG skeleton.

4.3. Real Data Example
A major difficulty in assessing whether nonPC and nonFCI provide more reasonable

estimates compared to the parametric versions of the algorithms in high-dimensional real
data settings is that the true causal graph is not known in most of the cases. In absence of the
truth, we may only be able to draw some conclusions about sensible causal mechanisms by
examining known or logical relationships among pairs of variables. However, this becomes
increasingly difficult for larger networks, where even visualization becomes challenging.
This is why we first choose a relatively smaller dataset in Section 4.3.1, where we can draw
upon background knowledge to glean insight into potential causal mechanisms in a setting
where the data are clearly non-Gaussian. This example highlights the main focus of the
paper that, with non-Gaussian data (categorical, as in this example), nonPC is expected to
perform better than the PC-stable in learning the true causal structure of the underlying
DAG. In Section 4.3.2, we consider a larger example and examine the performance of
PC-stable and nonPC in learning the DAG from both seemingly Gaussian data as well
as a categorized version of the same data. This example clearly illustrates the potential
limitations of PC-stable: in contrast to nonPC, the output of PC-stable can be strikingly
different when applied to a categorized version of the original data.

4.3.1. Montana Poll Dataset
To demonstrate the flexibility of our proposed framework, we first apply the nonPC

algorithm to the Montana Economic Outlook Poll dataset. The poll was conducted in May
1992 where a random sample of 209 Montana residents were asked whether their personal
financial status was worse, the same or better than a year ago, and whether they thought
the state economic outlook was better than the year before. Accompanying demographic
information on the respondents’ age, income, political orientation, and area of residence
in the state were also recorded. We obtained the dataset from the Data and Story Library
(DASL), available at https://math.tntech.edu/e-stat/DASL/page4.html (accessed on 25
March 2021). The study is comprised of the following seven categorical variables: AGE
= 1 for under 35, 2 for 35–54, 3 for 55 and over; SEX = 0 for male, 1 for female; INC =
yearly income: 1 for under $20 K, 2 for $20–35 K, 3 for over $35 K; POL = 1 for Democrat,
2 for Independent, 3 for Republican; AREA = 1 for Western, 2 for Northeastern, 3 for
Southeastern Montana; FIN (=Financial status): 1 for worse, 2 for same, 3 for better than a
year ago; and STAT (=State economic outlook): 1 for better, 0 for not better than a year ago.

After removing the cases with missing values, we are left with n = 163 samples.
Since all the variables are categorical, the Gaussianity assumption is outrightly violated.
Thus, we would expect the nonPC to perform better than the PC-stable in learning the true
causal structure among the variables in this case. Figure 1 below presents the CPDAGs
estimated by the nonPC and PC-stable algorithms at a significance level α = 0.1. We
consider 199 bootstrap replicates for the CdCov-based conditional independence tests in
the implementation of the nonPC algorithm.

It is quite intuitive that age and sex are likely to affect the income; one’s financial status
and the area of residence might also influence their political inclination; and improvements
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or downturns in the state economic outlook might impact an individual’s financial status.
The CPDAG estimated by the nonPC algorithm in Figure 1a affirms such common-sense
understanding of these causal influences. However, in the CPDAG estimated by the PC-
stable in Figure 1b, the edge between age and income is missing. In addition, the directed
edges POL→ AREA and POL→ FIN seem to make little sense in this case.edges POL→ AREA and POL→ FIN se

(a) nonPC

o make little sense in this case.

(b) PC-stable

Figure 1. CPDAGs estimated by the nonPC and PC-stable algorithms for the Montana poll dataset.

4.3.2. Protein Expression Data
We next consider a protein expression dataset of 410 patients with breast cancer

from The Cancer Genome Atlas (TCGA). The dataset consists of p = 118 genes, and we
randomly select a subset of n = 100 patients with PR-negative status. Since the true causal
structure of the genes in the cancer cells may be different than that of normal cells [26],
we apply both the nonPC and PC-stable algorithms to learn the causal structure. To put
the performances of the nonPC and PC-stable under scrutiny as the data depart farther
away from Gaussianity, we categorize the protein expression data for each of the p genes,
denoted by {Xk

a}n
k=1, 1 ≤ a ≤ p, as follows. We compute the three quartiles Q1 ; a, Q2 ; a

and Q3 ; a of the protein expression values for every 1 ≤ a ≤ p. Consequently, we obtain
categorized protein expressions {Xk

C ; a}n
k=1 for 1 ≤ a ≤ p, where

Xk
C ; a :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if Xk

a ≤ Q1 ; a

1 if Q1 ; a < Xk
a ≤ Q2 ; a

2 if Q2 ; a < Xk
a ≤ Q3 ; a

3 if Xk
a > Q3 ; a .

We apply the nonPC and PC-stable algorithms to both the original and the categorized
protein expression data at a significance level α = 0.01. We consider 199 bootstrap replicates
for the CdCov-based conditional independence tests in the implementation of the nonPC
algorithm. Table 3 below shows the SHD between the skeletons estimated from the original
and the categorized data by the nonPC and PC-stable algorithms. It can be seen that the
SHD between the skeletons estimated from the original and categorized data by the PC-
stable algorithm is much larger than that for nonPC. This example highlights the potential
limitation of parametric implementations of the PC algorithm: when the data deviate
farther away from Gaussianity (in this case, being categorical), the estimates produced by
the PC-stable may deviate considerably more from the estimates from the original data.
In contrast, the nonparametric test in nonPC delivers more stable estimates regardless of
the data distribution.

Table 3. Comparison of the SHD between the skeletons estimated from the original and the catego-
rized protein expression data by the nonPC and PC-stable algorithms.

nonPC PC-Stable

22 79
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5. Discussion

We proposed nonparametric variants of the widely popular PC-stable and FCI-stable
algorithms, which employ conditional distance covariance (CdCov) to test for conditional
independence relationships in their sample versions. Our proposed algorithms broaden the
applicability of the PC/PC-stable and FCI/FCI-stable algorithms to general distributions
over DAGs, and enable taking into account nonlinear and non-monotone conditional
dependence among the random variables, which partial correlations fail to capture. We
show that the high-dimensional consistency of the PC-stable and FCI-stable algorithms
carry over to more general distributions over DAGs when we implement CdCov-based
nonparametric tests for conditional independence. These results are obtained without
imposing any strict distributional assumptions and only require moment and tail conditions
on the variables.

There are several intriguing potential directions for future research. First, it is generally
difficult to select the tuning parameter (i.e., the significance threshold for the CdCov
test) in causal structure learning. One possible strategy is to use ideas based on stability
selection [27,28]. By assessing the stability of the estimated graphs in multiple subsamples,
this strategy allows us to choose the tuning parameter in order to control the false positive
error. However, the repeated subsampling increases the computational burden. Second,
the computational and sample complexities of the PC and FCI algorithms (and hence those
of the nonPC and nonFCI) scale with the maximum degree of the DAG, which is assumed
to be small relative to the sample size. However, in many applications, one encounters
sparse graphs containing a small number of highly connected ‘hub’ nodes. In such cases,
ref. [29] proposed a low-complexity variant of the PC algorithm, namely the reduced PC
(rPC) algorithm that exploits the local separation property of large random networks [30].
The rPC is shown to consistently estimate the skeleton of a high-dimensional DAG by
conditioning only on sets of small cardinality. More recently, ref. [31] have generalized
this approach to account for unobserved confounders. In this light, it would be intriguing
to develop computationally faster variants of the nonPC and nonFCI in the future by
exploiting the idea of local separation.
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Appendix A. Preliminaries and Background

For the sake of completeness, we illustrate in this section the pseudocodes of the oracle
versions of the PC-stable and FCI-stable algorithms. We also outline a local bootstrap
procedure that can be used to approximate the threshold ξα mentioned in Section 3.1 and is
used throughout the numerical studies in the paper.

Algorithm A1 presents the pseudocode of the oracle version of Step 1 of the PC-stable
algorithm (Algorithm 4.1 of [7]), which estimates the skeleton of the underlying DAG.
Algorithm A2 presents the pseudocode of Step 2 of the PC-stable algorithm (Algorithm 2
of [8]) that extends the skeleton estimated in Step 1 to the CPDAG. Algorithm A3 presents
the pseudocode of the FCI-stable algorithm (Section 4.4 in [7]). It implements Algorithm A4
to obtain an initial skeleton of the underlying PAG, Algorithm A5 to orient the v-structures,
and finally Algorithm A6 to obtain the final skeleton that the FCI-stable returns.

To approximate the threshold ξα to test for H0 : X ⊥⊥ Y|Z vs. HA : X �⊥⊥ Y|Z at
level α ∈ (0, 1) (see Section 3.1), we consider the following local bootstrap procedure in
the light of Section 4.3 in [15]. Given the i.i.d. sample {Wi = (Xi, Yi, Zi)}n

i=1 from the joint
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distribution of W = (X, Y, Z), draw a local bootstrap sample {W†
i = (X†

i , Yi, Zi)}n
i=1 and

compute the bootstrap statistic. The detailed steps are as follows :

Algorithm A1 Step 1 of the PC-stable algorithm (oracle version).

Require : Conditional independence information among all variables in V, and an
ordering order(V) on the variables.
Form the complete undirected graph C on the vertex set V.
Let l = −1;
repeat

l = l + 1;
for all vertices Xa in C do

let u(Xa) = adj(C, Xa)
end for
repeat

Select a (new) ordered pair of vertices (Xa, Xb) that are adjacent in C such that
|u(Xa) \ {Xb}| ≥ l, using order (V);
repeat

Choose a (new) set S ⊆ u(Xa) \ {Xb} with |S| = l, using order(V);
if Xa ⊥⊥ Xb | S then

Delete the edge Xa − Xb from C;
Let sepset (Xa, Xb) = sepset (Xb, Xa) = S;

end if
until Xa and Xb are no longer adjacent in C or all S ⊆ u(Xa) \ {Xb} with |S| = l

have
been considered

until all ordered pairs of adjacent vertices (Xa, Xb) in C with |u(Xa) \ {Xb}| ≥ l have
been

considered
until all pairs of adjacent vertices (Xa, Xb) in C satisfy |u(Xa) \ {Xb}| ≤ l
Output : The estimated skeleton C, separation sets sepset.

Algorithm A2 Step 2 of the PC-stable algorithm.

Require : Skeleton C, separation sets sepset.
for all all pair of nonadjacent vertices Xa, Xc with common neighbor Xb in C do

if Xb /∈ sepset(Xa, Xc) then
Replace Xa − Xb − Xc in C by Xa → Xb ← Xc;

end if
end for
In the resulting PDAG, try to orient as many undirected edges as possible by repeated
applications of the following rules :
(R1) Orient Xb − Xc into Xb → Xc whenever there is an arrow Xa → Xb such that Xa
and Xc are nonadjacent (otherwise, a new v-structure is created).
(R2) Orient Xa − Xc into Xa → Xc whenever there is a chain Xa → Xb → Xc (otherwise,
a directed cycle is created).
(R3) Orient Xa − Xc into Xa → Xc whenever there are two chains Xa − Xb → Xc and
Xa − Xd → Xc such that Xb and Xd are nonadjacent (otherwise, a new v-structure or a
directed cycle is created).
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Algorithm A3 The FCI-stable algorithm (oracle version).

Require : Conditional independence information among all variables in VX given VT .
Use Algorithm A4 to find an initial skeleton (C), separation sets (sepset) and unshielded
triple list (M);
Use Algorithm A5 to orient v-structures (update C);
Use Algorithm A6 to find the final skeleton (update C and sepset);
Use Algorithm A5 to orient v-structures (update C);
Use rules (R1)-(R10) of [6] to orient as many edge marks as possible (update C);
Output : C, sepset.

Algorithm A4 Obtaining an initial skeleton in the FCI-stable algorithm (Algorithm 4.1 in
the supplement of [4]).

Require : Conditional independence information among all variables in VX given VT ,
and an ordering order(VX) on the variables.
Form the complete undirected graph C on the vertex set VX with edges ◦−◦.
Let l = −1;
repeat

l = l + 1;
for all vertices Xa in C do

let u(Xa) = adj(C, Xa)
end for
repeat

Select a (new) ordered pair of vertices (Xa, Xb) that are adjacent in C such that
|u(Xa) \ {Xb}| ≥ l, using order (VX);
repeat

Choose a (new) set Y ⊆ u(Xa) \ {Xb} with |Y| = l, using order(VX);
if Xa ⊥⊥ Xb |Y ∪VT then

Delete the edge Xa ◦−◦ Xb from C;
Let sepset(Xa, Xb) = sepset(Xb, Xa) = Y;

end if
until Xa and Xb are no longer adjacent in C or all Y ⊆ u(Xa) \ {Xb} with |Y| = l

have
been considered

until all ordered pairs of adjacent vertices (Xa, Xb) in C with |u(Xa) \ {Xb}| ≥ l have
been

considered
until all pairs of adjacent vertices (Xa, Xb) in C satisfy |u(Xa) \ {Xb}| ≤ l
Form a listM of all unshielded triples 〈Xc · Xd〉 (i.e., the middle vertex is left unspecified)
in C with c < d.
Output : C, sepset,M.

Algorithm A5 Orienting v-structures in the FCI-stable algorithm (Algorithm 4.2 in the
supplement of [4]).

Require : Initial skeleton (C), separation sets (sepset) and unshielded triple list (M).
for all elements 〈Xa, Xb, Xc〉 ofM do

if Xb /∈ sepset(Xa, Xc) then Orient Xa �−◦ Xb ◦−� Xc as Xa�→ Xb ←�Xc
end if

end for
Output : C, sepset.
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Algorithm A6 Obtaining the final skeleton in the FCI-stable algorithm (Algorithm 4.3 in
the supplement of [4]).

Require: Partially oriented graph (C) and separation sets (sepset).
for all vertices Xa in C do

let v(Xa) = pds(C, Xa, ·);
for all vertices Xb ∈ adj(C, Xa) do

Let l = −1;
repeat

l = l + 1;
repeat

Choose a (new) set Y ⊆ v(Xa) \ {Xb} with |Y| = l;
if Xa ⊥⊥ Xb |Y ∪VT then

Delete the edge Xa �−� Xb from C;
Let sepset(Xa, Xb) = sepset(Xb, Xa) = Y;

end if
until Xa and Xb are no longer adjacent in C or all Y ⊆ v(Xa) \ {Xb} with

|Y| = l have
been considered

until Xa and Xb are no longer adjacent in C or |v(Xa) \ {Xb}| < l
end for

end for
Reorient all edges in C as ◦−◦.
Form a listM of all unshielded triples 〈Xc · Xd〉 in C with c < d.
Output : C, sepset,M.

A. For i = 1, . . . , n, draw X†
i from

F̂X|Z=Zi
=

∑n
j=1 Kij 1(−∞, Xj](x)

∑n
j=1 Kij

.

Compute ρ̂ ∗† based on the local bootstrap sample {W†
i = (X†

i , Yi, Zi)}n
i=1.

B. Repeat Step A B times to obtain {ρ̂ ∗†
b }B

b=1. Obtain ξ ∗n,α as the 100(1− α)th percentile
of {nhr/2 ρ̂ ∗†

b }B
b=1. Then, 1

nhr/2 ξ ∗n,α can be considered as an approximation for ξα.

Appendix B. Proofs of the Theoretical Results

In this section, we provide detailed technical proofs of the theoretical results presented
in the paper. We first state a concentration inequality in Lemma A1. The result in Lemma A1
is not new and can be seen as a corollary of Theorem A in Section 5.6.1 of [32]; however,
it is a key technical ingredient in the proof of Theorem 1, which is the main theoretical
innovation of our paper. For completeness, we include a short proof for Lemma A1.

Lemma A1. Consider a U-statistic Un = U(X1, . . . , Xn) = (n
m)
−1 ∑

i1<···<im

h(Xi1 , . . . , Xim) with

a symmetric kernel h such that EUn = E h(X1, . . . , Xm) = θ. Further suppose |h(X1, . . . , Xm)| ≤
M for some M > 0. Then, for any ε > 0, we have

P(|Un − θ| > ε) ≤ 2 exp
(
− ε2 k

2M2

)
where k := � n

m �.

Proof of Lemma A1. Define

W(X1, . . . , Xn) :=
1
k
[
h(X1, . . . , Xm) + h(Xm+1, . . . , X2m) + · · · + h(Xkm−m+1, . . . , Xkm)

]
.
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Then, following Section 5.1.6 in [32], we can write

Un =
1
n! ∑

π

W(Xi1 , . . . , Xin) (A1)

where ∑
π

denotes summation over all n! permutations (i1, . . . , in) of (1, 2, . . . , n). Thus, Un

can be expressed as an average of n! terms, each of which is an average of k i.i.d. random
variables. Using Markov’s inequality, convexity of the exponential function and Jensen’s
inequality, we have, for any t > 0,

P(Un − θ > ε) = P
(

exp
(
t (Un − θ)

)
> exp(tε)

)
≤ exp(−tε) exp(−tθ)E

[
exp

(
t Un

)]
= exp(−tε) exp(−tθ)E

[
exp

(
t

1
n! ∑

p
W(Xi1 , . . . , Xin)

)]

≤ exp(−tε) exp(−tθ)
1
n! ∑

π

E
[
exp

(
t W(Xi1 , . . . , Xin)

)]
= exp(−tε) exp(−tθ)

[
E

(
exp

(
t
k

h
))]k

= exp(−tε)Ek
[

exp
( t

k
(h− θ)

)]

(A2)

where, for notational simplicity, we use h to denote h(X1, . . . , Xm). Using Hoeffding’s
Lemma, we have from (A2)

P(Un − θ > ε) ≤ exp
(
−tε + k

1
8

t2

k2 (2M)2
)

= exp
(
−tε +

t2M2

2k

)
.

Symmetrically, we obtain

P(|Un − θ| > ε) ≤ 2 exp
(
−tε +

t2M2

2k

)
. (A3)

The right-hand side of (A3) is minimized at t = ε k/M2. Therefore, choosing t = ε k/M2,
we obtain

P(|Un − θ| > ε) ≤ 2 exp
(
− ε2 k

2M2

)
.

�

Proof of Theorem 1. When |S| = 0, it can be shown in similar lines of Theorem 1 in
Li et al. (2012) [33] that, for any ε > 0, there exist positive constants A, B and γ ∈ (0, 1/4)
such that

P(| ρ̂ ∗(Xa, Xb|XS)− ρ∗0 (Xa, Xb|XS) | > ε) ≤ O
(

2 exp
(
−A n1−2γ ε2

)
+ n exp

(
− B nγ

))
.

Now, consider the case 0 < |S| ≤ mp.

For notational convenience, we treat Xa, Xb and XS as X, Y and Z, respectively.

Denote δZ := CdCov2(X, Y|Z). Then, ρ∗0 = E[δZ]. Recall that
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ρ̂ ∗(X, Y|Z) :=
1
n

n

∑
u=1

CdCov2
n(X, Y|Zu) :=

1
n

n

∑
u=1

Δi,j,k,l;u

where Δi,j,k,l;u := ∑
i,j,k,l

Kiu Kju Kku Klu

12
(

∑n
i=1 Kiu

)4 dS
ijkl .

(A4)

From (A4), we have

E
[
CdCov2

n(X, Y|Zu)|Z
]

=
1

12
E
[

dS
1234 | Z1 = Zu, . . . , Z4 = Zu

]
∑

i,j,k,l
Kiu Kju Kku Klu /

(
n

∑
i=1

Kiu

)4

=
1

12
E
[

dS
1234 | Z1 = Zu, . . . , Z4 = Zu

]
= δZu

(A5)

where the last equality follows from Lemma 1 in [15]. Together, (A4) and (A5)

imply E [ ρ̂ ∗] = ρ∗0.

Now, consider the truncation

ρ∗0 = ρ∗01 + ρ∗02

:= E

[
1

12
dS

i,j,k,l 1

(∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣ ≤ M
)]

+ E

[
1
12

dS
i,j,k,l 1

(∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣ > M
)] (A6)

where M > 0 will be specified later. Then, using triangle inequality,

P(|ρ̂ ∗ − ρ∗0 | > ε) = P

(∣∣∣∣∣ 1
n

n

∑
u=1

(
∑

i,j,k,l
Δi,j,k,l;u − ρ∗0

)∣∣∣∣∣ > ε

)

≤ P

(∣∣∣∣∣ 1
n

n

∑
u=1

(
∑

i,j,k,l
Δi,j,k,l;u 1

(∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣ ≤ M
)
− ρ∗01

)∣∣∣∣∣ > ε/2

)

+ P

(∣∣∣∣∣ 1
n

n

∑
u=1

(
∑

i,j,k,l
Δi,j,k,l;u 1

(∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣ > M
)
− ρ∗02

)∣∣∣∣∣ > ε/2

)
=: I + II .

(A7)

Clearly, from (A4), we have |Δi,j,k,l;u| ≤ M when
∣∣∣ 1

12 dS
i,j,k,l

∣∣∣ ≤ M. With this observation,
we have

I ≤ 2 exp
(
− n ε2

8 M2

)
(A8)

which follows from Lemma A1 by setting m = 1, k = �n� and ε = ε/2. Choosing M = c nγ

for γ ∈ (0, 1/4) and some positive constant c, it follows from (A8) that

I ≤ 2 exp
(
−C1 n1−2γ ε2

)
(A9)

for some C1 > 0.
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Now, to find a suitable upper bound for II, note that a simple application of triangle
inequality yields

ε

2
<

∣∣∣∣∣ 1
n

n

∑
u=1

∑
i,j,k,l

Δi,j,k,l;u 1

(∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣ > M
)
− ρ∗02

∣∣∣∣∣
≤
∣∣∣∣∣ 1

n

n

∑
u=1

∑
i,j,k,l

Δi,j,k,l;u 1

(∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣ > M
) ∣∣∣∣∣ + |ρ∗02| .

(A10)

For the choice of M = c nγ, we have

ρ∗02 = E

[
1
12

dS
i,j,k,l 1

(∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣ > M
)]

<
ε

4
(A11)

for sufficiently large n (see, for example, Exercise 6 in Chapter 5, [34]). Combining (A10)
and (A11), we obtain{∣∣∣∣∣ 1

n

n

∑
u=1

∑
i,j,k,l

Δi,j,k,l;u 1

(∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣ > M
)
− ρ∗02

∣∣∣∣∣ > ε/2

}

⊆
{∣∣∣∣∣ 1

n

n

∑
u=1

∑
i,j,k,l

Δi,j,k,l;u 1

(∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣ > M
) ∣∣∣∣∣ > ε/4

}

⊆
{[ ∣∣∣∣ 1

12
dS

i,j,k,l

∣∣∣∣ > M
]

for some 1 ≤ i, j, k, l ≤ n
}

,

which implies

P

(∣∣∣∣∣ 1
n

n

∑
u=1

∑
i,j,k,l

Δi,j,k,l;u 1

(∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣ > M
)
− ρ∗02

∣∣∣∣∣ > ε/2

)

≤ P

(∣∣∣∣∣ 1
n

n

∑
u=1

∑
i,j,k,l

Δi,j,k,l;u 1

(∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣ > M
) ∣∣∣∣∣ > ε/4

)

≤ n4
P

(∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣ > M
)

.

(A12)

This is because, if
∣∣∣ 1

12 dS
i,j,k,l

∣∣∣ ≤ M for all 1 ≤ i, j, k, l ≤ n, then

n−1
n

∑
u=1

∑
i,j,k,l

Δi,j,k,l;u 1

(∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣ > M
)
= 0.

Under Condition (A1), Lemma 2 in the supplementary materials of [35] proves that
there exists s > 0 for which E

[
exp

(
s
∣∣ dS

1234

∣∣)] is finite. Using Markov’s inequality, we have

P

(∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣ > M
)
≤ P

(
exp

(
s
∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣) > exp(sM)

)
≤ exp(−sM)E

[
exp

(
s
∣∣∣∣ 1
12

dS
i,j,k,l

∣∣∣∣)]
≤ C2 exp(−sM) ≤ C2 exp(−s1 nγ)

(A13)

for some positive constants C2 and s1, where the last line uses the fact that M = c nγ.
Combining (A12) and (A13), we have

II ≤ C2 n4 exp(−s1 nγ) . (A14)
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Finally, combining (A7), (A9) and (A14), we obtain

P(|ρ̂ ∗ − ρ∗0 | > ε/2) ≤ 2 exp
(
−C1n1−2γε2

)
+ C2 n4 exp(−s1nγ)

for some positive constants γ, C1, C2 and s1. This completes the proof of the theorem.
�

Proof of Theorem 2. The first inequality in Theorem 2 simply follows by observing the
fact that, for any generic random sequence {Xn}∞

n=1 and any ε > 0,

P(|Xn| > ε) ≤ P
(

sup
n
|Xn| > ε

)
for all n ≥ 1, which, in turn, implies

sup
n

P(|Xn| > ε) ≤ P
(

sup
n
|Xn| > ε

)
.

The second inequality follows from union bound and Theorem 1. �

Proof of Theorem 3. Denote by Eab|S the event that “an error occurs while testing for

Xa ⊥⊥ Xb |XS" for a, b ∈ V and S ∈ J
mpn
a,b . Then,

P( an error occurs in the nonPC algorithm ) ≤ P

( ⋃
a,b∈V
S∈J

mpn
a,b

Eab|S

)
� p

mpn+2
n P(Eab|S) (A15)

which is essentially due to the union bound. Now, we can write Eab|S = E I
ab|S ∪ E II

ab|S, where

(Type I error) E I
ab|S : |ρ̂∗ab|S| > ξα when ρ∗0 ; ab|S = 0

and (Type II error) E II
ab|S : |ρ̂∗ab|S| ≤ ξα when ρ∗0 ; ab|S > 0 .

Then, by using triangle inequality,

P(E I
ab|S) = P(| ρ̂∗ab|S | > ξα) = P

(
| ρ̂∗ab|S − ρ∗0 ; ab|S + ρ∗0 ; ab|S | > ξα

)
≤ P

(
| ρ̂∗ab|S − ρ∗0 ; ab|S | > ξα − Cmax

)
� 2 exp

(
− A n1−2γ(ξα − Cmax)

2) + n4 exp
(
− Bnγ

) (A16)

for positive constants A, B and γ ∈ (0, 1/4), where the last inequality follows from
Theorem 2. Similarly, using the definition of Cmin and the identity |a| − |b| ≤ |a − b|
for a, b ∈ R, we have

P

(
E II

ab|S
)

= P(| ρ̂∗ab|S | ≤ ξα) = P(−| ρ̂∗ab|S | ≥ −ξα)

= P(|ρ∗0 ; ab|S| − | ρ̂∗ab|S| ≥ |ρ∗0 ; ab|S| − ξα)

≤ P(|ρ∗0 ; ab|S − ρ̂∗ab|S| ≥ Cmin − ξα)

� 2 exp
(
− A n1−2γ(ξα − Cmin)

2) + n4 exp
(
− Bnγ

)
.

(A17)
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Again, the last inequality follows from Theorem 2. Combining Equations (A15)–(A17),
we have

P ( an error occurs in the nonPC algorithm )

= O
(

p
mpn+2
n

[
2 exp

(
− A n1−2γ(ξα − Cmax)

2) + 2 exp
(
− A n1−2γ(ξα − Cmin)

2]
+ n4 exp

(
− B nγ

)])
= o(1)

where the last step follows from the fact that γ ∈ (0, 1/4) and Assumption (A5). This
implies that, as n → ∞,

P
(
Ĝskel,n = Gskel,n

)
= 1 − P ( an error occurs in the nonPC algorithm )

→ 1 .

�

Proof of Theorem 4. The proof follows similar lines of the proof of Theorem 4.2 in
[4], replacing Lemma 1.4 in their supplement by Theorem 2 in our paper.

�

References

1. Lauritzen, S.L. Graphical Models; Oxford University Press: Oxford, UK, 1996.
2. Maathuis, M.; Drton, M.; Lauritzen, S.; Wainwright, M. Handbook of Graphical Models; CRC Press: Boca Raton, FL, USA, 2019.
3. Spirtes, P.; Glymour, C.; Scheines, R. Causation, Prediction, and Search, 2nd ed; The MIT Press: Cambridge, MA, USA, 2000.
4. Colombo, D.; Maathuis, M.H.; Kalisch, M.; Richardson, T.S. Learning high-dimensional directed acyclic graphs with latent and

selection variables. Ann. Stat. 2012, 40, 294–321. [CrossRef]
5. Spirtes, P. An anytime algorithm for causal inference. In Proceedings of the 8th International Workshop on Artificial Intelligence

and Statistics, Key West, FL, USA, 3–6 January 2001; pp. 213–221.
6. Zhang, J. On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias.

Artif. Intell. 2008, 172, 1873–1896. [CrossRef]
7. Colombo, D.; Maathuis, M.H. Order-independent constraint-based causal structure learning. J. Mach. Learn. Res. 2014, 15,

3921–3962.
8. Kalisch, M.; Bühlmann, P. Estimating High-Dimensional Directed Acyclic Graphs with the PC-Algorithm. J. Mach. Learn. Res.

2007, 8, 613–636.
9. Loh, P-L.; Bühlmann, P. High-Dimensional Learning of Linear Causal Networks via Inverse Covariance Estimation. J. Mach.

Learn. Res. 2014, 15, 3065–3105.
10. Voorman, A.; Shojaie, A.; Witten, D. Graph estimation with joint additive models. Biometrika 2014, 99, 1–25. [CrossRef]
11. Harris, N.; Drton, M. PC Algorithm for Nonparanormal Graphical Models. J. Mach. Learn. Res. 2013, 14, 3365–3383.
12. Sun, X.; Janzing, D.; Schölkopf, B.; Fukumizu, K. A kernel-based causal learning algorithm. In Proceedings of the 24th International

Conference on Machine Learning, Corvalis, OR, USA, 20–24 June 2007; pp. 855–862.
13. Zhang, K.; Peters, J.; Janzing, D.; Schölkopf, B. Kernel-based conditional independence test and application in causal discovery.

arXiv 2012, arXiv:1202.3775.
14. Székely, G.J.; Rizzo, M.L.; Bakirov, N.K. Measuring and testing independence by correlation of distances. Ann. Stat. 2007, 35,

2769–2794. [CrossRef]
15. Wang, X.; Wenliang, P.; Hu, W.; Tian, Y.; Zhang, H. Conditional distance correlation. J. Am. Stat. Assoc. 2015, 110, 1726–1734.

[CrossRef]
16. Pearl, J. Causality; Cambridge University Press: Cambridge, UK, 2000.
17. Verma, T.; Pearl, J. Equivalence and synthesis of causal models. In Proceedings of the Sixth Annual Conference on Uncertainty in

Artificial Intelligence, Cambridge, MA, USA, 27–29 July 1990; pp. 255–270.
18. Richardson, T.S.; Spirtes, P. Ancestral graph markov models. Ann. Stat. 2002, 30, 962–1030. [CrossRef]
19. Ali, R.A.; Richardson, T.S.; Spirtes, P. Markov equivalence for ancestral graphs. Ann. Stat. 2009, 37, 2808–2837. [CrossRef]
20. Székely, G.J.; Rizzo, M.L. Partial distance correlation with methods for dissimilarities. Ann. Stat. 2014, 42, 2382–2412. [CrossRef]
21. Sheng, T.; Sriperumbudur, B.K. On distance and kernel measures of conditional independence. arXiv 2019, arXiv:1912.01103.
22. Chakraborty, S.; Zhang, X. Distance Metrics for Measuring Joint Dependence with Application to Causal Inference. J. Am. Stat.

Assoc. 2019, 114, 1638–1650. [CrossRef]
23. Liu, J.; Li, R.; Wu, R. Feature selection for varying coefficient models with ultrahigh-dimensional covariates. J. Am. Stat. Assoc.

2014, 109, 266–274. [CrossRef]

40



Entropy 2022, 24, 351

24. Uhler, C.; Raskutti, G.; Bühlmann, P.; Yu, B. Geometry of the faithfulness assumption in causal inference. Ann. Stat. 2013, 41,
436–463. [CrossRef]

25. Tsamardinos, I.; Brown, L.E.; Aliferis, C.F. The max-min hill-climbing Bayesian network structure learning algorithm. Mach.
Learn. 2006, 65, 31–78. [CrossRef]

26. Shojaie, A. Differential network analysis: A statistical perspective. In Wiley Interdisciplinary Reviews: Computational Statistics;
Wiley: New York, NY, USA, 2021; p. e1508.

27. Meinshausen, N.; Bühlmann, P. Stability selection. J. R. Stat. Soc. 2010, 72, 417–473. [CrossRef]
28. Shah, R.D.; Samworth, R.J. Variable selection with error control: Another look at stability selection. J. R. Stat. Soc. 2013, 75, 55–80.

[CrossRef]
29. Sondhi, A.; Shojaie, A. The Reduced PC-Algorithm: Improved Causal Structure Learning in Large Random Networks. J. Mach.

Learn. Res. 2019, 20, 1–31.
30. Anandkumar, A.; Tan, V.Y.F.; Huang, F.; Willsky, A.S. High-Dimensional Gaussian Graphical Model Selection: Walk Summability

and Local Separation Criterion. J. Mach. Learn. Res. 2012, 13, 2293–2337.
31. Chen, W.; Drton, M.; Shojaie, A. Causal structural learning via local graphs. arXiv 2021, arXiv:2107.03597.
32. Serfling, R. J. Approximation Theorems of Mathematical Statistics; Wiley: New York, NY, USA, 1980.
33. Li, R.; Zhong, W.; Zhu, L. Feature selection via distance correlation learning. J. Am. Stat. Assoc. 2012, 107, 1129–1139. [CrossRef]

[PubMed]
34. Resnick, S. I. A Probability Path; Springer: Berlin/Heidelberg, Germany, 1999.
35. Wen, C.; Wenliang, P.; Huang, M.; Wang, X. Sure Independence Screening Adjusted for Confounding Covariates with Ultrahigh

Dimensional Data. Stat. Sin. 2018, 28, 293–317.

41





Citation: Fan, R.; Bu, S. Transfer-

Learning-Based Approach for the

Diagnosis of Lung Diseases from Chest

X-ray Images. Entropy 2022, 24, 313.

https://doi.org/10.3390/e24030313

Academic Editors: S. Ejaz Ahmed

and Farouk Nathoo

Received: 12 January 2022

Accepted: 15 February 2022

Published: 22 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Transfer-Learning-Based Approach for the Diagnosis of Lung
Diseases from Chest X-ray Images

Rong Fan 1 and Shengrong Bu 2,*

1 School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA;
rongfan@seas.upenn.edu

2 Department of Engineering, Brock University, St. Catharines, ON L2S 3A1, Canada
* Correspondence: sbu@brocku.ca

Abstract: Using chest X-ray images is one of the least expensive and easiest ways to diagnose patients
who suffer from lung diseases such as pneumonia and bronchitis. Inspired by existing work, a deep
learning model is proposed to classify chest X-ray images into 14 lung-related pathological conditions.
However, small datasets are not sufficient to train the deep learning model. Two methods were
used to tackle this: (1) transfer learning based on two pretrained neural networks, DenseNet and
ResNet, was employed; (2) data were preprocessed, including checking data leakage, handling class
imbalance, and performing data augmentation, before feeding the neural network. The proposed
model was evaluated according to the classification accuracy and receiver operating characteristic
(ROC) curves, as well as visualized by class activation maps. DenseNet121 and ResNet50 were used
in the simulations, and the results showed that the model trained by DenseNet121 had better accuracy
than that trained by ResNet50.

Keywords: transfer learning; deep learning; pretrained neural networks; chest X-ray images; lung diseases

1. Introduction

Many people suffer from lung diseases such as pneumonia and emphysema every
year. Chest X-ray images are one of the most widely used and low-cost diagnose tools
for lung diseases [1]. However, since there might be more than one pathology to be
detected from chest X-rays for a disease [2], diagnosing by doctors could be challenging
sometimes. Computer-aided diagnosis for various diseases has been researched to improve
the efficiency and accuracy of the diagnosis [3]. Various deep learning methods [4] for
medical image classification have the potential of predicting and diagnosing diseases even
more accurately than the average radiologist [5].

Since the global corona virus pandemic, researchers have developed methods to
analyze radiographic chest images more efficiently to make the diagnosis of COVID-19
easier. Heidari et al. developed a novel deep learning model to detect non-pneumonia, non-
COVID-19-infected pneumonia and COVID-19-infected pneumonia [6]. In [7], the authors
presented a deep learning approach to realize the diagnosis of pulmonary hypertension
by analyzing chest radiographs and compared the performance of ResNet50, Xception,
and Inception V3. Yu et al. built a multi-task deep learning network consisting of an
extraction architecture and three different routes for various functions by using chest X-rays
from peripherally inserted central catheters [8]. Jaiswal et al. realized the localization and
identification of pneumonia in chest X-ray images using a deep learning model derived from
mask-RCNN [9]. In [5], a modified AlexNet with many handcrafted features was proposed
to detect whether the chest X-ray images were in the normal or in the pneumonia class.

However, the medical image dataset could be too small to be used to train a neural
network since the images have to be labeled by professionals. Transfer learning originated
from terms such as knowledge transfer or inductive transfer in 1995 [10], and later, in 2005,
it was defined as the technique of applying knowledge and skills learned in previous tasks
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to novel tasks [11]. Since then, many studies have employed transfer learning on small
medical datasets and trained neural networks to realize image recognition and classification.
Minaee et al. applied transfer learning to process chest X-ray images for the detection
of COVID-19, and DenseNet121, ResNet18, ResNet50, and SqueezeNet were utilized as
the pre-trained networks [12]. In [13], the advantages and challenges of deep transfer
learning were studied. Ravishankar et al. realized ultrasound kidney images’ detection
using transfer learning [14]. A deep convolutional neural network (DCNN) was proposed
to study the advantages of transfer learning in medicine [15]. Subspace-based techniques,
such as in [16], can be used together with transfer learning to increase the accuracy when
the dataset is small.

Class imbalance is a common challenging related to medical image diagnosis [17],
since the amount of positive data and negative ones in each class might not be equivalent.
In this kind of application, the rare or minor occurrences are much more important than
the majority classes [18]. As a result, the contributions of the loss for these two kinds
of data are not the same, and the small data size of some class will affect the overall
training performance. Various methods could be used to handle imbalanced datasets,
including setting appropriate class weights for the model and random under-sampling and
over-sampling.

In this paper, a transfer learning method is proposed to classify 14 lung-related patholo-
gies using frontal-view chest X-ray images. The contributions of this paper are as follows:

• We built image classification models using pretrained networks;
• We preprocessed the data including data augmentation of the ChestX-ray8 dataset

and dealt with the class imbalance problem;
• We trained, validated, and tested the model using pretrained networks and compared

the performance of each model using the ROC curves. We visualized the classification
decision using Grad-CAM.

The structure of this paper is as follows. The methods and principles with respect
to transfer learning, data augmentation, evaluation, and visualization are presented in
Section 2. Section 3 then presents the experimental process and results. Finally, the conclu-
sion of this paper is drawn in Section 4.

2. Proposed Transfer Learning Method

In our work, transfer learning was used for the chest X-ray image classification task.
Transfer learning is an effective method in the image processing domain that can take
advantage of well-developed models to solve new tasks [19]. There are two main ways to
utilize pretrained networks in transfer learning: First, a pretrained model can be used as
the feature extractor for the new dataset. Once the features are extracted, added layers such
as a linear classifier can be trained for the new task. Second, the whole or some part of the
pretrained network will be fine-tuned for the new classification task. Thus, the weights of
the pretrained model are considered as the initial values and will be updated during the
training process. In our work, the first method was used since the dataset was small and the
computing power was limited. Two networks, i.e., DenseNet121 and ResNet50, were used
as the base models for transfer learning. In the following, the principle of transfer learning,
the framework of the networks, and the measures for the evaluation are discussed.

2.1. Transfer Learning with a Data Augmentation Approach

Two pretrained networks were employed as the training models in this project. The
first one is called ResNet50, which won the first prize in the 2015 ImageNet competition.
This model uses a shortcut connection, which is the basis of a residual network, and the
connection ensures that the feature of one preceding layer is the input of the later layers,
skipping some of the layers. Therefore, any layer in this framework has information
from the preceding layers. The design overcomes the problem of learning rate reduction
and invariant classification accuracy as a result of a deeper network. The second one is
DenseNet121, which was the winner of the 2017 ImageNet competition and has been widely
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applied in deep learning. DenseNet consists of DenseBlock layers, each of which receives
additional inputs from all preceding layers and transition layers. Additional inputs from
all preceding layers together with the feature maps of the current layer are all passed on
to other subsequent layers, and thus, the shortcuts of all the former layers and the latter
layer are built densely. For comparison, the traditional CNN with l layers has l connections
between adjacent layers, whereas DenseNet has l(l + 1)/2 layers in total because of its
shortcut feature [6]. Thus, the learned features could be reused and the network has less
channels as a result of the collective knowledge feature of each layer. Besides, this also
leads to better performance under the conditions of fewer parameters and little computing
cost. It also has some other advantages such as vanishing gradient problem mitigation
and parameter reduction. In contrast, since ResNet only has shortcuts between the former
layer and the latter layer, and DenseNet has demonstrated better performance. Due to
the aforementioned reasons, DenseNet is much deeper than ResNet and has more than
100 layers, and the training process could be more effective and the accuracy improved.

One basic problem of deep learning is the opposition of optimization and general-
ization [20]. Optimization is the learning process that adjusts the model to obtain the
best performance, while generalization is the performance of the model on the testing
of new data. The goal of learning is to realize a satisfactory generation, but this cannot
be controlled, so the models are always adjusted based on the training data. When the
training process begins, the generalization can become worse after a number of iterations,
which means the model is overfitting, and this is a common problem in training neural
networks. Among various methods used to prevent the neural networks from overfitting,
data augmentation is the most effective one and is widely used in computer vision, es-
pecially when the dataset is small. In Keras, data augmentation can be realized by using
the ImageDataGenerator class and transforming the image parameters randomly. Some
commonly adjusted parameters include the following: rotation_range is the rotation range
of the image; width_shi f t and height_shi f t are the range of shifting in the horizontal and
vertical direction, respectively; horizontal_ f lip is the flip ratio; sheer_range is the random
sheer angle of the image.

2.2. Evaluation Methods

The performance of the network needs to be evaluated after testing. Accuracy and
receiver operating characteristic (ROC) curves with the AUCROC were used as the metrics
for the evaluation. Accuracy shows the general performance of all testing images, and the
ROC curves with the AUCROC indicate the classification performance for each label.

The classification task in our project was a multi-task classification because one image
might correspond to more than one pathological condition. Therefore, the Accuracy can be
calculated as follows, since there are 14 pathological conditions:

Accuracy =
sumof truly predicted labels
14 ∗ (# of testing images)

(1)

The accurately predicted labels for all testing images were considered together instead of
calculating the accuracy of each image and then averaging them. The sum of the truly predicted
labels was calculated by first finding the number of truly predicted images for each label and
adding them together.

An ROC curve is a classification evaluation tool in deep learning. In real-world
applications, some datasets have the problem of class imbalance. For example, a common
case is that the number of negative images is larger than that of the positive images for
medical datasets. A stable evaluation curve could be achieved by using the ROC curve.
To summarize, the ROC curve has the following features: First, the curve can be used to
check the impact of a specific threshold value on the generalization ability of a classifier.
Second, the ROC can help determine the best threshold value, since the closer it is to the
upper-left corner, the better the classifier is. Third, the ROC is a good tool to compare the
performance of many different classifiers for each class intuitively.
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In the figure of a typical ROC curve, the horizontal coordinate, i.e., false positive rate
(FPR), and the vertical coordinate, i.e., true positive rate (TPR), are defined as follows:

TPR =
TP
P

=
TP

TP + FN
. (2)

FPR =
FP
N

=
FP

TN + FP
, (3)

where P is the number of real positive samples and N is the number of real negative samples.
TP means true positive, which is the positive samples that are predicted positively by the
model. FP mans false positive, which is the negative samples that are predicted positively
by the model; FN means false negative, which is the positive samples that are predicted
negatively by the model; TN means true negative, which is the negative samples that are
predicted negatively by the model. For a specified classifier, a pair of TPR and FPR points can
be obtained according to the testing performance. As a result, this classifier can be mapped
into a point on the ROC plain. The area under ROC curve (AUCROC) is used to quantify
the classification ability, and a larger AUCROC indicates better classification performance.

There are three methods to calculate the AUC manually, the namely trapezoidal
rule, the Mann–Whitney statistics [21], and the parameter rule. The first method uses the
vertical line of each point on the x-axis and calculates the sum of small trapezoidal areas.
The second method is proper for medical images, because it calculates the value of the
possibility that positive samples are larger than the negative samples. The third method
uses the mean and variance value when the samples obey a Gaussian distribution. In our
work, these two functions roc_auc_score, roc_curve can be used by directly importing them
from the sklearn.metrics library. After the AUC value is calculated, the performance of the
classifier can be analyzed: (1) If AUC = 1, the classifier is perfect. (2) If 0.5 < AUC < 1,
the performance is better than guessing randomly. If a proper threshold value is set, the
classifier can predict most of the cases correctly. (3) If AUC = 0.5, the process of prediction
is the same as a random guess, and there is no prediction value. (4) If AUC < 0.5, it is
worse than guessing. However, if predicting inversely, it is similar to the second case.

2.3. Visualization Using Class Activation Maps

Visualization of neural networks increases the interpretability of the networks in the
field of computer vision. The complexity of medical images always makes the visualization
harder. In our work, the class activation map (CAM) was used for visualization. The basic
principle of the CAM is that it will produce a heat map of the input images, indicating the
degree of similarity between the real class and the predicted class. Specifically, the technique
used in this work was gradient-weighted class activation mapping (Grad-CAM) [22]. This
method generates a localization map with the significant parts of the image highlighted
by extracting the gradient of the classification target and letting the gradient flow into the
last layer.

A convolutional neural network normally consists of a feature extractor, which is
used to extract useful features, and a classifier, which classifies according to the extracted
features. There are two kinds of classification models. One is feature extraction with flatten
and softmax layers: A flatten layer is used to transform the three-dimensional images
into one-dimensional vectors. A dense layer will then be added, and finally, there is a
softmax function as the activation function for the output. The other is feature extraction
with global average pooling (GAP) and softmax, where a global average pooling layer
is used to substitute the flatten layer: this has the advantages of reducing the number of
parameters, making the training process easy and preventing from overfitting. Based on
the classification model, the CAM is generated.

For a traditional CNN model that has a flatten layer, if the last layer of the CNN has
n feature maps, which means there are n weights for a neuron in the classifier layer and
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each neuron relates to a class, then the class activation map [22] for class c can be calculated
as follows:

Lc
CAM =

n

∑
i=1

wc
i Ai, (4)

where the weights for the ith neuron are: wi
1, wi

2, wi
3, · · · , wi

n, and Ai indicates the feature
maps in the last layer. If a GAP is used to substitute the flatten layer, the classification score
of class c [22] can be calculated as follows:

Sc =
n

∑
i=1

wc
i GAP(Ai) =

1
Z

n

∑
i=1

c1

∑
k=1

c2

∑
j=1

Ai
kjw

c
i , (5)

where wc
i is the weight for the GAP and the size of a feature map is Z = c1 ∗ c2. The value

of Sc is determined by the pixel value Ai
kj and weights wc

i . If the multiplication of the pixel
value and weights is larger than 1, the sample will be classified into this current class c, and
the model considers the original image as related to this class. This equation helps decide
which part of the original image corresponds to a specific pixel.

CAMs are a very powerful tool for the visualization of the neural network’s decision-
making process. However, they have certain limitations: (1) We can apply CAMs only if the
CNN contains a GAP layer; (2) heat maps can be generated only for the last convolutional
layer. To address these issues, gradient-weighted class activation mapping (Grad-CAM) is
proposed. The class activation mapping for class c [22] can be generated by:

Lc
Grad−CAM =

1
Z

n

∑
i=1

c1

∑
k=1

c2

∑
j=1

∂Sc

∂Ai
kj

Ai. (6)

Grad-CAM is the generalization of the CAM, and the gradient operator indicates the
backpropagation. Grad-CAM was employed in our work due to its advantages. The code
implementation included the following steps: (1) The output of the batch normalization
(BN) layer [23] and the output of the whole network were extracted. (2) Backpropagation
was computed from the output of the whole network to the output of the BN layer by using
function gradients in TensorFlow to calculate the gradient automatically. (3) We used the
gradients as the weights and multiplied them with the output of the BN layer. (4) Function
resize in the OpenCV library was used to compound the feature maps to visualize.

3. Simulation Results

Our simulation process can be divided into three parts: (1) The raw data need to
be preprocessed, including checking the data leakage, handling the class imbalance, per-
forming the data augmentation, and generating new images. (2) The training process was
conducted. (3) The testing and evaluation results showed the generalization ability of the
model. Simulations were conducted on a GPU-equipped computer, using TensorFlow and
Keras.

3.1. Data Preprocessing

The data used in our work were frontal-view chest X-ray images from patients. The
whole dataset was obtained from https://nihcc.app.box.com/v/ChestXray-NIHCC (ac-
cessed on 10 Febuary 2021). Each image in the dataset includes 14 labels for 14 pathological
conditions, such as consolidation, effusion, edema, atelectasis and so on. For each label,
1 means positive and 0 means negative. After classification, the pathological conditions
can be utilized by physicians to detect eight different diseases. The original datasets were
divided into three groups for training, validation, and testing, respectively.

Data leakage is a common problem for processing medical images, because one patient
may have multiple images. Data leakage will lead to the overfitting problem, since it is
difficult for the model to learn from similar features and to predict other new features. To
ensure that there is no data leakage between any two datasets, the datasets should not
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contain the images from the same patient. The identification of unique patents of each set
was collected by using the set function in Python, and then, the intersection function was
used to check whether the two datasets contain information from the same patient.

Neural networks can only process the data in the format of float tensor. Therefore,
formatting is important, since the original dataset contains images in PNG files. In Keras,
there is a class named ImageDataGenerator, which can be used to finish the following tasks
in sequence: read image files; encode the PNG files into RGB pixels; transform these pixels
into a float tensor; scale the pixels in the range of [0,1]. Then, three generators are defined
to load the images into the network. Several parameters can be set to proper values in
ImageDataGenerator:

• Batch size. The batch size, the number of samples for one training, influences the
optimization degree and speed. Since the network was trained on a GPU (2×Tesla
V100)-equipped machine, batch_size = 16 matches the GPU’s performance;

• Resolution. The original images provided in [24] have a size of 1024 × 1024, which
is relatively too big to be processed. With the help of a Python generator in Keras,
the images were scaled to 400 × 400, the value of which was chosen to balance the
accuracy and learning speed.

