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Climate change and extreme events are receiving increasingly more attention in the
global sustainable development sphere. Identifying the impacts of climate change and
extreme events is not only important in terms of natural processes, such as heat waves
and earthquakes, but also in terms of societal processes and the societal consequences of
natural disasters. Over the past two years (2021 and 2022), extreme events have occurred
across the globe. The February 2021 North American cold wave led to widespread power
outages for millions of people in Texas, USA. Another remarkable extreme event, the recent
Coronavirus disease in 2019 (COVID-19), is shaping the entire environmental and societal
sustainability situation worldwide. In 2022, persistent heatwaves have been affecting
Europe, causing evacuations and heat-related deaths with a maximum temperature of
47.0 ◦C reported in Pinhão, Portugal, on 14 July. The flood in Pakistan, the deadliest one
in worldwide since 2017, has killed more than 1300 people since 14 June 2022. With the
intensity and magnitude of climate change and extreme events being unknown, neither
the changes themselves nor the corresponding impacts are clear under the current circum-
stances. Therefore, we organized this Special Issue under the theme of sustainability with
respect to the changing climate and extremes.

We will briefly discuss the contributions of the 34 published papers in this Special
Issue in the following four sections.

1. Natural Disasters in Agriculture

As the most widely cultivated fruit genus, Wang Shuangshuang et al. (Appendix A,
Contributor 1) evaluated changes in the quality and yields of citrus under the shared
socioeconomic pathways scenario. In their study, first, they proposed statistical models
of the relationship between daily meteorological observation variables and the yields and
quality of citrus. In short, with respect to predicting the quality of citrus, the monthly mean
diurnal temperature range in July was identified as the optimal variable; for predicting
yields, a group of variables in October and September was identified as comprising the
best predictors. Then, they analyzed the future changes in the quality and yields of
citrus in the period from 2021–2060 using the ensemble mean of nineteen Coupled Model
Intercomparison Project 6 (CMIP6) models. Finally, they found that the quality of citrus
will increase in 3 provinces, while the yield will increase in all 11 provinces. The results
can support the design of citrus plantations in the future; further, the statistical models
can be coupled with the ecological process model for predicting the yield and quality of
citrus fruits.

Potatoes play a significant role in global food security and human diets. As the leading
potato producer, China accounts for 22% of the world’s potato yield [1]. In China, the
potato plant has been the fourth most important crop after rice, wheat, and maize, and
is facing the negative impacts of the changing climate. Yang Li-Tao et al. (Contributor
2) analyzed the climatic production potential of potatoes from 1961 in Inner Mongolia,

Sustainability 2022, 14, 11830. https://doi.org/10.3390/su141911830 https://www.mdpi.com/journal/sustainability1
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where they occupied the largest plantation area of potatoes in China. They obtained the
annual average climate production potential for potatoes in Inner Mongolia, which was
19,318 kg/hm−2. Over the past 61 years, the climatic production potential exhibited an
insignificant linear decreasing trend under the changed climate. The main finding of their
study lies in their identification of precipitation as the main impact factor for the productive
potential for potatoes in Inner Mongolia.

Maize (Zea mays L.) is one of the most important crops in the global and national
economies and is the third highest yielding form of crop production in China. In China, the
Huanghuaihai plain is the largest summer maize-producing area with a wheat–maize crop-
ping system. The ongoing process of global warming increases the risk of high-temperature
injury to maize. In addition, previous studies have shown that the inter- and mixed-
cropping of maize varieties with different genotypes is one way to effectively alleviate
high-temperature injuries during the flowering period. In this study, Li Shuyan et al. (Con-
tributor 3) investigated the response of five main genotypes of maize to high temperatures
and different crop models during the flowering period. The main findings revealed that
inter- and mixed cropping effectively reduced the impact of high temperatures during
flowering, demonstrating that even the genotypic varieties can make significant differences
in the yields.

In addition, the diurnal temperature range (DTR) is also an important meteorological
variable affecting maize yields. Xie Wenqiang et al. (Contributor 4) evaluated the ability of
26 CMIP6 models to simulate DTR from 1961–2014 and projected the DTR under different
shared socioeconomic pathway (SSP) scenarios from 2015 to 2050. The main findings
of their study included: (1) CMIP6 models can generally reproduce spatial distribution,
especially in the maize cultivation areas; (2) The DTR remains stable from 2015–2050 under
SSP245, while a significant decreasing trend is found under SSP585. This study implied the
efficiency of the application of DTR in the accurate prediction of maize yield prediction.

The dry-hot wind is a type of severe agricultural wind disaster with high a temperature
and low humidity. Dry-hot winds can reduce wheat production by up to 30%. In China,
Shandong Province has the greatest agricultural growth value among all of the provinces
and is also the most affected by dry-hot winds. Wang Nan et al. (Contributor 5) assessed the
spatial distribution of dry-hot wind disasters in Shandong Province. The main finding in
their study demonstrated that the more developed areas in the east of Shandong province
show high disaster prevention and mitigation capabilities, whereas these same aspects are
weak in the west, where the economy is still behind eastern Shandong province. Their
study implies the roles of economical input in preventing natural disasters.

Further, Jiang Meiyi et al. (Contributor 6) evaluated the effect of drought on the
production of peanuts in Shandong province, which accounts for 16% of the total peanut
cultivation area and 20% of the total peanut production in China. Drought has been consid-
ered the most severe natural disaster with respect to agricultural production. Therefore,
identifying the high drought risk regions will be a benefit to the yields and quality of
peanuts in Shandong. As the main finding of their study, they found that the drought
risk was concentrated on the Jiaodong Peninsula, covering 20.7% of the province. Their
study can support the acquisition of data for developing and carrying out peanut drought
prevention, relief policies, and related decisions.

Further, in another study (Contributor 7), Pan Mingxi et al. investigated the effects of
snow cover on the spring soil moisture content, which will impact the occurrence of spring
drought in high-latitude areas. To investigate the role of winter snow cover with respect
to soil moisture, the authors chose the main agricultural areas of Northeast China—the
Songnen Plain and the Sanjiang Plain—to address these issues. Their main finding was that
they found that snow cover has a strong effect on soil moisture conservation in more arid
areas. This work can support the scientific basis for the early warning of spring drought,
the development of more efficient irrigation schemes, and crop yield prediction based on
the snow cover in Northeast China.

2
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To predict droughts and floods in agriculture in the future, in their study (Contributor 8),
Li Jiannan et al. constructed a vulnerability model based on “sensitivity–exposure–adaptability”
and “vulnerability-risk, source-risk receptor” drought and flood risk models and estab-
lished multi-index prediction systems. They predict the vulnerability and risk of droughts
and floods in China’s agroecosystem under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios
from 2020 to 2050 using a combination of AHP and the entropy-weighting method. They
found that the levels drought and flood vulnerability intensify, and the drought or flood
vulnerability area expands to southern China from SSP1-2.6 to SSP5-8.5.

2. Urban/Rural Ecosystem, Tourism, and Ecosystem Service

In an urban ecosystem, rainfall plays a crucial role in human mobility and urban
management and planning. After four decades of urbanization, China is still facing the
rapid developmental period of urbanization in the future. One urgent need involves
understanding the impact of rainfall on residents’ mobility in the city. Taxi GPS data
support a large amount of spatiotemporal information about human activities and mobility
in urban areas. Guo Peng et al. (Contributor 9) combined geospatial complex networks with
multiscale geospatial analysis to extend the empirical research on human travel patterns
using Taxi GPS data to analyze the impact of rainfall on human mobility. They proved that
taxi GPS data are highly informative and exploitable in the field of human mobility analysis.
The main findings based on their results were the following: (1) rainfall has a reducing effect
on trip flow, trip distance, and trip duration on both weekdays and weekends; (2) rainfall
has a significant effect on the network indicators; and (3) more mobile communities were
detected on weekends than on weekdays, while the number of communities on weekdays
and weekends did not change significantly because of rainfall.

Further, climate-related risks threaten urban safety, infrastructure stability, and so-
cioeconomic sustainability. China is facing various climate hazards due to its diverse
geomorphic conditions. In this study (Contributor 10), Sun Shao et al. propose a compre-
hensive analysis of the spatial pattern of major climate hazards in China from 1991 to 2020.
The climate hazard types include rainstorms, droughts, heatwaves, cold waves, typhoons,
and snowstorms. They found that cities are hotspots affected by intensified climate hazards
in a warmer climate and they proposed an urgent need to incorporate a climate adaptation
strategy into future city construction to improve social resilience and mitigate climate
impacts in the rapid urbanization process in China. For the climate risks of the three major
urban agglomerations of Eastern China (Beijing–Tianjin–Hebei, the Yangtze River Delta,
and the Pearl River Delta), in this study (Contributor 11), Chou Jieming et al. constructed
one vulnerability degree using the Gray model (GM (1,1)), and calculated the drought, heat
wave, and flood hazards under different emission scenarios based on the CMIP6 model.
They found that the Beijing–Tianjin–Hebei urban agglomeration has a good level of urban
resilience, the Yangtze River Delta’s urban agglomeration has slightly higher overall risk,
and the Pearl River Delta’s urban agglomeration has the highest relative risk overall.

Rural regions are sensitive to climate disasters. China has achieved its goal of elimi-
nating absolute poverty in China. However, meteorological disasters can promote rural
populations’ return to poverty. In this study (Contributor 12), Li Aiwei et al. analyzed
the spatiotemporal characteristics of rainstorms and droughts and their socioeconomic
impacts on China’s contiguous poverty-stricken areas from 1984 to 2019. The main findings
are as follows: (1) rainstorms showed a significant increasing trend of 0.075 days/decade,
while there is no significant trend for drought days; (2) the average annual loss rate due to
disasters in the poverty-stricken areas reached 1.6%, which is 0.6% higher than the national
level. Their results suggest that to obtain the realization of the United Nations Sustainable
Development Goals, it is necessary to improve the capacity for meteorological disaster
prevention and reduction in China’s contiguous poverty-stricken areas.

The tourism markets are deeply impacted by the air pollution in China due to the
necessity of pursuing fresh air in the tourism transformation process. Finding one air index
to reflect the air freshness of destinations can support referable data for the tourists. Yang
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Xiaoyan et al. (Contributor 13) propose a new comfort index for climate tourism: the fresh
air–natural microclimate comfort index (FAI-NMCI). This index connects the fresh air index
with the natural microclimate comfort index of scenic spots from transdisciplinary and
multidisciplinary perspectives. Under contemporary China’s high-quality tourism devel-
opment background, this could provide accurate information not only for the demand and
supply sides of the tourism market but could also become an important and comprehensive
index for related governmental management.

Further, to explore the influence of changes in climate comfort on Arctic tourism, in
this study (Contributor 14), Huang Yutao et al. analyzed the spatial-temporal changes in
Arctic summer climate comfort zones from 1979 to 2019 using the ERA5-HEAT (Human
thErmAl comforT) dataset from the European Center for Medium-range Weather Forecasts
(ECMWF). Their results suggest that global warming increases the Arctic summer climate
comfort level and may provide favorable conditions for the further development of regional
tourism resources.

In the ecosystem service section, the annual terrestrial gross primary productivity
(GPP) was taken as the representative ecological indicator of the ecosystem. In this study
(Contributor 15), Zhang Chi et al. analyzed the GPP changes using three earth system
models (ESMs) from CMIP6 under 1.5 and 2 ◦C global warming targets in the Shared
Socioeconomic Pathway 4.5 W m−2 (SSP245) scenario. In their main findings, they found
that Under 1.5 ◦C of global warming, GPP in four climate zones (temperate continental,
temperate monsoonal, subtropical–tropical monsoonal, and high-cold Tibetan Plateau)
increased significantly with a minimum growth of 12.3% and the increase was greater
under 2 ◦C of global warming that at 1.5 ◦C. Their results implied that global warming
poses no ecological risk in China from the perspective of ecosystem productivity.

The China–US trade conflict can affect the achievement of climate change goals. In
this study (contributor 16), Chou Jieming et al. assessed the impact of the trade conflict
on China’s climate policy by combining the model from the Global Trade Analysis Project
(GTAP) and the input–output analysis method. Their results showed that changes in trade
will challenge China’s balancing of climate and trade exigencies, implying that China–US
cooperation based on energy and technology will help China cope with climate change after
the trade conflict. In this Special Issue, another study by (contributor 17) Feng Qiang et al.
contributed the response mechanisms of the ecosystem service’s trade-offs with respect to
land use changes along precipitation gradients in the Loess Plateau of China.

In one study (contributor 18), Deng Xiaofang et al. investigated human resource
allocation with respect to adaptation to climate change in a state-owned forest farm in
China using the questionnaire method. They found that the human resource professional
and industrial structure changes in the context of climate change are the main limiting
factors for the key state-owned forest farms of China. In their paper, they suggested that
increasing the investment in education on climate change and the income of employees is
one way to promote the adaptation to climate change in China.

Extreme events threaten human health. In one paper (contributor 19), Li Junrong et al.
used big data to explore the dynamic changes regarding population exposure during a heat
wave incident in Zhuhai based on real-time mobile phone data and meteorological data.
The main findings are as follows: (1) the overall population exposure shows a trend of first
decreasing and then increasing; (2) a high degree of population exposure is concentrated in
areas such as primary and secondary schools, colleges and universities, office buildings, and
residential areas; and (3) the population exposure changes in the last two days of the heat
wave cycle are mainly affected by the combined influence of population factors and climate
factors based on the studied heatwave events from 6 to 12 September 2021. This study has a
certain practical guiding significance with respect to advancing high-temperature warning
and high-temperature disaster risk prevention methods.

In addition, another study (Contributor 20) assessed China’s future heatwave popula-
tion exposure under 1.5 ◦C and 2.0 ◦C warming scenarios with respect to climate change
adaptation using models from CMIP6. The main findings of their study are as follows:
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(1) an additional 20.15% increase in the number of annual heatwave days would occur
with an additional temperature increase of 0.5 ◦C to 2.0 ◦C, an over 1.5 ◦C increase in
temperature by the mid-century; (2) from three influencing elements, namely, climate,
population, and interaction (e.g., as urbanization affects population redistribution), climate
explained more than 70% of the variance in different warming scenarios. Their study can
support helpful insights for developing mitigation strategies for climate change.

Tropical marine fisheries provide high-quality protein for human diets and play signif-
icant roles in food security. Tuna fisheries are one of the four most highly valued fisheries
worldwide and have contributed 5.2 million tons of the total capture amount. The tuna
fishery in the entire western and central Pacific Ocean (WCPO) supports major industrial
tuna fisheries and contributes almost 30% of the total global tuna supply. However, the
changing climate is threatening tropical tuna fisheries via the increasing sea surface tem-
perature. In this study (Contributor 21), Zhou Weifeng et al. explored the impact of climate
change on tuna fishery resources by investigating the temporal and spatial characteristics
of the thermocline in the main yellowfin tuna purse seine fishing grounds in the western
and central Pacific Ocean during La Niña and El Niño years from 2008 to 2017. The main
findings of their study include: (1) in La Niña years, the catch per unit effort (CPUE) moved
westward where the high-value zone of the upper boundary contracted westward to 145◦ E,
while in the El Niño years, this boundary moved eastward to 165◦ E; (2) changes in the
thermocline caused by abnormal climate events significantly affected the CPUE. This study
can provide additional thermocline distribution information and serve as a reference for
tuna production in this area.

3. Extreme Climate Indices

Extreme climate events are more frequent under ongoing climate change. Central
China, a key area for the transition between China’s east–west and north–south borders
and a hub for land and water transportation, is facing a complex weather system. In this
study (Contributor 22), Li Yan et al. analyzed the temporal and spatial dynamics of climate
events from 1988 to 2017 using nine indices: six extreme temperature indices and three
extreme precipitation indices. The six extreme temperature indices are icy days (ID), frost
days (FD), the duration of warm periods (WSDI), the duration of cold periods (CSDI), the
lowest Tmin (TNn), and the highest Tmax (TXx). The three extreme precipitation indices
are very wet days (R95), consecutive dry days (CDD), and consecutive wet days (CWD).
The main findings are as follows: (1) the Jiangxi region was at greater risk of extreme
climate events in central China, and (2) the drought events in central China around 2025
will be more significant. Following their results, disaster prevention and mitigation projects
can be suggested to be prepared in advance for the policy-makers.

In another study (Contributor 23), Yan Weixiong et al. evaluated the distribution
of extreme temperature seasonality trends in mainland China by using the following
indices: the number of hot days (HD) and frost days (FD), as well as the frequency of
warm days (TX90p), cold days (TX10p), warm nights (TN90p), and cold nights (TN10p).
They highlighted that extreme temperatures have increased over mainland China from
1979–2020 with obvious seasonal variations, and the increase in the minimum temperature
is more distinct than in the maximum temperature.

Heatwave events (HWEs) have strong negative impacts on human health, ecosystems,
and sustainable social development. In one study (Contributor 24), Gao Zhibo and Yan
Xiaodong analyzed the characteristics of HWEs over the Yangtze River Basin (YRB) in
eastern China during the historical period and projected the changes in HWEs over the YRB
in the future using a gridded observation dataset and a high-resolution regional climate
model. Their main findings include: (1) Short-lived (≥3 days and <6 days) HWEs are
projected to increase rapidly under SSP585, but to rise slowly overall under SSP245, and
(2) the increase in HWEs over the YRB region is likely to be associated with the enhancement
of the western-Pacific subtropical high (WPSH) and South-Asian high (SAH). This study
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can support solid references for disaster prevention and mitigation in the future for these
developed regions of China.

In another study (contributor 25), Li Kaiwen et al. defined compound drought and
heatwave events (CDHEs) using the monthly scale standard precipitation index and evalu-
ated the spatial and temporal variations in CDHEs in China from 1961 to 2018. The main
findings of their study are as follows: (1) the mean frequency of CDHEs takes on a non-
significant decreasing trend, and the mean magnitude of CDHEs takes on a non-significant
increasing trend in China; (2) the significant trends in the annual frequency and annual
magnitude of CDHEs are attributed to maximum temperature and precipitation changes.

The surface albedo of pure fresh snow is generally between 60% and 95%. When black
carbon (BC) aerosols deposit into the surface snow through dry and wet deposition, the
albedo of the snow surface will significantly reduce and thereby increase the absorption of
solar radiation on the snow surface. Therefore, understanding the BC concentration on the
surface of snow will play an important role with respect to studying climate change. In
this study (contributor 26), Zheng Yanjiao et al. simulated the black carbon concentration
on the surface snow of northeast China using an asymptotic radiative transfer model. The
main findings of their study include: (1) human activities played an important role in snow
black carbon pollution, and (2) the snow surface albedo will decrease by 16.448% due to
the BC pollution of snow in northeast China. These results suggest that the increase in
radiative forcing caused by black carbon via snow reflectivity cannot be ignored.

As one part of the earth system and one of the most sensitive regions of climate
warming, cold regions are areas with low temperatures and with the presence of ice and
snow for at least part of the year. In their study (Contributor 27), Wang Yumeng et al.
studied the spatial distribution and variations of cold regions in China from 1961 to 2019.
They found that the area of China’s cold regions decreased by 49.32 × 104 km2 in the period
from 1991–2019 compared with that in the period of 1961–1990. In addition, in another
paper (Contributor 28), Li Hao et al. studied the distribution and assessment of snow-
disaster risk zoning in Heilongjiang Province. As the main findings of their study, they
found that economically developed regions had strong disaster prevention and mitigation
capabilities. This implied that the economic input for preventing snow disasters is required
in Heilongjiang Province. For another cold region in China, in this Special Issue, Sun
Shao et al. (Contributor 29) and Jia Yiru et al. (Contributor 30) evaluated and mapped
the meteorological hazards and the locomotion of slope geohazards in the Qinghai-Tibet
Plateau (QTP), respectively, in response to climate change.

Extreme cooling (EC) events are also a major challenge to socioeconomic sustainability
and human health. In this study (Contributor 31), Song Shuaifeng and Yan Xiaodong
analyzed the temporal and spatial distributions of EC events in China using the relative
threshold and the relationship between EC events and the Arctic Oscillation (AO) index
during the period of 1961–2017. The main findings of their study are as follows: (1) the
frequency of EC events in China decreased by 0.730 d from 1961 to 2017, and (2) EC events
are significantly negatively correlated with the AO index, which can explain approximately
21% of the EC event variance. Their study can help to improve the prediction and simulation
of EC events in China.

To overcome the overestimation for the light precipitation and underestimation of
heavy precipitation due to low model resolution, Luo Neng and Yan Guo (Contributor
32) studied the impact of model resolution on simulating the precipitation extremes over
China from 1995–2014 with six extreme indices based on five models from CMIP6. All these
models include low- and high-resolution versions. Six extreme indices were employed:
simple daily intensity index (SDII), wet days (WD), total precipitation (PRCPTOT), extreme
precipitation amount (R95p), heavy precipitation days (R20mm), and consecutive dry days
(CDD). The main findings of their study are as follows: (1) models with a high resolution
demonstrated better performance in reproducing the pattern of climatological precipitation
extremes over China, (2) decreased biases of precipitation exist in all high-resolution
models over D1, and (3) Improvement could be attributed to fewer weak precipitation
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events (0–10 mm/day) in high-resolution models in comparison with their counterparts
with low resolutions. Their solid work proved that models with improved resolution show
an obvious advantage with respect to the simulation of precipitation extremes, thereby
increasing confidence in the simulation of precipitation extremes.

4. Newly Created Dataset for Climate Change

The forest ecosystem is one of the most concentrated systems under the climate change
background. Identifying the forest type plays a crucial role in supporting information
for forest managers, conservationists, and forest ecologists. In this study (Contributor 33),
Xu Chen et al., generated a forest type distribution using an unsupervised cluster analy-
sis method by combining climate variables with normalized difference vegetation index
data. Their work will improve the depth of research in biodiversity preservation, forest
management, and ecological and forestry research.

Modern meteorological methods with high-resolution and high-quality precipitation
data are urgently required in the monitoring of mountain flood geological disasters as well
as hydrological monitoring and prediction. In this study (Contributor 34), Wang Zheng
et al. tested the newly created 0.01◦ multi-source fusion precipitation product developed
by the National Meteorological Information Center. Their study proved that the 0.01◦
multi-source fusion precipitation product has better spatial continuity, a more detailed
description of precipitation’s spatial distribution and a more accurate reflection of extreme
precipitation values, and can provide precipitation data support for refined meteorological
services, major activity support, and disaster prevention and reduction.
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Abstract: As the world’s most widely cultivated fruit, citrus in China is increasingly suffering from
ongoing climate change, which affects the sustainability of agricultural systems and social economy.
In this study, we linked climate factors to citrus quality and yield and established projection models to
elucidate the impact of future climate change. Then, we used the ensemble mean of 19 Coupled Model
Intercomparison Project 6 (CMIP6) models to project the 2021–2040 and 2041–2060 climate changes
relative to the historical baseline 1995–2014 period under different shared socioeconomic pathways
scenarios (SSP2-4.5, SSP5-8.5). The results show that the monthly mean diurnal temperature range in
July had the greatest influence on quality, and monthly mean temperature in October, monthly mean
relative humidity in October, monthly mean minimum temperature in November and monthly mean
maximum temperature in September had the greatest influence on yield at the growth and ripening
stages. Moreover, the quality and yield of citrus present different characteristics in terms of change
in cultivation areas in the future. The quality of Sichuan, Zhejiang and Fujian Provinces in China
will become significantly better, however, Hubei, Guangdong and Guangxi Provinces it will become
worse. Surprisingly, yield will increase in all plantations due to future suitable climate conditions for
citrus growth and ripening.

Keywords: citrus; climate change; quality; yield; future projection

1. Introduction

Climate change brings great challenges to natural resources and affects the sustainable
development of human society [1]. It is now widely recognized as the greatest global
threat of the 21st century [2]. Among many aspects of impacts, agriculture is the most
sensitive sector [3,4]. In this changing environment, the production of many crops is
affected, which is related to world food security and global stability [5–10]. As a result,
researchers in agriculture have made it a priority to understand the relationship between
crops and climate variables [11–13] and to predict crop yield and quality under climate
change scenarios [14]. By correctly recognizing the contribution of climate change to crops
and adopting effective adaptation measures to agriculture, human beings can make better
use of improving production and resistance to adverse effects, maximizing the increase in
output, reducing losses, and realizing potential benefits [15–17].

Citrus is the world’s largest cultivated fruit crop, with an annual output of approxi-
mately 158 million tons, accounting for approximately 18% of the total fruit output [18,19].
As one of the most important crop types, citrus is an important source of income for farmers
and is favoured by consumers for nutritional value [20,21], playing a significant role in
people’s livelihood, not to mention citrus juice. China has the largest population and is the
largest citrus producer in the world, with an annual output of 44 million tons, accounting
for almost 28% of global citrus production [18]. Thus, the production of citrus in China
plays a vital role in the world citrus pattern and needs to be duly considered. However,
China is increasingly suffering from ongoing climate change, and no part of the Earth is
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immune to this vulnerability, which could have a major effect on citrus [22,23]. Admittedly,
the direction and degree of climate change in terms of influencing citrus varies locally due
to regional differences in natural responses and anthropogenic factors.

The growth, development, flowering and fruiting of citrus are sensitive to climate
conditions, especially in their yield and chemical quality [24–27]. Previous studies re-
vealed that climate change in China affects the yield of citrus. Under the background of
global warming, the citrus yield may be affected by climate risk in subtropical regions of
China [28]. Soil erosion in citrus orchards caused by increasingly frequent and intense
extreme precipitation is the main cause of productivity decline [29]. Additionally, the
climate suitability of citrus affects the growth and final yield of citrus due to the change
of temperature and precipitation suitability [30]. However, studies on the effect of citrus
quality are rare. With advances in agricultural technology [31,32], climate change may have
a greater impact on quality than yield. The contents of Vitamin C, naringin and hesperidin
decreased significantly, while chlorogenic acid and caffeic acid increased during frozen
temperatures [33]. The highest content of peel was observed from October to March and
the Vitamin C content decreased during the ripening process [34]. Additionally, essential
oils vary in content in different months [35]. Therefore, the development of this study is
necessary to reveal the impact of future climate change on citrus quality, which is a factor
that is considered to be as important as yield.

To project future citrus production, Tubiello [36] used two different global circulation
model (GCM) scenarios to simulate climate change effects on US citrus production and the
result showed that simulated fruit production benefited greatly from the projected climate
change, as yields will increase by 20–50%. In this study, we combined empirical regression
models based on climate factors and citrus quality or yield with datasets in different
CMIP6 (Coupled Model Intercomparison Project 6) models in response to different shared
socioeconomic pathways (SSPs) of future climate changes (SSP2-4.5, SSP5-8.5) on citrus. The
aim of this study was to investigate the changes in citrus quality and yield in China in the
near future (2021–2040) and medium future (2041–2060) relative to the historical baseline
period (1995–2014) [37,38]. These results may provide useful information for perennial
horticultural crops to meet the challenge of climate change and can be generalized to other
parts of the world.

2. Materials and Methods

2.1. Study Area

The study areas include 79 meteorological stations in 11 major cultivation provinces in
China, which are Sichuan, Chongqing, Hubei, Yunnan, Guizhou, Guangxi, Hunan, Jiangxi,
Guangdong, Fujian and Zhejiang as shown in Figure 1 [39]. Typically, citrus production
in these 11 provinces account for 98% of the total citrus production (45.85 million tons),
and the cultivation areas account for 98% of the total citrus cultivation areas (2.62 million
hectares) across China based on the National Bureau of Statistics of China (NBSC) [40].

2.2. Data Sources
2.2.1. Statistical Data

Citrus quality refers to the exterior quality and internal quality. The most impor-
tant quality, in addition to fruit size, shape, colour and other economic values based on
appearance, is chemical composition, mainly related to the sweet, sour or bitter taste of
fruit, as well as the of active ingredient contents. The chemical composition of citrus
fruit includes the following two categories in addition to water: the first is insoluble in
water, such as cellulose, hemicellulose, and propectin, and the other includes water soluble
substances, called total soluble solid (TSS). TSS is one of the main factors determining
fruit quality [41–43], which reflects the flavor and can directly determine the commercial
value of fruit. In this study, we searched relevant published articles containing citrus TSS
data from the China National Knowledge Infrastructure (CNKI) and finally selected 125
available TSS data. TSS data combined with information from the China Meteorological
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Station (CMS) are listed in the Table S1. Therefore, the climate of citrus cultivation areas
was characterized by the local CMS from the China Meteorological Administration. From
the NBSC data, the citrus production and planting area of each province were obtained to
calculate the yield.

Figure 1. 79 meteorological stations in citrus cultivation areas.

2.2.2. Meteorological Observation Data

CMS (V3.0) contains the Chinese benchmark and general weather stations, including
the main information of 2474 sites and the basic meteorological observation data since
January 1961. We extracted meteorological data from 11 provinces in major citrus producing
areas, including mean temperature, maximum temperature, minimum temperature, relative
humidity and other variables on a daily scale. Finally, 79 sites were collected from papers
and the data were downloaded from China Meteorological Administration as observational
data and used to construct citrus quality and yield regression models.

2.2.3. CMIP6 Data

The 19 CMIP6 global climate models were used to simulate climate change in the near
future (2021–2040) and medium future (2041–2060) relative to the historical base period
(1995–2014) under SSP2-4.5 and SSP5-8.5 scenarios. The relevant information of 19 CMIP6
global climate models is shown in Table 1. Among them, EC-Earth3 and EC-Earth3-Veg
models have the highest spatial resolution (0.7◦ × 0.7◦), and the CanESM5 model has
the lowest spatial resolution (2.8◦ × 2.8◦). The relative humidity, maximum temperature,
minimum temperature and mean temperature variables of the CMIP6 model were extracted
(there was no simulation of relative humidity variables in the future period in the BCC-
CSM2-MR model; therefore, the relative humidity in the future period was replaced by the
results of 18 model sets).

2.3. Methods

Citrus is an important fruit crop with high economic value and in this study, it was
assumed that when citrus lacks water, artificial irrigation is provided; therefore, the impact
of precipitation was not considered. The distribution of climate factors such as the mean
temperature, minimum temperature, maximum temperature and relative humidity in
different growing areas is significantly different, which often results in different effects of
climate change on citrus fruit quality and yield [25,44]. Diurnal temperature range (DTR)
is the difference between daily maximum temperature and daily minimum temperature,
which can reflect the change characteristics of the interaction and provides comprehensive
information between the two [45,46]. Changes in DTR can convey climate change infor-
mation, which will have an impact on human health, the circulation of the ecosystem, the
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growth of animals and plants, and the use of renewable energy [47]. The DTR described in
this paper is the maximum temperature minus the minimum temperature in 24 h. By using
a correlation analysis, regression models were established for the relationship between
citrus fruit quality and yield and the key climate factors during fruit growth; furthermore,
the crop models of citrus fruit quality and yield were obtained. Lobell [48] considered that
all process models contain some degree of experience or statistical rules, and all statistical
models also contain some hypothesis of crop processes and mechanisms [49–51]. The
change in climate elements has a nonnegligible impact on the growth and development of
crops. Therefore, when crop quality and yield are only determined by climate factors, the
response characteristics of crops to climate elements should be understood. Statistical mod-
els can be used to predict crop responses to climate change [52,53]. By incorporating CMIP6
climate data into crop models, changes in citrus fruit quality and yield were obtained for
different future periods. See the supplementary materials for the flow chart.

Table 1. 19 CMIP6 models used in the study.

CMIP6 Models Institution Spatial Resolution (Lat ∗ lon) Variables

ACCESS-CM2 CSIRO-ARCCSS, Australia 144 ∗ 192 Tas, Tasmax, Tasmin, Hurs
ACCESS-ESM1-5 CSIRO, Australia 145 ∗ 192 Tas, Tasmax, Tasmin, Hurs
BCC-CSM2-MR BCC, China 160 ∗ 320 Tas, Tasmax, Tasmin

CanESM5 CCCma, Canada 64 ∗ 128 Tas, Tasmax, Tasmin, Hurs
CAS-ESM2-0 CAS, China 128 ∗ 256 Tas, Tasmax, Tasmin, Hurs
CMCC-ESM2 CMCC, Italy 192 ∗ 288 Tas, Tasmax, Tasmin, Hurs

EC-Earth3 EC-Earth-Consortium,
European Union 256 ∗ 512 Tas, Tasmax, Tasmin, Hurs

EC-Earth3-Veg EC-Earth-Consortium,
European Union 256 ∗ 512 Tas, Tasmax, Tasmin, Hurs

EC-Earth3-Veg-LR EC-Earth-Consortium,
European Union 160 ∗ 320 Tas, Tasmax, Tasmin, Hurs

FIO-ESM-2-0 FIO-QLNM, China 192 ∗ 288 Tas, Tasmax, Tasmin, Hurs
FGOALS-g3 CAS, China 80 ∗ 180 Tas, Tasmax, Tasmin, Hurs

GFDL-ESM4 NOAA-GFDL, United
States 180 ∗ 288 Tas, Tasmax, Tasmin, Hurs

INM-CM4-8 INM, Russia 120 ∗ 180 Tas, Tasmax, Tasmin, Hurs
INM-CM5-0 INM, Russia 120 ∗ 180 Tas, Tasmax, Tasmin, Hurs

IPSL-CM6A-LR IPSL, France 143 ∗ 144 Tas, Tasmax, Tasmin, Hurs
MIROC6 MIROC, Japan 128 ∗ 256 Tas, Tasmax, Tasmin, Hurs

MPI-ESM1-2-HR MPI-M, Germany 192 ∗ 384 Tas, Tasmax, Tasmin, Hurs
MPI-ESM1-2-LR MPI-M, Germany 96 ∗ 192 Tas, Tasmax, Tasmin, Hurs

MRI-ESM2-0 MRI, Japan 160 ∗ 320 Tas, Tasmax, Tasmin, Hurs

2.3.1. Meta-Analysis

A meta-analysis is a method that can be used to conduct a quantitative and compre-
hensive analysis of research results [54]. In this study, the quality data of fruit was finally
determined by summarizing the research results in the relevant published literature and
conducting repeated screening and averaging of the sample data. The operation process
includes the following four elements: (1) keywords: TSS of citrus, fruit origin and picking
year; (2) unity: recording the data of different varieties of fruit, delimiting the research
area and the research benchmark period so that the data of different producing areas and
different varieties of fruit have uniformity; (3) match external information: according to the
origin of fruit, the relevant information from China meteorological Station was matched,
and the corresponding climate data were extracted; (4) obtain results: data of TSS of citrus
in different years, different producing areas and different climate conditions. The scien-
tific database used in this study was obtained from China National Knowledge Network
(CNKI), with a focus on papers published on climate change, and the exclusion of the
effects of extreme climate events such as drought, flood and frost and human activities
such as technological progress on fruit quality data.
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2.3.2. Correlation Analysis

Correlation analysis is a method used to evaluate the relationship between two vari-
ables and the correlation coefficient indicates the strength of the relationship between
variables [55]. In this study, Pearson’s correlation coefficient calculation method was used
to calculate the correlation degree between the two variables, i.e., citrus quality and yield
with climate factors, for which the formula utilized is as follows:

R =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1 (xi − x)2
√

∑n
i=1 (yi − y)2

where R represents the correlation coefficient, n is the number of samples, xi and yi are
the values of the ith sample in the sequence of two variables, and x and y are the average
values of the sequence of two variables.

2.3.3. Least Square Estimation

In this study, a unary linear regression equation was used to fit the relationship
between citrus quality and climate factors, and the trend of quality change was defined as
the slope of least square estimation, for which the formula is [55] as follows:

ŷi = kxi + b, i = 1, 2, . . . , n

k =
∑n

i=1 xiyi− 1
n (∑n

i=1 xi)(∑n
i=1 yi)

∑n
i=1 x2

i − 1
n (∑n

i=1 xi)

b = y − kx

y = 1
n ∑n

i=1 yi

x = 1
n ∑n

i=1 xi

where yi represents citrus quality with sample size n, xi corresponds to climate factor, k
represents the regression coefficient term, and b represents the regression constant term.

2.3.4. Bilinear Interpolation and Multimodel Ensemble

To avoid the uncertainties that may occur in a single model simulation, we selected
19 models from the CMIP6 GCMs. Using the bilinear interpolation method, we interpolated
the models with different resolutions on a unified 1◦ × 1◦ grid and obtained the average
result of the multimodel ensemble [56], for which the formula is as follows:

Ensemble =
∑19

i=1 Mi

19

where Ensemble represents the average value of the multimodel result, and Mi represents
the ith model value. Then, by using the method of bilinear interpolation, the average
model data of multiple model sets were uniformly interpolated to the China meteorological
stations outlined in the Supplementary Materials Table S1 to obtain the local climate
information of the meteorological stations simulated by the model [57].

3. Results

3.1. Changes of Quality in the Climate Change Factors
3.1.1. Quality in Relation to Climate Variables

The critical period for the growth and ripening of citrus fruits is from July to December.
During this period, the change in DTR is the main climatic factor affecting the quality
content of fruits [58,59]. Admittedly, a higher day temperature is preferred for the accu-
mulation of sugar and degradation of organic acids in the fruit-ripening process, and a
lower night temperature favours the same under suitable fruit growth conditions [60,61].
DTR can comprehensively reflect the information of maximum and minimum temperature,
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which has a considerable influence on fruit quality. To quantitatively compare the time
period with the maximum correlation with TSS, the maximum temperature and minimum
temperature observed at meteorological stations in different months were used to calculate
the mean values of DTR and conduct a correlation analysis with TSS, as shown in Figure 2.
The results show that DTR is positively correlated with TSS in citrus fruit growth in all
periods and passes the significance test at 0.05. The correlation between the mean value of
the DTR in July and TSS is highest (R = 0.44), and the correlation coefficient of the mean
values of the DTR in the periods from July to August, July to September, July to October,
July to November and July to December remains above 0.3, which is higher than that in
other periods.

Figure 2. Correlation coefficient diagram between the TSS and DTR for each period from July to
December. The abscissa represents the beginning month, and the ordinate represents different
time spans of the monthly mean DTR. All data passed the significant correlation coefficient at the
0.05 significance level.

Based on the correlation analysis in Figure 2, the maximum significant positive corre-
lation between the mean for the DTR value in July and the TSS content was obtained to
select the climate factors that most affected the change in TSS content in the key period. A
linear regression equation was obtained, and the quality prediction model was established
as follows:

Q = 0.35 × X1+9.021 (R1 = 0.442, P1 < 0.001)

where Q indicates the TSS content (%); X1 indicates the mean DTR value (◦C) in July; R1 is
the correlation coefficient; and P1 is the significance test index.

The citrus quality prediction model indicates that if the DTR becomes larger, the TSS
content also increases, and the citrus quality is good; otherwise, it becomes worse under
the background of future climate change.
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3.1.2. Changes in the Future DTR

The CMIP6 multimodel ensemble data were used to estimate future DTR changes
in July in 11 provinces in China where citrus cultivation areas are located, as shown in
Figure 3. Compared with the 1995–2014 historical baseline period, the DTR in July of
citrus producing areas in China presents an overall spatial distribution of increase-decrease-
increase from west to east in the 2021–2040 future climate state under the two scenarios,
SSP2-4.5 and SSP5-8.5. Sichuan Province in the west and Zhejiang and Fujian Provinces in
the east show signs of increasing DTRs; however, the DTRs of Hubei, Hunan, Guangxi and
other central regions show decreasing trends. Similarly, in the 2041–2060 mid-future period,
the DTR shows almost the same spatial distribution, and the range of change is larger than
that in the 2021–2040 period. The DTR in the northern part of Sichuan Province increases
above 0.4 ◦C under the SSP5-8.5 scenario. The central regions, such as Guizhou, Hunan
and Jiangxi Provinces, also show signs of increasing DTR trends, but in addition, the other
regions show signs of decreasing DTR changes within 0.2 ◦C under the SSP2-4.5 scenario.

 

Figure 3. Under the two scenarios, SSP2-4.5 and SSP5-8.5, the DTR in July changes in the near future
(2021–2040) and mid future (2041–2060) compared with the historical period (1995–2014).

3.1.3. Changes in the future TSS

The change in DTR in July in the whole region of citrus producing areas obtained
in Figure 3 can be entered into the quality prediction model to calculate the change in
TSS content. Moreover, the spatial grid DTR data calculated by the CMIP6 multimodel
were interpolated to the local meteorological stations, and the spatial distribution map
of TSS content in actual citrus-producing areas is depicted in Figure 4. Consistent with
the spatial distribution in Figure 3, the change in TSS content in citrus also presents a
spatial distribution characteristic of increase-decrease-increase from west to east in the
2021–2040 future climate state under the SSP2-4.5 and SSP5-8.5 scenarios. This phenomenon
indicates that the quality of citrus has a tendency to become better-worse-better in these
corresponding regions. In the 2041–2060 mid-future climate state, the TSS content of citrus
shows a ribbon-like distribution of increasing TSS content in the western, central and
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eastern regions and decreasing TSS content in the southern and northern regions under the
SSP2-4.5 and SSP5-8.5 scenarios. It is suggested that the quality of citrus will change in the
same trend. Sichuan, Zhejiang and Fujian Provinces in terms of citrus quality present good
trends for the entirety of the future situation. Citrus quality in Guizhou, Hunan, Jiangxi,
northern Guangdong and northern Guangxi Provinces will change in the near future to
worse and in the mid-future to good. Citrus produced in Hubei Province is affected by
climate change and shows quality deterioration under different scenarios and in different
future climate states.

Figure 4. Under the two scenarios, SSP2-4.5 and SSP5-8.5, the TSS content of citrus at the meteorolog-
ical site scale of Chinese citrus-producing areas changes in the near future (2021–2040) and in the
mid future (2041–2060) compared with the historical period (1995–2014). The dots indicate citrus TSS
content variations. Blue indicates decreasing change, and red indicates increasing change.

3.2. Changes of Yield in the Climate Change Factors
3.2.1. Yield in Relation to Climate Variables

Ahmad [62] confirmed that citrus fruit growth requires certain temperature conditions,
and the yield is particularly sensitive to temperature. Citrus fruit grows and ripens from
July to December each year, and the climate factors during this period have great effects
on the yield. Consequently, the correlation between climate factors and yield in the above
months was examined, and the correlation coefficient diagram was obtained, as shown
in Figure 5. As seen from the figure, mean temperature in October, relative humidity in
October, minimum temperature in November and maximum temperature in September
have the highest correlation with yield; as a result, the particular climatic conditions were
selected as independent variables to establish a multiple linear regression model and obtain
the prediction of the yield model as follows:

Y = 0.007 × X2 + 0.108 × X3−0.025 × X4 −0.03X5 + 2.482 (R2 = 0.437, P2 < 0.001)
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where Y indicates the yield (10 t/ha); X2 indicates the mean temperature (◦C) in October;
X3 indicates the mean minimum temperature (◦C) in November; X4 indicates the mean
maximum temperature (◦C) in September; X5 indicates the mean relative humidity (%) in
October; R2 is the correlation coefficient; and P2 is the significance test index. The citrus
yield prediction model indicates that mean temperature and minimum temperature have a
positive contribution to yield, while maximum temperature and relative humidity have a
negative contribution under the synergistic effect of various climate factors.

Figure 5. Correlation coefficient diagram between the monthly mean maximum temperature, mini-
mum temperature, relative humidity and mean temperature for each month from July to December
and yield. The abscissa represents each month, and the ordinate represents the monthly mean climate
variables mentioned above. The correlation coefficients in the figure all passed the significance test at
0.05, and those that did not pass are displayed as blanks.

3.2.2. Changes in the Future Climate Factors

The CMIP6 multimodel ensemble data were used to predict the future changes in four
key climate factors affecting citrus yield under different scenarios and different periods in
the future as shown in Figure 6 (Figure 6a–d). The mean temperature in October shows an
overall increase, as shown in Figure 6a. There is little difference between the simulation
results of the two different scenarios, and the mean temperature range is between 0.5 ◦C
and 1.5 ◦C in 2021–2040. Undoubtedly, the mean temperature range of the SSP5-8.5 scenario
is significantly higher than that of SSP2-4.5 in 2041–2060. The range of mean temperature
shows a phenomenon of increasing with latitude moving northwards in the citrus-growing
areas. Figure 6b show that the mean minimum temperature in November presents signs
of increasing in all regions, and the greatest warming trend is observed for northwestern
Sichuan. In addition, the increasing range of most regions is approximately 0.5 ◦C higher
under the SSP5-8.5 scenario than under the SSP2-4.5 scenario in 2021–2040, and the spatial
distribution of the warming gradient is consistent with that in 2041–2060. In Figure 6c,
the warming effect of the mean maximum temperature in September is approximately
the same as that of the mean temperature in October in Figure 6a, except that the greatest
warming effect shifts from the northwestern to the central and eastern parts of Sichuan.
The mean relative humidity in October increases in the western region and decreases in the
central and eastern regions, as shown in Figure 6d. The spatial pattern is approximately
similar under the two scenarios during different future periods, while the decreasing trend
is almost 0.5% higher in 2041–2060.
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Figure 6. Cont.
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(c) 

 
(d) 

Figure 6. Under the two scenarios, SSP2-4.5 and SSP5-8.5, the various climate factors change in the
near future (2021–2040) and mid future (2041–2060) compared with the historical period (1995–2014).
(a) Mean temperature (◦C) in October. (b) Mean minimum temperature (◦C) in November. (c) Mean
maximum temperature (◦C) in September. (d) Mean relative humidity (%) in October.
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3.2.3. Changes in the Future Yield

According to Figure 6, we can see key climate factor changes to some extent simulated
by CMIP6 models in the future period under two different scenarios, which were entered
into the citrus yield prediction model. Compared with the historical period, the change in
citrus yield at the meteorological site scale in the future is shown in Figure 7. Citrus yield
shows an increasing trend under different conditions, and the yield-increasing effect is
more obvious in 2041–2060 than in 2021–2040, almost doubling the change. The citrus yields
of Hubei, Hunan, northern Guangxi and northern Guangdong Provinces increase with
an increase of 1–2 t/ha under the SSP2-4.5 scenario; however, almost all citrus-producing
areas show an increase of 1–2 t/ha with little difference in yield increase among regions
under the SSP5-8.5 scenario in 2021–2040. In regard to the 2041–2060 period, the yields in
southeastern Sichuan, Hubei and central Hunan Provinces increase by more than 2 t/ha,
and those of Zhejiang and Fujian Provinces almost double, while those of southern Hunan,
northern Guangxi and northern Guangdong Provinces have almost no difference compared
with the 2021–2040 period under the SSP2-4.5 scenario. A yield increase of above 2 t/ha
is observed in most citrus-producing areas except those in Fujian, Yunnan and southern
Sichuan Provinces and is double that from 2021–2040 under the SSP5-8.5 scenario.

 

Figure 7. Under the two scenarios, SSP2-4.5 and SSP5-8.5, the yield of citrus at the meteorological site
scale of Chinese citrus-producing areas changes in the near future (2021–2040) and in the mid future
(2041–2060) compared with the historical period (1995–2014). The orange dots indicate yield changes
whose sizes show the degree of change.

3.3. Changes of Quality-Yield in the Climate Change Factors

Quality-Yield (Q-Y) is defined as the total amount of TSS content contained in the yield,
which reflects comprehensive information between the quality and yield changes in the
future in t/ha. The change in Q-Y is shown in Figure 8 combined with the forecast for TSS
content in Figure 4 and the phenomenon of all conditions increasing yield in Figure 6, which
reflects the general change in citrus effective composition TSS content in yield. Although
the quality of citrus in some producing areas is worsening, affected by climate change, Q-Y
still shows an increasing trend with the increase in the citrus yield, which indicates that the
amount of TSS content will improve in the future under the two different scenarios. The
spatial distribution of the Q-Y increase is approximately 0.1–0.2 t/ha despite the obvious
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quality reduction in the central region and almost the same in all planting regions except in
the Zhejiang and Fujian Provinces under the SSP2-4.5 and SSP5-8.5 scenarios in 2021–2040.
Because of the effect of yield increase, Q-Y almost doubles compared with 2021–2040 under
the SSP2-4.5 scenario in 2041–2060. Although the quality obviously declines in Hubei
Province, the Q-Y increases by approximately 0.2 t/ha. The increasing effect of Q-Y is weak
in Zhejiang and Fujian Provinces and some other places at approximately 0.1–0.2 t/ha. The
decline in quality in the central and southern regions does not affect the Q-Y increase by
more than 0.2 t/ha under the SSP5-8.5 scenario in 2041–2060.

 

Figure 8. Under the two scenarios, SSP2-4.5 and SSP5-8.5, the quality-yield of citrus at the meteoro-
logical site scale of Chinese citrus-producing areas will change in the near future (2021–2040) and in
the mid future (2041–2060) compared with the historical period (1995–2014). The orange dots indicate
quality-yield changes, whose sizes show the degree of change. The red circles on the outer layer of
the dots indicate the increase in TSS content, and the blue circles indicate the decrease in TSS content
shown in Figure 4.

4. Discussion

4.1. Impact Mechanisms of Empirical Models for Predicting Citrus Fruit Quality and Yield

Many studies revealed the impact of climate change on the yield of crops, indicating
that changes in climate factors such as temperature and precipitation will increase or
decrease the yield [9,63,64]. However, fruits have not been given the same attention, and
it is necessary to study the impact of climate change on fruits and what will happen to
fruits in the future, especially in relation to their yield and quality. The climate factors
used in this study are also relevant to temperature and precipitation factors, such as
maximum temperature, minimum temperature, DTR, mean temperature and relative
humidity, on a daily scale, as shown in Figures 2 and 5. Maximum temperature is beneficial
for the accumulation of active substances in the fruit-ripening process, and minimum
temperature favours the same under suitable fruit growth conditions [59,61]. DTR can
comprehensively reflect the information of maximum and minimum temperature, which
has a considerable influence on fruit quality. Mean temperature and relative humidity
have been proven to be very important in the growth of citrus and have certain effects on
phenology and yield [65–67]. The above climate factors in the key growth periods calculated
from meteorological station data in citrus producing areas have a strong correlation with
quality and yield. It has been proven that local climate change has a direct impact on
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citrus production, in contrast to large-scale warming conditions. This method was also
applied to study climate-crop yield relationships [68]. In this study, statistical models were
used to establish the relationship between climate factors and citrus quality and yield,
which have certain reference values because some researchers used statistical models to
predict crop yield [69,70]. Mechanism models are so complex that few suitable models
can be used to predict the quality and yield changes of citrus in the future, which means
that it was difficult to select a model in our study. However, the comprehensive use of
mechanism models and statistical models will be of great significance for the prediction of
the quality and yield of citrus and even for fruit once the mechanism model is developed
and perfected [71,72].

4.2. Sensitive Areas Affected by Climate Factors in the Future

The key period of citrus fruit growth and maturation is from July to December, as
shown in Figures 2 and 5, and the climate change in citrus-producing areas in this period
has a direct influence on the change in citrus fruit quality and yield. This conclusion
shows that the climate factors in the study area have the same trend of change under the
two scenarios, but the intensity of change is greater under the SSP5-8.5 scenario, which
is also in line with the simulation setting of future emission scenarios. In addition, the
prediction of different future time periods presents different spatial distributions. In the
2021–2040 period, the DTR in July is projected to increase in Sichuan, Zhejiang and Fujian
Provinces and decrease in most studied areas; the mean temperature in October, maximum
temperature in September and minimum temperature in November seem to increase in all
areas; and the relative humidity in October is projected to increase in Sichuan and Yunnan
Provinces and decrease in other places. In the 2041–2060 period, the DTR in July is projected
to decrease in only some parts of Hubei, Guangdong, Guangxi and Yunnan Provinces
and increase in other areas; the mean temperature in October, maximum temperature in
September and minimum temperature in November will increase in all areas; and the
relative humidity in October is projected to decrease largely in the study areas.

4.3. Some Measures May Improve Citrus Quality and Yield

According to Figure 2, the DTR will decrease in most cultivation regions except
for Sichuan, Zhejiang and Fujian Provinces, which indicates that the quality of citrus is
projected to worsen. Some artificial adaptation measures may be taken to prevent negative
situations. The DTR can be obtained by subtracting the daily maximum temperature
from the daily minimum temperature, and both will increase significantly under the
background of global warming; therefore, the reason for the decrease in the DTR is that
the warming effect has a more significant enhancement effect on the daily minimum
temperature. Suggested coping strategies include a lower night temperature and providing
enough day warming conditions. On the other hand, changing cultivation regions is a
contributing factor. Admittedly, there is a decreasing degree of DTR of between 0.1 ◦C and
0.2 ◦C, which has seldom effected TSS content as shown in Figure 3. Quality decline does
not represent a serious concern based on the results under climate warming conditions.
Sichuan Province may have the best natural DTR conditions for the accumulation of active
substances in the future. Under the joint action of various climate factors, the changing
climate is beneficial for citrus fruit growth and ripening, and the yield of citrus is projected
to increase in all producing regions, not to mention the improvement of agricultural
technology. Based on our hypothesis, offering irrigation is critical.

4.4. Limitations of this Study

(1) Without the support of specific citrus quality and yield data at the grid scale, the
research areas of this study were limited to all provinces, and the locations of meteorolog-
ical stations were used to represent the local climate conditions, which included certain
errors. (2) Due to the inability of the author and the research group to undertake relevant
experiments, the research data on TSS contents of citrus in this study were obtained from
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other published papers, and the consistency of the data were not guaranteed. (3) In this
study, the ensemble mean of 19 CMIP6 models was adopted to reduce the uncertainty of
single-model simulations of climate change impacts. However, the GCM climate models
also have some system errors in terms of the observations, which lead to the uncertainty in
future changes of projected climate variables. (4) This study did not consider the effect of
artificial technological progress on the results.

5. Conclusions

The key climate factors from July to December of citrus fruit growth and maturation
have a good relationship with citrus quality and yield. The monthly mean DTR in July
has the greatest influence on quality, and monthly mean temperature in October, monthly
mean relative humidity in October, monthly mean minimum temperature in November
and monthly mean maximum temperature in September have the greatest influence on
yield. Moreover, the monthly mean DTR in July is projected to increase in Sichuan, Zhejiang
and Fujian Provinces and decrease in other regions; the monthly mean temperature in
October, monthly mean minimum temperature in November and monthly mean maximum
temperature in September are projected to increase in all studied areas; and the monthly
mean relative humidity in October is projected to increase in small regions of Sichuan
and Yunnan Provinces and decrease in other places. Thus, the quality and yield of citrus
presented different characteristics of change in cultivation areas when using the established
prediction model for the 2021–2040 and 2041–2060 future periods relative to the 1995–2014
baseline period. The quality of western cultivation areas in Sichuan Province and eastern
cultivation areas in Zhejiang and Fujian Provinces in China will become significantly better;
however, that of Hubei, Guangdong and Guangxi Provinces will worsen. Surprisingly,
yield will increase in all plantations due to future suitable climate conditions for citrus
growth and ripening.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14159366/s1, Figure S1: Flow chart; Table S1: TSS data used in
this study [73–85].
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Abstract: Understanding the impacts of regional climate change on crop production will benefit
strategic decisions for future agricultural adaptation in China. In this study, the climatic production
potential of potato over the past 61 years in Inner Mongolia was simulated based on long-term
observed data and the step-by-step correction method. The results show that the annual average
potential for potato climatic production in Inner Mongolia is 19,318 kg·hm−2, fluctuating between
the highest value (25,623 kg·hm−2) and the lowest value (15,354 kg·hm−2). Over the past 61 years,
the climatic production potential exhibited an insignificant decreasing trend, with large interannual
fluctuation, especially since 2000. The high-value areas of the climatic production potential were
mainly located in the central and southern regions. The climatic production potential of potato in
most areas showed a decreasing trend. The influence of radiation changes on the potato climatic
production potential was not obvious in most areas. The effects of temperature changes on the
climatic production potential of potato were mostly negative, and were most obvious in the central
and western regions and in the southeastern region. The change in precipitation in most parts of
western Inner Mongolia, Hohhot, Chifeng and eastern Xingan League had a positive effect on the
climatic production potential of potato. However, the change in precipitation in southern Ulanchabu,
eastern Chifeng, Hulunbuir and western and eastern regions had a negative effect on the climatic
production potential of potato. The main limiting factor for the climatic production potential of
potato in Inner Mongolia is precipitation. Our findings have important implications for local potato
production to cope with ongoing climate change in China.

Keywords: climate change; potato climatic productivity potential; Inner Mongolia; effect

1. Introduction

Under global warming, extreme weather occurs frequently, and meteorological disas-
ters bring more and more risks to agricultural production. Food is an important commodity
related to the national economy and people’s livelihood. It is the basis of economic develop-
ment, social stability and national independence. Ensuring national food security is always
the top priority in governing a country. The Intergovernmental Panel on Climate Change
(IPCC) officially released on 28 February the contribution of Working Group II to the Sixth
Assessment Report (Ar6) on climate change in 2022, highlighting impacts, adaptation
and vulnerability. The report further points out the severe food security situation faced
at home and abroad against the background of global warming. Food security has once

Sustainability 2022, 14, 7836. https://doi.org/10.3390/su14137836 https://www.mdpi.com/journal/sustainability29



Sustainability 2022, 14, 7836

again received extensive attention all over the world. In order to cope with meteorological
disasters, it is a challenge to understand the impact mechanisms of climate change on staple
crops, and to adapt to and cope with the negative impact of climate change. Potato is one
of the main climatic characteristic crops in Inner Mongolia, China. Therefore, it is urgent to
acquire a more in-depth understanding of how climate change affects potato production
for agricultural disaster prevention and mitigation and the healthy development of the
potato industry in Inner Mongolia, China.

The climatic production potential of crops refers to the crop yields when light, heat
and water resources are optimally matched under ideal conditions [1], and it is one of the
important criteria for evaluating agroclimatic resources [2]. The responses of the climatic
production potential of crops to climate change differ significantly among regions and
crops [3–5]. At present, the commonly used models for calculating the crop production
potential include the Miami model [6,7], the Thornthwaite Memory model [8,9], the AEZ
model by FAO [10,11] and the step-by-step revision model [12–14]. Among these models,
the step-by-step correction model is a statistical model for calculating the climatic produc-
tion potential of different crops during the growing season. It can effectively reflect the
matching status of climatic resources such as light, heat, and water. Its physical meaning
and the causal relationships are clear. The step-by-step correction model is one of the most
extensively used research methods for analyzing the food production potential [15,16].

The impacts of climate change on the climatic production potential of crops over the
past few decades in China have attracted serious concern [14,17–21]. Based on the potential
attenuation method, Wang et al. [14] studied the spatial variation in climatic production
potential of maize, rice and soybean in the Songnen Plain, and analyzed the utilization
efficiency of natural resources. Lu et al. [17] evaluated the evolution of climatic production
potential in Anhui Province in the past 50 years. Wang studied and analyzed the climatic
production potential of one-season rice in Anhui Province [18]. Wang et al. [19] studied
the climatic production potential of winter wheat in northern China and the influence of
separated water. Duan et al. [20] estimated the climatic production potential of potato in Jixi
County, Ningxia, and analyzed its stability. Lai simulated the climatic production potential
of five crops in Ningxia, including soybean, corn, rice, wheat and potato [21]. However,
few studies have been conducted to quantitatively assess the long-term impacts of regional
climate change on the climatic production potential of potato in Inner Mongolia based
on the step-by-step correction model. A better understanding of how potato responds to
regional climate change is essential for mitigating the negative effects of potato production
to local climate change.

The objectives of the present study were to (1) determine the main parameters in
a climatic production potential model for potato based on long-term historical data in
Inner Mongolia and (2) explore the advantages and disadvantages of impacts of changes in
main meteorological factors (light, temperature and water) on potato production in Inner
Mongolia. These findings are significant for substantially improving our understanding of
the impacts of regional climate change on agriculture in China.

2. Materials and Methods

2.1. Study Area

The Inner Mongolia Autonomous Region is one of 13 key grain-producing provinces
(regions) in China. As of 2017, the region has 9.271 million hectares of cultivated land,
accounting for 7.8% of the region’s area, and the per capita cultivated land area is 3.7 times
that of the whole country. The effective irrigation area is 3.175 million hectares. The soil in
this area shows obvious meridional differentiation. Black soil, dark brown soil, chernozem,
chestnut soil, brown calcium soil, brown desert soil and gray desert soil are distributed
from east to west [22]. In some areas, cinnamon soil, calcareous soil, meadow soil and
aeolian sandy soil are distributed. The content of soil organic matter (9.75~0.56%) [22]
and clay particles (12.41~3.65%) [23] decreases gradually from east to west, while the
soil pH value (7.39~8.90) increases gradually from east to west [23]. The soil is mostly
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neutral and alkaline [23,24]. Inner Mongolia covers a vast territory, with large east–west
and north–south spans, complex landforms (e.g., plateaus, mountains, hills and plains)
and special geographical locations, which form complex and diverse climate conditions
dominated by a temperate continental monsoon climate, with varied temperature, rainfall
and heat waves. In the same season, the cold climate is more suitable for the growth of
potatoes, which prefer cold and cool conditions.

2.2. Data

The data are from the climate center of the Inner Mongolia Autonomous Region. The
data used consist of the daily surface meteorological observation data, including sunshine
hours, average temperature, precipitation, relative humidity, average wind speed and
evapotranspiration. These meteorological data were obtained from 119 meteorological
stations in the Inner Mongolia Autonomous Region from 1961 to 2021 (Figure 1). The long-
term field observation datasets of potato were collected from 11 agricultural meteorological
data stations of the Inner Mongolia Autonomous Region from 1981 to 2020 (Figure 1). The
administrative boundaries of Inner Mongolia and the cities (alliances) that are involved in
this article are based on the standard map with the approval number of Mongolia S (2019)
33, from the Map Institute of the Inner Mongolia Autonomous Region.

Figure 1. Distribution of 119 meteorological stations (green triangles) and 11 agrometeorological
observation stations (red dots) in the Inner Mongolia Autonomous Region of China.

2.3. Research Methods
2.3.1. Calculation of the Climatic Production Potential

The step-by-step correction method was used, starting from crop photosynthesis,
according to the process of crop energy conversion and yield formation, and gradually
estimating the agricultural climatic production potential. It is a model that was developed
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from the step-by-step revision of the climatic factor function based on the photosynthetic
production potential. The calculation formula is as follows [25]:

YCPP = YPPP × f (Tij)× f (Rij) = YTPP × f (Rij) (1)

where YCPP, YPPP and YTPP are the climatic production potential, photosynthetic production
potential and light–temperature production potential (kg·hm−2), respectively; f (Tij) is the
effective temperature coefficient of the ith growth period in the jth year; and f (Rij) is the
effective water coefficient of the ith growth period in the jth year.

(1) Photosynthetic production potential of potato

The photosynthetic production potential of potato refers to the potato yields that
are uniquely determined by the local solar radiation under the assumption that the most
suitable temperature, water, soil fertility, crop population and agricultural technical mea-
sures are provided. It is the theoretical upper limit of potato yield. The photosynthetic
production potential model of potato adopts the state of energy utilization and loss during
yield formation, takes the total solar radiation value of potato in each growth period as the
basic data, and corrects it. The calculation formula is as follows [18,19]:

YPPP = C f (Q) (2)

f (Q) = Ωεϕ(1 − α)(1 − β)(1 − ρ)(1 − γ)(1 − ω)(1 − η)−1(1 − ξ)sq−1 f (L)∑ Qi (3)

where C is the unit conversion factor, which is 10,000; ∑ Qi is the total radiation during
the growing season (MJ·m−2); i represents the different growth periods; Ω is the ratio of
the photosynthetic ability of crops to fix CO2, which is 0.6; ε is the ratio of photosynthetic
radiation to total radiation, which is taken as 0.47; ϕ is the quantum efficiency of photo-
synthesis, which is taken as 0.224; α is the crop population reflectivity, which is taken as
0.17; β is the leakage rate of solar radiation by the crop population, which is taken as 0.1; ρ
is the ineffective absorption rate of non-photosynthetic organs, which is 0.1; γ is the light
saturation limitation rate, which is 0.01; ω is the respiration loss rate, which is 0.3; η is the
moisture content of mature grains, which is 0.14; ξ is the proportion of crop inorganic ash
content, which is taken as 0.08; s is the crop economic coefficient, which is taken as 0.75; q is
the heat required to form one unit of dry matter (MJ·kg−1), which is taken as 18; and f (L) is
the corrected value of the dynamic change in leaf area, which is taken as 0.556.

(2) Light–temperature production potential of potato

Based on the photosynthetic production potential of potato, by considering the effect
of temperature on plant photosynthesis and correcting the temperature coefficient, the
light–temperature production potential of potato, determined by the two factors of light
and temperature, can be obtained. The calculation formula is as follows [18]:

YTPP = YPPP f (Tij) (4)

f (Tij) =

⎧⎨⎩
(Tij − T1) × (T2 − Tij)

b

(T0 − T1) × (T2 − T0)
b T1 < T < T2

0 T ≤ T1 or T ≥ T2

(5)

b =
T2 − T0

T0 − T1
(6)

where f (Tij) is the temperature correction function of the ith growth period in the jth year;
Tij is the average temperature of the ith growth period in the jth year (◦C); and T1, T2 and
T0 are the lower and the upper limits of temperature and the optimum temperature of crop
growth in each growth period (◦C), respectively (Table 1) [25–27].
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Table 1. Three cardinal temperature points in each potato growth period (◦C).

Growth Period T1 T2 T0

Sowing–emergence 5.0 29.0 14.0
Emergence–branch 9.0 32.0 18.3

Branch–inflorescence 10.0 30.0 19.5
Inflorescence–bloom 10.0 30.0 19.3

Flowering–harvestable 10.0 29.0 18.0
Full reproductive period 5.0 32.0 17.8

(3) climatic production potential of potato

The climatic production potential is the upper limit of production that can be achieved
under the combined influence of radiation, temperature and precipitation. After the light–
temperature production potential is corrected by the moisture correction function, the
climatic production potential can be obtained, and its expression is as follows [18]:

YCPP = YTPP f (Rij) (7)

f (Rij) =

{
Rij/Ri0 Rij < Ri0

1 Ri0 ≥ Rij
(8)

where f (Rij) is the water correction function of the ith growth period of the jth year, Rij is the
precipitation during the ith growth period of the jth year (mm) and Ri0 is the physiological
water demand during the ith growth period (mm). The water requirement of potatoes
in the entire growth period is approximately 372.5 mm; the physiological water require-
ments in the sowing–seedling, seedling–branching, branching–inflorescence, inflorescence–
flowering and flowering–returnable stages are 50 mm, 40 mm, 30 mm, 52.5 mm and
200 mm, respectively.

2.3.2. Impacts of Climate Change on the Climatic Production Potential of Potato

The climatic production potential of potato reflects the comprehensive impact of
various meteorological factors on potato production. The photosynthetic production
potential directly corresponds to the impact of light, the light–temperature production
potential corresponds to the comprehensive impact of light and heat, and the climatic
production potential corresponds to the comprehensive impact of the three factors of light,
heat and water. The effects of light, heat, water and the comprehensive climatic conditions
on the potato production potential are expressed as Yr, Yt, Yp and Yc (kg·hm−2·a−1),
respectively. The calculation method is as follows [25,28]:

Yr = (ar/Y1)× Y3 (9)

Yt = (at/Y2 − ar/Y1)× Y3 (10)

Yt = (at/Y2 − ar/Y1)× Y3 (11)

Yc = ac (12)

where ar, at and ac are the propensity rates of photosynthesis, light–temperature and
the climatic production potential with time (year) (kg·hm−2·a−1), respectively; Y1, Y2
and Y3 are the multiyear averages of photosynthesis, light–temperature and the climatic
production potential (kg·hm−2), respectively.

3. Results

3.1. Annual and Interdecadal Variations in the Production Potential of Potato

It can be seen from the change in the abnormal percentage of potato climatic pro-
duction potential in Inner Mongolia (Figure 2) that before 2000, the abnormal percentage
of potato climatic production potential in Inner Mongolia was mainly positive, and after
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2000, it was mainly negative. Over the past 61 years, the climatic production potential of
potato during the growth period in most of the central and western parts of Inner Mon-
golia and the southeast parts has shown a decreasing trend, with a decreasing range of
10~164 kg·hm−2·a−1; the decrease is in the areas that are above 40 kg·hm−2·a−1 and are
mainly located in most of Bayannaoer city, the southwest and northern parts of Ordos city,
the southern part of Baotou city, the central part of Hohhot city, the southwest and eastern
parts of Ulanqab city, west of Xilin Gol League, east of Chifeng city, most of Tongliao city,
south of Xing’an League and west and southeast of Hulunbuir city. The central part of
Hulunbuir city, north of Xing’an League, northeast of Xilingol League, west of Chifeng
city, north parts of Baotou city, the south part of Ordos city, the northwest part of Bayan-
naoer city and southeast of Alxa League experienced increasing trends, with increases of
10~40 kg·hm−2·a−1. The increase areas greater than 20 kg·hm−2·a−1 were mainly located
in the central and northern parts of Hulunbuir city, the north part of Xing’an League, the
western part of Chifeng city and the northeastern part of Xilingol League. The change
trends of the climatic production potential of potato during the growth period were not
obvious in other areas (Figure 3). On the whole, the climatic production potential of potato
during the growth period of Inner Mongolia mainly exhibits a decreasing trend, and the
increases in temperature, radiation and precipitation during the growth period are not
conducive to improving the climatic production potential.

Figure 2. The anomaly (low–frequency filtering) changes in the potato potential productivity in Inner
Mongolia, China, from 1961 to 2021.

Figure 4 shows the interannual and interdecadal variations in the potato production
potential at all levels in Inner Mongolia. Figure 4a shows that over the past 61 years, the in-
terannual fluctuations in the production potential of potatoes at all levels in Inner Mongolia
have been relatively large, and the overall trend has decreased significantly (p < 0.005). The
potential and climatic production potentials decreased at rates of 574 kg·hm−2·(10 a)−1,
1048 kg·hm−2·(10 a)−1 and 465 kg·hm−2·(10 a)−1. The photosynthetic production po-
tential and light–temperature production potential were relatively close, with averages
of 42,417 kg·hm−2 and 36,244 kg·hm−2 in the whole area, respectively, and the aver-
age climatic production potential was 19,318 kg·hm−2, which is significantly lower than
the production potential of the first two levels. The highest value of the photosynthetic
production potential occurred in 1965 (45,952 kg·hm−2). The highest value of the light–
temperature production potential occurred in 1977 (41,001 kg·hm−2). The highest value of
the climatic production potential occurred in 1979 (25,623 kg·hm−2). The lowest values of
photosynthetic production potential, light–temperature production potential and climatic
production potential occurred in 2021 (34,045 kg·hm−2), 2021 (29,553 kg·hm−2) and 1965
(15,354 kg·hm−2), respectively.
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Figure 3. Change trends of climatic production potential of potato in Inner Mongolia, China
(kg·hm−2·a−1).

Figure 4. The annual (a) and decadal (b) changes in the potential productivity of potato of each
grade in Inner Mongolia, China, from 1961 to 2021 (The red column in Figure (b) is brown because it
overlaps with the green column.).
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Judging from the interdecadal changes shown in Figure 4b, the changing trends of the
production potentials at all levels are not consistent. Among them, the characteristics of the
interdecadal variations in photosynthesis and the light–temperature production potential
are consistent, being the largest in the 1970s and smallest in the 2010s, while the climatic
production potential were the largest in the 1970s and smallest in the 2000s. The climatic
production potential exhibited greater fluctuations than the previous two levels, and its
variation trend had a significant positive correlation with the interdecadal variations in
precipitation (p < 0.01), which indicated that the main limiting factor for the potato climatic
production potential in Inner Mongolia was precipitation.

3.2. Characteristics of the Spatial Distribution of the Potato Production Potential

The climatic production potential of potato in Inner Mongolia decreased from the
central and southern parts to the periphery, and the climatic production potential in the
central and western regions had an obvious geographical distribution. The central and
eastern part of Ulanqab city, the southern part of Xilin Gol League, the western part of
Chifeng city and the central part of Hulunbuir city were more consistent with the dominant
potato-producing areas. Among them, the highest value of the potato climatic production
potential was in the Zhenglan Banner of Xilin Gol League, with the value of 27,641 kg·hm−2.
The second-highest value (17,601~22,600 kg·hm−2) was located the eastern part of Ordos
city and most of Baotou city, most of Hohhot, northern Ulanqab, central and northern Xilin
Gol League and most of its eastern areas. The lowest value was located in Ejina Banner
of Alxa League, being only 2594 kg·hm−2 (Figure 5). High temperatures and low rainfall
amounts are the probable reasons for the lowest potentials of potato climatic production.

Figure 5. The spatial distribution of the climatic production potential of potatoes in Inner Mongolia,
China (kg·hm−2).
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The annual meteorological yields and climatic production potentials of potato over
the past 57 years in Wuchuan County of Hohhot city were relatively consistent, with a
very significant positive correlation (0.5131 at 0.1% significance). These potato climatic
production potentials are based on the results of the step-by-step revision correction method,
and can better reflect the changing trends of the potato meteorological yields (Figure 6). The
average annual potato yield in Wuchuan County was about 2163 kg·hm−2, with 5.4% of
the maximum climatic production potential and 14.2% of the minimum climatic production
potential. The average application level of the potato climatic production potential in
Wuchuan County was only 7.6%.

 
Figure 6. The relationship between the climatic production potentials and meteorological yields of
potato in Wuchuan, Inner Mongolia, China, from 1961 to 2020.

3.3. Influence of Changes in the Main Meteorological Elements on the Potato Climate
Production Potential
3.3.1. The Effect of Radiation Changes on the Potato Climatic Production Potential

Over the past 58 years, the total solar radiation in Inner Mongolia has fluctuated
and decreased at a rate of 39.3 MJ·m−2 (10 a)−1 (p > 0.05) [29]; this decreasing trend was
obvious in some areas (p < 0.05). Over the past 61 years, the number of sunshine hours
during the potato growth period in Inner Mongolia fluctuated at a rate of 18.1 h·(10 a)−1

(p < 0.001) (Figure 7). Potato is a light-loving crop, and reductions in radiation and light
are detrimental to its growth. Figure 8 shows that the influences of radiation changes
on the climatic production potential of potato during the growth period in most of Inner
Mongolia had negative effects, indicating that radiation reductions were not conducive to
improving the climatic production potential of potato during the growth period. The areas
experiencing negative effects are mainly distributed in the central and northeastern parts
of Ordos city, southern part of Baotou city, most of Hohhot city, central and eastern parts of
Ulanqab city, central and southern parts of Xilingol League, southeastern part of Chifeng
city, most of Tongliao city, the southeastern part of Xing’an League, and the southeastern
part of Hulunbuir city. Ulanqab city, the Chayouhou Banner in Lanchabu city and the
Arong Banner in Hulunbuir city experienced the greatest impacts. The areas experiencing
positive effects were relatively rare and were mainly distributed in the southwest and
east parts of Xilingol League, the south part of Chifeng city and the central and eastern,
central and northern Xing’an League and northwestern Hulunbuir city. However, the
above-mentioned radiation changes in most of the regions had little effects on the climatic
production potential of potato during the growth period, and the values were mostly
between −20 MJ·m−2·a−1 and 20 MJ·m−2·a−1.
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Figure 7. Changes in sunshine hours during the potato growing period in Inner Mongolia, China (h).

Figure 8. Impacts of radiation changes on the climatic production potential of potato in Inner
Mongolia, China (kg·hm−2·a−1).

3.3.2. Effects of Temperature Changes on the Potato Climatic Production Potential

Over the past 61 years, the average temperatures during the potato growing season
in Inner Mongolia have exhibited a significant upward trend as a whole (p < 0.001), with
a climatic trend rate of 0.3 ◦C·(10 a)−1. The temperatures increased significantly in most
areas (94% of meteorological stations (p < 0.01) (Figure 9). Potato is a crop that prefers
cool and cool conditions, and increased temperatures are not conducive to the growth and
development of potato. Figure 10 shows that the impacts of the temperature changes on the
potato climatic production potential were mostly negative, indicating that the temperature
increases during the potato growth period in Inner Mongolia were not conducive to
improving the climatic production potential. Negative effects were seen in the central and
western parts of Inner Mongolia and in the southeast, while the negative effects were most
obvious in the Northwest Territories, which were −102~−20 kg·hm−2·a−1. The greatest
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negative effects were found in Bayannaoer city, the north and southwest parts of Ordos city,
the southwest part of Baotou city, and the central and western parts of Hohhot city. The
positive effects were concentrated only in the central and northern parts of Hulunbuir city
and the northwestern part of Xing’an League, with an impact range of 20~40 kg·hm−2·a−1;
the influence range in the central and northern parts of Hulunbuir city was greater than
30 kg·hm−2·a−1.

 

Figure 9. Variations in average temperature during the potato growth period in Inner Mongolia,
China (◦C).

Figure 10. Impacts of temperature changes on the climatic production potential of potato in Inner
Mongolia, China (kg·hm−2·a−1).

3.3.3. The Impact of Precipitation Changes on the Climatic Production Potential

Over the past 61 years, the precipitation levels during the potato growing season in
Inner Mongolia has decreased at a rate of 0.7 mm·(10a)−1 (p > 0.1), and the change trend
was not significant in most areas (Figure 11). Figure 12 showed that most of western Inner

39



Sustainability 2022, 14, 7836

Mongolia, Hohhot, western Chifeng and eastern Xing’an League experienced positive
effects on the climatic production potential of potato during the growth period of the
precipitation changes, with an impact range of 20~40 kg·hm−2·a−1, in which the positive
effects in the central and eastern parts of Ordos city and most of Baotou city were large
and were greater than 30 kg·hm−2·a−1. The central and eastern regions experienced mostly
negative effects, with an impact range of −102~ −20 kg·hm−2·a−1; the southeast part of
Chifeng city, the southwest part of Tongliao city and the northwest part of Hulunbuir city
experienced greater negative impacts, which were less than −50 kg·hm−2·a−1.It is worth
mentioning that the change in precipitation in most areas of Wulanchabu city, which is the
main potato-producing area in Inner Mongolia, had a negative impact on potato climatic
production potential.

 
Figure 11. Variations in annual precipitation during the potato growth period in Inner Mongolia,
China (mm).

Figure 12. Impact of precipitation changes on the climatic production potential of potato in Inner
Mongolia, China (kg·hm−2·a−1).
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4. Discussion

Light, temperature and water are important drivers of climatic production poten-
tial [30,31]. Analyzing the impact of climate factors on potato climatic production potential
will help people take better measures to adapt to climate change, so as to ensure the high-
quality development of the potato industry. In general, the impact of climate change on
potato climatic production potential in Inner Mongolia has both advantages and disadvan-
tages, but the disadvantages outweigh the advantages. In particular, in Wulanchabu city,
the main potato-producing area in the Inner Mongolia Autonomous Region, the impact
of climate change on potato climatic production potential is relatively adverse. Com-
pared with the average value of potato climatic production potential in Shanxi Province
(13,428 kg·hm−2), the average value of potato climatic production potential in Inner Mon-
golia (19,318 kg·hm−2) in this study was higher. Although the average precipitation during
the growing period in Shanxi Province is slightly higher than that in Inner Mongolia, the
high average temperature leads to a lower climatic production potential of potato in Shanxi
Province than that in Inner Mongolia. The impact of light, temperature and water changes
on potato climatic production potential in Shanxi Province is also more negative; particu-
larly, the impact of radiation and temperature changes in most areas is negative, similar to
the impact of climate change on the potato climatic production potential in Inner Mongolia.
The impact of precipitation change on the potato climatic production potential in Shanxi
Province is positive in the north and negative in the south [28,32]. However, we found that
the distribution of impacts of precipitation change on potato production potential in Inner
Mongolia was more complex, spanning the main southern agricultural areas from south-
west to northeast as follows: positive effect—negative effect—positive effect—negative
effect—positive effect—negative effect. The average application level of the potato climatic
production potential in Wuchuan County was only 7.6%, lower than the application level
of the potato climatic production potential in Jixi County of Ningxia [20]. This shows that
the potato yield in Wuchuan County is bound to have room for improvement. We need to
pursue advantages, avoid disadvantages and make effective use of climate factors.

In order to adapt to the current climate change trend and its adverse impacts, it is
necessary to vigorously promote water-saving irrigation technology and biofilm technology
in agricultural areas to improve water use efficiency. In particular, most of the central and
western parts of Inner Mongolia are mainly rain-fed agriculture. In Ordos, Baotou, Hohhot
and other central and western regions, it is necessary to adjust the sowing date of potatoes
so that the yield can occur in the critical period to avoid high temperatures and obtain
high yield. The potato production in the eastern agricultural area needs to improve field
management in order to improve the utilization rate of light energy and obtain high yield.

In this study, the step-by-step correction method was adopted, and the physical
meaning of the model was clear. However, there are still shortcomings that need to be
resolved. Because of the incompleteness and discontinuity of the data, we used the data
of the average growth period of potato from agrometeorological observation stations for
many years. In general, studying only the main variety of local potato, i.e., the mid-late
maturing variety, without considering the early maturing variety of potato will lead to
differences in climatic resources during the growing period of potato, resulting in certain
differences in the calculation results of potato climatic production potential. In Inner
Mongolia, water condition was the main limiting factor of potato climatic production
potential. This is consistent with the previous study on various crops which found that
the same precipitation was far greater than the crop water demand, or even impacted the
potato climatic production potential in case of flood disaster, so there were inevitably some
omissions in the calculation results [33]. The parameter determination in the step-by-step
correction method was empirical, and only reflected the overall variety characteristics of
current crops. With the continuous development of breeding and cultivation techniques,
the parameters of better varieties might be different in the future, which is likely to lead
to changes in the calculation results of potato climatic production potential [8,33]. As the
precipitation in local agricultural areas was relatively low [20,34,35], the adverse impact
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from calculating the water correction coefficient was not considered in this study. In
addition, the climatic production potential of potato was the maximum yield under ideal
conditions. The actual yield of potato is affected by many factors, such as climate, soil,
social economy and so on. Therefore, in the future, multiple methods can be used for
comprehensive analysis to conduct in-depth comparative research on climatic production
potential and actual yield, so as to explore the differences and responses between the
two [35–37].

5. Conclusions

We investigated the effects of climate change on the climatic production potential of
potatoes since 1961 in Inner Mongolia using the step-by-step correction method. From 1961
to 2021, the average climatic production potential of potato in Inner Mongolia decreased
from the central south to the surrounding areas. Under the direct influence of local climatic
factors, the average climatic production potential of potato showed a downward trend
year by year, especially after 2000. The changes in three climatic factors, light, temperature
and water, had different effects on the climatic production potential of potato. The impact
of radiation change on the climatic production potential of potato was mainly negative,
especially in the main potato-producing area of Wulanchabu. Temperature change had
both advantages and disadvantages. In the cold climate region of Northeast China, the
temperature change had a favorable impact on the climatic production potential of potato.
Other areas were mainly adversely affected, and most areas of Ulanqab city were adversely
affected by temperature changes. The change in rainfall had a favorable impact on the
climatic production potential of potato west of Hohhot and in the southern and central area
of Xilin Gol League. However, the change in rainfall had a negative impact on the climatic
production potential of potato in most other areas.
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Abstract: Global warming increases the risk of high-temperature injury to maize. Inter- and mixed-
cropping of maize varieties with different genotypes is one way to effectively alleviate the high-
temperature injury during the flowering period. However, the mitigation effect of different varieties
and intercropping modes on high-temperature injury is still unclear. Based on previous years of field
production, Denghai 605, which is more sensitive to high temperatures during the flowering period,
was determined as the main test variety, and Zhengdan 958, Dedan 5, Weike 702, and Xianyu 335,
which have great genotypic differences, were used as auxiliary varieties. The main test varieties
and auxiliary varieties were intercropped and mixed cropped, respectively. Plant height, ear height,
leaf area index, population light transmittance, ear characteristics, and yield were measured, and
the land equivalent ratio (LER) was calculated. The plant height of Denghai 605 intercropped with
Zhengdan 958 and Dedan 5 and mixed with Weike 702 and Xianyu 335 decreased significantly. The
population light transmittance of the bottom or middle layer in Denghai 605 increased significantly
when intercropped with other varieties. The grain number per ear increased significantly under
inter- and mixed cropping with Zhengdan 958 and Weike 702. Except under intercropping with
Dedan 5, the yield of Denghai 605 increased significantly, by 8.8–28.0%, under inter- and mixed
cropping. Under intercropping with Zhengdan 958 and inter- and mixed cropping with Weike 702
and Xianyu 335, respectively, the group land equivalent ratio was greater than 1.1, indicating that
under the combination of these varieties, inter- and mixed cropping effectively reduced the impact of
high temperatures during flowering.

Keywords: summer maize; inter- and mixed cropping; high temperature; flowering period; yield

1. Introduction

Maize (Zea mays L.) is one of the most important crops in the global and national
economy [1,2]. The Huanghuaihai plain is the largest summer-maize-producing area in
China with a wheat–maize cropping system. The growing season of summer maize is
mainly in the period from June to September, which has the highest temperature in the year
and two-thirds of the annual precipitation. In the context of climate change, continuous
high-temperature weather occurs frequently [3–5], which increases the risk of heat damage
to maize [6,7]. The flowering period of summer maize is when it is most sensitive to
high temperatures. High temperatures affect male and female ear development, pollen
vigor, and grain development [8–10]. Maize pollen is more susceptible to high-temperature
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stress than female ears [11]. Pollen vigor declines quickly when the temperature exceeds
32–35 ◦C [12,13]. High-temperature stress can cause abnormal pollen development or
abortion, resulting in a decrease in the number of pollen grains. In addition, it can cause
abnormal division of pollen mother cells, deformation, and shrinkage leading to deformed
pollen grains [14–16], which in turn affects the percentage seed set, yield, and quality of
maize [9,10]. Therefore, it is of great significance to study effective methods to protect
maize from the harmful high temperatures during the flowering period.

Single crop varieties are more vulnerable to diseases due to their narrow genetic basis,
which is particularly prominent in maize. In addition to the influence of the external
environment, there are obvious genotypic differences in the tolerance of maize to high tem-
peratures and heat injury during the flowering period [17,18]. According to the principle of
ecological complementation and biodiversity, the temperature–stress resistance of a maize
population can be effectively improved by intercropping or mixed cropping of different
maize varieties [19,20].

Inter- and mixed cropping among different ecotypes and genotypes of maize or
intercropping with other crops could improve the utilization rate of natural resources and
increase the yield stability of the crop composite population [21]. The inter- and mixed
cropping of maize varieties optimizes the population spatial structure and maintains a
higher chlorophyll content and photosynthetic rate [22], which is more conducive to gas
exchange and promotes photosynthesis [23,24], increased nutrient absorption and dry
matter accumulation [25,26], enhanced crop stress resistance [27,28], and improved yield
and quality of maize [29,30]. In the intercropping of multiple varieties of maize, the anthesis
and pollination time of the population system are relatively prolonged. When the maize
encounters adverse weather events such as continuous rain and high temperatures during
the flowering period, the fertilization rate of male flowers in the compound population
composed of multiple maize varieties is higher than that in the single variety planting mode,
which can effectively improve the bald tip and grain shortage caused by poor pollination,
so as to achieve the purpose of increasing and stabilizing yield [31–33].

An important strategy to reduce high-temperature stress is to exploit the difference
in heat resistance among maize varieties using an inter- and mixed cropping system.
However, few studies have considered crucial aspects of this approach, such as maize
variety matching, intercropping methods, and mixed cropping ratios. High-temperature
and heat damage occurred continuously during the flowering period of maize in Henan
from 2013 to 2016. It was found that the yield of Denghai 605 and Xianyu 335 decreased
seriously under the high temperatures, while Zhengdan 958, Weike 702, and Dedan 5 had
strong heat resistance and stable yield performance. According to the previous results, the
high-temperature resistance field experiment of multi-variety inter- and mixed cropping
was performed in 2017. In this study, Denghai 605, which has a large planting area and is
sensitive to high temperatures, was selected as the main test variety to analyze the effects
of inter- and mixed cropping of Denghai 605 with Zhengdan 958, Weike 702, Dedan 5, and
Xianyu 335 on the prevention and control of high-temperature and heat damage during the
flowering period.

2. Materials and Methods

2.1. Study Location

Our study was located in Shizhuang (114.03◦ E, 34.15◦ N), Chencao Township, Xuchang
City, Henan Province, which belongs to the north warm temperate monsoon climate zone
with abundant heat resources and abundant rainfall. The total area of the experimental field
was 0.7 ha, which was mechanized sowing. The heat tolerance evaluation experiment of
maize was carried out from 2013 to 2016, and the high-temperature resistance experiment of
multi-variety inter- and mixed cropping was performed in 2017. The soil of the experimental
field was a fluvo-aquic soil. The soil chemical properties at 0–20 cm depth were as follows:
23.54 g kg−1 soil organic matter, 43.77 mg kg−1 available nitrogen, 202.04 mg kg−1 Olsen
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potassium, and 11.07 mg kg−1 Olsen phosphorus. The meteorological variables recorded
during the summer-maize-growing season at the study site are shown in Figure 1.

Figure 1. Meteorological variables during the summer-maize-growing season at the study site.
Temperature (A), rainfall (B), and sunshine hours (C) at Xuchang, Henan, China from June to
September in 2017.

2.2. Experimental Design

‘Denghai 605’ (Shandong Denghai Seed Industry Co., Ltd.; Laizhou, Shandong, China)
was selected as the main test variety, and ‘Zhengdan 958’ (Henan Academy of Agricultural
Sciences Institute of Grain Crops; Zhengzhou, Henan, China), ‘Dedan 5’ (Beijing Denong
Seed Industry Co., Ltd.; Beijing, China), ‘Weike 702’ (Zhengzhou Weike Crop Breeding
Technology Co., Ltd.; Zhengzhou, Henan, China), and ‘Xianyu 335’ (Tieling Pioneer Seed
Research Co., Ltd.; Tieling, Liaoning, China) were chosen as the auxiliary varieties.

Denghai 605 was inter- and mixed cropped with the four auxiliary varieties. A
monoculture of each variety was established as the control group. The experimental design
and processing codes are summarized in Table 1.

Table 1. Intercropping and mixed cropping treatments of the maize varieties.

Farming Methods Variety Combinations
Variety Codes

Denghai 605 Auxiliary Varieties

Intercropping

Denghai 605||Zhengdan 958 [605||958] (605)||958 605||(958)
Denghai 605||Dedan 5 [605||005] (605)||005 605||(005)

Denghai 605||Weike 702 [605||702] (605)||702 605||(702)
Denghai 605||Xianyu 335 [605||335] (605)||335 605||(335)

Mixed cropping

Denghai 605 × Zhengdan 958 [605 × 958] (605) × 958 605 × (958)
Denghai 605 × Dedan 5 [605 × 005] (605) × 005 605 × (005)

Denghai 605 × Weike 702 [605 × 702] (605) × 702 605 × (702)
Denghai 605 × Xianyu 335 [605 × 335] (605) × 335 605 × (335)

Monoculture

Denghai 605 CK605
Zhengdan 958 CK958

Dedan 5 CK005
Weike 702 CK702
Xianyu 335 CK335

“||“ represents the intercropping of two varieties, and “×“ represents the mixed cropping of two varieties. The
notation also indicates the variety combination used in the experiment. For example, intercropping of Denghai
605 and Zhengdan 958 is indicated as “605‖958”, “Denghai 605” in the combination is indicated by the form
“(605)‖958”, and “Zhengdan 958” is indicated by “605||(958)”.

It has been proven that in a relay intercropping system, narrow–wide row planting
improves the light environment and seed yields of intercrop species [34]. Thus, the narrow–
wide row planting pattern with a wide row of 70 cm and a narrow row of 50 cm was
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used in this experiment. The mechanical precision seeding method was applied to fertilize
simultaneously. The seeder sowed two rows concurrently. The five varieties were sown on
11 June. The intercropping sowing design was illustrated in Figure 2. For mixed cropping,
varieties were sown according to a 1:1 ratio of the number of seeds. Seedlings were thinned
at the three-leaf stage, weeds were chemically controlled, and a commercial compound
fertilizer (N-P2O5-K2O: 29-5-6, 750 kg ha−2; Luxi, 0303050000001, Liaocheng, Shandong,
China) was applied between rows at the jointing stage. Irrigation was applied in accordance
with the soil moisture content to ensure that the entire growth period was free from drought
stress. Other management measures were identical to those of local farmer practices.

Figure 2. Schematic diagram of the intercropping sowing design. Note: � and � indicate
different varieties.

2.3. Measurement of Parameters and Methods
2.3.1. Main Reproductive Assessment Period

The timing of the tasseling, silking, flowering, and pollination stages of maize plants
growing in the monoculture area was recorded, which for each stage was expressed as the
number of days after sowing.

2.3.2. Population Density Determination

Eleven consecutive plants in a row were selected to measure the spacing of ten plants,
and eleven consecutive rows (five wide and five narrow rows each) were selected to
measure the spacing of ten rows. The measurements were used to calculate the average
plant spacing (from three repetitions). Based on these data, the population density of
the intercropping mode was 61,215 plant ha−2 and that of the mixed cropping mode was
64,815 plant ha−2.

2.3.3. Main Agricultural Characters Determination

During the tasseling period of maize, five plants of relatively uniform growth were
selected for each variety in each treatment area, and the plant height and ear height were
measured. The leaf area index was calculated with a length–width coefficient method.
The leaf length and maximum leaf width were measured in situ with a ruler. During the
tasseling period of the maize, three representative sites were randomly selected in the
middle of a narrow row for each treatment. The light transmittance of the middle and
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bottom layers in the canopy of the maize population was measured with an LAI-2000 plant
canopy analyzer (LI-COR, Inc; Lincoln, NE, USA).

2.3.4. Ear Traits and Yield Determination

In the monoculture of the test variety, ten consecutive ears were selected from plants
growing in a middle row of uniform growth. For the mixed cropping mode, in a relatively
uniform middle row, ten ears were selected from consecutive plants of each of the two
combination varieties (note that ears of the same variety were not collected from a row once
ten ears had been sampled). For the intercropping treatment, ten consecutive ears were
selected from one row (a non-side row) of each variety. Three replicates were collected;
thus, a total of 30 ears of each variety in each treatment was sampled. Each variety was
sampled 3 times for the determination of ear traits and yield, and 10 consecutive ears were
measured for each replicate, for a total of 30 ears. Among them, 3 ears were selected for
each repetition (9 ears were selected in total), and ear length, ear thickness, bald length, and
grain number per ear were measured. The 100-grain weight and yield were determined by
threshing and mixing once we were finished measuring every ten ears.

The ear length and bald length were measured with a ruler, the ear thickness was
measured with a vernier caliper at the thickest portion in the middle of the ear, the 100-grain
weight was measured with an electronic balance (sensitivity 0.01 g), and grain moisture
content was measured using a grain moisture meter.

The population yield was calculated according to the number of grains per ear,
100-grain weight, and population density of each variety in the inter- and mixed cropping
combination. The formulas used were as follows:

Yi= (Y S1+YS2)/2 (1)

YS1= WS1 × NS1 × DS (2)

YS2= WS2 × NS2 × DS (3)

where Yi is the population yield of the varieties under inter- and mixed cropping mode
per unit area, YS1 and YS2 are the yield of two varieties in the inter-and mixed cropping
mode, respectively, WS1 and WS2 are the grain weight of the two varieties equivalent to 14%
moisture, NS1 and NS2 are the number of grains per ear of the two varieties, respectively,
and DS is the population density.

2.3.5. Calculation of the Land Equivalent Ratio

The land equivalent ratio is the ratio of the income of two or more mixed crops
(varieties) to the income of each crop in the same farmland. The land equivalent ratio (LER)
was calculated using the following formula:

LER =
Yi

Yii
(4)

Yii = (Y c1 + Yc2)/2 (5)

where Yii is the average yield of the two varieties and Yc1 and Yc2 are the yields of the two
varieties grown in the monoculture method, respectively.

2.4. Determination of Maize Flowering Period and High-Temperature Stress Threshold

The date of the onset of flowering for each variety was recorded from plants growing
in the monoculture. Flowering of the entire ear of summer-sown maize usually lasts 7–10 d;
therefore, the onset of tasseling is the date for the start of flowering, and the date of the end
of flowering is 10 d after tasseling. The maximum temperature ≥ 35 ◦C was used as the
critical threshold of high-temperature stress during the flowering period [17,35].
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2.5. Statistical Analysis

Data processing and graphing were performed using Microsoft Excel 2016 and Graph-
Pad Prism 8. All data were expressed as the mean ± standard deviation (SD), and n refers to
the number of samples in each group. Statistical analyses were performed using SPSS 17.0
(SPSS, IBM Corp., Armonk, NY, USA). Analysis of variance (ANOVA) was performed to de-
termine the significance of differences between treatments. Means for different treatments
were compared using the Bonferroni test at the significance level α = 0.05.

3. Results

3.1. Differences in the Onset of Flowering and the Occurrence of High Temperatures

As shown in Figure 3, Dedan 5 was the first variety to start flowering (54 d after sowing)
and Xianyu 335 was the last variety to flower (57 d after sowing). Two main periods of high
temperatures were recorded in 2017. The first period was from 3 to 6 August, in which
the highest temperature exceeded 35 ◦C for 4 consecutive days. The second period was
from 9 to 11 August, in which the highest temperature exceeded 35 ◦C for 3 consecutive
days. The first high-temperature period coincided with the beginning of tasseling of the
varieties. The second high-temperature period occurred 2–6 d after tasseling and had a
greater impact on flowering and pollination.

Figure 3. Flowering period (A) and meteorological conditions (B) of each variety.

3.2. Plant Height and Ear Height

As shown in Figure 4, aside from the increase in plant height of Denghai 605 inter-
cropped with Xianyu 335, the plant height of Denghai 605 showed different degrees of
decline in other inter- and mixed cropping modes. Among these treatments, intercropping
with Zhengdan 958 and Dedan 5 and mixed cropping with Weike 702 and Xianyu 335
resulted in a significant decrease in the plant height of Denghai 605. The plant heights of
Zhengdan 958, Dedan 5, and Weike 702 decreased under inter- and mixed cropping with
Denghai 605, and the plant heights of the mixed cropping modes all decreased significantly.
Given that Dedan 5, Weike 702, and Zhengdan 958 have genetically similar parents, the
trends for changes in plant height under inter- and mixed cropping with Denghai 605 were
generally similar. However, the plant height of Xianyu 335 increased significantly under
inter- and mixed cropping with Denghai 605.
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Figure 4. Plant height of summer maize varieties under different inter- and mixed cropping modes.
Values represent the mean ± SD, n = 5 per group. * p < 0.05.

As shown in Figure 5, the changes in ear height of most varieties under the inter- and
mixed cropping modes were similar to the observed changes in plant height. The main
difference was that the ear height of Zhengdan 958 did not decrease significantly under the
mixed cropping mode. The ear height of Weike 702 under intercropping was significantly
lower than that of the monoculture. The ear height of Xianyu 335 increased significantly
under the inter- and mixed cropping modes, and the ear height under intercropping
exceeded that observed in the mixed cropping mode.

Figure 5. Ear height of summer maize varieties under different inter- and mixed cropping modes.
Values represent the mean ± SD, n = 5 per group. * p < 0.05.
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3.3. Leaf Area Index

As shown in Figure 6, except for a nonsignificant difference in leaf area between
Denghai 605 and Weike 702, the leaf area index of Denghai 605 decreased significantly
under the other inter- and mixed cropping modes. Under the intercropping mode, the leaf
area index of the four auxiliary varieties showed no significant change compared with that
of the monoculture. Under the mixed cropping mode, the leaf area index of Zhengdan
958 and Dedan 5 mixed with Denghai 605 decreased significantly compared with that of
the monoculture, whereas the leaf area index of Weike 702 and Xianyu 335 mixed with
Denghai 605 increased significantly compared with that of the monoculture.

Figure 6. Leaf area index of summer maize varieties under different inter- and mixed cropping modes.
Values represent the mean ± SD, n = 3 per group. * p < 0.05.

3.4. Population Light Transmittance

As shown in Figure 7, under the intercropping mode, the mid-canopy-level population
light transmittance of Denghai 605 and Zhengdan 958 increased significantly compared with
that of each monoculture. The mid-canopy-level population light transmittance between
Denghai 605 and the other three varieties was not significantly affected by intercropping.
Under the mixed cropping mode, the population light transmittance of the mid-canopy of
the three varieties was significantly lower than that of the Denghai 605 monoculture.

Under intercropping of the other four varieties, the population light transmittance of
the lower canopy increased significantly. The population light transmittance of the lower
canopy under all mixed cropping modes showed no significant change compared with that
of the Denghai 605 monoculture.
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Figure 7. Population light transmittance under different inter- and mixed cropping modes. Popu-
lation light transmittance in the middle and lower canopy levels under inter- and mixed cropping
of (A) Denghai 605 and Zhengdan 958, (B) Denghai 605 and Dedan 5, (C) Denghai 605 and Weike 702,
and (D) Denghai 605 and Xianyu 335. Values represent the mean ± SD, n = 3 per group. * p < 0.05.

3.5. Effects of Inter- and Mixed Cropping Modes on Ear Traits

The effects of the different inter- and mixed cropping modes on ear morphology
were mainly manifested as changes in ear length (Table 2). The ear length of Denghai
605 increased significantly under inter- and mixed cropping with Zhengdan 958. The ear
lengths of Weike 702 and Xianyu 335 under inter- and mixed cropping with Denghai 605
increased significantly compared with that of the monoculture. The number of grains per
ear of Denghai 605 increased significantly under inter- and mixed cropping modes with
Zhengdan 958 and Weike 702. Moreover, under inter- and mixed cropping, the number of
grains per ear of the four auxiliary varieties increased to varying degrees compared with
that of the corresponding monoculture. Specifically, intercropping of Dedan 5 and inter-
and mixed cropping of Weike 702 and Xianyu 335 significantly increased the number of
grains per ear. In addition, 100-grain weight Denghai 605 increased significantly under
intercropping with the four varieties and under mixed cropping with Dedan 5 and Weike702.
The 100-grain weight of the auxiliary varieties showed no significant differences except for
that of Weike 702 under intercropping with Denghai 605.
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Table 2. Ear traits of summer maize varieties under different inter- and mixed cropping modes.

Variety Ear Length /cm Ear Thickness /cm Bald Length /cm Grain Number per Ear 100-Grain Weight/g

CK 605 18.4 ± 0.8 5.1 ± 0.6 1.7 ± 0.6 503 ± 4 32.8 ± 0.3
(605)||958 21.5 ± 1.1 * 5.1 ± 0.5 0.9 ± 0.3 615 ± 33 * 34.5 ± 0.3 *
(605)||005 17.8 ± 0.5 5.2 ± 1.1 1.8 ± 0.2 488 ± 32 34.1 ± 0.5 *
(605)||702 19.7 ± 2.6 5.1 ± 0.9 1.5 ± 0.2 551 ± 59 * 34.9 ± 0.7 *
(605)||335 18.6 ± 1.1 5.0 ± 1.5 1.2 ± 0.4 523 ± 5 34.3 ± 0.7 *
(605) × 958 20.8 ± 0.6 * 4.8 ± 0.9* 1.4 ± 0.4 546 ± 16* 33.6 ± 0.4
(605) × 005 18.5 ± 0.7 5.1 ± 0.4 1.7 ± 0.4 516 ± 20 34.8 ± 0.7 *
(605) × 702 19.3 ± 0.6 5.1 ± 0.5 1.3 ± 0.4 560 ± 13 * 34.2 ± 0.8 *
(605) × 335 18.8 ± 0.9 4.9 ± 0.9 2.2 ± 0.4 488 ± 24 33.6 ± 0.1

CK958 16.9 ± 0.5 5.4 ± 1.6 0.3 ± 0.1 523 ± 49 33.5 ± 0.3
605||(958) 17.4 ± 0.5 5.3 ± 0.3 0.6 ± 0.2 531 ± 12 34.2 ± 1.2
605 × (958) 17.1 ± 0.5 5.2 ± 0.9 0.9 ± 0.3 * 528 ± 59 33.6 ± 0.5

CK005 15.7 ± 1.0 5.0 ± 0.6 0.0 ± 0.0 504 ± 20 30.9 ± 0.3
605||(005) 15.3 ± 0.3 5.1 ± 0.6 0.1 ± 0.1 557 ± 7 * 30.0 ± 0.3
605 × (005) 15.4 ± 0.3 5.1 ± 0.9 0.0 ± 0.0 533 ± 33 30.5 ± 0.1

CK702 17.6 ± 0.8 5.4 ± 0.1 1.2 ± 0.3 524 ± 30 35.1 ± 1.0
605||(702) 19.7 ± 0.4 * 5.5 ± 0.3* 0.6 ± 0.3 * 577 ± 34 * 37.3 ± 0.6 *
605 × (702) 19.4 ± 0.8 * 5.3 ± 0.3 0.8 ± 0.2 565 ± 20 * 35.3 ± 0.5

CK335 16.2 ± 0.9 5.2 ± 0.5 2.0 ± 1.1 426 ± 11 34.5 ± 0.6
605||(335) 18.9 ± 0.8 * 5.1 ± 1.2 1.7 ± 0.5 526 ± 46 * 35.4 ± 0.5
605 × (335) 18.5 ± 0.8 * 5.2 ± 0.2 2.3 ± 0.3 529 ± 42 * 35.4 ± 0.3

* Significant at the 0.05 probability level; Values are the mean ± SD (n = 9 for lines 2-5 and n = 3 for line 6).

3.6. Effect of Inter- and Mixed Cropping Modes on Yield

The yield of Denghai 605 increased significantly under inter- and mixed cropping
with the auxiliary varieties except for intercropping with Dedan 5, with the yield increase
ranging from 8.8% to 28.0% (Table 3). When inter- and mixed cropped with Zhengdan 958,
the yield of Denghai 605 had the largest increase of 28.0% (intercropping) and 16.7% (mixed
cropping). This increase was then followed by an increase of 14.9% (intercropping) and
16.2% (mixed cropping) when inter- and mixed cropped with Weike 702.

Table 3. Yield of summer maize varieties under different inter- and mixed cropping modes.

Variety Yield /kg ha−2 Yield Variety Compared with
Monoculture/%

CK605 9075 ± 63 —
(605)||958 11,615 ± 641 * 28.0
(605)||005 9328 ± 609 2.8
(605)||702 10,426 ± 405 * 14.9
(605)||335 9878 ± 96 * 8.8
(605) × 958 10,587 ± 664 * 16.7
(605) × 005 9967 ± 383 * 9.8
(605) × 702 10,549 ± 381 * 16.2
(605) × 335 9988 ± 493 * 10.1

CK958 10,812 ± 318 —
605||(958) 11,028 ± 760 2.0
605 × (958) 9846 ± 387 * −8.9

CK005 9622 ± 379 —
605||(005) 9842 ± 806 2.3
605 × (005) 9983 ± 624 −7.7
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Table 3. Cont.

Variety Yield /kg ha−2 Yield Variety Compared with
Monoculture/%

CK702 10,722 ± 520 —
605||(702) 12,861 ± 747 * 19.9
605 × (702) 12,068 ± 361 * 12.6

CK335 9144 ± 597 —
605||(335) 10,800 ± 606 * 18.1
605 × (335) 10,738 ± 595 * 17.4

* Significant at the 0.05 probability level; Values are the mean ± SD (n = 3).

The yield of the auxiliary varieties increased under inter- and mixed cropping with
Denghai 605. The yield of Weike 702 and Denghai 605 increased by 19.9% (intercropping)
and 12.6% (intercropping), respectively, and that of Xianyu 335 and Denghai 605 increased
by 18.1% (intercropping) and 17.4% (intercropping), respectively. However, the yield of
Zhengdan 958 decreased significantly after mixed cropping with Denghai 605.

3.7. Population Yield and Land Equivalent Ratio

The land equivalent ratio was consistently more than 1.0 under inter- and mixed
cropping of Denghai 605 and four auxiliary varieties, indicating that the different inter-
and mixed cropping methods were beneficial to increase the population yield (Table 4).
Intercropping with Zhengdan 958 and inter- and mixed cropping with Weike 702 resulted
in a population yield exceeding 11,000 kg ha−2. Under intercropping with Zhengdan
958 and mixed cropping with Weike 702 and Xianyu 335, the population yield increased
significantly, and the land equivalent ratio was greater than 1.1. Inter- and mixed cropping
with Dedan 5 resulted in the lowest increase in population yield.

Table 4. Population yield and land equivalent ratio of summer maize varieties under different inter-
and mixed cropping modes.

Inter-and Mixed
Cropping Patterns

Population Yield
/kg ha−2

Average Yield of
Monoculture/kg

ha−2

Land
Equivalent

Ratio

Population Yield
Variety Compared
with Denghai 605
Monoculture/%

Population Yield
Variety Compared

with Other Varieties’
Monoculture/%

605||958 11,572 9944 1.16 24.8 4.7
605||005 9585 9349 1.03 5.6 −0.4
605||702 11,644 9899 1.18 28.3 8.6
605||335 10,339 9110 1.13 13.9 13.1
605 × 958 10,217 9944 1.03 12.6 −5.5
605 × 005 9975 9349 1.07 9.9 3.7
605 × 702 11,309 9899 1.14 24.6 5.5
605 × 335 10,363 9110 1.14 14.2 13.3

Comparing the population yield with the monoculture yield of Denghai 605, the
population yield increased by more than 20% under intercropping of Denghai 605 with
Zhengdan 958 and inter- and mixed cropping with Weike 702. The yield of Denghai 605
increased by 10%, compared with that of the monoculture, under mixed cropping with
Zhengdan 958 and inter- and mixed cropping with Xianyu 335.

Comparing the population yield with the monoculture yield of the auxiliary varieties,
the population yield was higher than that of the Xianyu 335 monoculture, with the yield
increased by 13.1% (605||335) and 13.3% (605 × 335), respectively.

4. Discussion

The maize growing season is in summer, with high temperatures and humidity, which
brings the increasing risk of high-temperature stress [36]. High-temperature stress can
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cause abnormal pollen development or abortion, resulting in a decrease in the number of
pollen grains; in addition, it can cause abnormal division of pollen mother cells, deforma-
tion, and shrinkage leading to deformed pollen grains [14,15]. High temperatures during
flowering causes shrinkage of pollen grains and depression of the germination pore, which
significantly reduces pollen vitality; the higher the temperature, the greater the reduction
of pollen vitality [37]. High-temperature stress can also thicken the anther wall and hinder
dehiscence, resulting in the release of fewer pollen grains and lower vitality [38]. Pollen
metabolic activity is associated with the starch content of the pollen grain; a significant
decrease in the starch content causes a corresponding decrease in pollen metabolic activ-
ity [17,39]. Distinct differences in pollen viability are observed among maize hybrids, which
are derived from genetic differences among the parents [18,40]. Different varieties differ in
their gene sources, and thus heat tolerance can differ significantly. Varieties that produce a
greater number of branches, full glume, and higher number of pollen grains usually show
stronger resistance to high-temperature stress [21,41]. Sowing two or more varieties with
different genotypes increases the probability of cross pollination as well as the yield [42].
Therefore, changing single cropping to inter- and mixed cropping among multiple vari-
eties without increasing cost is one of the new strategies to improve the high-temperature
tolerance of maize during the flowering period by making full use of the heat tolerance
differences of different genotypes.

Inter- and mixed cropping, which creates a multi-level and multi-functional composite
group through different combinations of crops and varieties [43], can improve the canopy
structure of the population, improve efficiency in the use of light energy and land area,
and overcome the harmful impacts of diseases, insects, and grasses on monocultures, so
as to increase the yield per unit area [44,45]. Intercropping forms a wavy canopy, while
mixed cropping forms a concave–convex canopy of crops in order to change plane light into
three-dimensional light in the upper part of the population crops. It has been shown that
the photosynthetic potential of intercropping during the big bell mouth period was 76%
and 78% higher, and the field light transmittance was 54.0% higher than that of the single
cropping, respectively [46]. The photosynthetic intensity of the intercropping population
increased by 37.2% and 28.8% compared with that of the monoculture, and the light energy
utilization rate in the whole growth period increased by 58.6% compared with that of the
monoculture during the jointing stage and filling stage, respectively. In addition, the yield
of Jundan 20 and Dedan 5 increased by 5.6% and 7.9% compared with their monoculture
after intercropping treatment, respectively [47,48]. In our study, the results showed that
the light transmittance of the bottom population increased after intercropping Denghai
605 with Dedan 5, Weike 702, and Xianyu 335, and the light transmittance of the middle
layer increased after intercropping with Zheng Dan 958, which is consistent with the
previous findings.

The advantages of inter- and mixed cropping among different maize varieties mainly
reflect the contemporary heterosis [49], including resistance complementarity and fertility
complementarity. Complementary resistance means that inter- and mixed cropping of
two varieties that differ in disease resistance effectively improves the disease resistance
of the population after planting [27,45]. Sterility complementary refers to the similarity
of the male–female interval between two varieties. The pollen of each variety is used to
extend the duration of pollination and fertilization, which can enhance the utilization of
heterosis in maize cross-pollination and increase yields by enhancing the number of grains
per ear [50]. It had been demonstrated that intercropping was beneficial to the increase of
grain number per ear and grain weight compared with monoculture, and the number of
grains per ear in the intercropping of Yedan 12 and Yedan 13 increased by 9.28% and 15.66%,
respectively, compared with that of the monoculture [51]. In addition, the average number
of grains per ear of free pollination in different combinations increased by 40.7 grains,
and 100-grain weight increased by 1.1 g, which manifested the existence of heterosis
among different varieties [52]. Making full use of flowering and pollen complementary
advantages of varieties and improving fertilization and seed setting rate while avoiding
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high temperature stress is one of the focuses of our study. The flowering period of Zhengdan
958, Weike 702, and Denghai 605 were basically the same. After inter-and mixed cropping,
the flowering and pollination of Denghai 605 were compensated, and the grain number per
ear was significantly increased compared with that of single cropping. It indicated that the
selection of varieties with a consistent flowering period was helpful to give full play to the
advantages of inter-and mixed cropping planting mode. The number of grains per panicle
of Xianyu 335, a variety with a small amount of pollen and intolerant to high temperatures
during the flowering period, also increased significantly after inter-and mixed cropping
with Denghai 605 compared with that of single cropping. This shows that inter-and mixed
cropping can make better use of heterosis of maize varieties.

In previous studies, extensive research has been performed on the physiological and
ecological effects of maize intercropping. The yield-increasing benefits of maize in inter-
and mixed cropping have been discussed in detail. In terms of morphological structure, the
maize inter- and mixed cropping system facilitated the formation of a three-dimensional
canopy structure and different intercropping row ratios and planting densities brought
differences in light distribution, which improved the ventilation and light transmittance
and increased CO2 concentration in the growth space [53–55]. In terms of physiology,
inter- and mixed cropping mode increased the chlorophyll content, leaf area index, and
photosynthetic rate of maize [19,22]. Meanwhile, it enhanced the antioxidant enzyme
activity and Rubisco’s carboxylation efficiency and improved soil quality and nutrient
absorption [23,25,55]. In terms of stress resistance, intercropping of different genotypes
of maize profoundly strengthened the resistance to the disease [27], and the appropriate
cultivar collocation effectively reduced the lodging resistance of the population. This study
focused on the mitigation effect of multi-variety- inter- and mixed cropping modes on
population resistance to high temperatures during the flowering period, and demonstrated
that the tolerance to high temperatures during flowering was significantly enhanced by
choosing reasonable variety-matching and row-spacing ratios, which were hardly studied
in the past.

Previous studies have fully confirmed that the yield-increasing effect of inter- and
mixed cropping was the result of multiple compound effects. However, the mechanism
for increasing the yield is extremely complicated, as it is affected by diverse factors, such
as genotype, phenotype, population structure, population physiology, field microclimate,
and soil microecology [44]. Therefore, no simple combination of varieties will necessarily
increase production, and in-depth prior analysis is required. For the selection of maize
varieties, the consistency of variety traits, plant type, plant height, resistance, and other
characteristics should be considered so as to increase the yield of dominant varieties,
stabilize the yield of other varieties, and finally, increase the population yield. This study
demonstrated that the land equivalent ratio of Denghai 605 inter- and mixed cropped with
four other auxiliary varieties was more than 1.0, among which the LER intercropping with
Zhengdan 958 and inter- and mixed cropping with Weike 702 and Xianyu 335, respectively,
was greater than 1.1, further confirming the yield-increasing effect. Based on the previous
studies, the technical key point is that the heat resistance of the combined varieties should
be complementary and the growth period should be consistent. The flowering period
especially should be consistent if possible. In addition, varieties with basically the same
plant height and plant type should be selected if possible. If there are large differences
in plant height or plant type, the 2:2 or 2:4 row ratio intercropping mode can be adopted,
which is for making use of the spatial advantages of high-stalk varieties without reducing
the yield of short-stalk varieties and having strong complementarity among varieties in heat
resistance [56–58]. The production technology of complementary resistance enhancement of
maize varieties has been listed as the main technology in 2021 by the Ministry of Agriculture
and Rural Affairs of the People’s Republic of China and issued and implemented as the
agricultural industry standard in China [59].
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5. Conclusions

In this study, Denghai 605, which produces low amounts of pollen and is intolerant of
high temperatures during flowering, was used as the main test variety, and Zhengdan 958,
Dedan 5, Weike 702, and Xianyu 335 were used as auxiliary varieties to determine the effect
of inter- and mixed cropping of maize on high-temperature tolerance during flowering
and on yield. The population light transmittance of the bottom or middle layer of crops
increased in the intercropping of Denghai 605 with other varieties, which was conducive
to the formation of an efficient canopy structure. The number of grains per ear increased
after intercropping Denghai 605 with Zhengdan 958 and Weike 702, indicating that inter-
and mixed cropping enhanced pollen vigor and improved tolerance to high temperatures
during the flowering period. Moreover, the yield increased significantly by 8.8–28.0% after
inter- and mixed cropping Denghai 605 with other varieties (except intercropping with
Dedan 5). Among them, the LER was greater than 1.1 when Denghai 605 was intercropped
with Zhengdan 958 and inter- and mixed cropped with Weike 702 and Xianyu 335, which
indicated that under the combination of these varieties, inter- and mixed cropping effec-
tively reduced the impact of high temperatures during flowering and improved the maize
population yield.
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Abstract: The diurnal temperature range (DTR) is an important meteorological component affecting
maize yield. The accuracy of climate models simulating DTR directly affects the projection of maize
production. We evaluate the ability of 26 Coupled Model Intercomparison Project phase 6 (CMIP6)
models to simulate DTR during 1961–2014 in maize cultivation areas with the observation (CN05.1),
and project DTR under different shared socioeconomic pathway (SSP) scenarios. The root mean
square error (RMSE), standard deviation (SD), Kling-Gupta efficiency (KGE) and comprehensive
rating index (CRI) are used in the evaluation of the optimal model. The results show that CMIP6
models can generally reproduce the spatial distribution. The reproducibility of the annual average
DTR in the maize cultivation areas is better than that in China but lower for the maize-growing
season. The optimal model (EC-Earth3-Veg-LR) is used in the projection. Under the two SSPs, the DTR
decreases compared with the historical period, especially in Northwest and North China. The DTR
under SSP245 remains unchanged (annual) or increases slightly (growing season) during 2015–2050,
while a significant decreasing trend is observed under SSP585. This highlights the importance of
evaluating DTR in maize cultivation areas, which is helpful to further improve the accuracy of maize
yield prediction.

Keywords: CMIP6; maize; diurnal temperature range; projection; China

1. Introduction

Many studies have addressed the future changes in temperature and precipitation
under a climate change background [1–3]. These studies have provided a solid basis
for assessing the risk of climate change to human health, agriculture, natural resources,
water resources, etc. In agriculture, some equivalent climate variables independently play
important roles. Maize is one of the main food sources of humans and is widely cultivated
worldwide. The changes in maize yield are related to the food security of human society.
The yield of maize is known to be influenced by the environment and other factors [4,5]. Air
temperature is one of the main factors affecting maize growth and production, and maize
showed a greater yield decrease than wheat and rice at the same warming level [6,7]. A large
number of studies have analyzed the effects of accumulated temperature and temperature
on maize production. The diurnal temperature difference (DTR) also plays an important
role in maize yield. DTR is defined as the difference between the maximum and minimum
2-m temperature during a 24-h period, and it has been proven to impact multipole crop
production aspects, including yield, quality, and market commercial price [8]. It has been
reported that changes in daily maximum air temperature and minimum air temperature
may have different influences on crops [9–11], and lower daily minimum air temperature
helps to improve crop quality. Lobell and Field [4] explored the relationship between the
DTR and crop yield and found that the influence of daytime warming on crops was greater
than that of nighttime warming. Jiang [12] indicated that a decrease in DTR in spring
and summer was beneficial for crop yield increases, while an increase in DTR in fall was
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beneficial. Therefore, to better predict the future maize yield, the accurate simulation of
DTR via global climate models has become increasingly important.

Unfortunately, there have been few studies addressing DTR future changes, which
can obviously limit our understanding of the impact of climate change on crop production.
There are large uncertainties in the trends and possible interpretations of DTR [13,14].
Lobell and Field [4] evaluated 12 global climate models that participated in the Coupled
Model Intercomparison Project (CMIP) phase 3 and found future changes in DTR to be
inconsistent among the models. Lindvall and Svensson [15] evaluated the simulation ability
of 20 Coupled Model Intercomparison Project phase 5 (CMIP5) models in simulating the
terrestrial DTR of recent and future projections using HadGHCND and CRU and found that
DTR varies considerably between CMIP5 models and that DTR is often underestimated.
This uncertainty causes substantial confusion when applying climate model results to
estimate the magnitude of crop exposure to climate change. Wang et al. [16] indicated that
Coupled Model Intercomparison Project phase 6 (CMIP6) models have not improved their
ability to simulate temporal DTR changes consistently during 1901–2005 relative to CMIP5.
In conclusion, although CMIP6 models already have good simulation capability for air
temperature and precipitation, the simulation capability for important agrometeorological
elements such as DTR still needs to be improved.

Most evaluations of climate variables simulated by global climate models (GCM) are
based on the annual scale and the whole region. It may be questioned whether those evalu-
ations are suitable for agricultural applications. The spatial scales of previous studies have
focused on global or nationwide scales [17], and few studies have been conducted at the
scale of crop-cultivation areas. Scholars have conducted numerous studies to quantitatively
assess climate model simulations of key meteorological elements and to estimate future
climate [18–20]. Knox et al. [21] evaluated the impact of climate change on yield projections
for maize and other crops in Africa and South Asia using several global climate models,
noting that the increase in the number of climate models could reduce the uncertainty in
projections. However, there is a lack of discussion on the impact of spatial scale differences
in climate model performance on prediction results. Lindvall and Svensson [15] evaluated
the ability of CMIP5 models to simulate the DTR over land in historical simulations and fu-
ture projections and indicated that although models had good simulation ability for global
DTR changes, there were uncertainties in simulations for smaller spatial scales. GCMs
with good performance at global or continental scales may exhibit differences in simulation
performance within the actual maize cultivation areas. Therefore, when estimating maize
yield and quality, using the most suitable climate model in maize cultivation areas will
improve the credibility of the prediction results.

In addition, previous studies have mainly focused on the ability to simulate the
interannual variability of meteorological components [22], and few studies have been
conducted on the growing season of crops. Wang et al. [16] pointed out that most individual
CMIP6 models overestimated the DTR changes from December to February, especially in
the high latitudes of the Northern Hemisphere. The model showed significant differences
in land and did not completely capture the observed temporal and spatial evolution of the
DTR. Fan et al. [23] found that the simulation stability of the annual average temperature
model is higher than that of the seasonal average temperature model. There is a large
difference between the model and observations of temperature from January to May,
and the simulation of temperature from June to September is more stable. There are great
differences between the simulation of interannual and seasonal variations in climate models.
The good performance of climate models at annual or seasonal scales does not mean that
climate models perform equally well in actual crop-growing seasons. Differences in model
performance at different time scales may affect crop yield and quality prediction [24,25].
Therefore, a climate model with better performance in the maize-growing season should be
used when predicting maize yield and quality.

The retrospective analysis of systematic biases in current climate models as well as
their correction is one of the scientific issues that CMIP6 focuses on [26]. The questions
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that agricultural scientists are more interested in include: How well do climate models
simulate the meteorological elements in crop cultivation areas? How will climate change in
the future? This suggests that the ability of climate models to simulate key meteorological
components that are critical in agriculture needs to be carefully evaluated to truly provide a
more credible understanding and perception of the agricultural impacts of climate change.
Therefore, we quantitatively evaluated the ability of the CMIP6 model to simulate the
spatial and temporal characteristics of the DTR in the main maize cultivation areas from
several perspectives and used the optimal model to predict and analyze the changes in the
DTR in the main maize cultivation areas in China under different future scenarios. This
study will contribute to further improving the ability of global climate models to simulate
DTR in the maize cultivation areas of China and will serve research on the impact of climate
change on maize yield and quality.

2. Materials and Methods

2.1. CMIP6 Model Output

The CMIP6 is the latest experiment to simulate global climate through climate models.
It collects the best models in the world and conducts the most colorful experiments, covering
the world at a high-spatial and temporal resolution. CMIP6 considers the effects of external
forcing, including natural factors and human activities, over time in the simulation of
historical periods. Global near-surface maximum air temperature (Tasmax) and minimum
air temperature (Tasmin) data simulated by 26 CMIP6 models from 1961 to 2014 were
retrieved from the CMIP6 website [27]. The DTR was calculated as the difference between
the maximum and minimum near-surface temperature during a 24 h period simulated
by the CMIP6 models in this study. The focus of this paper is the DTR during 1961–2050.
The names of these models analyzed are listed in Table 1, together with the institution and
resolution. We only considered the first ensemble simulation (CMIP6: ‘r1i1p1f1’) if a model
had multiple ensemble simulations.

Table 1. Information of CMIP6 models.

No. Model Name Institution (Country) Resolution (Lat × Lon) Realization

1 ACCESS-CM2 CSIRO-ARCCSS (Australia) 1.875◦ × 1.25◦ r1i1p1f1
2 ACCESS-ESM1-5 CSIRO (Australia) 1.875◦ × 1.24◦ r1i1p1f1
3 AWI-CM-1-1-MR AWI (Germany) 0.9375◦ × 0.9375◦ r1i1p1f1
4 AWI-ESM-1-1-LR AWI (Germany) 1.875◦ × 1.875◦ r1i1p1f1
5 BCC-CSM2-MR BCC (China) 1.125◦ × 1.125◦ r1i1p1f1
6 BCC-ESM1 BCC (China) 2.8125 × 2.8125 r1i1p1f1
7 CanESM5 CCCma (Canada) 2.8125◦ × 2.8125◦ r1i1p1f1
8 EC-Earth3 EC (European Community) 0.703◦ × 0.703◦ r1i1p1f1
9 EC-Earth3-Veg EC (European Community) 0.703◦ × 0.703◦ r1i1p1f1
10 EC-Earth3-Veg-LR EC (European Community) 1.125◦ × 1.125◦ r1i1p1f1
11 FGOALS-f3-L CAS (China) 1.25◦ × 1.25◦ r1i1p1f1
12 FGOALS-g3 CAS (China) 2.0◦ × 2.0◦ r1i1p1f1
13 GFDL-CM4 NOAA-GFDL (America) 1.25◦ × 1.25◦ r1i1p1f1
14 GFDL-ESM4 NOAA-GFDL (America) 1.25◦ × 1.0◦ r1i1p1f1
15 GISS-E2-1-G NASA-GISS (America) 2.5◦ × 2.0◦ r1i1p1f1
16 INM-CM4-8 INM (Russia) 2.0◦ × 1.5◦ r1i1p1f1
17 INM-CM5-0 INM (Russia) 2.0◦ × 1.6◦ r1i1p1f1
18 IPSL-CM6A-LR IPSL (France) 2.5◦ × 1.25◦ r1i1p1f1
19 KIOST-ESM KIOST (Korea) 1.875◦ × 1.875◦ r1i1p1f1
20 MIROC6 MIROC (Japan) 1.40625◦ × 1.40625◦ r1i1p1f1
21 MPI-ESM-1-2-HAM MPI-M (Germany) 1.975◦ × 1.975◦ r1i1p1f1
22 MPI-ESM1-2-HR MPI-M (Germany) 0.9375◦ × 0.9376◦ r1i1p1f1
23 MPI-ESM1-2-LR MPI-M (Germany) 1.875◦ × 1.875◦ r1i1p1f1
24 MRI-ESM2-0 MRI (Japan) 1.125◦ × 1.126◦ r1i1p1f1
25 NESM3 NUIST (China) 1.875◦ × 1.875◦ r1i1p1f1
26 NorESM2-MM NCC (Norway) 1.25◦ × 0.9375◦ r1i1p1f1
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For future emission scenarios, the shared socioeconomic pathway (SSP) provided in
CMIP6 is the combination of the representative concentration pathway (RCP) and other
pathways. SSP scenarios provided in CMIP6 include the updated versions from CMIP5
(SSP126, SSP245, SSP460, and SSP585) and the new combinations (SSP119, SSP370, and
SSP434). In addition, SSP245 and SSP585 represent radiative forcing stabilized at 4.5 and
8.5 W m−2 by the end of the 21st century. The SSP245 scenario is subjective for most
countries pursuing sustainable development, while the SSP585 scenario represents the
worst scenario (fossil-based energy-intensive economy), reflecting the impact of uncon-
ventional development [1,26]. Therefore, we selected SSP245 and SSP585 in CMIP6 for
future projections.

To facilitate the analysis, a bilinear interpolation method was used to uniformly
interpolate the model data to the 0.25◦ × 0.25◦ grid, corresponding to the grid position
and resolution of the observed dataset. Due to the different periods of the model data and
observational data, only China’s land area was considered in this study.

2.2. Observation Data

To evaluate the simulated results of the CMIP6 models, the daily maximum and
minimum temperature data of the China high-resolution dataset CN05.1 released by the
Open Laboratory for Climate Research of China Meteorological Administration [28] were
used as observational data in this study. The available starting and ending times of these
data were 1961–2018, with a high-spatial resolution of 0.25◦ × 0.25◦. This dataset has a
long timescale and high spatial resolution. The generation process of this dataset only used
the actual observational data of observation stations for statistical interpolation, covering
the entire land area of China (Taiwan Province is missing statistical data). Interpolation
of this dataset is based on an “anomaly approach” using over 2400 stations [29], which is
similar to the method used to create the Climatic Research Unit dataset [30]. Compared
with the reanalysis data, the CN05.1 data have greater reliability. This dataset has been
widely used for regional and global climate model validation [29,31].

2.3. Methods

According to the harvested area and yield of 175 crops [32], grid points with production
greater than the 5th percentile of maize production in China were extracted from maize
yield data as the maize cultivation areas. This dataset was created by combining national,
state, and county level census statistics with a recently updated global data set of croplands
on a 5 min by 5 min latitude/longitude grid. The resulting land use datasets depict circa
the year 2000 the area (harvested) and yield of 175 distinct crops of the world [32]. All
assessments were conducted on these grid points. Continental China was divided into
seven regions according to Wu et al. [33] and the distribution of the maize cultivation areas.
The regional division of China is shown in Figure 1.

2.3.1. Climatology and Interannual Variability

The historical simulation experiments in CMIP6 were conducted from 1850 to 2014,
while different future scenarios were divided from 2015 onward. The historical period
from 1961 to 2014 was used to evaluate the ability of models to simulate the interannual
variability of the DTR. The 1995–2014 period can better represent the current climate state
and help us understand the simulation capability of the CMIP6 model for the current
climate state [34]. Therefore, the 20-year period from 1995 to 2014 was selected to evaluate
the simulation ability of CMIP6 models regarding the spatial distribution of the DTR in
maize cultivation areas in China.

According to the ten-day dataset of crop growth and soil moisture in China and
the research results of Cao [35], March to June of the current year was selected as the
maize-growing season. Fifty-four years of data from a historical period (1961 to 2014) were
selected for analysis in this study. The annual mean DTR and the maize-growing season
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mean DTR simulated using CMIP6 models in maize cultivation areas were calculated
and compared.

Figure 1. The regional divisions in China (subregion 1: Northeast China (NEC), subregion 2: North
China (NC), subregion 3: Southeast China (SEC), subregion 4: Southwest China (SWC), subregion 5:
Chuanyu (CY), subregion 6: Northwest China (NWC), and subregion 7: Tibetan Plateau (TP)).

The future period from 2015 to 2050 was selected for future projection. CMIP6 models
performed more stable in this period than for the late 21st century [34]. The period from 2031
to 2050 was selected to project the future climatological DTR, as it represents the middle
of the 21st century. The spatial distribution of the climatological DTR in 2031–2050 under
two SSP scenarios was calculated, and the changes relative to the historical climatology
(1995–2014) simulations were analyzed according to different subregions.

The spatial distribution of the linear trends of the annual average and growing season
mean DTR in the main maize cultivation areas from 2015 to 2050 was calculated. The yearly
linear trend analysis was conducted on each grid of the study area. Meanwhile, the linear
trends of annual and growing season average DTR were calculated to study the interannual
variation trend of DTR.

2.3.2. Performance METRICS

In the evaluation of the CMIP6 model simulation capability for DTR and future
projection in maize cultivation areas in China, the following indices were used.

To evaluate the simulation ability of CMIP6 models for the spatial distribution of the
DTR in China’s maize cultivation areas, root mean square error (RMSE) was used. It was
widely employed to illustrate the bias between the simulations and observations [36]. The
RMSE is:

RMSE =

√√√√ 1
N

N

∑
i=1

(Mi − Oi)
2 (1)

where Mi and Oi are the simulated value and observation of the ith grid, respectively. N
is the grid number. The RMSE is larger than 0. When the RMSE is 0, it indicates that the
pattern matches the observation perfectly; a smaller RMSE indicates that the pattern has
better performance.

The standard deviations (SD) of the yearly growing season and annual anomalies of
the maize cultivation area DTR were calculated as indicators to quantitatively express the
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ability of the models to simulate interannual variability. The DTR anomalies were linearly
detrended before calculating the SD [15,22,37]. The SD is:

SD =

√
1
N

n

∑
i=1

(
Mi − M

)2 (2)

where M and O denote the mean of simulations and observations. The SD value is equal
to 0 when Mi is identical to M, and the closer the SD value is to SDO (standard deviation
of observations), the greater the skill in simulating the interannual variability.

To further evaluate the ability of models to simulate DTR in China’s maize cultivation
areas, the Kling-Gupta efficiency (KGE) was used [36,38,39]. KGE is:

KGE = 1 −
√
(r − 1)2 +

(
M
O

− 1
)2

+

(
SDM/M

SDO/O
− 1
)2

(3)

where SDM and SDO denote the standard deviation of simulations and observations.
The KGE value varies between 1 and -∞, where 1 represents a complete match. There is no
specific meaning attached to the KGE value when it equals zero [40].

To evaluate the ability of models to simulate both climatic state DTR and interannual
variability, this study comprehensively ranked the simulation ability of each CMIP6 model
based on RMSE and SD. The comprehensive rating index (CRI) enables efficient ranking
of model simulation values [41]. The CRI is:

CRI = 1 − 1
n × m

n

∑
i=1

ranki (4)

where n is the number of evaluation indicators, m is the number of models, and ranki is the
ranking of the i th indicator of the model. The closer the CRI value is to 1, the better the
model simulation.

Previous studies have revealed that the multi-model ensemble (MME) usually shows
higher reliability in reproducing the present Chinese climate relative to an individual
model [42]. Therefore, the multi-model arithmetic mean ensemble with the same weights
was used in this study. The MME is:

MME =
1
N

N

∑
j=1

Mj (5)

where N is the number of models, Mj is the simulations of the j th model.
Time series analysis was carried out to determine the interannual variability of the

DTR. The linear trend analysis was used to investigate trends in DTR variability. The linear
relationship between climate variable xi and time series ti was established [43].

xk = a + btk, k = 1, 2, . . . m (6)

where xk is the yearly average DTR and m is the number of years of data used. tk is the time
series. a is the linear regression constant, b is the linear tendency coefficient, and b × 10
is defined as the climatic tendency rate (◦C/10a), which can be calculated using the least
square method. b is:

b =
∑m

k=1 xktk +
1
m (∑m

k=1 xk)(∑
m
k=1 tk)

∑m
k=1 tk

2 − 1
m (∑m

k=1 tk)
2 (7)

a is:
a = x + bt (8)
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where x and t are the mean of the yearly average DTR and the time series. b > 0 represents
an increasing trend of DTR over time, and vice versa. Significance levels of the b are
estimated according to the two-tailed Student t-test.

3. Model Evaluation

3.1. Climatology

The CMIP6 models can reproduce the spatial characteristics of climatological DTR in
maize cultivation areas (Figure 2). The DTR increased gradually from low to high latitudes
and ranged from 6 ◦C to 16 ◦C. The DTR gradually increased from coastal to inland regions,
with higher DTR in NWC and TP than in other regions.

Figure 2. Observation and simulations of climatological DTR spatial distribution during 1995–2014
in China (left column displays simulated results of DTR in maize cultivation areas; the right column
shows the nationwide results); (a,b) are the models with the highest RMSE. Observation (c,d)
multi-model ensemble (MME) data are shown in (e,f).

When compared with observations, the multi-model ensemble data were approxi-
mately 3 ◦C lower than the observations nationwide and 6 ◦C lower in NWC. In addition,
the DTR in CY was 2 ◦C higher than the observation.
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EC-Earth3-Veg-LR had the best simulation ability among the 26 CMIP6 models for
simulating the climatological DTR in maize cultivation areas (RMSE = 1.098). The repro-
ducibility of the DTR averaged over China was lower than that of the maize cultivation
area averages, but it was still acceptable. The DTR simulated using the MME was not
as good as EC-Earth3 in either China or maize cultivation areas. The same conclusions
could be drawn across the country. The simulation of EC-Earth3 was relatively greater
in CY compared with the observation, while in other regions, they were approximately
1 ◦C lower.

There was geographic variability in the distribution of SDs among models (Figure 3).
The average SD was 2.33 in maize cultivation areas and 2.73 in China, which indicates
that the consistency within maize cultivation areas was higher than that in China. The
SDs of simulations in NEC and TP were approximately 2 ◦C higher than those in other
regions, and there were significant differences between models. These results indicated
that the CMIP6 models have good simulation capability in eastern China. There were
great differences between the simulated results of different models in NEC and TP. CMIP6
models were still deficient in their ability to simulate the climatological DTR on the TP,
which is consistent with CMIP5. Improving the model to make the simulation more reliable
has become a new challenge for model developers.

Figure 3. Standard deviations (SD) between CMIP6 models in maize cultivation areas (a) and China (b).

We evaluated each region and calculated the RMSE for each model separately, and
the evaluation results are presented in Figure 4 to show the performance of the models
more visually.

In general, the CMIP6 models could reproduce the spatial distribution of climatological
DTR (Figure 4), and most models had RMSEs less than 2. CMIP6 models performed better
in simulating DTR in maize cultivation areas than in China (RMSEM was smaller than
RMSEC). EC-Earth3-Veg-LR had better simulation effects for maize cultivation areas
(RMSEM = 1.098) than the other models, and the MME showed the same characteristics.
Models with good performance (smaller RMSE) had high KGEs; the KGE (0.82) of EC-
Earth3-Veg-LR ranked in the top 3 among models. However, the difference between the
MME (RMSE = 1.43) and observations was slightly greater than that of EC-Earth3-Veg-LR.
There were large differences in model performance across regions. Moreover, the results
show that the models had better simulations in SWC and NC. However, EC-Earth3-Veg was
not the best in other regions. EC-Earth3 had the smallest RMSE and the highest ranking in
NWC, which is consistent with the results in China evaluations. These results suggested
that even the model with the best performance among the 26 models may not have the best
simulation capability in all regions.
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Figure 4. The RMSEs of climatological DTR for the historical simulation in each region during 1961–2014.
Green indicates the range from the 25th to 75th percentile of the RMSE s for the simulations.

3.2. Interannual Variability

According to the observations, the growing season DTR in maize cultivation areas
showed a decreasing trend at a rate of −0.151 ◦C/10 a (Figure 5). The same trend was
observed for the annual DTR, with a decreasing rate of −0.178 ◦C/10 a. The annual DTR
showed a greater rate of decline relative to the maize-growing season. CMIP6 models
could better simulate these trends: among the 26 CMIP6 models, EC-Earth3 had the best
simulation for the annual DTR trend (−0.119 ◦C/10 a) and performed best in the maize-
growing season (−0.161 ◦C/10 a). The MME could simulate these trends with slower rates.

Figure 5. Annual (a) and growing season (b) DTR anomalies simulated via CMIP6 models in maize
cultivation areas show patterns of fluctuations that reflect annually varying correlations of DTR
in China. Blue and red shadings indicate the range of simulations. DTR trends (c) of annual and
growing season simulated using CMIP6 models and observations. Blue and red indicate the range
from the 25th to 75th percentile of the trends simulated by the models. The red and blue lines are the
medians of the model-simulated trends, and the gray dots are the results of the CMIP6 models. The
red and green dots represent the results of CN05.1 and MME, respectively.

In general, CMIP6 models were able to simulate the interannual variation in the annual
DTR and growing season mean DTR in maize cultivation areas. Most models had SDs
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less than 0.7. The maize-growing season DTR simulated using CMIP6 models performed
differently from that of the annual DTR, and some models simulated the annual DTR better
than the simulation of the growing season DTR. Similarly, it has been reported that CMIP5
simulates the interannual variability in annual surface air temperature better than monthly
and seasonal temperatures. It is worth noting that models with good simulations of annual
DTR were slightly inferior in simulating the growing season mean DTR, while models with
good simulations of the growing season mean DTR showed unsatisfactory simulations for
interannual variation of annual DTR (Figure 6). A model with a good simulation of annual
DTR does not imply a good simulation of the maize-growing season; therefore, targeted
evaluation for the maize-growing season becomes essential. AWI-CM-1-1-MR had the best
ability to simulate DTR for the maize-growing season, and it was more suitable for studies
targeting the maize-growing season compared with the interannual variation. Models
with smaller SDs also had higher KGEs; the KGE (0.36) of AWI-CM-1-1-MR ranked in the
top 5 among models. The performance of the CMIP6 model varied greatly across regions
(Figure 6). The MME was more suitable for the simulation of annual DTR.

Figure 6. The standard deviations of linearly detrended annual and yearly growing season mean
anomalies of DTR for the historical simulation during 1961–2014. Blue indicates the range from the
10th to 90th percentile of the annual averages, and red indicates the maize-growing season means.
Each row represents a region of China.

3.3. Comprehensive Evaluation

To comprehensively evaluate the ability of each model to simulate the spatial and
temporal characteristics of the DTR in maize cultivation areas, the CRI was used to evaluate
each model in this study. According to Table 2, EC-Earth3-Veg-LR had the best simulation
of DTR in maize cultivation areas (CRI = 0.92), which is more suitable for the simulation of
DTR in maize cultivation areas of China.
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Table 2. Scores of the top three models with the best performance.

