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Climate change and extreme events are receiving increasingly more attention in the
global sustainable development sphere. Identifying the impacts of climate change and
extreme events is not only important in terms of natural processes, such as heat waves
and earthquakes, but also in terms of societal processes and the societal consequences of
natural disasters. Over the past two years (2021 and 2022), extreme events have occurred
across the globe. The February 2021 North American cold wave led to widespread power
outages for millions of people in Texas, USA. Another remarkable extreme event, the recent
Coronavirus disease in 2019 (COVID-19), is shaping the entire environmental and societal
sustainability situation worldwide. In 2022, persistent heatwaves have been affecting
Europe, causing evacuations and heat-related deaths with a maximum temperature of
47.0 °C reported in Pinhao, Portugal, on 14 July. The flood in Pakistan, the deadliest one
in worldwide since 2017, has killed more than 1300 people since 14 June 2022. With the
intensity and magnitude of climate change and extreme events being unknown, neither
the changes themselves nor the corresponding impacts are clear under the current circum-
stances. Therefore, we organized this Special Issue under the theme of sustainability with
respect to the changing climate and extremes.

We will briefly discuss the contributions of the 34 published papers in this Special
Issue in the following four sections.

1. Natural Disasters in Agriculture

As the most widely cultivated fruit genus, Wang Shuangshuang et al. (Appendix A,
Contributor 1) evaluated changes in the quality and yields of citrus under the shared
socioeconomic pathways scenario. In their study, first, they proposed statistical models
of the relationship between daily meteorological observation variables and the yields and
quality of citrus. In short, with respect to predicting the quality of citrus, the monthly mean
diurnal temperature range in July was identified as the optimal variable; for predicting
yields, a group of variables in October and September was identified as comprising the
best predictors. Then, they analyzed the future changes in the quality and yields of
citrus in the period from 2021-2060 using the ensemble mean of nineteen Coupled Model
Intercomparison Project 6 (CMIP6) models. Finally, they found that the quality of citrus
will increase in 3 provinces, while the yield will increase in all 11 provinces. The results
can support the design of citrus plantations in the future; further, the statistical models
can be coupled with the ecological process model for predicting the yield and quality of
citrus fruits.

Potatoes play a significant role in global food security and human diets. As the leading
potato producer, China accounts for 22% of the world’s potato yield [1]. In China, the
potato plant has been the fourth most important crop after rice, wheat, and maize, and
is facing the negative impacts of the changing climate. Yang Li-Tao et al. (Contributor
2) analyzed the climatic production potential of potatoes from 1961 in Inner Mongolia,
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where they occupied the largest plantation area of potatoes in China. They obtained the
annual average climate production potential for potatoes in Inner Mongolia, which was
19,318 kg/ hm~2. Over the past 61 years, the climatic production potential exhibited an
insignificant linear decreasing trend under the changed climate. The main finding of their
study lies in their identification of precipitation as the main impact factor for the productive
potential for potatoes in Inner Mongolia.

Maize (Zea mays L.) is one of the most important crops in the global and national
economies and is the third highest yielding form of crop production in China. In China, the
Huanghuaihai plain is the largest summer maize-producing area with a wheat-maize crop-
ping system. The ongoing process of global warming increases the risk of high-temperature
injury to maize. In addition, previous studies have shown that the inter- and mixed-
cropping of maize varieties with different genotypes is one way to effectively alleviate
high-temperature injuries during the flowering period. In this study, Li Shuyan et al. (Con-
tributor 3) investigated the response of five main genotypes of maize to high temperatures
and different crop models during the flowering period. The main findings revealed that
inter- and mixed cropping effectively reduced the impact of high temperatures during
flowering, demonstrating that even the genotypic varieties can make significant differences
in the yields.

In addition, the diurnal temperature range (DTR) is also an important meteorological
variable affecting maize yields. Xie Wengiang et al. (Contributor 4) evaluated the ability of
26 CMIP6 models to simulate DTR from 1961-2014 and projected the DTR under different
shared socioeconomic pathway (SSP) scenarios from 2015 to 2050. The main findings
of their study included: (1) CMIP6 models can generally reproduce spatial distribution,
especially in the maize cultivation areas; (2) The DTR remains stable from 2015-2050 under
SSP245, while a significant decreasing trend is found under SSP585. This study implied the
efficiency of the application of DTR in the accurate prediction of maize yield prediction.

The dry-hot wind is a type of severe agricultural wind disaster with high a temperature
and low humidity. Dry-hot winds can reduce wheat production by up to 30%. In China,
Shandong Province has the greatest agricultural growth value among all of the provinces
and is also the most affected by dry-hot winds. Wang Nan et al. (Contributor 5) assessed the
spatial distribution of dry-hot wind disasters in Shandong Province. The main finding in
their study demonstrated that the more developed areas in the east of Shandong province
show high disaster prevention and mitigation capabilities, whereas these same aspects are
weak in the west, where the economy is still behind eastern Shandong province. Their
study implies the roles of economical input in preventing natural disasters.

Further, Jiang Meiyi et al. (Contributor 6) evaluated the effect of drought on the
production of peanuts in Shandong province, which accounts for 16% of the total peanut
cultivation area and 20% of the total peanut production in China. Drought has been consid-
ered the most severe natural disaster with respect to agricultural production. Therefore,
identifying the high drought risk regions will be a benefit to the yields and quality of
peanuts in Shandong. As the main finding of their study, they found that the drought
risk was concentrated on the Jiaodong Peninsula, covering 20.7% of the province. Their
study can support the acquisition of data for developing and carrying out peanut drought
prevention, relief policies, and related decisions.

Further, in another study (Contributor 7), Pan Mingxi et al. investigated the effects of
snow cover on the spring soil moisture content, which will impact the occurrence of spring
drought in high-latitude areas. To investigate the role of winter snow cover with respect
to soil moisture, the authors chose the main agricultural areas of Northeast China—the
Songnen Plain and the Sanjiang Plain—to address these issues. Their main finding was that
they found that snow cover has a strong effect on soil moisture conservation in more arid
areas. This work can support the scientific basis for the early warning of spring drought,
the development of more efficient irrigation schemes, and crop yield prediction based on
the snow cover in Northeast China.
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To predict droughts and floods in agriculture in the future, in their study (Contributor 8),
Li Jiannan et al. constructed a vulnerability model based on “sensitivity—exposure-adaptability”
and “vulnerability-risk, source-risk receptor” drought and flood risk models and estab-
lished multi-index prediction systems. They predict the vulnerability and risk of droughts
and floods in China’s agroecosystem under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios
from 2020 to 2050 using a combination of AHP and the entropy-weighting method. They
found that the levels drought and flood vulnerability intensify, and the drought or flood
vulnerability area expands to southern China from SSP1-2.6 to SSP5-8.5.

2. Urban/Rural Ecosystem, Tourism, and Ecosystem Service

In an urban ecosystem, rainfall plays a crucial role in human mobility and urban
management and planning. After four decades of urbanization, China is still facing the
rapid developmental period of urbanization in the future. One urgent need involves
understanding the impact of rainfall on residents” mobility in the city. Taxi GPS data
support a large amount of spatiotemporal information about human activities and mobility
in urban areas. Guo Peng et al. (Contributor 9) combined geospatial complex networks with
multiscale geospatial analysis to extend the empirical research on human travel patterns
using Taxi GPS data to analyze the impact of rainfall on human mobility. They proved that
taxi GPS data are highly informative and exploitable in the field of human mobility analysis.
The main findings based on their results were the following: (1) rainfall has a reducing effect
on trip flow, trip distance, and trip duration on both weekdays and weekends; (2) rainfall
has a significant effect on the network indicators; and (3) more mobile communities were
detected on weekends than on weekdays, while the number of communities on weekdays
and weekends did not change significantly because of rainfall.

Further, climate-related risks threaten urban safety, infrastructure stability, and so-
cioeconomic sustainability. China is facing various climate hazards due to its diverse
geomorphic conditions. In this study (Contributor 10), Sun Shao et al. propose a compre-
hensive analysis of the spatial pattern of major climate hazards in China from 1991 to 2020.
The climate hazard types include rainstorms, droughts, heatwaves, cold waves, typhoons,
and snowstorms. They found that cities are hotspots affected by intensified climate hazards
in a warmer climate and they proposed an urgent need to incorporate a climate adaptation
strategy into future city construction to improve social resilience and mitigate climate
impacts in the rapid urbanization process in China. For the climate risks of the three major
urban agglomerations of Eastern China (Beijing-Tianjin—Hebei, the Yangtze River Delta,
and the Pearl River Delta), in this study (Contributor 11), Chou Jieming et al. constructed
one vulnerability degree using the Gray model (GM (1,1)), and calculated the drought, heat
wave, and flood hazards under different emission scenarios based on the CMIP6 model.
They found that the Beijing-Tianjin-Hebei urban agglomeration has a good level of urban
resilience, the Yangtze River Delta’s urban agglomeration has slightly higher overall risk,
and the Pearl River Delta’s urban agglomeration has the highest relative risk overall.

Rural regions are sensitive to climate disasters. China has achieved its goal of elimi-
nating absolute poverty in China. However, meteorological disasters can promote rural
populations’ return to poverty. In this study (Contributor 12), Li Aiwei et al. analyzed
the spatiotemporal characteristics of rainstorms and droughts and their socioeconomic
impacts on China’s contiguous poverty-stricken areas from 1984 to 2019. The main findings
are as follows: (1) rainstorms showed a significant increasing trend of 0.075 days/decade,
while there is no significant trend for drought days; (2) the average annual loss rate due to
disasters in the poverty-stricken areas reached 1.6%, which is 0.6% higher than the national
level. Their results suggest that to obtain the realization of the United Nations Sustainable
Development Goals, it is necessary to improve the capacity for meteorological disaster
prevention and reduction in China’s contiguous poverty-stricken areas.

The tourism markets are deeply impacted by the air pollution in China due to the
necessity of pursuing fresh air in the tourism transformation process. Finding one air index
to reflect the air freshness of destinations can support referable data for the tourists. Yang
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Xiaoyan et al. (Contributor 13) propose a new comfort index for climate tourism: the fresh
air-natural microclimate comfort index (FAI-NMCI). This index connects the fresh air index
with the natural microclimate comfort index of scenic spots from transdisciplinary and
multidisciplinary perspectives. Under contemporary China’s high-quality tourism devel-
opment background, this could provide accurate information not only for the demand and
supply sides of the tourism market but could also become an important and comprehensive
index for related governmental management.

Further, to explore the influence of changes in climate comfort on Arctic tourism, in
this study (Contributor 14), Huang Yutao et al. analyzed the spatial-temporal changes in
Arctic summer climate comfort zones from 1979 to 2019 using the ERA5-HEAT (Human
thErmAl comforT) dataset from the European Center for Medium-range Weather Forecasts
(ECMWEF). Their results suggest that global warming increases the Arctic summer climate
comfort level and may provide favorable conditions for the further development of regional
tourism resources.

In the ecosystem service section, the annual terrestrial gross primary productivity
(GPP) was taken as the representative ecological indicator of the ecosystem. In this study
(Contributor 15), Zhang Chi et al. analyzed the GPP changes using three earth system
models (ESMs) from CMIP6 under 1.5 and 2 °C global warming targets in the Shared
Socioeconomic Pathway 4.5 W m~2 (SSP245) scenario. In their main findings, they found
that Under 1.5 °C of global warming, GPP in four climate zones (temperate continental,
temperate monsoonal, subtropical-tropical monsoonal, and high-cold Tibetan Plateau)
increased significantly with a minimum growth of 12.3% and the increase was greater
under 2 °C of global warming that at 1.5 °C. Their results implied that global warming
poses no ecological risk in China from the perspective of ecosystem productivity.

The China-US trade conflict can affect the achievement of climate change goals. In
this study (contributor 16), Chou Jieming et al. assessed the impact of the trade conflict
on China’s climate policy by combining the model from the Global Trade Analysis Project
(GTAP) and the input-output analysis method. Their results showed that changes in trade
will challenge China’s balancing of climate and trade exigencies, implying that China-US
cooperation based on energy and technology will help China cope with climate change after
the trade conflict. In this Special Issue, another study by (contributor 17) Feng Qiang et al.
contributed the response mechanisms of the ecosystem service’s trade-offs with respect to
land use changes along precipitation gradients in the Loess Plateau of China.

In one study (contributor 18), Deng Xiaofang et al. investigated human resource
allocation with respect to adaptation to climate change in a state-owned forest farm in
China using the questionnaire method. They found that the human resource professional
and industrial structure changes in the context of climate change are the main limiting
factors for the key state-owned forest farms of China. In their paper, they suggested that
increasing the investment in education on climate change and the income of employees is
one way to promote the adaptation to climate change in China.

Extreme events threaten human health. In one paper (contributor 19), Li Junrong et al.
used big data to explore the dynamic changes regarding population exposure during a heat
wave incident in Zhuhai based on real-time mobile phone data and meteorological data.
The main findings are as follows: (1) the overall population exposure shows a trend of first
decreasing and then increasing; (2) a high degree of population exposure is concentrated in
areas such as primary and secondary schools, colleges and universities, office buildings, and
residential areas; and (3) the population exposure changes in the last two days of the heat
wave cycle are mainly affected by the combined influence of population factors and climate
factors based on the studied heatwave events from 6 to 12 September 2021. This study has a
certain practical guiding significance with respect to advancing high-temperature warning
and high-temperature disaster risk prevention methods.

In addition, another study (Contributor 20) assessed China’s future heatwave popula-
tion exposure under 1.5 °C and 2.0 °C warming scenarios with respect to climate change
adaptation using models from CMIP6. The main findings of their study are as follows:
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(1) an additional 20.15% increase in the number of annual heatwave days would occur
with an additional temperature increase of 0.5 °C to 2.0 °C, an over 1.5 °C increase in
temperature by the mid-century; (2) from three influencing elements, namely, climate,
population, and interaction (e.g., as urbanization affects population redistribution), climate
explained more than 70% of the variance in different warming scenarios. Their study can
support helpful insights for developing mitigation strategies for climate change.

Tropical marine fisheries provide high-quality protein for human diets and play signif-
icant roles in food security. Tuna fisheries are one of the four most highly valued fisheries
worldwide and have contributed 5.2 million tons of the total capture amount. The tuna
fishery in the entire western and central Pacific Ocean (WCPO) supports major industrial
tuna fisheries and contributes almost 30% of the total global tuna supply. However, the
changing climate is threatening tropical tuna fisheries via the increasing sea surface tem-
perature. In this study (Contributor 21), Zhou Weifeng et al. explored the impact of climate
change on tuna fishery resources by investigating the temporal and spatial characteristics
of the thermocline in the main yellowfin tuna purse seine fishing grounds in the western
and central Pacific Ocean during La Nifia and El Nifio years from 2008 to 2017. The main
findings of their study include: (1) in La Nifa years, the catch per unit effort (CPUE) moved
westward where the high-value zone of the upper boundary contracted westward to 145° E,
while in the El Nifio years, this boundary moved eastward to 165° E; (2) changes in the
thermocline caused by abnormal climate events significantly affected the CPUE. This study
can provide additional thermocline distribution information and serve as a reference for
tuna production in this area.

3. Extreme Climate Indices

Extreme climate events are more frequent under ongoing climate change. Central
China, a key area for the transition between China’s east-west and north—south borders
and a hub for land and water transportation, is facing a complex weather system. In this
study (Contributor 22), Li Yan et al. analyzed the temporal and spatial dynamics of climate
events from 1988 to 2017 using nine indices: six extreme temperature indices and three
extreme precipitation indices. The six extreme temperature indices are icy days (ID), frost
days (FD), the duration of warm periods (WSDI), the duration of cold periods (CSDI), the
lowest Tmin (TNn), and the highest Tmax (TXx). The three extreme precipitation indices
are very wet days (R95), consecutive dry days (CDD), and consecutive wet days (CWD).
The main findings are as follows: (1) the Jiangxi region was at greater risk of extreme
climate events in central China, and (2) the drought events in central China around 2025
will be more significant. Following their results, disaster prevention and mitigation projects
can be suggested to be prepared in advance for the policy-makers.

In another study (Contributor 23), Yan Weixiong et al. evaluated the distribution
of extreme temperature seasonality trends in mainland China by using the following
indices: the number of hot days (HD) and frost days (FD), as well as the frequency of
warm days (TX90p), cold days (TX10p), warm nights (TN90p), and cold nights (TN10p).
They highlighted that extreme temperatures have increased over mainland China from
1979-2020 with obvious seasonal variations, and the increase in the minimum temperature
is more distinct than in the maximum temperature.

Heatwave events (HWEs) have strong negative impacts on human health, ecosystems,
and sustainable social development. In one study (Contributor 24), Gao Zhibo and Yan
Xiaodong analyzed the characteristics of HWEs over the Yangtze River Basin (YRB) in
eastern China during the historical period and projected the changes in HWEs over the YRB
in the future using a gridded observation dataset and a high-resolution regional climate
model. Their main findings include: (1) Short-lived (>3 days and <6 days) HWEs are
projected to increase rapidly under SSP585, but to rise slowly overall under SSP245, and
(2) the increase in HWEs over the YRB region is likely to be associated with the enhancement
of the western-Pacific subtropical high (WPSH) and South-Asian high (SAH). This study
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can support solid references for disaster prevention and mitigation in the future for these
developed regions of China.

In another study (contributor 25), Li Kaiwen et al. defined compound drought and
heatwave events (CDHEs) using the monthly scale standard precipitation index and evalu-
ated the spatial and temporal variations in CDHEs in China from 1961 to 2018. The main
findings of their study are as follows: (1) the mean frequency of CDHEs takes on a non-
significant decreasing trend, and the mean magnitude of CDHEs takes on a non-significant
increasing trend in China; (2) the significant trends in the annual frequency and annual
magnitude of CDHESs are attributed to maximum temperature and precipitation changes.

The surface albedo of pure fresh snow is generally between 60% and 95%. When black
carbon (BC) aerosols deposit into the surface snow through dry and wet deposition, the
albedo of the snow surface will significantly reduce and thereby increase the absorption of
solar radiation on the snow surface. Therefore, understanding the BC concentration on the
surface of snow will play an important role with respect to studying climate change. In
this study (contributor 26), Zheng Yanjiao et al. simulated the black carbon concentration
on the surface snow of northeast China using an asymptotic radiative transfer model. The
main findings of their study include: (1) human activities played an important role in snow
black carbon pollution, and (2) the snow surface albedo will decrease by 16.448% due to
the BC pollution of snow in northeast China. These results suggest that the increase in
radiative forcing caused by black carbon via snow reflectivity cannot be ignored.

As one part of the earth system and one of the most sensitive regions of climate
warming, cold regions are areas with low temperatures and with the presence of ice and
snow for at least part of the year. In their study (Contributor 27), Wang Yumeng et al.
studied the spatial distribution and variations of cold regions in China from 1961 to 2019.
They found that the area of China’s cold regions decreased by 49.32 x 104 km? in the period
from 1991-2019 compared with that in the period of 1961-1990. In addition, in another
paper (Contributor 28), Li Hao et al. studied the distribution and assessment of snow-
disaster risk zoning in Heilongjiang Province. As the main findings of their study, they
found that economically developed regions had strong disaster prevention and mitigation
capabilities. This implied that the economic input for preventing snow disasters is required
in Heilongjiang Province. For another cold region in China, in this Special Issue, Sun
Shao et al. (Contributor 29) and Jia Yiru et al. (Contributor 30) evaluated and mapped
the meteorological hazards and the locomotion of slope geohazards in the Qinghai-Tibet
Plateau (QTP), respectively, in response to climate change.

Extreme cooling (EC) events are also a major challenge to socioeconomic sustainability
and human health. In this study (Contributor 31), Song Shuaifeng and Yan Xiaodong
analyzed the temporal and spatial distributions of EC events in China using the relative
threshold and the relationship between EC events and the Arctic Oscillation (AO) index
during the period of 1961-2017. The main findings of their study are as follows: (1) the
frequency of EC events in China decreased by 0.730 d from 1961 to 2017, and (2) EC events
are significantly negatively correlated with the AO index, which can explain approximately
21% of the EC event variance. Their study can help to improve the prediction and simulation
of EC events in China.

To overcome the overestimation for the light precipitation and underestimation of
heavy precipitation due to low model resolution, Luo Neng and Yan Guo (Contributor
32) studied the impact of model resolution on simulating the precipitation extremes over
China from 1995-2014 with six extreme indices based on five models from CMIP6. All these
models include low- and high-resolution versions. Six extreme indices were employed:
simple daily intensity index (SDII), wet days (WD), total precipitation (PRCPTOT), extreme
precipitation amount (R95p), heavy precipitation days (R20mm), and consecutive dry days
(CDD). The main findings of their study are as follows: (1) models with a high resolution
demonstrated better performance in reproducing the pattern of climatological precipitation
extremes over China, (2) decreased biases of precipitation exist in all high-resolution
models over D1, and (3) Improvement could be attributed to fewer weak precipitation
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events (0-10 mm/day) in high-resolution models in comparison with their counterparts
with low resolutions. Their solid work proved that models with improved resolution show
an obvious advantage with respect to the simulation of precipitation extremes, thereby
increasing confidence in the simulation of precipitation extremes.

4. Newly Created Dataset for Climate Change

The forest ecosystem is one of the most concentrated systems under the climate change
background. Identifying the forest type plays a crucial role in supporting information
for forest managers, conservationists, and forest ecologists. In this study (Contributor 33),
Xu Chen et al., generated a forest type distribution using an unsupervised cluster analy-
sis method by combining climate variables with normalized difference vegetation index
data. Their work will improve the depth of research in biodiversity preservation, forest
management, and ecological and forestry research.

Modern meteorological methods with high-resolution and high-quality precipitation
data are urgently required in the monitoring of mountain flood geological disasters as well
as hydrological monitoring and prediction. In this study (Contributor 34), Wang Zheng
et al. tested the newly created 0.01° multi-source fusion precipitation product developed
by the National Meteorological Information Center. Their study proved that the 0.01°
multi-source fusion precipitation product has better spatial continuity, a more detailed
description of precipitation’s spatial distribution and a more accurate reflection of extreme
precipitation values, and can provide precipitation data support for refined meteorological
services, major activity support, and disaster prevention and reduction.
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Abstract: As the world’s most widely cultivated fruit, citrus in China is increasingly suffering from
ongoing climate change, which affects the sustainability of agricultural systems and social economy.
In this study, we linked climate factors to citrus quality and yield and established projection models to
elucidate the impact of future climate change. Then, we used the ensemble mean of 19 Coupled Model
Intercomparison Project 6 (CMIP6) models to project the 2021-2040 and 2041-2060 climate changes
relative to the historical baseline 1995-2014 period under different shared socioeconomic pathways
scenarios (SSP2-4.5, SSP5-8.5). The results show that the monthly mean diurnal temperature range in
July had the greatest influence on quality, and monthly mean temperature in October, monthly mean
relative humidity in October, monthly mean minimum temperature in November and monthly mean
maximum temperature in September had the greatest influence on yield at the growth and ripening
stages. Moreover, the quality and yield of citrus present different characteristics in terms of change
in cultivation areas in the future. The quality of Sichuan, Zhejiang and Fujian Provinces in China
will become significantly better, however, Hubei, Guangdong and Guangxi Provinces it will become
worse. Surprisingly, yield will increase in all plantations due to future suitable climate conditions for
citrus growth and ripening.

Keywords: citrus; climate change; quality; yield; future projection

1. Introduction

Climate change brings great challenges to natural resources and affects the sustainable
development of human society [1]. It is now widely recognized as the greatest global
threat of the 21st century [2]. Among many aspects of impacts, agriculture is the most
sensitive sector [3,4]. In this changing environment, the production of many crops is
affected, which is related to world food security and global stability [5-10]. As a result,
researchers in agriculture have made it a priority to understand the relationship between
crops and climate variables [11-13] and to predict crop yield and quality under climate
change scenarios [14]. By correctly recognizing the contribution of climate change to crops
and adopting effective adaptation measures to agriculture, human beings can make better
use of improving production and resistance to adverse effects, maximizing the increase in
output, reducing losses, and realizing potential benefits [15-17].

Citrus is the world’s largest cultivated fruit crop, with an annual output of approxi-
mately 158 million tons, accounting for approximately 18% of the total fruit output [18,19].
As one of the most important crop types, citrus is an important source of income for farmers
and is favoured by consumers for nutritional value [20,21], playing a significant role in
people’s livelihood, not to mention citrus juice. China has the largest population and is the
largest citrus producer in the world, with an annual output of 44 million tons, accounting
for almost 28% of global citrus production [18]. Thus, the production of citrus in China
plays a vital role in the world citrus pattern and needs to be duly considered. However,
China is increasingly suffering from ongoing climate change, and no part of the Earth is
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immune to this vulnerability, which could have a major effect on citrus [22,23]. Admittedly,
the direction and degree of climate change in terms of influencing citrus varies locally due
to regional differences in natural responses and anthropogenic factors.

The growth, development, flowering and fruiting of citrus are sensitive to climate
conditions, especially in their yield and chemical quality [24-27]. Previous studies re-
vealed that climate change in China affects the yield of citrus. Under the background of
global warming, the citrus yield may be affected by climate risk in subtropical regions of
China [28]. Soil erosion in citrus orchards caused by increasingly frequent and intense
extreme precipitation is the main cause of productivity decline [29]. Additionally, the
climate suitability of citrus affects the growth and final yield of citrus due to the change
of temperature and precipitation suitability [30]. However, studies on the effect of citrus
quality are rare. With advances in agricultural technology [31,32], climate change may have
a greater impact on quality than yield. The contents of Vitamin C, naringin and hesperidin
decreased significantly, while chlorogenic acid and caffeic acid increased during frozen
temperatures [33]. The highest content of peel was observed from October to March and
the Vitamin C content decreased during the ripening process [34]. Additionally, essential
oils vary in content in different months [35]. Therefore, the development of this study is
necessary to reveal the impact of future climate change on citrus quality, which is a factor
that is considered to be as important as yield.