The data augmentation module was added to the generator, which means that the
data were already augmented before feeding them into the neural network. In order to
compare the image before and after data augmentation, the first image of the dataset is
shown in Figure 1 by using the plt.imshow function. As shown in Figure 2, the image was
shifted and zoomed after augmentation.

Figure 1. A chest X-ray image.

Figure 2. A chest X-ray image with data augmentation.
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Class imbalance was handled by calculating the weight loss as the loss function.
Specifically, for each label, the loss was weighted by the frequency of positive data (wp)
and that of negative data (wn) as shown below:

L(X, y) =

{
wp ∗ (−log(Y = 1|X)), if y = 1,
wn ∗ (−log(Y = 1|X)), if y = 0,

(7)

where Y stands for predication and X means input labels.

3.2. Training

The pretrained network was used as the base model. A global pooling layer was
added using function GlobalAveragePooling2D, and a fully connected layer was placed as
the output layer by employing the Dense function with Softmax activation. In our work,
the aim was to realize the classification of 14 pathological conditions, which is a multi-task
classification problem. In this scenario, the effective activation was Softmax. The final
output of the model is called the prediction, which is a 14-length vector with each element
indicating the probability of a certain pathological condition. In order to compile the whole
model, function compile was used, and several related parameters were set. For example,
compiling the model required the type of loss function and the optimizer. The weighted
loss was considered as the loss function, since the class imbalance problem was handled by
the weighted loss. Adam was used as the optimizer since it has better performance than the
traditional optimizers, such as the Momentum and RMSprop optimizers. Since “accuracy”
was used as the metric, the accuracy of each training step and each validation step was
displayed while running the code.

After all the preparations were completed, the network was trained by using training
labels and images. The goal of the training was optimization, which means the model
itself builds the connection of the output and output and learns the features. By using the
f it_generator function, the model first fits the data to realize training and then performs
the validation. Some parameters are important for the training and/or validation process:

• Steps per epoch means the number of steps for each epoch. Data in its batch size were
the input from the generator to the network for each step. The relationship between
this parameter and the batch size was (# steps per epoch) × batch size = # total training
samples. Since the batch size was set to 16 because of the GPU performance and the
total samples for training were 402, the steps per epoch should be 25;

• The value of the validation steps needs to be assigned, after the steps per epoch are de-
termined. The validation steps were the total number of steps in the validation dataset.
The validation steps should be two, since there were forty images for validation, and
(# validation steps) × batch size = # total validation samples;

• The value of the epoch decides the total number of training samples. In each epoch,
the network learns the features from all of the input images. In this work, the epoch
was set to 80. The reason was that the plots with 80 epochs could clearly show the
variation tendency of the accuracy and loss, and also, overfitting might occur if the
network is trained for too many epochs. Early stopping was also used by stopping
training if the accuracy did not increase for 10 epochs, which can help mitigate the
overfitting problem to some extent.

When each epoch of training was finished, the weights of the current trained network
were saved in a weight file, by calling the model.save function. The later training was based
on the formerly saved weights.

The next step was to plot the loss curve for training and validation, which is useful for
observing network convergence and the overfitting problem. Function Matplotlib in Keras
was used for plotting. After all training and validation epochs, the loss for each epoch can
be retrieved by calling the history function.

The training loss and validation loss of DenseNet121 without DA, DenseNet121 with
DA, and ResNet50 with DA as the base model are shown in Figure 3. The results without
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DA and with DA were firstly compared. Figure 3a,b shows that both of the losses with
or without DA for the training decreased from one to nearly zero with the increase of the
epoch, while those for validation increased from one to almost five, which means that the
model was overfit. Ideally, training loss and validation loss should have the same trends,
if the model is well fit. The figures also demonstrate that the model with DA had better
performance than that without DA. The figures show that the model with DA learned
the model slower than that without DA, since more images needed to be fed into the the
network after data augmentation. The curves for DenseNet121 without DA fluctuated more
than those with DA. The loss curves by using ResNet50 as the base model with DA are also
presented. Compared with DenseNet121, ResNet50 took more time to train because the
training loss converged at around the 70th epoch.

(a) (b) (c)

Figure 3. Loss curves for xx with/without DA. (a) DenseNet121 without DA. (b) DenseNet121 with
DA. (c) ResNet50 with DA.

The training accuracy of using these three models is shown in Table 1. DenseNet121
with DA had the highest training accuracy, followed by DenseNet121 without DA and then
ResNet50. The reason was that the dataset became larger and more diversified after DA,
and thus, the network was trained to be optimal. ResNet50 had the lowest training accuracy,
since there were fewer shortcut connections inside of the base model, and consequently,
the learning ability was poorer.

Table 1. Training accuracy for different networks.

Networks Type of Data Processing Training Accuracy

DenseNet121
Without data augmentation 0.89

With data augmentation 0.92

ResNet50 With data augmentation 0.84

3.3. Testing and Evaluation

All the testing images were fed into the model, and the prediction results could be
obtained. To test the network, function predict_generator was used as the major function.
The output of this function was a list, which included the probability of classification for
each label. When this probability was larger than the threshold value of 0.5, the program
considered the prediction as correct. After comparing the prediction results with the real
label of each image, the generalization ability of the model could be known with the self-
defined function to calculate the testing accuracy. The classification accuracy for testing
the datasets using DenseNet121 without DA, DenseNet121 with DA, and ResNet50 with
DA is shown in Table 2. This table shows that DenseNet121 had better performance than
ResNet50, and DA was beneficial for improving the classification accuracy.
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Table 2. Testing accuracy for different networks.

Networks Type of Data Processing Testing Accuracy

DenseNet121
Without data augmentation 0.82

With data augmentation 0.84

ResNet50 With data augmentation 0.76

In order to evaluate the model, the receiver operating characteristic (ROC) curves were
generated, and the area under the curve (AUC) was calculated. Keras has a library, sklearn,
which can conduct some advanced computations in machine learning and computer vision.
For the evaluation, functions roc_auc_score and roc_curve were imported from the library
to calculate the AUCROC and to derive the ROC curve. Figure 4 illustrates the ROC curves
and the AUCROC values of DenseNet121 without DA for the 14 pathological conditions.
The horizontal axis indicates the false positive rate, while the vertical axis indicates the
true positive rate. The AUCROC score for each class is listed at the lower-right corner
of this figure, e.g., for cardiomegaly, the AUCROC was 0.51, which means that the area
under curve for the label was 0.51. The figure shows that the ROC curves for several
pathologies lie below the straight line that passes through points (0,0) and (1,1). For these
pathologies, the classifier worked even worse than random guessing. The AUCROC values
of five pathologies, i.e., emphysema, infiltration, pneumothorax, pleural thickening, and
pneumonia, were all less than 0.5, which means that the classifier could not diagnose most
of the images in these classes correctly. Therefore, this figure indicates that the classification
ability of DenseNet121 without DA was relatively poor.

Figure 4. The ROC and AUCROC for DenseNet121 without DA.
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Figure 5 illustrates the ROC curves and the AUCROC values of DenseNet121 with
DA for the 14 pathological conditions. This figure shows that most of these ROC curves
are located above the dotted line that passes through points (0,0) and (1,1), and all of the
AUCROC values are larger than 0.5. The reason was that the images were preprocessed
with DA, which led to a better-trained network. For fibrosis, the ROC curve lies signifi-
cantly higher than the other curves and is mostly close to the upper-left corner, and its
AUCROC was the largest with a value of 0.775, which means that its classifier had the best
performance among all 14 classifiers. For nodule and infiltration, their AUCROC values
were just slightly larger than 0.5, which means that these classifiers could help predict these
pathological conditions, but the performance was relatively poor.

Figure 5. The ROC and AUCROC for DenseNet121 with DA.

Figure 6 illustrates the ROC curves and the AUCROC values of ResNet50 with DA for
the 14 pathological conditions. Compared to Figure 5, more ROC curves using ResNet50
with DA lie below the straight dotted line that passes through points (0,0) and (1,1) than
those using DenseNet121 with DA. The largest AUCROC value was for fibrosis, with the
value of 0.68, which was smaller than that of using DenseNet121 with DA. The AUCROC
values of three classes, i.e., emphysema, pneumothorax, and pneumonia, were smaller than
0.5, which means that these classifiers could not help predict these pathological conditions.

The comparison of the ROC curves and AUCROC values for different networks
demonstrated that the classifiers trained by DenseNet121 had better performance than
those trained by ResNet50. The results also indicated that DA improved the classification
capability for all of the classes. Most of the ROC curves lie above the straight dotted line
that passes through points (0,0) and (1,1), but they are not close to the upper-left corner
enough, because the dataset used for testing was relatively small.
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Figure 6. The ROC and AUCROC for ResNet50 with DA.

3.4. Visualization

The visual explanation of classification decision-making was produced by using Grad-
CAM techniques. The heat maps of using DenseNet121 as the base model are shown in
Figures 7 and 8. These chest X-rays were randomly selected from the datasets, and only
the four most probable diagnosis heat maps are shown in the figure. The probability of
diagnosing a certain pathological condition is demonstrated in each of the subfigures. For
example, in Figure 7, the original chest X-ray image is shown in the first subfigure. The
second and third subfigures indicate that it is impossible for the image to be classified
as cardiomegaly or hernia. The fourth and fifth subfigures mean that the image has a
probability of 0.763 and 0.593 to be diagnosed as nodule and edema, respectively. Figure 8
shows that the original image has the possibility of being diagnosed into four pathological
conditions, and the most probable one is nodule with a probability of 0.822.

Figure 7. Visualization of the diagnosis heat maps of one image example by the use of Grad-CAM.
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Figure 8. Visualization of the diagnosis heat maps of the second example by the use of Grad-CAM.

4. Conclusions

A deep learning approach was proposed to use transfer learning and pretrained
networks to recognize and classify chest X-ray images into 14 pathological conditions,
and therefore help with diagnosing diseases related to these pathological conditions. The
performance of the two adopted pretrained networks DenseNet121 and ResNet50 was
compared, and DA was also used to further improve the performance. Evaluation metrics,
such as the accuracy, ROC curves, and AUCROC curves were utilized. The simulation
results showed that the network using DenseNet121 as the base model with DA had
a better generalization ability on the testing datasets. In the future, multiple transfer
learning methods could be used together with ensemble classifiers to further improve
the performance of the proposed work. The potential use of the other datasets, such as
PadChest, ChexPpert, and MIMIC-CXR, will be explored in our future work.
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Abstract: Despite the importance of maternal gestational weight gain, it is not yet conclusively
understood how weight gain during different stages of pregnancy influences health outcomes for
either mother or child. We partially attribute this to differences in and the validity of statistical
methods for the analysis of longitudinal and scalar outcome data. In this paper, we propose a
Bayesian joint regression model that estimates and uses trajectory parameters as predictors of a
scalar response. Our model remedies notable issues with traditional linear regression approaches
found in the clinical literature. In particular, our methodology accommodates nonprospective designs
by correcting for bias in self-reported prestudy measures; truly accommodates sparse longitudinal
observations and short-term variation without data aggregation or precomputation; and is more
robust to the choice of model changepoints. We demonstrate these advantages through a real-world
application to the Alberta Pregnancy Outcomes and Nutrition (APrON) dataset and a comparison
to a linear regression approach from the clinical literature. Our methods extend naturally to other
maternal and infant outcomes as well as to areas of research that employ similarly structured data.

Keywords: Bayesian modeling; functional regression; gestational weight; infant birth weight; joint
modeling; longitudinal data; maternal weight gain

1. Introduction

Maternal weight gain supports fetal growth and holds important health implications
for both mother and child during and after pregnancy [1–3]. Insufficient weight gain
is associated with preterm birth and low infant birth weight, while excessive weight
gain is linked to postpartum weight retention, gestational diabetes, hypertension, infant
macrosomia, and other complications [3–5]. A growing amount of clinical literature further
implicates maternal gestational weight gain outside of recommendations in adverse, long-
term health outcomes for the child, including a heightened future risk of cardiovascular
disease [6,7].

It is not yet conclusively understood how weight gain in different stages of pregnancy
affects health outcomes for either mother or child. This is despite previous findings that
gestational weight trajectories are similar across human populations with varying genetic,
cultural, and lifestyle traits [8]. As an example central to this article, previous studies
present conflicting conclusions on the effect of first- and second-trimester weight gain on
infant birth weight [8–12]. We attribute this in part to differences in and the validity of
the statistical methods currently used to jointly analyze scalar outcomes and longitudinal
data. Thus, developments in methodology for analyzing how patterns in longitudinal data
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(e.g., gestational weight gain) influence scalar outcomes (e.g., infant birth weight) are both
statistically and clinically relevant.

Retnakaran et al. [13] investigates the relationship between infant birth weight and
gestational weight gain in different periods of pregnancy using traditional linear regression.
The work’s models include, as predictors, demographic covariates together with pregravid
weight and interval-specific average weight gain. The authors opt for clinical data in order
to avoid bias in self-reported pregravid measurements that they claim is prevalent in other
studies [5,12]. The resulting preconception study design presents a few practical problems:
this design is more difficult to implement, limits the use of secondary data, and can intro-
duce other sampling biases and restrict model generalizability (e.g., through the exclusion
of unplanned pregnancies). Despite the supposed benefit of bias reduction, the work’s
average weight gain measurements are precomputed (as differences in average weight
between gestational intervals) and may be highly variable due to clinical measurement
error and the small number of observations in each gestational interval. As Richardson
notes, ignoring this measurement error can lead to unreliable effect estimates and mislead-
ing conclusions [14]. This linear regression approach furthermore does not account for
gestational age at each weight measurement and, through its initial precomputing stage,
reduces the amount of data used to fit the model. The consequent coarsening of information
may contribute to unreliable effect estimates and conclusions.

To address these issues, we turn to other approaches for modeling longitudinal data.
Joint models that simultaneously consider longitudinal responses and scalar health out-
comes are well established in the statistical literature [15–22]. These models were originally
motivated by HIV/AIDS and cancer research to predict patient outcomes using a time-
dependent covariate trajectory. Relevant methodology has since evolved to incorporate
techniques from functional data analysis, semiparametric inference, robust estimation,
and Bayesian methods [23].

In this paper, we consider a joint model for infant birth weight and gestational weight
gain trajectories that also incorporates clinical covariates. Our approach efficiently uses
information from estimated mean weight trajectories—including estimated pregravid
weight, interval-specific rates of weight gain, and individual residual variance—to predict
infant birth weight. As a result, our model can correct for bias in self-reported weight
measurements (when combined with clinical observations) and permits nonprospective
study designs with unbalanced longitudinal observations.

We employ the Bayesian joint modeling approach of Jiang et al. [23]. Our model
uses parameter estimates that describe individual gestational weight trajectories to model
the association between infant birth weight and gestational weight gain. We model the
mean [24,25] and measurement error [26,27] of these trajectories using a robust, semipara-
metric mixed effects model and a Bayesian linear spline approach [23].

Our joint model remedies the issues noted above for linear regression [13]. First,
by using estimated mean trajectory parameters as predictors of infant birth weight, our ap-
proach obtains more-efficient estimates of the time-dependent effects of gestational weight
gain. More generally, our joint modeling method, implemented in a Bayesian framework,
borrows information from all observations and patients in a one-stage procedure. On the
other hand, the predictors in the traditional linear model, such as interval-specific weight
gain, are precomputed in an initial step independently for each patient using only a small
proportion of the available data at a time. Second, our approach truly accommodates longi-
tudinal data by explicitly accounting for gestational age at each weight measurement when
estimating weight gain trajectories. Third, unlike other studies that treat within-patient
residual variance as a nuisance parameter, our method models measurement error variance
and uses it as a random effect to predict infant birth weight.

Our approach to mean trajectory modeling mitigates bias in self-reported prestudy
measurements and accounts for variability inherent in observed data. These are notable
advantages over traditional methods such as the linear regression approach above, where
the amalgamation of data from different sources can negatively impact an analysis. Another
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advantage of the proposed model is its potential to be used for prediction and intervention:
our model can be applied to predict infant birth weight well before term and can thus be
conveniently deployed in clinical settings. More generally, while infant birth weight is the
primary focus of the present paper, our approach and discussions apply to other maternal
and infant outcomes and to other areas of research that employ similarly structured data.

In Section 2, we introduce the pregnancy outcomes dataset used in this article and
the proposed model. This section also presents our chosen prior distributions and com-
putational methods. We present estimates for the effect of time-specific maternal weight
gain on infant birth weight obtained under the proposed model in Section 3, and compare
these estimates to those obtained using the linear regression approach described above [13].
In Section 4, we discuss our results and provide some concluding remarks on the general
significance of our approach and future directions.

2. Materials and Methods

2.1. Data

Throughout this paper, we use data from the 2009–2012 Alberta Pregnancy Outcomes
and Nutrition (APrON) study [28]. The 2189 women in the APrON study, all of whom
were at least 16 years of age and at most 27 weeks into gestation, are part of a longitudinal
cohort [28,29]. As part of the APrON study, maternal weight and gestational age were
measured at each trimester following registration. Participants recruited before 13 weeks
gestation have measurements corresponding to all three trimesters, while those recruited
between 14 and 27 weeks gestation have measurements only for the second and third
trimesters. Pregravid weight, along with other demographic characteristics, were self-
reported by each participant upon recruitment. Gestational age at delivery was assessed
postpartum. In addition to the APrON data, clinical weight measurements were collected
from all participants at regularly scheduled prenatal visits. The number of weight measure-
ments for each participant varies due to missing appointments or data. The longitudinal
weight data in this study may be considered sparse and has been previously examined in
the functional data analysis literature [30].

We only include participants with a live, singleton birth in the following analyses. We
exclude individuals without a reported pregravid weight; those with less than three weight
measurements during pregnancy; and those with missing gestational age at delivery, infant
birth weight, marital status, education level, income level, ethnic origin, parity, or age. We
do not consider any postpartum weight measurements in our analyses.

The final analytic sample consists of n = 1340 participants with N = 15,183 weight
observations. Demographic characteristics for this sample, stratified by infant birth weight
class, are summarized in Table 1. We use <2.5 kg, ≥2.5 kg and <4 kg, and ≥4 kg as
criteria defining low, normal, and high infant birth weight classes [31]. Clinical weight
measurements (i.e., not including self-reported pregravid measurements) were taken at
gestational ages ranging from 4.4 to 41.7 weeks, with a median of 30.3 weeks. Participants
have a median of 12 recorded weight measurements each.
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Table 1. Summary of demographic covariates for the analytic sample in the APrON dataset. For cate-
gorical variables, counts and relative percentages are reported. A * indicates the chosen reference
category. For continuous variables, means (and standard deviations, in parentheses) are reported.

Infant Birth Weight Class
Low (<2.5 kg) Normal (≥2.5 and <4 kg) High (≥4 kg)

Mother characteristics
Participants 56 (4.18%) 1163 (86.79%) 121 (9.03%)

Age, years 32.66 (4.76) 31.33 (4.27) 31.91 (4.03)

Marital status
Married * 55 (98.21%) 1122 (96.47%) 118 (97.52%)

Single 1 (1.79%) 41(3.53%) 3 (2.48%)

Education
Graduate degree 11 (19.64%) 273 (23.47%) 27 (22.31%)

Some post-secondary * 37 (66.07%) 775 (66.64%) 83 (68.60%)
High school 8 (14.29%) 115 (9.89%) 11 (9.09%)

Income level
<70 k 11 (19.64%) 234 (20.12%) 19 (15.70%)

≥70 k * 45 (80.36%) 929 (79.88%) 102 (84.30%)

Ethnic origin
Asian 8 (14.29%) 77 (6.62%) 0 (0.00%)
Black 4 (7.14%) 11 (0.95%) 0 (0.00%)

Caucasian * 37 (66.07%) 956 (82.20%) 114 (94.22%)
Latin American 1 (1.79%) 38 (3.27%) 3 (2.48%)
Southeast Asian 4 (7.14%) 53 (4.56%) 2 (1.65%)

Other 2 (3.57%) 28 (2.41%) 2 (1.65%)

Parity
0 * 35 (62.50%) 667 (57.35%) 48 (39.67%)

1 18 (32.14%) 387 (33.28%) 52 (42.98%)
≥2 3 (5.46%) 109 (9.37%) 21 (17.36%)

Child characteristics
Birth weight, kg 2.23 (0.34) 3.33 (0.35) 4.25 (0.21)

Gestational age at delivery, weeks 36.01 (2.57) 39.51 (1.27) 40.20 (1.02)

2.2. Joint Model

We now present our joint model for infant birth weight and longitudinal gestational
weight gain. As a main feature, the model estimates the former using parameter estimates
from patient-specific maternal weight trajectories:

Yi | bbbi = (1, zzz�i , bbb�i , ln σ2
i )θθθ + εi

εi
i.i.d.∼ N(0, σ2)

for i = 1, . . . , n, where Yi denotes an observed infant birth weight; zzzi an observed demo-
graphic covariate vector; bbbi a vector of random weight trajectory parameters; and σ2

i the
trajectory’s residual variance for the ith patient. The vector θθθ contains the corresponding
fixed and random effects.

Individual longitudinal weight trajectories influence Yi through the random trajectory
parameters bbbi in the longitudinal submodel

Xij = f (tij; bbbi) + εij

εij
i.i.d.∼ N(0, σ2

i )

bbbi
i.i.d.∼ N(βββ, Σ)
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for j = 1, . . . , ni, where Xij is the observed weight of the ith patient at gestational age tij
and ni is the total number of longitudinal observations for the ith patient. We consider a
piecewise linear weight trajectory (as a function of gestational age t ≥ 0) [32]

f (t; bbb = (b0, b1, . . . , bK)
�) = b0 +

K

∑
k=1

bk(t− t∗k )+,

where x+ = max{0, x} for x ∈ R and (t∗1 = 0, . . . .t∗K, t∗K+1 = ∞) is a fixed, increasing
sequence of changepoint locations. Consequently, b0 is the mean pregravid weight and
∑k0

k=1 bk is the mean rate of weight gain in the gestational age interval [t∗k0
, t∗k0+1), for k0 =

1, . . . , K. Following common trimester boundaries [13], we take K = 8 with t∗2 = 13, t∗3 = 18,
t∗4 = 23, t∗5 = 27, t∗6 = 32, t∗7 = 37, and t∗8 = 45.

Under the proposed model, βββ describes an average, “prototype” trajectory, while the
random bbbis describe patient-specific trajectories and deviations from βββ. Our longitudinal
model accounts for short-term variation and measurement error in patient trajectories by
using ln σ2

i as a predictor of Yi.

2.3. Bayesian Framework and Model Estimation

We take a Bayesian approach to parameter estimation in the proposed model.

In the longitudinal submodel, we model random trajectory parameters as bbbi
i.i.d.∼

N(βββ, Σ) under the diffuse prior βββ ∼ N(0, 10I). Additional tests, not presented here, indicate
no need to consider a Gaussian mixture [23] in the distribution of the bbbis for our APrON
dataset. To avoid issues with unbounded likelihood [33] when using an unstructured
random effect covariance matrix Σ, we implement the empirical Bayes Wishart prior [34]

Σ ∼ W
(

m = 2 +
K + 1

2
, Λ =

n

∑
i=1

Ĉov(b̂bb
(OLS)
i )−1

)
,

where Ĉov(b̂bb
(OLS)
i ) is an estimate of the covariance matrix of the ordinary least squares

(OLS) estimator of bbbi. For the σ2
i s, the trajectory residual variances, we assume a log-

normal prior ln σ2
i

i.i.d.∼ N(μ, τ2) under the diffuse hyperpriors μ ∼ N(0, 103) and τ2 ∼
Inv-Gamma(10−4, 10−4). For the scalar response Yi, we take θθθ ∼ N(000, 10I) and σ2 ∼
Inv-Gamma(10−4, 10−4).

For notational simplicity, let ϕϕϕ = {θθθ, σ2, βββ, Σ, μ, τ2} be the collection of model parame-
ters. We assume that all elements of ϕϕϕ have independent prior distributions and denote the
joint prior of ϕϕϕ by π. Define η

μ
i = (1, zzz�i , bbb�i , ln σ2

i )θθθ as the linear predictor corresponding
to Yi.

The full likelihood of ϕϕϕ for our model is

L(ϕϕϕ) = π(ϕϕϕ)
n

∏
i=1

[
|Σ|−0.5 exp

{
− 0.5(bbbi − βββ)�Σ−1(bbbi − βββ)

}
×

ni

∏
j=1

[
σ−1

i exp
{
− 0.5σ−2

i (xij − f (tij; bbbi))
2}]

× τ−1 exp
{
− 0.5τ−2(ln σ2

i − μ)2}
× σ−1 exp

{
− 0.5σ−2(yi − η

μ
i )

2}].
We implement a Gibbs sampler to perform posterior draws. For analytic derivations of

the posterior distributions, see Jiang et al. [23]. As the full conditional posterior of σ2
i has no

closed form, we obtain draws using the inverse cumulative distribution function method.
In our Markov Chain Monte Carlo (MCMC) procedure, we run a chain of 150,000 iterations
and use the first 50,000 iterations as a burn-in period; however, in this particular application,
we observe that the model converges very quickly and that even 10,000 total iterations
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are sufficient. To reduce autocorrelation in subsequent draws, we thin posterior draws by
saving only every 10th. We implement our model in C++ using the Scythe open-source
statistical library [35] and R [36].

We consider two models, each accounting for a different set of demographic covariates.
The first model (JM1) includes education level, income level, ethnic origin, parity, age
at pregnancy, and gestational age at delivery. The second model (JM2) includes only
demographic variables whose 95% credible interval in JM1 do not contain zero.

2.4. Comparison to Linear Regression

We compare our proposed method against the previously noted traditional linear
regression (LR) approach. We focus specifically on differences in the effects of maternal
weight gain rate in different gestational age periods on infant birth weight. To make this
comparison easier, we use the rate of weight gain in each gestational period (rather than
period-specific absolute weight gain) as a predictor of infant birth weight Yi.

We use the same gestational age intervals in both models: [0, 13), [13, 18), [18, 23),
[23, 27), [27, 32), [32, 37), and [32, 45). To compute the average rate of weight gain b̃k in the
kth interval, we first calculate the averages, μk and μk−1, of weight measurements taken in
the kth and (k− 1)th intervals, respectively. We then calculate the rate of weight gain as
b̃k = (μk − μk−1)/(mk −mk−1), where mk is the midpoint of the kth gestational age interval.
For the sake of notation, we let k = 0 refer to pregravid measurements (i.e., at week zero).

As noted previously, our joint model addresses numerous shortcomings of the LR
approach. First, the LR model does not fully take into account the timing of individual
maternal weight measurements, while our JM approach estimates patient-specific weight
trajectories as functions of time. Second, LR model estimates are subject to short-term
measurement error and variability: this is because only a small number of measurements
contribute to pregravid weight and the estimated rates of weight gain. Our hierarchical
Bayesian framework borrows information from all observations to estimate these quantities
via patient-specific trajectory parameters. As another feature that may be clinically relevant
in some applications, our model also estimates and uses short-term variability in maternal
weight as another predictor.

We similarly consider two linear regression models in the following analyses. The first
(LR1) uses estimated rates of weight gain (i.e., the b̃ks), average pregravid weight b̃0 = μ0,
and the same demographic variables as JM1. Similar to JM2, the second model (LR2)
includes only the demographic covariates whose 95% confidence intervals in LR1 do not
contain zero.

3. Results and Discussion

Table 2 presents parameter estimates for all four of the models described in the
previous section. Model convergence for the joint models were assessed visually and
numerically using five parallel chains. Trace plots for each of the coefficients in Table 2
suggest adequate convergence and mixing. Numerically, Rubin–Gelman statistics [37] for
these coefficients range from 1.005 to 1.027 and also imply model convergence.

We observe major differences in the estimated effects of weight gain between the LR
and JM approaches. Both LR models find rate of weight gain to be a useful predictor of
infant birth weight only after 18 weeks gestation. On the other hand, the JM models find
this to be true throughout gestation, including before 18 weeks.
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Table 2. Parameter estimates obtained using the LR and the proposed JM models, with 95% confidence
and credible intervals, respectively. For JM model interpretability, we present estimates for ∑k

j=1 bj

(rather than for just bk), which can be interpreted as the effect of weight gain rate in the kth gestational
interval. Boldface indicates an estimate whose corresponding credible (or confidence) interval does
not contain zero.

Model
JM1 JM2 LR1 LR2

Demographic variables
Marital status

Single 0.151
(−0.161, 0.467)

0.277
(0.001, 0.553)

Education

Graduate 0.016
(−0.115, 0.146)

0.059
(−0.058, 0.175)

High school −0.034
(−0.222, 0.152)

−0.114
(−0.340, 0.112)

Income level

<70 k −0.039
(−0.193, 0.114)

−0.137
(−0.291, 0.016)

Ethnic origin

Asian −0.038
(−0.264, 0.183)

−0.025
(−0.227, 0.177)

Black −0.322
(−0.856, 0.208)

0.056
(−0.805, 0.917)

Latin American −0.038
(−0.356, 0.272)

−0.144
(−0.419, 0.131)

Southeast Asian −0.098
(−0.369, 0.178)

−0.139
(−0.396, 0.118)

Other −0.09
(−0.445, 0.269)

0.348
(0.027, 0.670)

Parity

1 0.147
(0.028, 0.269)

0.136
(0.020, 0.254)

0.137
(0.017, 0.258)

0.121
(0.005, 0.238)

≥2 0.246
(0.052, 0.444)

0.215
(0.032, 0.400)

0.384
(0.206, 0.561)

0.331
(0.159, 0.503)

Age at pregnancy −0.013
(−0.073, 0.047)

−0.025
(−0.082, 0.032)

Gestational age at delivery 0.162
(0.127, 0.197)

0.166
(0.130, 0.200)

0.092
(0.039, 0.145)

0.103
(0.051, 0.155)

Pre-pregnancy weight

Clinical measure 0.006
(0.002, 0.011)

0.006
(0.002, 0.011)

Trajectory estimate (b̂0) 0.007
(0.003, 0.012)

0.007
(0.003, 0.012)

Trajectory estimator variance
(ln Σ̂11)

0.162
(0.127, 0.197)

0.003
(−0.063, 0.066)

Rate of weight gain (by GA interval)

[0, 13) 0.701
(0.264, 1.138)

0.718
(0.300, 1.153)

0.061
(−0.186, 0.307)

0.085
(−0.157, 0.327)

[13, 18) 1.256
(0.527, 1.972)

1.291
(0.581, 2.014)

0.076
(−0.186, 0.333)

0.123
(−0.129, 0.375)

[28, 23) 1.703
(0.697, 2.708)

1.758
(0.780, 2.728)

0.201
(0.032, 0.371)

0.200
(0.034, 0.365)

[23, 27) 1.929
(0.665, 3.183)

1.997
(0.754, 3.219)

0.191
(0.026, 0.356)

0.193
(0.031, 0.356)

[27, 32) 2.010
(0.490, 3.525)

2.082
(0.613, 3.538)

0.270
(0.102, 0.437)

0.223
(0.06, 0.385)

[32, 37) 2.009
(0.390, 3.673)

2.086
(0.455, 3.662)

−0.277
(−0.507, −0.048)

−0.285
(−0.513, −0.056)

[37, 45) 2.027
(0.330, 3.720)

2.108
(0.439, 3.729)

0.277
(0.002, 0.551)

0.304
(0.033, 0.574)
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Further, we note a difference in the direction of the estimated effect of weight gain
during weeks 32–37 between the JM and LR models. Our JM approach estimates this
effect to be positive, while the LM model estimates a negative effect. Given the positive
estimates for other gestational intervals and the positive estimate originally reported in
Retnakaran et al. [13], we suspect that the LR model is inaccurate here. As discussed
previously, this could be attributed to the loss of time information or the precomputation
of average weight gain measurements. These results illustrate how the LR approach
might not yield reliable conclusions, even with relatively large datasets. Towards the
end of this section, we also discuss the sensitivity of the LR approach to the choice of
gestational intervals.

Other differences in the effect of rate of weight gain are less drastic but important
nonetheless. In general, effect estimates in the LR models (relative to those in the JM
models) are shrunk towards zero. We attribute this shrinkage to attenuation bias in the LR
models due to self-reporting bias (in pregravid measurements) and the LR models’ inability
to account for short-term variation in the weight trajectories. As discussed previously, this
can be due to the small number of observations used to compute each patient’s pregravid
weight (b̃0) and interval-specific rates of weight gain (the b̃ks).

Figure 1 illustrates the importance of accounting for deviation in patient-level tra-
jectories (described by the bbbis) from the prototype trajectory (described by βββ) in our JM
approach. While an overall trend in individual fitted trajectories is apparent, we see
significant amounts of variation in gestational weight gain trajectories between patients.
Figure 2 illustrates our proposed model’s ability to accommodate individual longitudinal
trajectories even in the presence of between-patient variability.

In a separate analysis not shown in Table 2, we consider a different set of gestational
intervals (i.e., the sequence of t∗k s): [0, 15), [15, 20), [20, 25), [25, 30), [30, 35), and [35, 45),
this time chosen out of convenience. The JM models yield similar conclusions with these
different intervals while the LR models find weight gain during only 20–30 weeks gestation
to be associated with infant birth weight. This demonstrates that the LR model is not robust
with respect to the precomputation of interval-specific weight gain measurements and,
as above, calls into question the validity of this approach.
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Figure 1. Posterior mean estimates from the proposed JM1 model for the mean weight gain trajectory
βββ (solid blue) and twenty randomly selected individual trajectories bbbi (solid grey), both as functions
of gestational age (GA). The light blue and grey regions describe 95% credible bands for βββ and bbbi,
respectively. Dotted grey lines indicate model changepoints (i.e., at GA = t∗k ).
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Figure 2. Eight randomly selected estimates of individual trajectories bbbi from the JM1 model as
functions of gestational age (GA) (solid grey) and corresponding observed weights Xij. Observed
weights from the eight patients are denoted by 1, 2, . . . , 8. Light grey regions denote 95% credible
bands for Xij (each for a fixed i). Dotted grey lines indicate model changepoints (i.e., at GA = t∗k ).

4. Conclusions

In this paper, we provided a hierarchical Bayesian model for the joint analysis of
scalar and longitudinal data based on Jiang et al. [23]. Our work was motivated by a
question in maternal health research on the relationship between (scalar) infant birth
weight and (longitudinal) gestational weight gain during different periods of pregnancy.
We contrasted our joint modeling approach with one using traditional linear regression
that has appeared in the clinical literature [13] and is reminiscent of analyses commonly
seen in applied research.

This comparative LR approach was originally proposed for a preconception cohort
study to eliminate self-reporting bias in pregravid measurements [13]. However, in addition
to the design’s inconvenience, this approach does not fully account for gestational age or
clinical measurement error and uses only a small number of observations to pre-estimate
(i.e., in an initial stage separate from model estimation) weight gain in each gestational
period. This results in high-variance model estimates that are not robust to the choice of
gestational intervals. In contrast, through a one-stage, hierarchical Bayesian framework,
our JM approach accounts for gestational age and short-term variability in longitudinal
measurements, and borrows information from all observations to reduce bias and obtain
more-reliable estimates.

The benefits of our model over the LR approach are apparent in our real-world study
using the APrON pregnancy outcomes dataset. Beyond the LR model’s questionable
negative estimated association between infant birth weight and maternal weight gain for
32–37 weeks gestation, we observed relative shrinkage in LR effect estimates towards zero.
This illustrates the unreliability of the LR methodology and the impact of attenuation bias
on effect estimates. On the other hand, our JM approach produced estimates that were
reasonable and stable, even when considering different gestational periods.

We have demonstrated the usefulness of our joint modeling approach in settings with
continuous scalar and longitudinal responses. Our approach extends naturally to other
submodels and data types such as ordinal health outcomes (e.g., through an appropriate
(cumulative) probit or logit link function at the response level of the model) [23]. While
our focus in this paper was on comparing the JM and LR approaches, the proposed model
can be further optimized for predictive purposes. Our developments hold immediate
implications for clinical interventions, such as the early identification of pregnant women
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at risk of birth complications (e.g., extreme infant birth weight or other outcomes, whether
scalar or ordinal) using self-reported prepregnancy data or sparse clinical observations.
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Abstract: Motivated by mobile devices that record data at a high frequency, we propose a new
methodological framework for analyzing a semi-parametric regression model that allow us to study
a nonlinear relationship between a scalar response and multiple functional predictors in the presence
of scalar covariates. Utilizing functional principal component analysis (FPCA) and the least-squares
kernel machine method (LSKM), we are able to substantially extend the framework of semi-parametric
regression models of scalar responses on scalar predictors by allowing multiple functional predictors
to enter the nonlinear model. Regularization is established for feature selection in the setting of
reproducing kernel Hilbert spaces. Our method performs simultaneously model fitting and variable
selection on functional features. For the implementation, we propose an effective algorithm to solve
related optimization problems in that iterations take place between both linear mixed-effects models
and a variable selection method (e.g., sparse group lasso). We show algorithmic convergence results
and theoretical guarantees for the proposed methodology. We illustrate its performance through
simulation experiments and an analysis of accelerometer data.

Keywords: functional principal component analysis; functional predictor; linear mixed-effects model;
mobile device; sparse group regularization; wearable device data

1. Introduction

Data captured by mobile devices have lately received much attention in the data
science community. Such data are typically recorded at a high frequency, giving rise to an
ample volume of information at a very fine scale, and thus present many methodological
challenges in statistical modeling and data analyses. In this paper, we plan to utilize the
strength of the classical kernel machine method that enjoys fast computing speed via
the linear mixed-effects model to deal with such high-frequency data using a functional
data analysis approach. The motivation for our proposed framework come from data
collected from a tri-axis accelerometer. Accelerometers, worn on the hip or wrist as a way
of monitoring physical activity, are becoming more and more common [1–4]. There are
several different accelerometers available such as ActiGraph GT3X+ (ActiGraph, Pensacola,
FL, USA) and Actical (Phillips Respironics, Bend, OR). Raw accelerometer data are often
collected in high-resolution signals with a sampling frequency ranging from 30–100 Hz.
The commercial software on these devices provides activity counts (ACs) [2,4], which are
calculated from the raw accelerometer data using proprietary algorithms. As an example
from our motivating dataset, Figure 1 displays a three-dimensional time series of ACs per
minute, each on one axis, from one subject wearing the GT3X+ over a period of 7 days (d).

Oftentimes, different types of summaries of the tri-axis ACs are suggested in the
literature as opposed to the utility of all three raw functionals [5–8]. These summary-data-
based approaches may be regarded as a quick and dirty dimension reduction strategy
that comes up with summarized data with computationally manageable volumes, which
would be then analyzed by existing methods and software. One concern with the use of
summarized data would be the loss of potential fine features that can only be captured
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in data of high resolution. Recently, some researchers have attempted to use the entire
functional AC curve through functional data analysis techniques [6,9,10]. Further details on
current methods being used to retrieve and interpret accelerometer data can be found
in [11]. Our contribution in this paper pertains to a new framework in that tri-axis
accelerometer data are used as three-dimensional correlated functional predictors in an
association analysis with a potential health outcome such as the Body Mass Index (BMI).
The relationship between physical activities and childhood obesity has long been a central
interest of public health sciences, and our new scalar-on-functional regression model can
provide some new insights into this important scientific problem.

Figure 1. Activity counts over 7 d from a tri-axis (X-, Y- and Z-axis) accelerometer of a subject.

We begin with a brief review of existing functional data models, the least-squares
kernel machine model, and different variable selection techniques, which prelude the
framework for this paper.

1.1. Functional Regression

There has been much attention in recent years given to functional data analysis
(FDA) where either covariates, or response, or both are functional as opposed to scalar
in nature [12–17]. In this paper, we focused on the methodology that allows us to relate
multiple functional covariates to a scalar outcome in a nonlinear way in the presence of
other scalar covariates. To proceed, let us introduce some notation. Let L2(T ) be the class of
square-integrable functions on a compact set T . This is a separable Hilbert space with inner
product < f , g >:=

∫
T f g for f , g ∈ L2(T ). Consider a probability space (Ω,F , P), where

Z denotes a functional random variable that maps into L2(T ), namely Z : Ω �→ L2(T ).
Define L2(Ω) := {Z : (

∫
Ω‖Z‖2dP)

1
2 < ∞}, where P is a certain probability measure,

‖Z‖2 = < Z , Z >, and assume Z ∈ L2(Ω) in the rest of this paper. For convenience, we
also assume that Z is mean centered, namely E(Z) = 0.

The class of functional linear models (FLM) (e.g., [13–15]) is proposed to relate a
functional covariate Z with a mean-centered scalar outcome y, which is also known
as scalar-on-functional regression: y = < b, Z > + ε, where the error term ε is a
mean zero random variable uncorrelated with Z. An optimal solution of the unknown
functional parameter b ∈ L2(T ) is typically obtained by minimizing the mean-squared
error: infb∈L2(T ) E(y− < b, Z >)2. Moreover, the mean model for the mean-centered scalar
y takes the form E(y|Z) =

∫
T Z(t)b(t)dt.

As suggested in the literature, we may obtain an optimal estimator of b by expanding
functional predictor Z under certain basis functions. In this paper, we focus on the
utility of functional principal component analysis (FPCA) to perform the decomposition
of the functional Z. By the Karhunen–Loève expansion (e.g., [18–20]), we may write
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Z(t) = ∑∞
k=1
√

ςkξkφk(t), where ςk > 0 are the eigenvalues, and the loadings are given
by ξk := 1√

ςk
< Z, φk >. These coefficients satisfy (i) mean zero, E(ξk) = 0; (ii) variance

one, E(ξ2
k) = 1; (iii) uncorrelated, E(ξkξ j) = 0 for k �= j. Then, the mean model may be

rewritten as follows,

E(y|Z) =
∞

∑
k=1

βkξk, (1)

where coefficients βk =< b,
√

ςkφk >, k = 1, · · ·, which are unknown due to the unknown b.
Equation (1) presents a linear projection of scalar outcome y on the space spanned by the
standardized principal components (PCs) ξk’s of functional predictor Z. On these lines of
research, Müller and Yao (2008) proposed a class of functional additive models (FAMs) that
extends Equation (1) by allowing a nonparametric form of the projection:

E(y|Z) =
∞

∑
k=1

fk(ξk), (2)

where fk is a fully unspecified nonlinear smooth function to be estimated. It is obvious that
Müller and Yao’s extension given in (2) takes an additive model on individual coefficient
(or feature) components ξk’s. Regularization is often needed for both (1) and (2) in order
to deal with these infinite-dimensional unknowns. One of the challenges concerning
regularization for (2) lies in the technical treatment in the functional space. Müller and Yao
(2008) [21] proposed truncation (or a hard threshold) of the eigenspace to retain only the
leading components that explain the majority of the total variation in Z. Zhu, Yao, and
Zhang (2014) [15] proposed another regularization for the functions fk using the powerful
COSSO method [22]. One advantage for this kind of regularization method is that sums
of higher-order functional principal components are allowed to be potentially included in
the fit model, if they make stronger contributions to the functional relationship than the
leading functional principal components. This regularization method [15] begins with an
additive model E(y|Z) = ∑s

k=1 fk(ξk), where s represents some initial degrees of truncation
to specify the total number of additive components to be considered. Then, COSSO
helps simultaneously regularize and select important functional components among the s
functions fk. Although the above discussion is based on a single functional predictor Z in
mind, it is appealing to extend such a framework with multiple functional predictors for a
broad range of problems.

When multiple functional predictors, say Z1, . . . , Zp, are considered, it is not clear
if the above additive model specification remains suitable to handle the complexity,
especially a non-additive relationship (e.g., interactions) may be of interest to understand
the association between a scalar outcome and multiple functional predictors. In effect, from
both the perspectives of theoretical advances and application needs, relaxing the additive
relationship is an important task in functional data analysis. Alternatively, there are some
methods (e.g., [16,17]) in the literature that do not use the strategy of decomposing Z
into its functional components. In this paper, we adopt the framework of kernel machine
regression models to extend the methodologies with non-additive relationships between
multiple functional predictors and the scalar outcome.

1.2. Least-Squares Kernel Machine

Liu, Lin, and Ghosh (2007) [23] proposed a semi-parametric regression model
yi = x�i β + h(zi) + εi for subject i = 1, . . . , n, where they used the least-squares kernel
machine (LSKM) to analyze multidimensional genetic pathways denoted by a vector zi.
The key feature of this model is the nonlinear relationship between the outcome yi and a
vector of gene expressions zi, which is characterized by a nonparametric smooth function h.
Under the theory of smoothing splines, function h is assumed to lie in a reproducing kernel
Hilbert space (RKHS),HK, generated by a positive-definite kernel function K(·, ·). For the
ease of exposition, we suppress the bandwidth for the kernel K in the following discussion.
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Then, both parameter β and function h are estimated by maximizing the scaled penalized
likelihood function:

J(h, β) = −1
2

n

∑
i=1
{yi − x�i β− h(zi)}2 − 1

2
λ1‖h‖2

HK , (3)

where λ1 > 0 is the tuning parameter and ‖·‖HK is the norm of the RKHS. For a function

h ∈ L2(HK), we have h(·) = ∑n
i=1 αiK(·, zi). Then, ‖h‖2

HK = α�Kα, where K is an n× n
matrix whose (i, j) entry is K(zi, zj) and α = (α1, . . . , αn)�.

It is known in the literature (e.g., [23,24]) that maximizing J(h, β) in (3) turns out to be
equivalent to solving the normal equations from the following linear mixed-effects model
(LMM): Y = Xβ + h + ε, where h is an n× 1 vector of random effects with distribution
N(0, τK) and an n-dimensional vector error term ε ∼ N(0, σ2I), with τ = λ−1

1 σ2 > 0.
One remarkable advantage of solving (3) through the existing numerical procedure of the
LMM is most advocated in the literature [25], where we can determine the smoothing
parameter λ1 as part of the estimation of the variance components of the LMM. Therefore,
instead of using cross-validation or other information-based tuning methods on λ1, we can
solve simultaneously for all the model parameters in (3), as shown in [23]. Utilizing this
numerical strength of the kernel machine regression model, we propose a semi-parametric
regression model by incorporating functional principal components of functional predictors
(i.e., the zi) to evaluate a nonlinear relationship of a scalar outcome with multiple functional
covariates in a non-additive way. Assuming that function h belongs to an RKHS, we can use
existing software packages for solving LMMs to obtain estimates of all model parameters
and the smoothing parameter.

1.3. Feature Selection

To deal with high-dimensional functional principal components from functional
covariates, we invoked the sparse regularization approach in the kernel machine regression
model. Note that for both mean models (1) and (2), one needs to truncate the series from the
Karhunen–Loève expansion. Regularization helps reduce from an infinite number of terms to
a sum of finite terms. To introduce some notations, here we present a brief review on the group
lasso (GL) [26], sparse group lasso (SGL) [27], and non-negative garrote [28]. See also the
series of work originated by COSSO [22]. Yuan and Lin (2007) [26] proposed the group lasso,

which solves the convex optimization problem: minβ∈Rp

∥∥∥Y−∑L
�=1 X�β�

∥∥∥2

2
+ λ ∑L

�=1

∥∥∥β�
∥∥∥

2
,

where L is the total number of groups of covariates and X� refers to a subset of covariates
associated with group �. Friedman, Hastie, and Tibshirani [27] extended the group lasso

to allow within-group sparsity, namely SGL, given as minβ∈Rp

∥∥∥Y−∑L
�=1 X�β�

∥∥∥2

2
+ λ(1−

δ)∑L
�=1

∥∥∥β�
∥∥∥

2
+ λδ‖β‖1, where δ ∈ [0, 1]. The additional �1-norm penalty term on β

encourages individual sparsity, while the first penalty targets sparsity at the group level. It
is easy to see that group lasso is a special case of the SGL when δ = 0.

The non-negative garrote proposed by Breiman (1995) [28] is another useful means
of variable selection. It invokes a scaled version of least-squares estimation given by:
arg mind

1
2

∥∥Y− X̃d
∥∥2

2 + λ ∑
p
j=1 dj, subject to dj ≥ 0, j = 1, . . . , p. Here, X̃ = (x̃1, . . . , x̃p) is

an n× p matrix with columns x̃j = xj β̂
OLS
j , with β̂OLS

j being the least-squares estimates

from arg minβ
1
2‖Y− Xβ‖2

2 with no constraints. Obviously, estimate d̂j = 0 implies that
covariate xj would be excluded from the fit model. Breiman’s formulation that turns a
variable selection problem into a parameter estimation problem will be applied for the
development of feature selection on functional principal components in this paper.

This paper is organized as follows. Section 2 introduces our proposed high-dimensional
kernel machine regression. Section 3 outlines a simple step-by-step algorithm that is used
to implement the sparse estimation method. Section 4 concerns asymptotic properties
for our proposed sparse kernel machine regression. Section 5 provides simulation results
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to examine the performance of our method, with comparisons with existing methods.
Section 6 illustrates the proposed method by an association analysis of the relationship
between the BMI and functional accelerometer data. Section 7 includes our conclusions.
The Appendix A contains some key technical details, including the proofs of the theoretical
results, while Appendix B presents a discussion on the model identifiability issue.