Index EC-Earth3-Veg-LR EC-Earth3 GFDL-CM4

Climatology
RMSE 1.098 1.116 0.865
KGE 0.818 0.821 0.455

Interannual variability SD 0.248 0.278 0.260
KGE 0.358 0.404 0.262

Overall CRI 0.865 0.808 0.808

4. Future Projections

Acceptable performances of climate models are the basis for developing credible
data of future climate through CMIP6 scenario simulations. In this section, we explore
the future changes in the diurnal temperature range of maize cultivation areas of China
simulated using EC-Earth3-Veg-LR. The period is focused on two SSPs (SSP245 and SSP585):
the period from 2031 to 2050 was selected to project the future climatological DTR, as
it represents the middle of the 21st century. The linear trends of the annual average
and growing season mean DTR in the main maize cultivation areas from 2015 to 2050
were calculated.

4.1. Climatology

The DTR and future changes in maize cultivation areas of China under different future
scenarios are shown in Figure 7. The future DTR spatial distributions shared the same
characteristics as historical observations. The DTR increased gradually from low to high
latitudes, ranged from 6 ◦C to 16 ◦C, and gradually increased from coastal to inland regions.

Figure 7. The climatological DTR spatial distribution (a,c) during 2030–2050 and changes (b,d)
relative to 1995–2014 in maize cultivation areas of China under different scenarios simulated via
EC-Earth3-Veg-LR.
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Compared with historical (1995–2014) simulations, reductions were widely detected:
under the SSP245 scenario, there was a decline in 86.90% of grid points within China
and 81.2% under the SSP585 scenario. The climatological DTR of maize cultivation areas
decreased by 0.151 ◦C (SSP245) and 0.207 ◦C (SSP585). The reduction proportion of the
DTR under the SSP585 scenario was slightly smaller than that under the SSP245 scenario
(Table 3). Under the SSP245 scenario, the reduction was mainly distributed in NWC, NC,
and SWC, and the magnitude of change was concentrated at approximately 0.20 ◦C. The
climatological DTR during 2030~2050 in NEC was approximately 0.38 ◦C higher than that
of historical simulations. Almost all subregions showed a reduction under the SSP585
scenario, with a magnitude of 0.19 ◦C.

Table 3. Changes in the climatological DTR (°C) during 2030–2050 relative to 1995–2014 in regions of
China under different scenarios.

Scenario NEC NC SWC CY NWC Cultivation Areas

SSP245 0.382 −0.149 −0.223 −0.043 −0.094 −0.151
SSP585 −0.556 −0.097 −0.092 0.005 −0.212 −0.207

4.2. Interannual Variability

Compared with the historical period (1961–2014), the annual DTR remained essentially
unchanged under the SSP245 scenario in maize cultivation areas (Figure 8), while the
growing season DTR had an increasing trend (0.014 ◦C/10 a). Under the SSP585 scenario,
the growing season DTR in maize cultivation areas exhibited a decreasing trend at a rate of
−0.052 ◦C/10 a, and the annual DTR showed a greater decreasing trend (−0.069 ◦C/10 a).
The decreasing trends of DTR under the SSP585 scenario were greater than those under the
SSP245 scenario.

Figure 8. Annual (a) and growing season (b) DTR anomalies under different scenarios simulated
via EC-Earth3-Veg-LR in maize cultivation areas show patterns of fluctuations that reflect annually
varying correlations of DTR in China.

The annual DTR always showed a greater rate of decline relative to the growing
season DTR in maize cultivation areas in both scenarios (Table 4). The annual DTR in the
maize cultivation areas under the SSP245 scenario showed a decreasing trend at 45.90% of
the grid points, while in NEC, SWC, and NWC, it was dominated by a decreasing trend.
There was a significant increase in NC and CY. For the growing season DTR, more grid
points showed decreasing trends in both NEC and CY. The proportion of grid points with
decreasing trends in CY increased significantly, while the proportion of significant grid
points increased and was more concentrated (Figure 9). In NWC and NC, the proportion of
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decreasing grid points decreased and that of significant grid points increased, mainly in
the eastern area of Northwest China. The annual (76.28%) and growing season (70.09%)
DTR under the SSP585 scenario showed decreasing trends at most grid points in maize
cultivation areas, with decreasing rates exceeding 0.2 ◦C/10 a in NEC, SWC, and NWC. It
showed increasing trends in most NC grid points and had a high percentage of significance
(23.99%). The proportion of grid points with decreasing trends in DTR was greater under
the SSP585 scenario than under the SSP245 scenario. Although the growing season DTR
followed an increasing trend in NC and CY under the SSP245 scenario in general, the
increasing trend was not significant in grid points with high maize cultivation in China
(Figure 1), even with a large decreasing trend (NEC). Since Chinese maize production is
mainly concentrated in NC and NEC, and the growing season DTR in these two subregions
showed opposite changes, this may cause some impact on the quality and yield of maize
in China.

Table 4. The proportion of grid points with linear decreasing trends of annual and growing season
DTR during 2015–2050 in different subregions of China. (“Sig. proportion” indicates the proportion
of grid points that were significant at p < 0.1).

Region NEC NC SWC CY NWC Cultivation Areas

SSP245

Annual 63.78% 16.48% 60.38% 20.43% 57.13% 45.90%
Sig. proportion 1.15% 6.99% 0.32% 15.10% 9.81% 6.07%
Growing season 80.02% 7.28% 61.97% 46.50% 24.28% 45.36%
Sig. proportion 3.44% 16.70% 0.00% 19.55% 27.30% 12.92%

SSP585

Annual 100.00% 40.62% 53.01% 87.36% 93.62% 76.28%
Sig. proportion 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Growing season 100.00% 25.02% 88.27% 25.27% 91.77% 70.09%
Sig. proportion 0.00% 23.99% 0.00% 1.28% 0.00% 4.96%

Figure 9. Spatial distribution of linear trends (°C/10 a) of annual (a,c) and growing season (b,d)
DTR during 2015–2050 in the main maize cultivation areas under different scenarios simulated via
EC-Earth3-Veg-LR. The black dot indicates the grid point with the trend that was significant at p < 0.1.
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5. Discussion

To explore the applicability of the CMIP6 model to maize research, an assessment
was first conducted to evaluate the ability of CMIP6 models to simulate DTR in maize
cultivation areas in China. The results show that CMIP6 models can reproduce the spatial
and temporal characteristics of DTR in historical periods. CMIP6 models still have obvious
deviations in simulating DTR in western China, which shares the same characteristics with
other meteorological components [37,44,45]. The complex terrain in NWC may lead to
simulation uncertainty [46]. The simulation effect of CMIP6 models on the historical climate
DTR of the main maize cultivation areas is better than that of China. The decreasing DTR
trend has been universally observed since the 1950s [47,48]. CMIP6 models can also capture
the slow decreasing trend in annual DTR and growing season average DTR in maize
cultivation areas during the historical period. CMIP6 models simulate the annual DTR
better than that for the growing season DTR, and the same characteristics can be found in
the simulations of meteorological components such as temperature and precipitation [49,50].
This difference makes it critical and essential to perform targeted model evaluations of the
maize-growing season. As a result of the comprehensive evaluation, EC-Earth3-Veg-LR
has the best simulation ability for the spatial and temporal distribution characteristics of
DTR in maize cultivation areas.

We projected the spatial and temporal characteristics and changes in the DTR in the
maize cultivation areas under different future scenarios with the selected optimal model.
Compared with the historical simulation, the climatic DTR of the main maize-producing
areas in the middle 21st century will be reduced by 0.151◦C (SSP245) and 0.207 ◦C (SSP585).
SSP585 showed a greater proportion of DTR reduction than SSP245. The DTR in the main
maize cultivation areas under SSP245 is expected to remain unchanged (annual) or increase
slightly (growing season). Under SSP585, DTR is expected to decrease both annually and
during the growing season. The projected DTR changes shared the same characteristics with
previous studies [15,48,51]. The downward trend of DTR in future scenarios is consistent
with the historical period [52,53]. At the same time, the DTR trends in maize cultivation
areas are also similar to the global DTR trends. It is worth noting that there are significant
increasing trends of growing season DTR in NC and NEC, and the impact on the quality
and yield of crops in China needs to be further explored.

A considerable number of studies have been conducted to evaluate the ability of
climate models to simulate key meteorological components [18–23]. However, the spatial
scales of previous evaluations were primarily global or national. There have been few
studies on maize cultivation areas and maize-growing seasons. When estimating the effects
of future climate on maize yield and quality, using inappropriate climate model data will
greatly reduce the credibility of the results. We quantitatively evaluated the ability of
CMIP6 models to simulate the temporal and spatial characteristics of the DTR in the main
maize production areas from multiple perspectives and used the optimal model to predict
and analyze the changes in the DTR in the main maize production areas in China under
different scenarios in the future. This will help to further improve the ability of global
climate models to simulate the DTR in China’s maize cultivation areas and to serve research
on the effects of climate change on maize yield and quality.

This study only evaluates the DTR of the maize cultivation areas in China and projected
the DTR changes during 2015–2050 under different SSP scenarios. The scope of our study is
limited in China, and the simulation capability of the climate model in other regions needs
further evaluation and projection. The yield of crops is known to be influenced by the
environment and other factors [1–5]. Thus, the ability of the climate model to simulate other
climate components in the maize cultivation areas in China needs to be further evaluated.
Meanwhile, the evaluation and prediction of other meteorological elements are also worthy
of further study and are of great significance and necessity.
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6. Conclusions

The ability of 26 CMIP6 models to simulate the DTR during 1961–2014 is examined
using model output together with the high-resolution CN05.1 dataset. Based on the overall
rankings of the historical simulation capacities of 26 CMIP6 models in maize cultivation
areas, the optimal model is screened to serve future estimates. Then, with the application
of the optimal model, a future projection of DTR in the main maize cultivation areas during
2015–2050 under two SSPs is presented in this study. The main conclusions are summarized
as follows:

1. CMIP6 models can generally reproduce the spatial distribution and interannual
variation in the DTR in the main maize cultivation areas. The reproducibility of the
DTR averaged over the main maize cultivation areas is better than that of China
(RMSEM is smaller than RMSEC). The DTR varies substantially between the models,
and the intermodel spread is particularly large in NWC.

2. Based on the comprehensive evaluation, EC-Earth3-Veg-LR is more suitable for the
simulation of DTR in the main maize cultivation areas in China. It is essential to
pertinently evaluate global climate models. The reproducibility of the maize-growing
season DTR averaged over the main maize cultivation areas is lower than that of the
annual DTR, but it is still acceptable.

3. Compared with historical simulations, reductions are widely detected: the climato-
logical DTR of the main maize cultivation areas decreases by 0.151 ◦C (SSP245) and
0.207 ◦C (SSP585). Under the SSP245 scenario, the reduction is mainly distributed in
NWC, NC, and CY. All subregions show a reduction under SSP585. The reduction
proportion of DTR under SSP245 is slightly smaller than that under SSP585.

4. The DTR in the main maize cultivation areas under SSP245 is expected to remain
unchanged (annual) or to increase slightly (growing season). Under SSP585, DTR
is expected to decrease both annually and during the growing season. The annual
and growing season DTRs are dominated by decreasing trends in NEC, NWC, and
SWC under the two scenarios, while in CY and NC, the growing season DTR shows a
significant increase.
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Abstract: As a major agricultural province of China, Shandong province has long ranked first in
agricultural growth value among all of the provinces; at the same time, it is also the province that
is most affected by dry-hot wind. Therefore, it is of great significance to study the spatial zoning
of the risks of dry-hot wind in this province. Based on meteorological, slope, and altitude data,
and the principle of disaster risk assessment, this study uses a weighted comprehensive evaluation
method, analytic hierarchy process, and ARC-GIS spatial analysis to study the spatial zoning of the
risks of dry-hot wind in Shandong province. The results show that the high-risk regions of dry-hot
wind are concentrated in the north-central portion of the province, the medium-risk regions are in
the peripheral areas, and the low-risk regions are located mainly in the west, southwest, and east.
Exposure of disaster-bearing bodies is high in the south and low in the north, while vulnerability
to disaster-bearing bodies is high in the west and low in the east. The more developed areas in the
east show high disaster prevention and mitigation capability, whereas this is weak in the west. In
summary, dry-hot wind risk in Shandong province varies significantly by area. The medium- and
high-risk areas are mainly in the west and central portions of the province.

Keywords: dry-hot wind disaster; risk zoning; Shandong province; natural disaster risk
assessment principle

1. Introduction

Dry-hot wind is a type of severe agricultural wind disaster with high temperature
and low humidity. The late spring and early summer are the seasons when the direct
sunlight in the northern hemisphere is the greatest, and the weather is sunny and drier
before the arrival of the northern rainy season. Under the control of the dry air mass, the
sky is fine, dry, and windy, and there are few opportunities for cloud formation to cause
rain, so it is easy to form dry-hot winds. It causes low humidity in the air and water in
the soil to evaporate, severely impacting crop yields and economic development [1,2].
The dry-hot wind disaster has become an important factor restricting the growth and
development of crops by intensifying plant transpiration, resulting in insufficient water
supply to the roots, causing an imbalance of water and nutrients in the plant. Typically,
the leaves change color and normal physiological activities of the plant are damaged or
inhibited, resulting in a significant shortening of the filling period of the crop, the high
temperature brought by the dry hot wind after flowering will shorten the growing period
of the seeds, and damage to protein and starch structure [3–8]. When the risk of dry-hot
wind is low, wheat yield can decline by 5–10%, and in severe cases, by 20–30% or more [9].
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In the 1950s, the Soviet Union conducted preliminary research on dry-hot wind disasters,
which was at the leading level compared with other countries, mainly on the formation
indicators and causes of dry-hot wind, spatial distribution, and that of disaster prevention
and mitigation measures [10]. In recent years, more scholars have paid attention to the
occurrence regularity of the number and intensity of dry-hot winds. Tavakol et al. [11]
analyzed the spatial patterns and temporal changes of hot, dry, and windy events (HDWs)
in the central United States for two time periods: 1949 to 2018 (70 years) and 1969 to
2018 (50 years). poкoпeц et al. [12] evaluated the dynamic variation characteristics of
the total number and intensity of dry-hot winds over the lower Volga River. In contrast,
Chinese scholars have conducted relatively more studies on the occurrence of hot-dry
wind. Hou et al. [13] considered that the occurrence characteristics of dry-hot wind in the
Hexi region of Gansu province and surrounding areas during June and July from 1960 to
2017 showed a tendency to decrease slowly and then increase rapidly. Cheng et al. [14]
pointed out the occurrence frequency of different graded of the hazard in Henan province
is on the rise. You et al. [15] analyzed the temporal-spatial distribution of dry-hot wind
in the Hebei province winter wheat region during the past 35 years. The Huang-Huai-
Hai region is the region with the most frequent occurrence of hot-dry winds in China,
so it has attracted the attention of scholars. Li et al. [16] considered the annual average
number of regional DHW events in the Huang-Huai-Hai Region showed a decreasing
trend from 1961 to 2010 and increased in 2011–2018. Shi et al. [17] also pointed out the
annual average of light and serve dry-hot wind in the Huang-Huai-Hai plain declined
from 1963 to 2012. Zhao et al. [18] studied the spatial-temporal changes of dry-hot wind of
winter wheat in the Huang-Huai-Hai plain under climate change. Wheat is the crop most
affected by hot and dry wind, so scholars have focused on the analysis of the impact of
hot and dry wind on wheat. Chen et al. [19] analyzed the influence of dry-hot wind on
the wheat in Henan province and proposed that the number of dry-hot wind days has a
significantly negative correlation with wheat meteorological yield. Shi et al. [20] proposed
that the total number of dry-hot wind days had a negative correlation with thousand
grain weight of winter wheat in Hebei province. Yang et al. [21] constructed a dry-hot
wind risk assessment index system, including a dry-hot wind intensity risk index and
a comprehensive disaster resistance index by using the meteorological data, yield and
structure data, and development period data of the winter wheat observation station, and
established a dry-hot wind risk assessment model. The risk of the dry-hot wind in the
main winter wheat producing areas in North China was assessed, and the results showed
that southeastern Hebei and northwestern Shandong were high-risk areas, while southern
Henan, eastern Shandong, and eastern Hebei were low-risk areas. Based on the theory of
agrometeorological disaster risk analysis, Chen et al. [22] analyzed the influence degree and
risk probability of dry-hot wind on wheat yield in wheat production in Henan province
by constructing a disaster function and using EOF and probability analysis methods. The
results showed that dry-hot wind was the main disaster that influenced the high and stable
yield of wheat in most of Henan province. In order to further study the resistance to
dry-hot wind of wheat, Juraev et al. [23] planted varieties and lines in November in the late
sowing period. The daily temperature, wind speed, and relative humidity were selected
to compare and study the changes of plant height, ear length, and grain number per ear
of wheat varieties in Casdalia and Surcandalia during their developmental stages. The
results showed that dry-hot wind had a significant effect on the traits of wheat varieties
and lines. Wang et al. [24] proposed a framework (DID) to quantify the impact of dry-hot
wind on winter wheat in northern China and the framework can effectively detect winter
wheat growing areas affected by dry-hot wind hazards. The estimated damage showed a
notable relationship (R2 = 0.903, p < 0.001) with the dry-hot wind intensity calculated from
meteorological data. Deng et al. [25] comprehensively summarized the causes, protecting
technology and answering tactics of dry-hot wind disasters.

With the deepening of research, scholars’ research on hot-dry wind has shifted from
occurrence to a disaster defense system, and disaster risk zoning is the basis for establishing
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a disaster prevention and mitigation system. Natural disaster zoning is the division of
regions based on the temporal and spatial distribution of the occurrence and development
of natural disasters; it can provide a scientific basis for regional disaster prevention and
mitigation. In fact, strengthening the research on the comprehensive zoning of natural
disasters is listed in China’s 21st Century Agenda [26]. For example, Cheng et al. [27]
established the index of yield loss risk of dry-hot wind and integrated to zone the compre-
hensive hazard risk in Henan province. Wu et al. [28] developed a new regionalization
method, wherein type one is high temperature and low humidity and type two is immature
death after rain, for the dry-hot windy days regionalization in the NCP. According to the
risk assessment theory of natural disasters, some scholars have performed fine zoning
and assessment of dry-hot wind risks in the winter wheat region of Henan province [29]
and spring wheat region of Inner Mongolia [30] from four aspects: risk of disaster-causing
factors, vulnerability of disaster-pregnant environment, exposure of disaster-bearing body,
and ability of disaster prevention and mitigation. As a major agricultural province in China,
Shandong province has a winter wheat planting area up to 4.003 × 106 hm2 and an annual
yield of 2.472 × 107 T [31]. Shandong province is located in the Huang-Huai-Hai region of
China, which is the region most affected by hot-dry wind disasters. However, there are
few studies on the risk of hot-dry wind in Shandong province. Therefore, it is urgent to
carry out the research on the risk regionalization of hot-dry wind in Shandong province.
Based on disaster risk theory, we analyze dry-hot wind disaster from four perspectives:
risk, exposure, vulnerability, and disaster prevention and mitigation capability. A dry-hot
wind disaster risk index model is established, and spatial zoning of dry-hot wind disasters
in Shandong is examined using ARC-GIS spatial analysis, weighted comprehensive evalua-
tion method, and analytic hierarchy process. The aims of this study are to comprehensively
assess and zone the risk of dry-hot wind, so as to ensure the safety of wheat production.
In order to reduce disaster risk and provide reference for agricultural production layout
and scientific decision-making, dry-hot wind risk zoning is of great significance to regional
agricultural management and production, people’s lives, and food security.

2. Materials and Methodology

2.1. Study Area

Shandong province is located on the east coast of China and the lower reaches of the
Yellow River (114◦48′ E–122◦42′ E and 34◦23′ N–38◦17′ N), as shown in Figure 1. The total
land area is 157,900 km2. The climate type is warm temperate monsoon. Precipitation is
concentrated, and rain and heat occur in the same season. Spring and autumn are short,
while winter and summer are long. The annual average temperature range is 11–14 ◦C
and the annual average precipitation range is 550–950 mm. The rainfall season is unevenly
distributed, with 60–70% of annual precipitation in summer. Landform types include plains,
terraces, hills, and mountains. There is a dense river network in the region, including the
Yellow River, Huaihe River, Haihe River, and smaller rivers in the central and southern
mountainous area.

Figure 1. Administrative division of Shandong province, China.
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2.2. Data Sets

The meteorological data used here include wind speed, temperature, and relative
humidity from 1991 to 2020. The aspect, altitude, slope, river network density, and land-use
type are obtained from the Meteorological Information Center of Shandong Meteorological
Bureau. Total GDP, total population, administrative area, wheat planting area, crop planting
ratio, population density, education level, per capita GDP, and crop planting area are from
the 2018–2020 Statistical Yearbook of Shandong province.

2.3. Methods

Based on the natural disaster risk theory, this paper constructs a scientific framework
as follows (Figure 2):

Figure 2. Scientific framework or spatial zoning of hot-dry wind disasters in Shandong province.

2.3.1. Basic Theory of Disaster Risk Assessment

Based on the theory of natural hazard risk formation [32], meteorological hazard risk
is formed by the combination of four components: hazard (causative factor), exposure
(carrier), vulnerability (carrier), and prevention and mitigation capacity. Each factor is in
turn composed of a series of subfactors. The expressions are:

Disaster risk index = f (hazard, exposure, vulnerability, disaster prevention and mitigation capacity) (1)

Hazardous factors: Hazardous factors include meteorological factors and environmental
sensitivity. All meteorological factors that may lead to disasters can be called meteorological
factor hazards; the sensitivity of the pregnant environment refers to the degree of strengthening
or weakening of meteorological factors in the natural surface environment.

Exposure of disaster-bearing body: Disaster-bearing body is the object of disaster-
causing factors and is the entity that bears the disaster. Exposure of the hazard-bearing body
is the result of the interaction between the hazard-causing factor and the hazard-bearing
body, and the exposure of the hazard-bearing individual to the hazard-causing factor.

Vulnerability of the disaster-bearing body: A disaster can be formed only when it
acts on the corresponding object, i.e., human beings and their socioeconomic activities.
Specifically, it refers to the degree of hazard or loss caused by the potential risk factors
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for all objects that may be threatened by the disaster-causing factors that exist in a given
hazard area, and its combination reflects the degree of loss from meteorological disasters.

Prevention and mitigation capacity: This refers to various management measures and
countermeasures used to prevent and mitigate meteorological hazards, including manage-
ment capacity, mitigation input, and resource preparation. The more proper management
measures and strong management capacity, the less potential losses may be suffered and
the less risk of meteorological disasters.

Based on the above theory, the hierarchical structure model of dry-heat wind risk
assessment was constructed. The risk index values of hazard factor, exposure factor,
vulnerability factor, and disaster prevention and mitigation capacity of dry-heat wind
disaster are calculated as Ya, Yb, Yc, and Yd, respectively, by the weighted comprehensive
evaluation method. Through the natural disaster risk index formula, combined with the
dry-heat wind disaster assessment index system of Shandong province, its disaster risk
index model is:

F = Wa × Ya + Wb × Yb + Wc × Yc + Wd × Yd (2)

In which, F is the dry heat wind hazard risk index, which indicates the degree of dry
heat wind hazard; the larger the value of F, the higher the risk and the opposite the lower. y
is the risk index value of hazard factor, exposure factor, vulnerability factor, and prevention
and mitigation capacity of dry heat wind hazard. w is the weight of each index.

Based on the composition of meteorological data, topography, and socioeconomic
elements, Figure 3 below shows the hierarchical structure model of dry-heat wind disaster
risk assessment in Shandong province.

Figure 3. Hierarchical model of dry hot air risk assessment.

2.3.2. Weighted Comprehensive Evaluation Method

The weighted comprehensive evaluation method is a method that solves the “bottom-
up” indexes in the risk hierarchy analysis and evaluation model, which considers the
degree of influence of each factor on the overall object and integrates the strengths and
weaknesses of each specific index and uses a numerical index to focus on the strengths
and weaknesses of the entire evaluation object. This method is especially suitable for
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comprehensive analysis and evaluation of technology, strategy, or programs and is one of
the most commonly used calculation methods. Its expression is:

Yi =
m

∑
j=1

λjXj i = 1, 2, . . . , m; j = 1, 2, . . . , m (3)

where Yi denotes the disaster risk index, i denotes hazard, exposure, vulnerability, and
disaster prevention and mitigation capacity, respectively; Xj is the factor affecting hazard,
exposure, vulnerability, and disaster prevention and mitigation capacity, and λi is the
weight value (0 ≤ λj ≤ 1).

For the comprehensive risk index of natural disasters, the expressions are:

Y =
n

∑
i=1

WiYi i = 1 (4)

where Y denotes the comprehensive disaster risk index; Yi is the hazard index, exposure
index, vulnerability index, and disaster prevention and mitigation capacity index, and Wi
is the weight value.

The stronger the disaster prevention and mitigation capacity is, the smaller the com-
prehensive risk index is, so the “negative sign” is used.

Where λj and Wi are determined using hierarchical analysis, as described in research
Section 2.3.3, each factor in the formula needs to be standardized because of different
dimensions; see research Section 2.3.4 for details.

2.3.3. Analytic Hierarchy Process

Analytic Hierarchy Process (AHP) is a simple method for making decisions on some
more complex and vague problems, especially for those problems that are difficult to fully
quantitatively analyze [33]. This paper uses the operation principle of the analytic hierarchy
process and uses the 1–9 scale method given by Saaty to construct the judgment matrix for
the pairwise relationship of the influence factors. The pairwise comparison of all influence
factors determines the weight of each influence factor, which avoids the result error caused
by the subjectivity of the expert. The qualitative comparison scale values between the two
influencing factors are shown in Table 1 below:

Table 1. Scale of AHP analysis method.

Scale bij Definition

1 The i factor is as important as the j factor.
3 The i factor is slightly more important than the j factor.
5 The i factor is more important than the j factor.
7 The i factor is much more important than the j factor.
9 The i factor is absolutely more important than the j factor.

2, 4, 6, 8 Between the noted levels.

Solve the maximum eigenvector value of the judgment matrix and its corresponding
eigenvector by the sum-product method and check the consistency of the matrix (the
following formula): After passing, solve it by the sum-product method.

CI =
λmax − n

n − 1
=

− n
∑

i=1
λi

n−1
(5)

CR =
CI
RI

< 0.1 (6)

In the formula, CI is the consistency index of the judgment matrix, λmax is the largest
characteristic root of the matrix, n is the order of the discrimination matrix, CR is the random
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consistency index of the judgment matrix, and RI is the average random consistency index
of the discrimination matrix. The values of RI are shown in Table 2:

Table 2. Numerical values of random consistency index RI.

M 1 2 3 4 5 6 7 8 9 10 11

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51

This paper adopts the Analytic Hierarchy Process (AHP), taking the sensitivity of the
disaster-pregnant environment as an example, and constructs the judgment matrix of each
index and the calculation results are shown in Table 3. Since CR < 0.1, the matrix passed
the consistency test.

Table 3. Judgment matrix and weights of various perceptual factors.

I II III IV V Weights (W)
Matrix

Product (AW)
AW/W λmax CI CR

I 1 2 3 3 4 0.402 2.03 5.05 5.033 0.008 0.007
II 1/2 1 2 2 3 0.244 1.23 5.04

λ = ∑(AW/W)/n
CI = (λ − n)/n − 1

RI = 1.12
CR = CI/RI

III 1/3 1/2 1 1 2 0.137 0.689 5.03
IV 1/3 1/2 1 1 2 0.137 0.689 5.03
V 1/4 1/3 1/2 1/2 1 0.079 0.399 5.05

25.18

Note: In the table, I. Slope direction, II. Elevation, III. Slope, IV. River network density, V. Land-use type.

Similarly, the weights of each factor of hazard, exposure, vulnerability, disaster pre-
vention and mitigation capacity, and combined disaster risk were obtained as shown
in Figure 3.

2.3.4. Standardization

In the process of zoning, the different magnitudes of the selected factors lead to a large
difference in order of magnitude; for example, the total population is 3,923,000 people,
while the total GDP is about 302.22 billion yuan, so when calculating the hazard index
of disaster-causing factors, normalization is required so that the values of each factor are
between 0 and 1. Furthermore, when assessing the hazard of disaster-causing factors,
exposure of disaster-bearing bodies, vulnerability of disaster-bearing bodies, and disaster
prevention and mitigation capacity, the larger the number of influencing factors, the larger
the hazard of disaster-causing factors, exposure of disaster-bearing bodies, vulnerability
of disaster-bearing bodies, and disaster prevention and mitigation capacity, while some
factors are the opposite. Therefore, in the assessment process, the criterion of a great value
or the criterion of a very small value should be standardized first, and the formula is as
follows. For example, the greater the dry and hot wind index, the greater the hazard of
disaster-causing factors, so choose the great value standardization for the dry and hot wind
index, and choose Equation (7); for example, the greater the slope, the less the sensitivity of
disaster-preventing environment, so standardize the slope for the small value, and choose
Equation (8).

Maximum standardization:

X′
max =

|X ij−Xmin

∣∣∣
Xmax−Xmin

(7)

Minimum standardization:

X′
min =

|X max−Xij
∣∣

Xmax−Xmin
(8)
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where Xij is the index number of the j-th factor of the x factor; X’max and X’min are the dimen-
sionality of Xij; Xmax and Xmin are the minimum and maximum values in the index sequence.

2.3.5. Arc-GIS Spatial Analysis

The spatial analysis methods involved in this paper include Kriging interpolation,
spatial reclassification, spatial raster calculation, and slope extraction. The raster resolution
is 100 m × 100 m.

Kriging interpolation is a method of unbiased optimal estimation of regionalized
variables in a limited region based on the variogram theory and structural analysis. Not
only can it reflect the spatial structure characteristics of variables, but it can also reflect the
random distribution characteristics of variables [34]. There are many factors that affect the
spatial change of natural geographical elements. The comprehensive action of these factors
forms the zonal regularity on the Earth’s surface, and the natural geographical elements
are also disturbed by various random factors. Geographers try to explore the regional
regularity of their natural geographical elements and strive to minimize the interference
of random factors. Kriging interpolation can minimize the interference of random factors
with the help of the optimal method. Therefore, this method can be used to analyze the
changes of elements in the interpolation space, such as the change of temperature, the
regional distribution law of water quality, vegetation, soil, and other elements with zonal
distribution law [35]. Based on the above research conclusions, this paper uses the Kriging
interpolation method to interpolate the zonal geographical elements. According to these
research results, this paper applies the Kriging interpolation method to zoning elements
and zoning results.

In this paper, the natural breakpoint method is used for classification in risk, exposure,
vulnerability, disaster prevention and mitigation capacity and comprehensive risk. In
fact, there are many classification methods, such as equal division, standard deviation
classification, and so on. Fu et al. [36] and others have concluded that the natural breakpoint
method can adequately extract the useful information contained in the index, so as to
establish a more reasonable and accurate index evaluation space. At the same time, the
risk, exposure, vulnerability, disaster prevention, and reduction ability and comprehensive
risk are divided into low, medium, and high levels, mainly because if there are too many
levels, the spatial expression effect is not clear enough.

3. Results

3.1. Spatial Distribution of Dry-Hot Wind Risk

The risk of dry-hot wind includes the risk of meteorological factors and the disaster
environment sensitivity, and the risk of meteorological factors is the main factor constituting
the risk of dry-hot wind. Disaster environment sensitivity can aggravate or reduce the risk
of meteorological factors. At the same time, this paper also consulted relevant experts, such
as Shandong Meteorological Bureau and the Department of Agriculture, and gave the risk
of meteorological factors and the disaster environment sensitivity the weights of 0.7 and
0.3, respectively. The weight in the composition of dry-hot wind meteorological factor risk
index is explained in the fourth question (Figure 3).

3.1.1. Zoning of Meteorological Factor Risk

According to the ground meteorological observation specification of the People’s
Republic of China (Table 4), soil relative humidity at 20 cm, daily maximum temperature
(◦C) air relative humidity at 14:00 (%) and wind speed at 14:00 (m/s) were selected as
the grade indicators of dry-hot wind. Since the meteorological station does not observe
20 cm soil relative humidity, there is no 20 cm soil relative humidity in the meteorological
observation records. Considering that precipitation is the main factor affecting 20 cm soil
relative humidity, the maximum process precipitation in early and middle May was used
to replace 20 cm soil relative humidity in this study. The classification standard of dry-hot
wind used in this study is shown in Table 5.
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Table 4. High temperature and low humidity type dry-hot wind grade indicators.

Area

Mild Medium Severe

20 cm Soil
Relative

Humidity

Daily
Maximum

Temperature
(◦C)

Air
Relative

Humidity
at 14:00 (%)

Wind
Speed at

14:00
(m/s)

Daily
Maximum

Temperature
(◦C)

Air
Relative

Humidity
at 14:00 (%)

Wind
Speed at

14:00
(m/s)

Daily
Maximum

Temperature
(◦C)

Air
Relative

Humidity
at 14:00 (%)

Wind
Speed at

14:00
(m/s)

Table 5. Dry-hot wind generation index.

Maximum
Process Pre-
cipitation in

Early and
Mid-May

The Time Period is Mid to Late May

Mild Medium Severe

Daily
Maximum

Temperature
(◦C)

Air Relative
Humidity at

14:00 (%)

Wind Speed
at 14:00

(m/s)

Daily
Maximum

Temperature
(◦C)

Air Relative
Humidity at

14:00 (%)

Wind Speed
at 14:00

(m/s)

Daily
Maximum

Temperature
(◦C)

Air Relative
Humidity at

14:00 (%)

Wind Speed
at 14:00

(m/s)

<25 mm 31 ≤30 ≥2 ≥32 ≤25 ≥3 ≥35 ≤25 ≥3

≥25 mm ≥33 ≤30 ≥3 ≥35 ≤25 ≥3 ≥36 ≤25 ≥3

The harmful degrees of the days of mild, medium, and severe dry-hot wind are different.
The more instances of severe dry-hot wind that happen, the stronger the influence of dry-hot
wind is in the area. Therefore, when constituting the dry-hot wind index, different weights
must be given to the days of mild, medium, and severe dry-hot wind. According to the basic
principle of AHP, when calculating the weight, first, the ratio matrix is constructed according
to the scale grade table. Since the severe dry-hot wind is very important compared with the
mild dry-hot wind, the ratio is assigned as one. The severe dry-hot wind is slightly more
important than the medium dry-hot wind, so the ratio is assigned as two. The medium
dry-hot wind is slightly more important than the mild dry-hot wind, so the ratio is assigned
as three, so the ratio matrix is formed (as shown in the Table 6 below). The consistency test
index CR of the matrix was calculated as CR = 0.08. Because CR < 0.1, the matrix passed the
consistency test. Using the sum product method, the weights of the times of mild, medium,
and severe dry-hot wind are 0.2, 0.3, and 0.5, respectively.

Table 6. Judgment matrix and weights of various perceptual factors.

I II III Weights (W) Matrix Product (AW) AW/W λmax CI CR

I 1 2 3 0.5 1.62 3.01 3.01 0.004 0.008
II 1/2 1 2 0.3 0.89 3.00 λ = ∑(AW/W)/n

CI = (λ − n)/n − 1
RI = 0.58

CR = CI/RI
III 1/3 1/2 1 0.2 0.49 2.99

9

Note: I. Severe dry-hot wind days, II. Moderate dry-hot wind days, III. Mild dry-hot wind days.

According to Table 5, the number of hot-dry days at all levels from 1991 to 2020 was
calculated. In the risk zoning of dry-hot wind days, the harm degrees of mild, medium, and
severe dry-hot wind days are different. The more severe dry-hot wind days, the stronger
the impact of dry-hot wind. Therefore, the mild, medium, and severe dry-hot wind days
constitute a comprehensive risk index, and different weights are assigned to the mild,
medium, and severe dry-hot days, which are 0.2, 0.3, and 0.5, respectively.

R = 0.2D1 + 0.3Dm + 0.5Ds (9)

where R is the comprehensive index of dry-hot wind (d), D1 is average number of days of
mild dry-hot wind disaster during the 30-year study period (d), Dm is the average number
of days of medium dry-hot wind disaster during the 30-year study period (d), and Ds is the
average number of days of severe dry-hot wind disaster during the 30-year study period (d).

To sum up, mild, medium, and severe dry-hot wind refers to the results obtained
by combining different meteorological indicators. The comprehensive index is a linear
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addition of the days of mild, medium, and severe dry-hot wind, which is formed for the
risk zoning index.

The risk of dry-hot wind is composed of two parts: the risk of meteorological factors
and the pregnancy disaster environmental sensitivity. Dry-hot wind is a type of mete-
orological disaster with high temperature, low humidity, and a certain wind force. The
topographic factors in the pregnancy disaster environmental sensitivity affect the hazard
degree of dry-hot wind. Since meteorological factors are more important compared with
topographic factors, the risk of meteorological factors is given a higher weight. According
to the scale of the AHP analysis method, when the i factor is more important than the j
factor, the weight of the i factor is given to 0.7, and the weight of the j factor is given to 0.3.
Therefore, the weight of the risk of meteorological factors is assigned 0.7, and the weight of
the pregnancy disaster environmental sensitivity is assigned 0.3.

The spatial distribution of the average number of days of dry-hot wind in Shandong
province over the past 30 years is shown in Figure 4. The spatial distribution of the days of
mild dry-hot wind is similar to that of moderate dry-hot wind. High values are distributed
mainly in the central area, and low values are found in the east and west. The highest
values are 1.1 d and 0.4 d, and the lowest value is 0. Areas with a high number of days
with severe dry-hot wind disasters are concentrated in the north, and the highest figure
is 0.4 d. In the remaining areas, the number of days with severe dry-hot wind disaster is
significantly reduced, with the lowest value at 0. The spatial distribution of the index varies
significantly. The high-value areas are concentrated in Weifang, Zibo, Jinan, Binzhou, and
Dongying. The highest number of days is 1.9, and the lowest number of days is 0.

Figure 4. Spatial distribution of dry-hot wind meteorological factors in Shandong province: (a) mild
dry-hot wind days; (b) moderate dry-hot wind days; (c) number of days with severe dry-hot wind;
(d) dry-hot wind composite index.

3.1.2. Zoning of Disaster Environment Sensitivity

Aspect, altitude, slope, river network density, and land-use type are selected as the
zoning indices for disaster environment sensitivity (Figure 5). The south slope has longer
sunshine duration and higher temperature, so the closer to the south slope, the more
dangerous the hot-dry wind will be. The southwest slope and southeast slope also receive
more solar radiation relatively, so the sensitivity is also higher. The east slope warms
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faster than the west slope, so the sensitivity is higher than that of the west slope; thus,
that of the northeast slope is also slightly higher than that of the northwest slope. The
temperature of the north slope is the lowest, so the sensitivity is the lowest. The sensitivity
of slope-free area is slightly lower than that of the south slope and higher than that of the
east slope. Therefore, the ordering and scoring of the slope aspect are shown in Table 7.
Temperature decreases with increased altitude; therefore, the higher the altitude, the lower
the temperature. The greater the slope is, the less solar radiation per unit an area receives,
and therefore the lower the sensitivity would be [37]. The slope range in Shandong province
is 0–49.5◦, so every 10◦ is assigned a grade, as shown in Table 8. In addition, the higher the
river network density, the higher the air humidity, and the less the impact from dry-hot
wind. Compared with unused land, woodland and grassland have better water conserving
capacity and higher air humidity, which helps to reduce the influence of dry-hot wind
disasters. The scores for different land use types are shown in Table 9.

Figure 5. Spatial distribution map of slope aspect, altitude, slope, river network density, and land-use
type in Shandong province.

Table 7. Grading and score of slope direction.

Aspect South South West South East No Slope East West Northeast North West North

Score 8 7 6 5 4 3 2 1 0
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Table 8. Grading and score of the slope.

Slope 50–40◦ 40–30◦ 30–20◦ 20–10◦ 10–0◦

Score 5 4 3 2 1

Table 9. Land-use type scores.

Land Use
Type

Arable
land

Woodland Grassland Waters
Construction

Land
Unused

Land

Score 3 2 4 1 5 6

Adding the value of each factor according to its weight, the spatial distribution of
the environmental sensitivity risk in Shandong province is obtained, as shown in Figure 6.
There is little spatial difference in the environmental sensitivity from dry-hot wind disasters
in Shandong province, yet the spatial distribution is uneven and shows a high degree
of fragmentation.

Figure 6. Spatial distribution of environmental sensitivity to dry-hot wind pregnancy in Shandong province.

3.1.3. Zoning of Dry-Hot Wind Risks

Meteorological factor risk and disaster environmental sensitivity are added according
to their weight, and then classified to obtain the spatial distribution map of dry-hot wind
disasters in Shandong province, as shown in Figure 7. Note that dry-hot wind disasters
in Shandong province have clear spatial characteristics. The dry-hot winds at all levels in
the north central area of Shandong province are all high-value areas, and the slope in the
north central area is dominated by the southern slope with low altitude, small terrain slope,
low river network density, and a large proportion of construction land. The sensitivity
of the north central is higher. To sum up, the risk of dry-hot wind is higher in the north
central area of Shandong province, with a distribution area of 32,587.6 km2, accounting for
20.6% of the total land area. These areas include Dongying, Weifang, Zibo, east of Jinan,
and south of Binzhou. The medium-risk regions are distributed in the peripheral area of
the high-risk regions, including northwest of Binzhou, west of Jinan, Tai’an, Linyi, Rizhao,
and east of Weifang. The medium-risk area comprises 6649.7 km2, accounting for 42.1%
of the total land area. The low-risk regions are in the west, southwest, and east, including
Weihai, Yantai, and Qingdao on the Jiaodong Peninsula, and Heze, Jining, and Zaozhuang
in the southwest. The low-risk area comprises 28,820.6 km2, accounting for 37.3% of the
total land area.
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Figure 7. Spatial distribution of dry-hot wind hazards in Shandong province.

3.2. Spatial Distribution of Exposure of Disaster-Bearing Bodies

Exposure includes agricultural exposure and economic exposure. Crops are directly
impacted by dry-hot wind disasters, and planting area directly reflects the degree of expo-
sure. Thus, the sown area of crops is selected as the index of agricultural exposure. When a
dry-hot wind disaster occurs, the higher the total GDP, the greater the total population, and
the larger the administrative area, the stronger exposure will be from the disaster. Therefore,
total GDP, total population, and administrative area are selected as economic exposure
indices and added according to their weights in Figure 3 to obtain a spatial distribution
map of economic exposure. Then, agricultural exposure and economic exposure are added
with a weight of 0.7 and 0.3, respectively, and then classified to obtain the spatial zoning
results of dry-hot wind exposure in Shandong province (Figure 8). Note that exposure to
dry-hot wind disasters shows a clear spatial distribution pattern: generally high in the
south and low in the north. High-exposure areas include Heze, Jining, Linyi, and Weifang,
and medium-exposure areas are mainly in Dezhou, Liaocheng, Tai’an, Jinan, Yantai, and
Qingdao. Low-exposure areas include Binzhou, Dongying, Zibo, Zaozhuang, Rizhao, and
Weihai. The areas of high, medium, and low exposure are 56,581.8 km2, 62,815.1 km2, and
38,503.2 km2, accounting for 35.8%, 39.8%, and 24.4% of the total land area, respectively.

Figure 8. Spatial distribution of exposure of dry-hot wind-bearing bodies in Shandong province.

3.3. Spatial Distribution of Vulnerability of Disaster-Bearing Bodies

Vulnerability includes agricultural vulnerability and economic vulnerability. Dry-
hot wind disasters hinder the grain filling of wheat and forces it to ripen, affecting its
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maturation, and the thousand-grain weight is significantly reduced, resulting in a serious
reduction in wheat production [38]. Therefore, the larger the wheat planting area, the greater
the impact of dry-hot wind disasters. The present study uses the wheat planting area as the
index of agricultural vulnerability. As for economic vulnerability, crop area proportion and
population density are selected as indices of economic vulnerability. Crop area proportion
refers to the ratio of crop planting area to administrative area. The larger the crop area
proportion, the higher the vulnerability. The higher the population density, the higher the
vulnerability. Crop area proportion and population density are spatially superimposed, as
shown in Figure 3, to obtain the distribution map of economic vulnerability (not shown).
Agricultural vulnerability and economic vulnerability are then added with a weight of 0.7
and 0.3, respectively, and classified to obtain the spatial zoning results of the vulnerability
of disaster-bearing bodies (Figure 9). Note that vulnerability is high in the west and low in
the east. The high-vulnerability areas include Heze, Liaocheng, and Dezhou in the west.
The low vulnerability areas are Dongying, Zibo, Rizhao, Yantai, and Weihai. The remaining
cities show medium vulnerability. The areas of high, medium, and low vulnerability are
31,503.3 km2, 88,001.4 km2, and 38,395.3 km2, accounting for 20.0%, 55.7%, and 24.3% of
the total land area, respectively.

Figure 9. Spatial distribution of vulnerability of dry-hot wind-bearing bodies in Shandong province.

3.4. Spatial Distribution of Disaster Prevention and Mitigation Capability

Disaster prevention and mitigation capability refer to management measures and
countermeasures used to prevent and reduce meteorological disasters. The higher the
economic level of a place, the higher the disaster prevention and mitigation capability [39].
The higher the per capita GDP, per capita income, and level of education, the stronger
the ability to defend against and respond to dry-hot wind disasters. Per capita GDP, per
capita income, and education level are selected as indices of disaster prevention and
mitigation capability. In accordance with the weights shown in Figure 3, the indices are
added and then classified to obtain the spatial zoning results of the disaster prevention and
mitigation capability in Shandong province (Figure 10). Note that the disaster prevention
and mitigation capability of dry-hot wind disasters is high in the east and low in the
west. Areas with high disaster prevention and mitigation capability are located mainly in
Yantai, Weihai, Jinan, Qingdao, Jinan, and Dongying. Regions with low disaster prevention
and mitigation capability include Dezhou, Liaocheng, Heze, Zaozhuang, and Linyi. The
remaining areas are medium-risk regions. Areas with high, medium, and low disaster
prevention and mitigation capability comprise 48,613.6 km2, 56,086.5 km2, and 53,199.8 km2,
accounting for 30.8%, 35.5%, and 33.7% of the total area, respectively.
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Figure 10. Spatial distribution of disaster prevention-mitigation capacity of dry and hot winds in
Shandong province.

3.5. Spatial Distribution of Comprehensive Risk of Dry-Hot Wind Disasters

The four factors of the zoning results of risk, exposure of disaster-bearing bodies,
vulnerability of disaster-bearing bodies, and disaster prevention and mitigation capability
are spatially superimposed according to the weights shown in Figure 3. This obtains the
zoning results of the comprehensive risk of dry-hot wind disaster in Shandong province,
as shown in Figure 11. Note that the comprehensive risk of dry-hot wind disaster differs
substantially in different areas. The medium- and high-risk regions are located mainly in
the west and central areas, with low-risk regions in the east. The overall spatial distribution
shows a strong degree of fragmentation. Table 10 shows the areas of the high-, medium-,
and low-risk regions in each city. In Jining, Weifang, Heze, and Linyi, the area of high risk
is largest. In Dongying, Qingdao, Rizhao, Weihai, Yantai, and Zaozhuang, there are no
high-risk regions. Jining, Jinan, Tai’an, Binzhou, Linyi, and Dongying are medium-risk
regions. The area of medium risk in Heze and Weihai is zero. In Yantai, Qingdao, and
Weihai, the area of low risk is largest. In summary, there are no low-risk regions in Jining,
Dezhou, Heze, Liaocheng, Linyi, and Weifang, only medium- and high-risk areas. The
area of high-, medium-, and low-risk regions for dry-hot wind disasters is 64,076.7 km2,
58,474.3 km2, and 35,349.0 km2, accounting for 40.6%, 37.0%, and 22.4% of the total land
area, respectively.

Figure 11. Spatial distribution of integrated riskiness of dry-hot wind in Shandong province.
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Table 10. Area of high-, medium-, and low-risk areas in Shandong province by city.

High-Risk Area Medium-Risk Area Low-Risk Area

Area (km2) Ratio (%) Area (km2) Ratio (%) Area (km2) Ratio (%)

Binzhou City 4028.6 2.6 5582.1 3.6 1 0
Dezhou City 9594.5 6.1 1019.1 0.7 0 0

Dongying City 0 0 5104.5 3.3 2064.5 1.3
Heze City 12,083.8 7.7 0 0 0 0
Jinan City 1955 1.2 7069.6 4.5 1443.9 0.9
Jining City 297,514 1.9 8184 5.2 0 0

Liaocheng City 6488.6 4.1 2263.2 1.4 0 0
Linyi City 11,891.2 7.6 5329.6 3.4 0 0

Qingdao City 0 0 3915.1 2.5 7276.5 4.6
Rizhao City 0 0 1668 1.1 3679.8 2.3
Taian City 375.2 0.2 6609.2 4.2 875.1 0.6

Weihai City 0 0 0 0 5687.5 3.6
Weifang City 13,089.7 8.4 3027.8 1.9 0 0
Yantai City 0 0 323.5 0.2 13,652.5 8.7

Zaozhuang City 0 0 3958.7 2.5 581 0.4
Zibo City 1595 1 4420 2.8 87.2 0.1

4. Discussion

(1) This study evaluates and classifies the risk of dry-hot wind disasters in Shandong
province from the perspectives of risk, exposure, vulnerability, disaster prevention and
mitigation capability, and comprehensive risk. Similar studies are rare. Thus, the results of
this study provide a framework for related research in this area. The comprehensive risk
of dry-hot wind disasters obtained here is compared with existing studies. Li et al. [40]
use daily maximum temperature, relative humidity at 14:00, and wind speed at 14:00 from
1961 to 2017, as well as winter wheat growth period data to analyze the spatiotemporal
characteristics of the disaster-causing factors of dry-hot wind disasters in the Huanghai and
Huaihai areas. Their results show that dry-hot wind disasters occur frequently in northern
and western Shandong. In comparison, the present study shows that the comprehensive
high-risk area of dry-hot wind disasters is located mainly in Binzhou, Zibo, and Weifang,
which is north of Shandong province, Dezhou and Liaocheng in the west, and Heze, Jining,
and Linyi in the south. Note that these results are consistent with the previous study.

(2) In the present study, based on observation data from meteorological stations, the
dry-hot wind index R of each station is calculated. Then, the Kriging interpolation method
in ARC-GIS is used to obtain the spatial distribution map. In addition to the Kriging
interpolation method, there are also other spatial interpolation methods, such as the in-
verse distance weight interpolation method, spline function method, and trend surface
analysis. The results of different interpolation methods are shown in Figure 12. The spatial
distribution of the dry-hot wind index obtained by different interpolation methods differs.
The results of the Kriging interpolation, inverse distance weight interpolation, and spline
function methods are similar, whereas the results of trend surface analysis are quite dif-
ferent. According to the results from the Kriging interpolation, inverse distance weight
interpolation, and spline function methods, the areas with a high dry-hot wind index are
located in the north-central area of Shandong province. Existing studies show that the
occurrence of hot-dry wind disaster is frequent in the central part of Shandong province,
and less frequent in the west [18]. Huimin County (Binzhou City) and Yangjiaogou Town
(Weifang City) are two high-incidence areas of dry-hot wind disasters. Dezhou, Liaocheng,
Jining, and Heze are low-risk areas. Yanzhou (Jining City) has a significantly higher occur-
rence frequency than Heze. In addition, the frequency of dry-hot wind disasters in Tai’an
City increases from southwest to northeast [28]. Lin et al. [41] analyzed the weather data
and hazard symptom information during the later stage of wheat growth, weather data for
dry-hot wind days in past years, and field test data. These authors found that dry-hot wind
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disasters occurred in Dezhou, Heze, Weifang, and Jining. The results obtained by Kriging
interpolation are consistent with the results of previous studies.

Figure 12. Spatial distribution of dry-hot wind index: (a) Kriging interpolation method; (b) inverse
distance weight interpolation method; (c) spline function method; (d) trend surface analysis method.

(3) To perform the zoning of exposure, vulnerability, and disaster prevention and
mitigation capability, only social and economic indicators are used in this study. However,
the indicators in different counties are not standardized. For example, some indicators may
not be present for certain counties. For the purpose of standardization, adjustments or
replacements are made based on specific conditions, with varying effects on the zoning
results. Moreover, some indicators are limited to the city level, and there is no county-level
data, which affects the spatial resolution of the zoning. In addition, some indicators are not
included in the statistical yearbooks; these are replaced with similar indicators. For instance,
education level is supposed to be the percentage of graduation at each level, yet in the
statistical yearbook, there is no relevant information. Thus, the number of school students
is used to calculate education level. Apparently, such treatment affects the zoning results.

(4) The zoning results for dry-hot wind disasters include not only comprehensive risk,
but also zoning for risk, exposure, vulnerability, and disaster prevention and mitigation
capabilities. Therefore, in practical application, the results can be analyzed from various
perspectives. For example, from the perspective of comprehensive risk zoning of dry-hot
wind disasters (Figure 11), the comprehensive risk is high in Dezhou, Liaocheng, and Heze.
However, when the zoning results of risk, exposure, vulnerability, and disaster prevention
and mitigation capability are considered separately, we find that for areas with high com-
prehensive risk, such as Weifang, Jinan, Zibo, and Binzhou, disaster prevention awareness
should be enhanced, and scientific disaster prevention and relief plans should be formu-
lated. For areas with high exposure, such as Heze, Weifang, Linyi, and Jining, investment in
disaster relief facilities should be increased. For Dezhou, Liaocheng, and Heze, which have
high vulnerability and weak disaster prevention and mitigation capability, the focus should
be on strengthening economic development and increasing investment in education, so as
to reduce losses caused by dry-hot disaster. In conclusion, the risk assessment and zoning
of dry-hot wind disasters in Shandong province can not only improve our understanding
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of such disasters, but they can also provide a framework for government to formulate
disaster prevention and relief policies.

(5) After calculating the risk index, exposure index, vulnerability index, disaster
prevention and mitigation capabilities index, and comprehensive risk index, the risk space
should be divided according to the size of the index. There are many methods to divide
the index, such as the equal interval method, defined interval method, natural breakpoint
classification method, standard deviation method, and so on. In the classification, we
take the risk as an example and select four methods for comparison (Figure 13). It can
be seen that the spatial differences of the zoning results obtained by the equal interval
method (a), defined interval method (b) and standard deviation method (d) are not obvious,
which means a smaller high-risk area in Figure 13a, a too-large risk area in Figure 13b,
and the uncleared risk boundary in Figure 13d. The natural breakpoint classification
method, compared with other methods, is the method with zoning results where spatial
distribution of each grade is clear and is more consistent with the reality. Therefore, the
natural breakpoint method is selected. The results of various division methods are as
follows, and the classification scope of each index is added to the corresponding research
content of the article.

Figure 13. Spatial distribution of dry-hot wind hazards in Shandong province: (a) Equal Interval;
(b) defined Interval; (c)natural breaks; (d) standard deviation.

(6) The dry-hot wind mainly reduced the wheat yield by reducing the 1000-grain
weight of wheat. Therefore, this study calculated the average wheat yield per unit area of
each administrative city (county) based on the statistical yearbook of each city in Shandong
province in the past five years, and its spatial distribution is as follows.

Compared to the results of the dry-hot wind comprehensive risk zoning (Figure 11)
and the yield per unit area of wheat, it can be seen that the spatial distribution of the two
figures is basically similar (Figure 14). In areas with a high comprehensive risk of dry-hot
wind, such as Dezhou, Liaocheng, Heze in the west, the yields per unit area of wheat are
also the lowest; Dongying, Jinan, Tai’an, Rizhao, Qingdao, Weihai and other counties (cities)
with low comprehensive risk of dry-hot wind, and the yields per unit area of wheat are
also higher. However, there are also individual areas that do not match. For example, in
the southwest of Dongying, the comprehensive risk of dry-hot wind is the highest, and the
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average yield per unit area of wheat is also high, which may be caused by several factors,
such as artificial irrigation.

Figure 14. Spatial distribution of wheat yield per unit area in Shandong province.

5. Conclusions

The dry-hot wind, at all levels in Shandong province, mainly occurs in the central
area of Shandong province, and the number of dry-hot wind in a year is at most 1.9 days.
Severe dry-hot wind mainly occurs in the northern part of the central region, specifically in
Zibo City, Weifang City, and Dongying City, where it occurs, at most, for 0.4 d. Considering
the topographic factors, the high-value area of dry-hot wind risk index is located in the
north-central area, with an area of 32,587.6 km2, accounting for 20.6% of the province’s
area, and other areas are gradually decreasing. The high-value area of the exposure index
is located in the southwest of Shandong province, covering an area of 56,581.5 km2, ac-
counting for 35.8% of the province’s area. The high-risk areas in Zibo and Dongying are all
low-exposure, and only Weifang is high-exposure. The high-value area of the dry-hot wind
disaster-affected body vulnerability index in Shandong province is located in the west of
Shandong province, with an area of 31,503.3 km2, accounting for 20.0% of the province’s
area, while the high-value area of dry-hot wind risk has relatively low vulnerability. The
high-value areas of the dry-hot wind disaster prevention and mitigation capabilities index
in Shandong province are located in the eastern and central parts of Shandong province,
with an area of 48,613.6 km2, accounting for 30.8% of the province’s area, and the lowest are
in the southern and western regions. The disaster prevention and mitigation capabilities of
the high-risk dry-hot wind area belongs to the medium area, among which Dongying City
has the strongest disaster prevention and mitigation capabilities for dry-hot wind. To sum
up, the high-value areas of dry-hot wind comprehensive risk in Shandong province are
located in the western and central parts of Shandong province, with an area of 64,076.7 km2,
accounting for 40.6% of the province’s area. Due to its strong disaster prevention and miti-
gation capabilities, Dongying City has become a low-value area in terms of comprehensive
risk. Both Zibo City and Weifang City belong to areas with high comprehensive risk of
dry-hot wind.

The study results showed that the comprehensive risk zoning results of dry-hot wind
proposed in this paper were basically consistent with the spatial distribution of wheat yield
per unit area in Shandong province, indicating that the results of dry-hot wind zoning
in this study were of high accuracy. The results of this paper have important guiding
significance for the formulation of disaster prevention and reduction planning of dry-hot
wind in Shandong province. It is suggested to strengthen the construction of dry-hot
wind early warning systems in the central and western regions, including improving
the accuracy of dry-hot wind prediction, cultivating wheat varieties resistant to high
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temperature and low humidity in the central and western regions, especially strengthening
the water conservancy construction in the central and western regions, and improving the
disaster prevention and reduction capacity of dry-hot wind resistance, so as to reduce the
losses caused by strong exposure and vulnerability. In particular, Weifang City, Dezhou
City, and Heze City should formulate different disaster prevention and reduction plans
according to different mechanisms leading to high comprehensive risk of dry-hot wind.
For example, Weifang is in a high-risk area.
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Abstract: Peanut growth in Shandong Province, a major peanut-producing area in China, is greatly
affected by drought. The present study uses hierarchical analysis, weighted comprehensive eval-
uation, and ArcGIS spatial analysis to conduct spatial zoning of peanut drought risk in Shandong
Province based on daily precipitation data for the province acquired from 1991 to 2020, the per capita
GDP, and the peanut planting area of Shandong Province, so as to quantify the disaster risk of peanut
drought and formulate disaster prevention and resilience planning accordingly. The results show
the high-drought-risk zone was mainly distributed in the northwestern part of Shandong Province
and on the Jiaodong Peninsula, covering 32.4% of the province. Drought risk was concentrated on
the Jiaodong Peninsula, covering 20.7% of the province. The high-vulnerability zone was mainly
distributed in the cities of Yantai, Weihai, Linyi, and Rizhao, accounting for 26.8% of the total area.
The low-disaster-prevention and low-mitigation-capacity zone was mainly distributed in the western
part of Shandong Province, covering 38.7% of the province. Medium- and high-risk areas for drought
affecting peanuts were widely distributed, while the overall comprehensive risk index was high,
covering 76.2% of the province. Spatial analysis to conduct risk zoning and assessment of peanut
drought in Shandong Province, so as to provide a basis for peanut drought disaster prevention and
safe peanut production in Shandong Province.

Keywords: peanut drought; risk zoning; Shandong Province; natural disaster risk assessment principles

1. Introduction

According to the World Meteorological Organization, meteorological disasters cause
about 85% of the total losses caused by various types of natural disasters, and drought
in turn accounts for about 50% of meteorological disasters losses [1]. The peanut is an
important food, source of oil, and cash crop in China [2,3]. Drought can seriously affect the
plants during flowering and the quality of peanut kernels during the podding period [4–6],
leading to a decline in peanut quality and yield [7,8]. Therefore, drought is an important
factor limiting peanut growth and yield. Shandong Province ranks among the top peanut-
growing areas in China, with the peanut cultivation area accounting for about 15–16% of
the total domestic peanut growing area; total production in Shandong accounts for about
18–20% of the total domestic production [9,10]. The critical period of water demand for
peanut growth is concentrated from June to August, which coincides with the occurrence
of summer drought in Shandong Province; therefore, drought disasters are one of the major
types of disasters affecting the growth and yield of peanuts in Shandong Province [11].

Natural disaster risk refers to the possibility of loss from the impact of a certain disaster
in a certain area after considering the natural and social attributes together [12]. Therefore,
the purpose of natural disaster risk research is to provide a scientific basis for regional dis-
aster prevention and mitigation, and strengthening the research of comprehensive natural
disaster zoning has been listed as one of the actions of disaster prevention and mitigation
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in China’s Agenda 21 [13]. Significant work has been carried out in various countries for
drought risk zoning research. Araya, A. et al. [14] developed a suitable drought assess-
ment technique by analyzing long-term climate data from four sites in northern Ethiopia;
Moumita Palchaudhuri et al. [15] used a combination of AHP and GIS to conduct a drought
zoning study in Puruliya, West Bengal, India; Nazarifar Mohammadhadi et al. [16] as-
sessed and zoned drought risk in the Karkheh basin for different years and return peri-
ods; Zhongyi Sun et al. [17] proposed a methodology for integrated risk analysis, assess-
ment, combination, and regionalization of droughts and floods in Anhui Province; and
Luo D et al. [18] assessed the drought hazard by constructing a gray predictive incidence
model (GPIM). Additionally, for peanut drought, risk zoning has also attracted the atten-
tion of scholars, but up to now the relevant research literature has been relatively scarce.
Wei S. Cheng et al. [19] conducted a risk evaluation of peanut drought in the Yellow and
Huaihai Sea region and concluded that high-risk areas for peanut drought disaster were
scattered and mainly concentrated in the northwestern part of the Yellow River Basin.
Additionally, more scholars have studied the impacts of drought on peanut growth and
yield. For example, Celikkol Akcay U. et al. [20] concluded that the growth retardation of
peanuts under drought stress conditions was mainly due to drought-induced oxidative
damage and antioxidant responses; Jiang, C.J. et al. [21] proposed that drought inhibited
different varieties of peanut and the drought resistance of different peanut varieties varied;
and Zhang, K. et al. [22] selected 16 peanut varieties for drought resistance testing and
concluded that geological drought can start and end quickly, while meteorological drought
takes longer to develop and recover. These research results provide important reference
values for conducting peanut drought risk assessment and zoning studies.

This paper selected Shandong Province, China, as the study area, and conducted
a spatial zoning study on peanut drought risk in Shandong Province based on natural
disaster risk theory, considering four aspects, hazard, exposure of disaster-affected bodies,
vulnerability of disaster-affected bodies, and disaster prevention and mitigation capacity, by
establishing a peanut drought risk index model, combined with Arc-GIS spatial analysis, a
weighted comprehensive evaluation method, and hierarchical analysis method. Compared
with the existing studies, in addition to the study of peanut drought risk, the exposure of
disaster-affected bodies, vulnerability of disaster-affected bodies, and disaster prevention
and mitigation capacity were also evaluated and zoned, providing a reference for carrying
out peanut drought risk assessment and zoning studies. Research results provide a basis for
the prevention of peanut drought and the safe production of peanuts in Shandong Province
and provide a quantitative basis for the scientific formulation of disaster prevention and
mitigation policies and planning by relevant departments.

2. Materials and Methodology

2.1. Study Area

Shandong Province is located on the east coast of China and the lower reaches of the
Yellow River (114◦48′ E–122◦42′ E and 34◦23′ N–38◦17′ N), as shown in Figure 1. Total
land area is 157,900 km2. The climate type is warm temperate monsoon. Precipitation is
concentrated, and rain and heat occur in the same season. Spring and autumn are short,
while winter and summer are long. The annual average temperature range is 11 ◦C–14 ◦C,
and the annual average precipitation range is 550–950 mm. The rainfall season is unevenly
distributed, with 60–70% of annual precipitation in summer. Landform types include plains,
terraces, hills, and mountains. There is a dense river network in the region, including the
Yellow River, Huaihe River, Haihe River, and smaller rivers in the central and southern
mountainous area.
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Figure 1. Administrative division of Shandong Province, China.

2.2. Data Sets

This paper covers a total of 122 meteorological stations in Shandong Province from
1991 to 2019, and the precipitation data for each month were obtained based on the daily pre-
cipitation data of each station. The daily precipitation data were obtained from Shandong
Meteorological Center. According to the ground meteorological observation specification
of China Meteorological Administration, the daily precipitation data were reviewed by
the stations, their municipal meteorological bureaus, and the data review department of
the provincial meteorological bureau before being entered into the database of Shandong
Meteorological Center, and the anomalous values were eliminated to ensure the uniformity
and accuracy of the data. Total GDP, total population, peanut planting area, percentage of
peanut cultivation area, population density, per capita GDP, and water facilities are from
the 2018–2020 Statistical Yearbook of Shandong Province.

2.3. Methods

This paper constructs a theoretical model for peanut drought risk assessment based
on the basic theory of disaster risk assessment. The trend analysis method is used to
analyze the temporal characteristics of the disaster-causing factors; the hierarchical analysis
method is used to determine the weights of the factors constituting the risk impact; and the
comprehensive weighted evaluation method is used to constitute the risk index model.

2.3.1. Basic Theory of Disaster Risk Assessment

Based on the theory of natural hazard risk formation [12], meteorological hazard risk
is formed by the combination of four components: hazard (causative factor), exposure
(carrier), vulnerability (carrier), and prevention and mitigation capacity. Each factor is in
turn composed of a series of subfactors. The expressions are:

Disaster risk index = f (hazard, exposure, vulnerability, disaster prevention and mitigation capacity) (1)

Hazardous factors: Hazardous factors include meteorological factors and environmental
sensitivity. All meteorological factors that may lead to disasters can be called meteorological
factor hazards; the sensitivity of the pregnant environment refers to the degree of strengthening
or weakening of meteorological factors in the natural surface environment.

Exposure of disaster-bearing body: Disaster-bearing body is the object of disaster-
causing factors and is the entity that bears the disaster. Exposure of the hazard-bearing body
is the result of the interaction between the hazard-causing factor and the hazard-bearing
body, and the exposure of the hazard-bearing individual to the hazard-causing factor.

Vulnerability of the disaster-bearing body: A disaster can be formed only when it
acts on the corresponding object, i.e., human beings and their socioeconomic activities.
Specifically, it refers to the degree of hazard or loss caused by the potential risk factors
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for all objects that may be threatened by the disaster-causing factors that exist in a given
hazard area, and its combination reflects the degree of loss from meteorological disasters.

Prevention and mitigation capacity: It refers to various management measures and
countermeasures used to prevent and mitigate meteorological hazards, including manage-
ment capacity, mitigation input, and resource preparation. The more proper the manage-
ment measures and the stronger the management capacity, the less potential losses that
may be suffered and the less risk of meteorological disasters.

Based on the above theory, a hierarchical analysis model for peanut drought disaster
risk assessment in Shandong Province was built (Figure 2). Figure 2 shows the model
of peanut drought risk zoning. The risk was divided into meteorological factor risk and
pregnancy disaster environmental sensitivity. The risk of meteorological factor selected was
the precipitation anomaly percentage. The environmental sensitivity of pregnant disaster
referred to the environmental factors that can enhance or weaken the risk of peanut drought.
In this paper, factors such as elevation and slope were selected. Exposure was selected as the
peanut planting area; vulnerability referred to the percentage of the peanut cultivation area;
and the factors for disaster prevention and mitigation capabilities selected were the aspects
of per capita GDP, level of education, and so on. However, when selecting indicators, they
will be selected or replaced according to the factors in the Statistical Yearbook. Please refer
to Sections 3.1–3.4 for the selection basis of specific indicators.

Figure 2. Hierarchical model for peanut drought risk assessment.

2.3.2. Weighted Comprehensive Evaluation Method

The weighted comprehensive evaluation method is a method that solves the “bottom-
up” indexes in the risk hierarchy analysis and evaluation model, which takes into account
the degree of influence of each factor on the overall object and integrates the strengths and
weaknesses of each specific index and uses a numerical index to focus on the strengths
and weaknesses of the entire evaluation object. This method is especially suitable for
comprehensive analysis and evaluation of technologies, strategies, or programs and is one
of the most commonly used calculation methods. Its expression is:

Yi =
m

∑
i=1

WijYij i = 1, 2, 3, 4; j = 1, 2, . . . , m (2)

In the formula, Yi represents the disaster risk index, and i, respectively represents the
risk, susceptibility, vulnerability, and disaster prevention and mitigation capabilities; Yij
is the factor that affects the risk, susceptibility, vulnerability, and disaster prevention and
mitigation capabilities, and Wij is the weight value of risk, susceptibility, vulnerability, and
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disaster prevention and mitigation capabilities (0 ≤ Wij ≤ 1) , while j represents the number
of factors affecting i.

For the comprehensive risk index of natural disasters, the expressions are:

Y =
n

∑
i=1

WiYi i = 1, 2, 3, 4 (3)

In the formula, Y represents the comprehensive disaster risk index; Yi is the risk index,
susceptibility index, vulnerability index, and disaster prevention and mitigation capability
index, and Wi is the weight value. The stronger the disaster prevention and mitigation
capacity, the smaller the comprehensive risk index, so the “negative sign” is used.

Among them, Wij and Wi are determined by the analytic hierarchy process; see research
method Section 2.3.3 for details. Each factor in the formula needs to be standardized because
of different dimensions; see research method Section 2.3.4 for details.

2.3.3. Analytic Hierarchy Process

Analytic hierarchy process (AHP) is a simple method for making decisions on more
complex and vague problems, especially for those problems that are difficult to fully
quantitatively analyze [23]. This paper used the operation principle of the analytic hierarchy
process and used the 1–9 scale method given by Saaty to construct the judgment matrix for
the pairwise relationship of the influence factors. The pairwise comparison of all influence
factors determines the weight of each influence factor, which prevents the result error
caused by the subjectivity of the expert. The qualitative comparison scale values between
the two influencing factors are shown in Table 1 below.

Table 1. Scale of AHP analysis method.

Scale bij Definition

1 The i factor is as important as the j factor.
3 The i factor is slightly more important than the j factor.
5 The i factor is more important than the j factor.
7 The i factor is much more important than the j factor.
9 The i factor is absolutely more important than the j factor.

2, 4, 6, 8 Between the noted levels.

The maximum eigenvector value of the judgment matrix and its corresponding eigen-
vector need to be solved by the sum-product method, and the consistency of the matrix (the
following formula) should be solved; then, this should be solved by the sum-product method.

CI =
λmax − n

n − 1
=

− n
∑

i=1
λi

n − 1
(4)

CR =
CI
RI

< 0.1 (5)

In the formula, CI is the consistency index of the judgment matrix; λmax is the largest
characteristic root of the matrix; n is the order of the discrimination matrix; CR is the random
consistency index of the judgment matrix; and RI is the average random consistency index
of the discrimination matrix. The values of RI are shown in Table 2.

Table 2. Numerical values of random consistency index RI.

M 1 2 3 4 5 6 7 8 9 10 11

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51
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We summarize the calculation process in Table 3, as follows.

Table 3. Judgment matrix and weights of various perceptual factors.

I II III IV V Weight (W) Matrix Product (AW) AW/W λmax CI CR

I 1 2 2 3 3 0.368 1.851 5.03 5.013 0.009 0.003
II 1/2 1 1 2 2 0.206 1.035 5.02

λ = ∑ (AW/W)/n
CI = (λ − n)/n − 1

RI = 1.12
CR = CI/RI

III 1/2 1 1 2 2 0.206 1.035 5.02
IV 1/3 1/2 1/2 1 1 0.109 0.548 5.03
V 1/3 1/2 1/2 1 1 0.109 0.548 5.03

25.13

Note: In the table: I. river network density, II. slope, III. elevation, IV. land use type, and V. soil texture.

This paper adopted the analytic hierarchy process (AHP), taking the sensitivity of the
pregnancy disaster environmental sensitivity as an example, and constructed the judgment
matrix of each index; the calculation results are shown in Table 3. Since CR < 0.1, the matrix
passed the consistency test.

Similarly, the weights of each factor of risk, exposure, vulnerability, disaster prevention
and mitigation capacity, and comprehensive risk were obtained as shown in Figure 2.

2.3.4. Standardization

Because the dimensions of the selected factors are different, the values of each factor
vary greatly. It is necessary to normalize each factor so that the values of each factor are
between 0 and 1. When evaluating the risk of disaster-causing factors, the exposure of
the disaster-affected body, the vulnerability of the disaster-affected body, and the disaster
prevention and mitigation capacity, the correlations between the selected factors and each
evaluation index are different; some are positively correlated, and some are negatively
correlated. Therefore, when normalizing the factors with a positive correlation, if the cause
subvalue is large, the normalized value is also large, so the maximum value should be
selected for standardization. On the contrary, if the factors with a negative correlation
are standardized, the minimum standardization is selected. For example, the larger the
peanut planting area, the greater the exposure, so the great value standardization is chosen
for the peanut planting area, and Equation (6) is selected; for example, the greater the
river network density, the smaller the sensitivity of the pregnant environment, so the very
small value standardization is performed for the river network density, and Equation (7)
is selected.

Maximum standardization:

X′
max =

|X ij−Xmin

∣∣∣
Xmax−Xmin

(6)

Minimum standardization:

X′
min =

|X max−Xij
∣∣

Xmax−Xmin
(7)

where Xij is the index number of the j-th factor of the x factor; X′
max and X′

min are the
dimensionality of Xij; and Xmax and Xmin are the minimum and maximum values in the
index sequence.

2.3.5. Arc-GIS Spatial Analysis

In this paper, the meteorological elements and geographic environment elements were
interpolated using the Kriging method to obtain spatial distribution maps with a spatial
resolution of 100 m × 100 m. The socioeconomic factors were resampled by administrative
units to obtain spatial distribution maps with a spatial resolution of 100 m × 100 m.
Then, according to the weights of each element, the raster calculation method was used
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to superimpose each element spatially to obtain the spatial distribution map of risk index,
exposure index, vulnerability index, and disaster prevention and mitigation capability
index. Finally, each index of risk was spatially superimposed by weights to obtain the
spatial distribution map of comprehensive risk index. The natural grading discontinuity
method was used to grade each index, and the zoning map of each index of risk zoning
and the comprehensive risk zoning map were obtained.

2.3.6. Drought Classification

A precipitation anomaly percentage indicator can visually reflect the degree of drought
caused by precipitation anomalies; therefore, the precipitation anomaly percentage of
peanuts for the entire growing period was selected as the risk indicator of a peanut drought
meteorological factor. The precipitation anomaly percentage for a certain period was
calculated according to Equation (8):

Pa =
P − P

P
× 100% (8)

where Pa is the precipitation anomaly percentage (%); P is the precipitation for a certain
time period (mm); and P is the multiyear average precipitation for the corresponding time
period (mm), and the average value of 30 years was generally calculated.

In this paper, all grades of drought were calculated for each station according to (QX/T
82-2019) (Table 4) [24], and their frequencies were calculated and integrated in the formula
of the danger index of meteorological factors of drought, which was calculated as:

R =0.0960Dl + 0.1611Dm + 0.2771Ds + 0.4658De (9)

where R is the meteorological risk index of peanut drought; Dl is the average number of
days in 30 years of light drought (d); Dm is the average number of days in 30 years of
moderate drought (d); Ds is the average number of days in 30 years of severe drought (d);
and De is the average number of days in 30 years of exceptional drought (d).

Table 4. The precipitation anomaly percentage drought classification table (based on meteorological
drought rating criteria).

Level Types
The Precipitation Anomaly Percentage Pa (%)

Monthly Scale Quarterly Scale Annual Scale

1 Drought-free −40 < Pa −25 < Pa −15 < Pa
2 Light drought −60 < Pa ≤ −40 −50 < Pa ≤ −25 −30 < Pa ≤ −15
3 Moderate drought −80 < Pa ≤ −60 −70 < Pa ≤ −50 −40 < Pa ≤ −30
4 Severe drought −95 < Pa ≤ −80 −80 < Pa ≤ −70 −45 < Pa ≤ −40
5 Exceptional drought Pa ≤ −95 Pa ≤ −80 Pa ≤ −45

3. Results

3.1. Spatial Distribution of Peanut Drought Risk

Peanut drought risk includes meteorological factor risk and disaster formative envi-
ronmental sensitivity, which were assigned weights of 0.7 and 0.3, respectively, based on
the AHP method (Figure 2).

3.1.1. Meteorological Factor Risk Zoning

In this paper, the daily precipitation data of 122 stations in Shandong Province from
1991 to 2020 were used for meteorological data, and the precipitation anomaly percentage
was calculated according to Equation (8), and the frequency of different drought levels
in 122 stations in Shandong Province was calculated using the precipitation anomaly
percentage according to the drought grade (Table 4); the drought grade was determined
according to the meteorological drought standard of the people’s Republic of China (QX/T
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82-2019), and the spatial distribution map of the frequency of different drought levels in
peanut in Shandong Province during the whole reproductive period was obtained, and the
spatial distribution of the frequency of different levels of drought in peanut growing areas
in Shandong Province during the entire growing period was obtained (Figure 3). These
findings show that the frequency of light drought was higher mainly in the southwestern
part of Shandong Province, with a frequency of about 1.72%, with local high values in the
northwestern and some eastern areas; the frequency of light drought in the northwestern
area was the lowest, at 0. The frequency of moderate drought was higher in Dezhou, Zibo,
Dongying, and Weifang, with the highest value being 2.14%, and lower in other areas.
Severe drought was mainly concentrated in the Jiaodong Peninsula, with a frequency of
about 2.59%, and it was also higher in some areas in western Shandong and lower in other
areas; exceptional drought was widely distributed in the province, with a higher frequency
in both northern and eastern areas at about 2.55% in the northern and eastern parts of the
province, while the frequency was the lowest in the southwest.

(a) 

 
(b) 

Figure 3. Cont.
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(c) 

(d) 
Figure 3. Spatial distribution of the frequency of different drought levels for peanuts in Shandong
Province during the whole reproductive period: (a) frequency of light drought; (b) frequency of
moderate drought; (c) frequency of severe drought; and (d) frequency of exceptional drought.

The frequencies of light, moderate, severe, and exceptional drought were assigned
weights of 0.0960, 0.1611, 0.2771, and 0.4658, respectively, to construct the meteorological
factor risk index and obtain the spatial distribution of peanut drought meteorological
factor risk in Shandong Province, as shown in Figure 4. The spatial distribution of the
peanut drought meteorological factor risk in Shandong Province varied significantly. Specif-
ically, the high-value areas were mainly distributed in Liaocheng, Dezhou, Binzhou, Zibo,
Weifang, Qingdao, Yantai, and Weihai; the low-value areas were mainly distributed in
Jinan, Zaozhuang, Linyi, and Rizhao.

3.1.2. Zoning of Disaster Environment Sensitivity

Slope, elevation, river network density, land use type, and soil texture were selected
as zoning indicators for the disaster-formative environmental-sensitivity analysis. Gen-
erally, the higher the elevation, the greater the chance of a drought occurring and the
greater the sensitivity of an area to drought. Areas with greater slopes experience faster
runoff and less infiltration so less moisture is stored in the slope body, making an area
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more prone to drought. Areas with a less dense river network had lower atmospheric
humidity, making them more prone and sensitive to drought. Urbanization has resulted in
arable land, grassland, and woodland being replaced by buildings and hardened ground
that blocks rainwater from infiltrating into the soil, resulting in a worsening of drought
conditions. Therefore, areas different land use types were given unique scores (Table 5).
Areas with more clayey and heavier soil texture were less permeable to water, resulting in
weaker vertical infiltration, and they were more likely to retain ground water, which is not
conducive to the occurrence of drought disasters. Different soil textures were thus scored
as in Table 6. In the calculation of the environmental sensitivity index, all factors except the
river network density were normalized by the maximum value.

Figure 4. Spatial distribution of peanut drought meteorological factor risk in Shandong Province.

Table 5. Land use type scores.

Land Use Type Arable land Woodland Grassland Waters Construction Land Unused Land

Score 4 2 3 1 5 6

Table 6. Soil texture composite score.

Soil Texture Overall Score Soil Texture Overall Score

Clay 1 Clay loam 2
Chalky loam 5 Loam 4

Sandy clay loam 3 Sandy loam 6
Loamy sand 6 Sand 7

The spatial distribution of elevation, slope, river network density, land use type, and
soil texture in Shandong Province are shown in Figure 5. It can be seen that the elevation
of Shandong Province ranges from −169 to 1527 m, with an average elevation of about
90 m. The slope ranges from 0 to 49.1◦, and the slope is below 1.5◦ in most areas, and the
spatial distribution of elevation and slope is roughly the same. Areas with higher elevation
and slope are concentrated in mountainous areas, such as Tai’an, Zibo, Jinan, and parts
of Linyi in central Shandong, while the peninsula areas such as Yantai are also relatively
high. The density of the river network in the northwest of Shandong Province is obviously
higher than in the rest of the province; In particular, along the Yellow River where the river
network density is high, high-value areas are mainly distributed in Dezhou, Binzhou, Jinan,
and other parts of the region. The land use types in Shandong Province are mainly arable
land and construction land, and arable land is distributed in a large area in all cities; forest
land and grassland are more concentrated in the south and east of Shandong Province;
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the distribution of water is not concentrated; construction land is mainly distributed in
the center of each city; and the area occupied by unused land is very small. Loam and
sandy clay loam are widely distributed in Shandong Province, and clay soil is scattered in
the province.

(a) 

(b) 

(c) 

Figure 5. Cont.
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(d) 

(e) 

Figure 5. Spatial distribution of elevation (a), slope (b), river network density (c), land use type (d),
and soil texture (e) in Shandong Province.

The five factors of the zoning results for elevation, slope, river network density, land
use type, and soil texture were spatially superimposed according to the weights of 0.2064,
0.2064, 0.3683, 0.1094, and 0.1094. This resulted in the zoning results for the environmental
sensitivity risk of peanut drought pregnancy in Shandong Province, as shown in Figure 6.
Figure 6 shows the spatial distribution of this type of risk in Shandong Province had
relatively little variability, with the low-value areas concentrated along the Yellow River
and the rest sporadically distributed in Dezhou, Binzhou, Zaozhuang, and Jining. The
high-risk areas were distributed in the province, but mainly in Jinan and the cities of
Weifang, Qingdao, Yantai, Weihai, Heze, and Linyi.

3.1.3. Drought Risk Zoning for Peanuts in Shandong Province

According to the calculation from (2) and using the natural discontinuity point method
to classify the areas with risks into low, medium, and high levels of risk, we obtained a
spatial distribution map of peanut drought risk in Shandong Province (Figure 7).
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Figure 6. Spatial distribution of environmental sensitivity of peanut drought pregnancy in Shan-
dong Province.

Figure 7. Spatial distribution of peanut drought risk in Shandong Province.

As Figure 7 shows, peanut drought risk in Shandong Province has an obvious spa-
tial distribution trend, showing the spatial distribution characteristics from high in the
northwest to low in the southeast. Low-, medium-, and high-risk areas accounted for
22.6%, 50%, and 27.4% of the province’s area, with areas of 35,685.4 km2, 79,013.8 km2, and
43,227.8 km2, respectively. The entire area of Weihai City was a high-risk area while the
cities of Qingdao, Yantai, and Liaocheng all had relatively larger areas identified as high-
risk areas; meanwhile, the cities of Dezhou, Binzhou, Zibo, and Weifang had sporadically
distributed areas with a high risk for drought that affects peanuts. The cities of Weifang
and Dongying had a relatively large area with a moderate risk. The cities of Jining, Heze,
Tai’an, Jinan, Zaozhuang, Linyi, and Rizhao were mainly exposed to low and moderate
risks. In particular, Zaozhuang was basically in a low-risk area.

3.2. Spatial Distribution of Exposure of Peanut-Drought-Affected Bodies

In this paper, the disaster-affected body is the peanut, so the peanut planting areas
were selected as the exposure index. The larger the peanut planting area, the higher the
chance of being affected by the drought, so when calculating the exposure index, the factor
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was standardized by the maximum value, and the natural discontinuity point method was
used to classify the exposure of the disaster-affected body into low, medium, and high
exposure, and the spatial distribution of the exposure of the peanut-drought-affected body
in Shandong province was obtained (Figure 8).

Figure 8. Spatial distribution of exposure of peanut-drought-bearing bodies in Shandong Province.

Figure 8 shows that the medium- and high-exposure areas for peanut drought in
Shandong account for 76.8% of the total area of the province, with a high degree of exposure
overall. Among these areas, the high-exposure areas covered 32,669.1 km2, or 20.7%, of
the province; these were mainly distributed in Yantai and Linyi. The medium-exposure
areas were mainly distributed in Heze, Jining, Zaozhuang, Tai’an, Jinan, Weifang, Rizhao,
Weihai, and Qingdao with an area covering 88,538.9 km2, or 56.1%, of the province. The
low-exposure area covered only 36,692 km2, mainly including the cities of Liaocheng,
Dezhou, Binzhou, Zibo, and Dongying, or 25% of the province.

3.3. Spatial Distribution of Vulnerability of Peanut-Drought-Bearing Bodies

Since this paper took administrative districts as the unit for zoning, if the planting areas
of peanuts in two administrative districts were the same, but two administrative districts
were different, the percentages of peanut cultivation area were different, as obviously their
vulnerabilities were not the same. Therefore, the percentage of peanut cultivation area was
chosen as a vulnerability indicator in this paper. The larger the percentage of the peanut
cultivation area, the stronger the vulnerability. This factor was normalized to the maximum
value in the calculation of the vulnerability index. The natural discontinuity point method
was used to classify the vulnerability of disaster-affected bodies into low, medium, and
high vulnerability, and the spatial distribution of vulnerability of peanut-drought-affected
bodies in Shandong province was obtained (Figure 9).

Figure 9 shows the vulnerability of drought-affected areas where peanuts are grown
in Shandong Province has obvious spatial regional differences. The low-, medium-, and
high-vulnerability areas accounted for 58.3%, 14.9%, and 26.8% of the province’s area, with
areas of 92,059.1 km2, 23,566.5 km2, and 42,274.4 km2, respectively. Among these, the
cities of Linyi, Rizhao, Yantai, and Weihai were areas with a generally high vulnerability
to drought. Medium-vulnerability areas were mainly distributed in the cities of Tai’an,
Zaozhuang, and Qingdao. Low-vulnerability areas were widely distributed in the cities of
Heze, Jining, Liaocheng, Dezhou, Jinan, Zibo, Binzhou, Dongying, and Weifang.
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Figure 9. Spatial distribution of vulnerability of peanut-drought-bearing bodies in Shandong Province.

3.4. Spatial Distribution of Disaster Prevention and Mitigation Capability

The capacity to prevent and mitigate disasters refers to various management measures
and countermeasures designed to prevent and mitigate meteorological disasters. The
higher the economic level of a location, the stronger the capacity of humans to prevent
and mitigate disasters. The higher the per capita GDP and income of farmers as and the
higher their education level, the better ability they will have to develop policies designed to
prevent and respond to disasters when peanut drought occurs. Improved construction of
water conservation facilities is a direct manifestation of a stronger capacity to prevent and
mitigate drought disasters; to reflect this reality, the per capita GDP and income of farmers,
their level of education, and the existence of water conservation facilities were selected as
indicators of the capacity of an area to prevent and mitigate disasters. Additionally, all
factors are normalized to the maximum value in the calculation of the disaster prevention
and mitigation capacity index. These selected indicators were given weights of 0.4226,
0.2708, 0.1443, and 0.1622, respectively, by using the AHP method. The calculations were
carried out according to (2), and the natural discontinuity point method was used to classify
the disaster prevention and mitigation capacity into low, medium, and high levels to obtain
the spatial distribution of the capacity to prevent and mitigate drought disasters related to
growing peanuts in Shandong Province (Figure 10).

Figure 10 shows the spatial distribution of the capacity to prevent and mitigate drought
disasters related to peanuts in Shandong Province is highly variable. The area with a high
level of this type of capacity covered 64,581.1 km2 and was mainly distributed in Jinan,
Dongying, Weifang, Qingdao, Yantai, and Weihai, or 40.9% of the province’s area. The area
with a medium level of this type of capacity was mainly distributed in Jining, Binzhou,
Zibo, and Rizhao and covered 32,211.6 km2 or 20.4% of the province’s area. The area with a
low level of this type of capacity covered 61,107.3 km2 or 38.7% of the province’s area; this
area was mainly in the cities of Liaocheng, Dezhou, Tai’an, Heze, Zaozhuang, and Linyi.
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Figure 10. Spatial distribution of peanut drought prevention and mitigation capacity in Shan-
dong Province.

3.5. Spatial Distribution of Comprehensive Peanut Drought Risk

The four factors of the zoning results, risk, exposure of disaster-bearing bodies, vulner-
ability of disaster-bearing bodies, and disaster prevention and mitigation capability, were
spatially superimposed according to the weights of 0.5, 0.167, 0.167, and 0.167. This allowed
us to obtain the zoning results of the comprehensive risk of peanut drought in Shandong
Province, as shown in Figure 11. Note that the comprehensive risk of peanut drought differs
substantially in different areas. The medium- and high-risk regions were located mainly in
the west and central areas, with low-risk regions in the east. The overall spatial distribution
shows a strong degree of fragmentation. Table 7 shows the areas of the high-, medium-,
and low-risk regions in each city. In Yantai, Linyi, Liaocheng, and Weihai, high-risk regions
had the largest area. In Binzhou, Dongying, and Jinan, there were no high-risk regions. In
Tai’an, Weifang, and Heze, the medium-risk regions had the largest area. The number of
areas with medium risk in Weihai was zero. In Jinan, and Dongying, low-risk regions had
the largest area. In summary, there were no low-risk regions in Qingdao or Yantai, only
medium- and high-risk areas. High-, medium-, and low-risk regions for peanut drought
amounted to 36,833.4 km2, 83,441.1 km2, and 37,625.5 km2, accounting for 40.6%, 37.0%,
and 22.4% of the total land area, respectively.

Table 7. Low-, medium-, and high-risk areas in Shandong Province by city.

Low-Risk Area Medium-Risk Area High-Risk Area

Area (km2) Ratio (%) Area (km2) Ratio (%) Area (km2) Ratio (%)

Binzhou 5098.2 53.1 4498.6 46.9 0 0
Dezhou 3104.1 29.3 6953.8 65.6 541.1 5.1

Dongying 7082.6 98.1 135.8 1.9 0.0 0.0
Heze 1178.3 9.7 10,921.3 90.1 18.3 0.2
Jinan 10,330.0 98.9 110.3 1.1 0.0 0.0
Jining 5342.9 47.6 5862.8 52.2 16.3 0.1

Liaocheng 18.3 0.2 3003.9 34.3 5737.3 65.5
Linyi 13.1 0.1 10,004.1 58.2 7173.1 41.7

Qingdao 1.0 0.0 11,068.9 98.9 121.7 1.1
Rizhao 9.1 0.2 1940.8 36.3 3392.6 63.5
Taian 147.6 1.9 7484.3 95.4 214.4 2.7

Weihai 0.0 0.0 0.0 0.0 5714.6 100.0
Weifang 887.0 5.5 15,168.6 94.4 12.2 0.1
Yantai 0.0 0.0 15.3 0.1 13,961.3 99.9

Zaozhuang 3345.6 73.8 1175.7 26.0 9.1 0.2
Zibo 1076.9 17.7 5005.8 82.3 3.0 0.0
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Figure 11. Spatial distribution of peanut drought comprehensive risk index zoning result in Shan-
dong Province.

4. Discussion

Droughts are divided into meteorological drought, climatic drought, atmospheric
drought, agricultural drought, hydrological drought, and socioeconomic drought [25],
which correspond to different monitoring methods and indicators for different drought
types. These include precipitation (P) and precipitation anomaly percentages (Pa), a stan-
dardized precipitation index (SPI), relative wetness index, integrated drought index, soil
moisture drought index, Palmer drought index, soil moisture remote sensing model, vege-
tation water supply index, and so on [26]. Among them, atmospheric drought, agricultural
drought, hydrological drought, and socioeconomic drought involve several meteorological
factors, soil property factors, and socioeconomic factors, which are easier to obtain at
smaller spatial scales but more difficult to obtain at larger spatial scales. Therefore, this
study focused on whether precipitation during the critical growing period of peanuts met
its growth demand and therefore selected meteorological drought index and considered
only precipitation. In the future, with more and more basic data at high spatial resolution,
agricultural drought will be further considered, and parameters such as field moisture
capacity and soil weight will be added to more accurately target the water deficit in peanuts
caused by soil water deficiency during the peanut reproductive period.

In this paper, the meteorological factor risk was based on the observational results
of meteorological observation sites; the frequency of drought occurrence in the entire
growth cycle of peanuts at each site was calculated. A spatial distribution map of drought
risk was obtained using Kriging interpolation in Arc-GIS. However, spatial interpolation
methods other than Kriging exist, such as inverse distance weight interpolation, the spline
function method, and trend surface analysis. This paper further compared the results of
the centralized interpolation methods, as shown in Figure 12, which shows the spatial
distribution of the frequency of drought occurrence obtained using different interpolation
methods. The comparison shows that the spatial distribution of drought occurrence fre-
quencies obtained by different interpolation methods varied in that the results of Kriging
interpolation, inverse distance weight interpolation, the spline function method, and trend
surface analysis all differed greatly. These four interpolation methods show that the areas
with a high frequency of drought affecting peanuts during the entire growing period were
located in the northwestern and eastern areas of Shandong Province. The results of existing
studies show that the areas with drought frequency from 20% to 25% in the Yellow River
and Huaihai regions include certain planting areas in the western, northwestern, northern,
and central Yellow River basin, as well as in the northern and northeastern planting areas
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in the Huaihe River basin. The planting areas in the northwestern Huaihe River basin have
a lower drought frequency of less than 15% and are not prone to drought [19]; after image
comparison, the results obtained with Kriging interpolation method were more consistent
with the results of related studies.

 

(a) (b) 

 

(c) (d) 

Figure 12. Spatial distribution of peanut drought meteorological factors risk in Shandong Province:
(a) Kriging interpolation method; (b) inverse distance weight interpolation method; (c) spline function
method; and (d) trend surface analysis method.

In the process of risk zoning, the main indicators that were selected were exposure,
zoning of the vulnerability, and the capacity of an area to prevent and mitigate disasters,
along with social and economic indicators; however, the influence of the statistical yearbook
data based on the indicators tended to not be uniform across counties, with some indicators
available in some counties and not in others. In order to achieve uniformity, there were
cases in which adjustments or replacements were mad according to specific situations,
which would more or less affect the zoning results. Nevertheless, the influence of the
statistical yearbook information caused some indicators to be limited to the city level, so
there were no indicators at the county level in some places, which would affect the spatial
resolution of the zoning. In addition, the influence of statistical yearbook data caused the
indicators selected to not be available, such as indicators based on the physical significance
of exposure, and the vulnerability and capacity of an area to prevent and mitigate disaster
because the data were not available in the statistical yearbooks, so similar indicators had
to be substituted for these. For example, the education level of peanut farmers should be
expressed by the percentage of farmers with a diploma at each level, but some statistical
yearbooks lacked relevant information, and the number of school students had to be used
to express the local level of education. This type of treatment also affected the final risk
zoning results.

In this paper, when constructing the risk index, exposure index, vulnerability index,
disaster prevention and mitigation index, and comprehensive risk index, weights needed
to be assigned to different influencing factors. Since the above indices were used as
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dependent variables in this study and no specific data were available, methods such
as multiple regression, principal components, and neural networks could not be used.
The main advantage of the hierarchical analysis method is that it is a more appropriate
method to determine the weights of the respective variables when the specific value of
the dependent variable is not known and only the independent variable is available. It
constructs a discriminant matrix by the relative importance of two factors and solves the
weight of each factor on the premise that the matrix passes the heterogeneous consistency
test. The hierarchical analysis method organically combines qualitative and quantitative
methods of evaluation, neither one-sidedly pursuing high mathematical logic, nor simply
focusing on subjective behavior and conscious judgment, so it is widely used when the
dependent variables lack quantitative data and the weights of their influence factors need
to be determined.

This paper assessed and zoned the risk of peanut-related drought in Shandong
Province in terms of risk, exposure, vulnerability, prevention, mitigation capacity, and
integrated risk assessment. Because little in the way of related research results exist, the
analysis of this paper is comprehensive, and the zoning indices used proved to be good.
The present study provides a research example for related studies, has certain reference
value, and can promote future studies. The Jiaodong Peninsula is one of the major peanut-
production areas in Shandong Province, so the actual peanut yields per unit in Yantai and
Weihai of Shandong Province were used to verify the comprehensive peanut drought risk
result obtained in this paper, as shown in Figure 13. The comprehensive peanut drought
zoning results of the selected areas show that the high-risk areas were mainly distributed
in Weihai and the northeastern areas of Yantai, and the spatial distribution of peanut yields
per unit showed that peanut yields per unit in Weihai and the northeastern areas of Yantai
were low. This shows that peanut yields per unit were lower in areas with higher integrated
risks, indicating that the results obtained in this paper have a certain degree of accuracy
and credibility.

Comprehensive analysis of peanut drought risk zoning results showed that the spatial
distribution of peanut drought hazard, exposure, vulnerability, and disaster prevention and
mitigation capacity in Shandong Province varied widely. Yantai in Shandong Province is a
high-risk zone and also the area with the largest peanut cultivation area, the highest expo-
sure zone, and highest vulnerability zone, and the comprehensive risk of Yantai determined
it as a high-value zone. While Liaocheng in western Shandong Province is a high-value
area for comprehensive risk of peanut drought, which is mainly caused by high risk and
low disaster prevention and mitigation capacity; Weihai in eastern Shandong Province is a
high-risk area with high vulnerability, which eventually forms a high-comprehensive-risk
area. Therefore, for different regions, targeted measures can be proposed. For example,
Liaocheng should focus on improving disaster prevention and mitigation capacity, while
Yantai and Weihai should focus on improving the drought resistance of peanut varieties.
The risk assessment and zoning of peanut drought in Shandong Province can not only
improve people’s understanding of peanut drought, but also provide a reference for rele-
vant departments to develop and carry out peanut drought prevention and relief policies
and decisions.
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(a) (b) 

Figure 13. Spatial distribution of peanut yields per unit in Yantai and Weihai (a); spatial distribution
of comprehensive peanut drought risk in Yantai and Weihai (b).

5. Conclusions

The proportion of areas at medium and high risk for peanut drought in Shandong
Province was 80.6%, with the cities of Weihai, Yantai, and Qingdao having a significantly
higher risk than other cities. The proportion of medium- and high-exposure areas was
76.8%, which is high overall and distributed in patches in the cities of Yantai and Linyi. The
medium- and high-vulnerability areas accounted for 41.7% of the province’s area. Except
for the cites of Weihai, Yantai, Linyi, and Rizhao, other cities had low vulnerability. Areas
with a strong, medium, and relatively strong capacity to prevent and mitigate drought
accounted for 61.3% of the province’s area. The cities of Qingdao, Yantai, and Dongying
had the highest capacity to prevent and mitigate drought disasters among the cities of the
entire region. In addition, 76.2% of the area had medium and high integrated drought risk
for peanuts in Shandong Province; the overall integrated risk was high.

Peanut drought risk, exposure, vulnerability, disaster prevention and mitigation ca-
pacity, and integrated risk in Shandong Province all showed spatial variability, with an
inconsistent distribution of these factors across cities. The cities of Liaocheng had a sig-
nificantly higher risk, poorer disaster prevention and mitigation capacity, and an overall
higher integrated risk. The cities of Yantai had a higher risk, exposure, and overall higher
integrated risk while Yantai and Weihai had a higher risk, vulnerability, and integrated risk.
Dongying City had lower exposure, vulnerability, and integrated risk.
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Abstract: As an important source of soil moisture content during spring in high-latitude areas,
snow cover affects the occurrence of spring drought and crop yield and quality. There has not been
sufficient research on the effect of winter snow cover on spring soil moisture content. This paper
focuses on the main agricultural areas of Northeast China—the Songnen Plain and the Sanjiang Plain.
Using meteorological data of both spring soil moisture content and snow cover at 19 agricultural
meteorological stations from 1983 to 2019, the effect of snow cover on spring soil moisture content in
the Sanjiang Plain and Songnen Plain is studied by variance analysis, spatial analysis, and correlation
analysis. The results show that: (1) Compared to the Sanjiang Plain, the Songnen Plain has a
significantly lower content of soil moisture at the surface (0–10 cm) and deep layer (10–20 cm,
20–30 cm) during the entire spring and every month of spring (p < 0.05), and a greater interannual
variation of soil moisture. (2) Snow cover has a significant effect on spring soil moisture in the
Songnen Plain, but not as much as one in the Sanjiang Plain. For the Songnen Plain, snow-cover
duration and the snow-cover onset date has a lasting influence on spring soil moisture until May,
which can extend to as deep as 20–30 cm. As months go by, its influence on shallow-layer soil
gradually wears off. Maximum snow depth and the snow-cover end date only influence the April
surface soil. (3) Snow cover has a strong effect on soil moisture conservation in more arid areas.
Delayed snow-cover onset date, earlier snow-cover end date, and significantly shortened snow-cover
duration all contribute to a spring drought soil condition in the Songnen Plain.

Keywords: snow cover; spring soil moisture; impact mechanism; Songnen Plain; Sanjiang Plain

1. Introduction

Snow is the most active constituent of the cryosphere [1]. In high-latitude areas, water
is released in the form of melted snow in just a few days [2] and comprises an important
source of soil moisture in spring [3,4]. At the same time, snow cover also reduces the change
in soil moisture content and temperature by hindering the energy exchange between soil
moisture, temperature, and the environment [5], thus conserving soil moisture. However,
due to global warming, the area of snow cover has dropped significantly in the northern
hemisphere in the past few decades [6,7]. Snow duration in the northern hemisphere
decreases at a rate of 5.3 d/10 a [8]. Particularly prominent changes in snow cover are
observed in spring. Snow cover area has seen a significant reduction during spring in the
northern hemisphere [9], and snow starts to melt at a significantly earlier time in Eurasia
during spring [10–13]. The decline in snow reserves and the rapid, earlier disappearance
of snow cover, which causes the spring warming and soil aridness, have been the center
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of widespread concern in the scientific community, and they have become an important
influencing factor on the degree and duration of soil aridity in spring [14,15]. Researchers
both in China and overseas have studied the impact of snow cover on soil moisture
through the one-point method, actual observations, remote sensing, and simulation. These
studies are mainly carried out from three aspects. First, some researchers have studied
the effect of snow cover on the level of spring soil moisture. For example, Shinoda [16]
studied the relationship between snowmelt and soil moisture in Central Eurasia with data
collected at meteorological stations and found that greater annual maximum snow depth
and delayed snow-cover end date correspond to higher level soil moisture, and vice versa.
Ren et al. [17] studied the effect of snowmelt on soil water and heat conditions. Their
results indicate that snowmelt significantly increases the water content of shallow-layer
soil. Niu et al. [18] conducted field experiments to observe the change in soil moisture
content as snow melting takes place, and they concluded that snowmelt infiltration acts to
a certain extent to replenish the water content of the soil. Qi [19] found through simulation
that without snow, the soil moisture level in Northeast China will drop at least 20% in the
March to May period. Second, some researchers study the effect that the duration of the
impact snowmelt has on soil moisture. For example, Douville [20] performed simulations
with the Meteor-France GCM and suggested that the effect of spring snowmelt on soil
moisture can last until summer. McNamara [21] simulated and analyzed the variational
characteristics of soil moisture using observed data and modeling, and concluded that
snowmelt, rainfall, and evaporation jointly drive the water and heat balance in soil moisture
during late spring. Zhang et al. [22] reported that snow cover has an impact on soil moisture
mainly as it melts. Third, some researchers have investigated how the depth of snowmelt
affects soil moisture content. For example, Jan [23] proposed that 200 mm of snowmelt
water had a very small effect on spring soil moisture content for soil layers below the
90-cm horizon. Zhang [10] used soil moisture data in conjunction with snow cover stage
to analyze the influence of snowmelt on the humidity of seasonal frozen soil; the research
shows that the maximum depth of snow cover that influences soil moisture content is
20 cm. Flerchinger et al. [24] conducted experiments to simulate the physical process
of groundwater recharge by infiltrated snowmelt. It can be seen that snow cover has a
certain replenishment effect on spring soil moisture. Greater snow-cover depth and longer
snow-cover duration tend to have a more significant impact on soil moisture content.
However, there is no consistent conclusion on that how much time the effect of snow
cover can last and how deep the snow cover can affect. Different researchers have drawn
different conclusions, which may be related to differences of research areas, but there is no
further study. In addition, it is no certain answer about how much spring soil moisture is
from snow cover. All these problems require further research, which are also the scientific
problems that this study wants to solve.

As the largest crop production site in China, Heilongjiang Province often suffers from
particularly serious spring droughts. This affects crop yield and quality. However, research
on the factors influencing spring soil moisture in Heilongjiang Province has mostly been
focused on temperature and precipitation [25–28]. As a region with a stable amount of
snow cover, the effect of winter snow cover on soil moisture conservation in spring has not
been sufficiently studied. In this paper, two agricultural bases of Heilongjiang Province, i.e.,
the Songnen Plain and Sanjiang Plain, which have clearly different soil moisture contents,
are selected as the study sites. Using the soil moisture and meteorological data (1983–2019)
from 19 agricultural meteorological stations, the impact of snow cover on spring soil
moisture is analyzed for both sites. The objectives of present study were to (1) determine
the variance analysis of two agricultural bases in Heilongjiang Province. (2) discuss the
influence of snow cover on spring soil moisture content (3) reveal the contribution by
snow-cover conditions on spring soil moisture. The results of this study form the scientific
basis for the early warning of spring drought, the development of more efficient irrigation
schemes, and crop yield prediction.
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2. Materials Methods

2.1. Study Sites

The two main agricultural bases of Heilongjiang Province, the Songnen Plain and
Sanjiang Plain (Figure 1), were chosen as the study sites. The Songnen Plain is in the western
part of Heilongjiang Province. With a crop production area of 5.35 million hm2, this region
makes up 52% of the total crop production area of the province. It has a high-latitude
continental monsoon climate, with high temperature and frequent rain in summer, severe
cold and little rain in winter, and a short spring and autumn. Temperature in this region
tends to have sharp fluctuations. The summer temperature is high, with high temperature
and frequent rain occurring in the same season. The Sanjiang Plain is in the northeastern
part of Heilongjiang Province, and it has a cultivated land area of 2.696 million hm2. It
has a temperate humid and semi-humid monsoon climate, with large annual temperature
variation and abundant rainfall. Heilongjiang Province is one of the regions in China
that has a stable amount of snow cover. The winter snow-cover period is primarily from
November to April of the next year. During this time, the entire study area is covered with
snow, with the maximum snow depth occurring in February. The snow begins to melt in
March and completely melts in mid-April. Crop cultivation typically starts in May. Main
food crops grown in this area include rice, wheat, corn, and soybean.

Figure 1. The study region and distribution of 19 meteorological stations in Heilongjiang Province, China.

2.2. Data Sources

Soil moisture data: spring soil moisture data for each ten days (March–May) from
19 agricultural meteorological stations (Figure 1). The time period covered spans 1983–2019.
Observations were made on three soil depth layers (0–10 cm, 10–20 cm, and 20–30 cm). The
data were obtained from the Meteorological Department of Heilongjiang Province. There
are 31 agricultural meteorological stations in Heilongjiang Province with soil moisture
data available. Provincial-wide recording of soil moisture started in 1980, but for each
station, the exact commencement time is different, ranging from 1980 to 1987. To ensure
continuity of data, soil moisture data from 19 agricultural meteorological stations spanning
1983–2019 were used in this study, with 11 stations on the Songnen Plain and 8 stations on
the Sanjiang Plain. The data collected adequately reflect the climate characteristics of the
main agricultural sites of Heilongjiang Province. Soil layers at the 0–30 cm depth range
were selected for analysis, as the past study has shown that this depth interval was found
to show the greatest variability in soil effective water content, and it is the cultivated layer
of the soil. Soil moisture observations were all made in the observation field of agricultural
meteorological stations, on grassland. No irrigation activity was carried out during the
study period. The stations are located on land with different soil types, with black loam,
sandy loam, clay loam, loam, yellow sandy soil, and dark brown loam being the most
common ones. To eliminate the impact of soil type on soil moisture content, relative soil
humidity was used to characterize soil moisture content. Relative soil humidity (RSH) is
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defined as the ratio between percent soil moisture (weight basis) and field capacity, and it
is expressed as a percentage (%). Field capacity is the greatest amount of water that can
be stably held by soil, and it is a constant value. As such, relative soil humidity can be
used to characterize soil moisture and compare the degree of soil dryness and wetness
between different regions. Using this value as an index, the degree of drought is defined
on the following scale: severe drought: RSH ≤ 40%; moderate drought: 40% < RSH ≤ 50%;
mild drought: 50% < RSH ≤ 60%; suitable for agriculture: 60% < RSH ≤ 90%; waterlogged:
RSH > 90%.

Meteorological parameters: the following daily meteorological data were used: tem-
perature, total precipitation, previous autumn precipitation, average surface temperature,
average wind speed, sunshine duration, snow-cover duration, maximum snow depth,
snow onset date, and snow-cover end date. Temperature, precipitation, surface tempera-
ture, wind speed, and sunshine duration were all taken in March–May of 1983–2019. The
previous autumn precipitation is the amount of rainfall in September–November of the
previous year. Snow-cover duration is the number of days with snow cover from August
of the previous year to July of the present year. Maximum snow depth is the greatest depth
of snow recorded from August of the previous year to July of the present year.

2.3. Data Analysis
2.3.1. Variance Analysis

The soil moisture content was analyzed by one-way analysis of variance (ANOVA).
These statistical tests determine whether the differences in the soil moisture of the Songnen
Plain and Sanjiang Plain were significant. Duncan’s shortest significant range method was
used to test the differences in the soil moisture of the Songnen Plain and Sanjiang Plain and
the level of significance. First, the sum of squares for the deviations was obtained for each
set of data. The statistical independence of the data among each treatment was then tested.
The probability of the events was given when the statistic was greater than the F value,
i.e., p{>F} = p. When p < 0.01, the difference was considered extremely significant; when
0.01 < p < 0.05, the difference was considered significant; when p > 0.05, the difference was
considered not significant.

2.3.2. Spatial Assessment Method

The spatial distribution characteristics of soil moisture content of the Songnen Plain
and Sanjiang Plain were statistically calculated via the ArcGIS Grid module and Spatial
Analyst module. The Kriging interpolation method is employed to analyze the spatial dis-
tribution of soil moisture content. Kriging is a regression algorithm for spatial modeling and
prediction (interpolation) of random processes/random fields based on covariance functions.

2.3.3. Correlation Analysis

Correlation analysis is statistical method used to discover if there is a relationship
between two variables/datasets, and the relatedness and negative/positive correlation of
this relationship. The Pearson correlation method is adopted in this paper to analyze the
relationship between soil moisture content and climate indicators quantitatively. In each
pair, the Pearson’s correlation coefficient (r) is calculated as:

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
(1)

where x represents the soil moisture content, and y represents meteorological parameters.

2.3.4. Percentage Contribution

To quantitatively study the long-term percentage contribution by snow cover and other
meteorological parameters on the spring soil moisture content at different depths, multiple
linear regression was performed on soil moisture content at all depths and meteorological
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parameters of significant relevance for different spring months. The following standardized
regression equation was obtained:

Si = ∑ aj × Mj (2)

where Si is the soil moisture content at different depths across spring months; Mj is the
meteorological parameter significantly related to Si; and aj is the normalization constant
of Mj.

Using Equation (3), the percent contribution by each meteorological parameter on
spring soil moisture across different soil depths is calculated:

ConMj =
aj

∑n
i=1 ai

× R2 × 100% (3)

where ConMj is the percent contribution by Mj to spring soil moisture; a is the normalization
constant for each meteorological parameter; n is the number of meteorological parameters;
and R2 is the goodness of fit of the normalized regression equation.

3. Results

3.1. Comparison of Spring Soil Moisture Content for the Songnen and Sanjiang Plains for
1983–2019
3.1.1. Comparison of Spring Soil Moisture Content at the 0–30 cm Soil Depth

Figure 2 shows the spatial distribution of spring soil moisture on both the Songnen
and Sanjiang Plains for 1983–2019. The Sanjiang Plain has significantly higher soil moisture
content than the Songnen Plain. Spring soil moisture content varies between 69.35% and
97.44% for the Songnen Plain during this time period, and the average value is 81.39%. The
coefficient of interannual variation is 0.09, and the coefficient of spatial variation is 0.072.
Spring soil moisture content varies between 81.44% and 110.0% for the Songnen Plain
during this time period, and the average value is 92.37%. The coefficient of interannual
variation is 0.07 and the coefficient of spatial variation is 0.101. These results show that
the Songnen Plain has a greater interannual variation of soil moisture than the Sanjiang
Plain, whereas the intra-region variation is smaller. Variance analysis shows that there is a
significant difference in spring soil moisture content between the Songnen Plain and the
Sanjiang Plain, with that of the former significantly lower than the latter (p < 0.01).

Figure 2. The spatial distribution of spring soil moisture at the 0–30 cm soil depth on both the
Songnen and Sanjiang Plains for 1983–2019. ((a): Songnen Plain, (b): Sanjiang Plain).

Figure 3 shows the spatial distribution of spring soil moisture at the 0–30 cm depth in
different month on the Songnen Plain and Sanjiang Plain for 1983–2019. On the Songnen
Plain, the ranges of soil moisture content are 64.38–92.59%, 72.63–91.01%, and 72.30–84.73%, in
March–May, respectively. On the Sanjiang Plain, the values are 89.05–129.70%, 84.96–122.54%,
and 83.17–102.20% in March–May, respectively. It is obvious that the Sanjiang Plain has
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higher soil moisture content than the Songnen Plain. Variance analysis shows that there
is a significant difference in spring soil moisture content between the Songnen Plain and
the Sanjiang Plain in each month, with that of the former significantly lower than the latter
(p < 0.01).

Figure 3. The spatial distribution of spring soil moisture at the 0–30 cm soil depth in different month
on both the Songnen and Sanjiang Plains for 1983–2019. ((a): Songnen Plain in March, (b): Songnen
Plain in April, (c): Songnen Plain in May, (d): Sanjiang Plain in March, (e): Sanjiang Plain in April,
(f): Sanjiang Plain in May).

3.1.2. Comparison of Spring Soil Moisture in Across Soil Layers

Figure 4 shows the spatial distribution of spring soil moisture at different depths on the
Songnen Plain and Sanjiang Plain for 1983–2019. On the Songnen Plain, the ranges of soil
moisture content are 51.90–82.30%, 70.83–91.27%, and 76.34–98.69, at 0–10 cm, 10–20 cm,
and 20–30 cm depths, respectively. On the Sanjiang Plain, the values are 82.94–118.37%,
88.21–130.59%, and 91.81–133.29% for 0–10 cm, 10–20 cm, and 20–30 cm depths, respectively.
The soil moisture content of the Songnen Plain is lower than that of the Sanjiang Plain at
each corresponding depth. Variance analysis further shows that significant differences exist
in spring soil moisture at the depth ranges of 0–10 cm, 10–20 cm, and 20–30 cm between
the Songnen Plain and the Sanjiang Plain. For the surface soil layer of the Songnen Plain
(0–10 cm), the lowest level of soil moisture is observed in Tailai, indicating a state of mild
drought, while soil conditions at other stations are suitable for farming. Conversely, 37%
of the stations in the Sanjiang Plain feature waterlogged soil. These stations are primarily
located in the Boli–Baoqing–Fuyuan region, while the soil moisture level at other stations
is suitable for agriculture.
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Figure 4. The spatial distribution of spring soil moisture at different depths on the Songnen Plain
and Sanjiang Plain for 1983–2019. ((a): 0–10 cm of Songnen Plain, (b): 10–20 cmof Songnen Plain,
(c): 20–30 cm of Songnen Plain, (d): 0–10 cm of Sanjiang Plain, (e): 10–20 cm of Sanjiang Plain,
(f): 20–30 cm of Sanjiang Plain).

Figure 5 shows a comparison of spring soil moisture at different soil depths in each
month for both the Songnen Plain and the Sanjiang Plain from 1983 to 2019. Variance analy-
sis results showed that compared to the Sanjiang Plain, the Songnen Plain has significantly
lower soil moisture content across various soil depths in spring months (p < 0.05). In some
areas of the Songnen Plain, the 0–10 cm soil layer experiences drought of varying degrees
in the March–May period (RSH < 60%, indicating mild drought), while on the Sanjiang
Plain, the soil moisture content across different soil layers shows a mostly waterlogged
state for the spring months. Compared to the Sanjiang Plain, the soil moisture content of
the Songnen Plain shows greater interannual variation during spring months, with March
being the largest in variation range (nearly 15%).

Figure 5. The spring soil moisture at different soil depths in each month for both the Songnen Plain
and the Sanjiang Plain from 1983 to 2019. Note: “A”, “B”: Variance analysis result between the
Songnen Plain and the Sanjiang Plain.
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The above spring soil moisture distribution results show that the Songnen Plain has a
significantly lower spring soil moisture content than the Sanjiang Plain during the entire
spring season, each month of the season, across the entire soil layer, and at every depth.

3.2. Factors Influencing the Spring Soil Moisture Content of the Songnen Plain and Sanjiang Plain

Numerous studies have shown that soil moisture is closely related to meteorological
factors. Taking into consideration the climate characteristics of Heilongjiang Province,
10 meteorological factors, including snow-cover conditions, were selected to perform
correlation analysis with spring soil moisture at different depths and for each month
of spring at different depths. The 10 factors are: daily average temperature (T), total
precipitation (P), surface temperature (ST), daily average wind speed (WS), daily average
sunshine duration (SD), precipitation in the previous autumn (PPA), snow-cover duration
(SCD), maximum snow depth (MSD), snow-cover end date (SED), and snow-cover onset
date (SOD).

3.2.1. Factors Affecting Spring Soil Moisture at Different Soil Depths

Table 1 shows the correlation analysis results for spring soil moisture at different
depths. Both similarities and major differences are noticed in the meteorological factors
affecting the spring soil moisture of the Songnen Plain and the Sanjiang Plain. For both
locations, previous autumn precipitation has an impact on spring soil moisture at all soil
depths. A strong positive correlation is observed in this case, i.e., a greater amount of
previous autumn precipitation leads to higher spring soil moisture content across all the
soil layers on both the Songnen Plain and the Sanjiang Plain. The only factor affecting
the spring soil moisture on the Sanjiang Plain is previous autumn precipitation, whereas
for the Songnen Plain, spring temperature and snow-cover conditions, including snow-
cover duration, snow-cover onset date, and maximum snow depth, also play an effect.
A strong negative correlation is present between spring soil moisture on the Songnen
Plain and spring temperature, i.e., higher spring temperature leads to greater soil moisture
evaporation in spring, and thus lower soil moisture content on the plain. There is a strong
positive correlation between spring soil moisture on the Songnen Plain and snow-cover
duration. Longer duration of snow cover leads to higher soil moisture content. A strong
negative correlation exists between spring soil moisture on the plain and snow-cover onset
date. An earlier onset of snow cover leads to higher soil moisture content. There is a
significant positive correlation between surface soil moisture (0–10 cm) and the maximum
snow depth on the Songnen Plain. This means that snow depth only affects surface soil
moisture. A greater maximum snow depth means a higher amount of surface soil moisture
in spring. The table also shows a significant positive correlation between soil moisture
on the Songnen Plain at the 20–30 cm depth range and wind speed. This relationship is,
however, purely numerical and has no practical significance.

Table 1. Correlation coefficient between spring soil moisture and meteorological parameters at
different layers of the Songnen Plain and the Sanjiang Plain.

Area Layer T P ST WS SD PPA SCD MSD SDD SOD

Songnen
Plain

0–30 cm −0.455 ** 0.135 −0.093 0.168 0.179 0.656 ** 0.484 ** 0.28 −0.461 ** 0.176
0–10 cm −0.420 ** 0.283 0.122 −0.013 0.057 0.628 ** 0.523 ** 0.395 * −0.386 * 0.153
10–20 cm −0.435 ** 0.152 −0.05 0.119 0.149 0.660 ** 0.469 ** 0.284 −0.424 ** 0.156
20–30 cm −0.454 ** −0.024 −0.309 0.352 * 0.292 0.611 ** 0.414 * 0.148 −0.511 ** 0.195

Sanjiang
Plain

0–30 cm −0.204 0.139 −0.189 0.122 −0.148 0.595 ** 0.229 −0.047 0.013 −0.064
0–10 cm −0.238 0.253 −0.132 0.092 −0.205 0.566 ** 0.282 0.026 −0.004 −0.100

10–20 cm −0.169 0.068 −0.200 0.146 −0.119 0.597 ** 0.178 −0.097 0.032 −0.043
20–30 cm −0.182 0.074 −0.221 0.117 −0.099 0.566 ** 0.200 −0.071 0.011 −0.041

Note: “*”, “**”: Significance at 0.05 and 0.01 levels, daily average temperature (T) (◦C), total precipitation (P)
(mm), surface temperature (ST) (◦C), daily average wind speed (WS) (m/s), daily average sunshine duration (SD)
(h), precipitation in the previous autumn (PPA) (mm), snow-cover duration (SCD) (d), maximum snow depth
(MSD) (cm), snow-cover end date (SED), and snow-cover onset date (SOD).
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3.2.2. Factors Affecting Soil Moisture at Different Depths for Each Month of Spring

Correlation analysis on soil moisture content at different depths for each month of
spring (Table 2) shows the following: (1) previous autumn precipitation impacts the soil
moisture at different depths for each month of spring; (2) temperature and precipitation
affect soil moisture differently for different soil depths and spring months; and (3) a
significant correlation exists between spring soil moisture on the Songnen Plain and snow-
cover conditions, whereas such a relationship is barely present on the Sanjiang Plain.
Specifically, previous autumn precipitation has a positive correlation with soil moisture at
every depth for each month of spring (except for the surface soil moisture of May), i.e., a
greater amount of precipitation in previous autumn leads to higher spring soil moisture
content for both the Songnen Plain and the Sanjiang Plain. On the Songnen Plain, the soil
moisture at each depth shows a significant negative correlation with temperature during
April and May, and a significant positive correlation with precipitation in May. On the
Sanjiang Plain, the soil moisture at each depth shows a significant positive correlation with
temperature and precipitation in May. On the Songnen Plain, snow-cover duration shows a
significant positive correlation with soil moisture at every depth for each month of spring;
snow-cover onset date has a significant correlation with soil moisture at every depth in
March. For April, this impact is demonstrated in soil layers at 10–20 cm and 20–30 cm
depths; snow-cover end date shows a significant correlation with surface soil moisture;
maximum snow depth shows a significant correlation with April soil moisture at the depth
ranges of 0–10 cm and 10–20 cm. On the Sanjiang Plain, however, a significant correlation
between surface soil moisture and snow-cover duration is observed only in March. The
correlation coefficient also shows that for the Songnen Plain, as months go by, snow-cover
duration and snow-cover onset date affect soil moisture to a lesser extent as soil depth
increases. However, these two factors continue to influence soil moisture until May. The
effect of maximum snow depth and snow cover end date is mostly observed in April.

Table 2. Correlation coefficient between spring soil moisture and meteorological parameters at
different layers in each month of the Songnen Plain and the Sanjiang Plain.

Area Month Layer T P ST WS SD PPA SCD MSD SDD SOD

Songnen
Plain

March
0–10 cm −0.282 −0.195 0.062 −0.147 0.145 0.621 ** 0.547 ** 0.230 −0.390 * −0.062

10–20 cm −0.278 −0.210 −0.095 0.000 0.138 0.657 ** 0.445 ** 0.152 −0.504 ** 0.014
20–30 cm −0.295 −0.283 −0.292 0.195 0.099 0.600 ** 0.372 * 0.037 −0.505 ** 0.112

April
0–10 cm −0.380 * 0.267 0.159 0.089 −0.041 0.507 ** 0.479 ** 0.471 ** −0.314 0.362 *

10–20 cm −0.427 ** 0.136 −0.083 0.179 0.022 0.558 ** 0.461 ** 0.363 * −0.343 * 0.267
20–30 cm −0.367 * 0.010 −0.313 0.410 * 0.121 0.567 ** 0.441 ** 0.181 −0.540 ** 0.231

May
0–10 cm −0.455 ** 0.688 ** 0.137 −0.084 −0.397 * 0.410 * 0.239 0.318 −0.247 0.155

10–20 cm −0.384 * 0.537 ** 0.052 −0.017 −0.230 0.532 ** 0.346 * 0.303 −0.235 0.216
20–30 cm −0.405 * 0.415 * −0.112 0.109 −0.070 0.530 ** 0.349 * 0.271 −0.364 * 0.252

Sanjiang
Plain

March
0–10 cm −0.192 0.094 −0.236 0.096 0.119 0.543 ** 0.352 * −0.050 −0.175 −0.138

10–20 cm −0.057 0.108 −0.165 0.076 0.002 0.590 ** 0.192 −0.147 −0.020 −0.097
20–30 cm −0.118 0.158 −0.199 0.052 −0.069 0.576 ** 0.200 −0.109 0.033 −0.046

April
0–10 cm −0.188 −0.070 0.056 0.040 −0.217 0.501 ** 0.275 0.182 0.122 0.104
10–20 cm −0.092 −0.309 −0.095 0.031 0.027 0.563 ** 0.160 0.004 0.052 0.053
20–30 cm 0.044 −0.316 −0.077 0.052 0.089 0.489 ** 0.173 −0.077 −0.078 −0.021

May
0–10 cm −0.454 ** 0.616 ** 0.018 0.034 −0.427 ** 0.271 0.009 −0.002 0.141 −0.159

10–20 cm −0.513 ** 0.503 ** −0.167 0.194 −0.462 ** 0.363 * 0.095 −0.050 0.106 −0.020
20–30 cm −0.410 * 0.497 ** −0.034 −0.014 −0.433 ** 0.385 * 0.152 0.079 0.106 −0.030

Note: “*”, “**”: Significance at 0.05 and 0.01 levels, daily average temperature (T) (◦C), total precipitation (P)
(mm), surface temperature (ST) (◦C), daily average wind speed (WS) (m/s), daily average sunshine duration (SD)
(h), precipitation in the previous autumn (PPA) (mm), snow-cover duration (SCD) (d), maximum snow depth
(MSD) (cm), snow-cover end date (SED), and snow-cover onset date (SOD).

131



Sustainability 2022, 14, 1527

3.3. Contribution by Snow-Cover Conditions on Spring Soil Moisture of the Songnen Plain

Using meteorological parameters with significant relevance to soil moisture at each
depth across all the spring months, a multiple linear regression equation is established
(p < 0.01) (Table 3) for the Songnen Plain. Following Equation (3), the percent contribution
of each meteorological factor on the spring soil moisture content of the Songnen Plain is
calculated using the normalization constant (Table 4). The conclusions that follow can
be drawn based on the percent contribution. (1) Snow-cover onset date and snow-cover
duration affect soil moisture for the entire spring. Compared to surface soil, a longer-term
effect is detected at the deeper-layer soil. For example, the effect of snow-cover onset date
on the moisture level of soil at the depth range of 20–30 cm could last until May, but the
percent contribution gradually drops from 20.99% to 18% and further drops to 8.12% in
May. The effect of snow-cover duration on the moisture level of soil at the depth ranges
of 10–20 cm and 20–30 cm also extends until May, but the percent contribution decreases
gradually. For surface-layer soil (0–10 cm), the effect of snow-cover onset date is felt until
March, and the percent contribution is 11.68%. The effect of snow-cover duration lasts until
April, but the percent contribution declines from 17.77% to 7.84%. (2) A comparison is
made between the contribution by snow-cover onset date and snow-cover duration on soil
moisture. For surface-layer soil, snow-cover duration makes a greater percent contribution
than snow-cover onset date. For example, for March surface soil, the percent contribution
by snow-cover onset date is 11.68%, and that by snow-cover duration is 17.66%. For deeper-
layer soil, the opposite trend is observed. Taking the 10–20 cm layer as an example, the
percent contributions by snow-cover onset date are 20.67% and 11.25%, respectively, for
March and April, while those by snow-cover duration are 9.02% and 3.74%, respectively.
(3) For a single month, the impact on soil moisture by snow-cover onset date gradually
increases as soil depth increases, while that by snow-cover duration gradually decreases.
Taking March as an example, the percent contributions on soil moisture by snow-cover
onset date at depth ranges of 0–10, 10–20, and 20–30 cm deep are 11.68%, 20.67%, and
20.99%, respectively, and the percent contributions by snow-cover duration are 17.77%,
9.02%, and 4.92%, respectively. Maximum snow depth and snow-cover end date contribute
greatly to the surface soil moisture during the snow melting, but the effect lasts only for
a short period. In April, they make a large contribution (up to 10.94%) to the moisture
content of just the surface soil (0–10 cm).

Table 3. Multiple linear regression model equation between spring soil moisture and meteorological
parameters at different layers of the Songnen Plain.

Month Layer Multiple Linear Regression Equation R2 DF SE SE of Regression Coefficient

March

0–10 cm y = 0.469**xPPA + 0.324*xSCD − 0.213xSOD 0.552 ** 34 7.87 PPA SCD SOD
0.039 0.064 0.159

10–20 cm y = 0.536**xPPA − 0.361**xSOD + 0.158xSCD 0.604 ** 34 7.12 PPA SOD SCD
0.035 0.144 0.058

20–30 cm y = 0.497**xPPA − 0.388**xSOD + 0.091xSCD 0.528 ** 34 8.87 PPA SOD SCD
0.044 0.179 0.072

April

0–10 cm y = 0.370*xPPA + 0.285xSDD + 0.240xMSD + 0.172xSCD − 0.012xT 0.491 ** 31 6.33 PPA SDD MSD SCD T
0.031 0.104 0.071 0.062 0.863

10–20 cm y = 0.408**xPPA − 0.285xT − 0.248xSOD + 0.098xMSD + 0.083xSCD 0.508 ** 31 5.23 PPA T SOD MSD SCD
0.026 0.63 0.109 0.059 0.054

20–30 cm y = 0.377**xPPA − 0.369**xSOD − 0.243xT + 0.175xWS + 0.125xSCD 0.629 ** 31 5.77 PPA SOD T WS SCD
0.029 0.132 0.69 1.853 0.053

May

0–10 cm y = 0.715**xP + 0.313**xPPA − 0.204xT + 0.178xSD 0.643 ** 32 4.67 P PPA T SD
0.047 0.022 0.655 0.036

10–20 cm y = 0.439**xP + 0.427**xPPA − 0.134xT + 0.132xSCD 0.559 ** 32 4.57 P PPA T SCD
0.034 0.023 0.636 0.037

20–30 cm y = 0.408**xPPA + 0.283*xP − 0.185xSOD − 0.176xT + 0.100xSCD 0.507 ** 31 4.72 PPA P SOD T SCD
0.024 0.035 0.097 0.667 0.039

Note: “*”, “**”: Significance at 0.05 and 0.01 levels.
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Table 4. The percent contributions on soil moisture by meteorological parameters at different layers
of the Songnen Plain (%).

March April May

Layer (cm) 0–10 10–20 20–30 0–10 10–20 20–30 0–10 10–20 20–30

PPA 25.75 30.71 26.89 16.82 18.46 18.41 14.26 21.09 17.93
SOD 11.68 20.67 20.99 - 11.25 18.00 - - 8.12
SCD 17.77 9.02 4.92 7.84 3.74 6.10 - 6.51 4.42
MSD - - - 10.94 4.43 - - - -
SDD - - - 12.97 - - - - -

T - - - 0.54 12.92 11.84 9.32 6.61 7.76
WS - - - - - 8.56 - - -
P - - - - - - 32.61 21.69 12.46

SD - - - - - - 8.11 - -

4. Discussion

(1) In the past, researchers have studied the effect of snow cover on spring soil mois-
ture. The results show that snow-cover promotes the change rate of soil moisture [29] and
has a noticeable impact on shallow-layer soil moisture [23]. Greater snow-cover depth and
longer snow-cover duration tend to have a more significant and longer-term impact on
shallow-layer soil moisture content [16]. Pan et al. [30] suggested and tested an empirical
approach to estimated root-zone soil moisture in snow-dominated regions using a soil
moisture diagnostic equation that incorporates snowfall and snowmelt processes. The
result indicated that the soil moisture diagnostic equation is capable of accurately estimat-
ing soil moisture in snow-dominated regions after the snowfall and snowmelt processes
are included in the soil moisture diagnostic equation. Qi et al. [19] have investigated
snow performs similar to an important reservoir. In March–May, the soil moisture would
decrease at least 20.1% when there is no snow, and the main cropland area suffers more.
Shinoda et al. [16] found that the yearly maximum snow depth represents a major portion of
the soil water upon snow disappearance. Potopova et al. [31] presented a detailed analysis
which showed that snow-cover characteristics can significantly influence soil water satura-
tion during the first part of the growing season, while seasonal amount of SWE can explain
up to 45% of soil moisture variability during early summer (April–May–June). Liang [32]
investigated the farmland of Northeast China and concluded that snow-cover depth has a
strong positive correlation with April and May soil moisture. This correlation is, however,
spatially differentiated, with regions showing a significant correlation concentrated mostly
in the southwestern part of Heilongjiang Province. A greater correlation was also observed
between snow-cover depth and April soil moisture by Liang et al. [30], which is in line
with the conclusion of this paper. Taking the Songnen Plain and the Sanjiang Plain in
Heilongjiang Province as examples, this study analyzes the impact of snow cover on spring
soil moisture. It is noticed that snow cover plays a greater effect on the spring soil moisture
content of part of the Songnen Plain located in northwestern Heilongjiang Province. This
effect could last until May, but it impacts April soil moisture greatly. Yet, snow cover has
less effect on the spring soil moisture content of the part of the Sanjiang Plain located in
southeastern Heilongjiang Province. Our results show that previous autumn precipitation,
snow-cover duration, and snow-cover onset date are the most important factors affecting
the soil moisture of each layer on the Songnen Plain during the spring months. Due to
the winter soil freezing, the precipitation of the previous autumn is well contained with
little loss. Snow cover also acts as an insulation layer, conserving soil moisture [5]. An
earlier onset of snow cover enhances the conservation effect on soil moisture. Soil memory
ensures that previous autumn precipitation and snow cover could have a longer-term
effect on soil moisture conservation at deeper layers, lasting until May. Snow-cover depth
and snow-cover end date mainly affect the April soil moisture content at shallow layers.
Our analysis shows that snow melting mainly takes place from the end of March to early
April. During this time, the seeping of snowmelt has a great impact on soil moisture in the
shallow layers. Greater snow-cover depth and delayed snow-cover end date lead to higher
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shallow-layer soil moisture. In May, as the temperature rises and precipitation increases,
the effect of snow cover on soil moisture gradually decreases.

(2) The effects of snow cover on soil moisture were also different in different study
areas. Douville [20] suggested that the effect of spring snowmelt on soil moisture can last
until summer. McNamara [21] found it lasts until late spring. Although Zhang et al. [22]
reported that snow cover has an impact on soil moisture mainly as it melts. Our analysis
points to clear differences in the effect played by snow-cover conditions for soil moisture of
the Songnen Plain and the Sanjiang Plain. A further comparison is made on the climatic
background of both locations. Five meteorological factors (spring temperature, precipita-
tion, surface temperature, wind speed, and sunshine duration) are selected for comparison.
The results are shown in Table 5. Variance analysis reveals significant differences in the
effect of four of these meteorological factors, except for spring temperature, i.e., compared
to the Sanjiang Plain, the Songnen Plain experiences significantly less spring precipitation,
lower surface temperature, greater wind speed, and longer sunshine duration. In particular,
the spring precipitation on the Songnen Plain is only about 70% that of the Sanjiang Plain,
which means a drier climate for the former. It can thus be concluded that snow helps
to conserve and replenish soil moisture in dry areas. For places of higher humidity, the
contribution of snow cover to soil moisture is not as significant.

Table 5. Statistical table of spring climate conditions of the Songnen Plain and the Sanjiang Plain for
1983–2019 (average value and variance analysis result).

Songnen Plain Sanjiang Plain

T 5.54 ◦C a 5.40 ◦C a

P 69.48 mm a 99.16 mm b

ST −2.88 ◦C a −1.86 ◦C b

WS 3.63 m/s a 3.38 m/s b

SD 745.1 h a 677.7 h b

Note: “a”, “b”: Variance analysis result between the Songnen Plain and the Sanjiang Plain.

(3) Among all the snow-cover parameters, snow-cover duration, snow-cover onset
date, maximum snow depth, and snow-cover end date are thought to have a greater
contribution to soil moisture on the Songnen Plain. The variation characteristics of these
four snow-cover parameters have been analyzed for the Songnen Plain, and they are shown
in Figure 6. The average value of snow-cover duration is 104 d, the value of maximum snow
depth is 13.6 cm, the average snow-cover onset date is November 1, and the average snow
cover end date is April 2. On the Songnen Plain snow-cover duration showed declining
trend, and the decline rate was −0.19 d/a while the trend was not significant. The increase
rate maximum snow depth was 0.20 cm/a, which was significant (p < 0.05). Snow-cover
onset date showed increasing trend (p < 0.05), and the increase rate was 0.36 d/a. Snow-
cover end date showed declining trend (p < 0.05), and the decline rate was −0.41 d/a.
Compared with those in the 1980s, maximum snow depth on Songnen Plain increased
by 8.0 cm, snow-cover onset date was 14.4 days later, and snow-cover end date was 16.4
days earlier in the 2010s. Changes in any of these snow-cover parameters will negatively
impact the maintenance of soil moisture. Despite the significant increase in snow-cover
depth, this factor only influences the April surface soil and no noticeable influence on the
deeper layers.

(4) The soil become “wet soil” due to the snow melting, which keeps snow signal for
a long time and interacts with the atmosphere in the long term [33]. This soil memory
can influence regional and even global climate change [34,35]. Previous studies have not
studied the spatial difference of snow-cover influence, but this study result indicates that
the impact of snow cover on soil moisture is different in different regions, which means
that the indirect impact of snow cover on climate is different when the study area changes.
In the future, more attention should be focus on the difference of snow effect in different
regions. The cause of this difference also needs further research, whether it is caused by the

134



Sustainability 2022, 14, 1527

difference of soil properties or climate background. For agriculture, exploring the influence
of snow cover on spring soil moisture can improve the accuracy of soil moisture estimation
in spring and predict crop growth. Based on the estimated soil moisture, more efficient
irrigation scheme can be developed, and water resources can be rationally allocated.

Figure 6. Interannual variation of snow-cover parameters for Songnen Plain from 1983 to 2019.
((a): SCD, (b): MSD, (c): SOD, (d): SED).

5. Conclusions

During the period of 1983–2019, the average spring soil moisture contents for the
Songnen Plain and the Sanjiang Plain are 81.39% and 92.37%, respectively. Compared to
the Sanjiang Plain, the Songnen Plain has significant lower spring soil moisture content
and greater interannual variation of soil moisture. The Songnen Plain has a significantly
lower spring soil moisture content than the Sanjiang Plain across all soil layers for the
spring months.

Among all the meteorological factors, previous autumn precipitation is the main
influencer of the spring soil moisture content of both the Songnen Plain and Sanjiang Plain.
Snow-cover conditions have little effect on the spring soil moisture content of the Sanjiang
Plain, but affects that of the Songnen Plain greatly. For the Songnen Plain, snow-cover
duration and snow-cover onset date both correlate significantly with soil moisture across
all the spring months. The percent contribution on soil moisture by snow-cover duration
and snow-cover onset date is about 30% for March. As the months go by, the percent
contribution gradually decreases. The impact on the shallow soil layer disappears in May,
but a contribution of 12% is still felt at deeper layers (20–30 cm). The maximum snow depth
and snow-cover end date only affect April surface soil moisture for a short while, but the
percent contribution is as high as 24%.

Comparing the climate characteristics of the Songnen Plain and the Sanjiang Plain,
the former is found to have a drier climate, while the different impacts snow cover has on
soil moisture of the two areas could come from the differences in their climatic conditions.
Snow has a stronger soil moisture conservation effect for drier areas.

Analyzing the variation characteristics of snow-cover parameters in the Songnen Plain
from 1983 to 2019, it is found that the average maximum snow depth is found to increase
greatly, along with greatly delayed snow-cover onset date and much earlier snow-cover
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end date. Snow-cover duration, however, does not change significantly. In terms of the
change rate, changes in snow-cover end date and onset date happen more rapidly, and the
increase in maximum snow depth happens more slowly. Overall, changes in snow-cover
conditions intensify the decrease in spring soil moisture content on the Songnen Plain,
which may lead to reduced grain production.

This study is only limited to two agricultural bases in Heilongjiang Province and does
not conduct a detailed analysis of all the stable snow covers regions. The conclusions may
have regional limitation. It has not conducted an in-depth study on the mechanism that the
different impacts snow cover has on soil moisture of the two areas with different climatic
conditions. It will be subject to special research in the future.
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Abstract: Droughts and floods cause serious damage to agricultural production and ecosystems, and
system-based vulnerability and risk prediction are the main tools used to address droughts and floods.
This paper takes the agroecosystem as the research object, uses the vulnerability model based on
“sensitivity–exposure–adaptability” and “vulnerability-risk, source-risk receptor” drought and flood
risk models, and establishes multi-index prediction systems covering climate change, population,
agricultural technology, economy, ecology, and other factors. Using a combination of AHP and the
entropy weighting method, we predict the vulnerability and risk of droughts and floods in China’s
agroecosystem under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios from 2020 to 2050. The results
show that as the scenario changes from SSP1-2.6 to SSP5-8.5 in turn, drought and flood vulnerability
intensify, and the drought or flood vulnerability area expands to southern China. At the same time,
future drought and flood risk patterns present the characteristics of high risk in Northeast, North,
Central, and Southwest China. Therefore, major grain-producing provinces such as Heilongjiang
and Henan need to do a good job of preventing and responding to agroecosystem drought and flood
risks by strengthening regional structural and nonstructural measures.

Keywords: climate change; drought and flood; vulnerability; risk prediction; agroecosystem

1. Introduction

In the 1960s, international organizations and government agencies introduced vul-
nerability research into the scope of ecological research. With the continuous growth of
the population, the scope of the global fragile ecological environment has increased sig-
nificantly. The IPCC has officially released six scientific assessment reports on climate
change [1–5], the purpose of which is to assess the scientific understanding of climate
change, the impact of climate change, and possible countermeasures for the adaptation and
mitigation of climate change.