To project future citrus production, Tubiello [36] used two different global circulation
model (GCM) scenarios to simulate climate change effects on US citrus production and the
result showed that simulated fruit production benefited greatly from the projected climate
change, as yields will increase by 20-50%. In this study, we combined empirical regression
models based on climate factors and citrus quality or yield with datasets in different
CMIP6 (Coupled Model Intercomparison Project 6) models in response to different shared
socioeconomic pathways (SSPs) of future climate changes (SSP2-4.5, SSP5-8.5) on citrus. The
aim of this study was to investigate the changes in citrus quality and yield in China in the
near future (2021-2040) and medium future (2041-2060) relative to the historical baseline
period (1995-2014) [37,38]. These results may provide useful information for perennial
horticultural crops to meet the challenge of climate change and can be generalized to other
parts of the world.

2. Materials and Methods
2.1. Study Area

The study areas include 79 meteorological stations in 11 major cultivation provinces in
China, which are Sichuan, Chongqing, Hubei, Yunnan, Guizhou, Guangxi, Hunan, Jiangxi,
Guangdong, Fujian and Zhejiang as shown in Figure 1 [39]. Typically, citrus production
in these 11 provinces account for 98% of the total citrus production (45.85 million tons),
and the cultivation areas account for 98% of the total citrus cultivation areas (2.62 million
hectares) across China based on the National Bureau of Statistics of China (NBSC) [40].

2.2. Data Sources
2.2.1. Statistical Data

Citrus quality refers to the exterior quality and internal quality. The most impor-
tant quality, in addition to fruit size, shape, colour and other economic values based on
appearance, is chemical composition, mainly related to the sweet, sour or bitter taste of
fruit, as well as the of active ingredient contents. The chemical composition of citrus
fruit includes the following two categories in addition to water: the first is insoluble in
water, such as cellulose, hemicellulose, and propectin, and the other includes water soluble
substances, called total soluble solid (TSS). TSS is one of the main factors determining
fruit quality [41-43], which reflects the flavor and can directly determine the commercial
value of fruit. In this study, we searched relevant published articles containing citrus TSS
data from the China National Knowledge Infrastructure (CNKI) and finally selected 125
available TSS data. TSS data combined with information from the China Meteorological
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Station (CMS) are listed in the Table S1. Therefore, the climate of citrus cultivation areas
was characterized by the local CMS from the China Meteorological Administration. From
the NBSC data, the citrus production and planting area of each province were obtained to
calculate the yield.
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24°N 2000
ooN 1000
1N O OFE TE o .

Figure 1. 79 meteorological stations in citrus cultivation areas.

2.2.2. Meteorological Observation Data

CMS (V3.0) contains the Chinese benchmark and general weather stations, including
the main information of 2474 sites and the basic meteorological observation data since
January 1961. We extracted meteorological data from 11 provinces in major citrus producing
areas, including mean temperature, maximum temperature, minimum temperature, relative
humidity and other variables on a daily scale. Finally, 79 sites were collected from papers
and the data were downloaded from China Meteorological Administration as observational
data and used to construct citrus quality and yield regression models.

2.2.3. CMIP6 Data

The 19 CMIP6 global climate models were used to simulate climate change in the near
future (2021-2040) and medium future (2041-2060) relative to the historical base period
(1995-2014) under SSP2-4.5 and SSP5-8.5 scenarios. The relevant information of 19 CMIP6
global climate models is shown in Table 1. Among them, EC-Earth3 and EC-Earth3-Veg
models have the highest spatial resolution (0.7° x 0.7°), and the CanESM5 model has
the lowest spatial resolution (2.8° x 2.8°). The relative humidity, maximum temperature,
minimum temperature and mean temperature variables of the CMIP6 model were extracted
(there was no simulation of relative humidity variables in the future period in the BCC-
CSM2-MR model; therefore, the relative humidity in the future period was replaced by the
results of 18 model sets).

2.3. Methods

Citrus is an important fruit crop with high economic value and in this study, it was
assumed that when citrus lacks water, artificial irrigation is provided; therefore, the impact
of precipitation was not considered. The distribution of climate factors such as the mean
temperature, minimum temperature, maximum temperature and relative humidity in
different growing areas is significantly different, which often results in different effects of
climate change on citrus fruit quality and yield [25,44]. Diurnal temperature range (DTR)
is the difference between daily maximum temperature and daily minimum temperature,
which can reflect the change characteristics of the interaction and provides comprehensive
information between the two [45,46]. Changes in DTR can convey climate change infor-
mation, which will have an impact on human health, the circulation of the ecosystem, the
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growth of animals and plants, and the use of renewable energy [47]. The DTR described in
this paper is the maximum temperature minus the minimum temperature in 24 h. By using
a correlation analysis, regression models were established for the relationship between
citrus fruit quality and yield and the key climate factors during fruit growth; furthermore,
the crop models of citrus fruit quality and yield were obtained. Lobell [48] considered that
all process models contain some degree of experience or statistical rules, and all statistical
models also contain some hypothesis of crop processes and mechanisms [49-51]. The
change in climate elements has a nonnegligible impact on the growth and development of
crops. Therefore, when crop quality and yield are only determined by climate factors, the
response characteristics of crops to climate elements should be understood. Statistical mod-
els can be used to predict crop responses to climate change [52,53]. By incorporating CMIP6
climate data into crop models, changes in citrus fruit quality and yield were obtained for
different future periods. See the supplementary materials for the flow chart.

Table 1. 19 CMIP6 models used in the study.

CMIP6 Models Institution Spatial Resolution (Lat * lon) Variables
ACCESS-CM2 CSIRO-ARCCSS, Australia 144 % 192 Tas, Tasmax, Tasmin, Hurs
ACCESS-ESM1-5 CSIRO, Australia 145 % 192 Tas, Tasmax, Tasmin, Hurs
BCC-CSM2-MR BCC, China 160 * 320 Tas, Tasmax, Tasmin
CanESM5 CCCma, Canada 64 % 128 Tas, Tasmax, Tasmin, Hurs
CAS-ESM2-0 CAS, China 128 x 256 Tas, Tasmax, Tasmin, Hurs
CMCC-ESM2 CMCC, Italy 192 288 Tas, Tasmax, Tasmin, Hurs
EC-Earth3 EC-Earth-Conso'r’num, 256 % 512 Tas, Tasmax, Tasmin, Hurs
European Union
EC-Earth3-Veg EC-Earth-Conso'rhum, 256 * 512 Tas, Tasmax, Tasmin, Hurs
European Union
EC-Earth3-Veg-LR EC—Earth—Conso‘rnum, 160 * 320 Tas, Tasmax, Tasmin, Hurs
European Union
FIO-ESM-2-0 FIO-QLNM, China 192 * 288 Tas, Tasmax, Tasmin, Hurs
FGOALS-g3 CAS, China 80 * 180 Tas, Tasmax, Tasmin, Hurs
GFDL-ESM4 NOAA'Sfa ?e]; United 180 * 288 Tas, Tasmax, Tasmin, Hurs
INM-CM4-8 INM, Russia 120 * 180 Tas, Tasmax, Tasmin, Hurs
INM-CM5-0 INM, Russia 120 * 180 Tas, Tasmax, Tasmin, Hurs
IPSL-CM6A-LR IPSL, France 143 * 144 Tas, Tasmax, Tasmin, Hurs
MIROC6 MIROC, Japan 128 * 256 Tas, Tasmax, Tasmin, Hurs
MPI-ESM1-2-HR MPI-M, Germany 192 * 384 Tas, Tasmax, Tasmin, Hurs
MPI-ESM1-2-LR MPI-M, Germany 96 * 192 Tas, Tasmax, Tasmin, Hurs
MRI-ESM2-0 MRI, Japan 160 * 320 Tas, Tasmax, Tasmin, Hurs

2.3.1. Meta-Analysis

A meta-analysis is a method that can be used to conduct a quantitative and compre-
hensive analysis of research results [54]. In this study, the quality data of fruit was finally
determined by summarizing the research results in the relevant published literature and
conducting repeated screening and averaging of the sample data. The operation process
includes the following four elements: (1) keywords: TSS of citrus, fruit origin and picking
year; (2) unity: recording the data of different varieties of fruit, delimiting the research
area and the research benchmark period so that the data of different producing areas and
different varieties of fruit have uniformity; (3) match external information: according to the
origin of fruit, the relevant information from China meteorological Station was matched,
and the corresponding climate data were extracted; (4) obtain results: data of TSS of citrus
in different years, different producing areas and different climate conditions. The scien-
tific database used in this study was obtained from China National Knowledge Network
(CNKT), with a focus on papers published on climate change, and the exclusion of the
effects of extreme climate events such as drought, flood and frost and human activities
such as technological progress on fruit quality data.
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2.3.2. Correlation Analysis

Correlation analysis is a method used to evaluate the relationship between two vari-
ables and the correlation coefficient indicates the strength of the relationship between
variables [55]. In this study, Pearson’s correlation coefficient calculation method was used
to calculate the correlation degree between the two variables, i.e., citrus quality and yield
with climate factors, for which the formula utilized is as follows:

R = ?:1 (xi =%)(vi — )
VI (i =222 (- 9)?

where R represents the correlation coefficient, n is the number of samples, x; and y; are
the values of the ith sample in the sequence of two variables, and ¥ and ¥ are the average
values of the sequence of two variables.

2.3.3. Least Square Estimation

In this study, a unary linear regression equation was used to fit the relationship
between citrus quality and climate factors, and the trend of quality change was defined as
the slope of least square estimation, for which the formula is [55] as follows:

yf:kxi+b,i:1,2,...,n

o i iy (S %) (S vi)
T -3 (T x)
b=y—kx

T=21layi
=T

where y; represents citrus quality with sample size n, x; corresponds to climate factor, k
represents the regression coefficient term, and b represents the regression constant term.

2.3.4. Bilinear Interpolation and Multimodel Ensemble

To avoid the uncertainties that may occur in a single model simulation, we selected
19 models from the CMIP6 GCMs. Using the bilinear interpolation method, we interpolated
the models with different resolutions on a unified 1° x 1° grid and obtained the average
result of the multimodel ensemble [56], for which the formula is as follows:

YoM

E le =
nsemble 19

where Ensemble represents the average value of the multimodel result, and M; represents
the ith model value. Then, by using the method of bilinear interpolation, the average
model data of multiple model sets were uniformly interpolated to the China meteorological
stations outlined in the Supplementary Materials Table S1 to obtain the local climate
information of the meteorological stations simulated by the model [57].

3. Results
3.1. Changes of Quality in the Climate Change Factors
3.1.1. Quality in Relation to Climate Variables

The critical period for the growth and ripening of citrus fruits is from July to December.
During this period, the change in DTR is the main climatic factor affecting the quality
content of fruits [58,59]. Admittedly, a higher day temperature is preferred for the accu-
mulation of sugar and degradation of organic acids in the fruit-ripening process, and a
lower night temperature favours the same under suitable fruit growth conditions [60,61].
DTR can comprehensively reflect the information of maximum and minimum temperature,
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which has a considerable influence on fruit quality. To quantitatively compare the time
period with the maximum correlation with TSS, the maximum temperature and minimum
temperature observed at meteorological stations in different months were used to calculate
the mean values of DTR and conduct a correlation analysis with TSS, as shown in Figure 2.
The results show that DTR is positively correlated with TSS in citrus fruit growth in all
periods and passes the significance test at 0.05. The correlation between the mean value of
the DTR in July and TSS is highest (R = 0.44), and the correlation coefficient of the mean
values of the DTR in the periods from July to August, July to September, July to October,
July to November and July to December remains above 0.3, which is higher than that in
other periods.
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Figure 2. Correlation coefficient diagram between the TSS and DTR for each period from July to
December. The abscissa represents the beginning month, and the ordinate represents different
time spans of the monthly mean DTR. All data passed the significant correlation coefficient at the
0.05 significance level.

Based on the correlation analysis in Figure 2, the maximum significant positive corre-
lation between the mean for the DTR value in July and the TSS content was obtained to
select the climate factors that most affected the change in TSS content in the key period. A
linear regression equation was obtained, and the quality prediction model was established
as follows:

Q =0.35 x X1+9.021 (R; = 0.442, P1 < 0.001)

where Q indicates the TSS content (%); X7 indicates the mean DTR value (°C) in July; Rj is
the correlation coefficient; and Pj is the significance test index.

The citrus quality prediction model indicates that if the DTR becomes larger, the TSS
content also increases, and the citrus quality is good; otherwise, it becomes worse under
the background of future climate change.
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3.1.2. Changes in the Future DTR

The CMIP6 multimodel ensemble data were used to estimate future DTR changes
in July in 11 provinces in China where citrus cultivation areas are located, as shown in
Figure 3. Compared with the 1995-2014 historical baseline period, the DTR in July of
citrus producing areas in China presents an overall spatial distribution of increase-decrease-
increase from west to east in the 2021-2040 future climate state under the two scenarios,
SSP2-4.5 and SSP5-8.5. Sichuan Province in the west and Zhejiang and Fujian Provinces in
the east show signs of increasing DTRs; however, the DTRs of Hubei, Hunan, Guangxi and
other central regions show decreasing trends. Similarly, in the 2041-2060 mid-future period,
the DTR shows almost the same spatial distribution, and the range of change is larger than
that in the 2021-2040 period. The DTR in the northern part of Sichuan Province increases
above 0.4 °C under the SSP5-8.5 scenario. The central regions, such as Guizhou, Hunan
and Jiangxi Provinces, also show signs of increasing DTR trends, but in addition, the other
regions show signs of decreasing DTR changes within 0.2 °C under the SSP2-4.5 scenario.
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Figure 3. Under the two scenarios, SSP2-4.5 and SSP5-8.5, the DTR in July changes in the near future
(2021-2040) and mid future (2041-2060) compared with the historical period (1995-2014).

3.1.3. Changes in the future TSS

The change in DTR in July in the whole region of citrus producing areas obtained
in Figure 3 can be entered into the quality prediction model to calculate the change in
TSS content. Moreover, the spatial grid DTR data calculated by the CMIP6 multimodel
were interpolated to the local meteorological stations, and the spatial distribution map
of TSS content in actual citrus-producing areas is depicted in Figure 4. Consistent with
the spatial distribution in Figure 3, the change in TSS content in citrus also presents a
spatial distribution characteristic of increase-decrease-increase from west to east in the
2021-2040 future climate state under the SSP2-4.5 and SSP5-8.5 scenarios. This phenomenon
indicates that the quality of citrus has a tendency to become better-worse-better in these
corresponding regions. In the 2041-2060 mid-future climate state, the TSS content of citrus
shows a ribbon-like distribution of increasing TSS content in the western, central and
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eastern regions and decreasing TSS content in the southern and northern regions under the
SSP2-4.5 and SSP5-8.5 scenarios. It is suggested that the quality of citrus will change in the
same trend. Sichuan, Zhejiang and Fujian Provinces in terms of citrus quality present good
trends for the entirety of the future situation. Citrus quality in Guizhou, Hunan, Jiangxi,
northern Guangdong and northern Guangxi Provinces will change in the near future to
worse and in the mid-future to good. Citrus produced in Hubei Province is affected by
climate change and shows quality deterioration under different scenarios and in different
future climate states.
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Figure 4. Under the two scenarios, SSP2-4.5 and SSP5-8.5, the TSS content of citrus at the meteorolog-
ical site scale of Chinese citrus-producing areas changes in the near future (2021-2040) and in the
mid future (2041-2060) compared with the historical period (1995-2014). The dots indicate citrus TSS
content variations. Blue indicates decreasing change, and red indicates increasing change.

3.2. Changes of Yield in the Climate Change Factors
3.2.1. Yield in Relation to Climate Variables

Ahmad [62] confirmed that citrus fruit growth requires certain temperature conditions,
and the yield is particularly sensitive to temperature. Citrus fruit grows and ripens from
July to December each year, and the climate factors during this period have great effects
on the yield. Consequently, the correlation between climate factors and yield in the above
months was examined, and the correlation coefficient diagram was obtained, as shown
in Figure 5. As seen from the figure, mean temperature in October, relative humidity in
October, minimum temperature in November and maximum temperature in September
have the highest correlation with yield; as a result, the particular climatic conditions were
selected as independent variables to establish a multiple linear regression model and obtain
the prediction of the yield model as follows:

Y =0.007 x X5 + 0.108 x X3—0.025 x X; —0.03X5 + 2.482 (R, = 0.437, P, < 0.001)
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where Y indicates the yield (10 t/ha); X; indicates the mean temperature (°C) in October;
X3 indicates the mean minimum temperature (°C) in November; X4 indicates the mean
maximum temperature (°C) in September; X5 indicates the mean relative humidity (%) in
October; R; is the correlation coefficient; and P; is the significance test index. The citrus
yield prediction model indicates that mean temperature and minimum temperature have a
positive contribution to yield, while maximum temperature and relative humidity have a
negative contribution under the synergistic effect of various climate factors.
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Figure 5. Correlation coefficient diagram between the monthly mean maximum temperature, mini-
mum temperature, relative humidity and mean temperature for each month from July to December
and yield. The abscissa represents each month, and the ordinate represents the monthly mean climate
variables mentioned above. The correlation coefficients in the figure all passed the significance test at
0.05, and those that did not pass are displayed as blanks.

3.2.2. Changes in the Future Climate Factors

The CMIP6 multimodel ensemble data were used to predict the future changes in four
key climate factors affecting citrus yield under different scenarios and different periods in
the future as shown in Figure 6 (Figure 6a—-d). The mean temperature in October shows an
overall increase, as shown in Figure 6a. There is little difference between the simulation
results of the two different scenarios, and the mean temperature range is between 0.5 °C
and 1.5 °C in 2021-2040. Undoubtedly, the mean temperature range of the SSP5-8.5 scenario
is significantly higher than that of SSP2-4.5 in 2041-2060. The range of mean temperature
shows a phenomenon of increasing with latitude moving northwards in the citrus-growing
areas. Figure 6b show that the mean minimum temperature in November presents signs
of increasing in all regions, and the greatest warming trend is observed for northwestern
Sichuan. In addition, the increasing range of most regions is approximately 0.5 °C higher
under the SSP5-8.5 scenario than under the SSP2-4.5 scenario in 2021-2040, and the spatial
distribution of the warming gradient is consistent with that in 2041-2060. In Figure 6c,
the warming effect of the mean maximum temperature in September is approximately
the same as that of the mean temperature in October in Figure 6a, except that the greatest
warming effect shifts from the northwestern to the central and eastern parts of Sichuan.
The mean relative humidity in October increases in the western region and decreases in the
central and eastern regions, as shown in Figure 6d. The spatial pattern is approximately
similar under the two scenarios during different future periods, while the decreasing trend
is almost 0.5% higher in 2041-2060.
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Figure 6. Under the two scenarios, SSP2-4.5 and SSP5-8.5, the various climate factors change in the
near future (2021-2040) and mid future (2041-2060) compared with the historical period (1995-2014).
(a) Mean temperature (°C) in October. (b) Mean minimum temperature (°C) in November. (c) Mean
maximum temperature (°C) in September. (d) Mean relative humidity (%) in October.
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3.2.3. Changes in the Future Yield

According to Figure 6, we can see key climate factor changes to some extent simulated
by CMIP6 models in the future period under two different scenarios, which were entered
into the citrus yield prediction model. Compared with the historical period, the change in
citrus yield at the meteorological site scale in the future is shown in Figure 7. Citrus yield
shows an increasing trend under different conditions, and the yield-increasing effect is
more obvious in 2041-2060 than in 2021-2040, almost doubling the change. The citrus yields
of Hubei, Hunan, northern Guangxi and northern Guangdong Provinces increase with
an increase of 1-2 t/ha under the SSP2-4.5 scenario; however, almost all citrus-producing
areas show an increase of 1-2 t/ha with little difference in yield increase among regions
under the SSP5-8.5 scenario in 2021-2040. In regard to the 2041-2060 period, the yields in
southeastern Sichuan, Hubei and central Hunan Provinces increase by more than 2 t/ha,
and those of Zhejiang and Fujian Provinces almost double, while those of southern Hunan,
northern Guangxi and northern Guangdong Provinces have almost no difference compared
with the 2021-2040 period under the SSP2-4.5 scenario. A yield increase of above 2 t/ha
is observed in most citrus-producing areas except those in Fujian, Yunnan and southern
Sichuan Provinces and is double that from 2021-2040 under the SSP5-8.5 scenario.
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Figure 7. Under the two scenarios, SSP2-4.5 and SSP5-8.5, the yield of citrus at the meteorological site
scale of Chinese citrus-producing areas changes in the near future (2021-2040) and in the mid future
(2041-2060) compared with the historical period (1995-2014). The orange dots indicate yield changes
whose sizes show the degree of change.

3.3. Changes of Quality-Yield in the Climate Change Factors

Quality-Yield (Q-Y) is defined as the total amount of TSS content contained in the yield,
which reflects comprehensive information between the quality and yield changes in the
future in t/ha. The change in Q-Y is shown in Figure 8 combined with the forecast for TSS
content in Figure 4 and the phenomenon of all conditions increasing yield in Figure 6, which
reflects the general change in citrus effective composition TSS content in yield. Although
the quality of citrus in some producing areas is worsening, affected by climate change, Q-Y
still shows an increasing trend with the increase in the citrus yield, which indicates that the
amount of TSS content will improve in the future under the two different scenarios. The
spatial distribution of the Q-Y increase is approximately 0.1-0.2 t/ha despite the obvious
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quality reduction in the central region and almost the same in all planting regions except in
the Zhejiang and Fujian Provinces under the SSP2-4.5 and SSP5-8.5 scenarios in 2021-2040.
Because of the effect of yield increase, Q-Y almost doubles compared with 2021-2040 under
the SSP2-4.5 scenario in 2041-2060. Although the quality obviously declines in Hubei
Province, the Q-Y increases by approximately 0.2 t/ha. The increasing effect of Q-Y is weak
in Zhejiang and Fujian Provinces and some other places at approximately 0.1-0.2 t/ha. The
decline in quality in the central and southern regions does not affect the Q-Y increase by
more than 0.2 t/ha under the SSP5-8.5 scenario in 2041-2060.
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Figure 8. Under the two scenarios, SSP2-4.5 and SSP5-8.5, the quality-yield of citrus at the meteoro-
logical site scale of Chinese citrus-producing areas will change in the near future (2021-2040) and in
the mid future (2041-2060) compared with the historical period (1995-2014). The orange dots indicate
quality-yield changes, whose sizes show the degree of change. The red circles on the outer layer of
the dots indicate the increase in TSS content, and the blue circles indicate the decrease in TSS content
shown in Figure 4.

4. Discussion
4.1. Impact Mechanisms of Empirical Models for Predicting Citrus Fruit Quality and Yield

Many studies revealed the impact of climate change on the yield of crops, indicating
that changes in climate factors such as temperature and precipitation will increase or
decrease the yield [9,63,64]. However, fruits have not been given the same attention, and
it is necessary to study the impact of climate change on fruits and what will happen to
fruits in the future, especially in relation to their yield and quality. The climate factors
used in this study are also relevant to temperature and precipitation factors, such as
maximum temperature, minimum temperature, DTR, mean temperature and relative
humidity, on a daily scale, as shown in Figures 2 and 5. Maximum temperature is beneficial
for the accumulation of active substances in the fruit-ripening process, and minimum
temperature favours the same under suitable fruit growth conditions [59,61]. DTR can
comprehensively reflect the information of maximum and minimum temperature, which
has a considerable influence on fruit quality. Mean temperature and relative humidity
have been proven to be very important in the growth of citrus and have certain effects on
phenology and yield [65-67]. The above climate factors in the key growth periods calculated
from meteorological station data in citrus producing areas have a strong correlation with
quality and yield. It has been proven that local climate change has a direct impact on
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citrus production, in contrast to large-scale warming conditions. This method was also
applied to study climate-crop yield relationships [68]. In this study, statistical models were
used to establish the relationship between climate factors and citrus quality and yield,
which have certain reference values because some researchers used statistical models to
predict crop yield [69,70]. Mechanism models are so complex that few suitable models
can be used to predict the quality and yield changes of citrus in the future, which means
that it was difficult to select a model in our study. However, the comprehensive use of
mechanism models and statistical models will be of great significance for the prediction of
the quality and yield of citrus and even for fruit once the mechanism model is developed
and perfected [71,72].

4.2. Sensitive Areas Affected by Climate Factors in the Future

The key period of citrus fruit growth and maturation is from July to December, as
shown in Figures 2 and 5, and the climate change in citrus-producing areas in this period
has a direct influence on the change in citrus fruit quality and yield. This conclusion
shows that the climate factors in the study area have the same trend of change under the
two scenarios, but the intensity of change is greater under the SSP5-8.5 scenario, which
is also in line with the simulation setting of future emission scenarios. In addition, the
prediction of different future time periods presents different spatial distributions. In the
2021-2040 period, the DTR in July is projected to increase in Sichuan, Zhejiang and Fujian
Provinces and decrease in most studied areas; the mean temperature in October, maximum
temperature in September and minimum temperature in November seem to increase in all
areas; and the relative humidity in October is projected to increase in Sichuan and Yunnan
Provinces and decrease in other places. In the 2041-2060 period, the DTR in July is projected
to decrease in only some parts of Hubei, Guangdong, Guangxi and Yunnan Provinces
and increase in other areas; the mean temperature in October, maximum temperature in
September and minimum temperature in November will increase in all areas; and the
relative humidity in October is projected to decrease largely in the study areas.

4.3. Some Measures May Improve Citrus Quality and Yield

According to Figure 2, the DTR will decrease in most cultivation regions except
for Sichuan, Zhejiang and Fujian Provinces, which indicates that the quality of citrus is
projected to worsen. Some artificial adaptation measures may be taken to prevent negative
situations. The DTR can be obtained by subtracting the daily maximum temperature
from the daily minimum temperature, and both will increase significantly under the
background of global warming; therefore, the reason for the decrease in the DTR is that
the warming effect has a more significant enhancement effect on the daily minimum
temperature. Suggested coping strategies include a lower night temperature and providing
enough day warming conditions. On the other hand, changing cultivation regions is a
contributing factor. Admittedly, there is a decreasing degree of DTR of between 0.1 °C and
0.2 °C, which has seldom effected TSS content as shown in Figure 3. Quality decline does
not represent a serious concern based on the results under climate warming conditions.
Sichuan Province may have the best natural DTR conditions for the accumulation of active
substances in the future. Under the joint action of various climate factors, the changing
climate is beneficial for citrus fruit growth and ripening, and the yield of citrus is projected
to increase in all producing regions, not to mention the improvement of agricultural
technology. Based on our hypothesis, offering irrigation is critical.