2. Model and Estimation

Consider a regression analysis of a scalar outcome y on p functional covariates, Z�,
� = 1, . . . , p. Let z�i = (ξ�1, . . . , ξ�s�)

�
i be the s�-element vector of functional principal

component (FPC) features from the ith observation of the �th functional covariate Z�, and
let�zi = [(z1

i )
�, . . . , (zp

i )
�]� be the grand vector of all FPC features from all p functional

covariates for subject i, i = 1, . . . , n. Clearly, the set of FPC features from each functional
covariate forms a group, and in total, there are p groups with s = ∑

p
�=1 s� many FPC features

and�zi ∈ Rs. The high dimensionality of FPC features presents the key methodological
challenge in the analysis. We consider the following functional kernel machine regression
(FKMR) model:

yi = x�i β + h(�zi) + εi, i = 1, · · ·, n, (4)

where β ∈ Rq is a set of parameters for the effects of q scalar covariates x = (x1, . . . , xq)�,
h ∈ HK is an s-variate smooth nonparametric function with HK being the functional

space generated by a Mercer kernel K and error terms εi
iid∼ N(0, σ2). The FKMR model (4)

allows for not only nonlinear, but also non-additive relationships with multiple functional
covariates Z� via their FPC features, � = 1, . . . , p, and a scalar outcome, y. The statistical
task is to estimate and select important functional covariates that are related to the outcome
of interest through regularizing the FPC features within each functional covariate. To
proceed, following Beiman’s [28] non-negative garrote method, we here introduce a new
s-dimensional scaling vector γ ∈ Rs, γ = (γ1, . . . , γs1 , . . . , γs)�, by which we can set
γ ◦�zi = (γ1ξ1

1, . . . , γs1 ξ1
s1

, . . . , γsξ
p
sp)
�
i a new vector of weighted FPC features by γ via the

Hadamard product (i.e., elementwise product). Note that γ is grouped and denoted by
γ = ((γ1)�, . . . , (γp)�)� where γ� is an s�-element vector of FPC features z� of the �th

functional covariate Z�. When the element, say γj, is equal to zero, the corresponding
FPC feature ξ j will not be selected in the set of important FPCs, and moreover, functional
covariate Z� is excluded from the FKMR model when the entire vector (γ�)� = 0.

We estimate the unknowns in the FKMR model (4), as well as the scaling parameters
γ by minimizing the penalized objective function J1(h, β, γ), whose expression is given on
the right-hand side of the following Equation (5):

min
h,β,γ

J1(h, β, γ) = min
h,β,γ

1
2n

n

∑
i=1
{yi − x�i β− h(γ ◦ zi)}2 +

1
2

λ1‖h‖2
HK

+ λ2ρ(γ; δ), (5)

where λ1 > 0 and λ2 > 0 are two tuning parameters, and penalty ρ(γ; δ) may be specified
according to a certain regularization method. For the case of sparse group lasso (SGL),
we take p(γ; δ) = (1− δ)∑

p
�=1

∥∥∥γ�
∥∥∥

2
+ δ‖γ‖1, δ ∈ [0, 1]. Typically, δ is predetermined and

set to 0.95 or 0.05 depending on the trade-off between group and within-group sparsity,
while the factor (1− δ) controls the relative group sparsity to individual sparsity of each
functional predictor Z�. Meanwhile, a large tuning parameter for λ2 would remove a
certain group of FPC features from the FKMR model when all elements in the vector γ�

are zero. Given h ∈ HK, an equivalent optimization to the above (5) can be formulated
as follows:

min
α,β,γ

J2(α, β, γ) = min
α,β,γ

1
2n

n

∑
i=1

{
yi − x�i β−

n

∑
k=1

αkK(γ ◦�zi, γ ◦�zk)

}2

+
1
2

λ1α�K(γ; Z)α + λ2ρ(γ; δ),

(6)
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where K(γ; Z) is an n× n matrix whose (i, k)th element is [K(γ; Z)]ik = K(γ ◦�zi, γ ◦�zk).
Lemma 1 below establishes the equivalency of optimization solutions between (5) and (6),
which is crucial in our estimation procedure.

Lemma 1. A solution (ĥ, β̂, γ̂) is a minimizer of (5) if and only if (α̂, β̂, γ̂) is a minimizer of (6),
where ĥ(γ̂ ◦�z) = ∑n

k=1 α̂kK(γ̂ ◦�z, γ̂ ◦�zk).

The proof of Lemma 1 is given in Appendix A.1.

Theorem 1 (Existence of optimizers). If the kernel K(·, γ ◦�z) is continuous with respect to
γ ∈ Rs, then there exists a global minimizer (ĥ, β̂, γ̂) for the optimization problem (5).

The proof of Theorem 1 is given in Appendix A.3. Note that there may exist multiple
optimal minimizers for (5); Theorem 1 ensures only the existence of optimal solutions, but
provides no guarantees for uniqueness due to the fact that (5) or (6) is a nonlinear and
non-convex optimization problem. It is worth noting that in both (5) and (6), we set the
bandwidth for the kernel at a fixed value due to the identifiability issue with respect to the
scaling parameters γ. Refer to Appendix B for more detailed discussions on the issue of
parameter identifiability.

3. Implementation and Algorithm

We propose an iterative algorithm to implement our proposed estimation procedure in
which we require the differentiability of the kernel with respect to the scaling factor γ and
some additional assumptions presented below in order to ensure algorithmic convergence.
One part of the algorithm solving (5) is carried out under fixed γ, where the resulting
minimization problem reduces to the equivalent maximization problem in the least-squares
kernel machine (3) with the FPC features,�zi, being replaced by γ ◦�zi. As pointed out in
Section 1.2, the step of numerical calculation can be easily executed in the same fashion as
the solution from the linear mixed model, including the REML estimation of the smoothing
parameter λ1. The other part of the algorithm is performed under fixed α, β and λ1, where
we solve the nonlinear and non-convex optimization problem to update estimates of γ.
Lemma 2 below helps us solve for the scaling parameter γ.

Lemma 2. For fixed (α, β, λ1), minimizing (6) over γ is equivalent to minimizing over γ the
following objective function:

1
2n
∥∥F(γ)− Ỹ

∥∥2
2 + λ2ρ(γ; δ), for λ2 > 0, (7)

where F(γ) = K(γ; Z)α and Ỹ = Y− Xβ− n
2 λ1α.

The proof of Lemma 2 is given in Appendix A.2. Linearizing the function F(γ) in (7)
leads to an equivalent form:

min
γ

1
2n

∥∥∥∥∥Ỹ−
p

∑
�=1
∇γF(�)(γ̃)γ�

∥∥∥∥∥
2

2

+ λ2ρ(γ; δ), (8)

where Ỹ =
(
Y− Xβ− n

2 λ1α
)
− F(γ̃) +∇γF(γ̃)γ̃, with ∇γF(γ̃) being the gradient of the

function F with respect to γ evaluated at γ̃ for some γ̃, and∇γF(�)(γ̃) being the columns of
∇γF(γ̃) associated with the �th group of γ�. This is precisely the form of the standard sparse

group regularization problem: minβ∈Rp 1
2n

∥∥∥Y−∑
p
�=1 X�β�

∥∥∥2

2
+ λ2ρ(γ; δ). This implies that

(8) presents a standard sparse group regularization problem with a specific choice of penalty
function ρ(γ; δ).
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The convergence of the above iterative search algorithm for updating γ̃ for fixed
(α, β, λ1) can be justified by the proximal Gauss–Newton method [29]. Readers are referred
to [30] for details on the proximal Gauss–Newton method. One of the key assumptions of
the proximal Gauss–Newton method is the existence of a local minimizer. This condition
is satisfied in the above (8). This is because according to Theorem 1, there exists a
global minimizer.

Algorithm 1 summarizes these iterative steps, which is showed to satisfy a descent
property: J2(α

(r+1), β(r+1), γ(r+1))≤ J2(α
(r), β(r), γ(r)) under the convergence of the proximal

Gauss–Newton algorithm for Step 2.2.

Algorithm 1 An iterative algorithm for optimization in FKMR.

1.1 Perform FPCA (e.g., the R package fdapace) to extract the functional component
features for the p functional predictors, and store them in a grand vector for each
individual subject�zi = [(z1

i )
�, . . . , (zp

i )
�)]�, i = 1, · · ·, n;

1.2 Initialize γ to be a vector of ones. which translates to mapping the original component
scores to itself. Set up a grid of possible tuning parameters for λ1 and λ2, respectively.
Set the kernel bandwidth parameter, which may depend on λ1. For each pair of
(λ1, λ2) from our grid, perform Steps 2.1-2.3 and 3.1 below.

2.1 At the (r + 1)-th step in the algorithm, first solve the LSKM problem with fixed
(γ(r), λ1) (based on a closed-form solution) to update β(r+1) and α(r+1).

2.2 Solve the group regularity problem (8) with fixed γ̃ = γ(r) and fixed (α(r+1), β(r+1),
λ1, λ2) using the r + 1 updates from the previous iteration. At this step, the proximal
Gauss–Newton algorithm produces an update γ(r+1) at convergence.

2.3 Repeat Steps 2.1–2.2 until convergence.
3.1 Perform cross-validation over all pairs of (λ1, λ2) to determine the final (α, β, γ).

To speed up Algorithm 1, we propose the following operational schemes that avoid
setting up the pairs of (λ1,λ2) and performing Step 3.1. Here are a few remarks on the two
algorithms. (i) Algorithm 2 depends on good starting values in order to enjoy a fast search.
(ii) The main difference between Algorithms 1 and 2 is that λ2 is fixed in Algorithm 1, while
it is changing in Algorithm 2. Some similar algorithms with changing tuning parameters
have been proposed in the literature, such as the single index model [31]. (iii) There is no
guarantee that both algorithms converge to a global minimizer, and the proximal Gauss–
Newton method used in the implementation can only find stationary points. Numerical
solvers for the optimization problem in (5) or in (6) indeed remain an open problem in the
field of nonlinear and nonconvex optimization.

Algorithm 2 A fast operational scheme of Algorithm 1.

1. Step 2.1 of Algorithm 1 is performed by running the linear mixed model with our
initial fixed γ from Step 1.2 of Algorithm 1 to obtained updated values of λ1, β, and α.

2. Step 2.2 is performed with solving the group regularity problem (8) through the
Gauss–Newton algorithm using cross-validation-based tuning (e.g., R package oem).

3. Rerun Step 2.1 using the updated γ from Step 2.2 to obtain the estimates for β and α.

4. Theoretical Guarantees

Our theoretical analysis focuses on the finite-sample L2 error bounds for the estimators
(ĥ, γ̂) obtained by (5) or (6). Consequently, we are able to establish the estimation consistency.
For simplicity, we set β = 0 and consider a general setting of random vectors z1, . . . , zn so
that the FPC features�z1, . . . ,�zn correspond to a special case. Along similar lines as those
of [15,32], the estimation consistency is proven in the case of the SGL penalty function. We
define a map Γ with an s-element vector γ ∈ Rs, which gives rise to a collection of all scaling
map functions: A = {Γ : Rs �→ Rs | Γ(z) = γ ◦ z, z ∈ Rs and γ ∈ Rs}. Since Γ is a linear
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(and bounded) operator,A is a real vector space where (c1Γ1 + c2Γ2)(z) = c1Γ1(z)+ c2Γ2(z)
with any c1, c2 ∈ R and Γ1, Γ2 ∈ A. To perform a group regularization estimation, we
define an SGL penalty by a norm on A for a fixed δ ∈ [0, 1] as follows:

‖Γ‖SGL = δ
p

∑
�=1

∥∥∥γ�
∥∥∥

2
+ (1− δ)‖γ‖1. (9)

Consequently, the SGL regularization estimation requires the following constrained
optimization:

min
Γ∈A, h∈HK

J3(Γ, h) = min
Γ∈A, h∈HK

‖Y− h ◦ Γ‖2
n + λ1‖h‖2

HK
+ λ2‖Γ‖SGL, (10)

where ‖Y− h ◦ Γ‖2
n = 1

n ∑n
i=1{yi − (h ◦ Γ)(zi)}2. Lemma 3 below provides the essential

finite-sample inequalities that lead to the estimation consistency.

Lemma 3 (Basic inequality). Let ĥ ◦ Γ̂ be the minimizer of (10). Let h0 ◦ Γ0 be the true function.
Then, we have:

J3(Γ̂, ĥ) ≤ 2(ε, ĥ ◦ Γ̂− h0 ◦ Γ0)n + λ1‖h0‖2
HK + λ2‖Γ0‖SGL, (11)

where 2(ε, ĥ ◦ Γ̂− h0 ◦ Γ0)n = 2
n ∑n

i=1 εi

{
(ĥ ◦ Γ̂)(zi)− (h0 ◦ Γ0)(zi)

}
.

We need the following notation before presenting our theoretical guarantees. Let
N (δ, M, Pn) denote the minimal δ covering number of the function set M under the
empirical metric Pn based on the random vectors z1, · · · , zn. Let N = N (δ, M, Pn) be a
shorthand notation. This means that there exist functions m1, · · · , mN (not necessarily in
the set M) such that for every function m ∈ M, there exists a j ∈ {1, · · · , N} such that∥∥m−mj

∥∥
Pn
≤ δ, with

∥∥m−mj
∥∥

Pn
:=
√

1
n ∑n

i=1{m(zi)−mj(zi)}2. Define the δ-entropy of
M for the empirical metric, Pn, as H(δ,M, Pn) := log(N (δ,M, Pn)). Consider a functional
space of the form:

B =

{
b := b(h, Γ) =

h ◦ Γ− h0 ◦ Γ0

‖h‖2
HK + ‖h0‖2

HK + ‖Γ‖2
SGL + ‖Γ0‖2

SGL

|h ∈ HK, Γ ∈ A
}

.

We postulate the following assumptions.

Assumption 1. The error term ε = (ε1, . . . , εn)� is uniformly sub-Gaussian; that is, for constants
C1 and C2,

max
n≥1

max
i=1,··· ,n

C2
1

[
E

{
exp

(
εi

2

C2
1

)}
− 1

]
≤ C2.

Clearly, the moment condition is bounded below from zero.

Assumption 2. ‖Γ0‖2
SGL + ‖h0‖2

HK > 0, and the entropy of space B with respect to the empirical
metric Pn is bounded as follows:

H(δ,B, Pn) ≤ C3δ−2ψ,

where C3 is some constant and ψ ∈ (0, 1).

Assumption 3. supb∈B‖b‖Pn
≤ C4 for some constant C4.

Theorem 2. (Consistency) Under Assumptions 1-3 above, if tuning parameters λ1 and λ2 satisfy

λ−1
2 = n

1
1+ψ

(
‖h0‖2

HK + ‖Γ0‖SGL

) 1−ψ
1+ψ , and λ1 = Op(1)λ2,
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then we have ∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n
= Op(n

− 1
2+2ψ )

(
‖h‖2

HK + ‖Γ‖SGL

) ψ
1+ψ , and (12)

∥∥∥ĥ
∥∥∥2

HK
+
∥∥Γ̂
∥∥

SGL = Op(1)
(
‖h0‖2

HK + ‖Γ0‖SGL

)
. (13)

Theorem 2 implies estimation consistency under the right rates for the two tuning
parameters λ1 and λ2. Due to the potential identifiability issues explained in detail in
Appendix B, although the estimator (ĥ, Γ̂) may not be unique, the sum of ĥ and Γ̂ is not too
far away from the sum of the true h0 and Γ0.

Corollary 1. If the RKHS,HK, contains differentiable functions ∇h(z) whose norm ‖∇h(z)‖HK
is uniformly bounded for all functions h ∈ HK and z ∈ Rs, then Assumption 2 holds when
Theorem 2 is replaced by H(δ,HK, Pn) ≤ C1δ−2ψ, for all δ ≥ 0.

The proofs of Theorem 2 and Corollary 1 are given in Appendices A.4 and A.5,
respectively. Often, when we are only interested in a subset of functions in the RKHS (e.g.,
functions with norm less than one), we can substitute the full spaceHK in Corollary 1 with
the subspace of interest. Refer to [15] or [32], where both considered an RKHS (i.e., Sobolev
space) with functions of norm less than or equal to one.

5. Simulation Experiments

We performed extensive simulation to investigate the performance of our proposed
procedure, including the performance of SGL variable selection and its overall accuracy.
Due to the limitations of space, we include results from two simulation experiments in this
section, and more results may be found in the first author’s Ph.D. dissertation [30].

5.1. Setup

In the evaluation of the performance accuracy, following [15], we used both quasi-R2

and adjusted quasi-R2 defined as follows:

R2
Q := 1− ∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳi)2 , and R2

AQ := 1−
(

1− R2
Q

)( n− 1
n− (k + 1)

)
.

The latter is known to be appealing for the comparison of the estimation sparsity. There
is another performance metric of interest in addition to model accuracy. Performance
in variable selection is summarized in terms of the stability measured by sensitivity and
specificity for both functional and variable selections under these simulation experiments.
Our algorithm uses existing R packages, including emmreml, kspm, and oem.

Specifically, we designed the following two simulation settings.

Scenario 1: A single functional predictor with sparsity in the FPC features.
Scenario 2: Multiple functional predictors with sparsity in the functional predictors and
with sparsity in the FPC features of important functional predictors.

Each of these two scenarios would be handled using certain suitable penalty functions
to address the designed sparsity; for example, in Scenario 2 we used a two-level variable
selection penalty (e.g., SGL) to deal with two types of sparsity in the true model. In all
analyses, we used the Gaussian kernel K(u, v) = exp(− 1

p‖u− v‖2) in our estimation,
where p was set as the number of features, which is equivalent to dividing the γ vector
by
√

p. This scaling parameter may be either estimated or set to the number of features
to overcome the identifiability issue according to [33], where theoretical justification was
given for the use of the number of features for the bandwidth parameter in the case of the
Gaussian kernel.
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According to [23], due to the difficulty of the graphical display for the estimated
s-dimensional function h(·) of z, we summarized the goodness-of-fit by regressing the
true h on the estimated ĥ, with both being evaluated at the design points. From this
concordance regression analysis, we may measure the goodness-of-fit on ĥ through the
average intercepts, slopes, and R-squared (also known as the coefficient of determination)
obtained over the number of replications. Clearly, a high-quality fit is reflected by (i) the
intercept being close to zero, (ii) the slope being close to one, and (iii) the R-squared being
close to one. Moreover, we graphically display the estimated function ĥ by setting all
variables equal to 0.5 except the one of interest over a grid of 100 equally spaced points on
the interval [0, 1]. Such visualization of the functional estimation at each margin further
facilitates the evaluation of the proposed algorithm in addition to the results obtained from
the concordance regression analyses.

In all scenarios, we generated 1000 IID functional paths, of which 750 paths were
assigned to the training set and 250 paths were assigned to the test set for an external
performance evaluation. It is the test set that we used to display the performance accuracy.
We used a one-dimensional covariate xi to show the flexibility of our model in a semi-
parametric setting, with independent copies of xi ∼ N(0, 1). We chose the true coefficients
in the kernel machine model similar to those given in [23].

5.2. Simulation in Scenario 1

In this simple scenario with a single functional predictor, we simulated data from
a model with sparsity in its FPC features. To do so, we generated a single functional
predictor based on the first 15 eigenbasis of the Fourier basis functions over the interval
[0, 1]: Z(t) = ∑15

j=1
√

ς jξ jφj(t). That is, a functional predictor was created as a linear

combination of the 15 basis functions, where φj(·) is the jth Fourier basis function, ς j is
the jth eigenvalue of Z, and ξ j is the jth FPC feature that is simulated from a normal
distribution detailed as follows.

There were 100 sampled points that were first equally spaced in the interval [0, 1] and
then varied with certain small deviations drawn from ν ∼ N(0, 0.001). Set ς j = 45× 0.64j

and ξ j ∼ N(0, 1) independently over j = 1, . . . , 15. As was done in [17], instead of directly
using ξ j, we used ζ j = Φ(ξ j), where Φ is the CDF of the standard normal. This resulted in
�z = (ζ1, . . . , ζ15)

�. We chose the second, ζ2, and ninth, ζ9, features as important features in
the following true nonlinear non-additive model:

yi = 2xi + 20 cos(2πζi2)− 10 sin(2πζi9) + ζi2ζi9 + εi,

with εi
iid∼ N(0, 1). FPCA was performed by the R package PACE [34], producing the

estimated FPC scores, ξ̂ j, as well as the estimated eigenvalues, ς̂ j, which in turn enabled us
to compute ζ̂ j, j = 1, . . . , 15.

We applied both LASSO and MCP penalty functions in our implementation, termed
as FKMRLasso and FKMRMCP, respectively. We compared the results of our method
with the standard linear approach with both LASSO and MCP under the assumption
of linear functional relationships, as well as the COSSO method for functional additive
regression [15] using the R package COSSO [15,34]. Since the COSSO package is built for
nonparametric regression (and not partial linear models), we adopted the backfitting
strategy and regressed the residuals with our estimated effect of xi removed.

In addition, we compared our method with an oracle FKMR estimator, called FKMRoracle,
that assumed the full knowledge of the true ζ j containing two true nonzero signals,
ζ2 and ζ9. We also considered two oracle versions of our proposed algorithm, FKMRoracle

Lasso
and FKMRoracle

MCP , both of which used the knowledge of true ζ j in order to evaluate the
performance of the FPCA procedure. This evaluation is important as our proposed
procedure can be in principle used in simpler cases that do not involve functional covariates.
Note that once we used FPCA to obtain ζ̂ j features, our algorithm essentially works in a
standard regression setting with the sparsity of covariates. Thus, our proposed procedure
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can be in principle used in simpler cases with scalar covariates. In Scenario 1, due to the
highly nonlinear relationships between the FPC features and the outcome, as expected,
the naive linear model performed poorly in terms of both model selection and model
consistency. The detailed simulation results for Scenario 1 can be found in the first author’s
Ph.D. dissertation [30]. In brief, our proposed method worked well in all aspects. In this
setting, COSSO also worked well in terms of model fit, but it tended to select noisy features
more frequently than our proposed method, leading to more false positives.

5.3. Simulation in Scenario 2

Now, we generated four functional predictors of the form: Z�(t) = ∑9
j=1

√
ς�j ξ

�
j φ�

j (t),

� = 1, . . . , 4, where φ�
j , ς�j , and ξ�j were set in the same way as those given in Scenario

1. It follows that �z = (ζ1
1, . . . , ζ1

9, . . . , ζ4
1, . . . , ζ4

9)
�, where ζ�j is the jth Φ-transformed

feature for the �th functional covariate. Sparsity was specified as follows: the first and
second functional covariates, Z1 and Z2, were chosen as important signals in which these
transformed FPC features, {ζ1

1, ζ1
3, ζ1

4, ζ2
2, ζ2

7}, are five important features (three features
from the Z1 and two features from Z2) that are related to the outcome:

yi = 2xi + ζ1
i1 + ζ1

i3 + ζ1
i4 + ζ2

i2 + ζ2
i7 + 10 cos(2πζ1

i1)− 10
(

ζ2
i2

)2
+ 10

(
ζ2

i7

)2
− 10

(
ζ1

i3

)2

+ 10 exp(−ζ1
i3)ζ

1
i4 − 8 sin(2πζ2

i7) cos(2πζ1
i3) + 20ζ1

i1ζ2
i7 + εi, i = 1, . . . , n,

where εi
iid∼ N(0, 1). This model specifies both group sparsity (two of the four functional

predictors) and within-group sparsity (three of the nine FPC features in Z1 and two of the
nine FPC features in Z2). In addition, we specified non-additive relationships in the true
model across multiple functional covariates.

We fit the data using the proposed methods, including FKMRoracle
GMCP, FKMRLasso,

FKMRGLasso, FKMRSGL, FKMRMCP, and FKMRGMCP, and the results based on
100 replicates are summarized in Table 1. For comparison, we also fit the simulated data by
existing methods, including the linear model (denoted by LM + penalty), COSSO functional
additive regression, and the oracle method using the knowledge of true important features
in the analysis, as done in the above simulation of Scenario 1. From Table 1 regarding the
goodness-of-fit, we see that all of our FKMR estimators outperformed the standard linear
estimators in terms of R2

AQ among all of our penalty functions, and they outperformed
COSSO for penalties that accounted for group sparsity. In the concordance regression
analysis, we see that all intercepts were close to zero, all slopes close to one, and all R2

close to one, indicating a high goodness-of-fit for functional estimation. COSSO tended
to perform on par for penalties that did not account for group sparsity (LASSO and
MCP). It is evident that using a group sparsity penalty function (SGL, GLasso, and GMCP)
clearly outperformed the methods that did not regularize the grouping of covariates (Lasso
and MCP). In addition, our FKMR estimators (except FKMRLasso) performed as well as
the oracle estimator FKMRoracle

GMCP both in terms of R2
AQ and in terms of our estimate of

functional h. The results also indicated that there were little differences between using
a concave (MCP or GMCP) penalty function or using a convex (GLasso or SGL) penalty
function.

As regards the group sparsity, Table 2 indicates that the all methods had a high
sensitivity of detecting functional signals, while the proposed FKMR methods had better
specificity than both sparse linear models and COSSO. Concerning the within-group
sparsity, it is interesting to note that a bigger difference was seen in terms of what type of
penalty function was being used in feature selection. As shown in Tables 3 and 4, using a
general penalty (e.g., Lasso and MCP) that does not take the grouping structure into account
tended to under-select important features within a group. COSSO tended to perform well
within group sparsity. Moreover, Figure 2 shows that the FKMR method estimated the five
signal functions (Z1 and Z2) well.
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Table 1. Goodness-of-fit and the concordance regression for Scenario 2.

Model R2
AQ β

Reg of h on ĥ

Intercept Slope R2

FKMRLasso 0.830 2.00 −0.062 1.01 0.848
FKMRGLasso 0.937 1.99 −0.055 1.01 0.972
FKMRSGL 0.928 2.00 −0.051 1.01 0.955
FKMRMCP 0.835 2.01 −0.062 1.01 0.856
FKMRGMCP 0.935 1.99 −0.056 1.01 0.970
FKMRoracle

GMCP 0.911 1.99 −0.049 1.01 0.937
COSSO 0.832 – – – –
LM + Lasso 0.453 – – – –
LM + GLasso 0.324 – – – –
LM + SGL 0.450 – – – –
LM + MCP 0.513 – – – –
LM + GMCP 0.307 – – – –

Table 2. Sensitivity and specificity of functional selection for Scenario 2.

Model
Selection Frequency

Ẑ1 Ẑ2 Ẑ3 Ẑ4

FKMRLasso 100 100 0 0
FKMRGLasso 100 100 4 4
FKMRSGL 100 100 0 0
FKMRMCP 100 100 0 0
FKMRGMCP 100 100 3 4
COSSO 100 100 5 6
LM + Lasso 100 100 19 21
LM + GLasso 94 99 7 8
LM + SGL 100 100 19 18
LM + MCP 100 100 20 19
LM + GMCP 93 99 7 8

Table 3. FPC feature selection for signal functional Z1 in Scenario 2.

Model
Selection Frequency

ζ̂1
1 ζ̂1

2 ζ̂1
3 ζ̂1

4 ζ̂1
5 ζ̂1

6 ζ̂1
7 ζ̂1

8 ζ̂1
9

FKMRLasso 100 1 97 0 0 0 0 0 0
FKMRGLasso 100 100 100 100 100 100 100 100 100
FKMRSGL 100 21 100 71 26 20 17 16 15
FKMRMCP 100 1 99 1 0 0 0 0 0
FKMRGMCP 100 100 100 100 100 100 100 100 100
COSSO 100 2 100 93 1 0 0 1 0
LM + Lasso 100 10 100 100 10 8 7 10 5
LM + GLasso 94 94 94 94 94 94 94 94 94
LM + SGL 100 12 100 100 10 8 8 11 5
LM + MCP 100 10 100 100 9 8 9 7 5
LM + GMCP 93 93 93 93 93 93 93 93 93
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Table 4. FPC feature selection for signal functional Z2 in Scenario 2.

Model
Selection Frequency

ζ̂2
1 ζ̂2

2 ζ̂2
3 ζ̂2

4 ζ̂2
5 ζ̂2

6 ζ̂2
7 ζ̂2

8 ζ̂2
9

FKMRLasso 0 3 0 0 0 0 100 0 0
FKMRGLasso 100 100 100 100 100 100 100 100 100
FKMRSGL 16 100 14 7 16 23 100 15 7
FKMRMCP 0 11 0 0 0 1 100 0 0
FKMRGMCP 100 100 100 100 100 100 100 100 100
COSSO 8 97 5 5 5 15 100 3 3
LM + Lasso 17 100 14 7 16 23 100 15 6
LM + GLasso 99 99 99 99 99 99 99 99 99
LM + SGL 17 100 14 7 16 23 100 15 7
LM + MCP 17 100 13 6 16 23 100 15 8
LM + GMCP 99 99 99 99 99 99 99 99 99

Figure 2. Five marginal estimates of important feature functions with 95% shaded confidence bands
evaluated at 100 grid points while holding all other components equal to 0.5 in Scenario 2.

6. Data Example

To show the usefulness of our proposed methodology, we analyzed data of 550 children
recruited by the ELEMENTS study [35], who had consent to wear an actigraph (ActiGraph
GT3X+; ActiGraph LLC. Pensacola, FL, USA). This wearable was to be placed on their
non-dominant wrist for five to seven days with no interruption. The actigraph measured
tri-axis accelerometer data sampled at 30 Hz, which captured three different directions of
a person’s movement. The BMI was the outcome of interest as it is biomarker of obesity.
Sex and age were confounding factors used in the analysis. Due to some missing data, our
analysis only included children who wore the device properly for 85% or more over the
study period, which resulted in 395 participants, consisting of 189 males and 206 females.
Other studies such as [36] have excluded days of accelerometer data with more than five
percent missing. The mean ± SD BMI of the study cohort was 21.5 ± 4.1. The mean age of
the study participants was 14.3 ± 2.1 y. A more detailed description of the dataset used for
this paper can be found in [37]. Our primary interest was to see if the BMI is associated
with physical activity in the presence of other covariates, specifically sex and age. We
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preprocessed the activity counts over the 7 d of wear by taking the median in the 1 min
epoch over the entire 7 d of wear. For example, since all the participants started wearing
the device at 3 p.m., the first data point for each individual was a median of 7 ACs (each for
one day) for the 1 min epoch of 3:00–3:01 p.m. This procedure that takes the medians across
the minutes from different days has been considered in other applications such as [36]. See
Figure 3 as an example of the resulting time series of medians derived from the AC data
displayed in Figure 1.

Figure 3. The 24 h minute-by-minute medians of 7 d ACs for one subject.

We applied the following five models, labeled as M0–M4 for convenience, to analyze
the data with the 24 h median ACs as functional predictors. Let ξk

ij be the ith person’s kth
FPC score for functional predictor j.

M0: Linear model (LM) with only the fixed features: BMIi ∼ β0 + β1 Agei + β2Sexi;
M1: Linear model with SGL penalty (LM+SGL) using the FPCA features: BMIi ∼ β0 +

β1 Agei + β2Sexi + ∑3
j=1 ∑sk

k=1 βk
j ξk

ij;

M2: LSKM using the FPCA features: BMIi ∼ β0 + β1 Agei + β2Sexi + h(zi);
M3: FKMR model with SGL penalty (FKMRSGL) using the FPCA features: BMIi ∼ β0 +

β1 Agei + β2Sex + h(γ ◦ zi);
M4: COSSO using the FPCA features: res(BMIi)|zi ∼ ∑3

j=1 ∑sk
k=1 fij(ξ

k
ij). In order for a

direct application of the COSSO R package, we used residuals res(BMIi) = BMIi −
β̂0 + β̂1 Agei + β̂2Sexi in the COSSO model fit, with β̂0, β̂1 and β̂2 being the estimates
of the coefficients from Model M0.

The BMI and age were mean centered and scaled to be a standard deviation of one, so
β0 was absent in the models. Here are some key findings from the data analyses. First, in
terms of the goodness-of-fit, Table 5 suggests that M3, i.e., our proposed model FKMR with
the SGL penalty, gave the best performance, where the adjusted R2 of M3 was nearly twice
as big as all the other four models. Second, it is interesting to note that both the COSSO and
the FKMRSGL did not select the FPC scores associated with the Z-axis. Third, as shown in
Table 6, all of the FPC components chosen by COSSO were also chosen by the FKMRSGL.
It is worth noting that the linear model together with the SGL penalty selected the highest
number of FPC components, yet performed the worst in terms of the model fit.
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Table 5. Goodness-of-fit for the five models used in the data analysis.

Model Adjusted R2

M0: LM 0.07
M1: LM + SGL 0.13
M2 : LSKM 0.18
M3: FKMRSGL 0.30
M4: COSSO 0.14

Table 6. Axis-specific FPC feature selection.

Model
X-Axis Y-Axis Z-Axis

ζ̂1
1 ζ̂1

2 ζ̂1
3 ζ̂1

4 ζ̂1
5 ζ̂1

6 ζ̂2
1 ζ̂2

2 ζ̂2
3 ζ̂2

4 ζ̂2
5 ζ̂3

1 ζ̂3
2 ζ̂3

3 ζ̂3
4

FKMRSGL � � � � � � �
COSSO � � �
LM + SGL � � � � � � � �

7. Conclusions

In this paper, we proposed a method to model the nonlinear relationship between
multiple functional predictors and a scalar outcome in the presence of other scalar confounders.
We used the FPCA to decompose the functional predictors for feature extraction and
used the LSKM framework to model the functional relationship between the outcome
and principal components. We developed a simultaneous procedure to select important
functional predictors and important features within selected functionals. We proposed
a computationally efficient algorithm to implement our regularization method, which
was easily programmed in R with the utility of multiple existing R packages. It should
be noted that although we focused on functional regression in this paper, the method
proposed can be applied to non-functional predictors. In effect, by using functional
principal components, we essentially bypassed the infinite-dimensional problem and
worked effectively in a non-functional framework with the FPC features. Through simulation
and using data from the ELEMENT dataset, we demonstrated how the FKMR estimator
outperformed existing methods in terms of both variable selection and model fit. It should
be noted that the existing COSSO method did perform well in terms of variable selection,
as shown in Section 5.

A technical issue pertains to identifiability limitations with regard to the bandwidth
parameter and to the RKHS estimator. To overcome this, we suggested fixing the bandwidth
parameter; see the detailed discussion in Section 3. We established key theoretical guarantees
for our proposed estimator. In the case where there are multiple proposed estimators (and
thus the identifiability issues arise), the established theoretical properties in Section 4 apply
to any of those estimators.

Variable section on functional predictors presents many technical challenges, and
there are many methodological problems that remain unsolved. This paper demonstrated
a possible framework to regularize estimation with a bi-level sparsity of functional group
sparsity and within-group sparsity. In the LSKM paper [23], it was briefly mentioned that
if the relationship between the scalar outcome and p genetic pathways is additive, we can
tweak the model as yi = x�i β + h1(z1

i ) + · · · + hp(z
p
i ) + εi where each hj belongs to its

own RKHS. It is easy to extend our method and algorithms to handle this case. For future
research, an extension on longitudinal outcomes may be considered via a mixed-effects
model yij = x�i β + h(zij) + u�ij vi + εij where u�ij vi are the random effects. Other useful
extensions to the proposed paradigm would be on the lines of generalized linear models
and Cox regression models.
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Appendix A. Technical Assumptions and Proofs

Appendix A.1. Proof of Lemma 1

It suffices to show that for any J1(h, β, γ) in (5) we can always find α ∈ Rn such
that J1(h̃ = ∑n

i=1 αiK(·, γ ◦�zi), γ, β) ≤ J1(h, β, γ) where h̃ is the projection of h onto the
linearly spanned space given by span{K(·, γ ◦�zi), · · · ,K(·, γ ◦�zn)}. For any h we can write
h = h⊥ + h̃ where h⊥ ∈ span{K(·, γ ◦�z1), · · ·,K(·, γ ◦�zn)}⊥. Since Hk is a reproducing
kernel Hilbert space we can rewrite (5) as follows:

J1(h, γ, β) =
1

2n

n

∑
i=1
{yi − x�i β− < h,K(·, γ ◦�zi) >}2 +

1
2

λ1‖h‖2
Hk

+ λ2ρ(γ; δ).

Since < h⊥,K(·, γ ◦�zi) >= 0 for every i, we obtain

J1(h, γ, β) =
1

2n

n

∑
i=1

{
yi − x�i β−

n

∑
k=1

αkK(γ ◦�zi, γ ◦�zk))

}2

+
1
2

λ1

∥∥∥h⊥ + h̃
∥∥∥2

Hk
+ λ2ρ(γ; δ)

≥ 1
2n

n

∑
i=1

{
yi − x�i β−

n

∑
k=1

αkK(γ ◦�zi, γ ◦�zk))

}2

+
1
2

λ1
∥∥h̃
∥∥2
Hk

+ λ2ρ(γ; δ)

= J1(h̃, γ, β).

Appendix A.2. Proof of Lemma 2

The equivalence of forms become clear once we rewrite (6) in the matrix notation.
Equation (6) can be written as follows:

min
α,β,γ

J2(α, β, γ) = min
α,β,γ

1
2n
‖Y− Xβ−K(γ; Z)α‖2

2 +
1
2

λ1α�K(γ; Z)α + λ2ρ(γ; δ). (A1)

For fixed α , β and λ1, minimizing the function in (A1) with respect to γ is equivalent to

min
γ

{
1

2n

∥∥∥(Y− Xβ− n
2

λ1α
)
−K(γ; Z)α

∥∥∥2

2
+ λ2ρ(γ; δ)

}
. (A2)

Appendix A.3. Proof of Theorem 1

With loss of the generality we use the penalty function for sparse group lasso but this
proof can easily be modified for other penalty functions. Also, we fix λ1 = λ2 = δ = 1,
and consider β ∈ R as well as set the design matrix X (or vector in this case) scaled to
have norm 1. The case of β ∈ Rq will follow along similar lines of arguments. Let γ ∈ D3

with D3 = {γ : ‖γ‖1 ≤ 1
2n‖Y‖2

2}. Define f (γ) = ‖K(γ; Z)‖ = ηmax(K(γ; Z)) ≥ 0, where
ηmax(K(γ; Z)) denotes the largest eigenvalue of K(γ; Z) with the operator norm (the norm
of K(γ; Z)) defined in its usual way ‖K(γ; Z)‖ = sup{‖K(γ; Z)x‖2

2 : ‖x‖2
2 = 1}. Since D3
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is compact and K(γ; Z) is continuous with respect to γ it achieves its maximum over D3.
Thus, we define η� = supγ∈D3 f (γ) ≥ 0. Define D2 = {β :| β |≤ (1 + η�)‖Y‖2}, where the
upper bound is denoted by b� = (1 + η�)‖Y‖2 ≥ 0. Moreover, define D1 = {α : ‖α‖2 ≤√

n(‖Y‖2 + b�)}.
Since D1, D2 and D3 are compact there exists a (α�, β�, γ�) such that J2(α

�, β�, γ�) ≤
J2(α, β, γ) for all (α, β, γ) ∈ D1 × D2 × D3. Note that J2(0, 0, 0) = 1

2n‖Y‖2
2 and (0, 0, 0) ∈

D1 × D2 × D3. We claim that (α�, β�, γ�) is a global minimizer, which is proved below
by contradiction.

Suppose that there exists (α̃, β̃, γ̃) /∈ D1 × D2 × D3 where J2(α̃, β̃, γ̃) < J2(α
�, β�, γ�).

We must have that γ̃ ∈ D3; if not, we have J2(α̃, β̃, γ̃) ≥ ‖γ̃‖1 ≥ J2(0, 0, 0) ≥ J2(α
�, β�, γ�).

Let q1, · · ·, qn be the orthonormal vectors of K(γ̃; Z) with its associated eigenvalues
η1 ≥ · · · ≥ ηn ≥ 0. We can write out α̃, X, Y in terms of these basis functions where
α̃ = ∑n

i=1 < α̃, qi > qi, Y = ∑n
i=1 < Y, qi > qi and X = ∑n

i=1 < X, qi > qi. Let Cα̃
i =< α̃, qi >,

CY
i =< Y, qi > and CX

i =< X, qi >. It follows that

J2(α̃, β̃, γ̃) ≥ 1
2n

∥∥∥∥∥ n

∑
i=1

CY
i qi −

n

∑
i=1

CX
i β̃qi −

n

∑
i=1

Cα̃
i ηiqi

∥∥∥∥∥
2

2

+
1
2

n

∑
i=1

(Cα̃
i )

2ηi,

which is equal to 1
2n ∑n

i=1(C
Y
i − CX

i β̃− Cα̃
i ηi)

2 + 1
2 ∑n

i=1(C
α̃
i )

2ηi. We can minimize the above
objective function with respect to Cα̃

i and β̃. First, note that for any ηi = 0 we can let Cα̃
i = 0

as it will not affect the expression above. It is sufficient to consider ηi > 0. Taking the first
derivative and setting it equal to zero, we obtain the score equations the minimizer must
satisfy, for our minimum β̃ and Cα̃

i

β =
n

∑
i=1

CX
i (C

Y
i − Cα̃

i ηi) (A3)

Cα̃
i =

1
n + ηi

(CY
i − CX

i β̃). (A4)

In the above derivation we used the fact that 1 = ‖X‖2
2 = ∑n

i=1(C
X
i )

2. Plugging (A4) into (A3),
we obtain

β =
∑n

i=1 CX
i CY

i (1−
ηi

n+ηi
)

1−∑n
i=1(C

X
i )

2 ηi
n+ηi

. (A5)

It follows that

β ≤ ∑n
i=1 | CX

i CY
i |

1−∑n
i=1(C

X
i )

2 η�

n+η�

≤ ‖X‖2‖Y‖2

‖X‖2
2(1−

η�

n+η� )
≤ ‖Y‖2

(1− η�

1+η� )
= b�.

Thus, the β that minimizes J2 for a given γ ∈ D3 is in D2. Also, (A4) implies that
| Cα̃

i |≤ (‖Y‖2 + ‖X‖2‖β‖2); consequently, the optimal α for the given γ̃ ∈ D3 and β ∈ D2
that minimizes J2 satisfies ‖α‖2 ≤

√
n(‖Y‖2 + b�). As a result, α ∈ D2. This suggests

that for any (α̃, β̃, γ̃) /∈ D1 × D2 × D3 we can find an (α, β, γ) ∈ D1 × D2 × D3 such that
J2(α̃, β̃, γ̃) ≥ J2(α, β, γ).

Appendix A.4. Proof of Theorem 2

By Lemma 8.4 on page 129 in [32], Assumptions 1, 2, and 3 imply:

P

⎛⎝sup
b∈B

1√
n |∑

n
i=1 εib(zi)|

‖b‖1−ψ
Pn

≥ T

⎞⎠ ≤ c exp
(
−T2

c2

)
, T ≥ c (A6)

where the constant c is dependent on C1, C2, C3, C4, and ψ. It follows that
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sup
b∈B

1√
n |∑

n
i=1 εib(zi)|

‖b‖1−ψ
Pn

= Op(1). (A7)

Therefore, for any h ∈ HK and a scaling map function Γ ∈ A, we obtain

√
n(ε, h ◦ Γ− h0 ◦ Γ0)n

(
‖h‖2

HK + ‖h0‖2
HK + ‖Γ‖2

SGL + ‖Γ0‖2
SGL

)−ψ

‖h ◦ Γ− h0 ◦ Γ0‖1−ψ
Pn

= Op(1). (A8)

For our estimators, ĥ and Γ̂, it is easy to see that

(ε, ĥ ◦ Γ̂− h0 ◦ Γ0)n =

Op(n−
1
2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ
∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥Γ̂
∥∥2

SGL + ‖Γ0‖2
SGL

)ψ

.
(A9)

From (A9), we obtain the following inequality:∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥2

n
+ λ1

∥∥∥ĥ
∥∥∥2

HK
+ λ2

∥∥Γ̂
∥∥2

SGL ≤

Op(n−
1
2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ
∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥Γ̂
∥∥2

SGL + ‖Γ0‖2
SGL

)ψ

+ λ1‖h0‖2
HK + λ2‖Γ0‖2

SGL.

(A10)

We require λ1 = Op(1)λ2, namely λ2 and λ1 go to zero at the same rate. We will show
at the end of the proof what happens if they are not of the same order. Therefore, without
loss of generality, we set λ1 = λ2, denoted by λ. In what follows, we divide (A10) into
two cases.
Case 1: Suppose that

Op(n−
1
2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ
∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥Γ̂
∥∥2

SGL + ‖Γ0‖2
SGL

)ψ

≥ λ
(
‖h0‖2

HK + ‖Γ0‖2
SGL

)
.

In this case, we have∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥2

n
+ λ

(∥∥∥ĥ
∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL

)
≤

Op(n−
1
2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ
∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥Γ̂
∥∥2

SGL + ‖Γ0‖2
SGL

)ψ

.
(A11)

Above (A11) is further discussed separately in two sub-cases.

Case 1a: If ‖h0‖2
HK + ‖Γ0‖2

SGL ≤
∥∥∥ĥ
∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL, then we have∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥2

n
+ λ

(∥∥∥ĥ
∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL

)
≤

Op(n−
1
2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ
∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL

)ψ

.
(A12)

Therefore, (∥∥∥ĥ
∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL

)ψ

≤ Op(n
− ψ

2(1−ψ) )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥ψ

n
λ
− ψ

1−ψ . (A13)

It follows that
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∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n
= Op(n

− 1
2(1−ψ) )Op(λ

− ψ
1−ψ ),∥∥∥ĥ

∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL = Op(n
− 1

1−ψ )Op(λ
− 1+ψ

1−ψ ).
(A14)

Case 1b: If ‖h0‖2
HK + ‖Γ0‖2

SGL ≥
∥∥∥ĥ
∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL, then:∥∥∥ĥ
∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL = Op(‖h0‖2
HK + ‖Γ0‖2

SGL)Op(1).

Therefore, ∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n
= Op(n

− 1
2(1+ψ) )

(
‖h0‖2

HK + ‖Γ‖2
SGL]

) ψ
1+ψ .

Consequently, we obtain∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n
= Op(n

− 1
2(1−ψ) )Op(λ

− ψ
1−ψ ),∥∥∥ĥ

∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL = Op(n
− 1

1−ψ )Op(λ
− 1+ψ

1−ψ ).
(A15)

Both terms in (A15) are the same rates as those in (A14).
Case 2: Suppose that

Op(n−
1
2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ
∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥Γ̂
∥∥2

SGL + ‖Γ0‖2
SGL

)ψ

≤ λ(‖h0‖2
HK + ‖Γ0‖2

SGL).

Then, we have∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥2

n
+ λ

(∥∥∥ĥ
∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL

)
≤ 2λ

(
‖h0‖2

HK + ‖Γ0‖2
SGL

)
.

This implies that ∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n
= Op(λ

1
2 )
(
‖h0‖2

HK + ‖Γ0‖2
SGL

) 1
2 ,∥∥∥ĥ

∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL = Op(1)
(
‖h0‖2

HK + ‖Γ0‖2
SGL

)
.

(A16)

In order to make (A14) and (A16) have the same rates we first equate the two term

Op(λ
1
2 )
(
‖h‖2

HK + ‖Γ‖2
SGL

) 1
2 and Op(n

− 1
2(1−ψ) )Op(λ

− ψ
1−ψ ), and then solve for a common λ.

The solution is given as follows:

λ−1 = n
1

1+ψ

(
‖h‖2

HK + ‖Γ‖2
SGL

) 1−ψ
1+ψ .

Under this λ value we obtain that (A14)–(A16) as of the form:∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n
= Op(n

− 1
2(1+ψ) )

(
‖h0‖2

HK + ‖Γ0‖2
SGL

) ψ
1+ψ , (A17)∥∥∥ĥ

∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL = Op(1)
(
‖h0‖2

HK + ‖Γ0‖2
SGL

)
. (A18)

This completes the proof of Theorem 2.
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Now we discuss the situation where the tuning parameters λ1 and λ2 are not of the
same order. As seen blow, the selection consistency may not be guaranteed. Take Case 2 as
an example. Suppose that

Op(n−
1
2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ
∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥Γ̂
∥∥2

SGL + ‖Γ0‖2
SGL

)ψ

≤ λ1‖h0‖2
HK + λ2‖Γ0‖2

SGL.

Let us consider two cases.
Case 2a: If λ1‖h0‖2

HK ≤ λ2‖Γ0‖2
SGL, following the same arguments above, we have∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n
= Op(λ

1
2
2 )‖Γ0‖SGL),∥∥∥ĥ

∥∥∥2

HK
= Op(

λ2

λ1
)‖Γ0‖2

SGL,∥∥Γ̂
∥∥2

SGL = Op(1)‖Γ0‖2
SGL.

(A19)

Case 2b: If λ1‖h0‖2
HK ≥ λ2‖Γ0‖2

SGL, then following the same logic as before:∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n
= Op(λ

1
2
1 )‖h0‖HK ),∥∥Γ̂

∥∥2
SGL = Op(

λ1

λ2
)‖h0‖2

HK ,∥∥∥ĥ
∥∥∥2

HK
= Op(1)‖h0‖2

HK .

(A20)

Both terms involve Op(
λ1
λ2
) and Op(

λ2
λ1
), indicating that these two tuning parameters

λ1 and λ2 should go to zero at the same rates. Moreover, we can think of our estimator
ĥ ◦ Γ̂ as one operational object. See Appendix B for more details on this, which can further
explain the need of one rate for the two penalties.

Appendix A.5. Proof of Corollary 1

For convenience, we present the following lemma proved by [32] (on page 20).

Lemma A1. (Geer’s Lemma) A d dimensional ball of radius R, Bd(R), in Rd with Euclidean
metric can be covered by ( 4R+δ

δ )d balls of radius δ.

We have shown in the proof of Theorem 1 that the optimal γ vector is restricted to
be within a ball of a radius that depends on the norm of Y. For the sake of simplicity
let us confine our γ to be within a norm ball of radius 1, γ ∈ G = {γ : ‖γ‖2

2 ≤ 1}.
We then confine our set which we called A to be restricted to those γ, that is A = {Γ :
Γ(z) = γ ◦ z, γ ∈ G}. Since our γ ∈ Rs, we can use above Lemma A1 and cover our set

A with N1 =
(

4+δ
δ

)s
number of functions in the following sense. The ball of radius 1 in

Rs can be covered (using the Euclidean metric) by {γ1, · · · γN1}. Since there is a one to
one relationship between the functions Γ and γ, take the set {Γ1, . . . , ΓN1} and define the
metric between some Γj and Γk in the set A as d(Γj, Γk) =

∥∥γj − γk
∥∥

2. Then, the set of
functions {Γ1, . . . , ΓN1} is a δ-covering for A under this metric with entropy s log( 4+δ

δ ).
For each Γj we have an induced RKHS, HK◦Γj = {h ◦ Γj : h ∈ HK} with entropy no
larger than that of HK, which according to the assumption, has entropy ≤ Aδ−2ψ for
some ψ ∈ (0, 1) and A ∈ R. Therefore, the covering number N2 = N(δ,HK◦Γj , Pn) ≤
exp{Aδ−2ψ}. This implies that for every Γj there exists a set {hj1 ◦ Γj, · · · , hjN2

◦ Γj}
such that for every h ◦ Γj ∈ HK◦Γj there exists an integer i ∈ {1, . . . , N2} we have∥∥h ◦ Γj − hji ◦ Γj

∥∥
Pn
≤ δ. Set B is essentially the union of the different Hilbert spaces
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of the form HK◦Γ. Under the setup, a natural estimate of the delta-covering number
of this set would be approximately of size N1 × N2 where functions take the form of
{h11 ◦ Γ1, · · · , h1N2

◦ Γ1, · · · , hN11
◦ ΓN1 , · · · , hN1 N2

◦ ΓN1}. In addition, we add N2 functions
from the set {h1 ◦ Γ0, · · · , hN2 ◦ Γ0} where Γ0 is the true Γ0 (or one of the true Γ0). Since

HK◦Γj is a Hilbert space for every j, if h ◦ Γj ∈ HK◦Γj so is
h◦Γj

‖h‖2
HK+‖h0‖2

HK+‖Γj‖2
SGL+‖Γ0‖2

SGL
.