A large number of scholars have successively carried out research on climate change
vulnerability and risk. These studies used vegetation and ecological models and other simu-
lation studies [6–8], indicators to assess climate change vulnerability and risk [9] or focused
on adaptation measures and technological innovations for climate change risks [10–13].
Budiyono et al. [6] used vulnerability curves and flood risk assessment models; considered
local factors related to hazards, exposure and vulnerability; assessing flood risk in Jakarta
quantitatively, and they found that Jakarta is estimated to lose approximately US$321
million annually due to river flooding. Simane et al. [9] used the livelihood vulnerability
index to study the resilience and vulnerability of five different agroecosystems in Choke
Mountain communities in the Blue Nile Highlands of Ethiopia. They found that high-
altitude sloping land and low-altitude steep land exhibited relatively low adaptive capacity
and high vulnerability, but this study has drawbacks in regard to simplifying the internal
characteristics of the community and ignoring the temporal variability of vulnerability.

Senyolo et al. [12] studied innovations in climate-smart agricultural technology at
the farm level in South Africa and established a framework for classifying climate change
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risk, variability, and technological innovation. Drought-tolerant and early-maturing con-
servation agriculture, rainwater harvesting, and improved seed varieties were found to
be the most suitable technologies for climate-smart agriculture in South Africa. Durowoju
et al. [14] used monthly rainfall, temperature, soil moisture, vegetation condition index,
normalized differential water index, and the land cover index to assess agricultural and hy-
drological drought vulnerability in the Kaduna River Basin in Nigeria. They found that the
agricultural and hydrological drought and high vulnerability areas in this region account
for about 18%. Meza et al. [15] used the drought index to calculate the comprehensive haz-
ard index of irrigation and rain-fed systems and assessed the drought vulnerability and risk
of irrigation and rain-fed agricultural systems on a global scale. The analysis shows that the
drought risk of rainfed and irrigated agricultural systems presents a heterogeneous pattern
on a global scale, with higher risks in southeastern Europe and Africa. Swami et al. [16]
comprehensively assessed agriculture in Maharashtra, India, from 1966 to 2015 based on
indicators such as monsoon and temperature changes, wasteland, scattered land holdings,
human capital, physical capital, total assets, and land productivity vulnerability. The results
showed that the agricultural system in the region is fragile, and regional-level variability in
resource distribution, exposure, and sensitivity parameters was found, underscoring the
importance of regional policy development in the region.

China is a large agricultural country, and agricultural production is vulnerable to
climatic disasters, causing serious damage. Therefore, the main research object of domestic
scholars is the agricultural system [17–22]. Zhou [17] analyzed the changing laws and
trends of agricultural droughts, floods, and other meteorological disasters, such as climatic
resources, diseases, and insect pests in China under global change. He found that with
the continuous warming of the global climate and the frequent occurrence of catastrophic
events, China’s agricultural meteorological disasters also showed a significant trend of
change. Xu et al. [20] showed that the agriculture and food system, as an important area
for addressing climate change and comprehensive adaptation measures from the supply
and demand side, can effectively reduce food waste and greenhouse gas emissions from
agricultural sources and can increase the resilience of agricultural systems.

There are various approaches for assessing climate change vulnerability and risk,
each with its own advantages and disadvantages. The biological ecological simulation
method is based on theories of natural ecosystems, simulating the energy and material
exchange processes between climate, soil, water, and organisms quantitatively; however,
the establishment and application of comprehensive ecological models often requires
interdisciplinary research by several different professional fields and work teams. The
method of indicator evaluation has strong operability, but it is necessary to ensure the
scientificity and rationality of the selection of evaluation indicators. At the same time, the
index weighting methods of most studies are single and subjective. In addition, the main
object of vulnerability and risk assessment in most studies is the ecosystem, agricultural
system, economic system, or other relatively single system. Although a few studies have
taken the agroecosystem as the research object, and most assessments have included
static vulnerability and risk assessments, they have rarely considered different shared
socioeconomic pathways (SSPs).

Therefore, this paper adopts multi-index comprehensive prediction methods based on
the “sensitivity–exposure–adaptability” vulnerability framework. We established multi-
level indicator evaluation systems for the drought and flood vulnerability of agroecosys-
tems. To improve the scientificity and rationality of the evaluation indicator empowerment
and evaluation, this study uses both subjective and objective weighting methods; that is,
combining the AHP and entropy weight methods and assigning weights to the projection
indicators of drought or flood vulnerability of agroecosystems, respectively. To explore
the distribution pattern and difference in drought or flood vulnerability of agroecosystems
caused by climate change under different shared socioeconomic pathways in the future, we
use multiclimate model ensemble data under SSP1-2.6, SSP2-4.5 and SSP5-8.5, predicting
the drought or flood sensitivity, exposure, adaptability and vulnerability of agroecosystems
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under three future shared socioeconomic scenarios from 2020 to 2050. On this basis, we use
an agroecosystem drought or flood risk prediction model, considering vulnerability, risk
source, and risk receptors, to predict the drought or flood risk of China’s agroecosystem
and compare the vulnerability and risk status of agroecosystems under different shared
socioeconomic scenarios from 2020 to 2050.

2. Data and Methods

The research area of this paper includes 31 provincial administrative units in China,
except for Hong Kong, Macao and Taiwan.

2.1. Climate Data and Population Data

The data of future climate scenarios are selected from the data output by 22 global
climate models in the Sixth International Coupling Model Intercomparison Project (CMIP6)
(https://esgf-node.llnl.gov/projects/cmip6)(accessed on 5 January 2022). The specific
information on the selected climate model can be found in Appendix A, Table A1. The
data include three SSP scenarios from 2020 to 2050: the monthly average temperature and
precipitation under low-forcing scenario SSP1-2.6, medium-forcing scenario SSP2-4.5, and
high-forcing scenario SSP5-8.5. We first interpolate the monthly scale data from the climate
model to meteorological stations. Then, we refer to a new statistical downscaling method
based on random weather generators in Liu and Zuo [23], correct the monthly scale data of
the climate model based on the observation data and feed them into the random weather
generator, generating climate prediction data from 699 reference weather stations in China.

The future population data includes multi-dimensional population prediction grid
data (0.5◦ × 0.5◦) under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios from 2020 to 2050 [24].
We use GIS to add population grid data of the same provincial administrative unit to the
future provincial population data. Finally, the population forecast data of each provincial
administrative unit from 2020 to 2050 are obtained.

2.2. Socioeconomic and Agroecological Data

The agroecological and socioeconomic data used in this study are mainly from the
China Statistical Yearbook [25] by the National Bureau of Statistics of China, and the
statistical data of China’s forest resources inventory results [26]. The data categories
include agricultural disaster-affected area, agricultural fertilizer use, gross production
value of agriculture, forestry, animal husbandry and fishery, GDP per capita, total power
of agricultural machinery, total reservoir capacity, flood control area, grain sown area, per
capita water resources, agricultural ecological water consumption, and forest area.

2.3. Methods
2.3.1. Agroecosystem Vulnerability Prediction Model

To conduct scientific and accurate agroecosystem vulnerability predictions for each
provincial administrative unit in China and build drought or flood prediction indica-
tor systems for the vulnerability of agroecosystems, we use the “sensitivity–exposure–
adaptability” vulnerability model in the IPCC [3,4,27]. This paper considers vulnerability
as the degree to which a system is susceptible or unable to cope with the adverse effects
of climate change, typically characterized by high sensitivity to damage, high exposure,
and low adaptive capacity, as shown below. Among them, adaptability is defined as the
external support of assisting a province to adapt to the hazards. It does not refer to the
resilience phase of a system’s adaptation to a hazard after experiencing it. We use indicators
that reflect ecosystem service functions, economic and agricultural science and technology
development factors in human agricultural activities, and corresponding adaptation mea-
sures to define resilience. Since the higher the vulnerability is, the smaller the adaptability
is. In the data preprocessing link, this paper reversely normalizes the adaptability index
data [28,29].

Vulnerability = f (Sensitivity, Exposure, Adaptability) (1)
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2.3.2. Combination of AHP and the Entropy Weight Method to Determine the Weight

AHP is a method of subjectively determining the weight of indicators. It mainly
decomposes the evaluation objectives into different levels and indicators, and compares and
calculates the indicators at the same level to determine the weights of different evaluation
indicators [30,31].

The entropy weight method is an objective analysis method that determines the
relative weight of each index in the comprehensive evaluation by the degree of dispersion
between the evaluation index values. The main calculation steps are as follows:

First, the corresponding evaluation matrix is constructed.

A = [Yn1, Yn2, . . . Ynm] (2)

Second, the data are normalized.

Yij =
Yij − min

{
Yj
}

max
{

Yj
}− min

{
Yj
} (3)

Third, the proportion Pij of the i-th province under the j-th indicator is determined.

Pij =
xij

∑n
k=1 xij

, i = 1, 2, . . . , n, j = 1, 2, . . . m (4)

Fourth, the entropy value ej of the jth index is determined.

ej = −1/lnn × ∑n
i=1 Pij × ln

(
Pij
)

(5)

Fifth, the jth index difference coefficient dj and weight wj are determined.

dj = 1 − ej (6)

wj =
dj

∑m
k=1 dj

(7)

In this study, we use both the analytic hierarchy process and the entropy weight
method to weigh the index. The AHP has been relatively and maturely applied to the
determination of the weight of a multi-index system. The advantage of the entropy weight
method is that it considers the objective numerical characteristics of the data. The com-
bination of the two to determine the weight not only reflects the actual importance of
each vulnerability prediction index but can also reflect the objective characteristics of each
data point, making the weight of the vulnerability prediction index more scientific and
reasonable [32,33].

In determining the selection method of the combination weight, we adopt the revised
formula proposed by Wang et al. [34] by analyzing the problems existing in the commonly
used subjective and objective combination weighting formulas. That is, the original com-
mon formula: zj = vjwj/m is revised to: zj = (vj + wj)/m, and the combined weighting
calculation formula is derived from this formula, as shown below:

zj =
(
vj + wj

)
/2 (8)

where n denotes the number of each evaluation index, m denotes the number of each
province, Yij denotes the element in the ith row and jth column of matrix A, vj is the
weight determined by the analytic hierarchy process, wj is the weight determined by the
entropy weight method, and zj is the weight determined by the combined weighting
(Figures 1 and 2).
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Figure 1. Estimated indicator weights of drought vulnerability in China’s agroecosystem from 2020 to
2050: (a) SSP1-2.6 drought sensitivity; (b) SSP1-2.6 drought exposure; (c) SSP1-2.6 drought adaptabil-
ity; (d) SSP2-4.5 drought sensitivity; (e) SSP2-4.5 drought exposure; (f) SSP2-4.5 drought adaptability;
(g) SSP5-8.5 drought sensitivity; (h) SSP5-8.5 drought exposure; (i) SSP5-8.5 drought adaptability.

 

Figure 2. Estimated indicator weights of flood vulnerability in China’s agroecosystem from 2020
to 2050: (a) SSP1-2.6 flood sensitivity; (b) SSP1-2.6 flood exposure; (c) SSP1-2.6 flood adaptability;
(d) SSP2-4.5 flood sensitivity; (e) SSP2-4.5 flood exposure; (f) SSP2-4.5 flood adaptability; (g) SSP5-8.5
flood sensitivity; (h) SSP5-8.5 flood exposure; (i) SSP5-8.5 flood adaptability.
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2.3.3. Agroecosystem Drought and Flood Risk Prediction Model

This study is based on the research by Xu et al. [35] and IPCC [5,27] on climate change
and natural disaster risk. The drought and flood risks of agroecosystems in the context of
climate change can be expressed as a functional formula of risk source, risk receptor, and
vulnerability, and the multiplication of the three is the fundamental relationship. We use
R = f(H, V, E) to predict the drought risk or flood risk of China’s agroecosystem under the
SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios from 2020 to 2050. Among them, the risk source
refers to the frequent occurrence of drought or flood risk sources in China, and the intensity
is expressed as the probability of occurrence over the next 30 years. The risk receptor,
namely, the agroecosystem, is expressed by characterizing nine agroecosystem values,
including food production, soil formation and protection, climate and gas regulation, and
water conservation. Vulnerability represents drought vulnerability or flood vulnerability of
agroecosystems. In addition, the product of agroecosystem value and vulnerability is the
possible loss of the region and is then multiplied by the probability of drought or flooding
to obtain the risk of agroecosystem drought or flooding. The equations are as follows:

Ry = Hy × Vy × E (9)

RZ = HZ × VZ × E (10)

Hy =
∑ n
N

(11)

Hz =
∑ m
M

(12)

E = P × A × α (13)

where Ry is the drought risk of the agroecosystem in each province. Hy is the drought
probability of the agroecosystem in each province; that is, the probability of occurrence
of moderate drought, severe drought and extreme drought in a certain area from 2020 to
2050 [36]. Vy is the agroecosystem drought vulnerability in each province. E is the total
value of agroecosystem services in a certain region of China. Rz is the flood risk of the
agroecosystem in each province. Hz is the flood probability of the agroecosystem in each
province; that is, the probability that the daily precipitation will reach a certain condition
in a certain area from 2020 to 2050. Vz is the agroecosystem flood vulnerability in each
province. ∑ n denotes the total number of months in which the drought in a certain area
reaches the level of moderate drought, severe drought, and extreme drought. N denotes
the total number of months in the desired year, which is 372. ∑ m denotes the total number
of days with daily precipitation greater than or equal to the average daily precipitation in
a certain area from 2020 to 2050. M denotes the total number of days in the desired year,
which is 11,315. P is the total value of 9 ecological services per unit area of agroecosystem
in the average state of China in the early 21st century, which is 6114.3 [37–39]. A is the
area of the agroecosystem in each region, and this study uses the area of agricultural
vegetation coverage; that is, the sown area of grain in each region. α denotes the ratio of the
estimated annual economic price of ecological services to the economic price of ecological
services in the early 21st century and uses the growth rate β of the consumer price index to
calculate, which is α = (1 + β)30. The average growth rate of China’s consumer price index
is assumed to be 0.03 [40], and α is 2.4.

The flow chart is shown in Figure 3.
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Figure 3. Flowchart of the future drought and flood vulnerability and risk prediction. (年 : year).

3. Results and Discussion

3.1. Vulnerability Estimation

In a previous study [33], we selected sensitivity, exposure, and adaptability evalua-
tion indicators based on the “sensitivity–exposure–adaptability” vulnerability assessment
framework. We built an evaluation index system separately for China’s agroecosystem
drought or flood sensitivity, exposure, adaptability, and vulnerability from 1991 to 2019 and
conducted corresponding evaluations. The results of vulnerability assessment in the past
30 years showed that the drought–flood vulnerability of China’s agroecosystem denotes a
weakening trend from the central part to the surrounding areas of China, and the central
provinces of Henan and Hubei are at the high drought–flood vulnerability level [33]. To
ensure the accuracy of China’s agroecosystem vulnerability estimation and the continuity
of research in the next 30 years, we explore the distribution pattern and change in China’s
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agroecosystem vulnerability under different shared socioeconomic scenarios. Based on
previous assessment work, we predict the drought vulnerability and flood vulnerability of
China’s agroecosystem from 2020 to 2050.

3.1.1. Results of the Construction of the Drought Vulnerability Prediction Index System

In this study, the drought vulnerability prediction index system is constructed based
on the vulnerability model (Table 1). Meteorological indicators that combine temperature
and rainfall are used to construct drought sensitivity indicators for 2020~2050. The National
Meteorological Administration of China is used to define the probability of occurrence
of China’s high temperature yellow warning at 35 ◦C to characterize the state of surface
evaporation [41], and the surface water budget is characterized by precipitation to indirectly
quantify the water budget of the agroecosystem [42]. Considering that the three major
food crops in China, rice, maize, and wheat, are most vulnerable to climate change, the
growth length of the critical period of water demand is usually 15–30 days [43–46]. April
to September is considered to be the main growth period of most food crops in food
production activities [47–50]. We use the probability of the occurrence of drought for more
than 15 consecutive days and the average annual number of consecutive drought days to
scientifically describe the drought status of crops and determine the drought sensitivity of
agricultural ecology.

When constructing the drought exposure index in this paper, not only are the popu-
lation and grain sown area considered, but three different socioeconomic path factors in
the future are also included in the future population changes in different provinces. The
country’s basic agricultural policies and development planning factors are incorporated
into the changes in the sown area of food crops, and agroecological water consumption
is also included in the vulnerability analysis of agroecological drought as an assessment
indicator of the degree of human participation in arid environmental exposure.

Drought adaptability is the ability to avoid or mitigate losses due to climate change risk
by improving the level of science and technology and enhancing the ability to resist disasters
when human beings realize the task of addressing adverse and imminent environmental
changes [51]. To explore drought vulnerability in response to future extreme climate
change based on the current level of drought adaptability, this study assumes that the
drought resilience in 2020~2050 is the same as that in 1991–2019. Therefore, we select
seven indicators, including the GDP per capita, per unit grain use of agricultural chemical
fertilizers, gross production value of agriculture, forestry, animal husbandry and fishery,
forest area, per capita water resources, total power of agricultural machinery, and total
reservoir capacity.

3.1.2. Drought Vulnerability of China’s Agroecosystem from 2020 to 2050

According to the grading threshold of drought vulnerability from 1991 to 2019 delin-
eated by the standard deviation grading method [33,52], this paper divides the drought
vulnerability in the next 30 years into three grades: low, medium, and high. The results
show (Figure 4) that in the next 30 years, as the shared socioeconomic scenario increases
from SSP1-2.6 to SSP5-8.5, the drought vulnerability of China’s agroecosystem will gradu-
ally increase. In the SSP1-2.6 scenario, the only low-drought vulnerable province is Sichuan
Province, and fourteen provinces, including Heilongjiang, Liaoning, Beijing, Guizhou,
Hunan, and Guangdong, are located in drought-vulnerable areas in the agricultural ecosys-
tem. More than half of the provinces, such as Yunnan, Fujian, and Shaanxi, which are
concentrated in Northwest, Central, and East China, are located in areas with high drought
vulnerability. Under the SSP2-4.5 scenario, the vulnerability of China’s agroecosystem
is divided into two levels: medium and high drought vulnerability. Compared with the
SSP1-2.6 scenario, the range of provinces with high drought vulnerability expands to the
central and southern regions of China, and the drought vulnerability of the Henan, Hunan,
and Guangdong agroecosystems rises to the level of high drought vulnerability. In the
SSP5-8.5 scenario, the range of provinces with high drought vulnerability further extends

146



Sustainability 2022, 14, 10069

to southern China compared with the SSP2-4.5 scenario, and the agroecosystem drought
vulnerability in Guizhou, Yunnan, and Guangxi rises to the high drought vulnerability
level. In summary, as the shared socioeconomic scenarios increase from SSP1-2.6 to SSP2-4.5
and SSP5-8.5, the drought vulnerability of China’s agroecosystem increases overall, and
the scope of provinces with high drought vulnerability gradually expands to the central
and southern regions.

Table 1. Prediction indicator system for agroecosystem drought vulnerability in China’s provinces
from 2020 to 2050.

Target Layer Criterion Layer Indicator (Unit) Indicator Description and Calculation Method
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Probability of high temperature
above 35 ◦C (%)

Positive indicator. Calculated by dividing the
cumulative number of years with the daily maximum

temperature ≥35 ◦C by the total number of years in the
desired year

Average number of consecutive
dry days per year (d) Positive indicator. According to the standardized

precipitation index (SPI) and Meteorological Drought Scale
[36]. The number of consecutive drought days refers to

the number of consecutive days when the daily SPI
reaches moderate drought, severe drought, and extreme

drought. The probability of occurrence of drought for
more than 15 consecutive days is calculated by dividing

the cumulative number of SPI reaching moderate
drought, severe drought, and extreme drought for 15
consecutive days or more in the crop growing season

from April to September in the desired year by the
number of years.

Probability of drought for more
than 15 consecutive days per year

(%)

Ex
po

su
re

Year-end resident population (104)
Positive indicator. Multidimensional population forecast

data under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios
from 2020 to 2050 [24].

Grain sown area (103 hm)
Positive indicator. According to the red line policy of 1.8
billion mu of arable land in China, it is assumed that the

sown area of grain will remain unchanged after 2020.

Agroecological water
consumption (109 m3)

Positive indicator. Assuming that the per capita
agricultural ecological water consumption from 2020 to

2050 is constant, which is the same as the situation in
2004 to 2019, then the agricultural ecological water

consumption from 2020 to 2050 = ∑ (2004 to 2019 per
capita agricultural ecological water consumption of each

province × annual predicted population of each
province).

A
da

pt
ab

ili
ty

GDP per capita (Yuan/person)

Inverse indicator. The adaptability level is assumed to
be the same as the drought adaptability status from 1991
to 2019, and the reverse normalized value of the drought

adaptability data from 1991 to 2019 is used as the
drought adaptability index.

Agricultural chemical fertilizer
use per unit of grain sown area

(t/hm)

Forest area (104 hm)

Per capita water resources
(m3/person)

Gross output of agriculture,
forestry, animal husbandry, and

fishery (109 yuan)

Total power of agricultural
machinery (104 kW)

Total reservoir capacity (109 m3)
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Figure 4. Drought vulnerability of China’s agroecosystem under the SSP1-2.6, SSP2-4.5, and SSP5-8.5
scenarios from 2020 to 2050. Note: (a) SSP1-2.6 drought vulnerability classification; (b) SSP2-4.5
drought vulnerability classification; (c) SSP5-8.5 drought vulnerability classification; (d) SSP1-2.6
drought vulnerability index; (e) SSP2-4.5 drought vulnerability index; and (f) SSP5-8.5 drought
vulnerability index.

3.1.3. Construction of the Flood Vulnerability Prediction Index System

This study builds a flood vulnerability prediction index system based on the vulnera-
bility model (Table 2). Generally, floods are characterized by a certain order of magnitude,
and long-term continuous precipitation leads to submerged or stagnant water in low-lying
areas. In this study, the probability of occurrence of heavy rain, the average annual number
of heavy rain days, and the average annual number of heavy rain days are used to con-
struct the flood sensitivity index from 2020 to 2050. Flood exposure refers to the order of
magnitude of population, production, and living, ecosystem life and environmental service
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functions, and infrastructure or economic and cultural assets that may be affected by flood
disaster losses.

Table 2. Prediction index system of agroecosystem flood vulnerability in China’s provinces from 2020
to 2050.

Target Layer
Criterion

Layer
Indicator (Unit) Indicator Description and Calculation Method
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Probability of rainstorm (%)
Positive indicator. Calculated by dividing the cumulative
number of years with daily precipitation ≥50 mm by the

total number of years in the desired year *.

Average number of rainy days
per year (d)

Positive indicator. Calculated by dividing the cumulative
number of days with daily precipitation ≥ 50 mm by the

number of years in the desired year *.

Average annual number of
days with heavy rain (d)

Positive indicator. Calculated by dividing the cumulative
number of days with daily precipitation at (25 mm and

50 mm) by the number of years in the desired year *.

Ex
po

su
re

Year-end resident population
(104)

Positive indicator. Multidimensional population forecast
data under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios from

2020 to 2050 [24].

Grain sown area (103 hm)
Positive indicator. According to the red line policy of

1.8 billion mu of arable land in China, it is assumed that the
sown area of grain will remain unchanged after 2020.

Agroecological water
consumption (109 m3)

Positive indicator. Assuming that the per capita agricultural
ecological water consumption from 2020 to 2050 is constant,
which is the same as the situation in 2004 to 2019, then the

agricultural ecological water consumption from 2020 to
2050 = ∑ (2004 to 2019 per capita agricultural ecological
water consumption of each province × annual predicted

population of each province).

A
da

pt
ab

ili
ty

GDP per capita
(Yuan/person)

Inverse indicator. Adaptability is assumed to be the same as
the flood adaptability from 1991 to 2019, and the

reverse-standardized value of the flood adaptability data
from 1991 to 2019 is used as the flood adaptability index

Agricultural chemical
fertilizer use per unit of grain

sown area (t/hm)

Waterlogging area (103 hm)

Per capita water resources
(m3)

Forest area (104 hm)

Total power of agricultural
machinery (104 kW)

Total reservoir capacity (109

m3)

Note: The data of per capita water resources are missing; therefore, the data time of per capita water resources is
selected from 2004 to 2019 *, indicating that the calculation method is based on the precipitation grade [53].

Flood adaptability refers to the active coping and adaptation capabilities brought
about by direct and indirect service functions of ecosystems, human-led agricultural science,
technology, and economic development factors. To explore flood vulnerability in response
to future extreme climate change based on the current flood adaptability level of each
province, this study assumes that the flood adaptability from 2020 to 2050 is the same as
that from 1991 to 2019. Therefore, this paper uses per capita GDP and unit grain sown
area to utilize agricultural chemical fertilizers. This is characterized by seven indicators:
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scalar volume, flood control area, forest area, per capita water resources, total power of
agricultural machinery, and total reservoir capacity.

3.1.4. Flood Vulnerability of China’s Agroecosystem from 2020 to 2050

The results of the study on the distribution pattern and changes in vulnerability to
floods in China’s agroecosystem under different SSP scenarios from 2020 to 2050 show
that (Figure 5) as the shared socioeconomic scenarios increase from SSP1-2.6 to SSP5-8.5
in turn, the degree of China’s agroecosystem flood vulnerability increases slightly, and
the number of provinces with high flood vulnerability increases. Under the SSP1-2.6
scenario, areas with high flood vulnerability include Jiangsu, Chongqing, and Guizhou.
Under the SSP2-4.5 scenario, Hebei is added to the provinces with high flood vulnerability.
Under the SSP5-8.5 scenario, Guangxi and Tibet are added to the provinces with high
flood vulnerability. In addition, under the three SSP scenarios, the areas with low flood
vulnerability include Xinjiang, Qinghai, Gansu, and Guangdong, which may be due to
the small amount of annual precipitation in the northwestern region and the insignificant
fluctuation of precipitation. As a relatively developed province in South China, Guangdong
has strong flood control and disaster-resistance agricultural infrastructure, as well as
flood-resistance and emergency-rescue capabilities. Therefore, the agroecosystem flood
vulnerability in Xinjiang, Qinghai, Gansu, and Guangdong Provinces will be lower under
the three different climate scenarios in the future. At the same time, with the increase
in greenhouse gas emissions, the fluctuation in precipitation in the southwestern region
will intensify. In addition, the terrain of the southwestern region is complex, and extreme
precipitation and flood disasters are prone to occur. Therefore, the agroecosystems in
Tibet, Chongqing, Guizhou, and Guangxi in the southwestern region are more vulnerable
to floods.

It is worth noting that under the three SSP scenarios, Jiangsu has a high level of flood
vulnerability, which may be because Jiangsu is a coastal area, and climate warming causes
high precipitation intensity and frequency. The ability to cope with heavy precipitation
and floods is weak; therefore, the vulnerability of agroecosystems to floods is high. In
conclusion, as the shared socioeconomic scenarios change from SSP1-2.6 to SSP5-8.5, the
overall flood vulnerability of China’s agroecosystem increases slightly, and the range of
provinces with high flood vulnerability shows a trend of extending to the southwest.

3.2. Risk Estimation

This paper argues that the drought or flood risk of China’s agroecosystem under
climate change can be expressed as a functional equation of the combined action of risk
source, risk receptor, and vulnerability. Among them, vulnerability is the consequence
of the factors acting on risk. In the previous part of this study, we conducted drought
or flood vulnerability projections of China’s agroecosystem over the next 30 years. To
further explore the risk distribution and changing characteristics of China’s agroecosystem
in the next 30 years, the accuracy of drought risk or flood risk prediction research has been
enhanced. We also considered risk sources and risk receptors and assessed drought or flood
risk in China’s agroecosystem from 1991 to 2019, and the assessment results are shown in
Appendix A Figures A1 and A2. In addition, to ensure the continuity of risk research work,
we predicted the drought or flood risk in China’s agroecosystem from 2020 to 2050.

3.2.1. Probability of Drought and Flooding in China’s Agroecosystem from 2020 to 2050

From 2020 to 2050, the probability of drought in China’s agroecosystem under the
three SSP scenarios shows that (Figure 6a) as the shared socioeconomic scenario changes
from SSP1-2.6 to SSP5-8.5 in turn, the probability of drought in each province continuously
increases. Under the SSP1-2.6 scenario, the probability of drought occurrence in each
province is 6–17%. Under the SSP2-4.5 scenario, the probability of drought occurrence in
each province is 8–19%. Under the SSP5-8.5 scenario, the probability of drought occurrence
in each province is 11–21%. Moreover, under the three different scenarios, the probability
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of the occurrence of drought in southwestern regions such as Sichuan, Chongqing, and
Yunnan is slightly higher.

Figure 5. Flood vulnerability of China’s agroecosystem under the SSP1-2.6, SSP2-4.5, and SSP5-
8.5 scenarios from 2020 to 2050. Note: (a) SSP1-2.6 flood vulnerability classification; (b) SSP2-4.5
flood vulnerability classification; (c) SSP5-8.5 flood vulnerability classification; (d) SSP1-2.6 flood
vulnerability index; (e) SSP2-4.5 flood vulnerability index; and (f) SSP5-8.5 flood vulnerability index.

In addition, the probability of floods in the next 30 years shows (Figure 6b) that as
the scenarios change from SSP1-2.6 to SSP5-8.5 in turn, the probability of floods in each
province increases slightly. In the SSP1-2.6 and SSP2-4.5 scenarios, the probability of
flooding in each province is 22–34%. In the SSP5-8.5 scenario, the probability of flooding in
each province is 22–35%. At the same time, under the three SSP scenarios over the next
30 years, the probability of flooding in central and southern China, such as Hunan, Fujian,
Jiangxi, and Shanghai, is higher than that in northern and northwestern China.
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3.2.2. The Service Value of China’s Agroecosystem from 2020 to 2050

From 2020 to 2050, the evaluation results of agroecosystem service value in China’s
provinces show that (Figure 7) China’s 31 provincial-level administrative units, except for
Hong Kong, Macao, and Taiwan, have obvious differences in the value of agroecosystem
services. The value of agricultural ecosystem services in the main provinces, especially
Heilongjiang, Henan, and Shandong, is still relatively high. In the next 30 years, the
economic value of agricultural ecosystem services will reach approximately 211.9 billion
yuan and 157.6 billion yuan. In Beijing, Shanghai, and other regions that will still be
dominated by finance, service manufacturing, and high-tech industries in the future, the
service value of agroecosystems is relatively low, and the economic value of various services
of agroecosystems is less than 2 billion yuan. In other provinces, such as Tibet, Hainan,
Qinghai, and Anhui, in the next 30 years, the economic value of agroecosystem services will
range from 2 billion to 110 billion yuan. In conclusion, there will be significant differences
in the value of agroecosystem services in different provinces in the next 30 years, which is
related to the area of agroecosystems in various provinces in China. Heilongjiang, Henan,
and Shandong have always been important grain-producing areas in China in the past,
mainly planting rice, wheat, and other crops. At the same time, according to Several
Opinions of the Central Committee of the Communist Party of China and the State Council on
Adhering to the Prioritized Development of Agriculture and Rural Areas and Doing a Good Job in
“Three Rurals”, it clearly requires that the red line of 1.8 billion mu of arable land be strictly
adhered to and the role of agricultural and rural farmers as ballast stone should be brought
into play [54]. In the next 30 years or so, Heilongjiang, Henan, and Hebei may still serve
as China’s granaries; therefore, their agroecosystem areas will still account for a relatively
high proportion, and the economic value of agroecosystem services will be high.

3.2.3. Drought and Flood Risks in China’s Agroecosystem from 2020 to 2050

The drought-risk distribution patterns and changes in China’s agroecosystem under
different SSP scenarios from 2020 to 2050 show that (Figure 8), in the next 30 years, the
drought-risk patterns of China’s agroecosystem under the three SSP scenarios will denote
high drought risk in Northeast, North, Central, and Southwest China. As the scenario
increases from SSP1-2.6 to SSP5-8.5, in turn, the drought risk gradually increases, and the
number of provinces with high drought risk also increases and shows a trend of extending
to the south. In the SSP5-8.5 scenario, the overall drought risk in China is severe. Under
the SSP1-2.6 scenario, half of China’s provinces have a high drought-risk level, mainly
distributed in the Heilongjiang River, Huaihe River, and the Yangtze River Basins, including
Heilongjiang, Anhui, Sichuan, and other places. Under the SSP2-4.5 scenario, the high
drought-risk provinces expand further south, adding Hunan and Jiangxi provinces. Under
the SSP5-8.5 scenario, the range of provinces with high drought risk expands to the south
again, adding Guizhou and Guangxi. However, under the three SSP scenarios, the western
provinces of China, such as Tibet and Qinghai, are always low and medium drought-risk
provinces. Regarding the spatial distribution characteristics of drought risk in China, the
research of Chou et al. [55] showed that drought disasters in China have a trend of drought
extending from north to south, especially in the Yangtze River Basin, where drought and
extreme precipitation increase. This is consistent with the distribution of the high drought-
risk areas of China’s agroecosystem extending to the south as the scenario intensifies in
this study.
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Figure 6. Probability of drought and flooding in China’s agroecosystem under different SSP scenarios
from 2020 to 2050. Note: (a) Probability of drought; and (b) probability of flooding.
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Figure 7. The value of agroecosystem services in China from 2020 to 2050.

The distribution pattern and changes in China’s agroecosystem flood risk from 2020
to 2050 (Figure 9) show that the flood risk pattern of China’s agroecosystem presents
the characteristics of high flood risk in the northeastern, northern, central, eastern, and
southwestern provinces. In the next 30 years, approximately 60% of China’s provinces
are at high risk of flooding, including Heilongjiang, Henan, Shandong, Sichuan, and
other provinces. This may be related to the fact that Heilongjiang, Henan, Sichuan, and
other provinces represent the major grain crop production provinces in China. The grain
sown area occurs prior to other provinces in the country, and the service value of the
agroecosystem is relatively high. These provinces are located in the Heilongjiang, Huaihe,
and Yangtze River Basins. The water systems in the basins are rich, and they are prone
to large floods in the whole basin. Therefore, the risk of flooding in the agroecosystem is
relatively high. Under these three SSP scenarios, Tibet, Qinghai, Ningxia, Xinjiang, Gansu,
Beijing, and Shanghai exhibit moderate-to-low flood risk characteristics. Alpine landforms,
such as the Himalayas, Kunlun Mountains, Tianshan Mountains, and Qilian Mountains,
block the transport of water vapor; therefore, there is less precipitation. In addition, hilly
landforms and mountainous landforms in this area account for a large area, the climate
is warm and dry, and the runoff of mountain rivers also shows a downward trend [56].
However, Beijing and Shanghai are regions represented by financial services and high-end
industries. The service value of the agroecosystem is low; therefore, the risk of flooding
is low.

154



Sustainability 2022, 14, 10069

Figure 8. Drought risk of China’s agroecosystem under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios
from 2020 to 2050. Notes: (a) SSP1-2.6 drought risk; (b) SSP2-4.5 drought risk; and (c) SSP5-8.5
drought risk.
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Figure 9. Flood risk of China’s agroecosystem under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios
from 2020 to 2050. Note: (a) SSP1-2.6 flood risk; (b) SSP2-4.5 flood risk; and (c) SSP5-8.5 flood risk.

4. Conclusions and Discussion

This study takes China’s agroecosystem as the research object and adopts a multi-
index comprehensive prediction method based on the “sensitivity–exposure–adaptability”
vulnerability prediction model. Taking into account factors such as climate change, soci-
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ety, population, agricultural science and technology, economy, ecology, etc., a multilevel
indicator evaluation system was established for the drought and flood vulnerability of
agroecosystems. Using a combination of subjective empowerment and objective empower-
ment methods, the drought and flood sensitivity, exposure, adaptability, and vulnerability
of agroecosystems under three socioeconomic scenarios, SSP1-2.6, SSP2-4.5, and SSP5-8.5, in
the next 30 years were estimated. On this basis, the drought and flood risk prediction model
of agroecosystems was used to consider vulnerability, risk sources, and risk receptors. The
drought and flood risks of the agroecosystem from 2020 to 2050 were predicted, and the
vulnerability and risk status of China’s agroecosystem under different shared social and
economic scenarios in the future were compared and analyzed. The main findings are
as follows:

(1) In the next 30 years, as the shared socioeconomic path changes from SSP1-2.6 to SSP5-
8.5 in turn, the drought and flood vulnerability of China’s agroecosystem will increase
in general, the scope of provinces with high drought vulnerability will gradually
expand to the south, and provinces with high flood vulnerability will gradually
extend to the southwest.

(2) From 2020 to 2050, the regional distribution pattern of drought risk showed the
characteristics of high drought risk in agroecosystems in Northeast, North, Central
China, and Southwest China. The flood risk pattern showed the characteristics of high
flood risk in the agroecosystem in Northeast, North, Central, East, and Southwest
China. As the scenarios changed from SSP1-2.6 to SSP5-8.5 in turn, the number of
provinces with high drought risk increased and showed a trend of extending to the
south. Under the SSP5-8.5 scenario, the drought risk of the agroecosystem is high,
and 60% of the provinces in China have a high risk level of flooding.

(3) It is worth noting that under the SSP5-8.5 scenario, Heilongjiang and Jilin in Northeast
China, Henan, Hubei, Anhui, Hunan and Jiangxi in Central China, Inner Mongolia
and Hebei in North China, Shandong and Jiangsu in East China, and Sichuan, Yun-
nan, Guizhou, and Guangxi in Southwest China, the drought and flood risk in the
agroecosystem in these provinces will be higher in the next 30 years. Northeast and
Central China belong to China’s commodity grain bases. Crops have a long history
of planting, and plant growth is easily restricted by drought and floods, resulting
in a higher risk of drought and floods in the agroecosystems of Northeast and Cen-
tral China. These provinces need to strengthen the use of irrigation infrastructure;
promote water-saving irrigation technologies, such as sprinkler irrigation and drip
irrigation; attach importance to investment; use advanced agricultural machinery and
equipment; strengthen soil protection measures; and gradually develop climate-smart
agriculture. At the same time, Northeast and Central China should continue to im-
plement policies on drought, flood, and climate change adaptation; make emergency
response and preparation for drought and flood risks in terms of equipment, facili-
ties, funds, and technology; and make full use of credit, savings, markets, and other
financial instruments to ensure restoration and construction in disaster-affected areas.

(4) The climate in North China is unstable and water resources are in short supply all year
round. The supply of water resources mainly depends on China’s South-to-North
Water Diversion Project. The precipitation and reservoir capacity in this region cannot
meet the regional agricultural and ecological water consumption, but floods caused
by heavy rains often occur. According to the data, in July 2021, a heavy rainstorm
occurred in the central and northern parts of Henan, resulting in flood disasters
that affected 14.786 million people in 150 counties in Henan Province and caused
a direct economic loss of 120.06 billion yuan, of which Zhengzhou City was 40.9
billion CNY, accounting for 34.1% of Henan province [57]. East China belongs to the
southeastern coastal area, with a low altitude, adjacent to the Bohai Sea and the Yellow
Sea, with vertical and horizontal rivers, insufficient freshwater resources, and a high
risk of drought and flooding in the agroecosystem. On the one hand, these areas
need to pay attention to the regular maintenance of dams, pipelines, and reservoirs
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for water supply and storage systems. The southwestern provinces of China have
complex topography, spanning the three steps of my country’s landforms, with many
mountains and ridges, and their altitudes are mostly 4000–5000 m. It is cold in winter
and cool in summer, and the distribution of water and heat is uneven [58], so the risk
of drought and flood in the agroecosystem is high. These areas need to advocate that
farmers can diversify crops in agricultural planting and production activities, adopt
intercropping, crop rotation, and other planting methods, select drought-resistant
and flood-resistant crops, and adjust planting dates and planting structures. Farmers
should adopt diversified livelihood strategies, actively participate in education and
training on water conservation, farming methods, drought and flood awareness, and
risk management, and apply them to daily agricultural production and life activities.

(5) According to the natural geographical and socio-economic background and char-
acteristics of each province in China, we select indicators such as socio-economic
development, agriculture, ecological environment, human activities, and agricul-
tural science and technology. We combine statistics and forecast data from different
repositories and establish indicator systems for predicting the vulnerability of the
agroecosystem to drought and flood disasters. At the same time, this study uses the
combination of AHP and the entropy weighting method to reduce the uncertainty
of prediction and enhance the repeatability of this study. In addition, in future re-
search work, a multi-indicator evaluation system can be constructed based on the
local natural and human context, which can be applied not only to the agricultural
system, ecosystem vulnerability, and risk assessment but also to food security, the
economic system, and human health risk assessment work. Moreover, compared with
the methods used in other studies such as water scarcity and similar indicator reports,
the indicator system constructed in this study involves many fields such as society,
nature, climate change, human activities, technological level, economic development,
and so on. At the same time, based on the vulnerability and risk assessment of China’s
agroecosystem in the past 30 years, a comparative analysis of the vulnerability and
risk distribution and characteristics of SSP1-2.6, SSP2-4.5, and SSP5-8.5 in the next
30 years is carried out in order to ensure the coherence and credibility of this research.

(6) In the next step of research, we can consider adding effective actions that farmers and
agricultural production cooperatives have taken or may take and conduct adaptive
analysis based on relevant driving factors and risk patterns to more accurately for-
mulate and adjust relevant adaptation strategies and reduce ecosystem vulnerability
and risk loss. Moreover, in future research, agroecosystem types or large geomorphic
units can be used as the basic unit of classification for agroecosystem disaster risk
estimation to take into account the influencing factors of different geomorphic units
and climatic regions in China.
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Appendix A

Table A1. Brief introduction of 22 global climate models in CMIP6.

Schema Name The Institution
Mode Resolution
(Longitude × Latitude)

ACCESS-CM2
Commonwealth Scientific and Industrial Research Organization of
Australia, Australian Research Council Centre of Excellence for Climate
System Science

1.875◦ × 1.25◦

ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research Organization
of Australia 1.875◦ × 1.25◦

BCC-CSM2-MR China National Climate Center 3.2◦ × 1.6◦

FGOALS-g3 Institute of Atmospheric Physics, Chinese Academy of Sciences 1.8◦ × 0.8◦

CanESM5 Canadian Centre for Climate Modeling and Analysis 2.8125◦ × 2.8125◦

CanESM5-CanOE Canadian Centre for Climate Modeling and Analysis 2.8125◦ × 2.8125◦

CNRM-CM French National Centre for Meteorological Research, European Centre
for Computational Research and Advanced Training 1.4◦ × 1.4063◦

CNRM-CM6-1-HR French National Centre for Meteorological Research, European Centre
for Computational Research and Advanced Training 1.4◦ × 1.4063◦

CNRM-ESM French National Centre for Meteorological Research, European Centre
for Computational Research and Advanced Training 1.4◦ × 1.4063◦

IPSL-CM Pierre Simon Laplace Institute, France 1.4◦ × 1.4063◦

EC-Earth3 European Centre for Medium-Range Weather Forecasts 0.7031◦ × 0.7031◦

EC-Earth3-Veg European Centre for Medium-Range Weather Forecasts 0.7031◦ × 0.7031◦

GFDL-ESM4 NOAA Geohydrodynamics Laboratory 2.88◦ × 1.8◦

GISS-E2-1-G NASA Gold Institute for Space Studies 2.88◦ × 1.8◦

INM-CM4-8 Institute of Numerical Mathematics of the Russian Academy
of Sciences 2◦ × 1.5◦

INM-CM5-0 Institute of Numerical Mathematics of the Russian Academy
of Sciences 2◦ × 1.5◦

MIROC6 Japan Marine Earth Science and Technology Agency 1.4063◦ × 1.3953◦

MIROC-ES2L Japan Marine Earth Science and Technology Agency 2.8125◦ × 2.8125◦

MRI-ESM Japan Meteorological Institute 1.125◦ × 1.125◦

MPI-ESM1-2-HR German Max Planck Institute for Meteorology, German
Meteorological Office 0.9375◦ × 0.9375◦

MPI-ESM1-2-LR Max Planck Institute for Meteorology, Alfred Wegener
Institute, Germany 1.875◦ × 1. 875◦

UKESM1-O-LL UK National Centre for Atmospheric Science, UK Met Office
Hadley Centre 3.2◦ × 1.6◦
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Figure A1. Drought risk in China’s agroecosystem from 1991 to 2019.

Figure A2. Flood risk of China’s agroecosystem from 1991 to 2019.
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Abstract: Rainfall severely impacts human mobility in urban areas and creates significant challenges
for traffic management and urban planning. There is an urgent need to understand the impact of
rainfall on residents’ travels from multiple perspectives. Taxi GPS data contains a large amount of
spatiotemporal information about human activities and mobility in urban areas. For this study, we
selected the central area of Zhuhai as the study area and used taxi data from August 2020 for the
investigation. Firstly, we divided the taxi data into four scenarios, i.e., weekdays with and without
rainfall and weekends with and without rainfall and analyzed and compared the trip characteristics
for the different scenarios. Then, using the traffic analysis zone (TAZ) as the node and taxi flow
between TAZs as edges, we constructed a network and compared the network indicators under
the different scenarios. Finally, we used the Leiden algorithm to detect communities in different
scenarios and compared the network indicators of the communities. The results showed that on days
with rainfall, taxi flow and its spatial and temporal distribution pattern changed significantly, which
affected transportation supply and demand. These findings may provide useful references for the
formulation of urban transport policies that can adapt to different weather conditions.

Keywords: human mobility; rainfall; taxi GPS data; complex network; community; Zhuhai central areas

1. Introduction

The study of human mobility can be used to capture spatiotemporal operational
patterns in urban areas and to understand the complex relationship between human
activity and the urban environment. This understanding plays an important role in various
aspects, such as floating population access, traffic forecasting, urban planning, and epidemic
modeling [1–3].

Traditional studies of human mobility usually adapt travel diary survey data, which
are expensive and labour-intensive to obtain. However, because these data often have
problems, such as a small sample size, a short time span, and slow update speed, they
cannot thoroughly reflect the spatiotemporal regulation of urban group activities over
time. Additionally, the accuracy of the data can also be questionable as a result of the
subjectivity of the survey design and the interviewees. With the development of positioning
and information and communication technologies (ICTs), humans have entered the era
of big data. The proliferation of various sensors and positioning technologies makes it
possible to collect large-scale and high-precision big data on human mobility in a long
time sequence (such as mobile phone data, bus smart card data, and taxi data). These
datasets contain abundant information about individual spatiotemporal activities, which
contributes to understanding human mobility patterns at a more precise spatiotemporal
level [4–6]. As one of the representative types of data on traffic and travel, taxi data have
become an important basis for studies of human mobility patterns [7].

As a component of the human living environment, weather conditions have significant
impacts on daily trips made by inhabitants [8–11]. Taking taxi travel as an example,
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the rainfall not only affects the demand for taxis but also leads to changes in the taxi
flow between areas. Additionally, it is likely that changes in road conditions caused
by rainfall affect driving speed, travel time, and choice of route during the taxi journey
from passenger pickup to the destination. [12,13]. In brief, people’s travel is influenced
by weather conditions, and their travel strategies usually vary significantly in different
weather conditions [14,15]. As a result, understanding how weather impacts human travel
patterns can contribute to improving the public transport service, and better satisfying the
travel demands of passengers under different weather conditions [16].

Studies of human mobility patterns that consider weather factors generally focus on
the field of transportation, usually analyzing several aspects, including traffic volume [17],
the speed and density of traffic flow [18,19], and traffic jams [20]. In addition, weather
changes make a big difference to vehicles, road conditions, driving behaviors (such as
psychology, judgement, and reflection) and the riding environment [21].

When considering complex and changeable weather factors, current research mainly
focuses on the association between different weather factors and human travel activities,
such as the demand for and security of traffic travel under various weather conditions,
including elevated temperatures, smog, and high winds [22,23]. These studies, for the
most part, investigated the impact of weather factors on people’s travel behaviors using
various modes of transportation from four perspectives: number of journeys, modes of
travel, travel speed, and travel time [24–28]. In addition, many studies regard rainfall as
having the most significant impact on people’s daily travel activities [29,30]. In particular,
normal travel time is usually delayed, and elastic demand is restricted and decreased in
rainstorm conditions, resulting in significant changes in the spatiotemporal distribution of
traffic demand [31].

However, because they lack sufficient space-dependent visual representation, current
research studies mainly focus on the overall statistical analysis and do not explore the
characteristics of the spatiotemporal distribution of people’s travel activities under different
weather conditions. Because weather conditions have several significant impacts on human
travel patterns and their spatial differences, the scarcity of study in this field needs to
be addressed, with particular regard to the significant spatial impact of two weather
conditions, the spatial change of people’s travel behavior patterns, and their interplay [32].
As a result, analysis of the impacts of changes in weather conditions on people’s travel
behavior patterns requires multiscale, comprehensive analysis and visual expression.

In addition, complex geospatial networks can combine statistics on the network index
with a spatial analysis based on statistical analysis and spatial visualization of network
characteristics [33,34]. Mobility network statistics can thus describe and evaluate how
human mobility is distributed and developed on different scales. Therefore, these complex
network-based analytical methods improve the understanding of urban mobility [35–37].

In this study, taking Zhuhai City, Guangdong Province, China as the study area,
we combined geospatial complex networks with multiscale geospatial analysis to extend
empirical research on human travel patterns by analyzing the impact of rainfall on hu-
man mobility. By dividing the taxi data into four scenarios: weekdays without rainfall,
weekdays with rainfall, weekends without rainfall, and weekends with rainfall, we aimed
to: (1) explore the feasibility of using taxi data to investigate human mobility in urban
areas under rainfall conditions; (2) compare the differences in basic travel characteristics
and explore the changes in the spatial distribution of trips in the different scenarios; and
(3) quantitatively explore the impacts of rainfall on human mobility at the whole network
and community network levels using the complex networks method.

2. Study Area and Data

2.1. Case Study: Zhuhai, China

This study was conducted in Zhuhai, China, which is in southern China and borders
Macao to the south, with a total area of approximately 1736 km2. According to the seventh
national population census conducted at the end of 2020, the residential population of
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Zhuhai was 2.44 million. Zhuhai consists of three districts (Xiangzhou, Doumen, and
Jinwan) and five economic function districts (Hengqin, Gaoxin, Baoshui, Wanshan, and
Gaolan). As the location of municipal government, Xiangzhou is the most flourishing
district. In Zhuhai, the central part of Xiangzhou district is called the Zhuhai Central Area,
and this represents the city center of Zhuhai. The central area occupies 153.15 km2 and has
a population of 1.12 milion, which is 46.08 percent of the total residential population. The
spatial map of Zhuhai and its central area is shown in Figure 1. In this study, we focused
on human mobility in the central area.

 

Figure 1. (a) Location of the study area in China; (b) Location of the study area in Zhuhai City;
(c) Overview of the study area-Zhuhai Central Area.

2.2. Data Source

To address our research questions and examine the association between human mobil-
ity and rainfall, three datasets from Zhuhai, China were used in this study. The first dataset
was the weather conditions dataset, which consisted of one-hour measurements of weather
conditions for two weather stations from the Meteorology Bureau of Zhuhai. Since drizzle
and showers have minor effects on human mobility, this study defined days with rainfall
as those with a total precipitation exceeding 25 mm and a duration of more than 6 h. Using
this definition, we selected ten days with rainfall in August 2020, six weekdays and four
days at weekends. In order to identify differences in human mobility on days with rainfall,
twelve days without rainfall were also selected, half of which were weekdays and the other
half at weekends. As shown in Figure 2, the daily precipitation in Zhuhai was plotted as a
bar graph, and the dates of the four scenarios are represented by different colors.
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Figure 2. Zhuhai precipitation in August 2020 and the four scenarios.

The second dataset was taxi GPS trajectories for the same twenty-two days in August
2020. For study purposes, only the car IDs, pick-up and drop-off locations, and times-
tamps were considered (Table 1). The data covered trips taken by 2,165,106 passengers in
3284 taxis. Each trip represents a purposeful human movement from origin to destination.
We used ArcGIS to calculate the TAZs (Traffic Analysis Zones) based on the pick-up and
drop-off locations. In this sense, these trips can reflect spatial connections made through
human movements and serve as edges to build spatial interaction networks.

Table 1. Processed trip record data.

ID Pickup
Datetime

Dropoff
Datetime

Pickup
Longitude

Pickup
Latitude

Dropoff
Longitude

Dropoff
Latitude

Trip
Distance

(m)

Trip
Duration

(min)

Origin
TAZ

Destination
TAZ

1001
1 August

2020
19:06:02

1 August
2020

19:10:53
113.470733 22.215318 113.4896 22.224246 2700 4.8 12 165

1002
1 August

2020
17:19:50

1 August
2020

17:27:37
113.532791 22.256026 113.541893 22.240246 2900 7.4 39 41

1003
2 August

2020
18:49:03

2 August
2020

19:02:14
113.548533 22.222178 113.506586 22.226488 6300 13.1 126 170

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In order to analyze changes in human mobility using the complex network method,
taxi OD points were integrated into different TAZs. Thus, the last dataset consists of the
TAZ data for the central area, consisting of 199 vector polygons (Figure 1).

3. Methodology

This section presents the methodological framework proposed in this study. Figure 3
shows our framework, which consists of two major components. In the first component, we
first calculated basic trip characteristics for different scenarios, such as trip distance and trip
duration, and then analyzed the spatial distribution of the trip in the four scenarios using
kernel density estimation. In the second component, we constructed the entire networks
for the four scenarios, and from these we detected the mobility communities in order to
investigate the impact of rainfall on human mobility by comparing the whole network and
community network indicators.
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Figure 3. Workflow of the analytical framework.

3.1. Basic Mobility Characteristics

As each trip is simplified to a vector <
(
Ox, Oy, Om, Ot

)
,
(

Dx, Dy, Dm, Dt
)
>, the basic

trip patterns can be analyzed from the following two perspectives: Firstly, the properties
of all trips, such as distance and duration, can be computed and the associated statistical
distributions of the four scenarios are thus obtained. Trip distance Tripdist and trip duration
Tripdura were calculated as follows:

Tripdist = Dm − Om (1)

Tripdura = Dt − Ot (2)

Secondly, we used kernel density estimation to investigate the spatial distribution of
the trips in the different scenarios. Kernel density estimation is a nonparametric method for
estimating a density function from a random sample of data. The kernel density estimation
f (x) was calculated as follows:

f (x) =
1
h2 ∑n

i=1K
(

x − Xi
h

)
(3)

where h is the bandwidth, n is the number of discrete points in the bandwidth range, and
K(x) is the kernel function.

3.2. Complex Network Analysis
3.2.1. Network Construction and Community Detection

To capture a holistic picture of the urban mobility network, we extracted the travel
connection relationships between each pair of origin and destination (OD) TAZs and
aggregated all the taxi trips to construct a weighted directed network. This is defined as
G = (V, E), where V = {v1, v2, · · · , vn} contains all distinct visited TAZs, where n is the
number of TAZs in the central area. The edge set E =

{(
li,j, wi,j

)∣∣i, j ∈ V
∧

i 
= j
}

contains
all existing directed trips, where li,j represents the directed flow between pairs of TAZs. wi,j
is the weight of edge li,j, which corresponds to the taxi trip flow of TAZs.

Urban mobility subnetworks were constructed using community detection. Commu-
nity detection methods aim to identify partitions (structures composed of communities)

169



Sustainability 2022, 14, 9355

which maximize the density of intragroup connections and thus find dense optimal sub-
graphs in large graphs. In other words, the community detection technique was used in
our study to detect TAZs that had a higher quantity of interactions with each other than
with the other TAZs, which means that people located in those TAZs have closer links with
each other than those located elsewhere.

The Louvain method is a popular community detection algorithm that has the advan-
tage of minimizing computation time [38]. However, it can yield arbitrarily badly connected
communities. The Leiden technique is used to identify well-connected and locally optimal
dynamic mobility communities in urban areas [39]. So, in this study, we used the Leiden
technique to identify the dynamic urban mobility communities. This algorithm mainly
consists of the following three phases: (1) local movement of nodes, (2) refinement of the
partition, and (3) aggregation of the network based on the refined partition, using the
nonrefined partition to create an initial partition for the aggregate network. For the network
construction and analysis in this study, we used the Leidenalg package and the Python
NetworkX package.

3.2.2. Statistical Indicators of Network

Degree, strength, connectivity, and clustering coefficient can be used to reflect the
topology characteristics of the network. To further investigate the discrete characteristics of
network indicator distribution, a standardized measure coefficient was used to represent
the discrete characteristics of the network. By comparing the temporal changes of these
indicator values in different weather conditions, we can obtain a better understanding of
the impact of rainfall on network mobility.

Node degree is an important quantity that reveals the spatial heterogeneity of urban
mobility [40]. Nodes with larger degrees represent more highly connected areas in the city.
In a network, the degree of a node is the number of edges directly connected to the node, as
shown in the following formula. In this study, it was the total number of passengers who
were picked up or dropped off at a TAZ.

ki = ∑j∈V N
(
vi, vj

)
(4)

The strength of edge and node are two indicators for the analysis of the network flow.
Edge strength W represents the taxi flow in a specific direction between the two TAZs.
Node strength Si is employed to generalize the degree measure of weighted networks,
which is defined as the sum of the taxi flow on all edges associated with node i. The
calculation formula is as follows:

W = ∑m
i=1ri (5)

Si = ∑j∈VW
(
vi, vj

)
(6)

where ri represents one trip in this direction, and m is the total number of such trips.
The connectivity of the network δ is quantitatively calculated as follows:

δ =
2 × L

N2 (7)

where N is the number of nodes and L is the number of edges. A large δ indicates that the
taxi connections between TAZs were relatively denser and, thus, the network had better
overall connectivity.

Clustering coefficients include the local clustering coefficient and the average cluster-
ing coefficient. The local clustering coefficient of a node describes the likelihood that the
neighbors of this node are also connected. If a node has a high local clustering coefficient
value, this indicates local cohesiveness and a high tendency to form groups. For node i, its
local clustering coefficient is the fraction of the links that are present among the total possi-
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ble links between its neighbors. There are several generalizations of clustering coefficient
to weighted graphs, and the definition by [41] is a local node-level quantity. Its formula is

Cw
i =

1
si(ki − 1)

∑j,h
wi,j + wi,h

2
aijaihajh (8)

where si is the strength of the node i, aij are elements of the adjacency matrix, ki is the node
degree, wi,j are the weights. The average clustering coefficient of all nodes, 〈Cw〉, can be
applied to quantify the density of the entire network. The calculation formula is as follows:

〈Cw〉 = ∑i∈V Cw(i)
N

(9)

Closeness centrality is tightly related to the notion of distance between nodes. It is
calculated as the average of the shortest path length from the node to every other node in
the network. The calculation formula is as follows:

CCi =
N − 1

∑i 
=j d(i, j)
(10)

where N is the number of nodes in the network, and d(i, j) is the shortest path between
nodes i and j. The larger the CCi, the higher the node’s closeness centrality, and the better
its connection with other nodes.

For any indicator x of the network, such as degree or strength, we use the standardized
measure coefficient of variation CV(x) to further investigate the discrete characteristics of
network indicator distribution. The calculation formula is as follows:

CV(x) =
[x]
〈x〉 (11)

where [x] is the standard deviation and 〈x〉 is the average value. In particular, the coefficient
of variation is not affected by measurement scale and dimension.

4. Results

4.1. Basic Statistics and Spatial Distribution of Trip Data

To analyze the general distribution of trips in the different scenarios, average daily
statistics of the total number of trips, trip duration, and trip distance of each taxi were
calculated, as shown in Figure 4. In the figure, NRWD and RAWD represent weekdays
without rainfall and weekdays with rainfall, respectively, and NRWE and RAWE represent
weekends without rainfall and weekends with rainfall, respectively. These abbreviations
have the same meaning in the diagram below.

Overall, the average number of trips at weekends was slightly higher than on week-
days. As expected, in terms of weekdays, the number of trips on days with rainfall was
obviously lower than on days without rainfall. This is likely to be because people canceled
nonessential travel. By the same token, at weekends, there were also more taxi trips on days
without rainfall than on days with rainfall. From Figure 4b, we can see that trip distance
did not differ significantly between weekdays and weekends and was slightly higher on
days without rainfall than on days with rainfall. Figure 4c shows that the trip duration at
weekends was slightly reduced compared to weekdays.
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Figure 4. Average daily statistics of taxi trip in the four scenarios. (a) Trip flow; (b) Trip distance;
(c) Trip duration; (d) Hourly trip flow.

The demand for taxis changes in time and space according to the travel needs of
citizens. Figure 4d shows the hourly changes for the four scenarios; the x-axis indicates the
time horizon of 24 h and the y-axis is the number of trips. On weekdays, three peaks can be
observed: (1) a morning peak starting around 8 a.m., (2) an afternoon peak around 2 p.m.,
and (3) an evening peak starting around 8 p.m. During the first peak period, the trip flows
were not affected by the rainfall. At the second and third peak hours, the taxi flow on days
without rainfall was significantly higher than it was on days with rainfall. At weekends,
the maximum trip flow occurred in the evening peak hours, in contrast to the maximum
trip flow on weekdays which was during the morning peak hour.

To gain a better understanding of the patterns of taxi services, we further investigated
the proportions according to different trip distances and durations, as shown in Figure 5.
In general, the difference in the proportion of different distances and durations was not
obvious. In Figure 5a, we can see that almost all trips were within 15 km and that 85 per
cent of trips were within 7 km. Figure 5b shows that almost all trips took less than 35 min,
with more than 85 percent taking less than 15 min.

When comparing trip flow by distance on weekdays and weekends, the proportion
for days with rainfall was higher than for days without rainfall when the distance was less
than 3 km, and the result was reversed once the distance exceeded 3 km. Compared to
the trip duration in Figure 5a, the average weekend duration was shorter than it was on
weekdays, and the proportion that took less than ten minutes was greater on weekends.
This may be related to the fact that travel needs on the weekends are mainly leisure and
close to home.

To investigate the spatial patterns of taxi passengers in the four scenarios, we interpo-
lated the daily average pick-up location in each scenario using the kernel density estimation
method. Kernel density estimation can intuitively reflect the spatial distribution of taxi
passengers in the different scenarios, and can also represent the changes by comparison of
the density results.

As shown in Figure 6, we identified several identical hot spots, which represent the
locations with high passenger flow in the four scenarios. The highest are located near
Zhuhai Railway Station and Gongbei Port. On days with rainfall, the passenger density
decreased, and some hot spot areas were not obvious. Hot spots such as Mingzhu Railway
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Station, Mingyang Plaza, and Huafa Plaza were not affected by rainfall on weekdays or
weekends. Fuhuali Plaza was a significant hotspot on weekends without rainfall, but the
hotspot disappeared on weekends with rainfall.

Figure 5. (a) The proportional distribution of trip distance in the four scenarios; (b) The proportional
distribution of duration in the four scenarios.

Figure 6. Spatiotemporal comparison of kernel density interpolation results.
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4.2. Complex Network-Based Analytical Indicators
4.2.1. Indicator Analysis of Whole Network

The network was constructed according to the taxi trajectory data for weekdays with
rainfall, weekdays without rainfall, weekends with rainfall, and weekends without rainfall,
respectively. Then, the complex network indicators introduced in 2.2 were calculated, as
shown in Table 2.

Table 2. The whole network indicators in four scenarios.

Indicators Description NRWD RAWD NRWE RAWE

L The number of edges 24194 21522 24232 20491
<K> Node average degree 244.38 216.3 243.54 205.94
δ Network connectivity 1.234 1.087 1.224 1.035

<CW> Average clustering 0.816 0.794 0.812 0.773
<S> Node average strength 939.26 891.92 948.43 928.19

CV(S) Coefficient of variation of node strength 1.39 1.43 1.41 1.43
<W> Edge average strength 3.84 4.12 3.89 4.51

CV(W) Coefficient of variation of edge strength 3.08 3.08 3.10 2.99

Compared to days without rainfall, the number of connections between TAZs (i.e., the
number of network edges) decreased significantly during the corresponding period of
days with rainfall, both on weekdays and at weekends. Additionally, the negative impact
of rain at weekends was stronger than that on weekdays. On days without rainfall, the
number of network edges (L) increased from weekdays to weekends, following the same
trend as the average daily trip flow. However, there were fewer connections between TAZs
on weekends with rainfall than on weekdays with rainfall compared to the average daily
trip flow.

The change in the number of network edges affects the average degree of nodes <K>.
<K> decreased as network edges decreased on days with rainfall. Overall, rainfall reduced
the external contact of TAZs by 11.5% on weekdays and 15.4% on weekends. Similarly,
the network connectivity (δ) of the network showed an obvious decline on days with
rainfall. However, there was no significant change between weekdays and weekends.
Finally, analysis of the average cluster coefficient C showed that it decreased on days with
rainfall. The decrease in network edges due to rainfall reduced the connection density and
the number of closed triplets between TAZs, thereby weakening the cluster connection
between TAZs.

In terms of network strength, the node strength <S> and edge strength <W> of week-
days with and without rainfall, were lower than they were at weekends. As expected, days
with rainfall had lower node strength than days without rainfall. Conversely, edge strength
was intense on days with rainfall. That is, as the number of edges decreased on days with
rainfall, the average edge strength was higher than it was on days without rainfall.

In terms of flow distribution, the coefficients of variation of node strength CV(S) on
days with rainfall were higher than on days without rainfall both on weekdays and at
weekends. When we compared this value for weekdays and weekends, the CV(S) did
not change on weekdays with rainfall, whereas the value increased from weekdays to
weekends on days with no rain. This means that the distribution of node strength on
days with rainfall was more homogeneous compared to weekdays and weekends without
rainfall. The same coefficient of variation of edge strength CV(W) on weekdays indicated
that rainfall on weekdays had no effect on the heterogeneity of edge strength distribution,
but rainfall on weekends had a significant effect on edge strength distribution.

In order to better compare the changes of various indicators on days with rainfall, we
computed and visualized the indicators of each network node on weekdays and weekends.
In terms of direct connection indicators, the spatiotemporal distribution of the difference in
node degree K and local clustering coefficient Cw on the weekdays and weekends with
rainfall is shown in Figure 7.
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Figure 7. Visualization of the difference between K and C.

The difference in TAZ degrees between weekdays and weekends with rainfall de-
creased significantly at most of the TAZ nodes, spatially in the periphery of the study area.
This means that the number of travel connections between TAZs decreased because of
rainfall. At weekends, the node degree decreased more than on weekdays. This means that
the impact of rainfall on the number of travel connections between TAZs was minor on
weekdays. The large areas of dark blue in Figure 7b indicate that TAZs in these locations
reduced some unnecessary travel connections on weekends with rainfall. As shown in
Figure 7, the local clustering coefficient of most TAZs did not change significantly on the
weekdays. However, at weekends, the number of TAZs with lower C increased significantly,
and the TAZs with weakened C showed the characteristics of a large weakening range. For
the spatial distribution, although some TAZs with increased C could be found both on the
weekdays and weekends, they were relatively uniform and in a mixed state.

To further investigate the connection between TAZs, the differences in node strength S
and closeness centrality CC on days with and without rainfall were calculated. As shown in
Figure 8, we found that regardless of whether it was a weekday or the weekend, the TAZs
with the highest node strength decline were mainly concentrated in commercial areas such
as Huafa, Fuhua, and Yangming Plaza. Only a few TAZ nodes with slightly poor traffic
conditions increased in node strength on the days with rainfall. This means that on days
with rainfall, people with strong travel needs may prefer taxis. On days with rainfall, the
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closeness centrality of TAZs decreased overall on weekdays and weekends, which means
that rainfall weakened the indirect connectivity between TAZs.

Figure 8. Visualization of the difference between S and CC.

4.2.2. Indicators Analysis of Community Network

Using the Leiden algorithms, we detected network communities from the dataset
of the four scenarios. As shown in Figure 9, four communities were detected on the
weekdays and five communities were detected at the weekends, and different communities
are visualized in different colors.

On weekdays, the spatial pattern of the four communities was very similar. The
red community C1, where Jida is located, had an enclave in its southern area on days
without rainfall. The blue community C2, consisting of Shishan, Xiangwan, Cuixiang, and
Meihua, extended southwards on days with rainfall. On days without rainfall, there were
a few enclaves between different communities, but on days with rainfall, the enclaves
disappeared, and the pattern of each community was more concentrated.

Compared with weekdays with rainfall, the structures of communities change more
on weekends with rainfall. The TAZ number of the yellow community clearly decreased.
By absorbing a small part of the yellow community, the red community extended to the
northwest and the blue community to the east. As for the weekdays, on weekends with
rainfall, each community was more compact, with no enclaves.
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To carry out a more detailed exploration at the community level, we calculated the
network connectivity δ, the average clustering coefficient <C>, the coefficient of variation
of node strength CV(S), and the coefficient of variation of edge strength CV(W) of these
four community networks. The results are shown in Table 3.

Figure 9. The detected communities of the four datasets.

Table 3. The network indicators of communities of four scenarios.

Weekdays without Rainfall Weekdays with Rainfall Weekends without Rainfall Weekends with Rainfall

Community C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

δ 1.884 1.857 1.211 1.487 1.852 1.898 1.042 1.309 1.985 1.814 1.182 1.389 1.755 1.827 1.906 0.964 1.217 1.679
<C> 0.975 0.961 0.778 0.876 0.966 0.97 0.731 0.864 0.995 0.959 0.749 0.853 0.945 0.958 0.962 0.725 0.82 0.919

CV(S) 0.738 0.984 1.22 0.98 0.742 0.998 1.23 1.001 0.65 1.009 1.436 0.954 0.88 0.753 0.989 1.437 0.937 0.904
CV(W) 1.21 1.736 1.883 1.682 1.21 1.834 1.741 1.601 1.121 1.766 2.362 1.521 1.458 1.221 1.8 2.032 1.329 1.512

On weekdays, with the exception of community C2, the network connectivity δ and
average clustering coefficient <C> of all the communities decreased on days with rainfall, as
shown in Table 2. This indicates that most communities had higher clustering characteristics
on weekdays with rainfall. In addition, community C3, where Nanwan is located, exhibited
the lowest clustering characteristics on weekdays both with and without rainfall. In terms
of network flow, the CV(S) of node strength for all communities increased on days with
rainfall, whereas the CV(W) of communities C3 and C4 differed from the overall trend. As
can be seen from Figure 6, the traveler density in the C3 and C4 areas was relatively small,
so the coefficient of variation of edge strength was lower on the days with rainfall.
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At weekends, we found that the network structure was relatively unstable, and its
connectivity was more affected by rainfall. As on weekdays, only the network connectivity
δ of community C2 increased on weekends with rainfall. Additionally, it can be seen from
Table 2 that the average clustering coefficient <C> of community C2 increased slightly on
weekends with rainfall. This means that on the days with rainfall, the community network
near Zhuhai Railway Station and Gongbei Port not only maintained high connectivity but
also maintained high aggregation characteristics among the TAZs. On weekends with
rainfall, the CV(S) and CV(W) tend to vary by communities. The CV(S) and CV(W) of
communities C1 and C5 showed the same increasing trend on weekends with rainfall, but
C4 was the opposite, with both showing decreasing trends.

5. Summary and Discussion

Urban China currently faces a low-level natural disaster in terms of rainstorms and
flooding, which have a significant impact on travel. Based on taxi data in different scenar-
ios, this study analyzed the impact of rainfall on residents’ travel using basic statistical
analysis and complex network analysis, and conducted comparative analysis and detailed
discussion from time and space dimensions.

This study benefits from the advantages of taxi data in terms of the large sample size,
its accuracy, and its individual dimension. Acquiring the spatial–temporal characteristics
of inhabitants’ travel on various days with rainfall can help us to further understand the
impact of rainfall on travel in urban areas. In addition, it contributes to a deeper under-
standing of the interaction between residents’ daily travel and the complex geographic
environment of cities and provides more detailed support for decision-making, planning,
and management of urban transportation and land use systems.

However, this study also has some limitations in data and methods. For instance, it
only discusses the impact of rainfall factors on residents’ travel based on taxi trajectory data,
and the analysis is performed on a time scale of days. In the future, other travel data (such as
smart card data and mobile signaling data) could be used for further investigation, and this
could be analyzed in depth by hours (such as morning and evening peak or different hours
of the day). In addition, our research defined days with rainfall as those with continuous
rain for 6 h and an amount of rain greater than 25 mm. Only one month’s worth of data was
used for the analysis. With the accumulation of data, it would be possible to thoroughly
analyze the impact on human travel behavior at different levels of rainfall and extreme
rainfall conditions. Moreover, rainfall has a certain spatial and temporal heterogeneity.
This study did not analyze the travel impacts of changes in rainfall conditions within a day,
such as how long the delayed impact of rainfall on travel lasted and what the conditions
were for the recovery of mobility in different regions after rain. Neither did we consider
what factors directly affected the recovery time for human mobility. In future work, we
will use hourly rainfall data and analysis of travel characteristics to answer these questions.
Finally, this study only focused on the impact of rainfall on residents’ travel, and the impact
of other weather factors (such as temperature, relative humidity, and wind speed) could be
considered in the future.

6. Conclusions

In this paper, we took the central area of Zhuhai as our research area, and based on
taxi data, used basic statistics and complex network analysis methods to compare and
analyze human mobility in four scenarios. The research conclusions are as follows:

(1) Taxi GPS data are highly informative and exploitable in the field of human mobility
analysis. Using the location and times at which passengers were picked up and
dropped off in taxi trip GPS data, we can analyze activity levels across the city and
the way people move around the city;

(2) Rainfall has a reducing effect on trip flow whether on weekdays or at weekends,
as well as on trip distance and trip duration, but has no significant impact on the
appearance and duration of peak hours. From the spatial distribution of passengers,
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it is evident that rainfall has little effect on most hotspots, with the exception of a few
commercial centers;

(3) From the perspective of the whole mobility network, rainfall has a significant effect
on the network indicators. For instance, the edges of the network and the average
degree of nodes decreased significantly on days with rainfall. Node and edge strength
in some commercial areas declined significantly on the days with rainfall;

(4) There were more mobility communities were detected on weekends than on weekdays.
The number of communities on weekdays and weekends did not change because of
rainfall. For communities located in transportation hubs or port areas, the changes in
network indicators were opposite to those of other communities.
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Abstract: Climate-related risks pose a great threat to urban safety, infrastructure stability and so-
cioeconomic sustainability. China is a country that crosses diverse geomorphic and climatic regions
in the world and is frequently affected by various climate hazards. In this study, we propose a
comprehensive analysis on the spatial pattern of major climate hazards in China from 1991 to 2020,
including rainstorms, droughts, heatwaves, coldwaves, typhoons, and snowstorms, and generate an
integrated sketch map on multi-hazard zones. It is detectable that South of the Yangtze River is in
danger of heatwaves, rainstorms, and typhoons, while the North China Plain is more likely to suffer
droughts. Coldwaves, snowstorms, and freezing mainly affect Northeast China, Northwest China,
and the Qinghai–Tibet Plateau. In the view of climate governance, cities are hotspots affected by
intensified climate hazards in a warmer climate. There is an urgent need to incorporate a climate
adaptation strategy into future city construction, so as to improve social resilience and mitigate
climate impacts in rapid urbanization process. Specific adaptation measures have been developed
from the perspectives of land-use planning, prevention standard, risk assessment, and emergency
response to facilitate the understanding of climate resilience and urban sustainability.

Keywords: climate hazards; geospatial analysis; urban adaptation; risk management; China

1. Introduction

Climate action has emerged as one of the defining issues attracting great attention
from scientists, governments, and the public. A warming climate is believed to boost the
frequency of extreme events and hence aggravate climate risks in the future, endanger the
sustainable development of human society [1,2]. China, located in the southeast of the
Eurasian continent and the west of the Pacific Ocean, is one of the countries with the most
severe climate hazards in the world [3,4]. Climate hazards in China are characterized by
various kinds, high frequency, long duration, distinct seasonality, and regional differen-
tiations. In monsoon regions, the hazards of coldwaves, strong winds, and snowstorms
concentrate in winter, while the hazards of rainstorms, heatwaves, droughts, and typhoons
occur frequently in summer. Moreover, the interaction of compound hazards can lead to
the nonlinear amplification in hazard intensity, resulting in more serious socioeconomic
impacts [5,6]. Since the 21st century, climate risks in China remain high due to the elevated
exposure caused by rapid economic growth and urbanization process, and climate-related
economic losses have been climbing in recent years (Figure 1).

Since the impacts of climate hazards are experienced locally, it is understandable
that certain cities located in hazard zones have the needs to occupy a crucial position
in adaptation agenda [7–10]. Allied to the urbanization trend in China, the pressing
nature of adaption in cities becomes apparent. Cities create unique microclimates, complex
topographies, and plentiful emission of heat and mass of buildings and allied with their
heavy reliance on interconnected networked infrastructure, high population densities, and
multifarious population constitutions, increase exposure to climate hazards, while poor
governance structures or inadequate urban design exacerbate climate risks [11–13].
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Figure 1. Direct economic losses caused by meteorological disasters in China from 2001 to 2020.

At present, actions on climate adaptation are mainly concentrated in national and
supranational levels, while the potential for climate adaptation in urban level remains
grossly underestimated [14]. Scholars points out that urban planning, as an important pol-
icy tool to optimize urban land-use and arrange public infrastructures, should become one
of the main ways for implementing climate adaptation strategies [15–17]. However, due to
some practical problems such as the inadequate understanding of climate hazards and the
lack of technical standards, traditional urban planning in China has not played the leading
role in climate actions. A literature review shows that many attempts have been made to
focus on the impacts of climate hazards on urban areas [18–20] and incorporate climate
adaptation an important part of urban planning and city expansion management [21–24].

Given that previous studies on climate hazards in China are scattered in a certain
hazard type or a certain region, this study first conducts a comprehensive analysis on the
spatial patterns of multiple climate hazards in China, then clarifies the difficulties and
challenges that urban development faces in mitigating climate impacts. On this basis,
specific suggestions on building climate-resilient cities in China are proposed from the
perspectives of land-use planning, prevention standards, risk assessment, and emergency
response in order to facilitate collaborations between economic, social, and climate policies
and provide scientific reference for policy makers dealing with climate risks.

2. Data and Method

Daily observations of 2419 national meteorological stations in China from 1 January
1991 to 31 December 2020 are adopted in the research. The datasets are compiled and
issued by the Meteorological Information Center (MIC) of the China Meteorological Ad-
ministration (CMA), and it can be accessed from http://data.cma.cn (28 October 2021).
The preliminary quality control has been conducted by the MIC, through checking spatial
consistency, temporal consistency, and internal consistency and adjusting the suspicious
records [25]. The variables used include daily precipitation, daily mean temperature, daily
maximum/minimum temperature, and weather phenomena. There are some missing
records in the dataset. To obtain reliable climatic statistics, two steps are processed. First,
the annual mean value is taken as a missing one when the total missing records exceed 20%
of a year. Second, the station with the consecutive annual mean values less than 30 years is
removed from the calculation.

The daily records of weather phenomena are used to identify the snowfall day.
The CMA TC database is also adopted in the analysis [26]. The TC best-tracks are

applied to derive major typhoon tracks affecting China.
The hazard data from 2001 to 2020 are collected from “Annuals of Meteorological

disaster (2020)”, including direct economic losses, affected population, mortality, affected
croplands, crop failure areas, and collapsed buildings.

In this analysis, a hot day is defined when the daily maximum temperature reaches
35 ◦C and above. A rainstorm is identified with the daily precipitation reaches 50 mm and
above. The scientific basis of these definitions are from Warning Signals for Meteorological
Hazard issued by the CMA. Drought is defined based on the meteorological drought
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composite index (MCI) [27,28], which is adopted to monitor drought operationally by the
CMA. The MCI is calculated by precipitation and mean temperature in each station. A
snowstorm day is identified when the daily snowfall reaches 10 mm and above.

3. Spatial Pattern of Multiple Climate Hazards in China

Figure 2 shows the spatial pattern of the major climate hazards in China from 1991 to
2020. It is detectable that Southeastern China and Northwestern China are the two hazard
zones that are frequently affected by heatwaves (Figure 2a). The number of annual hot
days reaches 20 to 30 in the south of the Yangtze River, Hainan, and Chongqing. They
are even greater in southern Xinjiang, Junggar Basin, and Western Inner Mongolia, being
generally 30 to 50 hot days on annual average. Turpan Basin is the region with the highest
temperature in China, with more than 60 hot days on annual average. In addition, a
historical extreme temperature of 49.0 ◦C has been recorded in Turpan city, Xinjiang. The
heatwaves in China usually occur from May to September. It has negative effects on human
health and agriculture production, while long-lasting heatwaves can also strain energy
supplies by leading to a surge in demand for water and electricity. Due to accelerated
climate warming, the areas affected by heatwaves in mainland China expanded from 468
km2 in the 1990s to 515 km2 in the 2010s (Figure 3a), which indicates that the heatwave risk
will continue to aggravate in the future.

Figure 2. Climatological spatial pattern of (a) hot days, (b) rainstorm days, (c) drought days, and
(d) snowfall days in China from 1991 to 2020.
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Figure 3. Areas affected by (a) heatwaves, (b) rainstorms, (c) droughts, and (d) snowstorms in China
from 1991 to 2020.

China’s rainfall is greatly influenced by the East Asian monsoon. With the northward
movement of the East Asian monsoon, the monsoon rain belt experiences three notable
stationary stages and forms the pre-summer rainy season in South China, the Meiyu in the
Yangtze River, and the rainy season in North China [29–35]. Accompanying the southward
retreat of the East Asian monsoon, a flood season caused by tropical cyclones affects South
China again [36,37]. Rainstorms occur frequently in the rainy seasons and tend to result
in floods. As shown in Figure 2b, the annual number of days with rainstorm decreases
from southeast to northwest in China. There are generally four to eight rainstorm days in
the south of the Yangtze River and more than eight days in coastal South China, but it is
almost rare in Western China. Compared with the 2010s and 1990s, the areas affected by
rainstorms in mainland China expanded from 361 km2 to 382 km2 (Figure 3b), indicating
the intensification of rainstorm hazard in nearly 30 years.

Meteorological droughts refer to surface water shortage due to the imbalance between
evapotranspiration and precipitation in a certain period, which has serious impacts on crop
growth and even causes crises of water resources. Seasonality and regionality features the
meteorological droughts in China. It mainly occurs in late spring, summer, and autumn in
North China, in autumn and winter in South China, and in winter and spring in Southwest
China. Generally, meteorological droughts mostly occur in North China, Huang-Huai Plain,
Eastern Inner Mongolia, and Southwestern China, with an annual number of drought days
being more than 60 days (Figure 2c). From 1991 to 2020, the areas affected by droughts
in China shows a weak upward trend, shrinking from 218 km2 in the 1990s to 165 km2 in
the 2010s (Figure 3c). However, an increase in drought occurrence are observed in North
China, eastern Northwest China, and eastern Southwest China (Figure not shown).

The winter climate in China is dominated by the East Asian winter monsoon [38–41].
The strong East Asian winter monsoon leads the active cold air generating in the polar
area to China and results in chilly weather, strong winds, snowstorms, and ice freezing, etc.
The cold air is usually active in late autumn, winter, and early spring, which could lead to
damages in houses and infrastructures and can adversely affect agriculture, transportation,
livestock, and fishery production. The cold air breaks out southward along four main
paths, including the west path, the middle path, the west path, and the concurrent east-
west path [42]. The active cold air tends to cause snowfall. Heavy snowfall, especially
snowstorms, has a great impact on agriculture, animal husbandry, communication, energy
supply, and traffic. Figure 2d shows the climatic distribution of annual snowy days.
Snowfall mostly occurs in the northern Xinjiang autonomous region, Northeast China,
the Tibetan Plateau, and Inner Mongolia, with the annual snowfall days reaching 30 days
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and above. The annual snowfall days appear the most in Southern Qinghai and Eastern
Inner Mongolia, being over 60 days, and these areas are also prone to snowstorm [43,44].
Compared with the 2010s and 1990s, the areas affected by snowstorms in China shrank
from 319 km2 to 253 km2 but varies widely on an inter-annual scale (Figure 3d).

China is heavily affected by the tropical cyclones generated in the northwest Pacific
Ocean and the South China Sea. Typhoons not only bring wild winds and huge waves but
are also accompanied by heavy rainfall and storm surges, causing serious socioeconomic
impacts. Typhoons occur from April to December, especially from July to September,
and are observed with three main moving paths to affect China: the northwest path, the
westward path, and the offshore turning path. Recent decades have witnessed an average
of 26 typhoons generated in the northwest Pacific Ocean every year, and about 7 of them
land in China. The average length of typhoon season in China is 104 days and shows a
shortening trend in recent years, but the intensity and duration of landing typhoons are
increasing.

The disastrous impacts of climate hazards in China during 2001–2020 are estimated
from six aspects, including affected population, mortality, affected cropland, crop failure
areas, collapsed buildings, and direct economic losses (Figure 4). In terms of affected popu-
lation, floods and droughts account for a high proportion, 31.9% and 34.4%, respectively.
The highest proportion of deaths is caused by rainstorms and floods at 52.1%, followed
by severe convective weather at 36.2%. Drought is the dominant hazard to agricultural
production, accounting for 48.1% of total affected croplands and 46.2% of total crop failure
areas. Rainstorms and floods cause the majority of collapsed buildings among all hazards,
occupying 73.8% of the total. In terms of direct economic losses, the highest proportion of
43.1% is caused by rainstorms and floods, followed by droughts and tropical cyclones, and
comparatively limited losses can be seen in snowstorms and freezing.

Figure 4. The proportional composition in disastrous impacts of affected population, mortality,
affected croplands, crop failure areas, collapsed buildings, and direct economic losses caused by
climate hazards.

To learn the integrated spatial pattern of climate hazards in China, a comprehensive
hazard map is generated combining heatwaves, rainstorms, droughts, snowstorms, as well
as the main moving paths of coldwaves and typhoons during 1991 to 2020. The hazard
zones are identified with comparative thresholds that are at least one standard deviation
above the spatial average of certain indices in China (refer to Figure 2). Specifically, the
heatwave hazard zone refers to an area with more than 20 hot days per year, the rainstorm
hazard zone refers to an area with more than 4 rainstorm days per year, the drought hazard
zone refers to an area with more than 45 drought days per year, and the snowstorm hazard
zone refers to an area with more than 40 snowfall days per year.

As shown in Figure 5, most areas of China are affected by different types of climate
hazards. Northern China is most susceptible to coldwaves and snowstorms. Droughts
dominate central-eastern China and coldwaves also have widespread impacts in this re-
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gion. Heatwaves, rainstorms, and typhoons superimpose in Southeastern China, and
coldwaves may also reach south of the Yangtze River. It is obvious that there are various
types of climate hazards in China with broadly negative impacts. Southeastern China, in
particular, is heavily affected by multiple hazards simultaneously, and the dense popula-
tion and concentrated economic activities are expected to further amplify climate-related
socioeconomic risks.

Figure 5. Mapping of multiple climate hazards in China during 1991–2020.

4. Strategies for Addressing Climate Hazards in Urban Development

4.1. Impacts of Climate Hazards on Urban Development

Climate hazards have negative impacts on urban development. Cities, where humans
gather and economic activities are concentrated, have been rapidly expanding during
Chinese urbanization in recent decades and hence have become hotspots affected by
climate hazards [45–47]. Since climate changes are expected to drive the intensification of
climate hazards, it is imperative to build climate-resilient cities to mitigate climate risks. In
order to facilitate decision making on urban risk management, some issues and solutions
have been discussed as follows based on the climate hazard patterns in China.

Climate hazards are proposed to be taken into consideration in urban planning from
two aspects: climate change and extreme events. Climate change affects urban develop-
ment through long-term changes such as rising sea levels, environmental aridification,
and the intensification of urban heat/rain island effects, while extreme events have an
immediate impact through heavy rainfalls, typhoons, and heat/cold waves. From the
perspective of climate impacts, extreme-temperature-related impacts include increased
summertime strain on materials, peak electricity loads in summer (conversely, reduced
heating requirements in winter) [48–50]. Extreme-precipitation-related impacts include
increased flooding (street, basement, sewer) and reduction in water quality [51,52]. Sea-
level-rise-related impacts include inundation of low-lying areas, expansion of wetlands,
increased structural damage, and impaired operations [53–55]. In warmer climate, heat-
waves are projected to increase in frequency, intensification, and duration; inland flooding
induced by precipitation extremes are likely to exacerbate, while flash droughts are also
simulated to intensify in the future. Under this trend, climate risks are expected to bring
greater challenges to urban development in the future.
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The potential changes in climate hazards increase the complexity of urban planning
for policymakers. For example, sea-level rise may cause the low-lying coastal areas, flood
plains, and steep slope areas to become unaccommodated for residence; an increase in
drought may result in the underground and drinkable water to be in short supply. Policy-
makers should fully understand the hazard exposure of residents and urban systems and
consider how to reach the balance between urban developments and climate risks. Given
that building of climate-resilient cities in China has a high priority, we have developed a
strategic framework to achieve urban sustainability, shown in Figure 6.

Figure 6. A Strategic framework for building climate-resilient cities in China.

4.2. Adaptive Capacity-Based City Expansion Management

City adaptive capacities are defined as the ability to absorb and recover from climate
impacts [7]. Factors determining adaptive capacity include but are not limited to the
following: income levels and Gross Domestic Product (GDP), natural resource availability
and distribution, levels of public cognition on climate risks; the availability of technological
capacity and adaptation options, the availability and quality of environmental factors (e.g.,
land, water, raw materials, biodiversity), infrastructure quality and provision, ability to act
collectively to develop and implement adaptation responses, and public education as well
as emergency skills.

As the expansion of cities aggravates the overwhelming energy consumption, trans-
portation systems, and drainage systems, it is necessary to restrict the extent of cities
according to environmental conditions. Moreover, the integrated assessment of climate
risks, vulnerabilities, and adaptive capacities may provide a solution on city expansion. The
types of climate hazards, levels of vulnerability and capacity, and socio-economic character-
istics should be taken to promote the efficiency of adaptation planning and policy making
in each city. The probability of climate extremes in the present and the foreseeable future
can be estimated by climate models, and socioeconomic exposure as well as vulnerabilities
are always changing with time, resulting in certain uncertainties of climate risks. Hence, the
urban development path should be matched with the enhancement of adaptive capacity.
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4.3. Improving Technical Standards for Hazard Prevention

Improving technical standards is good practice for preventing climate hazards at
hardware level. It is necessary to develop risk assessment models for city construction
based on scenario simulations. To date, urban climate assessment mainly relies on historical
events or trend extrapolation but lacks the understanding of potential or unprecedented
risks. In particular, specific industries and regions are rarely focused [56]. With the advances
in numerical simulation, scientists obtained climate projection by using a combination
of dynamic and statistical methods. Regional climate models can further improve the
temporal and spatial resolution of climate simulations and enhance the performance of
urban extreme weather and climate events. Given the differences in geographical location,
economic level, and urban adaptability, each city in China should independently estimate
the potential risks based on climate simulations and then formulate the specialized urban
development plans.

The technical standards involve various industrial sectors, such as road traffic, water
supply and drainage, electricity, communications, gas, flood control, and greening space. At
present, climate change is limitedly considered in the technical standards referring to urban
construction. Moreover, the infrastructure standards are far below the requirements of
defense of climate hazards in coastal China [57,58]. The increased occurrence of compound
hazards in coastal areas highlights the necessity of cross-department collaboration. For
example, the prevention standards for coastal flooding caused by river flood, extreme
rainstorm, and storm surge need to be jointly designed by meteorological, hydrological,
and oceanic departments [5]. In the future, the formulation of technical standards will
no longer be a simple technical issue but require more consideration of compound or
cascading effects of multi-hazards on urban operations through multi-industry modeling
and public participation [59–61].

4.4. Specifying Climate Risk Assessment as a Mandatory Part of Urban Planning

As the application of climate risk assessments in China’s urban planning is not manda-
tory, the potential impacts of climate risk are significantly underestimated [62,63]. This
neglect can directly affect the normal operation of the social activities, as the climate hazard
can damage the critical infrastructure in cities (e.g., power transmission tower, signal tower,
water storage and supply system, railway stations, hazardous substance installations).
Appropriate climate risk assessments can minimize the negative impacts of climate hazards
and protect human life, health, and property.

The expanding urban area, increasing populations and growing economic status have
elevated exposure of cities. Meanwhile, warming temperatures have intensified climate
hazards in urban areas. This double pressure makes it necessary to consider climate
risk assessment in urban planning, and due to the close and complicated connections of
infrastructure in different sectors, it is not wise to consider risk management when the
construction is already completed. Oppositely, the best timing of risk assessment is the
preliminary stage of urban planning. To set climate risk assessment as a mandatory issue in
urban planning has been approved an effective and economic way to enhance the climate
resilience in many newly developed cities around the world.

4.5. Strengthening Emergency Management for Extreme Climate Hazards

As mentioned above, many cities are vulnerable to facing future climate changes. In
order to mitigate climate risks, emergency management for extreme climate events should
be strengthened. Both direct and indirect interventions contribute to the improvement
of emergency management capabilities. Direct intervention is to improve the existing
emergency management methods. For example, flood protection strategies should be
adjusted according to the precipitation intensity. Indirect intervention includes reducing
the vulnerability of cities through strategic spatial planning. For example, public transport
networks should be designed or improved for easier access and then to reduce the exposure
to high temperature in heatwave events.
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Urban emergency infrastructures are also crucial to respond to extreme climate haz-
ards, serving as a lifeline for people exposed to extreme events. Routine maintenance and
stress testing of emergency infrastructures should be strengthened to maximize rescue
functions. Since emergency management cannot take effect simply through the command
of planning strategies, increasing public knowledge and awareness of extreme climate
events is essential for vulnerability reduction and risk mitigation. Administrative man-
agement strategy should also combine with public initiatives, and the important role of
scientific researches in supporting decision making should be constantly strengthened and
verified in practice.

5. Conclusions and Discussion

China is one of the countries with the highest climate risks in the world due to its
monsoon phenomenon and complex climate patterns. Here, we systematically reveal the
spatial pattern of multiple climate hazards in China, including heatwaves, rainstorms,
snowstorms, droughts, as well as the moving paths of coldwaves and typhoons. On this
basis, we summarize the impacts of climate hazards on urban development, and further
propose to incorporate the strategic goals of climate adaptation into urban development of
China, hoping to mitigate climate risks and enhance urban sustainability.

The Southeastern China and Northwestern China are two hazard zones with more
than 30 hot days annually, and the extent of hazard zone has been expanding in recent
30 years. Cities located in the heatwave hazard zone face great risks to human health and
energy supply. South of the Yangtze River, especially in coastal South China, belongs to
the hazard zone of rainstorms. Cities located in rainstorm hazard zone face great risks
of urban waterlogging, river flooding, and triggered geological hazards. Drought mostly
occurs in North China, the Yellow River–Huaihe River basin, eastern Inner Mongolia,
and Southwestern China, with more than 45 drought days annually. Cities located in
the drought hazard zone face great risks of water supply and agriculture production.
Coldwaves, accompanied by strong winds, snowstorms, and ice freezing, frequently invade
northern Xinjiang, Northeast China, Tibetan Plateau, and Inner Mongolia, threatening
public infrastructures, transportation, and energy supply in cities along the way. Cities
located in southeast coastal China should be prepared for typhoon system that bring wild
winds, heavy rainfall, and storm surges in summer half year.

Given that cities are hotspots affected by intensified climate hazards in a warmer world,
some specific adaptation measures have been developed to facilitate the construction of
climate-resilient cities. Specifically, city scale and land-use pattern should be formulated by
urban carrying capacity assessment. Technical standard of public infrastructures should
be improved to resist intensified climate hazards. Local risk assessment should become a
mandatory part of urban planning to guide future development away from hazard zones.
Emergency response capabilities should be strengthened by stress testing to reduce the
disastrous impacts of extreme hazards.

Due to the current underestimations of climate impacts on urban development, there
is an urgent need to improve climate adaptation. If climate-related policies and actions are
still marginalized, the steady deterioration of urban sustainability could lead to irreversible
economic and social issues in the foreseeable future. Several actions proposed in this study
could provide a guideline for building climate-resilient cities that are better able to address
climate change in the coming future.
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Abstract: In the context of global climate change and urban expansion, extreme urban weather events
occur frequently and cause significant social problems and economic losses. To study the climate
risks associated with rapid urbanization in the global context of climate change, the vulnerability
degree of urban agglomeration is constructed by the Grey Model (GM (1, 1)). Based on the sixth
phase of the Coupled Model Intercomparison Project (CMIP6) data sets SSP1-2.6, SSP2-4.5, and
SSP5-8.5, drought, heat wave, and flood hazards under different emission scenarios are calculated.
The vulnerability degree of the urban agglomeration and the climate change hazard were input into
the climate change risk assessment model to evaluate future climate change risk. The analysis results
show regional differences, with the Beijing–Tianjin–Hebei urban agglomeration having good urban
resilience, the Yangtze River Delta urban agglomeration having slightly higher overall risk, and the
Pearl River Delta urban agglomeration having the highest relative risk overall. On the whole, the
higher the emission intensity is, the greater the risk of climate change to each urban agglomeration
under different emission scenarios.

Keywords: climate change; urban agglomeration; drought; heat wave; flood; risk assessment; GM (1, 1)

1. Introduction

The global climate system has significantly warmed in the past century, with the global
average surface temperature increasing by approximately 0.9 ◦C from 1900 to 2018 [1].
China has a high incidence of extreme weather events. In the context of global warming
and high incidence of extreme weather events, this paper studies the inherent relationship
between the high incidence of extreme weather events and climate warming. The multi-
scenario risk assessment of drought, high temperature, heat wave, and flood under climate
change and urban expansion is a hot topic in urban sustainable development. In this
paper, we predict the risks of drought, heat wave, and flood during the next 30 years based
on the BCC-CSM2-MR data sets SSP1-2.6, SSP2-4.5, and SSP5-8.5. This paper focuses on
the climate change risks to the three major urban agglomerations: Beijing–Tianjin–Hebei,
Yangtze River Delta, and Pearl River Delta in China, which is significant for the study of
climate change risks to large urban agglomerations in other countries.

In their research, domestic and foreign scholars have carried out many studies on the
responses of urban agglomerations to climate change. According to the Intergovernmental
Panel on Climate Change (IPCC)’s Fifth Assessment Report (AR5) [2], climate change risk
is quantified as a function of hazard, exposure, and vulnerability. However, there are
two shortcomings at present. First, previous climate change risk studies focused on the
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risk of a certain disaster in a particular city; however, in the context of climate change,
more attention should be paid to the risk of multiple disaster types and complex disaster-
bearing bodies, and the evolution characteristics of each disaster risk in time and space
are also worth examining [3–5]. Second, a large number of studies have focused more on
internal factors and climate risks such as hazards, exposure, and vulnerability [6,7], while
ignoring the risk forcing of external factors such as urbanization and climate change [8].
According to the United Nations Strategy for Disaster Reduction (ISDR), climate change
and urbanization are the two main factors that make human beings more vulnerable to
disasters [9]. Though the AR5 delineates exposure as a separate component of the risk, in
this study, we included exposure as an integral part of the vulnerability. Therefore, the
vulnerability degree of an urban agglomeration is defined based on the comprehensive
consideration of exposure and vulnerability. The concept of vulnerability involves different
disciplines and professional fields such as sociology, economics, and disaster management.
In this paper, the vulnerability degree of an urban agglomeration refers to the degree to
which the social system affected by climate pressure and the urbanization process has been
damaged because of its own sensitivity and vulnerability. Hazard, as the core of climate
change risk, is used to identify the location and intensity of weather events such as drought,
heat wave, and floods [10]. Based on the vulnerability of urban agglomerations and the risk
of climate change, this paper establishes a basic model for climate change risk assessment.

The three major urban agglomerations along the east coast of China are important
engines of regional economic and social development; however, they are also vulnerable to
climate change. Edward pointed out that the impacts of sea level rise and extreme weather,
such as heat waves and floods, have seriously affected the economic life of coastal cities,
and it is very important to adapt to the impact of climate change on coastal cities through
economic construction and emergency response [11]. Global warming, melting glaciers,
and the rising sea level have a huge impact on coastal cities, making them more vulnerable
to rainstorms and floods [12,13]. With the acceleration of urbanization and the impact
of global warming, the frequency and intensity of extreme events such as droughts, heat
waves, and floods increase, which has a huge impact on the power supply, water supply,
and transportation in urban infrastructure [14,15]. In this paper, the vulnerability of urban
agglomerations and the hazard of climate change are input into the climate change risk
assessment model to comprehensively estimate the future climate change risks to the three
major urban agglomerations in eastern China. The combination of natural ecosystems and
socioeconomic systems can help to control the degree and probability of the impact of
climate change on the three major urban agglomerations. This can provide a scientific basis
for disaster prevention and mitigation, and emergency response in cities.

2. Research Area

With the acceleration of urbanization, population and industries have been concen-
trated in the eastern coastal areas of China, forming three city clusters: Beijing–Tianjin–
Hebei, Yangtze River Delta, and Pearl River Delta [16]. These generally have a large
population density and rapid economic development. At the same time, a nationally
important transport hub exists around the port and the nuclear power plant, which means
that the degree of exposure and vulnerability of these urban agglomerations to disasters
and large economic losses is bigger than other cities. Therefore, eastern China’s urban
agglomeration, with the highest level of national economic contribution, has become a
potential large-scale disaster-bearing body.

In the eastern coastal area with the largest population density distribution and the
highest level of national economic development, the three urban agglomerations of Beijing,
Tianjin, and Hebei, the Yangtze River Delta, and the Pearl River Delta are the most mature
and competitive urban agglomerations in China [17]. Table 1 shows their location infor-
mation and basic characteristics while Figure 1 shows their geographical distribution and
the prefecture-level cities they contain. With the rapid growth of China’s economy and the
continuous evolution of its cities, urban agglomeration has gradually become the symbol of
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a higher stage of urban development. It can strengthen the interconnection among various
cities, promote the process of economic integration, and encourage the rapid growth of the
regional economy. On the other hand, because of the high concentration of resources, envi-
ronment, ecosystem, and social economy in urban agglomerations, they have a stronger
impact on the exposure, sensitivity, and vulnerability to extreme weather events, and the
risk to them from climate change is significant. Therefore, studying the climate, economic
change characteristics, and development laws of these three urban agglomerations is of
great significance for promoting their social development process as the main bodies in
China and the balanced and stable development of various regions.

Figure 1. Distribution and names of the three major urban agglomerations in China.

Table 1. Three urban agglomerations in China and their basic characteristics.

Name Range
Geographical

Position
Basic Characteristics

Beijing–Tianjin–
Hebei Urban

Agglomeration

With Beijing, Tianjin
as the center,

including
Shijiazhuang,

Baoding,
Zhangjiakou,

Tangshan,
Qinhuangdao,

Langfang, Cangzhou,
Chengde.

Located north of the
North China Plain,

the center of
Northeast Asia in

China, bordering on
Bohai Sea.

It covers an area of
183,088 km2, has a
population of 90.09

million, and a GDP of
CNY 7.70 trillion. It is the
capital economic circle of
China and the largest and

most dynamic area.
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Table 1. Cont.

Name Range
Geographical

Position
Basic Characteristics

Yangtze River
Delta Urban

Agglomeration

With Shanghai and
Nanjing as the center,

including Suzhou,
Wuxi, Changzhou,

Zhengjiang, Nantong,
Yangzhou, Taizhou

(in Jiangsu),
Hangzhou, Ningbo,

Jiaxing, Huzhou,
Shaoxing, Zhoushan

and Taizhou (in
Zhejiang).

Located in the lower
reaches of the
Yangtze River,

bordering on the
Yellow Sea and the

East China Sea, with
many ports, it is an

impact plain formed
before the Yangtze

River enters the sea.

The area is 132,065 km2,
with a population of

11.47 million and a GDP
of CNY 15.02 trillion. It is

an important zone
between the „one belt,

one road” and the
„Yangtze River Economic

Belt” and is the most
densely distributed area

and largest economic
zone in China.

Pearl River
Delta Urban

Agglomeration

With Guangzhou,
Shenzhen as the
center, including
Zhuhai, Foshan,

Jiangmen, Dongguan,
Zhongshan, Huizhou,

Zhaoqing.

It is located at the
Pearl River estuary in
the south central part

of Guangdong
Province. It is

adjacent to Hong
Kong and Macao.

It has an area of 55,061
km2, population of 0.63

million and a GDP of
CNY 8.10 trillion. As one

of the most dynamic
economic groups in the
Asia Pacific region, it is
also the gateway for the
southern region to open
up to the outside world.

Note: the data are calculated according to the China Statistical Yearbook 2018 and the statistical yearbook of relevant
provinces (cities) for 2018.

3. Data and Methods

3.1. Data
Data Sources

The historical climate data were taken from the National Meteorological Information
Center of China (http://data.cma.cn (accessed on 22 November 2021)). The meteorological
stations of Beijing–Tianjin–Hebei, Yangtze River Delta, and Pearl River Delta were selected.
To maintain the homogeneity of the data, this paper selected the daily average temperature
(unit: ◦C), daily average precipitation (unit: mm), daily maximum temperature (unit: ◦C),
monthly average temperature (unit: ◦C), and relative humidity (unit: %) from 1981 to 2019.

The social and economic data used in this paper were taken from the China National
Statistical Center (http://www.bjstats.gov.cn (accessed on 22 November 2021)). The China
Statistical Yearbook provided the GDP per capita (unit: yuan), permanent population (unit:
thousand), urban population (unit: thousand), urban area (unit: thousand ha), total area
(unit: thousand ha), and proportion of primary industry in the GDP (unit: %) of the
Beijing–Tianjin–Hebei, Yangtze River Delta, and Pearl River Delta urban regions from 1981
to 2019.

The future climate scenario data came from the BCC-CSM2-MR climate model of
the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The model uses
320 (longitude) * 160 (latitude) grid points to cover the globe. It is newly developed
by the National Climate Center. The ability of the BCC-CSM2-MR climate model to
simulate the climate mean state and global warming trend, quasi-biennial oscillation
(QBO), tropical intraseasonal oscillation (MJO), and diurnal variation in precipitation for
the 20th century has significantly improved [18]. In this paper, daily temperature (unit: ◦C),
daily precipitation (unit: mm), and daily relative humidity (%) from 2020 to 2050 were
selected. Three emission scenarios, SSP1-2.6, SSP2-4.5, and SSP5-8.5, were selected for
the climate prediction experiment (https://esgf-node.llnl.gov/search/cmip6/ (accessed
on 22 November 2021)). Table 2 shows the main characteristics of various representative
concentration paths.
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Table 2. Main characteristics of various representative concentration paths.

Scenario Component SSP1-2.6 SSP2-4.5 SSP5-8.5

Radiative forcing 2.6 Wm−2 4.5 Wm−2 8.5 Wm−2

Greenhouse gas emission Very low Medium-low High

3.2. Method

In this paper, the AHP is used to construct the vulnerability assessment system of the
three major urban agglomerations. Using an integrated meteorological drought index, heat
wave index, and flood index, the risk to the three urban agglomerations of meteorological
disasters was evaluated. In this paper, the vulnerability of urban agglomerations and
the hazard of climate change were input into the climate change risk assessment model
to comprehensively estimate the future climate change risk to the three major urban
agglomerations in eastern China. Figure 2 shows the flow chart of climate change risk
assessment. The specific methods are as follows:

Figure 2. Flow chart of climate change risk assessment.

3.2.1. Grey System Model GM (1, 1)

The GM (1, 1) model constructed by Deng is a method to solve the lack of data and
shortage of information, and create a fuzzy long-term description of the law of development
of things [19]. Socioeconomic data include the GDP per capita (unit: yuan), permanent
population (unit: thousand), urban population (unit: thousand), urban area (unit: thousand
ha), total area (unit: thousand ha), and proportion of primary industry in the GDP (unit: %).
As the data are affected by many factors, it was difficult to use a single linear trend for
effective prediction. Therefore, this paper used the GM (1, 1) to predict the socioeconomic
data from 2020 to 2050. The GM (1, 1) is a method to solve the problems of insufficient data,
poor information, and high fitting accuracy [20]. The GM (1, 1) uses differential equations
to fully explore the essence of the system. This theory takes a small amount of irregular
raw data as samples and organizes them in a regular series after data accumulation [21].
Then, a reduction process is performed to obtain the forecasted data for the target year.
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Let the original variable be X(0) =
{

X(0)(i), i = 1, 2, . . . , n
}

, X(0)(i) ≥ 0. By adding

X(0), we obtain the following results:

X(1) =
{

X(1)(k), k = 1, 2, . . . , n
}

(1)

where

X(1)(k) =
k

∑
i=1

X(0)(i) = X(1)(k − 1) + X(0)(k) (2)

The following differential equations were established to create the GM (1, 1) model:

dX(1)

dt
+ aX(1) = u (3)

3.2.2. Analytic Hierarchy Process

The AHP is a decision analysis method that decomposes factors related to decisions
and conducts qualitative and quantitative analyses [22]. When facing a complex problem,
it conducts a deeper analysis of its internal influencing factors and uses less quantitative
information to mathematically carry out the decision-making process. This method is
widely used at present [23]. Its basic principle is to decompose the decision-making process
into different hierarchical structures. Experts assign quantitative scores according to the
relative importance of each element to construct a judgment matrix A.

The calculation results of the matrix must pass a consistency test to avoid the contra-
dictory situation where A is more important than B, B is more important than C, and C is
more important than A for each internal element [24]. CI is a consistency indicator. Smaller
values of CI indicate greater consistency. RI is a random consistency index, which is related
to the order of the judgment matrix. In general, the greater the order of the matrix, the
greater the possibility of random consistency deviation.

The random consistency ratio further evaluates the judgment matrix.

CR = CI/RI (4)

When CR is less than 0.1, matrix A is considered to have satisfactory consistency;
otherwise, the judgment matrix must be revised.

To better evaluate the vulnerability degree of urban agglomeration, this paper stan-
dardized the above data and used the AHP to determine the weight of the GDP per unit
area, the population density, the population urbanization rate, the proportion of urban area
in total area, and the proportion of primary industry in the GDP (see Appendix A).

3.2.3. Vulnerability of the Carrier

This paper selected the GDP per unit area, the population density, the population
urbanization rate, the proportion of urban area in the total area, and the proportion of
primary industry in the GDP as the indicators of the vulnerability of the carrier.

The index analysis model of the vulnerability degree evaluation index system is
as follows:

Z = ΣUiWi (5)

where Z is the vulnerability degree of each coastal urban area; this paper divided the GDP
per unit area, the population density, the population urbanization rate, the proportion
of urban area in total area, and the proportion of primary industry in the GDP into five
grades: Ui is the grade of the i-th index in an urban area; Wi is the weight of index i, which
was obtained with the AHP (see Table 3).
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Table 3. Analytic hierarchy process.

Population Density
(People/km2)

GDP per Capita
(Thousand Yuan)

Population
Urbanization rate

Proportion of Urban
Area to Total Area

Proportion of Primary
Industry in GDP

1 <200 <20 <0.5 <0.15 <6.4
2 200–500 20–50 0.5–0.6 0.15–0.30 6.4–12.7
3 500–1000 50–80 0.6–0.7 0.30–0.50 12.7–17.7
4 1000–1500 80–100 0.7–0.8 0.50–0.70 17.7–28.2
5 >1500 >100 >0.8 >0.7 >28.2

weight 0.31 0.29 0.12 0.13 0.15

See Appendix A for the calculation process.

3.2.4. Calculation of Meteorological Risk Index

In this paper, the hazard of climate change refers to drought, heat wave, and flood.
The comprehensive meteorological drought index, heat wave index, and flood index
were calculated to describe the hazard degrees of the three meteorological disasters. The
following are the calculation methods of the three indexes.

A: Comprehensive Meteorological Drought Index

The comprehensive meteorological drought index (CI) was used to analyze the
spatiotemporal characteristics of drought in the three urban agglomerations in eastern
China [25]. The smaller the value of the CI, the greater the absolute value, indicating that
the drought in this region is more serious. It reflects the drought situation of a certain
region on a long time scale and has been widely used since it was first proposed [26]. The
comprehensive meteorological drought index (CI) is calculated by the following formula:

CI = aZ30 + bZ90 + cM30 (6)

where: a is 0.4; b is 0.4; c is 0.8. Z30 and Z90 are the standardized precipitation index (SPI)
values in the last 30 and 90 days, respectively, and M30 is the relative humidity index in the
last 30 days. The specific calculation process has been detailed in the literature [27].

B: Heat Wave Index

The heat wave index reflects the duration of extremely high temperatures because
China occupies a vast area with a large regional climate difference, and its tolerance to
high temperatures is variable [28]. In this paper, the local daily meteorological data from
May to September from 1981 to 2019 were used to first calculate the torridity index of the
samples whose maximum temperature was greater than 33 ◦C. After sorting the torridity
index sequence into ascending order, the median was selected as the local critical value
of torridity, which represents the comfort level of the human body with respect to the
meteorological environment [29].

The torridity index (Er) is calculated by the following formula:

When RH ≤ 60%, Er = 1.8 × Ta − 0.55 × (1.8 × Ta − 26)× (1 − 0.6) + 32 (7)

When RH > 60%, Er = 1.8 × Ta − 0.55 × (1.8 × Ta − 26)× (1 − RH) + 32 (8)

where Ta represents ambient temperature/◦C and RH stands for average daily relative
humidity/%.

After calculating the torridity index, the heat wave index (Hi) is calculated as follows:

HI = 1.2 × (Er − Er′
)
+ 0.35

N−1

∑
i=1

1/ndi
(
Eri − Er′

)
+ 0.15

N−1

∑
i=1

1
ndi

+ 1 (9)
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where i is the previous day, and the number of days from day i before the day is ndi. The
torridity index of the day is Er, the critical value of torridity is Er’, and the torridity index
of day i before the day is Eri.

C: Flood Index

The flood index (FI) is based on the cumulative precipitation of a region for 3 consecu-
tive days.

FI =
N+2

∑
i=N

Pi (10)

where Pi is the precipitation on day i of a city, and Pi is in units of mm.

3.2.5. Climate Change Risk Assessment Model

Disaster risk generally considers disaster-causing factors and the disaster-bearing body:

Risk = Hazard ∗ Vulnerability (11)

Disaster risk is equal to the product of disaster hazard and vulnerability of the disaster-
bearing body [30].

This paper improved the disaster risk model to better describe the impact of climate
change and urbanization on assessing the climate change risk.

R = (D + H + F) ∗ V (12)

where R represents the risk of climate change, D represents the drought hazard, H repre-
sents the heat wave hazard, F represents the flood hazard, and V represents the vulnerability
of urban agglomerations.

4. Results and Discussion

4.1. Vulnerability of Three Urban Agglomerations from 1981 to 2019

China’s three major urban agglomerations are all located in the eastern coastal areas.
Most of the country’s infrastructure was built in the 21st century. Science and technology
are the fundamental driving forces for us to improve the level of disaster tolerance. With
meteorological risk and disaster occurrence rising yearly, it is very important to evaluate
the climate change tolerance of these rapidly developing urban agglomerations.

This paper considered the three major urban agglomerations in eastern China as the
research area and their social conditions as the research object to analyze through the
following indicators:

According to the theory of natural disaster systems, the above five indicators were
selected and stratified [31]. To better evaluate vulnerability, this paper standardized the
above data and used the AHP to determine the weight of the five elements in the evaluation
of the vulnerability degree of the carrier (see Table 3).

The vulnerability degree was divided into five registration regions according to the
values of each vulnerability degree: the lowest vulnerability, low vulnerability, medium
vulnerability, high vulnerability, and the highest vulnerability, and the spatial description
and expression were mapped, as shown in Figure 3.

Figure 3 shows that the vulnerability degree of each urban agglomeration was rela-
tively low in 1985, then increased over time. The main reason is that the three major urban
agglomerations were expanding with the continuous advancement of urbanization and
inward population migration. As a major component of the natural ecosystem, human
beings are in a fragile and vulnerable state. The rapidly increasing population density
increases the vulnerability of urban agglomerations. In addition, it can be seen from the
figure that the high vulnerability in 2015 was mainly concentrated in the first-tier cities
Beijing, Tianjin, Nanjing, Wuxi, Suzhou, Shanghai, Foshan, Guangzhou, Shenzhen, and
Dongguan. In the vulnerability assessment of urban agglomerations, a higher GDP means
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higher economic benefits for the city and higher risks to the city when meteorological
disasters strike. On the whole, among the three major urban agglomerations in 2015, the
most vulnerable urban area was the Yangtze River Delta, which is also currently the city
agglomeration with the largest GDP output among the three major urban agglomerations,
contributing approximately one-fifth of the national GDP. Compared with the Yangtze
River Delta and the Pearl River Delta, the vulnerability degree of the Beijing–Tianjin–Hebei
urban agglomeration was generally lower, which was consistent with its economic develop-
ment in recent years. During this time, the economic development gap between Beijing and
Tianjin, and other cities in the Beijing–Tianjin–Hebei region has become increasingly obvi-
ous. There is a significant gap between the rich and the poor in the Beijing–Tianjin–Hebei
urban agglomeration.

Figure 3. Evolution of the spatial pattern of the vulnerability degree of the three urban agglomerations in 1985, 1995, 2005,
and 2015 (A–D): Beijing–Tianjin–Hebei; (E–H): The Yangtze River Delta; (I–L): Pearl River Delta.
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4.2. Risk of Meteorological Disasters in Urban Agglomerations from 1981 to 2019
4.2.1. Comprehensive Meteorological Drought Index

Figure 4 shows the geographical distribution of the annual average drought index in
the three eastern coastal urban agglomerations. The smaller the CI value is, the drier the
region is. From this, we can see that the Beijing–Tianjin–Hebei region generally presented
the characteristics of wetness in the west and dryness in the east [32]. The drought index in
the Yangtze River Delta region gradually decreased from south to north, with the drought
degree in the northern part notably stronger than in the southern part. The reason for this
is that, in the plum rain season, the western Pacific Ocean brings much water vapor from
south to north, and the Yangtze River Delta urban agglomeration maintains steady and
sustained precipitation. The distribution of the drought index in the Pearl River Delta
region was lower in the northwest and higher in the southeast. The reason for this may be
that the West Pacific subtropical high brought much water vapor and precipitation to the
southeast of the Pearl River Delta, therefore the drought index in the southeast direction
was greater.

Figure 4. Geographical distribution of the annual mean comprehensive meteorological drought index in the three urban
agglomerations (A): Beijing–Tianjin–Hebei; (B): Yangtze River Delta; (C): Pearl River Delta.

Overall, the western part of the Beijing–Tianjin–Hebei region is located on the North
China Plain, and the integrated meteorological drought index CI was minimal. The Beijing–
Tianjin–Hebei region was the driest among the three major coastal urban agglomerations
in eastern China, followed by the Yangtze River Delta and the Pearl River Delta, which had
the lowest drought index. Located in the southeastern coastal area of China, the Pearl River
Delta urban agglomeration is closer to the ocean and has abundant water vapor. From
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its definition, we can see that the factors affecting the strength of the drought index were
precipitation and potential evapotranspiration. Therefore, the drought index of southern
coastal cities was larger than that of northern inland cities, and the drought situation of the
three urban agglomerations had a spatial trend of drying from south to north.

4.2.2. Heat Wave Index

Figure 5 shows the geographical distribution of the annual average number of heat
wave days in the three urban agglomerations from 1981 to 2019. According to the definition
of heat waves, the factors influencing the magnitude of the heat wave index include
ambient temperature and relative humidity. Summer is the season of the year’s highest
temperatures; during the day, temperatures rise faster inland than in coastal areas, and the
relative humidity is lower. In the Beijing–Tianjin–Hebei and Yangtze River Delta urban
agglomerations, the number of heat wave days was higher in the west and lower in the
east, while, in the Pearl River Delta region, the number was higher in the north and lower
in the south. Therefore, the geographical distribution of heat wave days in the three urban
agglomerations was reasonable.

Figure 5. Geographical distribution of annual mean heat wave days in the three urban agglomerations during 1981–2019
(A): Beijing–Tianjin–Hebei; (B): Yangtze River Delta; (C): Pearl River Delta.

In addition, we can also see that the maximum number of heat wave days occurred in
Zhaoqing in the Pearl River Delta, and the minimum number was near Qinhuangdao in
the Beijing–Tianjin–Hebei area. This is because the Pearl River Delta urban agglomeration
is in low latitudes and Zhaoqing is the most interior of the Pearl River Delta cities. During
the year, the ambient temperature is higher, and the relative humidity is lower in summer.
As a result, the Pearl River Delta had more heat wave days. As Qinhuangdao is located in
northern China, the environmental temperature in summer was lower than that in southern
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China. It is also located in the offshore area, which is affected by the sea breeze, and,
therefore, Qinhuangdao had lower temperatures and higher ambient humidity. Therefore,
Qinhuangdao had the lowest average number of heat wave days. In general, the number
of heat wave days in Chinese cities mainly depends on the geographical location, with
obvious spatial agglomeration and distribution [33].

4.2.3. Flood Index

The annual mean geographical distribution of the flood index in the three urban
agglomerations is shown in Figure 6. In the last 39 years, the spatial pattern of precipitation
in the Beijing–Tianjin–Hebei urban agglomeration was more in the east and less in the
west, which was mainly because of the different terrain features and urban development in
the Beijing–Tianjin–Hebei region. Zhangjiakou lies near the Taihang Mountains, a region
where descending air and dry adiabatic warming causes the temperature to rise. With
less atmospheric moisture and higher temperatures, the flood index near Zhangjiakou
was the lowest of the regions studied [34]. The flood index value of the Yangtze River
Delta urban agglomeration gradually decreased from south to north because the amount
of water vapor brought from the Pacific Ocean was higher in the south, therefore there was
more precipitation. The Pearl River Delta urban agglomeration is located in the subtropical
monsoon climate zone, and its flood index value was the largest among the three cities,
showing a trend of being higher in the south and lower in the north. Precipitation mainly
occurs in the westerly belt of the subtropical high and is also affected by weather systems
such as typhoons. The region is also affected by the intertropical convergence zone. The
Pearl River Delta region thus received the most precipitation [35].

Figure 6. Geographical distribution of the annual mean flood index in the three urban agglomerations (A): Beijing–Tianjin–
Hebei; (B): Yangtze River Delta; (C): Pearl River Delta.
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4.3. Vulnerability Degree of Urban Agglomeration in 2020–2050

In the context of global warming, extreme meteorological events occur frequently,
posing a serious threat to the future and human development. The impact of these me-
teorological disasters on human beings depends not only on the severity of the disasters
themselves but also on social and economic factors such as population and social struc-
ture [36]. Therefore, predicting the vulnerability of urban agglomerations during 2020–2050
is crucial to assessing the risk of future climate change.

Based on the Grey model GM (1, 1), this paper predicted the population, GDP, and
other social and economic factors from 2020 to 2050. We standardized the above data
and used the AHP to determine the weight of the five elements in the evaluation of
the vulnerability degree of the carrier, including population density, GDP per capita,
population urbanization rate, proportion of urban area in total area, and proportion of
primary industry in the GDP. The vulnerability of the urban agglomeration in 2020–2050
was calculated, and the spatial description and expression were carried out as shown
in Figure 7.

Figure 7. Vulnerability degrees of the three major urban agglomerations during 2020–2050.

Compared with the meteorological disaster risk, which mainly focuses on extreme
weather events, the vulnerability degree of urban agglomerations is more concerned with
the role of humans and the GDP [37]. In this paper, the vulnerability degree of urban
agglomeration refers to the degree to which the social system, with regards to how it is
affected by climate pressure, has been damaged because of its own sensitivity and vulnera-
bility. As shown in Figure 6, the high vulnerability of the three urban agglomerations in the
future will mainly be concentrated in the new first-tier cities: Beijing in the Beijing–Tianjin–
Hebei region, Shanghai in the Yangtze River Delta region, and Shenzhen and Guangzhou in
the Pearl River Delta region. With the rapid development of the economy, these cities will
bear an increasing population. As the main component of the natural economy, the rapid
increase in population increases the vulnerability of cities. In general, the vulnerability
of the three major urban agglomerations in the future will mainly be concentrated in the
Yangtze River Delta and the Pearl River Delta. In comparison, the future vulnerability of
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the Beijing–Tianjin–Hebei region in China is relatively low, and its resistance to extreme
disaster events is stronger.

4.4. Climate Change Hazard in Urban Agglomerations under Different Emission Scenarios during
2020–2050

Based on the climate scenarios of SSP1-2.6, SSP2-4.5, and SSP5-8.5 according to CMIP6
in the near and middle periods (2020–2050), this paper obtained future meteorological
elements such as daily mean temperature, daily maximum temperature, daily precipitation,
and daily relative humidity under different scenarios. The comprehensive meteorological
drought index (CI), heat wave index (HI), and flood index (FI) were calculated to quanti-
tatively evaluate the hazard of climate change in urban agglomerations under different
emission scenarios from 2020 to 2050.

Based on the comprehensive meteorological drought index, heat wave index, and
flood index, this paper calculated the mild, moderate, and severe occurrence frequencies of
drought, heat wave, and extreme flood events. As shown in Table 4, this paper obtained
the hazard level of extreme events in different regions based on the method of overlap
analysis. Overlap analysis involves the overlay of mild, moderate, and severe drought,
heat wave, and flood maps to generate a new data layer with attributes.

Table 4. Extreme event hazard classification index system.

Index Mild Moderate Severe

CI −1.2 < CI ≤ −0.6 −1.8 < CI ≤ −1.2 CI ≤ −1.8
HI 2.8 ≤ HI < 6.5 6.5 ≤ HI < 10.5 HI ≥ 10.5
FI 30 mm < FI ≤ 50 mm 50 mm < FI ≤ 70 mm FI ≥ 90 mm

Figure 8 shows the hazards of extreme meteorological events such as drought, heat
wave, and flood under different emission scenarios. As seen in Figure 8A–C, among the
three urban agglomerations, the drought hazard of Beijing–Tianjin–Hebei will be the largest,
followed by the Pearl River Delta region, and, finally, the Yangtze River Delta region. The
serious drought in the Pearl River Delta is mainly due to the high annual temperature in
the Pearl River Delta region and the long-term absence of precipitation in a specific season,
which lead to the frequent occurrence of winter and spring drought. At the same time,
with the increase in greenhouse gas emission intensity, the drought hazard in Beijing and
Tianjin will have an increasing trend. On the one hand, Beijing and Tianjin are located
in the North China Plain at high latitudes, which makes it difficult for warm and wet air
from the ocean to reach the Beijing–Tianjin–Hebei city region. On the other hand, with
the increase in greenhouse gas emissions and the further aggravation of global warming,
temperatures in the Beijing–Tianjin–Hebei urban agglomeration are also increasing. In
addition, Beijing and Tianjin, as two super large first-tier cities in the Beijing–Tianjin–Hebei
urban agglomeration, have obvious urban heat island effects. Therefore, Beijing and Tianjin
will have the greatest hazard of drought in the future.

As seen from the middle row (D, E, F) of Figure 8, the hazard of heat waves will be the
lowest in the Beijing–Tianjin–Hebei urban agglomeration, followed by the Yangtze River
Delta, and the highest in the Pearl River Delta urban agglomeration, from 2020 to 2050.
Solar radiation decreases with increasing latitude, therefore the hazard of heat waves will
gradually decrease from south to north. However, the hazard of heat waves in some cities
in the Yangtze River Delta will also be relatively high because the Yangtze River Delta
city cluster is located in the middle and lower reaches of the Yangtze River. In summer,
under the subtropical high, atmospheric subsidence prevails and the temperature rises
rapidly, forming a summer drought. At the same time, the hazard of heat waves is also
relatively high. With the increase in emissions, the heat wave hazard of the three major
urban agglomerations on the east coast of China will continue increasing.
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Figure 8. Hazards of drought (A–C), heat wave (D–F), and flood (G–I) in the three urban agglomerations under different
emission scenarios: SSP1-2.6 (A,D,G), SSP2-4.5 (B,E,H), and SSP5-8.5 (C,F,I).

From the bottom row (G, H, I) of Figure 8, it can be seen that the flood hazard of the
three major urban agglomerations in 2020–2050 will be concentrated in the middle and
lower reaches of the Yangtze River. That is, the Yangtze River Delta urban agglomerations
will have the greatest flood hazard, while the Pearl River Delta urban agglomerations in
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the low latitudes will have the middle flood hazard, and the Beijing–Tianjin–Hebei region
in the middle and high latitudes will have the least flood hazard. The main reason for this
is that there are many plains in the middle and lower reaches of the Yangtze River, and
the terrain is relatively low and flat. Flooding mainly depends on the precipitation. The
Yangtze River Delta urban agglomeration is located in the monsoon climate zone with
heavy rain in summer. Huang pointed out that approximately 46% of the world’s regions
may suffer from moderate or high hazards of extreme precipitation changes in the future.
The frequency of extreme precipitation events will increase under the RCP8.5 scenario,
and most regions will show high flood hazards [38]. There was no significant difference in
the spatial distribution of flood hazards under the three scenarios analyzed in this paper
(SSP1-2.6, SSP2-4.5, and SSP5-8.5); however, with the increase in emission intensity, the
disaster hazard of floods increased.

Based on the hazard assessment of drought, heat wave, and flood, and according to the
spatial distribution pattern of meteorological disasters, this paper regionalized the hazards
of climate change in the three major urban agglomerations in eastern China [39], as shown
in Figure 9. It can be seen from the figure that the Pearl River Delta urban agglomeration
will experience the greatest hazard of climate change, followed by the Yangtze River Delta,
and the Beijing–Tianjin–Hebei urban agglomeration. The hazard of climate change will
gradually decrease from south to north. With the increase in emission intensity, the climate
change hazard of SSP5-8.5 in the high emission scenario will cause the largest changes.

Figure 9. Climate change hazard of the three urban agglomerations under different emission scenarios (A): SSP1-2.6;
(B): SSP2-4.5; (C): SSP5-8.5.

4.5. Climate Change Risk Zoning of Urban Agglomerations under Different Emission Scenarios
during 2020–2050

In this paper, the disaster risk was divided into two parts: the disaster-causing factor
and the bearing body. Drought, heat wave, and flood were regarded as disaster-causing
factors, and urban agglomerations were regarded as bearing bodies. Disaster risk was equal
to the product of disaster risk and the vulnerability of the disaster-bearing body. Therefore,
these factores were brought into the climate change risk assessment model to obtain the
climate change risk to the three urban agglomerations under different emission scenarios.

Figure 10 shows that the future climate change risk to the Beijing–Tianjin–Hebei urban
agglomeration will mainly be concentrated in Beijing and Tianjin, which have higher
populations and GDPs. Therefore, when large meteorological disasters occur, these two
urban agglomerations will be more vulnerable to risks, while other cities in the Beijing–
Tianjin–Hebei region will show good urban resilience. However, the climate change risk to
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the Yangtze River Delta urban agglomeration will be different, the regional coordination is
not consistent and the overall risk will be slightly stronger than that to the Beijing–Tianjin–
Hebei urban agglomeration. In addition, the risk of climate change will be high in the
Pearl River Delta urban agglomeration, among which Guangzhou and Shenzhen are the
cities with the highest risk in the entire Pearl River Delta region. Overall, the higher the
emission intensity, the greater the risk of climate change in each urban agglomeration; this
conclusion was also consistent with the previous research results [38,40].

Figure 10. Climate change risks in the three urban agglomerations under different emission scenarios (A): SSP1-2.6;
(B): SSP2-4.5; (C): SSP5-8.5.

5. Conclusions and Discussion

The risk of climate change to the three major urban agglomerations in eastern China is
the result of the combined effects of climate factors and social and economic factors, which
need to be cross-analyzed by multiple disciplines and fields. To solve this problem, we se-
lected a climate change risk assessment model as a bridge between natural science analysis
and humanistic socioeconomic analysis. The vulnerability degree of urban agglomerations
and the hazard of climate change were input into the climate change risk assessment model.
Based on the perspective of climate change economics, this paper analyzed the risk of
climate change to the three major urban agglomerations in eastern China.

In terms of vulnerability, high vulnerability was mainly concentrated in Beijing, Tian-
jin, Nanjing, Wuxi, Suzhou, Shanghai, Foshan, Guangzhou, Shenzhen, Dongguan, and
other first-tier cities as well as new first-tier cities. These cities tend to be associated with
a higher GDP and population, and they are at a higher risk when meteorological dis-
asters strike. On the whole, among the three urban agglomerations, the Yangtze River
Delta region was the most vulnerable, followed by the Pearl River Delta region, and the
Beijing–Tianjin–Hebei region.

With climate change, drought characteristics in the north and south have changed. In
general, the Beijing–Tianjin–Hebei urban agglomeration will have the largest drought haz-
ard in the future, followed by the Pearl River Delta urban agglomeration, and the Yangtze
River Delta urban agglomeration. The hazard of heat wave in urban agglomerations in
China mainly depends on geographical location, with obvious spatial agglomeration and
distribution. The hazard of heat wave gradually decreases from south to north, and the
hazard of heat wave in inland cities is higher than that in coastal cities in the same urban
agglomerations. In China, future flood hazards will be concentrated in the middle and
lower reaches of the Yangtze River; that is, the Yangtze River Delta will have the largest
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flood hazard, the Pearl River Delta the middle flood hazard, and the Beijing–Tianjin–Hebei
region the lowest flood hazard.

Among the three coastal urban agglomerations in eastern China, the Pearl River
Delta has the highest hazard of climate change, followed by the Yangtze River Delta. The
Beijing–Tianjin–Hebei urban agglomeration has the lowest hazard of climate change. The
hazard of climate change gradually decreases from south to north. With the increase in
emission intensity, the hazard of climate change in the high emission scenario SSP5-8.5
tends to increase.

The risk of future climate change to the Beijing–Tianjin–Hebei urban agglomeration
will be mainly concentrated in Beijing and Tianjin, while other cities in the Beijing–Tianjin–
Hebei region will show good urban resilience. However, the risk of climate change to
the Yangtze River Delta is different, and the regional coordination is not consistent. The
overall risk of climate change to the Yangtze River Delta is slightly stronger than that to the
Beijing–Tianjin–Hebei urban agglomeration. In addition, the risk of climate change to the
Yangtze River Delta urban agglomeration is high overall, among which Guangzhou and
Shenzhen are the highest risk cities in the entire Yangtze River Delta region.

Under different emission scenarios, the higher the emission intensity, the greater the
future temperature rise, and the greater the risk of climate change that is faced by each
urban agglomeration. Therefore, the high incidence of disaster events is closely related
to climate warming. Energy saving, emission reduction, low carbon, and environmental
protection are effective measures to delay the temperature rise and reduce the frequency
of disasters in the future. Therefore, formulating corresponding policies and measures
according to the characteristics of climate change in different urban agglomerations is
essential to effectively respond to climate change, improve urban resilience, and maintain
steady and rapid economic growth.

In the study of the risk of climate change, we only selected three extreme climate
events, drought, heat wave, and flood, because they are the most typical and widely
distributed meteorological and hydrological events. However, in fact, the risks of climate
change are not limited to drought, heat wave, and flood, but also include hail, typhoons,
cryogenic freezing, and other disasters. However, the timing and regional nature of these
events were more obvious, therefore they were not included in this study. In this paper,
five factors: GDP per unit area, the population density, the population urbanization rate,
the proportion of urban area in total area, and the proportion of primary industry in the
GDP, were considered in the calculation of the vulnerability index of the bearing body, and
the semiquantitative method of expert scoring was also used with the AHP method, which
may affect the results of risk estimation. In addition, the Grey model is only suitable for
medium and short-term prediction, and the accuracy of long-term prediction is limited.
In this paper, the climate data of the BCC-CSM2-MR model were selected to predict the
future SSP1-2.6, SSP2-4.5, and SSP5-8.5 emission scenarios. Because of the limited space,
the multi-model ensemble average requires further study.
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Appendix A

Table A1. Experts Scores Technique.

Population
Density

GDP per Capita
Population

Urbanization Rate
Proportion of Urban
Area to Total Area

Proportion of Primary
Industry in GDP

professor A 5 4.3 1.7 2 3
professor B 5 5 1.8 3 2.2
professor C 5 4.8 2 2.2 2.1
professor D 5 4.7 2.3 1.2 2.3

average value 5 4.7 1.95 2.1 2.4

Table A2. Analytic hierarchy Process data.

Population
Density

GDP per
Capita

Population
Urbanization

Rate

Proportion of
Urban Area to

Total Area

Proportion of
Primary Industry

in GDP

Population density 1 1.064 2.564 2.381 2.083
GDP per capita 0.94 1 2.41 2.238 1.958

Population urbanization rate 0.39 0.415 1 0.929 0.813
Proportion of urban area to total area 0.42 0.447 1.077 1 0.875

Proportion of primary industry in GDP 0.48 0.511 1.231 1.143 1

Table A3. Analytic hierarchy Process results.

Index Feature Vector Weight Value Maximum Eigenvalue Ci

Population density 1.548 30.960%

5 0
GDP per capita 1.455 29.102%

Population urbanization rate 0.604 12.074%
Proportion of urban area to total area 0.65 13.003%

Proportion of primary industry in GDP 0.743 14.861%

Table A4. Random consistency table.

n 3 4 5 6 7 8 9 10

R 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49

References

1. Sun, W.; Li, Q.; Huang, B.; Cheng, J.; Song, Z.; Li, H.; Dong, W.; Zhai, P.; Jones, P. The Assessment of Global Surface Temperature
Change from 1850s: The C-LSAT2. 0 Ensemble and the CMST-Interim Datasets. Adv. Atmos. Sci. 2021, 38, 875–888. [CrossRef]

2. Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandea, M.D.; Bilir, T.E.; Chatterjee Ebi, K.L.; Estrada, Y.O.; Genova, R.C.
(Eds.) Climate Change 2014: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK, 2014.

3. Liu, D.; Wang, D.; Wu, J.; Wang, Y.; Wang, L.; Zou, X.; Chen, Y.; Chen, X. A risk assessment method based on RBF artificial neural
network-cloud model for urban water hazard. J. Intell. Fuzzy Syst. 2014, 27, 2409–2416. [CrossRef]

4. Yang, Y.; Peng, H. Assessment of waterlogging risk for urban drainage system. J. Water Purif. Technol. 2018, 37, 116–121.
(In Chinese) [CrossRef]

5. Liu, X.; Qu, J.; Liu, L.; Li, H.; Pei, H.; Ceng, J. Research on the Assessment of Urban Climate Change Adaptation Capability in
Western China. J. Ecol Econ. 2019, 35, 104–110. Available online: https://core.ac.uk/download/pdf/222802639.pdf (accessed on
18 October 2021). (In Chinese)

6. Giupponi, C.; Mojtahed, V.; Gain, A.K.; Biscaro, C.; Balbi, S. Integrated risk assessment of water-related disasters. In Hydro-
Meteorological Hazards, Risks and Disasters; Academic Press: Cambridge, MA, USA, 2014; pp. 163–200.

7. Wu, S.; Gao, J.; Deng, H.; Liu, L.; Pan, T. Climate change risk and methodology for its quantitative assessment. J. Prog. Geogr.
2018, 37, 28–35.

8. Sahana, V.; Mondal, A.; Sreekumar, P. Drought vulnerability and risk assessment in India: Sensitivity analysis and comparison of
aggregation techniques. J. Environ. Manag. 2021, 299, 113689. [CrossRef]

211



Sustainability 2021, 13, 13037

9. Dong, S.; Tao, S.; Yang, W.; Li, Z.; Li, Y. Impacts of climate change on urban agglomeration in central and western regions of
China. J. Arid Environ. 2011, 25, 72–76.

10. Apel, H.; Aronica, G.T.; Kreibich, H.; Thieken, A.H. Flood risk analyses—How detailed do we need to be? Nat. Hazards 2009, 49,
79–98. [CrossRef]

11. Barbier, E.B. A global strategy for protecting vulnerable coastal populations. J. Sci. 2014, 345, 1250–1251. [CrossRef]
12. Hay, C.C.; Morrow, E.; Kopp, R.E.; Mitrovica, J.X. Probabilistic reanalysis of twentieth-century sea-level rise. J. Nat. 2015, 517,

481–484. [CrossRef]
13. Sun, S.; Zhai, J.; Li, Y.; Huang, D.; Wang, G. Urban waterlogging risk assessment in well-developed region of Eastern China.

J. Phys. Chem. Earth 2020, 115, 102824. [CrossRef]
14. Arnell, N.W.; Lowe, J.A.; Challinor, A.J.; Osborn, T.J. Global and regional impacts of climate change at different levels of global

temperature increase. J. Clim. Chang. 2019, 155, 377–391. [CrossRef]
15. Alexander, K.; Hettiarachchi, S.; Ou, Y.; Sharma, A. Can integrated green spaces and storage facilities absorb the increased risk of

flooding due to climate change in developed urban environments? J. Hydrol. 2019, 579, 124201. [CrossRef]
16. Zhang, X.; Zhou, J.; Song, W. Simulating urban sprawl in china based on the artificial neural network-cellular automata-Markov

model. J. Sustain. 2020, 12, 4341. [CrossRef]
17. Wang, C.; Meng, Q. Research on the sustainable synergetic development of Chinese urban economies in the context of a study of

industrial agglomeration. J. Sustain. 2020, 12, 1122. [CrossRef]
18. Chou, J.; Sun, M.; Xu, Y.; Yang, F.; Li, J.; Zhao, W. Resilience of Grain Yield in China Under Climate Change Scenarios. J. Front.

Environ. Sci. 2021, 9, 44. [CrossRef]
19. Deng, J. Introduction to grey system theory. J. Grey Syst. 1989, 1, 1–24.
20. Sun, M.; Chou, J.; Xu, Y.; Yang, F.; Li, J. Study on the thresholds of grain production risk from climate change in China’s main

grain-producing areas. J. Phys. Chem. Earth. 2020, 116, 102837. [CrossRef]
21. Yin, M. Fifteen years of grey system theory research: A historical review and bibliometric analysis. J. Expert Syst. Appl. 2013, 40,

2767–2775. [CrossRef]
22. Huang, C.; Yin, J.; Zhang, J. Calculation of Risk Assessment Index Weight by Analytic Hierarchy Process. J. China Public Secur.

2018, 19–22. (In Chinese) [CrossRef]
23. Tan, R.R.; Aviso, K.B.; Huelgas, A.P.; Promentilla MA, B. Fuzzy AHP approach to selection problems in process engineering

involving quantitative and qualitative aspects. J. Process. Saf. Environ. Prot. 2014, 92, 467–475. [CrossRef]
24. Chen, D.; Da, L.; Yan, W.; Deng, D.; He, L.; Wu, S.; Yu, L.; Yang, J.; Wang, J.; Zhang, L. Screening and Evaluation of Suitable Shrubs

for Sand Control in Alpine Sandy Land of Northwest Sichuan Based on AHP Analysis. J. Sichuan For. Sci. Technol. 2021, 42, 65–69.
25. GB/T 20481–2017, Grades of Meteorological Drought. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?