4.4. Limitations of this Study

(1) Without the support of specific citrus quality and yield data at the grid scale, the
research areas of this study were limited to all provinces, and the locations of meteorolog-
ical stations were used to represent the local climate conditions, which included certain
errors. (2) Due to the inability of the author and the research group to undertake relevant
experiments, the research data on TSS contents of citrus in this study were obtained from
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other published papers, and the consistency of the data were not guaranteed. (3) In this
study, the ensemble mean of 19 CMIP6 models was adopted to reduce the uncertainty of
single-model simulations of climate change impacts. However, the GCM climate models
also have some system errors in terms of the observations, which lead to the uncertainty in
future changes of projected climate variables. (4) This study did not consider the effect of
artificial technological progress on the results.

5. Conclusions

The key climate factors from July to December of citrus fruit growth and maturation
have a good relationship with citrus quality and yield. The monthly mean DTR in July
has the greatest influence on quality, and monthly mean temperature in October, monthly
mean relative humidity in October, monthly mean minimum temperature in November
and monthly mean maximum temperature in September have the greatest influence on
yield. Moreover, the monthly mean DTR in July is projected to increase in Sichuan, Zhejiang
and Fujian Provinces and decrease in other regions; the monthly mean temperature in
October, monthly mean minimum temperature in November and monthly mean maximum
temperature in September are projected to increase in all studied areas; and the monthly
mean relative humidity in October is projected to increase in small regions of Sichuan
and Yunnan Provinces and decrease in other places. Thus, the quality and yield of citrus
presented different characteristics of change in cultivation areas when using the established
prediction model for the 2021-2040 and 2041-2060 future periods relative to the 1995-2014
baseline period. The quality of western cultivation areas in Sichuan Province and eastern
cultivation areas in Zhejiang and Fujian Provinces in China will become significantly better;
however, that of Hubei, Guangdong and Guangxi Provinces will worsen. Surprisingly,
yield will increase in all plantations due to future suitable climate conditions for citrus
growth and ripening.

Supplementary Materials: The following supporting information can be downloaded at: https:
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this study [73-85].
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N o U e W

Abstract: Understanding the impacts of regional climate change on crop production will benefit
strategic decisions for future agricultural adaptation in China. In this study, the climatic production
potential of potato over the past 61 years in Inner Mongolia was simulated based on long-term
observed data and the step-by-step correction method. The results show that the annual average
potential for potato climatic production in Inner Mongolia is 19,318 kg~hm’2, fluctuating between
the highest value (25,623 kg-hm~2) and the lowest value (15,354 kg-hm~2). Over the past 61 years,
the climatic production potential exhibited an insignificant decreasing trend, with large interannual
fluctuation, especially since 2000. The high-value areas of the climatic production potential were
mainly located in the central and southern regions. The climatic production potential of potato in
most areas showed a decreasing trend. The influence of radiation changes on the potato climatic
production potential was not obvious in most areas. The effects of temperature changes on the
climatic production potential of potato were mostly negative, and were most obvious in the central
and western regions and in the southeastern region. The change in precipitation in most parts of
western Inner Mongolia, Hohhot, Chifeng and eastern Xingan League had a positive effect on the
climatic production potential of potato. However, the change in precipitation in southern Ulanchabu,
eastern Chifeng, Hulunbuir and western and eastern regions had a negative effect on the climatic
production potential of potato. The main limiting factor for the climatic production potential of
potato in Inner Mongolia is precipitation. Our findings have important implications for local potato
production to cope with ongoing climate change in China.

Keywords: climate change; potato climatic productivity potential; Inner Mongolia; effect

1. Introduction

Under global warming, extreme weather occurs frequently, and meteorological disas-
ters bring more and more risks to agricultural production. Food is an important commodity
related to the national economy and people’s livelihood. It is the basis of economic develop-
ment, social stability and national independence. Ensuring national food security is always
the top priority in governing a country. The Intergovernmental Panel on Climate Change
(IPCC) officially released on 28 February the contribution of Working Group II to the Sixth
Assessment Report (Ar6) on climate change in 2022, highlighting impacts, adaptation
and vulnerability. The report further points out the severe food security situation faced
at home and abroad against the background of global warming. Food security has once
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again received extensive attention all over the world. In order to cope with meteorological
disasters, it is a challenge to understand the impact mechanisms of climate change on staple
crops, and to adapt to and cope with the negative impact of climate change. Potato is one
of the main climatic characteristic crops in Inner Mongolia, China. Therefore, it is urgent to
acquire a more in-depth understanding of how climate change affects potato production
for agricultural disaster prevention and mitigation and the healthy development of the
potato industry in Inner Mongolia, China.

The climatic production potential of crops refers to the crop yields when light, heat
and water resources are optimally matched under ideal conditions [1], and it is one of the
important criteria for evaluating agroclimatic resources [2]. The responses of the climatic
production potential of crops to climate change differ significantly among regions and
crops [3-5]. At present, the commonly used models for calculating the crop production
potential include the Miami model [6,7], the Thornthwaite Memory model [8,9], the AEZ
model by FAO [10,11] and the step-by-step revision model [12-14]. Among these models,
the step-by-step correction model is a statistical model for calculating the climatic produc-
tion potential of different crops during the growing season. It can effectively reflect the
matching status of climatic resources such as light, heat, and water. Its physical meaning
and the causal relationships are clear. The step-by-step correction model is one of the most
extensively used research methods for analyzing the food production potential [15,16].

The impacts of climate change on the climatic production potential of crops over the
past few decades in China have attracted serious concern [14,17-21]. Based on the potential
attenuation method, Wang et al. [14] studied the spatial variation in climatic production
potential of maize, rice and soybean in the Songnen Plain, and analyzed the utilization
efficiency of natural resources. Lu et al. [17] evaluated the evolution of climatic production
potential in Anhui Province in the past 50 years. Wang studied and analyzed the climatic
production potential of one-season rice in Anhui Province [18]. Wang et al. [19] studied
the climatic production potential of winter wheat in northern China and the influence of
separated water. Duan et al. [20] estimated the climatic production potential of potato in Jixi
County, Ningxia, and analyzed its stability. Lai simulated the climatic production potential
of five crops in Ningxia, including soybean, corn, rice, wheat and potato [21]. However,
few studies have been conducted to quantitatively assess the long-term impacts of regional
climate change on the climatic production potential of potato in Inner Mongolia based
on the step-by-step correction model. A better understanding of how potato responds to
regional climate change is essential for mitigating the negative effects of potato production
to local climate change.

The objectives of the present study were to (1) determine the main parameters in
a climatic production potential model for potato based on long-term historical data in
Inner Mongolia and (2) explore the advantages and disadvantages of impacts of changes in
main meteorological factors (light, temperature and water) on potato production in Inner
Mongolia. These findings are significant for substantially improving our understanding of
the impacts of regional climate change on agriculture in China.

2. Materials and Methods
2.1. Study Area

The Inner Mongolia Autonomous Region is one of 13 key grain-producing provinces
(regions) in China. As of 2017, the region has 9.271 million hectares of cultivated land,
accounting for 7.8% of the region’s area, and the per capita cultivated land area is 3.7 times
that of the whole country. The effective irrigation area is 3.175 million hectares. The soil in
this area shows obvious meridional differentiation. Black soil, dark brown soil, chernozem,
chestnut soil, brown calcium soil, brown desert soil and gray desert soil are distributed
from east to west [22]. In some areas, cinnamon soil, calcareous soil, meadow soil and
aeolian sandy soil are distributed. The content of soil organic matter (9.75~0.56%) [22]
and clay particles (12.41~3.65%) [23] decreases gradually from east to west, while the
soil pH value (7.39~8.90) increases gradually from east to west [23]. The soil is mostly

30



Sustainability 2022, 14, 7836

neutral and alkaline [23,24]. Inner Mongolia covers a vast territory, with large east-west
and north-south spans, complex landforms (e.g., plateaus, mountains, hills and plains)
and special geographical locations, which form complex and diverse climate conditions
dominated by a temperate continental monsoon climate, with varied temperature, rainfall
and heat waves. In the same season, the cold climate is more suitable for the growth of
potatoes, which prefer cold and cool conditions.

2.2. Data

The data are from the climate center of the Inner Mongolia Autonomous Region. The
data used consist of the daily surface meteorological observation data, including sunshine
hours, average temperature, precipitation, relative humidity, average wind speed and
evapotranspiration. These meteorological data were obtained from 119 meteorological
stations in the Inner Mongolia Autonomous Region from 1961 to 2021 (Figure 1). The long-
term field observation datasets of potato were collected from 11 agricultural meteorological
data stations of the Inner Mongolia Autonomous Region from 1981 to 2020 (Figure 1). The
administrative boundaries of Inner Mongolia and the cities (alliances) that are involved in
this article are based on the standard map with the approval number of Mongolia S (2019)
33, from the Map Institute of the Inner Mongolia Autonomous Region.
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Alxa LeagueA
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Figure 1. Distribution of 119 meteorological stations (green triangles) and 11 agrometeorological
observation stations (red dots) in the Inner Mongolia Autonomous Region of China.
2.3. Research Methods
2.3.1. Calculation of the Climatic Production Potential

The step-by-step correction method was used, starting from crop photosynthesis,
according to the process of crop energy conversion and yield formation, and gradually
estimating the agricultural climatic production potential. It is a model that was developed
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from the step-by-step revision of the climatic factor function based on the photosynthetic
production potential. The calculation formula is as follows [25]:

Ycrp = Yeep X f(Tjj) % f(Rij) = Yrep X f(Ryj) 1)

where Ycpp, Yppp and Yrpp are the climatic production potential, photosynthetic production
potential and light-temperature production potential (kg-hm~2), respectively; f (Tjj) is the
effective temperature coefficient of the ith growth period in the jth year; and f(R;) is the
effective water coefficient of the ith growth period in the jth year.

(1)  Photosynthetic production potential of potato

The photosynthetic production potential of potato refers to the potato yields that
are uniquely determined by the local solar radiation under the assumption that the most
suitable temperature, water, soil fertility, crop population and agricultural technical mea-
sures are provided. It is the theoretical upper limit of potato yield. The photosynthetic
production potential model of potato adopts the state of energy utilization and loss during
yield formation, takes the total solar radiation value of potato in each growth period as the
basic data, and corrects it. The calculation formula is as follows [18,19]:

Yepp = Cf(Q) 2
£(Q) =Qep(1—a)(1-B)(1—p)(1—7)(1—w)A—1) '1=&)sq f(LY.Q )

where C is the unit conversion factor, which is 10,000; }_ Q; is the total radiation during
the growing season (MJ-m~2); i represents the different growth periods; Q is the ratio of
the photosynthetic ability of crops to fix CO,, which is 0.6; ¢ is the ratio of photosynthetic
radiation to total radiation, which is taken as 0.47; ¢ is the quantum efficiency of photo-
synthesis, which is taken as 0.224; « is the crop population reflectivity, which is taken as
0.17; B is the leakage rate of solar radiation by the crop population, which is taken as 0.1; p
is the ineffective absorption rate of non-photosynthetic organs, which is 0.1; 7y is the light
saturation limitation rate, which is 0.01; w is the respiration loss rate, which is 0.3; 7 is the
moisture content of mature grains, which is 0.14; ¢ is the proportion of crop inorganic ash
content, which is taken as 0.08; s is the crop economic coefficient, which is taken as 0.75; g is
the heat required to form one unit of dry matter (MJ-kg~!), which is taken as 18; and f(L) is
the corrected value of the dynamic change in leaf area, which is taken as 0.556.

(2) Light-temperature production potential of potato

Based on the photosynthetic production potential of potato, by considering the effect
of temperature on plant photosynthesis and correcting the temperature coefficient, the
light-temperature production potential of potato, determined by the two factors of light
and temperature, can be obtained. The calculation formula is as follows [18]:

YTPP = Ypppf(T,‘j) (4)
(Tj — T) % (T, - Ty)" T
T T < (To — TP <T<T:
f(T1]) ={ (To-T) x (T, - )" 1 2 )
T<TiorT>T,
_Dh-Ty
Nl P (6)

where f(T};) is the temperature correction function of the ith growth period in the jth year;
Tjj is the average temperature of the ith growth period in the jth year (°C); and Ty, T2 and
Ty are the lower and the upper limits of temperature and the optimum temperature of crop
growth in each growth period (°C), respectively (Table 1) [25-27].
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Table 1. Three cardinal temperature points in each potato growth period (°C).

Growth Period Ty T, Ty
Sowing—emergence 5.0 29.0 14.0
Emergence-branch 9.0 32.0 18.3

Branch-inflorescence 10.0 30.0 19.5
Inflorescence-bloom 10.0 30.0 19.3
Flowering-harvestable 10.0 29.0 18.0
Full reproductive period 5.0 32.0 17.8

(3) climatic production potential of potato

The climatic production potential is the upper limit of production that can be achieved
under the combined influence of radiation, temperature and precipitation. After the light—
temperature production potential is corrected by the moisture correction function, the
climatic production potential can be obtained, and its expression is as follows [18]:

Ycrp = Yrerf(Rij) (7)

F(Ry) = Rjj/Rip  Rij < Rip ®)
Y 1 Rip = Rjj

where f(R;;) is the water correction function of the ith growth period of the jth year, R;; is the
precipitation during the ith growth period of the jth year (mm) and R;g is the physiological
water demand during the ith growth period (mm). The water requirement of potatoes
in the entire growth period is approximately 372.5 mm; the physiological water require-
ments in the sowing-seedling, seedling-branching, branching-inflorescence, inflorescence—
flowering and flowering-returnable stages are 50 mm, 40 mm, 30 mm, 52.5 mm and
200 mm, respectively.

2.3.2. Impacts of Climate Change on the Climatic Production Potential of Potato

The climatic production potential of potato reflects the comprehensive impact of
various meteorological factors on potato production. The photosynthetic production
potential directly corresponds to the impact of light, the light-temperature production
potential corresponds to the comprehensive impact of light and heat, and the climatic
production potential corresponds to the comprehensive impact of the three factors of light,
heat and water. The effects of light, heat, water and the comprehensive climatic conditions
on the potato production potential are expressed as Y;, Yi, Yp and Yc (kg~hm*2-a’1),
respectively. The calculation method is as follows [25,28]:

Yy = (ar/Yl) X Y3 (9)

Yo = (a/Yo —a:/ Y1) X Y3 (10)
Yt: (llt/Yz—ﬂr/Yl) ><Y3 (11)
Y, = ac (12)

where a;, a; and a. are the propensity rates of photosynthesis, light-temperature and
the climatic production potential with time (year) (kg~hm*2~a*1), respectively; Y1, Yo
and Y3 are the multiyear averages of photosynthesis, light-temperature and the climatic
production potential (kg-hm~2), respectively.

3. Results
3.1. Annual and Interdecadal Variations in the Production Potential of Potato

It can be seen from the change in the abnormal percentage of potato climatic pro-
duction potential in Inner Mongolia (Figure 2) that before 2000, the abnormal percentage
of potato climatic production potential in Inner Mongolia was mainly positive, and after
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2000, it was mainly negative. Over the past 61 years, the climatic production potential of
potato during the growth period in most of the central and western parts of Inner Mon-
golia and the southeast parts has shown a decreasing trend, with a decreasing range of
10~164 kg-hm~2-a~1; the decrease is in the areas that are above 40 kg-hm~2-a~! and are
mainly located in most of Bayannaoer city, the southwest and northern parts of Ordos city,
the southern part of Baotou city, the central part of Hohhot city, the southwest and eastern
parts of Ulanqab city, west of Xilin Gol League, east of Chifeng city, most of Tongliao city,
south of Xing’an League and west and southeast of Hulunbuir city. The central part of
Hulunbuir city, north of Xing’an League, northeast of Xilingol League, west of Chifeng
city, north parts of Baotou city, the south part of Ordos city, the northwest part of Bayan-
naoer city and southeast of Alxa League experienced increasing trends, with increases of
10~40 kg-hm~2-a~!. The increase areas greater than 20 kg-hm~2-a~! were mainly located
in the central and northern parts of Hulunbuir city, the north part of Xing’an League, the
western part of Chifeng city and the northeastern part of Xilingol League. The change
trends of the climatic production potential of potato during the growth period were not
obvious in other areas (Figure 3). On the whole, the climatic production potential of potato
during the growth period of Inner Mongolia mainly exhibits a decreasing trend, and the
increases in temperature, radiation and precipitation during the growth period are not
conducive to improving the climatic production potential.
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Figure 2. The anomaly (low—frequency filtering) changes in the potato potential productivity in Inner
Mongolia, China, from 1961 to 2021.

Figure 4 shows the interannual and interdecadal variations in the potato production
potential at all levels in Inner Mongolia. Figure 4a shows that over the past 61 years, the in-
terannual fluctuations in the production potential of potatoes at all levels in Inner Mongolia
have been relatively large, and the overall trend has decreased significantly (p < 0.005). The
potential and climatic production potentials decreased at rates of 574 kg-hm~2-(10 a)~!,
1048 kg-hm~2:(10 a)~! and 465 kg-hm~2-(10 a)~!. The photosynthetic production po-
tential and light-temperature production potential were relatively close, with averages
of 42,417 kg-hm~2 and 36,244 kg-hm~2 in the whole area, respectively, and the aver-
age climatic production potential was 19,318 kg-hm 2, which is significantly lower than
the production potential of the first two levels. The highest value of the photosynthetic
production potential occurred in 1965 (45,952 kg-hm~2). The highest value of the light—
temperature production potential occurred in 1977 (41,001 kg-hm_z). The highest value of
the climatic production potential occurred in 1979 (25,623 kg-hm~2). The lowest values of
photosynthetic production potential, light-temperature production potential and climatic
production potential occurred in 2021 (34,045 kg-hm~2), 2021 (29,553 kg-hm~2) and 1965
(15,354 kg-hm’z), respectively.
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Figure 3. Change trends of climatic production potential of potato in Inner Mongolia, China
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Figure 4. The annual (a) and decadal (b) changes in the potential productivity of potato of each
grade in Inner Mongolia, China, from 1961 to 2021 (The red column in Figure (b) is brown because it
overlaps with the green column.).
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Judging from the interdecadal changes shown in Figure 4b, the changing trends of the
production potentials at all levels are not consistent. Among them, the characteristics of the
interdecadal variations in photosynthesis and the light-temperature production potential
are consistent, being the largest in the 1970s and smallest in the 2010s, while the climatic
production potential were the largest in the 1970s and smallest in the 2000s. The climatic
production potential exhibited greater fluctuations than the previous two levels, and its
variation trend had a significant positive correlation with the interdecadal variations in
precipitation (p < 0.01), which indicated that the main limiting factor for the potato climatic
production potential in Inner Mongolia was precipitation.

3.2. Characteristics of the Spatial Distribution of the Potato Production Potential

The climatic production potential of potato in Inner Mongolia decreased from the
central and southern parts to the periphery, and the climatic production potential in the
central and western regions had an obvious geographical distribution. The central and
eastern part of Ulanqab city, the southern part of Xilin Gol League, the western part of
Chifeng city and the central part of Hulunbuir city were more consistent with the dominant
potato-producing areas. Among them, the highest value of the potato climatic production
potential was in the Zhenglan Banner of Xilin Gol League, with the value of 27,641 kg-hm*;
The second-highest value (17,601~22,600 kg-hm~2) was located the eastern part of Ordos
city and most of Baotou city, most of Hohhot, northern Ulanqab, central and northern Xilin
Gol League and most of its eastern areas. The lowest value was located in Ejina Banner
of Alxa League, being only 2594 kg-hm 2 (Figure 5). High temperatures and low rainfall
amounts are the probable reasons for the lowest potentials of potato climatic production.
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Figure 5. The spatial distribution of the climatic production potential of potatoes in Inner Mongolia,
China (kg-hm~2).
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The annual meteorological yields and climatic production potentials of potato over
the past 57 years in Wuchuan County of Hohhot city were relatively consistent, with a
very significant positive correlation (0.5131 at 0.1% significance). These potato climatic
production potentials are based on the results of the step-by-step revision correction method,
and can better reflect the changing trends of the potato meteorological yields (Figure 6). The
average annual potato yield in Wuchuan County was about 2163 kg-hm~2, with 5.4% of
the maximum climatic production potential and 14.2% of the minimum climatic production
potential. The average application level of the potato climatic production potential in
Wuchuan County was only 7.6%.

40 5 —— Climatic production potential —&— Meteorological yield 15

Climatic production potential
(10%kg/ha)
Meteorological yield (10%g/ha)

10

T T T T T T
1961 1571 1981 1991 2001 2011 2021

Figure 6. The relationship between the climatic production potentials and meteorological yields of
potato in Wuchuan, Inner Mongolia, China, from 1961 to 2020.

3.3. Influence of Changes in the Main Meteorological Elements on the Potato Climate
Production Potential

3.3.1. The Effect of Radiation Changes on the Potato Climatic Production Potential

Over the past 58 years, the total solar radiation in Inner Mongolia has fluctuated
and decreased at a rate of 39.3 MJ-m~2 (10 a) ! (p > 0.05) [29]; this decreasing trend was
obvious in some areas (p < 0.05). Over the past 61 years, the number of sunshine hours
during the potato growth period in Inner Mongolia fluctuated at a rate of 18.1 h-(10 a)~!
(p < 0.001) (Figure 7). Potato is a light-loving crop, and reductions in radiation and light
are detrimental to its growth. Figure 8 shows that the influences of radiation changes
on the climatic production potential of potato during the growth period in most of Inner
Mongolia had negative effects, indicating that radiation reductions were not conducive to
improving the climatic production potential of potato during the growth period. The areas
experiencing negative effects are mainly distributed in the central and northeastern parts
of Ordos city, southern part of Baotou city, most of Hohhot city, central and eastern parts of
Ulangab city, central and southern parts of Xilingol League, southeastern part of Chifeng
city, most of Tongliao city, the southeastern part of Xing’an League, and the southeastern
part of Hulunbuir city. Ulangab city, the Chayouhou Banner in Lanchabu city and the
Arong Banner in Hulunbuir city experienced the greatest impacts. The areas experiencing
positive effects were relatively rare and were mainly distributed in the southwest and
east parts of Xilingol League, the south part of Chifeng city and the central and eastern,
central and northern Xing’an League and northwestern Hulunbuir city. However, the
above-mentioned radiation changes in most of the regions had little effects on the climatic
production potential of potato during the growth period, and the values were mostly
between —20 MJ-m~2-a~ ! and 20 MJ-m 2-a~ 1.
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Figure 7. Changes in sunshine hours during the potato growing period in Inner Mongolia, China (h).
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Figure 8. Impacts of radiation changes on the climatic production potential of potato in Inner
Mongolia, China (kg-hm~2-a~1).

3.3.2. Effects of Temperature Changes on the Potato Climatic Production Potential

Over the past 61 years, the average temperatures during the potato growing season
in Inner Mongolia have exhibited a significant upward trend as a whole (p < 0.001), with
a climatic trend rate of 0.3 °C-(10 a)~!. The temperatures increased significantly in most
areas (94% of meteorological stations (p < 0.01) (Figure 9). Potato is a crop that prefers
cool and cool conditions, and increased temperatures are not conducive to the growth and
development of potato. Figure 10 shows that the impacts of the temperature changes on the
potato climatic production potential were mostly negative, indicating that the temperature
increases during the potato growth period in Inner Mongolia were not conducive to
improving the climatic production potential. Negative effects were seen in the central and
western parts of Inner Mongolia and in the southeast, while the negative effects were most
obvious in the Northwest Territories, which were —102~—20 kg-hm~2-a~!. The greatest
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negative effects were found in Bayannaoer city, the north and southwest parts of Ordos city,
the southwest part of Baotou city, and the central and western parts of Hohhot city. The
positive effects were concentrated only in the central and northern parts of Hulunbuir city
and the northwestern part of Xing’an League, with an impact range of 20~40 kg-hm—2.a~1;
the influence range in the central and northern parts of Hulunbuir city was greater than
30 kg-hm—2-a~1.
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Figure 9. Variations in average temperature during the potato growth period in Inner Mongolia,
China (°C).
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Figure 10. Impacts of temperature changes on the climatic production potential of potato in Inner
Mongolia, China (kg-hm~2-a~1).
3.3.3. The Impact of Precipitation Changes on the Climatic Production Potential

Over the past 61 years, the precipitation levels during the potato growing season in
Inner Mongolia has decreased at a rate of 0.7 mm-(10a)~! (p > 0.1), and the change trend
was not significant in most areas (Figure 11). Figure 12 showed that most of western Inner
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Mongolia, Hohhot, western Chifeng and eastern Xing’an League experienced positive
effects on the climatic production potential of potato during the growth period of the
precipitation changes, with an impact range of 20~40 kg-hm~2-a~!, in which the positive
effects in the central and eastern parts of Ordos city and most of Baotou city were large
and were greater than 30 kg-hm~2-a~!. The central and eastern regions experienced mostly
negative effects, with an impact range of —102~ —20 kg-hm~2-a~; the southeast part of
Chifeng city, the southwest part of Tongliao city and the northwest part of Hulunbuir city
experienced greater negative impacts, which were less than —50 kg~hm_2~a_1.lt is worth
mentioning that the change in precipitation in most areas of Wulanchabu city, which is the
main potato-producing area in Inner Mongolia, had a negative impact on potato climatic
production potential.
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Figure 11. Variations in annual precipitation during the potato growth period in Inner Mongolia,
China (mm).