We can simply ignore the denominator and substitute
h◦Γj

‖h‖2
HK+‖h0‖2

HK+‖Γj‖2
SGL+‖Γ0‖2

SGL
with

h̃ ◦ Γj ∈ HK◦Γj where h̃ = h
‖h‖2

HK+‖h0‖2
HK+‖Γj‖2

SGL+‖Γ0‖2
SGL

.

We now prove Corollary 1.

Proof. Set M = suph < ∇h(z),∇h(z) > where the inner product is the standard Euclidean
inner product. This is for a fixed z, or under the assumption that the gradient is uniformly

bounded, we can take the suph∈HK ,z∈Rs < ∇h(z),∇h(z) >. Let N1 =
4+

(
δ

3M
1
2

)
(

δ

3M
1
2

)
s

which

is the number of balls needed to provide a
(

δ

3M
1
2

)
covering for a norm 1 ball in Rs. Let

N2 = exp
{(

A( δ
3 )
−2ψ

)}
which is the covering number needed to provide a δ

3 cover of our
spaceHK. Let:

˜̂h ◦ Γ̂− h̃0 ◦ Γ0 =

ĥ ◦ Γ̂∥∥∥ĥ
∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥Γ̂
∥∥2

SGL + ‖Γ0‖2
SGL

− h0 ◦ Γ0∥∥∥ĥ
∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥Γ̂
∥∥2

SGL + ‖Γ0‖2
SGL

be an arbitrary function in the set B. There exists a Γj where j ∈ {1, . . . , N1} such
that d(Γj, Γ̂) ≤ δ

3 max
i=1,··· ,n

‖zi‖2
√

M
, and there exists an i where i ∈ {1, . . . , N2} such that∥∥∥ ˜̂h ◦ Γj − hji ◦ Γj

∥∥∥
Pn
≤ δ

3 .

Similarly, there exists a t ∈ {1, . . . , N2} such that
∥∥h̃0 ◦ Γ0 − ht ◦ Γ0

∥∥
Pn
≤ δ

3 . We

construct our approximating function of ˜̂h ◦ Γ̂− h̃0 ◦ Γ0 as hji ◦ Γj − ht ◦ Γ0. We now show

that this function is within δ of our arbitrary function ˜̂h ◦ Γ̂− h̃0 ◦ Γ0. Applying the mean
value theorem for multivariate functions, ˜̂h ◦ Γ̂(z) = ˜̂h ◦ Γj(z) +∇ ˜̂h(C(z))( ˆΓ(z)− Γj(z)),
we have: ∥∥∥( ˜̂h ◦ Γ̂− h̃0 ◦ Γ0)− (hji ◦ Γj − ht ◦ Γ0)

∥∥∥
Pn

≤
∥∥∥ ˜̂h ◦ Γ̂− hji ◦ Γj

∥∥∥
Pn

+
∥∥h̃0 ◦ Γ0 − ht ◦ Γ0

∥∥
Pn

≤
∥∥∥ ˜̂h ◦ Γ̂− hji ◦ Γj

∥∥∥
Pn

+
δ

3

=
∥∥∥ ˜̂h ◦ Γj − hji ◦ Γj +∇ ˜̂h(C(·))(Γ̂− Γj)

∥∥∥
Pn

+
δ

3
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where vector z ∈ Rs lies in the segment from γj ◦ z and γ̂ ◦ z, and C(·) is an unknown
function that maps from Rs into Rs that allows for the formula to hold. Continuing our
chain of inequalities, we obtain:∥∥∥ ˜̂h ◦ Γj − hji ◦ Γj +∇ ˜̂h(C(·))(Γ̂− Γj)

∥∥∥
Pn

+
δ

3
≤∥∥∥∇ ˜̂h(C(·))(Γ̂− Γj)

∥∥∥
Pn

+
δ

3
+

δ

3
=√

1
n

n

∑
i=1

(
∇ ˜̂h(C(zi))(Γ̂(zi)− Γj(zi))

)2
+

δ

3
+

δ

3
≤√

1
n

n

∑
i=1

M
∥∥γ̂ ◦ zi − γj ◦ zi

∥∥2
2 +

δ

3
+

δ

3
≤√√√√√√M

⎛⎜⎝ δ

3 max
i=1,··· ,n

‖zi‖2

√
M

⎞⎟⎠
2

max
i=1,··· ,n

‖zi‖2
2 +

δ

3
+

δ

3
=

δ

3
+

δ

3
+

δ

3
= δ.

Therefore, to provide a δ cover we need N1 × N2 + N2 number of functions or:

exp{
(

A(
δ

3
)−2ψ

)
}

⎛⎜⎜⎝4 +
(

δ

3M
1
2

)
(

δ

3M
1
2

)
⎞⎟⎟⎠

s

+ exp

{(
A
(

δ

3

)−2ψ
)}

=

exp{Ãδ−2ψ}
(

C + δ

δ

)s
+ exp{Ãδ−2ψ},

where Ã = A
3−2ψ and C = 12M

1
2 . Taking the log we see the entropy is ≤ Ãδ−2ψ +

log
(
(C+δ

δ )s + 1
)

which is of the same order as ≤ Ãδ−2ψ (the log term is dominated by
the first term). Therefore a sufficient (but not necessary) condition for our set B to have
the same entropy as that of the original RKHS HK is for the suph < ∇h(z),∇h(z) > to
be bounded. Having bounded derivatives is reasonable for any RKHS since every RKHS
satisfies the Lipschitz condition of the form:

|h(X)− h(Y)|= |< h,KX > − < h,KY > |≤ ‖h‖HK < KX ,KY >
1
2 = ‖h‖HKd(X, Y),

where the distance metric in Rs is defined as d(X, Y)2 = K(X, X)− 2K(X, Y) +K(Y, Y).
If we restrict our functions in the RKHS of norm ≤ C for some constant C then we have a
universal Lipschitz constant C to ensure bounded derivatives.

Appendix B. Discussion about the FKMR Estimator

We introduce γ as a way of performing variable selection on our vector of FPC
features. We want to illustrate this technical trick with some concrete examples and discuss
identifiability issues with the resulting estimator. There are two ways of looking at the
estimation of the unknown functions h0 and Γ0. The first way is to view our feature vector,
z, as being related to the dependent variable y through the composite function h ◦ Γ, as
explained in Section 4. The second and equivalent way is to view our features as unknown.
The true features take the form of γ ◦ z, where in this case the ◦ denotes the Hadamard
product. We are given z and need to estimate the “true" features γ ◦ z. In addition, we
need to estimate the relationship between γ ◦ z and y, which is done through the function
h ∈ HK.
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The first way is to estimate the function h0 ◦ Γ0. The function belongs to the RKHS
HK◦Γ. We essentially consider many different function spaces to construct our estimator. The
intersection between the function spaces is not necessarily empty, implying that our estimator
may not be unique. We proceed this discussion more formally. Let K : Rs ×Rs �→ R be
a positive definite function. Let Γ : Rs �→ Rs. We define K ◦ Γ : Rs × Rs �→ R as
the function given by K ◦ Γ(s, t) = K(Γ(s), Γ(t)). This new function, K ◦ Γ is positive
definite. There is a relationship between the original RKHS, HK and the new RKHS,
HK◦Γ. This results in HK◦Γ = {h ◦ Γ : h ∈ HK}. For any vector u ∈ HK◦Γ, we have that
‖u‖HK◦Γ

= in f {‖h‖HK : u = h ◦ Γ}. In general, HK◦Γ �⊂ HK. In (5), we take the norm
with respect to the original space HK. Our iterative procedure essentially presents the
second way in which the true features are unknown, whereas our theoretical arguments
are justified through the first way. Given the knowledge of the features (which translates to
fixing a γ), we are confined to just one RKHS,HK. Take the linear kernel, K(x1, x2) = x�1 x2
as an example. Suppose the truth is that y is related to a one-dimensional feature z0 through
the following formulation: y = h0(z0) + ε where h0 ∈ HK1 , where K1 is the kernel that
maps from R ×R �→ R. Therefore, if we knew the feature z1, we would proceed to
optimize (6) using the standard LSKM. However, when each y is associated with a two-
dimensional vector z = (z1, z2), where z2 is a “noisy” feature and unrelated to y. Suppose
that a priori we do not know this information. Typically we use a model y = h(z1, z2) + ε
where h ∈ HK, where K is the kernel that maps from R2 ×R2 �→ R. In this case, we
introduce our γ vector (γ1, γ2) and formulate y = h(γ1z1, γ2z2) + ε. All functions, h in the
spaceHK, are of the form h(z) = x�z for some two-dimensional vector x = (x1, x2). There
is a one-to-one relationship between h and x. The true function, h0, has an associated real
number c where h1(z1) = cz1. We can recover h1 ∈ HK1 from our estimation of h and γ
if we set γ = (1, 0) and x = (c, �) , where "�" is any real number. Equivalently, we can
recover h1 under γ = (1, 1) where x = (c, 0). There are many functions that may recover
the original function in the RKHS corresponding to the linear space kernel. Formulating
our problem in the first way, through function composition, we can estimate Γ0 with the γ
being (1, 0) or (1, 1).

We can now see that in the intersection between HK◦Γ1 and HK◦Γ2 , where Γ1 has
associated γ1 = (1, 0) and Γ2 has associated γ2 = (1, 1), lies our estimate of h1. In truth,
for the linear space RKHS, there is no need to apply our method since h0 ∈ HK1 can be
estimated directly from the larger spaceHK where we set h(z) = x�z where x = (c, 0). We
can never hope to have variable selection consistency nor can we hope to have identifiability
of our estimator for these types of spaces. However, from a goodness-of-fit standpoint,
we are able to do just as good a job with many types of function compositions. Our hope
is that we can glean some variable selection by penalizing the γ vector with the ρ(γ; δ)
term which, going back to the above scenario, should give preference to γ = (1, 0) over
γ = (1, 1). For the RKHS associated with the Gaussian Kernel, the “larger dimensional
space”, a Gaussian Kernel mapping from higher dimensions, does not necessarily contain
the functions from a “lower dimensional space”, a Gaussian Kernel mapping from lower
dimensions. However through the introduction of the γ transformation of the features, we
can recover the equivalent functions of the "lower dimensional space”.
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Abstract: Online health communities (OHCs) have become a major source of social support for
people with health problems. Members of OHCs interact online with others facing similar health
problems and receive multiple types of social support, including but not limited to informational
support, emotional support, and companionship. The aim of this study is to examine the differences
in social support communication among people with different types of cancers. A novel approach is
developed to better understand the types of social support embedded in OHC posts. Our approach,
based on the word co-occurrence network analysis, preserves the semantic structures of the texts.
Information extraction from the semantic structures is supported by the interplay of quantitative
and qualitative analyses of the network structures. Our analysis shows that significant differences in
social support exist across cancer types, and evidence for the differences across diseases in terms of
communication preferences and language use is also identified. Overall, this study can establish a
new venue for extracting and analyzing information, so as to inform social support for clinical care.

Keywords: online health community; social support; network analysis; cancer

1. Introduction

A cancer diagnosis and treatment can cause significant changes to a person’s path in
life and affect his/her daily activities, work, relationships, and family roles. Cancer patients
(and their surrounding members) often suffer from a high level of psychological stress,
which can lead to anxiety and depression. They strongly demand social support, which
is broadly defined as resources or aids that are exchanged by members within a specific
community. Extensive research [1–3] has reported social support as a complex construction
with direct and buffering effects on a person’s well-being and psychological adjustment
to cancer. For example, studies have suggested the association between social support
and cancer progression [4]. In addition, insufficient social support can lead to poor health
behaviors, which may result in an increased vulnerability toward cancer and its associated
mortality [5]. It has also been identified as a consistent indicator for survival.

According to the Health Information National Trends Survey, the proportion of cancer
survivors reporting internet use has increased over time, from 49.5% in 2003 to 76.9% in
2017 [6]. Consistent with that, social support is also increasingly exchanged via computer-
mediated communication, which has been referred to as computer-mediated social support.
It can be developed among strangers whose only connection is their common affliction
or concern about a source of personal discomfort. The anonymous nature of online com-
munities also allows patients to exchange personal concerns and advice without the fear
of being judged or recognized [7]. We refer to published studies for more discussions on
the advantages of computer-mediated social support [8–10]. Online health communities
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(OHCs) are online social networks with a focus on health. OHCs can be categorized as
either general-purpose communities or those dedicated to a specific health issue. Many
OHCs have their own websites, while others are built on existing social networking ser-
vices, such as Facebook. Compared to traditional health-related websites that only allow
users to retrieve information, OHCs can increase members’ ability to interact with peers
facing similar health problems and, as a result, better meet their immediate needs for social
support. People show emotional support for others in OHCs by offering encouragement,
reassurance, compassion, etc. OHCs are helpful in empowering patients through personal
participation and providing access to information as well as emotional support.

Understanding how members of these online groups interact with each other and make
use of online support resources is of critical interest. A handful of content analyses have
been conducted, examining the nature of support messages communicated in OHCs [11].
In several studies that analyzed a variety of cancer support groups, information support
was found to be the predominant type of support exchanged [12,13]. Some other studies
reported that emotional support was the most frequent type of support message [14,15].
Questions, though, about when and why social support messages in computer-mediated
contexts vary systematically remain largely unanswered [16]. Blank et al. [17] and Seale
et al. [18] revealed significant gender differences. There is also evidence that the support
needs of those who were diagnosed, and their families, vary by disease [12,19,20]. It is
noted that these studies are mostly limited to breast cancer and prostate cancer, which are
mostly gender-specific. Our literature review suggests that, in general, differences across
diseases have not been sufficiently examined—something that is critical for understanding
patients’ needs related to information, emotional support, and relationship-building in
OHCs. Only by understanding patients’ more specific perceptions and needs can we
further optimize the designs and services of OHCs, especially for cancer survivors, who
have complex support needs and require different levels of care [21].

Our objective is to provide a detailed and inductively generated account of cancer-type
differences in a large number of postings in online cancer support forums. To this end, a
novel approach is applied to better understand the types of social support embedded in
OHC posts. Different from some previous studies that relied on a commensurate coding
scheme with all posts coded [22], which is not feasible with a large amount of data, our
approach, based on a word co-occurrence network analysis technique, can provide a
macroscopic field-wide view to extract information from big data, making it possible
to process a massive amount of online community data. Some other studies adopted
quantitative analysis approaches. For example, Seale et al. [18] conducted a comparative
keyword analysis to facilitate an interpretive and qualitative examination focused on the
meanings of word clusters associated with keywords. There are limitations, however, such
as a lack of relevance of word clusters and an inaccurate expression of text themes. Wang
et al. [23] used machine learning techniques to reveal the types of social support embedded
in each post of an OHC. Wu et al. [24] proposed a social support classification method,
using an LDA (linear discriminant analysis) to extract topic features from data. A significant
limitation of this analysis is that a certain amount of human annotation is needed, which
can be time-consuming and subjective. In addition, an unbalanced data distribution can
affect the accuracy of prediction and performance. In this study, the adopted analysis
approach can advance from the aforementioned and other studies and directly overcome
their limitations. Text data are organized and analyzed with a network perspective, which
is system-oriented. Our analysis can identify patterns and relationships among all the
words in a system. It can capture properties of individual words and provide insight on
how individual words are tied to a larger web (collection of interconnections).
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Overall, this study fits well in the scope of information theory-based research. Specifi-
cally, it extracts information by conducting complex text mining, and generates knowledge
on a complex system by conducting an advanced network analysis, which can more effec-
tively describe variables by taking a system perspective and modeling interconnections.
Although the analytic methods adopted in this article have roots in the existing literature,
their “combination” and application to a new domain and new biomedical questions are
novel. The most essential merit of this study may come from its data analysis findings,
which can reveal the social support needed for multiple deadly cancers and the significant
differences across cancer types: this has been suggested in the literature but not well quan-
tified to date. The findings can be valuable for stakeholders at multiple levels including
healthcare providers, patients, family members, and others. This study can also serve as a
prototype for future social support analyses using state-of-the-art network and information
analysis techniques, and noting that the existing social support analysis has mostly been
based on less advanced methods.

2. Materials and Methods

2.1. Data Source

Patientslikeme.com (PLM) is the world’s largest personalized health network, with a
growing community of more than 830,000 users. It was designed to facilitate information-
sharing between users within disease-specific communities, with the goal of improving the
well-being of all users through knowledge derived from shared, real-world experiences
and outcomes. In addition to general social networking service (SNS) tools such as user
profiles, comments, and private messages, each community has disease-specific tools that
allow patients to track and share relevant information such as symptoms, treatments, and
medical data. These features have enabled PLM to play a leading role in empowering
patients and facilitating social support exchanges and communication online. We note that
PLM is not specific to cancer. However, it may still be one of the best resources for studying
cancer social support. Beyond the aforementioned advantages, it also has a close working
relationship with various healthcare providers. For example, two-thirds of its users felt
that their healthcare providers approved/supported using PLM, and about one-third had
printed out their patient profiles for use during healthcare visits [25].

PLM has a representative cancer community of more than 50,000 people with over
50 types of cancers, and it is focused on providing customized, disease-specific services that
are closely related to our research goal. Extensive research into patient perspectives has
been based on this information source. For example, there have been several evaluations of
patient perspectives on diseases as well as patient-reported clinical and treatment experience
studies of social support groups [26,27]. Other OHCs, such as Breastcancer.org [28], Google
Groups [19], and WebMD [29], have also been utilized as data resources in related research.

A web crawler was designed and used to collect data from the PLM online cancer forums,
which were launched in 2011. The original dataset consists of all the public posts and user
profile information from February 2011 to September 2020. There are 12,150 posts that were
contributed by 1358 users who were cancer patients or family members. All posts were in
English. The cancer patients were then filtered (according to tags and conditions), leading
to 6262 posts. Most of the posts (87.85%) are related to eight cancers. Our exploration
shows that the dominating majority of patients had a single type of cancer, which matches
clinical practice. Additional details are presented in Figure 1. Our study is centered around
these eight specific cancers.
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Figure 1. Percentages of posts for the eight types of cancer.

2.2. Method and Procedures

The key steps include the construction of the word co-occurrence network, module
detection, social support examination, and interpretation. They are discussed in detail in
the following subsections.

Step1: Word Co-Occurrence Network Construction

The posts are split into sentences. For pre-processing, we first conduct tokenization. Stop
words that are not informative are removed. Punctuation marks are excluded. Multi-word
tokenization is also conducted to expand a raw token into multiple syntactic words. A word
co-occurrence network is created with unigram tokens and concatenated multi-word units.

A word co-occurrence network can be expressed as G = (V, E), where V is a set of
nodes (where each node represents a word) and E is a set of edges. Edge eij ∈ E connects
nodes i and j if those two words co-occur within at least one sentence. The number of
edges is denoted as m = |E|, and n = |V| denotes the number of nodes. The degree of a
node i is the number of edges connected to that node, that is, ki = | { j ∈ V |{i, j} ∈ E}|.
The weight wij of edge eij is defined as the count of joint word occurrence, describing the
co-occurrence relationship between the corresponding words in one sentence. The network
is undirected by construction. Figure 2 shows a representative word co-occurrence network
plotted using the software Gephi and containing information on the words and semantic
structures. Some important statistical parameters that characterize a network are examined.
First, the average shortest-path length (ASPL) is the average value of the shortest-path
length between any two nodes in the network, which is calculated as:

ASPL =
2 ∑i>j dij

n(n− 1)
,

where dij is the shortest-path length between nodes i and j. Second, the clustering coefficient
of the network CC is the average of the clustering coefficients of all the nodes in the network
defined as:

CC =
1
n ∑i

mi
ki(ki − 1)/2

,

where ki is the degree of node i, and mi is the number of edges among the ki neighbor
nodes. For example, for an Erdös–Renyi random network, its average shortest-path length
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is ASPLr ≈ ln(n)/(ln(2m)− ln(n)), and its clustering coefficient is CCr ≈ 2m/n(n− 1).
A network is said to be a small-world network if ASPL ≈ ASPLr and CC ≈ CCr [30].
Third, degree distribution p(k) is defined as the probability that a randomly chosen node
has exactly degree k. For example, if p(k) satisfies the power-law degree distribution, that
is, p(k) ∝ k−γ, where γ is a positive constant, then the network is said to be scale-free [31].

Figure 2. A sample word co-occurrence network for randomly selected posts.

The study of co-occurrence can allow researchers to quantitatively describe the se-
mantic structures of posts. However, significant challenges appear immediately. The word
co-occurrence network of posts is usually very hard to visualize, and it is impossible to
directly extract meaningful information. As such, there is a strong need to simplify the
network, which can reduce complexity, improve visualization, and serve other purposes.
One approach is to construct subgraphs, in which most of the useful information contained
in the initial graph can be preserved. Here, we achieve this goal via network modules.

Step2: Module Detection

A module is defined as a set of densely connected nodes that are sparsely connected
to the other modules in the network. The Louvain algorithm [32], which is based on the
optimization of the quality function known as modularity over all possible divisions of a
network, is adopted in this analysis and realized using the Gephi software. More specifically,
this algorithm identifies modules by minimizing:

Q(c) =
1

2M ∑
i

∑
j

[
wij − λ

�i�j

2M

]
δij(c),

where c is a partition of nodes, wij is the edge weight between nodes i and j, λ is a tuning parameter,

M =
1
2 ∑

i
∑

j
wij,

�i = ∑
j

wij,

and

δij(c) =

{
1 i f c(i) = c(j)
0 otherwise

.

Here c(i) denotes the module to which node i belongs in the partition c.
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The algorithm can unfold a complete hierarchical modular structure for the network,
thereby giving access to different resolutions of module detection. In Gephi, the resolution
parameter, which describes how much between-group edges impact the modularity score,
determines the granularity level at which modules are detected [33], with a low-resolution
value resulting in more modules. It has been suggested that this algorithm outperforms all
other module detection methods in computation time. Moreover, highly satisfied module
detection has been observed in practice. For our analysis, module detection of the word
co-occurrence network can reduce the size of data, and the analysis of co-occurrences in an
individual module can allow researchers to keep track of the semantic structures, which
are useful in understanding social support.

Step3: Social Support Quantification and Interpretation

The analysis of word co-occurrences involves clustering words together without
breaking their semantic links. In this step, we examine social support by analyzing the
semantic structures of the identified modules. As a representative example, Figure 3
presents a module in the word co-occurrence network for ovarian cancer. The words
grouped in one module are likely to describe tightly connected topics. For example, most
of the words in Figure 3 are related to treatments and medical terminologies. As such, this
module can be considered as describing informational support.

• The Taxonomy of Social Support.

Several taxonomies have been developed for the categories of support messages (see for
example, [34,35]). Literature on social support suggests that OHCs mainly offer three types of social
support: informational support, emotional support, and companionship [11,36]. Informational
support is the transmission of facts, suggestions, and/or guidance to community users.
Example topics include medication side effects, ways to deal with a symptom, experience
with a physician, and medical insurance problems. Emotional support is the expression of
understanding, encouragement, empathy, affection, affirmation, caring, and concern. Such
support can help reduce stress and anxiety. Companionship consists of chatting, humor,
teasing, and discussions of daily life that are not necessarily related to health problems.
Examples include diet plans, birthday wishes, holiday plans, and online scrabble games.
Companionship helps expand or reinforce a group member’s connections.

Figure 3. A sample module from the word co-occurrence network for ovarian cancer.
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Through the quantitative analysis of semantic structures, the prevalence of specific
types of support messages can be revealed. To do this, the first step is to calculate the
proportion of edges in each module, which is defined as:

PCk =
∑i ∈Ck

{j ∈ Ck|{i, j} ∈ E}
∑K

k=1 ∑i ∈Ck
{j ∈ Ck|{i, j} ∈ E}

, k = 1, . . . , K,

where K is the number of modules, Ck represents module k, ∑
i ∈Ck

{j ∈ Ck|{i, j} ∈ E} denotes

the sum of edges between nodes in Ck. Then, we can compute the proportion of each social
support category by summing up the proportions from the individual modules. Exploring
communication preferences and language use can also be achieved by taking a closer look
at the semantic structures.

3. Results

We apply the analysis approach described above to the data on individual cancers.
Pancreatic cancer is highlighted as a representative example.

3.1. Word Co-Occurrence Network

Sentences drawn from the posts were tokened prior to the co-occurrence search, resulting
in a list of unique co-occurrence pairs. The word co-occurrence network was then constructed
for each cancer. Summary information on the word co-occurrence networks is provided in
Table 1. Based on this, an overview of the co-occurrence networks can be provided.

Table 1. Summary of the word co-occurrence networks.

Cancer
Type

Sentences Words
Co-Occurrence

Pairs
ASPL/ASPLr CC/CCr γ

Lung
cancer 15,690 12,830 196,620 3.167/2.764 0.789/0.001 2.416

Breast
cancer 3222 4059 48,559 3.481/2.617 0.821/0.003 2.930

Colon
cancer 2746 3524 57,430 3.188/2.344 0.826/0.005 3.017

Basal cell
skin cancer 1295 1462 12,124 3.901/2.595 0.831/0.006 3.453

Prostate
cancer 751 2005 28,475 3.409/2.272 0.867/0.007 3.056

Ovarian
cancer 585 936 10,842 3.592/2.177 0.884/0.012 4.802

Pancreatic
cancer 315 729 6749 3.595/2.258 0.861/0.013 3.939

Renal cell
cancer 848 1196 9692 4.054/2.544 0.858/0.007 3.414

Compared to a same-scale random network, all the networks have similar average
shortest-path lengths and higher clustering coefficients. For example, the average shortest-
path length of the pancreatic cancer network is 3.595 (in comparison, an Erdös–Renyi
random network has a value of 2.258), and the average clustering coefficient is 0.861 (in
comparison, an Erdös–Renyi random network has a value of 0.013). This suggests the
presence of the small-world phenomenon in the networks.

In the analysis of degree distribution, it is found that all networks exhibit power-law
degree distributions, with the power-law exponent γ ranging between 2.4 and 4.8. Table 1
shows that γ of the ovarian cancer network is the largest, and that of the lung cancer network
is the smallest. The scale-free characteristics suggest that the connectivity values of a small
number of nodes are quite large (with a large number of connections), rendering them leading
roles in the networks. On the other hand, most other nodes have limited connections.
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3.2. Module Detection

Take pancreatic cancer as an example. When we visualize its network (Figure 4), words
in different modules are represented with different colors. Under the default resolution
value of 1.0, there are 72 modules, and the modularity is 0.769. Modules with fewer than
five words are removed to improve presentation, leading to 25 modules. Among the
remaining modules, the average clustering coefficient is 0.890, suggesting a significant
clustering effect. The silhouette for each module is also calculated. The mean silhouette
value is 0.649. The silhouette values of the five largest modules are shown in Table 2, which
suggest a satisfactory partitioning of the network. The same analysis is also conducted on
the other cancers, and the summary of the module detection results is presented in Table 3.

Figure 4. Word co-occurrence network for pancreatic cancer. Different modules are represented using
different colors.

Table 2. Information on the five largest modules for pancreatic cancer.

Module ID % of Edges Silhouette Selected Keywords

1 11.35% 0.503 pancreatic cancer; diagnosed; side effects;
surgery; left functional

2 7.90% 0.546 chemo; life; oncologist; monitoring; weeks

3 6.32% 0.615 cancer; healthy diet; drinker; fatty tissue;
chest cavity

4 6.08% 0.771 doctors; medical cars; scans; sign;
pain symptoms

5 4.39% 0.791 treatment; pain; happy; awful; painful
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Table 3. Summary of module detection.

Cancer Type Modularity CC Silhouette
Number of
Modules

Lung cancer 0.414 0.855 0.426 28
Breast cancer 0.646 0.842 0.433 29
Colon cancer 0.576 0.840 0.506 27

Basal cell skin cancer 0.751 0.857 0.575 29
Prostate cancer 0.685 0.898 0.802 28
Ovarian cancer 0.786 0.903 0.593 27

Pancreatic cancer 0.769 0.890 0.649 25
Renal cell cancer 0.797 0.877 0.503 26

3.3. Social Support Quantification and Interpretation

Summary information for the five largest modules for pancreatic cancer is shown in
Table 2. It is observed that the themes of modules 1–4 are mainly concentrated around
cancer information, that is, information social support. The keywords of module 5 are
mostly associated with the feelings of patients, corresponding to emotional social support.
With a similar analysis of the other modules, the proportion of edges in each module
is calculated, and the proportions of different social support types after aggregation are
obtained. Results are shown in Table 4.

Table 4. Proportions of different social support categories.

Cancer Type Information Support Emotional Support Companionship

Lung cancer 54.94% 13.32% 31.74%
Breast cancer 40.68% 40.45% 18.87%
Colon cancer 58.81% 8.99% 32.20%

Basal cell skin cancer 42.02% 24.19% 33.79%
Prostate cancer 41.15% 36.73% 22.12%
Ovarian cancer 37.22% 36.43% 26.35%

Pancreatic cancer 54.34% 13.13% 32.53%
Renal cell cancer 47.92% 23.61% 28.47%

3.3.1. Differences across Diseases in Types of Social Support

Table 4 shows the proportion of each social support category for each cancer type.
Overall, information support (mean 47.14%) and companionship (mean 28.26%) are ex-
changed most frequently. Sharing is caring, and most posts talk about medical treatments
and daily life. The Chi-squared analysis confirms that the overall distribution of social
support categories is significantly different across cancer types (p < 0.001). Specifically, lung
cancer, colon cancer, and pancreatic cancer have the highest percentages (above 50%) of in-
formation support. Ovarian and breast cancers have the lowest percentages of information
support. Breast cancer has the highest percentage of emotional support (40.45%), followed
by prostate cancer (36.73%), ovarian cancer (36.43%), and skin cancer (24.19%). Skin cancer
has the highest percentage of companionship (33.79%), while breast cancer (18.87%) and
prostate cancer (22.12%) have the lowest.

3.3.2. Differences across Diseases in Communication Preference and Language Use

There is evidence of differences in language use and communication preference across
diseases. Four cancers (breast, ovarian, prostate, and skin) have pronounced commu-
nication preference and language use patterns. Figure 5 shows the representative net-
work modules, revealing the emotional support of these four cancers. It is observed that
breast and ovarian cancer patients mainly talked about their pains and feelings, and their
language style was sentimental. In comparison, prostate cancer patients talked more
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about their thoughts and beliefs, and their language style was calmer and more rational.
Figure 6 shows the companionship traits of the four cancers. Skin and breast cancer patients
mainly talked about their daily lives, ovarian cancer patients talked more about their family
members, and prostate cancer patients talked more broadly. Differences in language use
and communication preference mainly exist in the categories of emotional support and
companionship. Overall, these findings can reveal several key differences in the use of
OHCs across cancer types.

 
 

(a) (b) 

  
(c) (d) 

Figure 5. Emotional social support revealed by network modules: (a) breast cancer; (b) prostate
cancer; (c) ovarian cancer; (d) skin cancer.
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(a) (b) 

 
(c) (d) 

Figure 6. Companionship revealed by network modules: (a) breast cancer; (b) prostate cancer;
(c) ovarian cancer; (d) skin cancer.

4. Discussion

Our findings are mostly consistent with published research. For example, information
support has been identified as the most common type of social support, and published
literature has suggested that messages of emotional well-being and medical-related com-
ments are most common on breast cancer sites [17,19,37]. Meanwhile, our research has also
added to the existing knowledge of the significant differences between social support cate-
gories across cancer types. For example, lung cancer, colon cancer, and pancreatic cancer
survivors have been found to mainly utilize OHCs for information-gathering. Notably,
prostate cancer survivors also used OHCs as a source of emotional support. Breast, ovarian,
prostate, and skin cancer survivors appeared to be in most need of emotional social support.
This is likely because people with these cancers had to bear more mental pressure and had
a higher risk of also experiencing depression after a new cancer diagnosis [38]. For skin
cancer, the high percentage of companionship indicates that the survivors had many daily
struggles that led them to seek out support.
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Besides adding to existing knowledge by complementing and extending previous
research into computer-mediated social support communicated by cancer patients, our
analysis has also demonstrated the need for greater recognition of the differences between
people with different types of cancer. This knowledge can assist in the design of OHCs. The
work can also be a resource for guiding cancer survivors and their families to OHCs that
tend to focus more on their specific types of cancer and issues. Similarly, clinicians need
to be more aware of the different needs of patients and their families and be able to direct
them to online resources that are the most likely to be supportive. In this line, recent studies
have shown that the internet has changed the patterns of doctor–patient communication.
Social support in OHCs has sometimes played an ambiguous role, making patients behave
in a strategic, uncooperative way toward physicians [39,40]. Patient care services have been
recommended to enhance the patient–physician relationship. More studies on patients’
specific support needs and patient–physician cooperation are needed.

The adopted analysis method can also be used, along with or in replacement of
machine learning techniques, in the identification of user roles in OHCs. Further studies on
user roles (for example, the differences between lurkers and posters, their specific behaviors,
and impact) are also warranted.

Limitations

This study inevitably has limitations. Although PLM is representative and its data has
also been examined in other published studies, it is a single OHC and may have a problem
of biasedness; although, this has not been observed in existing studies. We have extracted
all cancer forum data from PLM. Still, the amount of data for some cancers is limited. This
may be true for pancreatic, ovarian, and renal cell cancers. Another data limitation is the
possible lack of reliability. Medical information researchers have found that social media
sites are identified by limited information [41]. Online users may also be vulnerable to both
hidden and overt conflicts of interest, and so they may be incapable of interpreting [42]. In
this dataset, there is a lack of information on the duration of diagnosis. As such, we are not
able to conduct, for example, a longitudinal analysis to examine temporal trends. Another
missed opportunity is that, with a small number of patients with multiple types of cancers,
we are not able to provide insights into poly chronic conditions.

There may also be methodological limitations. For example, there is an emphasis
on a module-based analysis over individual-message based, which may lead to certain
challenges in result interpretation. We have studied the most essential network properties,
and it may be of interest to explore more subtle network information.

5. Conclusions

This study has made both domain-specific and methodological contributions to the
investigation of OHC use among cancer survivors. There is evidence, some of which
confirms and some of which adds to the existing literature, about the significant differences
across diseases in terms of social support needs. Specifically, lung cancer, colon cancer,
and pancreatic cancer survivors mainly utilized OHCs to meet information support needs.
Healthcare providers and physicians are recommended to provide guidance to patients
and families on how to gather information and verify its authenticity. Breast, ovarian,
prostate, and skin cancer survivors were found to be the most in need of emotional support.
For them, targeted patient care can be advice and help to build healthy relationships in a
community. Moreover, there is evidence for differences across diseases in language use and
communication preference when exchanging social support. For example, skin and breast
cancer patients mainly talked about their daily lives, ovarian cancer patients talked more
about their family members, and prostate cancer patients talked more about their thoughts
and beliefs. Getting familiar with patients’ communication preferences can be valuable for
establishing the patient–provider bond. With collaboration, liking, and trust, patients are
more likely to adhere to treatment especially for long-term medical issues. This work has
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also introduced a novel method for social support quantification and interpretation, which
has multiple advantages over the analyses applied in previous studies.
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Abstract: Liquid financial markets, such as the options market of the S&P 500 index, create vast
amounts of data every day, i.e., so-called intraday data. However, this highly granular data is often
reduced to single-time when used to estimate financial quantities. This under-utilization of the
data may reduce the quality of the estimates. In this paper, we study the impacts on estimation
quality when using intraday data to estimate dividends. The methodology is based on earlier linear
regression (ordinary least squares) estimates, which have been adapted to intraday data. Further, the
method is also generalized in two aspects. First, the dividends are expressed as present values of
future dividends rather than dividend yields. Second, to account for heteroscedasticity, the estimation
methodology was formulated as a weighted least squares, where the weights are determined from
the market data. This method is compared with a traditional method on out-of-sample S&P 500
European options market data. The results show that estimations based on intraday data have, with
statistical significance, a higher quality than the corresponding single-times estimates. Additionally,
the two generalizations of the methodology are shown to improve the estimation quality further.

Keywords: big data adaptation; dividend estimation; options markets; weighted least squares

1. Introduction

This paper presents a method for extracting dividend information from the equity
derivatives market using exchange-traded European-typed call and put options. The
central methodology in this paper is an extension of the work of Desmettre et al. [1],
that is, to formulate a linear regression with a well-known put–call parity. Moreover, we
present a novel option position (the sloped asset position), from which it is possible to
compute a dividend estimate without specifying an interest rate. Furthermore, throughout
the paper, the primary application in mind for the estimates is derivative pricing. This
application framing may prima facie seem like an unnecessary limitation, but we argue
that the estimates have often-overlooked inherent assumptions that should be aligned
with the application. The derivative pricing application follows naturally, whereas other
applications require non-trivial adjustments.

One research question is the connection between an asset and its dividends. One of
the earliest examples is the asset valuing method: discounted cash flow. The principle idea
of that method is that there is a relationship between the price of an asset and its future
dividend payments. A related research question is to understand the effect on asset prices
of dividend payments. The price of a dividend-paying asset in a frictionless market, ceteris
paribus, would drop when a dividend is paid, and the size of the drop would be the size of
the dividend payment, see, e.g., Campbell and Beranek [2] and Miller and Modigliani [3].
However, this theory is not supported in empirical studies, and the price generally drops
less than the size of the dividend. Campbell and Beranek [2] attribute the differences to
tax effects. This idea was elaborated into a formula by Elton and Gruber [4], where the
differences between dividend and capital gain taxes were key. Other explanations have
been presented, such as transaction costs and behavioral effects. The former was studied by,
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e.g., Kalay [5] and Boyd and Jagannathan [6], and the latter by Hartzmark and Solomon [7].
Practical imperfections such as a time difference between the ex-dividend date and the
payment date can also explain this idea, as was claimed by Wilmott [8]. This paper neither
elaborates upon the discounted cash flows method nor provides explanations of imperfect
drops in asset prices. Still, these effects must be considered when estimating dividends and
evaluating these estimates. We present the implications of the imperfections for estimate
interpretation and how to evaluate estimates accordingly.

Dividends are also central in the derivative pricing literature. Dividends have recently
started to be seen as an independent asset class according to Filipović and Willems [9], who
also provide an overview of this market. This asset class has some interesting properties, but
it is not used in this paper. We elaborate on this decision in Section 2.1. Instead, we follow
the traditional focus, which has been on modeling the effect on asset price of dividend
payments. One of the first to incorporate dividends in derivative pricing was Merton [10],
who modeled dividends as continuous adjustments. Another approach is to have discrete
adjustments. Discrete adjustments can be applied either as an adjustment of the spot price
or an adjustment of the price as time evolves, where the former is sometimes known as
an escrowed model (for an overview of this model, see Haug et al. [11], Frishling [12], and
Vellekoop and Nieuwenhuis [13]). The use of discrete adjustments is limited since these
models have drawbacks. The former contains the possibility of arbitrage opportunities
and logical flaws, while the main problem with the latter is its complexity, which often
leads to costly methods, see a more elaborated discussion in Haug et al. [11] and Vellekoop
and Nieuwenhuis [13]. These problems can be avoided by following Merton [10] and
modeling the dividend as a constant continuous yield for each period of maturity, even
though that is a poor representation of reality. For example, that method has been applied
to models based on stochastic differential equations, such as Carr and Madan [14], Duffie
et al. [15], and Carr et al. [16]; implied volatility models such as Gatheral and Jacquier [17];
and local volatility models such as Derman and Kani [18], Derman and Kani [19], and
Geng et al. [20].

Regardless of the method, a critical concept is making pricing consistent, which is a
critique against the escrowed approach. Even so, estimating dividends, either as a yield
or as a present value of future dividends, from market data is not well-studied in the
literature. The estimation method that we propose does naturally handle consistent pricing.
Furthermore, we study the difference between estimating yield and present value and
find that the latter is preferable, regardless of the choice of pricing model. We explain this
performance difference in the inherent connection between the dividend yield and the price
of the underlying asset.

Although there has been little effort to estimate the dividends for the derivative pricing
perspective, it has received more attention in other fields. For example, dividends have
long been of interest in studies, such as Fama and French [21], on how dividend yields
predict stock returns. Fama and French [21] were not the first to take an intererest in this
topic; for an overview of preceding work see their paper and for succeeding papers see
Golez [22]. The aims of these papers are of limited relevance in this current study, and rele-
vance is how dividends are estimated. Earlier papers used historical (realized) dividends,
but Golez [22] claims that using those could decrease predictability and argued further
that inferring dividend yields from the derivatives market is beneficial. Bilson et al. [23]
complemented the work of Golez [22] by introducing a novel approach to dividend growth
rates implied by market data. Important to note is that Fama and French [21], Golez [22],
and Bilson et al. [23] had other aims than to develop a dividend estimation methodology.

Our focus, i.e., on estimation methodology, is not common, but another similar
exception is the linear regression (ordinary least squares) methodology presented by
Desmettre et al. [1]. In this paper, we generalize the work of Desmettre et al. [1]. The
work of Desmettre et al. [1] and our paper can be seen as a parallel to recent work in in-
terest rate estimation by Azzone and Baviera [24] and Blomvall et al. [25]. The estimation
methodologies are similar for interest rates and dividends, but the latter contains additional
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nuances that must be considered. Papers that have estimated dividend quantities from
data, such as Golez [22], Bilson et al. [23], and Desmettre et al. [1], have all based their
estimates on data from a single time. We expand the data —in the same way as Blomvall
et al. [25] does —to use intraday data and find that it provides more stable estimates, i.e.,
less sensitive to market noise. Moreover, intraday data introduces a coupling to market
dynamics that must be considered via a slight reformulation of the regression developed by
Desmettre et al. [1]. Additionally, we also present a generalization in the form of weighted
least squares formulations.

The estimation methodology is one part of this paper. Furthermore, Desmettre et al. [1]
argue that their method and results are limited to markets that meet specific conditions,
e.g., the French and German equity markets. This paper presents another interpretation
of the quantities, enabling us to evaluate the dividend estimates for more markets, e.g.,
the US S&P 500 equity market. However, our method is not applicable when used along
with equity shares since our methodology relies on relationships between European-typed
options. One key of the result evaluations is that the sloped asset position is introduced,
acting as an independent method. This position is analogous to the box position used in
interest-rate estimation.

The remaining section of this paper is arranged as follows. First, we start with the
modeling of dividends, where different estimation methods are also presented. We continue
by discussing our data set: the raw data used in the studies and the processing that we
performed on the data. In the subsequent section, we present our evaluation methodology,
numerical results, and related discussions. Finally, the paper ends with a conclusion and
summary of the results found in the paper.

2. Dividend Modeling and Estimation

A dividend payment is a way to distribute value from companies to their shareholders.
The basic dynamic that we utilize in our methodology is that the asset price drops when the
asset pays a dividend. To obtain a forward-looking estimate, we use the derivatives market.
To schematically exemplify this, assume that we have a—highly theoretical—situation with
two European-styled call options with identical contract specifications, i.e., identical time
to maturity, strike price, and underlying asset, but one option has an underlying asset that
pays a dividend while the underlying asset of the other option does not. The option with
the dividend-paying asset has a lower price than the other since its payoff at expiry is
smaller. In this highly theoretical—but unrealistic—setting, we could infer the dividend
effect from the price difference between the options. It is possible to achieve a similar
inference in a realistic setting by utilizing the derivatives market.

The idea is simple, but the interpretation of the estimated quantity—even in the ide-
alistic setting of the above example—is rather complex. First, in the example above, the
difference between the two option prices is not the dividend, since the option owner is not
entitled to the dividend in either case. The difference is instead dependent on how the asset
price reacts to dividend payments. This insight is—according to us—not sufficiently pro-
nounced in the dividend estimation literature. Nevertheless, it is of significant importance
when interpreting estimates.

The difference between drops and dividends has been empirically studied for shares,
and different explanations have been proposed. This research question has not been closed,
but when we look into options with an index as the underlying, we argue that other
additional effects may also be present. The most apparent difference between a single share
and an index is that the latter is neither a traded asset nor pays dividends. The value of
an index, i.e., the quoted index value, is not a traded price but a computation from the
index constituents’ prices according to an index methodology. From this computation, it
follows that the index quote should, ideally, experience a drop that reflects the constituent’s
equity price drop and weight. There might also be details in the index methodology that
further complicate the situation. For example, the S&P 500 index quote is not adjusted for
standard cash dividends but extra cash dividends. Hence, in theory, the type of dividend
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payment is reflected differently in the index quotes. These complications make the estimate
interpretation more complex than for a single share.

To summarize, the crucial insight is that the effect seen in the market is not only due
to the dividend, but is a result of a mixture of the dividend and its imperfections. Despite
the importance of this insight, it has received little attention. Desmettre et al. [1] present
a related argumentation, but they limit the imperfections to the tax situation. We instead
argue that the estimates should not perfectly reflect the realized dividends but rather a
latent quantity. This claim is similar to the claim of Desmettre et al. [1], but the difference is
that we do not see tax as the sole imperfection. Nevertheless, throughout this paper, we do
not explicitly clarify this point repeatedly and refer to the quantity simply as a dividend to
increase readability.

The initial theoretical situation—with two different behaviors, i.e., prices, of the same
underlying asset—is impossible to replicate in reality. The key to making the idea usable
in reality is creating derivative positions related to the underlying asset. In the following
two sections, we first discuss data and different relationships that can be used, and then we
discuss how to infer estimates from the relationships.

2.1. Market Dividend Relations

The aim of this paper is to create derivative relationships, or positions, of—exchange-
traded contracts—from which it is possible to infer the dividend. The relationships that
we use should fulfill two properties. First, the data quality of the position should be high,
and, second, the position should not require complex modeling of, e.g., the underlying
asset, but rather suffice with few assumptions. The former is not a strict definition, but we
regard quality as a synonym to liquidity in this paper, i.e., high liquidity is high quality.
The reason that we want high-quality data is to ensure that the data quality does not limit
the estimates. The limitation of the second property comes from an interpretation of the
estimates. The drawback of complex modeling is that the dividend is strongly coupled to
the specific model. Estimating the dividend from such a model requires a calibration of
the other model parameters. In essence, this coupling makes the dividend an additional
model parameter in the calibration process, and, hence, the dividend is affected by the
other parameters. This may be a valid method for the calibration of the model, but the
dividend is not transferable to other models or applications. Thus, the market contracts
we considered in this study were limited by the two properties: high-quality data and
non-complex modeling.

The traditional market, when inferring dividend,s has been the equity derivatives
market, such as equity futures or equity options. An alternative that may seem attractive
is the dividend derivatives market, because of its close connection to dividends, and also
because it was used to infer dividend information by van Binsbergen et al. [26]. The market
is interesting, but we see three drawbacks of using this market for dividend estimation.
First and most important, the underlying of these derivatives is a dividend point index,
which is computed from realized dividends. Therefore, the inherent information in the
dividend derivatives is linked to realized dividends rather than the effect dividends have
on the equity index. This discrepancy makes the dividend derivatives market ill-suited for
our estimation since we want to estimate the effect of the asset rather than the dividend.
Second, van Binsbergen et al. [26] introduced a model that makes the corresponding
estimates less tractable and violates our second property. Additionally, the method used
has been questioned by Tunaru [27], who argues that van Binsbergen et al. [26] fail to
recognize that dividend derivatives are part of an incomplete market and, thus, that results
pbtained using them are invalid. Third, the asset class is not well developed in most
markets, and its liquidity is low.

To avoid both illogical approaches and poor liquidity, we use the equity market. In
theory, a wide range of derivatives could be used, from plain vanilla to exotic contracts.
However, we exclude contracts in the latter category since they require pricing models or
have low illiquidity. To conclude, in this study, we considered futures contracts and plain
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vanilla call and put options to infer dividend information without introducing models and
using liquid market data.

The literature for estimating dividends from market data has had two prevailing
contract types: futures contracts and plain vanilla European options. The relationships that
typically relate to these contracts are the future-basis and the put–call parity. Variations
of these positions have been presented, but the common denominator is that they can be
constructed almost exclusively and uniquely with exchange-traded contracts. The only
component of the relationships that is not directly market observable is the spot interest
rates, which match the periods of maturity of the contracts. These unobservable interest
rates must be computed from market data. This computation and the corresponding
contracts are undesirable because of their increased complexity and reduced tractability.

2.1.1. General Notation

This paper works with two dividend formulations: a yield formulation and a present
value formulation. We let δ(t; T) denote the dividend yield estimated at time t for the
period [t, T] and D(t; T1, T2) denote the estimated present value at time t of dividends paid
in the period [T1, T2]. To simplify the notation—when the start of the period coincides with
the time of estimation—we also introduce D(t; T) ≡ D(t; t, T). Another key component
in the dividend estimation is the continuously compounded interest rate. We use the
formulation used by Blomvall et al. [25] and decompose the interest rate into two terms,
one risk-less interest and an additional spread. We denote the risk-less interest rate and the
spread at time t for the period [t, T] as ro(t; T) and s(t; T), respectively.

This paper considers options with S&P 500 as their underlying, where the standard
S&P 500-option contract is of the European-type. The choice of European-typed options
was not made inadvertently. Our method does not hold, in general, for American-typed
options. European call and put options are used, but they are always considered in a pair
as synthetic forward positions. A synthetic forward position is created from a call–put
option-pair, i.e., two options with the same underlying, the same time to maturity, and the
same strike price. A long (short) synthetic forward position is equivalent to a long (short)
call option position and a short (long) put option position. The name synthetic forward
position stems from the payoff, which is similar to a standard forward contract, i.e., linear
in the price of the underlying. The payoffs are similar, but there are differences between a
standard forward contract and the synthetic forward position. The former is unique for
each time of maturity, and, upon entering, the two parties agree on a forward price that
marks the contract to the market, i.e., no money is transferred upon entering. The synthetic
forward position, on the contrary, is not unique for each time of maturity, and it is possible
to specify the strike prices. Thus a money transfer can be necessary to mark the contract to
the market.