FileName=SCSF00050541&DbName=SCSF (accessed on 12 November 2021).
26. He, J.; Yang, X.; Li, J.; Jin, J.; Wei, Y.; Chen, X. Spatiotemporal variation of meteorological droughts based on the daily comprehen-

sive drought index in the Haihe River basin, China. Nat. Hazards 2015, 75, 199–217. [CrossRef]
27. Ma, J.; Zhang, L.; Li, J. Automatic Calculation of Comprehensive Meteorological Drought Index (Ic). J. Meteorol. Res. Appl. 2011,

32, 17–19. Available online: http://www.cqvip.com/qk/96341a/201104/40486752.html (accessed on 12 November 2021). (In
Chinese)

28. GB/T 29457-2012, Grade of the heat wave. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SCSF000
39877&DbName=SCSF (accessed on 20 November 2021).

29. Zhou, Y.; Zhu, S.; Hua, J.; Li, Y.; Xiang, J.; Ding, W. Spatio-temporal distribution of high temperature heat wave in Nanjing. J.
Geogr. Inf. Sci. 2018, 20, 1613–1621. Available online: http://www.cqvip.com/qk/86408a/201811/676778597.html (accessed on
18 October 2021). (In Chinese)

30. Huang, C. Basic principles of natural disaster risk analysis. J. Nat. Disasters 1999, 21–30. Available online: http://www.cqvip.
com/qk/97398x/199902/3579615.html (accessed on 18 October 2021).

31. Chou, J.; Ban, J.; Dong, W.; Hu, C.; Dai, R. Characteristics analysis and assessment of economic damages caused by tropical
cyclones in Guangdong Province. Chin. J. Atmos. Sci. 2018, 42, 357–366. (In Chinese) [CrossRef]

32. Miao, Z.; Xu, L.; Lu, M. Analysis of Drought Characters Based on SPEI Index in Beijing-Tianjin-Hebei Region. J. Yellow River 2018,
40, 51–57. (In Chinese) [CrossRef]

33. Huang, X.; Wang, B.; Guo, Y.; Li, Y. Characteristics of urban extreme heat and assessment of social vulnerability in China. J. Geogr.
Res. 2020, 39, 1534–1547. (In Chinese) [CrossRef]

34. Lu, J.; Liu, J.; Liu, M.; Cao, Y.; Li, H.; Ning, Y. Multi-scale analysis of precipitation in the Beijing-Tianjin-Hebei urban agglomeration
in the past 55 years. Hydro Sci. Eng. 2020, 6, 23–31. (In Chinese) [CrossRef]

35. Huang, G.; Chen, Y.; Yao, Z. Spatial and temporal evolution characteristics of extreme rainfall in the Pearl River Delta under high
urbanization. Adv. Water Sci. 2021, 32, 161–170.

36. Roper, R.E. Book Review of “Heat Wave: A Social Autopsy of Disaster in Chicago”. Homel. Secur. Emerg. Manag. 2011, 1.
[CrossRef]

37. Huang, J.; Su, F. The Review and Prospect on the Hot Issues of Urban Social Vulnerability to Disasters. Sci. Geol. Sin. 2017, 37,
1211–1217.

212



Sustainability 2021, 13, 13037

38. Huang, H.; Cui, H.; Ge, Q. Assessment of potential risks induced by increasing extreme precipitation under climate change. Nat.
Hazards 2021, 108, 2059–2079. [CrossRef]

39. Wu, S.; Pan, T.; Liu, Y.; Deng, H.; Jiao, K.; Lu, Q.; Feng, A.; Yue, X.; Yin, Y.; Zhao, D.; et al. Comprehensive climate change risk
regionalization of China. Acta Geogr. Sin. 2017, 72, 3–17.

40. Dong, S.; Xu, Y.; Zhou, B.; Hou, M.; Li, R.; Li, Y.; Zhang, Y. Projected risk of extreme heat in China based on CMIP5 models. Adv.
Clim. Chang. Res. 2014, 10, 365.

213





Citation: Li, A.; Gao, S.; Gao, M.;

Wang, X.; Zhang, H.; Jiang, T.; Yang, J.

Spatiotemporal Evolution and

Socioeconomic Impacts of

Rainstorms and Droughts in

Contiguous Poverty-Stricken Areas

of China. Sustainability 2022, 14, 9927.

https://doi.org/10.3390/su14169927

Academic Editors: Xiaodong Yan,

Jia Yang and Shaofei Jin

Received: 24 May 2022

Accepted: 8 August 2022

Published: 11 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Spatiotemporal Evolution and Socioeconomic Impacts of
Rainstorms and Droughts in Contiguous Poverty-Stricken
Areas of China

Aiwei Li 1,2, Shuyuan Gao 1,2, Miaoni Gao 1,2,*, Xueqing Wang 1, Hongling Zhang 1,2, Tong Jiang 1,2,*

and Jing Yang 3,4

1 Institute for Disaster Risk Management, Nanjing University of Information Science and Technology,
Nanjing 210044, China

2 School of Geographical Science, Nanjing University of Information Science and Technology,
Nanjing 210044, China

3 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University,
Beijing 100875, China

4 Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
* Correspondence: gaomn@nuist.edu.cn (M.G.); jiangtong@cma.gov.cn (T.J.)

Abstract: To consolidate the achievements in the elimination of absolute poverty in China and
prevent rural populations from returning to poverty as a result of meteorological disasters, this study
analyzed the spatiotemporal characteristics of rainstorms and droughts and their socioeconomic
impacts on China’s contiguous poverty-stricken areas (CPSAs) from 1984 to 2019. The annual
number of rainstorms and drought days in CPSAs of China reached approximately 1.9 days/year
and 44.6 days/year, respectively. It gradually decreased from southeast to northwest. Rainstorms
showed a significant increasing trend of 0.075 days/decade, while there is no significant trend in
drought days. Due to rainstorms and droughts, the average annual number of people affected and
direct economic losses in CPSAs reached 34 million people/year and 29 billion Chinese yuan/year,
accounting for 22.9% and 12.6% of China’s total amounts, respectively. The average annual loss rate
due to disasters in this region reached 1.6%, which is 0.6% higher than the national level. Furthermore,
the distinct features and socioeconomic impacts of rainstorms and droughts were identified on the
southeastern and northwestern sides of the population density line (PDL) along Tengchong-Aihui
in China. Droughts have often impacted the regions located along the PDL, while rainstorms and
droughts have occurred more frequently in the regions to the southeast of the PDL than in the regions
to the northwest of the PDL. As a result, the affected population and direct economic losses due to
rainstorms and droughts in the regions to the southeast of the PDL were 8.8 and 9.2 times and 3.3 and
7.4 times higher, respectively, than those in the regions on the other side of the PDL. Although the
losses were greater, the disaster resistance capabilities were significantly improved in these regions.
In contrast, the regions to the northwest side of the PDL exhibited a significant increasing trend in
losses with a relatively low disaster resistance capabilities. This study revealed that it is necessary
to improve the capability of meteorological disaster prevention and reduction in China’s CPSAs,
especially in the regions to the west of the PDL, which could further contribute to the realization of
United Nations Sustainable Development Goals.

Keywords: contiguous poverty-stricken areas; rainstorms and droughts; direct economic losses;
disaster-affected population

1. Introduction

The United Nations Sustainable Development Goals (SDGs) clearly state that by
2030, all forms of poverty are to be eradicated worldwide [1]. However, more than
700 million people (10% of the world’s population) still live in extreme poverty. The Out-
line for Poverty Alleviation and Development in Rural China (2011–2020) delineated
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14 contiguous poverty-stricken areas (CPSAs) in China based on economic levels and set
the net income of farmers to 2300 yuan (constant 2010 prices) as the national standard for
poverty alleviation. As of 23 November 2020, all 832 poverty-stricken counties in China
have been removed from poverty. The poverty reduction target of the United Nations
2030 Agenda for Sustainable Development has been achieved 10 years ahead of schedule,
contributing to more than 70% of the reduction in global poverty [2]. Most of these areas
are located in plateau, mountainous and hilly areas with a harsh natural environment,
low economic status and relatively lagging social development and represent high-risk
areas for meteorological disasters in China [3]. Among these disasters, rainstorms and
droughts are the two meteorological disasters with the highest proportion of the total
socioeconomic impact, with 24% of the agricultural population endangered by rainstorms
and droughts with a long duration and wide range, reaching losses of 67.35 billion yuan in
2016 alone [4,5].

At the global warming level of 1.5 ◦C, the droughts in CPSAs will change from mild
to moderate, which will increase significantly in three prefectures of Southern Xinjiang
and the Tibet Region [6]. Meanwhile, the intensity of rainstorms will increase in more than
85% of CPSAs in a 1.5 ◦C warming scenario [7]. Since the disaster resistance capabilities
in poor areas are relatively low, natural hazards like rainstorms and droughts are a major
reason why people become and stay poor [8]. Therefore, a comprehensive understanding of
the spatiotemporal characteristics and socioeconomic impacts of rainstorms and droughts
in CPSAs is important for preventing populations that have been lifted out of poverty
from falling back into it again due to meteorological disasters, which further contributes to
poverty eradication consolidation processes in China.

Previous studies have found that the frequency and intensity of rainstorms and
droughts in China have increased since the 21st century, and the affected population and
economic losses due to rainstorms and droughts have significantly increased [9–11]. How-
ever, these studies mainly focused on a specific region, such as exploring rainstorms and
disaster-induced losses in eastern China [12]. There remains a lack of comprehensive stud-
ies of meteorological disaster conditions in CPSAs. In recent years, the demand for natural
hazard data has increased, and numerous databases have emerged, e.g., NatCatSERVICE,
a global-scale database launched by Munich Re (MUNICH RE), and the Emergency Events
Database (EM-DAT) published by the University of Leuven, Belgium. China has also
created databases such as the China Meteorological Administration Disaster Database,
China Natural Disaster Database and China Meteorological Disaster Yearbook, according to
different application needs, which provide a good opportunity to study the socioeconomic
impacts of meteorological disasters in specific regions [9,13–16].

Hu Huanyong proposed the well-known population density line (PDL) in 1935, re-
vealing the basic pattern of the population distribution in China. It showed that 64% of
the areas northwest of the Aihui-Tengchong line in China is in habited by only 4% of the
population [17,18]. The PDL is strongly correlated with the regional climate, and the PDL
coincides closely with the climate dividing line between arid and humid zones in China [19].
This result is very consistent with the 400 mm isohyetal line and the 10 ◦C annual mean
temperature line, and the temperature and precipitation characteristics of the above CPSAs
also basically coincide with this dividing line [17]. The divergence of human factors on
both sides of the PDL is also significant; CPSAs in China are mainly distributed on both
sides of the PDL, and the economy in the regions to the east of the PDL is more developed
than that of the regions to the west of the PDL [20,21].

Therefore, based on rainstorm and drought data, direct economic losses and affected
population data, this study determined the spatial and temporal evolutionary character-
istics of the socioeconomic impacts of rainstorms and droughts and revealed the unique
characteristics which distinguish this region from the disaster conditions in China. Further-
more, this study compared and analyzed rainstorm and drought characteristics with the
PDL as the boundary. The results of this study can provide a scientific basis for the CPSAs
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considered to overcome climate change challenges, prevent a return to poverty resulting
from meteorological disasters and further contribute to the realization of SDGs.

2. Data and Methods

2.1. Study Area

CPSAs are mainly located in the mountains, hills and highlands of Central and Western
China, with complex and diverse topographic conditions and fragile ecological environ-
ments (Figure 1) [22]. For the convenience of description, the regions to the east of the PDL
(Regions5–11, R5–11 for short), the regions along the PDL (Regions1–4, R1–4 for short) and
the regions to the west of the PDL (Regions12–14, R12–14 for short) were classified. The
regions along the PDL (R1–4) include the Southern area of Daxing’anling Mountains, the
Yanshan-Taihang Mountain area, the Lvliang Mountain area and Liupanshan area, which
have a temperate continental climate, with an average annual precipitation of approxi-
mately 500 mm, a mean temperature of approximately 4–8 ◦C, a maximum temperature of
16 ◦C, and a minimum temperature of 0 ◦C, which decreases with increasing latitude. The
regions to the west of the PDL (R12–14) include the three prefectures of southern Xinjiang,
the Tibet region and Tibetan areas in four provinces which belong to the plateau mountain
climate zone of China. The annual precipitation is very low, approximately 300 mm, and
the average annual temperature reaches below 4 ◦C, a maximum temperature of 10 ◦C,
and a minimum temperature of −6 ◦C. The regions to the east of the PDL (R5-11) have
a subtropical monsoon climate, with an average annual precipitation of over 1000 mm
and an average annual temperature ranging from approximately 13 to 18 ◦C, a maximum
temperature of 23 ◦C and a minimum temperature of 10 ◦C [20].

Figure 1. The contiguous poverty-stricken areas (CPSAs) (1. Southern area of Daxing’anling Moun-
tains; 2. Yanshan-Taihang Mountain Area; 3. Lvliang Mountain Area; 4. Liupanshan Area; 5. Qinba
Mountain Area; 6. Dabie Mountain Area; 7. Wuling Mountain Area; 8. Wumeng Mountain Area;
9. West Yunnan Border Area; 10. Yunnan, Guangxi and Guizhou rocky desertification area; 11. Luox-
iao Mountain Area; 12. Three prefectures of Southern Xinjiang; 13. Tibet Region; 14. Tibetan Areas in
Four Provinces).

During 1984–2019, the average annual total population of these CPSAs reached
210 million people, accounting for 16.7% of the total population of China. The average
annual total gross domestic product (GDP) reached 1989.3 billion yuan, accounting for
only 7.7% of the total GDP of China. The population of the above CPSAs grew from
180 million people to 230 million people, and the total GDP increased from 57.3 billion
yuan to 7621.9 billion yuan (Figure 2a,b). The multi-year average GDP per capita in this
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region reached RMB 8943 per person, accounting for only 46.9% of China’s per capita GDP
of RMB 19,079 per person (Figure 2c). This indicates that compared to the entire country,
the CPSAs considered, accounting for 40% of the total area of China, contain a relatively
small population and are relatively economically under-developed.

 

Figure 2. Time series of (a) total population (million people), (b) total GDP (billion yuan), (c) GDP
per capita (yuan) in CPSAs, China during 1984–2019. Green lines denote their ratio compared to
China’s total.

2.2. Datasets
2.2.1. Observational Data

The CN05.1 dataset from the National Climate Center in China with a high spatial
resolution (0.25◦) for the period of 1984–2019 was used to depict climate regimes and iden-
tify rainstorms and droughts, including a daily maximum temperature, a daily minimum
temperature, a daily mean temperature, precipitation and wind speed [23,24].

2.2.2. Meteorological Disaster Dataset

The Chinese meteorological disaster dataset with Chinese county units constructed by
the National Climate Center based on meteorological disaster data collation standards was
used in this study [25]. Two categories of disasters were selected, including rainstorms and
floods and mudslides triggered by rainstorms, and droughts. This study mainly focused on
the direct economic losses and affected population during the period of 1984–2019. In order
to better reflect the situation of the CPSAs, we compared it with the national situation when
describing the socioeconomic impacts of rainstorms and droughts. The socioeconomic
impacts in CPSAs and China were averaged using the direct economic losses and affected
population in the given regions, respectively.
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2.2.3. Socio-Economic Data

The GDP and the population of China with a spatial resolution of 1 km were taken from
the Geographic Science and Resource Environment Data Center of the Chinese Academy of
Sciences [26,27]. The dataset covers the periods of 1990, 1995, 2000, 2005 and 2010. The data
of the remaining years within the data range were obtained via cubic spline interpolation to
ensure data continuity. Cubic spline interpolation was used to divide the data into several
segments. Each segment constructed a cubic function, and each segment function smoothly
connected with another [28]. Finally, the linear trend extrapolation method was used to
further extrapolate the post-2010 values to 2019 [29]. The CPSAs and national values were
calculated as the mean value of the grid points in the regions in which they are located.

2.3. Methods
2.3.1. Definitions of Rainstorms and Droughts

Corresponding to the two categories of disaster from the Chinese meteorological
disaster database, the following definitions were used to identify the characteristics of
rainstorms and droughts. Since all the socio-economic impact of rainstorm, floods and
mudslides were triggered by rainstorms, we mainly focused on the characteristics of
rainstorms in this study. The number of rainstorm days was defined as the number of
days with a daily precipitation exceeding 50 mm, according to the China Meteorological
Administration, which has been widely used in previous studies [30,31]. According to the
revised national meteorological drought grade standard, the daily meteorological drought
comprehensive index (MCI) was calculated by using the historical daily rainfall, the average
temperature, the maximum temperature, the minimum temperature and wind speed [32].
MCI was widely used for monitoring drought and is preferable to other indices in terms
of effect and monitoring capacity [33,34]. The number of drought days was defined as the
number of days of medium drought conditions or above (MCI ≤ −1.5) [35,36].

2.3.2. Consumer Price Index (CPI) Standardization

The CPI reflects the movement of prices in economic operations and constitutes an
important indicator of the degree of inflation [37]. To eliminate the influence of inflation and
ensure comparable direct economic losses due to rainstorms and droughts over time, this
study selected 2019 as the base year and converted and standardized the direct economic
losses data for other years by the 2019 market value [38].

2.3.3. Assessment of the Disaster Resistance Capability

The disaster resistance capability evaluation index used in this study was the loss-to-
GDP rate (the loss-to-GDP rate is the direct economic losses caused by disasters in a certain
area compared to the GDP of that area in a given year, referred to as LGR) [39]. The lower
the percentage of the direct economic losses in a given region is, the higher its disaster
resistance capability.

2.3.4. Linear Trend Detection

In this study, the Mann-Kendall (M-K) nonparametric test method was used to assess
the trend of elements, which can reduce the influence of outliers and missing measurements
on trend estimation [40,41].

3. Spatiotemporal Characteristics of Rainstorms and Droughts

3.1. Temporal Characteristics

The average number of rainstorm days in CPSAs from 1984 to 2019 was 1.9 days/year,
ranging from 1.5 days (1997) to 2.3 days (2016) (Figure 3a). The average number of drought
days in CPSAs reached 44.6 days/year, ranging from 21.8 days (1990) to 67.3 days (2011),
(Figure 3b). The rainstorm days showed a significant increasing trend of 0.075 days/decade,
while there was no significant trend in drought days (Figure 3a,b).
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Figure 3. Time series and trend of accumulated (a) rainstorm days (days/year) (daily precipitation ≥
50 mm) and (b) droughts days (MCI ≤−1.5) (days/year) averaged over the CPSAs during 1984–2019.

3.2. Spatial Characteristics

The spatial distribution of rainstorm and drought days in the CPSAs considered
revealed distinct characteristics on both sides of the PDL. From 1984 to 2019, the number of
rainstorm days in CPSAs gradually decreased from southeast to northwest, with multi-year
average values of 3.1 and 0.3 rainstorm days in the regions to the east of the PDL and
the regions along and to the west of the PDL, respectively (Figure 4a). The number of
drought days in CPSAs also gradually decreased from southeast to northwest, and the
multi-year average number of drought days in the regions along and to the east of the PDL
and to the west of the PDL reached 50.2 and 25.2 days, respectively (Figure 4b). It could be
observed that the number of rainstorm and drought days in the regions to the east of the
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PDL decreased from east to west, and only the drought conditions in the regions along the
PDL were very severe, while the number of rainstorm and drought days in the regions to
the west of the PDL was relatively low.

Figure 4. Spatial distribution of (a,b) annual average (days/year) and (c,d) linear trends (days/year)
of (a,c) rainstorm days and (b,d) droughts days in CPSAs during 1984–2019.

During 1984–2019, the number of rainstorm days in the Southern area of Daxing’anling
Mountains (R1), the Dabie Mountain area (R6), the West Yunnan Border Area (R9) and
the Tibetan areas in the four provinces (R14) showed decreasing trends, while the increas-
ing trends of rainstorm days in other regions of CPSAs were not statistically significant
(Figure 4c). The number of drought days increased in certain areas of the Dabie Mountain
area (R6), the Lvliang Mountain area (R3), the West Yunnan Border Area (R9), the southern
Tibetan areas in four provinces (R14) and the eastern Tibet region (R13). In contrast, the
drought days in other regions, especially in the three prefectures of southern Xinjiang (R12),
the Tibet region (R13) and the Tibetan areas in four provinces (R14), showed a significant
decreasing trend (Figure 4d).

4. Socioeconomic Impacts of Rainstorms and Droughts

In order to illustrate the affected population and direct economic losses in CPSAs,
comparisons were made between the CPSAs and the whole nation.

4.1. Affected Population

In terms of the total affected population, the average population affected by rainstorms
and droughts in CPSAs from 1984–2019 reached 34 million people/year, accounting for
22.9% of the national population affected by rainstorms and droughts, which is higher
than the national share of the population in this region (16.7%) (Figure 5a). From 1984 to
2019, both CPSAs and China’s disaster-affected population increased before 2000 and then
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decreased. The maximum occurred in 2010, reaching 90 million and 326 million, respectively.
Moreover, to identify the affected population, the ratio of the average population affected
by rainstorms and droughts to total population in CPSAs and China were 16% and 11.7%,
respectively. By contrast, the ratio in CPSAs was 1.6% and 6.8% higher than that in China
during 1984–1999 and 2000–2019, respectively. Notably, the affected population in CPSAs
increased after 2000.

 

Figure 5. (a) Rainstorm and drought-affected population (million people) and its proportion in total
population (%), and (b) direct economic losses caused by rainstorms and droughts (billion yuan) and
its proportion in GDP (%) in CPSAs and China during 1984–2019.

As shown in Figure 6, the impact of rainstorms was more serious than droughts.
Among the fourteen regions in CPSAs, the Wuling Mountain area (R7) exhibited max-
imum occurrence of 4.804 million people/year and 2.773 million people/year affected
by rainstorms and droughts, respectively. By contrast, the Tibet region (R13) exhibited
a minimum occurrence of 0.087 million people/year and 0.048 million people/year, re-
spectively. From 1984 to 2019, the multi-year average of rainstorm and drought-affected
population in CPSAs showed different characteristics between the eastern and western
sides of the PDL (Figure 6a,b). Divided by PDL, the number of people affected by rain-
storms and droughts in the regions to the east of the PDL reached 16.4 million people/year
and 12.4 million people/year, which are 8.8 and 3.3 times higher than the population in
the regions along and to the west of the PDL, respectively. In particular, the impact of
rainstorms and droughts on the population in the regions to the east of the PDL was
particularly severe.

4.2. Direct Economic Losses

In terms of total disaster losses, the average direct economic losses resulting from rain-
storms and droughts in CPSAs reached 29 billion yuan/year from 1984–2019, accounting
for 12.6% of the total national disaster losses, which is higher than the national share of the
GDP of the region (7.7%) (Figure 5b). The direct economic losses due to rainstorms and
droughts in CPSAs and China reached a peak of 93.1 billion yuan and 633.9 billion yuan
in 1996 and 1998, respectively. The disaster-related losses in 1991, 1994, 1996, 1998, 2010,
2013 and 2016 were relatively high. To identify the extent of economic losses, the ratio of
the mean direct economic losses due to rainstorms and droughts to GDP in CPSAs and
China were 1.6% and 1%, respectively. Except for 1991, the ratio of disaster losses to GDP
in CPSAs was higher than that of in China.
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Figure 6. Spatial distribution of (a,b) disasters-affected population (million people) and (c,d) disasters-
caused direct economic losses (billion yuan) due to (a,c) rainstorms and (b,d) droughts in CPSAs
during 1984–2019.

From 1984 to 2019, the multi-year average direct economic losses resulting from
rainstorms in CPSAs also showed significantly distinct characteristics between the eastern
and western sides of the PDL. The economic losses caused by rainstorms were higher
than those caused by droughts (Figure 6c,d). The region hit hardest by economic losses
resulting from rainstorms and droughts was the Wuling Mountain area (R7), with direct
economic losses of 7.103 billion yuan/year and 1.445 billion yuan/year resulting from
rainstorms and droughts, respectively. The Lvliang Mountain area (R3) and Tibet region
(R13) attained the lowest losses resulting from rainstorms and droughts, with losses of
0.098 billion yuan/year and 0.023 billion yuan/year, respectively. Divided by PDL, the
direct economic losses due to rainstorms and droughts in the regions to the east of the PDL
reached 20.3 billion yuan/year and 5.7 billion yuan/year, which are 9.2 and 7.4 times higher
than those in the regions along and to the west of the PDL. Notably, the disaster-related
losses in the regions to the east of the PDL were very severe.

As shown in Figure 7a, the trend of the total economic losses attributed to rainstorms
and droughts from 1984 to 2019 increased, except in the Dabie Mountain area (R6), which
showed a decreasing trend. All 13 other regions showed increasing trends, especially the
regions along and to the west of the PDL, where the disaster-related losses increased faster.
Among these areas, the Dabie Mountain area (R6), the Wuling Mountain area (R7) and the
Luoxiao Mountain area (R11) showed statistically insignificant trends, while the increasing
trends in the remaining 11 regions were significant at a confidence level of 95%.
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Figure 7. Spatial distribution of linear trends of (a) direct economic losses caused by rainstorms and
droughts and (b) disaster resistance capability over CPSAs during 1984–2019. Black dots indicate the
results are significant at a confidence level of 95%.

4.3. Disaster Resistance Capability

To identify the disaster resistance capability in each CPSA, average values of the LGR
from 1984 to 2019 were calculated in this study (Figure 8). As shown by the solid line
in Figure 8, the annual mean LGR in CPSAs is 1.1%. The LGR in the areas to the east of
the PDL was generally higher than the average and the disaster resistance capabilities
were relatively low. Among these regions, the disaster resistance capabilities in the Wuling
Mountain area (R7) and the Luoxiao Mountain area (R11) were the lowest, with the LGR
reaching 3% and 2.9%, respectively. The disaster resistance capabilities in the regions along
and to the west of the PDL were relatively high.

 

Figure 8. The average GDP per capita (yuan) and loss-to-GDP rate (LGR) (%) in CPSAs during
1984–2019. The serial numbers of CPSAs are the same as Figure 1. (1. Southern area of Daxing’anling
Mountains; 2. Yanshan-Taihang Mountain Area; 3. Lvliang Mountain Area; 4. Liupanshan Area;
5. Qinba Mountain Area; 6. Dabie Mountain Area; 7. Wuling Mountain Area; 8. Wumeng Mountain
Area; 9. West Yunnan Border Area; 10. Yunnan, Guangxi and Guizhou rocky desertification area;
11. Luoxiao Mountain Area; 12. Three prefectures of Southern Xinjiang; 13. Tibet Region; 14. Tibetan
areas in four provinces).

The disaster resistance capabilities in CPSAs increased during 1984–2019, except for
the Tibet region (R13) (Figure 7b). Among fourteen regions in CPSAs, the trends in the
Yanshan-Taihang Mountain area (R2), the Lvliang Mountain area (R3), the Qinba Mountain
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area (R5), the Dabie Mountain area (R6), the Wuling Mountain area (R7) and the Luoxiao
Mountain area (R11) are significant at a confidence level of 95%. In the regions to the east
of the PDL, for example the Dabie Mountain area (R6) and the Wuling Mountain area (R7),
the resistance capabilities increased faster than other regions.

5. Summary and Discussion

5.1. Summary

The population, GDP and GDP per capita in CPSAs reached 210 million people,
1989.3 billion yuan, and 8943 yuan per person, accounting for 16.7%, 7.7%, and 46.9% of
China’s total amounts, respectively. To consolidate the achievements in the elimination
of absolute poverty in China and prevent rural populations from returning to poverty
due to meteorological disasters, this study analyzed the spatiotemporal characteristics of
rainstorms and droughts and their socioeconomic impacts in China’s CPSAs from 1984
to 2019.

The annual average rainstorm and drought days in CPSAs were approximately
1.9 days/year and 44.6 days/year, respectively. It gradually decreased from southeast
to northwest. The number of rainstorm days showed a significant increasing trend of
0.075 days/decade, while the decreasing trend of the number of drought days was not
significant. Due to rainstorms and droughts, the average annual affected population and
direct economic losses in CPSAs reached 34 million people/year and 29 billion yuan/year,
accounting for 22.9% and 12.6% of China’s total amounts, respectively. The average an-
nual loss rate due to disasters in this region reached 1.6%, which is 0.6% higher than the
national level.

Furthermore, distinct features and socioeconomic impacts of rainstorms and droughts
were identified on the southeastern and northwestern sides of the PDL along Tengchong-
Aihui in China. Droughts often impacted the regions located along the PDL, while rain-
storms and droughts occurred more frequently in the regions to the southeast of the PDL
than in the regions to the northwest of the PDL. As a result, the affected number of people
and direct economic losses due to rainstorms and droughts in the regions to the southeast
of the PDL reached 16.4 million people/year and 20.3 billion yuan/year, and 12.4 million
people/year and 5.7 billion yuan/year, which were 8.8, 9.2, 3.3 and 7.4 times higher than
those in the regions to the northwest of the PDL. Although there were more affected people
and higher direct economic losses due to rainstorms and droughts in the regions to the east
of the PDL, the disaster resistance capabilities were significantly improved. In contrast, the
regions to the northwest side of the PDL showed a significant increasing trend of losses
with relatively low disaster resistance capabilities.

5.2. Discussion

From the perspective of rainstorms and droughts, drought conditions were more
severe in regions along the PDL, and both rainstorms and droughts were relatively severe
in the regions to the east of the PDL. In addition, the number of rainstorm days significantly
increased in the entire study area. Rainstorm-induced disasters became increasingly serious,
and only the number of rainstorm days in the Southern area of Daxing’anling Mountains
(R1), the Dabie Mountain area (R6), the West Yunnan Border Area (R9) and the southern
part of the Tibetan areas in four provinces (R14) showed a decreasing trend. The number
of drought days decreased in the entire study area, especially the drought conditions in
the three prefectures of southern Xinjiang (R12), the Tibet region (R13) and the Tibetan
areas in four provinces (R14), whereas the drought conditions in the West Yunnan Border
Area (R9) and the southern part of the Tibetan areas in four provinces (R14) and the
number of drought days in the West Yunnan Border Area (R9), the southern Tibetan areas
in four provinces (R14) and the eastern Tibet region (R13) notably increased.

According to a comprehensive analysis of the direct economic losses, economic level
and disaster resistance capabilities in CPSAs, the disaster-related losses significantly in-
creased, and at a higher rate than that of the regions to the east of the PDL, while the
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disaster resistance capabilities did not increase significantly. The situation in the regions
to the east of the PDL was the opposite, with high disaster losses but at a lower rate, and
the disaster resistance capabilities were improving. The disaster resistance capabilities in
the Lvliang Mountain area (R3), the Liupan Mountain region and the three prefectures of
southern Xinjiang (R12) were satisfactory, although the GDP per capita was slightly lower
than that in the other regions. It is worth noting that the disaster resistance capabilities
in the Yanshan-Taihang Mountain area (R2), the Wuling Mountain area (R7), Yunnan, the
Guangxi and Guizhou rocky desertification area (R10) and the Tibet region (R13) were rela-
tively low. The GDP per capita in these 4 regions is higher than that of other regions, their
cost in disaster prevention and reduction might be relatively low (Figure 8). These regions
should enhance the disaster prevention consciousness and increase investment in disaster
reduction and prevention facilities. Meanwhile, the number of affected population due to
rainstorms and droughts in CPSAs showed a remarkable increase after 2000 (Figure 5a).
This might be ascribed to the increase in rainstorm days and population exposed to the
disasters since the population in CPSAs increased after 2000, with a growth of 39.7% rel-
ative to 1984–1999 (Figure 2a). Therefore, the government should take the occurrence of
rainstorms and droughts into consideration during urban planning and land use planning
in CPSAs to reduce the exposure and risk of population and economy to disasters.

For a long time, the international community has paid great attention to the relation-
ship between poverty and natural disasters. For example, the reduction of rainfall has
slowed the economic growth of sub-Saharan Africa [42]. Climate change has plunged 6.5%
of the population of Latin America into poverty and vulnerability [43]. Previous studies
have reported that disasters will aggravate poverty and recovery is not straightforward
for poor people [44]. Under global warming, the frequency and intensity of rainstorms
and droughts might increase significantly over CPSAs [6,7]. Correspondingly, the average
annual direct economic losses due to rainstorms is expected to be 4 times and 17 times
higher than it is currently under global warming of 1.5 ◦C and 4.0 ◦C [45]. As the relatively
poor area in China, it is necessary to pay close attention to the socio-economic impact and
risks of rainstorms and droughts over CPSAs in the future. Hence, the above-mentioned
regions with high GDP per capita but low disaster resistance capabilities should strengthen
their awareness of disaster prevention and mitigation, enhance early warnings and disaster
relief inputs in response to meteorological disasters, and improve the disaster resistance
capabilities to meet climate change challenges. This is an important part of consolidating
China’s gains in poverty eradication and further contributing to the realization of SDGs.
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Abstract: Severe air pollution in China has caused significant tourism transformation for pursuing
fresh air in microclimate tourism markets. Contemporary practices simply measure the air freshness
of destinations and scenic spots using a single index, i.e., primarily negative oxygen ions (O2

−). This
index cannot comprehensively reveal scenic spots’ air freshness degree and determine the dynamic
interactions between air freshness and scenic spots’ tourism development, thus inducing an illusion
of air freshness for the target scenic spots. Meanwhile, the current fresh air index primarily ignores
connections with the microclimate index of scenic spots and cannot provide a multidimensional
index for scenic spots to take advantage of both air and microclimate resources for diverse tourism
products and service production. Therefore, this study proposes a multidimensional index, the fresh
air–natural microclimate comfort index (FAI-NMCI), connecting the fresh air index with the natural
microclimate comfort index of scenic spots together from transdisciplinary and multidisciplinary
perspectives. This study utilizes FAI-NMCI to measure four scenic spots of Fujian Province, and
reveals in-depth results of scenic spots’ air freshness and natural microclimate comfort degree together.
The results demonstrate that the four scenic spots in Fujian province of China had different levels
of air freshness degree and natural microclimate comfort degree in 2018. The natural scenic spots
were mostly distributed in Healing Fresh, Very Fresh, and Super Fresh levels of FAI with the most
comfortable and comfortable levels of NMCI. The cultural scenic spots were mostly distributed
in Relatively Fresh and Healing Fresh levels of FAI with the most comfortable and comfortable
levels of NMCI. Meanwhile, the FAI-NMCI of natural and cultural scenic spots also had significant
differences within 24 Jieqi, which will promote dynamic and creative utilization of those resources in
microclimate tourism development.

Keywords: fresh air index; natural microclimate comfort index; fresh air–natural microclimate
comfort index; scenic spots; Fujian province

1. Introduction

Air pollution influences tourists’ and residents’ (potential tourists’) health, which will
directly or indirectly affect demand in the tourism market [1]. Exposure to air-polluted
environments leads to various health problems [2], such as respiratory infections [3,4],
asthma [5,6], stroke, and even lung cancers [7]. Additionally, air pollution, especially fog
and haze pollution, also impacts the psychological health [8,9] and mental disorders [10]
of tourists and potential tourists, which directly increases healthcare expenditures [11],
health costs [12], and other socioeconomic burdens [13,14] and socioeconomic costs [15] for
tourists and local residents. Meanwhile, the factors of natural microclimate and the comfort
of the natural microclimate as a whole also influence tourists’ decision-making for specific
destinations or scenic spots, impacting tourists’ behavior and the constant and dynamic
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tourist flow [16] from one region to another because of dynamic natural microclimate
changes [17,18]. Under an air pollution background, the increasing fresh air demand of
tourists in China has attracted tourists to destinations with fresh air to experience comfort in
natural microclimates. Fresh air and natural microclimate together provide friendly, healthy,
and comfort natural tourist attractions in the contemporary Chinese tourism market. Air
freshness and microclimate comfort degree together as vital environmental information
have significantly influenced tourists, destination and scenic spot management, as well as
tourism market development, which has seldom been explored by contemporary research
and practice.

Actually, the most popular index for measuring air freshness and air quality is the
air quality index (AQI), which utilizes primary air pollutant components such as PM2.5,
PM10, SO2, NO2, CO, or O3 to measure air quality. AQI studies have developed according
to specific research purposes or considering practical utilization; for example, many studies
have explored relationships between the AQI and years of life lost [19] and the aggregated
effects of internal indicators at a short-term scale [20]. However, AQI reveals the degree of
air pollution situations of cities or some air-polluted areas, such as factories or streets, rather
than scenic spots. It also neglects the degree of air freshness through adding indicators
of O2

− to measure the health and beneficial degree of fresh air [21]. Moreover, current
studies of the fresh air index primarily utilize singular indicators, only O2

−, to measure air
freshness, without considering air pollutants’ influence on the comprehensive air freshness
degree [22].

For the natural microclimate of scenic spots, many studies primarily utilize one index
or two indexes to analyze and reveal the natural microclimate comfort degree, which can
mainly be summarized as the temperature-humidity index (THI) [23], wind-cold index
(WCI) [24], index of cloth loading (ICI) [25], and human comfort index (HCI) [26]. However,
it is vital to note that current indexes do not consider rain factors to measure the influence
of rain volume on the comfort degree, which provides an opportunity to establish a rain
comfort index and construct a new comprehensive index including all primary factors of
the natural microclimate of scenic spots. Additionally, the natural microclimate comfort
degree of scenic spots has seldom been integrated with the fresh air index in contemporary
studies due to a lack of comprehensive air freshness data and natural microclimate factor
data at the same time, along with the existence of some research barriers.

Integration embraces the power to reveal the actual distribution of real scenic spot air
freshness and natural microclimate resources. Based on individual economic development
trends of different places, it is essential to point out that the air freshness degree of scenic
spots needs to be classified according to WHO standards [27] and actual situations together,
which calls for stricter standards of fresh air, with gradual improvement in standards. For
more in-depth exploration and development of scenic spots with fresh air and natural
microclimate tourism resources, it is indispensable to classify different levels or add more
actual levels of air freshness degree and natural microclimate degree in future research
because the current classification needs to be developed based on more accurate research.

For sustainable development of destinations and scenic spots with fresh air and natural
microclimate comfort resources, this paper establishes a fresh air index (FAI) based on com-
prehensive identification of fresh air components and the index construction methods and
experiences of AQI, constructs natural and cultural FAI according to the different threshold
standards, and creatively constructs a natural microclimate comfort index of scenic spots
through taking advantage of the current index and adding a rain comfort index, connecting the
fresh air index (FAI) and the natural microclimate comfort index (NMCI) together to assess the
air freshness degree of destinations and the natural microclimate comfort degree. For in-depth
air and microclimate resource distributions in the tourism market, this paper proposes an
improved fresh air–natural microclimate comfort index to systematically analyze fresh air
resources and natural microclimate comfort resources together in Chinese scenic spots by
classifying seven levels of the fresh air index (FAI) and seven levels of the natural microclimate
comfort index (NMCI). Based on the comparative advantages of embracing relatively fresher
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air, this paper takes four scenic spots of Fujian Province, China, as an example and analyzes
the natural and cultural scenic spots’ fresh air–natural microclimate comfort degree to promote
the sustainable utilization and development of fresh air and natural microclimate comfort
resources in the microclimate tourism market.

2. Materials and Methods

This study utilizes the comprehensive index construction method to construct one
fresh air–natural microclimate comfort index (FAI-NMCI), then creatively applies this index
to four scenic spots of Fujian Province to reveal the actual air freshness and microclimate
comfortable degree at the same time.

2.1. Methodology of Fresh Air–Natural Microclimate Comfort Index Construction and Evaluation
2.1.1. Definition and Essence of Fresh Air

Different from polluted air, fresh air not only contains basic air components and air
structures, but also contains more beneficial air components, such as negative oxygen ions
(O2

−), which are also treated as “air vitamins” for promoting human health [28,29] and
include no harmful, or less harmful air components, such as PM2.5, PM10, SO2, NO2, CO,
or O3, that are harmless standards. Therefore, fresh air has beneficial and no harmful
characteristics and can be simply defined and summarized as follows:

Fresh air (FA) = beneficial air components (BAC) + no harmful air components (NAC)

According to the aforementioned analysis, fresh air could be summarized as having
health essences from protecting and promoting human health perspectives, which could be
represented by a higher concentration of healthy air components and a lower concentration
of polluted air components.

In this study, negative oxygen ions (O2
−) were adopted to represent beneficial air

components and were selected to reveal general nonharmful air components that severely
caused air pollution in China. SO2, NO2, CO, or O3 was chosen to represent local special air
contaminants in different regions of China. Therefore, to illustrate fresh air in specific scenic
spots of China, this study constructed a fresh air structure with selected air components,
which can be summarized as follows:

Fresh Air = Beneficial Air Components (O2
−) + No Harmful Air Components {PM2.5+PM10+(SO2, NO2, CO or O3)}

2.1.2. Improved Fresh Air Index of Natural and Cultural Scenic Spots

We compared the contemporary single-factor fresh air index of Fujian, Hubei, and
Zhejiang provinces of China, utilizing only negative oxygen ion (O2

−) degree and PM2.5,
to assess scenic spots’ air freshness (Table 1). The Meteorological Service Center of Fujian
Province, China, and the authors of this paper have creatively proposed a comprehensive
fresh air index by considering both the healthy air component factor negative oxygen ion
(O2

−) and the low degrees of PM2.5 and PM10 as general polluted air components that exist
in different regions of China, and NO2, SO2, CO, and O3 as particular air pollutant factors in
specific regions of China, determined by local geological and economic structure features.

The subindices of the beneficial air component IFAIB are expressed as the ratio of
the negative oxygen ion (O2

−) concentration to the 24 h average standard O2
− level

(1000 ions/cm3) (Table 2) recommended by the World Health Organization Air Quality
Guidelines for fresh air [30–32]. That is, IFAIB can be written as:

IFAIB =
CB

SB
(1)

where IFAIB represents the subindices of the beneficial air component in scenic spots, CB
represents the negative oxygen ion (O2

−) concentration of scenic spots, and SB represents
the 24 h average standard O2

− level (1000 ions/cm3) of scenic spots.
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Table 1. Comparison of methods and classification of air freshness in different provinces of China.

Measurement Method Levels
PM2.5

Concentration (μg/m3)
O2

− Concentration
(N Ions/cm3)

Level Evaluation

Measurement method
of fresh air in Fujian

Level 1 ≤35 1500 ≤ N Very Fresh
Level 2 ≤35 1000 ≤ N < 1500 Fresh
Level 3 ≤35 500 ≤ N < 1000 Relatively Fresh
Level 4 ≤35 100 ≤ N < 500 General
Level 5 ≤35 0 < N < 100 Not Fresh

Measurement method
of fresh air in Hubei

Level 1 ≤35 1200 ≤ N High Concentration, Air Fresh

Level 2 ≤35 500 ≤ N < 1200 High Concentration, Air
Relatively Fresh

Level 3 ≤35 300 ≤ N < 500 Middle Concentration, Air
Generally Fresh

Level 4 ≤35 100 ≤ N < 300 Relatively Low Concentration,
Air Relatively Not Fresh

Level 5 ≤35 0 < N < 100 Low Concentration, Air Not Fresh

Measurement method
of fresh air in Zhejiang

Level 1 ≤35 0 ≤ N < 50 Not Fresh
Level 1 ≤35 50 ≤ N < 200 Not Fresh
Level 1 ≤35 200 ≤ N < 500 Not Fresh
Level 2 ≤35 500 ≤ N < 900 General
Level 3 ≤35 900 ≤ N < 1200 Relatively Fresh
Level 4 ≤35 1200 ≤ N < 1800 Fresh
Level 5 ≤35 1800 ≤ N < 2100 Fresh
Level 6 ≤35 ≥2100 Very Fresh

Table 2. Standard concentration degree of indicators of fresh air components.

Dimension Indicators Average Time
Concentration Degree

Unit
I II

Beneficial Air
Components Negative Oxygen Ion (O2

−) 24 h mean 1000 1000 ions/cm3

No Harmful Air
Components

Sulfur Dioxide (SO2) 24 h mean 50 150
μg/m3

Nitrogen Dioxide (NO2) 24 h mean 80 80

Carbon Monoxide (CO) 24 h mean 4 4 mg/m3

Ozone (O3) day maximum 8 h mean 100 160

μg/m3Particulate Matter 10 (PM10) 24 h mean 50 150

Particulate Matter 2.5 (PM2.5) 24 h mean 35 75

Notes: Data source from Ambient Air Quality Standards of China (GB3095-2012). The category I region used I
concentration degree, and the category II region used II concentration degree. The category I region is the place of
natural conservation, famous scenic spots, and other special conservation regions that need special protection.
The category II region is the residential regions, the mixed region with commercial, transportation, and residents,
the cultural regions, industrial regions, and rural regions.

The subindex IFAIpi of nonharmful air components is expressed as the negative ratio
of air pollutant concentrations, Cpi, to the recommended short-term Ambient Air Quality
Standards of China (GB3095-2012) [33], Spi. That is, IFAIpi can be written as:

IFAIpi = −Cpi

Spi
(2)

where IFAIpi represents the subindices of no harmful air components in scenic spots, Cpi
represents air pollutant concentrations of scenic spots, and Spi represents the recommended
short-term air pollutant concentration standards of scenic spots.

The short-term Ambient Air Quality Standards of China [34] used in natural scenic
spots are defined as concentrations with average times of 24 h means of 50 μg/m3 for PM10,
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35 μg/m3 for PM2.5, 50 μg/m3 for SO2, 80 μg/m3 for NO2, and 4 mg/m3 for CO, and
running an 8 h mean of 100 μg/m3 for O3. The short-term Ambient Air Quality Standards
of China used in cultural scenic spots are defined as concentrations with average times of
24 h means of 150 μg/m3 for PM10, 75 μg/m3 for PM2.5, 150 μg/m3 for SO2, 80 μg/m3

for NO2, and 4 mg/m3 for CO, and running an 8 h mean of 160 μg/m3 for O3. The 24 h
average standard O2

− level recommended by the World Health Organization Air Quality
Guidelines for fresh air is 1000 ions/cm3 in category I and II regions (Table 2).

The natural and cultural fresh air index is the sum of IFAIB and the sum of subindices
of no harmful air components, IFAIPi, which can be written as:

FAI = IFAIB + ∑ IFAIpi = ∑ IFAIj (3)

where FAI refers to the fresh air index, IFAIB refers to subindices of beneficial air compo-
nents, ∑IFAIpi indicates the sum of subindices of no harmful air components, and ∑IFAIj
indicates the sum of subindices of fresh air components j.

The classifications of natural and cultural FAIs of scenic spots and their levels were
explored in this paper. According to Table 1, the FAI of natural scenic spots utilizes category
I region standards to further explore different threshold levels, while the FAI of cultural
scenic spots utilizes category II region standards (Table 2).

According to the China Industrial Technical Regulation on Grade of Air Negative
(Oxygen) Ion Concentration (QX/T 380-2017) [32] and Local Technical Regulation on Grade
of Air Negative (Oxygen) Ion Concentration of Hubei Province (DB42/T 1198-2016) [30],
the concentration degree of negative oxygen ion (O2

−) increase per 500 ions/cm3 will
enhance air freshness and have a beneficial influence on human health.

According to the World Health Organization (WHO) air freshness grading standard of
the negative oxygen ion index, when 1800 ≤ O2

− ≤ 2100, O2
− has natural healing power,

and when O2
− > 2100, it has therapeutic and rehabilitation effects [35]. Therefore, on

the basis of a higher standard than the WHO standard for negative oxygen ion therapy,
this paper proposes that when 2500 ≤ O2

− ≤ 3000, PM2.5, PM10, O3, NO2, SO2, and CO
decreased in proportion, and the air freshness degree is at the Healing Freshness Level, the
resulting air freshness level of the scenic spot reaches the healing standard. Then, when
3000 ≤ O2

− ≤ 3500 and when O2
− > 3500, the air could have a more active influence on

human health, which could further promote the air freshness degree to very fresh and
super fresh levels.

According to the World Health Organization Air Quality Guideline (WHO AQG), a
PM2.5 and PM10 decrease of 5 μg/m3 will reduce mortality risk by approximately 3% [31],
an O3 decrease of 5 μg/m3 will reduce daily mortality by approximately 0.12–0.25% [31],
an SO2 decrease of 5 μg/m3 will reduce daily mortality by approximately 0.09–0.29% [31],
a CO decrease of 0.5 mg/m3 will also reduce mortality risk or health risk [31], and an NO2
decrease of 5 μg/m3 will reduce daily mortality by approximately 0.29% [36].

This paper further classifies the FAI threshold range of natural and cultural scenic
spots according to the different standards of natural and cultural scenic spot air quality
standards in China and the WHO standards, which are summarized in Tables 2 and 3,
respectively. The air freshness degree of natural and cultural scenic spots could be classified
into seven levels: Not Fresh, General, Fresh, Relatively Fresh, Healing Fresh, Very Fresh,
and Super Fresh (Tables 3 and 4).

2.1.3. Improved Natural Microclimate Comfort Index

It is obvious that those indices usually assess two or three factors of natural microcli-
mate, such as THI analyzes temperature and humidity factors, WCI analyzes wind and
temperature factors, ICI analyzes wind, temperature, and solar radiation factors, and HCI
analyzes temperature, humidity, and wind factors. Therefore, it is a trend in Chinese
tourism research to utilize the indices mentioned above to comprehensively analyze the
degree of natural microclimate comfort in tourists’ destinations [37–40]. However, there
is also a lack of consideration of the influence of precipitation factors on the degree of
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natural microclimate comfort in contemporary Chinese tourism research. According to
climate comfort analysis of scenic spots, when precipitation < 1.0 mm, there is nearly no
influence on tourists. When precipitation < 3.0 mm, it is within tourists’ precipitation
comfort range, which will provide a rainfall microclimate for tourists to experience and
appreciate rainfall scenery in scenic spots, while when precipitation > 10.0 mm, tourism will
decrease dramatically because large volumes of rainfall make tourists feel uncomfortable
and cause them to stop tourism activities and leave scenic spots [41].

Table 3. Threshold range of natural scenic spot FAI levels.

SB Spi FAI (Fresh Air Index)
In Natural Scenic Spot LevelsO2

(Ion/cm3)
PM2.5

(μg/m3)
PM10

(μg/m3)
O3

(μg/m3)
SO2

(μg/m3)
NO2

(μg/m3)
CO

(mg/m3)

≥3500 ≤10 ≤25 ≤75 ≤25 ≤55 ≤1.5 FAI ≥ 2 Super Fresh
3000 15 30 80 30 60 2 1.2 ≤ FAI < 2 Very Fresh
2500 20 35 85 35 65 2.5 0.4 ≤ FAI < 1.2 Healing Fresh
2000 25 40 90 40 70 3 −0.4 ≤ FAI < 0.4 Relatively Fresh
1500 30 45 95 45 75 3.5 −1.2 ≤ FAI < −0.4 Fresh
1000 35 50 100 50 80 4 −2 ≤ FAI < −1.2 General

<1000 >35 >50 >100 >50 >80 >4 FAI < −2 Not Fresh

Table 4. Threshold range of cultural scenic spot FAI levels.

SB Spi FAI (Fresh Air Index)
In Cultural Scenic Spot LevelsO2

(Ion/cm3)
PM2.5

(μg/m3)
PM10

(μg/m3)
O3

(μg/m3)
SO2

(μg/m3)
NO2

(μg/m3)
CO

(mg/m3)

≥3500 ≤25 ≤75 ≤85 ≤75 ≤55 ≤1.5 FAI ≥ 2.14 Super Fresh
3000 35 90 100 90 60 2 1.31 ≤ FAI < 2.14 Very Fresh
2500 45 105 115 105 65 2.5 0.48 ≤ FAI < 1.31 Healing Fresh
2000 55 120 130 120 70 3 −0.35 ≤ FAI < 0.48 Relatively Fresh
1500 65 135 145 135 75 3.5 −1.17 ≤ FAI < −0.35 Fresh
1000 75 150 160 150 80 4 −2 ≤ FAI < −1.17 General

<1000 >75 >150 >160 >150 >80 >4 FAI < −2 Not Fresh

Therefore, this paper proposes a rain comfort index (RCI) to assess the comfort degree to
which different volumes of rainfall influence tourists in scenic spots. The RCI refers to the
influence of rainfall on the extent of human comfort in a natural microclimate environment.
According to the Chinese grade of precipitation standard (GB/T 28592-2012) and considering
tourism activities usually within a 12 h range, this paper chose a 12 h precipitation standard
to measure rainfall levels; that is, drizzle < 0.1 mm, light rain 0.1~4.9 mm, moderate rain
5.0~14.9 mm, and heavy rain 15.0~29.9 mm. Based on the above analysis, this paper defined
the comfort range of precipitation as between 0.1 (drizzle) and 10.00 mm (moderate rain) for
tourists in scenic spots and then constructed the RCI as follows:

RCI = R/R0

where RCI refers to the rain comfort index, R refers to actual rainfall, and R0 refers to
standard rainfall, that is equal to 0.1 mm (drizzle) in this paper. Then, seven levels of RCI
of different comfort degrees were classified, which are summarized in Table 5.

By considering all factors of the natural microclimate, this paper proposes the natural
microclimate index (NMCI):

NMCI =
THI + WCI + ICI + HCI + RCI

5
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Table 5. Threshold range of RCI levels.

RCI Levels RCI

Very Uncomfortable ≥100
More Uncomfortable 80 ≤ RCI < 100

Relatively Uncomfortable 60 ≤ RCI < 80
Comfortable 0 ≤ RCI < 30

Relatively comfortable 30 ≤ RCI < 40
Less comfortable 40 ≤ RCI < 50
Uncomfortable 50 ≤ RCI < 60

By assessing each subindex of the NMCI (THI, WCI, ICI, HCI, RCI) and defining them
into their own comfort levels, the results are summarized in Table 6. For subindices of
NMCI, such as THI, WCI, ICI, HCI, and RCI, which have their own levels of standards
and classification patterns, it is essential to standardize each subindex of NMCI for further
calculation of NMCI. This paper summed up and calculated their average comfort levels
through reclassifying each subindex of NMCI into seven levels (d, c, b, A, B, C, D) and
assigning values (that is, d = 2, c = 3, b = 4, A = 5, B = 6, C = 7, D = 8). Then, the average
THI + WCI + ICI + HCI + RCI/5 value was calculated to determine the final levels of NMCI
in Table 7.

When 5 ≤ NMCI < 6, the NMCI is at the most comfortable level; when 4 ≤ NMCI < 5,
the NMCI is at the comfortable (cool comfort) level; when 6 ≤ NMCI < 7, the NMCI is at the
comfortable (warm comfort) level; when 3 ≤ NMCI < 4, the NMCI is at the less comfortable
(cold less comfortable) level; when 7 ≤ NMCI < 8, the NMCI is at the less comfortable
(hot less comfortable) level; when 2 ≤ NMCI < 3, the NMCI is at the uncomfortable (very
cold uncomfortable) level; when NMCI > 8, the NMCI is at the uncomfortable (very hot
uncomfortable) level (Table 7).

2.1.4. Combined Fresh Air–Natural Microclimate Comfort Index

After the construction of the fresh air index (FAI) and the natural microclimate comfort
index (NMCI), this paper comprehensively constructed a parallel fresh air–natural microcli-
mate index for assessing the air freshness degree and natural microclimate comfort degree
of specific scenic spots in China. This approach utilizes the fresh air index and natural
microclimate comfort index to analyze scenic spots and then connects them together to
explore fresh air and natural microclimate tourism resources in depth (Table 8).

2.2. Data Source

This study chose four fresh air index monitoring stations within four scenic spots of
Fujian Province, China. That is, the Pingnan Baishuiyang-Yuanyang Brook Scenic Spot
in Ningde City, the Gutian Conference Site Scenic Spot in Longyan City, the Yongding
earth building (Tulou) Scenic Spot in Longyan City, and the Wuyi Mountain Scenic Spot in
Nanping City (Figure 1 and Table 9).

Pingnan Baishuiyang-Yuanyang Brook Scenic Spot is a natural scenic spot. It has a
total area of 66 square kilometers, integrating streams, peaks, rocks, waterfalls, caves, lakes,
and other landscapes. There are more than 10 kinds of national protected animals, such
as Silver Pheasant, Python, and Pangolin, which are found in the “Natural Animal and
Botanical Garden” (Figure 1 and Table 9).

Gutian Conference Site Scenic Spot is a cultural scenic spot. It is located in the south
of Meihua Mountain, with a planned area of 7.6 square kilometers. In October 2015, it
was successfully promoted to a national 5A tourist attraction and won the honorary titles
of “National Top Ten Excellent Patriotism Education Bases” and “National Red Tourism
Classic Scenic Spots” (Figure 1 and Table 9).
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Table 7. Threshold range of NMCI Levels.

Value Range Levels

2 ≤ NMCI < 3 Very cold uncomfortable
3 ≤ NMCI < 4 Cold less comfortable
4 ≤ NMCI < 5 Cool comfort
5 ≤ NMCI < 6 The most comfortable
6 ≤ NMCI < 7 Warm comfort
7 ≤ NMCI < 8 Hot less comfortable

NMCI > 8 Very hot uncomfortable

Table 8. Threshold range of FAI-NMCI Levels.

FAI Value Range
in Cultural
Scenic Spot

FAI Value Range
in Natural

Scenic Spot
FAI Levels NMCI Value Range NMCI Levels

FAI ≥ 2.14 FAI ≥ 2 Super Fresh 2 ≤ NMCI < 3 Very cold uncomfortable
1.31 ≤ FAI < 2.14 1.2 ≤ FAI < 2 Very Fresh 3 ≤ NMCI < 4 Cold less comfortable
0.48 ≤ FAI < 1.31 0.4 ≤ FAI < 1.2 Healing Fresh 4 ≤ NMCI < 5 Cool comfort
−0.35 ≤ FAI < 0.48 −0.4 ≤ FAI < 0.4 Relatively Fresh 5 ≤ NMCI < 6 The most comfortable
−1.17 ≤ FAI < −0.35 −1.2 ≤ FAI < −0.4 Fresh 6 ≤ NMCI < 7 Warm comfort
−2 ≤ FAI < −1.17 −2 ≤ FAI < −1.2 General 7 ≤ NMCI < 8 Hot less comfortable

FAI < −2 FAI < −2 Not Fresh NMCI > 8 Very hot uncomfortable

Figure 1. The four scenic spots and their monitoring stations in Fujian Province, China.
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Table 9. Four scenic spots and their location information.

Scenic Spots Site Number Longitude Latitude Altitude Located City Located Specific Site

Wuyi Mountain Scenic Spot F9269 117.96245 27.6677 408 Nanping City Wuyi Mountain
Gutian Conference Site Scenic Spot F7490 116.8376 25.2261 730 Longyan City Gutian County
Pingnan Baishuiyang-Yuanyang

Brook Scenic Spot F3749 119.058 27.0736 679.2 Ningde City Ping’nan County

Yongding earth building (Tulou)
Scenic Spot F7590 117.015 24.667 431 Longyan City Yongding County

Yongding earth building (Tulou) Scenic Spot is a cultural scenic spot. It is a unique
magical mountain residential building. It has a long history, unique style, large scale, and
exquisite structure. In July 2008, it was successfully listed in the world heritage list (Figure 1
and Table 9).

Wuyi Mount Scenic Spot is a natural scenic spot. It is located at the junction of Jiangxi
and northwest Fujian Provinces and at the southeast foot of the north section of Wuyi
Mountain vein, with a total area of 999.75 square kilometers. It is a famous scenic spot and
summer resort in China (Figure 1 and Table 9).

Since the PM2.5, PM10, and O3 standards in natural and cultural scenic spots have
different regulations in practice, this paper attempts to establish natural and cultural scenic
spot FAIs to distinguish air freshness evaluations. In addition, natural and cultural scenic
spots have different environmental backgrounds and social interaction intensities, which
will significantly influence the air freshness degree of scenic spots. Meanwhile, for tourists,
the fresher the air in scenic spots, the better the traveling experience, so they could utilize
the FAI of natural scenic spots to measure all scenic spots in practice. For destination
and scenic spot management, it is vital to distinguish the difference between natural and
cultural scenic spots and to evaluate the related and compared freshness within natural
scenic spots and cultural scenic spot categories. This paper chose the Wuyi Mountain
scenic spot and Baishuiyang scenic spot as natural scenic spots of Fujian Province and the
Yongding Tulou scenic spot and Gutian Conference Site scenic spot as cultural scenic spots
of Fujian Province.

According to local air characteristics, O3 is a special air component that influences
the local air freshness of Fujian Province. Therefore, data on four indicators, O2

−, PM2.5,
PM10, and O3, from 1 January to 31 December 2018 were collected. Temperature, relative
humidity, wind speed, solar radiation, and precipitation data of the four scenic spots were
collected from 1 January to 31 December 2018. Therefore, this paper utilized negative
oxygen ion (O2

−), PM2.5, PM10, and O3 data for each day of 2018 of the four scenic spots
to calculate their fresh air index (FAI). Then, temperature, relative humidity, wind speed,
solar radiation, and precipitation data were utilized on each day of 2018 to calculate the
natural microclimate comfort index (NMCI) of the four scenic spots.

The data for natural microclimate factors were collected from the National Meteoro-
logical Information Center of China (http://data.cma.cn/, accessed on 1 February 2022)
and provided by the Fujian Meteorological Service Center, China (http://fj.cma.gov.cn/,
accessed on 1 January 2022), and the data for fresh air index subindices were provided
by the Fujian Meteorological Service Center, China (http://fj.cma.gov.cn/, accessed on
1 January 2022). The data were generated from the four scenic spots’ microclimate and
air freshness index monitoring equipment. More precisely, one set of negative oxygen
ion monitoring stations (model HuaTron FR500) and one set of air index stations (model
HuaTron AEI365) were built in the above four scenic spots (Figure 1 and Table 8).

3. Results

3.1. FAI-NMCI of Natural Scenic Spots

In the Wuyi Mountain scenic spot, the FAI levels were mainly distributed in the upper
levels; for example, the Super Fresh level was approximately 164 days (accounting for 47%),
the Very Fresh level was approximately 67 days (accounting for 19%), and the Healing
Fresh level was approximately 56 days (accounting for 16%), which was approximately
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287 days in 2018, accounting for almost 82% (Figure 2A). Meanwhile, the NMCI primarily
included three levels. The comfortable level was approximately 246 days (accounting for
67%), which also embraced the cool comfort level (168 days, 46%) and the warm comfort
level (78 days, 21%). The most comfortable level was approximately 116 days (accounting
for 32%), while the less comfortable level was approximately 3 days (accounting for only
1%) (Figure 2B). Therefore, in the Wuyi Mountain scenic spot, the FAI-NMCI was mainly
distributed within the upper fresh-comfort range, which was approximately 246 days of
upper freshness levels and 362 days of comfort in 2018 (Figure 2A,B).

Figure 2. FAI and NMCI levels of Wuyi Mountain (A,B) and Baishuiyang scenic spot (C,D) of Fujian
Province, China.

In the Baishuiyang scenic spot, the FAI levels were distributed from the Not Fresh
level to the Super Fresh level. More precisely, the Fresh level was approximately 86 days
(accounting for 25%), the Relatively Fresh level was approximately 74 days (accounting for
21%), the Super Fresh level was approximately 51 days (accounting for 15%), the Healing
Fresh level was approximately 40 days (accounting for 11%), and the Very Fresh level was
approximately 36 days (accounting for 10%), which indicated the dynamic fluctuation of
FAI in the Baishuiyang scenic spot, and the FAI reached or exceeded the Fresh level for
approximately 287 days, accounting for approximately 78.63% (Figure 2C). At the same time,
the NMCI was mainly distributed at the comfortable level (185 days, 51%), among which the
cool comfort level was 117 days (accounting for 32%) and the warm comfort level was 68 days
(accounting for 19%). Meanwhile, the most comfortable level was also in a large proportion
(45%) and was approximately 165 days. The less comfortable level was approximately 15 days
and accounted for 4% (Figure 2D). Therefore, in Baishuiyang scenic spot, the FAI-NMCI was
mainly distributed within the middle fresh-comfort range, which was approximately 160 days
of middle freshness and 185 days of comfort in 2018 (Figure 2C,D).

In Wuyi Mountain scenic spot, the FAI mainly fluctuated between −2.69 and 32.7, that
is, it fluctuated between Not Fresh and Super Fresh levels. The NMCI mainly fluctuated
between 3.6 and 7.2, that is, it fluctuated between cold less comfortable and hot less
comfortable levels. Within the whole year of 2018, from January to April, the NMCI
gradually increased from 4 to 5 (in the cool comfort level), while the FAI was mostly more
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than 5 (in the Super Fresh level) in the second half of January, decreased dramatically
to −1.87 (in General level) in early February, then slightly increased to Relatively Fresh,
Healing Fresh, and Very Fresh levels, and some Super Fresh levels, which also fluctuated
in this period. From May to the first half of July, the NMCI increased from 5 to 6 and 6 to
7, which generally entered into the most comfortable level and increased into the warm
comfort level in this period, which fluctuated mainly within these two levels; meanwhile,
the FAI mainly fluctuated between Fresh and Super Fresh levels and reached the highest
FAI of approximately 3.7 in June, which was more than the threshold value of Super Fresh
(FAI > 2) by approximately 16.35 times. From the second half of July to the first half
of September, the NMCI remained at the warm comfort level, while the FAI decreased
gradually from more than 5 to lower than 3, although it was also mainly within the Super
Fresh level. Then, the FAI increased to more than 5 in the second half of August and
increased to more than 20 in the first half of September. From September to October, the
NMCI decreased gradually from the warm comfort level to the most comfortable level,
while the FAI also decreased to lower levels, such as the Fresh level and Relatively Fresh
level, although some days reached the Healing Fresh level and Very Fresh level. When
entering November and December, the NMCI decreased from 5 to lower than 4, which
is a decrease from the cool comfort level to the cold less comfortable level, while the FAI
increased gradually to the Super Fresh level in the middle of November and then decreased
dramatically in the second half of November and the first half of December. When the
NMCI decreased to the cold less comfortable level in December, the FAI fluctuated, while
most fluctuated between the Healing Fresh and Super Fresh levels (Figure 3A).

Figure 3. FAI and NMCI of Wuyi Mountain (A) and Baishuiyang scenic spots (B) of Fujian Province
on each day of 2018.

In Baishuiyang scenic spot, the FAI mainly fluctuated between −2.83 and 34.27, which
fluctuated between the Not Fresh level and Super Fresh levels, while the NMCI mainly
fluctuated between 3.4 and 7.2, which fluctuated between cold less comfortable and hot less
comfortable levels. Within the whole year of 2018, from January to early June, the NMCI
gradually increased from 4 to nearly 7, namely, it increased from cool comfort to the most
comfortable level and then to the warm comfort level, while the FAI was mostly below 0,
namely, it fluctuated between the Not Fresh level and the Relatively Fresh level. From the
middle of June to August, the NMCI fluctuated and gradually increased from 6 to more
than 7, that is, from the warm comfort level to the hot less comfortable level; meanwhile,
the FAI increased from 0 to between nearly 5 or more than 5 on some days, which mainly
fluctuated between the General level and the Super Fresh level. From September to
November, the NMCI fluctuated mainly between 6.5 and 5, which indicated that the
natural microclimate fluctuated from the warm comfort level to the most comfortable
level from early September to late November. The FAI slightly and gradually increased in
September and then decreased drastically below 0 from late September to early October,
namely, decreased from the Super Fresh level to the Not Fresh or General level, mainly
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during the National Holiday of China (approximately seven-day long holiday). After the
seven days of the National Holiday of China, the FAI increased dramatically and reached
the highest level of the year (FAI = 34.27), then fluctuated within the Super Fresh level
(mainly between 2 and 14). From late November to December, the NMCI decreased below
5 but higher than 4, namely, at the cool comfort level, and the FAI also decreased to a lower
level of the year, which primarily fluctuated between the General level and the Healing
Fresh level (Figure 3B).

It is essential to point out that the FAI of the Wuyi Mountain and Baishuiyang scenic
spots have some higher FAI values, such as more than 30 or even higher, which is primarily
because of the higher O2

− levels and the lower PM2.5, PM10, and O3 levels in scenic spots.
When scenic spots have a high O2

− concentration, it will significantly influence the entire
FAI value.

More precisely, within 24 Jieqi of Wuyi Mountain scenic spot and Baishuiyang scenic
spot, the FAI-NMCI can be summarized as in Figure 4. For example, it is obvious that in
Lesser Cold and Greater Cold Jieqi, both the Wuyi Mountain and Baishuiyang scenic spots
were at the cool comfort level, although Wuyi Mountain was at the Super Fresh level and
was fresher than Baishuiyang, which was only at the Fresh level. At the start of Spring,
the FAI of both Wuyi Mountain and Baishuiyang decreased, which was not because of the
decrease in negative oxygen ions (O2

−) at the two scenic spots but because of the increase
in PM2.5 and PM10 due to the large number of tourists and tourism transportation entering
those two scenic spots (Figure 4).

From Rain Water to Spring Equinox Jieqi, although the two scenic spots were also
within the cool comfort level, the FAI both experienced a drastic increase from the General
to the Super Fresh level in Wuyi Mountain and from the Not Fresh to the Relatively
Fresh level in Baishuiyang. In Pure Brightness and Grain Rain Jieqi, Baishuiyang entered
into the most comfortable level while Wuyi Mountain remained at the cool comfort level.
Meanwhile, for more tourist travel to Baishuiyang, the FAI was at a relatively lower level,
that is the General level, than Wuyi Mountain (Super Fresh and Healing Fresh level). At
the Start of Summer Jieqi, Wuyi Mountain was at the Super Fresh and warm comfort levels,
while Baishuiyang was only at the Fresh level and was still within the cool comfort level.
In Grain Full Jieqi, Baishuiyang had increased freshness and became warm. In the Grain
in Ear Jieqi, Wuyi Mountain entered the most comfortable level and was in a Super Fresh
situation (Figure 4).

3.2. FAI-NMCI of Cultural Scenic Spots

In the Yongding Tulou scenic spot, the FAI levels were mainly distributed in Healing
Fresh (159 days, 38%) and Relatively Fresh (74 days, 18%), while they were also distributed
in Not Fresh (115 days, 27%). The Super Fresh (29 days, 7%), Very Fresh (31 days, 7%), and
Fresh (14 days, 3%) levels were in small proportions (Figure 5A).

The NMCI was distributed in the comfort domain, that is, the most comfortable domain
(149 days, 41%), and the comfort domain (216 days, 59%), which included the cool comfort
domain (133 days, 36%) and the warm comfort domain (83 days, 23%) (Figure 5B). In the
Gutian Conference Site scenic spot, the highest levels of FAI were at the Healing Fresh level
(166 days, 48%) with a large proportion, and the Relatively Fresh level (146 days, 42%), while
the Very Fresh (24 days, 7%) and Fresh (12 days, 3%) levels had a small proportion, and the
Super Fresh level was not reached (Figure 5C). Meanwhile, the NMCI included three levels:
the most comfortable (110 days, 30%), and the comfort (250 days, 69%), which embraced the
cool comfort level (160 days, 44%) and the warm comfort level (90 days, 25%) (Figure 5D).
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Figure 4. 24 Jieqi FAI-NMCI of Wuyi Mountain and Baishuiyang scenic spots.

In the Yongding Tulou scenic spot, the FAI mainly fluctuated between −0.97 and 14.81,
which fluctuated between Fresh and Super Fresh levels. The NMCI mainly fluctuated
between 3.80 and 6.80, which fluctuated between cold less comfortable and warm comfort
levels (Figure 6A). Throughout 2018, the FAI and NMCI of the Yongding Tulou scenic spot
experienced dynamic fluctuations. From January to March, the NMCI increased gradually
from 3 to above 4, that is from cold less comfortable to the cool comfort level, and the FAI
mainly fluctuated between −0.35 and 0.48, that is mainly at the Relatively Fresh level. From
late March to the middle of April, the NMCI continued to increase from 4 to above 5, that is
from cool comfort to the most comfortable level. Meanwhile, the FAI increased dramatically
above 2 and reached the Very Fresh level and fluctuated into the high level of Relatively
Fresh. From May to September, the NMCI fluctuated from 5 to above 6, that is from the
most comfortable to the warm comfort level, and the FAI mainly fluctuated within the
Relatively Fresh level. When entering October, the NMCI decreased from above 6 to below
5, that is from warm comfort to the most comfortable level. The FAI increased drastically
and reached the highest level (14.81) of the year, and most of FAI values were higher than
6 in the second half of October, that is it mainly fluctuated at the Very Fresh level. From
November to December, the NMCI decreased from above 5 to below 4, that is from the most
comfortable to the cold less comfortable level, while the FAI primarily fluctuated within
the Relatively Fresh level until in the middle of December, when it increased dramatically
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to more than 12, namely, in the Very Fresh level, then decreased quickly and fluctuated
between the Fresh and Relatively Fresh levels (Figure 6A).

Figure 5. FAI and NMCI levels of Yongding Tulou (A,B) and Gutian Conference Site scenic spots
(C,D) of Fujian Province, China.

 
 

FAI and NMCI of Yongding Tulou  
scenic spot 

FAI and NMCI of  
Gutian Conference Site scenic spot 

Figure 6. (A) FAI and (B) NMCI of Yongding Tulou and Gutian Conference Site scenic spots of Fujian
Province on each day of 2018.

In the Gutian Conference Site scenic spot, the FAI mainly fluctuated between −0.76
and 2.03, that is it fluctuated between Fresh and Super Fresh levels, while the Super Fresh
level was lower than the Yongding Tulou scenic spot by approximately 7 times. The NMCI
mainly fluctuated between 3.20 and 7.2, that is it fluctuated between cold less comfortable
and hot less comfortable levels (Figure 5B). For the first five months of 2018, from January
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to May, the NMCI increased from more than 4 to more than 6, that is from cool comfort
to the most comfortable level, and then to the warm comfort level. The FAI fluctuated
between below −0.5 and 1, that is it fluctuated between the Fresh and Healing Fresh levels.
From June to August, the NMCI increased from above 6 to above 7, that is from warm
comfort to the hot less comfortable level. The FAI was mainly above 0.5 and some days
even above 1, that is primarily at the Healing Fresh level. From September to November,
the NMCI decreased from above 6 to 5, that is from warm comfort to the most comfortable
level, while the FAI mainly fluctuated between 1 and 1.5, that is it fluctuated between
Healing Fresh and Very Fresh levels. In December, the NMCI decreased and mainly varied
between 4 and 4.2, that is mainly at the cool comfort level, while the FAI also decreased
and mainly fluctuated above 0.5 or below 0.5, that is mainly at the Relatively Fresh and
Healing Fresh levels (Figure 6B).

More precisely, within 24 Jieqi of the Yongding Tulou scenic spot and Gutian Conference
Site scenic spot, the FAI-NMCI could be summarized as in Figure 7 for satisfying tourists’
diverse fresh air–natural microclimate comfort preferences and demands through the provi-
sion of proper microclimate tourism products and services in each Jieqi, or different Jieqi with
approximately similar air freshness and natural microclimate comfort degrees.

Figure 7. 24 Jieqi FAI-NMCI Index of Yongding Tulou and Gutian Conference Site scenic spots.
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4. Discussion and Conclusions

Comparing FAI-NMCI in natural scenic spots of Fujian province, the Wuyi Mountain
scenic spot had more days of upper-level air freshness and natural microclimate comfort
degree than Baishuiyang scenic spot, which was mainly distributed within the middle
fresh-comfort range. In cultural scenic spots of Fujian province, the Gutian Conference Site
scenic spot had more days of middle-level air freshness and natural microclimate comfort
degree than Yongding Tulou scenic spot, which had even more days of air freshness at the
Not Fresh level.

Comparing fluctuating ranges of FAI of the four scenic spots in Fujian Province, the
natural scenic spots had wider FAI fluctuation ranges, which was primarily determined
by the higher concentration of negative oxygen ions and lower concentrations of PM2.5,
PM10, and O3, while, the cultural scenic spots had relatively shorter FAI fluctuation ranges,
which was profoundly influenced by the relatively lower concentration degree of negative
oxygen ions and higher concentration degree of PM2.5, PM10, and O3.

Comparing fluctuating ranges of NMCI of four scenic spots in Fujian province, the
NMCI mainly fluctuated between 3.20 and 7.2, which indicated that their natural micro-
climate comfort degree primarily fluctuated between cold less comfortable and hot less
comfortable levels, except the Yongding Tulou scenic spot, which fluctuated between cold
less comfortable and warm comfort levels.

In short, the four scenic spots in Fujian Province of China had different levels of air
freshness degree and natural microclimate comfort degree in 2018. The natural scenic
spots were mostly distributed in Healing Fresh, Very Fresh, and Super Fresh levels of
FAI, with the most comfortable and comfortable levels of NMCI. The cultural scenic spots
were mostly distributed in Relatively Fresh and Healing Fresh levels of FAI, with the most
comfortable and comfortable levels of NMCI. Meanwhile, the FAI-NMCI of natural and
cultural scenic spots also had significant differences within 24 Jieqi, which will promote
dynamic and creative utilization of these resources in microclimate tourism development.

Therefore, the fresh air–natural microclimate of scenic spots has become a vital tourist
attraction in the contemporary Chinese tourism market under the background of severe air
pollution. Tourists with different physiological and psychological conditions will be more
suited to different levels of air freshness and natural microclimate comfort levels, such
as elderly tourists, pregnant women tourists, and children tourists will be vulnerable to
polluted air environments and require more fresh and comfortable natural microclimates,
such as Super Fresh and the most comfortable level of scenic spots, which has more negative
oxygen ions (O2

−) and lower PM2.5, PM10, and O3, with a more comfortable temperature,
humidity, wind speed, solar radiation, and precipitation.

Moreover, the dynamic fresh air–natural microclimate fluctuation revealed by FAI-
NMCI of scenic spots will properly indicate the air freshness and natural microclimate
comfort degree information for both the demand side and the supply side of the tourism
market, which will profoundly promote fresh air–natural microclimate tourism resources’
distribution and redistribution, accelerate fresh air–natural microclimate in-depth tourism
resources combination and integration from a creative microclimate tourism development
perspective, and further drive fresh-microclimate tourism development in destinations
and scenic spots with comparative advantages of fresh air and a comfortable natural
microclimate for triggering their in-depth transformation and improvement.

From a theoretical contribution perspective, this paper constructed the FAI-NMCI to
harmoniously combine air resources and microclimate resources together, which could
empirically evaluate air and microclimate tourism resource values for tourists, the tourism
market, and the society as a whole. Moreover, it could figure out overlapping study areas
of air tourism, climate tourism, health tourism, ecological tourism, and so forth, which
have significant theoretical innovation through transdisciplinary, multidisciplinary, and
interdisciplinary integration research in China’s tourism market. This is a new research
trend that has seldom been explored by researchers and could become an important research
domain for future multidisciplinary, transdisciplinary, and interdisciplinary exploration.
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From a socioeconomic practical application perspective, the creation and utilization
of FAI-NMCI is significant for fresh air and comfortable microclimate tourism resources’
distribution and redistribution in the tourism market. Meanwhile, it could also become
a vital health tourism market indicator, which simply reveals the air freshness degree
and microclimate comfort degree for tourists and some potential tourists pursuing health
tourism experiences and long-term health-improving vacations. FAI-NMCI could indicate
a scenic spot’s air freshness and microclimate comfort levels specifically on different days of
a year, which also could be calculated and summarized into 24 Jieqi, 12 months, 4 seasons,
and so forth. Under contemporary China’s high-quality tourism development background,
this could provide accurate information not only for demand and supply sides of the
tourism market but could also become an important and comprehensive index for related
governmental management and NGOs.

The limitation of this paper is we only applied the FAI-NMCI to four scenic spots
of China because of data collection limitations and the short time construction of the air
freshness index infrastructure, with only 1–2 years of data sources. This new index has
only been applied in Fujian Province rather than other provinces of China, which need
to be explored in the future. This index could reveal not only the natural conditions of
tourism resources but could also indicate tourism practices, tourists’ and destinations’ social
behavior patterns, as well as socioeconomic development patterns of some destinations,
which could be explored through introducing multidisciplinary methods in future research.
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Abstract: In the context of global warming, a key scientific question for the sustainable development
of the Arctic tourism industry is whether the region’s climate is becoming more suitable for tourism.
Based on the ERA5-HEAT (Human thErmAl comforT) dataset from the European Center for Medium-
range Weather Forecasts (ECMWF), this study used statistical methods such as climatic tendency
rate and RAPS to analyze the spatial-temporal changes in Arctic summer climate comfort zones from
1979 to 2019 and to explore the influence of changes in climate comfort on Arctic tourism. The results
showed the following: (1) With the increase in the Arctic summer temperature, the universal thermal
climate index (UTCI) rose significantly from 1979 to 2019 at a rate of 0.457 ◦C/10a. There was an
abrupt change in 2001, when the climate comfort changed from “colder” to “cool”, and the climate
comfort has remained cool over the past decade (2010–2019). (2) With the increase in Arctic summer
temperatures, the area assessed as “comfortable” increased significantly from 1979 to 2019 at a rate
of 2.114 × 105 km2/10a. Compared with the comfortable area in the 1980s, the comfortable area
increased by 6.353 × 105 km2 over the past 10 years and expanded to high-latitude and high-altitude
areas, mainly in Kola Peninsula, Putorana Plateau, and Verkhoyansk Mountains in Russia, as well as
the Brooks Mountains in Alaska. (3) With the increase in Arctic summer temperatures, the number
of days rated comfortable on 30% of the grid increased significantly from 1979 to 2019 (maximum
increase: 31 days). The spatial range of the area with a low level of comfortable days narrowed and the
spatial range of the area with a high level of such days expanded. The area with 60–70 comfortable
days increased the most (4.57 × 105 km2). The results of this study suggest that global warming
exerts a significant influence on the Arctic summer climate comfort level and provides favorable
conditions for further development of regional tourism resources.

Keywords: Arctic; universal thermal climate index (UTCI); spatial-temporal changes; 1979–2019

1. Introduction

According to the sixth assessment report of the Intergovernmental Panel on Climate
Change (IPCC), the average global surface temperature has increased by 1.09 ◦C over the
past century [1]. The report in the Arctic Climate Impact Assessment also pointed out that,
in the context of global warming, climate change in the Arctic is mainly manifested in the
melting of ice sheets in the Arctic, the continuous decrease in the volume of snow and
frozen soil in the Northern Hemisphere, the frequent occurrence of extreme weather events,
and the significant changes in the ecosystem in the Arctic [2]. Accordingly, climate change
turned into a severe environmental problem, and soon it will have significant impacts
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on our lives, our world, and also on tourism [3]. Climate change has affected the length
and quality of the tourist season, the choice and consumption of tourist destinations, the
decision making of tourist activities, and the operating costs of the tourism industry [4].
Climate change directly causes the redistribution of tourist flows, geographically and
seasonally, and climatic conditions that are attractive to tourists may shift to high latitudes
and high altitudes [5]. Climate change also indirectly affects tourism by causing water
shortages, floods, deterioration of water quality, changes in natural landscapes, reduction
in biodiversity, forest fires, and spread of diseases [6,7]. Global warming could lead to the
spatial-temporal redistribution of climate comfort [8]. The Arctic is the highest latitude
region of the Northern Hemisphere, as well as a region sensitive to global climate change [9].
The heating rate of the Arctic is twice that of the global average [10]; thus, analyzing the
characteristics of climate change in the Arctic is of great significance for the development
of Arctic tourism resources.

In recent years, tourism in high-latitude regions has become increasingly popular.
For instance, the number of tourists in Greenland increased from 26,410 in 1999 to 57,223
in 2008, which was equivalent to the total population of Greenland [11]. The number of
summer tourists to Alaska also increased significantly [12]. The average annual growth
rate in the number of tourists in Iceland has doubled over the past few years [13]. The
increase in the climate comfort level in Norway has led to a huge increase in summer
tourism; the number of tourists in the Svalbard Islands, for example, has quadrupled [14].
This significant increase in the number of tourists indicates that the climate comfort level
in the Arctic has improved due to global warming, and the need to carry out quantitative
studies on these changes is urgent. Roshan et al. [15] used the physiologically equivalent
temperature (PET) to identify and evaluate bioclimatic conditions of 40 meteorological
stations in Iran. It showed that Iran’s comfortable days transferred to early spring and late
autumn and an increase in the frequency of thermal comfort condition was observed in
almost half of the stations. Roshana et al. [16] also used stations data to show that both SET,
PET, and UTCI increased in Iran from 1995 to 2014. Eludoyin et al. [17] have examined the
variations in the thermal condition of Nigeria in terms of the temperature, relative humidity,
effective temperature (ET), temperature–humidity index (THI), and relative strain index
(RSI) and concluded that thermal stress has increased in Nigeria from 2000 at most stations,
especially in the south and north-western regions. Feng et al. [18] used the improved classic
THI model to analyze the spatiotemporal evolution of annual and monthly average climate
comfort in China from 2005 to 2018. The results showed that the annual average comfort
level in China changed from cold to comfortable. Wu et al. [19] used 591 stations data to
calculate the change of China’s climate comfort index values between 1966 and 2016 and
came to the same conclusion. In China, the climate comfort levels in high-altitude regions,
plateaus, and mountains have improved significantly [20–24]. Zeng et al. [25] investigated
the spatial and temporal variations of the universal thermal climate index (UTCI) of the
China–Pakistan Economic Corridor (CPEC) from 1979 to 2018 and concluded that the UTCI
generally exhibited a positive trend of 0.33 ◦C/10a over the past 40 years, and the seasonal
variation characteristics of the UTCI showed an upward trend in all four seasons. The
tourist comfort zone in North America moved from low altitude to high altitude and from
low latitude to high latitude [26]. For example, southern Florida, Arizona, and particularly
Mexico have decreased the warm tourist season and Canada, Georgia, and South Carolina
have extended the warm tourist season. Alaska’s tourist season also extended, which now
starts 10 days earlier than in the 1940s [20]. Some scholars have analyzed the thermal
comfort in different regions of Europe. Napoli et al. have assessed the thermal bioclimate of
Europe for the summer season and concluded that an increase in heat stress up to 1 ◦C was
observed from 1979 to 2016 [27]. Some scholars pointed out that southern Europe (Crete
Island in Greece, Eastern Mediterranean, Athens, Madrid (Spain), Novi Sad (Vojvodina,
Northern Serbia)) were under high temperature and pressure, and climate warming has
led to a significant increase in the frequency and duration of high-temperature heat waves
in southern Europe and a decline in climate comfort [28–35]. In central Europe, climate
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change has led to an increase in the number of strong and very strong heat stress days
in Poland [36]. Tourists from Germany, Ireland, and the UK would spend more holidays
in their home country, and the tourism of Ireland and Britain has moved north [37]. In
northern Europe, warming has increased the length of nature and wilderness tourism and
the “midnight sun” season in Finland and Sweden [5], and increased comfort in Norway
has led to an increase in summer visitors [14]. Climate change could considerably enhance
northwestern Europe’s comfort level [38,39]. It can be seen that climate changes have led
to the redistribution of tourism climate resources in time and space. The existing studies
are mostly based on station data analysis, with lower spatial resolution. The area of study
is mostly concentrated on the low and middle latitudes of the Northern Hemisphere, but
little attention has been paid to the changes in comfort level in the Arctic, where there have
been the highest rates of temperature increase.

The climate comfort index, which is widely used in public health, urban planning,
tourism, and leisure, is an important index for quantifying the climatic suitability of tourism
destinations [40] and as a basis for studying the effect of climate change on tourism [41].
With the measurement of the environment variables, direct indices were initially drawn by
the researchers. Including wet-bulb temperature [42], Kata temperature [43], wet-bulb globe
temperature (WBGT) [44], temperature–humidity index (THI) [45], effective temperature
(ET) [46], and wind chill index (WCI) [47], direct indices were widely used because they
are simple and easy to use. As the study of climate comfort went further, the researchers
realized that besides environmental factors such as temperature and humidity, behavioral
variables such as metabolic rate and the thermal insulation and moisture permeability
of clothing that affected the heat comfort should also be considered [48]. Thus, some
researchers raised experiential indices, such as the predicted four-hour sweat rate (P4SR),
that included the behavioral variables [49]. Because of the lack of the scientific simulation
of human response in experiential indices, thermodynamic theorem was used to simulate
the heat exchange between the human body and environment, by which climate comfort
indices such as physiological equivalent temperature (PET) [50] and the universal thermal
climate index (UTCI) were raised. Comparing with the PET index, the environmental and
behavioral factors that affected the climate comfort indices were more fully considered in
the UTCI. The human multi-joint reaction to the external environment was in the model of
climate comfort index to simulate the dynamic physiological response of the pedestrian
and construct the thermal stress index the human body accepted during exposure outdoors.
According to the thermal stress index, the UTCI is divided into 10 comfort levels from hot to
cold [51]. The UTCI is considered the most advanced, comprehensive, and universal human
comfort index [52,53], and it is applicable to various climates, seasons, temporal, and spatial
scales, as well as being widely used in urban zoning and tourism planning [54,55]. The
ERA5-HEAT (Human thErmAl comforT) dataset from the European Center for Medium-
range Weather Forecasts (ECMWF) was used in this study. The objectives of the present
study were to (1) determine the spatial pattern of Arctic summer climate comfort, (2) reveal
the spatial-temporal characteristics of Arctic summer climate comfort, and (3) discuss the
influence of climate change on Arctic summer climate comfort. It provides a scientific basis
for sustainable development of tourism in the region.

2. Materials and Methods

2.1. Study Area

In this study, 800 km2 of the northern land in the Arctic Circle (66◦34′ N) was taken
as the study area, including parts of Greenland (territory of Denmark), Canada, Alaska
(the United States), Russia, Norway, Sweden, Finland, and Iceland. Located in the North
Frigid Zone, the study area is covered by sea ice year-round and experiences polar weather
(Figure 1). The average temperature in the coldest month reaches −40 ◦C–−20 ◦C, so
the area is an important cold source for the world. The weather is characterized by a
long, extreme cold winter, and a short, cool summer; the annual average precipitation is
100–250 mm, which reaches 500 mm in the Greenland sea area, and summer precipitation
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is usually in the form of rain. Due to its climate characteristics, the Arctic region has unique
tourism resources, and current tourism in the region mainly focuses on glaciers, auroras,
gorges, endemic species, skiing, underwater diving, and boating on the ice sea.

Figure 1. Location of the study area (shaded area) and the average temperature in the Arctic from
1979 to 2019.

2.2. Datasets

1. Thermal comfort data: The climate comfort data were drawn from the ERA5-HEAT
dataset of ECMWF from 1979 to the present, with a spatial resolution of 0.25◦ × 0.25◦
and a time interval of one hour. The UTCI from 1979 to 2019 was analyzed in this
study, and the data were downloaded from the ERA5-HEAT website Available online:
https://cds.climate.copernicus.eu/cdsapp#!/dataset/ (accessed on 28 May 2020). Accord-
ing to the thermal physiological response of the human body, the UTCI thermal stress was
divided into 10 levels (Table 1).

Table 1. UTCI equivalent temperatures categorized in terms of thermal stress and thermal perception.

UTCI (◦◦◦C) Stress Category Comfort Level UTCI (◦◦◦C) Stress Category Comfort Level

>46 Extreme heat stress Extreme hot 0~9 Slight cold stress Cool
38~46 Very strong heat stress Very hot −13~0 Moderate cold stress Colder
32~38 Strong heat stress Hot −27~−13 Strong cold stress Cold
26~32 Moderate heat stress Hotter −40~−27 Very strong cold stress Very cold
9~26 No thermal stress Comfort <−40 Extreme cold stress Extreme cold

2. Arctic climate data: To analyze the climate background of the changes in Arctic
comfort and analyze the changing factors of the UTCI, we chose temperature, wind speed,
relative humidity, and sunshine duration for the analysis. These climate elements were
obtained from the ERA5 dataset. Again, the time range drawn from ERA5 was from 1979
to the present, the spatial resolution was 0.25◦ × 0.25◦, and the time interval was one hour.
The temperature and wind speed data were used directly, whereas the sunshine duration
and relative humidity required further processing: sunshine duration was replaced by total
cloud cover (TCC) [56] and relative humidity was calculated by the average temperature
and dew-point temperature. The specific equation is as follows:

f =
E

EW
×100% (1)

E = 6.11exp5417.753{(1/ 273.16)− [1/( 273.16 + Td)]} (2)
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Ew = 6.11exp5417.753{(1/ 273.16)− [1/( 273.16 + T)]} (3)

where f is relative humidity, E is actual vapor pressure, Ew is saturated vapor pressure, Td
is dew point, and T is temperature.

2.3. Methods
2.3.1. Trend Analysis Method

A univariate linear regression equation of the cold region area variable (y) and the
corresponding time (x) was established:

y = ax + b ( i = 1, 2, . . . , n) (4)

where a is the linear regression coefficient indicating the rate of change in the spatial extent
of the cold region. The positive or negative value of a indicates that the spatial extent of
the cold region is increasing or decreasing over time. The positive value of a indicates the
spatial extent of cold region is increasing while the negative value of a indicates the spatial
extent of cold region is decreasing.

2.3.2. Rescaled Adjusted Partial SUMS (RAPS) Method

The rescaled adjusted partial sums (RAPS) visualization approach can be used for
preliminary visual inspection of a time series, to gain a feel for the data, and/or to guide
and focus subsequent statistical tests and analyses [57]. The RAPS of the Xk are defined
as follows:

Xk =
k

∑
t=1

Yt−Y
SY

; k = 1, . . . , n (5)

where Y = [Yt; t = 1, . . . , n] represent a time series of a climatic variable, Y is sample mean,
SY

2 is variance, n is number of values in the time series, and k is counter limit of the current
summation.

2.3.3. Correlation Analysis

Correlation analysis is a statistical method used to discover if there is a relationship be-
tween two variables/datasets, and the relatedness and negative/positive correlation of this
relationship. The Pearson correlation method is adopted in this paper to analyze the rela-
tionship between comfortable area, comfortable days, and climate indicators, quantitatively.
In each pair, the Pearson’s correlation coefficient (r) is calculated as:

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
(6)

where x represents the average comfortable areas or days and y is the average of a given
climate variable.

The study based on the UTCI data in the ERA5-HEAT dataset provided by ECMWF
used MATLAB software for spatial data calculation and overlay analysis (Figure 2). We
used the Pcolor function of MATLAB to achieve graphical visualization.
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Figure 2. The framework of the study.

3. Results

3.1. Change of UTCI in the Arctic Summer (1979–2019)

The average UTCI value in the Arctic summer from 1979 to 2019 was 0.025 ◦C
and the comfort level was “cool”. The UTCI value increased significantly at a rate of
0.457 ◦C/10a (p < 0.01), for a total increase of 1.874 ◦C, and the thermal stress level also
increased (Figure 3a). The results of RAPS analysis showed (Figure 3b) that there was an
obvious change in the UTCI value in the Arctic summer in 2000, which indicates that a
transformation occurred in the comfort level in the early 21st century. The UTCI anomaly
map (Figure 3c) also shows that the negative anomaly changed to a positive anomaly in
the early 21st century (2001) and the UTCI changed from a relatively low value stage to a
relatively high value stage. Further analysis reveals that the UTCI value was −0.501 ◦C
and the comfort level was “colder” before the abrupt change (1979–2000). After the abrupt
change (2001–2019), the UTCI value was 0.634 ◦C and the comfort level was “cool”, which
indicates that there was an obvious change in the comfort level of the Arctic summer in the
21st century.

Figure 3. Change in Arctic summer UTCI from 1979 to 2019: (a) time series, (b) RAPS, (c) anomaly series.
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3.2. Change in the Area Rated “Comfortable” in the Arctic Summer

It can be seen from Section 3.1 that the spatial distribution of comfortable areas ex-
panded with the increase in the UTCI value for the Arctic summer from 1979 to 2019
(Figure 4a). The area of summer comfortable zones in the Arctic from 1979 to 2019 was
1.541 × 106 km2, covering 19.152% (i.e., nearly 1/5) of the total Arctic land area. The
comfortable area in the decade before and after was 1.218 × 106 and 1.864 × 106 km2,
respectively. The summer comfortable area was largest in 2019, at 2.44 × 106 km2,
and smallest in 1996, at only 0.921 × 106 km2, with an annual variation coefficient of
23.304%. The increase rate for the summer comfortable area in the Arctic from 1979 to
2019 was 2.114 × 105 km2/10a, which was significant (p < 0.01). The total increase area
was 8.667 × 105 km2, which indicates that the summer comfortable area in the Arctic has
been expanding. The RAPS analysis results indicate (Figure 4b) that there was an obvious
change in the size of the Arctic summer comfortable area in 2000, which was consistent
with the change in the UTCI value. The comfortable area before and after the abrupt change
was 1.307 × 106 and 1.811 × 106 km2, respectively. This finding was further verified by
the area anomaly (Figure 4c), which indicates that there was a significant expansion in the
Arctic summer comfortable area in the early 21st century.

Figure 4. Change in Arctic summer comfortable area from 1979 to 2019: (a) time series, (b) RAPS, (c) anomaly series.

The spatial distribution of the areas with different comfort levels in the Arctic over
the past ten years was further analyzed (Figure 5). The Arctic summer comfortable area
from 2010 to 2019 was 1.864 × 106 km2, accounting for 23.2% of the Arctic land area. These
comfortable areas were mainly distributed in Eurasia and North America (66.5◦–70 ◦N),
mid-eastern Russia, Norway, Sweden, and Finland in northern Europe, Alaska and the
Yukon territory in Canada, as well as scattered areas along the coast of Greenland and
islands of Canada, north of 70 ◦N (Figure 5a). Compared with the ten years from 1979 to
1988, the Arctic summer comfortable area increased by 6.353 × 105 km2, accounting for 7.9%
of the Arctic land area (Figure 5b). In terms of spatial distribution, the comfortable area
mainly expanded to high-latitude and high-altitude regions (66.5◦–70 ◦N) and, specifically,
in the Kola Peninsula, Putorana Plateau, Verkhoyansk Mountains in Russia, and Brooks
Mountains in Alaska (Figure 5c). It is, therefore, possible for tourism to be developed in
the Arctic regions rated comfortable, especially those newly designated as comfortable.
Sightseeing in gorges, fishing, and watching rare species can be carried out in the peninsula
regions and adventures, such as polar mountain climbing and outdoor expeditions, can be
developed in the mountainous and plateau regions.
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Figure 5. Spatial distribution and variation of Arctic summer comfortable area: (a) 2010–2019,
(b) 1979–1988, (c) spatial variation of the decade before and after.

3.3. Change in the Number of Arctic Summer Comfortable Days from 1979 to 2019

There was an average of 23 Arctic summer days rated comfortable from 1979 to 2019,
accounting for a quarter (25%) of the entire summer, while in the decade before and after
there were 21 and 26 such days, respectively. The largest number of comfortable days was
seen in 2019 (30 d), and the smallest was 18 d in 1992. The annual variation coefficient
was 10.955%. The increase rate in comfortable days from 1979 to 2019 was 1.458 d/10a,
which was significant (p < 0.01), and the total increase was 6 d, which indicates that the
season for Arctic summer tourism activities has been significantly extended (Figure 6a).
The RAPS analysis results showed that there was an obvious change in the number of
comfortable days around 2000, which is consistent with the changes in UTCI values
(Figure 6b). The number of comfortable days before and after the abrupt change was 22 d
and 25 d, respectively. This finding was further verified by the anomaly of days (Figure 6c),
indicating that a significant change occurred in the number of comfortable days in the early
21st century.

Figure 6. Change in the number of Arctic summer comfortable days from 1979 to 2019: (a) time series, (b) RAPS,
(c) anomaly series.

Figure 7 shows the spatial distribution of Arctic summer comfortable days from 1979
to 2019. The number of days in all grid cells rated comfortable has clearly been increasing,
the area with a statistically significant increase accounted for 30% of the total Arctic area,
and the increase rate ranged −1.972–7.498 d/10a. The largest increase in the number
of comfortable days was in the Qeqertarsuaq region of western Greenland (31 d) and
the second largest increase was in northern and eastern Siberia of Russia (8–24 d). The
summer tourism seasons were extended in the areas with a large increase in the number of
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comfortable days, and the tourism structure could be adjusted appropriately to invest in
tourism infrastructures to meet the needs created by this extension.

Figure 7. Rate of spatial change for the number of Arctic summer comfortable days from 1979 to 2019.

These Arctic summer comfortable days not only appear in the increase in grid cells but
also in the change of space areas with the same level of comfortable days. Table 2 displays
the area distribution of comfortable days at various frequency levels between the period
of 1979–1988 and 2010–2019. The areas with 0–10, 10–20, 20–30, and 40–50 comfortable
days decreased from 1979 to 1988 and from 2010 to 2019, with regions experiencing only
0–10 comfortable days declining most (by 2.96 × 105 km2). Areas with 30–40, 50–60, 60–70,
70–80, and 80–90 comfortable days increased, with areas having 60–70 comfortable days
increasing most (4.57 × 105 km2).

Table 2. Areas of comfort days at different levels in 1979–1988 and 2010–2019.

(105 km2) 0–10 d 11–20 d 21–30 d 31–40 d 41–50 d 51–60 d 61–70 d 71–80 d 81–92 d

2010–2019 9.74 12.79 11.90 9.57 8.07 8.93 6.66 1.67 0.04
1979–1988 12.70 15.13 12.12 9.54 9.05 7.02 2.09 0.64 0.00
Difference −2.96 −2.34 −0.22 0.03 −0.98 1.91 4.57 1.03 0.04

In the past ten years (2010–2019), there was an average of 26 comfortable Arctic
summer days, which were distributed in North America and Eurasia, excluding Green-
land (Figure 8a). These basically followed a zonal distribution and gradually decreased
with an increase in latitude. Mid-eastern Russia, northern Europe, Canada, and Alaska
(66.5◦–70 ◦N) had a large number of comfortable days (maximum: 90 d) and the regions
north of 70 ◦N had a smaller number of comfortable days (average: 20 d), accounting for
21.74% of the Arctic summer. Compared with the early 1980s (Figure 8b), the number of
comfortable days increased by 5 d.

In summary, there was an obvious increase in the range and number of comfortable
days (between 10 d and 30 d) in the Arctic, which were mainly distributed in mid-eastern
Russia (66.5◦–70 ◦N), Greenland, and Ellesmere Island, north of 80 ◦N (Figure 8c). The
increase in the number of comfortable days extends the summer tourism season in the
Arctic, providing tourists more time to enjoy the natural scenery and creating the potential
for higher economic benefits.
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Figure 8. Spatial distribution and change in the number of Arctic summer comfortable days from
1979 to 1988 and from 2010 to 2019: (a) 2010–2019, (b) 1979–1988, (c) Spatial transformation.

4. Discussion

As an area sensitive to global warming, the climate comfort level in the Arctic has
changed with the warming climate, which has had positive effects on the regional tourism
industry. Therefore, it is of great significance to study the changes in the areas of the
Arctic that can be rated comfortable during the summer, with a particular focus on the
influence of climate comfort level on tourism in the context of global warming. In this
study, a quantitative analysis was carried out on the spatial-temporal evolution of the
Arctic summer climate comfort zones from 1979 to 2019, as well as the influence of the
change in the climate comfort levels on Arctic tourism. The results of this analysis may be
helpful in optimizing the Arctic tourism industry, promoting the development of tourism
destinations, and providing scientific and quantitative support for the development of
Arctic tourism. The following aspects were discussed in this study.

Factors that influence the climate comfort level include temperature, relative humidity,
wind speed, and sunshine duration. The relationship between meteorological elements
and climate comfort level was analyzed based on the ERA5-HEAT dataset. Figure 9 shows
the interannual changes in Arctic summer average temperature, relative humidity, wind
speed, and TCC from 1979 to 2019, which had averages of 3.809 ◦C, 79.461%, 4.128 m/s,
and 70.249%, respectively. The temperature rose significantly from 1979 to 2019 (p < 0.01),
with a rate of 0.418 ◦C/10a and a total increase of 1.714 ◦C. The relative humidity, wind
speed, and TCC fluctuated greatly, but the change was not significant (p > 0.05), which
indicates that the temperature increase was the main climate change factor in the Arctic.

Figure 9. Changes in the average temperature, relative humidity, wind speed, and total cloud cover in the Arctic summer
from 1979 to 2019.

The correlation between the comfortable area and the number of comfortable days
and various meteorological factors was also analyzed (Table 3). The comfortable area and
number of days were positively correlated with the average temperature (p < 0.01) and
negatively correlated with TCC; the positive correlation coefficient was much larger than
the negative correlation coefficient. Thus, it appears that the comfortable area and days are
mainly affected by the temperature and TCC, with the temperature being the main factor.
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Table 3. Correlation coefficients between comfortable area, comfortable days, and meteorological
factors in arctic summer from 1979 to 2019.

Temperature Relative Humidity Wind Speeds TCC

Comfortable Area 0.818 ** 0.07 −0.218 −0.340 *
Comfortable Days 0.944 ** 0.086 −0.309 −0.514 **

Note: “*”, “**”: Significance at 0.05 and 0.01 levels.

The spatial correlation coefficients between the number of comfortable days and
temperature, relative humidity, wind speed, and TCC in the Arctic summer are analyzed
(Figure 10). It showed that there are significant spatial correlations between comfort-
able days and temperature, relative humidity, wind speed, and TCC, which are basically
distributed between 66.5–70 ◦N and can reach 80 ◦N in areas such as Canada’s Queen
Elizabeth Islands and Ellesmere Island, indicating that the Arctic summer comfortable days
of 66.5–70 ◦N is related to temperature, relative humidity, wind speed, and TCC. However,
there are differences between different elements in the relevant regions. Statistics showed
that the areas where summer comfortable days are significantly correlated with tempera-
ture, relative humidity, wind speed, and TCC are 5.719 × 106, 3.24 × 106, 3.974 × 106, and
5.412 × 106 km2, respectively. The average significant correlation coefficients are 0.776,
−0.447, −0.506, and −0.609, respectively, indicating that the Arctic summer comfortable
days have a more significant correlation with temperature, and temperature is the most
important factor affecting summer climate comfort.

Figure 10. Spatial correlation coefficients between the number of comfortable days and temperature, relative humidity,
wind speed, and TCC in Arctic summer from 1979 to 2019 (R: correlation coefficient).

The spatial pattern of and change in climate comfort levels in the peri-Arctic nations
and regions has been previously studied. For instance, the spatial pattern of the summer
UTCI index in Russia from 2001 to 2015 was analyzed by Vinogradova et al. [58] based on
data from 500 meteorological stations in Russia. The results showed that the comfortable
zones were distributed in most areas of Russia in summer, and a moderate thermal stress
level was observed in daytime in southern Europe. In a study by Yu et al., the hourly
weather data from meteorological stations were used to calculate the modified climate
index for tourism [20]. The authors suggested that the weather conditions in parts of
regions in Alaska had improved greatly from 1942 to 2005, which extended the tourism
season. Based on the temperature, precipitation, TCC, and visibility data, Forland et al.
found that “warm” weather in Norway, north of the Arctic Circle, increased from 1981
to 2010, the summer tourism season was extended, and the improvement in the summer
climate comfort level led to an increase in the number of tourists, quadrupling in the
Svalbard Islands [14]. According to statistics, from 1990 to 2005, the annual growth rate of
Iceland’s Arctic cruise tourists was 19.19%, from 7952 in 1990 to 266,070 in 2015, an increase
of more than 30 times; in 2019, the number of overnight tourists in Greenland increased
to 264,711 people, equivalent to 3.47 times the total population of the island; from 1996
to 2018, cruise tourism in Svalbard also increased greatly, and cruise tourists increased
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by 1.94 times [59]. These studies, to some extent, verify the findings of the present study,
which showed that the Arctic summer comfortable zones have expanded and the tourism
areas increased, while the number of comfortable days has significantly increased and the
summer tourism season has been extended.

The results of this study showed that the Arctic summer comfortable zones have
expanded and there are more comfortable days, which has created favorable conditions for
tourism. In recent years, Norway, Iceland, Russia, and Canada have set up Arctic tourism
routes and promoted the development of ecological tourism in the region [60]. The Arctic
is the region least affected by human activities in the world, and unplanned or inadequate
development of tourism resources could eventually lead to the degradation of the natural
environment. Tourists are also likely to bring new species and germs into the region [61].
To achieve the sustainable development of Arctic tourism, the various countries involved
should adhere to the concept of global integration and cooperate to complete legal systems
for Arctic tourism development to ensure ecological balanced and sustainable growth in
the region.

5. Conclusions

The average summer UTCI value in the Arctic was 0.025 ◦C from 1979 to 2019 and
the comfort level was cool. The UTCI increased significantly at a rate of 0.457 ◦C/10a and
there was an abrupt change in 2001. The Arctic summer comfort level changed from colder
to cool after this abrupt change.

The average comfortable area in the Arctic summer from 1979 to 2019 was
1.541 × 106 km2, accounting for a fifth of the Arctic land area. These comfortable zones
were mainly distributed in mid-eastern Russia, Norway, Sweden, and Finland in north-
ern Europe, as well as Alaska and the Yukon territory in Canada. The comfortable area
increased significantly at a rate of 2.114 × 105 km2/10a from 1979 to 2019. Compared with
the 1980s, the comfortable area has increased by 6.353 × 105 km2 in recent decades, mainly
expanding to high-latitude and high-altitude regions, specifically distributed in the Kola
Peninsula, Putorana Plateau, Verkhoyansk Mountains in Russia, and Brooks Mountains
in Alaska.

The average number of Arctic summer comfortable days was 23 from 1979 to 2019,
accounting for a quarter of the entire summer. These were distributed zonally and grad-
ually decreased from low to high latitudes. The number of comfortable days increased
significantly from 1979 to 2019, at a rate of 1.458 d/10a. Compared with the early 1980s,
the number of comfortable days has increased by 5 d over the past decades. The range and
number of summer comfortable days has increased significantly, and the largest number of
comfortable days was seen in the Qeqertarsuaq region of western Greenland (31 d), while
the area seeing 60–70 summer comfortable days expanded the most (by 4.57 × 105 km2).

This study is only limited to the Arctic region and does not conduct a detailed analysis
of the Northern Hemisphere or typical Arctic tourism cities. It has not conducted an
in-depth study on how the Arctic climate comfort changes under the background of future
climate change. It will be subject to special research in the future.

The improvement of Arctic summer climate comfort and the extension of suitable
tourist seasons will enhance the attractiveness of Arctic tourist destinations while promot-
ing the development and utilization of Arctic natural resources. Sightseeing in gorges,
fishing, and watching rare species can be carried out in the peninsula regions and adven-
tures, such as polar mountain climbing and outdoor expeditions, can be developed in the
mountainous and plateau regions. Despite vigorously developing Arctic tourism activities,
it is necessary to protect and manage Arctic tourism resources to ensure the sustainable
development of Arctic tourism.
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Abstract: Three Earth system models (ESMs) from the Coupled Model Intercomparison Project
phase 6 (CMIP6) were chosen to project ecosystem changes under 1.5 and 2 ◦C global warming
targets in the Shared Socioeconomic Pathway 4.5 W m−2 (SSP245) scenario. Annual terrestrial gross
primary productivity (GPP) was taken as the representative ecological indicator of the ecosystem.
Under 1.5 ◦C global warming, GPP in four climate zones—i.e., temperate continental; temperate
monsoonal; subtropical–tropical monsoonal; high-cold Tibetan Plateau—showed a marked increase,
the smallest magnitude of which was around 12.3%. The increase was greater under 2 ◦C of global
warming, which suggests that from the perspective of ecosystem productivity, global warming poses
no ecological risk in China. Specifically, in comparison with historical GPP (1986–2005), under 1.5 ◦C
global warming GPP was projected to increase by 16.1–23.8% in the temperate continental zone,
12.3–16.1% in the temperate monsoonal zone, 12.5–14.7% in the subtropical–tropical monsoonal zone,
and 20.0–37.0% on the Tibetan Plateau. Under 2 ◦C global warming, the projected GPP increase
was 23.0–34.3% in the temperate continental zone, 21.2–24.4% in the temperate monsoonal zone,
16.1–28.4% in the subtropical–tropical monsoonal zone, and 28.4–63.0% on the Tibetan Plateau.
The GPP increase contributed by climate change was further quantified and attributed. The ESM
prediction from the Max Planck Institute suggested that the climate contribution could range from
−12.8% in the temperate continental zone up to 61.1% on the Tibetan Plateau; however, the ESMs
differed markedly regarding their climate contribution to GPP change. Although precipitation
has a higher sensitivity coefficient, temperature generally plays a more important role in GPP
change, primarily because of the larger relative change in temperature in comparison with that
of precipitation.

Keywords: GPP; climate change; CMIP6; ESM

1. Introduction

Gross and net primary productivity (GPP and NPP, respectively) are representative
indicators that reflect ecosystem production capacity [1–3]. Many previous studies have
considered future GPP/NPP change. For example, Huang et al. [4] evaluated NPP varia-
tions in the 21st century under various climate scenarios using the Lund–Potsdam–Jena
dynamic global vegetation model. They found that total NPP in China is projected to
increase continuously under different scenarios, with CO2 concentration playing the dom-
inant role. Using a machine learning model to constrain the spatial uncertainty in GPP
projections, Schlund et al. [5] predicted a higher increase in GPP in northern high latitudes
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over the 21st century under the Representative Concentration Pathway [6] 8.5 W m−2

(RCP8.5) in comparison with regions closer to the equator. Under 1.5 ◦C of global warm-
ing, the GPP in China is expected to increase by 15.5% ± 5.4% on a stabilized pathway
and by 11.9% ± 4.4% on a transient pathway [7]. Zhang et al. [3] explored the trend
features of GPP/NPP in the 21st century under the Shared Socioeconomic Pathway [8]
24.5 W m−2 (SSP245) with the Beijing Climate Model. Their results predicted the overall
trends of increase in both the near-term and long-term terrestrial GPP/NPP. However, in
certain districts, the trend of GPP/NPP showed an initial increase followed by a decrease.
Wang et al. [9] investigated the variation in NPP over the 21st century using the Earth
system models (ESMs) of the Coupled Model Intercomparison Project phase 5. The results
obtained under all four RCP scenarios suggested an increasing trend of NPP over China,
especially in western areas.

In summary, GPP/NPP in China under different scenarios is expected to show a
trend of increase in the 21st century. However, large uncertainties exist in the various
ESMs [5,9]. Under the global warming targets of 1.5 and 2 ◦C above preindustrial levels set
by the Paris Agreement, many regional impacts wait to be assessed. In particular, as the
Coupled Model Intercomparison Project enters into the 6th phase (CMIP6), more and more
ESMs have distributed their latest climate simulation under the Shared Socioeconomic
Pathways (SSPs). How the latest ESMs will project the future ecosystem change in China
and the corresponding climate attribution remains to be determined and revealed. In
a recent study on performance in presenting historical terrestrial GPP in China, three
out of seven ESMs evaluated were found to perform well in terms of climatological GPP,
spatial pattern, and the ecosystem–climate relationship [10]. Consequently, these three
ESMs were chosen in this study to predict ecosystem change under the warming targets.
The ecological indicator of annual GPP was applied to measure the general state of the
ecosystem. Changes in annual GPP predicted using the different ESMs were quantified
with respect to the different climate zones in China. Furthermore, the relationship between
the ecosystem and climate variables was tested and built through linear correlation and
multiple regression. Relying on the model-specific parameters of the ecosystem response
to the climate, the climate-related GPP changes were revealed and quantified.

2. Materials and Methods

2.1. Data

In this study, three ESMs that performed well in historical GPP reproduction [10] were
chosen to project future GPP in China: (1) the Beijing Climate Center Climate System Model
(BCC-CSM2-MR) [11], (2) the Euro-Mediterranean Centre on Climate Change coupled cli-
mate model (CMCC-CM2-SR5) [12], and (3) the Max Planck Institute for Meteorology Earth
System Model version 1.2 (MPI-ESM1.2-HR) [13]. Specifically, BCC-CSM2-MR and MPI-
ESM1-2-HR, out of seven ESMs, gave the best estimation of climatological GPP in China
from 1980 to 2013. MPI-ESM1-2-HR performed best in characterizing the spatial structure.
BCC-CSM2-MR and CMCC-CM2-SR5 best captured the response of the ecosystem to the
climate [10]. The land surface models used for the three ESMs were BCC-AVIM2.0, CLM4.5,
and JSBACH3.2. Major improvements or parameterizations have been made to these
models in comparison with their predecessors; they make use of new scientific under-
standing to better simulate vegetation phenology [12–14]. These ESMs could provide not
only the monthly GPP, but also the monthly surface air temperature and precipitation. In
CMIP6, new SSPs were employed for climate modelling. The SSPs included five narratives
describing alternative socio-economic developments, such as sustainable development,
fossil-fueled development, etc. [8]. The middle of the road development—i.e., the SSP2
scenario—featured a continuation of the current fossil fuel-dominated energy mixed with
intermediate challenges for both mitigation and adaptation, which resembled the historical
pattern most [8]. SSP245, as the sole scenario of SSP2 implemented in CMIP6, was thus
chosen to represent the most possible future world. Historical data (1980–2013) were ap-
plied to determine the ecosystem–climate relationship—i.e., correlation and multiple linear
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regression. Data from the BCC-CSM2-MR, CMCC-CM2-SR5, and MPI-ESM1.2-HR ESMs
were output as 1.125◦ × 1.125◦, 0.9375◦ × 1.25◦, and 0.9375◦ × 0.9375◦ grids, respectively.
Because the grids were not uniform, they were first transformed to a 1◦ × 1◦ grid through
bilinear interpolation for comparative purposes.

A climate division map of China was applied for regional analysis. It divided the coun-
try into four climate zones—i.e., temperate continental, temperate monsoonal, subtropical–
tropical monsoonal, and high-cold Tibetan Plateau, as in He et al. [15] and Zhang et al. [16].

2.2. Methods
2.2.1. Bilinear Interpolation

Bilinear interpolation can produce a smoother interpolation than that achieved using
the nearest neighbor method [17]. Thus, it was applied to transform fields from various
grids of the ESMs into the formal 1◦ × 1◦ grid. In this approach, g (n1, n2) is defined as a
linear combination of the values of its four nearest neighbors. Given the four neighbors
with coordinates f (n10, n20), f (n11, n21), f (n12, n22), and f (n13, n23) (i.e., the four nearest
neighbors of f (n1, n2)), the geometrically transformed field g (n1, n2) is computed as:

g(n1, n2) = A0 + A1n1 + A2n2 + A3n1n2. (1)

The bilinear weights A0, A1, A2, and A3 are found by solving:⎡⎢⎢⎣
A0
A1
A2
A3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 n10 n20 n10n20
1 n11 n21 n11n21
1 n12 n22 n12n22
1 n13 n23 n13n23

⎤⎥⎥⎦
−1⎡⎢⎢⎣

f (n10, n20)
f (n11, n21)
f (n12, n22)
f (n13, n23)

⎤⎥⎥⎦. (2)

2.2.2. Area Weighting

Regional and global mean variables—e.g., temperature, precipitation, and GPP—on
the 1◦ × 1◦ grid are calculated through area weighting:

Vreg =

∑
i

Vi · πR
180 · πR

180 cos(θi)

∑
i

πR
180 · πR

180 cos(θi)
=

∑
i

Vi cos(θi)

∑
i

cos(θi)
, (3)

where θ represents the latitude of the grid, R is the Earth’s radius, and V is the variable.

2.2.3. Linear Correlation and Multiple Regression

The correlation coefficient r is used to test the relationship between ecosystem produc-
tivity and climate factors. The formula can be expressed as follows:

r =
n

n
∑

i=1
EiCi −

n
∑

i=1
Ei

n
∑

i=1
Ci√

n
n
∑

i=1
E2

i − (
n
∑

i=1
Ei)

2
·
√

n
n
∑

i=1
C2

i − (
n
∑

i=1
Ci)

2
, (4)

where E and C represent ecosystem productivity and climate factors, respectively.
The interannual variation in GPP reflects year-to-year differences attributable mainly to

climate variations [18,19]; therefore, the relationship between GPP and climate—i.e., precipita-
tion and surface air temperature—was explored using a multiple regression approach [20]:

y = axT + bxP + ε, (5)

where y is the detrended anomaly of the carbon flux GPP, variable xT is the detrended
annual temperature anomaly, and xP is the detrended annual precipitation anomaly. The fit-
ted regression coefficients a and b define the apparent carbon flux sensitivity to interannual
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variations in temperature and precipitation, and ε is the residual error term. The use of the
detrended time series instead of the original nonstationary time series in the above linear
correlation and regression analysis provides a robust estimate of their relationship [21–23].

Some definitions set 1986–2005 as a reference period when the global surface air temper-
ature was 0.61 ◦C warmer than preindustrial levels [24,25]. We adopted this definition and
defined the 1.5 and 2 ◦C warming periods as the first time when the 20-year-moving-average
global temperature was 0.89 and 1.39 ◦C warmer, respectively, than that from 1986–2005 in
the models. The corresponding changes in ecosystem and regional climate were based upon
the reference period of 1986–2005. It is also necessary to point out that 20 years is a duration
that is commonly applied to represent a climate state in the scientific world [26–28].

3. Results and Discussion

3.1. GPP Distribution and Projected Changes

The climatological GPP distribution produced by each of the three ESMs from 1986 to
2005 is shown in Figure 1. The ESMs all produce a similar spatial pattern of GPP, showing
high (low) values in the southeast (northwest) of China. Regionally, the GPP in the subtropical–
tropical monsoonal zone is largest, followed in descending order by the temperate monsoonal
zone, Tibetan Plateau, and temperate continental zone. The three ESMs produced comparable
estimates in the climate zones except in the monsoonal regions, where CMCC-CM2-SR5
produced larger estimates, especially in the subtropical–tropical monsoonal zone.

 
Figure 1. Climatological GPP distribution (unit: gC m−2 yr−1) from 1986 to 2005 from (a) BCC-CSM2-MR, (b) CMCC-CM2-
SR5, and (c) MPI-ESM1-2-HR. The four delineated regions represent the climate zones temperate continental (TC), temperate
monsoonal (TM), subtropical–tropical monsoonal (STM), and high-cold Tibetan Plateau (TP). (d) Regional GPP from the
ESMs (PgC yr−1: petagram of carbon per year) (BCC: BCC-CSM2-MR; CMCC: CMCC-CM2-SR5; MPI: MPI-ESM1-2-HR).
The bars and lines represent the standard deviation during the 20 years.
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The GPP change under 1.5 ◦C of global warming is shown in Figure 2. Throughout
China, the GPP of all three ESMs showed a positive anomaly except over certain individual
grid points. In the subtropical–tropical monsoonal with MPI-ESM1-2-HR, the negatively
changed grids tend to concentrate (Figure 2e). The areal GPP reduction may be related to
reduced local precipitation. However, many factors could contribute to the GPP change in
addition to precipitation and temperature, such as land-use change, soil moisture, wind
speed, humidity, solar radiation, nitrogen deposition, etc. Thus, it is really hard to be
conclusive. Moreover, the aggregated negative grids tend to dissipate under 2 ◦C global
warming (Figure 3e). The GPP change patterns differ among the models (Figure 2). For
example, the largest anomaly in the output of BCC-CSM2-MR appears over the southeast-
ern Tibetan Plateau, whereas the largest anomalies in the output of CMCC-CM2-SR5 and
MPI-ESM1-2-HR appear in the central and southern parts of the subtropical–tropical mon-
soonal zone, respectively. The absolute GPP change is largest in the subtropical–tropical
monsoonal zone; however, the relative change is rather small and stable among the models
(Figure 2 right). The absolute change is smallest in the temperate continental zone owing to
its low base value in GPP. The relative change is large over the Tibetan Plateau, and there
are strong differences in the magnitude of the GPP increments among the different models.

The GPP anomaly under 2 ◦C of global warming shows a spatial pattern similar to
that found under 1.5 ◦C global warming but with a stronger intensity (Figure 3). Regional
statistics indicate that the regional GPP changes will be larger under 2 ◦C of global warming.
The projected increment of GPP in China under the different warming targets is consistent
with previous findings [5,7,29]. This suggests that from the perspective of GPP, there is
no ecological crisis in the projected future climate within the studied domain [3]. As with
1.5 ◦C warming, the subtropical–tropical monsoonal zone with the highest GPP value
contributed the most to the increment in China’s GPP under 2 ◦C of warming. However,
the increase rate does not show much difference in magnitude when compared with that
of other regions. It is worth noting that the rate of increase in GPP is substantial on the
Tibetan Plateau—i.e., the increase is nearly 63% with regard to BCC-CSM2-MR. Thus, the
Tibetan Plateau would appear to be the region most susceptible to the effects of climate
warming, although the influence could be considered positive and beneficial.

The seasonal GPP anomalies under the 1.5 and 2 ◦C warming scenarios are shown in
Figures 4 and 5, respectively. The spatial modes between the two warming scenarios are
similar, noting that the magnitude in the 2 ◦C warming is much larger than in the 1.5 ◦C
warming. In spring and summer, the GPP anomalies are the most prosperous, as they
correspond to the growing season in China, while they drop to become the weakest in
winter. In spring and winter with all ESMs, the GPP all over China generally shows a
positive anomaly, with only sporadic negative points. Some negative changes occur in
summer and autumn, especially with BCC-CSM2-MR and MPI-ESM1-2-HR. For BCC-
CSM2-MR in summer, the negative GPP anomalies concentrate in the Huaihe River, which
divides the subtropical–tropical monsoonal and temperate monsoonal regions. However,
there were no negative changes in GPP at the zone scale. For MPI-ESM1-2-HR in summer
and autumn, we observed some negative changes over the grassland in the temperate
continental, which is similar to the results of Ma et al. [30]. They found that large areas
in Northern China showed a decreasing trend in NPP under global warming, although
the overall NPP increased significantly. The fact that only one ESM obtained similar
results also indicates the large inter-model spread in representing the future GPP change.
The negative changes in the temperate continental were weakened under the 2 ◦C warming
scenario (Figure 5).
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Figure 2. (Left) Spatial distribution of GPP anomaly (gC m−2 yr−1) and (right) the respective regional GPP changes
under 1.5 ◦C of global warming. (a,b) BCC-CSM2-MR, (c,d) CMCC-CM2-SR5, and (e,f) MPI-ESM1-2-HR. Numbers in the
right-hand panels represent the relative change in comparison with regional GPP from 1986 to 2005.
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Figure 3. (Left) Spatial distribution of GPP anomaly (gC m−2 yr−1) and (right) the respective regional GPP changes under
2 ◦C of global warming. (a,b) BCC-CSM2-MR, (c,d) CMCC-CM2-SR5, and (e,f) MPI-ESM1-2-HR. Numbers in the right-hand
panels represent the relative change in comparison with regional GPP from 1986 to 2005.
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3.2. Climate Attribution

The variation in GPP is closely related to climate [20,31], and the correlation parame-
ters within the studied ESMs are provided in Table 1. It can be seen that GPP is correlated
significantly with at least one climate variable. There are cases in which GPP correlates
negatively with temperature, such as in the temperate continental zone with MPI-ESM1-
2-HR and in the temperate monsoonal zone with BCC-CSM2-MR, which imply inherent
differences in ecological modeling between the different ESMs [9,10]. On the Tibetan
Plateau, it is unanimous within the ESMs that GPP is most closely related to temperature
rather than to precipitation. Because the ESMs substantially overestimate precipitation
over the Tibetan Plateau [32–34], it is possible that precipitation is not the primary climate
factor constraining the regional ecosystem.

Figure 4. Seasonal GPP anomaly distribution under 1.5 ◦C of global warming (gC m−2 yr−1). The four rows from up
to down represent spring, summer, autumn, and winter, respectively. The three columns from left to right represent
BCC-CSM2-MR, CMCC-CM2-SR5, and MPI-ESM1-2-HR, respectively.
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The corresponding climate changes—i.e., precipitation and surface air temperature— under
the warming targets are shown in Tables 2 and 3, respectively. The mode of temperature change in
the four regions is consistent among the models. The hottest region—i.e., the subtropical–tropical
monsoonal zone—increases least under the effects of warming. Both CMCC-CM2-SR5 and
MPI-ESM1-2-HR produced similar estimates of temperature change, whereas the estimates from
BCC-CSM2-MR were larger, especially over the monsoonal regions.

Figure 5. Seasonal GPP anomaly distribution under 2 ◦C of global warming (gC m−2 yr−1). The four rows from up to down
represent spring, summer, autumn, and winter, respectively. The three columns from left to right represent BCC-CSM2-MR,
CMCC-CM2-SR5, and MPI-ESM1-2-HR, respectively.

There is a greater model variety regarding the change in precipitation. Under 1.5 ◦C of
warming, there are negative changes—e.g., in the temperate monsoonal zone with CMCC-
CM2-SR5 and in the subtropical–tropical monsoonal zone with both BCC-CSM2-MR and
CMCC-CM2-SR5. Conversely, under 2 ◦C of warming, there are no negative changes, but
the incremental differences for one certain region are huge. These results indicate the large
uncertainty in the precipitation projections made by the ESMs. It is also worth noting
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that in comparison with their variabilities, the change in temperature under the warming
scenarios is reasonably large, whereas the precipitation change is rather limited [10].

The apparent sensitivity of climate to the ecosystem of each of the ESMs is shown
in Table 4. The response of the ecosystem to climate varies strongly among the models.
For some ESM regions, climate plays a crucial role, such that the variation in climate
explains more than half of the variation in GPP. However, for certain other ESM regions,
the degree of explanation attributable to climate is rather small—e.g., MPI-ESM1-2-HR
in the subtropical–tropical monsoonal zone and BCC-CSM2-MR on the Tibetan Plateau.
For one particular region, the same climate factor might affect the ecosystem differently
in the various models. Taking the subtropical–tropical monsoonal zone as an example,
precipitation is the major influencing factor and affects the ecosystem positively with
BCC-CSM2-MR and CMCC-CM2-SR5. However, with MPI-ESM1-2-HR, the correlation
between precipitation and GPP is insignificant and negative (Tables 1 and 4). Moreover,
the overall climate contribution to ecosystem variation with MPI-ESM1-2-HR is very small
(Table 4). These features further reflect the inherent differences of ecological modeling
within the ESMs.

Table 1. Correlation parameter r between GPP and climate variables during the historical period
of 1980–2013. * denotes correlation that is significant at the 0.1 level; ** denotes correlation that is
significant at the 0.05 level; *** denotes correlation that is significant at the 0.01 level.

GPP vs. P TC TM STM TP

BCC 0.68 *** 0.74 *** 0.62 *** 0.1

CMCC 0.72 *** 0.58 *** 0.42 ** −0.01

MPI 0.81 *** 0.36 ** −0.26 0.23

GPP vs. T

BCC −0.09 −0.35 ** −0.25 0.35 **

CMCC 0.17 0.42 ** 0.34 * 0.74 ***

MPI −0.42 ** 0.13 0.33 * 0.62 ***

Table 2. Regional temperature change (◦C) in comparison with that of the reference period of
1986–2005 under 1.5 and 2 ◦C (in parentheses) of global warming.

TC TM STM TP

BCC 1.37(2.21) 1.66(2.37) 1.16(1.86) 1.37(2.10)

CMCC 1.28(1.94) 1.12(1.78) 0.81(1.27) 1.19(1.71)

MPI 1.18(1.89) 1.1(1.79) 0.83(1.69) 1.14(2.02)

Table 3. Regional precipitation change (mm yr−1) in comparison with that of the reference period of
1986–2005 under 1.5 and 2 ◦C (in parentheses) of global warming.

TC TM STM TP

BCC 12.47(28.22) 8.11(47.13) −6.18(57.36) 10.37(32.23)

CMCC 11.31(45.68) −20.08(16.22) −51.89(20.50) 30.24(94.89)

MPI 2.65(8.66) 6.91(19.23) 32.83(46.13) 11.5(9.42)
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Table 4. Sensitivity parameters of GPP to climate variables during the historical period of 1980–2013
through the multiple linear regression approach. The final row shows the explained variance of
climate to GPP through multiple regression.

Temperate Continental BCC CMCC MPI

P 0.8 0.72 0.77

T 0.26 0.14 −0.1

Var 52.20% 54.00% 66.50%

Temperate monsoonal

P 0.78 0.54 0.66

T 0.06 0.35 0.52

Var 55.40% 45.90% 30.20%

Subtropical–tropical monsoonal

P 0.64 0.51 −0.15

T 0.06 0.44 0.28

Var 38.10% 36.30% 13.10%

Tibetan Plateau

P 0.16 −0.1 0.46

T 0.38 0.75 0.75

Var 15.00% 55.70% 57.50%

Based on the ecosystem–climate relationship (Table 4) and the known climate changes
(Tables 2 and 3), the GPP change over the climate zones with the different ESMs is attributed
quantitatively in Figure 6. As mentioned before, some contributions from the climate
factors are negative, for which there are two major reasons. First, the climate change is
negative—e.g., the negative precipitation change leads to a negative contribution to GPP.
Second, the correlation between the climate factor and GPP is negative—e.g., temperature
and GPP in the temperate continental zone in MPI-ESM1-2-HR. A positive anomaly in
temperature could also lead to GPP reduction. The climate contribution to the variation
in GPP changes among the studied ESMs. Even with the same model—e.g., MPI-ESM1-
2-HR—it can be −12.8% in the temperate continental zone and 61.1% on the Tibetan
Plateau. Generally, under the effects of global warming, the influence of temperature
on the ecosystem is larger than that of precipitation. This is mainly because the relative
change in temperature is much larger than that in precipitation. On the Tibetan Plateau,
where temperature is the most constraining factor (Tables 1 and 4), temperature plays a
more dominant role than precipitation in the increase in GPP (Figure 6). In addition, it
is observed that the relative GPP increase in the Tibetan Plateau is much larger than that
in other regions. On the one hand, it is related to the low baseline value of GPP in the
Tibetan Plateau (Figure 1d). A light increase in the GPP of the Tibetan Plateau is salient in
relative values compared to the respective change in the subtropical–tropical monsoonal
region. On the other hand, this may be related to the vegetation structure on the Plateau.
Demonym plants can be divided into three types based on their photosynthesis patterns
(i.e., C3, C4, and crassulacean acid metabolism). C3 photosynthesis produces a three-
carbon compound during the Calvin cycle, while C4 photosynthesis makes an intermediate
four-carbon compound that splits into a three-carbon compound for the Calvin cycle.
They favor different conditions of nature. The conditions on the frigid Tibetan Plateau are
unsuitable for the growth of C4 plants [35]. Consequently, the plateau is dominant by C3
plants [36]. C3 plants are more efficient in vegetative growth than C4 plants in response to
the increasing air CO2 [37]. As a result, GPP increases more rapidly with increased air CO2
in the Tibetan Plateau than in other regions containing both C3 and C4 plants.
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Figure 6. Climate contributions to GPP change with the different ESMs under (a) 1.5 and (b) 2 ◦C of global warming. Bars
represent the absolute climate contributions (PgC yr−1). Percentages represent the relative climate contributions to the
overall GPP changes.

4. Conclusions

To evaluate the GPP change under 1.5 and 2 ◦C of global warming, this study selected
three CMIP6 ESMs (i.e., BCC-CSM2-MR, CMCC-CM2-SR5, and MPI-ESM1-2-HR) that
performed well in historical GPP modeling; the principal conclusions derived are as follows:

1. Under 1.5 and 2 ◦C of global warming, the projections of the ESMs indicate that global
warming introduces no ecological risk in China. Although certain individual grid
points showed negative GPP changes, regional GPP showed a marked increase, the
smallest magnitude of which was more than 10% greater than that from 1986 to 2005.

2. Specifically under 1.5 ◦C warming, the GPP in the temperate continental zone is pro-
jected to increase by 16.1–23.8% in comparison with the historical value (1986–2005).
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Similarly, GPP is projected to increase by 12.3–16.1% in the temperate monsoonal zone,
12.5–14.7% in the subtropical–tropical monsoonal zone, and 20.0–37.0% on the Tibetan
Plateau. Under 2 ◦C warming, the increase in GPP is projected to be even greater—i.e.,
23.0–34.3% in the temperate continental zone, 21.2–24.4% in the temperate monsoonal
zone, 16.1–28.4% in the subtropical–tropical monsoonal zone, and 28.4–63.0% on the
Tibetan Plateau.

3. Climate change is projected to contribute positively to GPP change, except in the
temperate continental zone with MPI-ESM1-2-HR. Although precipitation has larger
sensitivity parameters, temperature generally plays a more important role in GPP
change because of the larger change relative to its own variability in comparison with
that of precipitation.

The output of the three studied ESMs showed a marked spread, not only in GPP
change but also in the accountability of climate to the ecosystem. In addition, the change in
climate, especially precipitation, differed strongly within the models, which indicates the
large uncertainty in the climate projections of the ESMs. All of these add to difficulties in
attributing future GPP change to climate. Moreover, this study analyzed the influence of
annual precipitation and temperature upon the ecosystem productivity. However, GPP
variation depends not only on these, but also on wind speed, humidity, solar radiation,
nitrogen deposition, etc. Future studies should be more comprehensive in building the
regressed equations between GPP and the impact factors. This study failed to analyze the
contribution of CO2 to the GPP increase. This was due to the lack of gridded/regional
CO2 concentration data. Future research should take into account the CO2 effect when
analyzing the GPP change and be more specific about vegetation of C3 and C4 types. This
study is more general in that it focuses on the general productivity of the climate zones.
Future studies should be refined to specific vegetation covers, such as forest, grass, etc.
The fact that different ESMs lack consensus in the response mechanism of the ecosystem
to climate, even over one specific climate zone, highlights that there is still a long way for
ecological modeling in China to go.
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27. Knutti, R.; Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Chang. 2013, 3,

369–373. [CrossRef]
28. Kusunoki, S.; Arakawa, O. Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia? J. Clim.

2015, 28, 5601–5621. [CrossRef]
29. Mu, Q.; Zhao, M.; Running, S.W.; Liu, M.; Tian, H. Contribution of increasing CO2 and climate change to the carbon cycle in

China’s ecosystems. J. Geophys. Res. Biogeosci. 2008, 113, G01018. [CrossRef]
30. Ma, X.; Huo, T.; Zhao, C.; Yan, W.; Zhang, X. Projection of Net Primary Productivity under Global Warming Scenarios of 1.5 ◦C

and 2.0 ◦C in Northern China Sandy Areas. Atmosphere 2020, 11, 71. [CrossRef]
31. Jung, M.; Schwalm, C.; Migliavacca, M.; Walther, S.; Camps-Valls, G.; Koirala, S.; Anthoni, P.; Besnard, S.; Bodesheim, P.;

Carvalhais, N.; et al. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM
approach. Biogeosciences 2020, 17, 1343–1365. [CrossRef]

32. Tong, K.; Su, F.; Yang, D.; Zhang, L.; Hao, Z. Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and
satellite retrievals. Int. J. Climatol. 2014, 34, 265–285. [CrossRef]

33. Zhang, C. Moisture source assessment and the varying characteristics for the Tibetan Plateau precipitation using TRMM. Environ.
Res. Lett. 2020, 15, 104003. [CrossRef]

278



Sustainability 2021, 13, 11744

34. Pan, C.; Zhu, B.; Gao, J.; Kang, H.; Zhu, T. Quantitative identification of moisture sources over the Tibetan Plateau and the
relationship between thermal forcing and moisture transport. Clim. Dyn. 2019, 52, 181–196. [CrossRef]

35. Sage, R.F.; Wedin, D.A.; Li, M. The Biogeography of C4 Photosyn-Thesis: Patterns and Controlling Factors; Sage, R.F., Monsoon, R.K.,
Eds.; C4 Plant Biology; Academic Press: San Diego, CA, USA, 1999; pp. 313–373.

36. Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; et al.
Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model.
Glob. Chang. Biol. 2003, 9, 161–185. [CrossRef]

37. Wand, S.J.; Midgley, G.F.; Jones, M.H.; Curtis, P.S. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric
CO2 concentration: A meta-analytic test of current theories and perceptions. Glob. Chang. Biol. 1999, 5, 723–741. [CrossRef]

279





sustainability

Article

The Impact on Carbon Emissions of China with the Trade
Situation versus the U.S.

Jieming Chou 1, Fan Yang 1,2,*, Zhongxiu Wang 3 and Wenjie Dong 4

Citation: Chou, J.; Yang, F.; Wang, Z.;

Dong, W. The Impact on Carbon

Emissions of China with the Trade

Situation versus the U.S. Sustainability

2021, 13, 10324. https://doi.org/

10.3390/su131810324

Academic Editor: Pallav Purohit

Received: 14 July 2021

Accepted: 17 August 2021

Published: 15 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science,
Beijing Normal University, Beijing 100875, China; choujm@bnu.edu.cn

2 CMA Key Laboratory for Cloud Physics of China Meteorological Administration, Chinese Academy of
Meteorological Sciences, Beijing 100081, China

3 The Alliance of International Science Organizations, Beijing 100085, China; wang_zhongxiu@126.com
4 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China;

dongwj3@mail.sysu.edu.cn
* Correspondence: yangfan_bnu@mail.bnu.edu.cn; Tel.: +86-189-1052-3251

Abstract: The China–US trade conflict will inevitably have a negative impact on China’s trade
imports and exports, industrial development, and economic growth, and will affect the achievement
of climate change goals. In the short term, the impact of the trade conflict on China’s import and
export trade will cause the carbon emissions contained in traded commodities to change accordingly.
To assess the impact of the trade conflict on China’s climate policy, this paper combines a model from
the Global Trade Analysis Project (GTAP) and the input–output analysis method and calculates the
carbon emissions in international trade before and after the conflict. The conclusions are as follows:
(1) The trade war has led to a sharp decline in China–US trade, but for China as a whole, imports
and exports have not changed much; (2) China’s export emissions have changed little, its import
emissions have dropped slightly, and its net emissions have increased; and (3) China’s exports are
still concentrated in energy-intensive industries. Changes in trade will bring challenges to China’s
balancing of climate and trade exigencies. China–US cooperation based on energy and technology
will help China cope with climate change after the trade conflict.

Keywords: trade conflict; carbon emissions; import and export trade; cooperative emission reduction

1. Introduction

Currently, the world economy suffered unexpected shocks [1], affected by the epidemic
COVID-19 [2]. The United States and China are the two largest economies: China relied on
its institutional advantages to control the number of domestic cases [3] and the economy
recovered rapidly in the US due to the popularization of vaccines. American citizens are
eager for excess savings during the retaliatory consumption epidemic, and many industries
are experiencing inflation [4]. Among their major suppliers, in addition to China, countries
in south and southeast Asia are hardest hit by the epidemic, and it is even difficult for India
to control its own situation [5,6]. The trade tensions between China and the United States
tend to ease, and have been an important factor affecting international trade in recent years.

In July 2018, the United States began to impose 25% tariffs on an array of Chinese
exports worth US $34 billion [7], and China and the United States began a trade war
that has had an enormous impact on the economic development of the two countries as
well as the world economy and global trade [8,9]. The strategic conflict between China
and the US emerged at the end of 2017, when China was portrayed as a competitor in a
Trump administration National Security Report [10]. The trade conflict between China
and the United States reflects the strategic competition between the two countries in the
new industrial revolution. In turn, future trade agreements may be conditioned on climate
agreements in international negotiations. Biden’s presidential campaign plan called for
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binding agreements on enhanced climate ambition, including shipping and aviation, and
Biden may support the adoption of a carbon border adjustment [11,12].