Il 1 1 1 1 1

N
<
.
B -1022~-40
[]-309~-20
[]-190~0
o~ 0 i
| REEEU)
z
£
<
7
Z
<
200 400 800 km
I I N IS N MO S |

T T T T T
100°E 105°E 110°E 15°E 120°E

Figure 12. Impact of precipitation changes on the climatic production potential of potato in Inner
Mongolia, China (kg-hm~2-a1).

40



Sustainability 2022, 14, 7836

4. Discussion

Light, temperature and water are important drivers of climatic production poten-
tial [30,31]. Analyzing the impact of climate factors on potato climatic production potential
will help people take better measures to adapt to climate change, so as to ensure the high-
quality development of the potato industry. In general, the impact of climate change on
potato climatic production potential in Inner Mongolia has both advantages and disadvan-
tages, but the disadvantages outweigh the advantages. In particular, in Wulanchabu city,
the main potato-producing area in the Inner Mongolia Autonomous Region, the impact
of climate change on potato climatic production potential is relatively adverse. Com-
pared with the average value of potato climatic production potential in Shanxi Province
(13,428 kg-hm~2), the average value of potato climatic production potential in Inner Mon-
golia (19,318 kg-hm™2) in this study was higher. Although the average precipitation during
the growing period in Shanxi Province is slightly higher than that in Inner Mongolia, the
high average temperature leads to a lower climatic production potential of potato in Shanxi
Province than that in Inner Mongolia. The impact of light, temperature and water changes
on potato climatic production potential in Shanxi Province is also more negative; particu-
larly, the impact of radiation and temperature changes in most areas is negative, similar to
the impact of climate change on the potato climatic production potential in Inner Mongolia.
The impact of precipitation change on the potato climatic production potential in Shanxi
Province is positive in the north and negative in the south [28,32]. However, we found that
the distribution of impacts of precipitation change on potato production potential in Inner
Mongolia was more complex, spanning the main southern agricultural areas from south-
west to northeast as follows: positive effect—negative effect—positive effect—negative
effect—positive effect—negative effect. The average application level of the potato climatic
production potential in Wuchuan County was only 7.6%, lower than the application level
of the potato climatic production potential in Jixi County of Ningxia [20]. This shows that
the potato yield in Wuchuan County is bound to have room for improvement. We need to
pursue advantages, avoid disadvantages and make effective use of climate factors.

In order to adapt to the current climate change trend and its adverse impacts, it is
necessary to vigorously promote water-saving irrigation technology and biofilm technology
in agricultural areas to improve water use efficiency. In particular, most of the central and
western parts of Inner Mongolia are mainly rain-fed agriculture. In Ordos, Baotou, Hohhot
and other central and western regions, it is necessary to adjust the sowing date of potatoes
so that the yield can occur in the critical period to avoid high temperatures and obtain
high yield. The potato production in the eastern agricultural area needs to improve field
management in order to improve the utilization rate of light energy and obtain high yield.

In this study, the step-by-step correction method was adopted, and the physical
meaning of the model was clear. However, there are still shortcomings that need to be
resolved. Because of the incompleteness and discontinuity of the data, we used the data
of the average growth period of potato from agrometeorological observation stations for
many years. In general, studying only the main variety of local potato, i.e., the mid-late
maturing variety, without considering the early maturing variety of potato will lead to
differences in climatic resources during the growing period of potato, resulting in certain
differences in the calculation results of potato climatic production potential. In Inner
Mongolia, water condition was the main limiting factor of potato climatic production
potential. This is consistent with the previous study on various crops which found that
the same precipitation was far greater than the crop water demand, or even impacted the
potato climatic production potential in case of flood disaster, so there were inevitably some
omissions in the calculation results [33]. The parameter determination in the step-by-step
correction method was empirical, and only reflected the overall variety characteristics of
current crops. With the continuous development of breeding and cultivation techniques,
the parameters of better varieties might be different in the future, which is likely to lead
to changes in the calculation results of potato climatic production potential [8,33]. As the
precipitation in local agricultural areas was relatively low [20,34,35], the adverse impact
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from calculating the water correction coefficient was not considered in this study. In
addition, the climatic production potential of potato was the maximum yield under ideal
conditions. The actual yield of potato is affected by many factors, such as climate, soil,
social economy and so on. Therefore, in the future, multiple methods can be used for
comprehensive analysis to conduct in-depth comparative research on climatic production
potential and actual yield, so as to explore the differences and responses between the
two [35-37].

5. Conclusions

We investigated the effects of climate change on the climatic production potential of
potatoes since 1961 in Inner Mongolia using the step-by-step correction method. From 1961
to 2021, the average climatic production potential of potato in Inner Mongolia decreased
from the central south to the surrounding areas. Under the direct influence of local climatic
factors, the average climatic production potential of potato showed a downward trend
year by year, especially after 2000. The changes in three climatic factors, light, temperature
and water, had different effects on the climatic production potential of potato. The impact
of radiation change on the climatic production potential of potato was mainly negative,
especially in the main potato-producing area of Wulanchabu. Temperature change had
both advantages and disadvantages. In the cold climate region of Northeast China, the
temperature change had a favorable impact on the climatic production potential of potato.
Other areas were mainly adversely affected, and most areas of Ulanqgab city were adversely
affected by temperature changes. The change in rainfall had a favorable impact on the
climatic production potential of potato west of Hohhot and in the southern and central area
of Xilin Gol League. However, the change in rainfall had a negative impact on the climatic
production potential of potato in most other areas.
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Abstract: Global warming increases the risk of high-temperature injury to maize. Inter- and mixed-
cropping of maize varieties with different genotypes is one way to effectively alleviate the high-
temperature injury during the flowering period. However, the mitigation effect of different varieties
and intercropping modes on high-temperature injury is still unclear. Based on previous years of field
production, Denghai 605, which is more sensitive to high temperatures during the flowering period,
was determined as the main test variety, and Zhengdan 958, Dedan 5, Weike 702, and Xianyu 335,
which have great genotypic differences, were used as auxiliary varieties. The main test varieties
and auxiliary varieties were intercropped and mixed cropped, respectively. Plant height, ear height,
leaf area index, population light transmittance, ear characteristics, and yield were measured, and
the land equivalent ratio (LER) was calculated. The plant height of Denghai 605 intercropped with
Zhengdan 958 and Dedan 5 and mixed with Weike 702 and Xianyu 335 decreased significantly. The
population light transmittance of the bottom or middle layer in Denghai 605 increased significantly
when intercropped with other varieties. The grain number per ear increased significantly under
inter- and mixed cropping with Zhengdan 958 and Weike 702. Except under intercropping with
Dedan 5, the yield of Denghai 605 increased significantly, by 8.8-28.0%, under inter- and mixed
cropping. Under intercropping with Zhengdan 958 and inter- and mixed cropping with Weike 702
and Xianyu 335, respectively, the group land equivalent ratio was greater than 1.1, indicating that
under the combination of these varieties, inter- and mixed cropping effectively reduced the impact of
high temperatures during flowering.

Keywords: summer maize; inter- and mixed cropping; high temperature; flowering period; yield

1. Introduction

Maize (Zea mays L.) is one of the most important crops in the global and national
economy [1,2]. The Huanghuaihai plain is the largest summer-maize-producing area in
China with a wheat-maize cropping system. The growing season of summer maize is
mainly in the period from June to September, which has the highest temperature in the year
and two-thirds of the annual precipitation. In the context of climate change, continuous
high-temperature weather occurs frequently [3-5], which increases the risk of heat damage
to maize [6,7]. The flowering period of summer maize is when it is most sensitive to
high temperatures. High temperatures affect male and female ear development, pollen
vigor, and grain development [8-10]. Maize pollen is more susceptible to high-temperature
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stress than female ears [11]. Pollen vigor declines quickly when the temperature exceeds
32-35 °C [12,13]. High-temperature stress can cause abnormal pollen development or
abortion, resulting in a decrease in the number of pollen grains. In addition, it can cause
abnormal division of pollen mother cells, deformation, and shrinkage leading to deformed
pollen grains [14-16], which in turn affects the percentage seed set, yield, and quality of
maize [9,10]. Therefore, it is of great significance to study effective methods to protect
maize from the harmful high temperatures during the flowering period.

Single crop varieties are more vulnerable to diseases due to their narrow genetic basis,
which is particularly prominent in maize. In addition to the influence of the external
environment, there are obvious genotypic differences in the tolerance of maize to high tem-
peratures and heat injury during the flowering period [17,18]. According to the principle of
ecological complementation and biodiversity, the temperature-stress resistance of a maize
population can be effectively improved by intercropping or mixed cropping of different
maize varieties [19,20].

Inter- and mixed cropping among different ecotypes and genotypes of maize or
intercropping with other crops could improve the utilization rate of natural resources and
increase the yield stability of the crop composite population [21]. The inter- and mixed
cropping of maize varieties optimizes the population spatial structure and maintains a
higher chlorophyll content and photosynthetic rate [22], which is more conducive to gas
exchange and promotes photosynthesis [23,24], increased nutrient absorption and dry
matter accumulation [25,26], enhanced crop stress resistance [27,28], and improved yield
and quality of maize [29,30]. In the intercropping of multiple varieties of maize, the anthesis
and pollination time of the population system are relatively prolonged. When the maize
encounters adverse weather events such as continuous rain and high temperatures during
the flowering period, the fertilization rate of male flowers in the compound population
composed of multiple maize varieties is higher than that in the single variety planting mode,
which can effectively improve the bald tip and grain shortage caused by poor pollination,
so0 as to achieve the purpose of increasing and stabilizing yield [31-33].

An important strategy to reduce high-temperature stress is to exploit the difference
in heat resistance among maize varieties using an inter- and mixed cropping system.
However, few studies have considered crucial aspects of this approach, such as maize
variety matching, intercropping methods, and mixed cropping ratios. High-temperature
and heat damage occurred continuously during the flowering period of maize in Henan
from 2013 to 2016. It was found that the yield of Denghai 605 and Xianyu 335 decreased
seriously under the high temperatures, while Zhengdan 958, Weike 702, and Dedan 5 had
strong heat resistance and stable yield performance. According to the previous results, the
high-temperature resistance field experiment of multi-variety inter- and mixed cropping
was performed in 2017. In this study, Denghai 605, which has a large planting area and is
sensitive to high temperatures, was selected as the main test variety to analyze the effects
of inter- and mixed cropping of Denghai 605 with Zhengdan 958, Weike 702, Dedan 5, and
Xianyu 335 on the prevention and control of high-temperature and heat damage during the
flowering period.

2. Materials and Methods
2.1. Study Location

Our study was located in Shizhuang (114.03° E, 34.15° N), Chencao Township, Xuchang
City, Henan Province, which belongs to the north warm temperate monsoon climate zone
with abundant heat resources and abundant rainfall. The total area of the experimental field
was 0.7 ha, which was mechanized sowing. The heat tolerance evaluation experiment of
maize was carried out from 2013 to 2016, and the high-temperature resistance experiment of
multi-variety inter- and mixed cropping was performed in 2017. The soil of the experimental
field was a fluvo-aquic soil. The soil chemical properties at 0-20 cm depth were as follows:
23.54 g kg~ ! soil organic matter, 43.77 mg kg ™! available nitrogen, 202.04 mg kg~! Olsen
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potassium, and 11.07 mg kg~! Olsen phosphorus. The meteorological variables recorded
during the summer-maize-growing season at the study site are shown in Figure 1.
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Figure 1. Meteorological variables during the summer-maize-growing season at the study site.
Temperature (A), rainfall (B), and sunshine hours (C) at Xuchang, Henan, China from June to
September in 2017.
2.2. Experimental Design
‘Denghai 605’ (Shandong Denghai Seed Industry Co., Ltd.; Laizhou, Shandong, China)
was selected as the main test variety, and “Zhengdan 958" (Henan Academy of Agricultural
Sciences Institute of Grain Crops; Zhengzhou, Henan, China), ‘Dedan 5’ (Beijing Denong
Seed Industry Co., Ltd.; Beijing, China), "Weike 702" (Zhengzhou Weike Crop Breeding
Technology Co., Ltd.; Zhengzhou, Henan, China), and ‘Xianyu 335’ (Tieling Pioneer Seed
Research Co., Ltd.; Tieling, Liaoning, China) were chosen as the auxiliary varieties.
Denghai 605 was inter- and mixed cropped with the four auxiliary varieties. A
monoculture of each variety was established as the control group. The experimental design
and processing codes are summarized in Table 1.
Table 1. Intercropping and mixed cropping treatments of the maize varieties.
Variety Codes
Farming Methods Variety Combinations
Denghai 605 Auxiliary Varieties
Denghai 605 | | Zhengdan 958 [605 | |958] (605) 1 1958 6051 1(958)
Intercroppin Denghai 605 | Dedan 5 [605 | 1005] (605) 1 1005 605 | 1(005)
pping Denghai 605 | | Weike 702 [605 | 1702] (605) 1 1702 6051 1(702)
Denghai 605 | | Xianyu 335 [605 | 1335] (605) 1 1335 6051 1(335)
Denghai 605 x Zhengdan 958 [605 x 958] (605) x 958 605 x (958)
Mixed cronpin Denghai 605 x Dedan 5 [605 x 005] (605) x 005 605 x (005)
PPIng Denghai 605 x Weike 702 [605 x 702] (605) x 702 605 x (702)
Denghai 605 x Xianyu 335 [605 x 335] (605) x 335 605 x (335)
Denghai 605 CK605
Zhengdan 958 CK958
Monoculture Dedan 5 CKO005
Weike 702 CK702
Xianyu 335 CK335

“ 11" represents the intercropping of two varieties, and “ x“ represents the mixed cropping of two varieties. The
notation also indicates the variety combination used in the experiment. For example, intercropping of Denghai
605 and Zhengdan 958 is indicated as “605((958”, “Denghai 605" in the combination is indicated by the form
“(605)||958”, and “Zhengdan 958" is indicated by “605 | |(958)".

It has been proven that in a relay intercropping system, narrow—wide row planting
improves the light environment and seed yields of intercrop species [34]. Thus, the narrow—
wide row planting pattern with a wide row of 70 cm and a narrow row of 50 cm was
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used in this experiment. The mechanical precision seeding method was applied to fertilize
simultaneously. The seeder sowed two rows concurrently. The five varieties were sown on
11 June. The intercropping sowing design was illustrated in Figure 2. For mixed cropping,
varieties were sown according to a 1:1 ratio of the number of seeds. Seedlings were thinned
at the three-leaf stage, weeds were chemically controlled, and a commercial compound
fertilizer (N-P,05-K,0: 29-5-6, 750 kg ha~2; Luxi, 0303050000001, Liaocheng, Shandong,
China) was applied between rows at the jointing stage. Irrigation was applied in accordance
with the soil moisture content to ensure that the entire growth period was free from drought
stress. Other management measures were identical to those of local farmer practices.
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Figure 2. Schematic diagram of the intercropping sowing design. Note: A and O indicate
different varieties.

2.3. Measurement of Parameters and Methods
2.3.1. Main Reproductive Assessment Period

The timing of the tasseling, silking, flowering, and pollination stages of maize plants
growing in the monoculture area was recorded, which for each stage was expressed as the
number of days after sowing.

2.3.2. Population Density Determination

Eleven consecutive plants in a row were selected to measure the spacing of ten plants,
and eleven consecutive rows (five wide and five narrow rows each) were selected to
measure the spacing of ten rows. The measurements were used to calculate the average
plant spacing (from three repetitions). Based on these data, the population density of
the intercropping mode was 61,215 plant ha=2 and that of the mixed cropping mode was
64,815 plant ha—2.

2.3.3. Main Agricultural Characters Determination

During the tasseling period of maize, five plants of relatively uniform growth were
selected for each variety in each treatment area, and the plant height and ear height were
measured. The leaf area index was calculated with a length-width coefficient method.
The leaf length and maximum leaf width were measured in situ with a ruler. During the
tasseling period of the maize, three representative sites were randomly selected in the
middle of a narrow row for each treatment. The light transmittance of the middle and
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bottom layers in the canopy of the maize population was measured with an LAI-2000 plant
canopy analyzer (LI-COR, Inc; Lincoln, NE, USA).

2.3.4. Ear Traits and Yield Determination

In the monoculture of the test variety, ten consecutive ears were selected from plants
growing in a middle row of uniform growth. For the mixed cropping mode, in a relatively
uniform middle row, ten ears were selected from consecutive plants of each of the two
combination varieties (note that ears of the same variety were not collected from a row once
ten ears had been sampled). For the intercropping treatment, ten consecutive ears were
selected from one row (a non-side row) of each variety. Three replicates were collected;
thus, a total of 30 ears of each variety in each treatment was sampled. Each variety was
sampled 3 times for the determination of ear traits and yield, and 10 consecutive ears were
measured for each replicate, for a total of 30 ears. Among them, 3 ears were selected for
each repetition (9 ears were selected in total), and ear length, ear thickness, bald length, and
grain number per ear were measured. The 100-grain weight and yield were determined by
threshing and mixing once we were finished measuring every ten ears.

The ear length and bald length were measured with a ruler, the ear thickness was
measured with a vernier caliper at the thickest portion in the middle of the ear, the 100-grain
weight was measured with an electronic balance (sensitivity 0.01 g), and grain moisture
content was measured using a grain moisture meter.

The population yield was calculated according to the number of grains per ear,
100-grain weight, and population density of each variety in the inter- and mixed cropping
combination. The formulas used were as follows:

Yi= (Ys1+YSZ)/2 1)
Ys1= Ws1 X Ng; x Dg (2)
Ysp= Wsp X Nsp x Ds (3)

where Y; is the population yield of the varieties under inter- and mixed cropping mode
per unit area, Ys1 and Ys; are the yield of two varieties in the inter-and mixed cropping
mode, respectively, Wg; and Wg; are the grain weight of the two varieties equivalent to 14%
moisture, Ng; and Ng, are the number of grains per ear of the two varieties, respectively,
and Ds is the population density.

2.3.5. Calculation of the Land Equivalent Ratio

The land equivalent ratio is the ratio of the income of two or more mixed crops
(varieties) to the income of each crop in the same farmland. The land equivalent ratio (LER)
was calculated using the following formula:

Yi

LER = _* 4
s @)

Yi=(Yq+Ya)/2 (5)

where Yj; is the average yield of the two varieties and Y. and Y, are the yields of the two
varieties grown in the monoculture method, respectively.

2.4. Determination of Maize Flowering Period and High-Temperature Stress Threshold

The date of the onset of flowering for each variety was recorded from plants growing
in the monoculture. Flowering of the entire ear of summer-sown maize usually lasts 7-10 d;
therefore, the onset of tasseling is the date for the start of flowering, and the date of the end
of flowering is 10 d after tasseling. The maximum temperature > 35 °C was used as the
critical threshold of high-temperature stress during the flowering period [17,35].
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2.5. Statistical Analysis

Data processing and graphing were performed using Microsoft Excel 2016 and Graph-
Pad Prism 8. All data were expressed as the mean = standard deviation (SD), and n refers to
the number of samples in each group. Statistical analyses were performed using SPSS 17.0
(SPSS, IBM Corp., Armonk, NY, USA). Analysis of variance (ANOVA) was performed to de-
termine the significance of differences between treatments. Means for different treatments
were compared using the Bonferroni test at the significance level o = 0.05.

3. Results
3.1. Differences in the Onset of Flowering and the Occurrence of High Temperatures

As shown in Figure 3, Dedan 5 was the first variety to start flowering (54 d after sowing)
and Xianyu 335 was the last variety to flower (57 d after sowing). Two main periods of high
temperatures were recorded in 2017. The first period was from 3 to 6 August, in which
the highest temperature exceeded 35 °C for 4 consecutive days. The second period was
from 9 to 11 August, in which the highest temperature exceeded 35 °C for 3 consecutive
days. The first high-temperature period coincided with the beginning of tasseling of the
varieties. The second high-temperature period occurred 2-6 d after tasseling and had a
greater impact on flowering and pollination.
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Figure 3. Flowering period (A) and meteorological conditions (B) of each variety.

3.2. Plant Height and Ear Height

As shown in Figure 4, aside from the increase in plant height of Denghai 605 inter-
cropped with Xianyu 335, the plant height of Denghai 605 showed different degrees of
decline in other inter- and mixed cropping modes. Among these treatments, intercropping
with Zhengdan 958 and Dedan 5 and mixed cropping with Weike 702 and Xianyu 335
resulted in a significant decrease in the plant height of Denghai 605. The plant heights of
Zhengdan 958, Dedan 5, and Weike 702 decreased under inter- and mixed cropping with
Denghai 605, and the plant heights of the mixed cropping modes all decreased significantly.
Given that Dedan 5, Weike 702, and Zhengdan 958 have genetically similar parents, the
trends for changes in plant height under inter- and mixed cropping with Denghai 605 were
generally similar. However, the plant height of Xianyu 335 increased significantly under
inter- and mixed cropping with Denghai 605.
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Figure 4. Plant height of summer maize varieties under different inter- and mixed cropping modes.

Values represent the mean £ SD, n = 5 per group. * p < 0.05.

As shown in Figure 5, the changes in ear height of most varieties under the inter- and
mixed cropping modes were similar to the observed changes in plant height. The main
difference was that the ear height of Zhengdan 958 did not decrease significantly under the
mixed cropping mode. The ear height of Weike 702 under intercropping was significantly
lower than that of the monoculture. The ear height of Xianyu 335 increased significantly
under the inter- and mixed cropping modes, and the ear height under intercropping
exceeded that observed in the mixed cropping mode.
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Figure 5. Ear height of summer maize varieties under different inter- and mixed cropping modes.
Values represent the mean & SD, n = 5 per group. * p < 0.05.
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Leaf area index

3.3. Leaf Area Index

As shown in Figure 6, except for a nonsignificant difference in leaf area between
Denghai 605 and Weike 702, the leaf area index of Denghai 605 decreased significantly
under the other inter- and mixed cropping modes. Under the intercropping mode, the leaf
area index of the four auxiliary varieties showed no significant change compared with that
of the monoculture. Under the mixed cropping mode, the leaf area index of Zhengdan
958 and Dedan 5 mixed with Denghai 605 decreased significantly compared with that of
the monoculture, whereas the leaf area index of Weike 702 and Xianyu 335 mixed with
Denghai 605 increased significantly compared with that of the monoculture.
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Figure 6. Leaf area index of summer maize varieties under different inter- and mixed cropping modes.
Values represent the mean + SD, n = 3 per group. * p < 0.05.

3.4. Population Light Transmittance

As shown in Figure 7, under the intercropping mode, the mid-canopy-level population
light transmittance of Denghai 605 and Zhengdan 958 increased significantly compared with
that of each monoculture. The mid-canopy-level population light transmittance between
Denghai 605 and the other three varieties was not significantly affected by intercropping.
Under the mixed cropping mode, the population light transmittance of the mid-canopy of
the three varieties was significantly lower than that of the Denghai 605 monoculture.

Under intercropping of the other four varieties, the population light transmittance of
the lower canopy increased significantly. The population light transmittance of the lower
canopy under all mixed cropping modes showed no significant change compared with that
of the Denghai 605 monoculture.
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Figure 7. Population light transmittance under different inter- and mixed cropping modes. Popu-
lation light transmittance in the middle and lower canopy levels under inter- and mixed cropping
of (A) Denghai 605 and Zhengdan 958, (B) Denghai 605 and Dedan 5, (C) Denghai 605 and Weike 702,
and (D) Denghai 605 and Xianyu 335. Values represent the mean + SD, n = 3 per group. * p < 0.05.

3.5. Effects of Inter- and Mixed Cropping Modes on Ear Traits

The effects of the different inter- and mixed cropping modes on ear morphology
were mainly manifested as changes in ear length (Table 2). The ear length of Denghai
605 increased significantly under inter- and mixed cropping with Zhengdan 958. The ear
lengths of Weike 702 and Xianyu 335 under inter- and mixed cropping with Denghai 605
increased significantly compared with that of the monoculture. The number of grains per
ear of Denghai 605 increased significantly under inter- and mixed cropping modes with
Zhengdan 958 and Weike 702. Moreover, under inter- and mixed cropping, the number of
grains per ear of the four auxiliary varieties increased to varying degrees compared with
that of the corresponding monoculture. Specifically, intercropping of Dedan 5 and inter-
and mixed cropping of Weike 702 and Xianyu 335 significantly increased the number of
grains per ear. In addition, 100-grain weight Denghai 605 increased significantly under
intercropping with the four varieties and under mixed cropping with Dedan 5 and Weike702.
The 100-grain weight of the auxiliary varieties showed no significant differences except for
that of Weike 702 under intercropping with Denghai 605.
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Table 2. Ear traits of summer maize varieties under different inter- and mixed cropping modes.

Variety Ear Length /cm  Ear Thickness /cm  Bald Length /cm  Grain Number per Ear 100-Grain Weight/g
CK 605 18.4£0.8 51406 1.7 £06 503 £ 4 328 +0.3
(605) I 1958 215 £1.1*% 51+05 09+03 615+33* 345+£03%
(605) I 1005 17.8 £0.5 52+1.1 1.8+02 488 + 32 341+05*
(605) 1 1702 197+ 26 51+09 15+02 551 £59 % 349 £0.7%
(605) 1 1335 186 £ 1.1 50+15 12+04 523 +5 343+07*
(605) x 958 208+0.6* 4.8 £0.9* 14+04 546 + 16* 33.6 £ 0.4
(605) x 005 185+0.7 51+04 1.7+04 516 + 20 348 £0.7*%
(605) x 702 193 +£0.6 51+05 13+04 560 £13* 3424+0.8*
(605) x 335 18.8 £ 0.9 49+09 22+04 488 + 24 33.6 £0.1
CK958 16.9 £0.5 54416 03+0.1 523 £49 335+£03
6051 1(958) 17.4+0.5 53+0.3 0.6 £0.2 531 +12 342+12
605 x (958) 171+ 0.5 52+09 09£03* 528 4+ 59 33.6 £0.5
CKO005 157 £ 1.0 50+0.6 0.0+0.0 504 £ 20 309 £0.3
6051 1(005) 153+ 0.3 51406 01+0.1 557 £ 7% 30.0+£0.3
605 x (005) 154+0.3 51+09 0.0+0.0 533 £33 30.5+0.1
CK702 176 £ 0.8 54+0.1 1.24+03 524 + 30 351+£1.0
6051 1(702) 197 £04* 5.5+ 0.3* 0.6+03* 577 £34* 373+0.6*
605 x (702) 19.4+£08% 53+03 0.8+02 565 £20* 353 £05
CK335 162 £0.9 52+05 20+1.1 426 +11 345+0.6
6051 1(335) 189 +0.8* 51+12 1.7+£05 526 +46* 354+05
605 x (335) 185+£0.8% 52402 23+03 529 +42* 354+03

* Significant at the 0.05 probability level; Values are the mean 4 SD (n = 9 for lines 2-5 and n = 3 for line 6).