The quote of the S&P 500 index is computed and presented as a unique value, but
the market prices for tradable financial assets are only precise down to a bid–ask spread.
Despite this market feature, we formulated all the relationships with a unique price in the
remainder of this section. Details are discussed in Section 3, but the unique prices used
were mid-prices, i.e., the arithmetic means of the bid and ask prices.

2.1.2. Future-Basis

The future-basis is the relationship between a future and spot price for a futures
contract. This position is, in essence, used by Andersen and Brotherton-Ratcliffe [28], and it
is also described in various textbooks and practitioner-geared literature, such as Wilmott [8]
(p. 1040). Let S(t) denote the spot price at time t, and F(t; T) the future price at time t with
a time of maturity T, then the future-basis can be written as

F(t; T) = S(t)e(ro(t;T)+s(t;T)−δ(t;T))(T−t) (1)
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and

F(t; T) = S(t)e(ro(t;T)+s(t;T))(T−t) − D(t; T), (2)

where the former holds for the dividend yield and the latter for a present value of dividends.
These relationships can be rewritten as dividend estimates:

δ̂(t; T) =
1

T − t
ln
[

F(t; T)
S(t)

]
− (ro(t; T) + s(t; T)) (3)

and

D̂(t; T) = S(t)e(r(t;T)+s(t;T))(T−t) − F(t; T). (4)

One clear advantage of basing dividend estimates on the future-basis is that the estimates
are uniquely specified. On the other hand, we see three drawbacks to basing the estimation
of the future market. First, the interest rate must be determined, and potential misspecifi-
cation affects the dividend estimate. Second, the liquidity of the futures contract is only
high for short times to maturity, and, hence, estimations corresponding to longer times to
maturity are challenging. Third, the uniqueness of the estimate comes with a drawback.
To rely on a single contract for an estimate makes it fragile to noise in the futures price.
The second and third drawbacks can be resolved using the options market, e.g., via the
put–call parity. Moreover, all three drawbacks can be removed entirely with the sloped
asset position, but at the cost of the non-unique estimates. It is also possible to mitigate
the first and third problem using a suitable estimation method, which is discussed in
Section 2.2.1.

2.1.3. Put–Call Parity

The put–call parity is a relationship that relates the price of a European call option,
the price of a European put option, and the price of their underlying asset. The put–call
parity does not hold for American call and put options since American-typed options can
be exercised early, i.e., prior to maturity. This optionality provides the American-typed
options a premium that violates the parity. However, Kragt [29] presents a methodology to
estimate these premiums simultaneously with the dividend component, which is outside
the scope of this paper. To base dividend estimates on the put–call parity is not a novelty.
Additional examples are van Binsbergen et al. [30], Hull [31], and Desmettre et al. [1], where
the second formulates the parity with a dividend yield and the other two with the present
value of the dividends. We let c(t; K, T) and p(t; K, T) denote the European call and put
option prices, respectively, at time t of options, with strike price K, and time of maturity T.
The put–call parity formulated with a yield and a present value can be written as:

c(t; K, T)− p(t; K, T) = S(t)e−δ(t;T)(T−t) − Ke−(ro(t;T)+s(t;T))(T−t), (5)

and

c(t; K, T)− p(t; K, T) = S(t)− D(t; T)− Ke−(ro(t;T)+s(t;T))(T−t), (6)

respectively. The left-hand sides of the two relationships can be identified as synthetic
forward positions, which we denote as f (t; K, T) ≡ c(t; K, T)− p(t; K, T). From the parities
and fixed t, T, and K, it is possible to find direct formulas of the dividend estimates:

δ̂(t; T) = − 1
T − t

ln

[
c(t; K, T)− p(t; K, T) + Ke−(ro(t;T)+s(t;T))(T−t)

S(t)

]
(7)

= − 1
T − t

ln

[
f (t; K, T) + Ke−(ro(t;T)+s(t;T))(T−t)

S(t)

]
, (8)
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and

D̂(t; T) = S(t)− Ke−(ro(t;T)+s(t;T))(T−t) − c(t; K, T) + p(t; K, T) (9)

= S(t)− Ke−(ro(t;T)+s(t;T))(T−t) − f (t; K, T), (10)

for the yield and present value, respectively. All estimates for a given time of maturity
should, in theory, be the same irrespective of the strike prices. This unity is not true
in practice, and the estimates differ for different strike prices. These multiple estimates
mitigate the fragility of a single contract but at the cost of non-uniqueness. If a single-valued
estimate is necessary, we require an aggregation method. Additionally, the options market
is more liquid than the futures market for most times of maturity. The exception is short
times to maturity, where the futures market is more liquid than the options market. The
third drawback of the future-basis (the need for an interest rate) is also present for the
put–call parity. One option to remove the need is to utilize a new option position—the
sloped asset position.

2.1.4. Sloped Asset Position

Ronn and Ronn [32] presented an option position, the box-position, from which a
market-implied interest rate could be estimated without specifying a dividend. The position
has been used in the literature, e.g., van Binsbergen et al. [33] and Blomvall et al. [25]. The
box-position is constructed by combining two put–call parities or the equivalent of two
synthetic forward positions. We build upon the same logic but choose the number of
synthetic forward contracts differently. Let K1 ∈ R+ and K2 ∈ R+, and let the new position
consists of one long position in a synthetic forward with the strike price K1 and K1/K2
short synthetic forward positions with the strike price K2. We refer to this position as the
sloped asset position, where the name stems from the payoff of the position. From (5) and
(6), we can write two relationships (see Appendix A for details):

f (t; K1, T)K2 − f (t; K2, T)K1

K2 − K1
= Ste−δ(T−t) (11)

and

f (t; K1, T)K2 − f (t; K2, T)K1

K2 − K1
= St − D(t; T), (12)

respectively. We note that the left-hand sides are the same but that the right-hand sides
differ, and we introduce the concept of an adjusted spot price, to simplify the notation,
thus:

S∗(t; K1, K2, T) :=
f (t; K1, T)K2 − f (t; K2, T)K1

K2 − K1
. (13)

It is possible to reformulate (11) and (12) with the adjusted spot price into:

δ̂(t; T) = − 1
T − t

ln
[

S∗(t; K1, K2, T)
S(t)

]
, (14)

and

D̂(t; T) = S(t)− S∗(t; K1, K2, T), (15)

respectively. The advantage of the position is twofold. First, it is less exposed against noise
since it—similar to the put–call parity—is not based on a single data point. Second, contrary
to the put–call parity and the future-basis, it does not need an interest rate specification.
The reduced noise exposure comes with two drawbacks since it is possible to construct
many positions. First, similar to the put–call parity, the estimates must be aggregated if
a single-value is wanted. Second, the method is unfeasible for some data sets that the
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other relationships could manage. For example, with a data set consisting of n option
pairs for a given time of maturity (i.e., n synthetic forward contracts), it is possible to
construct n(n− 1)/2 different sloped asset positions and thus equally as many estimates.
This quadratic relationship makes the position computationally unfeasible for data sizes
that are feasible for the future-basis and the put–call parity. A solution to this infeasibility
problem is to limit the data set, but we have chosen not to limit it, because it is difficult to
make such a limitation generally and systematically.

2.2. Estimation Methods

The three relationships: the future-basis, the put–call parity, and the sloped asset
position could all be used to estimate a dividend quantity, either a yield or a present value,
for specific times, t, and times of maturity, T. The estimation method aims to produce a
single estimate for each date, but we have multiple times for every date. Furthermore, the
future-basis implies a unique estimate for each time of maturity, while multiple estimates
can be inferred from the other two relations. For practical applications, multi-valued
estimates do not suffice, and a necessary element in the estimation method is aggregation.

A straightforward approach to produce a single estimate is to limit the data. In
doing this, the aim of the method is met, but the drawback is that the technique probably
introduces additional noise in the estimates, which comes from the fact that the chosen
data points can imply biased estimates. An alternative could be to select data points such
that the noise is reduced. The disadvantage of such an alternative is twofold. First, it is
challenging to design a method that makes this selection possible. Second, it is a strong
assumption that a few data points are representative of the whole market. Therefore, we can
adjust the estimates instead of adjusting the (input) data. A technique that would consider
all available data points to aggregate the estimates, could, e.g., be a mean or a median
computation. The drawbacks of this approach are that it requires that the interest rate is
specified exogenously, and that the weights given to specific estimates are arbitrary. For
example, in the case of the median, all of the weight is put on a single estimate. To mitigate
these drawbacks, we followed the method used by Desmettre et al. [1] and formulated the
put–call parity as a linear regression model. Similar formulations have also been used by
van Binsbergen et al. [33], Azzone and Baviera [24], and Blomvall et al. [25] for interest rate
estimation methodologies.

The regression used by Desmettre et al. [1] is the foundation of our work, but we
present three expansions. First, instead of limiting the data used to data from a single time
(single-time data), we use data from a whole day (intraday data). Second, we formulate two
regressions with different modeling of the dividend: one where the dividend is formulated
as a yield and one where it is formulated as a present value. Third, we generalize the
regression from an ordinary to a weighted least squares model. It would also be possible
to formulate a regression from the future-basis, since we use intraday data. We elaborate
slightly in the next section, but we do not see it as an appropriate approach, primarily
because of the drawbacks presented in Section 2.1.2.

2.2.1. Linear Regression

We formulated one linear regression model for each time of maturity and each put–call
parity formulation, (5) and (6). The first regression model was formulated with a dividend
yield, and the second used a present-value formulation. In contrast to Desmettre et al. [1],
we used intraday data rather than data from a single time. Further, Desmettre et al. [1]
correctly point out that by estimating the dividend with regression, the interest rate is esti-
mated simultaneously, eliminating the need for a separate interest rate estimate. Therefore,
it may seem strange to reintroduce the estimation need by formulating the interest rate as
a sum of an interest rate and an interest spread, but the reintroduction is necessary due
to the fact that we use intraday data. The interest rate for a single time is constant, but it
is not, in general, constant across a whole day. Consequently, to formulate the regression
with a fixed interest will inevitably involve an approximation. To make a more realistic and
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suitable formulation, we model the spread as a constant and keep intraday dynamics for
the total interest rate. The rationale is the same as that used by Blomvall et al. [25], i.e., that
the spread is more stable intraday than the risk-less component.

In the formulation, we let Nd denote the number of days we estimated the dividends
and let d denote the day d ∈ {1, . . . , Nd}. Moreover, we let κ denote a pair of one (intraday)
time, t, and one strike price, K, κ = (t, K). For a day d and a time of maturity T, we collected
pairs in a set H d,T and enumerated the pairs as 1, . . . , Nd,T , where Nd,T =

∣∣∣H d,T
∣∣∣. (The

operator, |·|, denotes the cardinality of the set.) (The order is unimportant, and the pair
with index i is thus κi = (ti, Ki)). We also introduced τd,T , which is the time to maturity
computed at the beginning of the day. To compute the time from the beginning of the day,
we followed the interest rate market convention. The put–call parity, Equation (5), can then
be written as

f T
i = S(ti)e−δd,Tτd,T − Kie−rT

o (ti)τ
d,T

e−sd,Tτd,T
, ∀i = 1, . . . , Nd,T , (16)

where f T
i ≡ f (ti; Ki, T). We introduced Xd,T

1,i := −Kie−rT
o (ti)τ

d,T
and X2,i := S(ti) to simplify

the notation. (Note that X2,i neither depends on the day nor the time of maturity.) We
wanted to estimate e−δd,Tτd,T

and e−sd,Tτd,T
, and denoted the corresponding regression

coefficients as γd,T
1 and γd,T

2 . Thus, it is possible to write the linear regression as

f T
i = Xd,T

1,i γ1 + X2,iγ
d,T
2 , ∀i = 1, . . . , Nd,T . (17)

It is possible to write a similar regression, based on (6) by introducing hT
i := f T

i − S(ti) and
a regression constant, γ0,

hT
i = γ0 + Xd,T

i,1 γ1, ∀i = 1, . . . , Nd,T . (18)

To summarize, we can write the financial quantity estimates from the regression estimates as

D̂d,T = −γ0, (19)

δ̂d,T = − 1
τd,T ln

[
γ̂d,T

2

]
, (20)

ŝd,T = − 1
τd,T ln

[
γ̂d,T

1

]
, (21)

where D̂d,T is the estimate of the present value for the time of maturity T. The interest rate
spread estimate, ŝd,T , can be estimated from the regression models (17) and (18), but the
estimates are not generally equal, with the exception of the single-time data.

It is possible to see the differences between using intraday data and single-time data
in the regressions. The interest rate, rT

o (ti), is fixed when single-time data is used. This
fixed interest rate makes the decomposed interest rate form redundant since the sum of
ro(ti)

T + s is a constant. Further, the spot price, S(ti), is also fixed, making it possible to
convert the dividend yield estimate to a present value dividend estimate, and vice versa,
without loss or distortion of the estimates. This perfect conversion makes the two different
dividend formulations redundant. These redundancies are not present when intraday
data is used, since neither ro(ti) nor S(ti) is constant, making the decomposed interest rate
necessary and the dual regression formulations interesting.

Finally, from (17) and (18), it is easy to see that the future-basis regressions, based on (1)
and (2), would follow. The formulation is made possible by the utilization of intraday data
rather than a single-time data. Despite the analogue to the put–call parity, the regression
has one shortcoming compared to its put–call parity counterpart. The regression coefficient
for the dividend yield-formulated regression is the sum of the dividend yield and spread,
e(s(t;T)−δ(t;T))(T−t). Hence, the future-basis could only be used for present value estimates.
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This shortcoming and the previously mentioned drawbacks are why we do not consider
this regression in this paper.

2.2.2. Linear Regression—Weighted Least Squares

In an ordinary least squares formulation all of the data are considered equally impor-
tant. This implicit assumption is likely to be incorrect since the quality of data points is
likely different. The ordinary least squares formulation does not adjust for this difference in
data quality and thus has a drawback. One approach to counteract this behavior is to value
some data points more and some less. To formulate this mathematically rigorous method,
we followed the idea in Blomvall et al. [25] and use weighted least squares. Considering
the models (17) and (18), we can formulate the weighted least squares

min
γ=(γ1,γ2)

Nd,T

∑
i=1

wd,T
i

(
fi − Xd,T

1,i γ1 − Xd,T
2,i γ2

)2
, (22)

and

min
γ=(γ0,γ1)

Nd,T

∑
i=1

wd,T
i

(
hd,T

i − γ0 − Xd,T
i,1 γ1

)2
, (23)

where wd,T
1 , . . . , wd,T

Nd,T are non-negative weights. Note that if each weight is chosen as a

positive constant, i.e., 0 < w = wd,T
1 = . . . = wd,T

Nd,T , we obtain the ordinary least squares
estimator, only if w = 1, the same sum of square errors, is the same. The crux with these
formulations is to determine weights. The key idea of the weights is to choose them such
that the resulting estimator has good properties. An essential property for the ordinary
least squares estimator is that if the residuals are independent and homoscedastic (same
finite variance), the estimator is the BLUE (best linear unbiased estimator). The residuals
from the regressions (17) and (18) likely do not fulfill the homoscedasticity, and an ordinary
least squares estimator is not the BLUE. One reason is that the liquidity of the data varies
between strike prices, where illiquidity typically leads to higher variance.

The heteroscedasticity can be counteracted, and it is possible to achieve the BLUE

with a specific weighting scheme. According to Aitken [34] (the result can also be found
in textbooks such as Zwanzig and Liero [35]), if the weights are chosen to be inversely
proportional to the variances, the estimator receives the BLUE property. In addition to the
statistical properties, Blomvall et al. [25] pointed out that weights chosen inversely to the
residuals also have an economic rationale. The residuals can be interpreted as a measure of
the repricing capabilities of the linear models, where smaller residuals indicate accurate
repricing. Nevertheless, the appealing theoretical property has a practical drawback since
the variances are unknown and need to be estimated. Estimating the variance for residuals
is non-trivial, since we only have a single residual if we fix the time, strike price, and time
of maturity, i.e., we do not have repeated estimates of a quantity. To mitigate this problem,
we make the same assumption as Blomvall et al. [25] that the variance is constant intraday,
i.e., for a fixed strike price and time of maturity. Hence, the variances can be estimated
from different intraday times. The weights are computed with the same four-step processes
used by Blomvall et al. [25].

First, an ordinary least squares estimate is computed, and the (raw) residuals are
determined, which we, for each strike price and time of maturity, denote as ei, ∀i =
1, . . . , Nd,T . Second, the residuals, ei, are grouped into (index) groups according to their
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strike prices,Rd,T
K = {i|i ∈ {1, . . . , Nd,T} and Kd,T

i = K}. Third, a variance is estimated for
each group, where:

μd,T
K =

1∣∣∣Rd,T
K

∣∣∣ ∑
i∈Rd,T

K

ei, (24)

νd,T
K =

1∣∣∣Rd,T
K

∣∣∣− 1
∑

i∈Rd,T
K

(
ei − μd,T

K

)2
, (25)

denote the estimated mean and variance, respectively, for the group associated with the
date, d, the time of maturity, T, and the strike price, K. Finally, the weights in (22) and (23)
can be determined from the auxiliary weights w̃d,T

K = 1/νd,T
K , as

wd,T
i = w̃d,T

Kd,T
i

, ∀i = 1, . . . , Nd,T . (26)

3. Data

The data set used in this paper is the same data set used by Blomvall et al. [25]. All
the data have been collected from the data provider Thomson Reuters Refinitiv Eikon, and
the data set consists of three types of intraday data. First, quotes of the S&P 500-index.
Second, bid and ask quotes of European call and put options with the S&P 500-index as
their underlying. Third, payer and receiver quotes of fix rates of USD denoted by overnight
index swaps contracts with the federal funds rate as the reference rate.

The tick data is collected for all dates in the period from 1 March 2020 to 31 January
2021 between 9 a.m.–4 p.m. The European options are all the available monthly options
for the given dates, i.e., all options expiring on the third Friday of each month. The USD
overnight index swaps fix rates have a maturity between 1 and 10 years. The data set
consists of 6 million S&P 500 index quotes, 110 million bid and ask quotes of the USD
overnight index swaps, and 54 billion option prices.

Although granular, the data set must be processed to be useful in the paper. The
collected data has four inherent problems. First, we collected tick data, but it is difficult
to use because of its irregularities. The data is transformed to a more usable form where
the level of granularity is preserved. Second, the quotes of the fix rates of overnight index
swaps are not directly usable since (17) and (18) require continuous spot rates, and thus a
transformation is needed. Third, in Section 2, all regressions were formulated with a unique
price, but in the data set, the prices are only precise down to a bid–ask spread. Earlier, we
mentioned that the price used is the mid-price, and below, we discuss this issue. Fourth,
we discuss how to identify and remove unrealistic data points.

3.1. Synthetic Forward and Sloped Asset Positions

In Section 2, we used synthetic forward and sloped asset positions with unique prices.
Neither of these positions is traded in the market, rather only the options are. Hence,
neither synthetic forward nor sloped asset positions have quoted bid or ask prices. To
circumnavigate the missing prices of these positions, we first computed their bid and ask
prices. The mid-prices were then computed from these bid and ask prices. The bid and ask
prices were created by artificially replicating the market prices of entering such positions.

Let c, p, and f , respectively, denote the price of a call option, put option, and synthetic
forward; and let a and b denote the ask and bid price, respectively. The payments of the
bid and ask positions can be summarized as fa = ca − pb and fb = cb − pa. We compute
the mid-price of the synthetic forward as

fm =
fa + fb

2
=

(ca − pb) + (cb − pa)

2
= cm − pm. (27)
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It is thus necessary to have four prices—bid and ask prices for both the call and put
options—to compute the mid-price of the synthetic forward position. Hence, if one or more
quotes are missing, the mid-quote is not computable and thus not used in the regression.

We likewise compute mid-prices of the sloped asset position by first computing the bid
and ask prices; the argument is analogous to the synthetic forward position. We compute
the price of entering the position in two directions, and the mid-price is the average. Let φi,j
denote the sloped asset position, which is going long in a synthetic forward with strike price
Ki, and short in Ki/Kj synthetic forwards with strike price Kj. The cost of entering such
a position is the ask price, f a

i reduced by the bid price, f b
j for each of the Ki/Kj contracts.

The ask price of this contract can thus be written as φa
i,j = f a

i − Ki/Kj f b
j . Alternatively, we

receive f b
i and must pay f a

j for each of the Ki/Kj contracts, and the bid price of the slope

position is thus calculated φb
i,j = f b

i − Ki/Kj f a
j . The mid-price of the slope position is

φm
i,j =

φa
i,j + φb

i,j

2
=

(
f a
i − Ki/Kj f b

j

)
+
(

f b
i − Ki/Kj f a

j

)
2

(28)

=

(
f a
i + f b

i

)
− Ki/Kj

(
f b
j + f a

j

)
2

= f m
i − Ki/Kj f m

j . (29)

We see that the data of synthetic forward contracts is sufficient to express both the put–call
parity and the sloped asset position.

3.2. Transformation and Cleaning of Option Tick Data

Our data management has two aims. First, to make the data appropriate for the
(estimation) method, and second, to clean the data from the artifacts. While the former is a
necessity, the second can lead to the validity of the method being questioned; hence, the
data cleaning is moderate. In this paper, we address two features of this data set: a sudden
and temporary downward spike in bid quotes and a lack of bid quotes for out-of-the-money
options. We classify the former as a data artifact that normal market dynamics cannot
explain, while the second has a natural explanation.

The first problem (downward spikes) is illustrated in Figure 1. We deem the drops
of approximately $1200 to be non-realistic and deem further that those spikes have been
created in the data collection. We cannot explain why only the bid quotes are affected
by this effect. The problem of the downward spikes is easily solved by removing them
from the data set. The crux is to determine which of the bid quotes are artifacts and which
that are not. In Figure 1, the artifact is evident, but there could be other cases where the
spikes are not as obvious. A rough description is that the drops are more pronounced
for (deep) in-the-money options than out-of-the-money options, since the former options
naturally have higher prices. However, the silver lining is that the effect of the data is less
severe, since out-of-the-money options have a lower price; thus, the drops cannot be as
big. Therefore, we limited the data cleaning to in-the-money options, since they are more
affected and easier to find than out-of-the-money options. The data cleaning procedure
that we used was to discard all call (put) options with strike prices greater (less) than the
spot price as well as all quotes smaller than $1.

The second problem (missing bid quotes) is not as trivial or obvious as the spikes.
Many (deep) out-of-the-money options in the data set lack bid quotes but have correspond-
ing ask quotes. We attribute this data property to the tick size of the market, i.e., the
minimum amount that a quote can be changed. This amount may be greater than the fair
price of some options, and any (positive) bid quote would thus be overpriced. If the only
possible price is an overprice, the only sensible action is not to quote. The ask prices do not
suffer from the same dynamics, since it is natural to ask for a higher price than a fair price.
The drawback of the estimation method with missing bid quotes is that it decreases the
data set significantly. As noted above, a single synthetic forward price mid-price requires
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both a bid and ask quote for one call and one put option. To reduce the data waste, we
recreated the bid quotes.

Figure 1. The two panels illustrate the bid quotes of a call option on the 9 March 2020. The strike
price of the option is $1500 (in-the-money), and its expiration is the 20 March 2020. The two panels
illustrate the same data, but the lower panel focuses on smaller values and thus has a smaller y-axis
than the upper panel.

The strict natural lower limit of plain vanilla option quotes is zero. A price of zero
means that someone, essentially, gives away a contract for free with only positive (including
zero) payoffs, which is an arbitrage opportunity and, thus, a non-realistic scenario. How-
ever, the bid and ask prices are not used individually, but rather only in pairs, to compute
mid-prices. Therefore, we argue that when the fair option price is within one tick from
zero, it is a valid approximation to set the bid price to zero. A zero bid price is too low, the
subsequent mid-price is too low, and a bias is introduced in the mid-prices. In order not to
introduce biases, we only replaced missing bid quotes for some call and put options, which
are essentially options with small prices. Let S denote the intraday median spot price, K
the strike price, and let ad,T := aσ

√
τd,T where a > 0 and σ > 0. We replaced missing bid

quotes for call and put options if S(1 + ad,T) < K and S(1− ad,T) > K, respectively. (The
economic interpretation is that bid quotes are only replaced for options with a strike price
at least a standard deviations, σ, from the current spot price of the underlying asset, i.e.,
deep out-of-money options.)

Data cleaning is the first step in the data transformation process, where the second
is to process the data into a better-suited format. The collected option data is tick data
of values and timestamps, which has a precision of one second. One alternative would
be to transform the tick data set into a set where the data points are spaced with a fixed
time unit, e.g., a second. In essence, the idea is to use the most recent tick quoted in the
market for every time unit, using the most recent tick in the case of tick data to second
data. The assumption is that, as long as new ticks have not reached the market, i.e., no new
information has reached the market, the old ticks are still valid. There are two practical
benefits of such an approach. First, it is easy to work with such data. Second, the data
utilization is high. Furthermore, if no new information has reached the market, that implies
that the market’s dividend and interest-rate beliefs are unchanged. (The converse is not
true, changed prices are not synonyms for changes in the markets in terms of the dividend
or interest rates beliefs, but it can signify a myriad of factors).
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The drawback of such an approach is the risk of amplifying noise. All market in-
formation carries some noise, and repeating individual data points would assign higher
confidence or weight to arbitrary points and consequently amplify noise in these points. In
order not to indirectly assign higher weights to certain points and instead to keep the data
utilization high, we are only interested in times where at least one quote of at least one
option has changed from the previous time. In this method, the prices of the options should
correspond to the index quote for the same times. The transformation that we propose is a
two-step process. First, the tick data set is transformed into a set with a specific frequency,
i.e., the time between data points, e.g., 1 second, which is the frequency used in this paper.
Second, this data set is transformed into the final data set, where only the data points that
have changed are kept. Small schematic examples of mock tick data, fixed time unit data,
and the final data are presented in Tables 1–3, respectively. Note, before the first tick of
the day, the quote is written as not available (N/A). The value from a tick prevails until a
new tick comes or the day ends (4 pm). The transformation is performed for all options
and all fixed rates. The second transformation is from the one-second data to a data set
that only contains seconds that coincide with ticks. Table 3 presents a continuation of the
example in Table 2. Note that this transformation is not a reversal of the first transformation.
The first transformation was made for individual options’ bid and ask quotes, and the
second considers all the options’ bid and ask quotes (for a given day and time of maturity)
simultaneously.

Table 1. The two panels schematically exemplify mock tick market data of two assets. The marker
N.U. indicates Not Updated.

Time
Bid

Quote (1)
Ask

Quote (1)
Time Bid

Quote (2)
Ask

Quote (2)

09:01:02 100 102 09:02:00 200 N.U.
09:02:30 N.U. 103 09:02:59 N.U. 213
09:03:15 99 N.U. 09:04:10 199 N.U.

...
...

...
...

...
...

Table 2. The two panels schematically exemplify one-second data that have been derived from
Table 1. The left and right panels are derived from the left and right panels in Table 1, respectively.
The bold quotes indicate that those quotes were ticks and not repeats of an earlier tick. Bold times
indicate that, at that time, at least one of the quotes (bid and ask) was a tick.

Time
Bid

Quote (1)
Ask

Quote (1)
Time Bid

Quote (2)
Ask

Quote (2)

09:01:02 100 102 09:02:00 200 N/A
...

...
...

...
...

...
09:02:29 100 102 09:02:58 200 N/A
09:02:30 100 103 09:02:59 200 213

...
...

...
...

...
...

09:03:14 100 103 09:04:09 200 213
09:03:15 99 103 09:04:10 199 213

...
...

...
...

...
...
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Table 3. This table schematically exemplifies one-second data, which combines the two panels in
Table 2. The bold numbers indicate that those numbers were ticks in the tick data. (Note that every
row has at least one bolded number) The difference between the panels in Table 2 and this table is
that times that lack a tick have been removed from this table.

Time Bid Quote (1) Ask Quote (1) Bid Quote (2) Ask Quote (2)

09:01:02 100 102 N/A N/A
09:02:00 100 102 200 N/A
09:02:30 100 103 200 N/A
09:02:59 100 103 200 213
09:03:15 99 103 200 213
09:04:10 99 103 199 213

...
...

...
...

...

3.3. Overnight Index Swap Implied Spot-Rates

The regression formulations (17) and (18) require continuous spot interest rates. In
this paper, we follow the arguments in Blomvall et al. [25] and base these rates on OIS
contracts. A specific interest rate is not critical since we estimate a spread over this rate,
and most rates are stable intraday. From that point of view, we could have used interest
rates from a data provider, such as Thomson Reuters Eikon Refinitiv.

However, the interest rate data must match the frequency of the option data, and thus
we must compute them. We use the technique proposed by Blomvall [36], which produces
a complete forward-term structure of daily forward interest rates. In this paper, only the
spot rates that correspond to the options times of maturity are of interest, and these rates
are computed from the forward rates.

4. Results and Discussion

This results and discussion section consists of four parts. First, we present the charac-
teristics of the estimates in plots, which are the foundation of the next part in the section. In
the second part, in-sample results are presented, that is, results where the data set has not
been divided into training and test sets. The in-sample results answer some questions, but
the validity of the results can be partly questioned since the results could be the effect of
over-fitting. The third part presents the methodology for performing out-of-sample testing,
i.e., the data partitioning and evaluation methods. The results include both some basic
statistics and a statistical Diebold–Mariano test. Throughout the section, we discuss and
highlight results when presented, but one question spans multiple parts—the difference in
estimating yield and present value, and hence, it is discussed in the fourth, and final, part
of this section.

In addition to the question of the difference between yield and present value, two
additional questions are discussed in this section. First, various regressions for dividend
estimation have been presented, which can be grouped according to two properties: the
weighting scheme and the type of data. The regressions have been formulated generally
to handle intraday data, which is similar to the approach used by Blomvall et al. [25].
Contrariwise, in Desmettre et al. [1] and other methodologically similar approaches for
interest rate estimation, single-time data is used, see Blomvall et al. [25] for an overview
of the latter. From these regressions we make two comparisons. First, we compare the
single-time and the intraday dataset. Second, we also study the differences between the
weighted least squares and the ordinary least squares models.

4.1. Characteristics of Estimates

The characterization of the estimates is divided into two parts. First, we have three
illustrations of the estimates, both for intraday data and single-time data. The data set is
not partitioned in this section, but rather all the data for each time has been used. Second,
we start by presenting some surf plots in Figure 2. The surf plots provide an overview, but
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it is difficult to see any small differences. The line plots in Figures 3 and 4 complement the
surf plots.

Figure 2. The figure shows the surface plots of the ordinary least squares dividend estimates, which
can be grouped by two properties. First, the two upper and two lower panels are computed with
intraday and single-time data, respectively. Second, the left and right panels are computed as
dividend yields and the present value of dividends, respectively. The z-axes of all four panels indicate
the estimated values. The x- and y-axes corresponds to the date and time to maturity (measured in
days), respectively, to which the estimates correspond.

The overall illustration in the surf plots and the line plots is that the present value
estimates have a downward sloping trend as time progresses. These trends, for the longer
maturities, are supported by the mean values in Table 4, which indicates that the mean
daily changes are negative. These slopes are expected since the present value—for a specific
time of maturity—naturally decreases when ex-dividend dates are passed. On the other
hand, the yield estimates do not form a slope. Instead, the main effect is that they converge
for longer times of maturity. This convergence can be interpreted as expected dividends, in
dollars, being stable over the years.

Table 4. This table shows statistics for the daily differences in market-matched present value dividend
estimates for four series of estimates with a constant time of maturity. The numbers (382, 473, 655,
1019) in the first column—TTM—are the times to maturity on the 2 March 2020 (i.e., the first date in
the data set.) for the series.

Single-Time Intraday
TTM Mean Std Autocorr Mean Std Autocorr

382 −0.24581 1.7569 −0.1491 −0.23592 1.1137 0.33601
473 −0.25063 1.9994 −0.053606 −0.23916 1.387 0.31847
655 −0.26461 3.3015 −0.17999 −0.25003 2.1288 0.28339

1019 −0.24773 5.7669 −0.32063 −0.23198 3.5832 0.12227

We can observe that both the yield and present value approaches are stable as time
evolves, but the estimates vary substantially for different maturities. We can also see an
additional effect: estimates drift off shortly before the expiration date. The problem effect
is easily observable for the yields in Figures 2 and 4. The effect is also observable for
the present value data, but the scale of the plot masks the effect. In most cases, the drift
is positive, but we can observe some negative estimates. A negative yield or a negative

122



Entropy 2022, 24, 95

present value can be interpreted as a cash flow that lifts (negative drop) the price. It
is an improbable market dynamic, and, since we experience these negative estimates
adjacent to other spurious estimates, we argue that these are not to be taken at face value.
Instead, the estimates in these regions should rather be seen as indications of artifacts of
the estimation method. A similar effect was reported by Blomvall et al. [25] for interest rate
spread estimates, and we follow their argument and explain this effect with low option
data quality. Finally, we can see that these spurious values are more pronounced for the
single-time data than for the intraday data. We only consider option pairs with a time to
maturity exceeding five days to reduce the impact on the results of these spurious values.

Figure 3. The figure consists of two panels, where the upper and lower panels illustrate the present
value dividend estimates that are market-matched and stripped, respectively. The plots illustrate a
series of dividend estimates with fixed times of maturity, where the x-axis is the date. The series in
each panel consists of either estimates determined by intraday data or by single-time data recorded
at 3 p.m. The legend of the upper panels indicates the type of data, and the number is the number
of days to maturity at the first date. The legend of the lower panel contain a period, which is the
number of days to maturity for the two contracts that have created the stripped dividend.

The above observation illustrates potential data problems, and provides some insights
into how the market reacted during the period. The core idea of the paper is not to un-
derstand and study the market dynamics. Nevertheless, the illustrations indicate shifts in
the market, which are too significant to leave without comment. The comments are not
detailed but instead focus on the holistic picture. In Figure 4, we can see that around April
2020, the estimates behave differently than for the other period, which is a period when
the global pandemic started to affect the markets. It is possible to see that the estimates
of present value squeezed together, i.e., the difference in estimates of longer and shorter
times of maturity reduced. The yield estimates were also affected, but rather with in the
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opposite direction. The difference between the long and short times of maturity increased.
We can also observe that the S&P 500 index quote also experienced a downturn. The
effects on the estimates can prima facie seem contrary, but both behaviors have the same
underlying reason. During this period, many companies cut, either partly or entirely, their
future dividends but kept dividends that were closer in time (e.g., announced dividends),
and the market anticipated further cuts for future dividends. For the present value div-
idend estimates, the effect was direct. Present value dividend estimates corresponding
to longer maturities were reduced more than the corresponding short times to maturity.
This phenomenon is natural, since both the realized and anticipated dividend cuts were
more pronounced for longer times to maturity. A similar effect would have been seen in
the yields if the S&P 500 quote had been constant, but the downturn of the S&P 500 offset
the effect of lower yields, especially for short times of maturity, and resulted in higher yield
estimates for shorter times to maturity. We can see that the estimates have captured these
market dynamics and could potentially be a good measure of how the market predicted
large dividend cuts.

Figure 4. This figure consists of two panels which share the same labels. The upper panel illustrates
dividend yield estimates, and the lower panel illustrates present value dividend estimates. The data
illustrated in these two panels are part of the data in Figure 2. However, in these two panels, we plot
dividend estimates that have a constant time of maturity (one of the dimensions of the surf plots has
been removed). The times of maturity that are illustrated are those that were present in the market as
of 2 March 2020 (i.e., the first date in our data set). The legends show the time to maturity (measured
in days), corresponding to the times of maturity at the first date.

The interconnection between the yield and the quote of the underlying asset is in-
teresting in two regards. First, it gives rise to counter-intuitive behavior. Second, and
more important, from the view of assumptions, if a yield is constant intraday, this would
imply highly fluctuating present value dividend estimates during the day. Such behavior
seems unlikely from market participants. This view is complemented by Vellekoop and
Nieuwenhuis [13], who claim that market makers prefer to specify fixed cash amounts
rather than yields. We take this as an indication that the constant dividend yield formu-
lation has inherent problems. In the upcoming sections, we present results that support
the fact that yield estimates perform worse than their present value counterparts, and that
these differences in performance can be related to the variability of the underlying asset.
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4.2. In-Sample

We have two types of in-sample results. First, we elaborate on whether the yield or the
present value should be used. (This question is also discussed in the next section, where
an out-of-sample analysis is performed). Second, we examine the difference between the
intraday and single-time data.

An interpretation of the linear models is that it is a pricing method for synthetic
forward positions, and an obvious performance measure between the models is to compare
the residuals. The residuals are informative but difficult to compare. Therefore, we compare
the mean squared errors rather than the residuals themselves in the analyses.

4.2.1. Yield and Present Value Comparison

We consider two different regression models, (17) and (18), where the former is formu-
lated with a dividend yield and the latter with the present values of dividends. The results
of the regressions are shown in Table 5, and we can observe that the present value dividend
formulation (18) outperforms the yield formulation (17), i.e., the former has a lower mean
squared error than the latter.

Table 5. This table consists of mean squared errors (MSE) for in-sample dividend ordinary least
squares (OLS) estimates based on intraday and single-time (recorded at 3 p.m.) data. The table shows
the mean squared errors for the yield and present value dividend formulation. The MSE for the
single-time data is—by construction—equal for both dividend formulations; hence, these are written
on the same row.

Dividend Type Data MSE

Yield Intraday 3.2104
Present value Intraday 3.1806
Yield and Present value Single-time 3.2114

In Table 5, only the ordinary least squares results are presented, not the corresponding
weighted least squares results. The reason is that the ordinary least squares estimator
by construction produces a lower mean squared error than the weighted least squares
estimator, cf. (22) and (23). Therefore, to have a meaningful comparison, we will compare
the ordinary and weighted least squares estimators out-of-sample in the next section.

It is possible to see a difference in predictability between the yield and present value
formulation, but it is not easy to relate the two quantities and determine the magnitude
of the difference. The yield is transformed into a present value to enable a comparison
between the estimates. We represent the yield implied present value with Dy. The key in
the transformation is that both estimates can be interpreted as a spot price adjustments.
The yield and present value adjusted spot prices can be written as S(t)e−δ(t;T)(T−t) and
S(t) − D(t; T), respectively. By equating these two adjusted spot prices, we write the
yield-implied present value as

Dy(t; T) = S(t)
(

1− e−δ(t;T)(T−t)
)

, (30)

which can be rewritten into conversions between yield and present value. We can see the
results of this conversion in Table 6. The differences between the yield implied and the
estimated present value are not big, but there are differences. The statistics in the table do
not present any clear differences between the two estimates. The summarized picture shows
that the differences are close and symmetric around zero, since the mean values are close to
zero with a low standard deviation, while the skewness and kurtosis indicate that there
are extreme points. The skewness shows that the implied present value dividend is higher
than the present value dividend in eight of eleven ranges and in total. Furthermore, the
high kurtosis shows differences notably more extreme than a couple of standard deviations
from the mean. The only visible trends in the data are that the standard deviations and the
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absolute differences seem to increase with longer times to maturity. These results are thus
inconclusive as to whether there is a difference or if the estimations only are noisier for
longer times to maturity. We continue this discussion around the out-of-sample tests.

Table 6. This table presents the statistics of the differences between the present value estimates and
the implied present value quantity, Dy. The second column—Abs. Mean—shows the values of the
mean of the absolute value of the differences. The last row—All TTM—shows the statistics for all
differences. The other rows show groups of differences corresponding to the times to maturity (days)
in the range.

TTM Range [Days] Abs. Mean Mean Std. Dev. Skewness Kurtosis

[0, 100) 0.0314 −0.00567 0.0587 −1.6364 27.3525
[100, 200) 0.0746 −0.00391 0.1244 −0.6311 16.1054
[200, 300) 0.1385 −0.00397 0.2241 −0.4728 11.2769
[300, 400) 0.1636 0.00575 0.2648 −0.3781 12.5705
[400, 500) 0.2032 0.01219 0.3175 −0.2575 11.8386
[500, 600) 0.1918 0.03577 0.2692 0.1181 6.7503
[600, 700) 0.3390 0.02911 0.5131 −0.3406 9.1445
[700, 800) 0.2405 0.05065 0.3331 0.2678 6.0934
[800, 900) 0.2991 0.06862 0.4279 0.0755 6.7246
[900, 1000) 0.4294 0.05606 0.5963 −0.0068 5.9678
[1000, 1100] 0.6999 0.02285 1.0509 −0.5342 7.0079

All TTM 0.1363 0.00642 0.2727 -0.4462 37.0126

4.2.2. Intraday and Single-Time Data

Blomvall et al. [25] concluded that intraday data produce more stable and higher
quality estimates than data recorded from a single time. Therefore, we undertook a similar
analysis and performed linear regressions where only data points recorded at 3 p.m. were
used. First, Table 5 shows mean squared errors for both the intraday and the single-time
data set, but the mean squared errors are not directly comparable since the errors are
computed from different data sets. Consequently, we do not make any such comparisons
in-sample but postpone them to the out-of-sample analysis.

It is possible to consider the surf plots in Figure 2 again. The differences between the
intraday and single-time data seem small, but it is possible to observe a wave for both
estimate types, which indicates that some estimates differ from adjacent estimates. These
estimate differences are more visible in the upper panel of Figure 3 than in Figure 2. We
can see that around the period of March–May of 2020, the single-time estimates seems to
be more volatile than the intraday estimates. Further, later in the studied period, there are
occasional single estimates that are considerably different from their adjacent estimates.

We can study the estimates that correspond to the times of maturity of the options
market, which we refer to as market-matched dividend estimates. We want two properties
when computing the statistics of the estimates: to estimate the same quantity every day
and to have large sample sizes, i.e., long times series of estimates. The latter property is
achieved by limiting the data set, such that only the times of maturity that are present in
the market for the whole period of study are included. The first property is impossible to
achieve completely since the market changes with time. In a period, [t, T], the value of the
dividends changes because the ex-dividend dates are passed as t evolves. Additionally,
the estimated quantity may also change since the beliefs of future dividends change. By
studying the present values of the dividends estimates between two maturities that have
not passed in the period, the impact of passed ex-dividends dates is removed. We refer
to these differences as stripped dividend estimates. We use the notation introduced in
Section 2.1.1, where D(t; τ, T) is the present value of dividends within the ex-dividend date
in the period [τ, T]. We can then measure some statistics of these stripped dividends, an
analysis that is similar to the analysis conducted by Desmettre et al. [1].
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The market-matched and stripped dividend estimates are similar, but they have some
differences in their interpretations. Statistics of the market-matched estimates can be seen
in Table 4, and statistics for the stripped dividends estimates are presented in Table 7.
Further, the market-matched and stripped dividends are presented in the lower panel of
Figure 3. The stripped dividends estimates do not have the downward slopes that the
market-matched dividend estimates have. The line plots of Figure 3 are flat, and the means
of Table 7 are approximately zero. The reason for the slope is that the ex-dividend dates are
passed for the market-matched dividend estimates, but since the stripped dividends are
further in the future, no ex-dividend dates have passed.

Table 7. This table shows the statistics for the daily differences of the stripped present value dividend
estimates for four series of estimates with a constant time of maturity. The intervals (e.g., 473–382) in
the first column—Tenors (TTM)—indicate time to maturity intervals on 2 March 2020 (the first date
in the data set) that the stripped dividend estimates correspond to.

Single-Time Intraday

Tenors
(TTM)

Mean Std Autocorr Mean Std Autocorr

473–382 −0.0048 1.3296 −0.4810 −0.0032 0.6636 −0.2873
655–473 −0.0140 2.8049 −0.4661 −0.0109 1.1899 −0.0508
1019–655 0.0169 4.2557 −0.4981 0.0181 2.0258 −0.1932

The means are similar for both data sets, but the single-time data estimates have higher
volatility values than the intraday data estimates. Furthermore, the standard deviation
(volatility) values are similar between the market-matched and stripped dividends, which
is surprising. The stripped dividends are estimates of fewer dividends than the market-
matched dividends, and additionally, those dividends are shared with the market-matched
estimates. Therefore, a natural assumption is that the dispersion of the former would
be smaller. A possible explanation is that the future dividends are uncertain. Another
explanation is that there is noise in the estimates, which may be because options with
longer times to maturity are less liquid than options with shorter times to maturity.

Furthermore, the auto-correlation of the daily differences holds interesting information.
We can see in Figure 3 that there are some upward spikes for individual days, i.e., it goes up
one day and then comes back to a similar level the following day. This pattern is a clear sign
of the noise in the estimates. We can contrast the single-time data plots with the plots of the
intraday data, which lack clear spikes. We measured the auto-correlation to see how much
the estimates were affected and presented the results in Tables 4 and 7. We noted that the
market-matched dividend estimates had a lower auto-correlation since these estimates had
a downward trend. This downward trend reduced the information in the auto-correlation,
and, thus, the auto-correlation values of the stripped dividends are better indicators of
the noise for each method. We can see in Table 7 that the auto-correlation is negative for
both the intraday and the single-time data, but the auto-correlations are smaller (more
negative) for the latter. The negative sign indicates that both types of estimates are affected
by noise, and further, the differences between the auto-correlations indicate that intraday
estimates contain less noise than the single-time estimates. Further, it is impossible to make
statements concerning the noise level in the market match contra the stripped dividend
estimates since the market-matched dividends have a natural downward slope, which thus
increases the auto-correlation of the daily differences.

4.3. Out-of-Sample

The in-sample results indicate that the present value of the dividends performs better
than the yield estimates. However, these results can be questioned, since the performance
may be a result of over-fitting. In this section, we perform an out-of-sample analysis. The
analysis is a two-step approach. First, we discuss how to partition the data into two sets:
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the training and test sets. The former was used for estimating, while the latter was used for
evaluating the estimates. Second, we present the evaluation method.

4.3.1. Partitioning the Data Set

In order to make an out-of-sample analysis, the data set needed be divided into two
parts. The data consisted of all (business) dates from 1 March 2020 to 1 February 2021. Each
date had some times of maturity, and linear regressions were performed for each time of
maturity. The partitions into in- and out-of-sample sets were performed on each such unit,
since there was neither data sharing between the dates nor the times of maturity. The data
set used for estimation consisted of three data types: the spot price of the underlying (i.e.,
quotes of the S&P 500 index), spot interest rates, and synthetic forward mid-prices. The
regressions use both different times and different strike prices. We argued in Section 3
that information reaches the market over time and that the times are important. For each
(intraday) time, a single and unique S&P 500 quote and a single unique spot rate exist. This
uniqueness creates the need for these points to be used both in- and out-of-sample. On the
other hand, the synthetic forward prices can be partitioned into two sets.

The partition is performed with two principles. First, we want a wide range of strike
prices in-sample since they are important for making good estimates. Second, we want to
have a greater portion in-sample than out-of-sample. The set of synthetic forward positions
is divided into an in- and out-of-sample set according to two criteria. The first criterion
is that a synthetic forward is included if its strike price is below a lower limit, � ∈ R+,
or above an upper limit, u ∈ R+. The second criterion is that of the synthetic forwards
not included in-sample by the first criterion, every k:th is placed in the out-of-sample set,
while the remaining are placed in-sample, where k ∈ N+, i.e., a strictly positive integer. It
would be improper to make the first inclusion criterion static, since the index value changes
during the studied period, and thus the limits of in- and out-of-money change. Therefore,
rather than assigning static values to � and u, we assign values relative to the index value
for each day. The index value was not constant intraday, and we computed the index daily
reference value as the median of all intraday index quotes and denoted it with Ŝ, and we
defined � = �′Ŝ and u = u′Ŝ, where �′ ∈ R+ and u′ ∈ R+.

The in-sample and out-of-sample data are from the same data set, but their roles are
not equal. The in-sample should, in essence, be the data used for estimation. The out-of-
sample, on the other hand, was used as a reference, and we could have been more selective
when forming this set, and, e.g., used additional filters. One rough measure of the quality
of prices is the size of the bid–ask spread, where a wide spread indicates a less reliable
price and a narrow spread a more reliable price. The idea is to remove options with too
wide spreads, an idea which was used by Blomvall et al. [25] and Azzone and Baviera [24].
The crux is to characterize a typical and reasonable spread. One natural dynamic to keep
in mind is that options with higher prices have wider spreads than options with lower
prices, if the spreads are measured in an absolute dollar amount. This relationship means
that in-sample options have wider spreads than out-of-sample options, and options with
longer maturity times have larger spreads than options close to expiry. However, this
dynamic is not a big problem in practice. The latter is not a problem, since each time of
maturity is managed independently. The former is slightly more challenging, but since the
out-of-sample is a subset in which deep in- and out-of-sample options have been excluded,
the potential impact is limited. Further, the spreads can also vary between days, and thus
they are not suitable to use as a fixed cutoff value. Instead, a reference is computed for each
date to account for this variability.

The additional filter handles call and put options separately and are applied for each
date and time to maturity. Let, Nd,T denote the number of option pairs for date d, with
time of maturity T, and let Δci = ci

a − ci
b and Δpi = pi

a − pi
b denote the spread of the ith

call option and put option, respectively. The scaled median of the spreads is computed
as mc = (1 + bc) median

i∈{1,...,Nd,T}
Δci and mp = (1 + bp) median

i∈{1,...,Nd,T}
Δpi, where bc ∈ R+ and

bp ∈ R+. We kept an option if its spread was below the scaled median. Note that a
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complete option pair was required to compute the synthetic forward price, and, hence, if
the one option in the pair was removed, the other one became useless. The parameters
used to generate all out-of-sample results are presented in Table 8.

Table 8. This table shows the parameters used to partition the data set into in- and out-of-sample
data sets.