Economic growth and rapid industrialization are considered to be the main reasons for
the sharp increase in emissions [13]. Since 2006, China has been the world’s largest carbon
emitter [14]. At the same time, China is also the largest net exporter of carbon dioxide
emissions in goods and services [15,16]. The increase in emissions embodied in China’s
trade has caused problems for international trade and climate policy: China and other
emerging markets have a comparative advantage in manufacturing and are an essential
part of international trade; however, at the same time, because China’s carbon-intensive
manufacturing yields much more carbon emissions than the manufacture of the same
products in developed regions, trade has increased global carbon emissions [17–20].

With the rapid development of international trade, the production chain of goods and
services is no longer limited to one or two countries, and more production and consumption
take place in different countries. Current accounting schemes for carbon emissions are
mainly based on emissions from production, with less consideration of the consumption
side [21,22]. There are two principal methods for consumption-based carbon emissions
accounting: life cycle assessment (LCA) and input–output analysis (IOA) [23–25]. The
LCA method is typically used for relatively simple and traceable inspections of production
chains such as households and enterprises. On the other hand, input–output analysis is
widely used at the national and sector levels [26–28]. This method can be further divided
into three model frameworks: single region input–output (SRIO), bilateral trade input–
output (BTIO), and multi-regional input–output (MRIO).

The SRIO model is mostly used to study the implied energy and emissions in a coun-
try’s trade, taking the country as a whole and assuming the same production technology;
the BTIO model takes into account technological differences between different countries
and uses separate energy consumption and emissions factors; neither of these two methods
can accurately reflect the relationship between industry and trade among various sectors
in each country [29]. The MRIO model distinguishes between the technical and economic
structures of different countries as well as the flow of imported and exported products [30].
With the improvement of input–output tables among countries, this method is increasingly
employed in research on large-scale hidden emissions in global trade. In its trade war
simulation, this paper mainly focuses on changes in China’s trade and the resulting changes
in emissions. The single region input–output model can meet the paper’s research needs
with fewer data requirements than the other models, so the SRIO model is adopted.

Here, we combine existing methods to simulate the impact of the trade conflict
on China’s commodity trade value [31,32] and to discuss the impact on China’s energy
industry and the path of carbon reduction. In order to track global import and export
changes caused by trade conflicts, we use the model of Global Trade Analysis Project
(GTAP) [33] to simulate the trade situation of 29 sectors in 14 regions. We calculate the
emissions embodied in China’s trade by a single input–output (SRIO) model of emissions
and trade as of the year 2018. Our calculations only include carbon emissions from China’s
imports and exports, and emissions from other regions are not included.

2. Materials and Methods

2.1. Materials and Data

The GTAP model data are from the GTAP v10 data package [34], which contains the
input–output tables and trade volumes of countries across the world. This paper uses
a recursive method to project the 2014 data in the model to 2018 [35], and the currency
is US dollars. The energy statistics for China’s carbon emissions accounting come from
the Energy Statistics Yearbook [36–40], and the emissions factors are derived from the
revised emissions factors in Liu’s study [41]. Due to the slow updating of China’s statistical
data, energy statistics for 2018 have not been released, so energy data of 2017 are used to
generate carbon emissions data. At the same time, due to the difficulty of obtaining foreign
data, this paper combines the emissions data contained in the GTAP’s own database and
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assumes that foreign countries in each region have similar technical levels and are unified
into the same emissions coefficient matrix. Abbreviations for regions and departments can
be found in Tables A1 and A2.

2.2. Methods
2.2.1. The GTAP Model

The model from the Global Trade Analysis Project (GTAP) is a multi-country multi-
sector application general equilibrium model designed based on neoclassical economic
theory (Hertel, 1997; GTAP, 2019; Walmsley et al., 2012). The GTAP, led by Thomas
W. Hertel, a professor at Purdue University in the United States, was developed and
has been widely used in the analysis of trade policies. In the GTAP model framework,
they first establish a sub-model that can describe in detail the behavior of each country’s
production, consumption, government expenditure, etc., and then link the sub-models into
a multi-country multi-sector general equilibrium model through international commodity
trade. When we carry out policy simulations in this model framework, it is possible to
simultaneously discuss the impact of the policy on factors such as production, imports
and exports, commodity prices, factor supply and demand, factor compensation, gross
domestic product, and social welfare levels in various countries.

The GTAP model assumes that the market is perfectly competitive, the returns to scale
of production are constant, producers minimize production costs, consumers maximize
utility, and all product and input factor markets clear. At the same time, each country
has only one account, and all taxes, financial assets, and capital and labor income are
accumulated in this account. The income in the account is divided into three parts: private
consumption, deposits, and government consumption. The private expenditure equation
uses the fixed difference elastic utility equation. The government’s utility equation takes
the form of a Cobb-Douglas equation.

GTAP establishes connections between countries (regions) through trade. Domestic
products and imported products from different regions are incomplete substitutes; that is,
they follow the Armington hypothesis and are characterized by a set constant elasticity
of substitution. When the construction of a country’s economic model is completed, the
commodities and capital flows of international trade (the “global banking” sector) are
added to it to form a multi-country economic model. At this time, there is a substitution
relationship between imported products and domestic products, and the Armington hy-
pothesis is adopted for product compounding; that is, imported products and domestic
products are regarded as different products, and they have an incomplete substitution
relationship between each other.

In the GTAP model, there are two international departments (national banks and
international transportation departments). The savings of each country are aggregated into
international banks and distributed among the countries according to the return on capital.
The price expression of import and export commodities in the GTAP model is as follows:

PFOB = PEX
(

1 + TEX
)

(1)

PCIF = PFOB(1 + F) (2)

PIM = PCIF
(

1 + TIM
)

(3)

where PFOB represents the export port price, PEX represents the domestic price of exported
goods, PCIF represents the import port price, PCIF represents the domestic price of exported
goods, PIM represents the domestic price of imported goods, TEX and TIM represent export
and import tariffs (or subsidies), and F is the freight cost.
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2.2.2. Production-Based Carbon Emissions Calculation

We calculate the production-based emission according to the IPCC sectoral approach [41].
Emissions are calculated based on the sectoral consumption of different fuels, as shown in
equation below.

CEij = ADij × NCVi × CCi × Oij (4)

where CEij refers to the carbon dioxide emissions generated by the combustion of fossil
fuel type i in sector j; ADij represents the fossil fuel consumption of the corresponding
type and sector; NCVi refers to the net calorific value, i.e., the calorific value generated by
each fossil fuel combustion unit; CCi refers to the CO2 emissions per unit of net calorific
value generated by fossil fuel i; and Oij refers to the oxygenation efficiency. The fossil
fuel emissions factors (NCVi × CCi) we adopted are from a study by Liu [41], in which
602 groups of coal samples from all coal mines in China were sampled and weighted to
obtain the national average emissions factor. Reference values for emission factors can be
found in Table A3.

2.2.3. Input–Output Method to Calculate Trade Emissions

One method of consumption-based carbon emissions accounting is to compile an
inventory based on the final consumption location of goods and services, and another
including the total amount of the emissions contained in the imports used in production,
and subtract the two quantities. The emissions included in exports reflect the interre-
gional exchange of energy supply, commodities, and materials. Environmentally extended
input–output analysis (EIO) can be used to calculate the emissions from regional imports
and exports.

Input–output analysis is a method used to study the production balance among
various sectors of the national economy. If we start from the assumption of general
equilibrium, the dependence of the product volume of each sector is expressed as a system
of equations. Then, based on statistical data, a matrix or checkerboard-shaped balance table
is made to show the overall picture of the balance between the supply of and demand for
products in various sectors of the national economy; from this is derived the total amount
of products in each sector. The proportion of the product volume required by other sectors
(called the technical coefficient) is used to determine the relevant parameter values in the
above equations.

According to Leontief’s input–output analysis method [42], the following models can
be established:

X = AX + Y (5)

where X is the N*1 order total output column vector, N is the number of economic sectors,
Y is the N*1 order final product column vector, and matrix A is the direct consumption
coefficient.

After conversion, it can be transformed into:

X = (I − A)−1Y = BY (6)

Here, B is the Leontief inverse matrix, that is, the complete demand coefficient matrix,
and I is the identity matrix.

Next, we can obtain the demand coefficient matrix C of carbon emissions in each
industry,

C = XC(1 − A)−1 (7)

where XC represents the carbon emissions on the production side of each sector.
Finally, we can obtain the carbon emissions in import and export trade,

Cim = CYim (8)

Cout = CYout (9)
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where Cim and Cout represent the carbon emissions contained in imports and in exports,
respectively, and Yim and Yout represent the import and export trade volumes, respectively.

3. Results

3.1. Goods Traded before and after the Trade Conflict

The model used in this paper is the GTAP model developed by researchers at Purdue
University in the United States. It is a multi-country, multisector computable general
equilibrium model and is widely used in quantitative analyses of the impact of international
trade policies.

The trade conflict model setting reflects a scenario in which the United States imposes
tariffs on different trade commodities to eliminate the trade deficit, and China counters with
tariffs of its own. We run our simulations based on the list of 25% tariffs imposed on several
key sectors. Changes in macroeconomic variables such as commodity trade variables in
the process are the result of China’s response to the impact of the trade war. Given the
uncertainties surrounding different national policies, no scenario analysis was performed
on this basis for other countries’ policies (such as the EU’s countermeasures to the US’s
increase in tariffs, countries around the world speeding up RCEP negotiations, etc.).

Table 1 shows the impact of the trade war on China’s exports in various sectors. It can
be seen that China’s exports to the United States have fallen sharply, but its exports to other
countries have increased. The total exports of most sectors have increased, mechanically
leading to an increase in emissions from China’s trade.

Table 1. Changes in China’s exports to different countries.

Sectors USA Oceania EastAsia SEAsia SouthAsia Namerica La-Amer EU-28 MENA SSA Other

Transport −0.74 0.06 0.05 0.05 0.07 0.00 0.05 0.06 0.06 0.06 0.06
ElectricalEq −0.07 −0.05 −0.06 −0.06 −0.04 −0.13 −0.06 −0.06 −0.05 −0.05 −0.05
ElectronicEq −0.15 −0.07 −0.07 −0.08 −0.06 −0.14 −0.08 −0.07 −0.07 −0.07 −0.07
FerrousMetal −0.02 −0.03 −0.04 −0.04 −0.03 −0.09 −0.04 −0.03 −0.03 −0.03 −0.03

Total −0.33 0.00 −0.04 −0.04 −0.01 −0.05 0.00 −0.02 0.00 0.00 −0.02

Table 2 shows the impact of the trade war on China’s imports in various sectors. It
can be seen that overall imports have been slightly reduced, and the changes are not very
different across the various sectors. Imports from the United States and North America
have changed significantly, mainly due to the increase in import costs caused by tariffs.
Under the influence of this trend, Chinese imports from other countries have also been
slightly reduced, mechanically leading to a reduction in the emissions contained in China’s
imported products. If we take the two together, China’s trade exports have increased
while its imports have decreased, and China’s consumption-based carbon emissions have
decreased in turn.

Table 2. Changes in China’s imports from different countries.

Sectors USA Oceania EastAsia SEAsia SouthAsia Namerica LatinAmer EU-28 MENA SSA Other

GrainsFesFis −0.67 0.09 0.10 0.09 0.10 0.06 0.09 0.09 0.10 0.10 0.10
ProcFood −0.66 0.01 0.01 0.00 0.02 −0.04 0.01 0.01 0.01 0.01 0.01
Transport −0.74 0.06 0.05 0.05 0.07 0.00 0.05 0.06 0.06 0.06 0.06

ChemicalPro −0.76 0.02 0.02 0.01 0.03 −0.03 0.02 0.02 0.03 0.03 0.03
Total −0.33 0.00 −0.04 −0.04 −0.01 −0.05 0.00 −0.02 0.00 0.00 −0.02

3.2. Carbon Emissions Contained in China’s Trade with the US

According to the value of international trade and the emissions coefficient matrix,
we calculate the emissions changes in these main sectors for the two countries and the
emissions changes of other sectors.

In Figure 1a, it can be seen that the carbon emissions contained in goods imported
from the United States by China in several major sectors have been reduced. Due to the
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difference in carbon emissions intensity, the changes in emissions contained in chemical
products are obviously greater, and the decreasing imports from other sectors also have
the effect of decreasing the emissions contained in those sectors. As seen in Figure 1b, the
changes in carbon emissions from China’s exports to the United States are different from
the changes in emissions from imports. Except for those of the nonferrous metal sector, the
carbon emissions of sectors with tariffs are all relatively low, while the emissions of other
sectors have increased by a large margin. This is similar to the result of the trade analysis.
The import shrinkage effect caused by the trade conflict has mechanically reduced China’s
import emissions from the United States. However, at the same time, export emissions are
controlled by the trade market and have grown slightly in other sectors that do not levy
tariffs, with only small changes overall. On the whole, China’s net emissions to the United
States have decreased.

Figure 1. Changes in commodity carbon emissions from major sectors (MtCO2) before and after the China–US trade conflict,
where (a) represents emissions from China to the United States and (b) represents emissions from the United States to China.

3.3. Changes in China’s Trade Emissions with the Rest of the World

Figures 2 and A1 shows the changes in China’s export emissions to various countries
in the world. Figure 2a shows the absolute change, and Figure 2b shows the percentage
change. On the whole, China’s exports to the world are mainly concentrated in the
industrial and service industries at this stage, while the sectors with the largest export
emissions are the electricity and water sectors, with emissions that are much higher than
those of other sectors. Since the start of the trade conflict, except for in a few major sectors
in which tariffs have been imposed, emissions have decreased, and those of other sectors
have increased slightly.

Figures 3 and A2 shows the changes in emissions from China’s imports from various
countries in the world. Figure 3a shows the absolute change, and Figure 3b shows the
percentage change. It can be seen that the distribution of emissions from China’s imports is
relatively even, with transportation services accounting for the largest share. Since the start
of the trade conflict, the import emissions of all sectors have fallen, and China’s import
trade has been more affected.
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Figure 2. Changes in the world’s carbon emissions from China’s exports, where (a) represents the change in carbon
emissions (MtCO2) and (b) represents the percentage change.

Figure 3. Changes in the world’s carbon emissions from China’s imports, where (a) represents the change in carbon
emissions (MtCO2) and (b) represents the percentage change.

4. Discussion

4.1. Spatial Distribution of Emissions Included in China’s Trade

To further discuss the impact of the trade conflict on carbon emissions, this paper
examines the changes in China’s import and export emissions from different countries from
a spatial perspective. As seen in Figure 4, whether through imports or exports, China’s
share of carbon emissions to the United States is smaller than the shares of other Asian
countries. Due to the influence of spatial location, the countries that trade most with China
are Asian countries. Whether because of transportation costs or the demand for a large
number of daily necessities caused by population growth, these countries have closer trade
ties with China. In contrast, China–US trade is more concentrated in certain sectors. Before
the trade conflict, China’s exports to the United States were electronic products, which
accounted for 1/3 of all of China’s exports and half of China’s total exports of electronic
products. Since the start of the trade conflict, the share has plummeted to approximately
1/8. On the other hand, the emissions coefficient of electronic products is so low that even
before the trade conflict, the carbon emissions of electronic products accounted for only
1/50 of China’s total emissions from exports to the United States.

Unlike China’s exports to the United States, China’s imports from the United States are
the main component of the changes to China’s imports. Compared with the emissions from
imports from other countries and regions, which have shown only minor changes, China’s
emissions from imports from the United States have been reduced by nearly one-third,
which has had an impact on China’s overall import situation. Although China’s import
market is not highly dependent on the United States, the United States is an important
source of imports for Chinese agricultural products and transportation equipment. China’s
response to the tariffs has also had a considerable impact on these two sectors, which have
seen their imports reduced by nearly 70%.
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Figure 4. Spatial distribution of emissions included in China’s trade (MtCO2), where (a) represents emissions of exports
and (b) represents emissions of imports.

4.2. Emissions Characteristics of China’s Net Exports

As the “factory of the world”, China has always been an export-oriented country,
meaning that its carbon emissions from exports are higher than those from imports from
other countries. Based on this, we calculate China’s net emissions from international
trade based on the previous results. As shown in Figure 5, China exports a large amount
of carbon emissions in industries with high energy consumption, such as nonferrous
metals, minerals, coal, and petroleum gas production. Excluding a few major sectors,
the net emissions of other sectors are much lower. This situation is related to the long-
term economic growth mode of the Chinese government. The government has invested
heavily in energy-intensive industries to drive the rapid growth of the country’s GDP.
However, this situation is currently improving. With the adjustment of national strategies,
environmental governance has been given equal importance to economic growth. Green
sustainable development and the ensuing energy consumption revolution both reflect the
Chinese government’s determination to adapt to climate change. China is determined to
start from multiple angles to resolve the contradiction between trade development and
emissions growth.
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Figure 5. China’s net export emissions and percentage change.

4.3. The Impact of the Trade Conflict on Climate Change

The most direct impact of human activities on climate change occurs through increases
or decreases in carbon dioxide emissions. Based on the above results, China’s carbon
emissions in international trade have not changed much in the short term after the start of
the trade conflict. Although import emissions have decreased, emissions from exports, the
main component of China’s trade, have not decreased but rather have increased. However,
from a long-term perspective, the impact of the trade conflict on China’s adaptation to
climate change is likely to be more pronounced.

First, the trade conflict between China and the United States has had an impact not
only on trade but also on the social economy of the two countries. The Chinese economy is
in a “new normal” phase, the transitional stage from extensive growth based on scale and
speed to intensive growth based on quality and efficiency. The negative impact of the trade
conflict on China’s economy is bound to delay its progress. As mentioned above, China’s
main exports in international trade come from the massive output of its energy-intensive
industries. To ensure the steady development of the domestic economy and eliminate the
negative effects of the trade conflict, government investment in these industries is not likely
to change significantly.

Second, China has recently put forward a goal of achieving carbon neutrality by 2060.
This plan is closely related to China’s abundant wind power, hydropower, geothermal,
and other new energy potential. China’s abundant natural resources make it possible to
achieve this goal. However, the new energy industry has a great demand for technology
and equipment. China’s current level of technology is not adequate to support independent
achievement of its objectives. The import of technology and equipment is thus vital to the
development of new energy. The trade conflict between China and the United States is set
to have an impact on China’s imports in and slow down the development of its domestic
new energy industry, such that more effort will be required to achieve green development
goals such as carbon neutrality.

Finally, as the economy develops, China’s energy dependence will increase. Although
China has a large amount of low-cost coal resources, considering the concept of green
development, coal energy must gradually be replaced. On the other hand, China will
have a higher degree of dependence on oil and natural gas, which are not abundant in the
country, and thus will face much external uncertainty. In the international energy market,
the United States will become a major oil and gas exporter in the market with the realization
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of its shale gas revolution and energy independence strategy. In the face of China’s massive
natural gas demand, energy cooperation between China and the United States may offer a
new opportunity to improve the trade imbalance between the two countries.

5. Conclusions

The trade conflict between China and the United States has had an impact on China’s
import and export markets, which in turn has affected the carbon emissions contained
in China’s imports and exports in international trade and will affect China’s response
to climate change. In China–US trade, the trade volume of goods subject to tariffs has
been greatly reduced, while in other sectors, import emissions have increased and export
emissions have decreased. For the global market, China’s export emissions to the rest of the
world have increased slightly, while import emissions have decreased slightly. The trade
conflict will cause China’s net export emissions to continue to increase, with the change
concentrated in energy-intensive industries.

At the same time, it can be seen that although the trade share between China and the
United States is not large in comparison with the world total, some of the sectors involved
in the trade war are the main sectors involved in trade between the two countries, and
they all contribute a large share to China’s total trade volume. The sharp decline in trade
in these sectors will also have impacts and raise opportunities in China’s inland markets.
On the other hand, the trade conflict will affect China’s social economy from other angles
in the long run as well as some of China’s strategies to adapt to climate change. Whether
through a negative impact on the domestic economy or restricted imports of technology
and equipment, the trade conflict will slow down the development of China’s new energy
industry. The energy trade may provide an opportunity to solve the problem of the trade
imbalance between the two countries.

This paper still has many shortcomings, especially in terms of data. On the one hand,
due to the difficulty of obtaining data from all countries, we assume that the regional
emission intensity is consistent, and there will be considerable uncertainty; on the other
hand, we have also simplified the additional levy departments when it comes to tariff
plans, due to the GTAP model. It is not easy to completely match the actual situation. We
selected key departments to impose tariffs and simulate.
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Appendix A

Table A1. Category of countries.

Region Abbreviations Comprising Description

China chn China
USA usa USA

Oceania aus, nzl, xoc Oceania
EastAsia hkg, jpn, kor, mng, twn, xea, brn East Asia (Except China)
SEAsia knm, idn, lao, mys, phl, sgp, tha, vnm, xse Southeast Asia

Namerica can, mex, xna North America

LatinAmer arg, bol, bra, chl, col, ecu, pry, per, ury, ven, xsm, cri, gtm, hnd,
nic, pan, slv, xca, dom, jam, pri, tto, xcb Latin Amercia

EU_28 aut, bel, bgr, hrv, cyp, cze, dnk, est, fin, fra, deu, grc, hun, irl, ita,
lva, ltu, lux, mlt, nld, pol, prt, rou, svk, svn, esp, swe, gbr European Union 28

MENA bhr, irm, isr, jor, kwt, omn, qat, sau, tur, are, xws, egy, mar, tun, xnf Middle East and North Africa

SSA
ben, bfa, cmr, civ, gha, gin, nga, sen, tgo, xwf, xcf, xac, eth, ken,
mdg, mwi, mus, moz, rwa, tza, uga, zmb, zwe, xec, bwa, nam,

zaf, xsc
Sub-Saharan Africa

RestofWorld che, nor, xef, alb, blr, rus, ukr, xee, xer, kaz, kgz, tjk, xsu, arm, zae,
geo, xtw Rest of World

Table A2. Category of sectors.

Sectors Reclassified Sectors in GTAP Sectors in China Category

GrainsFesFis Grain, Fes, Fis Farming, Forestry, Animal Husbandry, Fishery,
and Water Conservancy Primary industry

Coal Coal Coal Mining and Dressing Energy production
OilGas Oil, Gas Petroleum and Natural Gas Extraction Energy production

OtherMineral Mineral

Ferrous Metals Mining and Dressing,
Nonferrous Metals Mining and Dressing,
Nonmetal Minerals Mining and Dressing,

Other Minerals Mining and Dressing

Energy production

ProcFood Food Production Food Processing, Food Production Light industry

BeveragesTob Beverage production, Tobacco
Production Beverage Production, Tobacco Processing Light industry

Textile Textile Textile Industry Light industry
Wearing Wearing Garments and Other Fiber Products Light industry

LeatherProd Leather Production Leather, Furs, Down, and Related Products Light industry

WoodProduct Wood Production
Logging and Transport of Wood and Bamboo,
Timber Processing, Bamboo, Cane, Palm Fiber

and Straw Products
Light industry

PaperProduct Paper Production Papermaking and Paper Products Light industry
Transport Transport Equipment Transportation Equipment Light industry

MetalProduct Metal Production Metal Products Heavy industry

OthLightMnfc Light Manufacture
Furniture Manufacturing, Printing and Record
Medium Reproduction, Cultural, Educational

and Sports Articles
Light industry

PetroleumCoa Petroleum, Coal production Petroleum Processing and Coking, Raw
Chemical Materials, and Chemical Products Energy production

ChemicalPro Chemical Production Chemical Fiber Heavy industry
BasicPharmac Basic Pharmacy Medical and Pharmaceutical Products Light industry
RubberPlasti RubberPlastic Rubber Products, Plastic Products Heavy industry

MineralProdu Mineral Production Nonmetal Mineral Products Heavy industry
FerrousMetal Ferrous Metal Production Smelting and Pressing of Ferrous Metals Heavy industry
OtherMetal Other Metal Production Smelting and Pressing of Nonferrous Metals Heavy industry

ElectronicEq Electronic Equipment Electric Equipment and Machinery Electric Equipment
and Machinery
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Table A2. Cont.

Sectors Reclassified Sectors in GTAP Sectors in China Category

ElectricalEq Electrical Equipment
Electronic and Telecommunications

Equipment, Instruments, Meters, Cultural and
Office Machinery

Electric Equipment
and Machinery

OthHeavyMnfc Other Heavy Manufacture

Ordinary Machinery, Equipment for Special
Purposes, Instruments, Meters, Cultural and

Office Machinery, Other
Manufacturing Industry

Heavy industry

ElecWater Electricity, Water
Production and Supply of Electric Power,

Steam and Hot Water, Production and Supply
of Tap Water

Energy production

GasManufactu Gas Manufacture Production and Supply of Gas Energy production
Constructio Construction Construction Construction

TransComm Trans Commerce Transportation, Storage, Post and
Telecommunication Services Services industry

OthServices Other Services Wholesale, Retail Trade and Catering
Services, Others Services industry

Table A3. Emission factors of each type of fuels.

No. Fuels in China’s Energy Statistics Fuels in This Study NCVi × CCi (t C/104 ton)

1 Raw coal Raw coal 5.5272
2 Cleaned coal Cleaned coal 6.8432
3 Other washed coal Other washed coal 3.948
4 Briquettes Briquette 4.7376

5
Gangue

Coke 8.7864Coke
6 Coke oven gas Coke over gas 34.5989

7
Blast furnace gas

Other gas 17.8367Converter gas
Other gas

8 Other coking products Other coking products 7.686
9 Crude Oil Crude oil 8.6344

10 Gasoline Gasoline 8.316
11 Kerosene Kerosene 8.624
12 Diesel oil Diesel oil 8.686
13 Fuel oil Fuel oil 9.073

14

Naphtha

Other petroleum products 8.772

Lubricants
Paraffin

White spirit
Bitumen asphalt
Petroleum coke

Other petroleum products
15 Liquefied petroleum gas (LPG) LPG 9.4
16 Refinery gas Refinery gas 8.686
17 Nature gas Nature gas 59.5948

There are 26 kinds of fossil fuels in China’s energy statistics system. Because the
quality of some fuels is similar to that of other fuels, this paper combines these fuels into
17 types. Among the 17 types of fossil fuels, raw coal, crude oil, and natural gas are the
main energy sources, and the other 14 fuels are classified as secondary energy sources.
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Appendix B
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Figure A1. Changes in the world’s carbon emissions from China’s exports, where (a) represents the change in carbon
emissions (MtCO2) and (b) represents the percentage change.
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Figure A2. Changes in the world’s carbon emissions from China’s imports, where (a) represents the change in carbon
emissions (MtCO2) and (b) represents the percentage change.
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Abstract: Revealing the spatial differentiation of ecosystem service (ES) trade-offs and their responses
to land-use change along precipitation gradients are important issues in the Loess Plateau of China.
We selected three watersheds called Dianshi (300 mm < MAP (mean annual precipitation) < 400 mm),
Ansai (400 mm < MAP < 500 mm), and Linzhen (500 mm < MAP < 600 mm). A new ES trade-
off quantification index was proposed, and quantile regression, piecewise linear regression, and
redundancy analysis were used. The results were as follows. (1) Carbon sequestration (TC) and soil
conservation (SEC) increased, but water yield (WY) decreased in the three watersheds from 2000
to 2018. (2) The effect of forests on trade-offs was positive in three watersheds, the main effect of
shrubs was also positive, but the negative effect appeared in the TC-WY trade-off in Ansai. Grassland
exacerbated trade-offs in Dianshi, whereas it reduced trade-offs in Ansai and Linzhen. These effects
exhibited respective trends with the quantile in the three watersheds. (3) There were threshold values
that trade-offs responded to land-use changes, and we could design land-use conversion types to
balance ESs. In general, the water consumption of grass cannot be ignored in Dianshi; shrubs and
grass are suitable vegetation types, and forests need to be restricted in Ansai; more forests and shrubs
can be supported in Linzen due to higher precipitation, but the current proportions of forests and
shrubs are too high. Our research contributes to a better understanding of the response mechanisms
of ES trade-offs to land-use changes.

Keywords: ecosystem services trade-offs; land-use change; soil conservation; carbon storage; water
yield; precipitation gradient; Loess Plateau

1. Introduction

Ecosystem services (ESs) are defined as the benefits that humans derive from natural
ecosystems directly and indirectly [1,2]. The relationships among ESs are often identified
as trade-offs and synergies. A trade-off is defined as one ES increasing at the expense
of another, and a synergy is a situation in which multiple ESs increase or decrease syn-
chronously [3,4]. How to balance multiple ESs is still a major challenge in ecosystem
management. The trade-off analysis of ESs provides an integrative and dialectical ap-
proach to understand ES relationships, and based on trade-off analysis, land management
decisions can be made to realize maximal and sustainable ES supply [5–8].

Precipitation is the key factor controlling many ecological processes, especially in
water-stressed regions [9,10]. Previous studies have found that primary production and
carbon sequestration [11,12], biodiversity [13], plant cover and growth [14,15], soil-water
carrying capacity [16], nutrient recycling and storage [17–19], elemental stoichiometry [20],
and hydrologic processes [21,22] change along precipitation gradients. Therefore, precip-
itation gradients should be an important factor in ecosystem management. There is an
obvious precipitation gradient in the Loess Plateau of China that provides an appropriate
geographical area for studying regional differences on a landscape scale.
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The vegetation cover increased observably by the Grain-for-Green Program (GFGP)
launched in 1999. As a result, ecosystem services are undergoing significant change,
whereby soil conservation services and the carbon sequestration of local ecosystems are
enhanced, but water yield and soil moisture are decreased. These changes threaten regional
water resource security and revegetation sustainability, especially in arid and semiarid
regions. Therefore, ES trade-offs on the Loess Plateau have attracted the attention of
scholars and local governments. A series of studies have been carried out on trade-off and
synergy identification, the spatial distribution of ES trade-offs, drivers for trade-offs, ES
optimization models, and land-use management in view of trade-offs [5,23–27]. A key
conclusion of previous studies is that ES trade-offs and water scarcity are caused by exces-
sive revegetation (land-use conversion) in arid areas [25,27]. However, only a few studies
focused on ES trade-offs along the precipitation gradient and only performed trade-off anal-
yses of soil moisture, aboveground carbon, soil organic carbon, total nitrogen, and plant
diversity based on field sampling and investigation along the precipitation gradient [28,29].
Thus, the spatial differentiation of ES (carbon sequestration, soil conservation, water yield)
trade-offs and the response of the trade-offs to land-use change at the watershed scale
along the precipitation gradient have not been clarified, and the existing theoretical basis is
insufficient for land management and decision making across the precipitation gradient on
the Loess Plateau.

We selected three watersheds called Dianshi (300 mm < MAP (mean annual precip-
itation from 2000 to 2018) < 400 mm), Ansai (400 mm < MAP < 500 mm), and Linzhen
(500 mm < MAP < 600 mm) along the precipitation gradient in the central Loess Plateau.
We used the InVEST (Integrated Valuation of Ecosystem Services and Trade-offs) model
to calculate carbon sequestration, soil conservation, and water yield in 2000 and 2018.
We proposed a new indicator to quantify ES trade-off intensity. The objectives of this
study were to (1) reveal the spatial differentiation of land-use conversion and ES trade-
offs in various precipitation regions, (2) reveal the effects of land-use conversion on ES
trade-offs at different intensity levels (trade-off intensity under different quantiles) and
determine the threshold values at which trade-offs respond to land-use conversion, and
(3) develop recommendations for land-use planning for three precipitation regions in the
central Loess Plateau.

2. Materials and Methods

2.1. Study Area

The Loess Plateau of China is located in the middle reaches of the Yellow River
basin, where there is an obvious precipitation gradient. The mean annual precipitation
(MAP) gradually decreases from 700 mm in the southeast to 200 mm in the northwest,
and the precipitation contours are nearly parallel in the central Loess Plateau. The veg-
etation types change with precipitation from dry steppe to forest-steppe and deciduous
broad-leaf forest. Three independent catchments along the precipitation gradient in the
central Loess Plateau were selected (Figure 1). They are controlled by the “Dianshi”,
“Ansai”, and “Linzhen” hydrometric stations, where runoff and sediment are observed.
The Dianshi (300 mm < MAP < 400 mm), Ansai (400 mm < MAP < 500 mm), and Linzhen
(500 mm < MAP < 600 mm) watersheds are located in three precipitation zones, as illus-
trated in Figure 1. The study area is characterized by an arid and semiarid continental
monsoon climate zone and has typical loess geomorphic landforms and eroded terrains.
The soils are mainly derived from loess, a fine silt soil that is weakly resistant to erosion, and
this region is considered the most eroded in the world. The soil layer of the Loess Plateau
is deep, the groundwater level is mostly between 30 and 80 m, and it hardly participates in
the water cycle process of the soil–vegetation–atmosphere transfer system [30]. The natural
vegetation was destroyed, and considerable secondary vegetation was planted. The main
forest species include Robinia pseudoacacia, Pinus tabulaeformis, and Platycladus orientalis, and
the shrubs include Caragana korshinskii and Hippophae rhamnoides. Grassland communities
are mainly composed of Artemisia gmelinii, Lespedeza davurica, and Stipa bungeana. Local
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people cultivate millet, maize, and broom corn millet in croplands. The percentage of the
population dependent on agriculture (including crop farming, forestry, animal husbandry
and fishery) decreased from 72.3% in 2000 to 57.9% in 2015 [31].

Figure 1. The location of the study area (soil texture class was obtained from the soil map of China in
the Harmonized World Soil Database).

2.2. Data Sources

We downloaded Landsat images from the USGS [32] and generated land-use maps
(30 m × 30 m) by supervised classification. We obtained meteorological data from the
China Meteorological Data Service Center [33]. We obtained a DEM (30 m × 30 m) from the
ASTER Global Digital Elevation Model provided by the Geospatial Data Cloud, Computer
Network Information Center, Chinese Academy of Sciences [34]. The soil data were
obtained from the Soil Map of China in the Harmonized World Soil Database [35].

2.3. Assessment of ESs and Land-Use Changes

The Hydrology Tool of ArcGIS 10 was used to divide the Dianshi, Ansai, and Linzhen
watersheds into 240, 817, and 543 subwatersheds, respectively. We calculated and analyzed
ESs at the subwatershed level in this study.

2.3.1. Soil Conservation (SEC)

Soil conservation was assessed by the “sediment delivery ratio” (SDR) model of
InVEST3.3.2. First, the average amount of annual soil loss with existing vegetation was
calculated by the revised universal soil loss equation (RUSLE) [36]. Then, the SDR was
used to calculate the soil loss actually reaching the watershed outlet, and the SDR was
directly calculated from the conductivity index using the sigmoid function [37]:

SLAx = Rx·Kx·LSx·Cx·PxSDRi (1)

where SLAx is the annual actual soil loss that reaches the watershed outlet on pixel x; Rx is
the rainfall erosivity factor on pixel x; Kx is the soil erodibility factor; LSx is the topographic
factor; Cx is the cover and management factor; and Px is the engineering measures factor.
SDRi is the sediment delivery ratio on pixel x.
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The potential soil loss reaching the watershed outlet (SLPx) was the condition without
vegetation coverage and engineering measures (Cx = 1, Px = 1):

SLPx = Rx·Kx·LSxSDRi (2)

Finally, the actual value of the soil conservation on pixel x (SCx) was calculated as the
difference between the SLAx and SLPx:

SCx = Rx·Kx·LSx(1 −·Cx·Px)SDRi (3)

The model accuracy was evaluated by the sediment loading data at the outlet of the
watershed, and the relative error between the calculated value and measured value was
3.5%, 2.3%, and 2.8% in Dianshi, Ansai, and Linzhen, respectively.

2.3.2. Water Yield (WY)

The water yield was assessed from the “Water Yield” submodel of InVEST based on
the Budyko curve and annual average precipitation. The annual water yield Yx on pixel x
is calculated as follows:

Yx = (1 − AETx/Px)·Px (4)

where AETx is the annual actual evapotranspiration on pixel x and Px is the annual precipi-
tation on pixel x. The calculations of AETx are core technology in WY estimation, which
can be found in the InVEST User’s Guide [38]. The overall process is as follows: For forest,
shrub, grassland, and cropland, AETx was computed by an expression of the Budyko
curve proposed by Fu [39] and Zhang et al. [40]; for construction land and water bodies,
AETx was directly computed from the reference evapotranspiration and has an upper limit
defined by the precipitation.

2.3.3. Carbon Sequestration (TC)

Carbon storage directly depends on the carbon content of the four major carbon
pools in the ecosystem, namely, aboveground biomass, underground biomass, soil carbon,
and dead matter. The carbon model of InVEST can evaluate the total carbon storage by
summing the four carbon pools according to the land-use maps. The data for the four major
carbon pools were obtained by our field survey [41].

2.3.4. Calculation of Land-Use Changes

The ESs and land-use changes were defined as the values of the final stage minus those
of the initial stage. The land use transfer matrix in a watershed was obtained by “Raster
Calculator”, and the area of one land-use type transfer to another in a small watershed was
calculated by the “TabulateArea” of ArcGIS 10.

2.4. Calculation of the Trade-Offs between ESs

The methods for quantifying ES trade-offs are still inadequate. The correlation co-
efficient [42] and root mean square error [5,29,43] are often used to calculate trade-off
values. However, the correlation coefficient usually needs time series data, and the root
mean square error method only reflects static trade-offs at a single given time. Thus, we
proposed one indicator for quantifying ES trade-offs on the premise that trade-offs have
been identified between two ESs. This indicator is based on the idea that trade-off intensity
is determined by the degree of relative waxing and waning between ESs, and it is calculated
as follows:

If trade-off relation can be identified between ecosystem service A and B:

TBAB =
1
2

⎛⎝√(ESAT2 − ESAT1

ESAT1

)2
+

√(
ESBT2 − ESBT1

ESBT1

)2
⎞⎠× 100% (5)
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If synergy relation can be identified between ecosystem service A and B:

TBAB = −1
2

⎛⎝√(ESAT2 − ESAT1

ESAT1

)2
+

√(
ESBT2 − ESBT1

ESBT1

)2
⎞⎠× 100% (6)

where TRAB is the trade-off/synergy value between ecosystem service A and ecosystem
service B; ESAT1 and ESAT2 correspond to ecosystem service A at times T1 and T2, respec-
tively (time T1 is earlier than T2); and ESBT1 and ESBT2 correspond to ecosystem service B
at times T1 and T2, respectively.

First, the ES data of the subwatersheds were prepared for the three watersheds.
Second, the data in which the change direction of ESA and ESB was inverse (the increase in
one coincides with the decrease in the other), indicating a trade-off between the two ESs,
were selected, and TRAB was calculated by these data. Finally, the data in which ESA and
ESB increased or decreased simultaneously, indicating synergy between the two ESs, were
selected, and TRAB was calculated by these data to represent synergy intensity.

2.5. Statistical Analyses

Most ES trade-off and land-use change data did not conform to a normal distribution
and exhibited heteroscedasticity, so robust statistical methods were employed. Spearman
correlation analysis and quantile regression do not require the homogeneity of variance
assumption, and they are robust to outliers [44,45] and have been widely used in macroe-
cology. Thus, they were used to reveal the relationship between ES trade-offs and land-use
changes. Quantile regression estimates a portion (certain quantiles reflecting various
levels of trade-off intensity) of the response variable instead of estimating the mean of
the response variable as in ordinary least squares regressions. Thus, quantile regression
provides a much more complete picture of the land-use changes influencing ES trade-offs.
In addition, piecewise linear regression was used to identify the thresholds of ES trade-off
responses to land-use changes. In contrast to simple linear regression, piecewise linear
regression explores a more detailed trend of the relationship between variables [46,47].
Redundancy analysis (RDA) was applied to reveal the effects of land-use conversion
(e.g., cropland conversion to forest and grassland conversion to shrub) on ES trade-offs. A
Monte Carlo permutation test based on 499 random permutations was conducted to test
the significance of the marginal and conditional effects [48].

Spearman correlation analysis and quantile regression were conducted using Stata15.1.
Piecewise linear regression was performed with the segmented package in the statistical
software R. RDA was performed using CANOCO5.0.

3. Results and Discussion

3.1. Temporal and Spatial Variations in ESs along the Precipitation Gradient
3.1.1. Land-Use Transformation along the Precipitation Gradient

As illustrated in Table 1, cropland and grassland were the major land-use types and
covered 98.7% of the Dianshi watershed in 2000, whereas the grassland, cropland, and shrub
types became dominant and covered 93.7% of the area in 2018. From 2000 to 2018, cropland
was mainly transformed into grassland, and grassland was mainly transformed into shrubs
and cropland. Therefore, “planting grass” was the primary vegetation rehabilitation
method (grassland reached 61.2% of the total area), while “afforestation” was secondary in
Dianshi (forest and shrub accounted for only 17.6% of the total area).

The major land-use types were grassland and cropland (96.8%) in the Ansai watershed
in 2000, whereas forest and grassland (75.8%) became the major types in 2018. The main
land-use transformation characteristics in Ansai were that cropland was mainly converted
to forest and grassland, grassland was mainly converted to forest and shrubland, and forest
and grassland had equal areas in 2018 (approximately 37%).
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Table 1. Land-use transformation matrix from 2000 to 2018 (%).

FoL in
2018

ShL in
2018

GrA in
2018

CrO in
2018

CoL in
2018

WaB in
2018

Total in
2000

Dianshi

FoL in 2000 0.11 0.09 0.41 0.04 0.01 0.00 0.66
ShL in 2000 0.12 0.06 0.08 0.01 0.00 0.00 0.27
GrA in 2000 1.18 6.41 28.03 5.01 0.62 0.23 41.47
CrO in 2000 2.92 6.72 32.55 14.07 0.91 0.03 57.20
CoL in 2000 0.00 0.01 0.03 0.02 0.08 0.00 0.14
WaB in 2000 0.00 0.01 0.12 0.04 0.00 0.09 0.27
Total in 2018 4.34 13.29 61.22 19.19 1.62 0.35

Change from 2000 to 2018 3.68 13.02 19.74 −38.01 1.48 0.08

Ansai

FoL in 2000 0.96 0.12 0.27 0.10 0.05 0.01 1.51
ShL in 2000 0.59 0.21 0.54 0.09 0.03 0.00 1.46
GrA in 2000 20.01 6.97 22.89 3.63 1.07 0.25 54.82
CrO in 2000 17.36 5.46 13.09 4.82 1.26 0.04 42.03
CoL in 2000 0.04 0.00 0.01 0.04 0.07 0.00 0.16
WaB in 2000 0.01 0.00 0.01 0.00 0.00 0.00 0.03
Total in 2018 38.96 12.77 36.82 8.67 2.47 0.30

Change from 2000 to 2018 37.45 11.31 −18.00 −33.35 2.31 0.27

Linzhen

FoL in 2000 2.37 1.75 0.50 0.30 0.05 0.00 4.97
ShL in 2000 23.35 12.44 7.14 4.34 0.89 0.01 48.18
GrA in 2000 10.10 9.55 2.97 1.91 0.40 0.08 25.02
CrO in 2000 4.75 3.43 5.45 6.78 1.07 0.14 21.61
CoL in 2000 0.00 0.02 0.01 0.03 0.03 0.00 0.09
WaB in 2000 0.00 0.01 0.01 0.09 0.00 0.02 0.12
Total in 2018 40.58 27.20 16.08 13.45 2.44 0.25

Change from 2000 to 2018 35.61 −20.98 −8.94 −8.16 2.35 0.13

FoL: forestland, ShL: shrubland, GrA: grassland, CrO: cropland, CoL: construction land, WaB: water body. An example to explain the
meaning of the transformation matrix: Figure 6.41 in the second column of the third row means that 6.41% of grassland in 2000 was
changed to shrubland in 2018.

The dominant land-use types were shrub, grassland, and cropland (94.8%) in the
Linzhen watershed in 2000, whereas forest, shrub, and grassland (83.9%) became the
dominant types in 2018. From 2000 to 2018, shrubs were mainly converted to forest,
grassland was mainly converted to forest and shrubs, and cropland was mainly converted
to grassland, forest, and shrubs. In brief, forested land was preferentially selected for
revegetation in Linzhen.

The soil organic matter content was 0.76%, 1.18%, and 1.33% in Dianshi, Ansai, and
Linzhen, respectively, before the GFGP, according to data from the Second National Soil Sur-
vey of China. The soil carbon sequestration rates were 0.43, 0.51, and 0.21 Mg ha−2·year−1

by revegetation, respectively [49]. Therefore, land-use transformation improved vegetation
and soil conditions, which meant that local soil erosion would be reduced, and the agricul-
tural production environment and farmers’ livelihoods would become increasingly better.

3.1.2. Changes in ESs from 2000 to 2018 along the Precipitation Gradient

As illustrated in Figure 2, TC and SEC generally increased in the three watersheds
from 2000 to 2018 (most ΔTC and ΔSEC were positive values), whereas WY decreased
(most ΔWY were negative values). This phenomenon indicated that TC and SEC increased
at the cost of decreasing WY. Therefore, a synergistic relationship can be identified between
TC and SEC as well as trade-offs between the two ESs and WY. Similar conclusions were
found by some studies on the Loess Plateau of China [5,50]. The amount of variation
in the ESs changed with the precipitation gradient. With regard to the mean value of
ΔESs, the increments of TC were approximative in the Ansai and Linzhen watersheds and
were larger than those in Dianshi. The increment of SEC exhibited the trend of Linzhen >
Ansai > Dianshi. The decrease in WY exhibited the trend of Dianshi > Ansai > Linzhen.
These findings indicate that although TC and SEC were enhanced to some extent by the
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GFGP in Dianshi, where rainfall was the smallest, this gain was offset by the significant
decrease in WY. However, there were some small watersheds where the change trends of
TC and WY were opposite, especially in the Linzhen and Ansai watersheds. The reason for
this is that construction land increased in these small watersheds, which reduced TC and
increased WY.

Figure 2. Boxplot of ES changes in three watersheds (ΔTC, ΔSEC, and ΔWY represent ES changes from 2000–2018).

3.1.3. The Correlation between Land-Use and ESs Change

The ΔTC value was significantly positively and negatively correlated with the change
in forest and grassland, respectively, in the three watersheds (Table 2). ΔTC was signifi-
cantly negatively correlated with the change in cropland in Dianshi and Ansai only. The
correlations between ΔSEC and ΔForest and ΔShrub were significantly positive in Ansai
and Linzhen, whereas the correlations were significantly negative with grassland change.
ΔWY was significantly positively and negatively correlated with the changes in cropland
and shrubs, respectively, in the three watersheds. In general, increasing forest was ben-
eficial to TC and SEC and was not conducive to WY, whereas the influence of cropland
showed the opposite trend [25,27,51]. Somewhat differently, shrubs were beneficial to
TC, and grasslands were not conducive to WY in Dianshi, but the influences of shrubs
and grasslands were opposite in Ansai, and this influence was not significant in Linzhen.
Land-use change characteristics and rainfall differences in the three watersheds caused
these phenomena.

Table 2. Spearman correlation analysis between land use and ES change.

ΔESs Watershed ΔForest ΔShrub ΔGrassland ΔCropland

ΔTC Dianshi 0.730 ** 0.402 ** −0.291 ** −0.410 **
Ansai 0.922 ** −0.167 ** −0.723 ** −0.262 **

Linzhen 0.891 ** −0.002 −0.445 ** −0.02

ΔSEC Dianshi −0.014 0.087 0.035 −0.157 *
Ansai 0.299 ** 0.076* −0.169 ** −0.330 **

Linzhen 0.196 ** 0.237 ** −0.351 ** 0.063

ΔWY Dianshi −0.006 −0.145 * −0.527 ** 0.852 **
Ansai −0.530 ** −0.099 ** 0.412 ** 0.203 **

Linzhen −0.082 −0.276 ** −0.023 0.917 **
The asterisks * and ** indicate p < 0.05 and p < 0.01 respectively.
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3.2. ESs Trade-Offs along the Precipitation Gradient
3.2.1. Comparing ES Trade-Offs in Three Precipitation Regions

As illustrated in Figure 3, the variation tendencies in the two types of trade-offs along
the precipitation gradient were not consistent. The mean value of the TC-WY trade-off
exhibited the trend of Ansai > Linzhen > Dianshi, and the mean value of the SEC-WY
trade-off exhibited the trend of Linzhen > Dianshi > Ansai. Additionally, the variability of
the ES trade-offs was large, and the variability increased with the rainfall gradient. Small
watersheds with negative trade-off values appeared, indicating that synergic relationships
could be identified among ESs in some small watersheds.

Figure 3. Boxplot of ESs trade-offs in three watersheds.

3.2.2. The Spatial Distribution of ESs Trade-Offs

As illustrated in Figure 4, the spatial distributions of the TC–WY trade-off and SEC–
WY trade-off were similar in the Dianshi watershed; the high trade-off value regions were
distributed in the northern watershed (lower reaches), whereas the low value regions were
dispersedly distributed in the central section of the watershed. The trade-off intensity is
determined by the degree of relative waxing and waning between ESs. The land-use change
trends were that forest increased and cropland decreased in Dianshi, and such land-use
transfers usually enhanced TC and SEC and reduced WY [23,25,27,51]; as a result, trade-off
intensity increased. Using map overlay analysis between land-use and ES trade-offs, we
found that the high trade-off-value areas overlapped with the areas where the increments
of forest and grassland and the decrement of cropland were high. Therefore, land-use
change is the direct reason for the ES trade-off.

The TC–WY and SEC–WY trade-offs decreased gradually from the southeast (lower
reaches) to the northwest (upper reaches) in the Ansai watershed, which was consistent
with the spatial distribution of the forest increment and in the decrements in grassland and
cropland. In addition, there were small watersheds with negative trade-off values (two ESs
both increased and decreased) near the main valley, indicating a synergistic relationship
between the two ESs. The main reason for this was that forest and construction land slightly
increased near the valley due to the flat terrain and convenient transportation; thus, the
three ESs increased synchronously.

Except for some high trade-off areas assembling in the southwest, other high and low
trade-off areas were fragmented and interlaced in the Linzhen watershed. The high trade-
off areas coincided with the areas where grassland and cropland decreased and forests
increased, whereas the low trade-off areas mainly coincided with the areas where grassland
and forests increased slightly, cropland increased moderately, and shrubland decreased.

304



Sustainability 2021, 13, 13306

Figure 4. The spatial distribution of ES trade-offs in the three watersheds.

3.3. The Effects of Land-Use Changes on ESs Trade-Offs
3.3.1. The Effects of Land-Use Changes on ES Trade-Offs in Different Quantiles

Quantile regression is a method of estimating the conditional quantiles of a response
variable distribution in a linear model that provides a more complete view of possible
relationships between variables in ecological processes [45]. Forested land had significant
positive effects (enhancing the trade-off) on TC–WY trade-offs in the three watersheds,
and this positive effect exhibited the trend of Dianshi > Ansai > Linzhen (Table 3). The
positive effect (regression coefficient) fluctuated by approximately 1.4 in various quantiles
in the Dianshi watershed. This positive effect increased with the increase in quantiles, and
it was the highest in the 80th and 90th quantiles in the Ansai and Dianshi watersheds,
respectively. Forested land also had positive effects on the SEC–WY trade-off in the three
watersheds, and this positive effect decreased along the precipitation gradient until the
positive effect was not significant (the regression coefficients were only significant in the
30th–60th quartiles in the Linzhen watershed where the precipitation was the highest).
The positive effect was highest in the 10th quantile; then, it declined with the quantile in
the Dianshi watershed, and it was the highest in the 60th and 40th quantiles in the Ansai
and Linzhen watersheds, respectively. Therefore, although the forest cover was low in the
Dianshi watershed, the response of the trade-offs to forest cover was the strongest in this
watershed, especially at a low trade-off level. This response was weaker as precipitation
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increased, possibly because higher rainfall can compensate for the negative effect of forest
cover on water yield.

Table 3. Quantile regression between land-use changes and ES trade-offs.

Land-Use Quantile
TC–WY Trade-Offs SEC–WY Trade-Offs

Dianshi Ansai Linzhen Dianshi Ansai Linzhen

Forest 10th 1.485 ** 1.061 ** 0.614 ** 0.411 ** 0.168 ** 0.051
20th 1.366 ** 1.099 ** 0.658 ** 0.271 ** 0.168 ** 0.089
30th 1.378 ** 1.173 ** 0.648 ** 0.296 ** 0.225 ** 0.126 **
40th 1.395 ** 1.186 ** 0.695 ** 0.316 ** 0.257 ** 0.135 **
50th 1.453 ** 1.213 ** 0.724 ** 0.263 ** 0.254 ** 0.092 **
60th 1.374 ** 1.286 ** 0.81 ** 0.256 ** 0.287 ** 0.07 **
70th 1.411 ** 1.316 ** 0.816 ** 0.307 ** 0.284 ** 0.045
80th 1.378 ** 1.322 ** 0.96 ** 0.273 ** 0.286 ** 0.032
90th 1.309 ** 1.296 ** 1.125 ** 0.232 * 0.258 ** 0.004

Shrub 10th 0.801 ** 0.231 * 0.016 0.362 ** 0.282 ** 0.083 **
20th 0.687 ** 0.041 0.024 0.3 ** 0.211 ** 0.078 **
30th 0.668 ** −0.149 * 0.017 0.273 ** 0.213 ** 0.086 **
40th 0.668 ** −0.281 ** 0.066 0.264 ** 0.173 ** 0.079 **
50th 0.644 ** −0.313 ** 0.082 * 0.238 ** 0.183 ** 0.057 **
60th 0.6 ** −0.327 * 0.109 * 0.186 ** 0.183 ** 0.055 **
70th 0.552 ** −0.204 0.151 ** 0.162 ** 0.125 ** 0.056 **
80th 0.455 ** −0.179 0.235 ** 0.151 0.12 * 0.085 **
90th 0.284 0.009 0.376 ** 0.185 0.183 ** 0.095 **

Grassland 10th 0.282 ** −0.716 ** −0.227 ** 0.441 ** −0.09 ** −0.12 **
20th 0.221 ** −0.86 ** −0.287 ** 0.382 ** −0.118 ** −0.072 **
30th 0.194 * −0.942 ** −0.295 ** 0.324 ** −0.171 ** −0.046
40th 0.081 −1.004 ** −0.308 ** 0.286 ** −0.199 ** −0.046
50th 0.009 −1.038 ** −0.343 ** 0.251 ** −0.222 ** −0.034
60th −0.04 −1.075 ** −0.331 ** 0.175 ** −0.228 ** −0.024
70th −0.152 −1.125 ** −0.381 ** 0.139 * −0.268 ** −0.017
80th −0.155 −1.152 ** −0.454 ** 0.112 * −0.265 ** −0.014
90th −0.158 −1.185 ** −0.511 ** 0.125 * −0.297 ** −0.035 *

Cropland 10th −0.837 ** −0.561 ** −0.493 ** −0.637 ** −0.256 ** −0.726 **
20th −0.742 ** −0.719 ** −0.344 ** −0.59 ** −0.308 ** −0.667 **
30th −0.717 ** −0.789 ** −0.302 ** −0.613 ** −0.35 ** −0.664 **
40th −0.738 ** −0.887 ** −0.317 ** −0.621 ** −0.353 ** −0.644 **
50th −0.753 ** −0.955 ** −0.317 ** −0.609 ** −0.362 ** −0.564 **
60th −0.735 ** −0.983 ** −0.281 * −0.581 ** −0.403 ** −0.574 **
70th −0.724 ** −1.047 ** −0.17 −0.553 ** −0.403 ** −0.551 **
80th −0.791 ** −1.084 ** −0.114 −0.538 ** −0.373 ** −0.536 **
90th −0.866 ** −1.207 ** −0.164 −0.476 ** −0.361 ** −0.569 **

The asterisks * and ** indicate p < 0.05 and p < 0.01 respectively.

Shrubland had significant positive effects on the TC–WY trade-off, except for the
90th quantile in the Dianshi watershed, and the positive effects were larger in the Dianshi
watershed than in the Ansai and Linzhen watersheds, denoting that the TC–WY trade-off
in the Dianshi watershed is most sensitive to changes in shrubland. The positive effects
decreased as the quantile increased in Dianshi. The effects of shrubs on the TC–WY trade-
off presented a “U” pattern as the quantile increased in Ansai (shrubs intensified the
trade-off first and then reduced the trade-off). The effects on the TC–WY trade-offs were
enhanced as the quantile increased in Linzhen. Shrubs had significant positive effects
on SEC–WY trade-offs in the three watersheds, exhibiting the trend of Dianshi > Ansai
> Linzhen. The positive effects declined first and then rose as the quantile increased in
the three watersheds. For low- and medium-rainfall regions, shrubland had a stronger
influence on the SEC–WY trade-offs at low trade-off levels, and the influence was weaker at
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high trade-off levels. For high rainfall regions, the influence was stronger at high trade-off
levels and weaker at moderate trade-off levels.

Grassland only had significant positive effects on TC–WY trade-offs in the 10th–30th
quantiles in the Dianshi watershed, denoting that increasing grassland still exacerbated
trade-offs at low trade-off levels, but the influence of grassland disappeared at moderate
and high trade-off levels. In contrast, grassland significantly inhibited TC–WY trade-offs at
all trade-off levels in the Ansai and Dianshi watersheds. The inhibitory effect of grassland
was strongest at high trade-off levels and stronger in Ansai than in Linzhen. Grassland
had significant positive effects on the SEC–WY trade-offs in the Dianshi watershed, and
the effects decreased as the quantile increased. Whereas grassland significantly inhibited
SEC–WY trade-offs in the Ansai watershed, the inhibitory effects were the strongest at
high trade-off levels. The inhibitory effects were weaker in Linzhen than in Ansai, and the
regression coefficients were statistically significant only in the 10th, 20th, and 90th quantiles.
The results indicate that the water consumption of grassland could exacerbate trade-offs
in low precipitation regions, especially at low trade-off levels. However, grassland could
inhibit trade-offs in medium-precipitation and high-precipitation regions, so grassland
could be arranged in high trade-off regions.

Cropland had inhibitory effects on the TC–WY trade-offs in the three watersheds.
The regression coefficients fluctuated by approximately 0.77 in Dianshi, and the inhibitory
effects were the highest at high trade-off levels in Ansai and low trade-off levels in Linzhen.
Cropland also had inhibitory effects on the SEC–WY trade-offs in the three watersheds,
exhibiting the general trend of Linzhen > Dianshi > Ansai. The inhibitory effects were
highest at low trade-off levels in Dianshi and Linzhen and were highest at moderate
trade-off levels in Ansai.

3.3.2. The Threshold Values at Which ES Trade-Offs Respond to Land-Use Changes

The influences of independent variables of different ranges on dependent variables
can be revealed by piecewise linear regression, and we can use piecewise linear regression
to identify the inflection point of trade-off responses to land-use changes. As illustrated
in Figure 5, the intensive effect (slope of piecewise functions) of forest cover on trade-offs
was higher when the increment of forested land exceeded 34.0% and 18.6% in Ansai and
Linzhen, respectively, but this intensive effect was almost unchanged across the total
range of the independent variable in Dianshi. Shrubland reduced the trade-offs when
the shrub increased less than 8.2%, 20.1%, and −45.4% in Dianshi, Ansai, and Linzhen,
respectively, whereas shrubland exacerbated trade-offs when the increment exceeded these
thresholds. This phenomenon meant that the “golden mean” and limited increase in
shrubs were good strategies. TC and SEC were very small, and WY was large (trade-
off was intense) when there were few shrubs. In these circumstances, planting shrubs
would enhance TC and SEC with low water consumption, and the trade-off would be
reduced. However, the sustained planting of shrubs would reverse the relative size of
ESs and strengthen the trade-off due to water deficiency. Therefore, although the water
consumption of shrubs was less than that of forests, the water consumption of shrubs still
cannot be ignored. Grassland reduced the trade-offs when the grassland increased less
than 16.5% in Dianshi, but grassland exacerbated trade-offs when the increment exceeded
the threshold, which was caused by very low rainfall in Dianshi. Generally, it is more
reasonable to establish grassland in arid regions [5,52] because the water consumption of
grassland is usually lower and grassland can provide higher WY and maintain other ESs
at a relatively high level [5,25,27,53]. However, too much grassland may exceed the soil-
water carrying capacity for vegetation, especially in low rainfall areas such as the Dianshi
watershed. Grassland reduced trade-offs in Ansai, and the inhibitory action was relatively
stable across the total range of grassland change. Grassland reduced trade-offs in the initial
stage of grassland change in the Linzhen watershed, whereas grassland slightly enhanced
trade-offs when the increment of grassland exceeded −16.9%. The comprehensive analysis
of the threshold value, segmental slope, and land-use proportions of the initial period
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(2000) showed that to control ES trade-offs, forest needed to be limited, especially in the
Dianshi and Ansai watersheds, and shrubland proportions needed to be controlled at 8.5%
and 21.6% in Dianshi and Ansai, respectively, whereas grassland proportions needed to be
controlled at 58.0% in Dianshi. In addition, Wang et al. [29] also calculated the trade-offs
between soil moisture and soil organic carbon, total nitrogen, and species richness at a
single time point in the Loess Plateau of China, and the inflection point of the trade-offs
responding to the precipitation gradient was identified.

Figure 5. The threshold value at which ES trade-offs respond to land-use changes (trade-off value of
ordinate label was the mean value of TC–WY and SEC–WY trade-offs).

3.3.3. The Effects of Land-Use Transformation on ESs Trade-Offs

The conversion of cropland and grassland to forests and shrubland was the main rea-
son for the trade-off increase in the three watersheds, but which land-use transformations
could reduce the trade-offs were different in the three watersheds (Table 4). Grassland
conversion to cropland, cropland remaining unchanged, and grassland and cropland
conversion to construction land could reduce the trade-offs in the Dianshi watershed.
Grassland remaining unchanged, cropland conversion to grassland and construction land,
and grassland conversion to construction land could reduce the trade-offs in the Ansai
watershed. Forest and shrubland conversion to cropland could reduce the trade-offs in
the Linzhen watershed. Therefore, it is necessary to ensure a certain proportion of crop-
land in low precipitation regions as well as certain grassland in medium precipitation
regions, and forested land and shrubland need to be reduced appropriately in the high
precipitation region.

3.4. Recommendations of ES Regulation for Various Precipitation Regions

Forests are propitious to carbon sequestration, soil and water conservation, climatic
regulation, and atmospheric purification, but they are not propitious to water yield, es-
pecially in arid regions [11,50,54,55]. However, the function of cropland is contrary to
that of forested land [25,27]. As a land-use type, grassland is a compromise [5,27]. Thus,
regulating the proportions of several land use types can realize the balance of various
ESs and reduce their trade-offs. For the low precipitation region (Dianshi watershed),
the balancing of trade-offs could be achieved by restricting forest, shrub, and grassland,
increasing cropland properly in low trade-off areas, while keeping most of the current crop-
land unchanged, converting grassland to cropland reasonably, and converting grassland
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and cropland to construction land moderately in high trade-off areas. For the medium
precipitation region (Ansai watershed), restricting shrubs in low trade-off areas, restricting
forests, and increasing shrubs, grasslands, and croplands appropriately in high trade-off
areas could increase the balance in trade-offs, and specific land-use transformations such as
keeping current grasslands unchanged, converting cropland to grassland and construction
land, and slightly converting grassland to construction land could also improve the balance.
For high precipitation regions (Linzhen watershed), increasing cropland in low trade-off
areas, restricting forested land and shrubland, and increasing grassland and cropland in
high trade-off areas could help achieve balance. The main land-use transformation tactic is
the conversion of forest and shrubs to cropland. In addition, some useful measures can
be implemented in the whole study area, such as enhancing the quality of the current
vegetation, improving the community structure, increasing biodiversity, tending forests
and shrubs, rational grazing in grassland, employing conservation tillage, developing
water-saving agriculture, and applying forest-crop intercropping.

Table 4. Marginal (Marg, %) and conditional effects (Cond, %) of land-use transformation (LUT) on
ES trade-offs (mean value of TC–WY and SEC–WY trade-offs).

Dianshi Watershed Ansai Watershed Linzhen Watershed

LUT Marg LUT Cond LUT Marg LUT Cond LUT Marg LUT Cond

LCrO-FoL 43.1 LCRO-FOL43.1 LCRO-FOL45.9 LCRO-FOL45.9 LShL-CrO 43.4 LShL-CrO 43.4
LGrA-FoL 36.2 LGrA-CrO22.6 LGrA-FoL 43.7 LCrO-CoL 19.7 LFoL-CrO 35.3 LFoL-CrO 14.5
LGrA-CrO34.3 LCrO-ShL 9.6 LGrA-GrA20.3 LGrA-FoL 7.5 LGrA-FoL 22.6 LGrA-FoL 10.8
LCrO-CrO28.2 LCrO-GrA 7.1 LCrO-GrA19.1 LGrA-ShL 7.3 LCRO-FOL 6.6 LCRO-FOL11.3
LCrO-ShL 12.6 LCrO-CoL 12.1 LGrA-CoL 5.5 LGrA-ShL 6.6
LGrA-CoL 7.9 LGrA-CoL 9.9
LCrO-CoL 6.3 LShL-GrA 5.9
LGrA-GrA 5.0

FoL: forestland, ShL: shrubland, GrA: grassland, CrO: cropland, CoL: construction land, WaB: water body.
LCrO-FoL represents the land-use type change from cropland to forestland. Land-use transformation with gray
shadow represents negative effects on trade-offs, and others represent positive effects.

3.5. The Limitation of the Methods and Results

The InVEST model was used to calculate ESs in this study. Depending on many
advantages, such as simplicity and convenience, flexible operation, and strong spatial
expression ability of output results, the InVEST model is widely applied to ecosystem
management and decision making. However, the principles of calculations are simplified
for many ESs. For example, errors in the empirical parameters of the revised universal soil
loss equation (RUSLE) will therefore have a large effect on SEC predictions; WY calculation
is based on annual averages, which neglect extremes; TC is calculated by the summation of
the carbon content of the four major carbon pools, and ecological processes are ignored.
Other important issues are that biophysical parameters are too dependent on land-use
types, but land-use maps cannot reveal the differences within the same land-use type.
Despite this, the InVEST model is a powerful tool to map and value ecosystem services at
watershed and regional scales.

ESs are affected by land use, climate, soil, topography, and many other factors. Land
use influences carbon sequestration [56] and soil conservation directly [57], and it also
influences water yield by hydrologic processes [58]. Similarly, precipitation is the key factor
for carbon sequestration [59], soil conservation [60], and water yield [61]. Soil properties
affect plant growth [62], soil erosion [63], and hydrologic processes [64], and they are also
important factors for these three ESs. In this study, the effects of land use on ESs trade-offs
were analyzed in three precipitation regions, and other factors, such as soil, were not intro-
duced, which would limit the results and corresponding management recommendations.
Nevertheless, vegetation and soil exhibit zonal distributions across precipitation gradients
in the Loess Plateau of China [14]. The current geographical landscape is formed by the
collaborative evolution of many natural geographical factors. The regional differentiation
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of ESs across precipitation gradients implied differentiation across other environmental
gradients. Therefore, we only employ land use and precipitation to study ESs trade-offs.
Although there are certain limitations, the conclusions are reliable, and it is propitious to
apply the results in practice.

4. Conclusions

From 2000 to 2018, TC and SEC were enhanced, but WY decreased in the three
watersheds, and a trade-off relation can be identified between these two ESs and WY.
The effects of forests on the trade-offs were positive in the three watersheds, and the
main effects exhibited decreasing, increasing, and increasing trends as trade-off intensity
increased in Dianshi, Ansai, and Linzhen, respectively. The positive effect of shrubs on
TC–WY trade-offs exhibited a decreasing trend, a “U” pattern, and an increasing trend as
the trade-off intensity increased in Dianshi, Ansai, and Linzhen, respectively; these effects
on the SEC–WY trade-offs first declined and then rose in the three watersheds. Grassland
exacerbated trade-offs in Dianshi, whereas it reduced trade-offs in Ansai and Linzhen.
Regulating land-use proportions can realize the balance of three ESs and reduce their
trade-offs. For Dianshi, we can restrict forest, shrub, and grassland and increase cropland
properly. For Ansai, we can restrict shrubs in low trade-off areas, and we can also restrict
forests and increase shrubs, grasslands, and croplands appropriately in high trade-off areas.
For Linzhen, we can increase cropland in low trade-off areas, and we can restrict forest and
shrub but increase grassland and cropland in high trade-off areas.
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Abstract: Global climate change has become a hot topic in today’s international political, economic,
environmental and diplomatic arenas. China has implemented a series of strategies, measures and
actions to cope with climate change, which has promoted industrial transformation and human
resource adjustment in China’s state-owned forest areas. However, little is known about the role of
current human resource allocation in adaptation to climate change in the state-owned forest farm
of China. To address these gaps, this study calculated the current situation of human resource
structure and the contribution rate of three industries to the allocation of human resources and
the evaluation model of coordinated fitness to the climate changes in key state-owned forest farms.
The results show that: (1) The current situation of talent in key state-owned forest areas shows a
shortage of total amount, a shortage of high-level and highly educated talents, and aging of talents.
(2) The coefficient of structural deviation increased and the coefficient of structural-change synergy
kept decreasing, indicating that the coordination between human resource allocation and industrial
structure in key state-owned forest areas nowadays is only at the intermediate level of synergistic
fitness. The paper highlights the trained-professional human resource and the industrial structure
changes in the context of climate change as the main limited factors for the key state-owned forest
farms of China. Increasing the education investment for climate change and the economic income for
the employees are suggested to be promoted for policy makers in future.

Keywords: state-owned forest farms; human resource allocation; industrial structure; coordination
and adaptation; personal structure

1. Introduction

The crisis brought about by climate change is a daily occurrence, and the Copenhagen
Global Climate Change Summit in Denmark began to generate unprecedented global at-
tention towards ecological protection and global warming. Since the 21st century, China
has been very sensitive to global climate change and has gradually changed its strategy
of trading the environment for economic growth, and has begun to establish a red line
for ecological protection. The 17th National Congress of the Communist Party of China
(CPC) included the Scientific Outlook on Development in the Party Constitution, the 18th
National Congress of the CPC included the Scientific Outlook on Development in the
Party’s guiding ideology, and the 19th National Congress of the CPC held in 2017 made
significant innovations in both theoretical thinking and practical initiatives for the con-
struction of ecological civilization, including “Harmonious coexistence between human
beings and nature” in the new era of adherence to and development of the country, all of
which reflect the importance China attaches to environmental protection and sustainable
development and its role as a great nation. Northeast and Inner Mongolia state-owned
forest areas are an important part of China’s forestry construction and development, the
largest forest reserve resource cultivation base and timber and forest by-product supply
base, and play an important role in the construction of the forestry ecological system, as
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well as an irreplaceable ecological barrier for the country. Additionally, in the context of
global warming, in order to further protect the ecological environment, China launched
the implementation of the natural forest resources protection project for state-owned forest
areas in 2000, and started to implement the policy of completely stopping commercial
logging of natural forests in key state-owned forest areas in Northeast China and Inner
Mongolia in 2015, which brings great challenges to the development of forestry economy
in China’s state-owned forest areas, but also brings important opportunities for industrial
transformation. Green water and green mountains are golden mountains, and protecting
ecology is the process of protecting natural values and value-added natural capital, and pro-
tecting the potential and backbone of economic and social development [1]. In the context of
global warming, the development strategy of ecological civilization has put forward higher
requirements for the development of state-owned forest areas, promoting the change in the
forestry development mode of state-owned forest areas from timber-production-oriented
to ecological-restoration-and-construction-oriented, and from using forest resources for
economic benefits to protecting forests and providing ecological services [2]. The change in
the development model represents a comprehensive transformation of the social, economic,
and ecological fields in state-owned forest areas, and will inevitably have a significant
impact on the human resource structure of state-owned forest areas.

In the context of global climate change, key state-owned forest farms in China have
been influenced by relevant national policies, and industrial transformation has been more
drastic and rapid. In this process, especially after the implementation of the natural forest
protection project, the interaction and coordination between human resources allocation
and industrial structure is of great significance in promoting the development of forestry
economic transformation, but this issue has not yet received extensive attention. Therefore,
we make assumptions: (1). Climate change has an impact on the personal structure of key
state-owned forest areas. (2). Climate change has an impact on the industrial structure of
key state-owned forest areas. (3). Under the background of climate change, the allocation
of human resources and the coordination and adaptability of industrial structure in key
state-owned forest areas have changed.

The aims of this study are to (1) explore the current situation of the team of state-owned
forest farms; (2) discover the coordination of human resource allocation and industrial
structure. Following these aims, this study can support scientific evidence for the future
transformation and development of state-owned forest farms in team construction. Deeply,
this study can put forward countermeasures and suggestions to strengthen team construc-
tion within a larger and more reasonable framework to provide strong support for the
reform and development of state-owned forest farms and forestry and grassland industry.

This paper is organized as follows. The Introduction section introduces the research
background, literature review and theoretical analysis. The Materials and Methods sec-
tion explains the research design and data processing. The Results section describes the
empirical results and analysis. The last section offers discussion, conclusions and policy
recommendations.

1.1. Literature Review

Human resources are an important subject of social and economic construction and
development, and many scholars have studied the importance of human resources: Schultz
believes that human capital is a form of capital that expresses the indicators including
mental and physical labor condensed on the workers themselves in the form of quan-
tity [3–5]; Becker believes that human capital is the cost of investment in human resources.
Additionally, this investment is mainly in the form of money to influence the monetary
income and psychological activities of the talent [6,7]. As the most basic production factor
in the industrial sector, the reasonable allocation of forest workers will not only affect the ef-
fective performance of social productivity and the optimization and upgrading of industrial
structure, but also affect the smooth transformation and development of the state-owned
forest economy. The study of human resource allocation and industrial structure has been
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a key concern in economics, and British economists put forward the “Allotment-Clark
theorem”, which holds that with the increase in productivity and per capita national income
level, labor force employment is gradually transferred from primary industry to secondary
and tertiary industries until tertiary industry employment takes absolute advantage [8].
Some scholars further explored the law of change in industrial structure and verified the
theorem based on the time series data of 57 countries with different levels of development
around the world [9], after which American economists also put forward the theory that
employment structure transformation lags behind industrial structure transformation [10].
With the development of China’s economy, the problem of rational allocation of human
resources and industrial structure has gradually emerged, and more scholars have studied
the relationship between economic growth and employment, the relationship between
three industrial structures and employment in three industries, the impact of industrial
structure upgrading on employment structure, the relationship between tertiary industry
development and employment, and the interaction mechanism between talent structure
and industrial structure in China [11–13], but state-owned forest areas as the key area of
reform in the context of climate change. However, as a key area of reform in China under
the context of climate change, not much attention has been paid to the human resource
allocation problem in state-owned forest areas in the existing relevant studies, and they
mainly focus on the development of micro subjects and their measurement, and labor
migration [9,14–22].

1.2. Theoretical Contribution

According to the review for the existing theoretical research, the main contribution
of this study is to extend the talent predicament theory. To adapt to climate change,
state-owned forest farms in China have undertaken substantial activities to relieve the
negative effect of global warming. The talent predicament occurred because the professional
employees were needed when implementing these activities [23,24]. Therefore, this study
can connect the talent predicament theory with climate change. The second contribution
is to extend the study area of the climate change, from the physical theory to the human
resource theory. As one of the consequences of climate change, state-owned forest farms
in China are facing industrial transformation to better deal with the climate change; the
human resource is also coevolutionary to these changes. Therefore, in the context of global
warming and industrial transformation of state-owned forest areas in China, it is of great
practical significance to study the coordinated allocation of industrial structure and human
resources in state-owned forest areas to promote the development of economic and social
transformation of state-owned forest areas.

2. Materials and Methods

In this section, two sub-sections were designed to describe the detailed calculation
processes to address the aims concerned in this study. The first part is to introduce the data
sources from where the data were obtained. The second part is to draw the entire models.

2.1. Data Sources

Data on the output value and number of employed persons in each industry from 1998
to 2018 were obtained from the China Forestry and Grassland Statistical Yearbook (1998–2018).
As the China Forestry and Grassland Statistical Yearbook no longer provides statistics on the
number of people employed in each industry after 2018, only specific data for the period
1998–2018 will be analyzed.

This study conducted a questionnaire survey from October to December 2021 using
paper and electronic questionnaires to employees at all levels in key state-owned forest
areas in China; 800 documents were distributed and 731 valid questionnaires were received.
In general, the workforce in key state-owned forest farms is characterized by an obvious
aging trend, a low level of education, unreasonable job title levels, diverse professional
backgrounds and generally low incomes, etc. Various types of workforces have not had
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many opportunities to participate in training and learning in recent years, and problems
such as insufficient updating of knowledge, more serious brain drain and the need to
strengthen their ability to perform their duties are also prominent.

2.2. Data Processing Methods

In this sub-section, the data model of the industrial structure and human resource
industry structure and the construction of a coordinated suitability evaluation model are
described, respectively.

2.2.1. Industrial Structure and Human Resource Industry Structure

This study explores the regional industrial structure in terms of the share of each
industry in the regional economy in the total regional output, and measures its human
resource industrial structure in terms of the share of the population employed in each
industry in the total regional employment [18].

2.2.2. Coordinated Suitability Evaluation Model Construction

The evaluation model of the degree of coordination and appropriateness mainly
constructs the structural deviation coefficient, structure departure degree coefficient and
structural-change synergy coefficient to quantitatively evaluate the degree of synergy and
appropriateness between the existing human resources allocation and industrial structure
in key state-owned forest farms. The quantitative evaluation of the degree of synergistic
appropriateness between the existing human resource allocation and industrial structure in
key state-owned forest farms is calculated as follows [19,20]:

The structural deviation coefficient is a measure of the match with human resources
at the level of a single industry. When the structural deviation coefficient is greater than
zero, it indicates that the growth in output value of the industry is ahead of the growth
in employment of people, indicating that the industry can absorb more people into em-
ployment. When the structural deviation coefficient is less than zero, it means that the
growth of output value of the industry lags behind the growth of employment, indicating
that there is already a certain number of hidden unemployed people in the industry, and
this excessive number of people should be squeezed out from the industry. The closer the
structural deviation coefficient is to zero, the more the industrial structure of the industry
tends to match the human resource structure. The formula for the structural deviation
coefficient is:

Di = Pi/Wi − 1 (1)

where Di is the deviation coefficient of the structure of industry i; Pi is the ratio of the
output value of industry i to the total output value of the forestry industry in that year
(%); Wi is the ratio of the number of persons in industry i to the total number of employed
persons at the end of the year (%).

The structure departure degree coefficient assesses the extent to which the industrial
structure and human resources move in tandem at the overall regional level. The structure
departure degree coefficient represents the difference between the distribution of human
resources allocation and industrial structure in terms of “mean”, while the structural
deviation function measures the suitability of human resources and industrial structure
between different regions in terms of “variance”. The larger the actual measured value of
the total variance function (LP−W), the greater the variance between the human resource
allocation and industrial structure of the region, and the less synchronous the development;
conversely, the smaller the actual measured value (closer to zero), the more synchronous
the development of the human resource structure and industrial structure of the region,
and the closer to reasonable. The formula is:

LP−W =
3

∑
i=1

|Pi − Wi| (2)
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The structural-change coefficient describes the dynamic adaptation of the regional
human resources due to changes in the industrial structure. The mathematical nature of
the structural-change coefficient (CP−W) shows that 0 ≤ CP−W ≤ 1. The closer the actual
measured value of CP−W is to 1, the better the synergistic change property between the
2 structures in the region, i.e., the more sensitive the change in human resources is to the
change in industrial structure. The equation for the structural-change synergy function is

CP−W =
∑3

i=1 PiWi√
∑3

i=1 Pi
2 ∑3

i=1 Wi
2

(3)

using the grading standard of coordination fitness formulated, i.e., coordination fitness
grade. It refers to dividing the range of coordination fitness into several continuous
intervals; that is, dividing the coordination degree from 0 to 1 into 10 level intervals, each
interval represents a coordination level, and each level represents a kind of coordination
state, so as to form a continuous ladder (Table 1).

Table 1. Harmonized suitability grading scale.

CP−W in the Interval Degree of Coordination and Adaptation

Excellent coordination and adaptation 1.00 to 0.90
Good coordination and adaptation 0.89 to 0.80

Intermediate coordination adaptation 0.79 to 0.70
Primary coordination adaptation 0.69 to 0.60
Critical coordination adaptation 0.59 to 0.50
On the verge of maladjustment 0.49 to 0.40

Mild maladjustment 0.39 to 0.30
Moderate adaptation detuning 0.29 to 0.20

Severe maladjustment 0.19 to 0.10
Extremely well adapted to detuning 0.09 to 0.00

A linear regression analysis was used to investigate the trends in industrial structure,
human resource structure, structural deviation coefficient, structure departure degree coef-
ficient and structural-change coefficient in key state-owned forest farms during 1998–2018.
The S-W test showed that all indicators were approximately normally distributed except
for the structural deviation coefficients of secondary and tertiary industries, and data that
did not conform to normal distribution were processed by taking the natural logarithm e.

3. Results

In this section, three sub-sections were displayed to answer, for the state-owned forest
farms, (1) the current situation of the personal structure; (2) changes in industrial structure
and human resource allocation; and (3) changes in human resource allocation and industrial
structure coordination and adaptation, respectively.

3.1. Analysis of the Current Situation of the Personal Structure in State-Owned Forest Farms

The sample survey workers returned 731 questionnaires. In terms of academic struc-
ture, among the 731 people surveyed, 17 had postgraduate degrees, accounting for 2.33%
of the total; 262 had undergraduate degrees, accounting for 35.84% of the total; 241 had
college (secondary) degrees, accounting for 32.97% of the total; and 211 had high school
degrees or below, accounting for 28.86% of the total (Figure 1). In terms of the structure
of titles, among the 731 people surveyed, 143 had senior titles, accounting for 19.56% of
the total; 205 had intermediate titles, accounting for 28.04% of the total; 154 had junior
titles, accounting for 21.07% of the total; and 229 had no titles, accounting for 31.33% of the
total (Figure 2). In terms of the gender and age structure of the trained human resources,
among the 731 people surveyed, there were 497 men, accounting for 67.99% of the total;
and 234 women, accounting for 32.01%. There were 92 young trained human resources
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under 35 years old, accounting for 12.59% of the total; 437 trained human resources aged
36–50, accounting for 59.78% of the total; and 202 people aged 50 or above, accounting for
27.63% of the total (Figure 3).

Figure 1. Educational structure of trained human resources in key state-owned forest farms.

Figure 2. Structure of trained human resources titles in key state-owned forest farms.
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Figure 3. Age distribution of employees in key state-owned forest farms.
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The survey results found that there is a lack of participation in education and training
activities for cadres and workers in state-owned forest farms to update their knowledge and
improve their quality and ability. The investigation shows that 31.33% of the trained human
resources participating in the survey have not participated in any form of education and
training activities in the past three years, and only 23.12% of them have participated in more
than three training activities. The investigation shows that 67.72% of the respondents have
a sense of career crisis, of which 15.18% of them had a very strong sense of occupational
crisis, and only about 32% did not feel occupational crisis or did not think about the issue
of occupational crisis; when faced with the question of whether they were confident in
completing their work tasks, only 24.49% gave a positive answer, and nearly 80% said they
could not very well or were not sure whether they could complete their work tasks.

According to the survey results, 74.56% of the respondents believe that the current
human resources situation in state-owned forest farms is serious or very serious. As for the
current talent environment and talent policy, nearly half of the respondents thought that
the talent environment and policy were relatively good or very good. In terms of income,
only about 12% of the state forestry employees surveyed were satisfied with their current
income, and more than half were less than satisfied, with nearly 16% being very dissatisfied
with their income.

3.2. Changes in Industrial Structure and Human Resource Allocation in State Forestry from 1998
to 2018

There are differences in the trends in changes in the three industries in terms of in-
dustrial structure (Figure 4): the proportion of primary and secondary industries in the
total output value of key state-owned forest farms in the 20-year period both show fluctu-
ating changes until 2010, reaching maximum values in 2002 (42.83%) and 2007 (30.84%),
respectively, while both start to decline rapidly around 2010, reaching minimum values
(39.10% and 22.63%). Linear regression analysis showed that the primary and secondary
industries in key state-owned forest farms showed a significant downward trend between
1998 and 2018 (p < 0.05). The proportion of the output value of the tertiary forestry industry
in the total forestry output value increased year by year, especially after 2015, and gradually
exceeded the proportion of the output value of the secondary industry, and was roughly
the same as that of the primary industry (Figure 4), with the smallest proportion occurring
in 1998 (12.53%) and the largest in 2018 (38.28%). Linear regression analysis showed that
the tertiary industry in key state forest areas showed a significant upward trend (p < 0.05)
during 1998–2018.

Figure 4. Changes in the structure of output value of three industries in 20a key state-owned forest
farms. Note: (A–C) refer to primary industry, secondary industry and tertiary industry, respectively.
The dot represents the observed data; the solid line represents the locally weighted scatterplot
smoothing line; the dot line represents the linear regression.

In Figure 5, the allocation of human resources in the three industries in key state-
owned forest farms shows the following characteristics: (1) The proportion of employment
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in the primary industry fluctuated continuously between 1998 and 2018, without showing
a significant trend of change, reaching a maximum value of 95.16% in 2008 and a minimum
value of 90.32% in 2005, respectively, with an average value of 92.06%, which is significantly
higher than the proportion of employment in the primary industry in that period. The
average value was 92.06%, which was significantly higher than the proportion of the
primary industry in that period, and higher than the proportion of employment in the
secondary and tertiary industries in key state-owned forest farms in the same period.
(2) Linear regression analysis shows that the proportion of employment in the secondary
industry in key state-owned forest farms showed a significant downward trend during
the period 1998–2018 (p < 0.05), with the proportion of employment in the secondary
industry decreasing from the highest value of 7.87% in 1998 to 3.15% in 2010 from 1998
to 2010, with an average decrease of 0.22 percentage points per year, and from 2011 to
2015 produced some fluctuations and showed a downward trend again after 2016. (3) The
share of employment in the tertiary industry in key state-owned forest farms showed a
steady upward trend from 1998 to 2018 (p < 0.05), similar to the trend in the share of the
tertiary industry in GDP, rising from 0.08% in 1998 to 4.21% in 2018, with an average annual
increase of 0.21 percentage points, which indicates that the tertiary industry has a strong
characteristic of absorbing labor.

Figure 5. Changes in human resource allocation in the three industries in 20a key state-owned forest.
Note: (A–C) refer to primary industry, secondary industry and tertiary industry, respectively. The
dot represents the observed data; the solid line represents the locally weighted scatterplot smoothing
line; the dot line represents the linear regression.

3.3. Changes in Human Resource Allocation and Industrial Structure Coordination and
Adaptation in State-Owned Forest Farms

The deviation coefficient of primary industry structure (D1) in key state-owned forest
areas was negative from 1998 to 2018 (Figure 6), and it showed fluctuations between 1998
and 2007, while it rapidly decreased after 2008, showing a significant downward trend
overall (p < 0.05). The structural deviation coefficient (D1) of the primary sector reached
a minimum value of −0.58 in 2018, indicating that the negative deviation of the primary
sector from the structural equilibrium reached 0.58%, i.e., at least 0.58% of the employees
in the primary sector urgently need to shift to other industrial sectors. The coefficient of
deviation from the structure of the secondary industry in key state-owned forestry areas
was positive over the 20-year period, with a mean value of 8.03, and experienced a trend
of increasing and then decreasing: it increased each year between 1998 and 2009, with the
minimum value (3.75) occurring in 1998 and the maximum in 2009 (10.18), while rapidly
declining after 2010 and stabilizing after 2015, with the structural deviation coefficient in
2018 (5.42) basically the same as in 1998, which also indicates that there is still a small
shortage of forestry secondary industry personnel. The structural deviation coefficient of
the tertiary forestry industry in key state-owned forest farms gradually decreased between
1998 and 2009, then rapidly increased after 2010, and generally showed an upward trend
between 1998 and 2018 (p < 0.05), reaching a maximum value of 9.78 in 2018, which indicates
that there is still a large human resource gap in the tertiary forestry industry in 2018, with a
strong ability to absorb surplus personnel.
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Figure 6. Coefficient of deviation of the structure of the three industries in 20a key state-owned forest
farms. Note: D1, D2 and D3 represent the primary, secondary and tertiary industries of state-owned
forest areas, respectively. The dot represents the observed data; the solid line represents the locally
weighted scatterplot smoothing line; the dot line represents the linear regression.

From Figure 7, it can be seen that the overall industrial structure deviation LP-W in
key state-owned forest farms is relatively small, maintaining a mean value of 0.93, with
greater volatility between 1998–2010, while showing a significant upward trend overall
between 1998–2018 (p < 0.05). While the synergy coefficient of structural change in key state-
owned forest farms CP-W increased and then decreased during the 20a period, reaching
a maximum value (0.86) in 2007 and rapidly decreasing after 2010, reaching a minimum
value of 0.70 in 2018, showing a significant downward trend overall (p < 0.05), the synergy
suitability grading scale shows that the human resource allocation in state-owned forest
farms increased from 1998. This may be closely related to the reform of state-owned forest
farms and the promotion of natural forest protection projects.

Figure 7. 20a structure departure degree coefficient (A) and synergy coefficients (B) for structural
change in key state forest areas. The dot represents the observed data; the solid line represents the
locally weighted scatterplot smoothing line; the dot line represents the linear regression.

4. Discussion

Through the analysis of the current situation of the structure of the people in the key
state-owned forest farms, the following points can be found: (1) Trained human resources
are still in short supply. There is a lack of high-level innovative scientific and technological
trained human resources, and there are few leading forestry-trained human resources
with high visibility and greater influence, showing a trend of youthfulness. There is a
shortage of urgent specialists in emerging fields such as wetland protection, forestry to
cope with climate change, and forest rights transfer assessment. There is a large gap
between the supply and demand of practical and skilled trained human resources in forest
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management, forest breeding and cultivation, forest tourism, landscape engineering, wood
processing and special industries. The proportion of biased trained human resources is
large, and the number of composite trained human resources is too small. There is a
relative lack of trained human resources in the western region, and a general shortage
of trained human resources in grassroots units and small and medium-sized enterprises.
Some practitioners have low professionalism. Forestry system grassroots workers do not
have many opportunities to receive education and training, and the speed of knowledge
updating lags behind. Through continuing education and learning, employees’ cultural
literacy has improved, but most of the professions studied are non-forestry professions;
there is the problem of “learning not using”. In cadres of workers newly entered into
the forestry system and a large number of new forestry construction and production
practitioners, professional literacy needs to be improved. There is an urgent need to
supplement the learning of forestry knowledge and skills [23,24]. Grassroots units to attract
the workforce are not strong. Forestry is a tough industry with a long growth cycle and slow
output, in the fierce competition for workforce, placing it in a disadvantageous position. In
particular, forestry and grassroots units are remote, have difficult conditions, are closed
information, and suffer from economic underdevelopment and a low level of treatment;
the attractiveness of trained workforce is not enough, there is a long-standing shortage of
trained human resources into the problem, and the best workforce cannot be stabilized. In
one study [25], there was insufficient investment in the development of talent resources for
forestry enterprises and institutions for staff education, and training funds did not reach
the actual proportion of national regulations. Special funds for the development of the
forestry workforce were not included in the stable financial budget; workforce-training
funds for forestry key projects and major scientific research projects were not guaranteed,
resulting in the training and introduction of high-level forestry human resources. There is
an urgent shortage of trained human resources, forestry workforce education, and training
infrastructure and weak infrastructure for the education and training of forestry-trained
human resources; in addition, and the construction of a trained-human-resources service
system is relatively lagging behind. Zhi et al. [26] conducted a study on the current situation
of human resources in state-owned forest farms in China, which include state-owned forest
areas. The results indicate that state-owned forest farms tend to suffer from a lack of human
resources, aging employees, and a shortage of managerial and technical employees, similar
to the findings of this study [27–29].

The degree of coordination between human resource allocation and industrial structure
determines the effective development of regional social productivity and the optimization
and upgrading of industrial structure [30]. This study is based on data related to industry
and employment in key state-owned forest farms during 1998–2018. Based on the data
related to industry and employment in key state-owned forest farms during 1998–2018,
this study calculates the “structural deviation coefficient”, “structure departure degree
coefficient” and “structural change synergy coefficient” to establish a model for evaluating
the coordination and appropriateness of industrial structure and human resource allocation
in each year. The results are as follows: the coefficient of structural deviation of the primary
industry in key state-owned forest farms was negative from 1998 to 2018, and showed a
rapid decline after 2008, while the coefficients of structural deviation of the secondary and
tertiary industries were all positive, and the coefficient of structural deviation of the tertiary
industry decreased from 1998 to 2007. The coefficient of structural deviation of the tertiary
industry declined from 1998 to 2007, but increased rapidly after 2008, showing a significant
upward trend overall (Figure 6). The above may indicate that the primary forestry industry
in key state-owned forest areas does not have the ability to absorb more labor, and the
number of existing workers is still high, while there is a large employment gap in the
tertiary forestry industry, and the gap has gradually expanded after 2008. The coefficient of
structural deviation and the coefficient of structural-change synergy in key state-owned for-
est farms showed significant upward and downward trends during 1998–2018, respectively,
but both of them fluctuated significantly during the period 1998–2007, and showed a more
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obvious increase and decrease after 2008. In recent years, the coefficient of structural change
in state-owned forest farms has been hovering between 0.7 and 0.8, while the coefficient of
structural deviation has been increasing (Figure 7). Although the theoretical level indicates
that the development of human resources and industrial structure in key state-owned forest
farms is more synchronous, in terms of the volume of the economy and the actual situation,
there are no obvious leading industries in key state-owned forest farms today, and the scale
of high-value-added industries is small. The changes in the industrial structure, human
resource allocation and the suitability of the two in key state-owned forest farms over the
past 20 years are due to two reasons: firstly, the adjustment of the industrial structure due
to the change in national industrial policy during the period; and secondly, the lag in the
transformation of the workforce compared to the adjustment of industries. The second
is the lag in labor force conversion relative to industrial restructuring. Li and Wang [27]
analyzed the coordination measures of human resource allocation and industrial structure
in key state-owned forest areas in China from 2007 to 2015, and the results showed that the
coordination of human resource allocation and industrial structure in state-owned forest
areas was at the primary synergistic adaptation stage, similar to the findings of this study.

With global climate change and the strengthening of China’s attention to environmen-
tal protection, China carried out a series of reforms in key state-owned forest areas from
1998 to 2018, and the Natural Forest Resource Protection Project is one of the most important
reform measures. As the world’s first super ecological project focusing on the protection
of natural forests, the Natural Forest Resources Protection Project included more timber
restriction and logging suspension policies for key state-owned forest areas in Northeast
China and Inner Mongolia, which also led to the industrial transformation of state-owned
forest areas and gradually reduced timber production, which had a great impact on the
industrial structure of state-owned forest areas during 1998–2007, leading to fluctuations
and repetitions. Meanwhile, the secondary industry in state-owned forest areas began to
develop high-value-added products and large-scale production in this phase, which also led
to its GDP share reaching the highest value in this phase during 1998–2018 (Figure 4) [31].
With the acceleration of climate change, and in accordance with the principle of “common
but differentiated responsibilities” established by the UNFCCC [32,33], although China is
not currently obligated to reduce GHG emissions, as a responsible power, China is very
concerned about the unique role and strategic position of forestry in addressing climate
change. In 2007 and 2008, the State Council released the National Program for Addressing
Climate Change in China (hereinafter referred to as the National Program) and the Policies
and Actions for Addressing Climate Change in China, which explicitly included forestry
among the six priority areas for climate change mitigation and the four priority areas
for climate change adaptation in China. The 17th National Congress of the Communist
Party of China (CPC) held in 2007 included the scientific concept of development in the
party constitution, and strict forest harvesting limits were set in the 11th, 12th and 13th
Five-Year Plans [33]. The above national policy adjustments led to an accelerated industrial
transformation in key state-owned forest areas after 2008, with the GDP share of primary
and secondary industries rapidly decreasing and the share of tertiary industries increasing
(Figure 4). However, there is often a lag in the transformation of human resources alloca-
tion relative to changes in industrial structure (Figure 5) [34] Although the change in the
industrial structure of key state-owned industries has caused changes in the allocation of
human resources in the three industries, a cross-sectional comparison between industries
reveals that, compared to the gradually declining marginal output levels per capita in the
primary and secondary industries, there is still a large degree of room for improvement
in the productivity and innovation development levels of the tertiary industry, and there
is still a large human resource gap, and the industry has a large potential for allocating
human resources in the future.
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5. Research Limitation

This study theoretically contributed one new line between the climate change and
personal structure in the state-owned forest farms, which are facing multiple challenge
to adaptation to climate change. The behavior of the educated trained employees will
play crucial roles in mitigation of climate change [35]. The main limitations of the study
and future direction of research will be considered as follows: (1) The latest data were
not collected. The time range of this study is from 1998 to 2018, and there is no relevant
collection from 2019 to 2021, which can be collected and further studied in the future. (2) In
addition to state-owned forest areas, there are also certain changes in the personal structure
of state-owned forest farms in various regions of China under the background of climate
change, but our study does not involve state-owned forest farms, which can be studied in
the future. (3) Due to limited conditions, only 731 questionnaires were withdrawn. The
number of questionnaires should be increased in future research.

6. Policy Recommendations

The current situation of trained human resources in key state-owned forest farms
shows a shortage of the total number of trained human resources, a shortage of high-level
and highly educated trained human resources, and the aging of trained human resources,
which requires strengthening and improving the work of trained human resources in state-
owned forest farms in terms of the concept and development direction of the workforce,
the key workforce, the working system and mechanism, the education and training system,
and the livelihood protection. During the period 1998–2018, the contribution rate of the
primary industry in state-owned forest areas to the economy and to the allocation of
human resources in key state-owned forest farms gradually declined. The contribution
rate of the secondary industry in state-owned forest areas to the allocation of human
resources gradually stabilized, and its ability to absorb surplus workers was limited. The
tertiary industry developed most rapidly among the three industries, and its development
efficiency showed a gradual improvement, with a greater potential to absorb surplus
workers subsequently. The development of human resources and industrial structure
in key state-owned forest farms has generally been relatively synchronous over the past
20 years, and the degree of coordination and appropriateness of the two can be maintained
at an intermediate level or above, but the fluctuation and repetition of industrial structure
and human resources allocation in each industry were more drastic between 1998 and
2007, and the coordination between human resources allocation and industrial structure in
key state-owned forest farms has been decreasing in recent years since 2008, with 2018’s
coefficient of structural deviation and synergy coefficient of structural change both reaching
their maximum values during the period 1998–2018, showing that the allocation of human
resources in industrial sectors is not as reasonable and at a lower level. The reasons for
this may be (1) the industrial restructuring in key state-owned forest farms due to the
promotion of the CPC’s natural forest protection project and the policy of banning logging
and halting logging in forestry; (2) the large lag in labor force conversion itself compared to
the rapid restructuring of industries driven by national policies.

The large-scale reduction in forestry production as well as the transformation and
development process of key state-owned forest farms, human resources allocation, and
industrial structure adjustment are the two key issues of concern in the transformation and
development to achieve a reasonable and coordinated development of human resources
allocation and industrial structure. In terms of the workforce, it should not be rushed, and
the solution should be combined with the actual situation to explore and innovate a reform
path suitable for the development of trained human resources in forest areas according to
local conditions, which can be started from the following aspects: In terms of industrial
structure, firstly, the construction and investment of the tertiary forestry industry should
be strengthened to increase the ability of the tertiary industry to absorb surplus personnel.
The tertiary industry in forestry is the main direction of comprehensive transformation
and development in key state-owned forest farms; key state-owned forest farms can make

324



Sustainability 2022, 14, 9667

full use of natural snow and ice resources in winter with skiing and fog sightseeing as the
main content. The forest recreation industry can implement forest rafting in summer with
forest resources as the main content throughout the forest area as the theme, and gradually
expand and strengthen the tertiary industry chain to provide employment opportunities
for surplus personnel. Secondly, the industry should actively promote the optimization and
upgrading of the secondary industry; deepen the wood deep-processing industry chain;
increase investment in science and technology; expand the scale of production; enrich
the variety of forest products in order to achieve the purpose of driving the development
of other production projects; change the situation of the primary industry and the raw
material production industry to make a large contribution to employment; and enhance
the ability of the secondary and tertiary forestry industries to absorb human resources.

7. Conclusions

This study analyzes the current situation of personal structure in key state-owned
forest farms of China under the background of climate change, and empirically analyzes
the coordination between human resource allocation and industrial structure in key state-
owned forest farms within the background of climate change by establishing an evaluation
model of the contribution and coordinated suitability of each industry to human resource
allocation. The trained-professional human resources and the industrial structure changes
in the context of climate change are the main limited factors for the key state-owned forest
farms of China. Therefore, increasing the education investment for climate change and
the economic income for the employees are suggested to be promoted for policy makers
in future.
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Abstract: The frequent occurrence of extreme high temperature weather and heat waves has greatly
affected human life. This paper analyzes population exposure and its influencing factors during
a heat wave incident in Zhuhai from 6 to 12 September 2021 based on real-time mobile phone
data and meteorological data. The results show that the most areas of Zhuhai are affected by high
temperature during this heat wave incident. The hourly population exposure is directly proportional
to hourly heat wave coverage. In terms of time dimension, the overall population exposure shows a
trend of decreasing and then increasing. In terms of spatial dimensions, high population exposure
is concentrated in areas such as primary and secondary schools, colleges and universities, office
buildings, and residential areas. Low exposure is distributed in most of the mountainous areas along
the southern coast. In addition, the leading factors that cause changes in population exposure in
different periods of the heat wave cycle are different, which rely more on either climatic factors or
population factors.

Keywords: heat wave; high temperature; population exposure; mobile phone data; impact factor;
Zhuhai City

1. Introduction

In October 2018, the United Nations Intergovernmental Panel on Climate Change
(IPCC) stated in its special report “Global Warming of 1.5 ◦C” that human activities are
estimated to have caused global warming to be about 1.0 ◦C higher than the pre-industrial
era, with a possible range of 0.8 ◦C to 1.2 ◦C [1]. Extreme weather has occurred more
frequently in recent years due to climate change. The “2021 Global Risk Report” indicates
that in the next 10 years, incidents caused by extreme weather are one of the top risks to be
faced by the world which poses a threat to human well-being [2]. Heatwaves, as one of the
most typical extreme weather incidents, shows a potential increase in frequency, intensity,
and duration under the effects of climate change [3], which not only causes irreversible
destruction to natural environment but also a great impact on human life [4–6].

Heatwaves are generally defined as a long spell of hot days with extremely high
temperature which puts a risk to human health, while most studies also take duration
and intensity of heatwaves into account [7]. However, in China, a day with a maximum
temperature ≥35 ◦C is generally defined as a high temperature incident, and a span of over
three consecutive high temperature incidents is defined as heat wave [8]. Studies show
that the frequent occurrence of extreme heat incidents has posed a threat to human health
and also has a negative impact on people’s daily life and social economic development [9].
Therefore, research on high temperature disasters has attracted widespread attention from
government departments and the scientific community and has become a hot spot in
climate change research [10–12].
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Current research on high temperature disasters mainly focuses on high temperatures’
temporal and spatial characteristics, including intensity, occurrence frequency, and duration,
etc. [13–24]. Risk assessments [11,25–30] and vulnerability (sensitivity) assessments [31–49]
of high temperature disasters are increasing, which becomes a strong support for urban
high temperature risk prevention and community disaster prevention management. In
addition, some scholars conduct research on urban structure to improve the climate change
adaptability and urban sustainability [50,51]. It cannot be ignored that humans are the
main victims of heat wave disasters. Studies have confirmed a significant relationship
between high temperature and population morbidity and mortality [52,53]. Therefore, it is
particularly important to identify the population exposure of a region under heat waves.
At present, some scholars have studied the population exposure under heat waves based
on climate and population scenario data [54–58]. However, earlier studies are mostly based
on static statistical data from city administrative units which are not up to date and lack
precision, thus, it is hard to reflect the near-real-time exposure risk of population in the
affected areas and to measure risk and damage degree of disaster to population spatially
and temporally [59]. With the development of big data, data such as mobile phone data
and Weibo sign-in data with high accuracy, large coverage area, and high update frequency
have provided richer data sources for research that requires temporal and spatial accuracy
of the population.

Under these conditions, this paper takes a heat wave incident from 6 to 12 September
2021 in Zhuhai city as an example to discuss the spatial issues of population exposure
under one heat wave incident from a geographical perspective. Meteorological monitoring
data and mobile phone data were processed on a GIS software platform to obtain real-time
temperature and population distributions. Meanwhile, the dynamic changes of population
exposure were analyzed by using grid as the basic analysis unit, and the influencing factors
of population exposure changes were further explored. This study not only shows areas
that are affected more by the heat wave with finer real-time population distribution and
temperature but can also be used to prevent and cope with heat waves and improve the
urban environment.

2. Materials and Methods

2.1. Study Area

Zhuhai City is located in the southcentral part of Guangdong Province, China, with
longitude from 113◦03′ E to 114◦19′ E and latitude from 21◦48′ N to 22◦27′ N. The inland
area of Zhuhai City consists of hills, coasts, and plains of the Phoenix Mountain and
Jiangjun Mountain, which faces Hong Kong across the sea to the east, connects with Macau
in the south, Taishan City to the west, and Zhongshan City to the north. It has three
administrative regions. As of the end of 2020, the land area of Zhuhai is 1736.45 km2.
Zhuhai City has a transitional oceanic climate between south subtropical and tropical,
with obvious alternating winter and summer monsoons, high temperature throughout the
year, with an average annual temperature of 23.8 ◦C, and an average annual rainfall of
1799.2 mm. From 1979 to 2000, the daily extreme maximum temperature occurred on 10
July 1980, with a temperature of 38.5 ◦C [60]. During the study period of this article, the
highest maximum temperature of some weather stations in Zhuhai City was monitored
as high as 39.5 ◦C. The “Communiqué of the Seventh National Census of Guangdong
Province” pointed out that the 10-year growth rate of Zhuhai’s permanent population
ranks second in Guangdong Province. With the support of national policies and its own
location advantages, Zhuhai has become an important city in Pearl River Delta and even
the Guangdong–Hong Kong–Macao Greater Bay Area.

2.2. Data
2.2.1. Meteorological Data

The temperature data involved in this article come from the monitoring data released
by the Zhuhai Meteorological Administration. There are 31 weather stations in the research
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area, which are more evenly distributed throughout Zhuhai City, the spatial distribution is
shown in Figure 1. In early September 2021, due to the combined effects of the downdraft
surrounding the strong tropical storm “Conson” and the super typhoon “Sando”, along
with subtropical high pressure, the weather in Zhuhai was hot, and the high temperature
weather intensified, which led to the city’s socioeconomic and population exposure risks
to increase. Based on the definition of heat waves given by China Meteorological Admin-
istrations: A heat wave is a span of at least 3 consecutive days with highest temperature
over 35 ◦C [8]. Meteorological monitoring and high temperature warning information
issued by the Zhuhai Meteorological Administration in September 2021 are screened for
heat wave incidents, and one from 6 to 12 September 2021 is finally selected as the study
period. The average temperature of various meteorological stations in Zhuhai (Figure 2a)
indicates that the average temperature of Zhuhai has obviously increased during the study
period. Figure 2b shows the hourly maximum temperature and the number of stations
reaching high temperatures of various meteorological stations in Zhuhai. We can see that
the maximum temperature of meteorological stations in a day generally occurs between
12:00 and 18:00. Starting from 9 September, the number of high-temperature stations in
the city has increased significantly; there are 14, 9, 18, and 27 high-temperature stations
above 35 ◦C. Since the 11th, more than half of the meteorological stations have monitored
continuous high temperature, and the highest temperature reached 38.81 ◦C. In order to
better present the exposure of Zhuhai’s population under heat waves, this article is based
on the ordinary kriging method to conduct meteorological data. Spatial interpolation
analysis is used to obtain a spatial and temporal distribution map of temperature in the
entire area of Zhuhai, and then the hourly temperature data are rasterized and resampled
to a 500 m × 500 m grid.

Figure 1. Location of Zhuhai in China and weather stations.

2.2.2. Population Data

The population data in this article involve both statistical population and mobile
phone data, among which the permanent resident population comes from the “Zhuhai
City Seventh National Census Bulletin” issued by the Zhuhai Bureau of Statistics in 2021,
and the mobile phone data come from China Mobile operators, including all China Mobile
users in Zhuhai in September 2021. The hourly population data are the anonymous mobile
phone data, which are collected at the same frequency as temperature monitoring data.
After the data are obtained, the geographic information system platform software ArcGIS
is used to divide Zhuhai into 500 m × 500 m grids. According to the mobile phone data,
the geographic coordinates of the base station to which the data belong will be gathered
at the grid level, and each grid contains the population data within the corresponding
geographic location.
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Figure 2. (a) Hourly average temperature and number of high temperature weather stations;
(b) Hourly maximum temperature and number of high temperature weather stations.

2.3. Methods
2.3.1. Hourly Population Distribution Estimates

The mobile phone data can accurately locate spatial locations of the population and
obtain real-time population data in a small scale, which makes it possible to achieve accu-
rate small-scale research. However, there are still residents without mobile phones, one
person can have multiple SIMs, and there are market share and data barriers between
different providers. Raw mobile phone data cannot show real-time population distribution
accurately without a trim. Therefore, this article draws on some scholars’ processing meth-
ods of mobile phone data [59,61] in order to estimate the real-time population distribution
by integrating mobile phone data and Zhuhai City’s seventh census data. The first step
is to calculate the mobile phone data population weight of each grid, then calculate the
weighted statistical population and add it to the mobile phone population of each grid.
Therefore, the result obtained is closer to the actual population distribution. The calculation
steps are as follows:

pwij =
pij

∑m
j=1 pij

(1)

PTij = pwij × ptotal + pij (2)

where pwij is the population weight, pij is the number of cell phone locations in the
grid number j at the i time point, m represents the total number of grids, PTij is the
total population in the grid number j at the i time point, and ptotal is the seventh census
population of Zhuhai City.

2.3.2. Population Exposure Estimation

This article defines the population exposure of heat waves as the number of people in
the high temperature grid at 35 ◦C and above per hour. In order to study the population ex-
posure changes during the heat wave cycle in Zhuhai, this paper calculated the population
exposure during the study period. The specific calculation formula is as follows:

PEij =
PTij × T≥35 ◦C

t
(3)

where PEij is the population exposure of the grid number j at the i time point, PTij repre-
sents the population number in the grid number j at the i time point, T≥35 ◦C represents all
grids where the temperature is 35 ◦C and above, and t is Time (h).
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2.3.3. Analysis of Factors Affecting the Change of Population Exposure under
High Temperature

The population exposure of the heat wave is a function of the two factors of population
and high temperature. By drawing on the contribution rate of different influencing factors
to the population exposure under the heat wave calculated by other scholars [12], the results
suggests that the population exposure of high temperature changes are mainly affected by
high temperature weather, population number, and population distribution changes, which
can be decomposed into the impact of climate factors (temperature changes, population
numbers remain unchanged), population factors (temperature unchanged, population
changes), and the combined effects of population and climate factors (both temperature
and population change).

The calculation method of the contribution rate of different influencing factors in the
population exposure changes under the heat wave is as follows:

Contribution rate of climate factors :
PTij × |ΔT≥35 ◦C|

PEij
× 100% (4)

Contribution rate of population factor :
T≥35 ◦C × ∣∣ΔPTij

∣∣
PEij

× 100% (5)

The common contribution rate of population and climate factors :

∣∣Δt≥35 ◦C
∣∣×∣∣ΔPTij

∣∣
PEij

× 100% (6)

In the formula, PTij × |ΔT≥35 ◦C| is the influence of the population factor; T≥35 ◦C ×∣∣ΔPTij
∣∣ is the influence of the climate factor;

∣∣ΔT≥35 ◦C
∣∣×∣∣ΔPTij

∣∣ is the combined effect of
both the population and climate factors. About delta, it refers to a fluctuation value. For
example, ΔT≥35 ◦C refers to the temperature change on different days at the same time. For
example, ΔT≥35 ◦C refers to the change in temperature difference between 6 September
at 14:00 and 7 September at 14:00. ΔPTij refers to the amount of population change on
different days at the same time. For example, ΔPTij refers to the population change in the
jth grid at the ith time point between 7 September and 6 September.

3. Results

3.1. Temporal and Spatial Distribution Characteristics of Heat Waves

According to the temperature distribution map of Zhuhai City (Figure 3), it shows
that on 6 September and 8 September, some meteorological stations had short-term high
temperatures at 13:00, 14:00, and 15:00. However, there is no significant high temperature
phenomenon in the study area within the period. Throughout the entire heat wave incident,
starting at 12:00 on 9 September, it gradually strengthened on 11 September and reached a
peak on 12 September. Table 1 shows the statistical results of the evolution of percentage of
heat wave coverage over time from 12:00 to 18:00 during the study period, which lasted
four days (9 September–12 September), starting at 12:00 on 9 September. The temperature
dropped on 10 September, and the range of the heat wave expanded rapidly from 12:00 on
11 September, with a growth rate of 36.64 times that of 12:00 on 9 September. The duration
was also delayed by 2 h from the previous 2 days. As of 12 September, the large-scale
heat wave radiation effect appeared 2 h earlier than the previous 3 days. The heat wave
coverage reached 71.57%, and the growth rate was 1.94 times of 9 September at 14:00.
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Figure 3. Spatial distribution of temperature at 14:00 during the study period.

Table 1. Percentage of area covered by heat wave (%).

12:00 13:00 14:00 15:00 16:00 17:00 18:00

2021/9/6 0 0.55 0 1.51 0 0 0
2021/9/7 0 0 0 0 0 0 0
2021/9/8 0 0 0 0 0 0 0
2021/9/9 0.74 8.18 36.79 42.78 5.06 0 0

2021/9/10 0 6.43 18.79 16.54 7.95 0 0
2021/9/11 27.11 5.72 31.97 40.97 44.50 33.68 4.60
2021/9/12 16.74 56.13 71.57 69.23 62.01 41.57 7.38

According to the diurnal variation of temperature, the highest temperature in a day
appears at 14:00. This article takes the spatial distribution of temperature at 14:00 during
the heat wave cycle day as an example (Figure 3). It shows that the temperature trend in
Zhuhai City is generally distributed in a north–south direction or a southeast–northwest
direction. The high temperature area (≥35 ◦C) in Zhuhai City has the characteristics of
high in the north and low in the south, high in the northwest, and low in the southeast. The
mountainous and coastal areas in the southeast of Jinwan District and east of Xiangzhou
District are less affected by heat waves than other areas. Sustained high temperatures
are mainly concentrated in most areas of Doumen District, the northern part of Jinwan
District, and parts of western Xiangzhou District, where these areas have flatter terrain,
higher population densities, and higher industrial densities. The dual effects of natural
high temperature and man-made heat have caused the temperature in these areas to be
higher than in other areas.

3.2. Temporal and Spatial Distribution Characteristics of Population Density

Based on the weighted calculation of hourly mobile phone data and statistical popu-
lation data, the hourly population spatial distribution during the study period in Zhuhai
City is obtained from 12:00 to 18:00. Figure 4 shows the population density distribution
map at 14:00. It indicates that the high-value areas of population density are located in
the central part of Xiangzhou District (the central city of Zhuhai City), and the low-value
areas are scattered in the western area of Zhuhai City. The population spatial distribution
of Zhuhai shows “less at both ends and more in the middle” in north–south direction;
“more coastal areas in the east and less inland areas in the west” in east–west direction. The
population density distribution of Doumen District and Jinwan District in the west is in a
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ring shape, while the Xiangzhou District in the east shows a clump distribution. Judging
from the distribution trend, in the north–south direction, the population of Zhuhai City is
concentrated at the central border of Doumen District and Jinwan District and the middle
of Xiangzhou District. In the east–west direction, the population of Zhuhai City is mainly
concentrated in the eastern coastal areas, and it is gradually decreasing to the western
inland areas. During the study period, the population of Zhuhai City did not change
much, and the areas with significant population increase were mainly scattered and dotted.
From the daily hourly population density change rate during the study period (Figure 5),
the hourly population density change rate in Zhuhai City has the largest fluctuation on
6 September (Monday), and the smallest fluctuation occurred on 12 September (Sunday).
Obviously, there are significantly more commuters on weekdays than on weekends. In
addition, we can also see that the population density change rate of non-heat wave cycle
days (6 September–8 September) during the study period is significantly higher than that of
the heat wave cycle days (9 September–12 September). During the 4 days of the continuous
heat wave, the hourly population density change rate decreased day by day. The sudden
increase on 11 September (Saturday) was related to the increase in crowd travel activities.
The high heat wave reached its peak on 12 September. The weather caused a decrease in
outdoor activities, which explains that the population density change rate is the lowest
compared to previous days.

 
Figure 4. The spatial distribution of population density at 14:00 during the study period.

3.3. Temporal and Spatial Characteristics of Population Exposure

In order to clarify the temporal and spatial distribution of population exposure during
the heat wave period, this article defines the area below 35 ◦C as the heat wave zero
exposure area, and people in this environment are accordingly deemed not to be harmed;
meanwhile, for part of the time period when there is no population distribution in the
heat wave area, the population exposure is counted as 0, and finally, the heat wave area
containing the population distribution is regarded as the population exposure area under
high temperature, and the hourly population exposure percentage analysis is carried out
from 12:00 to 18:00. The statistical results are shown in Table 2. By comparing Figure 6,
it shows that the time-to-hour exposure of the dynamic population is consistent with the
time-to-hour high temperature range. The strongest heat wave population exposure was on
12 September, and the population exposure percentage was as high as 55.99%, followed by
9 and 11 September. It indicates that during the heat wave cycle, the population exposure
of the first two days (9 September and 10 September) was mainly concentrated from 13:00
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to 15:00, it began to fade at 16:00, and it finally hit 0 at 17:00 and 18:00; starting from 11
September, the population exposure starts to increase, when the time has been delayed by
2 h compared to previous two days, and the number of people affected by high temperature
weather has increased. Taking the heat wave population exposure at 14:00 during the
heat wave period (9 September–12 September) as an example, the population exposure
to high temperature in Zhuhai is 543,900, 149,200, 479,000, and 1.214 million, respectively.
Due to temperature changes on 10 September, the population exposure has decreased
compared to 9 September. Starting on 11 September, the population exposure has increased,
increasing by 3.2 times and 8.13 times, respectively, compared to 10 September. After
10 September, the population exposure of Zhuhai City has increased significantly. It is
necessary to pay attention to negative impacts of high temperature on human health and
focus on strengthening the early warning and prevention of high temperature.

 
Figure 5. Hourly population density change rate during the study period.

Table 2. Hourly population exposure percentage during the study period (%).

12:00 13:00 14:00 15:00 16:00 17:00 18:00

2021/9/6 0 0.1 0 0.19 0 0 0
2021/9/7 0 0 0 0 0 0 0
2021/9/8 0 0 0 0.17 0.22 0 0
2021/9/9 0.17 1.78 23.52 24.3 1.35 0 0

2021/9/10 0 3.06 6.39 4.12 1.36 0 0
2021/9/11 0 1.16 20.75 25.98 30.76 23.27 0.64
2021/9/12 10.61 55.99 52.64 42.4 37.63 22.43 1.49

Taking the spatial distribution of temperature and population density in Zhuhai at
14:00 during the study period as the background, combined with the spatial distribution
of population exposure at the same time (Figure 6), it indicates that the persistent heat
wave concentration area is always in Doumen District. The population in the north and
west regions of the district is distributed in a circular pattern, with population exposure
between 0~1000/person (km2), which is at a relatively low level; Jingan Town and Baiteng
Sub-districts in the east region with the most primary/secondary schools, colleges, office
buildings, and residential areas have a population exposure rate higher than 5000 per
person (km2).
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Figure 6. Spatial distribution of population exposure at 14:00 during the study period.

3.4. Analysis of Factors Affecting the Change of Population Exposure under Heat waves

Changes in population exposure under heat waves not only depend on climatic factors
(temperature) but also on the scale of the population and its distribution. Looking into heat
wave cycle (Table 3) on 10 September, compared to 9 September, the population exposure
change on 10 September is mainly affected by population factors, while the population
exposure changes in the last two days of the heat wave cycle are mainly affected by the
combined influence of population factors and climate factors.

Table 3. Contribution rate of influencing factors of the change in population exposure throughout
the day during the high temperature cycle in Zhuhai City.

Population Exposure Changes Climate Factors (%) Population Factors (%) Climate and Population Factors (%)

Sept 10 vs. Sept 9 31.17 46.86 21.97
Sept 11 vs. Sept 10 10.69 27.50 61.82
Sept 12 vs. Sept 11 29.98 34.82 35.20

Considering that the population exposure of Zhuhai City under the heat wave incident
mainly appeared at 13:00, 14:00, 15:00, and 16:00, only the factors affecting the changes in
population exposure at these timestamps were analyzed (Figure 7). From the perspective
of different periods of the heat wave cycle, the leading factors of population exposure
changes are different. From 13:00 and 14:00, the changes in population exposure between
10 September and 9 September and 11 September and 10 September are most affected by
the population factor. The change in population exposure between 12 September and 11
September is mainly affected by the combined effects of climatic factors and population
factors. At other time points, the dominant factors affecting population exposure changes on
each day of the heat wave cycle are different. Comparing the contribution rate of each factor
in the heat wave cycle, it shows that the population factor’s contribution rate of exposure
changes gradually decreases, and its contribution rate gradually decreases from 66.16% and
77.69% to 3.13% and 17.19% between 10 September and 9 September and 11 September and
10 September, respectively. The contribution rate of climate factors to changes in population
exposure has shown an increasing trend over time between 11 September and 10 September
and between 12 September and 11 September. The comprehensive influence of climate
factors and population factors has no obvious regularity in each period.

335



Sustainability 2022, 14, 997

 
Figure 7. Contribution rate of influencing factors of population exposure changes at different time
points in the heat wave cycle of Zhuhai City.

4. Summary and Discussion

This paper analyzes the population exposure situation in Zhuhai City under one heat
wave incident from the perspective of geography. The real-time weather station data and
mobile phone data present the temperature changes and population distribution in Zhuhai
City more accurately, which helps to reveal the changes in population exposure under high
temperature and to identify the hot spots of population exposure changes. Meanwhile,
this article also analyzes the influencing factors of population exposure changes under
high temperature, which has certain practical guiding significance for more effective high
temperature warning and high temperature disaster risk prevention.

This paper finds that population exposure under heat waves is not only related
to climate factors but also related to population factors. Areas with high population
density and that are economically developed may not necessarily have high population
exposure, and vice versa. In general, the population exposure of Zhuhai City has increased
significantly during this high temperature cycle. Although it is not concentrated in the
downtown area of Zhuhai, most of the other areas are affected by the high temperature. It
is worth noting that the population exposure areas are mainly concentrated near schools,
commercial buildings, industrial parks, and residential areas. The population in these areas
is susceptible to high temperatures and has weak adaptability to high temperatures. In fact,
indoor and outdoor population heat exposure is different [62–64], and the resident’s age,
gender, occupation, disease status, medical resources, economic level, and other factors will
affect the degree of residents’ response to high temperatures and heat waves. Especially,
construction workers, couriers, and takeaway delivery workers who work under high
temperature exposure are mobile sensitive groups that need urgent attention under heat
waves [65,66]. Therefore, these areas should focus on strengthening the early warning
and prevention of high temperature, and this article needs to make improvements in the
above aspects.

However, the research in this article still has some shortcomings: First, in terms of
data acquisition, it is difficult to obtain hourly meteorological data throughout the year.
In addition, mobile phone data are confidential and are difficult to obtain. Therefore,
this paper only analyzes the population exposure under one typical heat wave incident
during the data collection period. As far as the heat wave incidents occurring in history,
this is only an ordinary heat wave incident. In fact, a typical event in history is more
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convincing [67]. Secondly, in terms of methods, for the analysis of the influencing factors
affecting population exposure under heat waves, this paper discusses the two aspects
of climate factors and population factors at the macro-scale. In fact, urban structure,
socioeconomic status, and urban ecological conditions at the micro-scale also have an
impact on population exposure to heat waves, which is not explored in this paper [12,50,51].
Finally, the results of this paper only refer to the population exposure situation in Zhuhai
City under one heat wave event, which can contribute to the disaster prevention and
mitigation planning of Zhuhai City and are not universally representative. If more abundant
data can be obtained in the future, we will improve the above shortcomings.

5. Conclusions

This paper selected Zhuhai City as the heat wave research area. Taking a heat wave
incident in September 2021 as an example, based on Zhuhai city’s hourly meteorological
data, statistical population data, and hourly mobile phone data, the three types of data are
spatialized to a 500 m × 500 m grid. Based on the high temperature distribution character-
istics and the population weighting model, the qualitative and quantitative analysis of the
population exposure situation by time under the influence of heat waves is carried out. At
the same time, the influencing factors of population exposure changes were studied on this
basis. The main conclusions are as follows:

(1) The results show a dynamicity in heat wave coverage which adjusts to temporal
and spatial differences, and the coverage of the heat wave has an “increasing-decreasing-
increasing” pattern over time. The heat wave was concentrated from 12:00 to 18:00, and
from a spatial perspective, the area of heat wave coverage in west and north side of the city
is bigger and lasts longer than in the east and south side regions.

(2) On the whole, the high-value areas of population density are located in central
part of Xiangzhou District (the central city of Zhuhai City), and the low-value areas are
scattered in the western area of Zhuhai City. The population spatial distribution of Zhuhai
shows “less at both ends and more in the middle” in the north–south direction and “more
coastal areas in the east and less inland areas in the west” in the east–west direction. The
population density distribution of Doumen District and Jinwan District in the west is in a
ring shape, while the Xiangzhou district in the east shows a clump distribution. Judging
from the distribution trend, in the north–south direction, the population of Zhuhai City is
concentrated at the central border of Doumen District and Jinwan District and the middle
of Xiangzhou District. In the east–west direction, the population of Zhuhai City is mainly
concentrated in the eastern coastal areas, and it is gradually decreasing to the western
inland areas.

(3) The downtown area of Zhuhai (the central area of Xiangzhou District) is less
affected by this heat wave incident, but most areas are affected by high temperature.
The hourly population exposure is direct proportional to hourly heat wave coverage.
In terms of the time dimension, the overall population exposure shows a trend of first
decreasing and then increasing. In terms of spatial dimensions, high population exposure
is concentrated in areas such as Jing’an Town and Baiteng Street in Doumen District. These
areas are densely populated areas such as primary and secondary schools, colleges and
universities, office buildings, and residential areas. Not only that, but high population
exposure is also distributed in the area where industrial parks and commercial buildings
are widely distributed in the east of Jinwan District. Low exposure is distributed in most of
Xiangzhou District and the mountainous areas along the southern coast of Jinwan District
due to topography.

(4) Looking into the heat wave cycle, compared to 9 September, the population expo-
sure change on 10 September is mainly affected by population factors, but its contribution
to population exposure changes gradually decreases over time. In other periods, the contri-
bution rate of climate factors to changes in population exposure is gradually increasing,
and the population exposure changes in the last two days of the heat wave cycle are mainly
affected by the combined influence of population factors and climate factors. From the
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perspective of different periods of the heat wave cycle, the leading factors of population
exposure changes are different.
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Abstract: Extreme heatwaves are among the most important climate-related disasters affecting public
health. Assessing heatwave-related population exposures under different warming scenarios is
critical for climate change adaptation. Here, the Coupled Model Intercomparison Project phase 6
(CMIP6) multi-model ensemble output results are applied over several warming periods in the
Intergovernmental Panel on Climate Change AR6 report, to estimate China’s future heatwave
population exposure under 1.5 ◦C and 2.0 ◦C warming scenarios. Our results show a significant
increase in projected future annual heatwave days (HD) under both scenarios. With an additional
temperature increase of 0.5 ◦C to 2.0 ◦C of warming, by mid-century an additional 20.15 percent
increase in annual HD would occur, over 1.5 ◦C warming. If the climate warmed from 1.5 ◦C to 2.0 ◦C
by mid-century, population exposure would increase by an additional 40.6 percent. Among the three
influencing elements that cause the changes in population exposure related to heatwaves in China–
climate, population, and interaction (e.g., as urbanization affects population redistribution)–climate
plays the dominant role in different warming scenarios (relative contribution exceeds 70 percent).
Therefore, considering the future heat risks, humanity benefits from a 0.5 ◦C reduction in warming,
particularly in eastern China. This conclusion may provide helpful insights for developing mitigation
strategies for climate change.

Keywords: heatwaves; population exposure change; global warming; 1.5 ◦C warming scenario;
2.0 ◦C warming scenario

1. Introduction

Meteorological measurements and general circulation model (GCM) simulations yield
strong evidence for warming globally over the last several decades. Continued warming
will likely cause increases in the frequency of extreme climatic and weather occurrences,
challenging human systems. For instance, occurrences such as the 2013 heatwave over
China, the 2011–2014 persistent drought over California, and the devastating 2013 flood
in India resulted in significant large economic losses and left many people wounded or
homeless [1]. Climate extremes include a broad range of physical effects that have been
recorded extensively across the globe, including a significant danger to natural resources,
the environment, and the social economy [2].

As is revealed by the newest climate change scenario design—called ‘shared socio-
economic pathway’ (SSP)—identifying vulnerabilities in climate change risks is crucial for
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the public and governments [3]. In general, vulnerability is characterized as a result of a
society’s exposure and sensitivity to hazards, as well as its ability to adapt. Therefore, as-
sessing future climate change risks, particularly the vulnerability of population populations
to a certain disasters, is critical in developing social risk management measures [4].

Global-warming-affected extreme events that alter risks include many aspects, such
as heatwaves, droughts, hurricanes, floods, mudslides, and many other hazards [5–11].
Heatwaves represent one of the most serious meteorological disasters impacting public
health, and their frequency and severity are on the rise, with a tendency to worsen [12–14].
For example, the 1995 Chicago heatwave claimed the lives of 739 people [15]. At least
70,000 people died in the 2003 heatwave in central Europe, in addition to the catastrophic
socioeconomic effects [16,17]. In 2010, a catastrophic heatwave in eastern Europe and
western Russia killed over 55,000 people in Russia alone [18]. This was followed by a
severe drought, which reduced food production by 25 percent and cost the local economy
almost USD 15 billion [19]. In 2019, two heatwaves in western Europe caused deaths
that exceeded normal rates by 50 percent, with temperatures in the Netherlands, Belgium,
France, Germany, and the United Kingdom setting new highs in meteorological history [20].
In China, heatstroke (HS) during the summer has also become a serious public health issue
in recent years [1]. The 2013 record-breaking high-temperature event in Shanghai caused
about 160 deaths in the Pudong New District [21].

China is the most populated country in the world, and the overwhelming majority
of the population is concentrated in the heatwave-prone eastern monsoon region [22],
where air temperatures will continue to rise under current emissions scenarios. Population
exposure to extreme drought is projected to increase by 17% if the global temperature
increase is limited to 2.0 ◦C rather than 1.5 ◦C in the future [23], increasing the threat to the
living conditions of most people living in China [24,25]. Like other disasters, heatwave-
related disasters are impactful due to two major factors–the exposure to the phenomenon
and the consequence of its occurrence. On the one hand, climate change scenarios including
the magnitude of warming affect the hazard exposure [26,27]; while on the other hand,
consequence is influenced by population and the exposure and socioeconomic vulnerability
of that population [28,29]. Thus, heatwave risk can be described as a function of climate
and population [28], both of which change over time and geographic area [4]. According
to Jones et al., climate change is a stronger determinant of exposure than demographic
change [30]. The determinants of population exposure, in general, are mostly determined
by geographical disparities, taking into consideration regional population policies. The
overall change in exposure could also result predominantly from the interactive effect of
both factors, such as in the case of climate migrations across areas such as Africa [31,32].

Previous studies on heatwaves in China have mostly concentrated on the traits of
intense heatwave episodes and their fluctuations [33–40]. Recent work has also provided a
clearer understanding of the dangers of heatwaves in future temperature increase scenarios.
Owing to recognition of the importance of public health management techniques, popu-
lation exposure to intense heatwaves has received more attention recently [41]. Evidence
suggests that climate change may be a major driver of changes in population exposure in
China [42,43], and some studies show that the interaction between climate and population
determines the population exposure to future extreme heatwaves in China [44]. However,
there is currently little understanding of the relative contributions of heatwaves and demo-
graphic changes on population exposure changes on a regional scale. It is important to fill
this gap as a critical next step for risk assessment of extreme heatwaves.

This study explores changes in heatwave and population exposure under two temper-
ature increasing scenarios of 1.5 ◦C and 2.0 ◦C in China based on a daily maximum and
minimum surface air temperature (Tmax and Tmin) dataset from CMIP6 and gridded daily
datasets over China, along with population data that consider local population policies,
from Oak Ridge National Laboratory’s LandScan program and the Shared Socioeconomic
Pathways (SSPs) from Tsinghua University. In addition, differences in population exposure
under the different warming scenarios are analyzed, with explanations of possible reasons
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for the differences. It is important to separately examine the differences in impact of the
one-half degree of difference in increases from 1.5 ◦C to 2.0 ◦C, because the Intergovern-
mental Panel on Climate Change (IPCC) [45] recognizes these two thresholds, with the
former being deemed likely to occur—with high confidence—between 2030 and 2052 if
current rates are extrapolated. The 2 ◦C threshold is selected because IPCC (2018) notes,
with medium confidence, that it would result in an additional 420 million people being
frequently exposed to extreme heatwaves beyond those exposed to 1.5 ◦C of warming.

2. Materials and Methods

2.1. Dataset

For comparison and bias correction, daily Tmax and Tmin across China from a high-
resolution (0.25◦ × 0.25◦) gridded daily dataset, namely CN05.1, generated from more
than 2400 stations affiliated with China Meteorological Administration [46] are taken into
considered. Daily Tmax and Tmin output from 20 CMIP6 model simulations are employed
to project the spatial distribution of future heatwaves under 1.5 ◦C and 2.0 ◦C warming
scenarios. Information about these CMIP6 models is provided in Table S1. The historical
scenario used is the “all-forcing” simulations (1995–2014). Projections of GCMs under three
scenarios based on the combination of the shared socioeconomic pathways (SSPs) [47] and
the representative concentration pathways (RCPs) [48]—including SSP1–2.6, SSP2–4.5, and
SSP5–8.5—are included. The time frame of 1.5 ◦C and 2.0 ◦C warming globally is shown
in Table 1, which is consistent with the IPCC AR6 [49]. Output datasets from the CMIP6
simulations are downscaled into 0.25◦ × 0.25◦ grid cells using the bilinear interpolation
method via xarray (version 2022.3.0) [50].

Table 1. Earliest 20-year averaging period that displays 1.5 ◦C and 2.0 ◦C of global warming, by SSP
threshold. The change is displayed in ◦C relative to the 1850–1900 reference period for the selected
time periods.

Warming Scenarios
SSPs

SSP1-2.6 SSP2-4.5 SSP5-8.5

1.5 ◦C 2023–2042 2021–2040 2018–2037

2.0 ◦C post–2100 2043–2062 2032–2051

The historical population data come from LandScan, which contains the global popula-
tion for the period 2000–2020 and is widely used in natural and human-caused disaster risk
assessments [51]. The projected future population data come from the gridded dataset of
Tsinghua University from 2010 to 2100 [52]. Both historical and future population data have
a resolution of 30 arc-seconds (~1 km) and are up-scaled to 0.25◦ × 0.25◦ using the grid
area scaling method. The population SSPs scenarios included in this dataset are consistent
with CMIP6, including data from three scenarios: SSP1–2.6, SSP2–4.5, and SSP5–8.5.

2.2. Definition of Present, 1.5 ◦C, and 2.0 ◦C Warming

In this study, the historical baseline period of 1995–2014 is used, based on the recom-
mendation of IPCC AR6. The historical climate or historical scenario in this work refers to
the climate of present. The selected time periods of 1.5 ◦C and 2.0 ◦C of warming relative
to 1850–1900 for 20-year averaged global surface air temperature (GSAT) changes are based
on multiple lines of evidence (the time span of each SSP as shown in Table 1). Therefore,
the meteorological and population data for 1.5 ◦C and 2.0 ◦C warming are averaged using
multi-model ensembles in the corresponding warming scenarios, respectively. Historical cli-
mate and population data (1995–2014) are compared with the projected data for 1.5 ◦C and
2.0 ◦C of warming. Because the population of LandScan is as early as 2000, the historical
population is represented by 16 years of data (2000–2014).
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2.3. Quantile Mapping Bias Correction

Before using GCM data, it is critical to correct for biases in the GCM simulations
against observed data. After downscaling the climate data into 0.25◦ × 0.25◦ grid cells,
a quartile mapping technique is used to bias correct the historical simulation and future
projection of the GCM models, using cumulative density function matching methods [53].
The key to quantile deviation correction is to establish a transfer function, which generally
includes a theoretical probability distribution function [54–56] and empirical probability
function [57], using theoretical cumulative distribution function and cumulative distri-
bution function of observed data, respectively. In comparison, the empirical probability
function has wider utility because it does not require any assumptions about the statistical
distribution of the original data [58]. For each grid cell, given month, and variable (Tmax
and Tmin), the transform function is fitted by the qq-plot of GCM historical simulations and
observations [58]. Then, bias correction using transfer functions for historical simulation
and warming scenarios results. In this work, the quantile mapping bias correction of the
GCM output is implemented with xclim [59].

2.4. Heatwave Events and Population Exposure

Early research on heatwaves only considered whether the highest temperature or
lowest temperature on a single day exceeded a certain threshold. However, exceedance
thresholds that correspond optimally to population exposure are likely to be affected by
antecedent and subsequent temperature [60,61]. More recently, compound hot extremes
have considered both daily Tmax and Tmin based on a bivariate definition framework [62–64].
Recently, studies on heatwaves in the Northern Hemisphere have used relative temperature
thresholds and diurnal temperature range (DTR) to identify heatwaves. This method has
been shown to offer improvements by defining heatwave events to be defined more strictly
and requiring both Tmax and Tmin to exceed the 95th quantile [65].

In this study, a heatwave is considered to occur if all of the following criteria are met:
(1) daily Tmax ≥ 95th percentile of observed daily Tmax in May, June, July, August, and
September during 1985–2014); (2) daily Tmax ≥ 35 ◦C [66]; (3) daily DTR in those same
months ≤ 10 ◦C, to ensure that uncomfortable conditions persisted throughout the day and
in recognition that both sensible and latent heating are key factors in the warming and stress
effects [65,67]. The number of days spent experiencing a heatwave in a year is referred to as
heatwave days (HD). When a heatwave event straddles two calendar years, it is counted in
the year in which the heatwave began. Expressing “risk” as the product of hazard intensity
and hazard exposure [68] population exposure (E) is defined as the product of HD and the
total population (Pop) [69] at the grid point, and the unit is person-days, shown as

E = HD × Pop (1)

2.5. Amplified Impacts and Relative Contributions

In this study, heatwave effect is defined as E of compound heatwave events. Li et al. [70]
and Jones et al. [28] showed that the absolute amplified impact (AIa) due to an 0.5 ◦C addi-
tional warming is defined as

AIa = E2.0 − E1.5 (2)

where E1.5 and E2.0 represent the population exposure under the 1.5 and 2.0 ◦C warm-
ing scenarios, respectively. Relative amplified impact (Alr) is defined as the ratio of the
additional exposure to the baseline exposure, thereby indicating the proportion of the pop-
ulation that will be additionally exposed to heatwaves by increasing the delta temperature
relative to the baseline temperature rise scenario. The equation is

AIr =
E2.0 − E1.5

E1.5
× 100% (3)
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According to the definition of population exposure, the increases in population expo-
sure relative to historical simulations can be calculated as

ΔE = Ef − Eh
= HDf × Pop f − HDh × Poph
= ΔHD × Poph + ΔPop × HDh + ΔHD × ΔPop

(4)

where ΔE is relative to the historical baseline period, Eh and Ef depict population expo-
sure under historical simulation and future global warming scenarios, respectively; HDf
and HDh represent HD under future global warming scenarios and historical simulation,
respectively; Pop f and Poph correspond to the population numbers under the future global
warming scenarios and historical simulation, respectively; and ΔHD and ΔPop represent
the changes of HD and population in the future global warming scenarios and historical
simulations, respectively. Furthermore, ΔHD × Poph represents the change in population
exposure due to climate change, ΔPop × HDh represents the change in population expo-
sure due to population change, and ΔHD × ΔPop represents the change in population
exposure due to interaction of climate and population change. The consistency of sigsn
between these three elements and ΔE represents the contribution to the change in exposure,
respectively. Consistency in sign signifies a positive effect on the change of population
exposure; otherwise, it is a negative effect.

3. Results

3.1. Changes in Heatwave Events

To evaluate the ability of GCM to simulate heatwaves, the spatial distribution of
HD in China is analyzed based on CN05.1 and multi-model ensemble of GCM outputs.
Figure 1a,b shows the annual number of HD from 1995 to 2014 based on observational
data and GCM simulations. The present number of HD is generally 3–10 days per year,
and the HD simulated by the GCM is between 3 and 11 days per year. Heatwaves mainly
occur in the central and eastern regions of China and the Sichuan Basin, including: the
Yangtze River Basin (YRB) region, the Chongqing-Chengdu (CC) region, and the Pearl
River Basin (PRB) region (blue box in Figure 1). The consistency between the historical
simulation of the model and the CN05.1 observation data is high, which indicates that a
multi-model ensemble of GCM can better simulate the spatial distribution of the heatwave
hotspots. The simulated error of annual HD is less than 0.2 days, the regional average (areas
with heatwaves) annual HD of the model simulation and CN05.1 are 4.45 and 4.63 days,
respectively. As shown in Figure 1c, in places with more HD, the simulation error of HD is
less, and vice versa. In general, the multi-model ensemble can predict the number of HD in
China accurately, with the exception of slight overestimation in a few places.

Not surprisingly, compared with the present simulation, the HD under the 1.5 ◦C and
2.0 ◦C global warming scenarios show greater HD frequency, and the regional average
annual HD increases from 4.45 days to 5.36 and 6.44 days, respectively, as shown in
Figure 1d,f. The 0.5 ◦C of additional warming in the 2.0 ◦C warmer future would lead
to an increase in HD by approximately 20.15 percent when compared to that under the
1.5 ◦C warmer climate. The annual HD at the core of the heatwave region increased by 1
and 1.8 times. Heatwave-free areas under the 1.5 ◦C scenario—such as Northeast China,
Xinjiang, and Inner Mongolia—are expected to experience heatwaves in the 2.0 ◦C scenario,
but the annual HD generally do not exceed 5 days in the 2.0 ◦C scenario. Figure 1c,g show
the spatial variation of HD in the historical simulation for the 1.5 ◦C and 2.0 ◦C global
warming scenarios, and more than 95 percent of the regions where heatwaves have occurred
show the characteristics of increased HD, with annual HD frequency increases of 2.68 and
4.22 days, respectively. Except for newly added heatwave areas, the spatial characteristics
of HD are consistent with historical periods. The HD in the Yangtze and Pearl River Basin
regions showed a more obvious increasing trend under the 2.0 ◦C warming scenario than
in the 1.5 ◦C warming scenario. These areas will have high population concentration in
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the future (as shown in Figure S1), indicating that the population may face more severe
heatwave exposure risks.