3.6. Effect of Inter- and Mixed Cropping Modes on Yield

The yield of Denghai 605 increased significantly under inter- and mixed cropping
with the auxiliary varieties except for intercropping with Dedan 5, with the yield increase
ranging from 8.8% to 28.0% (Table 3). When inter- and mixed cropped with Zhengdan 958,
the yield of Denghai 605 had the largest increase of 28.0% (intercropping) and 16.7% (mixed
cropping). This increase was then followed by an increase of 14.9% (intercropping) and
16.2% (mixed cropping) when inter- and mixed cropped with Weike 702.

Table 3. Yield of summer maize varieties under different inter- and mixed cropping modes.

Variety Yield /kg ha~2 Yield Variety Compared with

Monoculture/%

CK605 9075 + 63 —
(605) | 1958 11,615 + 641 * 28.0
(605) | 1005 9328 + 609 2.8
(605) | 1702 10,426 + 405 * 14.9
(605) | 1335 9878 + 96 * 8.8
(605) x 958 10,587 + 664 * 16.7
(605) x 005 9967 + 383 * 9.8
(605) x 702 10,549 + 381 * 16.2
(605) x 335 9988 + 493 * 10.1

CK958 10,812 + 318 —
6051 1(958) 11,028 + 760 2.0
605 x (958) 9846 + 387 * -89

CKO005 9622 + 379 —
6051 1(005) 9842 + 806 2.3
605 x (005) 9983 + 624 -7.7
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Table 3. Cont.

Yield Variety Compared with

. X _2
Variety Yield /kg ha Monoculture/%
CK702 10,722 + 520 —

6051 1(702) 12,861 + 747 * 19.9

605 x (702) 12,068 + 361 * 12.6
CK335 9144 + 597 —

6051 1(335) 10,800 + 606 * 18.1

605 x (335) 10,738 + 595 * 174

* Significant at the 0.05 probability level; Values are the mean + SD (n = 3).

The yield of the auxiliary varieties increased under inter- and mixed cropping with
Denghai 605. The yield of Weike 702 and Denghai 605 increased by 19.9% (intercropping)
and 12.6% (intercropping), respectively, and that of Xianyu 335 and Denghai 605 increased
by 18.1% (intercropping) and 17.4% (intercropping), respectively. However, the yield of
Zhengdan 958 decreased significantly after mixed cropping with Denghai 605.

3.7. Population Yield and Land Equivalent Ratio

The land equivalent ratio was consistently more than 1.0 under inter- and mixed
cropping of Denghai 605 and four auxiliary varieties, indicating that the different inter-
and mixed cropping methods were beneficial to increase the population yield (Table 4).
Intercropping with Zhengdan 958 and inter- and mixed cropping with Weike 702 resulted
in a population yield exceeding 11,000 kg ha—2. Under intercropping with Zhengdan
958 and mixed cropping with Weike 702 and Xianyu 335, the population yield increased
significantly, and the land equivalent ratio was greater than 1.1. Inter- and mixed cropping
with Dedan 5 resulted in the lowest increase in population yield.

Table 4. Population yield and land equivalent ratio of summer maize varieties under different inter-
and mixed cropping modes.

Average Yield of Land Population Yield Population Yield
Inter-and Mixed Population Yield Monoeulture/k Equivalent Variety Compared Variety Compared
Cropping Patterns /kg ha—2 ha-2 & qRa tio with Denghai 605  with Other Varieties’
Monoculture/% Monoculture/%
6051 1958 11,572 9944 1.16 24.8 47
6051 1005 9585 9349 1.03 5.6 —04
6051 1702 11,644 9899 1.18 28.3 8.6
6051 1335 10,339 9110 1.13 13.9 13.1
605 x 958 10,217 9944 1.03 12.6 -55
605 x 005 9975 9349 1.07 9.9 3.7
605 x 702 11,309 9899 1.14 24.6 5.5
605 x 335 10,363 9110 1.14 14.2 13.3

Comparing the population yield with the monoculture yield of Denghai 605, the
population yield increased by more than 20% under intercropping of Denghai 605 with
Zhengdan 958 and inter- and mixed cropping with Weike 702. The yield of Denghai 605
increased by 10%, compared with that of the monoculture, under mixed cropping with
Zhengdan 958 and inter- and mixed cropping with Xianyu 335.

Comparing the population yield with the monoculture yield of the auxiliary varieties,
the population yield was higher than that of the Xianyu 335 monoculture, with the yield
increased by 13.1% (605 | 1335) and 13.3% (605 x 335), respectively.

4. Discussion

The maize growing season is in summer, with high temperatures and humidity, which
brings the increasing risk of high-temperature stress [36]. High-temperature stress can
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cause abnormal pollen development or abortion, resulting in a decrease in the number of
pollen grains; in addition, it can cause abnormal division of pollen mother cells, deforma-
tion, and shrinkage leading to deformed pollen grains [14,15]. High temperatures during
flowering causes shrinkage of pollen grains and depression of the germination pore, which
significantly reduces pollen vitality; the higher the temperature, the greater the reduction
of pollen vitality [37]. High-temperature stress can also thicken the anther wall and hinder
dehiscence, resulting in the release of fewer pollen grains and lower vitality [38]. Pollen
metabolic activity is associated with the starch content of the pollen grain; a significant
decrease in the starch content causes a corresponding decrease in pollen metabolic activ-
ity [17,39]. Distinct differences in pollen viability are observed among maize hybrids, which
are derived from genetic differences among the parents [18,40]. Different varieties differ in
their gene sources, and thus heat tolerance can differ significantly. Varieties that produce a
greater number of branches, full glume, and higher number of pollen grains usually show
stronger resistance to high-temperature stress [21,41]. Sowing two or more varieties with
different genotypes increases the probability of cross pollination as well as the yield [42].
Therefore, changing single cropping to inter- and mixed cropping among multiple vari-
eties without increasing cost is one of the new strategies to improve the high-temperature
tolerance of maize during the flowering period by making full use of the heat tolerance
differences of different genotypes.

Inter- and mixed cropping, which creates a multi-level and multi-functional composite
group through different combinations of crops and varieties [43], can improve the canopy
structure of the population, improve efficiency in the use of light energy and land area,
and overcome the harmful impacts of diseases, insects, and grasses on monocultures, so
as to increase the yield per unit area [44,45]. Intercropping forms a wavy canopy, while
mixed cropping forms a concave—convex canopy of crops in order to change plane light into
three-dimensional light in the upper part of the population crops. It has been shown that
the photosynthetic potential of intercropping during the big bell mouth period was 76%
and 78% higher, and the field light transmittance was 54.0% higher than that of the single
cropping, respectively [46]. The photosynthetic intensity of the intercropping population
increased by 37.2% and 28.8% compared with that of the monoculture, and the light energy
utilization rate in the whole growth period increased by 58.6% compared with that of the
monoculture during the jointing stage and filling stage, respectively. In addition, the yield
of Jundan 20 and Dedan 5 increased by 5.6% and 7.9% compared with their monoculture
after intercropping treatment, respectively [47,48]. In our study, the results showed that
the light transmittance of the bottom population increased after intercropping Denghai
605 with Dedan 5, Weike 702, and Xianyu 335, and the light transmittance of the middle
layer increased after intercropping with Zheng Dan 958, which is consistent with the
previous findings.

The advantages of inter- and mixed cropping among different maize varieties mainly
reflect the contemporary heterosis [49], including resistance complementarity and fertility
complementarity. Complementary resistance means that inter- and mixed cropping of
two varieties that differ in disease resistance effectively improves the disease resistance
of the population after planting [27,45]. Sterility complementary refers to the similarity
of the male-female interval between two varieties. The pollen of each variety is used to
extend the duration of pollination and fertilization, which can enhance the utilization of
heterosis in maize cross-pollination and increase yields by enhancing the number of grains
per ear [50]. It had been demonstrated that intercropping was beneficial to the increase of
grain number per ear and grain weight compared with monoculture, and the number of
grains per ear in the intercropping of Yedan 12 and Yedan 13 increased by 9.28% and 15.66%,
respectively, compared with that of the monoculture [51]. In addition, the average number
of grains per ear of free pollination in different combinations increased by 40.7 grains,
and 100-grain weight increased by 1.1 g, which manifested the existence of heterosis
among different varieties [52]. Making full use of flowering and pollen complementary
advantages of varieties and improving fertilization and seed setting rate while avoiding
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high temperature stress is one of the focuses of our study. The flowering period of Zhengdan
958, Weike 702, and Denghai 605 were basically the same. After inter-and mixed cropping,
the flowering and pollination of Denghai 605 were compensated, and the grain number per
ear was significantly increased compared with that of single cropping. It indicated that the
selection of varieties with a consistent flowering period was helpful to give full play to the
advantages of inter-and mixed cropping planting mode. The number of grains per panicle
of Xianyu 335, a variety with a small amount of pollen and intolerant to high temperatures
during the flowering period, also increased significantly after inter-and mixed cropping
with Denghai 605 compared with that of single cropping. This shows that inter-and mixed
cropping can make better use of heterosis of maize varieties.

In previous studies, extensive research has been performed on the physiological and
ecological effects of maize intercropping. The yield-increasing benefits of maize in inter-
and mixed cropping have been discussed in detail. In terms of morphological structure, the
maize inter- and mixed cropping system facilitated the formation of a three-dimensional
canopy structure and different intercropping row ratios and planting densities brought
differences in light distribution, which improved the ventilation and light transmittance
and increased CO, concentration in the growth space [53-55]. In terms of physiology,
inter- and mixed cropping mode increased the chlorophyll content, leaf area index, and
photosynthetic rate of maize [19,22]. Meanwhile, it enhanced the antioxidant enzyme
activity and Rubisco’s carboxylation efficiency and improved soil quality and nutrient
absorption [23,25,55]. In terms of stress resistance, intercropping of different genotypes
of maize profoundly strengthened the resistance to the disease [27], and the appropriate
cultivar collocation effectively reduced the lodging resistance of the population. This study
focused on the mitigation effect of multi-variety- inter- and mixed cropping modes on
population resistance to high temperatures during the flowering period, and demonstrated
that the tolerance to high temperatures during flowering was significantly enhanced by
choosing reasonable variety-matching and row-spacing ratios, which were hardly studied
in the past.

Previous studies have fully confirmed that the yield-increasing effect of inter- and
mixed cropping was the result of multiple compound effects. However, the mechanism
for increasing the yield is extremely complicated, as it is affected by diverse factors, such
as genotype, phenotype, population structure, population physiology, field microclimate,
and soil microecology [44]. Therefore, no simple combination of varieties will necessarily
increase production, and in-depth prior analysis is required. For the selection of maize
varieties, the consistency of variety traits, plant type, plant height, resistance, and other
characteristics should be considered so as to increase the yield of dominant varieties,
stabilize the yield of other varieties, and finally, increase the population yield. This study
demonstrated that the land equivalent ratio of Denghai 605 inter- and mixed cropped with
four other auxiliary varieties was more than 1.0, among which the LER intercropping with
Zhengdan 958 and inter- and mixed cropping with Weike 702 and Xianyu 335, respectively,
was greater than 1.1, further confirming the yield-increasing effect. Based on the previous
studies, the technical key point is that the heat resistance of the combined varieties should
be complementary and the growth period should be consistent. The flowering period
especially should be consistent if possible. In addition, varieties with basically the same
plant height and plant type should be selected if possible. If there are large differences
in plant height or plant type, the 2:2 or 2:4 row ratio intercropping mode can be adopted,
which is for making use of the spatial advantages of high-stalk varieties without reducing
the yield of short-stalk varieties and having strong complementarity among varieties in heat
resistance [56-58]. The production technology of complementary resistance enhancement of
maize varieties has been listed as the main technology in 2021 by the Ministry of Agriculture
and Rural Affairs of the People’s Republic of China and issued and implemented as the
agricultural industry standard in China [59].

57



Sustainability 2022, 14, 6993

5. Conclusions

In this study, Denghai 605, which produces low amounts of pollen and is intolerant of
high temperatures during flowering, was used as the main test variety, and Zhengdan 958,
Dedan 5, Weike 702, and Xianyu 335 were used as auxiliary varieties to determine the effect
of inter- and mixed cropping of maize on high-temperature tolerance during flowering
and on yield. The population light transmittance of the bottom or middle layer of crops
increased in the intercropping of Denghai 605 with other varieties, which was conducive
to the formation of an efficient canopy structure. The number of grains per ear increased
after intercropping Denghai 605 with Zhengdan 958 and Weike 702, indicating that inter-
and mixed cropping enhanced pollen vigor and improved tolerance to high temperatures
during the flowering period. Moreover, the yield increased significantly by 8.8-28.0% after
inter- and mixed cropping Denghai 605 with other varieties (except intercropping with
Dedan 5). Among them, the LER was greater than 1.1 when Denghai 605 was intercropped
with Zhengdan 958 and inter- and mixed cropped with Weike 702 and Xianyu 335, which
indicated that under the combination of these varieties, inter- and mixed cropping effec-
tively reduced the impact of high temperatures during flowering and improved the maize
population yield.
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Abstract: The diurnal temperature range (DTR) is an important meteorological component affecting
maize yield. The accuracy of climate models simulating DTR directly affects the projection of maize
production. We evaluate the ability of 26 Coupled Model Intercomparison Project phase 6 (CMIP6)
models to simulate DTR during 1961-2014 in maize cultivation areas with the observation (CN05.1),
and project DTR under different shared socioeconomic pathway (SSP) scenarios. The root mean
square error (RMSE), standard deviation (SD), Kling-Gupta efficiency (KGE) and comprehensive
rating index (CRI) are used in the evaluation of the optimal model. The results show that CMIP6
models can generally reproduce the spatial distribution. The reproducibility of the annual average
DTR in the maize cultivation areas is better than that in China but lower for the maize-growing
season. The optimal model (EC-Earth3-Veg-LR) is used in the projection. Under the two SSPs, the DTR
decreases compared with the historical period, especially in Northwest and North China. The DTR
under SSP245 remains unchanged (annual) or increases slightly (growing season) during 2015-2050,
while a significant decreasing trend is observed under SSP585. This highlights the importance of
evaluating DTR in maize cultivation areas, which is helpful to further improve the accuracy of maize
yield prediction.

Keywords: CMIP6; maize; diurnal temperature range; projection; China

1. Introduction

Many studies have addressed the future changes in temperature and precipitation
under a climate change background [1-3]. These studies have provided a solid basis
for assessing the risk of climate change to human health, agriculture, natural resources,
water resources, etc. In agriculture, some equivalent climate variables independently play
important roles. Maize is one of the main food sources of humans and is widely cultivated
worldwide. The changes in maize yield are related to the food security of human society.
The yield of maize is known to be influenced by the environment and other factors [4,5]. Air
temperature is one of the main factors affecting maize growth and production, and maize
showed a greater yield decrease than wheat and rice at the same warming level [6,7]. A large
number of studies have analyzed the effects of accumulated temperature and temperature
on maize production. The diurnal temperature difference (DTR) also plays an important
role in maize yield. DTR is defined as the difference between the maximum and minimum
2-m temperature during a 24-h period, and it has been proven to impact multipole crop
production aspects, including yield, quality, and market commercial price [8]. It has been
reported that changes in daily maximum air temperature and minimum air temperature
may have different influences on crops [9-11], and lower daily minimum air temperature
helps to improve crop quality. Lobell and Field [4] explored the relationship between the
DTR and crop yield and found that the influence of daytime warming on crops was greater
than that of nighttime warming. Jiang [12] indicated that a decrease in DTR in spring
and summer was beneficial for crop yield increases, while an increase in DTR in fall was
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beneficial. Therefore, to better predict the future maize yield, the accurate simulation of
DTR via global climate models has become increasingly important.

Unfortunately, there have been few studies addressing DTR future changes, which
can obviously limit our understanding of the impact of climate change on crop production.
There are large uncertainties in the trends and possible interpretations of DTR [13,14].
Lobell and Field [4] evaluated 12 global climate models that participated in the Coupled
Model Intercomparison Project (CMIP) phase 3 and found future changes in DTR to be
inconsistent among the models. Lindvall and Svensson [15] evaluated the simulation ability
of 20 Coupled Model Intercomparison Project phase 5 (CMIP5) models in simulating the
terrestrial DTR of recent and future projections using HadGHCND and CRU and found that
DTR varies considerably between CMIP5 models and that DTR is often underestimated.
This uncertainty causes substantial confusion when applying climate model results to
estimate the magnitude of crop exposure to climate change. Wang et al. [16] indicated that
Coupled Model Intercomparison Project phase 6 (CMIP6) models have not improved their
ability to simulate temporal DTR changes consistently during 1901-2005 relative to CMIP5.
In conclusion, although CMIP6 models already have good simulation capability for air
temperature and precipitation, the simulation capability for important agrometeorological
elements such as DTR still needs to be improved.

Most evaluations of climate variables simulated by global climate models (GCM) are
based on the annual scale and the whole region. It may be questioned whether those evalu-
ations are suitable for agricultural applications. The spatial scales of previous studies have
focused on global or nationwide scales [17], and few studies have been conducted at the
scale of crop-cultivation areas. Scholars have conducted numerous studies to quantitatively
assess climate model simulations of key meteorological elements and to estimate future
climate [18-20]. Knox et al. [21] evaluated the impact of climate change on yield projections
for maize and other crops in Africa and South Asia using several global climate models,
noting that the increase in the number of climate models could reduce the uncertainty in
projections. However, there is a lack of discussion on the impact of spatial scale differences
in climate model performance on prediction results. Lindvall and Svensson [15] evaluated
the ability of CMIP5 models to simulate the DTR over land in historical simulations and fu-
ture projections and indicated that although models had good simulation ability for global
DTR changes, there were uncertainties in simulations for smaller spatial scales. GCMs
with good performance at global or continental scales may exhibit differences in simulation
performance within the actual maize cultivation areas. Therefore, when estimating maize
yield and quality, using the most suitable climate model in maize cultivation areas will
improve the credibility of the prediction results.

In addition, previous studies have mainly focused on the ability to simulate the
interannual variability of meteorological components [22], and few studies have been
conducted on the growing season of crops. Wang et al. [16] pointed out that most individual
CMIP6 models overestimated the DTR changes from December to February, especially in
the high latitudes of the Northern Hemisphere. The model showed significant differences
in land and did not completely capture the observed temporal and spatial evolution of the
DTR. Fan et al. [23] found that the simulation stability of the annual average temperature
model is higher than that of the seasonal average temperature model. There is a large
difference between the model and observations of temperature from January to May,
and the simulation of temperature from June to September is more stable. There are great
differences between the simulation of interannual and seasonal variations in climate models.
The good performance of climate models at annual or seasonal scales does not mean that
climate models perform equally well in actual crop-growing seasons. Differences in model
performance at different time scales may affect crop yield and quality prediction [24,25].
Therefore, a climate model with better performance in the maize-growing season should be
used when predicting maize yield and quality.

The retrospective analysis of systematic biases in current climate models as well as
their correction is one of the scientific issues that CMIP6 focuses on [26]. The questions
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that agricultural scientists are more interested in include: How well do climate models
simulate the meteorological elements in crop cultivation areas? How will climate change in
the future? This suggests that the ability of climate models to simulate key meteorological
components that are critical in agriculture needs to be carefully evaluated to truly provide a
more credible understanding and perception of the agricultural impacts of climate change.
Therefore, we quantitatively evaluated the ability of the CMIP6 model to simulate the
spatial and temporal characteristics of the DTR in the main maize cultivation areas from
several perspectives and used the optimal model to predict and analyze the changes in the
DTR in the main maize cultivation areas in China under different future scenarios. This
study will contribute to further improving the ability of global climate models to simulate
DTR in the maize cultivation areas of China and will serve research on the impact of climate
change on maize yield and quality.

2. Materials and Methods
2.1. CMIP6 Model Output

The CMIP6 is the latest experiment to simulate global climate through climate models.
It collects the best models in the world and conducts the most colorful experiments, covering
the world at a high-spatial and temporal resolution. CMIP6 considers the effects of external
forcing, including natural factors and human activities, over time in the simulation of
historical periods. Global near-surface maximum air temperature (Tasmax) and minimum
air temperature (Tasmin) data simulated by 26 CMIP6 models from 1961 to 2014 were
retrieved from the CMIP6 website [27]. The DTR was calculated as the difference between
the maximum and minimum near-surface temperature during a 24 h period simulated
by the CMIP6 models in this study. The focus of this paper is the DTR during 1961-2050.
The names of these models analyzed are listed in Table 1, together with the institution and
resolution. We only considered the first ensemble simulation (CMIP6: ‘r1ilp1f1’) if a model
had multiple ensemble simulations.

Table 1. Information of CMIP6 models.

No. Model Name Institution (Country) Resolution (Lat x Lon) Realization
1 ACCESS-CM2 CSIRO-ARCCSS (Australia) 1.875° x 1.25° rlilp1fl
2 ACCESS-ESM1-5 CSIRO (Australia) 1.875° x 1.24° rlilp1fl
3 AWI-CM-1-1-MR AWI (Germany) 0.9375° x 0.9375° rlilp1fl
4 AWI-ESM-1-1-LR AWI (Germany) 1.875° x 1.875° rlilp1fl
5 BCC-CSM2-MR BCC (China) 1.125° x 1.125° rlilp1fl
6 BCC-ESM1 BCC (China) 2.8125 x 2.8125 rlilp1fl
7 CanESM5 CCCma (Canada) 2.8125° x 2.8125° rlilplfl
8 EC-Earth3 EC (European Community) 0.703° x 0.703° rlilplfl
9 EC-Earth3-Veg EC (European Community) 0.703° x 0.703° rlilplfl
10 EC-Earth3-Veg-LR EC (European Community) 1.125° x 1.125° rlilplfl
11 FGOALS-3-L CAS (China) 1.25° x 1.25° rlilp1fl
12 FGOALS-g3 CAS (China) 2.0° x 2.0° rlilp1fl
13 GFDL-CM4 NOAA-GFDL (America) 1.25° x 1.25° rlilp1fl
14 GFDL-ESM4 NOAA-GFDL (America) 1.25° x 1.0° rlilp1fl
15 GISS-E2-1-G NASA-GISS (America) 2.5° x 2.0° rlilp1fl
16 INM-CM4-8 INM (Russia) 2.0° x 1.5° rlilp1fl
17 INM-CM5-0 INM (Russia) 2.0° x 1.6° rlilplfl
18 IPSL-CM6A-LR IPSL (France) 2.5° x 1.25° rlilplfl
19 KIOST-ESM KIOST (Korea) 1.875° x 1.875° rlilpifl
20 MIROC6 MIROC (Japan) 1.40625° x 1.40625° rlilp1fl
21 MPI-ESM-1-2-HAM MPI-M (Germany) 1.975° x 1.975° rlilp1fl
22 MPI-ESM1-2-HR MPI-M (Germany) 0.9375° x 0.9376° rlilp1fl
23 MPI-ESM1-2-LR MPI-M (Germany) 1.875° x 1.875° rlilp1fl
24 MRI-ESM2-0 MRI (Japan) 1.125° x 1.126° rlilplfl
25 NESM3 NUIST (China) 1.875° x 1.875° rlilplfl
26 NorESM2-MM NCC (Norway) 1.25° x 0.9375° rlilplfl
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For future emission scenarios, the shared socioeconomic pathway (SSP) provided in
CMIP6 is the combination of the representative concentration pathway (RCP) and other
pathways. SSP scenarios provided in CMIP6 include the updated versions from CMIP5
(SSP126, SSP245, SSP460, and SSP585) and the new combinations (SSP119, SSP370, and
SSP434). In addition, SSP245 and SSP585 represent radiative forcing stabilized at 4.5 and
8.5 W m~2 by the end of the 21st century. The SSP245 scenario is subjective for most
countries pursuing sustainable development, while the SSP585 scenario represents the
worst scenario (fossil-based energy-intensive economy), reflecting the impact of uncon-
ventional development [1,26]. Therefore, we selected SSP245 and SSP585 in CMIP6 for
future projections.

To facilitate the analysis, a bilinear interpolation method was used to uniformly
interpolate the model data to the 0.25° x 0.25° grid, corresponding to the grid position
and resolution of the observed dataset. Due to the different periods of the model data and
observational data, only China’s land area was considered in this study.

2.2. Observation Data

To evaluate the simulated results of the CMIP6 models, the daily maximum and
minimum temperature data of the China high-resolution dataset CN05.1 released by the
Open Laboratory for Climate Research of China Meteorological Administration [28] were
used as observational data in this study. The available starting and ending times of these
data were 1961-2018, with a high-spatial resolution of 0.25° x 0.25°. This dataset has a
long timescale and high spatial resolution. The generation process of this dataset only used
the actual observational data of observation stations for statistical interpolation, covering
the entire land area of China (Taiwan Province is missing statistical data). Interpolation
of this dataset is based on an “anomaly approach” using over 2400 stations [29], which is
similar to the method used to create the Climatic Research Unit dataset [30]. Compared
with the reanalysis data, the CNO05.1 data have greater reliability. This dataset has been
widely used for regional and global climate model validation [29,31].

2.3. Methods

According to the harvested area and yield of 175 crops [32], grid points with production
greater than the 5th percentile of maize production in China were extracted from maize
yield data as the maize cultivation areas. This dataset was created by combining national,
state, and county level census statistics with a recently updated global data set of croplands
on a 5 min by 5 min latitude/longitude grid. The resulting land use datasets depict circa
the year 2000 the area (harvested) and yield of 175 distinct crops of the world [32]. All
assessments were conducted on these grid points. Continental China was divided into
seven regions according to Wu et al. [33] and the distribution of the maize cultivation areas.
The regional division of China is shown in Figure 1.