Parameter Value

�′ 0.75
u′ 1.25
k 10
bc 0.30
bp 0.30

4.3.2. Evaluation Method

It is critical to choose how to evaluate an estimate. One approach would be to follow
the path used by Desmettre et al. [1]. They estimated the dividends for individual shares
and compared the results of their estimates with the realized dividends, but we argue that
this approach has some intrinsic drawbacks. First, Desmettre et al. [1] discuss a difference
in their estimates of the market consensus of the present value dividends and the actual
dividends. They used market data for specific markets with a tax setting that they argued
was suitable. This favorable tax setting is not present in the US market, and, in Section 2.1,
we argue that we do not measure the dividends but rather how the index is affected by
them. Second, there is also a practical problem with index data. The index does not
pay dividends but rather its constituents, which results in considerably more dividend
payments, and the payments must be scaled with the weight of its constituents. All these
technical details make the method error-prone and thus not suitable for use. To summarize,
even in idealistic conditions, it is not generally valid to compare dividend estimates with
their realized counterparts.

Another natural approach would be to use the linear models and the predicted errors,
which, in essence, is how well the linear models reprice the out-of-sample options. The
advantage of the prediction errors is that they are easily computable and allow an easy
model comparison. The primary disadvantage is that the linear regressions of the put–
call parity also include estimations of the interest rate spread. Hence, prediction errors
are affected by both the quality of the dividends and the interest rate spreads estimates.
The results are, thus, in a strict sense, a measure of linear model performance, but not
necessarily of the dividend. Consequently, we base our estimate on another approach:
utilizing the sloped asset position. The limitation of using this position as an estimator is
the vast amount of combinations. A potential solution to this limitation is to limit the data,
but the drawback is figuring out how to make such a limitation systematically. However,
in the out-of-sample testing, the data set was, by construction, small enough to use sloped
asset positions. The sloped asset position makes it possible to test the estimates isolated
from the potential effects of the interest rate. Furthermore, we use the adjusted share price
formulation, S∗, to compare yield and present value since the two types are not directly
comparable. The regressions were run in-sample, and they were then compared with the
help of the out-of-sample data.

The mean squared errors of the residuals is one method of measuring and comparing
the different methods. It was difficult to argue if the difference between methods was big
or small. Therefore, we complemented the mean squared error with a statistical test on
the out-of-sample data. We use the version of the Diebold–Mariano test that was used
by Blomvall et al. [25]. This test is a version of the original test presented by Diebold
and Mariano [37]. The test consists of four steps. First, we partitioned the data into in-
and out-of-sample sets. Second, the regression was performed (in-sample). Third, the
linear models were evaluated on the out-of-sample data to measure the errors. Fourth, we
performed the Diebold–Mariano test from the errors. We denoted the errors for the two
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regressions, which we compared using si,1 and si,2, respectively, where i = 1, . . . , n. Let
di = si,1i2 − s2

i,2, ∀i = 1, . . . , n denote the loss differentials, and let

d̄ =
1
n

n

∑
i=1

di,

denote the mean of the loss differentials, and the autocovariance with lag k be

γk =
1
n

n

∑
i=k+1

(
di − d̄

)(
di−k − d̄

)
. (31)

The Diebold–Mariano statistic was formulated as

DM =
d̄√

1
n

(
γ0 + 2 ∑h−1

k=1 γk

) , (32)

where h ∈ N+, i.e., a strictly positive integer, and we chose h = n1/3 + 1. The Diebold–
Mariano test statistic follows a standard normal, N(0, 1), given the null hypothesis H0 :
E[di] = μ = 0. We computed the errors, si,1 and si,2, in two ways. First, we used the
prediction errors of the linear models of the out-of-sample data. Second, we also used the
adjusted spot price that was implied by the sloped asset position.

Further, the Diebold–Mariano test only determines if there is a (significant) difference
between methods, but the test does not quantify this difference. However, Blomvall et al. [25]
present one measure,

√
2/π

√
d̄, that can be interpreted as the average improvement be-

tween estimates. The measure has the same unit as the errors, si,1 and si,2.

4.3.3. Results

The results are divided between the mean squared errors presented in Table 9 and
the Diebold–Mariano tests presented in Table 10. The Diebold–Mariano tests cover the
comparisons between yield and present value, ordinary and weighted least squares formu-
lations, and single-time and intraday data. Table 9 shows that the out-of-sample results
are consistent with the in-sample results, since the present value outperformed the yield
formulation. Moreover, the weighted least squares formulation performed better than the
ordinary least squares formulation. The mean squared errors indicate the performance of
the different models, but they do not quantify the significance or even if the difference is
significant.

Table 9. This table shows the out-of-sample mean squared errors (MSE) of the ordinary least
squares (OLS) the weighted least squares (WLS) formulations and the differences between these two
regressions. This table presents the results of two different measures: dividend yield and present
value dividend; and two evaluation methods: regression residuals and difference to the sloped asset
position.

Dividend
Formulation

Data
MSE

OLS (MSE) WLS (MSE) OLS − WLS

Present Value Intraday
Prediction 0.2826 0.2800 0.0026

Yield Intraday
Prediction 0.3130 0.3105 0.0025

Present Value Intraday Sloped 32.609 32.597 0.0118
Yield Intraday Sloped 32.656 32.646 0.0103
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Table 10. This table presents the Diebold–Mariano test statistics for the comparison between the
different estimation methods. The first three columns show information about the method; the type of
dividend formulation: yield or present value (PV); the regression form: ordinary (OLS) or weighted
least squares (WLS); the type of data used: either single-time (Single) or intraday (I-day) data; and the
errors that can be based on prediction or sloped asset positions. The Diebold–Mariano test compares
a pair of methods, and each row in the table is one such comparison, and the compared methods
are indicated with “reference method” vs. “alternative method”. For example, in the first row, the
yield and present value formulation are compared. The fifth and sixth rows contain the mean of the
differential and the Diebold–Mariano test statistics, where a positive or negative sign indicates that
the alternative method is better or worse, respectively, than the reference method.

Dividend
Formulation

Regression
Formulation Data d̄

√
2/πd̄

[USD]
DM

Yield vs. PV OLS I-day
Predicition 0.0304 0.1391 22.710

Yield vs. PV WLS I-day
Predicition 0.0305 0.1394 23.220

Yield vs. PV OLS I-day Sloped 0.0472 0.1733 37.096
Yield vs. PV WLS I-day Sloped 0.0487 0.1761 37.998

PV OLS vs. WLS I-day
Prediction 0.0025 0.0395 4.2099

PV OLS vs. WLS I-day Sloped 0.0590 0.1937 23.408

PV OLS Single vs.
I-day Sloped 0.4660 0.5447 79.258

To see the statistical significance between the models, we discuss the Diebold–Mariano
results in this section. The Diebold–Mariano test results are presented in Table 10. That table
presents the test statistic, and all the comparisons show significant differences. Further, the
fifth column,

√
2/π

√
d̄, is a measure of the differences between the methods. The statistical

test and the values of the measures yield the same results, which can be summarized in
three points. First, the present value dividend formulation is significantly better than the
yield formulation, and the improvements are between 13.91 to 17.61 cents. Second, the
weighted least squares formulation is significantly better than the ordinary least squares
formulation, and the improvements are between 3.95 to 19.37 cents. Third, basing dividend
estimates on intraday data is significantly better than single time data, and the improvement
is 54.57 cents. These quantitative results align with the earlier qualitative results.

4.4. Performance Difference between Yield and Present Value

We have seen that the present value formulation has a superior performance to the
yield formulation both in-sample and out-of-sample for intraday data. If single-time data
is used, there is no difference between the two formulations. The methods are similar in
assumptions but with a crucial difference. The dividend quantity is assumed constant in
both regressions, but a constant dividend yield implies different adjustments to the spot
price, which is incompatible with the market participants’ perception.

We tested if this variability in the adjustment can explain the inferior performance. We
performed a regression that related the difference between the methods and the intraday
variability of the spot price to each other. It is possible to create many variability measures,
but there are two features that we would like the measure to have. First, the absolute quote
changes are less interesting than the relative changes, i.e., the changes should be related to
spot price. Second, we want the regression to be easily computable and tractable.

It is also possible to create several measures of dividend differences. We chose to
measure the intraday variability of the spot price as the intraday range of the spot price
divided by the median spot price. First, we introduced times t′j, j = 1, . . . , Md, which were
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the times when the spot price of the index was recorded, and Md was the number of such
times for day d. The variability of the spot price for a day d was then written as

ΔSd =

max
j∈{1,...,Md}

S(tj)− min
j∈{1,...,Md}

S(tj)

median
j∈{1,...,Md}

S(tj)
, (33)

and the difference between the dividends of the two as

Yd(T) =
1
T

∣∣∣D̂d,T − Dd,T
y

∣∣∣. (34)

where
D̂d,T

y = median
j∈{1,...,Md}

S(tj)
(

1− γ̂d,T
2

)
. (35)

The values of D̂d,T
y were aggregated into a single value, Yd for each date as the mean of

Yd(T). The regression can then be formulated as

Yd = βΔSd, (36)

and the results are presented in Table 11 and Figure 5. We can see that the t-statistic
indicates that the coefficient is significantly different from zero, indicating that the spot
price variability partly explains the difference. Furthermore, we can see from Figure 5 that
the spot price variability is probably not the sole explanation, but it is possible to conclude
that increased variability increases the difference between the two dividend formulations.

Table 11. This plot is the result of regressing and understanding the problem with estimating the
dividend yield.

Estimate SE t-Statistic

β 4.0059 0.1920 20.8637

Figure 5. This figure illustrates the regression results between the variability of the underlying and
the difference between estimating a dividend yield and a present value of a dividend. The slope
coefficient is 4.0059, which means that the greater variability predicts a bigger difference between the
yield and the present value estimate.

4.5. Conclusions

This paper has made both practical and theoretical contributions to the literature in this
area. The practical contribution is that we have expanded and generalized the regression
method presented by Desmettre et al. [1] in two regards. First, we have generalized
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the regression from an ordinary least squares formulation to a weighted least squares
formulation. Second, the regression has been reformulated to utilize intraday data rather
than being limited to data recorded at a single time. We have proven that both of these
changes improve the quality of the dividend estimates with statistical significance. The
latter improved the estimation more than the former. Additionally, one key component of
this analysis is the new European option position (the sloped asset position) that we have
introduced. This position makes it possible to evaluate dividend estimates independent of
interest rate estimates.

The main theoretical contribution is that we have proven that the present value
dividend formulation performs significantly better than the yield formulation. We have
also proposed an explanation for this phenomenon. We propose that worse performance
is caused by the inherent connection between the yield and the spot price. We have also
contributed theoretically with the clarification of the interpretation of the dividend. These
realizations could affect, e.g., the dividend adjustments in derivative pricing.
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Appendix A

The derivation of the sloped asset position can be made either with a dividend expressed
as a yield or as a present value of future dividends. Here, we derive both versions. Let,
fi be a synthetic forward with strike price Ki, i.e., the options in the option pair used to
construct the synthetic forward have the strike price Ki. Furthermore, let δ and D denote
the dividend yield and present value of the dividends, respectively. Furthermore, let r
denote the continuous interest rate. However, the rate is not necessary to prove the relation.
Finally, let T denote the time to maturity when entering the contracts, and the time the
contract is entered into is t.

The sloped asset position consists of a long position in f1 and K1
K2

short positions in f2.
The former has a payoff that can be written as g1(s) = s− K1, while the short positions
provide a payoff of g2(s) = −K1

K2
(s− K2) =

K1
K2
(K2 − s). The total payoff at expiration for

the complete position is:

g(s) = g1(s) + g2(s) = (s− K1) +

(
K1

K2
(K2 − s)

)
= s

(
1− K1

K2

)
.

The payoff can be interpreted as a fractional position, either long or short, in the shares.
The price of this contract upon entering is the share price adjusted for dividends (scaled
with the factor), i.e., the following:
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f1 −
K1

K2
f2 = S∗

(
1− K1

K2

)
= Se−δ(T−t)

(
1− K1

K2

)
(A1)

f1 −
K1

K2
f2 = S∗

(
1− K1

K2

)
= (S− D)

(
1− K1

K2

)
. (A2)

It is possible to find the dividend yields and the present values of the dividends directly
from the expressions by rearranging them thus:

δ = − 1
T − t

ln[S∗/S] = − 1
T − t

ln
[

1
S

f1K2 − f2K1

K2 − K1

]
, (A3)

D = S− S∗ = S− f1K2 − f2K1

K2 − K1
. (A4)
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Abstract: In a host of business applications, biomedical and epidemiological studies, the problem
of multicollinearity among predictor variables is a frequent issue in longitudinal data analysis for
linear mixed models (LMM). We consider an efficient estimation strategy for high-dimensional data
application, where the dimensions of the parameters are larger than the number of observations.
In this paper, we are interested in estimating the fixed effects parameters of the LMM when it is
assumed that some prior information is available in the form of linear restrictions on the parameters.
We propose the pretest and shrinkage estimation strategies using the ridge full model as the base
estimator. We establish the asymptotic distributional bias and risks of the suggested estimators and
investigate their relative performance with respect to the ridge full model estimator. Furthermore,
we compare the numerical performance of the LASSO-type estimators with the pretest and shrinkage
ridge estimators. The methodology is investigated using simulation studies and then demonstrated
on an application exploring how effective brain connectivity in the default mode network (DMN)
may be related to genetics within the context of Alzheimer’s disease.

Keywords: linear mixed model; ridge estimation; pretest and shrinkage estimation; multicollinearity;
asymptotic bias and risk; LASSO estimation; high-dimensional data

1. Introduction

In many fields such as bio-informatics, physical biology, and epidemiology, the re-
sponse of interest is represented by repeated measures of some variables of interest that
are collected over a specified time period for different independent subjects or individuals.
These types of data are commonly encountered in medical research where the responses are
subject to various time-dependent and time-constant effects such as pre- and post-treatment
types, gender effect, and baseline measures, among others. A widely-used statistical tool in
the analysis and modeling of longitudinal and repeated measures data is the linear mixed
effects model (LMM) [1,2]. This model provides an effective and flexible way to describe
the means and the covariance structures of a response variable after accounting for within
subject correlation.

The rapid growth in the size and scope of longitudinal data has created a need for
innovative statistical strategies in longitudinal data analysis. Classical methods are based
on the assumption that the number of predictors is less than the number of observations.
However, there is an increasing demand for efficient prediction strategies for analysis of
high-dimensional data, where the number of observed data elements (sample size) are
smaller than the number of predictors in a linear model context. Existing techniques that
deal with high-dimensional data mostly rely on various penalized estimators. Due to the
trade-off between model complexity and model prediction, the statistical inference of model
selection becomes an extremely important and challenging problem in high-dimensional
data analysis.

Entropy 2021, 23, 1348. https://doi.org/10.3390/e23101348 https://www.mdpi.com/journal/entropy137
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Over the years, many penalized regularization approaches have been developed to
do variable selection and estimation simultaneously. Among them, the least absolute
shrinkage and selection operator (LASSO) is commonly used [3]. It is a useful estimation
technique in part due to its convexity and computational efficiency. The LASSO approach
is based on an �1 penalty for regularization of regression parameters. Ref. [4] provides a
comprehensive summary of the consistency properties of the LASSO approach. Related
penalized likelihood methods have been extensively studied in the literature, see for
example [5–10]. The penalized likelihood methods have a close connection to Bayesian
procedures. Thus, the LASSO estimate corresponds to a Bayes method that puts a Laplacian
(double-exponential) prior on the regression coefficients [11,12].

In this paper, our interest lies in estimating the fixed effect parameters of the LMM
using a ridge estimation technique when it is assumed that some prior information is
available in the form of potential linear restrictions on the parameters. One possible
source of prior information is using a Bayesian approach. An alternative source of prior
information may be obtained from previous studies or expert knowledge that search for or
assume sparsity patterns.

We consider the problem of fixed effect parameter estimation for LMMs when there
exist many predictors relative to the sample size. These predictors may be classified into
two groups: sparse and non-sparse. Thus, there are two choices to be considered: a full
model with all predictors, and a sub-model that contains only non-sparse predictors. When
the sub-model based on available subspace information is true (i.e., the assumed restriction
holds), it then provides more efficient statistical inferences than those based on a full model.
In contrast, if the sub-model is not true, the estimates could become biased and inefficient.
The consequences of incorporating subspace information therefore depend on the quality or
reliability of the information being incorporated into the estimation procedure. One way to
deal with uncertain subspace information is to use a pretest estimation strategy. The validity
of the information is tested before incorporation into a final estimator. Another approach is
shrinkage estimation, which shrinks the full model estimator to the sub-model estimator
by utilizing subspace information. Besides these estimation strategies, there is a growing
literature on simultaneous model selection and estimation. These approaches are known
as penalty strategies. By shrinking some regression coefficients toward zero, the penalty
methods simultaneously select a sub-model and estimate its regression parameters. Several
authors have investigated the pretest, shrinkage, and penalty estimation strategies in partial
linear model, Poisson regression model, and Weibull censored regression model [13–15].

To formulate the problem, we suppose that the vector of the fixed effects parameter β
in the LMM can be partitioned into two sub-vectors β = (β′1, β′2)

′, where β1 is the coefficient
vector of non-sparse predictors and β2 is the coefficient vector of sparse predictors. Our
interest lies in the estimation of β1 when β2 is close to zero. To deal with this problem in
the context of low dimensional data, ref. [16] propose an improved estimation strategy
using sub-model selection and post-estimation for the LMM. Within this framework, linear
shrinkage and shrinkage pretest estimation strategies are developed, which combine full
model and sub-model estimators in an effective way as a trade-off between bias and
variance. Ref. [17] extend this study by using a likelihood ratio test to develop James–Stein
shrinkage and pretest estimation methods based on LMM for longitudinal data. In addition,
the non-penalty estimators are compared with several penalty estimators (LASSO, adaptive
LASSO and Elastic Net) for best performance.

In most real data situations, there is also the problem of multicollinearity among
predictor variables for high-dimensional data. Various biased estimation techniques such
as shrinkage estimation, partial least squares estimation [18] and Liu estimators [19] have
been implemented to deal with this problem, but the widely used technique is ridge
estimation [20]. The ridge estimator overcomes the weakness of the least squares estimator
with a smaller mean squared error. To overcome and combat multicollinearity, ref. [21]
propose pretest and Stein-type ridge regression estimators for linear and partially linear
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models. Furthermore, ref. [22] also develop shrinkage estimation based on Liu regression
to overcome multicollinearity in linear models.

Our primary focus is on the estimation and prediction problem for linear mixed effect
models when there are many potential predictors that have a weak or no influence on the
response of interest. This method simultaneously controls overfitting using general least
square estimation with a roughness penalty. We propose pretest and shrinkage estimation
strategies using the ridge estimation technique as a base estimator and numerically com-
pare their performance with the LASSO and adaptive LASSO estimators. Our proposed
estimation strategy is applied to both high-dimensional and low-dimensional data.

The rest of this article is organized as follows. In Section 2, we present the linear mixed
effect model and the proposed estimation techniques. We introduce the full and sub-model
estimators based on ridge estimation. Thereafter, we construct the pretest and shrinkage
ridge estimators. Section 3 provides the asymptotic bias and risk of these estimators.
A Monte Carlo simulation is used to evaluate the performance of the estimators including
a comparison with the lasso-type estimators, and the results are reported in Section 4.
Section 5 presents a demonstration of the proposed methodology on a high-dimensional
resting-state effective brain connectivity and genetic data. We also illustrate the proposed
estimation methods in an application to a low-dimensional Amsterdam growth and health
study. Section 6 presents a discussion with recommendations.

2. Model and Estimation Strategies

In this section, we present the linear mixed effect model and the proposed estima-
tion strategies.

2.1. Linear Mixed Model

Suppose that we have a sample of N subjects. For the ith subject, we collect the
response variable yij for the jth time, where i = 1 . . . , n; j = 1 . . . , ni and N = ∑n

i=1 ni.
Let Yi = (yi1, . . . yini )

′ denotes the ni × 1 vector of responses from the ith subject. Let
Xi = (xi1, . . . , xini )

′ and Zi = (zi1, . . . , zini )
′ be ni× p and ni×q known fixed-effects and

random-effect design matrix for the ith subject of full rank p and q, respectively. The linear
mixed effect model [1] for a vector of repeated responses Yi on the ith subject is assumed to
have the form

Yi = Xiβ + Ziai + εi, (1)

where β = (β1, . . . , βp)′ is the p × 1 vector of unknown fixed-effect parameters or regres-
sion coefficients, ai is the q × 1 vector of unobservable random effects for the ith subject,
assumed to come from a multivariate normal distribution with zero mean and a covariance
matrix G, where G is an unknown q× q covariance matrix and εi denotes ni×1 vector of
error terms assumed to be normally distributed with zero mean, covariance matrix σ2Ini .
Further, εi are assumed to be independent of the random effects ai.

The marginal distribution for the response yi is normal with mean Xiβ and covariance
matrix Cov(Y i) = Ziσ

2
i ZT

i + σ2 In. By stacking the vectors, the mixed model can be can be
expressed as Y = Xβ +Za+ ε. From the Equation (1), the distribution of the model follows

Y ∼ Nn(Xβ, V), where E(Y) = Xβ with covariance, V =
n
∑

i=1
Ziσ

2
i ZT

i + σ2In.

2.2. Ridge Full Model and Sub-Model Estimator

The generalized least square estimator (GLS) is defined as β̂
GLS

= (XTV−1X)−1XTV−1Y

and the ridge full model estimator can be obtained by introducing a penalized regression

so that β̂ = arg minβ

{
(Y− Xβ)TV−1(Y− Xβ) + kβT β

}
and

β̂
Ridge

= (XTV−1X + kI)−1XTV−1Y, where β̂
Ridge

is the ridge full model estimator

and k ∈ [0, ∞) is the tuning parameter. If k = 0, β̂
Ridge

is the GLS estimator and β̂
Ridge

= 0
for k is sufficiently large. We select the value of k using cross validation.
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We let X = (X1, X2), where X1 is an n × p1 sub-matrix containing the non-sparse
predictors and X2 is an n× p2 sub-matrix that contains the sparse predictors. Accordingly,
β = (β1, β2) where β1 and β2 have dimensions p1 and p2, respectively, with p1 + p2 = p,
pi ≥ 0 for i = 1, 2.

A sub-model is defined as Y = Xβ + Za + ε subject to βT β ≤ φ and β2 = 0 which

corresponds to Y = X1β1 + Za + ε subject to β1
T β1 ≤ φ. The sub-model estimator β̂

RSM
1

of β1 has the form β̂
RSM
1 = (XT

1 V−1X1 + kI)−1XT
1 V−1Y. We denote β̂

RFM
1 as the full model

ridge estimator of β1 and given as

β̂
RFM
1 = (XT

1 V−1/2MX2 V−1/2X1 + kI)−1XT
1 V−1/2MX2V−1/2Y, where MX2 = I− P =

I−V−1/2X2(X2V−1X2)
−1XT

2 V−1/2.

2.3. Pretest Ridge Estimation Strategy

Generally, the sub-model estimator will be more efficient than the full model estimator
if the information embodied in the imposed linear restrictions is valid, thus β2 is close to
zero. However, if the information is not valid the sub-model estimator is likely to be more
biased and may have a higher risk than the full model estimator. There is, therefore, some
doubt as to whether or not to impose the restrictions on the model’s parameter. It is in
response to this uncertainty that a statistical test may be used to determine the validity of
the proposed restrictions. Accordingly, the procedure to follow in practice is pretest the
validity of the restrictions and if the outcome of the pretest suggests that they are correct
then the model parameters are estimated incorporating the restrictions. If the pretest rejects
the restrictions then the parameters are estimated from the sample information alone. This
motivates the consideration of the pretest estimation strategy for the LMM.

The pretest estimator is a combination of the full model estimator β̂
RFM
1 , and sub-model

estimator β̂
RSM
1 , through an indicator function I(Ln ≤ dn,α), where Ln is an appropriate test

statistic to test H0 : β2 = 0 versus HA : β2 �= 0. Moreover, dn,α is an α level critical value
based on distribution of Ln under Ho. We define test statistics based on the log-likelihood

ratio test as Ln = 2
{
�∗(β̂

RFM | Y)− �∗(β̂
RSM | Y)

}
.

Under H0, the test statistic Ln follows asymptotic chi-square distribution with p2

degrees of freedom. The pretest test ridge estimator β̂
RPT
1 of β1 is then defined by

β̂
RPT
1 = β̂

RFM
1 − (β̂

RFM
1 − β̂

RSM
1 )I(Ln ≤ dn,α), p2 ≥ 1.

2.4. Shrinkage Ridge Estimation Strategy

The pre-test estimator is a discontinuous function of the sub-model β̂
RSM
1 and full

model β̂
RFM
1 , which depends on the hard threshold (dn,α = χ2

p2,α). We address this limita-
tion by defining the shrinkage ridge estimator based on soft thresholding. The shrinkage

ridge estimator (RSE) of β1, denoted as β̂
RSE
1 , is defined as

β̂
RSE
1 = β̂

RSM
1 + (β̂

RFM
1 − β̂

RSM
1 )(1− (p2 − 2)L−1

n ), p2 ≥ 3.

Here, β̂
RSE
1 is the linear combination of the full model β̂

RFM
1 and sub-model β̂

RSM
1 estimates.

If Ln ≤ (p2 − 2), then a relatively large weight is placed on β̂
RSM
1 otherwise, more weight

is on β̂
RFM
1 . A setback with β̂

RSE
1 is that it is not a convex combination of β̂

RFM
1 and β̂

RSM
1 .

This can cause over-shrinkage, which gives the estimator opposite sign of β̂
RFM
1 . This

could happen if (p2 − 2)L−1
n is larger than one. To counter this, we use the positive-part

shrinkage ridge estimator (RPS) defined as

β̂
RPS
1 = β̂

RSM
1 + (β̂

RFM
1 − β̂

RSM
1 )(1− (p2 − 2)L−1

n )+, p2 ≥ 3
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where (1 − (p2 − 2)L−1
n )+ = max(0, 1 − (p2 − 2)L−1

n ). The RPS estimator will control
possible over-shrinking in the RSE estimator.

3. Asymptotic Results

In this section, we derive the asymptotic distributional bias and risk of the estimators
considered in Section 2. We examine the properties of the estimators for increasing n and
as β2 approaches the null vector under the sequence of local alternatives defined as

Kn : β2 = β2(n) =
κ√
n

, (2)

where κ = (κ1, κ2 . . . , κp2)
′ ∈ Rp2 is a fixed vector. The vector κ√

n is a measure of how far
local alternatives Kn differ from the subspace information β2 = 0. In order to evaluate the
performance of the estimators, we define the asymptotic distributional bias of the estimator
β̂
∗
1 as

ADB(β̂
∗
1) = lim

n→∞
E
{√

n(β̂
∗
1 − β1)

}
,

In order to compute the risk functions, we first compute the asymptotic covariance of the
estimators. The asymptotic covariance of an estimator β̂

∗
1 is expressed as

Cov(β̂
∗
1) = lim

n→∞
E
{

n(β̂
∗
1 − β1)(β̂

∗
1 − β1)

T}.

Following the asymptotic covariance matrix, we define the asymptotic risk of an estimator

β̂
∗
1 as R(β̂∗

1 ) = tr
(

QCov(β̂
∗
1)
)

. Q is a positive definite matrix of weights with dimensions
of p× p. We set Q = I in this study.

Assumption 1. We make the following two regularity conditions to establish the asymptotic
properties of the estimators.

1. 1
n max1≤i≤n xT

i
[
XTV−1X

]−1xi → 0 as n→ ∞, where xT
i is the ith row of X.

2. Bn = n−1[XTV−1X
]−1 → B, for some finite B =

(
B11 B12
B21 B22

)
.

Theorem 1. For k < ∞, If k/
√

n → λo and B is non-singular, the distribution of the full model
ridge estimator, β̂

RFM
n is √

n(β̂
RFM
n − β)

D→ N (−λoB−1β, B−1),

where D→ denotes convergence in distribution.

Proof. See Theorem 2 in [23].

Proposition 1. Assuming the above assumption 1 together with Theorem 1 hold, under the local
alternatives Kn, we have (

ϕ1
ϕ3

)
D→ N

[(−μ11.2
δ

)
,
(

B−1
11.2 Φ

Φ Φ

)]
,(

ϕ3
ϕ2

)
D→ N

[(
δ
−γ

)
,
(

Φ 0

0 B−1
11

)]
,

where ϕ1 =
√

n(β̂
RFM
1 − β1), ϕ2 =

√
n(β̂

RSM
1 − β1), ϕ3 =

√
n(β̂

RFM
1 − β̂

RSM
1 ), γ = μ11.2 + δ,

δ = B−1
11 B12κ , Φ = B−1

11 B12B−1
22.1B21B−1

11 , B22.1 = B22 − B21B−1
11 B12, μ = −λoB−1β =

(
μ1
μ2

)
and μ11.2 = μ1 − B12B−1

22 ((β2 − κ)− μ2).
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Proof. See Appendix A

Theorem 2. Under the condition of Theorem 1 and the local alternatives Kn, the ADBs of the
proposed estimators are

ADB(β̂
RFM
1 ) = −μ11.2,

ADB(β̂
RSM
1 ) = −μ11.2 − B−1

11 B12δ = −γ,

ADB(β̂
RPT
1 ) = −μ11.2 − δHp2+2(χ

2
p2,α; Δ),

ADB(β̂
RSE
1 ) = −μ11.2 − (p2 − 2)δE(χ−2

p2+2(Δ)),

ADB(β̂
RPS
1 ) = −μ11.2 − δHp2+2(χ

2
p2−2; Δ)

}
− (p2 − 2)δE

{
χ−2

p2+2(Δ)I(χ
−2
p2+2 > p2 − 2)

}
,

where Δ = κTB−1
22.1κ, B22.1 = B22 − B21B−1

11 B12, and Hv(x; Δ) is the cumulative distribution
function of the non-central chi-squared distribution with non-centrality parameter Δ and v degrees
of freedom, and E(χ−2j

v (Δ)) is the expected value of the inverse of a non-central χ2 distribution
with v degrees of freedom and non-centrality parameter Δ,

E(χ−2j
v (Δ)) =

∫ ∞

0
x−2jdHv(x, Δ).

Proof. See Appendix B.1

Since the ADBs of the estimators are in non-scalar form, we define the following
asymptotic quadratic bias (AQDB) of β̂

∗
1 by

AQDB(β̂
∗
1) =

(
ADB(β̂

∗
1)

)′
B11.2

(
ADB(β̂

∗
1)

)
,

where B11.2 = B11 − B12B−1
22 B21.

Corollary 1. Suppose Theorem 2 holds. Then, under {Kn}, the AQDBs of the estimators are

AQDB(β̂
RFM
1 ) = μT

11.2B11.2μ11.2,

AQDB(β̂
RSM
1 ) = γTB11.2γ,

AQDB(β̂
RPT
1 ) = μT

11.2B11.2μ11.2 + μT
11.2B11.2δHp2+2(χ

2
p2

; Δ)

+ δTB11.2μ11.2Hp2+2(χ
2
p2

; Δ) + δTB11.2δH2
p2+2(χ

2
p2

; Δ),

AQDB(β̂
RSE
1 ) = μT

11.2B11.2μ11.2 + (p2 − 2)μT
11.2B11.2δE

(
χ−2

p2+2(Δ)
)

+ (p2 − 2)δTB11.2μ11.2E
(
χ−2

p2+2(Δ)
)
+ (p2 − 2)2δTB11.2δ

(
E
(
χ−2

p2+2(Δ)
))2

,

AQDB(β̂
RPS
1 ) = μT

11.2B11.2μ11.2 +
(
δTB11.2μ11.2 + μT

11.2B11.2δ
)[

Hp2+2(p2 − 2; Δ)

+ (p2 − 2)E
{

χ−2
p2+2(Δ)I(χ

−2
p2+2(Δ) > p2 − 2)

}]
+ δTB11.2δ

[
Hp2+2(p2 − 2; Δ)

+ (p2 − 2)E
{

χ−2
p2+2(Δ)I(χ

−2
p2+2(Δ) > p2 − 2)

}]2

.

When B11.2 = 0, the AQDB of all estimators are equivalent, and the estimators are
therefore asymptotically unbiased. If we assume that B11.2 �= 0, the results for the bias of
the estimators can be summarized as follows:

1. The AQDB of β̂
RSM
1 is an unbounded function of γTB11.2γ.
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2. The AQDB of β̂
RPT
1 starts from μT

11.2B11.2μ11.2 at Δ = 0, and when Δ increases, it
increases to the maximum and then decreases to zero.

3. The characteristics of β̂
RSE
1 and β̂

RPS
1 are similar to β̂

RPT
1 . The AQDB of β̂

RSE
1 and β̂

RPS
1

similarly start from μT
11.2B11.2μ11.2 at Δ = 0, and increase to a point, and then decrease

towards zero, since E
{

χ−2
p2+2(Δ)

}
is a non-increasing on of Δ.

Theorem 3. Suppose Theorem 1 holds and under the local alternatives Kn, the covariance matrices
of the estimators are

Cov(β̂RFM
1 ) = B−1

11.2 + μ11.2μT
11.2,

Cov(β̂RSM
1 ) = B−1

11 + γγT,

Cov(β̂RPT
1 ) = B−1

11.2 + μ11.2μT
11.2 + 2μT

11.2δHp2+2(χ
2
p2

; Δ)−ΦHp2+2(χ
2
p2

; Δ)

+ δδT[2Hp2+2(χ
2
p2

; Δ)−Hp2+4(χ
2
p2

; Δ)
]
,

Cov(β̂RSE
1 ) = B−1

11.2 + μ11.2μT
11.2 + 2(p2 − 2)μT

11.2δE
(

χ−2
p2+2(Δ)

)
− (p2 − 2)Φ

{
2E
(

χ−2
p2+2(Δ)

)
− (p2 − 2)E

(
χ−4

p2+2(Δ)
)}

+ (p2 − 2)δδT
{
− 2E

(
χ−2

p2+4(Δ)
)
+ 2E(χ−2

p2+2(Δ)) + (p2 − 2)E
(

χ−4
p2+4(Δ)

)}
,

Cov(β̂
RPS
1 ) = Cov(β̂

RSE
1 ) + 2δμT

11.2E
({

1− (p2 − 2)χ−2
p2+2(Δ)

}
I
(

χ2
p2+2(Δ) ≤ p2 − 2

))
− 2ΦE

({
1− (p2 − 2)χ−2

p2+2(Δ)
}

I
(

χ2
p2+2(Δ) ≤ p2 − 2

))
− 2δδTE

(
{1− (p2 − 2)χ−2

p2+4(Δ)}I(χ2
p2+4(Δ) ≤ p2 − 2)

)
+ 2δδTE

({
1− (p2 − 2)χ−2

p2+2(Δ)
}

I
(

χ2
p2+2(Δ) ≤ p2 − 2

))
− (p2 − 2)2ΦE

(
χ−4

p2+2(Δ)I
(

χ2
p2+2,α(Δ) ≤ p2 − 2

))
− (p2 − 2)2δδTE

(
χ−4

p2+2,α(Δ)I
(

χ2
p2+2,α(Δ) ≤ p2 − 2

))
+ ΦHp2+2

(
p2 − 2; Δ

)
+ δδTHp2+4

(
p2 − 2; Δ

)
.

Proof. See Appendix B.2.
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Corollary 2. Under the local alternatives (Kn) and from Theorem 3, the risk of the estimators are
obtained as

R
[
β̂

RFM
1

]
= tr

(
QB−1

11.2

)
+ μT

11.2Qμ11.2,

R
[
β̂

RSM
1 ] = tr

(
QB−1

11

)
+ γTQγ,

R
[
β̂

RPT
1

]
= tr

(
QB−1

11.2

)
+ μT

11.2Qμ11.2 + 2μT
11.2QδHp2+2

(
χ2

p2
; Δ
)

− tr
(
QΦ

)
Hp2+2

(
χ2

p2
; Δ
)
+ δQδT

[
2Hp2+2

(
χ2

p2
; Δ
)
−Hp2+4

(
χ2

p2
; Δ
)]

,

R
[
β̂

RSE
1
]
= tr

(
QB−1

11.2

)
+ μT

11.2Qμ11.2 + 2(p2 − 2)μT
11.2QδE

(
χ−2

p2+2(Δ)
)

− (p2 − 2)tr(QΦ)
[

E
(

χ−2
p2+2(Δ)

)
− (p2 − 2)E

(
χ−4

p2+2(Δ)
)]

+ (p2 − 2)δTQδ
[
2E
(

χ−2
p2+2(Δ)

)
− 2E

(
χ−2

p2+4(Δ)
)
− (p2 − 2)E

(
χ−4

p2+4(Δ)
)]

,

R
[
β̂

RPS
1
]
= R

[
β̂

RSE
1
]
+ 2δQμT

11.2E
({

1− (p2 − 2)χ−2
p2+2(Δ)

}
I
(

χ2
p2+2(Δ) ≤ p2 − 2

))
− 2tr(QΦ)E

({
1− (p2 − 2)χ−2

p2+2(Δ)
}

I
(

χ2
p2+2(Δ) ≤ p2 − 2

))
− 2δTQδE

(
{1− (p2 − 2)χ−2

p2+4(Δ)}I(χ2
p2+4(Δ) ≤ p2 − 2)

)
+ 2δTQδE

({
1− (p2 − 2)χ−2

p2+2(Δ)
}

I
(

χ2
p2+2(Δ) ≤ p2 − 2

))
− (p2 − 2)2tr(QΦ)E

(
χ−4

p2+2(Δ)I
(

χ2
p2+2(Δ) ≤ p2 − 2

))
− (p2 − 2)2δTQδE

(
χ−4

p2+2(Δ)I
(

χ2
p2+2(Δ) ≤ p2 − 2

))
+ tr(QΦ)Hp2+2

(
p2 − 2; Δ

)
+ δTQδHp2+4

(
p2 − 2; Δ

)
.

From Theorem 2, when B12 = 0, the risks of estimators β̂
RSM
1 , β̂

RPT
1 , β̂

RSE
1 , and β̂

RPS
1 are

reduced to common value tr(QB−1
11.2) + μT

11.2Qμ11.2, the risk of β̂
RFM
1 . If B12 �= 0, the results

can be summarized as follows:

1. The risk of β̂
RFM
1 remains constant while the risk of β̂

RSM
1 is an unbounded function

of Δ since Δ ∈ [0, ∞).
2. The risk of β̂

RPT
1 increases as Δ moves away from zero, achieves it maximum and then

decreases towards the risk of the full model estimator.
3. The risk of β̂

RFM
1 is smaller than the risk of β̂

RPT
1 for small values in the neighborhood

of Δ and for the rest of the parameter space, β̂
RPT
1 outperforms β̂

RFM
1 , thus, R

[
β̂

RFM
1

]
>

R
[
β̂

RPT
1

]
.

4. Comparing the risks of β̂
RSE
1 and β̂

RFM
1 , it can be seen that the estimator β̂

RSE
1 outper-

forms β̂
RFM
1 that is, R

[
β̂

RSE
1
]
≤ R

[
β̂

RFM
1

]
for all Δ ≥ 0.

4. Simulation Studies

In this section, we conduct a simulation study to assess the performance of the
suggested estimators for finite samples. The criterion for comparing the performance
of any estimator in our study is the mean square error. We simulate the response from the
following LMM model

Y i = Xiβ + Ziai + εi, (3)

where εi ∼ N (0, σ2Ini ) with σ2 = 1. We generate random effect covariate ai from a
multivariate normal distribution with zero mean and covariance matrix G = 0.5I2×2, where
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I2×2 is 2× 2 identity matrix. The design matrix Xi = (xi1, . . . , xini )
′ is generated from a ni-

multivariate normal distribution with mean vector and covariance matrix Σx. Furthermore,
we assume that the off-diagonal elements of the covariance matrix Σx are equal to ρ, which
is the coefficient of correlation between any two predictors, with ρ = 0.3, 0.7, 0.9. The ratio
of the largest eigenvalue to the smallest eigen-value of matrix XTV−1X is calculated as a
condition number index (CNI) [24], which assesses the existence of multicollinearity in the
design matrix. If the CNI is larger than 30, then the model has significant multicollinearity.
Our simulations are based on the linear mixed effects model in Equation (3) with n = 60
and 100 subjects.

We consider a situation when the model is assumed to be sparse. In this study, our
interest lies in testing the hypothesis Ho : β2 = 0, and our goal is to estimate the fixed effect
coefficient β1. We partition the fixed effects coefficients as β = (β′1, β′2)

′ = (β′1, 0p2)
′. The

coefficients β1 and β2 are p1 and p2 dimensional vectors, respectively, with p = p1 + p2.
In order to investigate the behavior of the estimators, we define Δ∗ = ||β − βo||,

where βo = (βT
1 , 0p2)

T and ||.|| is the euclidean norm. We considered Δ∗ values between
0 and 4. If Δ∗ = 0, then we will have β = (1, 1, 1, 1, 0, 0, . . . , 0︸ ︷︷ ︸

p2

)T to generate the response

under null hypothesis. On the other hand, when Δ∗ ≥ 0, say Δ∗ = 4, we will have
β = (1, 1, 1, 1, 4, 0, 0, . . . , 0︸ ︷︷ ︸

p2−1

)T to generate the response under the local alternative hypothesis.

In our simulation study, we consider the number of fixed effect or predictor variables as
(p1, p2) ∈ {(5, 40), (5, 500), (5, 1000)}. Each realization is repeated 5000 times to obtain
consistent results and compute the MSE of suggested estimators with α = 0.05.

Based on the simulated data, we calculate the mean square error (MSE) of all the estimators

as MSE(β̂) = 1
5000 ∑5000

j=1 (β̂− β)T(β̂− β), where β̂ denotes any one of β̂
RSM

, β̂
RPT

, β̂
RSE

and

β̂
RPS

, in the jth repetition. We use the relative mean squared efficiency (RMSE), or the ratio
of MSE for risk performance comparison. The RMSE of an estimator β̂

∗
with respect to the

baseline full model ridge estimator β̂
RFM
1 is defined as RMSE(β̂

RFM
1 : β̂

∗
1) =

MSE(β̂
RFM
1 )

MSE(β̂
∗
1)

,

where β∗1 is one of the suggested estimators under consideration.

4.1. Simulation Results

In this subsection, we present the results from our simulation study. We report the
results for n = 60, 100 and p1 = 5 with different values of correlation coefficient ρ are shown
in Table 1. Furthermore, we plot the RMSEs against Δ∗ in Figures 1 and 2. The findings can
be summarized as follows:

1. When Δ∗ = 0, the sub-model RSM outperforms all other estimators. As Δ∗ = 0 moves
from zero, the RMSE of the sub-model decreases and goes to zero.

2. The pretest ridge estimator RPT outperforms shrinkage ridge and positive Stein ridge
estimators in the case of Δ∗ = 0. However, for large number of sparse predictors p2
while keeping p1 and n fixed, RPT is less efficient than RPS and RSE. In the case of
Δ∗ being larger than zero, the RMSE of RPT decreases, and it remains below 1 for
immediate values of Δ∗, after that the RMSE of RPT increases and approaches one for
larger values of Δ∗.

3. RPS performs better than RSE in the entire parameter space induced by Δ∗ as pre-
sented in Tables 1 and 2. Similarly, both shrinkage estimators RPS and RSE outper-
forms the full ridge model estimator irrespective of the corrected sub-model selected.
This is consistent with the asymptotic theory presented in Section 3.

4. Δ∗ which measures the degree of deviation from the Assumption 1 on the parameter
space, it is clear that one cannot go wrong with the use of shrinkage estimators
even if the selected sub-model is wrongly specified. As evident from Tables 1 and 2,
Figures 1 and 2, if the selected sub-model is correct, that is, Δ∗ = 0, then the shrinkage
estimators are relatively efficient compared with the ridge full model estimator. On the
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other hand, if the sub-model is misspecified, the gain slowly diminishes. However,
in terms of risk, the shrinkage estimators are at least as good as the full ridge model
estimator. Therefore, the use of shrinkage estimators makes sense in application when
a sub-model cannot be correctly specified.

5. The RMSE of the ridge-type estimators are an increasing function of the amount of
multicollinearity. This indicates that the ridge-type estimators perform better than
the classical estimator in the presence of multicollinearity among predictor variables.p y g p

Figure 1. RMSE of estimators as a function of the non-centrality parameter Δ when n = 60, and p1 = 5.
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Figure 2. RMSE of estimators as a function of the non-centrality parameter Δ when n = 100, and p1 = 5.
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Table 1. RMSEs of RSM, RPT, RSE, and RPS estimators with respect to β̂
RFM
1 when Δ ≥ 0 for p1 = 5

and n = 60.

ρ p2 Δ CNI RSM RPT RSE RPS

0.3 40 0 361 2.61 2.07 1.94 1.96
1 1.05 1.07 1.20 1.25
2 0.25 0.95 1.04 1.05
3 0.12 0.98 0.99 1.00
4 0.08 1.00 1.00 1.00

500 0 613 4.48 3.29 3.48 1.96
1 1.26 1.12 1.26 1.29
2 0.41 0.97 1.08 1.09
3 0.18 0.99 1.00 1.00
4 0.13 1.00 1.00 1.00

1000 0 693 5.36 4.53 4.67 4.71
1 1.53 1.21 1.35 1.39
2 0.49 1.01 1.13 1.14
3 0.28 0.99 0.99 0.99
4 0.10 1.00 1.00 1.00

0.7 40 0 1352 3.18 2.33 2.17 2.18
1 1.04 1.11 1.20 1.23
2 0.42 1.03 1.04 1.04
3 0.23 0.98 0.99 1.00
4 0.14 1.00 1.00 1.00

500 0 1789 4.48 2.76 2.94 3.02
1 1.08 1.43 1.52 1.53
2 0.67 1.03 1.07 1.06
3 0.35 0.98 1.00 1.00
4 0.19 1.00 1.00 1.00

1000 0 2134 6.82 5.24 5.30 3.02
1 1.16 1.32 1.42 1.53
2 0.75 1.10 1.15 1.16
3 0.39 0.99 1.00 1.00
4 0.11 1.00 1.00 1.00
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Table 2. RMSEs of RSM, RPT, RSE, and RPS estimators with respect to β̂
RFM
1 when Δ ≥ 0 for p1 = 5,

and n = 100.

ρ p2 Δ CNI RSM RPT RSE RPS

0.3 40 0 150 2.38 2.09 1.88 1.90
1 0.89 1.01 1.05 1.08
2 0.21 0.94 1.01 1.02
3 0.06 0.94 0.99 1.00
4 0.02 1.00 1.00 1.00

500 0 340 4.15 2.65 2.99 3.17
1 0.87 1.08 1.18 1.21
2 0.14 0.96 1.03 1.05
3 0.06 0.99 0.99 1.00
4 0.03 1.00 1.00 1.00

1000 0 536 4.30 2.75 3.02 3.08
1 0.96 1.09 1.13 1.15
2 0.21 0.8 1.03 1.03
3 0.09 1.00 1.00 1.00
4 0.04 1.00 1.00 1.00

0.7 40 0 997 3.27 2.15 2.09 2.11
1 0.85 1.02 1.09 1.10
2 0.21 0.98 1.02 1.02
3 0.06 0.99 0.99 0.99
4 0.01 1.00 1.00 1.00

500 0 1589 4.13 2.22 2.35 2.39
1 1.04 1.19 1.21 1.20
2 0.30 0.97 1.05 1.05
3 0.14 1.00 1.00 1.00
4 0.08 1.00 1.00 1.00

1000 0 1751 5.17 3.71 4.03 4.09
1 1.01 1.15 1.24 1.25
2 0.39 1.04 1.07 1.06
3 0.16 0.99 1.00 1.00
4 0.11 1.00 1.00 1.00

4.2. Comparison with LASSO-Type Estimators

We compare our listed estimators with the LASSO and adaptive LASSO estimators.
A 10-fold cross-validation is used for selecting the optimal value of the penalty parameters
that minimizes the mean square errors for the LASSO-type estimators. The results for
ρ = 0.3, 0.7, 0.9, n = 60, 100, p1 = 10 and p2 = 50, 500, 1000, 2000 are presented in Table 3.
We observe the following from Table 3.

1. The performance of the sub-model estimator is the best among all estimators.
2. The pretest ridge estimator performs better than the other estimators. However,

for larger values of sparse predictors p2 the shrinkage estimators outperform the
pretest estimator.

3. The performance of the LASSO and aLASSO estimators are comparable when ρ is
small. The pretest and shrinkage estimators remain stable for a given value of ρ.

4. For a large number of sparse predictors p2, the shrinkage and pretest ridge estimators
outperforms the lasso-type estimators. This indicates the superiority of the shrinkage
estimators over the LASSO-type estimators. Therefore shrinkage estimators are
preferable when there is multicollinearity in our predictor variables.

149



Entropy 2021, 23, 1348

Table 3. RMSEs of estimators with respect to β̂
RFM
1 when Δ = 0 for p1 = 10.

n ρ p2 CNI RSM RPT RSE RPS LASSO aLASSO

60 0.3 50 35.64 3.31 2.25 1.82 1.95 1.23 1.28
500 452.76 4.13 3.71 2.61 3.01 1.47 1.52

1000 1265.34 5.02 4.28 4.61 4.78 1.96 2.15
2000 4567.56 7.13 5.10 6.18 6.39 2.70 3.06

0.7 50 61.34 3.52 3.05 2.51 2.55 1.14 1.21
500 743.17 4.49 3.65 3.41 3.50 1.36 1.58

1000 2350.89 5.84 4.11 4.32 4.61 1.68 1.95
2000 6908.39 8.10 5.31 6.24 6.29 1.84 2.02

0.9 50 120.21 4.21 3.61 3.34 3.35 1.10 1.05
500 950.98 4.82 3.3.8 3.72 3.73 1.21 1.16

1000 5892.51 6.35 4.10 5.01 5.13 1.42 1.31
2000 8352.73 8.51 4.63 5.24 5.38 1.61 1.35

100 0.3 50 31.21 2.91 2.54 2.12 2.23 1.32 1.36
500 356.64 3.75 3.31 2.84 2.92 1.54 1.61

1000 975.32 4.25 2.53 3.42 3.61 1.92 2.06
2000 2764.84 5.61 4.25 4.91 5.08 2.31 2.46

0.7 50 52.79 3.18 2.61 2.30 2.37 1.28 1.53
500 578.43 4.28 3.05 3.52 3.59 1.46 2.07

1000 1281.66 5.10 3.26 3.78 3.82 1.84 2.52
2000 3498.30 6.12 3.01 4.26 4.33 2.27 2.41

0.9 50 79.41 4.11 3.41 3.21 3.28 1.28 1.21
500 681.43 4.35 3.55 3.41 3.50 1.43 1.51

1000 1470.32 5.82 3.18 4.01 4.14 1.72 1.79
2000 4105.90 7.04 4.57 5.22 5.32 1.87 1.96

5. Real Data Application

We consider two real data analyses using Amsterdam Growth and Health Data and a
genetic and brain network connectivity edge weight data to illustrate the performance of
the proposed estimators.