(a) (b) (c)

(d)

(f)

(e)

(g)

PRB

CC YRB

PRB

CC YRB

Figure 1. Spatial distribution of heatwave days (HD) per year. (a,b,d,f) HD at observed, historical
simulation, 1.5 ◦C, and 2.0 ◦C warming scenarios, respectively. (c) Difference of HD between historical
simulations and observed. (e,g) Difference in HD relative to the historical heatwave for the 1.5 ◦C
and 2.0 ◦C warming scenarios, respectively; black dots indicate an insignificant difference according
to the one-sided t-test at the 0.05 significance level.

3.2. Present Distribution Patterns and Future Changes in Population Exposure

Population exposure is an important parameter for revealing the risk of future heat-
waves. Figure 2 shows the spatial distribution of E under the present, 1.5 ◦C, and 2.0 ◦C
warming scenarios based on GCM models. During the present period, increased E to
heatwaves occurred mainly in central and eastern China and the Sichuan Basin. Under
the 1.5 ◦C and 2.0 ◦C warming scenarios, the annual E increased from 4.09 billion person-
days in the present period to 7.98 billion and 11.22 billion person-days, respectively. The
per capita annual HD frequency increased from 4.72 days to 7.0 and 9.89 days. Despite
the expansion of E areas, the spatial distribution of E centers is relatively concentrated.
To a certain extent, the spatial variation of E is determined by both climate change and
population redistribution.

(a) (b) (c)

Figure 2. Spatial distribution of population exposure. From left to right: present (a), 1.5 ◦C warming
(b), and 2.0 ◦C warming (c).
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To focus on the changes of population exposure, as shown in Figure 3, the spatial
variation characteristics of E are explored. The newly added heatwave regions—such
as Northeast China, Xinjiang, and Inner Mongolia—show increased E, which is mainly
caused by the increase in the frequency of heatwave events under climate warming. In
other regions, E I ncreased or decreased differently, depending on the redistribution of
population and heatwave occurrence. Compared with the 1.5 ◦C warming scenario, E
under the 2.0 ◦C warming showed a steady increase in most areas of central and eastern
China, and the annual E increased by 3.24 million person-days. This means that if the
climate continues to warm by 0.5 ◦C without emission reduction measures, E related to
heatwaves will increase by an additional 3.24 million person-days.

(a) (b) (c)

Figure 3. Differences in heatwave-related population exposure during different periods. From left to
right: 1.5 ◦C–present (a), 2.0 ◦C–present (b), and 2.0 ◦C–1.5 ◦C (c).

3.3. Amplified Impacts and Relative Contributions of Climate and Population

As analyzed in Section 3.2, 0.5 ◦C of additional warming has an absolute amplified
impact of 3.24 million person-days on E. This means that the relative risk of E (AIr) under
2.0 ◦C warming would increase by 40.6 percent for a 1.5 ◦C warming scenario. Relative
to present, 1.5 ◦C and 2.0 ◦C warming increase the impact by 95.1 and 174.3 percent,
respectively. Although it is known that climate and population redistribution are the main
contributors to increased E by heatwaves, the magnitude of their respective contributions
is unknown. Here, changes in E are decomposed into the effects of climate (ΔHD × Pophis),
population (ΔPop × HDhis), and interactions (ΔHD × ΔPop), based on Equation (4).

Figure 4 shows the contribution of these three effects to the change in E to heatwaves
in China under the 1.5 ◦C and 2.0 ◦C climate warming scenarios, respectively. Under the
1.5 ◦C climate warming scenario, the main factor causing the change in E is climate, which
accounts for 71.99 percent of the change in E to heatwaves. The second factor is population,
which accounts for 16.91 percent of the total changes. The contribution of interaction was
the smallest, at about 11.09 percent. Under the 2.0 ◦C warming scenario, the contribution of
climate is still larger (80.34 percent), followed by interaction (12.42 percent), and population
(7.24 percent). This suggests that climate plays a more important role in changes of E with
further increases in climate warming. In addition, population dynamics are also one of
the key factors affecting population exposure changes. Although urbanization has led to
the migration of China’s population centers to cities, the future population will begin to
decline slowly after reaching a peak (1.45 billion) around 2030, as a result of many factors,
including birth, death, migration, education level, and population policies under each SSP.
The 1.5 ◦C warming scenario period coincides with the peak of China’s total population,
while the 2.0 ◦C warming scenario period occurs during the stage after the population
peaks (as shown in Figure S2). This may partially explain why the population contribution
under the 2.0 ◦C warming scenario is smaller than in the 1.5 ◦C warming scenario. The
decomposition of E changes from the 1.5 ◦C to 2.0 ◦C warming scenarios also illustrates
this problem, with the population contributing negatively to the total change.
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(a)

(b)

(c)

Figure 4. Contribution of three effects to the change in population exposure. From left to right:
1.5 ◦C–present (a), 2.0 ◦C–present (b), and 2.0 ◦C–1.5 ◦C scenarios (c).

The relative contributions of the three elements to the overall change in population
exposure to heatwaves are further analyzed at the regional scale. Figure 5 shows the spatial
distribution of the relative contributions of climate, population, and interaction to changes
in E under the warming scenarios. Climate and population show positive contributions
in most regions, with climate contributing substantially. The proportion of positive and
negative contributions for the interaction component is similar. For the 1.5 ◦C warming
scenario, the climate elements in the newly exposed areas—the Yangtze and Pearl River
Basins and the eastern Sichuan Basin—play a positive role in E. The magnitude and area of
this effect are further expanded under 2.0 ◦C warming scenario. The negative impact area
of population on E has an increasing trend. While both positive and negative contributions
of the interaction were characterized by an increase, the increase in the overall positive
effect was greater. In addition, we can find that population and interaction are negative in
most regions, while the contribution of climate is positive in the total change in population
exposure from 1.5 to 2.0 ◦C warming. It is important to note that at 0.25◦ × 0.25◦ resolution,
the relative contribution of individual elements can exceed 100 percent because of the
extreme drastic changes in population and HD at the individual grid scale. However, the
sum of the relative contributions of climate, population, and interaction at each grid point
equals 100 percent.
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(a) (b) (c)

(d)

(g)

(e)

(h)

(f)

(i)

Figure 5. Spatial distribution of contributions (climate, population, and interaction, from left to right)
in population exposure changes at 1.5 ◦C–present (a–c), 2.0 ◦C–present (d–f), and 2.0 ◦C–1.5 ◦C (g–i).

4. Discussion

This study assessed heatwave risk via E—under 1.5 and 2.0 ◦C warming scenarios—
based on results from the latest CMIP multi-model ensemble, through changes in heatwave
and regional population changes. Instead of using the Coupled Model Intercomparison
Project phase 5 (CMIP5) data in most previous studies, we used the CMIP6 model output
data, which shows improvements in simulation of climate indices in China, especially the
daily maximum and minimum temperatures [8,25]. Results suggest that if nothing occurs
to curtail continued global warming, the risk of regional heatwaves in China will increase
by 2–2.8 times by mid-century. The spatial distribution of heatwave is consistent with the
results of previous studies [40,42,62]. Of these, climate change was the dominant factor
(>70 percent) in increasing exposure to heatwave risk.

These results are only preliminary conclusions. The main limitations include that
the heatwave risk in this study mainly considers E, whereas future work should con-
sider differences in vulnerability of different populations (including age, gender, income,
education level, etc.) to quantify the assessment of heatwave exposure risk more accu-
rately. In addition, the spatial redistribution of population is critical to the estimation of
E relative to heatwave. However, urbanization is also an important factor affecting the
future redistribution of China’s population. Therefore, analyzing changes in E from urban
and rural perspectives is conducive to improved scientific understanding of heatwave
risk changes. Recent studies have suggested that the wet bulb temperature is closer to
the human apparent temperature, which can better reflect the intensity of the heatwave.
Therefore, compound heatwaves should be considered more carefully in future studies.

5. Conclusions

In this study, the latest CMIP6 multi-model ensemble results were used to assess
changes in frequency of HD at 1.5 ◦C and 2.0 ◦C global warming levels compared to
present. On this basis, the changes in E to heatwaves were assessed based on population
projection data, and a relative contribution decomposition analysis was performed on the
changes in E. Results showed a significant increase in the frequency of HD at two different
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warming levels. The assessment highlighted that 1.5 ◦C and 2.0 ◦C warming increased
E by 95.1 and 174.3 percent compared to present. An additional 0.5 ◦C temperature rise
would significantly affect changes in E with about 40.6 percent more E. In addition, the
climate element played a significant positive leading role (>70 percent) in total changes of
E to heatwaves. Of the additional 0.5 ◦C warming, climate change positively contributes to
the increase in the risk of E, with 109.69 percent of total E. Population and interaction tend
to decrease the risk of E with relative contributions of –7.71 and –1.98 percent, respectively,
in total change of E. Therefore, considering future heat risks, humanity benefits from a
0.5 ◦C reduction in warming, particularly in eastern China. This conclusion provides useful
insights for advancing climate change adaptation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su141811458/s1, Figure S1: Spatial distribution of population
at 0.25◦ × 0.25◦ grid cells. (a) is LansScan at present. (b) is Tsinghua population at 1.5 ◦C warming
scenarios. (c) is Tsinghua population at 2.0 ◦C warming scenarios. Only grid cells with population
over 500 are plotted; Figure S2: Dynamics of projected total population in China. Table S1: Table S1.
Overview of twenty CMIP6 models used in this study.
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Abstract: To explore the impact of climate change on fishery resources, the temporal and spatial
characteristics of the thermocline in the main yellowfin tuna purse-seine fishing grounds in the
western and central Pacific Ocean during La Niña and El Niño years were studied using the 2008–2017
Argo grid data (BOA_Argo) and the log data of commercial fishing vessels. A generalized additive
model (GAM) was used to analyze the variables affecting yellowfin tuna fishing grounds. The results
showed that in La Niña years, the catch per unit effort (CPUE) moved westward as the high-value
zone of the upper boundary contracted westward to 145◦ E, and in the El Niño years this moved
eastward to 165◦ E. Compared with normal years, the upper boundary depth difference of the
thermocline on the east and west sides of the equatorial Pacific was larger in La Niña years, and the
upper boundary depth of 80–130 m shifted westward. The thermocline strength was generally weaker
in the west and stronger in the east. The thermocline had two band-like distribution structures with
an axis at 15◦ N and 15◦ S. The CPUE was distributed from 120 m to 200 m. The CPUE distribution
was dense when the temperature range of the upper boundary of the thermocline was 27.5–29.5 ◦C,
and the intensity was 0.08–0.13 ◦C·m−1. The upper-boundary temperature had the greatest impact
on the CPUE. The eastward shift of the CPUE during El Niño and the westward shift during La
Niña were associated with the optimal thermocline parameter values. The factor of year had a
fluctuating effect on the CPUE, and the influence of the La Niña years was greater. The areas with
high abundance were 5◦ N–5◦ S and 150◦ E–175◦ E. The results showed that the changes in the
thermocline caused by abnormal climate events significantly affected the CPUE.

Keywords: central and western Pacific; thermocline; yellowfin tuna; CPUE; El Niño; La Niña;
GAM model

1. Introduction

Marine fisheries, especially tropical marine fisheries, provide high-quality protein for
human diets and make a significant contribution to human and societal wellbeing. Tuna
fisheries are one of the four most highly valued fisheries worldwide [1]. Tuna fisheries had
5.2 million MT volume and USD 11.7 billion in landed value in 2018 [2]. Fleets using purse
seines are one of two primary harvest strategies in global tuna production [3]. Tuna-fishing
license fees to operate in the exclusive economic zones of several Pacific Island countries
and territories provide 30–90% of all (non-aid) government revenue, such as Kiribati,
Nauru, and Tokelau [4]. However, fishery resources and tuna capture are highly correlated
with the marine environment, and are increasingly threatened by various physical and
biogeochemical responses to climate change [5]. The fishery resources in the entire western
and central Pacific Ocean (WCPO) support major industrial tuna fisheries and a variety of
small-scale coastal fisheries. The total annual average catch from the Parties to the Nauru
Agreement (PNA) purse-seine fishery contributed more than 50% of the recent (2014–2018)
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average tuna catch from the WCPO and equates to almost 30% of the total global tuna
supply [6]. An increasing number of fishery habitat studies have focused on the impact of
marine surface environmental factors on the distribution of fishery resources. However,
there has been less research on the characteristics of the subsurface marine environment
under abnormal climate conditions and the impact on fishery resources. Climate change
threatens tropical marine fisheries [7]. The large-scale effects of abnormal climate events
on the marine environment have a significant impact on fishery resources and fishing
ground distribution. El Niño events are a prominent feature of climate variability, with
global climatic impacts [8]. The El Niño–Southern Oscillation (ENSO) is considered to
be one of the major climate events impacting tuna fisheries [9]. Research by Hampton
et al. [10,11] has shown that skipjack tuna is very sensitive to temperature changes, and the
tuna distribution shifts with the occurrence of ENSOs. The thermocline is a layer between
the upper warm water and the lower cold water where the temperature drops sharply.
The thermocline is one of the most important physical phenomena in the ocean. As the
strongest signal of inter-annual global climate change, ENSO’s occurrence, development,
and extinction are closely related to the tropical Pacific thermocline. During La Niña events,
most fleets prefer to fish in the western part of the region. The converse occurs during El
Niño episodes. Changes in the depth of the thermocline have also been demonstrated to
explain the variability in purse-seine catch rates [12]. The Oceanic Niño Index (ONI) was
calculated from the moving average of sea surface temperature anomalies (SSTAs) for three
consecutive months in the El Niño 3.4 area. According to the definitions of El Niño and
La Niña events by the National Oceanic and Atmospheric Administration (NOAA) of the
United States, an El Niño event is considered to have occurred when the ONI is greater
than +0.5 ◦C for five consecutive months, whereas a La Niña event is considered to have
occurred when the ONI is less than −0.5 ◦C for five consecutive months. According to the
definitions of La Niña and El Niño events established by the NOAA, the ONI can be used
to characterize El Niño and La Niña events as well as environmental conditions [13]. For
example, the ONI and the Southern Annular Mode (SAM) were used as proxy indices of
environmental conditions affecting penguins and krill, respectively [14], whereas Kuo-Wei
Lan used ONI as a climatic index to explore the relationship between climate change and
grey mullet (Mugil cephalus L.) in the Taiwan Strait [15].

How the thermocline changes under abnormal climate events and its relationship
with changes in fishery resources is well worth studying. In this paper, an overlay map
of thermocline parameters, including the upper boundary temperature, upper boundary
depth, thermocline thickness, and thermocline strength, was drawn with the catch per
unit effort (CPUE) distribution of yellowfin tuna under the abnormal climate mode. The
distribution patterns of the parameters in La Niña and El Niño years and the effects on the
spatial distribution of yellowfin tuna were analyzed. In addition, a generalized additive
model (GAM) was used to analyze the impact of each variable on the CPUE of yellowfin
tuna. The results can provide additional thermocline distribution information and serve as
a reference for tuna production in this area.

2. Materials and Methods

2.1. Data Sources

This study area was located at 130◦ E–130◦ W and 25◦ N–25◦ S in the WCPO. The
fishery data were obtained from the monthly fishing log data of tuna purse-seine vessels
in the WCPO from January 2008 to July 2017. Data included the name of the production
vessel, production date, longitude and latitude of the operation location, operation net
times, species type, and yield.

To better reflect the ENSO signal, the temperature and salinity data were obtained
from the Argo grid data (BOA_Argo) set [16], provided by the China Argo Real-time Data
Center. This data, with 1◦ × 1◦ horizontally and 58 standard layers with unequal distance
from 0–1975 m vertically, can provide more explicit distribution information of surface
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temperature and salinity data compared with other common datasets [17]. In this study,
we compiled the data periods consistent with the fishing log data.

The climate event data were calculated using the sea surface temperature in the El
Niño 3.4 area (https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuf
f/ONI_v5.php (accessed on 11 January 2022)) (Table 1).

Table 1. Definition of El Niño and La Niña events.

ONI Type of Event ONI Type of Event

0.5 ≤ ONI ≤ 0.9 Weak El Niño event, WE −0.9 ≤ ONI ≤ −0.5 Weak La Niña event, WL
1.0 ≤ ONI ≤ 1.4 Moderate El Niño event, ME −1.4 ≤ ONI ≤ −1.0 Moderate La Niña event, ML
1.5 ≤ ONI ≤ 1.9 Strong El Niño event, SE −1.9 ≤ ONI ≤ −1.5 Strong La Niña event, SL

ONI ≥ 2.0 Very strong El Niño event, VSE ONI ≤ −2.0 Very strong La Niña event, VSL

2.2. Data Analysis

First, to match the spatio-temporal resolution of environmental variables, the monthly
CPUE was converted to a 1◦ × 1◦ grid. The equation is as follows:

CPUEymij =
Catchymij

Effortymij
(1)

where y is the year, m is the month, i is the longitude, and j is the latitude. For the mth
month, CPUEymij is the catch per unit effort (t/net) at the ith longitude and the jth latitude,
Catchymij is the total catch at the ith longitude and the jth latitude, and Effortymij is the
fishing effort, i.e., the cumulative total operation net time, at the ith longitude and the jth
latitude.

Because the BOA_Argo datasets included 58 standard layers with unequal vertical
distances in the range of 0–1975 m, the Akima [18] interpolation method was used to inter-
polate the temperature data of Argo buoy profiles with an uneven distribution to regular
depth layers at 2 m intervals. The thermocline discrimination method [19] was used to
calculate the gradient of the temperature profile (ΔT/ΔH). In short, if the vertical gradient
of a certain section in a temperature profile was greater than or equal to the standard of the
lowest limit value of the deep-water thermocline (0.05 ◦C·m−1), then the section was deter-
mined to be the thermocline. The depths of the upper and lower boundary points of the
section were the upper and lower boundary depths of the thermocline, respectively. Finally,
the width of the section was the thermocline thickness. The entire vertical temperature
gradient was defined as the thermocline strength. In total, six characteristic parameters
of the thermocline were extracted: the temperature and depth of the upper boundary, the
temperature and depth of the lower boundary, and the thermocline strength and thickness.
In this study, the characteristic parameters of the thermocline from 2008 to 2017 were
divided into groups by month and displayed as filled isolines.

2.3. Generalized Additive Model

The GAM can simulate the nonlinear relationship between the response variable and
multiple explanatory variables and has been widely used in fishery management [20–22].
In this study, a GAM was used to analyze the effects of spatial and temporal variables and
environmental variables on the CPUE. The temporal variables were the year and month,
and the spatial variables were the longitude and latitude. The environmental variables
were the ONI and the six extracted parameters. The Akaike information criterion (AIC)
value method was used to select the best model. The smaller the AIC value, the higher the
fitting degree of the model [23]. The CPUE was log transformed prior to analysis [24,25].
The GAM equation is as follows:

log(CPUE + 1) = s(year) + s(month) + s(lon) + s(lat) + s(environmental variable) (2)
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where year represents the year, month represents the month, lon represents the longitude, lat
represents the latitude, and environmental variable represents an environmental variable.

2.4. Data Processing and Analysis

Excel was used to store the fishing log data of tuna purse-seine vessels in the WCPO
and to calculate the CPUE. MATLAB R2016a software was used to read the BOA_Argo
data and to calculate and extract the six parameters of thermocline upper boundary temper-
ature and depth, lower boundary temperature and depth, and thermocline thickness and
strength, and to visually display the superposition of the subsurface SST vertical parame-
ters and CPUE. The GAM was constructed using the mgcv library of the R programming
software [26].

3. Results

The year of occurrence of an El Niño or La Niña event is defined as an El Niño year or
a La Niña year. Therefore, 2009, 2014, and 2015 were El Niño years, whereas 2008, 2010,
2011, 2016, and 2017 were La Niña years (Table 2) [27].

Table 2. ONI from 2008 to 2017 *.

Type of ENSO Year
ONI Month

1 2 3 4 5 6 7 8 9 10 11 12

WL 2008 −1.6 −1.4 −1.2 −0.9 −0.8 −0.5 −0.4 −0.3 −0.3 −0.4 −0.6 −0.7
ME 2009 −0.8 −0.7 −0.5 −0.2 0.1 0.4 0.5 0.5 0.7 1 1.3 1.6
SL 2010 1.5 1.3 0.9 0.4 −0.1 −0.6 −1 −1.4 −1.6 −1.7 −1.7 −1.6
ML 2011 −1.4 −1.1 −0.8 −0.6 −0.5 −0.4 −0.5 −0.7 −0.9 −1.1 −1.1 −1

NORMAL 2012 −0.8 −0.6 −0.5 −0.4 −0.2 0.1 0.3 0.3 0.3 0.2 0 −0.2
NORMAL 2013 −0.4 −0.3 −0.2 −0.2 −0.3 −0.3 −0.4 −0.4 −0.3 −0.2 −0.2 −0.3

WE 2014 −0.4 −0.4 −0.2 0.1 0.3 0.2 0.1 0 0.2 0.4 0.6 0.7
VSE 2015 0.6 0.6 0.6 0.8 1 1.2 1.5 1.8 2.1 2.4 2.5 2.6
WL 2016 2.5 2.2 1.7 1 0.5 0 −0.3 −0.6 −0.7 −0.7 −0.7 −0.6
WL 2017 −0.3 −0.1 0.1 0.3 0.4 0.4 0.2 −0.1 −0.4 −0.7 −0.9 −1
WE 2018 −0.9 −0.8 −0.6 −0.4 −0.1 0.1 0.1 0.2 0.4 0.7 0.9 0.8

* WE stands for weak El Niño event, WL stands for weak La Niña event, ME stands for moderate El Niño event,
ML stands for moderate La Niña event, SE stands for strong El Niño event, SL stands for strong La Niña event,
VSE stands for very strong El Niño event, and VSL stands for very strong La Niña event. The bold numbers
represent abnormal climatic events.

3.1. Temporal and Spatial Variation of Upper Boundary Temperature and Depth of the Thermocline
with Catch

The ENSO had a significant impact on the spatial distribution of the yellowfin tuna
purse-seine fishing grounds in the WCPO. The superposition of thermocline parameters in
a typical La Niña year (2010), normal year (2013), and El Niño year (2015) and the CPUE
of yellowfin tuna were analyzed. The results (Figure 1) show that in the La Niña year,
the high-value zone of 28–29 ◦C of the upper boundary temperature of the thermocline
moved westward. The CPUE moved westward to the west of 170◦ E as the high-value zone
of the upper boundary temperature contracted westward to 145◦ E. In the El Niño year,
the high-value zone of 28–29 ◦C of the upper boundary temperature of the thermocline
expanded eastward. The CPUE moved eastward to the east of 165◦ E with the eastward
expansion of the high-value zone of the upper boundary temperature to 173◦ W. Yellowfin
tuna is a warm-water fish species whose habitat and spawning area need to be above a
certain water temperature. Therefore, the upper boundary temperature of the thermocline
will affect the spatial distribution of yellowfin tuna [25].
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In the normal year (2013), the upper boundary depth of the thermocline in the equa-
torial Pacific was deeper in the west and shallower in the east. In the typical La Niña
year (2010) compared with the normal year (2013), the upper boundary depth difference
of the thermocline on the east and west sides of the equatorial WCPO was larger. The
upper boundary depth of 80–130 m was shifted westward, which may have been due to the
enhancement of Walker circulation and southeast trade winds in the La Niña year. In the
El Niño year (2015) compared with the normal year, the difference of the upper boundary
depth of the thermocline on the east and west sides of the equatorial WCPO in the El Niño
year was smaller. The upper boundary depth of 80–130 m moved eastward.

 
(a) 

(b) 

Figure 1. Cont.
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(f) 

Figure 1. Overlay distribution of the upper temperature of the thermocline, the upper depth of the
thermocline, and the catch per unit effort (CPUE) of yellowfin tuna. (a) The upper temperature of
the thermocline in a La Niña year (2010); (b) the upper depth of the thermocline in a La Niña year
(2010); (c) the upper temperature of the thermocline in a normal year (2013); (d) the upper depth of
the thermocline in a normal year (2013); (e) the upper temperature of the thermocline in an El Niño
year (2015); (f) the upper depth of the thermocline in an El Niño year (2015).

3.2. Temporal and Spatial Variation of Thermocline Strength and Thickness with Catch

As shown in Figure 2, the thermocline strength was weaker in the west and stronger in
the east. The thermocline strength in the La Niña year was greater than that in the El Niño
year in the area of 180◦ W of the equatorial WCPO. Conversely, the thermocline strength in
the La Niña year was less than that in the El Niño year in the area of the 180◦ E region. On
the whole, the thermocline thickness was greater in the west and lesser in the east. There
was a thick band-like structure on each side, with an axis of 15◦ N and 15◦ S. The CPUE was
mainly distributed in the thickness of 120–200 m. Figure 3 illustrates how the maximum
CPUE value of yellowfin tuna was shifted westward in longitude and southward in latitude
in the La Niña year, and shifted eastward in longitude and northward in latitude in the El
Niño year.

The annual output was high in La Niña years such as 2008, 2010, 2011, and 2016
(Figure 4). The main operation area was located in the center of the WCPO warm pool in La
Niña years. The SST was very suitable for the growth of yellowfin tuna. Therefore, both the
catch and resource abundance were high in La Niña years. The annual production was low
in El Niño years such as 2009 and 2015. In El Niño years, the western Pacific thermocline
became shallower, whereas the eastern and central Pacific thermocline became deeper.
In La Niña years, however, the western Pacific thermocline became deeper, whereas the
eastern and central Pacific thermocline became shallower. Hence, the thermocline variation
would have caused changes in the yellowfin tuna central fishing grounds. The variation
patterns between annual catch and CPUE were consistent.
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Figure 2. Overlay distribution of the strength and thickness of the thermocline and the catch per
unit effort (CPUE) of yellowfin tuna. (a) The strength of the thermocline in a La Niña year (2010);
(b) the thickness of the thermocline in a La Niña year (2010); (c) the strength of the thermocline in a
normal year (2013); (d) the thickness of the thermocline in a normal year (2013); (e) the strength of the
thermocline in an El Niño year (2015); (f) the thickness of the thermocline in an El Niño year (2015).
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Figure 3. Distribution of catch per unit effort (CPUE) with longitude (a) and latitude (b) for yellowfin
tuna in the central and western Pacific.

Figure 4. Annual catch and catch per unit effort (CPUE) statistics of yellowfin tuna in the central and
western Pacific.

3.3. Analysis Results of the GAM

The GAM was used to analyze the impact of environmental variables on the temporal
and spatial variation of yellowfin tuna catch. The results show that the AIC value of
the model decreased with the number of factors. The final model retained all the input
variables. Meanwhile, the AIC value of the model was the lowest, with a CPUE total
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variance interpretation of 21.1%, as illustrated in Table 3. In the model, the contribution
of variables explaining the change in CPUE indicated the degree of impact on CPUE. The
contribution of the time factor was 15.4%, that of the spatial factor was 2.5%, and that of the
environmental factors was 3.2% (Table 4). The year was the most important factor, followed
by the ONI, month, latitude, longitude, and upper boundary temperature and depth of
thermocline, whereas thermocline strength and thickness had little impact on the GAM.

Table 3. Statistical characteristics of GAM models.

Formulae AIC Deviance/% R2adj

Log(CPUE + 1) = s(y) 11,712.65 13.7 0.135
Log(CPUE + 1) = s(y) + s(m) 11,637.99 15.4 0.151

Log(CPUE + 1) = s(y) + s(m) + s(lat) 11,570.29 16.8 0.164
Log(CPUE + 1) = s(y) + s(m) + s(lat) + s(lon) 11,521.25 17.9 0.174

Log(CPUE + 1) = s(y) + s(m) + s(lat) + s(lon) + s(upt) 11,485.4 18.6 0.181
Log(CPUE + 1) = s(y) + s(m) + s(lat) + s(lon) + s(upt) + s(dh) 11,472.67 18.9 0.184

Log(CPUE + 1) = s(y) + s(m) + s(lat) + s(lon) + s(upt) + s(dh) + s(uph) 11,468.99 19.1 0.186
Log(CPUE + 1) = s(y) + s(m) + s(lat) + s(lon) + s(upt) + s(dh) + s(uph) + s(intensity) 11,458.37 19.2 0.187

Log(CPUE + 1) = s(y) + s(m) + s(lat) + s(lon) + s(upt) + s(dh) + s(uph) + s(intensity) + s(ONI) 11,361.8 21.1 0.205

Note: y—year; m—month; lat—latitude; lon—longitude; upt—upper temperature of the thermocline; uph—upper
depth of the thermocline; dh—thickness of the thermocline; intensity—strength of the thermocline; ONI—Oceanic
Niño Index; GAM—generalized additive models.

Table 4. Test values of generalized additive models (GAM).

Variable edf Ref. df F P
Contribution

Rate (%)

Year 8.046 8.757 75.019 <0.001 13.7
Month 6.394 7.550 6.030 2.72 × 10−7 1.7

Latitude 4.757 5.809 12.212 5.51 × 10−13 1.4
Longitude 5.768 6.783 10.550 3.27 × 10−12 1.1

Upper temperature 1.000 1.000 9.311 0.002 29 0.7
Thickness of thermocline 1.000 1.000 1.052 0.305 02 0.3

Upper depth of thermocline 1.000 1.000 0.287 0.592 13 0.2
Intensity 1.000 1.001 9.390 0.002 19 0.1

ONI 8.109 8.750 14.491 <0.001 1.9

The effects of spatial and temporal variables on the CPUE were nonlinear, whereas the
effects of the upper boundary temperature and depth of the thermocline and thermocline
thickness and strength on the CPUE among environmental variables were linear (Figure 5).
As shown in Figure 5, (1) the purse-seine CPUE of yellowfin tuna decreased from 2008 to
2009, barely fluctuated from 2009 to 2010, decreased from 2011 to 2012, and then increased
by 2016. Hence, the impact of the year on the CPUE fluctuated. The confidence intervals
were narrow in 2008, 2011, and 2013, indicating that those La Niña years had a strong
impact on the CPUE. (2) The CPUE of yellowfin tuna changed little in different months. It
remained unchanged from January to April, increased slightly by June, and then began to
fluctuate. (3) The impact curve of latitude on the CPUE presented a dome shape. The CPUE
value was the largest in the 0◦ equatorial region. The 95% confidence interval was narrow,
and the confidence level was high. The CPUE increased with latitude from 10◦ S–0◦ and
decreased with latitude from 0–5◦ N, showing that the CPUE increased gradually as the
latitude approached the equator. (4) The CPUE increased with the increase in longitude
from 140–150◦ E. However, the confidence interval was large, and the confidence level was
low. The CPUE fluctuated and the confidence interval was narrow at 150–175◦ E, indicating
that the meridional space close to the CPUE was 150–175◦ E. Moreover, the confidence level
dropped with the increase in longitude and the expansion of the confidence interval in the
east of 175◦ E.
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Figure 5. Effects of predictor variables: (a) year, (b) month, (c) Latitude, (d) Longitude, (e) thermocline
upper temperature, (f) thermocline upper depth, (g) Thermocline thickness, (h) thermocline strength,
and (i) the Oceanic Niño Index, derived from the generalized additive model (GAM) on catch per
unit effort (CPUE).

Among the environmental variables, the relationship between the upper boundary
temperature of the thermocline and the CPUE showed that the upper boundary temperature
of the thermocline in the yellowfin tuna fishing grounds was between 27 and 30 ◦C, with
an optimal upper boundary temperature range of 27.5–29.5 ◦C. The upper boundary depth
of the thermocline was between 50 and 150 m. The optimal upper boundary depth range
was 80–120 m. The thermocline thickness of the fishing grounds was between 100 and
200 m. The CPUE increased with the thickness of the thermocline. However, the confidence
interval increased, and the confidence level decreased. The thermocline strength of fishing
grounds was between 0.08 and 0.13 ◦C·m−1 and was positively correlated with the CPUE.
The CPUE increased with the increase in ONI, and 0.3 was the maximum value. ONI in the
range of −1–0.6 was closely related to CPUE.

4. Discussion

Temperature is a key environmental factor affecting fish activities [28]. It can directly
and indirectly affect fish life activities, such as spawning [29], embryonic development [30,31],
survival rate [32], feeding metabolism [33], migration [34], and habitat distribution [35].
Yellowfin tuna is a warm-water fish species that needs a certain water temperature to inhabit
and spawn. The temporal and spatial variation of thermocline characteristic parameters of
yellowfin tuna fishing grounds in the WCPO in El Niño and La Niña years shows that the
CPUE in a La Niña year moved westward to 170◦ E as the high-value zone of the upper
boundary temperature contracted westward to 145◦ E. In an El Niño year, the CPUE moved
eastward with the eastward expansion of the high-value zone of the upper boundary
temperature, which generally moved eastward to the east of 165◦ E. The reason may be that
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the upper boundary temperature of the thermocline affects the tuna spatial distribution.
The high-value zone of 27–29.5 ◦C of the upper boundary temperature in El Niño years
expanded eastward, whereas that in La Niña years moved westward. Furthermore, changes
in the vertical structure of the water temperature profile also affect the horizontal spatial
distribution and fishing mode for tuna [36]. To summarize, the CPUE distribution of fishing
grounds in El Niño and La Niña years change with the eastward expansion or westward
shift, respectively, of the upper boundary temperature of the thermocline, which makes new
areas suitable for fishing grounds. Thermocline changes in the tropical Pacific are caused
by SSTAs, which consist of enhanced deep atmospheric convection and westerly wind
anomalies in the central Pacific. During all El Niño events, weaker equatorial trade winds
produce an eastward shift of the western Pacific warm pool, and a deeper thermocline
response to this wind anomaly in turn reinforces the initial warming. Sea-level anomalies in
this area exhibit a zonal seesaw indicative of a deeper (shallower) thermocline in the eastern
(western) equatorial Pacific [37,38]. The strong temperature gradient of the thermocline
is a physical barrier for skipjack and juvenile yellowfin and bigeye tuna, whereas adult
yellowfin and bigeye tuna can dive below the thermocline to chase mesopelagic prey.
Therefore, changes in the vertical thermal structure of the ocean associated with ENSO
can potentially impact the catchability of tuna species by different fishing gears. Purse
seiners targeting surface tuna use the top of the thermocline as a lower barrier to trap tuna
schools [39].

In order to accurately analyze the relationship between the abnormal climate phenom-
ena and the abundance and spatial-temporal distribution of yellowfin tuna resources in
the WCPO, this study explored the impacts of environmental variables on the temporal
and spatial variation in yellowfin tuna catch by using a generalized additive model (GAM)
and analyzing the optimal environmental parameters of the thermocline where the fishing
grounds were located. The results showed that the contribution of the time factor was
15.4%, that of the spatial factor was 2.5%, and that of the environmental factors was 3.2%.
The upper boundary temperature of the thermocline in yellowfin tuna fishing grounds
was mostly between 27 and 30 ◦C. The optimal upper boundary temperature range was
27.5–29.5 ◦C. The upper boundary temperature of the thermocline had the greatest impact
among the subsurface environmental factors.

According to the analysis results of spatial superposition and the GAM, the thermo-
cline strength in the WCPO was weaker in the west and stronger in the east. The 180◦ W
region of the equatorial WCPO was the main fishing area in which the thermocline strength
in La Niña years was greater than that in El Niño years. Conversely, the thermocline
strength in La Niña years was less than that in El Niño years in the 180◦ E region. Moreover,
the CPUE was closely related to the thermocline in the strength range of 0.08–0.13 ◦C·m−1.

Regarding the upper boundary depth of the thermocline, the thermocline was thicker
in the west and thinner in the east. There was a thick band-like structure on each side with
an axis spanning 15◦ N and 15◦ S. The CPUE was distributed in the range of 120–200 m.
The width of the thermocline in the WCPO in La Niña years was lesser than in El Niño
years. GAM analysis showed that the upper boundary depth of the thermocline where the
fishing grounds were located was between 50 and 150 m. In addition, the optimal upper
boundary depth of the thermocline where the fishing grounds were located ranged from
80 to 120 m, which was consistent with the 70–109 m suitable upper boundary depth of
the thermocline for yellowfin tuna in the WCPO [40]. Compared with the normal years,
the upper boundary depth difference of the thermocline on the east and west sides of the
equatorial WCPO was larger in La Niña years, and the upper boundary depth value of
80–130 m was shifted westward. Compared with normal years, the upper boundary depth
difference of the thermocline on the east and west sides of the equatorial WCPO decreased
in El Niño years. The upper boundary depth value of 80–130 m moved eastward.

Studies [41,42] have suggested that the center of gravity of the catch in the WCPO
moves eastward and southward in El Niño years, and moves slightly westward and north-
ward in La Niña years. This is consistent with the conclusion of this study for longitude.
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The slight difference in latitude may be the result of different research objects. The research
object of this paper was yellowfin tuna, whereas other studies in the literature [28] consid-
ered skipjack tuna. Moreover, the time series of the research data were inconsistent. The
data used in this article are relatively updated data, which may also have led to differences.
According to the statistical results of the catch in this paper, the yield in La Niña years was
higher than that in El Niño years. Chen et al. [43] found that the yield was higher in La
Niña years and lower in El Niño years when studying the effects of El Niño and La Niña
on skipjack abundance in the WCPO. Deary et al. [44] also found that the production of
yellowfin tuna in the central Pacific increased significantly in La Niña years. This may
be because the upper boundary depth of the thermocline in the WCPO in La Niña years
is deeper than in El Niño years, and the thermocline strength is higher than in El Niño
years. In La Niña years, the suitable vertical habitat space of yellowfin tuna in this area is
compressed, which is conducive to surface fishing and high catch. In contrast, the catch is
lower during El Niño years [45,46]. In addition, the vertical structure of the thermocline
has little impact on the fishing ground due to purse-seine operation. However, the thermo-
cline changes caused by abnormal climate events have significant impacts on the CPUE.
This study provides a reference for purse-seine tuna production in the tropical WCPO in
abnormal climate years and for the study of the relationship between the temporal and
spatial distribution of tuna and the thermocline.
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Abstract: Using the daily precipitation and temperature data of 101 meteorological stations in four
provinces of central China (Henan, Hubei, Hunan, Jiangxi) from 1988 to 2017, we analyzed the
temporal and spatial dynamics and periodicity of nine extreme climate indices in central China, using
the predefined methods for analyzing extreme climate events, such as a M-K test, a linear trend
analysis, and a wavelet analysis. The extreme climate characteristics and changes in central China in
the past 30 years were revealed. The results showed that the CSDI was significantly reduced linearly
at a rate of −0.19 d/10a, and the WSDI and TXx increased significantly at rates of 0.25 d/10a and
0.30 ◦C/10a, respectively. The CDD decreased significantly at a rate of −1.67 d/10a. The duration
of extreme low-temperature and drought events in central China showed a gradual shortening,
while the duration of extreme high-temperature events and the high-temperature values increased.
The results of the abrupt climate change test showed that some extreme climate indices in central
China had significant abrupt climate changes after 2000. Analyzing the cyclicality of each index, it
was determined that the extreme climate index in central China had a significant cyclical change
every 2–4 years, and the change was more notable after 2000. Analyzing the spatial distribution
of the extreme climate indices, it was determined that Jiangxi had the longest duration of all high-
temperature events, and was the largest and longest of events of extreme precipitation. It was also
determined that the Jiangxi region was at greater risk of extreme climate events in central China. The
results of this study can provide a scientific basis for climate change trends, local disaster prevention,
and mitigation management in central China.

Keywords: extreme climate indices; temporal and spatial dynamics; linear trend; climate abrupt
change; central China

1. Introduction

The Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change
(IPCC) reported that the average global surface temperature has risen by approximately
1 ◦C compared to 1850–1900, and forecasted that the global average temperature rise is
expected to reach or exceed 1.5 ◦C in the next 20 years [1,2]. This report predicts that,
because of this increase in temperature, climate change will intensify over the next few
decades. When the global temperature rises by 1.5 ◦C, the frequency of heat waves will
increase, the length of the warm season will be extended, and the cold season will be
shortened; when the global temperature rises by 2 ◦C, the high temperature extremes will
increase. These changes will cause the critical tolerance thresholds for agriculture and
human health to be reached more frequently. Issues caused by climate change are not
only temperature-based, but will bring additional combinations of changes to different
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regions. Further warming will cause changes such as shifts in dryness, humidity, wind,
snow, and ice [1,2]. In China, extreme events, such as regionally persistent heavy rainfall,
high temperatures and heat waves, and persistent drought, have attracted wide attention
due to their potential regional hazards.

Central China is a key area for the transient between China’s east–west and north–
south borders and is a hub for land and water transportation. This region has a developed
agriculture and a foundation for light and heavy industries [3]. Central China has a large
north–south span with a complex weather system. Extreme precipitation events can trigger
floods in central China and can have a significant impact on the industrial and agricultural
production, including the local population [4]. In particular, low-probability, high-intensity,
long-lasting rainstorms can lead to frequent large-scale severe floods, and can often cause
a major loss of life and property [5,6]. Therefore, to ensure the sustainable development
of the economy in central China, it is of great significance to study the development and
evolution of extreme climate events in central China.

Research on climate extremes mainly focuses on the extreme value of various climactic
events, the analysis of the changing trend of the extreme climate index, the frequency,
intensity and change in major precipitation and temperature events, and the research on
some major extreme climate events as they occur. Many have conducted an analysis on the
impact of extreme climate events on agriculture, ecology, energy, etc. [7–14].

When determining the extreme climate index, many scholars choose suitable indices to
discuss the changing characteristics and trends of the climate events, based on the extreme
climate index published by the World Meteorological Organization (WMO). For example,
Klein Tank and Können used the extreme climate index to study the trends of daily extreme
climate and precipitation in Europe [15]. Studies by some scholars have shown that, in the
past half-century, the difference between the maximum and minimum temperature has
been significantly reduced [16]. Gallant analyzed the trend of the extreme climate index
changes in the United States, Europe, and Australia from 1950 to 2012, to study the impact
of climate change on those countries [17]. Pita-Díaz and Ortega-Gaucin used the climate
change index to analyze changes in temperature and precipitation extremes in Zacatecas,
Mexico [18]. Lucas et al. used daily high-resolution grid data to analyze 22 extreme climate
indices from 1980 to 2016 in the XRB, located in the Amazon region of Brazil. The research
results show that, in recent decades, both the day and night have become warmer [19]. The
rainfall in the central and southern parts of the XRB shows a downwards trend, while the
rainfall in the northern part of the basin shows an increasing trend [19]. Some scholars
have found that, in the past 100 years, there has been a clear trend of humidification in
Central Asia [20]. A variety of papers analyzed extreme climate indices in many regions of
the world, including Asia, America, and Africa [21–24].

China’s research on extreme climates is mainly focused on the above five aspects.
In terms of extreme climate indices research, Shi et al. analyzed the extreme continuous
diurnal trends of temperature and precipitation in China from 1961 to 2015. The results
show that China’s duration of cold periods (CSDI) and duration of warm periods (WSDI)
are 0.9 days and 0.1 days per decade, respectively [25]. The CSDI has dropped significantly,
while the WSDI has increased significantly, at a rate of 0.8 days per decade [25]. He et al.
used an independent and comprehensive climate index to quantitatively assess extreme
climate events in Guangdong [26]. Many scholars have conducted detailed analyses on the
distribution and changing trends of multiple extreme climate indices in the region [27–30];
Zhai and Liu pointed out that the frequency of heavy rainfall events in the middle and lower
reaches of the Yangtze River has increased, while droughts in the northeast, north, and
southwest regions are clearer, and high temperatures and heat waves occur more frequently
in the eastern region [31]. Liu and Xu pointed out that the total amount of precipitation
in the southwestern region decreased slightly, but the maximum daily precipitation and
precipitation intensity increased significantly [32]. Ju et al. showed that the highest and
lowest temperature in East China are both increasing [33].
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However, few have considered the entirety of central China as the area of research
when studying the regional trends and impact of extreme climate indices. This article aims
to analyze the extreme climate characteristics of the four provinces in central China by nine
selected extreme climate indices, and quantify the variation patterns and temporal-spatial
distribution characteristics of temperature and precipitation extreme events of central
China from 1988 to 2017.This work aims to also provide a scientific basis and reference
for decision-making in disaster prevention and mitigation in central China under the
background of future climate change.

2. Materials and Methods

The daily precipitation series, daily maximum and minimum temperature series of
101 meteorological stations (Figure 1) in central China (Henan, Hubei, Hunan, Jiangxi)
from 1988 to 2017 (30 years) were used. The data came from the National Meteorological
Information Center. We conducted a quality control process on the data to eliminate the
impact of site relocation or missing records. For example, Songshan in Henan Province was
eliminated due to the lack of years recorded.

 
Figure 1. Distribution map of meteorological observation stations in central China.

373



Sustainability 2022, 14, 2329

The purpose of this study was to quantify the changes in extreme events of temperature
and precipitation in the four provinces of central China, from 1988 to 2017. Considering
the impact of continuous extreme climate events, we selected four of the extreme climate
indices published by the WMO, which are WSDI, CSDI, CDD, and CWD. Considering the
temperature and precipitation extremes, the five indices of ID, FD, TNn, TXx, and R95 were
selected. By studying the temporal changes and spatial distribution of these nine extreme
climate indices, the characteristics of the extreme climate events in the four provinces of
central China were analyzed. The definitions of the indices are shown in Table 1. Since the
daily maximum air temperature (TXx) had a greater impact in the summer, and the daily
minimum air temperature (TNn) had a greater impact in the winter, TXx in the summer
and TNn in the winter were emphatically analyzed.

Table 1. Climate indices derived from daily rainfall data and maximum and minimum temperatures,
with definitions and units.

Indices Name Definition Unit

ID Icy days Annual count of days with
Tmax < 0 ◦C d

FD Frost days Annual count of days with
Tmin < 0 ◦C d

WSDI Duration of warm periods
Annual count of days with at least six
consecutive days in which
Tmax > 90 percentile

d

CSDI Duration of cold periods
Annual count of days with at least six
consecutive days in which
Tmin > 90 percentile

d

TNn Lowest Tmin Lowest annual value of daily Tmin ◦C
TXx Highest Tmax Highest annual value of daily Tmax ◦C

R95 Very wet days Total annual rainfall when
PRCP > 95 percentile mm

CDD Consecutive dry days
Maximum length of drought, or
maximum number of consecutive days
with PRCP < 1 mm

d

CWD Consecutive wet days
Maximum length of wet period, or
maximum number of consecutive days
with PRCP > 1 mm

d

To analyze the characteristics of the extreme climate index, a linear trend analysis
method was used to discuss the variation trend of each element. The Mann–Kendall test
method was used for the climate mutation testing of the extreme climate indices. This
method was not limited to the distribution of samples, and could also exclude a few
interferences of outliers [10]. It was suitable for meteorological non-normally distributed
data, and the calculation was convenient. Climate mutation referred to the change of
statistical characteristics of the climate state, which was manifested as the discontinuity of
climate change. It was a phenomenon that the climate changes abruptly from one stable
state to another. Among several detection methods of climate mutation, the Mann–Kendall
method was very confident in the detection of mean mutation. It is a nonparametric
statistical test method. Its advantage is that it does not need samples to follow a certain
distribution, nor is it disturbed by a few outliers, and the calculation is relatively simple.
Therefore, the Mann–Kendall test method is an effective tool recommended by WMO
(World Meteorological Organization) for analyzing abrupt climate changes and related
climatological research.

To analyze the temporal variation characteristics of each extreme climate index, the
wavelet analysis method was used to study its periodicity. The wavelet analysis method
introduced the window Fourier transform, which can obtain the frequency characteristics
of physical quantities, and can also present the variation of the period with time, which is
one of the important methods of period analysis.
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To understand and master the cyclical change characteristics of the extreme climate
indices in central China, wavelet analyses were conducted on the nine extreme climate
indices, the significant oscillation periods, and the oscillation strength changes of the main
periods at different times were obtained. First, the original time series of the extreme
climate indices was standardized to eliminate the influence of units on the data analysis.
Subsequently, the 95% confidence interval of the wavelet and the period range that passed
the 0.05 significance level test were obtained by analyzing the wavelet power spectrum
and the real part of the wavelet coefficients, to understand the characteristics of the main
period change with time. By drawing the full spectrum of the wavelet, the changes of the
main period of the extreme climate index and the main period passing the significance test
were obtained.

3. Results

3.1. Spatial Distribution of the Extreme Temperature Index

From the spatial distribution map of the six extreme temperature indices in central
China (Figure 2), it can be seen that the extreme temperature indices have clear spatial
distribution characteristics, and are closely related to latitude and topography.

Figure 2. Spatial distribution of extreme temperature indices in central China 1988–2017.

The cold series indices include icing days (ID), frost days (FD), duration of cold periods,
and the lowest minimum temperature (TNn). The spatial distribution map shows that
the number of icing days (ID) and the number of frost days (FD) both gradually decrease
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from north to south. The large value areas are concentrated in Henan and northern Hubei,
while southern Hubei, Hunan, and Jiangxi are the low-value areas in central China. In
addition, Lushan Mountain in northern Jiangxi and Nanyue Mountain in southeastern
Hunan have significantly more freezing days and frost days than surrounding areas, due
to their high altitudes.

The duration of cold periods was shorter in the north and longer in the south. The
area with the highest values were located in Hunan and southwestern Jiangxi. In contrast,
Henan and Hubei had fewer cold duration days, and the distribution in Hubei was shorter
in the west and longer in the east. The lowest minimum temperature (TNn) in central
China gradually decreased from south to north. The average low-temperature center in
winter in central China was mainly located in Henan. Hunan and Jiangxi were the areas
with high winter temperatures in central China; generally higher than −3◦C. However,
affected by the mountainous topography, the TNn indices of Nanyue in Hunan and Lushan
in Jiangxi reached −8.0 ◦C and −8.8 ◦C, respectively.

The warm series indices include the duration of warm periods and highest maximum
temperature. The duration of the warm periods was longer in the south and shorter in
the north. Most of the Jiangxi Province, central and eastern Hubei Province and eastern
Hunan Province were high-value areas located in central China, and the occurrence of
warm persistent events was generally more than double; the high-value areas gradually
increased from west to east, indicating that the high-temperature events were persistent in
these areas, making the regions prone to drought. Among them, Jiangxi had the highest
number of persistently warm days. The number of warm sustained days in Hunan was
generally characterized by a decreasing distribution from northeast to southwest, which
are mostly related to the geomorphological characteristics of the mountains on the east,
south, and west sides of Hunan.

The average value of the TXx index in central China in summer was 36.5 ◦C, and the
high-value areas were mainly concentrated in Henan and western Hubei. Among them,
Xingshan in Hubei had the highest value of the summer daily maximum temperature in
central China, reaching 38.9 ◦C. The TXx index in Hubei showed the distribution charac-
teristics of low in the middle and high in the east and west. The high-value area of TXx
index in Hunan was located in the northern region, and the high-value area of TXx index in
Jiangxi was located in the northwest and central regions of Jiangxi, both exceeding 37 ◦C.

3.2. Time Change Trend Analysis of the Extreme Temperature Index

The Mann–Kendall method (Figure 3) was used to test the trend of each extreme
temperature index in central China in combination with trend analysis (see Table 2 for test
statistics). The results showed that the trends of each extreme climate index were different.
Combined with Figure 3 and Table 2, if the UFK value is greater than 0, it indicates that the
sequence shows an upward trend, and if it is less than 0, it indicates a downward trend.
When UFK and UBK exceed the critical value, it indicates that the upward or downward
trend is significant. The time that UFK and UBK curves intersect is the time when the
mutation starts.

From the overall trend, only the CSDI index in the cold series index (ID, FD, CSDI, TNn)
had a significant change, and the rate of change decreases with −0.19n/10a, indicating that
the number of cold duration days had a tendency to decrease annually, with the duration
of low temperature events becoming shorter. The warm series indices (WSDI, TXx) showed
a significant increasing trend, WSDI increased with a linear trend of 0.25 d/10 a, and TXx
increased with a linear trend of 0.30 ◦C/10a, indicating that there were more continuous
warm events in central China, and the high value of the hottest temperature increases
significantly. The duration of extremely high temperature events and the intensity of the
events increased.
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Figure 3. The Mann–Kendall test of the extreme temperature index in central China from 1988 to
2017: (a) Icing days (ID); (b) Frost days (FD); (c) Duration of warm periods (WSDI); (d) Duration of
cold periods (CSDI); (e) Highest Tmax (TXx); (f) Lowest Tmin (TNn).

Table 2. Linear trends and abrupt climate changes in extreme temperature indices in central China in
1988–2017.

Extreme
Temperature Index Linear Trend Value

The Year of
the Mutation

Trend Values before and after
Climate Mutations

Before After

ID 0.11 d/10 a 2004 −0.29 d/10 a −1.22 d/10 a

FD −1.35 d/10 a 2008 −0.29 d/10 a −1.86 d/10 a *

WSDI 0.25 d/10 a * 2004 0.07 d/10 a −0.1 d/10 a

CSDI −0.19 d/10 a * /

TXx
(Summer) 0.30 ◦C/10 a * 2003 −0.14 ◦C/10 a −0.006 ◦C/10

a

TNn
(Winter) 0.14 ◦C/10 a /

Note: * means value passed the 90% significance test, indicating that the linear trend is significant.
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According to the results of the Mann–Kendall mutation test, there were climate mu-
tations in several extreme temperature indices, as shown by the mutation of both the ID
index and WSDI index in 2004, the mutation of the FD index in 2008, and the mutation of
the TXx index in 2003. The results of the segmented trend analysis of the extreme climate
index show that, after 2008, the frost index had a significant decrease, indicating that the
winter and spring in central China will be warmer after 2008, and the number of days with
minimum daily temperature below 0 ◦C will be decreased.

As seen from the above, the warm series indices (WSDI, TXx) have a significant linear
trend, and abrupt climate change exists. The averages of the values before and after the
mutation were further calculated, and the results showed that the warm series index
average in central China increased significantly after the mutation. Specifically, the average
durations of the warm periods were 1.6 times more than in 1988–2003, and 2.1 times more
than in 2004–2017. The TXx in central China was 36.1 ◦C in 1988–2002, and 36.8 ◦C in
2003–2017. In addition, the maximum WSDI (3d) and TXx index (38 ◦C) appeared in 2013.
This may be related to the sustained, large-scale, high-temperature event in China during
the mid-summer of 2013. Some studies suggest that the sustained high temperature event
in 2013 may be affected by the continued strength of the western Pacific subtropical high
and the westward ridge point.

3.3. Periodic Analysis of the Extreme Temperature Index

By standardizing the original time series of the extreme temperature index and ana-
lyzing the wavelet power spectrum (as shown in Figure 4), the wavelet 95% confidence
interval (the area inside the red solid line on the left of Figure 4) and the period range that
passed the 0.05 significance level test (the area surrounded by the green dotted line on the
left of Figure 4) were obtained. Considering the boundary effect of wavelet analysis, in
the 30 years from 1988 to 2017, the confidence level of the wavelet analysis results for the
2–8 year cycle from 1990 to 2015 is greater than 95%.

This is done by plotting the full spectrum of the wavelet (the colored part in the left
image of Figure 4) to obtain the main change period of the extreme temperature index (the
peaks shown in the blue solid line on the right image of Figure 4) and the main period
that passes the significance test (as shown in the right image of Figure 4, the crest of the
blue solid line on the right of the red dotted line). Through the analysis of the real part
of the wavelet coefficient (as shown in the black isoline in the left figure of Figure 4), the
characteristics of the main change period with time and the stage of significant change were
understood. The results of the wavelet analysis show that different extreme temperature
indices show different oscillation periods, and there are some differences in the main
periods of separate time periods.

In the cold series index of central China, the number of icing days (ID) shows a
cycle, which is most notable from 2002 to 2013, and is dominated by a cycle of 2–3 years
and sometimes four years (Figure 4a). Frost days show a significant cycle of 3–4 years,
which was most notable in 1990–1998 and 2002–2015. The period from 1990 to 1998 was
dominated by 3–4 years and from 2002 to 2015 by a 2–4 years cycle (Figure 4b). The number
of cold duration days showed a significant period of 2–8 years, which was most notable in
1991–1996 and 2000–2015. Among them, the period of 1991–1996 was mainly approximately
2–4 years and 6–8 years, and the periods of 2000–2015 were mainly approximately 3–4 years
and 6–8 years (Figure 4d). The average daily minimum temperature in the winter has a
cycle of 2–4 years, and the period is most notable in 1991–1995 and 1996–2013. Among
them, the cycle of 1991–1995 is dominated by approximately two years, and 1996–2013 is
approximately two and four years (Figure 4f).

In central China, the warm duration days showed a cycle of 3–4 years, which was
notable from 1990 to 2000, and from 2009 to 2015. The above two stages are mainly based
on a cycle of approximately 3–4 years (Figure 4c). The extremely high value of the average
daily maximum temperature during the summer shows a cycle of 2–4 years, which is most
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notable in 1991–1996 and 2008–2015. The above two phases are in a cycle of approximately
2–4 years (Figure 4e).

Figure 4. Cont.
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Figure 4. Wavelet power spectrum, real part of the wavelet coefficient, and full spectrum of the
extreme temperature indices in central China in 1988–2017: (a) Icing days (ID); (b) Frost days (FD);
(c) Duration of warm periods (WSDI); (d) Duration of cold periods (CSDI); (e) Highest Tmax (TXx);
(f) Lowest Tmin (TNn)).
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In conclusion, with the exception of CSDI, the types of extreme temperature indices all
have significant cycles of 2–4 or 3–4 years, and the CSDI has a 6–8 years cycle, in addition to
the 2–4 years cycle. The main periods of ID and FD reflecting the extreme value of the low
temperature were both notable in 2002–2013. The WSDI and TXx (highest Tmax) represent
extremely high temperatures, and their main cycle was significant from 2000 to 2015.

3.4. Spatial Distribution of the Extreme Precipitation Index

Figure 5 shows the distribution of extreme precipitation indices in central China. The
extreme precipitation indices include extreme precipitation (R95), consecutive dry days,
and consecutive wet days.

Figure 5. Spatial distribution map of the extreme precipitation index in central China from 1988 to 2017.

The extreme precipitation and the number of consecutive wet days generally showed
the distribution of a gradual increase from north to south and from west to east, and
the distribution of high-value areas to low-value areas in the region was clear, with an
average value of 431.6 mm for the region. Jiangxi was the area with the highest extreme
precipitation in central China, and the extreme values were concentrated in the north and
east, generally exceeding 500 mm. At the same time, Jiangxi was also the region with the
longest consecutive wet days in central China, generally higher than eight days. Jiangxi had
a higher probability of extreme consecutive heavy precipitation events, and was more prone
to flood disasters. Western Henan and north-western Hubei were the areas with the lowest
extreme precipitation in central China, which was below 300 mm; Sanmenxia, in Henan
Province, had the lowest extreme precipitation (161.6 mm) in central China. Meanwhile,
Henan was also the region with the shortest consecutive wet days in central China.

3.5. Time Change Trend Analysis of the Extreme Precipitation Index

Additionally, using the Mann–Kendall method (Figure 6), combined with trend anal-
ysis, the trend change test was performed on the three extreme precipitation indices in
central China (see Table 3 for test statistics).
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Figure 6. The Mann–Kendall test of the extreme precipitation index in central China from 1988 to
2017: (a) Very wet days (R95); (b) Consecutive dry days (CDD); (c) Consecutive wet days (CWD).

Table 3. Linear trends and abrupt climate changes of extreme precipitation indices in central China
from 1988 to 2017.

Extreme
Precipitation Index

Linear Trend
Value

The Year of the
Mutation

Trend Values before and after Climate Mutations

Before After

R95 14.4 mm/10 a 1995
2004 108.4 mm/10 a −143.3 mm/10 a 72.4 mm/10 a

CDD −1.67 d/10a * /

CWD −0.23 d/10 a 1998 −0.4 d/10 a 0.003 d/10 a

(Note: * means passing the 90% significance test, indicating that the linear trend is significant.).

The extreme precipitation (R95) in central China had a climate mutation (Figure 6a).
The mutation years were 1995 and 2004. The trend analysis of the three periods before and
after the mutations showed that the R95 index had increasing, decreasing, and increasing
trends in 1988–1995, 1996–2003, and 2004–2017, respectively. The maximum and minimum
values in the study period both appeared in the 1996–2003 period, which were 1998
(615.6 mm) and 2001 (295.0 mm), respectively.

The consecutive dry days in central China showed a significant decreasing trend, with
a linear trend value of –1.67 d/10a, but there was no clear climate mutation (Figure 6b),
indicating that the duration of the extreme drought events in central China was gradu-
ally shortened.

The overall trend of consecutive wet days in central China was not significant, but
there was a sudden climate mutation (Figure 6c) in 1998. The maximum value of the CWD
index appeared in 1992 (10 days), and the minimum value appeared in 2013 (5.5 days) in
the pre-mutation and post-mutation periods.
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3.6. Periodic Analysis of the Extreme Precipitation Index

The wavelet analysis method was also used to analyze the periodicity of the extreme
precipitation index (Figure 7). The results showed that the extreme precipitation (R95)
in central China showed a 2–4 years cycle, which was more notable in 1994–2005 and
2007–2015. Specifically, the 1994–2005 period was mainly 2–4 years, and the 2007–2015
period was mainly 2 years (Figure 7a).

Figure 7. Wavelet power spectrum, real part of wavelet coefficients, and the full spectrum of the
extreme precipitation indices in the four provinces of central China from 1988 to 2017: (a) Very wet
days (R95); (b) Consecutive dry days (CDD); (c) Consecutive wet days (CWD).
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The number of consecutive dry days in central China showed a significant period of
2–6 years, which was more significant from 1993 to 2014, with periods of approximately
two years and 4–6 years (Figure 7b).

The number of consecutive wet days in central China had a significant period of
2–4 years, which was more significant in 1990–1996 and 2000–2015 (Figure 7c).

In conclusion, the significant periods of extreme precipitation, consecutive dry days,
and consecutive wet days in central China are not consistent. However, from the early
1990s to approximately 2015, these three indices had significant periods in most years, with
a 2–4 years cycle dominating.

4. Discussion

This article analyzes the temporal and spatial variation characteristics of extreme
climate indices in central China, which can help us to understand the changing regular-
ity of severe weather in central China. Many studies have found that the evolution of
extreme climate events is often closely related to the abnormal atmospheric circulation
situation [34–36]. For example, the maximum value of ID index and FD index appeared in
2008, which was mainly due to the obvious abnormality of the upper-level jet in East Asia
at the beginning of 2008, compared with normal years. The stronger East Asian upper-level
jet means that the intensity of cold air in the north is stronger, and the high-level divergence
area on the anticyclone side of the jet inlet area provides the occurrence and maintenance
of low-temperature events [37,38]. As a result, there has been long-lasting and strong
low-temperature rain and snow freezing weather in many places, including central China,
which made the ID index and FD index of central China in 2008 abnormally high.

The inter-annual variation of the WSDI index is large, and the average value after
2004 is larger than that in 1998–2004, which is considered to be closely related to global
warming. The maximum value appeared in 2013. In addition, the WSDI index in 2010 was
also abnormally high. The abnormal WSDI index in these two years was related to the
abnormally strong western Pacific subtropical high. The subtropical high air prevails in the
subtropical high control area, and the subtropical air heating and clear sky radiative heating
lead to the appearance of high-temperature weather. While the western Pacific subtropical
high had a larger range and stronger intensity in the abnormal years (such as 2010 and 2013),
and stably extended westward to most of central China, the high temperature weather is
persistent in this area [39].

Affected by the super El Niño in 1997–1998, the subtropical high in the Northwest
Pacific became more stable and stronger. The water vapor along the edge of the subtropical
high was continuously transported to the middle and lower reaches of the Yangtze River,
resulting in the emergence of severe floods, which appeared with an abnormally high R95
index in 1998 [40]. The maximum value of the CDD index appeared in 1988. Some scholars
believe that this is related to the large-scale drought caused by the strong La Niña event
in 1988–1989 [41]. It is mainly related to the weak subtropical high and weak water vapor
transport caused by the La Niña event.

According to the cycle analysis results of six extreme temperature indices and three
extreme precipitation indices, it can be extrapolated that the low-temperature events in
central China will be more significant around 2022, 2025, and 2028; the drought events in
central China around 2025 will be more significant, so disaster prevention and mitigation
projects are suggested to be prepared in advance around these years.

5. Conclusions

Based on the above analysis, the spatial and temporal variation characteristics of
extreme climate indices in central China can be obtained.

Spatially, the WSDI presented a distribution characteristic of more in the south and
less in the north, where the highest value was mainly in Jiangxi. The extreme precipitation
index generally showed the distribution characteristics increasing from north to south
and from west to east. Jiangxi is the area with the largest extreme precipitation and the
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longest continuous precipitation days in central China. It has a greater probability of heavy
rainfall events, and is more likely to be flooded. Combined with the analysis of extreme
temperature indices and precipitation indices, it is found that the risk of extreme climate
events in Jiangxi is greater.

The results of time evolution characteristics and the Mann–Kendall test show that the
CSDI in the cold series index had a significant decreasing trend. The ID index and the FD
index showed a significant decreasing trend after the mutation, indicating that the winter
and spring in central China are gradually warmer. Both the warm series indices (WSDI
and TXx) showed a significant increasing trend, and the mean values of the WSDI index
and the TXx index increased significantly after the mutation, indicating that the duration
of extreme high temperature events in central China became longer, and the intensity of
extreme high temperature increased.

The results of the wavelet analysis show that the extreme climate index had significant
cyclical change characteristics, mainly 2–4 years of periodic oscillation, and different indices
have certain differences during the main period in separate time periods. Most of the
extreme climate indices have significant periodic changes after 2000.

This study can provide a theoretical basis for the study of the occurrence regularity of
extreme disastrous weather and climate events in central China. The next step is to carry
out research on the impacts of extreme climate events on urban lifelines such as agriculture,
transportation, water supply, power supply, and other different industries. In addition,
more disaster mechanism studies should be carried out based on different disaster types.
This will provide more scientific bases for the assessment of climate change and its impacts
on stable grain production, energy supply, and urban safety management.
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Abstract: Some studies have suggested that variations in the seasonal cycle of temperature and
season onset could affect the efficiency in the use of radiation by plants, which would then affect
yield. However, the study of the temporal variation in extreme climatic variables is not sufficient
in China. Using seasonal trend analysis (STA), this article evaluates the distribution of extreme
temperature seasonality trends in mainland China, describes the trends in the seasonal cycle, and
detects changes in extreme temperature characterized by the number of hot days (HD) and frost days
(FD), the frequency of warm days (TX90p), cold days (TX10p), warm nights (TN90p), and cold nights
(TN10p). The results show a statistically significant positive trend in the annual average amplitudes
of extreme temperatures. The amplitude and phase of the annual cycle experience less variation than
that of the annual average amplitude for extreme temperatures. The phase of the annual cycle in
maximum temperature mainly shows a significant negative trend, accounting for approximately 30%
of the total area of China, which is distributed across the regions except for northeast and southwest.
The amplitude of the annual cycle indicates that the minimum temperature underwent slightly
greater variation than the maximum temperature, and its distribution has a spatial characteristic that
is almost bounded by the 400 mm isohyet, increasing in the northwest and decreasing in the southeast.
In terms of the extreme air temperature indices, HD, TX90p, and TN90p show an increasing trend, FD,
TX10p, and TN10p show a decreasing trend. They are statistically significant (p < 0.05). This number
of days also suggests that temperature has increased over mainland China in the past 42 years.

Keywords: STA; China; warm days; cold days; warm nights; cold nights; hot days; frost days

1. Introduction

The global surface temperature was 1.09 ◦C higher in last the last decade than
1850–1900, which was more likely not higher than for any multi-century average dur-
ing the Holocene [1]. The frequency and intensity of hot extremes have increased and
those of cold extremes have decreased on the global scale since 1950 [1]. Agriculture is one
of the most directly affected sectors by global climate change, especially crop production
and food security [2]. China is the largest food-producing country in the world. Since
2003, grain output has increased continuously. In 2020, the sown area of grain reached
1.17 million × 108 hm2 and a total yield of 6.69 × 108 t [3]. Chinese food production plays
an important role in its own country and even food security in the world. China is located
in eastern Eurasia, mostly at middle and high latitudes (Figure 1). This is a sensitive and
significant area for global climate change. Climate change is likely to have a significant
impact on global food production, and Chinese food production is also faced with the
uncertainty caused by climate change and the risk of yield reduction caused by extreme
climate [4–7]. In the past half-century, the yield of most major crops in the world has
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increased significantly, mainly due to irrigation, chemical input, and the extensive use of
modern crop varieties [8]. However, an increasing number of studies have shown that
there are two significant differences between the positive and negative effects of climate
warming on crop growth and yield [9–13], and the results depend on the study areas, crops,
and methods.

Figure 1. Map of mainland China including geographic divisions and provinces.

In the past 100 years, the trend of temperature increase in China has been higher
than the global average [14]. In the last 50 years, surface air temperature has increased
by nearly 1.40 ◦C with a change rate of 0.25 ◦C (10 years)−1, indicating that the trend of
climate warming has accelerated [14,15]. From 1961 to 2018, the start date of the average
growing season in China advanced, the end date was delayed, the length was extended,
and the advance of the start date had a greater impact on the length extension. In addition,
the advance of the start date and the increase in the length of the average growing season
in China are mainly due to warming in spring. The trend in the growing season length
in China follows the Northern Hemisphere trend [16]. The extreme air temperatures
also show an increasing trend. During 1961–2014, the temperatures of the hottest day
and coldest night in China showed a rapid upward trend, which were 0.17 ◦C·10a−1

and 0.52 ◦C·10a−1, respectively [17]. From 1961 to 2018, cold days (TX10p) and cold
nights (TN10p) in China had a decreasing trend, and the decreasing trend of TN10p was
significantly greater than that of TX10p. Warm days (TX90) and warm nights (TN90) had
an increasing trend, and the increasing trend of TN90p was significantly greater than that
of TX90p [18]. The trend of extreme air temperature was consistent with that on the global
scale [1]. Extreme high temperatures and low temperatures can damage crop tissues and
organs, delay crop growth and development, or hinder flowering and fruiting, resulting in
lower yields [19]. Long-term global warming has changed the distribution of temperature
changes and extremely high temperatures have become more common in some places, such
as southwest China [20–22]. The same is true for agricultural regions, where the probability
of crop exposure to maximum temperatures increases at the critical stage of reproductive
growth [23]. According to the latest studies, the contribution rate of climate warming to
the yield of spring maize in northeast China from 1981 to 2009 was 29.7%, and maximum
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temperatures above 30 ◦C caused a 14.1% yield reduction. The increase in high temperature
during the vegetative period was the main reason for the yield reduction [24]. Many studies
have also focused on the impact of temperature changes in different periods on crop yield.
Some scholars have collected relevant literature worldwide and used meta-analysis to
conclude that 0–5 ◦C warming during the reproductive period had significant negative
effects on wheat yield and its components [25,26]. The decline in wheat yield is different in
different climatic regions, and the negative effect of warming at night is greater than that
during the daytime [25]. As far as China is concerned, wheat yield increases significantly in
the monsoon region but decreases significantly in the temperate continental climate region.
The winter wheat yield has increased significantly with the increase in night temperature in
the monsoon region [26]. Another study indicated that warming up to +3 ◦C has increased
winter yield by 5.8% per ◦C (change rate of yield/average of yield) while reducing spring
wheat yield by 16.1% per ◦C [27].

The annual variability of temperature, precipitation, and plant phenology usually
has seasonal cycles. With the growth of global climate studies, monitoring these seasonal
trends as a means to detect the response of the Earth system to global change has sparked
great interest [28–30]. Previous studies regarding the impact of climate warming on crop
yield have more or less been related to the temporal dynamics of temperature [24–27]. Most
existing studies have used long-series data to analyze annual and seasonal changes or the
length of the growing season [14–18], but analysis of the seasonal trend of temperature is
not sufficient, especially the changes in the time of occurrence for extreme air temperature.
The purpose of this paper is to select several extreme air temperature indices from the
ETCCDI (Expert Team on Climate Change Detection and Indices) [31], which are related to
grain production. We analyze the spatial pattern and change in extreme air temperature
seasonal trends in mainland China over the last 42 years and detect the changes in extreme
temperature events. These results are expected to provide help for studying the long-term
impact trend of climate change on food production.

2. Data and Methodology

2.1. Data

In recent years, with the development of automatic observation technology, the num-
ber of meteorological observation stations in China has increased greatly, which improves
the spatial density and frequency of observations and partially meets the needs of land-
atmosphere processes and weather climate analysis. However, at the beginning of the
layout, automatic observation stations were mostly placed in sections with stable com-
munication, convenient maintenance, and clear purpose, which have high relevance,
but cannot provide uniform distribution and long-time series; therefore, it is difficult to
meet the needs of long-term climate trend analysis at present. Reanalysis data are a set
of gridded and long-series meteorological datasets based on data assimilation technol-
ogy that integrate multisource observation data and numerical simulation results. This
could compensate for the uneven spatial and temporal distribution of in-situ observa-
tions. At present, the main reanalysis datasets include a series of products (ERA5, ERA15,
ERA40, and ERA-Interim) from the European Centre for Medium Term Weather Fore-
casts (ECMWF) [32], NCEP/NCAR reanalysis I (R1) jointly developed by National Cen-
ters for Environmental Prediction (NCEP) and National Center of Atmospheric Research
(NCAR) [33], NCEP/DOE reanalysis II (R2) jointly developed by the Department of Energy
(DOE) [34], Japanese 25 year reanalysis (JRA-25) and 55 year reanalysis (JRA-55) [35,36],
NASA’s Modern-Era Retrospective analysis for Research and Applications (MERRA and
MERRA-2), etc. [37,38]. In May 2021, the China Meteorological Administration (CMA)
released China’s first-generation global/land surface reanalysis product (CRA). The prod-
uct reproduces the global three-dimensional atmospheric conditions from the ground to
a 55 km height since 1979, with a temporal resolution of 6 hours and a spatial resolution
of 30 km. The quality of the product is generally equivalent to that of international third-
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generation global reanalysis products [39] (http://data.cma.cn/analysis/cra40, accessed
on 5 November 2021).

ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate cov-
ering the period from January 1950 to present. ERA5 combines vast amounts of historical
observations into global estimates using advanced modeling and data assimilation systems.
ERA5 provides hourly estimates of a large number of atmospheric, land, and oceanic
climate variables. The data cover the Earth on a 30 km grid and resolve the atmosphere
using 137 levels from the surface up to a height of 80 km [40]. Although ECMWF recently
formed the global ERA5 dataset since 1950, the one from 1950 to 1978 is not the final version.
There are some evaluation and application studies on the specific elements of the datasets
at home and abroad which show that the quality of the datasets is significantly improved
compared with the previous version [32,41,42]. Therefore, the hourly 2 m temperature data
from ERA5 during 1979–2020 are used to form daily and monthly extreme air tempera-
tures, annual frost days (FD), and hot days (HD) in mainland China. The ground spatial
resolution of the reanalysis data is further improved to 0.25◦ × 0.25◦.

2.2. Methodology
2.2.1. Seasonal Trend Analysis of Extreme Air Temperature

The seasonal trends of monthly maximum temperature (Txmax), monthly mean
maximum temperature (Txmean), monthly minimum temperature (Tnmin), and monthly
mean minimum temperature (Tnmean) were examined by seasonal trend analysis (STA) in
mainland China. Seasonal trend analysis was initially applied to the trend analysis of image
time series [43], and some scholars have used the methodology to analyze the minimum
temperature over the La Plata River Basin in South America [44]. Due to the influence of
solar radiation, atmospheric circulation, and other factors, meteorological elements change
over time and can be considered a kind of fluctuation. For the time series of meteorological
elements, we can regard it as the superposition of many harmonic waves [45]. A given time
series yt and taking t = 0 as origin, yt can be decomposed into sine signals as Equation (1):

yt = A0 +
n=T/2

∑
n=1

An sin(
2πnt

T
+ φn) (1)

in which A0 is the arithmetic average value of the original series, and the other terms in
the right hand side represent the nth harmonics over T. An are amplitudes, and φn are
phase angles (from 0 to 360◦). t is time, and T is the temporal length of the series. The time
series of any meteorological element is limited, and the maximum number of harmonics
can be decomposed into half of the length of the series. Although a long-term series of
meteorological elements contains a variety of time scale changes, the annual cycle is the
most important; therefore, the first two harmonics can be used to simulate the original
series [43]. Therefore, n = 2.

First, harmonic analysis of the temperature series was carried out, including five
characteristic parameters, namely, the annual average amplitude (A0), the amplitude and
phase of the annual cycle (A1 and F1), the amplitude and phase of the semi-annual cycle
(A2 and F2) (Table 1) [21,43]. Here, A0 actually represents the annual average, A1 is the
annual temperature range, F1 indicates shifts in time, where a value of 30◦ corresponds
to 1 month approximately, and A2 and F2 are not clear, which can be regarded as the
shape factor of the annual curve [44]. Second, once the five harmonic parameters were
obtained for each year using Equation (1), their Theil–Sen median slopes were estimated.
This slope was then used to characterize their trend. The significance of the statistics was
evaluated using the non-parametric Mann–Kendall test (p < 0.05) [46]. Theil–Sen median
slope estimation is a robust non-parametric statistical method that is insensitive to outliers
and is very effective against reflecting the trend of time series data [47,48]. Finally, the
trend of these parameters can be visualized. Since there are as many as 35 combinations of
these parameters, it is impossible to summarize all five seasonal curve shape parameters in
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a single image. It is generally found that the three amplitude images contain the largest
amount of information and that rendering trends in A0, A1, and A2 provide an effective
composition. A companion phase trend is created by rendering trends in A0, F1, and F2.
According to the classes of combination, the region of interest can be selected to draw the
fitting curve of the beginning and ending years of climate elements, and the seasonal trend
and change of elements can be better understood by combining with the image [30,48].

Table 1. Five characteristic parameters of harmonic analysis.

ID Name Definition/Meaning

A0 annual average amplitude the arithmetic average value of the original series/annual average temperature
A1 amplitude of annual cycle difference between maximum and minimum of the 1st harmonic/annual temperature range

A2 amplitude of semi-annual cycle difference between maximum and minimum of the 2nd harmonic/can be regarded as the
shape factor of annual curve

F1 phase of annual cycle start phase angle of the 1st harmonic/indicate the time when the sine waves reaches a peak
F2 phase of semi-annual cycle start phase angle of the 2nd harmonic/can be regarded as the shape factor of annual curve

The advantages of employing ERA5 and STA are (1) obtaining the spatial variation
of extreme temperature, unlike the uneven station data; (2) obtaining five parameters of
time series, that is, the change trend of temperature, the change of temperature range, and
time change of maximum value can be understood at the same time; and (3) after the five
parameters of the same grid point are superimposed and visualized, we can understand the
temperature change pattern (different parameter combinations, different change patterns).

MATLAB and ArcMap were used for data processing and plotting, respectively.

2.2.2. Extreme Air Temperature Indices

We use five extreme temperature indices defined by the ETCCDI [31] and hot days
(HD) that characterize extreme temperature [49,50]. Table 2 has listed the details of
TN10p, TN90p, TX10p, TX90P, FD, and HD. The 90th and 10th percentiles of daily maxi-
mum/minimum temperature are calculated for a 5-day window centered on each calendar
day in the base 1991–2020 period. In the last part of the paper, we evaluate the spatial
distribution of the trend in extreme air temperature indices trends and examine the tem-
poral evolution of the regional averages of these indices using linear trend rates. Linear
estimation is a trend analysis method commonly used in climate analysis. In order to be
able to compare with existing results and those of our article, this method was used here.

Table 2. List of extreme air temperature indices.

ID Name Definition Units

HD hot days Annual count of days when TX ≥ 35 ◦C days
FD frost days Annual count of days when TN < 0 ◦C days

TN10p cold nights Percentage of days when TN < 10th percentile 1 %
TN90p warm night Percentage of days when TN > 90th percentile %
TX10p cold days Percentage of days when TX < 10th percentile 1 %
TX90p warm days Percentage of days when TX > 90th percentile %

1 TN/TX represent daily minimum air temperature/maximum air temperature.

3. Results

3.1. Seasonal Trends in Temperature
3.1.1. Maximum Temperature

Figure 2 shows the spatial distribution of statistically significant trends in the annual
average amplitude (A0), amplitudes of the annual (A1) and semi-annual cycles (A2), and
phases of the annual (F1) and semi-annual cycles (F2) for monthly maximum tempera-
ture (Txmax) and monthly average maximum temperature (Txmean). Complementarily,
a summary of areas with significant trends is presented in Figure 3.
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Figure 2. Areas in mainland China with trends of annual average amplitude (A0), the amplitude
(A1) and phase (F1) of annual cycle, amplitude (A2) and phase (F2) of semi-annual cycle of Txmax
(a,c,e,g,i) and Txmean (b,d,f,h,j). NS denotes no trend. −95 and +95 represent negative and positive
trends, respectively, with a significant confidence level of 95% (same in Figure 7).

The amplitude variation in the maximum temperature was mainly positive, and
the phase variation was negative over mainland China, as shown in Figure 2. During
1979–2020, the maximum temperatures in most parts of mainland China had a significant
increase and there was no significant decrease. The A0 of Txmax and Txmean increased
significantly in 84.5% and 93.2% of areas, respectively. The regions without significant
change mainly occurred on the Tibetan Plateau and south China (Figures 2a,b and 3).
Studies have revealed that the south is one of the regions with the weakest warming
trend in China, and the warming trend on the Tibetan Plateau ranks first among the eight
major regions in China [51]. In addition, the daily maximum temperature of the Tibetan
Plateau from 1961 to 2015 had a warming trend [52]. The areas where Txmax and Txmean
significantly changed in A1 accounted for 10.0% and 9.3% of the total area of mainland
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China, respectively. The A1 of Txmax decreased significantly, mainly on the Tibetan Plateau
and Tarim Basin. The area where the A1 of Txmean decreased significantly was slightly
smaller than the area where it increased significantly. They appeared on the southeastern
Tibetan Plateau, Tianshan Mountains, and Junggar Basin, respectively (Figures 2c,d and 3).
Since the amplitude of the nonzero semi-annual is not easy to interpret, it may be related to
the difference in the semi-annual period or annual curve shape in the seasonal curve [44].
Therefore, this paper only provides the results without analysis. Figure 2e,f show that the
A2 of the maximum temperatures was approximately 1/3, showing a significant positive
trend and mainly distributed in the northwestern region and Yangtze River Basin.

Figure 3. Area rate of mainland China with significant trends in the five parameters. +S/−S denotes
positive/negative significant trends, respectively, with a significant confidence level of 95%.

F1 of the maximum temperature in mainland China, approximately 30% of the area,
had a significant negative trend. Among these areas, Txmax mainly occurred in north-
western China and north of the Yangtze River, while Txmean had a pattern of ‘shrinking
in the north and expanding in the south’, the area with a significant decrease in north
China decreased, and the area with a significant decrease to the south of the Yangtze River
increased (Figure 2g,h). F1 reflects the time when the sine waves reached a peak, which
indicates that the time when the maximum temperature appeared in the above areas in the
last 42 years was delayed. Some studies suggest that the phase change was related to a
variety of mechanisms, but the influence of the change in thermal mass was greater [53].
Thermal mass on land is largely modulated by soil moisture. If soil moisture decreases,
it will produce a positive phase shift [53]. Because of the lack of long-term and spatial
high-resolution soil moisture datasets, it is very difficult to find conclusions supporting the
above soil moisture and temperature changes from the existing studies on soil moisture
changes in mainland China. The significant trend of F2 was also dominated by a negative
trend, with 28.3% of Txmax decreasing significantly, mainly in the Yangtze River Basin and
north China. The area where Txmean decreased significantly was approximately 1/3 of
Txmax (Figure 2i,j).

Figure 4 shows the trends in monthly maximum temperature (Txmax) and monthly
average maximum temperature (Txmean) during 1979–2020 (Figure 4a,b) together with
the trends in A0 (Figure 4c,d). We can see that Txmax and Txmean in mainland China
had a positive trend and the spatial distribution and magnitudes of the trend were very
consistent with their A0. They had a significant linear relationship with a coefficient of
determination of 0.92. This indicates that A0 from the seasonal trend analysis method, as
a representative index of annual average temperature, is also suitable for the analysis of
interannual temperature. From the perspective of spatial distribution, both Txmax and
Txmean had a strong warming trend on the northeastern edge of the Tibetan Plateau,
eastern coast, and Inner Mongolian Plateau. In addition, combined with Figures 2 and 4,
the trend rates of the regions where the maximum temperature change was not significant
were also small.
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Figure 4. Theil–Sen trend (TS slope (a,b)) and linear trend for annual average amplitude (A0) of
Txmax and Txmean (A0 slope (c,d)) during 1979–2020.

The five parameters of seasonal trends together represent the temporal dynamics
of climate factors, up to 243 combinations. There may be one or several combinations
with obvious advantages over mainland China. Therefore, the paper selects the first three
significant combinations with the largest area from these combinations to examine the
main classes and spatial distribution of the seasonal trend of each temperature element.

Figure 5 shows the first three classes of significant changes in Txmax and Txmean,
which were characterized by a significant increase dominated by A0. The seasonal trend
of Txmax was very distinct in mainland China, and only 9.6% of the areas did not change
significantly. There were 63 significant change combinations and the first three accounted
for 46.9% of the total area. A total of 28.7% (+0000, red) had a significant increase in A0
and no significant increase in other parameters. The combination is mainly distributed
in the northeastern, southeastern coastal, and the Tibetan Plateau, indicating that while
the annual average maximum temperature in these regions is increasing, the range of the
annual maximum temperature and its occurrence time have not changed significantly.

Figure 5. The combination of the top three areas of significant seasonal trends in Txmax and Txmean. Significant positive
trends are marked with a “+” sign, significant negative trends with a “−” sign, and no-trends with a “0”. Read from
left to right, the symbols indicate the significance of trends in A0, A1, A2, F1, and F2. Black spots are randomly selected
representative points of the three classes. For example, “+0000” has a significant positive trend in A0 and no significant
trend in the other parameters.

The second combination accounted for 9.6%, with A0 increasing significantly, while
F1 and F1 decreased significantly (+00−−, green), which was mainly distributed in the
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eastern northwest China, northern Huang-Huai, and Jiang-Huai regions, indicating that the
extreme maximum temperature in these regions generally increased and that the time was
delayed. Both A0 and A2 also increased by 9.1% (+0+00, blue) and were mainly distributed
in northwest China and the northern margin of the Tibetan Plateau (Figure 5a).

There were 51 combinations with significant seasonal variations in Txmean in main-
land China, accounting for 96.3%. The first three classes were when A0 increased signifi-
cantly (+0000), A0 and A2 increased significantly (+0+00), A0 and A2 increased significantly,
and F1 decreased significantly (+0+−0), accounting for 34.8%, 16.2%, and 13.0% of the total
area of mainland China, respectively. The first class was distributed mainly in northeast
China, north China, the Tibetan Plateau, and the southeastern coast. The second was mainly
in the northeast and northwest and the third appeared in the middle and lower reaches of
the Yangtze River and northwest (Figure 5b). It can be concluded that in some regions of
Huang-Huai and Jiang-Huai, the maximum temperature not only had a significant upward
trend but also the time at which its maximum value appeared was significantly delayed.
These two places are one of the main grain-producing regions in China, which provides
some ideas for follow-up studies on the effect of temperature increases on grain yield.

A grid was randomly selected from the first three classes of Txmax and Txmean, and
the monthly dynamics of the start year (1979, black curve) and end year (2020, red curve)
were fitted (Figure 6). We can see that the shapes of the curves are different mainly due to
different parameter combinations. Even if the same class is different due to locations and
elements, the seasonal trend of the same class of curves is consistent, regardless of their
shapes. For example, when A0 increased significantly (+0000), the overall value in 2020
was higher than that in 1979. When F1 decreased significantly, the peak time was obviously
delayed (+00−−, +0+−0). However, the curve of a significant increase only in A0 of Txmax
seems to have significantly delayed in 2020, but the statistical test is not significant, which
should be related to the large difference in the time of the maximum at this grid.

Figure 6. Examples of seasonal trends representative of each of the three major trend classes in
Txmax and Txmean. The black curve represents the seasonal curve at the beginning of the series
while the red curve represents the seasonal curve at the end of the series. The difference between the
two indicates the change resulting from the trend.

3.1.2. Minimum Temperature

Similar to the maximum temperature, the minimum temperature also had a significant
increase in mainland China (Figure 7). The A0 of monthly minimum temperature (Tnmin)
and monthly average minimum temperature (Tnmean) increased significantly in 92.4%
and 97.9% of areas, respectively. From this point of view, the warming of the minimum
temperature was larger than that of the maximum temperature, which is consistent with
existing studies [54,55], but the time variation of its minimum value was slightly smaller
than that of the maximum temperature (Figure 7g,h). The regions where A0 of the minimum
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temperature did not change significantly were scattered on the Tibetan Plateau, northwest
China, and northeast China (Figure 7a,b). In contrast, the minimum temperature in the
mid-lower reaches of the Yellow River, Yangtze River Basin, Jiang-Nan, south, and eastern
southwest China showed a positive trend in the last 42 years. The above regions are
major agricultural areas in China. The regions where A1 of Tnmin and Tnmean increased
and decreased significantly were bounded by the 400 mm isohyet in mainland China,
i.e., the temperate continental and plateau mountain climatic areas mainly increased,
while the monsoon climatic areas mainly decreased (Figure 4c,d). Comparing the spatial
distribution of the parameters of maximum temperature and minimum temperature, we
can find that A0, A1, A2, and F1 of maximum temperature, A0, A1, F1, and F2 of minimum
temperature, and their trend of Txmax/Tnmin and Txmean/Tnmean had similar spatial
patterns. However, there was an exception. A2 of Tnmin showed no change in most regions,
while Tnmean showed a significant increasing trend in northern China (Figure 7e,f).

Figure 7. Areas in mainland China with trends of annual average amplitude (A0), the amplitude
(A1) and phase (F1) of annual cycle, amplitude (A2) and phase (F2) of semi-annual cycle of Tnmin
(a,c,e,g,i) and Tnmean (b,d,f,h,j).
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F1 of Tnmin had a significant change in 8.6% of the area and the area with a significant
increase was slightly smaller than that with a significant decrease (Figure 7g). F1 of Tnmean
decreased significantly in 14.4% of the area and increased significantly in 3.1% of the area
(Figure 7h). The area where F2 changed significantly was further reduced, accounting for
3.2% and 3.7%, respectively (Figure 7i,j).

In the last 42 years, the spatial distribution and magnitude of the trend of minimum
temperature were also similar to the trend of their A0, and linear regression determination
coefficients were 0.96 and 0.94, respectively (Figure 8a–d). The warming trends of Tnmin
and Tnmean were generally higher in the north and lower in the south. The warming trend
rate for most parts of the north was 0.04–0.08 ◦C·a−1, and that for the south was not more
than 0.04 ◦C·a−1. The spatial patterns of the warming trends of Tnmin and Tnmean were
also similar, and the warming trend rate of the former was higher than that of the latter
(Figure 8).

Figure 8. Theil–Sen trend (TS slope (a,b)) and linear trend for annual average amplitude (A0) of
Tnmin and Tnmean (A0 slope (c,d)).

The seasonal trend of Tnmin was very distinct in mainland China and all were mainly
characterized by significant changes in amplitude, which was somewhat different from the
maximum temperature. A total of 94.7% of the areas had significant changes, including
57 combinations. The first three classes of significant change accounted for 78.1% of
mainland China, and the first class (+0000) was the most distinct, accounting for 67.6%
of the total area. The A0 and A1 classes increased (++000) and the A0 increase and A1
decrease (+−000) accounted for 5.3% and 5.1%, respectively, and they appeared in the
western and central regions, respectively (Figures 9a and 10).

The first three classes with significant seasonal trends in Tnmean were also dominated
by amplitude, and all had increased significantly. A0 increased significantly (+0000), and
both A0 and A2 increased significantly (+0+00). The three amplitudes all increased signif-
icantly (+++00), accounting for 52.2%, 12.6%, and 5.8% of mainland China, respectively,
and the latter two mainly appeared in northwestern China (Figures 9b and 10).

From the three fitting curves, we can see the seasonal trends of Tnmin and Tnmean.
Because these three classes are amplitude combinations, the phase change was no-trend at
the beginning year and the end year; that is, the time of peak appearance was no different
(Figure 10).
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Figure 9. The combination of the top three areas of significant seasonal trends in Tnmin and Tnmean. The meaning of these
symbols is the same as that in Figure 5.

Figure 10. Examples of seasonal trends representative of each of the three major trend classes in
Tnmin and Tnmean.

3.2. Change of Extreme Air Temperature Days
3.2.1. Hot Days, Cold Days, and Warm Days

During 1979–2020, hot days (HD) increased significantly in the eastern and northwest-
ern regions (22.7%), with trend rates of 0.2~0.6 d·a−1 and 0.6~0.8 d·a−1 in some regions of
the lower reaches of the Yangtze River. The area of significant decrease was small (5.3%),
mainly in the northeast (Inner Mongolia and parts of Liaoning), and their trend rate was
not less than −0.4 d·a−1 (Figure 11a,b). HD in most parts of the north, northwest and
Tibetan Plateau had no significant change, which is related to the fact that there were few
or no temperatures higher than 35 ◦C.

TX10p decreased significantly in eastern Chain, eastern northwest China, and most
of the Tibetan Plateau. Most other regions had a decreasing but not significant trend. The
trend rate of the significant reduction was −0.4–−0.2%d·a−1. In western Xinjiang, there
was an increasing trend and a significant increase in the Tianshan region, but the trend
rate did not exceed 0.2% d·a−1 (Figure 11c,d). TX90p had a significant increase in most
regions, and the trend was not significant in adjacent areas of the south, southwest and
Jiang-Nan, eastern northwest, Tibetan Plateau, and most of the Tarim Basin. In terms of the
spatial distribution of the increasing trend rate, most regions were less than 0.4% d·a−1,
and the increasing trend was slightly prominent in the eastern northwestern and southern
southwestern regions (Figure 11e,f).
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Figure 11. HD (a,b), TX10p (c,d), and TX90p (e,f). Left for trend rate and right for statistically significance.

The regional average of HD, TX10p, and TX90p show that HD and TX90p had an
obvious increasing trend, while TX10p had a decreasing trend (Figure S1). The average
HD does not seem to have been high in mainland China. This is mainly due to the vast
territory of China, with large differences from east to south and from north to south. Some
regions in the northeast and Tibetan Plateau do not experience daily temperatures above
35 ◦C, while the southeast and Turpan Basin may have temperatures as high as 40 days,
which further indicates that HDs in warm regions have increased significantly. From the
regional trend rate, HDs and TX10p were not as large as TX90p, which was mainly related
to the increase in TX90p in most of mainland China.

3.2.2. Frost Days, Cold Nights, and Warm Nights

Frost days (FD) mainly occur in winter, early spring, and late autumn in China. HD
is closely related to latitude and altitude. For example, some regions on the Tibetan
Plateau have frost year-round, while most regions in south China have frost-free days
for approximately 350 days out of the year. During 1979–2020, the change in FD was not
significant in most of the area south of the Yangtze River, and the decreasing trend north of
the Yangtze River was significant. In addition to the change in FD, this distribution pattern
may also have been related to a few HD in the south. In the regions where FD decreased
significantly, the trend rate was mostly −0.2–0.8 d·a−1, and it could reach −0.8–1.0 d·a−1

in some regions on the Loess Plateau and Tibetan Plateau (Figure 12a,b).
TN10p decreased significantly in most regions, but they were not significant in the

northwestern and northeastern regions. In western Inner Mongolia and the Tarim Basin,
there were no trends. The trend rate of a significant decrease in most regions did not exceed
0.2% d·a−1 (Figure 12c,d). Warm nights (TN90p) had a significant increasing trend in most
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regions, but the increase was not significant only in some regions of southern Jiang-Nan
and western Jiang-Han and east of southwest China. In terms of the spatial distribu-
tion of trend rates, TN90p increased more significantly in western than in eastern China
(Figure 12e,f).

Figure 12. FD (a,b), TN10p (c,d), and TN90p (e,f). Left indicates trend rate and right for significance.

After the regional average in mainland China, both FDs and TN10p had a decreasing
trend, and TN90p had an increasing trend. From the absolute value of the trend rate,
TN10p was smaller than TN90p, which shows that the warmer minimum temperature
increased more distinctly (Figure S2).

The present studies on extreme temperature changes in mainland China show that
although the most extreme high temperatures were increasing and extreme low tempera-
tures were decreasing, there were certain differences between regions and magnitudes. It
has been reported that days of extreme temperatures at some observatories in mainland
China do not conform to a normal distribution [56–59]. Therefore, this difference may be
related to the methods and data.

4. Discussion

The reanalysis dataset can provide grid data with uniform spatial distribution and
its surface temperature has high reliability [39,60,61]. The extreme temperatures are better
captured by the ERA5 [60]. Based on the ERA5, we analyzed the seasonal trend of monthly
extreme maximum and minimum temperature in mainland China during 1979–2020 and
the time evolution of extreme air temperature days in this paper, hoping to provide help
for studying the long-term impact of climate change on grain production.
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Under the indisputable fact of climate warming, whether it is a single observation
site, reanalyzed data, or model predictions, it was found that extreme warm events
have increased significantly, while extreme cold events have decreased significantly in
China [1,62–67]. This trend is consistent with the changing characteristics of global temper-
ature extremes [62]. In recent years, some studies have attempted to interpret and assess the
effects of extreme climate events on crop yield [19,68–70]. Due to the lack of long-term trials
or yield observation data, China’s research on this aspect is more based on crop simulation
models or statistical yield, or short-term experiments [17,19,62,63,68,70]. The results show
that an increased heat ETS (extreme temperature stress) and a decreased cold ETS would be
expected for most areas of China during 2020–2049, and the spatial variability of rice yield
loss will be greater [63]. Single rice in northeast China and early rice in south China will be
under severe cold stress, while single rice in the middle and lower reaches of the Yangtze
River and late rice in south China will be under severe heat stress [63]. During 1986–2015,
the multi-year average extreme high temperature days increasing every additional day
could result in a 226.62 kg·hm−2 multi-year average maize yield reducing in the main
summer maize cultivating area of China [68]. The number of extreme high temperature
days has shown an increasing trend during 2021–2050 under RCP4.5 and RCP8.5, which
could result in maize yield decreased by 9.2% and 27.3%, respectively [68]. Based on
analysis of more than 20,000 historical maize trials, Lobell et al. concluded that each degree
day spent above 30 ◦C reduced the yield by 1% under optimal rain-fed conditions and by
1.7% under drought conditions [24,69]. The conclusion proves the effect of extreme high
temperature with experimental data.

A study has pointed out that the yield of maize and rice will decrease with the increase
of temperature in the mean growing season [70]. Conversely, the maize and rice yield
would increase by approximately 6.947% and 2.885% with a 1 MJ·m−2 increase in the mean
growing season downward shortwave solar radiation, respectively [70]. Furthermore, radi-
ation is greatly affected by cloud cover, which is very important for agricultural production,
crop distribution, and animal migration. With climate change, global cloudiness has also
changed significantly [71–74]. Limited by space, this article only analyzed the seasonal
trend of extreme temperature in mainland China and did not assess the impact of the trend
on the crop yield, especially rice, maize, and wheat. Past studies have focused mainly
on the number of days of extreme temperature changes and have paid less attention to
changes in the monthly or annual range of extreme temperatures, as well as changes in the
time of occurrence [49,65,67,75–78]. For these reasons, the result has certain significance for
future studies on the impact of extreme climate on agricultural production. In addition, the
effects of extreme temperatures, moisture conditions, and cloud cover on crop yields are
comprehensive, and future research should focus on their compound and dynamic effects.

5. Conclusions

Monthly maximum temperature (Txmax) and monthly mean maximum temperature
(Txmean) had the same annual cycle change with a significant positive trend. The five
characteristic parameters for annual and semi-annual cycles in Txmax and Txmean were
similar in spatial distribution, indicating that Txmax and Txmean in most parts of mainland
China had analogously seasonal variations. The trend in annual average amplitude (A0)
was largest, and the annual amplitude (A1) was smallest. The areas with significant changes
in annual phase (F1) and semi-annual phase (F2) mainly decreased, which indicates that
the time of maximum temperature in these regions had a delaying trend. The area with a
higher trend rate in Txmax was larger than that in Txmean, but the trend rate of both was
less than 0.06 ◦C·a−1 in most regions, showing a strong warming trend on the northeastern
edge of the Tibetan Plateau, eastern coast, and Inner Mongolian Plateau. The maximum
temperature changed significantly to over 90% of mainland China and the changes in A0
were dominant.

The A0 values of monthly minimum temperature (Tnmin) and monthly mean mini-
mum temperature (Tnmean) in most of mainland China also had a significant warming
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trend; the trend rate was 0.02–0.08 ◦C·a−1, which was higher in the north than in the south,
and the Tibetan Plateau was especially prominent. The Tnmin warming trend was higher
than that of Tnmean. The significant change area of A1 was significantly smaller than
that of A0, dispersing on both sides of the 400 mm isohyet; that is, the northwestern area
mainly increased and the southeastern area mainly decreased. Different from the maxi-
mum temperature, the area where F1 with the minimum temperature changes significantly
decreased and the areas with increasing trends increased. The change in A0 in minimum
temperature was also dominant and its proportion was higher than maximum temperature,
which shows that the trend in minimum temperature in mainland China was more distinct
than maximum temperature.

In recent years, the number of heat waves has increased [75–78]. HD has increased
significantly in the eastern and northwestern regions (significantly increased areas account
for 22.7% of mainland China). However, there was no significant change in those areas
where HD may have occurred in south China, east of southwest China, south of north
China, and northwest China. TX90p had a significant increase in most regions, while TX10p
had a significant decrease on the eastern Tibetan Plateau, most of the Tibetan Plateau, and
eastern northwest China. In particular, FD decreased significantly on the Tibetan Plateau.
TN10p decreased significantly in most regions but did not change significantly in the
northwest and northeast. TN90p increased significantly in most regions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su132212462/s1, Figure S1: Temporal evolution of regional averaged HD, TX90p, and TX10p
and Figure S2: Temporal evolution of regional averaged FD, TN90p, and TN10p.
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Abstract: Heatwave events (HWEs) have strong impacts on human health, ecosystems, and sus-
tainable social development. Using a gridded observation dataset and a high-resolution regional
climate model (RCM), this study analyzed the characteristics of HWEs over the Yangtze River Basin
(YRB) in eastern China during the historical period and projected the changes in HWEs over the
YRB in the future. The daily maximum temperature (Tmax), long-lived (≥6 days) HWEs, and total
(≥3 days) HWEs in the YRB all showed an obvious upward trend from 1981 to 2018, while the
increase in short-lived (≥3 days and <6 days) HWEs was relatively moderate overall. The RCM
of the Weather Research and Forecasting (WRF) model can simulate the characteristics of Tmax
and HWEs in the historical period very well, and the projection results showed that Tmax, total
HWEs, and long-lived HWEs will all increase obviously in both the SSP245 and SSP585 scenarios.
Short-lived HWEs will also increase rapidly under SSP585, but they will rise slowly overall under
SSP245. The changes in HWEs had distinct regional differences, and the intensity and coverage area
of HWEs were greater under SSP585 overall. In the future, the increase in HWEs over the YRB region
is likely to be associated with the enhancement of the western-Pacific subtropical high (WPSH) and
South-Asian high (SAH), and this enhancement was also greater under SSP585. The results from the
high-resolution simulation of the RCM can provide an important reference for disaster prevention
and mitigation in the future.

Keywords: WRF model; projection; short-lived heatwave event; long-lived heatwave event; Yangtze
River Basin

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) in its 6th Assessment Report
(AR6) reported that the global mean surface temperature in the first two decades of the 21st
century (2001–2020) was 0.99 ◦C higher than in 1850–1900 [1]. Under the background of
global warming, the occurrence of extreme weather and climate events, such as heatwave
events (HWE), have increased significantly, which has led to a large impact on the social
economy, natural ecosystems, and human health [2–5]. For example, during summer
2003, long-lasting HWEs occurred in Europe, which resulted in more than 4000 deaths in
18 countries and an estimated USD 13 billion in property damage [6,7]. Unusually, HWEs
also persisted in the Yangtze River Basin (YRB) of eastern China during summer 2013,
resulting in persistent drought that affected over nine provinces with a population of more
than half a billion [5,8]. More importantly, the results of a number of numerical simulations
suggest that HWEs in eastern China will still increase significantly in the future in the
context of global warming [5,9,10].

Reliable weather and climate forecasts of HWEs are essential for risk mitigation and
early-warning systems [11]. Most global climate models (GCMs), with resolutions from
100 km to 200 km, are generally good in capturing large-scale circulation [12–14], but they
are not efficient enough to represent the fine-scale processes of the atmosphere, as well as
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the terrain and land-use distribution, which makes it difficult to accurately characterize
regional HWEs [15–18]. Regional climate models (RCMs), with refined grid spacing and
solid-model physics, can address the abovementioned problems associated with GCMs
very well [19–21]. Several studies have indicated that RCMs are believed to provide more
added value in their simulations with respect to GCMs [22–25]. Based on the above facts, it
is important and meaningful to use RCMs to study the mechanisms and variation of HWEs
in a certain area [26–28].

The YRB is one of the core regions for the occurrence of HWEs in China [29]. A
large number of studies have focused on how HWEs in this region are generated from the
perspective of large-scale circulation anomalies [29,30], variability in the sea-surface temper-
ature (SST) [31], and anomalous boundary characteristics in observational diagnostics [32].
Li, Xiao, and Zhao [30] suggested that the occurrence of HWEs is strongly associated with
the joint effects of the western-Pacific subtropical high (WPSH) and the South-Asian high
(SAH). In addition, Teng and Branstator [33] pointed out that the East-Asian jet stream
(EAJS) can act as a waveguide to adjust the intensity and position of the WPSH through
quasi-zonal teleconnections, which further influence the HWEs in the YRB region. It is also
indicated that the strong SST anomaly over the mid-North Atlantic connects to the WPSH
and East-Asian upper-level westerlies via the teleconnection wave train and can further
contribute to the variability of HWEs over the YRB region [34]. However, previous studies
on HWEs over the YRB region have mostly focused on large-scale circulation characteristics
and have lacked descriptions of small-scale information, such as the spatial distribution
of HWEs and their regional differences in future climate scenarios. Considering the large
population, rich production, and large economic volume in the YRB, it is necessary to
conduct a high-resolution simulation study of HWEs in this region to provide a reference
for sustainable development, disaster prevention, and early warning systems. Therefore, in
this study, we attempted to answer three key questions: (1) What are the temporal and spa-
tial characteristics of HWEs in the YRB during the historical period? (2) Do high-resolution
RCMs have the ability to simulate the characteristics of HWEs very well? (3) How will
HWEs change in the future?

The rest of the article is structured as follows. The following section describes the
data, methods, and experimental design for the simulation of HWEs over the YRB region.
Section 3 presents the analytical results. Finally, the discussion and conclusion are presented
in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Model and Experimental Design

The Weather Research and Forecasting (WRF) model version 4.0 [35] was employed
in this study. The simulation domain is centered at 30◦ N, 113.70◦ E, with a horizontal
resolution of 40 km, which is more refined than the first phase of the Coordinated Regional
Climate Downscaling Experiment (CORDEX-I). Figure 1 shows the simulation domain and
the terrain height within it, and the domain covers all of the YRB region.

Most existing literature has used a particular GCM as the initial conditions and
boundary conditions (ICs and BCs) for the RCM, which causes the simulation results
of the RCM to have a large uncertainty because dynamic downscaling simulations are
often degraded by biases in large-scale forcing [36]. Based on this, a bias-corrected GCM
dataset [36] based on 18 models from the Coupled Model Intercomparison Project Phase
6 (CMIP6) was used as the ICs and BCs to drive the WRF model in this study. Previous
studies have showed that this dataset is of better quality than individual CMIP6 models [36].
The simulation was divided into two periods. One is the reference period from 1995 to
2014, and the selection of this period was recommended by CMIP6. The other is the future
period from 2015 to 2054. The simulation in the future period includes two scenarios:
SSP245 and SSP585. SSP245 represents a moderate socioeconomic-development path with
medium-low radiation forcing, while SSP585 represents the combined scenario of a high
energy-intensive, socioeconomic developmental path with strong radiative forcing. The
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model starts to integrate one year in advance, and the first year of simulation was used as a
spin-up time and was not involved in the analysis.

 

Figure 1. The topography (m; shading) of the simulation domain. The black quadrilateral represents
the YRB region, and the meanings of the abbreviations in the figure are as follows: SX, Shaanxi
Province; HeN, Henan Province; AH, Anhui Province; JS, Jiangsu Province; SC, Sichuan Province;
CQ, Chongqing Province; HB, Hubei Province; ZJ, Zhejiang Province; SH, Shanghai City; GZ,
Guizhou Province; HuN, Hunan Province; JX, Jiangxi Province; and FJ, Fujian Province.

The physics options used for WRF include the single-moment six-class microphysics
scheme [37], the new Kain–Fritsch cumulus parameterization [38], the Noah land sur-
face scheme [39], and the NCAR Community Atmosphere Model (CAM) shortwave and
longwave radiation scheme [40].

2.2. Definition of HWEs

For the definition of HWE, the China Meteorological Administration (CMA) usually
defines HWE as a daily maximum surface air temperature at 2 m (Tmax) greater than 35 ◦C
and a duration of more than three days [41,42]. Based on this, in this study, if the Tmax at a
certain grid point meets the above conditions, it is considered that a HWE has occurred
at that grid point. Furthermore, for the entire YRB region, if the number of grid points
that meet the above conditions exceeds one-eighth of the total number of grid points, it is
considered that the entire YRB region experienced a HWE. If a HWE occurs, HWDs are
the total participating days of the HWE. Similar definition methods have also been used in
previous studies on regional HWEs [30,41]. Furthermore, to distinguish HWEs of different
intensities, we defined HWEs with a duration of 3–5 days as short-lived HWEs and HWEs
with a duration of more than 5 days as long-lived HWEs.

2.3. Gridded Observation Dataset

A set of gridded observations, CN05.1 (CN051) [43], were used to analyze the charac-
teristics of historical HWEs in the YRB and to verify the reliability of WRF for the simulation
of HWEs in this region. This dataset was produced by the National Climate Center of
CMA from over 2400 weather stations in China and has been widely used as a reference for
the validation of models [44,45]. It provides Tmax, daily minimum and mean surface air
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temperature at 2 m, and daily total precipitation from 1961 to 2018. Previous studies have
indicated that the Tmax over the YRB region exhibits an obvious shift at approximately
1980 and then increased significantly [46]. Therefore, in terms of historical periods, this
study mainly focused on the characteristics of HWEs from 1981 to 2018.

2.4. Methods
2.4.1. Regression Analysis

In order to explore the linear trends of Tmax and HWEs, linear regression was carried
out. It has been a common method to determine the long-term linear trend of a certain
meteorological variable [47,48]:

Tr = Tr
0 + s(t − t0) (1)

where Tr and Tr
0 are the variables for years t and t0, respectively. The s represents the linear

trend of the variable. A positive (negative) value indicates an increasing (decreasing) trend
of the variable.

In addition, linear regression was also used to study the relationship between geopo-
tential height (y) and HWEs (x):

y = ax + b (2)

where a represents the regression coefficient (RC) and b is the intercept. A positive RC
indicates that as the predictor variable increases, the response variable also increases and
vice versa. The absolute value of RC can indicate the relationship strength. The larger the
number, the stronger the relationship. The results of the linear regression were tested for
significance using the t-test at the 90% confidence level.

2.4.2. Evaluation of the Model Performance

The correlation coefficient (R) was used to indicate the strength and direction of the
relationship between the WRF model (x) and observation (y) during the 1995–2014 reference
period:

R =

n
∑

i=1
(xi − xm)(yi − ym)√

n
∑

i=1
(xi − xm)

2 ·
√

n
∑

i=1
(yi − ym)

2

(3)

where n represents the number of years, and xm and ym are the mean values of x and y,
respectively. The value of R ranges from −1 to 1, and the − and + signs indicate negative
and positive linear correlations, respectively. When the R value is positive, a larger absolute
R value indicates that the model is closer to the observation. Significance levels of the R are
estimated according to the two-tailed Student t-test.

3. Results

3.1. Characteristics of HWEs in the Historical Period

Because Tmax is an essential indicator for HWEs, we first gave attention to its changes.
The summer mean Tmax over the YRB increased slowly, and it exhibited an obvious
interdecadal shift at approximately 2000, which became a positive anomaly (Figure 2a).
Correspondingly, the total number of HWEs also showed a slow rise and shifts in 2000
(Figure 2b). It is also worth mentioning that the YRB experienced persistent HWEs in 2013,
and the Tmax of many weather stations set a new record. Interestingly, although the total
number of HWEs is increasing; the short-lived HWEs have not risen so much, except for
more occurrences in approximately 2005; and there was no obvious upward trend in other
years (Figure 2c). However, it should be mentioned that the number of long-lived HWEs
increased obviously during the study period, which is the main reason for the increase in
the total number of HWEs (Figure 2d). Similar characteristics can be found for the variation
in HWDs between the two classes of HWEs (Figure 2e,f). Therefore, HWEs with long
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durations were the main type of HWEs from 1981 to 2018, and they dominated the increase
in total HWEs in the YRB region.

 

Figure 2. (a) Anomalies of mean daily maximum tempeature at 2 m (◦C) and anomalies in the
number of (b) total HWEs (events), (c) short-lived HWEs (events), (d) long-lived HWEs (events),
(e) short-lived HWDs (days), and (f) long-lived HWDs (days) during summer over the YRB region.
The black dashed lines denote the linear trends, and the green solid lines represent the nine-year
running average.

The above results are based on regional averages. In order to clearly understand the
characteristics of HWEs in different areas, we further analyzed the spatial distribution of the
long-term trends in Tmax and the number of HWEs. The region with the greatest increasing
trend of Tmax was located in the western YRB, including Shaanxi, Sichuan, and Chongqing
provinces (Figure 3a). In addition, the trends were also obvious in eastern coastal areas
(Jiangsu and Shanghai). For the trends of total HWEs, the western YRB also had the greatest
value, followed by northern and eastern areas (Figure 3b). It should be mentioned that the
increasing trend of total HWEs in the western and southern YRB was mainly caused by
the rise of long-lived HWEs (Figure 3d,f), while the increase in HWEs in the northern and
eastern YRB was mainly caused by the rise of short-lived HWEs (Figure 3c,e). Therefore,
the increasement in the local short-lived HWEs was still not negligible.
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Figure 3. Spatial distribution of the linear trend of summer mean (a) daily maximum temperature
(◦C/a), (b) total HWEs (events/a), (c) short-lived HWEs (events/a), (d) long-lived HWEs (events/a),
(e) short-lived HWDs (days/a), and (f) long-lived HWDs (days/a) over the YRB region from 1981 to
2018. The dots indicate that the 90% confidence level was exceeded.

3.2. Projection of HWEs

Before using the RCM to make projections of HWEs in the YRB region, we first
analyzed the simulation results in reference periods to verify the model’s ability to simulate
HWEs. Because Tmax is the most important indicator for HWEs, we mainly focused on the
prediction skill of Tmax. The model can simulate the spatial distribution of the average
daily Tmax in summer very well (Figure 4a,b), although there is a certain cold bias in the
northern YRB region. From the perspective of time evolution, the model can also simulate
the interannual variation in the regional average Tmax very well (Figure 4c). The R between
the model and observations reached 0.45, exceeding the 95% confidence level. In addition,
the model also has a certain ability to simulate the number of HWDs in different years. The
R reached 0.39 and passed the 90% confidence level (Figure 4d). Therefore, the model has a
certain ability to simulate the HWEs in the YRB region, which indicates that it can be used
to predict the future variation in HWEs in this region.
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Figure 4. Spatial distributions of the average Tmax (ºC) in summer from 1995 to 2014 for (a) model
and (b) observation, (c) time series of the spatially averaged daily Tmax (◦C) in the YRB during
summer, and (d) time series of the total HWDs (days) in the YRB during summer.

In the future, the average Tmax in summer over the YRB will rise obviously (Figure 5a).
The upward trend of SSP585 will be greater than that of SSP245. Relative to the average
of 1995–2014 reference period, the temperature of SSP585 will rise by more than 1.8 ◦C in
the middle of the century. The total number of HWEs will also rise under the impact of
increasing temperatures, especially in the SSP585 scenario, which will increase by 1.8 events
per year by mid-century (Figure 5b). It should be mentioned that there is a great difference
in the changes of the short-lived HWEs under the two scenarios (Figure 5c). For SSP245,
short-lived HWEs first increase and then decrease, with a relatively flat trend. However,
for SSP585, although there is also a slight downward trend after 2024, the overall upward
trend of short-lived HWEs is particularly obvious, which will increase by 1.5 events per
year in the middle of the century. As for the long-lived HWEs, they will increase obviously
in both future scenarios (Figure 5d), which may cause large challenges for future disaster
prevention and mitigation work. It can also be found that after 2030, the increase in total
HWEs under the SSP245 scenario is mainly caused by the rise in long-lived HWEs. In
addition, the spatial coverages of each HWE will also increase in the future (Figure S1 in
Supplementary Material). More areas will be affected by HWEs under SSP585. The above
results show that adopting a moderate economic-development path can effectively alleviate
the impact of HWEs in the future.
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Figure 5. The anomalies in (a) Tmax (◦C), (b) total HWEs (events), (c) short-lived HWEs (events),
and (d) long-lived HWEs (events) relative to the 1995–2014 reference period averaged over the YRB
region. The time series were smoothed with a 9-year running mean filter.

To thoroughly understand the regional differences in the changes in HWEs, we then
analyzed the trends in spatial distribution. For Tmax, the northern region warms faster than
the southern region, and the warming trend in SSP585 is greater, with the maximum value
located in the northeastern part of the YRB (Figure 6a,e). Correspondingly, the occurrence
of HWEs in the YRB also increases consistently across the region, with a greater increase
in SSP585, especially in the central and eastern regions, including Henan, Hubei, Hunan,
Jiangxi, Jiangsu, and Anhui provinces (Figure 6b,f). It is noteworthy that for short-lived
HWEs, the rising trend in the northern region (including Henan and northern Anhui) is
evident in the SSP245 scenario, and it is the main reason for the rising number of total
HWEs in this region in the future. In contrast, for the southern region (including Jiangxi
and Hubei), the number of short-lived HWEs is likely to decrease in the future (Figure 6c).
It should be mentioned that the future trend of short-lived HWEs in the southern region is
consistent with the historical period. At the same time, there will be a significant increase
in long-lived HWEs in this region in the future (Figure 6d). For SSP585, both short-lived
HWEs and long-lived HWEs will increase significantly in the central and eastern regions
(Figure 6g,h), which once again proves the importance of controlling greenhouse-gas
emissions. Furthermore, we also analyzed the differences in climatology of Tmax and
HWEs from 2035 to 2054 relative to the 1995 to 2014 reference period (Figure 7). Under
SSP245, it can also be found that the Tmax will rise more obviously in the northern YRB, and
the numbers of HWEs will increase more significantly in the northern and southern YRB,
with the northern region dominated by the rise of short-lived HWEs, while the southern
region is dominated by the increase in long-lived HWEs. The changes in SSP585 will be
more obvious, and it should be mentioned that short-lived HWEs will also rise in the
southern YRB under SSP585.
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Figure 6. Spatial distribution of the trend of summer mean (a), (e) daily maximum temperature
(◦C/a), (b), (f) total HWEs (events/a), (c), (g) short-lived HWEs (events/a), and (d), (h) long-lived
HWEs (events/a) over the YRB region from 2015–2054 under (a–d) SSP245 and (e–h) SSP585. The
dots indicate that the 90% confidence level is exceeded.

 

Figure 7. The changes in (a), (c) Tmax (◦C); (b), (f) HWEs (events); (c), (g) short-lived HWEs (events);
and (d), (h) long-lived HWEs (events) for (a–d) SSP245 and (e–h) SSP585 over the 2035–2055 period
relative to the 1995–2014 reference period. The dots indicate that the 90% confidence level is exceeded.

The above results indicate that the temperature in the YRB region will be higher, and
HWEs will be more frequent in the future compared to the reference period. Previous
studies have proven that the WPSH and SAH play an important role in increasing Tmax
and HWEs. Therefore, it is important to understand the changes in geopotential height in
the YRB region in the future. Since geopotential heights at 500 hPa and 200 hPa levels have
a good indication for these two systems, we mainly focused on analyzing the changes in
geopotential heights at these two levels. The geopotential heights of these two levels in the
YRB will increase in the future relative to the reference period, and the increasing trend
will be more obvious under the SSP585 scenario (Figure 8). The results may indicate that
the WPSH and SAH will both intensify in the future. To obtain a deep understanding of
the relationship between the enhancement of these two systems and the HWEs, Figure 9
shows the regressions of geopotential height anomalies against the time series of HWEs.
Under SSP245, the increase in short-lived HWEs is mainly related to the strengthening
of the WPSH, and the impact of the SAH was not significant. The increase in long-lived
HWEs is related to the combined effect of the WPSH and SAH. These results are consistent
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with the conclusions of previous studies based on the analysis of HWEs in historical
periods [30]. The main physical process is that when the SAH intensifies, an anomalous
anticyclone occurs at the 200 hPa level over the YRB, and a downward advection of vorticity
by anomalous sinking motions exists. Consequently, the negative vorticity anomaly is
formed at 500 hPa, which can lead to a strong westward extension of the WPSH and the
occurrence of long-lived HWEs [49]. However, under the SSP585 scenario, the SAH will
increase more obviously, which will result in a wider and stronger influence of the WPSH,
and both short-lived HWEs and long-lived HWEs will be affected. The above results once
again emphasize the importance of controlling greenhouse-gas emissions.

 

Figure 8. The anomalies of geopotential height (gpm) of (a) 500 hPa and (b) 200 hPa relative to the
1995–2014 reference period averaged over the YRB region. The time series are smoothed with a 5-year
running mean filter.

 

Figure 9. Regressions of geopotential height anomalies (gpm) of (a,c,e,g) 500 hPa and (b,d,f,h) 200 hPa
against the time series of (a,b,e,f) short-lived HWEs and (c,d,g,h) long-lived HWEs. Time series of
short-lived HWEs and long-lived HWEs were standardized before the calculation. The dots indicate
that the 90% confidence level is exceeded.

4. Discussion

This work carried out high-resolution simulations on HWEs in both reference and
future periods over the YRB region. Different from the GCM with coarser resolution,
the high-resolution simulation from the RCM provides more details on the spatial and
temporal variations in HWEs in the YRB. The results also provide valuable information to
policy-makers in different regions and help to achieve regional sustainable development.

However, our research still has some limitations. First, due to the limitation of com-
puting resources, our simulation area was relatively small, which made it impossible for
us to analyze the changes in SST and large-scale atmospheric circulation in the future.
Previous studies have indicated that SST and global atmospheric teleconnection also have
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an important impact on regional HWEs [11,29,31]. For example, the strong SST anomaly
can connect the WPSH via the teleconnection wave train and can further contribute to
Tmax variability [34]. Based on this fact, our future work will also focus on the simulation
results of some GCMs. Although these models cannot provide the small-scale information
as RCMs, they can provide more large-scale signals. Therefore, it is meaningful to use the
optimal GCMs to explore the relationship between the large-scale factors and the short-
lived and long-lived HWEs over the YRB region. Second, the land-use distribution does
not change during our simulation, which makes the model unable to reflect the information
of human activities in time. In the near future, we will also use the WRF model to study
the contribution of land-use changes to the variations in short-lived HWEs and long-lived
HWEs in the YRB region.

5. Conclusions

In the context of global warming, HWEs are becoming increasingly frequent, and
obvious differences exist between different regions. The YRB region, an important economic
center of China, is one of the regions where HWEs are more frequent and severe. Coarse-
resolution models (such as GCMs) cannot resolve the detailed characteristics of HWEs.
Based on this, we used a high-resolution RCM (WRF) and observation dataset (CN051)
to analyze the characteristics of HWEs in the historical period and project the changes in
HWEs in the YRB in the future. The main findings are as follows.

(1). During the 1981–2018 historical period, the Tmax, long-lived HWEs, and total HWEs
in the YRB area all showed an obvious upward trend, and the turning point occurred in
approximately 2000. Although the upward trend of short-lived HWEs was relatively
small overall, there was a significant increase in certain regions, such as Henan,
Sichuan, and the eastern coastal region. At the same time, the high incidence of
long-lived HWEs was mainly concentrated in Hubei, Hunan, and eastern Sichuan
provinces.

(2). Through the high-resolution simulation during the reference period, it was found that
the WRF model can simulate the daily Tmax very well, which provides reliability for
the projections. The projection results show that Tmax, long-lived HWEs, and total
HWEs will increase obviously in both scenarios, and the upward trend of SSP585 is
even greater. Short-lived HWEs will also increase under the SSP585 scenario, but they
are relatively stable overall under SSP245. For SSP245, in the northern region, the daily
Tmax will rise faster, and short-lived HWEs will increase, while the long-lived HWEs
will rise significantly in the southern YRB. However, both short-lived and long-lived
HWEs will increase in each subregion of the YRB under the SSP585 scenario.

(3). In both future scenarios, the geopotential heights at 500 hPa and 200 hPa over the
YRB will increase, which may imply that both the WPSH and SAH will be enhanced,
and this is more pronounced in the SSP585 scenario. Changes in the WPSH and SAH
have an important impact on the HWEs of the YRB. The long-lived HWEs are caused
by the joint effect of the WPSH and SAH, and this joint effect will also affect the
short-lived HWEs under the SSP585 scenario. As mentioned in the fourth part, the
detailed physical mechanism of the impact of geopotential height on HWEs still needs
further study in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14031141/s1, Figure S1: The anomalies of the number of grids
covered by (a) total HWEs (grids), (b) short-lived HWEs (grids), and (c) long-lived HWEs (grids)
relative to the 1995–2014 reference period over the YRB region. The time series are smoothed with a
9-year running mean filter.
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Abstract: Compound extreme events can severely impact water security, food security, and social
and economic development. Compared with single-hazard events, compound extreme events cause
greater losses. Therefore, understanding the spatial and temporal variations in compound extreme
events is important to prevent the risks they cause. Only a few studies have analyzed the spatial and
temporal relations of compound extreme events from the perspective of a complex network. In this
study, we define compound drought and heatwave events (CDHEs) using the monthly scale standard
precipitation index (SPI), and the definition of a heatwave is based on daily maximum temperature.
We evaluate the spatial and temporal variations in CDHEs in China from 1961 to 2018 and discuss
the impact of maximum temperature and precipitation changes on the annual frequency and annual
magnitude trends of CDHEs. Furthermore, a synchronization strength network is established using
the event synchronization method, and the proposed synchronization strength index (SSI) is used to
divide the network into eight communities to identify the propagation extent of CDHEs, where each
community represents a region with high synchronization strength. Finally, we explore the impact of
summer Atlantic multidecadal oscillation (AMO) and Pacific decadal oscillation (PDO) on CDHEs in
different communities. The results show that, at a national scale, the mean frequency of CDHEs takes
on a non-significant decreasing trend, and the mean magnitude of CDHEs takes on a non-significant
increasing trend. The significant trends in the annual frequency and annual magnitude of CDHEs are
attributed to maximum temperature and precipitation changes. AMO positively modulates the mean
frequency and mean magnitude of CDHEs within community 1 and 2, and negatively modulates the
mean magnitude of CDHEs within community 3. PDO negatively modulates the mean frequency
and mean magnitude of CDHEs within community 4. AMO and PDO jointly modulate the mean
magnitude of CDHEs within community 6 and 8. Overall, this study provides a new understanding
of CDHEs to mitigate their severe effects.

Keywords: compound drought and heatwave events; complex network; event synchronization;
atmospheric circulation patterns

1. Introduction

Global warming has led to an increase in drought and heatwave events [1,2]. The
conjoined extreme events of droughts and heatwaves are considered as compound drought
and heatwave events (CDHEs) [3–5], which have severe impacts on socioeconomic devel-
opment and the environment. For example, severe drought and heatwaves in the 2003
European summer resulted in around 40,000 deaths [6]. Drought and heat anomalies in
the central United States has caused at least USD 30 billion in damages [7]. Therefore, it is
essential to study the spatial and temporal variations in, and spatial influences of, CDHEs
to mitigate their effects.

There is no unified standard for the definition of CDHEs, because drought events and
heatwave events correspond to a variety of definitions. Drought events are usually defined
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by various indicators, such as the standardized precipitation index (SPI) [8,9], the stan-
dardized precipitation evapotranspiration index [10,11], and the Palmer drought severity
index [12,13]. Heatwave events are mainly defined by relative thresholds (percentile thresh-
olds), absolute thresholds, and durations [14,15]. In recent studies, the definition of CDHEs
mainly refers to the combination of drought and heatwave event definitions mentioned
above [4,16–18]. There are also studies that directly describe the properties of CDHEs
by corresponding metrics. For instance, Wu et al. [19] proposed a dry–hot magnitude
index (DHMI) to characterize the magnitude of CDHEs. Their results show that high-
magnitude CDHEs mainly occur in northeastern and southwestern China. Wu et al. [20]
derived a standardized compound event indicator and a standardized dry-hot index to
evaluate the severity of changes in CDHEs in the warm season. Their results show that the
severity of CDHEs increases significantly in most parts of China, and temperature is the
dominant driving factor compared with precipitation. The variation in various properties
(frequency, magnitude, severity, etc.) of CDHEs, and the potential linkage of such variation
to atmospheric circulation patterns, has also been investigated. Hao et al. [16] applied a
logistic regression model to examine the relation between the occurrence of compound
events and El Niño–Southern Oscillation (ENSO) represented by NINO34. The results
show that ENSO plays an important role in the occurrence of CDHEs during the warm
season in the northern parts of South America, southern Africa, southeastern Asia, and
Australia. In China, there has been a significant increase in the frequency and spatial
extent of compound dry-warm events, which is partly related to atmospheric circulation
patterns [21]. Mukherjee et al. [22] used a Poisson generalized linear model to analyze
the relation between the frequency of seasonal CDHEs and the warm and cold phases
of ENSO, Pacific Decadal Oscillation (PDO), and North Atlantic Oscillation (NAO). The
results show that ENSO is strongly related with CDHEs over the southern hemisphere,
PDO influences the frequency of CDHEs over western North America during the boreal
summer, while NAO is weakly related with CDHEs. The composite analysis, correlation
analysis, and logistic regression model have all been used to investigate the influence of
various atmospheric circulation patterns on CDHEs in China. These methods found that
the Atlantic Multidecadal Oscillation (AMO) affects CDHEs for about 18.52% of mainland
China, while NAO and PDO, respectively, account for around 14.64% and 12.96%, and
ENSO affects CDHEs by about 5.27% [23]. In general, previous studies analyzed the spa-
tial and temporal variations in properties of CDHEs using various definitions or metrics,
revealing that atmospheric circulation patterns have a profound impact on CDHEs.

The complex systems theory applied to the study of extreme events has received
increased attention. Boers et al. introduced network divergence to directed networks to
predict extreme rainfall events in the central Andes [24]. Complex networks have been used
to reveal global patterns of extreme rainfall teleconnections, and Rossby waves were shown
to be the physical mechanism of these teleconnections [25]. Konapala and Mishra [26]
applied the complex network approach to study the spatial and temporal evolution of
droughts in the continental USA. They found that drought events propagate differently at
different thresholds associated with their initiation. However, complex network approaches
have rarely been applied to the study of CDHEs.

The objective of this study is to evaluate the spatiotemporal variations and propagation
extent of CDHEs for the period of 1961–2018 in China, based on monthly SPI, daily
maximum temperature, and a complex network approach. The correlations between AMO,
PDO, and the frequency and magnitude of CDHEs are employed to explore the possible
physical mechanism of the formation of CDHEs. The results of this study will enhance our
understanding of compound extreme events and provide suggestions for decisionmakers
to mitigate the negative impacts of these events in China.
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2. Data and Definition

2.1. Data

Our study is based on monthly precipitation data and daily maximum temperature
data from the CN05.1 dataset [27]. The time span of precipitation and maximum tem-
perature data is from 1961 to 2018, the resolution is 0.25◦ × 0.25◦, and there are 163 grid
points in the north–south direction and 283 grid points in the east–west direction, where
the number of grid points within China is 15,247 (precipitation and maximum temperature
data for Taiwan Province are missing).

AMO and PDO are major large-scale circulation patterns that influence the climate of
East Asia. The AMO index is defined as the average anomalies of sea surface temperature
(SST) in the north Atlantic [28]. Its positive (negative) phase usually indicates that SST is
warmer (cooler) than the average SST across the north Atlantic Ocean. The PDO index
is defined as the leading principal component of the north Pacific (NP) monthly SST
anomalies [29]. Its positive (negative) phase corresponds to cool (warm) SST in the central
and western NP. In this study, we found that more than 83.5% of CDHEs occur during
June, July, and August (JJA) in China (as shown in Figure 1); thus, we focused on the
impact of the AMO and PDO indexes in JJA on CDHEs, where the temporal series of
the AMO and PDO indexes in JJA are derived from the China National Climate Center
(http://cmdp.ncc-cma.net, accessed on 18 November 2021), and shown in Figure 2.

Figure 1. The proportion of CDHEs in different months for the period of 1961–2018.

Figure 2. Temporal series of AMO (blue) and PDO (red) index during JJA for the period of 1961–2018
after 9 year moving average.
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2.2. Defining Compound Drought and Heatwave Events

CDHEs are defined as extreme disaster events of drought in conjunction with a
heatwave. The influences of drought events are usually long-lasting, so the monthly SPI is
calculated to characterize the degree of drought in a given month [11], and −1 is selected as
the threshold of drought conditions. According to the World Meteorological Organization’s
recommended criteria for heatwaves [30], we define a heatwave as an event with a daily
maximum temperature (Tmax) ≥ 32 ◦C and a duration of ≥3 consecutive days. As shown
in Figure 3, the occurrence of a CDHE can be defined as a binary variable, where 1 is
for occurrences and 0 is for non-occurrences. Δt represents the duration of a CDHE, and
∑ ΔT represents the accumulative temperatures of a CDHE, which are the sum of the daily
maximum temperature exceeding the threshold for the duration of a CDHE. The SPI of the
month in which the CDHE is located, and its accumulative temperatures are used for the
subsequent calculation of DHMI. More details are described in Section 3.1.

Compared with previous studies, we focused not only on the interannual variation in
the frequency of CDHEs, but also on the interannual variation in the magnitude of CDHEs,
where the magnitude of CDHEs is represented by DHMI.

Figure 3. The schematic diagram of CDHEs. L is the total number of months for the period of
1961–2018. The top y-axis represents the occurrence of CDHEs, 1 for occurrences and 0 for non-
occurrences. The bottom y-axis represents the maximum temperature. Δt represents the duration of
a CDHE and ∑ ΔT represents the accumulative temperatures of a CDHE.

3. Methodology

3.1. The Drought–Heatwave Magnitude Index

The magnitude of a CDHE is jointly determined by drought degree and heatwave
conditions; then, the DHMI of a CDHE can be defined as [19]:

DHMI = P
(
∑ ΔT

)× (ΔSPI) (1)

where ∑ ΔT represents the accumulative temperatures of a CDHE, P(∑ ΔT) is obtained
using a nonparametric method to estimate the cumulative density function (CDF) of
∑ ΔT, transforming ∑ ΔT to a non-exceedance probability ranging from 0 to 1. A larger
∑ ΔT value corresponds to a higher probability of P(∑ ΔT) [31]. The degree of drought
is represented by monthly SPI. ΔSPI proposed by the runs theory [32,33] is the absolute
value of the difference between the SPI for the month in which the CDHE occurs and the
drought threshold. Therefore, a larger ΔSPI indicates a more severe drought. DHMI can
also be treated as a weighted value of ΔSPI, so its maximum value is the maximum value
of ΔSPI.
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3.2. Event Synchronization

The method of event synchronization is used to reveal the global pattern of extreme
rainfall teleconnections [25] and predict extreme floods [24]. In this study, grid i and grid
j are selected to describe the definition of synchronized events. We suppose that, for
grid i, a CDHE occurs at a moment ti

m; for grid j, a CDHE occurs at a moment tj
n, where

m ∈ [1, M], and n ∈ [1, N]. M and N denote the total number of CDHEs at grids i and j,
respectively [34]. CDHEs occurring on consecutive days are counted as single events, and
the occurrence time of each CDHE is determined as the time corresponding to the first day
when the event occurs. A dynamical delay τ

i,j
m,n is introduced to decide whether a pair of

events occurs at ti
m, and tj

n is counted as a synchronized event. Its definition is as follows:

τ
i, j
m,n = min

⎛⎝
{

ti
m+1 − ti

m, ti
m − ti

m−1, tj
n+1 − tj

n, tj
n − tj

n−1

}
2

⎞⎠ (2)

Furthermore, we introduce a maximum delay (τmax = 2 days) to constrain the forma-
tion of CDHEs [24]. f (i/j) is used to define the number of times a CDHE shortly occurs in
grid i after it occurs in grid j, i.e:

f (i/j) =
M

∑
m=1

N

∑
n=1

Sij (3)

with

Sij =

⎧⎪⎨⎪⎩
1 i f 0 < ti

m − tj
n ≤ min

(
τ

i, j
m,n , τmax

)
1/2 i f ti

m = tj
n

0 else

(4)

and analogously for f (j/i). Qij denotes the synchronization strength between grids i and j.
Its definition is as follows

Qij =
f (i/j) + f (j/i)√

M × N
(5)

where Qij is normalized to Qij ∈ [0, 1]. There is Qij = 1 if CDHEs are fully synchronized
between grids i and j.

3.3. Network Construction

In this study, the synchronization strength network is established through traversing
the synchronization strength for all possible pairs of grid points, where the grid points
are defined as nodes, and the synchronization strength between grid points is the weight
of the connected edges in the network. To eliminate minor edges, we prune the network
using Q95, corresponding to the 95th percentile of all synchronization strengths. Take grids
i and j as examples: there is a connected edge between grids i and j if Qij ≥ Q95. Finally,
we extract some edges with higher weights through the abovementioned principle. The
total number of edges in the synchronization strength network is 2.496 million, which also
indicates that the network has a large scale.

3.4. Complex Network Metrics

The establishment of the synchronization strength network provides a possibility to
identify the propagation extent of CDHEs. Complex network metrics aim to quantitatively
describe the topological characteristics of nodes and edges in the network.

The degree centrality is a measurement to evaluate the local importance of nodes in
the network, and the degree value of node i is defined as:

ki =
θ

∑
j=1

Aij (6)

427



Sustainability 2021, 13, 12774

with

Aij =

{
1, i f node i and j is connected

0, otherwise
(7)

where ki is the degree value of node i, θ is the total number of nodes, Aij is the adjacency
matrix, and Aij = 1 if node i and node j are connected; otherwise, Aij = 0. A higher
degree value for a node indicates that the node is connected to more nodes that are strongly
synchronized with its CDHEs.

The average distance of nodes is introduced to describe the average status of the
geographic distance of all edges for a node, and its mathematical expression is given as:

ADi =
∑
(

Dij × Aij
)

ki
(8)

where ADi is the average distance of node i and Dij is the geographic distance between
node i and node j. The average distance of nodes is concerned with whether a single node
has the possibility of connecting to distant nodes.

For node i, the synchronization strength index SSIi is proposed to quantify the ability
of node i to form a region with high synchronization strength. In general, the regions
with high synchronization strength that are formed should satisfy three conditions: the
degree of nodes in the region is larger, the average distance between these nodes and its
neighboring nodes is shorter, and the synchronization strength between neighboring nodes
is stronger. Thus, the definition of SSIi is given as:

SSIi = normalized
(

ki × CCi
ADi

)
(9)

with
CCi =

2 × Eexisted
ki × (ki − 1)

(10)

where CCi is the clustering coefficient of node i, Eexisted is the number of existing edges
between neighboring nodes of node i, and CCi is used to measure the clustering degree
of node i in the network [35,36]. A node with a larger SSI is more likely to form an initial
region with high synchronization strength, and the occurrence of CDHEs in the region is
more synchronous.

3.5. Community Detection

Community detection is a method for discovering closely related components in a net-
work, and it is utilized to identify the propagation extent of CDHEs. The synchronization
strength between the nodes within the community is stronger; conversely, the synchro-
nization strength is weaker between different communities. The existing algorithms of
community detection mainly include the fast Newman and GN algorithms for unweighted
networks [37,38], and the spin glass algorithm, random walk algorithm, and label prop-
agation algorithm for weighted networks [39,40]. The spin glass algorithm, developed
from the theory of spin glass in physics, is suitable for weighted networks with a larger
scale, and is used to divide communities in the synchronization strength network. The
mechanism of this algorithm can be briefly described as the connection or disconnection
between nodes, and the community structure of the network is interpreted as the spin
configuration that minimizes the energy of spin glass [41]. The communities derived from
the spin glass algorithm are cohesive subgraphs.

For community detection, the modularity Mod is introduced to compare the division
quality under different numbers of communities. The definition of modularity Mod is
given as [42]:

Mod =
1

2ew
∑
i,j

[
wij −

wi ∗ wj

2ew

]
δ
(
Ci, Cj

)
(11)
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where Mod is the global weighted modularity, Mod ∈ [0, 1]. ew is the sum of the weights
of all edges, wij is the weight of the edge between node i and node j, wi is the sum of the
weights of edges connected to node i, and analogously for wj. A higher Mod indicates that
the nodes within each community are more closely related and more divergent between
the nodes of different communities. Ci and Cj are the communities of node i and node j,
respectively. If node i and node j belong to the same community, Ci = Cj, δ

(
Ci, Cj

)
= 1;

otherwise, δ
(
Ci, Cj

)
= 0.

4. Results and Discussions

The annual frequency and annual magnitude of CDHEs are examined in this study.
The annual frequency of CDHEs is defined as the total number of heatwaves in drought
months of each year, while the annual magnitude of CDHEs is calculated as the mean
DHMI of all CDHEs occurring in the same year. In Section 4.1, we first analyze the
linear trend in the mean frequency and mean magnitude of CDHEs over all grids during
1961–2018. For spatial variation, we calculate the mean annual frequency and mean annual
magnitude of CDHEs, and then analyze the trends in the annual frequency and annual
magnitude of CDHEs in each grid based on the linear fitting method for the period of
1961–2018. In Section 4.2, the synchronization strength index (SSI) is proposed to initially
identify the number of communities and the spin glass algorithm is used to derive the
propagation extent of CDHEs. We also explore the influence of AMO and PDO on the
variations in the frequency and magnitude of CDHEs in each community.

4.1. Spatiotemporal Variation Analysis of CDHEs

From a national perspective, as shown in Figure 4, the trend in the mean frequency of
CDHEs over all grids is −9.645×10−4 yr−1 with p = 0.401 (Figure 4a), and the trend in the
mean magnitude of CDHEs over all grids is 7.991×10−6 yr−1 with p = 0.959 (Figure 4b);
these values indicate a non-significant (p > 0.05) decrease in the mean frequency of CDHEs,
as well as a non-significant increase in the mean magnitude of CDHEs.