2.3.1. Climatology and Interannual Variability

The historical simulation experiments in CMIP6 were conducted from 1850 to 2014,
while different future scenarios were divided from 2015 onward. The historical period
from 1961 to 2014 was used to evaluate the ability of models to simulate the interannual
variability of the DTR. The 1995-2014 period can better represent the current climate state
and help us understand the simulation capability of the CMIP6 model for the current
climate state [34]. Therefore, the 20-year period from 1995 to 2014 was selected to evaluate
the simulation ability of CMIP6 models regarding the spatial distribution of the DTR in
maize cultivation areas in China.

According to the ten-day dataset of crop growth and soil moisture in China and
the research results of Cao [35], March to June of the current year was selected as the
maize-growing season. Fifty-four years of data from a historical period (1961 to 2014) were
selected for analysis in this study. The annual mean DTR and the maize-growing season
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mean DTR simulated using CMIP6 models in maize cultivation areas were calculated
and compared.
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Figure 1. The regional divisions in China (subregion 1: Northeast China (NEC), subregion 2: North
China (NC), subregion 3: Southeast China (SEC), subregion 4: Southwest China (SWC), subregion 5:
Chuanyu (CY), subregion 6: Northwest China (NWC), and subregion 7: Tibetan Plateau (TP)).

The future period from 2015 to 2050 was selected for future projection. CMIP6 models
performed more stable in this period than for the late 21st century [34]. The period from 2031
to 2050 was selected to project the future climatological DTR, as it represents the middle
of the 21st century. The spatial distribution of the climatological DTR in 2031-2050 under
two SSP scenarios was calculated, and the changes relative to the historical climatology
(1995-2014) simulations were analyzed according to different subregions.

The spatial distribution of the linear trends of the annual average and growing season
mean DTR in the main maize cultivation areas from 2015 to 2050 was calculated. The yearly
linear trend analysis was conducted on each grid of the study area. Meanwhile, the linear
trends of annual and growing season average DTR were calculated to study the interannual
variation trend of DTR.

2.3.2. Performance METRICS

In the evaluation of the CMIP6 model simulation capability for DTR and future
projection in maize cultivation areas in China, the following indices were used.

To evaluate the simulation ability of CMIP6 models for the spatial distribution of the
DTR in China’s maize cultivation areas, root mean square error (RMSE) was used. It was
widely employed to illustrate the bias between the simulations and observations [36]. The
RMSE is:

RMSE = 1)

where M; and O; are the simulated value and observation of the ith grid, respectively. N
is the grid number. The RMSE is larger than 0. When the RMSE is 0, it indicates that the
pattern matches the observation perfectly; a smaller RMSE indicates that the pattern has
better performance.

The standard deviations (SD) of the yearly growing season and annual anomalies of
the maize cultivation area DTR were calculated as indicators to quantitatively express the

65



Sustainability 2022, 14, 1660

ability of the models to simulate interannual variability. The DTR anomalies were linearly
detrended before calculating the SD [15,22,37]. The SD is:

1 n 2
SD = N;(Mi - M) )

where M and O denote the mean of simulations and observations. The SD value is equal
to 0 when M,; is identical to M, and the closer the SD value is to SD( (standard deviation
of observations), the greater the skill in simulating the interannual variability.

To further evaluate the ability of models to simulate DTR in China’s maize cultivation
areas, the Kling-Gupta efficiency (KGE) was used [36,38,39]. KGE is:

KGE—l—\/(r—1)2+<AOA—1> +<5DM/M 1)2 3)

SDo/o

where SD); and SDg denote the standard deviation of simulations and observations.
The KGE value varies between 1 and -oo, where 1 represents a complete match. There is no
specific meaning attached to the KGE value when it equals zero [40].

To evaluate the ability of models to simulate both climatic state DTR and interannual
variability, this study comprehensively ranked the simulation ability of each CMIP6 model
based on RMSE and SD. The comprehensive rating index (CRI) enables efficient ranking
of model simulation values [41]. The CRI is:

2

1 n
RI=1- — - 4
C nxm;mnkl (4)

where 7 is the number of evaluation indicators, m is the number of models, and rank; is the
ranking of the i th indicator of the model. The closer the CRI value is to 1, the better the
model simulation.

Previous studies have revealed that the multi-model ensemble (MME) usually shows
higher reliability in reproducing the present Chinese climate relative to an individual
model [42]. Therefore, the multi-model arithmetic mean ensemble with the same weights
was used in this study. The MME is:

z| =
=

Il
—_

MME = M; (5)

)

where N is the number of models, M; is the simulations of the j th model.

Time series analysis was carried out to determine the interannual variability of the
DTR. The linear trend analysis was used to investigate trends in DTR variability. The linear
relationship between climate variable x; and time series ¢; was established [43].

Xk =a+bty, k=1,2,...m 6)

where xj is the yearly average DTR and m is the number of years of data used. f; is the time
series. a is the linear regression constant, b is the linear tendency coefficient, and b x 10
is defined as the climatic tendency rate (°C/10a), which can be calculated using the least
square method. b is:

TR e+ (TR 0 (SR B)

b m 2 1 m 2
):kzl b= — ﬁ(zkﬂ tk)

@)

ais:
a=x+bt (8)
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where X and f are the mean of the yearly average DTR and the time series. b > 0 represents
an increasing trend of DTR over time, and vice versa. Significance levels of the b are
estimated according to the two-tailed Student -test.

3. Model Evaluation
3.1. Climatology

The CMIP6 models can reproduce the spatial characteristics of climatological DTR in
maize cultivation areas (Figure 2). The DTR increased gradually from low to high latitudes
and ranged from 6 °C to 16 °C. The DTR gradually increased from coastal to inland regions,
with higher DTR in NWC and TP than in other regions.
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Figure 2. Observation and simulations of climatological DTR spatial distribution during 1995-2014
in China (left column displays simulated results of DTR in maize cultivation areas; the right column
shows the nationwide results); (a,b) are the models with the highest RMSE. Observation (c,d)
multi-model ensemble (MME) data are shown in (e,f).

When compared with observations, the multi-model ensemble data were approxi-
mately 3 °C lower than the observations nationwide and 6 °C lower in NWC. In addition,
the DTR in CY was 2 °C higher than the observation.
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EC-Earth3-Veg-LR had the best simulation ability among the 26 CMIP6 models for
simulating the climatological DTR in maize cultivation areas (RMSE = 1.098). The repro-
ducibility of the DTR averaged over China was lower than that of the maize cultivation
area averages, but it was still acceptable. The DTR simulated using the MME was not
as good as EC-Earth3 in either China or maize cultivation areas. The same conclusions
could be drawn across the country. The simulation of EC-Earth3 was relatively greater
in CY compared with the observation, while in other regions, they were approximately
1°Clower.

There was geographic variability in the distribution of SDs among models (Figure 3).
The average SD was 2.33 in maize cultivation areas and 2.73 in China, which indicates
that the consistency within maize cultivation areas was higher than that in China. The
SDs of simulations in NEC and TP were approximately 2 °C higher than those in other
regions, and there were significant differences between models. These results indicated
that the CMIP6 models have good simulation capability in eastern China. There were
great differences between the simulated results of different models in NEC and TP. CMIP6
models were still deficient in their ability to simulate the climatological DTR on the TP,
which is consistent with CMIP5. Improving the model to make the simulation more reliable
has become a new challenge for model developers.
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N
Mean SD: 2.332
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Figure 3. Standard deviations (SD) between CMIP6 models in maize cultivation areas (a) and China (b).

We evaluated each region and calculated the RMSE for each model separately, and
the evaluation results are presented in Figure 4 to show the performance of the models
more visually.

In general, the CMIP6 models could reproduce the spatial distribution of climatological
DTR (Figure 4), and most models had RMSEs less than 2. CMIP6 models performed better
in simulating DTR in maize cultivation areas than in China (RMSE); was smaller than
RMSE¢). EC-Earth3-Veg-LR had better simulation effects for maize cultivation areas
(RMSE); = 1.098) than the other models, and the MME showed the same characteristics.
Models with good performance (smaller RMSE) had high KGEs; the KGE (0.82) of EC-
Earth3-Veg-LR ranked in the top 3 among models. However, the difference between the
MME (RMSE =1.43) and observations was slightly greater than that of EC-Earth3-Veg-LR.
There were large differences in model performance across regions. Moreover, the results
show that the models had better simulations in SWC and NC. However, EC-Earth3-Veg was
not the best in other regions. EC-Earth3 had the smallest RMSE and the highest ranking in
NWC, which is consistent with the results in China evaluations. These results suggested
that even the model with the best performance among the 26 models may not have the best
simulation capability in all regions.
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Figure 4. The RMSEs of climatological DTR for the historical simulation in each region during 1961-2014.
Green indicates the range from the 25th to 75th percentile of the RMSE s for the simulations.

3.2. Interannual Variability

According to the observations, the growing season DTR in maize cultivation areas
showed a decreasing trend at a rate of —0.151 °C/10 a (Figure 5). The same trend was
observed for the annual DTR, with a decreasing rate of —0.178 °C/10 a. The annual DTR
showed a greater rate of decline relative to the maize-growing season. CMIP6 models
could better simulate these trends: among the 26 CMIP6 models, EC-Earth3 had the best
simulation for the annual DTR trend (—0.119 °C/10 a) and performed best in the maize-
growing season (—0.161 °C/10 a). The MME could simulate these trends with slower rates.
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Figure 5. Annual (a) and growing season (b) DTR anomalies simulated via CMIP6 models in maize
cultivation areas show patterns of fluctuations that reflect annually varying correlations of DTR
in China. Blue and red shadings indicate the range of simulations. DTR trends (c) of annual and
growing season simulated using CMIP6 models and observations. Blue and red indicate the range
from the 25th to 75th percentile of the trends simulated by the models. The red and blue lines are the
medians of the model-simulated trends, and the gray dots are the results of the CMIP6 models. The
red and green dots represent the results of CN05.1 and MME, respectively.

In general, CMIP6 models were able to simulate the interannual variation in the annual
DTR and growing season mean DTR in maize cultivation areas. Most models had SDs
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less than 0.7. The maize-growing season DTR simulated using CMIP6 models performed
differently from that of the annual DTR, and some models simulated the annual DTR better
than the simulation of the growing season DTR. Similarly, it has been reported that CMIP5
simulates the interannual variability in annual surface air temperature better than monthly
and seasonal temperatures. It is worth noting that models with good simulations of annual
DTR were slightly inferior in simulating the growing season mean DTR, while models with
good simulations of the growing season mean DTR showed unsatisfactory simulations for
interannual variation of annual DTR (Figure 6). A model with a good simulation of annual
DTR does not imply a good simulation of the maize-growing season; therefore, targeted
evaluation for the maize-growing season becomes essential. AWI-CM-1-1-MR had the best
ability to simulate DTR for the maize-growing season, and it was more suitable for studies
targeting the maize-growing season compared with the interannual variation. Models
with smaller SDs also had higher KGEs; the KGE (0.36) of AWI-CM-1-1-MR ranked in the
top 5 among models. The performance of the CMIP6 model varied greatly across regions
(Figure 6). The MME was more suitable for the simulation of annual DTR.
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Figure 6. The standard deviations of linearly detrended annual and yearly growing season mean
anomalies of DTR for the historical simulation during 1961-2014. Blue indicates the range from the
10th to 90th percentile of the annual averages, and red indicates the maize-growing season means.
Each row represents a region of China.

3.3. Comprehensive Evaluation

To comprehensively evaluate the ability of each model to simulate the spatial and
temporal characteristics of the DTR in maize cultivation areas, the CRI was used to evaluate
each model in this study. According to Table 2, EC-Earth3-Veg-LR had the best simulation
of DTR in maize cultivation areas (CRI = 0.92), which is more suitable for the simulation of
DTR in maize cultivation areas of China.
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Table 2. Scores of the top three models with the best performance.

Index EC-Earth3-Veg-LR EC-Earth3 GFDL-CM4
RMSE 1.098 1.116 0.865
Climatology KGE 0.818 0.821 0.455
Interannual variability D 0.248 0.278 0.260
KGE 0.358 0.404 0.262
Overall CRI 0.865 0.808 0.808

4. Future Projections

Acceptable performances of climate models are the basis for developing credible
data of future climate through CMIP6 scenario simulations. In this section, we explore
the future changes in the diurnal temperature range of maize cultivation areas of China
simulated using EC-Earth3-Veg-LR. The period is focused on two SSPs (55P245 and SSP585):
the period from 2031 to 2050 was selected to project the future climatological DTR, as
it represents the middle of the 21st century. The linear trends of the annual average
and growing season mean DTR in the main maize cultivation areas from 2015 to 2050
were calculated.

4.1. Climatology

The DTR and future changes in maize cultivation areas of China under different future
scenarios are shown in Figure 7. The future DTR spatial distributions shared the same
characteristics as historical observations. The DTR increased gradually from low to high
latitudes, ranged from 6 °C to 16 °C, and gradually increased from coastal to inland regions.
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Figure 7. The climatological DTR spatial distribution (a,c) during 2030-2050 and changes (b,d)
relative to 1995-2014 in maize cultivation areas of China under different scenarios simulated via
EC-Earth3-Veg-LR.
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Compared with historical (1995-2014) simulations, reductions were widely detected:
under the SSP245 scenario, there was a decline in 86.90% of grid points within China
and 81.2% under the SSP585 scenario. The climatological DTR of maize cultivation areas
decreased by 0.151 °C (SSP245) and 0.207 °C (SSP585). The reduction proportion of the
DTR under the SSP585 scenario was slightly smaller than that under the SSP245 scenario
(Table 3). Under the SSP245 scenario, the reduction was mainly distributed in NWC, NC,
and SWC, and the magnitude of change was concentrated at approximately 0.20 °C. The
climatological DTR during 2030~2050 in NEC was approximately 0.38 °C higher than that
of historical simulations. Almost all subregions showed a reduction under the SSP585
scenario, with a magnitude of 0.19 °C.

Table 3. Changes in the climatological DTR (°C) during 2030-2050 relative to 1995-2014 in regions of
China under different scenarios.

Scenario NEC NC SWC CY NWC Cultivation Areas
SSP245 0.382 —0.149 —0.223 —0.043 —0.094 —0.151
SSP585 —0.556 —0.097 —0.092 0.005 —0.212 —0.207

4.2. Interannual Variability

Compared with the historical period (1961-2014), the annual DTR remained essentially
unchanged under the SSP245 scenario in maize cultivation areas (Figure 8), while the
growing season DTR had an increasing trend (0.014 °C/10 a). Under the SSP585 scenario,
the growing season DTR in maize cultivation areas exhibited a decreasing trend at a rate of
—0.052 °C/10 a, and the annual DTR showed a greater decreasing trend (—0.069 °C/10 a).
The decreasing trends of DTR under the SSP585 scenario were greater than those under the
SSP245 scenario.
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Figure 8. Annual (a) and growing season (b) DTR anomalies under different scenarios simulated
via EC-Earth3-Veg-LR in maize cultivation areas show patterns of fluctuations that reflect annually
varying correlations of DTR in China.

The annual DTR always showed a greater rate of decline relative to the growing
season DTR in maize cultivation areas in both scenarios (Table 4). The annual DTR in the
maize cultivation areas under the SSP245 scenario showed a decreasing trend at 45.90% of
the grid points, while in NEC, SWC, and NWC, it was dominated by a decreasing trend.
There was a significant increase in NC and CY. For the growing season DTR, more grid
points showed decreasing trends in both NEC and CY. The proportion of grid points with
decreasing trends in CY increased significantly, while the proportion of significant grid
points increased and was more concentrated (Figure 9). In NWC and NC, the proportion of
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decreasing grid points decreased and that of significant grid points increased, mainly in
the eastern area of Northwest China. The annual (76.28%) and growing season (70.09%)
DTR under the SSP585 scenario showed decreasing trends at most grid points in maize
cultivation areas, with decreasing rates exceeding 0.2 °C/10 a in NEC, SWC, and NWC. It
showed increasing trends in most NC grid points and had a high percentage of significance
(23.99%). The proportion of grid points with decreasing trends in DTR was greater under
the SSP585 scenario than under the SSP245 scenario. Although the growing season DTR
followed an increasing trend in NC and CY under the SSP245 scenario in general, the
increasing trend was not significant in grid points with high maize cultivation in China
(Figure 1), even with a large decreasing trend (NEC). Since Chinese maize production is
mainly concentrated in NC and NEC, and the growing season DTR in these two subregions
showed opposite changes, this may cause some impact on the quality and yield of maize
in China.

Table 4. The proportion of grid points with linear decreasing trends of annual and growing season
DTR during 2015-2050 in different subregions of China. (“Sig. proportion” indicates the proportion
of grid points that were significant at p < 0.1).

Region NEC NC SWC CY NWC Cultivation Areas
Annual 63.78% 16.48% 60.38% 20.43% 57.13% 45.90%
Sig. proportion 1.15% 6.99% 0.32% 15.10% 9.81% 6.07%
SSP245 Growing season 80.02% 7.28% 61.97% 46.50% 24.28% 45.36%
Sig. proportion 3.44% 16.70% 0.00% 19.55% 27.30% 12.92%
Annual 100.00% 40.62% 53.01% 87.36% 93.62% 76.28%
SSP585 Sig. proportion 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Growing season 100.00% 25.02% 88.27% 25.27% 91.77% 70.09%
Sig. proportion 0.00% 23.99% 0.00% 1.28% 0.00% 4.96%
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Figure 9. Spatial distribution of linear trends (°C/10 a) of annual (a,c) and growing season (b,d)

DTR during 2015-2050 in the main maize cultivation areas under different scenarios simulated via
EC-Earth3-Veg-LR. The black dot indicates the grid point with the trend that was significant at p <0.1.
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5. Discussion

To explore the applicability of the CMIP6 model to maize research, an assessment
was first conducted to evaluate the ability of CMIP6 models to simulate DTR in maize
cultivation areas in China. The results show that CMIP6 models can reproduce the spatial
and temporal characteristics of DTR in historical periods. CMIP6 models still have obvious
deviations in simulating DTR in western China, which shares the same characteristics with
other meteorological components [37,44,45]. The complex terrain in NWC may lead to
simulation uncertainty [46]. The simulation effect of CMIP6 models on the historical climate
DTR of the main maize cultivation areas is better than that of China. The decreasing DTR
trend has been universally observed since the 1950s [47,48]. CMIP6 models can also capture
the slow decreasing trend in annual DTR and growing season average DTR in maize
cultivation areas during the historical period. CMIP6 models simulate the annual DTR
better than that for the growing season DTR, and the same characteristics can be found in
the simulations of meteorological components such as temperature and precipitation [49,50].
This difference makes it critical and essential to perform targeted model evaluations of the
maize-growing season. As a result of the comprehensive evaluation, EC-Earth3-Veg-LR
has the best simulation ability for the spatial and temporal distribution characteristics of
DTR in maize cultivation areas.

We projected the spatial and temporal characteristics and changes in the DTR in the
maize cultivation areas under different future scenarios with the selected optimal model.
Compared with the historical simulation, the climatic DTR of the main maize-producing
areas in the middle 21st century will be reduced by 0.151°C (SSP245) and 0.207 °C (SSP585).
SSP585 showed a greater proportion of DTR reduction than SSP245. The DTR in the main
maize cultivation areas under SSP245 is expected to remain unchanged (annual) or increase
slightly (growing season). Under SSP585, DTR is expected to decrease both annually and
during the growing season. The projected DTR changes shared the same characteristics with
previous studies [15,48,51]. The downward trend of DTR in future scenarios is consistent
with the historical period [52,53]. At the same time, the DTR trends in maize cultivation
areas are also similar to the global DTR trends. It is worth noting that there are significant
increasing trends of growing season DTR in NC and NEC, and the impact on the quality
and yield of crops in China needs to be further explored.

A considerable number of studies have been conducted to evaluate the ability of
climate models to simulate key meteorological components [18-23]. However, the spatial
scales of previous evaluations were primarily global or national. There have been few
studies on maize cultivation areas and maize-growing seasons. When estimating the effects
of future climate on maize yield and quality, using inappropriate climate model data will
greatly reduce the credibility of the results. We quantitatively evaluated the ability of
CMIP6 models to simulate the temporal and spatial characteristics of the DTR in the main
maize production areas from multiple perspectives and used the optimal model to predict
and analyze the changes in the DTR in the main maize production areas in China under
different scenarios in the future. This will help to further improve the ability of global
climate models to simulate the DTR in China’s maize cultivation areas and to serve research
on the effects of climate change on maize yield and quality.

This study only evaluates the DTR of the maize cultivation areas in China and projected
the DTR changes during 2015-2050 under different SSP scenarios. The scope of our study is
limited in China, and the simulation capability of the climate model in other regions needs
further evaluation and projection. The yield of crops is known to be influenced by the
environment and other factors [1-5]. Thus, the ability of the climate model to simulate other
climate components in the maize cultivation areas in China needs to be further evaluated.
Meanwhile, the evaluation and prediction of other meteorological elements are also worthy
of further study and are of great significance and necessity.
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6. Conclusions

The ability of 26 CMIP6 models to simulate the DTR during 1961-2014 is examined
using model output together with the high-resolution CN05.1 dataset. Based on the overall
rankings of the historical simulation capacities of 26 CMIP6 models in maize cultivation
areas, the optimal model is screened to serve future estimates. Then, with the application
of the optimal model, a future projection of DTR in the main maize cultivation areas during
2015-2050 under two SSPs is presented in this study. The main conclusions are summarized
as follows:

1. CMIP6 models can generally reproduce the spatial distribution and interannual
variation in the DTR in the main maize cultivation areas. The reproducibility of the
DTR averaged over the main maize cultivation areas is better than that of China
(RMSE, is smaller than RMSE(). The DTR varies substantially between the models,
and the intermodel spread is particularly large in NWC.

2. Based on the comprehensive evaluation, EC-Earth3-Veg-LR is more suitable for the
simulation of DTR in the main maize cultivation areas in China. It is essential to
pertinently evaluate global climate models. The reproducibility of the maize-growing
season DTR averaged over the main maize cultivation areas is lower than that of the
annual DTR, but it is still acceptable.

3.  Compared with historical simulations, reductions are widely detected: the climato-
logical DTR of the main maize cultivation areas decreases by 0.151 °C (SSP245) and
0.207 °C (SSP585). Under the SSP245 scenario, the reduction is mainly distributed in
NWC, NC, and CY. All subregions show a reduction under SSP585. The reduction
proportion of DTR under SSP245 is slightly smaller than that under SSP585.

4. The DTR in the main maize cultivation areas under SSP245 is expected to remain
unchanged (annual) or to increase slightly (growing season). Under SSP585, DTR
is expected to decrease both annually and during the growing season. The annual
and growing season DTRs are dominated by decreasing trends in NEC, NWC, and
SWC under the two scenarios, while in CY and NC, the growing season DTR shows a
significant increase.
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Abstract: As a major agricultural province of China, Shandong province has long ranked first in
agricultural growth value among all of the provinces; at the same time, it is also the province that
is most affected by dry-hot wind. Therefore, it is of great significance to study the spatial zoning
of the risks of dry-hot wind in this province. Based on meteorological, slope, and altitude data,
and the principle of disaster risk assessment, this study uses a weighted comprehensive evaluation
method, analytic hierarchy process, and ARC-GIS spatial analysis to study the spatial zoning of the
risks of dry-hot wind in Shandong province. The results show that the high-risk regions of dry-hot
wind are concentrated in the north-central portion of the province, the medium-risk regions are in
the peripheral areas, and the low-risk regions are located mainly in the west, southwest, and east.
Exposure of disaster-bearing bodies is high in the south and low in the north, while vulnerability
to disaster-bearing bodies is high in the west and low in the east. The more developed areas in the
east show high disaster prevention and mitigation capability, whereas this is weak in the west. In
summary, dry-hot wind risk in Shandong province varies significantly by area. The medium- and
high-risk areas are mainly in the west and central portions of the province.