5.1. Amsterdam Growth and Health Data (AGHD)

The AGHD data is obtained from the Amsterdam Growth and Health Study [25].
The goal of this study is to investigate the relationship between lifestyle and health in
adolescence into young adulthood. The response variable Y is the total serum cholesterol
measured over six time points. There are five covariates: X1 is the baseline fitness level
measured as the maximum oxygen uptake on a treadmill, X2 is the amount of body fat
estimated by the sum of the thickness of four skinfolds, X3 is a smoking indicator (0 = no,
1 = yes), X4 is the gender (1 = female, 2 = male), and time measurement as X5 and subject
specific random effects.

A total of 147 subjects participated in the study where all variables were measured at
ni = 6 time occasions. In order to apply the proposed methods, firstly, we apply a variable
selection based on AIC procedure to select the sub-model. For the AGHD data, we fit a
linear mixed model with all the five covariates for both fixed and subject specific random
effects by two stage selection procedure for the purpose of choosing both the random and
fixed effects. The analysis found X2 and X5 to be significant covariates for prediction of the
response variable serum cholestrol and the other variables are ignored since they are not
significantly important. Based on this information, a sub-model is chosen to be X2 and X5
and the full model includes all the covariates. We construct the shrinkage estimators from
the full-model and sub-model. In terms of null hypothesis, the restriction can be written as
β2 = (β1, β3, β4) = (0, 0, 0) with p = 5, p1 = 2 and p2 = 3.

To evaluate the performance of the estimators, we obtain the mean square prediction
error (MSPE) using bootstrap samples. We draw 1000 bootstrap samples of the 147 subjects
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from the data matrix {(Yij, Xij), i = 1, 2, . . . , 147; j = 1, 2, . . . , 6}. We then calculate the
relative prediction error (RPE) of β∗1 with respect to βRFM

1 , the full model estimator. The RPE
is defined as

RPE(β̂
RFM
1 : β̂

∗
1) =

MSPE(β̂
∗
1)

MSPE(β̂
RFM
1 )

=
(Y− X1β̂

∗
1)
′(Y− X1β̂

∗
1)

(Y− X1β̂
RFM
1 )′(Y− X1β̂

RFM
1 )

,

where β∗1 is one of the listed estimators. If RPE < 1, then β̂
∗
1 outperforms β̂

RFM
1 .

Table 4 reports the estimates, standard error of the non-sparse predictors and RPEs of
the estimators with respect to the full model. As expected, the sub-model ridge estimator

β̂
RSM
1 has the minimum RPE because it is computed when the sub-model is correct, that is,

Δ∗ = 0. It is evident by the RPE values in Table 4 that the shrinkage estimators are superior
to the LASSO-type estimators. Furthermore, the positive shrinkage is more efficient than
the shrinkage ridge estimator.

Table 4. Estimate, standard error for the active predictors and RPEs of estimators with respect to
full-model estimator for the Amsterdam Growth and Health Study data.

RFM RSM RPT RSE RPS LASSO aLASSO

Estimate(β2 ) 0.381 0.395 0.392 0.389 0.390 0.624 0.611
Standard
error 0.104 0.102 0.100 0.009 0.008 0.081 0.079

Estimate (β5) 0.137 0.125 0.131 0.130 0.133 0.101 0.105
Standard
error 0.012 0.010 0.009 0.011 0.010 0.013 0.012

RPE 1.000 0.723 0.841 0.838 0.831 0.986 0.973

5.2. Resting-State Effective Brain Connectivity and Genetic Data

This data comprises longitudinal resting-state functional magnetic resonance imaging
(rs-fMRI) effective brain connectivity network and genetic study [26] data obtained from
a sample of 111 subjects with a total of 319 rs-fMRI scans from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database. The 111 subjects comprise 36 cognitively normal
(CN), 63 mild cognitive impairment (MCI) and 12 Alzheimer’s Disease (AD) subjects.
The response is a network connection between regions of interest estimated from an rs-
fMRI scan within the Default Mode Network (DMN), and we observe a longitudinal
sequence of such connections for each subject with the number of repeated measurements.
The DMN consists of a set of brain regions that tend to be active in resting-state, when a
subject is mind wandering with no intended task. For this data analysis, we consider the
network edge weight from the left intraparietal cortex to posterior cingulate cortex (LIPC
→ PCC) as our response. The genetic data are single nucleotide polymorphism (SNPs)
from non-sex chromosomes, i.e., chromosome 1 to chromosome 22. SNPs with minor allele
frequency less than 5% are removed as are SNPs with a Hardy–Weinberg equilibrium
p-value lower than 10−6 or a missing rate greater than 5%. After preprocessing we are left
with 1,220,955 SNPs and the longitudinal rs-fMRI effective connectivity network using
the 111 subjects with rs-fMRI data. The response is network edge weight. There are SNPs
which are the fixed effects and subject specific random effects.

In order to apply the proposed methods, we use a genome- wide association study
(GWAS) for screening the genetic data to 100 SNPs. We implement a second screening by
applying multinomial logistic regression to identify a smaller subset of the 100 SNPs that
are potentially associated with disease (CN/MCI/AD). This yields a subset of top 10 SNPs.
This showed the top 10 SNPs are the most important predictors and the other 90 SNPs
are ignored as not significant. We now have two models, which are the full model with
all 100 SNPs and sub-model with 10 SNPs selected. Finally, we construct the pretest and
shrinkage estimators from the full-model and sub-model.
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We draw 1000 bootstrap samples with replacements from the corresponding data
matrix {(Yij, Xij), i = 1, . . . , 111; j = 1, . . . , ni}. We report the RPE of the estimators based
on the bootstrap simulation with respect to the full model ridge estimator in Table 5. We
observe that the RPE of the sub-model, pretest, shrinkage and positive shrinkage ridge
estimators outperforms the full model estimator. Clearly, the sub-model ridge estimator has
the smallest RPE since it’s computed when the candidate sub-model is correct, i.e., Δ = 0.
Both shrinkage ridge estimators outperform the pretest ridge estimator. Particularly,
the positive shrinkage performed better than the shrinkage estimator. The performance
of both shrinkage and pretest ridge estimators are better than the LASSO-type estimators.
Thus, the data analysis is in line with our simulation and theoretical findings.

Table 5. RPEs of estimators.

RFM RSM RPT RSE RPS LASSO aLASSO

RPE 1.000 0.802 0.947 0.932 0.928 1.051 1.190

6. Conclusions

In this paper, we present efficient estimation strategies for the linear mixed effect
model when there exists multicollinearity among predictor variables for high-dimensional
data application. We considered the estimation of fixed effects parameters in the linear
mixed model when some of the predictors may have a very weak influence on the response
of interest. We introduced pretest and shrinkage estimation in our model using the ridge
estimation as the reference estimator. In addition, we established the asymptotic properties
of the pretest and shrinkage ridge estimators. Our theoretical findings demonstrate that
the shrinkage ridge estimators outperform the full model ridge estimator and perform
relatively better than the sub-model estimator in a wide range of the parameter space.

Additionally, a Monte Carlo simulation was conducted to investigate and assess the
finite sample behavior of proposed estimators when the model is sparse (restrictions on
parameters hold). As expected, the sub-model ridge estimator outshines all other estimators
when the restrictions hold. However, when this assumption is violated, the shrinkage
and pretest ridge estimators outperform the sub-model estimator. Furthermore, when the
number of sparse predictors are extremely large relative to the sample size, the shrinkage
estimators outperform the pretest ridge estimator. These numerical results are consistent
with our asymptotic result. We also assess the relative performance of the LASSO-type
estimators with our ridge-type estimators. We observe that the performance of pretest and
shrinkage ridge estimators are superior to the LASSO-type estimators when predictors are
highly correlated. For our real data application, the shrinkage ridge estimators are superior
with the smallest relative prediction error compared to the LASSO-type estimators.

In summary, the results of the data analyses strongly confirm the findings of the
simulation study and suggest the use of the shrinkage ridge estimation strategy when no
prior information about the parameter subspace is available. The results of our simulation
study and real data application are consistent with available results in [27–29].

In our future work, we will focus on other penalty estimators like the Elastic-Net,
the minimax concave penalty (MCP), and the smoothly clipped absolute deviation method
(SCAD) as estimation strategy in LMM for high-dimensional data. These estimators will
be assessed and compared with the proposed ridge-type estimators. Another interesting
extension will be integrating two sub-models by incorporating ridge-type estimation
strategies in the linear mixed effect models. The goal is to improve the estimation accuracy
of the non-sparse set of the fixed effects parameters by combining an over-fitted model
estimator with an under-fitted one [27,29]. This approach will include combining two
sub-models produced by two different variable selection techniques from the LMM [28].
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Appendix A

Proof of Proposition 1. The asymptotic relationship between the sub-model and full model

estimators of β1, we use the argument and equation: Ŷ = Y− X2β̂
RFM
2 , where

β̂
RFM
1 = arg min

β1

{
(Ŷ− X1β1)

TV−1(Ŷ− X1β1) + λ||β1||2
}

=
[
XT

1 V−1X1 + λIp1

]−1
XT

1 V−1Ŷ

=
[
XT

1 V−1X1 + λIp1

]−1
XT

1 V−1Y−
[
XT

1 V−1X1 + λIp1

]−1
XT

1 V−1X2β̂
RFM
2

= β̂
RSM
1 −

[
X1V−1X1 + λIp1

]−1
XT

1 V−1X2β̂
RFM
2

= β̂
RSM
1 − B−1

11 B12β̂
RFM
2

From Theorem 1, we partition
√

n(β̂
RFM − β) as

√
n(β̂

RFM − β) =
(√

n(β̂
RFM
1 − β1),√

n(β̂
RFM
2 − β2)

)
. We obtain

√
n(β̂

RFM
1 − β1)

D→ Np1(−μ11.2, B−1
11.2), where B−1

11.2 = B11 −
B12B−1

22 B21. We have shown that β̂
RSM
1 = β̂

RFM
1 + B−1

11 B12β̂
RFM
2 . Using this expression and

under the local alternative {Kn}, we obtain the following expressions

ϕ2 =
√

n
(

β̂
RSM
1 − β1

)
=
√

n
(

β̂
RFM
1 + B−1

11 B12β̂
RFM
2 − β1

)
= ϕ1 + B−1

11 B12
√

nβ̂
RFM
2 ,

ϕ3 =
√

n(β̂
RFM
1 − β̂

RSM
1 )

=
√

n
(

β̂
RFM
1 − β1

)
−
√

n
(

β̂
RSM
1 − β1

)
= ϕ1 − ϕ2.
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Since ϕ2 and ϕ3 are linear functions of ϕ1, as n → ∞, they are also asymptotically normally
distributed. Their mean vectors and covariance matrices are as follows:

E(ϕ1) = E
(√

n
(

β̂
RFM
1 − β1

))
= −μ11.2

E(ϕ2) = E
(

ϕ1 + B−1
11 B12

√
nβ̂

RFM
2

)
= E(ϕ1) + B−1

11 B12
√

nE(β̂
RFM
2 )

= −μ11.2 + B−1
11 B12κ = −(μ11.2 − δ) = −γ

E(ϕ3) = E(ϕ1 − ϕ2) = −μ11.2 − (−(μ11.2 − δ)) = δ

Var(ϕ1) = B−1
22.1

Var(ϕ2) = Var
(

ϕ1 + B−1
11 B12

√
nβ̂

RFM
2

)
= Var(ϕ1) + B−1

11 B12B−1
22.1B21B−1

11

+ 2Cov
[√

n(β̂
RFM
1 − β1),

√
n(β̂

RFM
2 − β2)

]
(B−1

11 B12)
T

= B−1
22.1 − B−1

11 B12B−1
22.1B21B−1

11 = B−1
11

Var(ϕ3) = Var
(√

n
(

β̂
RFM
1 − β̂

RSM
1

))
= Var

(√
n
(

β̂
RFM
1 − β̂

RFM
1 − B−1

11 B12β̂
RFM
2

))
= B−1

11 B12Var
[√

nβ̂
RFM
2

]
(B−1

11 B12)
T

= B−1
11 B12B−1

22.1B21B−1
11 = Φ

Cov(ϕ1, ϕ3) = Cov
[√

n
(

β̂
RFM
1 − β1

)
,
√

n
(

β̂
RFM
1 − β̂

RSM
1

)]
= Var

(√
n
(

β̂
RFM
1 − β1

))
− Cov

[√
n
(

β̂
RFM
1 − β1

)
,
√

n
(

β̂
RSM
1 − β1

)]
= Var(ϕ1)− Cov

[√
n
(

β̂
RFM
1 − β1

)
,
√

n
(

β̂
RFM
1 − β1

)
+
√

nB−1
11 B12β̂

RFM
2

]
= B−1

11 B12B−1
22.1B21B−1

11 = Φ

Cov(ϕ2, ϕ3) = Cov
[√

n
(

β̂
RSM
1 − β1

)
,
√

n
(

β̂
RFM
1 − β̂

RSM
1

)]
= Cov

[√
n
(

β̂
RSM
1 − β1

)
,
√

n
(

β̂
RFM
1 − β1

)]
−Var

(√
n
(

β̂
RSM
1 − β1

))
= B−1

11.2 − B−1
11 B12B−1

22.1B21B−1
11 − B−1

11

= B−1
11.2 −

(
B−1

11.2 − B−1
11
)
− B−1

11 = 0

Therefore, the asymptotic distributions of the vectors ϕ2 and ϕ3 are obtained as follows:

ϕ2 =
√

n(β̂
RSM
1 − β1)

D→ Np1(−γ, B−1
11 )

ϕ3 =
√

n(β̂
RFM
1 − β̂

RSM
1 )

D→ Np1(δ, Φ)
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Appendix B

We next introduce the lemmas given in [30] to aid with the proof of the bias and
covariance of the estimators.

Lemma A1. Let V = (V1, V2, . . . Vp)T be a p-dimensional normal vector distributed asNp(μv, Σp),
then for a measurable function Ψ, we have

E
[
VΨ(VTV)

]
= μvE

[
Ψχ2

p+2(Δ)
]

E
[
VVTΨ(VTV)

]
= ΣpE

[
Ψχ2

p+2(Δ)
]
+ μvμT

v E
[
Ψχ2

p+4(Δ)
]

where χ2
k(Δ) is a non-central chi-square distribution with k degrees of freedom and non-centrality

parameter Δ.

Appendix B.1

Proof of Theorem 2.

ADB(β̂
RFM
1 ) = E

{
lim

n→∞

√
n(β̂

RFM
1 − β1)

}
= −μ11.2.

ADB(β̂
RSM
1 ) = E

{
lim

n→∞

√
n(β̂

RSM
1 − β1)

}
= E

{
lim

n→∞

√
n(β̂

RFM
1 − B−1

11 B12β̂
RFM
2 − β1)

}
= E

{
lim

n→∞

√
n(β̂RFM

1 − β1)
}
− E

{
lim

n→∞

√
n(B−1

11 B12β̂RFM
2 )

}
= −μ11.2 − E

{
lim

n→∞

√
n(B−1

11 B12β̂RFM
2 )

}
= −μ11.2 − B−1

11 B12κ = −(μ11.2 + δ) = −γ.

Using Lemma 1,

ADB(β̂RPT
1 ) = E

{
lim

n→∞

√
n(β̂RPT

1 − β1)
}

= E
{

lim
n→∞

√
n(β̂RFM

1 − (β̂RFM
1 − β̂RSM

1 )I(Ln ≤ dn,α)− β1)
}

= E
{

lim
n→∞

√
n(β̂RFM

1 − β1)
}
− E

{
lim

n→∞

√
n(β̂RFM

1 − β̂RSM
1 )I(Ln ≤ dn,α)

}
= −μ11.2 − E

{
lim

n→∞

√
n(β̂RFM

1 − β̂RSM
1 )I(Ln ≤ dn,α))

}
= −μ11.2 − δHp2+2(χ

2
p2

; Δ).

ADB(β̂RSE
1 ) = E

{
lim

n→∞

√
n(β̂RSE

1 − β1)
}

= E
{

lim
n→∞

√
n(β̂RFM

1 − (β̂RFM
1 − β̂RSM

1 )(p2 − 2)L−1
n − β1)

}
= E

{
lim

n→∞

√
n(β̂RFM

1 − β1)
}
− E

{
lim

n→∞

√
n(β̂RFM

1 − β̂RSM
1 )(p2 − 2)L−1

n
}

= −μ11.2 − E
{

lim
n→∞

√
n(β̂RFM

1 − β̂RSM
1 )(p2 − 2)L−1

n
}

= −μ11.2 − (p2 − 2)δE(χ−2
p2+2(Δ)).
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ADB(β̂RPS
1 ) = E

{
lim

n→∞

√
n(β̂RPS

1 − β1)
}

= E
{

lim
n→∞

√
n(β̂RSM

1 + (β̂RFM
1 − β̂RSM

1 )(1− (p2 − 2)L−1
n )I(Ln > p2 − 2)− β1)

}
= E

{√
n
[
β̂

RSM
1 + (β̂RFM

1 − β̂RSM
1 )(1− I(Ln ≤ p2 − 2))

− (β̂RFM
1 − β̂RSM

1 )(p2 − 2)L−1
n I(Ln > p2 − 2)− β1

]}
= E

{
lim

n→∞

√
n(β̂RFM

1 − β1)
}
− E

{
lim

n→∞

√
n(β̂RFM

1 − β̂RSM
1 )(p2 − 2)I(Ln ≤ p2 − 2)

}
− E

{
lim

n→∞

√
n(β̂RFM

1 − β̂RSM
1 )(p2 − 2)L−1

n I(Ln > p2 − 2)

= −μ11.2 − δHp2+2(χ
2
p2−2; Δ)

}
− (p2 − 2)δE

{
χ−2

p2+2(Δ)I(χ
−2
p2+2 > p2 − 2)

}
.

Appendix B.2

In order to compute the risk functions, we first compute the asymptotic covariance of
the estimators. The asymptotic covariance of an estimator β̂

∗
1 is expressed as

Cov(β̂
∗
1) = lim

n→∞
E
{

n(β̂
∗
1 − β1)(β̂

∗
1 − β1)

T}.

Proof of Theorem 3. We first start by computing the asymptotic covariance of the estima-
tor β̂RFM

1 as:

Cov(β̂RFM
1 ) = E{ lim

n→∞

√
n(β̂RFM

1 − β1)
√

n(β̂RFM
1 − β1)

T}

= E(ϕ1ϕT
1 ) = Cov(ϕ1ϕT

1 ) + E(ϕ1)E(ϕT
1 )

= B−1
11.2 + μ11.2μT

11.2.

Furthermore, similarly, the asymptotic covariance of the estimator β̂RSM
1 is obtained as:

Cov(β̂RSM
1 ) = E{ lim

n→∞

√
n(β̂RSM

1 − β1)
√

n(β̂RSM
1 − β1)

T}

= E(ϕ2 ϕT
2 ) = Cov(ϕ2 ϕT

2 ) + E(ϕ2)E(ϕT
2 )

= B−1
11 + γγT.

The asymptotic covariance of the estimator β̂RPT
1 is obtained as:

Cov(β̂RPT
1 ) = E{ lim

n→∞

√
n(β̂RPT

1 − β1)
√

n(β̂RPT
1 − β1)

T}

= E
{

lim
n→∞

n
[(

β̂RFM
1 − β1)− (β̂RFM

1 − β̂RSM
1 )I(Ln ≤ dn,α)

]
[(

β̂RFM
1 − β1)− (β̂RFM

1 − β̂RSM
1 )I(Ln ≤ dn,α)

]T}
= E

{
[ϕ1 − ϕ3 I(Ln ≤ dn,α)][ϕ1 − ϕ3 I(Ln ≤ dn,α)]

T
}

= E
{

ϕ1 ϕT
1 − 2ϕ3 ϕT

1 I(Ln ≤ dn,α) + ϕ3 ϕT
3 I(Ln ≤ dn,α)

}
Thus, we need to find E

{
ϕ1 ϕT

1
}

, E
{

ϕ3 ϕT
1 I(Ln ≤ dn,α)

}
and E

{
ϕ3 ϕT

3 I(Ln ≤ dn,α)
}

. The
first term is E

{
ϕ1 ϕT

1
}
= B−1

11.2 + μ11.2μT
11.2. Using Lemma 1, the third term is computed as:

E
{

ϕ3 ϕT
3 I(Ln ≤ dn,α)

}
= ΦHp2+2(χ

2
p2

; Δ) + δδTHp2+4(χ
2
p2

; Δ).

The second term E
{

ϕ3 ϕT
1 I(Ln ≤ dn,α)

}
can be computed from normal theory as
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E
{

ϕ3 ϕT
1 I(Ln ≤ dn,α)

}
= E

{
E
(

ϕ3 ϕT
1 I(Ln ≤ dn,α)|ϕ3

)}
= E

{
ϕ3E

(
ϕT

1 I(Ln ≤ dn,α)|ϕ3
)}

= E
{

ϕ3[−μ11.2 + (ϕ3 − δ)]T I(Ln ≤ dn,α)
}

= −E
{

ϕ3μ11.2 I(Ln ≤ dn,α)
}
+ E

{
ϕ3(ϕ3 − δ)T I(Ln ≤ dn,α)

}
= −μT

11.2E{ϕ3 I(Ln ≤ dn,α)}+ E{ϕ3 ϕT
3 I(Ln ≤ dn,α)}

− E
{

ϕ3δT I(Ln ≤ dn,α)
}

= −μT
11.2δHp2+2(χ

2
p2

; Δ) +
{

Cov(ϕ3 ϕT
3 )Hp2+2(χ

2
p2

; Δ)

+ E(ϕ3)E(ϕT
3 )Hp2+4(χ

2
p2

; Δ)− δδTHp2+2(χ
2
p2

; Δ)
}

= −μT
11.2δHp2+2(χ

2
p2

; Δ) + ΦHp2+2(χ
2
p2

; Δ) + δδTHp2+4(χ
2
p2

; Δ)

− δδTHp2+2(χ
2
p2

; Δ)

Putting all the terms together and simplifying, we obtain

Cov(β̂RPT
1 )

=μ11.2μT
11.2 + 2μT

11.2δHp2+2(χ
2
p2

; Δ) + B−1
11.2 −ΦHp2+2(χ

2
p2

; Δ)− δδTHp2+4(χ
2
p2

; Δ)

+2δδTHp2+2(χ
2
p2

; Δ)

=B−1
11.2 + μ11.2μT

11.2 + 2μT
11.2δHp2+2(χ

2
p2

; Δ)−ΦHp2+2(χ
2
p2

; Δ)

+ δδT[2Hp2+2(χ
2
p2

; Δ)−Hp2+4(χ
2
p2

; Δ)
]
.

The asymptotic covariance of the estimator β̂RSE
1 can be obtained as

Cov(β̂RSE
1 ) = E{ lim

n→∞

√
n(β̂RSE

1 − β1)
√

n(β̂RSE
1 − β1)

T}

= E
{

lim
n→∞

n
[(

β̂
RFM
1 − β1)− (β̂

RFM
1 − β̂

RSM
1 )(p2 − 2)L−1

n
]

[(
β̂RFM

1 − β1)− (β̂
RFM
1 − β̂

RSM
1 )(p2 − 2)L−1

n
]T}

= E
{
[ϕ1 −ϕ3(p2 − 2)L−1

n ][ϕ1 −ϕ3(p2 − 2)L−1
n ]T

}
= E

{
ϕ1 ϕT

1 − 2(p2 − 2)ϕ3 ϕT
1 L−1

n + (p2 − 2)2 ϕ3 ϕT
3 L−2

n

}
We need to compute E

{
ϕ3 ϕT

3 L−2
n
}

and E
{

ϕ3 ϕT
1 L−1

n
}

. By using Lemma 1, the first term is
obtained as follows:

E
{

ϕ3 ϕT
3 L−2

n
}
= ΦE

(
χ−4

p2+2(Δ)
)
+ δδTE

(
χ−4

p2+4(Δ)
)
.

The second term is computed from normal theory

E
{

ϕ3 ϕT
1 L−1

n

}
= E

{
E
(

ϕ3 ϕT
1 L−1

n |ϕ3
)}

= E
{

ϕ3E
(

ϕT
1 L−1

n |ϕ3
)}

= E
{

ϕ3[−μ11.2 + (ϕ3 − δ)]TL−1
n
}

= −E
{

ϕ3μ11.2L−1
n
}
+ E

{
ϕ3(ϕ3 − δ)TL−1

n
}

= −μT
11.2E{ϕ3L−1

n }+ E{ϕ3 ϕT
3 L−1

n } − E
{

ϕ3δTL−1
n
}
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From above, we can find E
{

ϕ3δTL−1
n
}
= δδTE

(
χ−2

p2+2(Δ)
)

and E
{

ϕ3L−1
n
}
= δE

(
χ−2

p2+2(Δ)
)
.

Putting these terms together and simplifying, we obtain

Cov(β̂RSE
1 ) = B−1

11.2 + μ11.2μT
11.2 + 2(p2 − 2)μT

11.2δE
(

χ−2
p2+2(Δ)

)
− (p2 − 2)Φ

{
2E
(

χ−2
p2+2(Δ)

)
− (p2 − 2)E

(
χ−4

p2+2(Δ)
)}

+(p2 − 2)δδT
{
− 2E

(
χ−2

p2+4(Δ)
)
+ 2E(χ−2

p2+2(Δ)) + (p2 − 2)E
(

χ−4
p2+4(Δ)

)}
.

Since β̂
RPS
1 = β̂

RSE
1 − (β̂

RFM
1 − β̂

RSM
1 )

{
1− (p2 − 2)L−1

n
}

I(Ln ≤ p2 − 2).

We derive the covariance of the estimator β̂
RPS
1 as follows.

Cov(β̂
RPS
1 ) = E

{
lim

n→∞

√
n(β̂

RPS
1 − β1)

√
n(β̂

RPS
1 − β1)

T
}
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{
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n→∞
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RSE
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√
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RFM
1 − β̂
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1 )

{
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n
}

I(Ln ≤ p2 − 2)

×
[√

n(β̂
RSE
1 − β1)−

√
n(β̂

RFM
1 − β̂

RSM
1 )

{
1− (p2 − 2)L−1

n
}

I(Ln ≤ p2 − 2)
]T
}

= E
{

lim
n→∞

√
n(β̂

RSE
1 − β1)

√
n(β̂

RSE
1 − β1)

T − 2ϕ3
√

n(β̂
RSE
1 − β1)

T{1− (p2 − 2)L−1
n
}

I(Ln ≤ p2 − 2)

+ϕ3ϕT
3
{

1− (p2 − 2)L−1
n
}2I(Ln ≤ p2 − 2)

}
= Cov(β̂

RSE
1 )− 2E

{
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n→∞
ϕ3
√

n(β̂
RSE
1 − β1)

T{1− (p2 − 2)L−1
n
}2I(Ln ≤ p2 − 2)

}
+ E

{
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n→∞
ϕ3ϕT

3
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1− (p2 − 2)L−1
n
}2I(Ln ≤ p2 − 2)

}
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{
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n→∞
ϕ3ϕT

1
{
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n
}
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n→∞

ϕ3ϕT
3 (p2 − 2)L−1

n
{

1− (p2 − 2)L−1
n
}

I(Ln ≤ p2 − 2)
}

+ E
{

lim
n→∞

ϕ3ϕT
3
{

1− (p2 − 2)L−1
n
}2I(Ln ≤ p2 − 2)

}
= Cov(β̂

RSE
1 )− 2E

{
lim

n→∞
ϕ3ϕT

1
{

1− (p2 − 2)L−1
n
}

I(Ln ≤ p2 − 2)
}

− E
{

lim
n→∞

ϕ3ϕT
3 (p2 − 2)2L−2

n I(Ln ≤ p2 − 2)
}
+ E

{
lim

n→∞
ϕ3ϕT

3 I(Ln ≤ p2 − 2)
}

We first compute the last term in the equation above E
{

ϕ3ϕT
3 I(Ln ≤ p2− 2)

}
as E

{
ϕ3ϕT

3 I(Ln ≤

p2 − 2)
}
= ΦHp2+2(p2 − 2; Δ) + δδTHp2+4(p2 − 2; Δ). Using Lemma 1 and from the nor-

mal theory, we find,
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E
{

ϕ3ϕT
1{1− (p2 − 2)L−1

n }I(Ln ≤ p2 − 2)
}

= E
{

E
(
ϕ3ϕT

1{1− (p2 − 2)L−1
n }I(Ln ≤ p2 − 2)|ϕ3

)}
= E

{
ϕ3E

(
ϕT

1{1− (p2 − 2)L−1
n }I(Ln ≤ p2 − 2)|ϕ3

)}
= E

{
ϕ3[μ11.2 + (ϕ3 − δ)]T{1− (p2 − 2)L−1

n }I(Ln ≤ p2 − 2)
}

= −μ11.2E
(

ϕ3
{

1− (p2 − 2)L−1
n
}

I
(
Ln ≤ p2 − 2

))
+ E

(
ϕ3ϕT

3
{

1− (p2 − 2)L−1
n
}

I
(
Ln ≤ p2 − 2

))
− E

(
ϕ3δT{1− (p2 − 2)L−1

n
}

I
(
Ln ≤ p2 − 2

))
= −δμT

11.2E
({

1− (p2 − 2)χ−2
p2+2(Δ)

}
I
(

χ−2
p2+2(Δ) ≤ p2 − 2

))
+ ΦE

({
1− (p2 − 2)χ−2

p2+2(Δ)
}

I
(

χ−2
p2+2(Δ) ≤ p2 − 2

))
+ δδTE

({
1− (p2 − 2)χ−2

p2+4(Δ)
}

I
(

χ−2
p2+4(Δ) ≤ p2 − 2

))
− δδTE

({
1− (p2 − 2)χ−2

p2+4(Δ)
}

I
(

χ−2
p2+4(Δ) ≤ p2 − 2

))
.

E
{

ϕ3ϕT
3 (p2 − 2)2L−2

n I(Ln ≤ p2 − 2)
}
= (p2 − 2)2ΦE

(
χ−4

p2+2(Δ)I
(

χ2
p2+2(Δ) ≤ p2 − 2

))
+ (p2 − 2)2δδTE

(
χ−4

p2+2(Δ)I
(

χ2
p2+2(Δ) ≤ p2 − 2

))
Putting all the terms together, we obtain

Cov(β̂
RPS
1 ) = Cov(β̂

RSE
1 ) + 2δμT

11.2E
({

1− (p2 − 2)χ−2
p2+2(Δ)

}
I
(

χ2
p2+2(Δ) ≤ p2 − 2

))
− 2ΦE

({
1− (p2 − 2)χ−2

p2+2(Δ)
}

I
(

χ2
p2+2(Δ) ≤ p2 − 2

))
− 2δδTE

(
{1− (p2 − 2)χ−2

p2+4(Δ)}I(χ2
p2+4(Δ) ≤ p2 − 2)

)
+ 2δδTE

({
1− (p2 − 2)χ−2

p2+2(Δ)
}

I
(

χ2
p2+2(Δ) ≤ p2 − 2

))
− (p2 − 2)2ΦE

(
χ−4

p2+2(Δ)I
(

χ2
p2+2,α(Δ) ≤ p2 − 2

))
− (p2 − 2)2δδTE

(
χ−4

p2+2(Δ)I
(

χ2
p2+2(Δ) ≤ p2 − 2

))
+ ΦHp2+2

(
p2 − 2; Δ

)
+ δδTHp2+4

(
p2 − 2; Δ

)
.
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Abstract: To monitor the Earth’s surface, the satellite of the NASA Landsat program provides us
image sequences of any region on the Earth constantly over time. These image sequences give us
a unique resource to study the Earth’s surface, changes of the Earth resource over time, and their
implications in agriculture, geology, forestry, and more. Besides natural sciences, image sequences
are also commonly used in functional magnetic resonance imaging (fMRI) of medical studies for
understanding the functioning of brains and other organs. In practice, observed images almost always
contain noise and other contaminations. For a reliable subsequent image analysis, it is important to
remove such contaminations in advance. This paper focuses on image sequence denoising, which
has not been well-discussed in the literature yet. To this end, an edge-preserving image denoising
procedure is suggested. The suggested method is based on a jump-preserving local smoothing
procedure, in which the bandwidths are chosen such that the possible spatio-temporal correlations
in the observed image intensities are accommodated properly. Both theoretical arguments and
numerical studies show that this method works well in the various cases considered.

Keywords: bandwidth selection; correlation; edge-preserving image denoising; image sequence;
jump regression analysis; local smoothing; nonparametric regression; spatio-temporal data

1. Introduction

The Landsat project, led by the US Geological Survey (USGS) and NASA, has launched
eight satellites since 1972 to continuously provide scientifically valuable images of the
Earth’s surface. These images can be freely accessed by researchers around the world (cf.,
Zanter [1]). This rich archive of Landsat images has become a major resource for scientific
research about the Earth’s surface and its resources in different scientific disciplines, includ-
ing forest science, climate science, agriculture, ecology, fire science, and many more. As an
example, Figure 1 shows two images of the Las Vegas area in Nevada taken in 1984 and
2007, respectively. These two images clearly show the increasing urban sprawl of Las Vegas
during the 23-year period, and consequently, the environment in that region has changed
dramatically. The current satellite (i.e., the Landsat 8) can deliver an image of a given
region roughly every 16 days. So, we have a sequence of images of that region collected se-
quentially over time, stored in the Landsat database, which is increasing all the time. Image
sequences are commonly used in many other applications, including functional magnetic
resonance imaging (fMRI) in neuroscience and quality control in manufacturing industries
(Qiu [2]). In practice, observed images usually contain noise and other contaminations
(Gonzalez and Woods [3]). For reliable subsequent image analyses, such contaminations
should be removed in advance. In the image processing literature, the removal of noise
from an observed image is referred to as image denoising. This paper focuses on image
denoising for analyzing observed image sequences.

In the literature, there has been extensive discussion on image denoising (Qiu [4]).
Many early methods in the computer science literature are based on the Markov random
field (MRF) framework, in which observed image intensities of an image are assumed to
have the Markov property that the observed intensity at a given pixel depends only on
the observed intensities in a neighborhood of the given pixel (Geman and Geman [5]).

Entropy 2021, 23, 1332. https://doi.org/10.3390/e23101332 https://www.mdpi.com/journal/entropy161
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Then, if the true image is assumed to have a prior distribution which is also an MRF, its
posterior distribution would be an MRF too, and consequently, the true image can be
estimated by the maximum a posteriori (MAP) estimator (e.g., Geman and Geman [5],
Besag [6], Fessler et al. [7]). Other popular image denoising methods include those based
on diffusion equations (e.g., Perona and Malik [8], Weickert [9]), total variation (Beck and
Teboulle [10], Rudin et al. [11], Yuan et al. [12]), wavelet transformations (e.g., Chang et
al. [13], Mrázek [14]), jump regression analysis (e.g., Gijbels et al. [15], Qiu [16], Qiu [17],
Qiu and Mukherjee [18]), adaptive weights smoothing (e.g., Polzehl and Spokoiny [19]),
spatial adaption (e.g., Kervrann and Boulanger [20]) and more. Besides noise removal,
edge-preserving is important for image denoising because edges are important structures
of the images. Some of the methods mentioned above can preserve edges well, such as
the ones based on jump regression analysis, total variation, and wavelet transformations.
Thorough surveys of popular edge-preserving image denoising methods can be found in
Jain and Tyagi [21] and Qiu [4].

Figure 1. Two Landsat images of the Las Vegas area taken in 1984 (left panel) and 2007 (right panel).

Although there are already some existing methods for edge-preserveing image de-
noising, almost all of them handle observed images taken at a single time point. So far, we
have not found much discussion about denoising image sequences, which is the focus of
the current paper. A given image sequence often describes a gradual change in appearance
over time, subject to the underlying process. For instance, the sequence of images of the
Las Vegas area acquired by the Landsat satellite (cf., Figure 1) describes the gradual change
of the Earth’s surface in that area over time. As mentioned above, two consecutive images
in the sequence acquired by the current Landsat satellite are only about 16 days apart.
So, their difference should be very small. However, the images could be substantially
different after a long period of time, as shown in Figure 1. In such applications, it should be
reasonable to assume that edge locations in different images either do not change or change
gradually over time. To handle such image sequences, the neighboring images should
be useful when denoising the image at a given time point, or information in neighboring
images should be shared during image denoising. By noticing such features of image
sequences, we propose an edge-preserving image denoising procedure for analyzing image
sequences in this paper. Our proposed method is based on the jump regression analysis
(JRA) used for regression modeling when the underlying regression function has jumps or
other singularities (Qiu [22]). It is a local smoothing procedure, and the possible spatio-
temporal correlation in the observed image data has been accommodated properly in its
construction. Both theoretical arguments and numerical studies show that this method
works well in various different cases.

The remaining parts of the article are organized as follows. The proposed method is
described in detail in Section 2. Its statistical properties and the numerical studies about its
performance in different finite-sample cases are presented in Section 3. Several concluding
remarks are provided in Section 4. Some technical details are given in Appendix A.
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2. Materials and Methods

This section describes our proposed method in two parts. A JRA model for describing
an image sequence and the model estimation are discussed in Section 2.1. Selection of
several parameters used in model estimation is discussed in Section 2.2.

2.1. JRA Model and Its Estimation

To describe an image sequence, let us consider the following JRA model:

Zijk = f (xi, yj; tk) + εijk, i = 1, 2, . . . , nx, j = 1, 2, . . . , ny, k = 1, 2, . . . , nt, (1)

where Zijk is the observed image intensity level at the (i, j)-th pixel (xi, yj) and at the
k-th time point tk, f (xi, yj; tk) is the true image intensity level, and εijk is the pointwise
random noise with mean 0 and variance σ2. In model (1), spatio-temporal data correlation
is allowed, namely, {εijk} could be correlated over i, j and k. For image data, the pixel
locations are usually regularly spaced. Without loss of generality, it is assumed that they
are equally spaced in the design space Ω = [0, 1]× [0, 1], namely, (xi, yj) = (i/nx, j/ny),
for all i and j, where nx and ny are the numbers of rows and columns, respectively. The
observation times {tk, k = 1, 2, . . . , nt} are also assumed to be equally spaced in the time
interval [0, 1]. The true image intensity function f (x, y; t), for (x, y) ∈ Ω, is continuous in
the design space Ω at each t ∈ [0, 1], except on the edges where it has jumps.

To estimate the unknown image intensity function f (x, y; t) in model (1), we consider
using a local smoothing method, instead of a global smoothing method (e.g., smoothing
spline method), because of a large amount of data involved in the current problem. Like-
wise, it has been well-discussed in the JRA literature that conventional smoothing methods
(e.g., conventional local kernel smoothing methods) would not work well for estimating
models like (1) where the true image intensity function f (x, y; t) has jumps at the edges,
because the jumps would be blurred by such conventional methods (cf., Qiu [22]). In this
paper, we suggest a jump-preserving local smoothing method for estimating (1), described
in detail below. For a given point (x, y; t) ∈ Ω× [0, 1], define a local neighborhood

O(x, y; t) ={
(

x
′
, y
′
; t
′)

:
(

x
′
, y
′
; t
′) ∈ Ω× [0, 1],√

(x′ − x)2

h2
x

+
(y′ − y)2

h2
y

≤ 1, |t′ − t|/ht ≤ 1},

where hx, hy and ht are the bandwidths in the x−, y−, and t−axis, respectively. In O(x, y; t),
we first consider the following local linear kernel (LLK) smoothing procedure (Fan and
Gijbels [23]):

min
a,b,c,d

nx

∑
i=1

ny

∑
j=1

nt

∑
k=1

{
Zijk −

[
a + b(xi − x) + c(yj − y) + d(tk − t)

]}2

K
(

xi − x
hx

,
yj − y

hy

)
K
(

tk − t
ht

)
,

(2)

where K(v) is a density kernel function with the support {v : |v| ≤ 1}. The solutions to
(a, b, c, d) of the minimization problem (2) are denoted as â(x, y; t), b̂(x, y; t), ĉ(x, y; t), and
d̂(x, y; t), respectively. It can be checked that they have the following expressions:⎡⎢⎢⎣

â(x, y; t)
b̂(x, y; t)
ĉ(x, y; t)
d̂(x, y; t)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
m000 m100 m010 m001
m100 m200 m110 m101
m010 m110 m020 m011
m001 m101 m011 m002

⎤⎥⎥⎦
−1⎡⎢⎢⎢⎣

∑ijk ZijkKijk

∑ijk(xi − x)ZijkKijk

∑ijk(yj − y)ZijkKijk

∑ijk(tk − t)ZijkKijk

⎤⎥⎥⎥⎦, (3)
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where ∑ijk denotes ∑nx
i=1 ∑

ny
j=1 ∑nt

k=1, Kijk denotes K( xi−x
hx

,
yj−y

hy
)K( tk−t

ht
), and mrsl = ∑ijk(xi−

x)r(yj − y)s(tk − t)lKijk, for r, s, l = 0, 1, 2. The LLK estimator of f (x, y; t) is defined
to be â(x, y; t). The estimated gradient direction of f (x, y; t) at (x, y; t) is Ĝ(x, y; t) =

(b̂(x, y; t), ĉ(x, y; t), d̂(x, y; t))′ which indicates the direction in which the estimated plane
in O(x, y; t) by the LLK procedure (2) increases the fastest. If there is an edge surface in
O(x, y; t), then Ĝ(x, y; t) would be (approximately) orthogonal to that surface.

In cases when there are no edges in the neighborhood O(x, y; t), â(x, y; t) would be
a good estimate of f (x, y; t). Otherwise, it cannot be a good estimate because â(x, y; t) is
a weighted average of all observed image intensities in O(x, y; t), the jumps in the image
intensity surface would be smoothed out in the weighted average, and the estimate â(x, y; t)
would be biased for estimating f (x, y; t). To overcome that limitation, we consider the
following one-sided smoothing idea. Let O(x, y; t) be divided into two parts O(1)(x, y; t)
and O(2)(x, y; t) by a plane that passes (x, y; t) and is perpendicular to Ĝ(x, y; t). See
Figure 2 for an example.

Figure 2. The neighborhood O(x, y; t) is divided into two parts by a plane that passes (x, y; t) and is
perpendicular to the estimated gradient direction Ĝ(x, y; t).

Then, in cases when there is an edge surface in O(x, y; t), that plane would be (ap-
proximately) parallel to the edge surface. Consequently, at least one of O(1)(x, y; t) and
O(2)(x, y; t) would be (mostly) located on a single side of the edge surface in such cases.
Now, let us consider the following one-sided LLK smoothing procedure: for l = 1, 2,

min
a,b,c,d

∑
(xi ,yj ;tk)∈O(l)(x,y;t)

{
Zijk −

[
a + b(xi − x) + c(yj − y) + d(tk − t)

]}2

K
(

xi − x
hx

,
yj − y

hy

)
K
(

tk − t
ht

)
.

(4)

The solutions of (4) to (a, b, c, d) are denoted as (â(l)(x, y; t), b̂(l)(x, y; t), ĉ(l)(x, y; t), d̂(l)(x, y; t)),
for l = 1, 2. Intuitively, when there are no edges in O(x, y; t), â(x, y; t), â(1)(x, y; t) and
â(2)(x, y; t) are all consistent estimates of f (x, y; t) under some regular conditions. In such cases,
â(x, y; t) would be preferred since it averages more observations and consequently it would
have a smaller variance. When there are edges in O(x, y; t), â(x, y; t) would not be a good
estimate of f (x, y; t) as explained above, but one of â(1)(x, y; t) and â(2)(x, y; t) should estimate
f (x, y; t) well. Therefore, in all cases, at least one of the three estimators â(x, y; t), â(1)(x, y; t)
and â(2)(x, y; t) should estimate f (x, y; t) well.

Next, we need to choose a good estimator from â(x, y; t), â(1)(x, y; t) and â(2)(x, y; t)
based on the observed data, which is not straightforward, partly because we do not know
in advance whether there are edges in the neighborhood O(x, y; t) and whether the edges
are mostly contained in O(1)(x, y; t) or O(2)(x, y; t) if the answer to the first question is
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positive. To overcome this difficulty, let us consider the following weighted residual mean
squares (WRMS) of the fitted local plane by the LLK procedure (2):

e(x, y; t) =
{

∑
ijk
[Zijk − â(x, y; t)− b̂(x, y; t)(xi − x)− ĉ(x, y; t)(yj − y)−

d̂(x, y; t)(tk − t)]2Kijk

}
/ ∑

ijk
Kijk.

(5)

The above WRMS measures how well the fitted local plane describes the observed data
in O(x, y; t). If there are edges in O(x, y; t), this quantity would be relatively large, due
mainly to the jumps in the image intensity surface. Otherwise, it would be relatively
small. So, the quantity e(x, y; t) contains useful information about the existence of edges in
O(x, y; t). Similarly, we can define WRMS values for the two one-sided local planes fitted
in O(1)(x, y; t) and O(2)(x, y; t). They are denoted as e(1)(x, y; t) and e(2)(x, y; t). Based on
these WRMS values, we define our edge-preserving estimator of f (x, y; t) to be

f̂ (x, y; t) = â(x, y; t)I(D(x, y; t) ≤ u)

+ â(1)(x, y; t)I(D(x, y; t) > u)I(e(1)(x, y; t) < e(2)(x, y; t))

+ â(2)(x, y; t)I(D(x, y; t) > u)I(e(1)(x, y; t) > e(2)(x, y; t))

+
â(1)(x, y; t) + â(2)(x, y; t)

2
I(D(x, y; t) > u)I(e(1)(x, y; t) = e(2)(x, y; t)),

(6)

where D(x, y; t) = max(e(x, y; t)− e(1)(x, y; t), e(x, y; t)− e(2)(x, y; t)), I(·) is the indicator
function, and u > 0 is a threshold parameter. By (6), it is obvious that f̂ (x, y; t) is defined
to be one of â(x, y; t), â(1)(x, y; t) and â(2)(x, y; t). The quantity â(x, y; t), which is obtained
from the entire neighborhood O(x, y; t), is chosen if the observed data indicate no edges
in O(x, y; t), supported by the event D(x, y; t) ≤ u. Otherwise, one of the two one-sided
quantities, â(1)(x, y; t) and â(2)(x, y; t), with a smaller WRMS value is chosen. Although,
theoretically, the event (e(1)(x, y; t) = e(2)(x, y; t)) would have probability zero of happen-
ing, the last term on the right-hand-side of (6) is still included for completeness of the
definition of f̂ (x, y; t) and for the consideration that e(1)(x, y; t) and e(2)(x, y; t) could be
considered the same in certain algorithms when their values are close.

2.2. Parameter Selection

In our proposed method described in Section 2.1, there are four parameters; hx, hy,
ht and u, that need to be chosen properly in advance. For that purpose, it is natural to
consider the cross validation (CV) procedure, especially in the current research problem
where the observed data are quite large in size. However, it has been well-demonstrated
in the literature that the conventional CV procedure would not work well in cases when
the observed data are autocorrelated, because it cannot effectively distinguish the data
correlation structure from the mean structure (cf., Altman [24], Opsomer et al. [25]). In
the current problem, spatio-temperal data correlation is possible in almost all applications.
Thus, the conventional CV procedure is not feasible in such cases. In the univariate
regression setup, Brabanter et al. [26] suggested a modified CV procedure for choosing
smoothing parameters in cases with correlated data. This procedure is generalized here for
choosing the parameters hx, hy, ht and u used in the proposed method, which is described
below. Let the modified CV score for choosing hx, hy, ht and u be defined as

CV(hx, hy, ht, u) =
1

nxnynt
∑
ijk

[
f̂−(ijk)(xi, yj; tk)− Z(xi, yj; tk)

]2
, (7)
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where f̂−(ijk)(xi, yj; tk) is the leave-one-out estimate of f (xi, yj; tk) by (2)–(6) after the obser-
vation Zijk is removed from the estimation process and after the kernel function is replaced
by the so-called ε-optimal bimodal kernel function Kε(v) defined to be

Kε(v) =
4

4− 3ε− ε3 ×
{

3
4 (1− v2)I(|v| ≤ 1), if |v| ≥ ε,
3(1−ε2)

4ε |v|, if |v| < ε,
(8)

where 0 < ε < 1 is a parameter. Based on a large simulation study, Brabanter et al. [26]
suggested choosing ε to be 0.1, which is adopted in this paper. Then, by the above modified
CV procedure, (7) and (8), the parameters hx, hy, ht and u can be chosen by minimizing the
modified CV score CV(hx, hy, ht, u).

3. Results

3.1. Statistical Properties

In this part, we discuss some statistical properties of the proposed edge-preserving
image sequence denoising method (2)–(6). First, we have the following proposition.

Proposition 1. Assume that i) the kernel function K(v) used in (2) is a Lipschitz-1 continuous
density function, and ii) the noise terms {εijk, i = 1, 2, . . . , nx, j = 1, 2, . . . , ny, k = 1, 2, . . . , nt}
in model (1) form a strong mixing stochastic process with the following strong mixing coefficients:

α(d) = sup
(ijk),(i′ j′ k′ )

sup
A,B

{
|P(A ∩ B)− P(A)P(B)|, A ∈ σ(εijk), B ∈ σ(εi′ j′ k′ ),

max{|i− i
′ |, |j− j

′ |, |k− k
′ |} > d

}
,

which have the property that α(d) ≤ c1σ2ρc2d, where c1, c2 > 0 and 0 < ρ < 1 are constants,
and iii) E(ε6

111) < ∞. Let N = nxnynt, H = hxhyht, nmin = min(nx, ny, nt), and hmin =
min(hx, hy, ht). Then, for any (x, y; t) ∈ Ωh = [hx, 1− hx]× [hy, 1− hy]× [ht, 1− ht], we have∣∣∣∣ 1

NH ∑
ijk

K
(

xi − x
hx

,
yi − y

hy

)
K
(

ti − t
ht

)
− 1

∣∣∣∣ = O
(

1
nminhmin

)
,

E

[∣∣∣∣ 1
NH ∑

ijk
εijkK

(
xi − x

hx
,

yi − y
hy

)
K
(

ti − t
ht

)∣∣∣∣2
]
= O

(
1

NH

)
,

E

[∣∣∣∣ 1
NH ∑

ijk
(ε2

ijk − σ2)K
(

xi − x
hx

,
yi − y

hy

)
K
(

ti − t
ht

)∣∣∣∣2
]
= O

(
1

NH

)
.