We further investigated the spatial distribution of the characteristics of CDHEs be-
tween different regions, the mean annual frequency and mean annual magnitude of CDHEs
in each grid are presented in Figure 5a,b; we found that the grids where CDHEs had not
occurred from 1961 to 2018 were mainly located at high altitudes of the Chinese mainland
(as shown in Figure 5c). Because high-altitude areas are relatively cold, air temperature
struggles to surpass the threshold temperature corresponding to the definition of heat-
waves, which is not conducive to the formation of CDHEs. The spatial distribution of the
mean annual frequency of CDHEs is shown in Figure 5a. It can be seen that the mean
annual frequency of CDHEs in Northeast China (NEC) and the middle-eastern region of
North China (NC) is less than 1, while the mean annual frequency in the western region of
Northwest China (NWC), the western region of NC, the eastern region of Southwest China
(SWC), most regions of central China (CC), East China (EC), and South China (SC) is more
than 1; the mean annual frequency of CDHEs in southern Guangxi province and northern
Hainan province exceeds 2, and the maximum mean annual frequency is 2.6. As shown in
Figure 5b, we found that the spatial distribution pattern of the mean annual magnitude
of CDHEs in the northern China (including NC, NEC, and NWC) is relatively similar to
that of the mean annual frequency, and the mean annual magnitude of CDHEs reaches a
maximum (0.27) in the eastern region of Xinjiang province. The mean annual magnitude
exceeds 0.2 in the western Chongqing province, southern Guangxi and Jiangxi provinces,
and northern Hainan province.
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Figure 4. Temporal series of the mean frequency (a) and mean magnitude (b) of CDHEs over all
grids for the period of 1961–2018 in China. Black solid lines represent the results of linear fitting.

The joint analysis of the mean annual frequency and mean annual magnitude of
CDHEs shows that the high mean annual frequency and high mean annual magnitude
of CDHEs in the western region of NWC and NC may be attributed to the fact that the
corresponding grid points are located in the desert, where the continuous high temperature
and precipitation deficit are more conducive to the formation of CDHEs, which also makes
the magnitude of CDHEs higher. The reason for the low mean annual frequency and
mean annual magnitude in NEC and the middle-eastern region of NC is the low maximum
temperature in the region [43,44], which inhibits the formation of CDHEs and also makes
the accumulative temperatures of CDHEs lower than those of CDHEs in other regions.
Except for the northern China, the spatial distribution patterns of mean annual frequency
and mean annual magnitude of CDHEs are dissimilar. At low latitudes, the number
of drought months probably determines the mean annual frequency of CDHEs due to
high maximum temperatures. The accumulative temperatures of CDHEs and the drought
degree of the month in which CDHEs occur together determine the mean annual magnitude
of CDHEs.

Trends in the annual frequency and annual magnitude of CDHEs in each grid are
shown in Figure 6a,b. There is a significant increase in the annual frequency of CDHEs
in NC, as well as in some parts of NWC. This may be due to the effect of unchanged
precipitation and increased maximum temperature during JJA in these regions, as shown
in Figure 6c,d. The significant increase in maximum temperature is more likely to lead
to heatwaves. Therefore, the significant increase in the annual frequency of CDHEs in
these regions can be attributed to the rise in maximum temperature. The regions where
the annual frequency of CDHEs decreases significantly are mainly located in the western
region of NWC, the northern region of CC, the western region of EC, and the southern
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region of SC. In the western region of NWC, which is located in the desert and has an
environment characterized by a high temperature, there is potential for more heatwaves. A
significant increase in precipitation in this region makes it possible to convert from drought
to non-drought months and may lead to a significant decrease in the annual frequency
of CDHEs in this region. The possible mechanism for this in the southern region of SC
is similar to that of the western region of NWC. The reason for the significant decrease
in the annual frequency of CDHEs in the southern region of SC is a significant increase
in precipitation. In the northern region of CC and the western region of EC, unchanged
precipitation and a decreased trend in maximum temperature are generally consistent
with the results of previous studies [20,45], and likely inhibit the formation of CDHEs in
these regions.

Figure 5. The spatial distribution of the mean annual frequency (a), mean annual magnitude (b) of CDHEs for the period of
1961–2018, elevation (c) and seven regions (d) in China.

According to the definition of the annual magnitude of CDHEs, the annual magnitude
trend is likely affected by the individual or combined effect of variations in precipitation
and temperature. For instance, with precipitation unchanged, the annual magnitude
of CDHEs is expected to increase with the increase in maximum temperature. In some
parts of NWC and NC, the annual magnitude shows a significantly increased trend. The
precipitation decreases significantly, and the maximum temperature shows a significant
increase in the eastern region of NC, which may cause an increase in ΔSPI and accumulative
temperatures, resulting in a significant increase in the annual magnitude of CDHEs in this
region. Except for the eastern region of NC, the interannual precipitation is unchanged,
and the significantly increased maximum temperature dominates the significant increase in
the annual magnitude of CDHEs. The regions showing a significant decrease in the annual
magnitude of CDHEs are mainly located in the western region of NWC, CC, and the eastern
region of SWC, where the western region of NWC and the eastern region of SWC show a
significant increase in precipitation and a non-significant increase in maximum temperature;
as a result, a significant increase in precipitation probably becomes the main factor that
leads to a significant decrease in the annual magnitude. Precipitation in the northern and
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central regions of CC shows a non-significant increase, but the maximum temperature in
the former shows a non-significant decrease; the combined effect of maximum temperature
and precipitation may contribute to the significant decrease in the annual magnitude of
CDHEs, while the maximum temperature in the latter shows a non-significant increase;
thus, the main reason for the significant decrease in the annual magnitude of CDHEs is
that the change in the annual magnitude in this region is more sensitive to changes in
precipitation than it is to maximum temperature.

Figure 6. Trend analysis of the annual frequency (a) and annual magnitude (b) of CDHEs, and the maximum temperature
(c) and precipitation (d) during JJA for the period of 1961–2018 in China. Black dots indicate statistical significance at a 0.05
significance level.

4.2. The Propagation Extent and Driving Factors of CDHEs

In this study, we use the method of event synchronization to establish the synchro-
nization strength network, which is applied to reveal the synchronism of the occurrence
time of CDHEs among nodes. A higher synchronization strength between a pair of nodes
indicates that there are more CDHEs occurring at similar time points, and it also implies
that the total number of CDHEs between nodes is similar. If a region exists in which the
relations among nodes are relatively close, the occurrence time of CDHEs in the past may
be similar in this region, and CDHEs are more likely to propagate within the region. In
order to find the abovementioned regions, we propose an SSI based on the degree value,
as well as the average distance and clustering coefficient of nodes in complex networks.
The SSI of nodes is shown in Figure 7.

We found six regions that are formed by some nodes with high SSI (SSI ∈ [0.6, 1.0]).
According to the definition of SSI, these six regions are initially identified as core regions
where CDHEs can easily propagate. However, this method does not provide a clear
boundary of the propagation extent of CDHEs. The spin glass algorithm, a nonoverlapping
algorithm of community detection, is used to detect closely related components in the
network. In comparison with the connected edges between communities, the connected
edges between nodes within a community are denser and have higher weights; thus,
each community can be considered as the propagation extent of CDHEs. In this study,
the number of communities is initially determined to be four to eight, with reference to
the number of core regions. Furthermore, the modularity Mod is introduced to judge
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the quality of community detection under the different numbers of communities. The
modularity of the number of communities from four to eight is shown in Table 1.

Figure 7. The synchronization strength index (SSI) of nodes. Black dashed box indicates regions
where the SSI ∈ [0.6, 1.0].

Table 1. The modularity under the different numbers of communities.

The Number of Communities 4 5 6 7 8

The modularity Mod 0.667 0.680 0.687 0.691 0.688

We found that the highest value of Mod occurs when the number of communities
is seven. With this number of communities, the northern regions of NWC and southern
regions of SWC are classified as same community. However, spatial verification shows that
this teleconnection does not exist; thus, we chose eight, corresponding to the second highest
Mod, as the number of communities for subsequent community detection. Meanwhile, in
order to ensure the local optimum of community detection, we also calculated the modu-
larity when the number of communities was 9, 10 and 11, and found that the modularity
decreases as the number of communities increases. The results of community detection
with eight communities are shown in Figure 8. It can be seen that community 1, 2, 3, 5,
and 7 contain six core regions, indicating that the proposed SSI is indicative for the initial
determination of the number of communities in the spin glass algorithm, and the spin glass
algorithm further discovers the closely related components in the synchronization strength
network and provides clear boundaries. Each community can provide the propagation
extent of CDHEs, and the total number of CDHEs is relatively close between nodes within
a community.

AMO and PDO have been proven to influence the formation of CDHEs in China [23,28].
In this study, we correlate a temporal series of the mean frequency and mean magnitude
within different communities with a temporal series of AMO and PDO indexes during JJA,
aiming to explore the driving factors of CDHEs in different regions of China. The results of
the correlation analysis are presented in Tables 2 and 3. As shown in Tables 2 and 3, the
variations in the mean frequency and mean magnitude of CDHEs within community 1
and 2 are significantly and positively correlated with the AMO index, implying that the
AMO pattern may modulate variations in the frequency and magnitude of CDHEs within
community 1 and 2, and that the frequency and magnitude of CDHEs within community 2
are more positively modulated by the AMO pattern. In community 7 and 8, which are
also located in the northern China, variations in the mean frequency and mean magnitude
of CDHEs are not significantly correlated with individual patterns, but variations in the
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mean magnitude of CDHEs in community 8 are significantly correlated with the com-
pounding effect of AMO and PDO; the results of the standardized regression coefficients
for individual patterns show that AMO plays a dominant role in positively modulating
variations in the mean magnitude of CDHEs in community 8. Similarly, variations in the
mean magnitude of CDHEs in community 6, located in the southern regions of SWC, are
significantly correlated with the compounding effect of AMO and PDO, and AMO also
dominates in positively modulating variations in the mean magnitude of community 6. Pre-
vious studies [23] have shown that the warm AMO phase tends to increase the frequency
of CDHEs in northern China and the southern regions of SWC, and AMO is significantly
and positively correlated with temperature in most of these regions. When AMO is in the
warm phase, the warming of the northern China and the southern regions of SWC may
lead to a high magnitude of CDHEs; this also explains the positive modulation of AMO in
the frequency and magnitude of CDHEs in communities located in the northern China and
the southern regions of SWC. During the warm phase of AMO, the western North Atlantic
releases more heat flux from the ocean into the atmosphere, which triggers two types of
stationary wave trains that propagate eastward. One part is an arching wave train that
propagates from the western North Atlantic toward the polar region and even farther into
northeastern Asia (the positive polar-Eurasian pattern), and the other part is a Rossby wave
train zonally propagating from the western North Atlantic to East Asia (the negative Silk
Road pattern). These wave trains form a downward motion in most of China, providing
favorable conditions for high temperatures and precipitation deficits; when AMO is in the
cold phase, the reverse applies [46]. Community 3 is located in the central-eastern region
of China, where the correlations between the mean frequency of CDHEs and individual
patterns are negative and none of them are significant, but the mean frequency of CDHEs
is significantly and positively correlated with the compounding effect of AMO and PDO,
which indicates that AMO and PDO jointly influence the variations in the frequency of
CDHEs in this region. According to the results of the standardized regression coefficients,
the contribution of AMO to the variations in the mean frequency of CDHEs is greater than
that of PDO. For the variation in the magnitude of CDHEs within community 3, the AMO
pattern is significantly negatively correlated with the variation in the mean magnitude of
CDHEs. AMO has a significant positive correlation with precipitation and a non-significant
positive correlation with temperature in the central-eastern region of China. The increase
(decrease) in precipitation may inhibit (promote) the formation of CDHEs and decrease (in-
crease) the magnitude of CDHEs. Therefore, AMO may negatively modulate variations in
the frequency and magnitude of CDHEs, which is consistent with the results in this study.

Figure 8. The spatial distribution of communities when the number of communities is 8.
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Table 2. The single and multiple correlation coefficient between temporal series of AMO, PDO index during JJA and the
mean frequency of CDHEs in 8 communities.

Teleconnection Pattern

Community
1 2 3 4 5 6 7 8

AMO 0.27 * 0.40 ** −0.23 0.05 −0.06 0.15 0.07 0.13
PDO −0.03 −0.19 −0.16 −0.26 * −0.07 0.06 −0.07 −0.10

AMO and PDO 0.27 * 0.41 ** 0.32 * 0.26 * 0.11 0.18 0.09 0.15

Note: the significance level of correlation p < 0.01 is denoted as **, 0.01 < p < 0.05 is denoted as *.

Table 3. The single and multiple correlation coefficient between temporal series of AMO, PDO index during JJA and the
mean magnitude of CDHEs in 8 communities.

Teleconnection Pattern

Community
1 2 3 4 5 6 7 8

AMO 0.28 * 0.48 ** −0.27 * 0.06 −0.01 0.10 0.04 0.25
PDO −0.04 −0.20 −0.17 −0.27 * −0.09 0.23 0.05 0.06

AMO and PDO 0.28 * 0.49 ** 0.36 ** 0.27 * 0.09 0.28 * 0.07 0.28 *

Note: the significance level of correlation p < 0.01 is denoted as **, 0.01 < p < 0.05 is denoted as *.

The variations in the mean frequency and mean magnitude of CDHEs within commu-
nity 4 are significantly negatively correlated with the PDO pattern, which may be attributed
to the significant negative correlation between PDO and temperature in the region. The
potential mechanism of this correlation can be explained by the EAP teleconnection wave
train [29]. The variations in the mean frequency and mean magnitude of CDHEs within
community 5 do not significantly respond to AMO or PDO patterns. A reason for this may
be that temperature and precipitation within community 5 are not sensitive to changes in
AMO and PDO patterns [23].

5. Conclusions

In this study, we define CDHEs using daily maximum temperature and a monthly
scale SPI index, and focus on the spatial and temporal variations in the annual frequency
and annual magnitude of CDHEs during 1961–2018; this analysis shows that, on a national
scale, the mean frequency and mean magnitude of CDHEs, respectively, show a non-
significant decrease and a non-significant increase. In China, CDHEs rarely occur in
areas with high altitude or low temperature. The spatial distribution of the mean annual
frequency and mean annual magnitude of CDHEs is more consistent in northern China,
while spatial distribution is divergent elsewhere. The trends in the annual frequency and
annual magnitude of CDHEs within each grid point are also discussed, and significant
increases or decreases in the annual frequency and annual magnitude can be attributed to
the individual or combined effect of variations in precipitation and maximum temperature.

We further obtained the propagation extent of CDHEs through the constructed syn-
chronization strength network combined with the proposed synchronization strength
index, and discussed the correlation between the mean frequency and mean magnitude of
CDHEs, AMO, and PDO within each community to explore possible physical mechanisms.
AMO, through two types of teleconnection wave trains, positively modulates the mean
frequency and mean magnitude of CDHEs within community 1 and 2, and negatively mod-
ulates the mean magnitude of CDHEs within community 3. PDO negatively modulates
the mean frequency and mean magnitude of CDHEs within community 4. AMO and PDO
jointly modulate the mean magnitude of CDHEs within community 6 and 8. CDHEs have
a serious impact on the development of society, and there is minimal research regarding
the spatial propagation direction of CDHEs, these research have positive implications for
forecasting and emergency management of compound disaster events. In future research,
we will study the spatial propagation of CDHEs from the perspective of complex networks.
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Abstract: The amount of black carbon (BC) on snow surface can significantly reduce snow surface
albedo in the visible-light range and change the surface radiative forcing effect. Therefore, it is
key to study regional and global climate changes to understand the BC concentration on snow. In
this study, we simulated the BC concentration on the surface snow of northeast China using an
asymptotic radiative transfer model. From 2001 to 2016, the BC concentration showed no significant
increase, with an average increase of 82.104 ng/g compared with that in the early 21st century. The
concentration of BC in December was the largest (1344.588 ng/g) and decreased in January and
February (1248.619 ng/g and 983.635 ng/g, respectively). The high black carbon content centers were
concentrated in the eastern and central regions with dense populations and concentrated industries,
with a concentration above 1200 ng/g, while the BC concentration in the southwest region with less
human activities was the lowest (below 850 ng/g), which indicates that human activities played an
important role in snow BC pollution. Notably, Heilongjiang province has the highest concentration,
which may be related to its atmospheric stability in winter. These findings suggest that the BC
pollution in northeast China has been aggravated from 2001 to 2016. It is estimated that the snow
surface albedo will decrease by 16.448% due to the BC pollution of snow in northeast China. The
problem of radiative forcing caused by black carbon to snow reflectivity cannot be ignored.

Keywords: snow cover; black carbon concentration; radiative forcing; northeast China

1. Introduction

Snow cover is widely distributed on land surfaces, with a high albedo, strong radiation,
and high insulation, which directly affects the land surface temperature, air temperature,
surface albedo, soil moisture, and then affects the radiation balance of the earth-atmosphere
system. Thus, snow cover is an important factor in the climate system [1]. The surface
albedo of pure fresh snow is very high, generally between 60% and 95% [2]. When black
carbon (BC) aerosols deposit into the surface snow through dry and wet deposition, even
a trace of BC will greatly reduce the albedo of the snow surface, thereby increasing the
absorption of solar radiation on the snow surface [3]. Its heating effect will accelerate snow
melting and reduce the snow retention time and area [4,5], which, in turn, leads to regional
climate change and even affects global climate change [3,6–8]. The fifth report of the IPCC
indicates that the global average surface temperature has increased by approximately
0.85 ◦C in the past 100 years, and the annual average surface temperature has shown
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an increasing trend in most regions of the world, especially in winter and spring in the
mid-high latitudes of the northern hemisphere [9]. In October 2018, the IPCC issued a
special report on global warming of 1.5 ◦C [10]. However, studies have confirmed that the
spatial variation of global temperature is the fastest at high latitudes [11–13]. The impact of
human activities on global climate change can be attributed to two factors: (1) change in the
chemical composition of the Earth’s atmosphere through greenhouse gas emissions, and the
“umbrella effect” caused by the excessive increase of aerosols, such as sulfates, and (2) land
use and land-cover change (LUCC) [14,15]. Previous studies have shown that on a regional
or smaller scale, the impact of LUCC on climate is even greater than the contribution
of greenhouse gases due to changes in surface energy [16,17]. The most critical surface
parameter of LUCC affecting regional climate is to change the surface reflectance; pure
fresh snow has a high surface albedo, which is a key climate parameter that significantly
affects surface energy balance in the Earth system [18], however, when BC aerosols enter
the surface snow and ice through dry and wet deposition, even a small amount of BCwill
greatly reduce the albedo of the snow surface, thus increasing the absorption of solar
radiation on the snow surface [19], and its heating effect will accelerate snow melting and
reduce the snow retention time and area [20], which leads to regional climate change and
even affects global climate change [21]. Therefore, as the main emission material of human
activities, BC has greatly changed the surface reflectance and has become an important
pollutant that changes regional and even global climate. To assess the impact of BC on
climate change, it is most important to clarify the concentration of BC on regional snow,
and then accurately evaluate its impact on snow and ice albedo and its radiation forcing
effect [22].

Owing to the influence of the local environment, human activities, source emissions,
and atmospheric circulation, the distribution of BC aerosols in the global snow concentra-
tion have strong regional and spatial differences [22,23]. The study of BC concentration in
ice and snow began in the 1980s in the South and North Poles [24–26], and then gradually
expanded to the middle and low latitudes, achieving numerous results [27–31]. Published
data show that BC concentrations in glaciers, ice sheets, and snow cover range from 0.015
to more than 1000 ng/g globally. Low BC values, which can be pronounced, have been
found in Antarctica; while high values, due to BC emissions and transport, have been
observed in mid-latitude snow and ice (Alps, North America, and the Tibetan Plateau) [32].
Doherty et al. [33] indicated that the BC concentration in the snow in the Arctic ranges from
a few ng/g to dozens of ng/g, and is about 5 ng/g in the Arctic; 21–34 ng/g in western
and eastern Russia; The BC concentration in the snow cover in high-latitude regions are all
low, such as Scandinavia, Svalbard, and Fram Strait are 88 ng/g, 7–42 ng/g, and 9 ng/g,
respectively [34]. The concentration of BC in snow in most parts of North America ranges
from 10 to tens of ng/g. In central and western North America, the concentration of BC
ranges from 5 to 111 ng/g and has a strong latitude zonality. But up to now, the study of
BCconcentration in snow is mainly based on laboratory testing methods based on field
sampling samples. The biggest advantage of this method is that the results are more
accurate, but it requires a lot of manpower, material resources, and the sampling points
are obtained. The quantity is limited, and it is difficult to effectively reflect the distribution
characteristics of snow BCconcentration in large-scale areas. Compared with a laboratory
test, remote-sensing technology has the advantages of wide coverage and high resolution,
it is not limited by climate and geographical conditions, and it objectively and truly reflects
the information of land features [35], which has been applied more and more in recent
years. Some scholars have proposed a method for simulating the BCcontent in snow with a
model based on remote sensing data. For example, Flanner et al. [36] used the SNICAR
model to simulate the global average snow surface BCconcentration in 1998 and 2001; M.
Namazi et al. [37] used the CanAM4.2 model to simulate the BCcontent of snow in the
northern hemisphere. The results of the two studies both show that the BCcontent in the
snow in northeast China is the highest in the world, but they only revealed the black carbon
content in the snow in the northeast in a certain year or two. Huang et al. [38] collected
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29 snow samples in northeast China from January to February of 2010 and January of
2014. The results of two field snow samples showed that the BC concentration in snow
cover in northeast China was 40–1600 ng/g and 50–3700 ng/g, respectively. Negi and
Kokhanovsky [39,40] developed the ART model based on the SNICAR model, and realized
the inversion of snow particle size and albedo. Wei [41] used the ATR model to invert the
BC concentration of snow cover in China from 2000 to 2018; It can be seen that the ART
theory has a wide range of applications for snow cover research. It can not only be used to
retrieve albedo, but also to retrieve snow particle size and pollutant content [42]. Northeast
China is the second largest stable snowpack area in China, and it is also an important heavy
industrial base in China. Coal, petroleum, and biomass fuels are the main energy sources
consumed and the combustion mode is backward. BC aerosols enter the snow through
a dry and wet deposition. Based on the asymptotic radiative transfer (ART) model and
remote sensing image data, this study simulates the snow carbon concentration in northeast
China from 2001 to 2016 and analyzes its spatiotemporal variation characteristics, which
provides a basis for studying global snow carbon concentration and its radiative forcing.

2. Materials and Methods

2.1. Study Area

The study area is located in the northeast of China, between 37◦–53◦ N and 115◦–135◦ E,
which includes Heilongjiang province, Jilin province, and Liaoning province (Figure 1).
This area is the region with the widest range of stable snow cover and the largest average
snow depth. The snow cover period here ranges from south to north for 30 to 190 days [43],
and the annual cumulative snow depth is 498 cm [44]. It is distinguished from other
snow areas by its large annual average snow reserves and the most obvious inter-annual
variability [45]. Simultaneously, the northeast region is a famous heavy industry base of
China, and its energy consumption is based on fossil fuels, such as coal and petroleum.
In the vast rural areas it still relies on biofuels and its combustion methods are relatively
backward. In addition, the use of motor vehicles in urban areas continues to increase.
Therefore, BC aerosols are an important group of atmospheric aerosols in northeast China.

 
      (a)                                      (b) 

Figure 1. Location of study areas. (a) study area in northeast China; (b) three provinces comprising
study area (Heilongjiang, Jilin, and Liaoning) ranging in latitude from 37◦ N to 53◦ N and in longitude
from 115◦ E to 135◦ E.
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2.2. Data Sets
2.2.1. Remote Sensing Data

The visible reflectance, near-infrared reflectance, solar zenith angle, observational
zenith angle, and relative azimuth angle were the main parameters driving the ART
model. The above parameters were obtained from the MOD09GA (V6) dataset, which was
registered and downloaded from the U.S. National Aeronautics and Space Administration
(NASA) data website (https://modis.gsfc.nasa.gov/) (accessed on 28 February 2019). The
track numbers were h25v03, h26v03, h26v04, h27v04, and h27v05. The timescale was from
January 2001 to December 2016. The data format is HDF. The dataset has been corrected by
atmospheric bidirectional reflection and solar altitude angle.

The ground reflectance in the visible-light band is the MOD09GA (V6) dataset in band
2 and that in the near-infrared band is the MOD09GA (V6) dataset in band 3. The spatial
resolution of the ground reflectance data in the two bands is 500 m. The solar zenith angle
and observation zenith angle are calculated using the corresponding solar zenith angle
and observation zenith angle in the MOD09GA (V6) dataset, and the relative azimuth is
calculated by using the solar azimuth angle and observation azimuth in the data set. The
spatial resolution of the four angles is 1000 m. To match the reflectance data with the angle
data in spatial scale, it is necessary to resample the angle data of 1000 m to 500 m. The data
pre-processing process of MOD09GA (V6) includes data-format conversion, resampling,
re-projection, splicing, and clipping.

To study the influencing factors of the distribution and variation trend of snow BC
concentration in northeast China, the spatial distribution data of China’s elevation (DEM) re-
leased by the resource and environment data cloud official website (http://www.resdc.cn/
data.aspx?DATAID=284) (accessed on 10 May 2019), the average wind-speed data released
by the scientific data center in cold and arid regions (http://westdc.westgis.ac.cn/data/
7a35329c-c53f-4267-aa07-e0037d913a21) (accessed on 10 May 2019), and the night light time
data of the DMSP satellite (https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.
html) (accessed on 12 May 2019) were used to discuss the effects of topographic factors,
population density, energy factors, and meteorological conditions on the distribution and
variation trend of snow BC concentration in northeast China.

2.2.2. Field Data

To validate the model, twice field samples were taken from January to February 2010
and January 2014, totaling 28 points, including 19 in 2010 and 9 in 2014 (Figure 2). The
specific sampling process was the following: clean stainless-steel utensils were used to
dig out snow pits and make a vertical profile in one direction. When sampling, according
to the order of “left” and “right”, two snow samples of 0–5 cm cover in vertical section
were collected and placed in Whirlpak sampling bags, sealed, and put into an incubator to
ensure that they remained in a solid-state until the next processing step in the temporary
laboratory. In the temporary laboratory, samples of the collected snow were scooped into
clean glass beakers with clean stainless-steel containers and quickly melted in a microwave
oven. After measuring the volume of the melted samples, the melted snow water was
filtered through a 0.4-mm Nuclepore filter by a manual pump immediately to separate
BC and other water-insoluble substances [46], and then an ISSW spectrophotometer was
used to analyze the BC and other light-absorbing substances in the filter samples [25,47].
Since the BC concentration was estimated based on the Ångström absorption index of the
sample on the filter, the BC concentration of the sample given was a range, not a definite
value [48]. For example, the uncertainty range of the BC concentration of a snow sample in
Changchun City in early February 2010 was 250–650 ng/g.
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Figure 2. Locations of the 28 sampling sites (blue is the sampling point in 2010 and green is the
sampling point in 2014), ranging in latitude from 42◦ to 51◦ N and in longitude from 120◦ to 131◦ E.

2.3. Methods
2.3.1. Snow Recognition Method

Snow pixel judgment was the basic data for simulating snow BC concentration. In
this study, we used the SNOWMAP algorithm to identify snow-covered pixels, which was
proposed by Hall et al. [49], and subsequently improved for the production of MODIS
snow cover products [50] and has been validated and applied worldwide [51,52].

The core concentration of the SNOWMAP algorithm is normalized difference snow
index (NDSI), which uses the spectrum characteristic of the high reflectivity of snow in
the visible light band and low reflectance in the near-infrared band to distinguish between
clouds and snow. The calculation method is

NDSI =
R(b4)− R(b6)
R(b4) + R(b6)

(1)

where, R(b4) and R(b6) representrepresents the surface reflectance of band 4 (545–565 nm)
and band 6 (1628–1652 nm) in the MOD09GA data, respectively.

Hao et al. [53] found that the NDSI threshold was 0.4. The NDSI of water is also greater
than 0.4, so we eliminated the influence of water on snow pixel based on the characteristic
that the reflectivity of snow in the second waveband was greater than, or equal to, 0.11,
and the reflectivity of water in this waveband was not greater than 0.11 [50]. Therefore, the
discriminant formulas of snow pixels in this study were{

NDSI ≥ 0.4
R(b2) > 0.1

(2)

where, R(b2) represents the surface reflectance of band 2 (841–876 nm).
In this paper, the snow pixels identified by the SNOWMAP algorithm were marked

as 1, and the other non-snow pixels were marked as 0. A snow cover map with a spatial
resolution of 500 m × 500 m was generated.

2.3.2. ART Model

The ART model is a simplified radiative transfer model developed by Kokhanovsky
et al. [54,55]. The basic principle is to regard snow particles as irregular particles, consider
the effect of pollutants on the absorption characteristics of the snow surface, the optical
characteristics of a single particle are calculated using the principles of geometrical optics,
and then the asymptotic analysis solution of the radiative transfer model is obtained using
the asymptotic analysis method. The model driving parameters mainly include visible-
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light reflectance, near-infrared reflectance, solar zenith angle, viewing zenith angle, and
relative azimuth angle. Snow characteristics, such as the grain effective size (αef) and BC
concentration (c), can be estimated on regional and global scales.

The formula for simulating the BC concentration of each grid in snow based on the
ART model is:

R1 = R0 exp

[
−4 f (μ, μ0, ϕ)√

3(1 − g)

√
2
3

Bαs,1cαe f

]
(3)

R2 = R0 exp

[
−4 f (μ, μ0, ϕ)√

3(1 − g)

√
αi,2βKαe f +

2
3

Bαs,2cαe f

]
(4)

There are 15 parameters in the equations (Equation (3) and (4)), and the physical
meaning and units are listed in Table 1. The snow BC concentration in this study is relative
snow concentration.

Table 1. Parameters used in ART model.

Parameter Physical Meaning Unit/Value

R1 Surface reflectance of band 3 in MODIS dataset
R2 Surface reflectance of band 2 in MODIS dataset
R0 Reflection function of the semi-infinite snow layer

f (μ, μ0, φ) Determined by escape function and semi-infinite space sno
layer reflectivity function

g Asymmetry parameter 0.76
B Constant 0.84

αs,i Absorption coefficient of BC
c Relative BC concentration ng/g

αef Snow grain size mm
αi,2 Absorption coefficient of ice
β Probability of photon absorption 0.47
K Constant 2.63
ϑ0 Solar zenith angle degree
ϑ Viewing zenith angle degree
ϕ Relative azimuth angle degree

R1, R2, ϑ0, and ϑ in equations (Equations (3) and (4)) can be downloaded from the
MODIS data. Other parameters can be obtained using the following equations.

1. Reflection function of the semi-infinite snow layer R0

R0 was calculated by the following equation (Equation (2)) [56,57]

R0(μ, μ0, ϕ) =
A + B(μ + μ0) + Cμμ0 + P(θ)

4(μ + μ0)
(5)

The parameters in Equation (5) are listed in Table 2.

Table 2. Parameters needed to calculate R0.

Parameter Mean Value Parameter Mean Value

A constant 1.247 μ
The cosine of viewing zenith
angle [-]

B constant 1.186 μ0 The cosine of solar zenith angle [-]
C constant 5.157 P(θ) The phase function [-]
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The phase function P(θ) does not depend on the wavelength, therefore the function R0
(μ, μ0, φ) is the same in the entire spectrum. The phase function P(θ) is calculated as:

P(θ) = 11.1 exp(−0.087θ) + 1.1 exp(−0.014θ) (6)

where, θ is defined as θ = a cos(−μμ0 + ss0 cos ϕ), s = sin(ϑ), s0 = sin(ϑ0), μ0 = cos(ϑ0),
and μ = cos(ϑ).

2. Parameter f (μ, μ0, φ)

f (μ, μ0, φ) is determined by the escape function and the semi-infinite space snow
reflectance function, and its calculation formula is as follows:

f (μ, μ0, ϕ) =
u(μ0)u(μ)

R0(μ, μ0, ϕ)
(7)

where, u(μ0) is called the escape function, which is solved according to the following
empirical formulas:

u(μ0) =
3
7
(1 + 2μ0), u(μ) =

3
7
(1 + 2μ) (8)

3. Absorption coefficient of ice crystal and BC

In the visible light band (channel 1), the absorption of light by the snow layer is mainly
caused by pollutants (mainly BC); in the near-infrared band (channel 2), the absorption of
light by the snow layer is mainly caused by ice crystals and BC.

The formula of the absorption coefficient of BC is

αs,i = 4 ∏ χs(λ)/λi (9)

where, i = 1,2, indicating the first and second channels. Since the refractive index of BC is
independent of wavelength, χs(λ) is a constant of 0.46. λ is the wavelength; that is, λ1 =
460 nm and λ2 = 865 nm.

The expression of the light absorption coefficient of ice crystals is

αice,2 = 4 ∏ χice(λ)/λ (10)

where, αice,2 is the ice absorption coefficient at the wavelength λ2; χice(λ) is the imag-
inary part of the refractive index of ice, which is a function of wavelength. Here, we
use χice(λ) = 2.5 × 10−9.

4. Relative azimuth angle φ

φ is calculated with Equation (11):

ϕ = saa − vaa (11)

where saa is the solar azimuth angle and vaa is the viewing azimuth angle.
Entering all the above parameters into the ART model, we simulated the BC concen-

tration of each snow pixel with a spatial resolution of 500 × 500 m.
Based on the above data and formula, we analyzed the BC concentration of snow

cover in northeast China, and the research framework is shown as follows (Figure 3):
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Figure 3. The framework of the study.

3. Results

3.1. Model Verification

We verified the accuracy of the simulated values by comparing the simulated snow BC
concentration with the measured values. Since the measured value was an uncertain range,
as long as the simulated value was distributed within the range of the measured value
we could consider the simulation result credible. We also used the literature comparison
method to verify the simulated value. The field sampling measured datum were used to
verify the simulation values of the same period (Figure 4). There are significant disagree-
ments in the measured and modeled snow BC concentrations at individual sites, but over
the region as a whole there is no apparent systematic bias in the modeled vs. measured
concentrations. Zhao et al. [58] simulated the BC concentration of snow cover in northeast
China in 2010, and the simulated value was above 1000 ng/g, similar to the results of this
study (1197.468 ng/g). For areas north of 48◦ N, the simulated value was higher than the
measured value. However, Flanner et al. [36] simulated the snow BC content in the high
latitudes of northeast China, and the simulation result was above 1000 ng/g, which is
similar to the simulation result of this study. Based on the above comparison, the ART
model has a high ability to simulate the BC concentration of snow cover in northeast China,
and the simulation results are credible.

3.2. Annual BC Concentration
3.2.1. Temporal Variation

From 2001 to 2016, the average annual BC concentration of snow cover in northeast
China was between 1098.927 and 1257.300 ng/g, with an average value of 1197.468 ng/g.
The maximum value appeared in 2016 and the minimum value appeared in 2002 (Figure 5).
No significant (p > 0.05) increase in BC concentration was observed from 2001 to 2016, with
an annual growth rate of 5.137 ng/g.
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Figure 4. BC concentrations in the top snow layer from the campaign observations (black) and the
corresponding ART simulations (red). The column plot of observations shows the minimum and
maximum possible values from estimates; the triangle within the column shows the average of
observations; and the circle within the column shows the model results.
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Figure 5. Average annual variability of BC concentration on snow cover in northeast China from 2001
to 2016.

3.2.2. Spatial Distribution and Variation

Figure 6 shows the spatial distribution of the average BC concentration over north-
eastern China during 2001 to 2016. There was generally a strong spatial difference in BC
concentration that varied considerably over the 310–1561 ng/g range in the study area.
Generally, there were two high-value (>1200 ng/g) regions of BC concentration in northeast
China, both of which were located in Heilongjiang province. One is an industrial corridor
composing Harbin, Daqing, Qiqihar, Suihua, and Heihe; and the other is a coal-forest
industrial area composing Hegang, Jiamusi, and Shuangyashan. Conversely, the average
BC concentration values were largely <850 ng/g in the mountainous areas of the study
area, where human activity is minimal.

447



Sustainability 2022, 14, 959

 

Figure 6. Spatial distributions of the averaged BC concentration over the study area during December
to February 2001–2016.

From 2001 to 2016, the BC concentration in 81.805% of the study area showed an
increasing trend (Figure 7). Approximately 6.975% of the study area showed a significant
(p < 0.05) increase, which was mainly distributed in the northeast of the Daxinganling
region, east of Heihe, north of Qiqihar, northeast of Harbin, north of Suihua, and southeast
of Shuangyashan. In contrast, only 18.195% of the study area showed an insignificant
(p > 0.05) decrease in BC concentration, which was mainly distributed in the eastern part
of Heilongjiang Province and the central and eastern parts of Liaoning Province. Notably,
by combining Figures 5 and 6, we found that the heavy snow BC polluted areas centered
on the southern part of the Heihe had significantly worsened pollution. In addition, areas
where snow cover was less polluted by BC, such as the Xiaoxing’an Mountains, Changbai
Mountains, and southern Liaoning, were also becoming more polluted. These results
indicate that the BC pollution degree of snow cover in northeast China increased overall
from 2001 to 2016, especially in heavily polluted areas.

3.3. Monthly Snow BC Concentration
3.3.1. Temporal Variation

The average BC concentration was the highest in December (1344.588 ng/g), and it
was gradually decreased in January (1248.619 ng) and February (983.635 ng/g), which was
related to the cleaning effect of snowfall on the air. The BC concentration in December and
January showed an increasing trend from 2001 to 2016, with annual increases of 7.087 ng/g
and 6.556 ng/g, respectively (Figure 8); while in February, it showed a decreasing trend,
with an annual reduction of 0.079 ng/g. The coefficients of variation of BC concentration
from December to February were 5.601, 8.392, and 8.594, respectively, indicating that the
inter-annual distribution of BC concentration in each month was relatively stable.
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Figure 7. Trends of BC concentration in the top snow layer in northeast China from 2001 to 2016.
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Figure 8. Average annual variability of BC concentration on snow cover in December, January, and
February from 2001 to 2016.

3.3.2. Spatial Distribution and Variation

Figure 9 shows the spatial distribution of the average BC concentration in December,
January, and February over northeastern China during 2001 to 2016. There was generally
a strong spatial difference in BC concentration monthly that showed higher values in the
north than in the south. In December, the BC content was greater than 850 ng/g, and
there were three high-value centers (>1400 ng/g) in the spatial distribution, located in
the Daxinganling region, northern Qiqihar and southern Heihe, and Hegang and Jiamusi
regions. In January, the high-value center range shrank sharply, especially in northern
Qiqihar and southern Heihe. By February, the BC content in the study area was drastically
reduced, falling below 1200 ng/g. Areas with low BC concentration (<900 ng/g) were
located in Yichun City, Huludao City, Chaoyang City, Fuxin City, and Dalian City.

449



Sustainability 2022, 14, 959

 

(a) (b) (c) 

 

Figure 9. Monthly mean value of BC concentration on snow cover in the northeast of China from
2001 to 2016: (a) December, (b) January, and (c) February.

From 2001 to 2016, the increasing trend of BC content in December and January
accounted for 82.519% and 82.789% of the total area, respectively (Figure 10). Among them,
the BC concentration in central Heilongjiang Province and southern Liaoning increased
significantly (p < 0.05), accounting for 9.922% and 10.603% of the total area, respectively,
indicating that BC concentration in central Heilongjiang Province increased significantly in
December and January. On the contrary, the area with a decreasing trend of BC content in
February accounted for 60.110% of study area, and BC concentration decreased significantly
(p < 0.05) in the southern Greater Xing’an Mountains and northern Heihe, accounting for
2.015% of the entire northeast area.

                (a)                                (b)                                   (c) 

Figure 10. Monthly average snow BC concentration tendency rate of northeast China from 2001 to
2016: (a) December, (b) January, and (c) February.

3.4. Influencing Factors
3.4.1. Terrain

The BC on the snow is mainly the dry deposition of BC aerosols in the atmosphere,
therefore the difference in the spatial distribution of BC concentration on the snow is
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mainly determined by the difference in the spatial distribution of the BC aerosols in the
atmosphere. Lv et al. [59] found that elevation is the most important factor contributing to
the concentration distribution of BC aerosols, followed by population density, and heavy
industry scale. Owing to the sparse population of high-altitude areas, the lack of large-scale
heavy industrial production, and the high coverage of surface vegetation in these areas, the
concentration of BC aerosols is low. The northeast of China is surrounded by mountains
on three sides (Figure 11), while the central and eastern regions are plains and terraces.
Therefore, the concentration of BC aerosol in the central region is relatively high. This is
consistent with the conclusion that the BC content of snow in the central plain area is higher
than that in the surrounding mountainous areas. It shows that geomorphology types are
one of the factors that affect the BC concentration in snow.

Figure 11. Geomorphology types of northeast China.

3.4.2. Energy Consumption

BC aerosols in the atmosphere mainly come from the incomplete combustion of fossil
fuels and biomass fuels. Studies showed that population density and the scale of heavy in-
dustry are also important factors affecting the distribution of BC aerosol concentration [59].
The value of the night light time index can reflect the amount of power consumption, repre-
senting information such as city size, population density, and energy use [60,61]. Therefore,
this study selects the spatial distribution of nighttime light index data in northeast China
in 2001 and 2013 (Figure 12), which represents information such as population density
and energy usage. The high values of night light hours in 2001 and 2013 were located
in Shenyang, Changchun, Harbin, and Daqing, showing a clear zonal distribution. The
Songnen Plain in the west and the Sanjiang Plain in the east are also areas with relatively
high nighttime light index, suggesting that they are the areas with large cities, concentrated
industrial production, and high population density in the three northeastern provinces.
Comparing the spatial distribution of snow BC in northeast China in 2001 and 2013, it can
be seen that the high value area of the nighttime light index in northeast China in 2001 and
2013 is basically consistent with the high value area of snow BC concentration. Comparing
the spatial changes of the nighttime light index in 2013 and 2001, the areas with light index
in western, central and eastern Heilongjiang Province have increased significantly. This is
the main reason why BC concentration of winter snow in Heilongjiang province became
the largest region in northeast China from 2001 to 2016, and BC concentration of winter
snow in central and eastern Heilongjiang Province increased significantly. In addition, it
can also be seen that the density and scale of cities in the southern part of northeast China
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have increased significantly. Therefore, the concentration of BC in the snow in the southern
part of northeast China in 2013 showed an increasing trend in most areas compared with
2001. The above results indicate that population density, city size, and energy consumption
are important factors affecting the concentration of BC in snow.

Figure 12. Spatial distributions of Nighttime Lights Time in northeastern China in 2001 and 2013.

3.4.3. Atmospheric Stability

The spatial distribution characteristics of BC concentration on snow cover in northeast
China are not only affected by terrain and energy consumption, but also related to winter
atmospheric stability. When the atmosphere stratification is in a stable state, the poor
diffusion ability of the atmosphere makes it difficult for the pollutants to diffuse; otherwise,
the pollutants are easy to diffuse [62]. In this study, the average wind speed was used to
characterize the stratification stability of the near-surface atmosphere. The lower the wind
speed, the more stable the atmospheric layer structure, and the more likely it is to form
high-concentration pollution in local areas. Figure 13 shows the average winter wind speed
from 2001 to 2016 (December, January, and February the following year). It can be seen from
Figure 12 that the winter wind speed was generally low and the atmospheric stratification
was relatively stable. The wind speed in the eastern region was relatively high, mainly due
to the formation of canyon winds between the Xiaoxing’anling Mountains and Changbai
Mountains. In particular, in the central and northern regions of Heilongjiang Province, the
wind speed was the lowest, therefore the atmosphere stratification in this area was stable.
In addition, the winter temperature was low and the mixed layer was not high, resulting
in frequent occurrence of temperature inversions. These climatic conditions hinder the
diffusion of BC aerosols. Moreover, these areas were surrounded by mountains on three
sides, and the BC aerosols were more difficult to transport outwards and accumulate near
the ground. They enter the snow surface through dry deposition, resulting in northern
Qiqihar, southern Heihe, and northern Suihua being the high centers of BC in the northeast.

3.4.4. Land Use Type

Land use type can not only indicate the coverage of surface vegetation, but also a
direct result of the impact of human activities on the surface. Comparing the land use types
in northeast China in 2020 with the simulation of the spatial distribution of BC in northeast
China from 2001 to 2016 (Figure 14), it can be seen that the areas where cultivated land
and cities are consistent with high-value areas of BC in the snow, the correlation coefficient
between urban area expansion and BC concentration increase is 0.584 (p < 0.05). It shows
that human activities can also affect the concentration of BC in the snow by changing the
land use type.
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Figure 13. Average winter (December, January, and February the following year) wind speed in
northeast China from 2001 to 2016.

Figure 14. Spatial distributions of land use type in northeastern China in 2020.

In conclusion, the BC content of snow cover in northeast China is affected by both
natural and artificial factors. Natural factors are mainly affected by terrain and stable atmo-
sphere stability. Due to sparse population and no large-scale heavy industry production,
the concentration level of BC aerosol in high-altitude areas is relatively low. When the atmo-
sphere stratification is in a stable state, the poor diffusion ability of the atmosphere makes
it difficult for the pollutants to diffuse, and the BC concentration increased. Human factors
mainly include urban expansion, energy structure change, and land use change, among
which urban density, urban size, and population density are important factors affecting the
distribution of snow BC concentration. The BC concentration in snow cover is the highest
in the region where farmland and city are located, suggesting that human activities affect
the spatial distribution of BC content in snow cover by changing the surface type.
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4. Discussion

This study used the ART model combined with remote-sensing data to simulate
the BC concentration on snow cover in northeast China. Compared with the existing
research results, this study not only analyzed the spatial and temporal distribution of
BC concentration on snow cover in northeast China from 2001 to 2016, but also further
analyzed the characteristics of snow BC concentration in northeast China during the year
and inter-annually, and briefly analyzes its influencing factors.

In this paper, through simulations, a long-term series of snow BC concentrations in
a certain area, and the spatial distribution and changes of snow BC concentrations with
high spatial resolution year by year were obtained. Compared with previous studies, there
are few similar studies, and it is also one of the main contributions of this paper. The
research results are of great significance for snow albedo simulation research, improvement
of regional climate model simulation accuracy, and snow pollution prevention and control.
The results showed that the BC content of snow cover in northeast China did not increase
significantly from 2001 to 2016, but increased by 52.299 ng/g from 2012 to 2016, compared
with that from 2001 to 2005. The 93.25% of the northeast showed an insignificant trend, and
the significant increase areas were mainly distributed in the northeast of the Daxinganling
region, the east of Heihe City, the northern edge of Yichun City, and the southeast of
Shuangyashan City.

Owing to the influence of local environment, human activities, source emissions,
and atmospheric circulation, the global distribution of BC aerosol concentration is highly
regional, therefore the BC concentration on snow is also significantly different in space.
The results show that in the inaccessible Antarctic, the average BC concentration on snow
is only 0.2 ng/g [26], while the BC concentration in the Arctic is higher than that of the
Antarctic, with an average of 25 ng/g [24]. At the same time, the results of studies by
Clarke and Noone [24], Warren and Clarke [26], Doherty et al. [25], Grenfell et al. [63,64],
and McConnell et al. [65] show that the variation of snow BC concentration in the European
Arctic are greater than in the Canadian Arctic and Arctic Oceans, and the reason may be
related to the distance to the source of BC emissions. The snow BC concentration in the
middle and low latitudes of mountainous and urban areas is much higher than that in
the Antarctic and Arctic regions. For example, the snow BC concentration in the Alps in
December 1992 was 22–302 ng/g [31], and the BC concentration of Olympus in the United
States in 2012 was 250 ng/g [66]. The average BC concentration of glaciers in the Tibetan
Plateau and Xinjiang from 2001 to 2004 was 63 ng/g [67]. The ice core in the monsoon
climate zone of the Tibetan Plateau shows that BC concentration has increased rapidly
since the 1980s, and the glaciers in the southeast of the Tibetan Plateau have accelerated to
retreat [68], indicating that anthropogenic BC aerosol emissions in southeast Asia play an
increasingly important role in glacial melting on the Tibetan Plateau. Mid-latitude urban
areas have the highest snow BC concentration. For example, snow samples from southern
New Mexico and northern Texas in the United States from 1982 to 1985 show that the BC
concentration in urban areas is three times that of remote rural areas [28,29]; the range of
snow BC concentration in the city of Detroit from 1984 to 1985 was 17–5700 ng/g [30]. In
2007–2009, the BC concentration in the surface snow reached 2740 ng/g in the Sapporo area
of Japan [27]. In January and February 2010 and January 2014, the snow BC concentration
of northeast China was 40–1600 ng/g and 50–3700 ng/g, respectively. At the same time, it
can be seen from the two sampling results that the snow BC concentration in the northeast
heavy industrial area is higher than that in the northern border area [38,48,69]. The above
statements all reflect the impact of human activities on regional snow BC concentration.

Since the strong absorption of light by BC aerosols in the atmosphere was discovered
in the 1980s, scientists have subsequently discovered that the albedo of visible light in
snow depends largely on the concentration of BC on snow. Warren and Wiscombe [3]
believe that trace amounts of light-absorbing substances can significantly reduce the snow
surface albedo in the visible light band, but have little effect on the albedo in the near-
infrared band. This study summarized previous measurements of simulated snow BC
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concentrations and corresponding reduced albedo to obtain a simple equation between the
BC concentration and its reduced albedo (Figure 15). Using the equation given in Figure 15,
the amount of albedo reduction caused by the BC concentration simulated in this study was
roughly calculated (Table 3). The estimation results showed that the larger the snow BC
concentration, the more the albedo decreases. These results are only theoretical estimates
and require field measurements for future verification.

Figure 15. Logarithmic scatter plot for BC concentrations and reduced albedos (hollow circles) in
snow and ice based on previous studies, and the simple linear relationship possibly existing between
them. The data of the 6 points in the figure are from the literature: 1-Jacobson [8]; 2-Warren [3];
3-Jacobson [8]; 4-Clarke and Noone [24]; 5-Jacobson [8]; 6-Flanner [7].

Table 3. BC concentration and its reduced albedo in the three northeastern provinces and capital cities.

BC Concentration (ng/g) Reduced Albedo (%)

Annual-mean value 1197.468 16.448
Heilongjiang Province 1103.617 16.172

Jilin Province 962.440 15.711
Liaoning Province 788.96 15.040

Harbin City 1051.787 16.010
Changchun City 1093.404 16.141
Shenyang City 864.628 15.349

In addition to BC, light-absorbing pollutants on snow cover include organic carbon
(OC) and mineral dust (MD), accounting for 11.7% of total light absorption [69]. OC comes
from the incomplete combustion of fossil fuels and biomass fuels, which are deposited
on the snow surface after dry and wet deposition. MD mainly comes from the arid and
semi-arid desert areas of Mongolia. Under the influence of winter monsoon, the dust in the
desert area is lifted up and transported to the northeast region and deposited on the surface
of the snow there. ART model does not have the ability to detect OC and MD concentration
on snow. Therefore, in future research, OC and MD must be taken into account. Based
on the optical characteristics of the three substances, BC, OC, and MD, the ART model
parameters should be improved to make it more suitable for the characteristics of snow
pollution in northeast China.

Compared with the previous research, this study proposed to increase the influence
factors of land use type and reached the conclusion that cultivated land and snow BC
high value area are highly consistent. But why is the content of BC in the snow in the
area where the cultivated land is located so high? The mechanism needs to be further
discussed. Because northeast China is one of the three largest black lands in the world, is
there a high BC content in the simulation due to incomplete snow cover in the grid and part
of the black lands? This also needs to be further revised through field investigations. In
addition, this paper used the lighting index to indirectly analyze the impact of population
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density, energy consumption, and urban expansion on the concentration of BC in the snow.
The relationship between the lighting index and population density, energy consumption,
and city size and expansion need further analysis. The research conclusions of this study
showed that the BC content of northeast China’s snow cover increased by 52.299 ng/g
from 2012 to 2016 compared with 2001 to 2005. In fact, there was a net loss of population in
northeast China in the recent five years. Why is the BC content in snow cover increasing?
This also needs to be combined with the actual data for further analysis.

The model only considers the situation that BC is deposited on the snow surface
through dry sedimentation, but it does not consider the situation that BC particles dissolve
in the snow particles. After BC is deposited in the snow, the snow gradually ages and
deforms until the snow melts as time goes by. During this period, the BC particles migrate
with the snow melt water, and their effective particle size and optical properties change. In
the future, we can observe the change process of BC in snow and perform experimental
simulation to establish the model mechanism, so as to more accurately simulate its influence
on albedo.

5. Conclusions

(1) From 2001 to 2016, the average annual BC concentration in northeast China was
between 1098.927 and 1257.300 ng/g, with an average value of 1197.468 ng/g. Industrial
corridors composed of Harbin, Daqing, Qiqihar, Suihua, and Heihe and coal-forest indus-
trial production areas composed of cities such as Hegang, Jiamusi, and Shuangyashan were
high-value centers of snow BC concentration. The area with increased BC concentration
accounted for 81.805% of the study area, of which 6.975% was a significant increase area,
mainly distributed in the middle of Heilongjiang Province.

(2) The BC concentration of northeast China was the highest in December (1344.488 ng/g),
followed by January and February from 2001 to 2016. From 2001 to 2016, the BC concentra-
tion of snow cover in December and January in northeast China showed an increasing trend,
while the BC concentration in February showed a decreasing trend, with no significant
increase or decrease trend in each month.

(3) The high vales of BC concentration in Shenyang, Changchun, Harbin, and Daqing
are due to large population density and concentrated industrial production. In the central
part of Heilongjiang province, due to the stability of the atmospheric stratum and the
influence of topographical conditions, the pollutants were not easy to diffuse, causing
Heilongjiang province to become the center of high BC concentration. The increase of
cultivated land area, urban density and scale, and the expansion of population area are the
main reasons for the increase of BC concentration in snow cover, and also the reasons for
the high value of BC content in snow cover in Heilongjiang Province.

This study simulated the BC concentration of surface snow, analyzed the temporal
and spatial distribution and variation characteristics of BC concentration, and analyzed the
influencing factors of BC concentration of surface snow in northeast China from 2001 to
2016. Compared with previous studies, the main contribution of this study is to analyze
the distribution characteristics of in snow cover with large scale and high resolution, and
to obtain the variation characteristics of BC concentration in snow (2001–2016) in northeast
China. The results of this study provide important basic data for simulating the albedo of
snow cover in winter in northeast China and analyzing the influence of snow cover on the
regional climate. The shortcomings of current studies lie in the need to further improve
the spatial resolution of the simulation of snow BC concentration, refine the analysis of
temporal and spatial distribution and variation factors of snow BC, and deepen the study
of the influence of BC on snow albedo.
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Abstract: In this study, on the basis of the temperature data collected at 612 meteorological stations in
China from 1961 to 2019, cold regions were defined using three indicators: an average temperature of
<−3.0 ◦C during the coldest month; less than five months with an average temperature of >10 ◦C; and
an annual average temperature of ≤5 ◦C. Spatial interpolation, spatial superposition, a trend analysis,
and a spatial similarity analysis were used to obtain the spatial distribution of the cold regions in
China from 1961 to 2019. Then, the areas of the cold regions and the spatial change characteristics
were analyzed. The results reveal that the average area of the cold regions in China from 1961 to
2019 was about 427.70 × 104 km2, accounting for about 44.5% of the total land area. The rate of
change of the area of the cold regions from 1961 to 2019 was −14.272 × 104 km2/10 a, exhibiting a
very significant decreasing trend. On the basis of the changes between 1991–2019 and 1961–1990,
the area of China’s cold regions decreased by 49.32 × 104 km2. The findings of this study provide
references for studying changes in the natural environment due to climate change, as well as for
studying changes on a global scale.

Keywords: cold region of China; spatiotemporal distribution; spatiotemporal variation; 1961–2019

1. Introduction

Cold regions are a valuable part of the earth system [1], and they are generally defined
as areas with low temperatures [2] and with the presence of ice and snow for at least
part of the year. Therefore, the ice and snow resources in cold regions are very rich
and are very important to human production activities [3]. They are an essential and
lasting factor that affects the natural and social systems on the Earth’s surface [4]. Cold
regions are very sensitive to climate change [5], and climate change has changed the
distribution of the cold regions around the world [6–10]. The sixth report of the IPCC
pointed out that the global annual average surface temperature has risen by 1.09 ◦C in the
past 100 years, that the climate warming trend in China was much higher than the global
average [11,12], and that the area and spatiotemporal distribution characteristics of China’s
cold regions are undergoing significant changes. However, at present, little attention has
been paid to the temporal and spatial changes in the cold regions in China. Gaining an
accurate understanding of the distribution of, and variations in, cold regions has important
theoretical and practical significance for engineering projects in cold regions, industrial
and agricultural production, as well as for the rational development and utilization of the
water, ice, and snow resources in cold regions [13,14].

Different methods have been proposed for the classification of cold regions. Koppen
et al. [15] was the first to propose a division index for cold regions. Two indices were used
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to classify the cold regions in Canada: (1) The average temperature of the coldest month is
≤−3.0 ◦C; and (2) The number of months with an average monthly temperature of >10 ◦C
is less than four. Gerdel et al. [16] suggested dividing the Canadian cold regions on the
basis of the criterion of an annual average temperature of 0 ◦C and lower. However, Wilson
et al. [17] reported that there were some problems with only considering the temperature
factor and proposed the use of both temperature and precipitation for cold region division.
Hamelin et al. [18] proposed 10 indicators to divide the Canadian cold regions. For the
classification of the cold regions in China, Yang et al. [19] proposed climate indicators on
the basis of the above studies. The indicators included: (1) The average temperature in
the coldest month is below −3 ◦C; (2) The number of months with an average monthly
temperature of above 10 ◦C is less than four; (3) The freezing period of rivers and lakes is
more than 100 days, and more than 50% of the precipitation is solid precipitation; (4) The
number of months with an average monthly temperature of >10 ◦C is no greater than
five; (5) The average temperature in October and April is below 0 ◦C; (6) The annual
average temperature does not exceed 5 ◦C; (7) The number of days with an average daily
temperature of >10 ◦C is less than 150; (8) The accumulated temperature is 500–1000 ◦C;
(9) The percentage of solid precipitation is greater than 30%; and (10) The average annual
number of snow cover days is >30 days. They divided the cold regions in China on the
basis of these 10 indicators [3]. Their results show that China’s cold regions were mainly
distributed in four main regions: (1) Gansu, Qinghai, and Xinjiang; (2) Tibet, Aba, and
Ganzi, in western Sichuan, northern Yunnan, the Yulong Mountains, and the north part
of the Gaoligong Mountains in Yunnan; (3) Northeast and northwest Heilongjiang; and
(4) The northeastern part of Inner Mongolia, except for the desert areas in the Junggar
Basin, the Tarim Basin, and the northern part of Heihe [3,19]. The data reveals that the
cold regions accounted for about 43% of the land area of China. To consolidate the various
indicators proposed by Yang et al. [19], Chen et al. [20] proposed three indicators: the
average temperature in the coldest month is <−3.0 ◦C; the number of months with an
average temperature of >10 ◦C is less than five; and the annual average temperature is
≤5 ◦C. Then, using these three indicators, Chen et al. [20] created a spatial distribution
map of the cold regions in China from 1961 to 1998 based on observation data collected
four times a day at 571 stations in China from 1961 to 1998. They reported that China’s
cold regions were mainly distributed in the Greater Khingan Mountains, in the Changbai
Mountains, on the Sanjiang Plain in northeastern China, in the Hexi Corridor, in most of
the mountainous areas in Xinjiang, and on the Qinghai-Tibetan Plateau. The cold regions
covered an area of 417.4 × 104 km2, which accounted for about 43.5% of the land area.
Their results provide an important basis for studying China’s permafrost, glaciers, stable
seasonal snow, climatic divisions, and vegetation divisions, and these results are used
to this day. However, 23 years have passed since Chen’s study period ended (i.e., 1998).
Since the beginning of the 21st century, the average annual temperature in China has risen
by about 0.63 ◦C [21]. Therefore, it is time to revisit China’s cold region divisions and to
further analyze the spatial evolution characteristics of the cold regions within the context
of global warming [22–24]. Currently, such studies are lacking.

In the present study, on the basis of the three indicators proposed by Chen et al. [20]
and observation data collected at 612 meteorological stations in China from 1961–2019, the
cold regions in China were identified, and the spatial distribution of the cold regions was
analyzed in order to provide scientific references for development in the cold regions in
China, and for studying the impacts of climate change in these cold regions.

2. Data and Methods

2.1. Data Sources

1. Temperature data: The indicators used in this study were all temperature indices.
The temperature data were the monthly temperature values for 612 meteorological
stations in China from January 1961 to December 2019, which were downloaded
from the China Meteorological Data Network (http://data.cma.cn accessed on 21
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September 2020). All the 612 stations have complete data availability and there are no
gaps. The distribution of the meteorological stations is shown in Figure 1.

Figure 1. Distribution of meteorological stations in China.

2. Elevation data: The digital elevation model (DEM) data were obtained from the cloud
geospatial database (http://www.gscloud.cn/ accessed on 20 September 2020), with
a resolution of 1 km × 1 km.

2.2. Methods
2.2.1. Spatial Interpolation of Meteorological Data

The distribution of the meteorological stations in China is uneven. For example, in
remote areas such as the Qinghai-Tibetan Plateau, there are only a limited number of
stations. In order to obtain high-resolution meteorological data, spatial interpolation is
often used. There are many available methods of interpolating meteorological data. Of
these methods, the Kriging method is commonly used. The Kriging method performs
interpolation using the distribution of the meteorological elements of nearby stations, on
the basis of the principle of covariance. However, since the number of meteorological
stations in cold regions is small and the spatial resolution is very low, the Kriging method
is not suitable. Liu et al. [25] proposed an elevation-based spatial interpolation method, i.e.,
ANUSPLIN. In addition to ordinary spline independent variables, this method introduces
linear covariate submodels, such as the relationship between the temperature and the
elevation, precipitation, and coastline. The basic principle is to allow the introduction
of multivariate and covariate linear submodels. The coefficients of the models can be
automatically determined on the basis of the data. This method is able to smoothly process
splines of more than two dimensions, and multiple influencing factors are introduced as
covariates to perform the spatial interpolation of the meteorological elements. In addition,
the temperature is affected by the altitude. Because only considering the relationship
between the latitude and longitude and temperature compromises the accuracy, the terrain
factor was introduced in this study as a covariate. The partial thin-plate smooth spline
function of the elevation linear submodel was used for the spatial temperature interpolation.
The calculation formula is as follows:

Zi = f (xi) + bTyi + ei(i = 1, 2, . . . , n) (1)

where Zi is the dependent variable at point i; xi is a d-dimensional spline independent
variable; f is the unknown smoothing function to be estimated; yi is a p-dimensional
independent covariate; b is the p-dimensional coefficient of yi; ei is the independent variable
random error with an expected value of 0 and a variance of wiσ

2; and wi is the known local
relative coefficient of variation, of which σ2 is taken as the weight, and is the error variance,
which is an unknown constant for all data points. When interpolating temperature, this
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paper uses a three-variable local thin-disk smooth spline function (longitude and latitude
are independent variables, and altitude is a covariate), and the number of splines is set to 2.

2.2.2. Trend Analysis Method

In order to reflect the change trend of the cold area from 1961 to 2019, linear trend rate
estimation was adopted:

y = ax + b (2)

In the formula, y is the area of the cold area; x is the year; a is the linear regression
coefficient, reflecting the change trend of the area of the cold area, and a > 0 indicates that
the area of the cold area is increasing, and a < 0 indicates that the area is decreasing; b is the
intercept; and a × 10 is called the “climate tendency rate”, and the unit is 104 km2/10 a.

2.2.3. Spatial Similarity Analysis

The kappa coefficient is generally used to determine the degree of agreement or
accuracy between two images, and its calculation formula is:

K =
P0 − Pe

1 − Pe
(3)

Among them, P0 is the sum of the number of samples correctly classified in each
category divided by the total number of samples, which is the overall classification accuracy.
Assume that the numbers of real samples in each category are a1, a2, ..., ac, and that the
predicted numbers of samples in each category are b1, b2, ..., bc, and that the total number
of samples is n. Then:

Pe =
a1 × b1 + a2 × b2 + . . . + ac × bc

n × n
(4)

The kappa coefficient calculation results are −1–1, but usually the kappa falls between
0 and 1, which can be divided into five groups to indicate the different levels of consis-
tency: 0.0–0.20, very low consistency; 0.21–0.40, general consistency; 0.41–0.60, moderate
consistency; 0.61–0.80, high consistency; and 0.81~1 are almost identical [26].

2.2.4. Mann–Kendall Mutation Test

In addition to the trend analysis, the MK method can also be used to test for mutation.
This method is very effective for verifying a change of state from a relatively stable state to
another state. For a time series, x, with n sample sizes, construct an order column:

Sk =
k

∑
i=1

ri (k = 2, 3, . . . , n) (5)

where

ri =

{
1, xi > xj
0 , xi ≤ xj

(j = 1, 2, . . . , i) (6)

It can be seen that the rank sequence, Sk, is the cumulative number of times the value
of i at the moment, i, is greater than the number of values at time, j. Under the assumption
of the random independence of the time series, define statistics:

UFk =
[Sk − E(Sk)]√

Var(Sk)
(k = 1, 2, . . . , n) (7)

where UF1 = 0; and E(Sk) and Var (Sk) are the mean and variance of the cumulative number,
Sk, respectively. This value is calculated when x1, x2, ..., xn are independent, and when they
have the same continuous distribution as:
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E(Sk) =
n(n − 1)

4
(8)

Var(Sk) =
n(n − 1)(2n + 5)

72
(9)

UFi is a standard normal distribution, which is a sequence calculated according to a
time series (x) order (x1, x2,..., xn). Given a significance level, a, in comparison with the data
in the known normal distribution table, and if UFi > Ua, then significant changes exist in
the trend. This method can also be applied to the inverse sequence of the time series, and
the above procedure can be repeated by xn, xn−1, ..., x1, thus making UFk = −UBk, k = n,
n − 1,..., and UB = 0. Given the significance level, α, the two curves of UFk and UBk and the
significant horizontal line are plotted on the same graph. If the values of UFk and UBk are
greater than 0, then the sequence shows an upward trend, and values below 0 indicate a
downward trend. When the value exceeds the critical line, this indicates that the rising or
falling trend is significant. The range beyond the critical line is defined as the time zone of
mutation. If the UFk and UBk curves appear on an intersection point, and the intersection
point is between the critical line, then the intersection point corresponds to the time the
mutation begins. More detailed descriptions of this method are introduced in [27].

3. Results and Analysis

3.1. Time Series Changes in the Area of Cold Regions in China from 1961 to 2019

Once the data layers corresponding to the three indicators were obtained, the three
layers were superimposed to extract the overlapping area, which is the spatial distribution
map of the cold regions in China from 1961 to 2019. The area of the cold regions from 1961
to 2019 was calculated, and its variation with time was obtained (Figure 2a). It can be seen
that the average area of the cold regions in China from 1961 to 2019 was 427.70 × 104 km2.
The largest area of the cold regions occurred in 1969 (485.92 × 104 km2), and the smallest
area occurred in 2007 (368.80 × 104 km2). The coefficient of variation was 0.07, indicating
that the interannual variation was about 7%.

Figure 2. (a) Interannual changes; (b) MK test; and (c) Anomaly in the area of cold regions in China
from 1961 to 2019.

The rate of change of the area of the cold regions in China from 1961 to 2019 was
−14.272 × 104 km2/10 a, suggesting a significant decreasing trend (p < 0.01). Between 1961
and 2019, the area of the cold regions decreased by 84.20 × 104 km2. The Mann–Kendall
(MK) test results (Figure 2b) reveal that there have been no significant sudden changes in
the area of the cold regions since 1961. However, on the basis of the area anomaly map
for 1961 to 2019 (Figure 2c), the area of the cold regions in China experienced a significant
turning point around 1987. From 1961 to 1987, the average area of the cold regions was
453.64 × 104 km2, and from 1988 to 2019, the area decreased to 405.81 × 104 km2, i.e., a
reduction of 47.83 × 104 km2. The results of the analysis of variance revealed that there
was a significant difference in the area of the cold regions in China between 1961–1987
and 1988–2019 (p < 0.05). Thus, the area of the cold regions in China entered a declining
stage in 1987. Furthermore, the rate of change of the area of the cold regions from 1961 to
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1987 was −5.697 × 104 km2/10 a, indicating an insignificant decreasing trend; whereas the
rate of change from 1988 to 2019 increased to −11.688 × 104 km2/10 a, and this change
was significant (p < 0.01). In conclusion, the area of the cold regions in China has not only
entered a relatively low value period since 1987, but it has also decreased significantly.

3.2. Spatial Distribution of the Cold Regions in China from 1961 to 2019

Figure 3 shows the spatial distribution of the cold regions in China from 1961 to 2019,
including northeastern China, northern China, northwestern China, and southwestern
China. In order to analyze the spatial distribution of China’s cold regions, the cold regions
were analyzed according to the administrative divisions. The cold regions were distributed
in 14 provinces and autonomous regions, including Heilongjiang, Jilin, Liaoning, the Inner
Mongolia Autonomous Region, Hebei, Shanxi, Shaanxi, Gansu, Ningxia, Qinghai, Sichuan,
Yunnan provinces, the Xinjiang Autonomous Region, and the Tibet Autonomous Region.
If you superimpose the boundaries of each administrative region on the cold area spatial
distribution map calculated in this paper, using the ArcGIS Tabulate Area function, you can
get the cold area of each administrative area. The areas of the cold regions in the provinces
and autonomous regions are listed in Table 1, from high to low. It can be seen that the
Tibet Autonomous Region contained the largest area of cold regions (105.06 × 104 km2),
which was significantly larger than that of the other provinces and autonomous regions.
Moreover, the areas of the cold regions in the Inner Mongolia Autonomous Region, the
Xinjiang Autonomous Region, Qinghai, and Heilongjiang were also large, ranging from
54.09 × 104 km2 to 75.04 × 104 km2, which were significantly larger than those in Sichuan,
Gansu, Jilin, and other provinces. By comparison, the cold regions in Hebei, Yunnan,
Liaoning, the Ningxia Hui Autonomous Region, and Shaanxi were relatively small. Shaanxi
had the smallest area of 0.32 × 104 km2. The entire Tibet Autonomous Region was a cold
region, except for the southern part of the Nyainqen Tanglha Mountains. In the Inner
Mongolia Autonomous Region, the cold regions were mainly distributed in the northeastern
part of the Inner Mongolia Plateau, and in the Yinshan, Langshan, Daqingshan, and Helan
mountains. In the Xinjiang Autonomous Region, the cold regions were mainly located
in the Bogda Mountains in the northern part of Hami, in the Tianshan Mountains, in the
Bolokonu Mountains west of Urumqi, in the Harke Mountains in the southern part of the
Tianshan Mountains, and in the Altai Mountains on the Sino-Mongolian border. All of
the areas in Qinghai, except for the Qaidam Basin, were cold regions. The cold regions in
Heilongjiang included the Greater Khingan Mountains, the Lesser Khingan Mountains,
the Changbai Mountains, the Sanjiang Plain, and the Songnen Plain. The cold regions
in Sichuan Province included the high mountains in northwestern Sichuan, such as the
Daxue Mountains and the Qionglai Mountains. The cold regions in Gansu Province were
mainly distributed in the Qilian Mountains in the west, in the Minshan Mountains in the
Longnan area, in the northern mountains in the Hexi Corridor, in the Longzhong Plateau
area, and in the Mazong Mountains in the northern part of Gansu Province. The cold
regions in Jilin Province were mainly located in the Changbai Mountains in the eastern
part of Jilin Province and the areas east of the Hada Mountains. The cold regions in Hebei
were mainly distributed in Hengshan and Yanshan in the northwest. The cold regions in
Shanxi Province were mainly distributed in the high mountains, including in the Taihang
Mountains, the Lvliang Mountains, the Wutai Mountains, and the Heng Mountains. The
cold regions in Yunnan Province were scattered in the southern part of the Hengduan
Mountains in the northwest. The cold regions in the Ningxia Hui Autonomous Region
were mainly distributed in the northern part of the Liupan Mountains. In Shaanxi, the cold
regions were scattered in the middle of the Qinling Mountains.
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Figure 3. Spatial distribution of cold regions in China from 1961 to 2019.

Table 1. Area of cold regions in each administrative division from 1961 to 2019 (×104 km2).

Administrative District
Area of Cold

Region
Administrative

District
Area of Cold

Region
Administrative

District
Area of Cold

Region

Tibet Autonomous Region 105.06 Sichuan 19.85 Yunnan 1.10
Inner Mongolia

Autonomous Region 75.04 Gansu 16.26 Liaoning 0.86

Xinjiang Autonomous
Region 69.00 Jilin 11.82 Ningxia 0.50

Qinghai 66.82 Hebei 3.95 Shaanxi 0.32
Heilongjiang 54.09 Shanxi 3.03

3.3. Spatial Variations in the Cold Regions in China from 1961 to 2019

The World Meteorological Organization (WMO) defines the climate reference value
(i.e., climatic state) as the average value of a certain meteorological element for 30 years,
which is considered to be able to represent the climate of a location [28]. Thus, the 30-year
average value has been used as the reference climate state in scientific research on climate
and climate change. In this study, the periods of 1961–1990 and 1991–2019 were defined
as two climatic states. The statistics show that the areas of the cold regions in China in
1961–1990 and 1991–2019 were 453.18 × 104 km2 and 403.86 × 104 km2, respectively. It can
be seen that, against the background of global warming, the area of China’s cold regions
has been decreasing (i.e., by 49.32 × 104 km2). Table 2 shows the reduction in the areas
of the cold regions in each administrative division. The results show that the areas of
the cold regions in all 14 administrative regions decreased. Specifically, the reductions
of 12.23 × 104 km2, 10.62 × 104 km2, and 8.09 × 104 km2 in Inner Mongolia, Xinjiang,
and Jilin Province, respectively, were relatively large. The areas of the cold regions in
Yunnan, the Ningxia Hui Autonomous Region, and Shaanxi Province decreased slightly, by
0.44 × 104 km2, 0.38 × 104 km2, and 0.27 × 104 km2, respectively.

Table 2. Reduction in areas of cold regions in each administrative division (×104 km2).

Administrative District
Area of Cold

Region
Administrative

District
Area of Cold

Region

Inner Mongolia
Autonomous Region 12.23 Sichuan 1.25

Xinjiang Autonomous
Region 10.62 Liaoning 1.21

Jilin 8.09 Heilongjiang 1.17
Qinghai 4.05 Hebei 1.12
Gansu 3.81 Yunnan 0.44
Shanxi 2.39 Ningxia 0.38

Tibet Autonomous
Region 1.46 Shaanxi 0.27
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On the basis of the spatial distribution maps of the cold regions in 1961–1990 (Figure 4a)
and 1991–2019 (Figure 4b), the kappa values of the spatial distribution maps of the two
climatic states were both 0.934, indicating excellent consistency. That is, the spatial distribu-
tion of China’s cold regions did not change significantly, but there were some differences.
Figure 4c shows the difference in the spatial distributions of the cold regions in China in
1991–2019 and 1961–1990. From Figure 4c, the cold regions that disappeared in the second
30-year period (1991–2019) were mainly concentrated in the central and northern parts of
Jilin Province, in the central-northern parts of the Inner Mongolia Autonomous Region,
in the Altai region in Xinjiang, and in the central part of the Qaidam Basin. Scattered
reductions also occurred in the Hengshan, Wutai, and Yunzhong mountains in the northern
part of Shanxi Province, in the southern part of the Qinling Mountains in Shaanxi Province,
in the southeastern part of the Tibet Autonomous Region, in Beishan, on the Longzhong
Plateau in Gansu Province, in the Qionglai Mountains and Jiajin Mountains in Sichuan
Province, in the Longgang Mountains and Qianshan Mountains in Liaoning Province, in
the Taihang Mountains in Hebei Province, in Southern Duanyunling in Yunnan Province,
and in the northern Liupan Mountains in the Ningxia Hui Autonomous Region.

Figure 4. Spatial distributions of cold regions: (a) 1961–1990; (b) 1991–2019; and (c) Difference.

4. Discussion

Currently, the spatial distribution of the cold regions in China is primarily based on
the results reported by Chen et al. [20]. However, they delineated the spatial distribution of
China’s cold regions from 1961 to 1998 without considering the variation characteristics of
the cold regions. In this study, we used the observation data collected at meteorological
stations in China from 1961 to 2019 to analyze the spatial distribution of China’s cold
regions, and we analyzed the time series changes in the area of the cold regions and the
variations in their spatial distribution. The analysis of the impact of climate change on cold
regions is of great scientific significance and practical value for development in the cold
regions in China, and for the rational development and utilization of the water, ice, and
snow resources in these cold regions.

The data period of Chen et al. [20] was from 1961 to 1998, and the data used was from
571 meteorological stations in China. In this study, the data period was from 1961 to 2019,
and the data used was from 612 meteorological stations in China. In order to compare our
results with those of Chen et al. [20], the cold region distribution map of Chen et al. [20]
(Figure 5b) was vectorized, and the area of the distribution map was compared with that
of this study (Figure 5a). The comparison results are shown in Figure 5c. The cold area
obtained in this study was 427.70 × 104 km2, accounting for 44.5% of the total area of China.
The cold area obtained by Chen et al. [20] was 417 × 104 km2, accounting for 43.5% of the
total area. Thus, there was a difference of 10.3 × 104 km2. As can be seen from Figure 5c,
the results of this study reveal that the areas of the cold regions increased in the Qianshan
and Longgang mountains in the northeastern part of Liaoning Province, in the Hengshan,
Wutai, and Yunzhong mountains in Shanxi Province, in the Altay region in Xinjiang, in the
Tianshan, Altun, Qilian, and Daxue Mountains, and in the Duanyun Mountains and the
Mangkang Mountains on the southern Qinghai-Tibetan Plateau. In contrast, the areas of
the cold regions decreased in the southern Greater Khingan Mountains, on the southern
Songnen Plain, in Shanding Hural in the Inner Mongolia Autonomous Region, and in
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the Qaidam Basin in Qinghai. Thus, the cold regions identified in this study are different
from those identified by Chen et al. [20] because these studies were based on different
research periods.

Figure 5. Comparison of spatial analysis results of cold regions in China: (a) 1961–2019; (b) The cold
areas obtained by Chen et al.; and (c) Difference.

In order to compare our results with the research results of Chen Rensheng, this paper
recalculated the distribution of cold regions in China from 1961 to 1998, as shown in the
Figure 6 below. It can be seen that the spatial distribution map of China’s cold regions
calculated in this paper has higher spatial resolution than the research results of Chen
Rensheng, so the statistical area should be more accurate. In addition, different spatial
interpolation methods were used in the two studies, which will also make the statistical cold
area different from the research results of Chen Rensheng. The main difference between
the two results is due to the different time scales. More importantly, the research period of
this paper is 1961–2019, which is 23 years longer than that of 1961–1998. With the extension
of the research period, the spatial superposition area of the three indicators for dividing the
cold region will also increase. Therefore, the area of China’s cold region will increase from
1961 to 2019.

Figure 6. Spatial distribution of cold regions in China from 1961 to 1998.

On the basis of the area anomaly map and the results of the 5-year moving average,
the year when the area anomaly became negative was 1987. Since 1987, the area of the
cold regions has decreased significantly. According to the fifth assessment report of the
International Panel on Climate Change (IPCC), the temperature increase became more
significant after the 1980s [29]. Moreover, on the basis of the temperature data collected
at 349 meteorological stations in China from 1953 to 2012, Liu et al. [30] found that the
temperature increase in China during this period was significant, and that most of the
years with abrupt changes were after 1986. Before the mid-1980s, the temperature in
China fluctuated within a relatively small range. However, since then, the temperature
has exhibited a significant upward trend. On the basis of the above discussion, it can be
concluded that China’s surface temperature underwent major changes in the mid-1980s.
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Therefore, it is concluded that the temperature change in the mid-1980s was the main
influencing factor of the change in the area of the cold regions in China.

By comparing the areas of the cold regions in China under two climatic states, it was
found that the area of the cold regions in northeastern China decreased by 13.62 × 104 km2,
and that this was the region with the largest decrease. The results of many studies have
shown that northeastern China is sensitive to climate change, and that it has experienced a
significant temperature increase. For example, Chen et al. [31] studied climate change in
China from 1951 to 1995 and they report that the temperature increases in China mainly
occurred north of 35◦ N, with the largest temperature increase occurring in northern
Heilongjiang. Haiying et al. [32] analyzed the spatial and temporal characteristics of the
climate change in China from 1900 to 2000, and they found that the overall climate had
been cooling since 1950, but that warming occurred in the northeastern, northern, and
northwestern regions. The annual average temperature in northeastern China increased by
about 1 ◦C during 1900–2000, especially from 1981 to 1998, when there was a steep jump.
In addition, Liang et al. [33] analyzed the temperature characteristics in northern China
from 1951 to 2014. They also found that the northeastern region had the largest rate of
temperature increase, and this was also the region with the fastest temperature increase
after the sudden change in temperature across the country. Therefore, the northeastern
region had the largest decrease in the area of the cold regions.

The range of China’s cold regions defined in this article is mainly distributed in
northern Xinjiang, northeastern China, and on the Qinghai-Tibet Plateau, and this is the
main distribution area of glaciers, frozen soil, and snow [34]. According to the results of
this article, the area of China’s cold regions is decreasing, and studies have shown that,
with climate warming, glaciers shrink, the permafrost, as a whole, degenerates, snow cover
shrinks, glaciers melt and shrink faster, and meltwater increases year by year. The changes
in the temporal and spatial distributions of the water resources and water cycle processes
caused by changes in glaciers will undoubtedly have a profound impact on the social and
economic development of cold regions [35]. For example, they could lead to an increase
in the glacier meltwater runoff, causing thermal melt slump, thermal melt subsidence,
and other permafrost thermal melt disasters. As glacier retreat intensifies, the amount of
meltwater increases, and glacier floods and glacial debris flow disasters increase with the
increase in the glacier meltwater runoff [36]. Therefore, the reduction in the area of the cold
region has a great impact on the ice layer, on ecosystems, and on human activities.

5. Conclusions

From 1961 to 2019, the area of the cold regions in China was about 427.70 × 104 km2,
accounting for about 44.5% of China’s total land area. The rate of change in the area of the
cold regions was −14.272 × 104 km2/10 a, exhibiting a very significant decreasing trend.
The area of the cold regions of China decreased significantly after 1987.

The cold regions in China were mainly distributed in the Greater Khingan Mountains,
in the Changbai Mountains, on the Sanjiang Plain in northeastern China, in the central
part of the Inner Mongolia Plateau, and in most of the mountainous areas in Xinjiang,
and on the Qinghai-Tibetan Plateau. Among the 14 provinces and autonomous regions
in China, the area of the cold regions in the Tibet Autonomous Region was the largest
(105.06 × 104 km2), and the area of the cold regions in Shaanxi Province was the smallest
(0.32 × 104 km2).

The areas of the cold regions in China during 1961–1990 and 1991–2019 were 453.18
× 104 km2 and 403.86 × 104 km2, respectively. The difference between the two climatic
states was 49.32 × 104 km2. The largest decrease in the area of the cold regions occurred in
the Inner Mongolia Autonomous Region (12.23 × 104 km2). The difference in the areas of
the cold regions during the two periods was mainly distributed in northeastern China, in
Xinjiang, and in Inner Mongolia.
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Abstract: Heilongjiang Province is located in the northeast region of China, with the country’s highest
latitude. It has long and cold winters, and a temperate monsoon climate. Its unique geographic
location and climatic conditions make it the second largest stable snow-covered region in China.
The winter snow period starts in October and ends in April of the following year. Therefore, the
long-term accumulation of snow causes road obstructions and low-temperature frost damage, which
seriously affects local economic development and human safety. This study adopts snow parameters
(e.g., snow depth and snow-cover period), natural environmental factors (e.g., elevation and slope),
and socioeconomic factors (e.g., gross domestic product and light index). On the basis of the disaster
risk assessment theory, we constructed a disaster risk index from four aspects (i.e., disaster risk,
susceptibility, vulnerability, and disaster prevention and mitigation). Then, we performed snow-
disaster risk zoning and an assessment in Heilongjiang Province. The main findings are as follows:
the snow-disaster risk in the northern and eastern regions of Heilongjiang Province was high; the
central and northern regions were highly sensitive to disasters; the main urban areas were highly
vulnerable; and the economically developed regions had strong disaster prevention and mitigation
capabilities. Overall, the spatial distribution of the snow-disaster risk followed a decreasing trend
from east to west. High-risk areas were distributed in the east and northwest (covering 34.3% of
the entire Heilongjiang Province area); medium-risk areas were distributed in the north and center
(accounting for 45.2% of the entire Heilongjiang Province area); and low-risk areas were concentrated
in the west (constituting 20.5% of the entire Heilongjiang Province area).

Keywords: snow disaster; risk assessment; risk zoning; Heilongjiang Province

1. Introduction

Since the 1990s, the focus of emergency management has gradually turned from emer-
gency rescue and postevent recovery and reconstruction, to prepreventive preparations [1].
The United States, Britain, Germany, France, Japan, and other countries have promoted
major disaster risk assessments. In 2004, the United Nations International Strategy for
Disaster Reduction (UNISDR) and the United Nations Development Programme (UNDP)
released two reports, respectively titled: “Living with Risk: A Global Review of Disaster
Reduction Initiatives”, and “Disaster risk reduction: a development concern”. In March
2015, the “Sendai Framework for Disaster Risk Reduction 2015–2030”, finally adopted
by the Third World Conference on Disaster Risk Reduction, pointed out that two of the
four priorities for disaster reduction are “Understanding disaster risk” and “Strengthening
disaster risk governance to manage disaster risk” [2,3]. A snow disaster is large-scale snow,
caused by heavy snowfall, which seriously affects the survival and health of humans and
livestock. It is a meteorological disaster that can affect and damage traffic, communications,
agriculture, and electricity [4]. In 1977, the snow disaster in Xilingol (Inner Mongolia)
caused more than 70% of livestock deaths [5]. From 2000 to 2012, the agriculture sector of
Liaoning Province suffered 20 large-scale disasters resulting from snowstorms [6]. In 2008,
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the 100-year snow disaster swept over half of China, and affected circuits, communications,
the water supply, and heating, to different degrees. According to statistics, the snow disas-
ter caused 129 deaths; the emergency resettlement of 1.66 million people; 485,000 house
collapses; and 178 million mu of crop damage; and resulted in direct economic losses of
CNY 151.65 billion. The heavy snow in Heilongjiang Province in 2007 caused 754 houses
to collapse. Local snowstorms affected more than 900 people in Suifenhe City and other
places, with direct economic losses of nearly CNY 100 million [7]. It is evident that snow
disasters have had a huge impact on human society. Therefore, snow-disaster risk assess-
ment provides an important theoretical basis for predisaster preparations, as well as for
scientifically setting the meteorological disaster prevention standards for various regional
infrastructures, which is more conducive to promoting the construction of resilient cities
and villages, and to fundamentally improving the ability to resist snow disasters.

Snow disasters occur in various forms, such as snow melting leading to avalanches
and ice floods, less (more) snow leading to black (white) disasters, and abnormal snowfall
in windy weather leading to snowstorms. The existing studies on snow-disaster risk
mainly focus on three aspects: (1) Studies on single snow-disaster risks. Some scholars
have evaluated the avalanche risk. Schmitt et al. assessed the avalanche risk on the Alps on
the basis of topographical parameters, such as slope, aspect and elevation, forestry-related
variables, and rocks [8]. Seliverstov et al. [9] carried out avalanche risk zoning in Russia on
the basis of the recurrence interval of avalanches (avalanche frequency), the percentage of
the whole investigated territory that is occupied by avalanche-prone areas, the duration
of the avalanche danger period, the probability of a person’s stay in an avalanche-prone
area for 1 day (24 h) and for 1 year, and the total population of the area and its density.
Cappabianca et al. [10] presented an avalanche risk estimation procedure that combines a
statistical analysis of the snowfall record, iterative simulations of avalanche dynamics, and
empirically based vulnerability relations. Germain et al. [11] reconstructed past avalanche
events in the north of the Gaspe Peninsula on the basis of tree rings and assessed the
avalanche risk. In 2016, Germain also analyzed the avalanche risk from natural factors, the
population, and environmental factors for avalanche disaster in northern Quebec, eastern
Canada [12]. Some scholars have studied the risk of snowstorm disasters. Zhang et al. [13]
calculated the probability of each level of the snowstorm information diffusion theory on
the basis of the daily snow precipitation in 63 cities and counties in Heilongjiang Province,
China, from 1961 to 2015, and established a hazard index model by using the snowstorm
probability and the amount of snow precipitation. Next, a hazard assessment and the
regionalization of snowstorms was performed for Heilongjiang Province from 1961 to 2015,
and it was proposed that the high-risk areas increased by 30.7% from the 1960s to the 2010s,
as opposed to the 38.9% reduction in the low-risk areas. Liu et al. [14] constructed the
snowstorm disaster risk index on the basis of the frequency of snowstorms and assessed
and regionalized the snowstorm risk in northeast China in the future (2020–2099). They
showed that, under the RCP4.5 and RCP8.5 scenarios, the areas of the high-risk and light-
risk regions would increase, while the areas of the low- and medium-risk regions would
decrease. (2) Studies on the impact of snow disasters. Snow disasters have a major impact
on agriculture, animal husbandry, and road transportation. Barbolini et al. [15], on the
basis of avalanche accidents that occurred during outdoor winter activities over the Italian
Alps in the last 20 years, proposed a vulnerability relation for people directly exposed
to avalanches. Sinickas et al. [16] discussed the effects of the long-term changes in the
avalanche occurrence rates in terms of consequences and vulnerability. Casteller et al. [17]
report on the relationship between Nothofagus broadleaf forests and avalanche runout
distances. Gao [18] constructed an agricultural risk estimation index and divided the risks
of China’s ice and snow on agriculture. Their results propose that the regions with high
snow and freezing occurrences are located in northwestern China, and that the regions
with the high-loss areas are located in the coastal and southeastern parts. Sa et al. [19]
established a snow-cover index using passive microwave remote sensing data from 1978 to
2012, and evaluated the risk factors of disaster in the pastoral areas of the Inner Mongolia
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Grasslands. Liu et al. [20] constructed the snow-disaster index and the vulnerability index
by using the highway network, social and economic development data, meteorology data,
and ArcGIS software of Guoluo Prefecture, Qinghai Province, combined with the analytic
hierarchy process (AHP) and cluster analysis, to calculate the snow-road-disaster risk
index of Guoluo Prefecture. Qi et al. [21] proposed the risk assessment index system of
highway snow cover on the basis of a theoretical model and put forward a distribution
of trunk highway snow-disaster risks in Shaanxi. Leone et al. [22] evaluated the impact
of avalanches on road traffic in three Alpine departments (Alpes-de-Haute-Provence,
Hautes-Alpes, and Alpes-Maritimes). Snow disasters can also amplify the effects of other
disasters, such as earthquakes [23]. (3) Studies on the comprehensive risk regionalization
of snow disasters. Wang et al. [24] further analyzed the formation mechanism of snow
disasters (SDs), and constructed the integrated risk index (IRI) of a snow disaster from the
aspects of historical disasters, snowfall events, disaster-formation environments, livestock
overload, and livestock vulnerability and adaptability. The regions with high IRIs are
mainly concentrated in the middle, east, and southwest of the Qinghai-Tibet Plateau, and
appear as a contiguous risk belt from northeast to southwest. Liu et al. [25] conducted a
comprehensive analysis of the 18 indexes of snow disaster on the Qinghai-Tibet Plateau,
based on the hazard harmfulness data collected from historical records and the data
collected from the entities affected by this hazard in 2010, and classified the snow-disaster
hazards. Gao et al. [26], on the basis of the logistic regression of 33 snow-disaster events
in Qinghai province, with the maximum snow depths, snow-cover days (SCDs), slopes,
annual average temperatures, and per capita gross domestic product (GDP), constructed a
potential risk assessment model to regionalize the snow-disaster risk in Qinghai Province.
Park et al. [27] selected the pressure index (PI), the state index (SI), and the response index
(RI) to assess the comprehensive risk of snow disaster in the metropolitan city of Ulsan.
Insang [28] also assessed and analyzed the snow disaster risks of Daegu City, Ulsan City,
Gyeongsangbuk Province, and Gangwon Province on the basis of the subindicators of
three hazards, six exposures, four vulnerabilities, and five adaptive capacities.

In summary, scholars have conducted a lot of studies on snow-disaster risk and its
impact. In addition to studies on the risk of a single snow disaster, studies on snow-
disaster risk regionalization, from the perspectives of risk, sensitivity, vulnerability, and
disaster prevention and mitigation, have gradually increased in recent years. However,
the existing risk studies of snow disaster are mostly based on snow-cover data, and the
risk indicators of snowstorms and wind-blown snow are seldom considered. Therefore,
the risk of snow disaster in this paper comprehensively considers snow, snowstorms,
and wind-blown snow. Compared with previous studies, the index selection has certain
characteristics and is comprehensive. Heilongjiang Province is the highest-latitude area
in China, belonging to the second largest snow-covered area in China. It is different
from other snow-covered areas because of its large annual average snow reserves and
an obvious interannual variability [29]. Studies have shown the increasing intensity of
winter snowfall in Heilongjiang Province in recent years [30]. The years with abnormal
snowfall have also increased, especially in the first decade of the 21st century. Extreme
winter precipitation events in Heilongjiang Province have frequently occurred, and the
precipitation values in 2002, 2003, 2009, and 2010 were over 50% more than those in normal
years [31]. Heilongjiang Province is the region with the highest average annual wind
speed in China [32]. The secondary disasters caused by wind and snow are greater [7],
and the persistence of snow disasters is more significant than in other regions. Therefore,
we selected Heilongjiang Province as the study area. According to the natural disaster
risk theory model, we established a snow-disaster risk index according to the disaster
risk, susceptibility, vulnerability, and the disaster prevention and mitigation capability.
Combined with geographic information system (GIS) spatial analysis tools, the weighted
comprehensive evaluation method, and the analytic hierarchy process, this study classifies
the risk zoning of snow disasters in Heilongjiang Province. It provides a quantitative
reference for Heilongjiang province from which to determine the snow-disaster prevention
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standard, make a disaster prevention plan, and assess the losses after a disaster. It is also
useful for carrying out snow-disaster risk assessments and regionalization-related research.

2. Materials and Methodology

2.1. Study Area

Heilongjiang Province, located in northeastern China (121◦11′–135◦05′ E, 43◦26′–53◦33′ N),
is the most northernly territory of the country (Figure 1). It borders Russia in the north,
along Heilongjiang River. Characterized by a temperate continental monsoon climate, it
has long cold winters and short summers. The annual average temperature ranges from
−4 ◦C to 5 ◦C, from north to south of the study area. Its total annual precipitation is around
400–650 mm, which gradually decreases from east to west. The average annual wind
speeds are about 2–4 m/s. Heilongjiang Province is an important grain production base in
China, with commercial grain accounting for about one-tenth of the national total.

Figure 1. The study area and distribution of 62 meteorological stations in Heilongjiang Province, China.

2.2. Datasets

Precipitation and wind speed data: The daily meteorological data used in this study
were provided by the Heilongjiang Meteorological Data Center. The earliest meteorolog-
ical station in Heilongjiang Province was built in 1951, and 83 stations were established
later. They have been divided into national standard meteorological stations and general
meteorological stations. According to the continuity of data and the number of stations
required for analysis, we selected 62 stations with continuous and complete observation
data since 1961. The spatial distribution of the stations is shown in Figure 1. The basic data
used in the study include the daily temperatures and precipitation data. The time scale
is from 1983 to 2020. The study period is winter, which is defined as taking place from
November of the current year to February of the second year.

Elevation, slope, and other data: The elevation, slope, and lighting data were generated
by visual interpretation from the Resource and Environment Science and Data Center
(www.resdc.cn. Accessed on 9 February 2021), with a spatial resolution of 90 m. The terrain
standard deviation was calculated on the basis of the elevation.

Normalized difference vegetation index (NDVI) data: The NDVI data were down-
loaded from the National Aeronautics and Space Administration (NASA) website, from
November of the current year to February of the following year, with a resolution of
1 km × 1 km. The time period is from 1996 to 2020, which is the winter average of the past
five years.
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Nighttime light index data: This study used national stable light images. Briefly, a
stable light image is an annual raster image that calibrates the average nighttime light
intensity. Each image included the lights of cities, towns, and the permanent light sources
of other places (excluding the influence of occasional noises, such as moonlight clouds,
firelight, and oil and gas burning). The pixel DN value of the image represents the average
light intensity, and its range was 0–63. The nighttime light index data were downloaded
from the Geographical Information Monitoring Cloud Platform (http://www.dsac.cn/
DataProduct/Detail/201116. Accessed on 13 January 2021).

Socioeconomic factors: The socioeconomic factors (e.g., gross domestic product [GDP],
per capita disposable income, and education level) used in this study were from the
Heilongjiang Statistical Yearbook 1996–2020 (Accessed on 10 January 2021).

2.3. Methods

On the basis of the basic theory of disaster risk assessment, this paper constructs a
theoretical model of a snow-disaster risk assessment. The trend analysis method is used to
analyze the time characteristics of the risk factors; the analytic hierarchy process is used to
determine the weights of the risk-influencing factors, and the comprehensive weighted
evaluation method is used to form a risk index model.

2.3.1. Basic Theory of Disaster Risk Assessment

According to the theory of natural disaster risk formation, meteorological disaster
risk is formed by four parts: risk, susceptibility (hazard-bearing object), vulnerability
(hazard-bearing object), and the disaster prevention and mitigation capability. Each factor
is composed of a series of subfactors. Its expression is:

Disaster risk index = f (risk, susceptibility, vulnerability, disaster prevention and mitigation capability) (1)

The risk factors: All meteorological factors that may cause disasters can be called
“meteorological hazards”, and most of the meteorological hazards that exist in disaster-
causing environments are abnormalities of certain natural phenomena, temporal and
spatial laws, or natural substances, or a certain abnormality in the process of energy
exchange. Generally, the greater the risk of meteorological factors, the greater the risk of
meteorological disasters.

Susceptibility of the disaster-bearing object: The disaster-bearing object is the target of
the hazard-causing factor and is the entity that bears the disaster. The susceptibility of the
hazard-bearing object is the property shown by the hazard-bearing individual exposed to
the hazard-causing agent and is the result of the interaction between the hazard-causing
factor and the hazard-bearing object.

Vulnerability of disaster-bearing object: Disasters can only become disasters when
they act on corresponding objects, namely, humans and their social and economic activities.
Specifically, a disaster-bearing object refers to all objects that may be threatened by hazards
in a given dangerous area, as well as to the degree of damage or loss caused by potential
hazards, which comprehensively reflects the degree of loss of meteorological disasters.

The disaster prevention and mitigation capability refers to the various management
measures and countermeasures that are used to prevent and mitigate meteorological
disasters, including management capabilities, disaster-reduction investment, resource
preparation, etc. With the proper management measures and strong management capa-
bilities, the smaller the potential loss that may be suffered, and the smaller the risk of
meteorological disasters.

On the basis of the above theory, we built a hierarchical analysis model for snow-
disaster risk assessment (Figure 2). Please refer to Sections 3.1–3.4 for the selection basis of
the specific indicators.
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Figure 2. Hierarchical model of snow-disaster risk assessment.

2.3.2. Weighted Comprehensive Evaluation Method

The weighted comprehensive evaluation method is a method for solving the “bottom-
up” indexes in the risk hierarchy analysis and the evaluation model [33]. This method
comprehensively considers the degree of influence of each factor on the overall object and
integrates the advantages and disadvantages of each specific index, using a numerical
index to concentrate the data, indicating the pros and cons of the entire evaluation object.
Therefore, this method is particularly suitable for the comprehensive analysis, evaluation,
and optimization of technologies, strategies, or programs, and is currently one of the most
commonly used calculation methods. Its expression is:

Yi =
m

∑
j=1

λijXij i = 1, 2, 3, 4; j = 1, 2, . . . , m (2)

In the formula, Yi represents the disaster risk index, and i represents, respesctively, the
risk, susceptibility, vulnerability, and disaster prevention and mitigation capabilities; Xij
is the factor that affects the risk, susceptibility, vulnerability, and disaster prevention and
mitigation capability; and λij is the weight value of the risk, susceptibility, vulnerability,
and disaster prevention and mitigation capability (0 ≤ λj ≤ 1).

The expression for the comprehensive risk index of natural disasters is:

Y =
n

∑
i=1

WiYi i = 1, 2, 3, 4 (3)

In the formula, Y represents the comprehensive disaster risk index; Yi is the risk index,
the susceptibility index, the vulnerability index, and the disaster prevention and mitigation
capability index; and Wi is the weight value. The stronger the disaster prevention and
mitigation ability, the smaller the comprehensive risk index and, thus, the “negative sign”
is used.

The λj and Wi are determined by the analytic hierarchy process (see research method
in Section 2.3.3 for details); each factor in the formula needs to be standardized because of
different dimensions (see research method in Section 2.3.4 for details).
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2.3.3. Analytic Hierarchy Process

The analytic hierarchy process (AHP) is a simple method for making decisions on
some more complex and vague problems, especially for those problems that are difficult to
fully quantitatively analyze [34]. This paper uses the operation principle of the analytic
hierarchy process and uses the 1–9 scale method, provided by Saaty, to construct the
judgment matrix for the pairwise relationships of the influence factors. The pairwise
comparison of all of the influence factors determines the weight of each influence factor,
which avoids the result error caused by the subjectivity of the expert. The qualitative
comparison scale values between the two influencing factors are shown in Table 1 below.

Table 1. Scale of the AHP method.

Scale bij Definition

1 The i factor is as important as the j factor.
3 The i factor is slightly more important than the j factor.
5 The i factor is more important than the j factor.
7 The i factor is much more important than the j factor.
9 The i factor is absolutely more important than the j factor.

2, 4, 6, 8 Between the noted levels.

Solve the maximum eigenvector value of the judgment matrix and its corresponding
eigenvector by the sum-product method and check the consistency of the matrix (the
following formula). After passing, solve it by the sum-product method.

CI =
λmax − n

n − 1
=

− n
∑

i=1
λi

n − 1
(4)

CR =
CI
RI

< 0.1 (5)

In the formula, CI is the consistency index of the judgment matrix; λmaxis the largest
characteristic root of the matrix; n is the order of the discrimination matrix; CR is the
random consistency index of the judgment matrix; RI is the average random consistency
index of the discrimination matrix. The RIs of the risk, susceptibility, vulnerability and the
disaster prevention and mitigation capability are 1.24, 1.12, 0.9, and 0.58, respectively.

According to the analytic hierarchy process, taking risk as an example, the process of
determining the weight of each factor is as follows:

The hazard factors include the snowfall intensity, snow depth, snow-period length,
snowfall days, blizzard volume, blizzard number, and the days with wind speeds over
8 m/s. It is believed that, according to the degree of importance, the relative hazard factors
of the blizzard amount are the most important, followed by the number of blizzards, the
snowfall intensity, the snow depth, the snow-cover period, the snowfall days, and the
wind speeds. According to the relative importance of each factor, the judgment matrix
is constructed according to Table 1. The maximum characteristic root of the matrix, λmax,
is 6.242, CR = 0.038 < 0.10, and the weight result is valid. Therefore, the weights of the
snow intensity, snow depth, snow period, the total blizzard volume, the total number
of blizzards, and wind speeds over 8 m/s are 0.3848, 0.3054, 0.1648, 0.0718, 0.0468, and
0.0264, respectively.

In the same way, the weights of the susceptibility, vulnerability, disaster prevention
and mitigation capability, and the comprehensive disaster risk factors are shown in Table 2.
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Table 2. The weights of the risk, susceptibility, prevention and mitigation capacity, and comprehensive risk.

Sensitivity
Elevation Slope NDVI TSD Land Use Type

0.4635 0.282 0.1448 0.0727 0.037

Susceptibility UNL Highway mileage livestock numbers crop sown area
0.4742 0.303 0.154 0.0689

Prevention and
mitigation capacity

Total GDP Education level Per capita disposable income
0.4885 0.1994 0.3121

Comprehensive risk Risk Susceptibility Vulnerability Prevention and mitigation capacity
0.4627 0.3272 0.1357 0.0744

Note: TSD (terrain standard deviation); UNL (urban night lighting).

2.3.4. Standardization

In the process of zoning, because of the different dimensions of the selected factors,
the magnitude of the difference is large. For example, the length of the snow-cover period
is 150 days, and the average number of snowfalls is about 10 times per year. Therefore,
when calculating the hazard-factor risk index, it needs to be normalized so that the value
of each factor is between 0 and 1. When assessing the hazard risk, the hazard-bearing
body susceptibility, the hazard-bearing body vulnerability, the disaster prevention and
mitigation capability, the relationships between the selected influencing factors and the
hazard-causing factor risk, the hazard-bearing body susceptibility, the hazard-bearing
body vulnerability, and the disaster prevention and mitigation capability are different.
Some are the greater the number of influencing factors, the greater the hazard risk, the
greater the susceptibility of the hazard-bearing body, the greater the vulnerability of the
hazard-bearing body, and the greater the ability of disaster prevention and mitigation,
while some factors are the opposite. Therefore, in the evaluation process, the maximum
value standard or the minimum value standardization are performed for ostentation, and
an example of the formula is as follows: The greater the snowfall intensity, the greater the
hazard risk of the hazard factor. Therefore, the maximum value of the snowfall intensity is
standardized, and Formula (6) is selected; if the highway mileage is longer, the vulnerability
is smaller and, thus, the highway mileage is minimized. For the value standardization,
select Formula (7).

Maximum standardization:

X′
max =

∣∣Xij − Xmin
∣∣

Xmax − Xmin
(6)

Minimum standardization:

X′
min =

∣∣Xmax − Xij
∣∣

Xmax − Xmin
(7)

where Xij is the index number of the j-th factor of the x factor; X′
max and X′

min are the
dimensionalities of Xij; and Xmax and Xmin are the minimum and maximum values in the
index sequence, respectively.

2.3.5. Mann–Kendall Trend Test

In order to test the change trend of the meteorological elements, the Mann–Kendall
trend test method is used to test the meteorological elements on the annual and seasonal
scales [35]. The method assumes that the time data series (x1, x2, . . . , xn) are independent,
random, and uniformly distributed. For the sample sequence, the calculation equation for
the test statistical variable, S, is:

S =
n

∑
i=2

i−1

∑
j=1

sign(xi − xj) (8)

480



Sustainability 2021, 13, 14010

when:

(xi − xj) =

⎧⎨⎩
> 0
= 0
< 0

⎫⎬⎭, sign(xi − xj) =

⎧⎨⎩
1
0
−1

⎫⎬⎭ (9)

σs =

√
n(n − 1)(2n + 5)

18
(10)

when:

S

⎧⎨⎩
> 0
= 0
< 0

⎫⎬⎭, Z =

⎧⎨⎩
S−1
σs

0
S+1
σs

⎫⎬⎭ (11)

where S is the test statistical variable of the normal distribution; xi and xj are two series of
different distributions in the same sample, where 1 ≤ j < I ≤ n; σS is the standard deviation;
n is the total number of samples; and Z is the test value. If Z > 0, the tested time series has
an upward trend, and if Z < 0, the tested time series has an upward and downward trend;
the absolute value of Z is greater than or equal to 2.32, 1.64, and 1.28, which means they
pass confidence. They are, respectively, 99%, 95%, and 90% significance test levels.

2.3.6. The Pettitt Test

The Pettitt test is a common tool to detect a single unknown mutation point, and it
is also one of the most common nonparametric test methods [36]. It can be described as
giving an observation data sequence, X | xt, t = 1, 2, . . . , n, where n is the sample size, if
the sequence has a change point at τ(1 ≤ τ ≤ n − 1), defining the corresponding Pettitt
statistics, Uτ .

Uτ, n =
τ

∑
i=1

n

∑
j=τ+1

sgn(xi − xj) =

⎧⎨⎩
−1(xi − xj) < 0
0(xi − xj) = 0
+1(xi − xj) > 0

(12)

Let K = max(|Uτ,n|), then the time, T, where K is located, is the possible change point
position. The significance level of the corresponding change point is:

P = 2exp
[
−6K2(n3 + n2)

]
(13)

If P ≤ 0.5, then time, T, is considered to be the position of the statistically significant
change point.

3. Results

3.1. Snow-Disaster Risk Analysis
3.1.1. The Characteristics of the Risk Zoning Factors of Snow Disasters in
Heilongjiang Province

In this paper, the snow depth, the length of the snow-cover period, the snowfall
intensity, the total blizzard volume, the total number of blizzards, and the total days of
wind speeds over 8 m/s were selected as the risk factors of snow disaster. The deeper
the snow depth, the longer the snow-cover period, the stronger the snowfall intensity,
the greater the blizzards, the greater the total number of blizzards, and the more days
with wind speeds over 8 m/s, the greater the risk of snow disasters. Figure 3 shows the
interannual variation characteristics of the snow depth, the snow-period length, the snow
intensity, the total blizzard volume, the total number of blizzards, and the days with wind
speeds over 8 m/s in Heilongjiang Province, from 1983 to 2020. It can be seen that the
snow depth, snow intensity, total blizzard volume, and the total number of blizzards in
Heilongjiang Province show a significant increase, and the M–K statistics are 2.869, 3.269,
1.968, 2.014, respectively. The length of the snow-cover period and the wind speeds showed
a significant decrease, and the M–K statistical values were −3.223 and −6.43 (Table 3). It
can be seen from the distribution of the box map (Figure 4) that the snow depth, the snow-
period length, the snow intensity, the total blizzard volume, the total number of blizzards,
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and the days with average wind speeds over 8 m/s are 20.82 cm, 165.4 d, 1.24 cm/time,
142.0 mm, 9.9 times, and 92 d, respectively. The interannual changes in the wind speed,
snow intensity, the number of blizzards, and the snow depth are relatively large, while the
interannual changes in the snow depth and the blizzard volume are relatively small. It can
be seen from the extreme value distribution characteristics that the maximum value of the
snow intensity, the maximum value of the blizzard volume, and the number of blizzards
are obviously larger than the average values, while the minimum value of the days with
wind speeds over 8 m/s is obviously smaller than the average value. Using the Pettitt
method to calculate the mutation year of each hazard factor, it was concluded that the
snow depth, the snow-cover length, the snow intensity, and the days with wind speeds
over 8 m/s days in Heilongjiang Province all have abrupt changes around the early 2000 s,
and the catastrophes of the total snow cover and the total number of snowstorms occur in
the middle and late parts of the 2000 s, respectively.

 

Figure 3. Time variation of risk factors.

Table 3. The M–K statistics and abrupt years of risk factors.

Disaster-Causing
Factors

Snow
Depth

Snow
Period

Snow
Intensity

Total
Blizzard
Volume

Total Number of
Blizzards

Wind Speed Is Greater
than 8 m/s Times

M–K statistics 2.867 ** −3.223 ** 3.269 ** 1.968 * 2.014 * −6.43 **
Abrupt year 1999 2002 1998 2005 2008 2000

Note: “*”, “**”: significance at 0.05 and 0.01 levels, respectively.

 

Figure 4. Boxplots of risk factors.

Figure 5 shows the spatial distribution of the snow depth, the snow-period length,
the snow intensity, the total blizzard volume, the total number of blizzards, and the days
with wind speeds over 8 m/s in Heilongjiang Province, from 1983 to 2020. It can be seen
that the snow depths of Heilongjiang Province, from 1983 to 2015, are between 7.39 and
35.26 cm, and that the snow depths of 25–35.26 cm are mainly distributed in Mohe County
in the northwest, northwest of Tahe County, northwest of Huzhong District, Xunke County,
Jiayin County, north of Yichun City, north of Hegang City, and north of Luobei County;
snow depths of 15–25 cm are mainly distributed in most cities and counties in central
and southern Heilongjiang Province; snow depths of 7–15 cm are mainly distributed in
the southwest of Heilongjiang Province, including Qiqihar cities and counties, Daqing,
and the southwest of Suihua. The length of the snow period in Heilongjiang Province
from 1983 to 2015 is 150–200.3 days. Snow periods of more than 180 days are mainly
distributed in the Daxing’anling area, in the north of Heilongjiang Province; the areas
of snow periods of more than 160 days are mainly distributed in central and northern
Heilongjiang Province; the areas with a snow-cover period of less than 160 days are mainly
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distributed in the southern part of Heilongjiang Province. The length of the snow-cover
period of the province generally increases from low latitudes to high latitudes. The snow
intensity in Heilongjiang Province from 1983 to 2020 was from 1.23–2.10 cm/time. The
areas with higher snow intensities are mainly located in the east of Hegang, Jiamusi, and
in Shuangyashan in the east; the areas with moderate snow are mainly located in the east
of Heilongjiang Province and Mohe County; and the areas with low snow intensity are
mainly distributed in the west of Heilongjiang Province. The total blizzards in Heilongjiang
Province from 1983 to 2020 were between 0 and 761.9 mm, and the blizzards above 200 mm
were mainly distributed in Jiamusi, Hegang, Shuangyashan, Qitaihe, Jixi, and Mudanjiang,
in eastern Heilongjiang Province; the areas with blizzards above 100 mm were mainly
distributed in the Yichun, eastern Suihua, eastern Harbin, Mudanjiang, and Daxing’anling
regions, in the central part of Heilongjiang Province; the areas with blizzards below 100 mm
were mainly distributed in Heihe, Qiqihar, Daqing, Suihua, and Harbin, in the western
part of Heilongjiang Province. The total number of blizzards in Heilongjiang Province
from 1983 to 2020 was between 5 and 20 times. The total number of blizzards above
15 were mainly located in Jiamusi, Hegang, Shuangyashan, Qitaihe, Jixi, and Mudanjiang,
in eastern Heilongjiang Province; the number of blizzards were 10 in the areas mainly
distributed in Qiqihar, Daqing, Suihua, and Harbin, in the west of Heilongjiang Province.
In Heilongjiang Province, from 1983 to 2020, the number of days with wind speeds over
8 m/s were 70–187.7 days, and the days with wind speeds over 8 m/s over 110 days were
mainly distributed in Jiamusi, Hegang, Shuangyashan, Qitaihe, Jixi, and Mudanjiang, in
eastern Heilongjiang Province. The areas with wind speeds> 8 m/s within 90–130 days
are mainly distributed in the Qiqihar, Daqing, Heihe, and Daxing’anling areas, in western
Heilongjiang Province; the areas with wind speeds over 8 m/s below 90 days are mainly
distributed in Heihe, Suihua, and Iraq, in central Heilongjiang Province.

   

   
Figure 5. Distribution map of risk factors of snow disaster.

3.1.2. Results of the Risk Zoning of Snow Disasters in Heilongjiang Province

The spatial superpositions of the risk factors are used to obtain the disaster risk zoning
results of snow disasters in Heilongjiang Province (Figure 6a). The spatial distribution
of hazards is uneven, and there are high-value areas locally. The risk index is equally
divided into three levels (as shown in Table 4), and the spatial distribution of the risk
classification is presented in Figure 6b. The spatial distribution of the snow-disaster risk
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in Heilongjiang Province followed a decreasing trend from east to west. High-risk areas
accounted for 46.3% of the entire Heilongjiang area, and were distributed mainly in the
eastern region of Heilongjiang (Jiamusi, Yichun, Jixi, Qitaihe, Hegang, Shuangyashan,
Xunke, and Mudanjiang) and the northwestern Daxing’anling area; the medium-risk areas
covered 36.8% of the entire Heilongjiang area, and were distributed primarily in the central
region of Heilongjiang Province (eastern Daxing’anling, Heihe, eastern Suihua, northern
Mudanjiang, and eastern Harbin); and the low-risk areas accounted for 16.9% of the
total area of Heilongjiang Province, and were distributed mostly in the western region of
Heilongjiang Province (Qiqihar, Daqing, western Suihua, and western Harbin).

  
(a) (b) 

Figure 6. Risk map of snow disaster in Heilongjiang Province ((a): stretch, (b): classification).

Table 4. Risk classification criteria.

Index Low Mid High

Risk 0.046–0.244 0.244–0.414 0.414–0.712
Susceptibility 0.014–0.129 0.129–0.245 0.245–0.667
Vulnerability 0–0.178 0.178–0.368 0.368–0.824

Prevention and mitigation capacity 0–0.178 0.178–0.280 0.280–0.969
Comprehensive Snow Disaster Risk 0.067–0.295 0.295–0.434 0.434–0.666

3.2. Susceptibility Analysis of Snow Disaster
3.2.1. The Characteristics of the Susceptibility Zoning Factors of Snow Disasters in
Heilongjiang Province

Figure 7 shows the spatial distribution of the altitude, slope, land-use type, terrain
standard deviation, and the NDVI in Heilongjiang Province. It can be seen that the altitude
in Heilongjiang province is between 15 and 1651 m; the slope is between 0 and 57.4◦; the
terrain standard deviation is between 0 and 174.14; and the spatial distribution of the
altitude, the slope, and the terrain standard deviation are roughly the same. The areas with
high levels are mainly distributed in Huzhong District, Xinlin District, Yichun City, Hailin
City, Muling City, and Dongning County in Heilongjiang Province. The land-use types in
Heilongjiang Province are dominated by farmland and forest. The forest land is mainly
distributed in the Greater Khingan Mountains, in the Lesser Khingan Mountains, and in
Mudanjiang City in the south. The NDVI values corresponding to the forest area are also
higher, and the highest is 0.83. Farmland is mainly distributed on the Songnen Plain, in the
west of Heilongjiang Province, and on the Sanjiang Plain in the east.
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Figure 7. Heilongjiang Province altitude, slope, land-use type, terrain standard deviation, NDVI spatial distribution maps.

3.2.2. Results of the Susceptibility Zoning of Snow Disasters in Heilongjiang Province

The weight in Table 2 is used to perform the spatial superposition of the susceptibility
factors to obtain the susceptibility zoning results of snow disasters in Heilongjiang Province
(Figure 8a). The spatial distribution of the snow-disaster susceptibilities in Heilongjiang
Province is high in the central and northwestern regions, and is low in the eastern and
western regions. The susceptibility index is equally divided into three levels (as shown
in Table 4), and the spatial distribution of the susceptibility classification is presented in
Figure 8b. High susceptibilities accounted for 16.3% of the entire Heilongjiang area, and
were distributed mainly in the northern region (southern Mohe County, Huzhong District,
Xinlin District, Yichun City, Tieli City, and Mudanjiang City); medium susceptibilities
covered 35.6% of the entire Heilongjiang area, and were distributed largely in the central
region of Heilongjiang Province (Heihe City, Huma County, Tahe County, Jixi City, and
Yichun); and low susceptibilities accounted for 48.1% of the total area of Heilongjiang
Province, and were distributed mainly in the western (Qiqihar, Daqing, Suihua, and
Harbin) and eastern (Jiamusi, Shuangyashan, and Jixi) regions of Heilongjiang Province.
Heilongjiang Province is located in the Northeast Plain and includes the Songnen Plain
and the Sanjiang Plain. Other regions with high susceptibilities were distributed in the
Daxinganling, Xiaoxinganling, and Mudanjiang mountainous regions.

3.3. Vulnerability Analysis of Snow Disaster
3.3.1. The Characteristics of the Vulnerability Zoning Factors of Snow Disasters in
Heilongjiang Province

Figure 9 shows the spatial distributions of urban lights, livestock numbers, crop-sown
areas, and highway mileages in Heilongjiang. It can be seen that the urban night lights are
between 0 and 63, and that the high values of urban night lights are scattered in prefecture-
level cities and urban areas, while urban night lights in country-level cities are relatively
low. The livestock numbers are from 498 to 665,511, and the areas with high levels are
mainly distributed in Longjiang County, Shuangcheng City, and Zhaodong City, in the
southwest of Heilongjiang Province. The crop-sown areas are from 214 to 342,188 km2, and
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the areas with high levels are mainly distributed in Songnen Plain and Sanjiang Plain. The
highway mileage is between 92.88 and 25,455, and the areas with high levels are distributed
in Qiqihar city, Harbin city, Suihua city, and Heihe city, in Heilongjiang Province.

 
(a) (b) 

Figure 8. Map of snow-disaster susceptibilities in Heilongjiang Province ((a): stretch, (b): classification).

Figure 9. Spatial distributions of urban lights, livestock numbers, crop-sown areas, and highway mileages in Heilongjiang.

3.3.2. Results of the Vulnerability Zoning of Snow Disasters in Heilongjiang Province

The weight in Table 2 is used to perform the spatial superposition of the vulnerability
factors to obtain the vulnerability zoning results of snow disasters in Heilongjiang Province
(Figure 10a). The spatial distribution of the snow-disaster vulnerabilities in Heilongjiang
Province is high in the western regions, and low in the central and northwestern regions.
The vulnerability index is equally divided into three levels, and the spatial distribution of
the vulnerability classification is presented in Figure 10b. High vulnerabilities accounted
for 3.0% of the entire Heilongjiang area, and were distributed mainly in the economically
developed main urban areas (Qiqihar City, Daqing City, Harbin City, and Suihua City), as
well as other small parts of cities and counties; medium vulnerabilities constituted about
27.9% of the entire Heilongjiang area, and were distributed chiefly in Heihe City, Nenjiang
County, Nehe City, Longjiang County, Zhaodong City, Wuchang City, Fujin City, Baoqing
County, and other cities and counties of Heilongjiang Province; and low vulnerabilities
accounted for 69.1% of the entire area of Heilongjiang Province, and were distributed
mostly in the northern and central regions of Heilongjiang Province. As shown in the
figure, high vulnerabilities were distributed mainly in regions with more urban lights and
larger populations, which have been significantly affected by disasters.
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(a) (b) 

Figure 10. Vulnerability zoning map of snow disaster in Heilongjiang Province ((a): stretch,
(b): classification).

3.4. Analysis of Snow-Disaster Prevention and Mitigation Capability
3.4.1. The Characteristics of the Prevention and Mitigation Capability Zoning Factors of
Snow Disasters in Heilongjiang Province

Socioeconomic factors are the main indicators that affect the disaster prevention and
mitigation capability. We selected the economic indicators of the Heilongjiang Province
Statistical Yearbook, from 1996 to 2020 that each county has data for, as the factors of the
disaster prevention and mitigation capability, and finally selected the total GDP, the per
capita disposable income, and the education level. The higher the GDP, the stronger the
region’s economic strength, and the stronger its ability to fight disasters. The population
size of each region is different, and the per capita disposable income further illustrates the
level of economic development. Therefore, the per capita disposable income was selected
as the disaster prevention and mitigation ability. The level of education represents the level
of awareness of the impacts of, and the defenses against, disasters. Therefore, the higher
the level of education, the stronger the ability to reduce disasters.

Figure 11 shows the spatial distributions of the total GDPs, per capita disposable
incomes, and education levels in Heilongjiang. It can be seen that the total GDP is between
25,538 and 15,324,071, and that the high values of the total GDPs are mainly distributed in
Daqing City, Qiqihar City, and Harbin City. The per capita disposable income is between
2514 and 14,850, and the areas with high levels are mainly distributed in Daqing City,
Harbin City, Dongning County, and Hailin City. The education level is between 2300 and
73,770, and the areas with high levels are the same as those with high total GDPs.

Figure 11. Spatial distributions of total GDPs, per capita disposable incomes, and education levels in Heilongjiang Province.
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3.4.2. Results of the Prevention and Mitigation Capacity Zoning of Snow Disasters in
Heilongjiang Province

The weight in Table 2 is used to perform the spatial superposition of the prevention
and mitigation capacity factors to obtain the prevention and mitigation capacity zoning
results of snow disaster in Heilongjiang Province (Figure 12a). The spatial distribution
of the snow-disaster prevention and mitigation capacities in Heilongjiang Province is
uneven and is high in the southern regions, and low in the northwestern regions. The
prevention and mitigation capacity index is equally divided into three levels, and the
spatial distribution of the prevention and mitigation capacity classification is presented
in Figure 12b. High disaster prevention and mitigation capabilities accounted for 7.4%
of the entire Heilongjiang area, and were distributed mainly in Qiqihar City, Daqing
City, Zhaodong City, Hulan District, Harbin City, Acheng District, Shuangcheng City,
Mudanjiang City, Jiamusi City, Suifenhe City, and Dongning County; middle disaster
prevention and mitigation capabilities constituted 84.0% of the entire Heilongjiang area,
and were distributed in most cities and counties in Heilongjiang Province; and low disaster
prevention and mitigation capabilities covered 8.6% of the entire Heilongjiang Province
area, and were distributed mainly in Sunwu County, Gannan County, Tailai County, Lindian
County, Kedong County, Baiquan County, Mingshui County, Qinggang County, Wangkui
County, Lanxi County, Suileng County, and Jixi City. The figure shows that the more
developed the economy, the stronger the disaster prevention and mitigation capability.

  
(a) (b) 

Figure 12. Map of Heilongjiang Province’s snow-disaster prevention and mitigation capacities ((a): stretch, (b): classification).

3.5. Comprehensive Snow-Disaster Risk Assessment and Zoning

The risk factors, the susceptibility factors, the vulnerability factors, and the prevention
and mitigation capacity factors are superimposed, according to the weights, and the
comprehensive snow disaster risk index is obtained. The comprehensive risk assessment
and zoning results for snow disasters in Heilongjiang Province are shown in Figure 13a.
The comprehensive risk index is equally divided into three levels (Table 4), and the spatial
distribution of the comprehensive risk classification is presented in Figure 13b.The spatial
distribution of the comprehensive snow disaster risk in Heilongjiang Province followed a
declining trend from east to west. High risks accounted for 34.3% of the entire Heilongjiang
Province area (i.e., an area of 97,000 km2), and were distributed mainly in Hulin City, the
eastern part of Mishan City, Shuangyashan City, Qitaihe City, Suifenhe City, Dongning
County, Muling City, Ning’an City, Hailin, Mudanjiang City, Yichun City, Jiayin County,
Xunke, Hegang, Tangyuan, Jiamusi, Tieli, Mohe County, Huzhong District, Xinlin District,
and western Tahe County; medium vulnerabilities covered 45.2% of the Heilongjiang
area (i.e., an area of 214,000 km2), largely distributed in eastern Tahe County, Huma
County, Heihe City, Nenjiang County, Sunwu County, eastern Wudalianchi, Bei’an, Qing’an,
Hailun, Suihua, Mulan, Tonghe, Yilan, Luobei County, Suibin County, Tongjiang City,
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Fuyuan County, Fujin, Baoqing, Youyi, Jixian, Linkou, Jixi, Jidong, Shangzhi City, and
Wuchang City; and low vulnerabilities accounted for 20.5% of the Heilongjiang Province
area (i.e., an area of 162,000 km2), and were distributed mostly in the southwestern region
of Heilongjiang Province, including Qiqihar, Daqing, western Suihua, and western Harbin.

 
(a) (b) 

Figure 13. Comprehensive risk zoning map of Heilongjiang snow disaster ((a): stretch, (b): classification).

4. Discussion

(1) This article evaluates and zones the snow-disaster risk in Heilongjiang Province
from four aspects: risk, susceptibility, vulnerability, and the disaster prevention and miti-
gation capability. Compared to the snow-disaster risk research at home and abroad, the
analysis content of this article is complete. The zoning indicators are relatively complete,
which provides a research example for related research and has a certain reference effect. It
should be noted that the constituent factors of risk, susceptibility, vulnerability, and the
disaster prevention and mitigation capability are not necessarily fixed, and adjustments
and replacements can be made without affecting the physical meaning when conducting
research in different regions. Generally speaking, six index meteorological indicators,
which included the snow depth, the snow-period length, snow days, total blizzard volume,
the number of blizzards, and their scores were selected for risk, which are generally easier
to obtain; the altitude and land-use types that constitute susceptibility are also easier to
obtain. The standard deviations of the slope and terrain are calculated on the basis of
altitude data. The NDVI data uses NDVI data; and the factors affecting vulnerability and
the disaster reduction capabilities are mainly derived from statistical yearbooks. Since
the indicators of the statistical yearbooks in different regions are different, the data in
the statistical yearbooks can be replaced when conducting research. For example, the
urban lighting index was used in this article because there is no spatial distribution data
of populations in the statistical yearbooks. This article uses the MODIS lighting index to
replace it.

(2) In the process of zoning, not only can we obtain a spatial distribution map of
the different factors that affect not only the risk, susceptibility, vulnerability, and disaster
prevention and mitigation capability, but also a zoning map of the risk, susceptibility,
vulnerability, disaster prevention and mitigation capability, and the comprehensive disaster
risk. Therefore, this method is conducive to the comprehensive analysis of disaster risk.
For example, the Sanjiang Plain, in the east of Heilongjiang Province, is a high-risk area
for snow disasters, compared with Figure 14, and most of the final comprehensive snow-
disaster risk is in a medium-risk area. The main reason is the low susceptibility and the low
vulnerability. The comparison and influencing factors can be further analyzed as follows:
Although the snow depth, intensity, blizzard volume, and the number of blizzards are
relatively large and strong here, it is a plain with a low altitude, small slopes, and small
topographical fluctuations. This area is, especially, a primarily agricultural area, basically
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consisting of arable land, and there are almost no crops in winter, so the comprehensive
risk of snow disaster is low. Therefore, the results of the snow-disaster risk zoning in this
paper provide theoretical support for the government and for disaster prevention and relief
departments to formulate predisaster mitigation plans, and to help with postdisaster relief
decision-making.

(3) Since the selection of zoning factors in this paper will be affected by human
factors, on the one hand, and will be limited by statistical yearbook data, on the other, the
uncertainty of the factor selection will affect the accuracy of the zoning results. Especially
when zoning a large spatial area, it is difficult to obtain a unified socioeconomic index, so it
will be restricted. It is recommended to use remote sensing products as much as possible,
as with the NDVI and the urban lighting index in this article, which can achieve large-scale
spatial risk zoning while ensuring high spatial resolution.

In addition, many meteorological disasters, such as droughts and floods, are related
to precipitation data. The precipitation is affected by small-scale weather systems, as
well as by the local topography, the underlying surface, and other factors. The spatial
interpolation accuracy of precipitation will be affected. The precipitation data in the
published precipitation reanalysis data also face accuracy problems. However, there is no
good method for the spatial interpolation of precipitation, and research in this area needs
to be strengthened.

(4) In the process of zoning in this paper, in addition to the factor selection, there
were also problems in calculating the weight of each factor. Because there is no dependent
variable, linear regression and other statistical methods cannot be used. The analytic
hierarchy process method was used in this article to determine the weights, which are
mainly based on the relative importance of each factor and are made by human judgment.
Therefore, there are human factors that affect the impact. The results of the zoning will
have a certain impact. The analytic hierarchy process is an analytical and discriminative
decision-making method, proposed by the American scholar, Saaty, in 1997 [37]. However,
although the analytic hierarchy process involves decision-making on data and information,
it retains the judgment of the human perception of things and can be completed with
less information. The advantage is judging the content of decision-making under the
circumstances; however, the disadvantage is that the final result is very dependent on the
decisionmaker’s judgment of the objective conditions, which has a more obvious subjective
intention. When the decisionmaker’s perception of things is not accurate enough, it is
easy for them to have bias. Therefore, some scholars have proposed methods, such as the
multivariate instability index analysis method and the combination weighting method, for
weight assignment. We will also conduct further related research.

(5) The current study, based on the meteorological data from 1983 to 2015, reveals
the significant reduction in the snow-cover period in Heilongjiang Province over the past
33 years. This reduction is consistent with findings from an analysis of the spatiotemporal
variation characteristics of snow in China from 1961 to 2012 [38]. The decrease in the
snow-cover period, with interannual variations, has been caused by climate warming
over the past 100 years [39]. In addition, the declining trend of the snow period with the
latitude variation was similar to that identified in a previous study on the spatiotemporal
distribution of snow cover in the northeast region [40]. The snowfall intensity in the east
of Heilongjiang Province was higher than in the west, which was consistent with the
research results of Huang et al. [30]. The total numbers of blizzards and the total amounts
of snowfall in Heilongjiang Province were higher in the east and north, which is similar to
the research findings of Zhang [13].

(6) In order to test the results of the snow-disaster risk zoning proposed in this paper,
we used the snow-disaster occurrence data in Heilongjiang Province, recorded in the
“Chinese Meteorological Disaster Dictionary-Heilongjiang Volume”, to compare with this
paper. According to the literature, snow disasters in Heilongjiang mostly occur in the
eastern parts of the mountains. Traffic snow disasters are more serious, and there are
frequent occurrences in Huanan, Boli, Linkou, Yilan, Tonghe, Jixi, Suifenhe, and other
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places. The results are similar. At the same time, this article also counts the 2016–2020
snow-disaster loss data recorded by the Heilongjiang Provincial Civil Affairs Department,
and the loss, according to the snow disaster, is shown in Figure 14. Compared with the
results of the comprehensive risk zoning in this article, it is basically consistent. However,
there are some differences in the Lesser Khingan area. The main reason is that the snow-
disaster risk in the Lesser Khingan area threatens a high-value area. In the process of
zoning in this article, the risk weight is higher, which leads to a higher overall risk. This
result also reminds us that, when carrying out disaster risk zoning, we must appropriately
increase the vulnerability weight of the disaster-bearing body. In addition, Zhang et al. [13]
conducted research on the comprehensive risk of blizzards and found that the high-risk
zone is located in the southeast, that the low-risk zone is located in the western region, and
that the remaining areas are medium-risk zones, which are also the snow-disaster risks in
this paper. These earlier studies provided references for the snow-disaster risk analysis
used in this study.

 

Figure 14. Snow-disaster loss data recorded by the Heilongjiang Provincial Civil Affairs Department.

5. Conclusions

On the basis of this research, the following conclusions can be made:
1. The snow depth, snowfall intensity, total number of snowstorms, and the total

volume of snowstorms in Heilongjiang Province all followed an upward trend with inter-
annual changes. The snow depth in the northeast was higher than that in the southwest.
The total amount of snowfall, the total number of snowstorms, and the snowfall intensities
in the east were all higher than those in the west. The snow-cover period and the number
of days with wind speeds >8 m/s decreased with the interannual changes. The snow-cover
period in the north was longer than that in the south. The number of days with wind
speeds >8 m/s were greater than in the east, but relatively less than in the central area.

2. The snow-disaster risk was higher in eastern and northern Heilongjiang Province.
Susceptibilities were higher for the central area and the northern Daxinganling area. Vul-
nerabilities were higher in the western part than in other areas and were distributed
throughout various urban areas. The disaster prevention and mitigation capabilities of
economically developed areas were stronger than those in less economically developed
areas. The high-risk areas for snow disasters in Heilongjiang Province were located in the
northern and eastern regions (e.g., Daxinganling, Yichun, and Mudanjiang), accounting
for 34.3% of the total area of Heilongjiang Province. The medium-risk areas of snow disas-
ters were located in the central region (e.g., Heihe, Suihua, Jiamusi, and eastern Harbin),
accounting for 45.2% of the total area of Heilongjiang Province. The low-risk areas were
located in the southwest of Harbin (e.g., Qiqihar, Daqing, western Suihua, and western
Harbin), accounting for 20.5% of the entire Heilongjiang Province area.
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Abstract: Recent decades have witnessed accelerated climate changes across the Qinghai-Tibet
Plateau (QTP) and elevated socioeconomic exposure to meteorological hazards. The QTP is called the
“the third pole”, exerting remarkable impact on environmental changes in its surrounding regions.
While few reports are available for addressing multi-hazard risks over the QTP, we develop an
integrated indicator system involving multiple meteorological hazards, i.e., droughts, rainstorms,
snowstorms and hailstorms, investigating the spatiotemporal patterns of major hazards over the QTP.
The hazard zones of droughts and rainstorms are identified in the southern Gangdise Mountains,
the South Tibet Valley, the eastern Nyenchen-Tanglha Mountains, the Hengduan Mountains and
West Sichuan Basin. Snowstorm hazard zones distribute in the Himalayas, the Bayan Har Mountains
and the central Nyenchen-Tanglha Mountains, while hailstorm hazard zones cluster in central part
of the QTP. Since the 21st century, intensified rainstorms are detectable in the densely populated
cities of Xining and Lhasa and their adjacent areas, while amplified droughts are observed in grain
production areas of the South Tibet Valley and the Hengduan Mountains. Snowstorm hazards show
large interannual variations and an increase in pastoral areas, although the overall trend is declining
slightly. The frequency of hailstorms gradually decreases in human settlements due to thermal and
landscape effects. Mapping meteorological hazards regionalization could help to understand climate
risks in the QTP, and provide scientific reference for human adaptation to climate changes in highly
sensitive areas.

Keywords: meteorological hazards; risk assessment; spatial pattern; population exposure; Qinghai-
Tibet Plateau

1. Introduction

Due to drastic climate change and the expansion of socioeconomic exposure, the
disaster-related losses due to meteorological hazards have been increasing rapidly in recent
decades [1,2]. The Qinghai-Tibet Plateau (QTP) is known as the “third pole”, a region highly
sensitive to global warming. Over the past 50 years, warming magnitude of the QTP is twice
as high as the global average [3,4]. A warming climate has changed the thermodynamic
and kinetic conditions of the QTP [5], triggering an increase in the intensity, frequency and
duration of meteorological hazards [6–8]. Snowstorms, along with low temperatures and
strong winds, become one of the major hazards in the QTP that could have serious negative
impacts on animal husbandry, industry, agriculture and transportation [9–12]. Climate
projections indicate that snowstorms will continue to intensify with uncertainties and
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fluctuations throughout the decades to come [13,14]. Meteorological droughts directly affect
the growth of plants, forests and crops in the QTP [15,16], causing decreased productivity
and environmental degradation [17–19]. Rainstorms, as well as relevant geological hazards,
pose a serious threat to human life, transportation and infrastructure, leading to serious
casualties and traffic disruptions. Hailstorms are common disastrous hazards in the plateau
and cause serious damages to buildings and crops [20]. Although the occurrence frequency
of hailstorms decreases in the QTP [21,22], the overall intensity and economic losses are
still increasing remarkably [23–25].

Previous studies indicate that single hazard assessment tends to underestimate the
actual hazard intensity [26], which confirms the necessity and significance for multi-hazard
risk assessment. In order to quantify the combined effects of the compound meteorological
hazards in both space and time, a range of assessment methods have been developed, such
as Bayesian networks and information diffusion theory [27,28], as well as some numerical
and statistical analysis methods [29]. It should be noted that the standing studies about
natural hazards over the QTP mainly focus on the mechanisms behind an individual
hazard [30–33]. Therefore, an integrated assessment of multiple hazards and their potential
risks are of great significance for disaster reduction and climate risk management in the
coming decades.

In this study, we focus on the spatial patterns of major meteorological hazards in the
QTP, i.e., droughts, rainstorms, snowstorms and hailstorms. By identifying the changes in
the spatial extent of hazard zones, we analyze the historical evolution of the population
exposure, and further estimate the potential trends of climate risks across the QTP. We
attempt to address the following three scientific issues: (1) What is the spatial pattern of
the major meteorological hazards across the QTP? (2) How do we evaluate the integrated
intensity and socioeconomic impacts of meteorological hazards? (3) Where will be the
hotspots of climate risks in the QTP?

2. Data and Methods

2.1. The Study Region

The QTP is known as the “third pole” and the highest plateau of the world, spanning
31 longitudes and 13 latitudes with a total area of 2.6 million km2. The QTP could be
subdivided into six geomorphic regions, i.e., the Northern Tibet Plateau, the South Tibet
Valley, the Qaidam Basin, the Qilian Mountains, the Qinghai Plateau and the West Sichuan
Basin, covering the entire Tibet province and parts of Qinghai, Xinjiang, Gansu, Sichuan
and Yunnan Provinces (Figure 1). The population of the QTP is mainly distributed in the
South Tibet Valley, the West Sichuan Plateau, and Xining city as well as its surrounding
areas. With an average elevation of more than 4000 m, the QTP has a low population density
and an undeveloped regional economy. Human activities are mainly in the valley areas and
are highly sensitive to meteorological hazards. In the backdrop of climate warming, the
frequency and intensity of meteorological hazards are rising over the QTP, posing serious
threats to local people, primary industries and vulnerable infrastructures.

The historical disaster database covering the period from 2001 to 2019 is sourced from
the China Meteorological Administration. The dataset contains about 4000 disaster records
in the QTP at county level. These meteorological disasters have significant negative impacts
on human well-being, causing a total of 36.8 million victims and direct economic losses
of RMB 36.1 billion yuan. Droughts cause the largest affected population with an annual
average of 783,000 people, accounting for 40.5% of the total victims. The population affected
by hailstorms, rainstorms and snowstorms accounts for 21.2%, 19.4% and 18.9% of the
total, respectively. In terms of direct economic losses, rainstorms cause the largest number,
accounting for 38.7% of the total. The economic losses caused by droughts, snowstorms
and hailstorms account for 29.4%, 16.2% and 15.7% of the total, respectively.
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Figure 1. Topographic characteristics and meteorological station distribution in the QTP.

2.2. Data

The data applied in the research include meteorological observation data, geographic
information data, meteorological disaster records and socioeconomic data. Meteorological
data include daily temperature, precipitation, weather phenomena, snow depth, wind
speed, and evaporation at 246 meteorological stations in QTP, covering the period from
2001–2019. The meteorological data are sourced from the China Meteorological Adminis-
tration (CMA), available online: http://data.cma.cn/ (accessed on 21 August 2021).

Geographic information data of the QTP is sourced from the National Geomatics
Center of China (NGCC). The dataset contains the basic geographic information of the QTP,
including administrative boundaries, hydrographic network, land cover, and topographic
data. Available online: http://www.ngcc.cn/ (accessed on 21 August 2021).

The meteorological disaster records are extracted from the China Meteorological Disas-
ter Yearbook from 2001 to 2019 released by CMA, containing the records of droughts, rain-
storms and floods, typhoon, hailstorms, chilling damage and their socioeconomic impacts.

The gridded datasets of population and GDP of China are released by the Institute of
Geographic Sciences and Natural Resources Research, CAS, with a spatial resolution of
1 km. Available online: https://www.resdc.cn/ (accessed on 21 August 2021).

2.3. Methods
2.3.1. Indicator System of Hazard Assessments

Hazard assessments refer to a comprehensive analysis of the natural characteristics
such as intensity, frequency and duration of each hazard. The evaluation steps include indi-
cator system development, data normalization, weight coefficient determination, integrated
assessment modeling, and geographic mapping.

An indicator system for hazard assessment in the QTP is designed based on the annual
expected value of various indices (Table 1). The classification criteria of specific indicators
are listed in Table 1. The assessment of meteorological droughts selects drought days,
the longest duration of drought, and the accumulated intensity as indices. Rainstorm
assessment selects rainstorm days (daily rainfall >20 mm), accumulated rainfall, and
maximum 24-h rainfall as indices. Snowstorm assessment selects accumulated snowfall,
snow days, and maximum snow depth as indices. Hailstorm assessment selects gale days
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and hail days as indices. The hazard levels are designated by referring to the spatial
average and standard deviation of each index in QTP.

Table 1. The indicator system of meteorological hazards assessment over the QTP.