Keywords: dry-hot wind disaster; risk zoning; Shandong province; natural disaster risk
assessment principle

1. Introduction

Dry-hot wind is a type of severe agricultural wind disaster with high temperature
and low humidity. The late spring and early summer are the seasons when the direct
sunlight in the northern hemisphere is the greatest, and the weather is sunny and drier
before the arrival of the northern rainy season. Under the control of the dry air mass, the
sky is fine, dry, and windy, and there are few opportunities for cloud formation to cause
rain, so it is easy to form dry-hot winds. It causes low humidity in the air and water in
the soil to evaporate, severely impacting crop yields and economic development [1,2].
The dry-hot wind disaster has become an important factor restricting the growth and
development of crops by intensifying plant transpiration, resulting in insufficient water
supply to the roots, causing an imbalance of water and nutrients in the plant. Typically,
the leaves change color and normal physiological activities of the plant are damaged or
inhibited, resulting in a significant shortening of the filling period of the crop, the high
temperature brought by the dry hot wind after flowering will shorten the growing period
of the seeds, and damage to protein and starch structure [3-8]. When the risk of dry-hot
wind is low, wheat yield can decline by 5-10%, and in severe cases, by 20-30% or more [9].
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In the 1950s, the Soviet Union conducted preliminary research on dry-hot wind disasters,
which was at the leading level compared with other countries, mainly on the formation
indicators and causes of dry-hot wind, spatial distribution, and that of disaster prevention
and mitigation measures [10]. In recent years, more scholars have paid attention to the
occurrence regularity of the number and intensity of dry-hot winds. Tavakol et al. [11]
analyzed the spatial patterns and temporal changes of hot, dry, and windy events (HDWs)
in the central United States for two time periods: 1949 to 2018 (70 years) and 1969 to
2018 (50 years). poxouer et al. [12] evaluated the dynamic variation characteristics of
the total number and intensity of dry-hot winds over the lower Volga River. In contrast,
Chinese scholars have conducted relatively more studies on the occurrence of hot-dry
wind. Hou et al. [13] considered that the occurrence characteristics of dry-hot wind in the
Hexi region of Gansu province and surrounding areas during June and July from 1960 to
2017 showed a tendency to decrease slowly and then increase rapidly. Cheng et al. [14]
pointed out the occurrence frequency of different graded of the hazard in Henan province
is on the rise. You et al. [15] analyzed the temporal-spatial distribution of dry-hot wind
in the Hebei province winter wheat region during the past 35 years. The Huang-Huai-
Hai region is the region with the most frequent occurrence of hot-dry winds in China,
so it has attracted the attention of scholars. Li et al. [16] considered the annual average
number of regional DHW events in the Huang-Huai-Hai Region showed a decreasing
trend from 1961 to 2010 and increased in 2011-2018. Shi et al. [17] also pointed out the
annual average of light and serve dry-hot wind in the Huang-Huai-Hai plain declined
from 1963 to 2012. Zhao et al. [18] studied the spatial-temporal changes of dry-hot wind of
winter wheat in the Huang-Huai-Hai plain under climate change. Wheat is the crop most
affected by hot and dry wind, so scholars have focused on the analysis of the impact of
hot and dry wind on wheat. Chen et al. [19] analyzed the influence of dry-hot wind on
the wheat in Henan province and proposed that the number of dry-hot wind days has a
significantly negative correlation with wheat meteorological yield. Shi et al. [20] proposed
that the total number of dry-hot wind days had a negative correlation with thousand
grain weight of winter wheat in Hebei province. Yang et al. [21] constructed a dry-hot
wind risk assessment index system, including a dry-hot wind intensity risk index and
a comprehensive disaster resistance index by using the meteorological data, yield and
structure data, and development period data of the winter wheat observation station, and
established a dry-hot wind risk assessment model. The risk of the dry-hot wind in the
main winter wheat producing areas in North China was assessed, and the results showed
that southeastern Hebei and northwestern Shandong were high-risk areas, while southern
Henan, eastern Shandong, and eastern Hebei were low-risk areas. Based on the theory of
agrometeorological disaster risk analysis, Chen et al. [22] analyzed the influence degree and
risk probability of dry-hot wind on wheat yield in wheat production in Henan province
by constructing a disaster function and using EOF and probability analysis methods. The
results showed that dry-hot wind was the main disaster that influenced the high and stable
yield of wheat in most of Henan province. In order to further study the resistance to
dry-hot wind of wheat, Juraev et al. [23] planted varieties and lines in November in the late
sowing period. The daily temperature, wind speed, and relative humidity were selected
to compare and study the changes of plant height, ear length, and grain number per ear
of wheat varieties in Casdalia and Surcandalia during their developmental stages. The
results showed that dry-hot wind had a significant effect on the traits of wheat varieties
and lines. Wang et al. [24] proposed a framework (DID) to quantify the impact of dry-hot
wind on winter wheat in northern China and the framework can effectively detect winter
wheat growing areas affected by dry-hot wind hazards. The estimated damage showed a
notable relationship (R? = 0.903, p < 0.001) with the dry-hot wind intensity calculated from
meteorological data. Deng et al. [25] comprehensively summarized the causes, protecting
technology and answering tactics of dry-hot wind disasters.

With the deepening of research, scholars’ research on hot-dry wind has shifted from
occurrence to a disaster defense system, and disaster risk zoning is the basis for establishing
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a disaster prevention and mitigation system. Natural disaster zoning is the division of
regions based on the temporal and spatial distribution of the occurrence and development
of natural disasters; it can provide a scientific basis for regional disaster prevention and
mitigation. In fact, strengthening the research on the comprehensive zoning of natural
disasters is listed in China’s 21st Century Agenda [26]. For example, Cheng et al. [27]
established the index of yield loss risk of dry-hot wind and integrated to zone the compre-
hensive hazard risk in Henan province. Wu et al. [28] developed a new regionalization
method, wherein type one is high temperature and low humidity and type two is immature
death after rain, for the dry-hot windy days regionalization in the NCP. According to the
risk assessment theory of natural disasters, some scholars have performed fine zoning
and assessment of dry-hot wind risks in the winter wheat region of Henan province [29]
and spring wheat region of Inner Mongolia [30] from four aspects: risk of disaster-causing
factors, vulnerability of disaster-pregnant environment, exposure of disaster-bearing body,
and ability of disaster prevention and mitigation. As a major agricultural province in China,
Shandong province has a winter wheat planting area up to 4.003 x 10® hm? and an annual
yield of 2.472 x 107 T [31]. Shandong province is located in the Huang-Huai-Hai region of
China, which is the region most affected by hot-dry wind disasters. However, there are
few studies on the risk of hot-dry wind in Shandong province. Therefore, it is urgent to
carry out the research on the risk regionalization of hot-dry wind in Shandong province.
Based on disaster risk theory, we analyze dry-hot wind disaster from four perspectives:
risk, exposure, vulnerability, and disaster prevention and mitigation capability. A dry-hot
wind disaster risk index model is established, and spatial zoning of dry-hot wind disasters
in Shandong is examined using ARC-GIS spatial analysis, weighted comprehensive evalua-
tion method, and analytic hierarchy process. The aims of this study are to comprehensively
assess and zone the risk of dry-hot wind, so as to ensure the safety of wheat production.
In order to reduce disaster risk and provide reference for agricultural production layout
and scientific decision-making, dry-hot wind risk zoning is of great significance to regional
agricultural management and production, people’s lives, and food security.

2. Materials and Methodology
2.1. Study Area

Shandong province is located on the east coast of China and the lower reaches of the
Yellow River (114°48" E-122°42" E and 34°23' N-38°17' N), as shown in Figure 1. The total
land area is 157,900 km?. The climate type is warm temperate monsoon. Precipitation is
concentrated, and rain and heat occur in the same season. Spring and autumn are short,
while winter and summer are long. The annual average temperature range is 11-14 °C
and the annual average precipitation range is 550-950 mm. The rainfall season is unevenly
distributed, with 60-70% of annual precipitation in summer. Landform types include plains,
terraces, hills, and mountains. There is a dense river network in the region, including the
Yellow River, Huaihe River, Haihe River, and smaller rivers in the central and southern
mountainous area.
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Figure 1. Administrative division of Shandong province, China.
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2.2. Data Sets

The meteorological data used here include wind speed, temperature, and relative
humidity from 1991 to 2020. The aspect, altitude, slope, river network density, and land-use
type are obtained from the Meteorological Information Center of Shandong Meteorological
Bureau. Total GDP, total population, administrative area, wheat planting area, crop planting
ratio, population density, education level, per capita GDP, and crop planting area are from
the 2018-2020 Statistical Yearbook of Shandong province.

2.3. Methods

Based on the natural disaster risk theory, this paper constructs a scientific framework
as follows (Figure 2):

Figure 2. Scientific framework or spatial zoning of hot-dry wind disasters in Shandong province.

2.3.1. Basic Theory of Disaster Risk Assessment

Based on the theory of natural hazard risk formation [32], meteorological hazard risk
is formed by the combination of four components: hazard (causative factor), exposure
(carrier), vulnerability (carrier), and prevention and mitigation capacity. Each factor is in
turn composed of a series of subfactors. The expressions are:

Disaster risk index = f (hazard, exposure, vulnerability, disaster prevention and mitigation capacity) (1)

Hazardous factors: Hazardous factors include meteorological factors and environmental
sensitivity. All meteorological factors that may lead to disasters can be called meteorological
factor hazards; the sensitivity of the pregnant environment refers to the degree of strengthening
or weakening of meteorological factors in the natural surface environment.

Exposure of disaster-bearing body: Disaster-bearing body is the object of disaster-
causing factors and is the entity that bears the disaster. Exposure of the hazard-bearing body
is the result of the interaction between the hazard-causing factor and the hazard-bearing
body, and the exposure of the hazard-bearing individual to the hazard-causing factor.

Vulnerability of the disaster-bearing body: A disaster can be formed only when it
acts on the corresponding object, i.e., human beings and their socioeconomic activities.
Specifically, it refers to the degree of hazard or loss caused by the potential risk factors
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for all objects that may be threatened by the disaster-causing factors that exist in a given
hazard area, and its combination reflects the degree of loss from meteorological disasters.

Prevention and mitigation capacity: This refers to various management measures and
countermeasures used to prevent and mitigate meteorological hazards, including manage-
ment capacity, mitigation input, and resource preparation. The more proper management
measures and strong management capacity, the less potential losses may be suffered and
the less risk of meteorological disasters.

Based on the above theory, the hierarchical structure model of dry-heat wind risk
assessment was constructed. The risk index values of hazard factor, exposure factor,
vulnerability factor, and disaster prevention and mitigation capacity of dry-heat wind
disaster are calculated as Ya, Yb, Y¢, and Yd, respectively, by the weighted comprehensive
evaluation method. Through the natural disaster risk index formula, combined with the
dry-heat wind disaster assessment index system of Shandong province, its disaster risk
index model is:

F=W, XY+ W, x Y+ W, XY+ Wy XYy (2)

In which, F is the dry heat wind hazard risk index, which indicates the degree of dry
heat wind hazard; the larger the value of F, the higher the risk and the opposite the lower. y
is the risk index value of hazard factor, exposure factor, vulnerability factor, and prevention
and mitigation capacity of dry heat wind hazard. w is the weight of each index.

Based on the composition of meteorological data, topography, and socioeconomic
elements, Figure 3 below shows the hierarchical structure model of dry-heat wind disaster
risk assessment in Shandong province.
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Figure 3. Hierarchical model of dry hot air risk assessment.

2.3.2. Weighted Comprehensive Evaluation Method

The weighted comprehensive evaluation method is a method that solves the “bottom-
up” indexes in the risk hierarchy analysis and evaluation model, which considers the
degree of influence of each factor on the overall object and integrates the strengths and
weaknesses of each specific index and uses a numerical index to focus on the strengths
and weaknesses of the entire evaluation object. This method is especially suitable for
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comprehensive analysis and evaluation of technology, strategy, or programs and is one of
the most commonly used calculation methods. Its expression is:

m
;=Y AXji=1,2...,mj=12..,m (3)
j=1

where Y; denotes the disaster risk index, i denotes hazard, exposure, vulnerability, and
disaster prevention and mitigation capacity, respectively; X; is the factor affecting hazard,
exposure, vulnerability, and disaster prevention and mitigation capacity, and A; is the
weight value (0 < A; <1).

For the comprehensive risk index of natural disasters, the expressions are:

n
Y=Y WY, i =1 4)
i=1

where Y denotes the comprehensive disaster risk index; Y; is the hazard index, exposure
index, vulnerability index, and disaster prevention and mitigation capacity index, and W;
is the weight value.

The stronger the disaster prevention and mitigation capacity is, the smaller the com-
prehensive risk index is, so the “negative sign” is used.

Where A; and W; are determined using hierarchical analysis, as described in research
Section 2.3.3, each factor in the formula needs to be standardized because of different
dimensions; see research Section 2.3.4 for details.

2.3.3. Analytic Hierarchy Process

Analytic Hierarchy Process (AHP) is a simple method for making decisions on some
more complex and vague problems, especially for those problems that are difficult to fully
quantitatively analyze [33]. This paper uses the operation principle of the analytic hierarchy
process and uses the 1-9 scale method given by Saaty to construct the judgment matrix for
the pairwise relationship of the influence factors. The pairwise comparison of all influence
factors determines the weight of each influence factor, which avoids the result error caused
by the subjectivity of the expert. The qualitative comparison scale values between the two
influencing factors are shown in Table 1 below:

Table 1. Scale of AHP analysis method.

Scale b;; Definition
1 The i factor is as important as the j factor.
3 The i factor is slightly more important than the j factor.
5 The i factor is more important than the j factor.
7 The i factor is much more important than the j factor.
9 The i factor is absolutely more important than the j factor.
2,4,6,8 Between the noted levels.

Solve the maximum eigenvector value of the judgment matrix and its corresponding
eigenvector by the sum-product method and check the consistency of the matrix (the
following formula): After passing, solve it by the sum-product method.

n
-XrA
Amax — 1 i=1
cl= n—1 n—1 ©)
CR = % <01 )

In the formula, CI is the consistency index of the judgment matrix, Amax is the largest
characteristic root of the matrix, 7 is the order of the discrimination matrix, CR is the random
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consistency index of the judgment matrix, and RI is the average random consistency index
of the discrimination matrix. The values of RI are shown in Table 2:

Table 2. Numerical values of random consistency index RI.

M 1 2 3 4 5 6 7 8 9 10 11
RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 151
This paper adopts the Analytic Hierarchy Process (AHP), taking the sensitivity of the
disaster-pregnant environment as an example, and constructs the judgment matrix of each
index and the calculation results are shown in Table 3. Since CR < 0.1, the matrix passed
the consistency test.
Table 3. Judgment matrix and weights of various perceptual factors.
I | M IV V. Weights (W) Matrix AWW A cI CR
eights Product (AW) max
I 1 2 3 3 4 0.402 2.03 5.05 5.033 0.008 0.007
I 1/2 1 2 2 3 0.244 1.23 5.04
moo1/3 12 1 1 2 0.137 0.689 5.03 éI:_ ):A(AW//W)/‘i
v /3 1/2 1 1 2 0.137 0.689 5.03 = (le ?)12“ -
.07 . . T
\% 1/4 1/3 1/2 1/2 1 0.079 0.399 5.05 CR = CI/RI

25.18

Note: In the table, I. Slope direction, II. Elevation, III. Slope, IV. River network density, V. Land-use type.

Similarly, the weights of each factor of hazard, exposure, vulnerability, disaster pre-
vention and mitigation capacity, and combined disaster risk were obtained as shown
in Figure 3.

2.3.4. Standardization

In the process of zoning, the different magnitudes of the selected factors lead to a large
difference in order of magnitude; for example, the total population is 3,923,000 people,
while the total GDP is about 302.22 billion yuan, so when calculating the hazard index
of disaster-causing factors, normalization is required so that the values of each factor are
between 0 and 1. Furthermore, when assessing the hazard of disaster-causing factors,
exposure of disaster-bearing bodies, vulnerability of disaster-bearing bodies, and disaster
prevention and mitigation capacity, the larger the number of influencing factors, the larger
the hazard of disaster-causing factors, exposure of disaster-bearing bodies, vulnerability
of disaster-bearing bodies, and disaster prevention and mitigation capacity, while some
factors are the opposite. Therefore, in the assessment process, the criterion of a great value
or the criterion of a very small value should be standardized first, and the formula is as
follows. For example, the greater the dry and hot wind indeXx, the greater the hazard of
disaster-causing factors, so choose the great value standardization for the dry and hot wind
index, and choose Equation (7); for example, the greater the slope, the less the sensitivity of
disaster-preventing environment, so standardize the slope for the small value, and choose
Equation (8).

Maximum standardization:

X/ |X{]‘7Xmin (7)
e Xmax*Xmin
Minimum standardization:
X/ |Xmux_Xij| (8)

min —
Xmax_Xmin
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where Xj; is the index number of the j-th factor of the x factor; X'yax and X', are the dimen-
sionality of Xjj; Xynax and X, are the minimum and maximum values in the index sequence.

2.3.5. Arc-GIS Spatial Analysis

The spatial analysis methods involved in this paper include Kriging interpolation,
spatial reclassification, spatial raster calculation, and slope extraction. The raster resolution
is 100 m x 100 m.

Kriging interpolation is a method of unbiased optimal estimation of regionalized
variables in a limited region based on the variogram theory and structural analysis. Not
only can it reflect the spatial structure characteristics of variables, but it can also reflect the
random distribution characteristics of variables [34]. There are many factors that affect the
spatial change of natural geographical elements. The comprehensive action of these factors
forms the zonal regularity on the Earth’s surface, and the natural geographical elements
are also disturbed by various random factors. Geographers try to explore the regional
regularity of their natural geographical elements and strive to minimize the interference
of random factors. Kriging interpolation can minimize the interference of random factors
with the help of the optimal method. Therefore, this method can be used to analyze the
changes of elements in the interpolation space, such as the change of temperature, the
regional distribution law of water quality, vegetation, soil, and other elements with zonal
distribution law [35]. Based on the above research conclusions, this paper uses the Kriging
interpolation method to interpolate the zonal geographical elements. According to these
research results, this paper applies the Kriging interpolation method to zoning elements
and zoning results.

In this paper, the natural breakpoint method is used for classification in risk, exposure,
vulnerability, disaster prevention and mitigation capacity and comprehensive risk. In
fact, there are many classification methods, such as equal division, standard deviation
classification, and so on. Fu et al. [36] and others have concluded that the natural breakpoint
method can adequately extract the useful information contained in the index, so as to
establish a more reasonable and accurate index evaluation space. At the same time, the
risk, exposure, vulnerability, disaster prevention, and reduction ability and comprehensive
risk are divided into low, medium, and high levels, mainly because if there are too many
levels, the spatial expression effect is not clear enough.

3. Results
3.1. Spatial Distribution of Dry-Hot Wind Risk

The risk of dry-hot wind includes the risk of meteorological factors and the disaster
environment sensitivity, and the risk of meteorological factors is the main factor constituting
the risk of dry-hot wind. Disaster environment sensitivity can aggravate or reduce the risk
of meteorological factors. At the same time, this paper also consulted relevant experts, such
as Shandong Meteorological Bureau and the Department of Agriculture, and gave the risk
of meteorological factors and the disaster environment sensitivity the weights of 0.7 and
0.3, respectively. The weight in the composition of dry-hot wind meteorological factor risk
index is explained in the fourth question (Figure 3).

3.1.1. Zoning of Meteorological Factor Risk

According to the ground meteorological observation specification of the People’s
Republic of China (Table 4), soil relative humidity at 20 cm, daily maximum temperature
(°C) air relative humidity at 14:00 (%) and wind speed at 14:00 (m/s) were selected as
the grade indicators of dry-hot wind. Since the meteorological station does not observe
20 cm soil relative humidity, there is no 20 cm soil relative humidity in the meteorological
observation records. Considering that precipitation is the main factor affecting 20 cm soil
relative humidity, the maximum process precipitation in early and middle May was used
to replace 20 cm soil relative humidity in this study. The classification standard of dry-hot
wind used in this study is shown in Table 5.
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Table 4. High temperature and low humidity type dry-hot wind grade indicators.

Area

Mild Medium Severe

Daily Air Wind Daily Air Wind Daily Air Wind
Maximum Relative Speed at Maximum Relative Speed at Maximum Relative Speed at

Temperature Humidity 14:00 Temperature Humidity 14:00 Temperature Humidity 14:00

(°Q) at 14:00 (%) (m/s) [{o) at 14:00 (%) (m/s) Q) at 14:00 (%) (m/s)

20 cm Soil
Relative
Humidity

Table 5. Dry-hot wind generation index.

The Time Period is Mid to Late May

Maximum Mild Medium Severe

Process Pre- N
cipitation in Daily Air Relative ~ Wind Speed
Early and
Mid-May

Air Relative Wind Speed
Humidity at at 14:00
14:00 (%) (m/s)

Air Relative Wind Speed
Humidity at at 14:00
14:00 (%) (m/s)

Maximum
Temperature Temperature
(@] Q)

Humidity at at 14:00

14:00 (%) (m/s) TEmpoer)ature

<25 mm

31 <30 >2 >32 <25 >3 >35 <25 >3

>25mm

>33 <30 >3 >35 <25 >3 >36 <25 >3

The harmful degrees of the days of mild, medium, and severe dry-hot wind are different.
The more instances of severe dry-hot wind that happen, the stronger the influence of dry-hot
wind is in the area. Therefore, when constituting the dry-hot wind index, different weights
must be given to the days of mild, medium, and severe dry-hot wind. According to the basic
principle of AHP, when calculating the weight, first, the ratio matrix is constructed according
to the scale grade table. Since the severe dry-hot wind is very important compared with the
mild dry-hot wind, the ratio is assigned as one. The severe dry-hot wind is slightly more
important than the medium dry-hot wind, so the ratio is assigned as two. The medium
dry-hot wind is slightly more important than the mild dry-hot wind, so the ratio is assigned
as three, so the ratio matrix is formed (as shown in the Table 6 below). The consistency test
index CR of the matrix was calculated as CR = 0.08. Because CR < 0.1, the matrix passed the
consistency test. Using the sum product method, the weights of the times of mild, medium,
and severe dry-hot wind are 0.2, 0.3, and 0.5, respectively.

Table 6. Judgment matrix and weights of various perceptual factors.

I 11 I Weights (W) Matrix Product (AW) AW/W Amax CI CR

I

it

1 2 3 0.5 1.62 3.01 3.01 0.004 0.008
1/2 1 2 0.3 0.89 3.00 A =Y(AW/W)/n
ClI=(A —n)/n—1
1/3 1/2 1 0.2 0.49 2.99 RI =058
9 CR=CI/RI

Note: I. Severe dry-hot wind days, II. Moderate dry-hot wind days, III. Mild dry-hot wind days.

According to Table 5, the number of hot-dry days at all levels from 1991 to 2020 was
calculated. In the risk zoning of dry-hot wind days, the harm degrees of mild, medium, and
severe dry-hot wind days are different. The more severe dry-hot wind days, the stronger
the impact of dry-hot wind. Therefore, the mild, medium, and severe dry-hot wind days
constitute a comprehensive risk index, and different weights are assigned to the mild,
medium, and severe dry-hot days, which are 0.2, 0.3, and 0.5, respectively.

R = 0.2D; + 0.3D,, + 0.5D, ©)

where R is the comprehensive index of dry-hot wind (d), D; is average number of days of
mild dry-hot wind disaster during the 30-year study period (d), D, is the average number
of days of medium dry-hot wind disaster during the 30-year study period (d), and D; is the
average number of days of severe dry-hot wind disaster during the 30-year study period (d).

To sum up, mild, medium, and severe dry-hot wind refers to the results obtained
by combining different meteorological indicators. The comprehensive index is a linear
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addition of the days of mild, medium, and severe dry-hot wind, which is formed for the
risk zoning index.

The risk of dry-hot wind is composed of two parts: the risk of meteorological factors
and the pregnancy disaster environmental sensitivity. Dry-hot wind is a type of mete-
orological disaster with high temperature, low humidity, and a certain wind force. The
topographic factors in the pregnancy disaster environmental sensitivity affect the hazard
degree of dry-hot wind. Since meteorological factors are more important compared with
topographic factors, the risk of meteorological factors is given a higher weight. According
to the scale of the AHP analysis method, when the i factor is more important than the j
factor, the weight of the i factor is given to 0.7, and the weight of the j factor is given to 0.3.
Therefore, the weight of the risk of meteorological factors is assigned 0.7, and the weight of
the pregnancy disaster environmental sensitivity is assigned 0.3.

The spatial distribution of the average number of days of dry-hot wind in Shandong
province over the past 30 years is shown in Figure 4. The spatial distribution of the days of
mild dry-hot wind is similar to that of moderate dry-hot wind. High values are distributed
mainly in the central area, and low values are found in the east and west. The highest
values are 1.1 d and 0.4 d, and the lowest value is 0. Areas with a high number of days
with severe dry-hot wind disasters are concentrated in the north, and the highest figure
is 0.4 d. In the remaining areas, the number of days with severe dry-hot wind disaster is
significantly reduced, with the lowest value at 0. The spatial distribution of the index varies
significantly. The high-value areas are concentrated in Weifang, Zibo, Jinan, Binzhou, and
Dongying. The highest number of days is 1.9, and the lowest number of days is 0.
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Figure 4. Spatial distribution of dry-hot wind meteorological factors in Shandong province: (a) mild
dry-hot wind days; (b) moderate dry-hot wind days; (c) number of days with severe dry-hot wind;
(d) dry-hot wind composite index.

3.1.2. Zoning of Disaster Environment Sensitivity

Aspect, altitude, slope, river network density, and land-use type are selected as the
zoning indices for disaster environment sensitivity (Figure 5). The south slope has longer
sunshine duration and higher temperature, so the closer to the south slope, the more
dangerous the hot-dry wind will be. The southwest slope and southeast slope also receive
more solar radiation relatively, so the sensitivity is also higher. The east slope warms
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faster than the west slope, so the sensitivity is higher than that of the west slope; thus,
that of the northeast slope is also slightly higher than that of the northwest slope. The
temperature of the north slope is the lowest, so the sensitivity is the lowest. The sensitivity
of slope-free area is slightly lower than that of the south slope and higher than that of the
east slope. Therefore, the ordering and scoring of the slope aspect are shown in Table 7.
Temperature decreases with increased altitude; therefore, the higher the altitude, the lower
the temperature. The greater the slope is, the less solar radiation per unit an area receives,
and therefore the lower the sensitivity would be [37]. The slope range in Shandong province
is 0-49.5°, so every 10° is assigned a grade, as shown in Table 8. In addition, the higher the
river network density, the higher the air humidity, and the less the impact from dry-hot
wind. Compared with unused land, woodland and grassland have better water conserving
capacity and higher air humidity, which helps to reduce the influence of dry-hot wind
disasters. The scores for different land use types are shown in Table 9.
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Figure 5. Spatial distribution map of slope aspect, altitude, slope, river network density, and land-use
type in Shandong province.

Table 7. Grading and score of slope direction.

Aspect South

South West South East No Slope East West Northeast North West North

Score 8

7 6 5 4 3 2 1 0
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Table 8. Grading and score of the slope.

Slope 50-40° 40-30° 30-20° 20-10° 10-0°
Score 5 4 3 2 1

Table 9. Land-use type scores.

Land Use Arable Construction Unused
Type land Woodland  Grassland Waters Land Land
Score 3 2 4 1 5 6

Adding the value of each factor according to its weight, the spatial distribution of
the environmental sensitivity risk in Shandong province is obtained, as shown in Figure 6.
There is little spatial difference in the environmental sensitivity from dry-hot wind disasters
in Shandong province, yet the spatial distribution is uneven and shows a high degree
of fragmentation.
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Figure 6. Spatial distribution of environmental sensitivity to dry-hot wind pregnancy in Shandong province.