Based on the results in Proposition 1, we can derive the following properties of the
LLK estimates defined in (3).

Theorem 1. Besides the conditions in Proposition 1, we further assume that the true image
intensity function f (x, y; t) has continuous first-order partial derivatives with respect to x, y and t
in the design space Ω except at the edge curves. Then, for any (x, y; t) ∈ Ωh \ Jh, we have

⎡⎢⎢⎣
â(x, y; t)
b̂(x, y; t)
ĉ(x, y; t)
d̂(x, y; t)

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
f (x, y; t)
f
′
x(x, y; t)

f
′
y(x, y; t)

f
′
t (x, y; t)

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
O(h2

x + h2
y + h2

t )

O(
h2

x+h2
y+h2

t
hx

)

O(
h2

x+h2
y+h2

t
hy

)

O(
h2

x+h2
y+h2

t
ht

)

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
Op(

1√
NH

)

Op(
1

hx
√

NH
)

Op(
1

hy
√

NH
)

Op(
1

ht
√

NH
)

⎤⎥⎥⎥⎥⎦.

166



Entropy 2021, 23, 1332

for any (x, y, t) ∈ Jh \ Sh, we have

⎡⎢⎢⎣
â(x, y; t)
b̂(x, y; t)
ĉ(x, y; t)
d̂(x, y; t)

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
f−(xτ , yτ ; tτ) + dτξ

(2)
000

dτ
ξ200hx

ξ
(2)
100

dτ
ξ020hy

ξ
(2)
010

dτ
ξ002ht

ξ
(2)
001

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

O(
√

h2
x + h2

y + h2
t )

O(

√
h2

x+h2
y+h2

t
hx

)

O(

√
h2

x+h2
y+h2

t
hy

)

O(

√
h2

x+h2
y+h2

t
ht

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣
Op(

1√
NH

)

Op(
1

hx
√

NH
)

Op(
1

hy
√

NH
)

Op(
1

ht
√

NH
)

⎤⎥⎥⎥⎥⎦, (9)

where ξrsl =
∫

Ω×[0,1] urvswlK(u, v)K(w) dudvdw, ξ
(2)
rsl =

∫
Q(2) urvswlK(u, v)K(w) dudvdw,

for r, s, l = 0, 1, 2, J is the closure of the set of all jump points of f (x, y; t), Jh = {(x, y; t) :

(x, y; t) ∈ Ωh,
√
(x− x∗)2/h2

x + (y− y∗)2/h2
y ≤ 1, |t − t∗|/ht ≤ 1, for any (x∗, y∗, t∗) ∈

J}, S is the set of singular points in J, including the crossing points of two or more edges,
points on an edge surface at which the edge surface does not have a unique tangent surface,
and points in J at which the jump sizes in f (x, y; t) are zero, Sh = {(x, y; t) : (x, y; t) ∈ Ωh,√
(x− x∗)2/h2

x + (y− y∗)2/h2
y ≤ 1, |t− t∗|/ht ≤ 1, f or any (x∗, y∗, t∗) ∈ S}, (xτ , yτ ; tτ) ∈

J \ S is the projection of (x, y; t) to J with the Euclidean distance between the two points being

c
√

h2
x + h2

y + h2
t , for a constant 0 < c < 1, and f−(xτ , yτ ; tτ) is the smaller one of the two

one-sided limits of f (x, y; t) at (xτ , yτ ; tτ). In cases when O(x, y; t) contains jumps, without loss of
generality, it is assumed that O(x, y; t) is divided by the edge surface into two parts I1 and I2 with
a positive jump size dτ from I1 to I2 at (xτ , yτ ; tτ), and Q(1) and Q(2) are the two corresponding
parts in the support of K(u, v)K(w).

The next two theorems establish the consistency of the proposed edge-preserving
image denoising procedure (2)–(6). First, we have the following theorem about the WRMS
values defined in (5).

Theorem 2. Assume that the conditions in Theorem 1 are satisfied, h2
x + h2

y + h2
t = o(1), (h2

x +

h2
y + h2

t )/hmin = o(1), 1/(NH) = o(1) and 1/(NHh2
min) = o(1). Then, we have the following

results: for any (x, y; t) ∈ Ωh\Jh,

e(x, y; t) = σ2 + op(1),

e(l)(x, y; t) = σ2 + op(1), for l = 1, 2;
(10)

for any (x, y; t) ∈ Jh\Sh,

e(x, y; t) = σ2 + dτC2
τ + op(1),

e(l)(x, y; t) = σ2 + dτ

[
C(l)

τ

]2
+ op(1), for l = 1, 2,

(11)

where

Cτ =

( ∫ ∫ ∫
Q(1)

[
ξ
(2)
000 +

ξ
(2)
100

ξ200
u +

ξ
(2)
010

ξ020
v +

ξ
(2)
001

ξ002
w
]2

K(u, v)K(w)dudvdw +

∫ ∫ ∫
Q(2)

[
1− ξ

(2)
000 −

ξ
(2)
100

ξ200
u− ξ

(2)
010

ξ020
v− ξ

(2)
001

ξ002
w
]2

K(u, v)K(w)dudvdw
)1/2

.
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and

C(l)
τ =

(
2
∫ ∫ ∫

Q(1l)

[
B0l +

B1l
ξ200

u +
B2l
ξ020

v +
B3l
ξ002

w
]2

K(u, v)K(w)dudvdw +

2
∫ ∫ ∫

Q(2l)

[
1− B0l −

B1l
ξ200

u− B2l
ξ020

v− B3l
ξ002

w
]2

K(u, v)K(w)dudvdw

)1/2

.

with the quantities Q(1l), Q(2l), B0l , B1l , B2l and B3l defined as follows. Let −→g = ( dτ
ξ200hx

ξ
(2)
100,

dτ
ξ020hy

ξ
(2)
010, dτ

ξ002ht
ξ
(2)
001). Then, from (9), −→g is actually the asymptotic direction of the gradient

vector Ĝ(x, y; t). Let Õ(l)(x, y; t), for l = 1, 2, be two halves of the neighborhood O(x, y; t)
separated by a plane passing the point (x, y; t) in the direction perpendicular to −→g and Q̃(l) be
the two corresponding parts in the support of K(u, v)K(w). Then, Q(1l) = Q(1) ∩ Q̃(l), Q(2l) =
Q(2) ∩ Q̃(l), B0l =

∫ ∫ ∫
Q(2l) K(u, v)K(w)dudvdw, B1l =

∫ ∫ ∫
Q(2l) uK(u, v)K(w)dudvdw,

B2l =
∫ ∫ ∫

Q(2l) vK(u, v)K(w)dudvdw, and B3l =
∫ ∫ ∫

Q(2l)

wK(u, v)K(w)dudvdw, for l = 1, 2.

Theorem 3. Under the conditions in Theorem 2 and the extra assumption that threshold parameter
u = uN → 0 as N → ∞, we have, for any (x, y; t) ∈ Ωh,

f̂ (x, y; t) = f (x, y; t) + op(1).

The proofs of these theoretical results are given in Appendix A.

3.2. Numerical Studies

In this part, we study the numerical performance of our proposed method for denois-
ing an image sequence. First, we consider a simulation example in which the true image
intensity function in model (1) has the following expression:

f (x, y; t) =
{ −2(x− 0.5)2 − 2(y− 0.5)2 − 0.1 sin(2πt) + 1, if r(x, y; t) ≤ 0.252,
−2(x− 0.5)2 − 2(y− 0.5)2 − 0.1 sin(2πt), otherwise,

where r(x, y; t) = (x− 0.5)2 + (y− 0.5)2 + 0.01 sin(2πt), (x, y) ∈ Ω = [0, 1]× [0, 1], and
t ∈ [0, 1]. At a given value of t, f (x, y; t) has a circular edge curve r(x, y; t) = 0.252 with
a constant jump size 1 in f (x, y; t) at the edges. The radius of the circular edge curve,√

0.252 − 0.01 sin(2πt), changes periodically over t ∈ [0, 1]. The image intensity function
f (x, y; t) at t = 0.01 and 0.25 and its temporal profile f (0.25, 0.25; t) are shown in Figure 3.
It can be seen that both the image intensity level at a given pixel and the edge curve change
gradually when t changes in [0, 1].

(a) (b)

Figure 3. (a) The true image intensity function f (x, y; t) at t = 0.01 (left) and t = 0.25 (right). (b) The
temporal profile f (0.25, 0.25; t) when t changes in [0, 1].

In model (1), the random errors {εijk, i = 1, 2, . . . , nx, j = 1, 2, . . . , ny, k = 1, 2, . . . , nt}
are generated by the function spatialnoise() in the R-package neuRosim (cf., Welvaert et
al. [27]). In that R function, there are two parameters ρ and σ to specify in advance, where
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ρ controls the data autocorrelation in all three dimensions and σ is the common standard
deviation of the random errors. In all our examples, σ is fixed at 0.1, 0.2 or 0.3, and ρ is
fixed at 0.1, 0.3 or 0.5, to study the possible impact of data noise level and data correlation
on the performance of the proposed method. Without loss of generality, we set nx = ny
in all examples. In the model estimation procedure (2)–(6), we set hx = hy, and the kernel
function K(v) is chosen to be the following truncated Gaussian density function:

K(v) =

{
exp(−v2/2)−exp(−0.5)

2π−3π exp(−0.5) , if |v| ≤ 1,
0, otherwise.

In cases when σ = 0.1, 0.2 or 0.3, nx = 64 or 128, nt = 50 or 100, ρ = 0.1, 0.3 or 0.5, the
MSE values of the estimator f̂ (x, y; t) defined in (6) are presented in Table 1, along with the
corresponding parameters hx, ht and u selected by the modified CV procedure (7) and (8).
In each case considered, the MSE value is computed based on 10 replicated simulations.
For comparison purposes, the optimal MSE value of the estimator f̂ (x, y; t), when its
parameters (hx, ht and u) are chosen such that the MSE value reaches the minimum in each
case considered, is also presented in the table, along with the corresponding parameter
values. From the table, we can draw the following conclusions. (i) The MSE values are
smaller when either nx or nt is larger, which confirms the consistency results discussed
in Section 3.1. (ii) When ρ is larger (i.e., the spatio-temporal data correlation is stronger),
the MSE values are larger. So, data correlation does have an impact on the performance of
the proposed method, which is intuitively reasonable. (iii) By comparing the MSE and the
optimal MSE values, we can see that the MSE values are usually larger than their optimal
values, but their differences are not that big in almost all cases considered. This conclusion
indicates that the modified CV procedure (7) and (8) for determining the values of the
parameters (hx, ht, u) is quite effective. (iv) The parameter values chosen by the modified
CV procedure (7) and (8) are quite close to the optimal parameter values in most cases
considered.

Table 1. In each entry, MSE of f̂ (x, y; t) in (6) is presented in the first line with its standard error (in
parenthesis); the corresponding values of (hx, ht, u) chosen by the modified CV procedure (7) and (8)
is presented in the second line; the optimal MSE is presented in the third line with its standard error
(in parenthesis); the optimal values of (hxy, ht, u) are presented in the fourth line. MSE in the table
has been multiplied by 103 and standard error has been multiplied by 105.

nt = 50 nt = 100

σ ρ nx = 64 nx = 128 nx = 64 nx = 128

0.1 0.1 0.65(0.80) 0.30(0.25) 0.48(0.43) 0.26(0.10)
(0.03, 0.10, 0.05) (0.03, 0.08, 0.025) (0.03, 0.10, 0.05) (0.02, 0.07, 0.05)

0.32(0.46) 0.20(0.14) 0.37(0.36) 0.19(0.08)
(0.04, 0.07, 0.025) (0.03, 0.05, 0.025) (0.03, 0.08, 0.025) (0.02, 0.05, 0.025)

0.3 0.60(0.45) 0.33(0.16) 0.59(0.39) 0.33(0.15)
(0.04, 0.10, 0.05) (0.03, 0.07, 0.025) (0.03, 0.10, 0.05) (0.02, 0.07, 0.025)

0.49(0.35) 0.30(0.16) 0.50(0.37) 0.29(0.22)
(0.04, 0.08, 0.025) (0.03, 0.06, 0.025) (0.03, 0.08, 0.025) (0.03, 0.04, 0.025)

0.5 1.25(1.24) 0.80(0.22) 0.81(0.55) 0.64(0.21)
(0.03, 0.10, 0.05) (0.02, 0.07, 0.025) (0.03, 0.10, 0.05) (0.02, 0.04, 0.025)

0.77(0.65) 0.49(0.24) 0.74(0.46) 0.45(0.25)
(0.04, 0.09, 0.025) (0.03, 0.06, 0.025) (0.03, 0.09, 0.025) (0.03, 0.04, 0.025)
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Table 1. Cont.

nt = 50 nt = 100

σ ρ nx = 64 nx = 128 nx = 64 nx = 128

0.2 0.1 1.14(1.13) 0.68(0.38) 1.02(0.74) 0.56(0.26)
(0.04, 0.10, 0.025) (0.03, 0.08, 0.025) (0.04, 0.10, 0.025) (0.03, 0.07, 0.025)

1.11(0.86) 0.66(0.33) 0.93(0.71) 0.54(0.31)
(0.04, 0.09, 0.025) (0.03, 0.07, 0.025) (0.04, 0.08, 0.025) (0.03, 0.05, 0.025)

0.3 1.69(0.91) 1.03(0.54) 1.32(1.08) 0.78(0.41)
(0.04, 0.10, 0.025) (0.03, 0.08, 0.025) (0.04, 0.10, 0.025) (0.03, 0.07, 0.025)

1.69(1.24) 1.03(0.54) 1.29(1.12) 0.78(0.41)
(0.04, 0.11, 0.025) (0.03, 0.08, 0.025) (0.04, 0.09, 0.025) (0.03, 0.07, 0.025)

0.5 3.25(1.74) 2.88(0.78) 1.95(1.85) 2.61(0.58)
(0.04, 0.07, 0.025) (0.02, 0.07, 0.025) (0.04, 0.09, 0.025) (0.02, 0.04, 0.025)

2.59(2.23) 1.54(1.32) 1.91(1.78) 1.21(0.43)
(0.05, 0.10, 0.025) (0.04, 0.09, 0.025) (0.04, 0.11, 0.025) (0.03, 0.08, 0.025)

0.3 0.1 2.32(1.91) 1.26(1.03) 1.59(0.81) 0.92(0.34)
(0.05, 0.13, 0.025) (0.04, 0.09, 0.025) (0.04, 0.11, 0.025) (0.03, 0.08, 0.025)

2.28(2.58) 1.26(1.03) 1.59(0.65) 0.92(0.34)
(0.05, 0.11, 0.025) (0.04, 0.09, 0.025) (0.04, 0.10, 0.025) (0.03, 0.08, 0.025)

0.3 3.15(2.28) 1.72(1.37) 2.26(1.53) 1.36(0.50)
(0.05, 0.13, 0.025) (0.04, 0.09, 0.025) (0.04, 0.11, 0.025) (0.03, 0.08, 0.025)

3.14(2.45) 1.71(1.52) 2.21(1.31) 1.33(0.41)
(0.05, 0.14, 0.025) (0.04, 0.10, 0.025) (0.04, 0.13, 0.025) (0.04, 0.09, 0.025)

0.5 6.78(3.46) 6.81(2.00) 4.18(2.72) 6.33(1.43)
(0.04, 0.09, 0.05) (0.02, 0.07, 0.05) (0.04, 0.10, 0.025) (0.02, 0.04, 0.05)

4.46(4.94) 2.48(2.38) 3.18(3.42) 1.88(0.56)
(0.06, 0.16, 0.025) (0.05, 0.11, 0.025) (0.05, 0.14, 0.025) (0.04, 0.10, 0.025)

Next, we compare our proposed method, denoted as NEW, with some alterna-
tive methods described below. The first alternative method is the conventional LLK
procedure (2), by which f (x, y; t) is estimated by â(x, y; t) defined in (3). Its bandwidths
are chosen by the conventional CV procedure, without considering any possible spatio-
temporal data correlation. As explained in Section 2.1, this estimator would blur edges
while removing noise. The second alternative method is to use â(x, y; t) for estimating
f (x, y; t), but its bandwidths are chosen by the modified CV procedure (7) and (8). The
above two alternative methods are denoted as LLK-C and LLK, respectively, where LLK-C
denotes the first conventional LLK procedure that does not accommodate data correlation.
The third alternative method is the one by Gijbels et al. [15] which is used for edge-
preserving image denoising of a single image. To apply this method to the current problem,
individual images collected at different time points can be denoised by it separately. This
method assumes that the observed image intensities at different pixels are independent of
each other, and thus their bandwidths can be chosen by the conventional CV procedure.
This method is denoted as GLQ. The fourth alternative method is to use f̂ (x, y; t) in (6) to
estimate f (x, y; t), but the parameters (hx, ht, u) are chosen by the conventional CV proce-
dure. This method is denoted as NEW-C. By considering all these four alternative methods
(i.e., LLK-C, LLK, GLQ and NEW-C), we can check whether the current problem to denoise
an image sequence can be handled properly by the conventional LLK procedure with or
without using the modified CV procedure, by an existing edge-preserving image denois-
ing method designed for denoising a single image, or by the proposed method without
considering the possible spatio-temporal data correlation. To evaluate their performance,
in addition to the regular MSE criterion, we also consider the following edge-preservation
(EP) criterion originally discussed in Hall and Qiu [28]:

EP( f̂ ) = |JS( f̂ )− JS( f )|/JS( f ),
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where

JS( f ) =
1

(nx − 2)(ny − 2)(nt − 2)

nx−1

∑
i=2

ny−1

∑
j=2

nt−1

∑
k=2

(
[ f (xi+1, yj; tk)− f (xi−1, yj; tk)]

2+

[ f (xi, yj+1; tk)− f (xi, yj−1; tk)]
2 + [ f (xi, yj; tk+1)− f (xi, yj; tk−1)]

2
)1/2

,

and JS( f̂ ) is defined similarly. According to Hall and Qiu [28], JS(f) is a reasonable measure
of the cumulative jump magnitude of f at the edge locations. So, EP( f̂ ) provides a measure
of the percentage of the cumulative jump magnitude of f that has been lost during data
smoothing by using the estimator f̂ . By this explanation, the smaller its value, the better.
In cases when σ = 0.1, 0.2 or 0.3, nx = 128, nt = 100, and ρ = 0.1, 0.3 or 0.5, the MSE and
EP values of the related methods are presented in Table 2. From the table, it can be seen
that the proposed method NEW has the smallest MSE values with quite large margins
among all five methods in all cases considered, except the case when σ = 0.1 and ρ = 0.1
where NEW-C has a lightly smaller MSE value than that of NEW due to the weak data
correlation in that case. Likewise, NEW has much smaller EP values in all cases considered,
compared to the four competing methods. This example confirms that it is necessary to
consider edge-preserving procedures when denoising image sequences and the possible
spatio-temporal data correlation should be taken into account during the denoising process.
It also confirms the benefit to share useful information among neighboring images when
denoising an image sequence.

Table 2. In each entry, the first line is the MSE value with its standard error (in parenthesis), and
the second line is the EP value. MSE values in the table are in the unit of 103 and the standard error
values are in the unit of 105.

σ ρ LLK-C LLK GLQ NEW-C NEW

0.1 0.1 2.06(0.08) 2.10(0.06) 0.60(0.18) 0.24(0.11) 0.26(0.10)
73.68% 18.43% 28.24% 12.32% 7.48%

0.3 3.04(0.14) 2.28(0.09) 0.95(0.18) 2.93(0.40) 0.33(0.15)
124.48% 34.40% 43.69% 131.28% 10.58%

0.5 3.89(0.24) 3.23(0.21) 1.42(0.42) 3.77(0.48) 0.64(0.21)
141.47% 95.86% 57.40% 148.17% 28.86%

0.2 0.1 4.16(0.25) 2.93(0.15) 1.51(0.38) 0.86(0.25) 0.56(0.26)
142.65% 51.78% 54.40% 39.01% 9.14%

0.3 9.39(0.52) 3.67(0.25) 2.87(0.51) 9.60(0.78) 0.78(0.41)
291.31% 82.84% 94.59% 295.72% 15.08%

0.5 12.80(0.94) 11.21(0.86) 7.75(1.32) 13.12(1.16) 2.61(0.58)
326.38% 289.71% 203.86% 334.62% 84.24%

0.3 0.1 7.88(0.57) 3.94(0.26) 3.17(0.86) 1.01(0.37) 0.92(0.34)
235.43% 82.24% 73.18% 23.36% 15.41%

0.3 19.97(1.15) 5.56(0.50) 12.36(0.63) 19.97(1.16) 1.36(0.50)
461.12% 133.33% 261.31% 461.13% 25.78%

0.5 27.64(2.09) 23.75(1.92) 15.75(1.71) 28.04(2.29) 6.33(1.43)
514.22% 458.82% 292.50% 518.16% 144.58%

In the cases when σ = 0.2 and ρ = 0.1, 0.3 or 0.5, Figure 4 shows the observed images
at t = 0.5 in the first column, and the denoised images by the methods LLK-C, LLK,
GLQ, NEW-C and NEW in columns 2–6. From the figure, it can be seen that the denoised
images by NEW are the best in removing noise and preserving edges. As a comparison, the
denoised images by LLK-C, and NEW-C are quite noisy because their selected bandwidths
by the conventional CV procedure are relatively small due to the fact the conventional CV
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procedure cannot distinguish the data correlation from the mean structure, as discussed in
Section 2.2. The denoised images by LLK are quite blurry because the method does not
take the edges into account when denoising the images. The denoised images by GLQ
are quite blurry as well since GLQ denoises individual images at different time points
separately and the serial data correlation is ignored in this method.

Figure 4. The first column shows the observed images at t = 0.5 when σ = 0.2 and ρ = 0.1 (1st row),
0.3 (2nd row), and 0.5 (3rd row). Second to sixth columns show the denoised images by LLK-C, LLK,
GLQ, NEW-C and NEW, respectively.

Next, we apply the proposed method NEW and the four alternative methods LLK-C,
LLK, GLQ and NEW-C to a sequence of cell images that records the vasculogenesis process.
The sequence has 100 images, and each image has 128× 128 pixels. A detailed description
of the data can be found in Svoboda et al. [29]. The 1st, 50th and 100th images of the
sequence are shown in Figure 5.

Figure 5. The 1st, 50th and 100th cell images of the image sequence for describing a vasculogenesis
process.

In the image denoising literature, to test the noise removal ability of a image denoising
method, it is a common practice to add random noise at a certain level to the test images
and then apply the image denoising method to the noisy test images (cf., Gijbels et al. [15]).
To follow this convention, spatio-temporally correlated noise is first generated using the
R-package neuRosim and then added to the sequence of 100 cell images described above.
When generating the noise, σ is chosen to be 0.1, 0.2 or 0.3 and ρ is chosen to be 0.1, 0.3
or 0.5, as in the simulation examples presented above. The MSE and EP values of the
five image denoising methods based on 10 replicated simulations are presented in Table 3.
From the table, it can be seen that NEW still has smaller MSE and EP values in this example,
compared to the four competing methods, except in a small number of cases when σ and ρ
are relatively small.
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Table 3. Results for denoising a sequence of 100 cell images. In each entry, the first line is the MSE
value and its standard error (in parenthesis), and the second line is the EP value. MSE values in the
table are in the unit of 103 and the standard errors are in the unit of 105.

σ ρ LLK-C LLK GLQ NEW-C NEW

0.1 0.1 1.69(0.11) 0.97(0.08) 1.67(0.12) 1.69(0.12) 1.35(0.12)
63.30% 5.53% 18.88% 63.31% 18.52%

0.3 2.36(0.16) 1.43(0.14) 1.94(0.18) 2.36(0.16) 1.51(0.19)
77.54% 31.64% 25.72% 77.55% 7.28%

0.5 3.21(0.25) 2.82(0.24) 2.28(0.29) 3.21(0.25) 1.92(0.31)
88.68% 75.95% 30.68% 88.68% 10.11%

0.2 0.1 3.22(17.00) 1.47(5.54) 3.93(0.29) 3.22(17.00) 1.67(0.25)
85.64% 13.57% 76.53% 85.64% 16.28%

0.3 8.71(0.56) 2.34(0.35) 5.00(0.43) 8.71(0.56) 2.17(0.45)
189.74% 42.07% 91.44% 189.75% 4.88%

0.5 12.12(0.94) 10.35(0.88) 6.41(0.86) 12.14(0.96) 4.48(0.90)
213.90% 187.93% 102.68% 214.07% 59.86%

0.3 0.1 3.16(0.50) 2.01(0.28) 5.47(0.53) 3.16(0.50) 1.93(0.40)
47.15% 22.46% 54.20% 47.15% 10.91%

0.3 19.30(1.23) 4.29(0.71) 10.11(0.85) 19.30(1.23) 2.82(0.77)
308.32% 79.75% 161.91% 308.32% 14.37%

0.5 26.96(2.09) 22.88(1.95) 13.36(1.82) 27.00(2.13) 8.75(1.85)
345.91% 306.28% 180.35% 346.14% 113.48%

The 50th observed test image after the spatio-temporally correlated noise with ρ = 0.1,
0.3 or 0.5 being added is shown in the first column of Figure 6. The denoised images by the
five methods LLK-C, LLK, GLQ, NEW-C and NEW are shown in columns 2–6 of the figure.
It can be seen that similar conclusions to those from Figure 4 can be made here, and the
denoised images by NEW look reasonably well, as the algorithm work well in removing
noise and preserving edges.

Figure 6. First column shows the 50th observed cell image after the spatio-temporally correlated
noise with ρ = 0.1 (1st row), 0.3 (2nd row) or 0.5 (3rd row) being added. The second to sixth columns
show the denoised images by LLK-C, LLK, GLQ, NEW-C and NEW, respectively.

Finally, we apply the five methods considered in the above examples to a sequence of
Landsat images of the Salton Sea region. The Salton Sea is the largest inland lake located
at the southern border of California, US, and has a great impact on the local ecosystem
(Shuford et al. [30]). The Landsat images used here were taken during the time period of
27 May 2000 and 24 December 2001. There are a total of 20 images collected at roughly
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equally-spaced time points, and each image has 100× 100 pixels. In this example, we
consider the case when σ = 0.3 and ρ = 0.3. The MSE values of the five methods LLK-C,
LLK, GLQ, NEW-C, and NEW calculated in the same way as before are 9.70, 4.78, 12.03, 9.77,
and 4.82, respectively. Their EP values are respectively 85.54%, 20.18%, 109.91%, 86.15%,
and 19.14%. So, we can see that NEW method has the best edge-preserving performance
among the five methods in this example, and NEW and LLK have the best overall noise
removal performance. The 10th noisy observed test image taken on 28 April 2001 and
its denoised versions by the five methods are shown in Figure 7. It can be seen from the
figure that the denoised images by the methods LLK-C, GLQ, and NEW-C are still quite
noisy, and the noise in the images generated by NEW and LLK is mostly removed while
the edges are preserved reasonably well.

Figure 7. The first image is the observed landsat image of the Salton Sea region taken on 28 April
2001 after the spatio-temporally correlated noise with σ = 0.3 and ρ = 0.3 being added. Second to
sixth images are its denoised versions by LLK-C, LLK, GLQ, NEW-C, and NEW, respectively.

4. Conclusions

In this paper, we have described our proposed edge-preserving image denoising
method for handling image sequences. Some major features of the proposed method
include (i) helpful information in neighboring images is shared during image denoising,
(ii) edge structures in the observed images can be preserved when removing noise, and
(iii) possible sptio-temporal data correlation can be accommodated in the related local
smoothing procedure. Theoretical arguments given in Section 3.1 and numerical studies
presented in Section 3.2 show that the proposed method works well in various cases
considered. There are still some issues about the proposed method for future research.
For instance, in the proposed local smoothing procedure (2)–(6), each of the bandwidths
(hx, hy, ht) is chosen by the modified CV procedure (7) and (8) to be the same in the
entire design space Ω × [0, 1]. Intuitively, relatively small bandwidths are preferred at
places where the image intensity surface f (x, y; t) has large curvature and relatively large
bandwidths are preferred at places where the curvature of f (x, y; t) is small. Thus, in some
applications where the curvature of f (x, y; t) could change quite dramatically in the design
space, variable bandwidths might be helpful. Such issues will be studied carefully in our
future research.
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Appendix A

Appendix A.1. Proof of Proposition 1

Define Bh(x, y, t) = {(x
′
, y
′
; t
′
) :
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where C ≥ 0 is the Lipschitz constant that satisfies the condition |K(u)−K(u
′
)| ≤ C|u− u

′ |.
So, the first result in Proposition 1 is valid.
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To prove the second result, it can be checked that
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The first inequality in the above expression is based on the result in Davydov [31]. So,
the third result is valid.
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Appendix A.2. Proof of Theorem 1

We first consider the case when (x, y; t) ∈ Ωh \ Jh. By Taylor expansion, we have
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By some simple algebraic manipulations, we have
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â(x, y; t)
b̂(x, y; t)
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Now, we consider the case when (x, y; t) ∈ Jh \ Sh. If (xi, yj; tk) ∈ I1, then we have

Zijk = f (xi, yj; tk) + εijk

= f−(xτ , yτ ; tτ) + O(
√

h2
x + h2

y + h2
t ) + εijk,

and if (xi, yj; tk) ∈ I2, we have

Zijk = f (xi, yj; tk) + εijk

= f−(xτ , yτ ; tτ) + dτ + O(
√

h2
x + h2

y + h2
t ) + εijk.

By some similar arguments to those in the case considered above, we have

⎡⎢⎢⎣
â(x, y; t)
b̂(x, y; t)
ĉ(x, y; t)
d̂(x, y; t)

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f−(xτ , yτ ; tτ) + dτ

∑(xi ,yj ;tk)∈I2
Kijk

∑ijk Kijk

dτ
hx

∑(xi ,yj ;tk)∈I2
[(xi−x)/hx ]Kijk

∑ijk [(xi−x)/hx ]2Kijk

dτ
hy

∑(xi ,yj ;tk)∈I2
[(yj−y)/hy ]Kijk

∑ijk [(yj−y)/hy ]2Kijk

dτ
ht

∑(xi ,yj ;tk)∈I2
[(tk−t)/ht ]Kijk

∑ijk [(tk−t)/ht ]2Kijk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

O(
√

h2
x + h2

y + h2
t )

O(

√
h2

x+h2
y+h2

t
hx

)

O(

√
h2

x+h2
y+h2

t
hy

)

O(

√
h2

x+h2
y+h2

t
ht

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+
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Op(

1√
NH

)

Op(
1

hx
√

NH
)

Op(
1

hy
√

NH
)

Op(
1

ht
√

NH
)

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
f−(xτ , yτ ; tτ) + dτξ

(2)
000

dτ
ξ200hx

ξ
(2)
100

dτ
ξ020hy

ξ
(2)
010

dτ
ξ002ht

ξ
(2)
001

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

O(
√

h2
x + h2

y + h2
t )

O(

√
h2

x+h2
y+h2

t
hx

)

O(

√
h2

x+h2
y+h2

t
hy

)

O(

√
h2

x+h2
y+h2

t
ht

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣
Op(

1√
NH

)

Op(
1

hx
√

NH
)

Op(
1

hy
√

NH
)

Op(
1

ht
√

NH
)

⎤⎥⎥⎥⎥⎦

Appendix A.3. Proof of Theorem 2

We prove the second equations in (10) and (11) here. The first equations can be
proved similarly. For simplicity, we write â(l)(x, y; t), b̂(l)(x, y; t), ĉ(l)(x, y; t), d̂(l)(x, y; t),
O(l)(x, y; t) and Õ(l)(x, y; t) as â(l), b̂(l), ĉ(l), d̂(l), O(l) and Õ(l), respectively from now on.
First, by Proposition 1, it is easy to show that

∑ijk εijkK
(

xi−x
hx

, yi−y
hy

)
K
(

ti−x
ht

)
∑ijk K

(
xi−x

hx
, yi−y

hy

)
K
(

ti−x
ht

) = Op(
1√
NH

), (A1)

∑ijk(ε
2
ijk − σ2)K

(
xi−x

hx
, yi−y

hy

)
K
(

ti−x
ht

)
∑ijk K

(
xi−x

hx
, yi−y

hy

)
K
(

ti−x
ht

) = op(1). (A2)
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Let us first consider the case when (x, y; t) ∈ Ωh \ Jh. In such a case, it can be checked
that

e(l)(x, y; t) =

{
∑

(xi ,yj ;tk)∈O(l)

[εijk + f (xi, yj; tk)− â(l) − b̂(l)(xi − x)−

ĉ(l)(yj − y)− d̂(l)(tk − t)]2Kijk

}
/ ∑

(xi ,yj ;tk)∈O(l)

Kijk

=

{
∑

(xi ,yj ;tk)∈O(l)

ε2
ijkKijk

}
/ ∑

(xi ,yj ;tk)∈O(l)

Kijk +

{
2 ∑
(xi ,yj ;tk)∈O(l)

εijk[ f (xi, yj; tk)− â(l) − b̂(l)(xi − x)−

ĉ(l)(yj − y)− d̂(l)(tk − t)]Kijk

}
/ ∑

(xi ,yj ;tk)∈O(l)

Kijk +

{
∑

(xi ,yj ;tk)∈O(l)

[ f (xi, yj; tk)− â(l) − b̂(l)(xi − x)−

ĉ(l)(yj − y)− d̂(l)(tk − t)]2Kijk

}
/ ∑

(xi ,yj ;tk)∈O(l)

Kijk

=: A(l)
1 (x, y; t) + A(l)

2 (x, y; t) + A(l)
3 (x, y; t).

Similar to (A2), we have

A(l)
1 (x, y; t) = σ2 + op(1). (A3)

Taylor expansion of f (xi, yj; tk) at point (x, y; t), results in Theorem 1, and by similar
arguments for (A1), we have

A(l)
2 (x, y; t) ≤ 2| f (x, y; t)− â(l)|

∣∣∣∣∑(xi ,yj ;tk)∈O(l) εijkKijk

∑(xi ,yj ;tk)∈O(l) Kijk

∣∣∣∣+ (A4)

2hx| f
′
x(x, y; t)− b̂(l)|

∣∣∣∣∑(xi ,yj ;tk)∈O(l) εijk
xi−x

hx
Kijk

∑(xi ,yj ;tk)∈O(l) Kijk

∣∣∣∣+
2hy| f

′
y(x, y; t)− ĉ(l)|

∣∣∣∣∑(xi ,yj ;tk)∈O(l)(x,y;t) εijk
yj−y

hy
Kijk

∑(xi ,yj ;tk)∈O(l) Kijk

∣∣∣∣+
2ht| f

′
t (x, y; t)− d̂(l)|

∣∣∣∣∑(xi ,yj ;tk)∈O(l) εijk
tk−t

ht
Kijk

∑(xi ,yj ;tk)∈O(l) Kijk

∣∣∣∣
= op(1).

Similarly, we have

A(l)
3 (x, y; t) = op(1). (A5)

By combining (A3)–(A5), we have

e(l)(x, y; t) = σ2 + op(1).
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Now, let us consider the case when (x, y; t) ∈ Jh \ Sh. Similar to the above case, let us
write

e(l)(x, y; t) = A(l)
1 (x, y; t) + A(l)

2 (x, y; t) + A(l)
3 (x, y; t).

Here, we still have
A(l)

1 (x, y; t) = σ2 + op(1). (A6)

For A(l)
2 (x, y; t), we have

A(l)
2 (x, y; t) =

{
2 ∑
(xi ,yj ;tk)∈I1∩O(l)

εijk[ f (xi, yj; tk)− â(l) − b̂(l)(xi − x)−

ĉ(l)(yj − y)− d̂(l)(tk − t)]Kijk

}
/ ∑

(xi ,yj ;tk)∈O(l)

Kijk +

{
2 ∑
(xi ,yj ;tk)∈I2∩O(l)

εijk[ f (xi, yj; tk)− â(l) − b̂(l)(xi − x)−

ĉ(l)(yj − y)− d̂(l)(tk − t)]Kijk

}
/ ∑

(xi ,yj ;tk)∈O(l)

Kijk

=: A(l)
21 (x, y; t) + A(l)

22 (x, y; t).

By the results in Theorem 1, we have

A(l)
21 (x, y; t) =

2 ∑(xi ,yj ;tk)∈I1∩O(l) εijk
[

f (xi, yj; tk)− f−(xτ , yτ ; tτ)
]
Kijk

∑(xi ,yj ;tk)∈O(l) Kijk
−

(D1 + op(1))∑(xi ,yj ;tk)∈I1∩O(l) εijkKijk

∑(xi ,yj ;tk)∈O(l) Kijk
−

(D2 + op(1))∑(xi ,yj ;tk)∈I1∩O(l) εijk
xi−x

hx
Kijk

∑(xi ,yj ;tk)∈O(l) Kijk
−

(D3 + op(1))∑(xi ,yj ;tk)∈I1∩O(l) εijk
yj−y

hy
Kijk

∑(xi ,yj ;tk)∈O(l) Kijk
−

(D4 + op(1))∑(xi ,yj ;tk)∈I1∩O(l) εijk
tk−t

ht
Kijk

∑(xi ,yj ;tk)∈O(l) Kijk
,

where D1, D2, D3 and D4 are constants. By similar arguments for (A1), we can conclude
that

A(l)
21 = op(1).

Similarly, we have
A(l)

22 = op(1).

So,
A(l)

2 = op(1). (A7)

By similar arguments to those about Proposition 1, we have∣∣∣∣ 1
NH ∑

(xi ,yj ;tk)∈O(l)

Kijk −
1
2

∣∣∣∣ = o(1).
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For a function φ(x, y; t) satisfying the condition that supx2+y2+t2≤1 |φ(x, y; t)| ≤ bφ <
∞, we can have ∣∣∣∣ 1

NH ∑
(xi ,yj ;tk)∈I1 ⋂O(l)

φ(
xi − x

hx
,

yj − y
hy

;
tk − t

ht
)Kijk −

1
NH ∑

(xi ,yj ;tk)∈I1 ⋂ Õ(l)

φ(
xi − x

hx
,

yj − y
hy

;
tk − t

ht
)Kijk

∣∣∣∣
≤ bφ||K||

1
NH ∑

(xi ,yj ;tk)∈O(l)ΔÕ(l)

1

= o(1),

where O(l)ΔÕ(l) = (O(l) ⋃ Õ(l)) \ (O(l) ⋂ Õ(l)). The last equation above is a direct conclu-
sion of (9). By the above results, we have

A(l)
3 (x, y; t) =

2
NH ∑

(xi ,yj ;tk)∈O(l)

[
f (xi, yj; tk)− â(l) − b̂(l)(xi − x)− (A8)

ĉ(l)(yj − y)− d̂(l)(tk − t)
]2

Kijk

=
2

NH ∑
(xi ,yj ;tk)∈O(l)

[
f (xi, yj; tk)− f−(xτ , yτ ; tτ)− dτ B0l −

dτ B1l
ξ200

xi − x
hx

−

dτ B2l
ξ020

yj − y
hy

− dτ B3l
ξ002

tk − t
ht

]2

Kijk + op(1)

=
2

NH

(
∑

(xi ,yj ;tk)∈I1∩O(l)

+ ∑
(xi ,yj ;tk)∈I2∩O(l)

)
[

f (xi, yj; tk)− f−(xτ , yτ ; tτ)− dτ B0l −
dτ B1l
ξ200

xi − x
hx

−

dτ B2l
ξ020

yj − y
hy

− dτ B3l
ξ002

tk − t
ht

]2

Kijk + op(1)

=
2

NH

(
∑

(xi ,yj ;tk)∈I1∩Õ(l)

+ ∑
(xi ,yj ;tk)∈I2∩Õ(l)

)
[

f (xi, yj; tk)− f−(xτ , yτ ; tτ)− dτ B0l −
dτ B1l
ξ200

xi − x
hx

−

dτ B2l
ξ020

yj − y
hy

− dτ B3l
ξ002

tk − t
ht

]2

Kijk + op(1)

=
2

NH ∑
(xi ,yj ;tk)∈I1∩Õ(l)

[
− dτ B0l −

dτ B1l
ξ200

xi − x
hx

−

dτ B2l
ξ020

yj − y
hy

− dτ B3l
ξ002

tk − t
ht

]2

Kijk +

2
NH ∑

(xi ,yj ;tk)∈I2∩Õ(l)

[
dτ − dτ B0l −

dτ B1l
ξ200

xi − x
hx

−

dτ B2l
ξ020

yj − y
hy

− dτ B3l
ξ002

tk − t
ht

]2

Kijk + op(1)
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= 2d2
τ

∫ ∫ ∫
Q(1l)

[
B0l +

B1l
ξ200

u +
B2l
ξ020

v +
B3l
ξ002

w
]2

K(u, v)K(w)dudvdw +

2d2
τ

∫ ∫ ∫
Q(2l)

[
1− B0l −

B1l
ξ200

u− B2l
ξ020

v− B3l
ξ002

w
]2

K(u, v)K(w)dudvdw

+op(1)

= d2
τ(C

(l)
τ )2 + op(1),

where

C(l)
τ =

(
2
∫ ∫ ∫

Q(1l)

[
B0l +

B1l
ξ200

u +
B2l
ξ020

v +
B3l
ξ002

w
]2

K(u, v)K(w)dudvdw +

2
∫ ∫ ∫

Q(2l)

[
1− B0l −

B1l
ξ200

u− B2l
ξ020

v− B3l
ξ002

w
]2

K(u, v)K(w)dudvdw

)1/2

.

Then by equation (A6)–(A8), we have

e(l)(x, y; t) = σ2 + d2
τ(C

(l)
τ )2 + op(1).

Similarly, we can prove that

e(x, y; t) = σ2 + d2
τ(Cτ)

2 + op(1),

where

Cτ =

( ∫ ∫ ∫
Q(1)

[
ξ
(2)
000 +

ξ
(2)
100

ξ200
u +

ξ
(2)
010

ξ020
v +

ξ
(2)
001

ξ002
w
]2

K(u, v)K(w)dudvdw +

∫ ∫ ∫
Q(2)

[
1− ξ

(2)
000 −

ξ
(2)
100

ξ200
u− ξ

(2)
010

ξ020
v− ξ

(2)
001

ξ002
w
]2

K(u, v)K(w)dudvdw
)1/2

.

The main difference between this case and the previous case in the proof is in the
derivation of the result of (A8). For e(x, y; t), the corresponding result is

A3(x, y; t) =
1

NH ∑
(xi ,yj ;tk)

[
f (xi, yj; tk)− â(x, y; t)− b̂(x, y; t)(xi − x)−

ĉ(x, y; t)(yj − y)− d̂(x, y; t)(tk − t)
]2

Kijk

=
1

NH ∑
(xi ,yj ;tk)

[
f (xi, yj; tk)− f−(xτ , yτ ; tτ)− dτξ

(2)
000 −

dτξ
(2)
100

ξ200

xi − x
hx

−

dτξ
(2)
010

ξ020

yj − y
hy

− dτξ
(2)
001

ξ002

tk − t
ht

]2

Kijk + op(1)

182



Entropy 2021, 23, 1332

=
1

NH

(
∑

(xi ,yj ;tk)∈I1

+ ∑
(xi ,yj ;tk)∈I2

)
[
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(2)
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ξ200

xi − x
hx

−

dτξ
(2)
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ξ020
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hy
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ξ002
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]2

Kijk + op(1)

=
1
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Kijk + op(1)

= d2
τ
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Q(1)

[
ξ
(2)
000 +

ξ
(2)
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u +
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(2)
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ξ020
v +

ξ
(2)
001

ξ002
w
]2

K(u, v)K(w)dudvdw +

d2
τ

∫ ∫ ∫
Q(2)

[
1− ξ

(2)
000 −

ξ
(2)
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u− ξ

(2)
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v− ξ

(2)
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w
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+op(1)

= d2
τ(Cτ)

2 + op(1).

Appendix A.4. Proof of Theorem 3

For the case when (x, y; t) ∈ Ωh \ Jh, the estimator f̂ (x, y; t) is one of â(x, y; t),
â(1)(x, y; t), â(2)(x, y; t) and (â(1)(x, y; t) + â(2)(x, y; t))/2, all of which are consistent es-
timators of f (x, y; t). So, we have the result in the theorem.

For the case when (x, y; t) ∈ Jh \ Sh, it is easy to see that we have either i) e(x, y; t) =
σ2 + d2

τ(Cτ)2 + op(1), e(1)(x, y; t) = σ2 + op(1), and e(2)(x, y; t) = σ2 + d2
τ(C

(2)
τ )2 + op(1), or

ii) e(x, y; t) = σ2 + d2
τ(Cτ)2 + op(1), e(1)(x, y; t) = σ2 + d2

τ(C
(1)
τ )2 + op(1), and e(2)(x, y; t) =

σ2 + op(1). In both cases, we have D(x, y; t) = d2
τ(Cτ)2 + op(1). Therefore, asymptotically

D(x, y; t) > u. Since e(1)(x, y; t) < e(2)(x, y; t) in i), the estimator f̂ (x, y; t) is â(1)(x, y; t) in
this case, which is a consistent estimator of f (x, y; t). A similar result follows in the case ii).

References

1. Zanter, K. Landsat 8 (L8) Data Users Handbook; Version 2; 2016; LSDS-1574; Department of the Interior, U.S. Geological Survey.
Available online: https://landsat.usgs.gov/landsat-8-l8-data-users-handbook (accessed on 1 October 2020).

2. Qiu, P. Jump regression, image processing and quality control (with discussions). Qual. Eng. 2018, 30, 137–153. [CrossRef]
3. Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson: New York, NY, USA, 2018.
4. Qiu, P. Jump surface estimation, edge detection, and image restoration. J. Am. Stat. Assoc. 2007, 102, 745–756. [CrossRef]
5. Geman, S.; Geman, D. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal.

Mach. Intell. 1984, 6, 721–741. [CrossRef]
6. Besag, J. Spatial interaction and the statistical analysis of lattice systems (with discussions). J. R. Stat. Soc. (Ser. B) 1974, 36,

192–236.
7. Fessler, J.A.; Erdogan, H.; Wu, W.B. Exact distribution of edgepreserving MAP estimators for linear signal models with Gaussian

measurement noise. IEEE Trans. Image Process. 2000, 9, 1049–1055. [CrossRef] [PubMed]

183



Entropy 2021, 23, 1332

8. Perona, P.; Malik, J. Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12,
629–639. [CrossRef]

9. Weickert, J. Anisotropic Diffusion in Imaging Processing; Teubner: Stuttgart, Germany, 1998.
10. Beck, A.; Teboulle, M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems.

IEEE Trans. Image Process. 2009, 18, 2419–2434. [CrossRef] [PubMed]
11. Rudin, L.; Osher, S.; Fatemi, E. Jump regression, Nonlinear total variation based noise removal algorithms. Phys. D 1992, 60,

259–268. [CrossRef]
12. Yuan, Q.; Zhang, L.; Shen, H. Hyperspectral Image Denoising Employing a Spectral–Spatial Adaptive Total Variation Model.

IEEE Trans. Geosci. Remote Sens. 2012, 50, 3660–3677. [CrossRef]
13. Chang, G.S.; Yu, B.; Vetterli, M. Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Trans.

Image Process. 2000, 9, 1522–1531. [CrossRef]
14. Mrázek, P.; Weickert, J.; Steidl, G. Correspondences between wavelet shrinkage and nonlinear diffusion. In Scale Space Methods in

Computer Vision; Griffin, L.D., Lillholm, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2003.
15. Gijbels, I.; Lambert, A.; Qiu, P. Edge-preserving image denoising and estimation of discontinuous surfaces. IEEE Trans. Pattern

Anal. Mach. Intell. 2006, 28, 1075–1087. [CrossRef]
16. Qiu, P. Discontinuous regression surfaces fitting. Ann. Stat. 1998, 26, 2218–2245. [CrossRef]
17. Qiu, P. Jump-preserving surface reconstruction from noisy data. Ann. Inst. Stat. Math. 2009, 61, 715–751. [CrossRef]
18. Qiu, P.; Mukherjee, P.S. Edge structure preserving 3-D image denoising by local surface approximation. IEEE Trans. Pattern Anal.

Mach. Intell. 2012, 34, 1457–1468.
19. Polzehl, J.;Spokoiny, V.G. Adaptive weights smoothing with applications to image restoration. J. R. Stat. Soc. (Ser. B) 2000, 62,

335–354. [CrossRef]
20. Kervrann, C.; Boulanger, J. Optimal Spatial Adaptation for Patch-Based Image Denoising. IEEE Trans. Image Process. 2006, 15,

2866–2878. [CrossRef] [PubMed]
21. Jain, P.; Tyagi, V. A survey of edge-preserving image denoising methods. Inf. Syst. Front. 2016, 18, 159–170. [CrossRef]
22. Qiu, P. Image Processing and Jump Regression Analysis; John Wiley & Sons: New York, NY, USA, 2005.
23. Fan, J.; Gijbels, I. Local Polynomial Modelling and Its Applications; Chapman and Hall: New York, NY, USA, 1996.
24. Altman, N.S. Kernel smoothing of data with correlated errors. J. Am. Stat. Assoc. 1990, 85, 749–759. [CrossRef]
25. Opsomer, J.; Wang, Y.; Yang, Y. Nonparametric regression with correlated errors. Stat. Sci. 2001, 16, 134–153. [CrossRef]
26. Brabanter, K.D.; Brabanter, J.D.; Suykens, J.; Moor, B. Kernel regression in the presence of correlated errors. J. Mach. Learn. Res.

2011, 12, 1955–1976.
27. Rudin, L.; Osher, S.; Fatemi, E. neuRosim: An R package for generating fMRI data. J. Stat. Softw. 2011, 44, 1–18.
28. Hall, P.; Qiu, P. Blind deconvolution and deblurring in image analysis. Stat. Sin. 2007, 17, 1483–1509.
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