Hazard Index
Hazard Level

High Moderate Low Very Low

Drought

Drought Days (d) ≥60 50~60 40~50 <40
Maximum Consecutive

Drought Days (d) ≥35 30~35 25~30 <25

Accumulated Intensity of
Drought ≥70 60~70 50~60 <50

Rainstorm
Rainstorm Days (d) ≥4 2~4 1~2 <1

Accumulated Rainfall (mm) ≥100 75~100 50~75 <50
Maximum 24-h Rainfall (mm) ≥35 25~35 15~25 <15

Snowstorm
Accumulated Snowfall (mm) ≥120 70~120 20~70 <20

Snow Cover Days (d) ≥30 20~30 10~20 <10
Maximum Snow Depth (cm) ≥8 5~8 2~5 <2

Hailstorm
Gale Days (d) ≥80 40~80 10~40 <10
Hail Days (d) ≥8 4~8 1~4 <1

For meteorological droughts, we apply a sliding 30-day SPI to identify drought days
as well as its intensity in the growing season, as detailed in Section 2.3.2. For rainstorms,
these indices are commonly applied in the daily operations of hazard monitoring. The
reason why the threshold of a rainstorm day is defined as 20 mm is that daily precipitation
of 20 mm could trigger geological hazards in mountain areas, according to the historical
disaster records of the QTP. For snowstorms, the indices selected are major contributors to
socioeconomic impacts, in which the snow cover days and maximum snow depth seriously
threaten local transportation, livestock and infrastructures. For hailstorms, due to the lack
of hailstone and lightning observation, the number of gale days and hail days are selected
as two simple indicators to identify hazard zones.

2.3.2. Calculation of Meteorological Droughts

The precipitation in the QTP is subject to significant spatial heterogeneity. The annual
precipitation in the northern part of the Kunlun Mountains is less than 100 mm, while in the
Hengduan Mountains region is more than 800 mm. According to the climatic characteristics
of the QTP, the region with annual precipitation less than 200 mm is defined as permanent
arid region, which lacks the possibility of meteorological droughts. Additionally, the
QTP has distinct dry and wet seasons, and the growing period of crops, forage grass
and vegetation are concentrated in the rainy season. Hence, the hazard assessment of
meteorological droughts mainly focuses on the period from April to October, and the
annual expected drought days and other indices specifically refer to the rainy season.

The daily drought index is defined as the standardized precipitation index (SPI) of
the last 30 days, which is calculated based on a sliding 30-day window of historical daily
precipitation data. Daily SPI ≤−0.5 has been set as the threshold of meteorological drought,
and the indices of drought days, the longest consecutive drought days and accumulated
drought intensity are calculated accordingly.
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2.3.3. Calculation of Single Hazard Index

An assessment model of hazard index is designed based on the deviation of each
index, so as to evaluate the intensity level of a meteorological hazard. The formula is
shown in Equation (1). ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A =
n
∑

i=1
Xi

σ =

√
1
n

n
∑

j=1

(
Aj − A)

2

H = 5 + (A−A)
σ

(1)

wherein, A stands for hazard value, Xi is the normalized value of each index. σ is the
standard deviation of A. H stands for hazard index whose initial value is set as 5, and take
the multiple of standard deviation (STD) as steps. For instance, H = 6.0 denotes 1 STD
above the mean, while H = 4.5 denotes 0.5 STD less than the mean.

A hazard index above 6.0 is set to represent a high hazard level, a hazard index between
5.0 to 6 represents a moderate hazard level, a hazard index between 4.0 to 5.0 represents a
low hazard level, and a hazard index below 4.0 represents a very low hazard level. In this
way, the hazard level of rainstorms, droughts, snowstorms and hailstorms across the QTP
are evaluated, respectively.

2.3.4. Calculation of Multi-Hazard Index

The historical affected population and economic losses of meteorological hazards are
applied to determine the weight coefficients, then a multi-hazard index is developed on
each hazard index and its weight coefficients, shown in Equation (2). The index indicates
the integrated hazard level of four major meteorological hazards across the QTP. IH denotes
multi-hazard index, HD denotes drought hazard index, HR denotes rainstorm hazard index,
HS denotes snowstorm hazard index, and HW denotes hailstorm hazard index. The weight
coefficients of a, b, c and d are determined by the percentage of total affected population
and economic losses of each hazard in the QTP from 2001 to 2019 (shown in Section 2.1).
For example, the total population affected by droughts accounts for 40.5% of all hazards,
while the total economic losses accounts for 29.4% of all hazards. Then the average value
of 35% is taken as the weight coefficient of drought hazard index. According to this rule,
the weight coefficients of drought, rainstorm, snowstorm and hailstorm are 0.35, 0.29, 0.18
and 0.18, respectively.

IH = a × HD + b × HR + c × HS + d × HW (2)

3. Results

3.1. Meteorological Droughts

Historical observations suggest that the drought hazard zones are mainly distributed
in the South Tibet Valley, the Nianqing-Tanggula Mountains, the Hengduan Mountains,
Western Sichuan Plateau and Songpan Plateau, among which the prefectures of Xigaze,
Nyingchi, Diqing, Nujiang and Aba are expected to have drought days >60 d per year
(Figure 2a). In terms of the longest consecutive drought days, the observations indicate
consecutive drought days >30 d in the South Tibet Valley, Hengduan Mountain Area and
Songpan Plateau at annual expected (Figure 2b). The accumulated drought intensity is the
sum of the absolute value of the daily SPI index during drought days, and represents the
total intensity of meteorological droughts. The areas with high drought intensity mainly
distribute in the Nianqing-Tanggula Mountains, the Hengduan Mountains and SongPan
Plateau (Figure 2c). Drought hazard index (DHI) is an integrated index based on the above
three indices. The areas with DHI ≥ 6 (1 STD above the average) are identified as hazard
zones, and totally account for 17.9% of the QTP and specifically include western Xigaze,
eastern Nyingchi, southern Qamdo, Diqing, Nujiang and Aba (Figure 2d).
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Figure 2. The spatial patterns of meteorological drought hazard across the QTP. (a) annual drought days; (b) the longest
consecutive drought days; (c) annual accumulated drought intensity; (d) drought hazard index.

3.2. Rainstorms

The criterion for rainstorm events in China is generally defined by the China Mete-
orological Administration as a daily precipitation amount >50 mm. Due to the special
geographic and climatic conditions in the QTP, a rainstorm with daily precipitation >20 mm
could trigger natural disasters like flash floods and debris flows. Hence, a daily precipita-
tion amount >20 mm is taken as the threshold to identify rainstorms in the QTP. A hazard
assessment system of rainstorms in the QTP contains three indices, i.e., rainstorm days, ac-
cumulated rainstorm rainfall, and maximum daily precipitation, at annual expected value.
Historical observations indicate that the spatial pattern of rainstorm days and accumulated
rainstorm rainfall show a gradual decrease from southeastern to northwestern QTP. The
Nyenchen-Tanglha Mountains and Western Sichuan Plateau are observed with rainstorm
days >4 d and an accumulated rainstorm rainfall >100 mm at annual expected (Figure 3a,b).
The spatial average of annual maximum daily precipitation in the QTP is 25 mm, and
the areas above the average include the north Tibet plateau, the Gangdise Mountains, the
South Tibet Valley, the Nyenchen-Tanglha Mountains, Hengduan mountains and western
Sichuan plateau (Figure 3c). Therein, the maximum daily precipitation in the South Tibet
Valley and the Hengduan Mountains exceeds 35 mm. Hazard assessment indicates that
hazard zones (HI > 6) cover the prefectures of western Xigaze, Lhasa, Nyingchi, Nujiang,
Diqing, Ganzi, Aba, Gannan, Huangnan and Xining (Figure 3d), totally accounting for
20.1% of the QTP.

3.3. Snowstorms

The QTP is an important livestock husbandry base in China, and also the largest region
with snow cover in China. Snowstorms usually occur in autumn and winter, which are the
most widespread and disastrous hazards in pastoral areas of the QTP and pose a serious
threat to the production of local herders. The snowstorm hazard index is developed with
three indices of accumulated snowfall, snow cover days, and maximum snow depth, at the
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annual expected value. The average of annual accumulated snowfall in the QTP is 67.3 mm,
and the areas with heavy snowfall are mainly distributed in the Himalayas, Tanggula
Mountains and Qinghai Plateau (Figure 4a). Therein, annual snowfall >120 mm is observed
in the central Xigaze, southern Shannan, eastern Naqu, western Haixi, Yushu, Guoluo and
southern Huangnan. The spatial average of annual snow cover days is 18.4 d in the QTP,
and reaches more than 30 d in the Himalayas and Qinghai Plateau regions (Figure 4b).
The spatial average of maximum snow depth in QTP is 6.5 mm, therein the snow depth
reaches 6–10 cm in Bayankela and the Nyenchen-Tanglha Mountains, and exceeds 10 cm in
the Himalayas (Figure 4c). The hazard assessment of snowstorms indicates that hazard
zone (HI > 6) cover the prefectures of southern Ali, western Xigaze, southern Shannan,
eastern Naqu, Yushu, Guoluo, southern Huangshan and northern Aba, totally accounting
for 13.5% of the QTP (Figure 4d).

Figure 3. The spatial patterns of rainstorm hazard across the QTP. (a) annual rainstorm days; (b) annual accumulated
rainstorm precipitation; (c) maximum daily precipitation; (d) rainstorm hazard index.

3.4. Hailstorms

Hailstorm refers to mesoscale or microscale catastrophic weather caused by the strong
atmospheric convection, which mostly occurs in the mid-latitude mountainous areas
and fragile ecological environment. Under the special thermal conditions induced by
plateau topography, hailstorms become common hazards on the QTP in summer. The
hailstorm hazard index is composed of annual expected gale days and annual expected
hail days. Historical observations indicate that the average of annual gale days over the
QTP is 43.1 d, and the areas above average are concentrated in the north Tibetan Plateau,
Tanggula Mountains, Qinghai Plateau and the Gangdese Mountains. Wherein, the number
of gale days in the prefectures of central Xigaze, Naqu, Haixi, and western Yushu exceeds
80 d (Figure 5a). Annual expected hail days in the QTP is 4.1 d at spatial average and
show similar distribution as gale days. The prefectures of eastern Naqu, western Hernia,
western Yushu and southern Guoluo have annual hail days > 8 d, as expected (Figure 5b).
According to hailstorm hazard assessment, the hazard zones (HI > 6) account for 14.4% and

501



Sustainability 2021, 13, 10402

are concentrated in the central part of the QTP, including the prefectures of Naqu, Haixi
and western Yushu (Figure 5c).

Figure 4. The spatial patterns of snowstorm hazard across the QTP. (a) annual accumulated snowfall; (b) annual snow cover
days; (c) maximum snow depth; (d) snowstorm hazard index.

 

Figure 5. The spatial patterns of hailstorm hazard across the QTP. (a) annual gale days; (b) annual hail days; (c) hailstorm
hazard index.

502



Sustainability 2021, 13, 10402

3.5. Multi-Hazard Assessments and Mapping

A multi-hazard index is developed to integrate the intensity of multiple meteorologi-
cal hazards in the QTP, and the spatial pattern of multi-hazard levels is shown in Figure 6a,
namely very low, low, moderate and high levels. The areas with high hazard level (HI > 6)
account for 19.2% of the QTP and cover the prefectures of central Xigaze, southern Shan-
nan, eastern Naqu, Nyingchi, Diqing, Nujiang, Liangshan, northwestern Aba, southern
Huangnan, central Goluo, northern Ganzi and eastern Yushu (Figure 6a). Wherein, central
Xigaze and southern Huangnan are severely affected by compound hazards of snowstorms,
droughts and rainstorms. The Hengduan Mountains and Aba are affected by droughts
and rainstorms, eastern Naqu is affected by snowstorms and hailstorms, central Guoluo
and western Yushu are affected by snowstorms. All the areas mentioned above have been
affected by high-level hazards in the past decades. The multi-hazard intensities in the
northern and northwestern parts of QTP, including the Kunlun Mountains, Qaidam Basin,
western Tibet Plateau and Ngari Plateau are relatively low (HI < 5). Most of these places
belong to the classification of permanent arid region with no possibility of meteorological
droughts, and have relatively low frequency of rainstorms, snowstorms and hailstorms
as well.

Figure 6. Mapping of (a) multi-hazard index and (b) meteorological hazards regionalization in the QTP.

Based on the identified hazard zones (HI > 6) of droughts, rainstorms, snowstorms and
hailstorms in the QTP, the meteorological hazards regionalization in the QTP is mapped
(Figure 6b). Drought hazard zones tend to overlay those of rainstorms due to the fact
that rainstorm hazard zone is dominated by remarkable precipitation fluctuations and,
hence, frequent occurrence of meteorological droughts. Three snowstorm hazard zones are
identified in the map: the Himalayas Mountains, the Nyenchen-Tanglha Mountains and
Qinghai Plateau. The snowfall amount, snow cover days and maximum snow depth in the
hazard zones are significantly higher than the rest parts of the QTP. Hailstorm hazard zones
distribute in the eastern Qiangtang Plateau and the Tanglha Mountains, and characterized
by notable frequencies of gale and hail in the QTP.

4. Evolution of Population Exposure to Meteorological Hazards

Recent decades witness accelerated changes in global climate, and the spatial extent
of meteorological hazards in the QTP also shows interannual variations. According to the
indicator system for meteorological hazards assessment (Table 1), the hazard zones are
identified when the grids in them meet the high-level criterion of all indices for a certain
hazard. In this way, the spatial evolution of hazard zones for the period of 2001–2019 is
analyzed. The population exposure to meteorological hazards is further adopted to reveal
the historical changes in potential population risks of the QTP.

The maximum extent of drought hazard zones reaches 1.24 million km2 in 2015,
approximately half of the QTP, and the exposed population is estimated at 10.9 million
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people (Figure 7). The minimum extent of drought hazard zones is 0.23 million km2 in
2018, accounting for 8.9% of the QTP, with 1.3 million people as the exposed population.
Comparing the 2010s with the 2000s, it is found that the hazard zones expand by 5.4%,
whereas the exposed population fell by 10%. The main reason is that the ascending trend of
precipitation in the QTP weakens the frequency and intensity of meteorological droughts,
especially in the densely populated areas of Western Sichuan Plateau, Songpan Plateau
and the Bayan Har Mountains, and hence reduces the total affected population (Figure 8a).
However, it is notable that the hazard zones are expanding in the South Tibet Valley and
the Hengduan Mountains, posing a great threat to local agricultural and livestock industry.
Hence, it is necessary to further improve the drought risk prevention in these areas.

Figure 7. Temporal evolution in the spatial extent of hazard zones and exposed population of
droughts, rainstorms, snowstorms and hailstorms for 2001–2019 in the QTP.

 

Figure 8. Spatial differences in (a) droughts hazard index, (b) rainstorms hazard index, (c) snow-
storms hazard index, and (d) hailstorms hazard index, between 2010s and 2000s as percentages in
the QTP.
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In terms of rainstorms, the maximum extent of hazard zones reaches 0.81 million km2

in 2003, whereas the largest exposed population is 8.5 million people in 2013 (Figure 7).
The minimum hazard zones of rainstorms appears in 2006, at 0.26 million km2, and the
exposed population is about 2.0 million people. Comparing the second half to the first
half period, we find that the hazard zones expands by 28.4% in 2010s, and the exposed
population also increases by 13.1%. The spatial pattern indicates a notable increment of
the rainstorms hazard index in the Qilian Mountains, the western Sichuan plateau and the
northern Shannan (Figure 8b), resulting in the expansion of hazard zones. A particular
concern is that rainstorm risk in Xining and Lhasa, two densely populated cities in the
QTP, has increased significantly due to the combined effect of aggravated hazard and
elevated exposure.

Snowstorms have always been one of the dominant meteorological hazards in the
QTP. The maximum extent of snowstorm hazard zones reaches 0.83 million km2 in 2013,
whereas the maximum exposed population is nominated at 3.2 million people in 2008
(Figure 7). The minimum extent of hazard zones appears in 2016 at 0.20 million km2, and
the minimum exposed population is 0.8 million people in 2014. Comparing the second
half to the first half period, we find that the hazard intensity reduces by 14.5% in 2010s,
and the exposed population decreases by 26.0% as well. The spatial pattern indicates
larger areas with intensified hazard in the QTP but are mainly distributed in low-hazard
areas (Figure 8c). Moreover, two of the three snowstorm hazard zones, i.e., the Tanglha
Mountains and Qinghai Plateau, decrease significantly in snowstorm hazard, resulting
in an overall declining trend in exposed population. Nevertheless, from 2016 to 2019,
the hazard zones of snowstorms are constantly expanding, suggesting the possibility of
extreme events within the general trend. It is still necessary to strengthen the ability of
monitoring and forecasting snow cover in pasturing areas, and improve the measures of
forage storage and management, so as to reduce the impact of extreme snowstorms on
livestock production in the future.

The maximum extent of hailstorm hazard zones reaches 0.81 million km2 in 2001,
whereas the maximum exposed population is nominated as 1.3 million people in 2002
(Figure 7). The minimum extent of hazard zones appears in 2019, at 0.34 million km2,
and the exposed population is about 0.4 million people. Comparing the second half
to the first half period, we find that the hazard zones reduces by 26.1% in 2010s, and
the exposed population decreases by 27.3% as well. The spatial pattern indicates that
hailstorm hazard decreases in the Nyenchen-Tanglha Mountains, the Hengduan Mountains,
western Sichuan plateau and the Bayan Har Mountains, whereas increases in Qaidam Basin,
western Qinghai plateau and the Gangdise Mountains (Figure 8d). As for the climatological
hazard zones of hailstorms, the hazard intensifies in western Qinghai plateau, whereas it
weakens in the other parts, thus the exposed population of hailstorms in the QTP shows
a downward trend.

5. Discussion and Conclusions

5.1. Discussion

Meteorological hazard research is highly dependent on long-term historical observa-
tions. At present, studies on meteorological hazards in the QTP are very limited due to the
lack of observation data. Herein, we collect data from 246 meteorological stations in the
QTP and attempt to carry out a multi-hazard assessment. It should be noted that the spatial
distribution of meteorological stations is uneven, especially the limitation of observations
in the northern Tibetan Plateau and the Kunlun Mountains increases uncertainty in hazard
analysis. Future studies could study the applicability of remote sensing datasets in the
QTP to improve the accuracy of hazard assessments.

The period from 2001 to 2019 is selected to analyze climate hazards over the QTP
under the following two considerations. Firstly, climate variables such as temperature,
precipitation and wind speed in the QTP are changing dramatically in recent decades due to
accelerated global warming, thus the observations in the recent two decades are more likely
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to describe the current situation. Secondly, the weight coefficients in the assessment model
are determined by historical disaster records. With the rapid growth of social wealth, the
exposure decades ago is definitely different from the present, leading to low comparability
of disaster losses over a long-time series. Therefore, the period of 2001–2019 is selected as
a compromise between the robustness of climate conditions and the comparability in the
disaster losses.

Current warning signals for meteorological hazard implemented by the China Meteo-
rological Administration specifies the graded thresholds of multiple kinds of hazardous
weather, which is applicable to the whole country. However, due to the special geographi-
cal conditions in the QTP, these thresholds could not be directly applied to the QTP. Hence,
the relative thresholds are determined by standard deviation method in order to identify
hazard zones in which the hazard intensity is at least 1 STD higher than the spatial mean
of the QTP.

In comparison with previous studies on meteorological hazards, the hazard zone
of droughts shows a similar pattern with existing works in the Tibet region [19,34]. Per-
manent arid zone is proposed for the first time in this paper to present the necessary
conditions of meteorological droughts, which could provide reference for future research.
The identification of rainstorm hazard zone has made certain progress in spatial resolution
compared with previous studies [6]. We have also tried to use precipitation remote sensing
datasets, but found many errors in plateau areas. This problem is expected to be solved
as technology improves in the future. Studies on the snowfall over the QTP have been
investigated by scholars in recent years [35]. On their basis, we further identify three
hazard zones of snowstorms in the QTP, and reveal a downward trend in hazard intensity.
As for hailstorms, there are few works that could be referenced in the QTP. However, a
declining trend in hail days is also detected in another work by Zou et al. [23], thus we
tend to believe that hailstorm risks would be moderated in a warming climate.

Monitoring changes in meteorological hazards and their effect on population in the
QTP is exploratory work; it is an attempt aimed to reveal the evolutionary trends of socioe-
conomic exposure. Future studies may adopt climate models to simulate hazard intensities
under radiative-forcing scenarios, and the population exposure could be estimated under
socioeconomic scenarios. In this way, we could quantitatively assess the population risks of
meteorological hazards in the future, and establish a solid scientific basis for meteorological
risk management of the QTP.

5.2. Conclusions

Since the 21st century, the hazard intensity of meteorological droughts has been
increasing in the South Tibet Valley and the Hengduan Mountains, leading to the expansion
of drought hazard zone in the QTP. It is suggested that meteorological monitoring and
early warning systems should be further improved in these areas, meanwhile the drought
prevention capacity in grain producing areas and pastoral areas should be strengthened.

Rainstorm hazard zone has expanded by 28.4% and the exposed population has
increased by 13.1% in the last 20 years. Intensified rainstorm hazard is detectable in the
densely populated prefectures of Xining and Lhasa; hence, the technical standard of urban
infrastructures should be improved to address climate risks. Rainstorm-induced geological
hazards such as landslides, collapses and debris flows should also be taken precautions in
mountain areas.

Due to the reduction in snowstorm intensity in the Tanglha Mountains and Qinghai
Plateau, snowstorm hazard zone has reduced by 14.5% in the last two decades but the area
fluctuates greatly on an inter-annual scale. Therefore, it is still necessary to improve the
management of livestock industry in snow seasons of the QTP.

Hailstorm hazard zone distributes in the central part of the QTP, including the pre-
fectures of Nagqu, Haixi and the western part of Yushu. Hailstorms show an overall
descending trend since the 21st century but ascend in the western part of Qinghai Plateau.
Improvements in weather forecast capacity is the key to mitigate losses of hailstorms.
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Based on an integrated assessment model, we quantified the integrated intensity
of multiple meteorological hazards, and further developed a multi-hazard regionaliza-
tion map that could be referenced for territorial planning and disaster risk management
in the QTP.
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Abstract: Slope geohazards, which cause significant social, economic and environmental losses, have
been increasing worldwide over the last few decades. Climate change-induced higher temperatures
and shifted precipitation patterns enhance the slope geohazard risks. This study traced the spatial
transference of slope geohazards in the Qinghai-Tibet Plateau (QTP) and investigated the potential
climatic factors. The results show that 93% of slope geohazards occurred in seasonally frozen regions,
2.6% of which were located in permafrost regions, with an average altitude of 3818 m. The slope
geohazards are mainly concentrated at 1493–1988 m. Over time, the altitude of the slope geohazards
was gradually increased, and the mean altitude tended to spread from 1984 m to 2562 m by 2009,
while the slope gradient varied only slightly. The number of slope geohazards increased with
time and was most obvious in spring, especially in the areas above an altitude of 3000 m. The
increase in temperature and precipitation in spring may be an important reason for this phenomenon,
because the results suggest that the rate of air warming and precipitation at geohazard sites increased
gradually. Based on the observation of the spatial location, altitude and temperature growth rate of
slope geohazards, it is noted that new geohazard clusters (NGCs) appear in the study area, and there
is still a possibility of migration under the future climate conditions. Based on future climate forecast
data, we estimate that the low-, moderate- and high-sensitivity areas of the QTP will be mainly south
of 30◦ N in 2030, will extend to the south of 33◦ N in 2060 and will continue to expand to the south of
35◦ N in 2099; we also estimate that the proportion of high-sensitivity areas will increase from 10.93%
in 2030 to 14.17% in 2060 and 17.48% in 2099.

Keywords: Qinghai-Tibet Plateau; climate change; slope geohazards; new geohazard clusters

1. Introduction

Slope geohazards are widespread worldwide [1], and cause significant social, eco-
nomic and environmental losses [2,3]. Slope geohazards in high-altitude areas have become
more frequent and are closely related to global climate change [4–6], which has attracted
increasing attention from researchers. The global climate has warmed significantly in
recent decades, mainly at high altitudes and latitudes [7]. The shrinkage of glaciers and the
degradation of permafrost are expected to significantly worsen the geotechnical and me-
chanical properties of rocks, debris and soils in high mountain areas [8,9], e.g., by changing
active bed thickness and fracture conditions by reducing shear strength to affect slope or
wall-rock stability [10]. Permafrost and general cryospheric degradation may have played
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a role in increasing slope failure, thereby resulting in slope geohazards at high elevations
since the beginning of the 21st century [11].

The spatial and temporal distribution patterns of most landslides are affected by
rainfall events and earthquakes [12]. The NASA research team [13] has suggested that
warmer temperatures will cause more rain in the High Mountain Asia region of China,
Tibet and Nepal, which could lead to increased landslide activity along the China–Nepal
border. Heavy rainfall causes the increase in pore water pressure and the reduction in
cohesion and friction coefficients [14,15]. The cumulative effect of the freeze–thaw cycles
weaken the rock and propagate fissures. The current changes in permafrost conditions
caused by atmospheric warming also affect the stability of steep rock surfaces in high
mountain areas [9]. Climate change may increase the frequency of slope geohazards [16,17]
and alter the spatial extent of slope geohazards [18].

As the third pole in the world, the Qinghai-Tibet Plateau (QTP) has the largest
cryosphere system at low- and mid-latitudes, and is a sensitive area for climate change [19,20].
The QTP is prone to slope geohazards due to strong tectonic activity, complex geomorphol-
ogy and climate change [21]. Additionally, in the QTP, the frequency and scale of slope
geohazards have increased in recent years [22]. With the continuous warming of the climate,
the thaw slump activity in the Qilian Mountain area is increasing, and the growth rate of
thaw slump activity is accelerating [23]. In El Niño–Niña years, the frequency of debris
flows in the mountainous areas of southeastern Tibet and the Hengduan Mountains has an
obvious increasing trend due to increasing heavy rain events [24]. The accelerated melting
of glaciers on the QTP and loose moraine deposits may form mudslides and dammed
lakes [19,25]. Despite a good understanding of the spatial relationships between slope
geohazards and their causative factors on the QTP [23,24], research on the distribution and
evolution of the overall slope geohazards in the plateau in time series is insufficient. More
attention should be given to the future evolution of slope geohazards in the QTP.

In this study, we collected data on slope geohazards from 1905 to 2015 in the study area,
coupled with meteorological data and topographic data to assess the variation in spatial
and temporal slope geohazards. The primary objectives of this study are to (1) obtain slope
geohazard distribution patterns and location shifts, (2) identify factors affecting changes
in slope geohazards over the study area and (3) predict the future occurrence of slope
geohazards in the study area under global climate change. The contribution of this study
is the proposed shift in slope geohazards in the study area and the distribution of slope
geohazard risks under future climate conditions.

2. Study Area

The QTP is the youngest, highest and largest plateau in the world with an average
height of over 4000 m and an area of approximately 2.57 × 106 km2. It stretches from
the Pamirs to the Hengduan Mountains and from south of the Himalayas to north of the
Kunlun-Qilian Mountains [26]. In this study, the study area included not only the main
body of the Tibet Plateau, but also the surrounding areas bordering on the Tibet Plateau,
namely western Xinjiang, central and southern Gansu, central Sichuan and northern and
central Yunnan (Figure 1a). The study area ranges in slope from 0 to 54◦ (Figure 1a). The
land cover of the study area mainly consists of grassland, bare land, forest, cultivated
land and permanent snow and ice (Figure 1c). The distribution of permafrost in the QTP
is shown in Figure S1, and the areas of permafrost and seasonally frozen regions are
1.06 × 106 km2 and 1.46 × 106 km2, respectively [27].

The average annual air temperature of the study area ranges from −21.23 ◦C to
24.56 ◦C, and increases from northwest to southeast (Figure 1d). The spatial distribution of
soil temperature is similar to that of the air temperature, with average annual temperatures
within the range of −11.72 to 23.93 ◦C (Figure 1e). From 1980 to 2015, the annual average
air temperature in the study area presented an increasing trend and the rate of temperature
rise was 0.48 ◦C/decade, which was more than twice the global temperature rise in the
same period [28]. The soil temperature increased at a rate of 0.067 ◦C/decade (Figure S2).

510



Sustainability 2021, 13, 10488

 

Figure 1. Overview of the study area. (a) Slope gradient; (b) elevation; (c) land use classification; (d) mean annual air
temperature; (e) mean annual soil temperature; (f) mean annual precipitation.

The distribution of annual precipitation showed a distinct ladder, ranging from
20–2161 mm and decreasing from the southeast to the northwest (Figure 1f). Precipitation
has increased in most regions during past decades in the central, northern and western
parts of the study area, while it decreased in the eastern, southern and southeastern parts of
the study area. The rate of increase in precipitation for the whole QTP was 32 mm/decade
from 1980 to 2015 (Figure S2).

Slope geohazards in the study area are frequent and diverse. In general, slope geo-
hazards occur frequently at the eastern edge, northeastern part and southern mountains,
and the prevalence at the eastern edge is higher than that in the western part [29–31].
Since the 1930s, 27 outbursts have occurred in 18 glacial moraine lakes in Tibet due to
ice avalanches and landslides, causing heavy casualties and destroying a large number
of villages, farmland and infrastructure [32]. The two Baige landslides in October and
November 2018 caused direct economic losses of more than CNY 10 billion [33]. Global
warming has caused an increase in slope geohazards, and the severity makes the study of
geohazards in the QTP and its surrounding areas more important.

3. Data and Methods

3.1. Data

The slope geohazards were compiled from the Centre for Research on the Epidemi-
ology of Disasters (CRED) International Disaster Database (EM-DAT; http://www.em-
dat.net, accessed on 13 June 2020)), the Durham Fatal Landslide Database (DFLD;
http://www.landslidecentre.org/database.htm, accessed on 13 June 2020) and some pre-
vious publications [34–39]. We obtained the detailed administrative zoning locations of
the geohazard sites and located them using Google Earth. The dataset includes 897 slope
geohazards, including landslides, debris flows and rockfalls and does not include events
directly caused by earthquakes.

A 90 × 90 m digital elevation model (DEM) from the Google Earth engine was
collected for use as topographic information. The 90 × 90 m slope data were obtained
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through DEM conversion. A low DEM resolution will reduce the accuracy of the location
attributes of slope geohazards and lead to a small distinction between the altitude and
slope of geohazards. When studying slope failure over a long period of time, perfect DEM
resolution may not exist, because there is no resolution that can display the scale of all
different slope failures distributed across different times and locations [40]. Land cover
data consist of GlobeLand30’s 30 × 30 m resolution dataset obtained from the National
Geomatics Center of China (NGCC; http://www.ngcc.cn/ngcc/, accessed on20 June 2020).
The GlobeLand dataset 30 includes 10 type groups and truly reflects the actual land cover
of the study area.

Monthly precipitation and air temperature data (0.1◦ × 0.1◦) for the period 1980
to 2015 were obtained from the China Meteorological Forcing Dataset (CMFD, https:
//data.tpdc.ac.cn/zh-hans/, accessed on 20 June 2020) and developed by the Cold and
Arid Regions Science Data Center (CARSDC) of the Chinese Academy of Science. Daily
soil temperature data (0.75◦ × 0.75◦) were obtained from ERA-Interim data provided by
the European Centre for Medium-Range Weather Forecasts (ECMWF, https://www.ecmwf.
int/en/forecasts/datasets, accessed on 25 June 2020). The soil data were divided into four
layers: 0–7 cm, 7–28 cm, 28–100 cm and 100–255 cm. The soil temperature in the study is
the average temperature of the four layers of soil.

All the model outputs used to assess the risk of slope geohazards in this study were
sourced from CMIP5 (i.e., the fifth phase of the Coupled Model Mutual Comparison
Project; https://esgf-node.llnl.gov/search/cmip5/, accessed on 20 July 2020), which is
the most widely used and highly coordinated project in the international climate model
project [41,42]. Eight climate models were selected under the highest emission scenarios
(representative concentration pathway 8.5, RCP 8.5) from the CMIP5 data archive (Table S1).
For each model, monthly precipitation data, surface air temperature and soil temperature
of 2030, 2060 and 2099 were used for the study.

3.2. Methods
3.2.1. Analysis of Impact Factors

The linear trend [43] over the period 1980 to 2015 for the precipitation and the tem-
perature was calculated for the entire period and each season using the non-parametric
Mann-Kendall statistic.

Spatial distribution analysis was performed in a GIS environment through spatial
statistical analysis functions [44], as spatial analysis can be used to reveal the patterns
of slope geohazard spatial distribution. A grid with a resolution of 0.1◦ × 0.1◦ was
established in the study area and the area of the study area was calculated accordingly.
Slope geohazard coverage areas were defined as the sum of pixel grid areas with slope
geohazards identified. We interpolated the spatial meteorological and topographic data
with a resolution of 0.1◦ × 0.1◦ by using the bilinear interpolation method to generate
the spatial distribution of factors such as slope, altitude, rainfall and temperature. The
frequency of slope geohazard occurrence in different scopes of each factor was counted,
and the correlation between factors and slope geohazards was established.

To explore the distribution variation of slope geohazards with different factors, we
divided 36 years into 4 time periods (1980–1989, 1990–1999, 2000–2009, 2010–2015) and
compared slope geohazard-covered areas and occurrence seasons in different periods. The
correlation statistics of slope geohazards and factors were carried out in different periods.

3.2.2. Subsection

Considering the lag effect of climate on slope geohazards, the meteorological condi-
tions of the season when slope geohazards occur and the season before the slope geohazards
occur were analyzed. For example, for summer slope geohazards, the precipitation in
spring and summer in the region where the slope geohazards are located should be taken
into account; for spring slope geohazards, the precipitation in the preceding winter and
spring of the year of slope geohazards should be taken into account. The average precipi-
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tation values of June, July and August in the region of a certain summer geohazard were
taken as the summer precipitation of the geohazard site. The average precipitation value of
March, April and May in the location of the summer geohazards was taken as the spring
precipitation of the geohazard site. Then, the mean precipitation of each year’s summer
and spring geohazards was obtained, and the precipitation series of the time series were
established, to obtain the change trend of summer precipitation and spring precipitation
corresponding to the summer geohazards.

In the same way, the summer air temperature, soil temperature, spring air temperature
and soil temperature of the summer geohazards were obtained, and the spring precipita-
tion, air temperature, soil temperature and winter precipitation, air temperature and soil
temperature of the spring geohazards were obtained. Then, we obtained the trend of them
over the time series.

3.2.3. Geohazard Susceptibility Analysis

The random forest model is an integrated learning model based on a decision tree,
also known as a simple and efficient artificial intelligence algorithm. Beyond the previously
reported geohazard clusters (GCs) distributed on the eastern and southeastern margins
of the QTP, slope geohazards occurred above 3000 m in the interior of the QTP and were
defined as new geohazard clusters (NGCs). A total of 188 geohazards were collected from
the NGCs, and 188 non-geohazard sample points were randomly selected from the QTP,
which together constituted 376 total samples. Eighty percent of 376 sample points were
randomly selected as the training set of the random forest training calculation, and the
remaining 20% were selected as the validation dataset to verify the prediction rate of the
results. Altitude, slope and historical meteorological data were selected as the influencing
factors in the model. The number of decision trees was set as 500, and the number of
parallel simulations was set as 200. Altitude, slope and future meteorological data were
brought into the constructed model to obtain the distribution of geohazard susceptibility
in 2030, 2060 and 2099. The historical and future meteorological data all included soil
temperature in spring, precipitation and soil temperature in summer, and precipitation
and soil temperature in winter in 2030, 2060 and 2099.

4. Results

4.1. Disaster-Prone Regions of Slope Geohazards

A total of 897 slope geohazard-covered areas within approximately 73.80 × 103 km2

were recorded from 1905–2015. A total of 775 slope geohazards were recorded from
1980–2015 with an average frequency of approximately 21.5 times/year (Figure 2a). The
numbers and covered areas of slope geohazards have grown rapidly over the past few
decades. The slope of the cumulative frequency curve and the cumulative covered area
curve after 1980 was larger than that before 1980 and was partly derived from the incom-
plete records in early decades; furthermore, the frequency and covered area increment in
geohazards were the highest in 1998 and 1999 (Figure 2a, b). Notice here that the dataset
may slightly underestimate the occurrence of the incidents, for which there are two main
reasons:, i.e., the dataset inevitably fails to capture some smaller events, especially in
remote mountainous areas [45], and previous event records are not systematic, and data
are more difficult to obtain.
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Figure 2. Slope geohazard distributions in the study area, 1905-2015. (a) Slope geohazard frequency per year and cumulative
frequency (blue curve); (b) covered area of the slope geohazards per year and cumulative covered area (orange curve);
(c) frequency of slope geohazards at different altitudes; (d) spatial distribution of slope geohazards in the study area;
(e) frequency of slope geohazards in permafrost regions; (f) frequency of slope geohazards at different slopes.

Slope geohazards in the study area occurred in slope ranges of 0.36◦–53.70◦ (Figure 2f),
and their peak frequency was 13.82◦–36.25◦. The altitudinal gradient for slope geohazards
ranged from 381 m to 5673 m, with peak frequency existing at 1493–1988 m (Figure 2c).
The slope geohazard concentrated highly corresponded to the southeastern margins of the
QTP, which are the slope geohazard-prone areas with high rates of tectonic processes and
intense rainfall in mountain regions [46–49]. Meanwhile, the slope geohazard distribution
also appeared to favor areas of freezing and thawing activities [23,50]. Ninety-three percent
of slope geohazards occurred in seasonally frozen regions (Figure 2e), 2.6% were located
in permafrost regions and the average altitude was 3818 m. The observed increased
temperature and shifted precipitation distribution on the QTP are expected to impact
freezing and thawing activities and related slope geohazards.
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The occurrence of recorded slope geohazards throughout the year was unevenly
distributed, with more events occurring in summer (June–August), followed by autumn
(September–November) (Figure 3a). During the period between winter and spring
(December–May), the recorded slope geohazard occurrence was low. This pattern reflects
the dominant global trigger of slope geohazards, namely, the occurrence of precipitation
associated with the Northern Hemisphere summer monsoon [51]. The annual precipitation
of slope geohazards presented a bimodal distribution, with the first peak at 254–353 mm
and the other peak at 510–550 mm (Figure 3b). In the region with abundant precipitation,
slope geohazards are relatively more distributed in the region with annual precipitation of
790–930 mm (Figure 3b). The areas with precipitation in the months of slope geohazards
of 50–150 mm are most prone to slope geohazards (Figure S3a). The areas with mean
annual air temperatures and soil temperatures ranging from 3.82–9.74 ◦C (Figure 3c) and
4.67–9.09 ◦C (Figure 3d) were found to be the most prone to slope geohazards. Over-
all, slope geohazards, in accordance with these meteorological conditions, were mainly
distributed at the eastern edge and southeast of the study area.

 

Figure 3. The temporal and meteorological characteristics of slope geohazard distributions in the
study area. (a) Monthly frequency of slope geohazards; (b) annual precipitation at slope geohazard
sites; (c) average annual air temperature at slope geohazard sites; (d) average annual soil temperature
at slope geohazard sites.

4.2. The Temporal Evolution of Slope Geohazards

We further analyzed the distribution characteristics of slope geohazards in the study
area from 1905 to 2015, and explored the changes in slope geohazards with time. For
the convenience of comparison, the slope geohazards were divided into five groups
according to the time of occurrence (Figure 4a), before 1979 (122 events), 1980–1989
(188 events), 1990–1999 (325 events), 2000–2009 (152 events) and 2010–2015 (110 events).
The covered area average annual growth rates of slope geohazards were approximately
1601.7 km2/year for 1980–1989, 2759.9 km2/year for 1990–1999, 1108.9 km2/year for
2000–2009 and 714.6 km2/year for 2010–2015 (Figure 4b). The areal growth rate of slope
geohazards from 1990–1999 was 1.7 times as much as from 1980–1989; after 2000, the areal
growth rate of slope geohazards was less than from 1990–1999. Slope geohazards spread
more widely over time and are likely to become more widespread.
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Figure 4. Slope geohazard change in different periods. (a) Spatial distribution of slope geohazards in different periods
(the orange triangles represent geohazard sites before 1980, and the blue circles represent geohazard sites from 1980–1989,
1990–1999, 2000–2009, and 2010-2015); (b) the growth rate of the covered area; (c) the altitude of slope geohazards in different
periods (the blue box represents 25%–75% of altitude range in geohazard sites, and the orange curve represents the variation
in average altitude); (d) the slope gradient of slope geohazards in different periods (the blue box represents 25%–75% of
slope range in geohazard sites, and the orange curve represents the variation in average slope); (e) the monthly proportion
of slope geohazards in different periods.

Topographically, slope geohazards vary with time. By 2009, the mean altitude of slope
geohazards had increased from 1984 m to 2562 m, with a growth rate of 238 m/10 year
(Figure 4c). Then, the mean altitude of the slope geohazards decreased to 1857 m from
2010–2015 because the recorded events in this period were generally located at the lower
altitude of the eastern boundary. In contrast, the slope range of slope geohazards remained
stable during the study period, with the average slope maintained at 19.53◦–22.96◦ from
1905–2015 (Figure 4b), which indicates that the influence of slope on geohazards in the
study area has no obvious change. The altitude of the slope geohazards gradually increases,
while the slope gradient varies only slightly. Therefore, the slope is still the most important
condition to determine the occurrence of slope geohazards in the study area.

Slope geohazards spread to the spring, although summer and autumn were still
the frequent seasons for slope geohazards from 1905–2015 (Figure 4d). Nine percent
of slope geohazards occurred in spring before 1980, and 10%, 6%, 14% and 25% of the
slope geohazards occurred in spring in the following four periods. The increase in slope
geohazards in spring is related to climate change. It was further found that the seasonal
variation is more prominent in the area above 2000 m (Figure S4). Before 1980, slope
geohazards above 2000 m mostly occurred from May–October and in February, increased
to April and December from 1980–1989, expanded to February–November from 1990–1999,
expanded to January–November from 2000–2009 and occurred from March–September
and in December from 2010–2015. The increase in slope geohazards in high-altitude areas
in spring indicates that the driving factors of some slope geohazards in the study area have
changed and that the impact of temperature rise is more obvious for slope geohazards.

The increasing frequency of slope geohazards is not only related to precipitation,
but also affected by soil temperature. Considering the lagging influence of climate on
geohazards, the precipitation and temperature of the previous season should also be taken
into account in addition to the precipitation and temperature of the season in which the
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geohazards occur. The summer monthly precipitation corresponding to the summer geo-
hazards decreased (Figure 5a), while the spring monthly precipitation increased (Figure 5b).
The summer and spring soil monthly temperature corresponding to the summer geohaz-
ards both decreased (Figure 5c,d). This result suggested that summer geohazards are
affected by summer precipitation, spring precipitation, summer soil temperature and
spring soil temperature and tend to develop in regions with lower soil temperature in
spring, lower soil temperature and less precipitation in summer and that the increase in
spring precipitation may lead to geohazards in some areas during summer. The spring
and winter soil monthly temperatures corresponding to spring geohazards decreased at a
rate of 1.3 ◦C/10a (Figure 5e,f). This result suggested that spring geohazards are affected
by winter and spring soil temperatures and tend to develop in regions with lower soil
temperatures in winter and spring. There was no obvious influence on spring geohazards
with spring, winter precipitation and air temperature (Figure S5a,b,e,f) and no obvious
influence on summer geohazards with spring or summer air temperature (Figure S5c,d).

 
Figure 5. Changes in precipitation and temperature in different seasons of geohazards in different years. (a) Summer
monthly precipitation in the area of summer geohazards; (b) spring monthly precipitation in the area of summer geohazards;
(c) summer monthly soil temperature in the area of the summer geohazards; (d) spring monthly soil temperature in the area
of the summer geohazards; (e) spring monthly soil temperature in the area of the spring geohazards; (f) winter monthly soil
temperature in the area of the spring geohazards.
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5. Discussion

5.1. Locomotion of Slope Geohazards in the QTP and Its Adjacent Regions

The QTP is one of the regions with the most frequent slope geohazards because of its
complex geological environments, strong tectonic activity, poor stability of rock slopes and
frequent rainstorms [52]. We observed not only the significant growth of slope geohazards
but also an accelerating growth rate of scale in past decades, which is consistent with reports
that the scale and frequency of slope geohazards in the QTP corridor are increasing [53].
Although such a trend was associated with improving skill in data collection, other field
observations also reported an increase in slope failure on the QTP. In the permafrost region
of the Qilian Mountains [23] and Fenghuo Mountain [50], slope failure has accelerated,
and in the Beiluhe Region on the QTP, the total number of thaw slumps and the total
surface area increased significantly [54]. Considering the increased human and economic
vulnerability with plateau development, the slope geohazard risk is likely to be higher and
requires more attention.

The spatial distribution displayed within the slope geohazard dataset is instructive,
with the occurrence of slope geohazards separately concentrated in two altitude ranges.
On the one hand, the well-known slope geohazard-prone area along the Himalayan Arc
Regions in southeastern edges of the plateau [1,46] and, on the other hand, regions in
the central plateau with higher altitudes (above 3000 m) have been suggested to be ever-
increasing slope geohazards. The slope geohazards at higher altitudes showed particularity
in the occurrence season. Different from traditional slope geohazards, which mainly occur
in summer and autumn, the frequency of slope geohazards in high-altitude areas increases
significantly in spring [55]. The spatial and temporal migration of slope geohazards both
suggested that thaw slump activity is rapidly accelerating in the alpine permafrost regions
on the central QTP [23].

It is interesting to find that the mean slope ranges remained steady at 19◦–23◦ within
all slope geohazards of different decades. Slope is still the key factor in predicting the slope
geohazard risk, and slope size affects the stress distribution inside the slope body and
controls the characteristics of surface runoff and groundwater [56]. Statistical results show
that 70% of the area is within slope ranges of 13.82◦–36.25◦ on the QTP, covering an area
of 7.1 × 105 km2. In higher elevation stands, rising spring temperatures and increasing
precipitation will magnify slope geohazard risk [5]. This hypothesis is supported by our
results and by short- and long-term studies in the Arctic and other alpine regions. In
addition, the prolonged season of high-altitude geological disasters has been affected by
climate warming [57].

5.2. Comparison of Two Slope Geohazard Clusters

Observed from the slope geohazard spatial distribution location and elevation vari-
ation, we could easily find the migration of slope geohazards. Beyond the previously
reported geohazard clusters (GCs) distributed on the eastern and southeastern margins of
the QTP, we found that slope geohazards occurred above 3000 m in the interior of the QTP
and were defined as new geohazard clusters (NGCs) (Figure 6a). The distribution of GCs
and NGCs is shown in Figure 6a. We compared the altitude, slope, season, precipitation,
air temperature and soil temperature of the geohazards to illustrate the different driving
factors of these two clusters.
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Figure 6. Comparison of the characteristics of new slope geohazard clusters (NGCs) and previously reported geohazard
clusters (GCs). (a) Elevation-geohazard frequency curve comparison (blue curve refers to NGC, orange curve refers
to GC); (b) slope-geohazard frequency curve comparison; (c) the comparison of the two clusters spatial distributions;
(d) month-geohazard frequency curve comparison; (e) precipitation-geohazard frequency curve comparison (the solid line
refers to the annual precipitation of geohazards, while the dotted line refers to the monthly precipitation of geohazards);
(f) air temperature-geohazard frequency curve comparison (the solid line refers to the annual temperature of geohazards,
while the dotted line refers to the monthly temperature of geohazards); (g) soil temperature-geohazard frequency curve
comparison.

In terms of topography, the peak altitude is 1750 m in the GC while it is 4050 m
in the NGC, but the frequent slope of the two disaster clusters is 13.82◦–36.25◦. The
influence of slope on geohazards does not vary greatly with region. Summer and autumn
are the rainy seasons on the QTP, so June–August is the peak period for the two disaster
clusters. However, the proportion of NGCs occurring from May to July is higher than
that of GCs, which may be related to the melting of snow and ice in high-altitude areas.
In the seasonally frozen area of China, the occurrence of a landslide in summer and
autumn is usually induced by rainfall, while in spring, it is caused by the freeze–thaw
process [58]. There are two annual rainfall peaks in the GC, one of which is 300–400 mm in
the northeastern part of Qinghai Province, which is in the transition zone from the QTP
to Loess Plateau with complex terrain [59,60], and the other is 800–1100 mm in Yunnan
and the northern part of Sichuan where both terrain and precipitation are conducive to
slope geohazard development [29,61,62]. The annual precipitation of the NGC is mostly
300–600 mm. However, there is little difference in the monthly precipitation of the two
disaster clusters, most of which are between 70 mm and 120 mm, which suggests that
slope geohazards are more common in areas within this monthly precipitation threshold.
The different spatial distributions of the two geohazard clusters also mean that there are
significant differences in temperature; for example, slope geohazards occur most frequently
in NGCs with an average annual temperature of −0.74 ◦C, while the peak temperature of
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the frequent geohazard clusters is 7.68 ◦C in the GC. The air temperature in the months of
the geohazards was 6.66 ◦C in the NGC and 16.91 ◦C in the GC. Similarly, this difference is
also reflected in soil temperature.

We further adopted the random forest model and future climatic data simulated by
CMIP5 (RCP 8.5) to obtain the distribution of geohazard susceptibility on the QTP in 2030,
2060 and 2099. Altitude, slope and simulated future air temperature, soil temperature and
precipitation were brought into the constructed model. The receiver operating characteristic
(ROC) curve of the random forest model in this study is shown in Figure S6, and the area
under the curve (AUC) is 0.9702. As the climate changes gradually, slope geohazards
will spread over a wider area of the QTP. The proportion of very low-sensitivity areas
decreased from 51.44% in 2030 to 42.95% in 2060 and 30.95% in 2099 (Figure 7). The areas of
low-sensitivity areas, moderate-sensitivity areas and high-sensitivity areas are increasing.
The proportion of highly sensitive areas increased from 10.93% in 2030 to 14.17% in 2060
and 17.48% in 2099. The moderate- and high-sensitivity areas are mainly distributed in the
east and south of the QTP. The low-, moderate- and high-sensitivity areas of the QTP are
mainly south of 30◦ N in 2030, extend to the south of 33◦ N in 2060 and continue to expand
to the south of 35◦ N in 2099. The low-sensitivity region in the northern plateau gradually
expands from 37◦ N inward to 35◦ N. Geohazards on the QTP will spread from the east
and south to the central region.

Figure 7. The slope geohazard sensitivity map area proportion of different grades. (a) Slope geohazard sensitivity map in
2030; (b) slope geohazard sensitivity map in 2060; (c) slope geohazard sensitivity map in 2099; (d) area variation across the
sensitivity grades in different periods.
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6. Conclusions

In this study on the QTP, the variation in the spatial and temporal distribution of 897
slope geohazards was assessed. Geographical and meteorological element correlations
with the occurrence of slope geohazards were evaluated. By judging the factors that affect
changes in slope geohazards, unknown risk areas were forecast. The main findings of our
study are as follows.

Ninety-three percent of slope geohazards occurred in seasonally frozen regions, 2.6%
were located in permafrost regions and the average altitude was 3818 m. The slope
geohazards are mainly concentrated at approximately 2000 m, and the mean altitude
spreads from 1984 m to 2562 m. Over time, the altitude of the slope geohazards gradually
increases, while the slope gradient varies only slightly. Slope geohazards increased in
the spring, especially in areas above 3000 m. The air warming rate and precipitation
growth rate at geohazard sites increased gradually, indicating that the increase in spring
air temperature and precipitation is an important reason for the increase in spring slope
geohazards. Based on the observation of the spatial location, altitude and temperature
growth rate of slope geohazards, an NGC appears in the study area, and there is still
a possibility of migration under future climate conditions. We estimate that the low-,
moderate- and high-sensitivity areas of the QTP are mainly south of 30◦ N in 2030, extend
to the south of 33◦ N in 2060, continue to expand to the south of 35◦ N in 2099 and the
proportion of high-sensitivity areas increases from 10.93% in 2030 to 14.17% in 2060 and
17.48% in 2099.

However, to explore the specific impact factors of slope geohazards in high-altitude
mountain areas, we will further analyze the formation mechanism of slope geohazards
with high-resolution datasets of slope geohazards and rigorous long-term records of daily
temperature and precipitation in the future [57].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/su131910488/s1, Figure S1. Spatial distribution of the field survey regions of the QTP;
Figure S2. Changes of temperature and precipitation over the QTP, 1980–2015; Figure S3. (a) pre-
cipitation, (b) air temperature and (c) soil temperature in the month when the slope geohazards
occurred; Figure S4. The proportion of slope geohazards occurring at different elevations in 4 periods;
Figure S5. Changes of precipitation and temperature in different seasons of geohazards in different
years. (a) spring monthly precipitation in the area of spring geohazards; (b) winter monthly precipita-
tion in the area of spring geohazards; (c) summer monthly air temperature in the area of the summer
geohazards; (d) spring monthly air temperature in the area of the summer geohazards; (e) spring
monthly air temperature in the area of the spring geohazards; (f) winter monthly air temperature
in the area of the spring geohazards; Figure S6. The ROC curve of the random forest model in this
study; Table S1. Eight CMIP5 models were used in this study.
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Abstract: Extreme weather and climate events are becoming increasingly frequent and have gained an
increasing amount of attention. Extreme cooling (EC) events are a major challenge to socioeconomic
sustainability and human health. Based on meteorological stations and NCEP/NCAR reanalysis
data, this study analyzed the temporal and spatial distributions of EC events in winter in China by
using the relative threshold and the relationship between EC events and the Arctic Oscillation (AO)
index during the period of 1961–2017. The results show that the frequency of EC events in China
decreased by 0.730 d in these 57 years, with a trend of −0.1 d/10 y. Northeast China had the highest
frequency of EC events in winter, with an average of 4 d. In addition, EC events are significantly
negatively correlated with the AO index in China, with a correlation coefficient of −0.5, and the
AO index accounts for approximately 21% of the EC event variance. The strongest correlations are
mainly located in Northwest China. Our research shows that significant changes in the mid–high
latitude atmospheric circulation anomalies, which are associated with the AO, are responsible for EC
events. These findings provide theoretical guidance for the prediction and simulation of EC events.

Keywords: extreme cooling events; Arctic Oscillation; winter in China; atmospheric circulation

1. Introduction

According to the sixth assessment report of the IPCC, the global surface temperature
has shown an upward linear trend, increasing by 0.99 ◦C since the 21st century compared
to the preindustrial period [1]. Changes in extreme weather and climate events, which have
caused serious impacts on society, the ecological system, and public health [2–5], are more
sensitive to global warming than the mean climate [6,7]. The frequency and intensity of
extreme weather and climate events are also increasing [8,9]. However, the impact of these
changes is directly felt by people in the form of day-to-day temperature changes. Extreme
cooling (EC) events represent a sharp decrease in temperature between contiguous days,
and such events may be a major challenge to socioeconomic sustainability and human
health. Several studies have found that EC events can easily lead to the onset of disease [10].
EC events are strongly associated with nonaccidental deaths, cardiovascular deaths, and
respiratory deaths, especially for elderly individuals [11,12]. For example, Guo et al. [11]
showed that for every drop of 3 ◦C on two consecutive days, there was a 15.7% increase in
nonaccidental deaths in the population. Furthermore, studies have shown that EC events
are associated with the onset of infectious diseases. EC events can significantly increase the
number of infectious diseases, such as hand, foot, and mouth disease [12,13], respiratory
tract infections [14], and pneumonia [15]. In addition, EC events affect industrial and
agricultural production and transportation conditions. In 2008, an extreme cold surge
invaded central and southern China, causing economic losses of more than USD 22 billion,
and 129 people lost their lives [16]. China has complex climatic conditions and a large
population. Therefore, it is of great practical significance to clarify the spatial and temporal
characteristics of EC events in China and their possible mechanisms and thereby improve
the prediction of these events and reduce human casualties and property losses.
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The spatial and temporal patterns of EC events in winter have become the focus
for many researchers. Studies have shown that global cooling events above 10 ◦C are
decreasing [17]. As one of the more influential EC events in winter in China, cold waves
have also received widespread attention due to their temporal and spatial variability. In
recent decades, the frequency of cold surges in China has shown a decreasing trend [18].
However, most definitions are based on absolute thresholds [19–21]. China is a vast country,
and the climate varies greatly from region to region. Considering that people in different
regions have different adaptive capacities and emergency measures for EC events, the
definition of EC events for different regions should be defined by relative thresholds.
Xu et al. [22] used daily minimum temperature data and the rotating empirical orthogonal
function (REOF) method to divide China into seven regions, and different thresholds were
attached to each region. The results showed that the frequency of EC events is higher in
the north and lower in the south, and the overall trend of the change in the frequency of
EC events is decreasing. Zhai et al. [23] proposed using a certain percentile value as the
threshold for extreme weather events, and exceeding this threshold is considered to be the
definition of an extreme weather event. Cai et al. [24] defined EC events in eastern China
using the 90% quantile. The results showed that EC events are decreasing in eastern China.
Therefore, most scholars have concluded that EC events have decreased in China using
different definitions of EC events. However, the intensity and weakening trends of EC
event reduction in different regions still need further attention.

A dominant pattern of the Northern Hemisphere in winter is the Arctic Oscillation
(AO) [25,26]. The AO has a significant effect on climate variability and air temperatures
in the Northern Hemisphere at middle and high latitudes [27–29]. Therefore, quantifying
the relationship between EC events and the AO index can effectively improve EC event
prediction. Recent studies have shown a positive correlation between the AO and winter
temperatures in most parts of China [30]. The AO phase shift usually leads to weather and
climate anomalies at middle and high latitudes in the North Atlantic, North Africa, and
East Asia [31–33]. In addition, cold events occur more frequently in East Asia during the
negative phase of the AO, and the East Asian trough deepens with stronger East Asian
winter winds [34]. When El Niño and the positive-phase AO, or La Niña and the negative-
phase AO, are combined, the temperature anomaly in northern China accelerates [35].

Therefore, studies on the effects of the AO on winter temperatures in China have been
more extensive. However, few studies have been conducted to investigate the relationship
between the AO index and EC events in China; in particular, the effects of the AO index
on EC events in different regions are unclear. Given this situation, this study defined EC
events using observed and reanalyzed data, combined with the relative threshold method,
and analyzed the relationships between EC events and the AO index. The spatial and
temporal variation characteristics of EC events and the influencing mechanisms of the AO
index in China were also examined. The results of this study deepen our understanding
of cold-related extreme events and provide theoretical guidance for the prediction of
EC events.

2. Materials and Methods

2.1. Data

Daily mean surface air temperature data were obtained from the National Meteorolog-
ical Information Center of the China Meteorological Administration. We mainly considered
the average state of the daily temperature cycle and variations as the condition of EC
events, and the daily mean temperature was used instead of the maximum and minimum
temperatures. These data were subjected to strict quality control, and a total of 1115 meteo-
rological stations were finally selected. The winter months during the period of 1961–2017
were selected. To highlight the influence of different natural geographic conditions on EC
events, China was divided into seven regions: Northeast China, Northwest China, North
China, Central China, East China, South China, and Southwest China (Figure 1).
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Figure 1. Spatial distribution of the 1115 meteorological stations and elevation of the topography
over mainland China.

Monthly mean geopotential height, sea level pressure, and zonal and meridional
wind speed data were obtained from the National Centers for Environmental Predic-
tion/National Center for Atmospheric Research (NCEP/NCAR) reanalysis product [36].
The spatial resolution was 2.5◦ × 2.5◦, and a total of 144 × 73 grid points were obtained glob-
ally. This study applied AO index data from the Climate Prediction Center (CPC) of the Na-
tional Oceanic and Atmospheric Administrator (NOAA); the data can be downloaded from
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml (ac-
cessed on 14 November 2020) [37,38]. The AO index was defined according to Thompson
and Wallace [25].

2.2. EC Event Definitions and Calculations

A day-to-day temperature change is estimated as the temperature change between
neighboring days (TCN) [39]:

TCN = Ti − Ti−1 (i = 1, 2, 3, . . . , n) (1)

where TCN denotes a change in the average daily temperature for day i, and Ti (Ti−1)
denotes the average daily temperature for day i (the previous day is denoted as i − 1). The
term n is the total number of days in winter. TCN < 0 indicates a cooling event.

The TCN data of a single station in winter were sorted from highest to lowest (except
for the positive TCN values), and the value of the 90th percentile was taken as the threshold
for EC events. Only TCN values exceeding this threshold were considered to be indicative
of an EC event. According to this method, the cooling thresholds of 1115 stations in China
were obtained as the criteria for EC events.

2.3. Correlation Analysis

The relationship between EC events and the AO index is calculated by correlation
coefficients and is often expressed as R:

R =
∑n

i=1(xi − xm)(yi − ym)√
∑n

i=1(xi − xm)
2·
√

∑n
i=1(yi − ym)

2
(2)

where n denotes the number of years, and xm and ym are the average values of x and y,
respectively. R assumes values in the range of [−1, 1]. Positive R values indicate a positive
correlation between x and y; negative R values indicate a negative correlation between
x and y. Significance levels of the correlation coefficient were estimated according to the
two-tailed Student t-test [40].
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2.4. Synthetic Analysis

In this paper, the conventional synthetic analysis method was used to analyze the
changes in each element when an AO event occurs. The results were tested for statistical
significance, and t-tests were used for two overall means, x, y.

t =
xm − ym√

(n1−1)s1
2+(n2−1)s2

2

n1+n2−2

√
1

n1
+ 1

n2

(3)

where n1 and n2 denote the sequence lengths of samples x and y, respectively; xm and ym
are the means; s1 and s2 are the variances; and n1 + n2 − 2 is the overall degree of freedom.
The t-distribution table was queried to determine if the results were significant.

2.5. Linear Trend Analysis

The long-term trend of the air temperature time series data was analyzed using the
linear tendency estimate method [41]. A simple linear regression was performed between
the temperature variable (y) and the corresponding time (x):

y = ax + b (4)

where a is a linear regression coefficient, which represents the rate of change in EC events.
A positive or negative value indicates an increasing or decreasing trend of EC events,
respectively. The trend results were tested for significance using the t-test at the 95%
confidence level.

3. Results

3.1. Temporal Variation and Spatial Pattern of EC Events

Figure 2h shows the time series of EC events in China from 1961 to 2017. The EC events
show an obvious interannual and interdecadal variability, but the trend is not significant,
with a decline of 0.730 d in these 57 years, and a trend of −0.128 d/10 y (p > 0.05). The
largest EC event occurred in 1965 at 7.803 d, and the smallest occurred in 2006 at 2.643 d,
with an average of 4.265 d. The interdecadal variability shows that the EC events in China
had a rapidly increasing trend from 1961 to 1970 and a decreasing trend from the 1970s to
the present, with the fastest decreasing trend in the 1990s at −0.038 d/10 y (p > 0.05).

To facilitate the analysis of the regional characteristics of the EC events, we calculated
the frequency and trend of winter EC events for each station in seven regions of China.
The results show that the frequency of EC events displays a spatial pattern of more in the
north and less in the south (Figure 3). Most EC events occurred in Northeast China, with
an average of 4.373 d, followed by Southwest China and Northwest China, with average
values of 4.335 d and 4.334 d, respectively. The lowest number of EC events occurred in
South China, at 4.059 d (Table 1).

In terms of the trend of winter EC events, obvious decreases were observed (Figure 2).
The statistical results of all meteorological stations show that 858 of the stations had a
decreasing trend of winter EC events. Among them, the trend of 240 stations reached the
90% confidence level (Figure 4). The trends of the EC events in the seven regions show that
the rate of decrease in Northeast China was the fastest, with an average of −0.196 d/10 y,
and approximately 31.1% of the stations showed a significant change. The regional average
trends of the frequency of EC events in North China, East China, and Northwest China
had values of −0.194 d/10 y, −0.162 d/10 y, and −0.127 d/10 y, respectively. Central
China, South China, and Southwest China had smaller decreasing rates, with averages of
−0.115 d/10 y, −0.075 d/10 y, and −0.040 d/10 y, respectively, and these values did not
pass the 90% confidence level. This result shows that Northeast China and North China
are the regions with the most EC events and the fastest decreasing trends.
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Figure 2. Time series changes of EC events in China and its subregions.

Figure 3. Climatological distribution of winter EC events in China.

Figure 4. Same as Figure 3 but for the trend.
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Table 1. Frequency and trends of EC events in different regions of China (Column 2 and Column 3 represent the range; in
Column 4 and Column 5, the number in parentheses indicates the number of meteorological stations that passed the 90%
significance test).

Mean (d) Trends (d/10 y) Positive Negative

Northeast China 4.373 (4.105~4.632) −0.196 * (−0.720~0.354) 18 (1) 117 (42)
Northwest China 4.334 (3.930~4.667) −0.127 * (−1.081~0.450) 48 (6) 120 (43)

North China 4.240 (3.719~4.456) −0.194 * (−0.691~0.310) 19 (2) 94 (37)
East China 4.221 (3.789~4.579) −0.162 (−0.544~0.231) 32 (0) 207 (64)

South China 4.059 (3.702~4.333) −0.075 (−0.373~0.338) 30 (1) 81 (7)
Central China 4.250 (3.860~4.509) −0.115 (−0.384~0.419) 26 (2) 130 (17)

Southwest China 4.335 (3.895~4.719) −0.040 (−0.785~0.480) 82 (17) 109 (30)
China 4.265 (3.702~4.719) −0.128 (−1.081~0.480) 255 (29) 858 (240)

* indicates significance at the 0.1 level.

3.2. Correlation between EC Events and the AO Index

As shown in Figure 5, the AO and EC events were significantly negatively correlated,
with a correlation coefficient of −0.459 (p < 0.01). When the AO was strong, the number of
EC events in China was low, and the AO can explain 21.1% of the variation in EC events in
China. To detach EC events from the global warming environment, this study detrended
EC events and the AO index. The results show that regardless of whether EC events and
the AO index were detrended separately or simultaneously, EC events and the AO index
in China still had a highly significant negative correlation (Table 2).

Figure 5. Time series of AO index changes and EC events in China.

Table 2. The correlation between EC events and the AO index in different regions.

Northeast
China

Northwest
China

North
China

East
China

South
China

Central
China

Southwest
China

China

R(AOIdetrend, EC) −0.237 −0.471 *** −0.374 *** −0.390 *** −0.285 ** −0.389 *** −0.302 ** −0.421 ***
R(AOI, ECdetrend) −0.237 −0.471 *** −0.374 *** −0.386 *** −0.278 ** −0.381 *** −0.295 ** −0.418 ***

R(AOIdetrend, ECdetrend) −0.244 −0.485 *** −0.385 *** −0.398 *** −0.286 ** −0.392 *** −0.303 ** −0.431 ***
R(AOI, EC) −0.286 ** −0.514 *** −0.421 *** −0.427 *** −0.301 ** −0.408 *** −0.315 ** −0.459 ***

** and *** indicate significance at the 0.05 and 0.01 levels, respectively.

Spatially, the correlation coefficient between EC events and the simultaneous AO
index was mainly negative, and the correlation was positive only in Southwest China
(Figure 6). From the regional perspective, the frequency of EC events in the seven regions
was significantly negatively correlated with the AO index. The Northwest China region
had the strongest correlation, and the correlation coefficient exceeded −0.5.
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.
Figure 6. Climatological distribution of the correlation coefficient between EC events and the
simultaneous AO index.

In addition, the relationship between the AO and EC events was closely related to the
variation in atmospheric circulation anomalies associated with the AO in different climate
contexts. Therefore, further analysis of the variability of atmospheric circulation anomalies
associated with the AO is needed.

3.3. Possible Mechanisms of AO Affecting EC Events

The above results illustrate that EC events in China have a significant negative correla-
tion with the AO. To further study the mechanisms by which the AO influences EC events
in China, we selected the first eight years with the highest and lowest anomaly values from
the winter AO index change series from 1961 to 2017 to define strong and weak AO index
years, respectively. Among them, the strong AO index years were 2006, 2016, 1972, 1991,
1999, 1989, 1992, and 1988, and the weak AO index years were 2009, 1976, 1968, 1962, 1969,
1985, 1965, and 2000. As shown in Figure 7, the frequency of EC events was consistently
lower when the AO index was strong, except for the southwestern station and some other
stations. A total of 24.9% of these meteorological stations passed the 0.05 significance test,
indicating that the typical years selected were representative of the anomalies of EC events
in China.

 

Figure 7. Climatological distribution of winter EC events in China during AO index anomaly years
(AO-strong minus AO-weak years).

Figure 8 shows the spatial distribution of the difference between the sea level pressure,
850 hPa and 500 hPa geopotential heights, and wind fields in the strong and weak years.
From the spatial distribution of the sea level pressure and wind fields (Figure 8a), the air
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pressure was significantly lower at high latitudes and higher in China, indicating that the
Siberian high and Aleutian low were weak at this time, and that the near-surface northerly
wind became weaker, which was not conducive to the occurrence of EC events in China.
The 850 hPa geopotential height and wind field in the positive anomaly year (Figure 8b)
were further analyzed. When the AO index was strong, the geopotential height in the high-
latitude region was higher, and the geopotential height in the middle- and low-latitude
regions was lower. The colder airflow activity range was limited to the polar region, and
China was affected by warm airflow from the Pacific Ocean in the south. From the 500 hPa
geopotential height and wind field (Figure 8c), the geopotential height was significantly
higher in China when the AO index was strong. At this time, the East Asian trough was
weak, and China was controlled by anomalous anticyclonic circulation. Therefore, there
were fewer EC events in China. Significant changes in the mid–high latitude atmospheric
circulation anomalies associated with the AO led to the occurrence of the EC events.

 

Figure 8. The difference in (a) sea level pressure, (b) 850 hPa and (c) 500 hPa geopotential heights, and wind fields between
strong and weak AO index years (dotted areas indicate the areas that passed the 0.05 significance test; the wind field grid
passes the significance test when u, v, and w pass 0.05).

4. Discussion

The purpose of this study was to use observational data to calculate the temporal
and spatial variation in EC events in China under the 90th percentile threshold and to
determine the relationship between EC events and the AO index in different regions. To
assess the consistency of different EC event definitions with the conclusions of this study,
the following discussion is presented.

EC events are defined using three relative threshold methods (90th, 95th, and 99th
percentiles) and an absolute threshold (cold surge) method. A cold surge is defined as a
temperature decrease within a 24-h period greater than 8 ◦C, a 48-h period greater than
10 ◦C, or a 72-h period greater than 12 ◦C, where the minimum temperature is less than
4 ◦C [42]. The results show that the frequency of EC events in China based on all four
methods from 1961 to 2017 showed a decreasing trend of −0.128 d/10 y (90th percentile),
−0.089 d/10 y (95th percentile), −0.028 d/10 y (99th percentile), and −0.132 d/10 y
(cold surge) (Figure 9). Both the relative and absolute threshold methods using different
percentile definitions showed a decreasing trend of EC events in China, which is in line
with the findings of most studies [21]. In addition, the decreasing trend in the frequency of
EC events is defined using the 90th percentile, and the cold surge is the closest.

To test the consistency of the correlation between different EC event definitions and the
AO index, the correlation between the AO index and EC events before and after detrending
was calculated. The results show that EC events, as defined by all four methods, were
highly significantly correlated with the AO index, regardless of the detrending treatment.
Among them, the EC events defined according to the 90th percentile were above the highest
correlation coefficient of −0.459 to −0.418 (Figure 10).
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Figure 9. Time series of winter EC events with different definitions in China from 1961 to 2017.

Figure 10. The correlation between winter EC events with different definitions and the AO index
(AOI) in China.

It should be noted that the analysis of the AO mechanisms influencing EC events
mainly began when the AO in the main circulation systems affected the winter temperature
in China. However, the entire weather process by which the AO affects EC events in China
is not discussed in detail here. Furthermore, in addition to the AO, the factors affecting
the average winter temperature in China include ENSO [43], Arctic sea ice [44], and the
East Asian winter monsoon [45]. The relationship between these factors and EC events and
their mechanisms will be the focus of our future work.

5. Conclusions

The results of this study show that EC events in China exhibit an obvious interannual
and interdecadal variability. EC events decreased by 0.730 d in the 57 years from 1961 to
2017, with a rate of −0.128 d/10 y. Most winter EC events occurred in Northeast China,
with an average of 4.373 d.

The AO was significantly negatively correlated with EC events, with a correlation
coefficient of –0.459. After detrending EC events and the AO index, EC events still had a
highly significant negative correlation with the AO index in China.

When the AO was strong, the Siberian high and Aleutian low were weak, and the
near-surface northerly winds became weaker. The East Asian trough in the middle tropo-
sphere obviously weakened. Thus, the propagation of cold polar air was limited by the
atmospheric circulation situation in the middle and high latitudes. China has had fewer
EC events influenced by warmer Pacific Ocean currents. In addition, the occurrence of EC
events due to other factors should be considered in future research.
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Abstract: Climate models tend to overestimate light precipitation and underestimate heavy pre-
cipitation due to low model resolution. This work investigated the impact of model resolution on
simulating the precipitation extremes over China during 1995–2014, based on five models from
Coupled Model Intercomparison Project 6 (CMIP6), each having low- and high-resolution versions.
Six extreme indices were employed: simple daily intensity index (SDII), wet days (WD), total pre-
cipitation (PRCPTOT), extreme precipitation amount (R95p), heavy precipitation days (R20mm),
and consecutive dry days (CDD). Models with high resolution demonstrated better performance
in reproducing the pattern of climatological precipitation extremes over China, especially in the
western Sichuan Basin along the eastern side of the Tibetan Plateau (D1), South China (D2), and the
Yangtze-Yellow River basins (D3). Decreased biases of precipitation exist in all high-resolution models
over D1, with the largest decease in root mean square error (RMSE) being 48.4% in CNRM-CM6.
The improvement could be attributed to fewer weak precipitation events (0 mm/day–10 mm/day)
in high-resolution models in comparison with their counterparts with low resolutions. In addition,
high-resolution models also show smaller biases over D2, which is associated with better capturing
of the distribution of daily precipitation frequency and improvement of the simulation of the vertical
distribution of moisture content.

Keywords: precipitation; China; CMIP6; model resolutions

1. Introduction

Increased climate extremes in terms of frequency and intensity, such as extreme
precipitation events, have been observed in the context of global warming, which have
immensely adverse impacts on economic production and human life. The simulation
in precipitation extremes over complex terrain is challenging but crucial for investing
the performance of models. For example, the Pacific Northwest of the United States is
characterized by complex topography, including land-sea contrasts and mountains ranges,
which is challenging for global models [1]. China is strongly affected by precipitation
extremes due to complex terrain, vast areas, and the influence of the topographically
complex Tibetan Plateau and East Asian monsoon system. Many extreme precipitation
events have been reported in China. On 6–7 May 2017, the coastal city of Guangzhou
experienced severe extreme precipitation with maximum rainfall above 500 mm in one
day, eventually causing enormous economic losses [2]. Severe flooding occurred in the
Yangtze River in 2020 and caused at least 141 deaths, with direct economic losses of
82.23 billion yuan by 12 July 2020 [3]. On 20 July 2021, Zhengzhou experienced a record-
breaking torrential rainfall of above 200 mm within one hour, eventually causing direct
economic losses amounting to 53.2 billion yuan [4]. Therefore, the best way to improve the
ability of climate models to simulate or project precipitation extremes has received a lot of
attention from the climate community.

Previous studies have demonstrated the advantage of high-resolution simulation,
including improvements in large-scale atmospheric and oceanic circulation [5,6], tropical
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cyclones [7,8], El Niño-Southern Oscillation [9], and precipitation [10–12]. For example,
the authors of [13] found that high-resolution models obtain better performance in sim-
ulating the frequency and percentage of extreme precipitation in eastern China. Using
two atmospheric general circulation models from the UK Met Office Hadley Centre, the
authors of [14] demonstrated that the model resolution has an effect on the hydrological
cycle by increasing (decreasing) precipitation over land (ocean), eventually making high-
resolution simulations closer to observations over the ocean but further away over land.
The authors of [15] indicated that a model with a horizontal grid spacing less than 4 km
(convection-permitting model), better representing orography and variations in surface
fields, can improve precipitation simulation in mountainous regions. The authors of [16]
indicated that models in higher resolution better simulate the precipitation extremes in the
mountainous regions over northern China and Sichuan but that their skill in simulating
precipitation over the Maritime Continent is low.

Currently, the World Climate Research Programme (WCRP) launched the latest Cou-
pled Model Intercomparison Project (CMIP6), which aimed to answer new scientific ques-
tions in the field of climate change and provided data available to achieve the scientific
goal set by the WCRP. Most CMIP6 models have updated parameterization schemes and
higher resolutions compared with CMIP5 models [17]. Studies have demonstrated that
CMIP6 models generally help simulate the mean and extreme precipitation compared with
CMIP5 models [18–22]. For example, the authors of [23] evaluated the performance of six
CMIP6 and CMIP5 models in simulating extreme precipitation in China and indicated
that heavy precipitation events (>20 mm/day) over southern China are well captured by
CMIP6 models, which might be related to model resolutions and precipitation-related
parameterization schemes. The authors of [24] indicated that the southeast-northwest
gradient of rainfall over China is underestimated in CMIP6 models but less than that in
CMIP5 models, which is possibly associated with model resolution. The authors of [25]
assessed the performance of 18 CMIP6 models participating in the High-Resolution Model
Inter-comparison Project (HighResMIP) in simulating the climatological precipitation over
China and indicated that models in higher resolution show better skill in simulating the
spatial distribution, and the precipitation bias over the Tibetan Plateau, northern China,
and southern China has been obviously reduced.

Several factors, such as physical parameterization, affect the model simulation of
precipitation extremes besides model resolution. Thus, the impact of model resolution
should be investigated using identical models, which only differ with respect to resolution.
Based on five state-of-the-art CMIP6 models, with each having a pair of high-resolution
and low-resolution configurations, we aim to study the impact of model resolution on
their fidelity in simulating the precipitation extremes over China in this study. We used
five CMIP6 models, with each having high-resolution and low-resolution configurations.
We found that models with improved resolutions show common improvements in the
simulation of precipitation extremes in China compared with their counterparts with low
resolutions. In addition, the vertical distribution of moisture content is better represented
in high-resolution models. Our results indicate high-resolution models are crucial for
improving projection in precipitation extremes events.

2. Materials and Methods

2.1. Observational and Model Data

The gridded observational precipitation data were from CN05.1 on a 0.25 × 0.25 grid
reference [26]. The dataset was produced by the National Climate Center of the China Me-
teorological Administration from over 2400 observation stations over China. The reliability
of this dataset has been proven in previous studies [27,28]. Relative humidity data were
from ERA5 reanalysis dataset in horizontal resolution of 0.25◦ × 0.25◦ [29].

In this study, five CMIP6 models, each having high-resolution and low-resolution
configurations (totally ten models), were obtained from data portals of the Earth System
Grid Federation (https://esgf-node.llnl.gov/projects/esgf-llnl/, accessed on 31 August
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2021). Detailed information about the ten models is provided in Table 1. Only the first
realization was used for each model. To achieve a convenient comparison, all model
outputs were re-gridded into 1◦ × 1◦grid using the bilinear interpolation method. The
period of 1995–2014 was chosen as the climatology to perform evaluation.

Table 1. CMIP6 models used in the study.

Institute High Resolution Low Resolution

National Centre for
Meteorological Research, France CNRM-CM6-1-HR 0.5◦ × 0.5◦ CNRM-CM6-1 1.4◦ × 1.4◦

EC-Earth consortium EC-Earth3-Veg 0.7◦ × 0.7◦ EC-Earth3-Veg-LR 1.125◦ × 1.25◦

Met Office Hadley Centre, UK HadGEM3-GC31-MM 0.556◦ × 0.833◦ HadGEM3-GC31-LL 1.25◦ × 1.875◦

Max Planck Institute for
Meteorology, Germany MPI-ESM1-2-HR 0.94◦ × 0.94◦ MPI-ESM1-2-LR 1.9◦ × 1.9◦

NorESM Climate modelling
Consortium consisting

of CICERO
NorESM2-MM 0.94◦ × 1.25◦ NorESM2-LM 1.9◦ × 2.5◦

2.2. Methods

Six precipitation extreme indices were employed (Table 2): simple daily intensity
index (SDII), wet days (WD), total precipitation (PRCPTOT), extreme precipitation amount
(R95p), heavy precipitation days (R20mm), and consecutive dry days (CDD). These indices
have been commonly used in previous studies [30,31].

Table 2. Definitions of precipitation indices used in this study. RR is daily precipitation.

Label Index Definition Units

PRCPTOT Annual total precipitation on wet days (RR ≥ 1 mm) mm
WD Annual mean count of wet days (RR ≥ 1 mm) days
SDII Mean precipitation on wet days (RR ≥ 1 mm) mm/day
CDD Annual count of maximum number of consecutive dry days (RR < 1 mm) days
R95p Accumulated precipitation amounts when RR > 95th percentile mm

R20mm Annual count of days when RR ≥ 20 mm days

Taylor diagrams are commonly used to evaluate two spatial patterns and to provide
a pathway of how well the simulation matches the observation in terms of the standard
deviation, correlation coefficient, and root mean square error (RMSE) [32].

3. Results

3.1. Comparison between Models in High-Resolution and Low-Resolution

The spatial pattern of model biases in climatological PRCPTOT over China from five
individual models and their ensemble mean (MME) are shown in Figure 1. Compared
with models in low resolution, high-resolution models show obvious improvement over
southern China. To facilitate quantitative description of these improvements, three regions
were determined as follows: western Sichuan Basin along the east side of the Tibetan
Plateau (D1), South China (D2), and the Yangtze-Yellow River basins (D3) (black boxes
in Figure 1). The common wet biases over D1 are reduced, with RMSE decreased by
48.4% in CNRM-CM6, 11.5% in EC-Earth3, 34.1% in HadGEM3, 32.1% in MPI-ESM1, 18.0%
in NorESM2, and 34.3% in MME, respectively. This improvement has also been shown
in previous studies [33,34], and it has been attributed to better representing of complex
terrain [35]. Most models present decreased biases over D2, with RMSE reductions reaching
29.9%, 24.0%, 25.4%, 27.2%, and 26.8% in CNRM-CM6, EC-Earth3, HadGEM3, NorESM2,
and MME, respectively. However, it should be noted that the high-resolution model is not
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implicitly perfect, such as MPI-ESM1, with RMSE increasing by 17.7% over D2 compared
with the low-resolution versions. In addition, the biases over D3 are also reduced in
the high-resolution models compared with the low-resolution models, with the largest
reduction in bias existing in HadGEM3 at a magnitude exceeding 52.2%.

 
Figure 1. The spatial patterns of biases (departures from CN05.1) in PRCPTOT (unit: mm) for
long-term mean (1995–2014) from low-resolution (first column) and high-resolution (second column)
models, and differences between low-resolution and high-resolution models (third column). The
last row shows multimodels with low-resolution ensemble means (f1) and multimodels with high-
resolution ensemble means (f2), respectively.
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The spatial pattern of model bias in WD index over China is shown in Figure 2. The
biases over D1 are obviously lower in the high-resolution models, with RMSE reduc-
tions reaching 12.5%, 15.1%, 32.8%, 54.3%, 31.4%, and 42.2% in CNRM-CM6, EC-Earth3,
HadGEM3, NorESM2, and MME, respectively. In addition, the biases over D2 and D3 in
most models, with improved resolutions, are also lower. For example, biases over D2 (D3)
in MPI-ESM1 are reduced by 20.4% (50.0%).

 
Figure 2. The spatial patterns of biases (departures from CN05.1) in WD (unit: days) for long-term
mean (1995–2014) from low-resolution (first column) and high-resolution (second column) models,
and differences between low-resolution and high-resolution models (third column). The last row
shows multimodels with low-resolution ensemble means (f1) and multimodels with high-resolution
ensemble means (f2), respectively.
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The spatial pattern of model biases in representing the SDII over China are shown
in Figure 3. The biases over D2 and D3 are remarkably lower in nearly all models with
high resolutions, in comparison with low resolution models. For example, the RMSE
decreased by 30.7% (22.1%) in CNRM-CM6, 14.6% (21.1%) in EC-Earth3, 19.7% (37.3%) in
HadGEM3, 36.6% (20.1%) in MPI-ESM1, and 10.8% (18.9%) in MME. Regional averaged
biases in PRCPTOT, WD, and SDII over D1, D2, and D3 from the individual models
and MME are shown in Table 3. The reduction in wet biases over D1 in CNRM-CM6,
HadGEM3, NorESM2, and MME could be due to the decreased precipitation frequency
and the weakened precipitation intensity. However, for EC-Earth3 and MPI-ESM1, the
contribution of precipitation frequency reduction is dominant. The reduction in biases over
D2 in NorESM2 is associated with precipitation frequency. In EC-Earth3, HadGEM3, and
MME, the reduction biases over D2 is related to precipitation frequency and precipitation
intensity. In addition, the decreased biases over D3 in CNRM-CM6 and MPI-ESM1 could
result from precipitation frequency. In HadGEM3, NorESM2, and MME, the decreased
biases could be associated with precipitation frequency and precipitation intensity.

Table 3. The area-weighted average biases (departures from CN05.1) and differences between high-
resolution and low-resolution models in PRCPTOT (unit: mm), WD (unit: days), and SDII (unit:
mm/day) over D1, D2, and D3 from individual model, multimodels with low-resolution ensemble
means, and multimodels with high-resolution ensemble means.

Model
D1 D2 D3

PRCPTOT WD SDII PRCPTOT WD SDII PRCPTOT WD SDII

CNRM-CM6-1-HR +292.7 −15.6 +2.3 +53.1 −8.9 +0.8 +17.1 −11.7 +1.4

CNRM-CM6-1 +814.0 +31.6 +3.1 +159.4 −11.0 +1.7 −38.2 −19.5 +1.8

High–Low −521.3 −47.2 −0.8 −106.3 +2.1 −0.9 +55.3 +7.8 −0.4

EC-Earth3-Veg +351.7 +31.9 +0.75 −47.1 +25.4 −1.7 −6.0 +9.8 −1.0

EC-Earth3-Veg-LR +433.7 +46.9 +0.65 −145.7 +20.2 −2.0 −4.2 +14.3 −1.3

High–Low −82.0 −15 +0.1 +98.6 +5.2 +0.3 −1.8 −4.5 +0.3

HadGEM3-GC31-MM +406.0 +14.9 +1.8 +383.6 +5.9 +2.0 +77.2 −0.9 +0.9

HadGEM3-GC31-LL +667.6 +40.6 +2.1 +532.8 +8.8 +2.7 +191.9 +2.0 +1.7

High–Low −261.6 −25.7 −0.3 −149.2 −2.9 −0.7 −114.7 −2.9 −0.8

MPI-ESM1-2-HR +520.1 +14.5 +2.5 −220.4 −6.6 −1.0 +113.9 +9.5 +0.2

MPI-ESM1-2-LR +798.5 +55.3 +2.1 −186.0 +17.8 −2.1 +151.2 +24.4 −0.6

High–Low −278.4 −40.8 +0.4 −34.4 −24.4 +1.1 −37.3 −14.9 +0.8

NorESM2-MM +520.7 +16.5 +2.4 −60.6 −4.4 −0.1 +192.1 +24.2 −0.4

NorESM2-LM +685.4 +34.0 +2.5 −85.7 −8.1 −0.02 +321.8 +27.4 +0.5

High–Low −164.7 −17.5 −0.1 +25.1 +3.7 −0.08 −129.7 −3.2 −0.9

High +418.2 +12.4 +1.9 +21.7 +2.2 +0.01 +78.9 +6.2 +0.2

Low +679.8 +41.7 +2.1 +55.0 +5.5 +0.07 +124.5 +9.7 +0.4

High–Low −261.6 −29.3 −0.2 −33.3 −3.3 −0.06 −45.6 −3.5 −0.2

Simulation for the climatological extreme indices, R95p, R20mm, and CDD, were
evaluated. In observation, the pattern of R95p and R20mm (Figures S1 and S2) shows a
transition from small values in northwestern China to large values in southeastern China,
consistent with the total precipitation (PRCPTOT) (Figure S3). The pattern of CDD shows
an opposite distribution (Figure S4), which has been indicated in previous studies [36,37].

Figure 4 shows the spatial patterns of model biases in R95p over China. The biases in
the high-resolution models over D2 (D3) are significantly reduced compared with those in

542



Sustainability 2022, 14, 25

the low-resolution models, with the reduction in RMSE reaching 22.8% (30.7%) in CNRM-
CM6, 11.2% (15.6%) in HadGEM3, 31.2% (29.3%) in NorESM2, and 26.9% (6.6%) in MME.
For the simulation over D1, obvious decreasing biases are found in CNRM-CM6, MPI-ESM1,
and MME, with RMSE reductions of approximately 45.8%, 29.6%, and 26.8%, respectively.

 

Figure 3. The spatial patterns of biases (departures from CN05.1) in SDII (unit: mm/day) for long-
term mean (1995−2014) from low-resolution (first column) and high-resolution (second column)
models, and differences between low-resolution and high-resolution models (third column). The
last row shows multimodels with low-resolution ensemble means (f1) and multimodels with high-
resolution ensemble means (f2), respectively.
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Figure 4. The spatial patterns of biases (departures from CN05.1) in R95p (unit: mm) for long-term
mean (1995−2014) from low-resolution (first column) and high-resolution (second column) models,
and differences between low-resolution and high-resolution models (third column). The last row
shows multimodels with low-resolution ensemble means (f1) and multimodels with high-resolution
ensemble means (f2), respectively.

The spatial distribution of model biases in R20mm over China is shown in Figure 5.
We found that all models with high resolution show a uniform reduction in biases over D1,
D2, and D3. For example, the obvious reduction in RMSE is 33.3% (2.0%) in CNRM-CM6,
31.6% (56.4%) in HadGEM3, 15.6% (53.1%) in NorESM2, and 18.1% (29.8%) in MME over
D2 (D3). Figure 6 shows the spatial pattern of model biases in CDD over China. When
compared with low resolution models, the biases with high-resolution models over D1,
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D2 and D3 are reduced to some extent. For example, the reduction in RMSE is 29.0%
(43.5%) in CNRM-CM6 and 20.0% (21.8%) in NorESM2 over D1 (D2). Furthermore, biases
in the western part of Northwest China (36–46

◦
N, 75–100

◦
E) are also lower in models with

high resolutions, with the reduction of RMSE achieving 23.9% in CNRM-CM6, 16.5% in
HadGEM3, and 11.0% in MME. The better simulation of the CDD index could be associated
with the simulation of the WD index (Figure 2). That is, the reduction in wet days may
contribute to increased dry days.

 
Figure 5. The spatial patterns of biases (departures from CN05.1) in R20mm (unit: days) for long-term
mean (1995–2014) from low-resolution (first column) and high-resolution (second column) models,
and differences between low-resolutions and high-resolutions models (third column). The last row
shows multimodels with low-resolution ensemble means (f1) and multimodels with high-resolution
ensemble means (f2), respectively.

545



Sustainability 2022, 14, 25

 

Figure 6. The spatial patterns of biases (departures from CN05.1) in CDD (unit: days) for long-term
mean (1995–2014) from low-resolution (first column) and high-resolution (second column) models,
and differences between low-resolution and high-resolution models (third column). The last row
shows multimodels with low-resolution ensemble means (f1) and multimodels with high-resolution
ensemble means (f2), respectively.

Evaluation of models using Taylor diagrams (Figure 7) for six extreme precipitation
indices shows that most models in high resolution show improvements in simulating WD
over China, compared with their counterparts in low resolution, such as the CNRM-CM6,
EC-Earth3, and MPI-ESM1 models. Most models with improved resolutions show no
obvious improvement in representing the features of R95p and in particular for R20mm
over China. However, for the CDD index, all models with high resolutions show better
performance compared with their counterparts with low resolutions. It is worth noting
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that models show a wide range of skill in reproducing the spatial distribution of CDD over
China. That is, the inter-model distance is obviously large (Figure 7f).

 

Figure 7. The Taylor diagram for three precipitation indices (PRCPTOT (a), WD (b), SDII (c), R95p (d),
R20mm (e), and CDD (f)) over China from individual models with high and low resolutions, multi-
models with low-resolution ensemble means, and multimodels with high-resolution ensemble means.

3.2. Possible Reasons for the Improved Precipitation Extremes Simulation in
High-Resolution Models

Previous studies have reported that model resolutions might have non-negligible
effect in simulations on the distribution of daily precipitation frequency [38]. Figure 8
shows the distributions of daily precipitation frequency as a function of daily precipitation
intensity from 0 to 100 mm/day regionally averaged over D1, D2, and D3. Fewer weak
precipitation events (0 mm/day–10 mm/day) could be found in nearly all models with
updated resolutions over D1 in comparison with their counterparts with low resolutions.
Therefore, the decreased biases of precipitation over D1 are associated with fewer weak
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precipitation events. The so-called “drizzling too much” phenomenon presented by climate
models in previous studies [39] is improved with updated model resolutions to some
extent. For CNRM-CM6 and HadGEM3 (EC-Earth3 and NorESM2), these models with
high resolutions capture decreasing (increasing) 10 mm/day–60 mm/day (>30 mm/day)
precipitation compared with their counterparts with low resolutions, which is associated
with decreased (increased) precipitation over D2 (Figures 1 and 4). Comparing MME in low-
resolution and high resolution versions simulates less 0 mm/day–30 mm/day precipitation,
thus causing the decreased precipitation over D2 (Figure 1). In addition, for HadGEM3 and
NorESM2, high-resolution versions show decreased precipitation over D3 (Figures 1 and 4),
which is also related to the simulated precipitation of less than 10 mm/day–50 mm/day in
these models in comparison with low resolutions.

Previous studies have reported that the vertical profile of the moisture content of
the atmosphere [40,41] plays an important role in the simulation of convective rainfall.
Therefore, the vertical distribution of moisture with simulated extreme precipitation was
studied. Figure 9 shows the structure of moisture with precipitation in summer over D2
from models and observations. The combination of ERA5 relative humidity with CN05.1
precipitation (CN05.1/ERA5) was seen as the observation. Extreme precipitation related
to strong deep convection is more easily triggered when the lower atmosphere above the
boundary layer experiences sufficient moistening and a deep layer of the air column is
nearly saturated [40]. We noticed that all models with low resolutions show excessive
moisture in the upper atmosphere (500 hPa–250 hPa) in comparison with high-resolution
versions. The simulation of the vertical distribution of moisture in high-resolution versions
is closer to the observation, in comparison with low-resolution versions, thus possibly
contributing to the better performance in the simulation of extreme precipitation with
high-resolution versions.

Figure 8. Cont.
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Figure 8. Relative bias curve of precipitation frequency distribution as a function of daily precipitation
intensity (bin size 1 mm day−1) over three subregions from individual models with low and high
resolutions, multimodels with low-resolution ensemble means, and multimodels with high-resolution
ensemble means (left y-axis, units: %). The unit of the x-axis is mm day−1. Biases are shown as
percentages relative to the observations. The first to third column corresponds to (D1), (D2), and
(D3), respectively.

 

Figure 9. Composite vertical profiles of relative humidity (unit: %) based on precipitation intensity
in summer over D2 from individual models (a–j), multimodels with low-resolution ensemble means
(k), multimodels with high-resolution ensemble means (l), and CN05.1/ERA5 (m).
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4. Discussion

This work provides a preliminary evaluation of precipitation extremes in terms of the
effect of model resolution. Although consistent improvements in light rainfall can be found
with updated resolutions, large model differences still exist in the five models. For example,
the impact of higher resolutions on the simulation of R95p varies greatly in the five models.
The above differences are possibly associated with the different reactions of some physical
processes to the resolution. Thus, some key physical processes are also important for better
simulation in high-resolution models.

The number of models used in this study is limited and model resolutions are not
high enough. To fully investigate the impact of model resolution on the simulation of
precipitation extremes, more models with higher resolutions from CMIP6 are required, and
further assessment of the impact of model resolution in other ways is also needed.

5. Conclusions

Based on five CMIP6 models, each having a pair of high-resolution and low-resolution
configurations, the difference between low-resolution models and high-resolution models
in representing the spatial pattern of climatological precipitation extremes over China
during 1995–2014 was compared. Generally, models in high resolution show better per-
formance over China, especially over D1, D2, and D3. The decreased biases of total
precipitation (PRCPTOT) over D1 were found in all models with updated resolutions, with
the largest decease in RMSE being 48.4% in CNRM-CM6, which is associated with fewer
weak precipitation events (0 mm/day–10 mm/day). Models with updated resolutions
also show smaller biases than their counterparts with low resolutions for the simulation
of precipitation over D2. For instance, the RMSE is reduced by 29.9% in CNRM-CM6 for
PRCPTOT index and 31.2% in NorESM2 for extreme precipitation amount (R95p), respec-
tively. These improvements could be attributed to better representation of the distribution
of daily precipitation frequency. In addition, the vertical distribution of moisture content in
models with updated resolutions is closer to the observation in comparison with models
with low resolutions, thus showing better performance for extreme precipitation over D2.

Overall, our results indicate that models with improved resolution show an obvious
advantage in the simulation of precipitation extremes, in particular for some regions
with complex terrain. In addition, models with updated resolution also demonstrate an
improvement in the simulation for light precipitation and heavy precipitation. To some
extent, high-resolution models increase our confidence in precipitation extremes simulation.
However, high-resolution simulation is very expensive, especially for global simulation.
Therefore, higher demands are placed on the development of computers. In addition,
some key physical processes are also crucial for simulation in extreme precipitation. Better
physical parameterizations are also needed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su14010025/s1, Figure S1: Spatial distribution of R95p (unit: mm) for long-term mean (1995–
2014) from individual models (a–j) and observation (k), Figure S2: Spatial distribution of R20mm
(unit: days) for long-term mean (1995–2014) from individual models (a–j) and observation (k), Figure
S3: Spatial distribution of PRCPTOT (unit: mm) for long-term mean (1995–2014) from individual
models (a–j) and observation (k). Figure S4: Spatial distribution of CDD (unit: days) for long-term
mean (1995–2014) from individual models (a–j) and observation (k).
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Abstract: Forest types are generally identified using vegetation or land-use types. However, vegeta-
tion classifications less frequently consider the actual forest attributes within each type. To address
this in an objective way across different regions and to link forest attributes with their climate, we
aimed to improve the distribution of forest types to be more realistic and useful for biodiversity
preservation, forest management, and ecological and forestry research. The forest types were classi-
fied using an unsupervised cluster analysis method by combining climate variables with normalized
difference vegetation index (NDVI) data. Unforested regions were masked out to constrict our study
to forest type distributions, using a 20% tree cover threshold. Descriptive names were given to the
defined forest types based on annual temperature, precipitation, and NDVI values. Forest types
had distinct climate and vegetation characteristics. Regions with similar NDVI values, but with
different climate characteristics, which would be merged in previous classifications, could be clearly
distinguished. However, small-range forest types, such as montane forests, were challenging to
differentiate. At macroscale, the resulting forest types are largely consistent with land-cover types
or vegetation types defined in previous studies. However, considering both potential and current
vegetation data allowed us to create a more realistic type distribution that differentiates actual veg-
etation types and thus can be more informative for forest managers, conservationists, and forest
ecologists. The newly generated forest type distribution is freely available to download and use for
non-commercial purposes as a GeoTIFF file via doi: 10.13140/RG.2.2.19197.90082).

Keywords: forest types; NDVI; AVHRR GIMMS; temperature range; precipitation range

1. Introduction

Forests vary in structure and function across the world. The broad-scale vegetation
units with common formation characteristics, due to similar climates, are known as vege-
tation types [1]. Generally, forest types are derived from vegetation or land use types. In
fact, the first way to define forest types was based on a vegetation classification. Vegetation
types were originally developed based on the idea that similar climates select for similar
plant forms [2], and therefore the resulting types were mostly climate-based. The first
formal climate classification system was defined by Köppen and was also used to predict
the global vegetation distribution [3]. Other systems for delineating types based on climate
variables include Holdridge life zones [4,5], Box models [6,7] and Whittaker’s biome types,
though in the case of Whittaker’s biomes, predefined vegetation unites were mapped onto
a climate space [8,9]. The predicted vegetation produced by biogeographical models (e.g.,
BIOME3 [10], dynamic global vegetation models, and bioclimatic maps [11]), is also mainly
derived from an assumed relationship between functional types and climate variables. The
ecoregions defined by Olson et al. [12] relied on climate data, expert judgment, and species
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assemblages to differentiate certain forest types. By mainly considering climate data, these
methods define forest types that better describe the potential vegetation of an area. They
may, however, fail to correspond with the actual vegetation, since this is defined by the
interaction between the potential vegetation and multiple factors, such as human influence,
species interactions, and biogeographical history.

Forest types were also defined in land-cover classifications. Land-cover classifications
delineate vegetation types based on satellite imagery [13–18]. Functional biomes have also
been defined using vegetation information [19]. Climatic vegetation types, on the other
hand, try to reflect the regional vegetation characteristics in terms of climate by merging
climate and NDVI data, and reveal the actual vegetation distribution, taking advantage of
the positive aspects of both approaches [20]. Although this method showed great promise
in Zhang et al. [20], the coarse resolution of the data, and the limited number of vegetation
types used, resulted in a forest type distribution with relatively low accuracy. The forest
attributes and their linkage to climate were also not well investigated in that study. A
reanalysis and improved definition of the method in Zhang et al. [20] is timely, and it can
provide a useful global forest type cartography that can more accurately represent actual
vegetation distributions.

Different vegetation classifications are useful for different purposes. For example,
climate-based vegetation classifications emphasize the distribution of vegetation types,
while land use classifications highlight the role of land cover and human activity. It is
important, consequently, to clarify the intent of new classifications. Our classification
focuses on forest types, as they have been shown to be reliably characterized using satellite
data [14,16]. An accurate definition of forest types is fundamental for preserving biodiver-
sity [11] and forest ecological research (e.g., for studies that compare and explore the drivers
of large-scale forest productivity [21]). To this end, forest types should reflect the actual
main forest types present in different regions, but this is not guaranteed when using forest
type classification based only on climate. For instance, the main forest type in the Northeast
China Plain is temperate sub-humid broadleaf forest, and it is generally classified as crop-
land in land use and vegetation classifications [22], which does not properly capture the
actual characteristics of the forested ecosystem. Classifications based only on normalized
difference vegetation index (NDVI) values, on the other hand, would not separate different
forest types with similar NDVI values but very different functional compositions [20].
We argue that forest types delineated to reflect the actual forest distribution using both
vegetation and climate data will be more useful for multiple uses, from management to
research [23].

We aim to create regionally and locally coherent maps of the global forest types that
emphasize the forest role in every region, that could be useful for research and applied
forest studies, and flexible enough to be easily updated as climate change or human actions
alter the characteristics or distribution of forest types. To this end, we combined vegetation
and climate data to refine the definition of forest types. Then, we compared NDVI values
between different forest types to investigate how well these forest types were separated in
our method.

2. Materials and Methods

2.1. Vegetation Data

NDVI is the most commonly used vegetation index to represent vegetation greenness.
Monthly NDVI data at 8 km resolution were retrieved from the Advanced Very High
Resolution Radiometer-based Global Inventory Modelling and Mapping Studies (AVHRR-
GIMMS) dataset (https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/, accessed on
1 July 2021) for 1982–2013 [24]. The data have been processed to reduce effects of navigation
errors, major volcanic eruptions, and orbital drift of older satellites [25]. AVHRR-GIMMS
NDVI product was found to be useful for studying linkage between land surface phenology
and climate over wide range of vegetation [24]. NDVI values range from −1 to 1, where
negative values represent an absence of vegetation and positive values indicate vegetated
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land. The average monthly NDVI values from 1982 to 2013 were used to reflect the mean
state of vegetation dynamics.

Enhanced vegetation index (EVI) enhances the vegetation signal with improved sensi-
tivity in high biomass regions. Monthly EVI data at 8 km resolution were retrieved from
the website (https://www.usgs.gov/land-resources/nli/landsat/, accessed on 1 July 2021).
EVI data were tested as a replacement for NDVI data.

2.2. Climate Data

We used a global gridded climate dataset with a spatial resolution of 1–18 km2 [26]. We
used the average monthly values of mean temperature and total precipitation for 1970–2000
at a resolution of 8 km2, to match the resolution of NDVI data [26] (http://worldclim.org/
version2, accessed on 1 July 2021).

Although the timespan of the climate data (1970–2000) slightly differs from that of
the NDVI data (1983–2013), this climate dataset has been widely used as a reliable high-
resolution climate dataset in bioclimatic studies [27,28]. In addition, the main purpose
of this climate data is to reflect the long-term mean state of the climate for a comparable
period to that of the forest type classification, and thus we do not expect time coverage
differences between NDVI and climate data to affect our results.

2.3. Forest Type Classification

K-means method [29] had been proven to be an effective method in defining climate
types, climatic vegetation types, and different forest types (e.g., [30–34]). The K-means
method is an unsupervised clustering method that separates multivariable data into a given
number of clusters according to their distances to the center of the clusters. Four steps
are involved in implementing the algorithm. First, k centroids are randomly selected as
initial centroids if the data are supposed to be classified into k groups. Second, each point is
allocated to its nearest centroid. Third, the k centroids are recalculated and assigned as new
centroids. Finally, steps two and three are iterated until the centroids are stable. Supervised
classification methods, such as random forest, require training data to classify the forest
types. However, the outcome of classification was not prior known before classification.
Therefore, K-means method is more suitable to be used in forest type classification than
supervised methods because it performs without training data.

NDVI is widely used to define vegetation types and land use types (e.g., [14–17]).
Forest types with similar NDVI values were inspected using climate data to check climate
differences in vegetation with similar NDVI. Consequently, our final forest type classifi-
cation is based on monthly mean temperature, total precipitation, and NDVI data. The
main advantage of this combinative approach is that types with similar NDVI values under
different climate conditions can be separated.

Monthly mean temperatures in all the grid cells were listed in one row and arranged
by 12 months to be an n × 12 matrix, as well as monthly total precipitation and NDVI. The
precipitation was log-transformed to reduce the influence of unit as precipitation ranges
from 0 to over 8000 cm. Hence, monthly mean temperature, total precipitation, and NDVI
values were combined in an n × 36 matrix, X:⎡⎢⎣ T11 · · · T1m P11 · · · P1m NDVI11 · · · NDVI1m

...
...

...
...

...
...

...
...

...
Tn1 · · · Tnm Pn1 · · · Pnm NDVIn1 · · · NDVInm

⎤⎥⎦ (1)

where T is monthly mean temperature, P is monthly mean precipitation after being log-
transformed, NDVI is monthly NDVI value, m corresponds to the month number, and n is
the number of all the grid cells in the global land area, except Antarctica. As the seasonal
cycle of climate and vegetation in the Southern Hemisphere is opposite to that in the
Northern Hemisphere, T, P, and NDVI in the Southern Hemisphere were adjusted to their
corresponding months in the Northern Hemisphere, to make them comparable (see [20]).
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Then, the n columns were classified into k clusters based on the monthly multivariable
attributes. The classification was implemented using stats package in R software [35].

Climate variables were rescaled to eliminate the potential influence of combining
multiple units, using the following formula:

Zi =
xi − min(X)

max(X)− min(X)
(2)

where Zi is the standard index, with a scale from 0 to 1, X is a variable, xi is every value in
X, and max(X) and min(X) are the maximum and minimum X values, respectively.

A shortcoming of the K-means method is that the number of clusters should be de-
fined beforehand. In our case, we chose to follow the number of forest types used by the
GlobCover land-cover classification, created by the European Space Agency, which identi-
fied 12 different types related to forest. The resulting forest types were given descriptive
names based on their annual temperature, precipitation, and NDVI values, trying to reflect
the forest attribute and corresponding climatic conditions in each of them. The climatic
modifiers in the names were designated following the criteria described in Table 1. Whether
the tree cover was evergreen or deciduous was determined by the variation in monthly
NDVI values and the related references [14,36,37]. The NDVI was low in winter if the type
is dominated by deciduous trees.

Table 1. Criteria used to assign forest type names.

Climate Variables Label Criteria

Annual Temperature (◦C)

Tropical >20
Sub-Tropical (10, 20]
Temperate (0, 10]
Sub-frigid (−5, 0]

Frigid (−15, −5]

Annual Precipitation (mm)

Rain >2000
Moist (1200, 2000]

Humid (800, 1200]
Sub-humid (400, 800]

Semiarid (200, 400]

We masked out ‘no forest’ regions to constrict our forest type distributions, using forest
cover data [38]. Regions with lower than 20% tree cover were considered ‘no forest’. This
matches the forest definition of the National Forest Inventory for forest inventory [39] and
had been used previously in nearby studies [40,41]. The FAO forest definitions entail some
flexibility regarding the tree cover threshold between 10% and 30%, creating a non-uniform
definition for forest types [42]. While the 10% canopy-cover threshold in FAO’s definition
has been used in some studies [43,44], it has also been criticized for including wooded
grassland ecosystems [45], which have markedly different ecosystem dynamics. We decided
to use a 20% minimum tree cover threshold, as it has been used for defining forest regions
before [43,44]. It is important to note that the threshold used for defining forests will
likely influence the definition and classification of forest types [42]. Thus, the research or
management goal should be considered carefully when using a type classification, paying
particular attention to the forest definition used.

The sensitivity of the global forest classification to the selected variables and the spatial
resolution of selected variables were tested by changing the selected variable and changing
the spatial resolution of selected variables.

We compared the resulting type distribution with the GlobCover land use maps
(http://due.esrin.esa.int/, accessed on 1 July 2021). We also classified the forest type based
on climate and EVI data to test whether EVI was a better vegetation indication than NDVI.
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2.4. Climate Conditions in Every Forest Type

After classifying the forest types, we calculated the annual mean temperature, to-
tal annual precipitation, and mean NDVI value for every forest type to highlight their
differences.

3. Results

3.1. Distribution of Forest Types

Twelve forest types were classified based on 8 km monthly NDVI, temperature, and
precipitation data using the K-means method (Figure 1). Both vegetation and climate
characteristics differed between different forest types (Table 2). The forest types were
named based on their annual temperature, precipitation, and NDVI values (Table 2). We
derived eight satellite images from Google Earth to compare our defined forest types in
eight sites (Figure 2). The site pictures reflected the forest conditions in their defined forest
types well. The other four types were not shown for the lack of photos.

Figure 1. Geographic distribution of forest types classified based on 8 km resolution monthly
vegetation and climate data. Forest was defined as tree cover over 20% threshold value.
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Table 2. Forest types and their annual NDVI values, temperature (◦C), and precipitation (mm).

Code Type Mean Annual NDVI
Mean Annual

Temperature (◦C)
Total Annual

Precipitation (mm)

1 Tropical rainforest 0.72 ± 0.09 25.2 ± 1.9 2404.6 ± 677
2 Tropical moist forest 0.69 ± 0.08 24.5 ± 2.0 1644.5 ± 512
3 Tropical humid forest 0.59 ± 0.07 23.5 ± 2.7 1096.9 ± 394
4 Sub-tropical moist broadleaf forest 0.70 ± 0.08 14.0 ± 3.8 1490.9 ± 577
5 Sub-tropical humid broadleaf forest 0.58 ± 0.10 19.2 ± 4.3 1094.9 ± 390
6 Sub-tropical sub-humid broadleaf forest 0.60 ± 0.12 13.5 ± 3.6 732.3 ± 296
7 Temperate humid broadleaf forest 0.58 ± 0.07 6.3 ± 2.7 913.2 ± 402

8 Temperate sub-humid broadleaf and
needleleaf mixed forest 0.40 ± 0.05 1.2 ± 2.5 639.9 ± 234

9 Sub-frigid sub-humid broadleaf and
needleleaf mixed forest 0.56 ± 0.04 −0.1 ± 2.3 567.9 ± 144

10 Sub-frigid semiarid coniferous forest 0.42 ± 0.05 −3.6 ± 2.7 437.4 ± 200
11 Sub-frigid sub-humid coniferous forest 0.28 ± 0.06 −4.4 ± 2.2 547.3 ± 145
12 Frigid semiarid coniferous forest 0.27 ± 0.05 −10.1 ± 2.4 323.7 ± 91

Figure 2. Comparison of our forest types with Google Earth images in eight ground-truth points. ID
represents the photo site TL (14.5◦ N, 101.5◦ E), NJ (31.1◦ N, 118.8◦ E), (XS (21.9◦ N, 101.2◦ E), HF
(42.5◦ N, 72.15◦ S), QY (41.8◦ N, 124.9◦ E), CB (41.9◦ N, 127.8◦ E), GH (50.8◦ N, 121.5◦ E), CA (57.8◦ N,
76.1◦ S). Type ID was same as that in Table 2. The red color marked the location of photo site. The
other four types were not listed due to our lack of photos for them.

3.1.1. Tropical Forests

Forest types 1 to 3 are tropical forests. Type 1 is along the equator. The local vegetation
is rainforest; therefore, it is designated as a tropical rainforest. Type 2 is generally adjacent
to type 1; however, the precipitation has stronger seasonal variations (Figure 3). The
precipitation in type 2 is lower than that in type 1, so we designated it as a tropical moist
forest. The vegetation in type 3 is sparse forest, and it is a tropical humid forest.

558



Sustainability 2022, 14, 634

Figure 3. Monthly NDVI, temperature, and precipitation data for each type. See type names in
Figure 1. The type colors are same as those in Figure 1.

3.1.2. Subtropical Forests

Forest types 4 to 6 are subtropical forests. Broadleaf forests are the main landscapes.
Type 4 includes mainly broadleaf forests in southeastern China and southeastern America
and is termed a subtropical moist broadleaf forest. Type 5 includes broadleaf forests in
southwestern China and it is a subtropical humid broadleaf forest. Type 6 is referred to as a
subtropical sub-humid broadleaf forest and is located in the Mediterranean and western
North America.
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3.1.3. Temperate Forests

Forest types 7 to 8 are temperate forests. The types include a broadleaf forest and
mixed forest. Type 7 includes a temperate forest in northeastern America and western
Europe, termed a temperate humid broadleaf forest. Type 8 is a temperate sub-humid
broadleaf and needleleaf mixed forest and is located in central Europe and Canada.

3.1.4. Sub-Frigid Forests

Forest types 9 to 11 are sub-frigid forests. Type 9 is mixed with Type 8, but had a
lower temperature than type 8, and it is designated as a sub-frigid sub-humid broadleaf
and needleleaf mixed forest. Type 10, a sub-frigid semiarid coniferous forest, includes
the coniferous forest in southern Russia and northwestern Canada. Type 11, a sub-frigid
sub-humid coniferous forest, is located in northern Eurasia and northern Canada.

3.1.5. Frigid Forests

Forest type 12 is a frigid forest with coniferous trees. A deciduous coniferous forest
is the typical vegetation in northern Russia, so type 12 is a denominated frigid semiarid
coniferous forest.

3.2. Robust of Forest Type Classification

Global forest classifications based on bioclimatic variables, including annual mean
temperature, mean diurnal range, isothermality, temperature seasonality, max temperature
of the warmest month, min temperature of the coldest month, the temperature’s annual
range, mean temperature of the wettest quarter, mean temperature of the driest quarter,
mean temperature of the warmest quarter, mean temperature of the coldest quarter, annual
precipitation, precipitation of the wettest month, precipitation of the driest month, precipi-
tation seasonality, precipitation of the wettest quarter, precipitation of the driest quarter,
precipitation of the warmest quarter, and precipitation of the coldest quarter, produced
forest types that had distinct climate and NDVI characteristics with above classification
(Figure S1). Global forest types, classified based on maximum and minimum temperatures,
total precipitation, and NDVI, are similar to those classified based on mean temperature,
total precipitation and NDVI. Global forest types based on a 0.17 × 0.17◦ resolution mean
temperature, total precipitation, and NDVI had similar results with those based on a
0.08 × 0.08◦ resolution dataset. However, global forest classification could not be well
conducted based on a 0.5 × 0.5◦ resolution dataset. Therefore, our classification produced
robust results on global forest classification.

3.3. Climatic Control on Global Distribution of Forest Types

Forest types sharply differed in their monthly NDVI signatures (Figure 3). Rainforests
and moist forests had high NDVI values throughout the year. Evergreen broadleaf forests
had NDVI values greater than 0.4. Broadleaf forests and mixed broadleaf forests had low
NDVI values in winter because of fallen leaves from the broadleaf trees. NDVI values in
evergreen broadleaf forests ranged from 0.4 to 0.8. The winter NDVI values were lower
than 0.05 in the frigid types, even in evergreen needleleaf forest.

In general, forest types showed good differentiation and clustering in regard to tem-
perature, precipitation, and vegetation parameters (Figure 4). Including the NDVI resulted
in tighter and more compact forest type definitions than those of classifications based
uniquely in precipitation and temperature, which showed blurred limits between forest
types and discontinuous climatic envelopes (Figure 4). The temperature range of every
forest type was roughly consistent with the criteria which we defined to describe the name
of the forest type, and most forest types corresponded with wide precipitation ranges
(Figure 4).
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Figure 4. The corresponding annual mean temperature, total precipitation and NDVI for every forest
type. The type colors are same as those in Figure 1.

How NDVI values and climate attributes vary between forest types is illustrated
using the example of the location of tropical and tropical monsoon rainforests (Figure 5).
This example shows that the annual mean NDVI value of the tropical rainforest is much
higher than that of the tropical monsoon rainforest (Figure 5B), as well as differing in the
distribution patterns of annual mean temperature and total precipitation (Figure 5C,D).

561



Sustainability 2022, 14, 634

Figure 5. The boundary between tropical rainforest and tropical monsoon rainforest defined in our
study (A), and the distributions of NDVI values (B), annual temperature (◦C, C), and annual total
precipitation (mm, D) in these regions. The type colors are same as those in Figure 1.

Our method correctly identified both forest types. The comparison of our defined
forest types with the GlobCover land-cover maps showed that the corresponding types
were roughly distributed in similar regions (Figure S2). However, there are important
differences between our classification and previous classifications at fine scales. The forest
types defined based on climate and EVI data were not classified well, compared with those
defined based on climate and NDVI data (Figure S3). For instance, the tropical rainforest
was divided into two different types when compared with other vegetation classifications.
Given the less spatially-consistent grouping when using EVI data, we considered this a less
suitable option for the classification of forest types than NDVI data.

4. Discussion

We produced a high-resolution global forest type cartography, delineated using the K-
means clustering method based on monthly NDVI, temperature, and precipitation data. In
previous studies, forest types have been identified as potential vegetation based mainly on
climate data (e.g., [3,6,10]), or as actual vegetation based on satellite imagery (e.g., [14,16]).
By contrast, here we used a forest type definition that we believe is closer to the modern
concept of type (discussed in [23,46]) by considering not only climate variation, but also
the patterns of monthly changes in the actual vegetation. There were clear differences in

562



Sustainability 2022, 14, 634

the monthly variations of NDVI values, temperature, and precipitation between forest
types. Compared to a climate-based classification, also considering NDVI values has the
advantage of reflecting the realized rather than the potential types. The example of Africa
in Figure 5 stresses this, showing how two tropical forest types could be well separated
when we also consider NDVI as vegetation data. However, overall, our classification is still
highly consistent with climate-based forest types and should be seen as a refinement of
them, rather than a challenge to previous work.

There are clear differences in interpretation between our forest type classification and
other vegetation classifications. Vegetation or land-cover-based classifications highlight
the vegetation or land physical attributes, while our forest types emphasize the forest
attributes. In addition, land cover classifications include human-transformed vegetation,
such as pasture and urban buildings [47], while we masked out human-created types
when identifying the forest regions. There is no detailed information on the forest types
defined using land-cover and vegetation classification. Our classification improves the
detail in forest types and contains more information on forest types than other vegetation
classifications.

Our classification seems to accurately identify known forest ecosystems, whose cli-
matic definitions were well separated. This is particularly important for distinct forest types
that share similar NDVI values. For instance, we could clearly identify known sub-divisions
of the boreal forest that could not be differentiated in an objective way using only climate,
i.e., sub-frigid sub-humid deciduous coniferous forests, frigid semiarid coniferous forests,
and sub-frigid sub-humid broadleaf and needleleaf mixed forests, clearly distinguishing
sub-frigid from frigid coniferous ecosystems. The main difference between sub-frigid
semiarid coniferous forests and frigid semiarid coniferous forests is that the main forest
ecosystem in the former type is the larch-dominated bright coniferous forest while the
sparse larch trees with shrub dominate in the latter forest type.

An important feature of our model is that it includes a dynamic definition of forest
types. Since the NDVI is a characteristic of the vegetation and changes every year, the
forest types defined by the NDVI can change with time, as the main vegetation evolves, or
as a response to changing climate (e.g., [48]). That way, it is possible to regularly update
the forest type classification, to keep the forest types accurate and to study the effect that a
changing climate has on forested landscapes. However, in the short- and medium-timescale,
we expect these forest types to be quite stable due to the rather stable signal of the long-term
climate data (compared with a NDVI-only model).

It should be noted that there are some forest types that are not only determined
by climate but also by edaphic and/or hydrological conditions, such as dry forests (vs.
wooded grassland), riverine forests and swamp forests, which our approach is not able to
differentiate. Another main limitation of our classification is that forest types occupying a
small region (i.e., with an extension lower than that provided by the macroclimate data
products we used), and those not having a distinct NDVI and climate to nearby forest types
would be merged into nearby forest types. Tropical and temperate montane forests were
not picked up by our clustering analysis, likely due to their limited spatial extension and
lack of climate data resolution. Increasing data resolution across the world will alleviate
this problem. Alternatively, including a proxy for ‘montane conditions’, such as, perhaps,
relative elevation or a combination of solar radiation and exposition, would aid in this goal.

It is not easy to make a one-on-one comparison between forest type classifications
because they differ in the number of types they consider, they are based on different datasets,
and are designed for different purposes [19]. While there are important differences between
our classification and previous classifications on fine scales, on a large scale our forest types
tended to largely agree with corresponding land-cover types or vegetation types defined
in previous studies [14,16]. GlobCover forest types had a high large scale agreement with
ours (Figure S2). However, using better datasets, updating our methods, and including a
larger number of types improved our ability to correctly identify the boundaries between
different forest types at a finer scale. We also included self-descriptive forest labels, rather
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than types based on climate notation. These labels are easier and more intuitive to interpret
for non-scientists. The result is a more accurate distribution of forest types, which will
hopefully be more suitable for forestry and biogeographic studies.

5. Conclusions

We developed here a high-resolution global forest type classification cartography
by integrating NDVI, temperature, and precipitation data. These forest types are largely
consistent with previous type definitions, but also take explicitly into account the actual
vegetation and their growth patterns. The distribution of forest types is freely available in
(doi: 10.13140/RG.2.2.19197.90082, currently available in Figure S4).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su14020634/s1, Figure S1: Global forest classifications with changing selected variables and
the spatial resolution of selected variables. Global forest classification based on NDVI and bioclimatic
variables (annual mean temperature, mean diurnal range, isothermality, temperature seasonality, max
temperature of the warmest month, min temperature of the coldest month, temperature annual range,
mean temperature of the wettest quarter, mean temperature of the driest quarter, mean temperature
of the warmest quarter, mean temperature of the coldest quarter, annual precipitation, precipitation
of the wettest month, precipitation of the driest month, precipitation seasonality, precipitation of
the wettest quarter, precipitation of the driest quarter, precipitation of the warmest quarter and
precipitation of the coldest quarter) (A), and classification based on maximum and minimum temper-
atures, precipitation, water vapor pressure, and NDVI data (B), and global forest classifications based
on mean temperature, total precipitation, and the NDVI from 0.17 × 0.17◦ (C) and 0.5 × 0.5◦ (D)
resolution dataset. Figure S2: Comparison between our forest types with the GlobCover land-cover
map. Figure S3: Forest types defined based on climate and EVI data. The type colors are the same as
those in Figure 1, but some types do not overlap with those in Figure 1, and they are marked with
different colors. Figure S4: The GeoTIFF file for our forest types.
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Abstract: High-resolution and high-quality precipitation data play an important role in Numeri-
cal Weather Prediction Model testing, mountain flood geological disaster monitoring, hydrological
monitoring and prediction and have become an urgent need for the development of modern mete-
orological business. The 0.01◦ multi-source fusion precipitation product is the latest precipitation
product developed by the National Meteorological Information Center to meet the above needs.
Taking the hourly precipitation observation data of 2400 national automatic stations as the evaluation
base, independent and non-independent test methods are used to evaluate the 0.01◦ multi-source
fusion precipitation product in 2020. The product quality differences between the 0.01◦ precipitation
product and the 0.05◦ precipitation product are compared, and their application in extreme precip-
itation events are analyzed. The results show that, in the independent test, the product quality of
the 0.01◦ precipitation product and the 0.05◦ precipitation product are basically the same, which
is better than that of each single input data source, and the product quality in winter and spring
is slightly lower than that in summer, and both products have better quality in the east in China.
The evaluation results of the 0.01◦ precipitation product in the non-independent test are far better
than that of the 0.05◦ product. The root mean square error and the correlation coefficient of the 0.01◦

multi-source fusion precipitation product are 0.169 mm/h and 0.995, respectively. In the extreme
precipitation case analysis, the 0.01◦ precipitation product, which is more consistent with the station
observation values, effectively improves the problem that the extreme value of the 0.05◦ product is
lower than that of station observation values and greatly improves the accuracy of the precipitation
extreme value in the product. The 0.01◦ multi-source fusion precipitation product has better spatial
continuity, a more detailed description of precipitation spatial distribution and a more accurate
reflection of precipitation extreme values, which will better provide precipitation data support for
refined meteorological services, major activity support, disaster prevention and reduction, etc.

Keywords: high-resolution and high-quality precipitation data; independent and non-independent
test; the 0.01◦ multi-source fusion precipitation product; extreme precipitation event

1. Introduction

Precipitation data are the basis of weather and climate monitoring, climate change
research, model prediction tests and meteorological and hydrological prediction. They play
an extremely important role in flood season prediction, meteorological prediction, agri-
cultural guidance and disaster prevention and reduction. With the rapid development of
meteorological observation systems, more and more observation data and numerical model
simulation data such as ground automatic weather station data, radar data and satellite
data can be used, and various industries have higher and higher requirements for grid
precipitation products. High-resolution and high-quality precipitation data have gradually
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become an urgent need for the development of modern meteorological business [1]. Multi-
source fusion precipitation products can combine the advantages of precipitation data from
different sources, and have gradually become the mainstream trend in the development of
high-quality precipitation products in the world in recent decades [2–11].

In recent years, many meteorological institutions in China have committed themselves
to research the multi-source fusion technology, develop different kinds of 0.05◦ precipi-
tation products, and significantly improve the quality of precipitation products in China.
The National Meteorological Satellite Center of China has developed FY series satellite
precipitation products based on the revision of the intelligent objective analysis method
considering station distance and angle [12]. The National Meteorological Information
Center of China, using the Probability Density Function matching (PDF) + Optimal Interpo-
lation (OI) method of the U.S. Climate Prediction Center (CPC), has developed two-source
fusion precipitation products based on ground station data and FY satellites data and
two-source fusion precipitation products based on ground station data and CMORPH
satellites data [12–19]. On the basis of two-source fusion precipitation products, using
Probability Density Function matching (PDF) + Bayesian Multi-model Average (BMA) +
Optimal Interpolation (OI) method, the National Meteorological Information Center has
developed a series of three-source fusion precipitation products based on ground station
data, radar data and satellite data [20,21]. As grid products with high precision, high
quality and continuous time and space [1], multi-source fusion precipitation products have
been widely used in the fields of model forecast testing [22,23], hydrological forecast [24]
and meteorological live monitoring in provinces of China.

In order to further meet the needs of high-resolution and high-quality grid precip-
itation data in the fields of intelligent grid forecasting business development, refined
meteorological services and disaster prevention and reduction, the National Meteorological
Information Center has developed a 0.01◦ multi-source fusion precipitation product based
on ground station data, radar data and satellite data by using Probability Density Function
matching (PDF) + Bayesian Multi-model Average (BMA) + Spatial Downscaling (DS) +
Optimal Interpolation (OI) method [15]. The product has further improved the quality and
resolution of the fusion precipitation product, including adding more precipitation data
sources, multi-source quality control of station observation data, quality control of fusion
precipitation products, optimization of fusion parameters of multi-grid variational analysis,
etc. Now the precipitation product has completed the business distribution to all provinces,
and the data are connected to the China Integrated Meteorological Information Service
System (CIMISS) data environment to provide services through the Meteorological Unified
Service Interface Community (MUSIC) interface. In this study, to evaluate the quality and
application effect of the product in China, independent and non-independent tests are used
to evaluate the 0.01◦ multi-source fusion precipitation products in 2020, and the effect of
the product on the characterization of extreme precipitation is analyzed.

2. Data and Processing

There are seven data sources of multi-source fusion precipitation products: (1) Obser-
vation data of ground automatic weather stations with hourly precipitation data of more
than 60,000 automatic weather stations in China after quality control. (2) Satellite inversion
precipitation products: The FY2 satellite inversion precipitation product developed by the
National Satellite Meteorological Center, nominal projection, spatial resolution of about
4 km and time resolution of 1 h; The CMORPH satellite inversion precipitation product
with global resolution of about 7 km and 30 min developed by the US Climate Prediction
Center; The GsMAP satellite inversion precipitation product with global resolution of
1hour and 10 km developed by Japan Aerospace Exploration Agency (JAXA); The IMERG
satellite inversion precipitation product with 30 min and 10 km resolution developed by
NASA. (3) Radar precipitation estimation data: The national radar quantitative precipita-
tion estimation product with hourly and 0.01◦ resolution developed by the Meteorological
Observation Center of China Meteorological Administration; The national radar quantita-
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tive precipitation estimation product with hourly and 0.01◦ resolution developed by the
National Meteorological Information Center of China Meteorological Administration.

In view of the missing detection of erroneous precipitation data observed by automatic
stations, after real-time quality control, the automatic weather stations hourly precipitation
data also adopted the collaborative quality control technology of multi-source meteorologi-
cal data, including consistency check between weather phenomena and precipitation and
consistency check with radar estimated precipitation. In addition, the threshold lookup
table of precipitation data and blacklist of ground automatic weather stations were es-
tablished. The optimized quality control algorithm strengthens the screening of micro
precipitation, the screening of false precipitation data and extreme outliers of products and
improves the product quality in many aspects.

The optimal selection method is used in the fusion application of radar data and
satellite data, and the weight coefficient of the linear fusion method that is adjusted by
season and region is used in the Bayesian Multi-model Average of satellite data. The main
development process of the 0.01◦ multi-source fusion precipitation product is shown in
Figure 1.

Figure 1. The main development process of the 0.01◦ multi-source fusion precipitation product.

The 0.01◦ and 0.05◦ resolution fusion analysis products can be downloaded through
MUSIC, National Meteorological business intranet (http://idata.cma/) (accessed on
3 November 2021) and China Meteorological Data Network (http://data.cma.cn/) (ac-
cessed on 3 November 2021).

In addition, in the reprocessing of multi-source fusion precipitation products, some
grid values will be replaced by the station precipitation value. In order to ensure the
objectivity of the evaluation results, the evaluated product data are not replaced.

3. Product Evaluation Research

In this study, the hourly precipitation observation data of 2400 national automatic
stations are used as the evaluation base, and the independent and non-independent test
methods are used to evaluate the 0.01◦ multi-source fusion precipitation product in 2020.
In the independent test, the observed precipitation data of 2400 national stations do not
participate in the ground grid analysis and fusion and are used as the “truth” data of the
test. In the non-independent test, the observed precipitation data of 2400 national stations
participate in the ground grid analysis and fusion and are still used as the “truth” data of
the test.

The statistical evaluation indexes in this paper are mean error (ME), root mean square
error (RMSE) and Pearson correlation coefficient (R):

ME =
1
n

n

∑
i=1

(pi − gi) (1)
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RMSE =

√
1
n

n

∑
i=1

(pi − gi)2 (2)

R =

n
∑

i=1
(pi − p)(gi − g)√

n
∑

i=1
(pi − p)2

√
n
∑

i=1
(gi − g)2

(3)

In the formula, gi is the precipitation observation data of 2400 national stations which
is regarded as the “true value” and pi is the precipitation value interpolated from each
tested precipitation product to 2400 national stations.

3.1. Evaluation of Data from Different Sources and Time Series of Product Evaluation Results

The overall independent quality evaluation results of different resolution fusion pre-
cipitation products and the input data used in the products are shown in Table 1. The
independent testing results in 2020 show that the quality of the 0.01◦ fusion precipitation
product is basically the same as that of the 0.05◦ product, the Correlation Coefficients of
both products are higher than 0.85, the Root Mean Square Error is less than 0.6 mm/h,
and they are better than the quality of each single input datum. In the comparison of
various input data, the quality of ground analysis is the best, followed by radar, and both
are better than all kinds of satellite precipitation data. Among all kinds of satellite retrieved
precipitation input data, the quality of the IMERG-L is the best, followed by the CMORPH,
and both are better than other kinds of satellite precipitation products.

Table 1. The overall independent quality evaluation results of the fusion precipitation products and
input data sources (2020).

Number Data
ME (mm/h) RMSE (mm/h) R

0.01◦ 0.05◦ 0.01◦ 0.05◦ 0.01◦ 0.05◦

1 Ground analysis −0.013 −0.015 0.576 0.597 0.857 0.845
2 Radar QPE −0.016 −0.016 0.815 0.813 0.720 0.704
3 FY2G / 0.017 / 1.478 / 0.245
4 GSMaP-now / 0.018 / 1.288 / 0.244
5 GSMaP-nrt / 0.004 / 1.284 / 0.299
6 CMORPH / −0.034 / 1.102 / 0.366
7 IMERG-L / 0.015 / 1.070 / 0.451
8 Precipitation products −0.010 −0.007 0.524 0.519 0.851 0.854

Figure 2 shows the evaluation result time series of independent tests of fusion pre-
cipitation products from January to December 2020. In the whole year, there are little
differences in the quality of the 0.01◦ fusion precipitation product and the 0.05◦ fusion
precipitation product. In winter and spring, due to the suspension of the Tipper rain
gauge in northern China (about 60,000 stations across the country are reduced to about
40,000 stations, as shown in Figure 3), and the insufficient inversion and estimation ability
of satellite and radar detection means for solid precipitation, the quality of the products
is affected, and the correlation coefficient is unstable. The root mean square errors of the
0.01◦ product and the 0.05◦ product are relatively consistent, and because the root mean
square error is closely related to precipitation, the root mean square error in summer is
higher than in winter and spring. Compared with the 0.05◦ precipitation product, the mean
error of the 0.01◦ precipitation product in summer is slightly lower, which is closely related
to the analysis radius of ground analysis of the two resolution products.
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Figure 2. The evaluation results time series of independent test of fusion precipitation products in
2020 ((a): correlation coefficient, (b): root mean square error, (c): mean error, green line represents the
0.01◦ precipitation product, green line represents the 0.05◦ precipitation product).

Figure 3. Number of automatic stations merged in the 0.01◦ precipitation product every hour in 2020.
(10,100 represents UTC 00:00 on 1 January, and 122,601 represents UTC 01:00, 26 December).

3.2. Spatial Distribution of Product Evaluation Index

The spatial distribution of independent test evaluation results of fusion precipitation
products in 2020 is shown in Figure 4. The spatial distribution of independent test eval-
uation results of the 0.01◦ fusion precipitation product and the 0.05◦ fusion precipitation
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product is basically the same. In terms of the correlation coefficient (a1 and b1), the corre-
lation coefficient in the dense area of stations in the east can basically exceed 0.8, and the
correlation coefficient in the north and west is relatively low, which is related to the sparse
distribution of ground stations and relatively few precipitation data in this area. The spatial
distribution of the root mean square error is affected by precipitation. The root mean square
error in the southeast is greater than that in the west and north with less precipitation
(a2 and b2). The proportion of stations with root mean square error of 0~0.8 mm/h for
0.01◦ and 0.05◦ products is 90.41% and 89.56%, respectively. In the spatial distribution of
mean error (a3 and b3), stations with absolute deviation greater than 0.05 mm/h are mainly
distributed in areas with large annual precipitation in 2020. The proportion of stations
with mean error of the 0.01◦ product and the 0.05◦ product between −0.05~0.05 mm/h are
96.08% and 95.15%, respectively. In addition, the 0.05◦ product has more positive mean
error values. The proportion of stations with mean error of the 0.01◦ product and the 0.05◦
product greater than 0.05 mm/h is 0.7% and 2.0%, respectively, which is consistent with
the small overall mean error of the 0.01◦ product in Figure 2 and Table 1. As can be seen
from the spatial distribution of independent test results (Figure 4), the quality of the 0.01◦
product is slightly better than that of the 0.05◦ product, and both products have better
quality in the east.

3.3. Comparison of Independent and Non-Independent Tests

Taking July 2020 as an example, the independent test and non-independent test
results of the 0.01◦ fusion precipitation product and the 0.05◦ fusion precipitation product
are analyzed and compared, as shown in Table 2. Test results in July 2020 show that
independent test results of the 0.01◦ multi-source fusion precipitation product are basically
consistent with those of the 0.05◦ product, and the evaluation results of the non-independent
test indicate that the 0.01◦ multi-source fusion precipitation product is obviously better than
the 0.05◦ product. In the non-independent test, the product quality of the 0.01◦ product
and the 0.05◦ product was improved, and the product quality of the 0.01◦ product was
improved more significantly.

Table 2. Comparison of independent test and non-independent test results of fusion precipitation
products (July 2020).

Number Data ME (mm/h) RMSE (mm/h) R

1 0.01◦ (non-independent) 0.0001 0.169 0.995
2 0.05◦ (non-independent) −0.0091 0.681 0.907
3 0.01◦ (independent) −0.0253 0.825 0.863
4 0.05◦ (independent) −0.0134 0.799 0.869

Correlation coefficient, root mean square error and mean error time series of the
independent test and the non-independent test of the 0.01◦ fusion precipitation product
and the 0.05◦ fusion precipitation product in July 2020 are shown in Figure 5. It can be
seen from the time series, the independent test results of the 0.01◦ multi-source fusion
precipitation product are basically consistent with those of the 0.05◦ product, and non-
independent test results of the 0.01◦ product are slightly worse than those of the 0.05◦
product. In the non-independent test, the 0.01◦ precipitation product is much better than the
0.05◦ product, which means the precipitation of the 0.01◦ product is more consistent with
the station observation values. For example, the root mean square error and the correlation
coefficient of the non-independent test of the 0.01◦ multi-source fusion precipitation product
are 0.169 mm/h and 0.995, respectively, and the root mean square error and the correlation
coefficient of the non-independent test of the 0.05◦ product are 0.681 mm/h and 0.907,
respectively. In addition, compared with other evaluation results, non-independent test
results of the 0.01◦ product are much more stable.
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Figure 4. The spatial distribution of independent test evaluation results of fusion precipitation
products in 2020. ((a1,b1): correlation coefficient, (a2,b2): root mean square error, (a3,b3): mean error).
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Figure 5. Time series of independent and non-independent test result of fusion precipitation prod-
ucts ((a): correlation coefficient, (b): root mean square error, (c): mean error, blue line: 0.01◦

non-independent, orange line: 0.05◦ non-independent, green line: 0.01◦ independent, red line:
0.05◦ independent).

4. Application of Fusion Precipitation Products in Extreme Precipitation Event

Taking the 7.20 rainstorm event in Henan in 2021 as an example, the application
effect of the 0.01◦ precipitation product and the 0.05◦ precipitation product in this event is

574



Sustainability 2022, 14, 616

analyzed. Figure 6 shows the spatial distribution of the 0.01◦ precipitation product and the
0.05◦ precipitation product in Henan on 20 July 2021. It can be seen from the figure that the
spatial distribution of the 0.01◦ precipitation product and the 0.05◦ precipitation product is
similar on the whole, and both have better spatial continuity than that of station data. The
0.01◦ multi-source precipitation product describes the spatial distribution of precipitation
more finely and reflects the extreme precipitation more continuously and accurately. In the
figure, on 20 July, the 24 h cumulative extreme precipitation of the station and the 0.01◦
precipitation product was 687.9 mm, which of the 0.05◦ precipitation product was only
580.2 mm. The spatial location of the 0.01◦ product extreme precipitation is more matched
with that of station extreme precipitation. It can be seen that the 0.01◦ multi-source fusion
precipitation product effectively improves the problem that the extreme precipitation of
the 0.05◦ product is smaller, and greatly improves the accuracy of extreme precipitation of
fusion precipitation products.

Figure 6. The spatial distribution of 0.01◦ and 0.05◦ precipitation products in Henan on 20 July 2021
(the picture on the right is an enlarged picture of the extreme precipitation region).
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5. Conclusions

On the basis of the 0.05◦ three-source fusion precipitation product based on ground
station data, radar data and FY2G satellite data, the National Meteorological Informa-
tion Center has developed the 0.01◦ multi-source fusion precipitation product by using
Probability Density Function matching (PDF) + Bayesian Multi-model Average (BMA) +
Spatial Downscaling (DS) + Optimal Interpolation (OI). Taking the hourly precipitation
observation data of 2400 national automatic stations as the evaluation base, independent
and non-independent test methods are used to evaluate the 0.01◦ multi-source fusion
precipitation product in 2020, the differences between the 0.01◦ multi-source fusion pre-
cipitation product and the 0.05◦ three-source fusion precipitation product are compared,
and the spatial fineness and extreme value accuracy of extreme precipitation portrayed by
precipitation products are analyzed. The main conclusions are as follows:

(1) From the overall independent test results in 2020, the quality of the 0.01◦ fusion
precipitation product is basically the same as that of the 0.05◦ product. Both products
are better than that of each single input data source. Among all data sources, the ground
analysis quality is the best, followed by radar data, and the IMERG satellite precipitation
data is the best among all satellite data sources. Both products have better quality in
summer than that in winter and spring, and better quality in the east in China than that in
the west.

(2) Independent test results of the 0.01◦ fusion precipitation product are basically con-
sistent with those of the 0.05◦ product, which are slightly worse than the non-independent
test results of the 0.05◦ product. The evaluation results of the 0.01◦ fusion precipitation
product in the non-independent test are far better than those of the 0.05◦ product, which
means the precipitation of 0.01◦ product is more consistent with the station observation
values.

(3) The 0.01◦ multi-source fusion precipitation product has better spatial continuity,
more detailed description of precipitation spatial distribution and more accurate embodi-
ment of precipitation extreme value, which effectively improves the problem of the small
extreme value of the 0.05◦ product and greatly improves the accuracy of precipitation
extreme value.

High-quality and high-timeliness of the 0.01◦ multi-source fusion precipitation product
in China will provide real-time precipitation data support for the upgrading of China’s
intelligent grid forecasting business to 0.01◦ resolution, and will play a significant economic
and social benefit in disaster prevention and mitigation such as flood control and drought
relief, refined meteorological services and guarantee of major activities. At present, the
0.01◦ multi-source fusion precipitation real-time product has been commercialized and is
available for download. Although the effect of the 0.01◦ multi-source precipitation product
in extreme precipitation events is preliminarily analyzed in this paper, there is still a lack
of more detailed research, which can further analyze the applicability of the 0.01◦multi-
source precipitation product in extreme precipitation in different seasons and different
precipitation levels. These contents will be reflected in future research, and this research is
already in progress.
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