3.1.3. Zoning of Dry-Hot Wind Risks

Meteorological factor risk and disaster environmental sensitivity are added according
to their weight, and then classified to obtain the spatial distribution map of dry-hot wind
disasters in Shandong province, as shown in Figure 7. Note that dry-hot wind disasters
in Shandong province have clear spatial characteristics. The dry-hot winds at all levels in
the north central area of Shandong province are all high-value areas, and the slope in the
north central area is dominated by the southern slope with low altitude, small terrain slope,
low river network density, and a large proportion of construction land. The sensitivity
of the north central is higher. To sum up, the risk of dry-hot wind is higher in the north
central area of Shandong province, with a distribution area of 32,587.6 km?, accounting for
20.6% of the total land area. These areas include Dongying, Weifang, Zibo, east of Jinan,
and south of Binzhou. The medium-risk regions are distributed in the peripheral area of
the high-risk regions, including northwest of Binzhou, west of Jinan, Tai’an, Linyi, Rizhao,
and east of Weifang. The medium-risk area comprises 6649.7 km?2, accounting for 42.1%
of the total land area. The low-risk regions are in the west, southwest, and east, including
Weihai, Yantai, and Qingdao on the Jiaodong Peninsula, and Heze, Jining, and Zaozhuang
in the southwest. The low-risk area comprises 28,820.6 km?, accounting for 37.3% of the
total land area.
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Figure 7. Spatial distribution of dry-hot wind hazards in Shandong province.

3.2. Spatial Distribution of Exposure of Disaster-Bearing Bodies

Exposure includes agricultural exposure and economic exposure. Crops are directly
impacted by dry-hot wind disasters, and planting area directly reflects the degree of expo-
sure. Thus, the sown area of crops is selected as the index of agricultural exposure. When a
dry-hot wind disaster occurs, the higher the total GDP, the greater the total population, and
the larger the administrative area, the stronger exposure will be from the disaster. Therefore,
total GDP, total population, and administrative area are selected as economic exposure
indices and added according to their weights in Figure 3 to obtain a spatial distribution
map of economic exposure. Then, agricultural exposure and economic exposure are added
with a weight of 0.7 and 0.3, respectively, and then classified to obtain the spatial zoning
results of dry-hot wind exposure in Shandong province (Figure 8). Note that exposure to
dry-hot wind disasters shows a clear spatial distribution pattern: generally high in the
south and low in the north. High-exposure areas include Heze, Jining, Linyi, and Weifang,
and medium-exposure areas are mainly in Dezhou, Liaocheng, Tai’an, Jinan, Yantai, and
Qingdao. Low-exposure areas include Binzhou, Dongying, Zibo, Zaozhuang, Rizhao, and
Weihai. The areas of high, medium, and low exposure are 56,581.8 km?, 62,815.1 km?, and
38,503.2 km?, accounting for 35.8%, 39.8%, and 24.4% of the total land area, respectively.
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Figure 8. Spatial distribution of exposure of dry-hot wind-bearing bodies in Shandong province.

3.3. Spatial Distribution of Vulnerability of Disaster-Bearing Bodies

Vulnerability includes agricultural vulnerability and economic vulnerability. Dry-
hot wind disasters hinder the grain filling of wheat and forces it to ripen, affecting its
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maturation, and the thousand-grain weight is significantly reduced, resulting in a serious
reduction in wheat production [38]. Therefore, the larger the wheat planting area, the greater
the impact of dry-hot wind disasters. The present study uses the wheat planting area as the
index of agricultural vulnerability. As for economic vulnerability, crop area proportion and
population density are selected as indices of economic vulnerability. Crop area proportion
refers to the ratio of crop planting area to administrative area. The larger the crop area
proportion, the higher the vulnerability. The higher the population density, the higher the
vulnerability. Crop area proportion and population density are spatially superimposed, as
shown in Figure 3, to obtain the distribution map of economic vulnerability (not shown).
Agricultural vulnerability and economic vulnerability are then added with a weight of 0.7
and 0.3, respectively, and classified to obtain the spatial zoning results of the vulnerability
of disaster-bearing bodies (Figure 9). Note that vulnerability is high in the west and low in
the east. The high-vulnerability areas include Heze, Liaocheng, and Dezhou in the west.
The low vulnerability areas are Dongying, Zibo, Rizhao, Yantai, and Weihai. The remaining
cities show medium vulnerability. The areas of high, medium, and low vulnerability are
31,503.3 km?2, 88,001.4 km?, and 38,395.3 km?2, accounting for 20.0%, 55.7%, and 24.3% of
the total land area, respectively.
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Figure 9. Spatial distribution of vulnerability of dry-hot wind-bearing bodies in Shandong province.

3.4. Spatial Distribution of Disaster Prevention and Mitigation Capability

Disaster prevention and mitigation capability refer to management measures and
countermeasures used to prevent and reduce meteorological disasters. The higher the
economic level of a place, the higher the disaster prevention and mitigation capability [39].
The higher the per capita GDP, per capita income, and level of education, the stronger
the ability to defend against and respond to dry-hot wind disasters. Per capita GDP, per
capita income, and education level are selected as indices of disaster prevention and
mitigation capability. In accordance with the weights shown in Figure 3, the indices are
added and then classified to obtain the spatial zoning results of the disaster prevention and
mitigation capability in Shandong province (Figure 10). Note that the disaster prevention
and mitigation capability of dry-hot wind disasters is high in the east and low in the
west. Areas with high disaster prevention and mitigation capability are located mainly in
Yantai, Weihai, Jinan, Qingdao, Jinan, and Dongying. Regions with low disaster prevention
and mitigation capability include Dezhou, Liaocheng, Heze, Zaozhuang, and Linyi. The
remaining areas are medium-risk regions. Areas with high, medium, and low disaster
prevention and mitigation capability comprise 48,613.6 km?, 56,086.5 km?2, and 53,199.8 km?,
accounting for 30.8%, 35.5%, and 33.7% of the total area, respectively.
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Shandong province.

3.5. Spatial Distribution of Comprehensive Risk of Dry-Hot Wind Disasters

The four factors of the zoning results of risk, exposure of disaster-bearing bodies,
vulnerability of disaster-bearing bodies, and disaster prevention and mitigation capability
are spatially superimposed according to the weights shown in Figure 3. This obtains the
zoning results of the comprehensive risk of dry-hot wind disaster in Shandong province,
as shown in Figure 11. Note that the comprehensive risk of dry-hot wind disaster differs
substantially in different areas. The medium- and high-risk regions are located mainly in
the west and central areas, with low-risk regions in the east. The overall spatial distribution
shows a strong degree of fragmentation. Table 10 shows the areas of the high-, medium-,
and low-risk regions in each city. In Jining, Weifang, Heze, and Linyi, the area of high risk
is largest. In Dongying, Qingdao, Rizhao, Weihai, Yantai, and Zaozhuang, there are no
high-risk regions. Jining, Jinan, Tai’an, Binzhou, Linyi, and Dongying are medium-risk
regions. The area of medium risk in Heze and Weihai is zero. In Yantai, Qingdao, and
Weihai, the area of low risk is largest. In summary, there are no low-risk regions in Jining,
Dezhou, Heze, Liaocheng, Linyi, and Weifang, only medium- and high-risk areas. The
area of high-, medium-, and low-risk regions for dry-hot wind disasters is 64,076.7 km?2,
58,474.3 km?, and 35,349.0 km?, accounting for 40.6%, 37.0%, and 22.4% of the total land
area, respectively.
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Figure 11. Spatial distribution of integrated riskiness of dry-hot wind in Shandong province.
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Table 10. Area of high-, medium-, and low-risk areas in Shandong province by city.

High-Risk Area Medium-Risk Area Low-Risk Area
Area (km?) Ratio (%) Area (km?) Ratio (%) Area (km?) Ratio (%)
Binzhou City 4028.6 2.6 5582.1 3.6 1 0
Dezhou City 9594.5 6.1 1019.1 0.7 0 0
Dongying City 0 0 5104.5 33 2064.5 1.3
Heze City 12,083.8 7.7 0 0 0 0
Jinan City 1955 12 7069.6 4.5 1443.9 0.9
Jining City 297,514 1.9 8184 5.2 0 0
Liaocheng City 6488.6 4.1 2263.2 14 0 0
Linyi City 11,891.2 7.6 5329.6 3.4 0 0
Qingdao City 0 0 3915.1 2.5 7276.5 4.6
Rizhao City 0 0 1668 1.1 3679.8 2.3
Taian City 375.2 0.2 6609.2 42 875.1 0.6
Weihai City 0 0 0 0 5687.5 3.6
Weifang City 13,089.7 8.4 3027.8 1.9 0 0
Yantai City 0 0 323.5 0.2 13,652.5 8.7
Zaozhuang City 0 0 3958.7 2.5 581 0.4
Zibo City 1595 1 4420 2.8 87.2 0.1

4. Discussion

(1) This study evaluates and classifies the risk of dry-hot wind disasters in Shandong
province from the perspectives of risk, exposure, vulnerability, disaster prevention and
mitigation capability, and comprehensive risk. Similar studies are rare. Thus, the results of
this study provide a framework for related research in this area. The comprehensive risk
of dry-hot wind disasters obtained here is compared with existing studies. Li et al. [40]
use daily maximum temperature, relative humidity at 14:00, and wind speed at 14:00 from
1961 to 2017, as well as winter wheat growth period data to analyze the spatiotemporal
characteristics of the disaster-causing factors of dry-hot wind disasters in the Huanghai and
Huaihai areas. Their results show that dry-hot wind disasters occur frequently in northern
and western Shandong. In comparison, the present study shows that the comprehensive
high-risk area of dry-hot wind disasters is located mainly in Binzhou, Zibo, and Weifang,
which is north of Shandong province, Dezhou and Liaocheng in the west, and Heze, Jining,
and Linyi in the south. Note that these results are consistent with the previous study.

(2) In the present study, based on observation data from meteorological stations, the
dry-hot wind index R of each station is calculated. Then, the Kriging interpolation method
in ARC-GIS is used to obtain the spatial distribution map. In addition to the Kriging
interpolation method, there are also other spatial interpolation methods, such as the in-
verse distance weight interpolation method, spline function method, and trend surface
analysis. The results of different interpolation methods are shown in Figure 12. The spatial
distribution of the dry-hot wind index obtained by different interpolation methods differs.
The results of the Kriging interpolation, inverse distance weight interpolation, and spline
function methods are similar, whereas the results of trend surface analysis are quite dif-
ferent. According to the results from the Kriging interpolation, inverse distance weight
interpolation, and spline function methods, the areas with a high dry-hot wind index are
located in the north-central area of Shandong province. Existing studies show that the
occurrence of hot-dry wind disaster is frequent in the central part of Shandong province,
and less frequent in the west [18]. Huimin County (Binzhou City) and Yangjiaogou Town
(Weifang City) are two high-incidence areas of dry-hot wind disasters. Dezhou, Liaocheng,
Jining, and Heze are low-risk areas. Yanzhou (Jining City) has a significantly higher occur-
rence frequency than Heze. In addition, the frequency of dry-hot wind disasters in Tai’an
City increases from southwest to northeast [28]. Lin et al. [41] analyzed the weather data
and hazard symptom information during the later stage of wheat growth, weather data for
dry-hot wind days in past years, and field test data. These authors found that dry-hot wind
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disasters occurred in Dezhou, Heze, Weifang, and Jining. The results obtained by Kriging
interpolation are consistent with the results of previous studies.

[ G NTE EE 0 120°F 2 122

(b)

Figure 12. Spatial distribution of dry-hot wind index: (a) Kriging interpolation method; (b) inverse
distance weight interpolation method; (c) spline function method; (d) trend surface analysis method.

(8) To perform the zoning of exposure, vulnerability, and disaster prevention and
mitigation capability, only social and economic indicators are used in this study. However,
the indicators in different counties are not standardized. For example, some indicators may
not be present for certain counties. For the purpose of standardization, adjustments or
replacements are made based on specific conditions, with varying effects on the zoning
results. Moreover, some indicators are limited to the city level, and there is no county-level
data, which affects the spatial resolution of the zoning. In addition, some indicators are not
included in the statistical yearbooks; these are replaced with similar indicators. For instance,
education level is supposed to be the percentage of graduation at each level, yet in the
statistical yearbook, there is no relevant information. Thus, the number of school students
is used to calculate education level. Apparently, such treatment affects the zoning results.

(4) The zoning results for dry-hot wind disasters include not only comprehensive risk,
but also zoning for risk, exposure, vulnerability, and disaster prevention and mitigation
capabilities. Therefore, in practical application, the results can be analyzed from various
perspectives. For example, from the perspective of comprehensive risk zoning of dry-hot
wind disasters (Figure 11), the comprehensive risk is high in Dezhou, Liaocheng, and Heze.
However, when the zoning results of risk, exposure, vulnerability, and disaster prevention
and mitigation capability are considered separately, we find that for areas with high com-
prehensive risk, such as Weifang, Jinan, Zibo, and Binzhou, disaster prevention awareness
should be enhanced, and scientific disaster prevention and relief plans should be formu-
lated. For areas with high exposure, such as Heze, Weifang, Linyi, and Jining, investment in
disaster relief facilities should be increased. For Dezhou, Liaocheng, and Heze, which have
high vulnerability and weak disaster prevention and mitigation capability, the focus should
be on strengthening economic development and increasing investment in education, so as
to reduce losses caused by dry-hot disaster. In conclusion, the risk assessment and zoning
of dry-hot wind disasters in Shandong province can not only improve our understanding
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of such disasters, but they can also provide a framework for government to formulate
disaster prevention and relief policies.

(5) After calculating the risk index, exposure index, vulnerability index, disaster
prevention and mitigation capabilities index, and comprehensive risk index, the risk space
should be divided according to the size of the index. There are many methods to divide
the index, such as the equal interval method, defined interval method, natural breakpoint
classification method, standard deviation method, and so on. In the classification, we
take the risk as an example and select four methods for comparison (Figure 13). It can
be seen that the spatial differences of the zoning results obtained by the equal interval
method (a), defined interval method (b) and standard deviation method (d) are not obvious,
which means a smaller high-risk area in Figure 13a, a too-large risk area in Figure 13b,
and the uncleared risk boundary in Figure 13d. The natural breakpoint classification
method, compared with other methods, is the method with zoning results where spatial
distribution of each grade is clear and is more consistent with the reality. Therefore, the
natural breakpoint method is selected. The results of various division methods are as
follows, and the classification scope of each index is added to the corresponding research
content of the article.

WSE [ PE
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Figure 13. Spatial distribution of dry-hot wind hazards in Shandong province: (a) Equal Interval;
(b) defined Interval; (c)natural breaks; (d) standard deviation.

(6) The dry-hot wind mainly reduced the wheat yield by reducing the 1000-grain
weight of wheat. Therefore, this study calculated the average wheat yield per unit area of
each administrative city (county) based on the statistical yearbook of each city in Shandong
province in the past five years, and its spatial distribution is as follows.

Compared to the results of the dry-hot wind comprehensive risk zoning (Figure 11)
and the yield per unit area of wheat, it can be seen that the spatial distribution of the two
figures is basically similar (Figure 14). In areas with a high comprehensive risk of dry-hot
wind, such as Dezhou, Liaocheng, Heze in the west, the yields per unit area of wheat are
also the lowest; Dongying, Jinan, Tai’an, Rizhao, Qingdao, Weihai and other counties (cities)
with low comprehensive risk of dry-hot wind, and the yields per unit area of wheat are
also higher. However, there are also individual areas that do not match. For example, in
the southwest of Dongying, the comprehensive risk of dry-hot wind is the highest, and the
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average yield per unit area of wheat is also high, which may be caused by several factors,
such as artificial irrigation.
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Figure 14. Spatial distribution of wheat yield per unit area in Shandong province.

5. Conclusions

The dry-hot wind, at all levels in Shandong province, mainly occurs in the central
area of Shandong province, and the number of dry-hot wind in a year is at most 1.9 days.
Severe dry-hot wind mainly occurs in the northern part of the central region, specifically in
Zibo City, Weifang City, and Dongying City, where it occurs, at most, for 0.4 d. Considering
the topographic factors, the high-value area of dry-hot wind risk index is located in the
north-central area, with an area of 32,587.6 km?, accounting for 20.6% of the province’s
area, and other areas are gradually decreasing. The high-value area of the exposure index
is located in the southwest of Shandong province, covering an area of 56,581.5 km?, ac-
counting for 35.8% of the province’s area. The high-risk areas in Zibo and Dongying are all
low-exposure, and only Weifang is high-exposure. The high-value area of the dry-hot wind
disaster-affected body vulnerability index in Shandong province is located in the west of
Shandong province, with an area of 31,503.3 km?, accounting for 20.0% of the province’s
area, while the high-value area of dry-hot wind risk has relatively low vulnerability. The
high-value areas of the dry-hot wind disaster prevention and mitigation capabilities index
in Shandong province are located in the eastern and central parts of Shandong province,
with an area of 48,613.6 km?, accounting for 30.8% of the province’s area, and the lowest are
in the southern and western regions. The disaster prevention and mitigation capabilities of
the high-risk dry-hot wind area belongs to the medium area, among which Dongying City
has the strongest disaster prevention and mitigation capabilities for dry-hot wind. To sum
up, the high-value areas of dry-hot wind comprehensive risk in Shandong province are
located in the western and central parts of Shandong province, with an area of 64,076.7 km?,
accounting for 40.6% of the province’s area. Due to its strong disaster prevention and miti-
gation capabilities, Dongying City has become a low-value area in terms of comprehensive
risk. Both Zibo City and Weifang City belong to areas with high comprehensive risk of
dry-hot wind.

The study results showed that the comprehensive risk zoning results of dry-hot wind
proposed in this paper were basically consistent with the spatial distribution of wheat yield
per unit area in Shandong province, indicating that the results of dry-hot wind zoning
in this study were of high accuracy. The results of this paper have important guiding
significance for the formulation of disaster prevention and reduction planning of dry-hot
wind in Shandong province. It is suggested to strengthen the construction of dry-hot
wind early warning systems in the central and western regions, including improving
the accuracy of dry-hot wind prediction, cultivating wheat varieties resistant to high
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temperature and low humidity in the central and western regions, especially strengthening
the water conservancy construction in the central and western regions, and improving the
disaster prevention and reduction capacity of dry-hot wind resistance, so as to reduce the
losses caused by strong exposure and vulnerability. In particular, Weifang City, Dezhou
City, and Heze City should formulate different disaster prevention and reduction plans
according to different mechanisms leading to high comprehensive risk of dry-hot wind.
For example, Weifang is in a high-risk area.
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Abstract: Peanut growth in Shandong Province, a major peanut-producing area in China, is greatly
affected by drought. The present study uses hierarchical analysis, weighted comprehensive eval-
uation, and ArcGIS spatial analysis to conduct spatial zoning of peanut drought risk in Shandong
Province based on daily precipitation data for the province acquired from 1991 to 2020, the per capita
GDP, and the peanut planting area of Shandong Province, so as to quantify the disaster risk of peanut
drought and formulate disaster prevention and resilience planning accordingly. The results show
the high-drought-risk zone was mainly distributed in the northwestern part of Shandong Province
and on the Jiaodong Peninsula, covering 32.4% of the province. Drought risk was concentrated on
the Jiaodong Peninsula, covering 20.7% of the province. The high-vulnerability zone was mainly
distributed in the cities of Yantai, Weihai, Linyi, and Rizhao, accounting for 26.8% of the total area.
The low-disaster-prevention and low-mitigation-capacity zone was mainly distributed in the western
part of Shandong Province, covering 38.7% of the province. Medium- and high-risk areas for drought
affecting peanuts were widely distributed, while the overall comprehensive risk index was high,
covering 76.2% of the province. Spatial analysis to conduct risk zoning and assessment of peanut
drought in Shandong Province, so as to provide a basis for peanut drought disaster prevention and
safe peanut production in Shandong Province.

Keywords: peanut drought; risk zoning; Shandong Province; natural disaster risk assessment principles

1. Introduction

According to the World Meteorological Organization, meteorological disasters cause
about 85% of the total losses caused by various types of natural disasters, and drought
in turn accounts for about 50% of meteorological disasters losses [1]. The peanut is an
important food, source of oil, and cash crop in China [2,3]. Drought can seriously affect the
plants during flowering and the quality of peanut kernels during the podding period [4-6],
leading to a decline in peanut quality and yield [7,8]. Therefore, drought is an important
factor limiting peanut growth and yield. Shandong Province ranks among the top peanut-
growing areas in China, with the peanut cultivation area accounting for about 15-16% of
the total domestic peanut growing area; total production in Shandong accounts for about
18-20% of the total domestic production [9,10]. The critical period of water demand for
peanut growth is concentrated from June to August, which coincides with the occurrence
of summer drought in Shandong Province; therefore, drought disasters are one of the major
types of disasters affecting the growth and yield of peanuts in Shandong Province [11].

Natural disaster risk refers to the possibility of loss from the impact of a certain disaster
in a certain area after considering the natural and social attributes together [12]. Therefore,
the purpose of natural disaster risk research is to provide a scientific basis for regional dis-
aster prevention and mitigation, and strengthening the research of comprehensive natural
disaster zoning has been listed as one of the actions of disaster prevention and mitigation
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in China’s Agenda 21 [13]. Significant work has been carried out in various countries for
drought risk zoning research. Araya, A. et al. [14] developed a suitable drought assess-
ment technique by analyzing long-term climate data from four sites in northern Ethiopia;
Moumita Palchaudhuri et al. [15] used a combination of AHP and GIS to conduct a drought
zoning study in Puruliya, West Bengal, India; Nazarifar Mohammadhadi et al. [16] as-
sessed and zoned drought risk in the Karkheh basin for different years and return peri-
ods; Zhongyi Sun et al. [17] proposed a methodology for integrated risk analysis, assess-
ment, combination, and regionalization of droughts and floods in Anhui Province; and
Luo D et al. [18] assessed the drought hazard by constructing a gray predictive incidence
model (GPIM). Additionally, for peanut drought, risk zoning has also attracted the atten-
tion of scholars, but up to now the relevant research literature has been relatively scarce.
Wei S. Cheng et al. [19] conducted a risk evaluation of peanut drought in the Yellow and
Huaihai Sea region and concluded that high-risk areas for peanut drought disaster were
scattered and mainly concentrated in the northwestern part of the Yellow River Basin.
Additionally, more scholars have studied the impacts of drought on peanut growth and
yield. For example, Celikkol Akcay U. et al. [20] concluded that the growth retardation of
peanuts under drought stress conditions was mainly due to drought-induced oxidative
damage and antioxidant responses; Jiang, C.J. et al. [21] proposed that drought inhibited
different varieties of peanut and the drought resistance of different peanut varieties varied;
and Zhang, K. et al. [22] selected 16 peanut varieties for drought resistance testing and
concluded that geological drought can start and end quickly, while meteorological drought
takes longer to develop and recover. These research results provide important reference
values for conducting peanut drought risk assessment and zoning studies.

This paper selected Shandong Province, China, as the study area, and conducted
a spatial zoning study on peanut drought risk in Shandong Province based on natural
disaster risk theory, considering four aspects, hazard, exposure of disaster-affected bodies,
vulnerability of disaster-affected bodies, and disaster prevention and mitigation capacity, by
establishing a peanut drought risk index model, combined with Arc-GIS spatial analysis, a
weighted comprehensive evaluation method, and hierarchical analysis method. Compared
with the existing studies, in addition to the study of peanut drought risk, the exposure of
disaster-affected bodies, vulnerability of disaster-affected bodies, and disaster prevention
and mitigation capacity were also evaluated and zoned, providing a reference for carrying
out peanut drought risk assessment and zoning studies. Research results provide a basis for
the prevention of peanut drought and the safe production of peanuts in Shandong Province
and provide a quantitative basis for the scientific formulation of disaster prevention and
mitigation policies and planning by relevant departments.

2. Materials and Methodology
2.1. Study Area

Shandong Province is located on the east coast of China and the lower reaches of the
Yellow River (114°48' E-122°42' E and 34°23’' N-38°17' N), as shown in Figure 1. Total
land area is 157,900 km?. The climate type is warm temperate monsoon. Precipitation is
concentrated, and rain and heat occur in the same season. Spring and autumn are short,
while winter and summer are long. The annual average temperature range is 11 °C-14 °C,
and the annual average precipitation range is 550-950 mm. The rainfall season is unevenly
distributed, with 60-70% of annual precipitation in summer. Landform types include plains,
terraces, hills, and mountains. There is a dense river network in the region, including the
Yellow River, Huaihe River, Haihe River, and smaller rivers in the central and southern
mountainous area.
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Figure 1. Administrative division of Shandong Province, China.

2.2. Data Sets

This paper covers a total of 122 meteorological stations in Shandong Province from
1991 to 2019, and the precipitation data for each month were obtained based on the daily pre-
cipitation data of each station. The daily precipitation data were obtained from Shandong
Meteorological Center. According to the ground meteorological observation specification
of China Meteorological Administration, the daily precipitation data were reviewed by
the stations, their municipal meteorological bureaus, and the data review department of
the provincial meteorological bureau before being entered into the database of Shandong
Meteorological Center, and the anomalous values were eliminated to ensure the uniformity
and accuracy of the data. Total GDP, total population, peanut planting area, percentage of
peanut cultivation area, population density, per capita GDP, and water facilities are from
the 2018-2020 Statistical Yearbook of Shandong Province.

2.3. Methods

This paper constructs a theoretical model for peanut drought risk assessment based
on the basic theory of disaster risk assessment. The trend analysis method is used to
analyze the temporal characteristics of the disaster-causing factors; the hierarchical analysis
method is used to determine the weights of the factors constituting the risk impact; and the
comprehensive weighted evaluation method is used to constitute the risk index model.

2.3.1. Basic Theory of Disaster Risk Assessment

Based on the theory of natural hazard risk formation [12], meteorological hazard risk
is formed by the combination of four components: hazard (causative factor), exposure
(carrier), vulnerability (carrier), and prevention and mitigation capacity. Each factor is in
turn composed of a series of subfactors. The expressions are:

Disaster risk index = f (hazard, exposure, vulnerability, disaster prevention and mitigation capacity) 1)

Hazardous factors: Hazardous factors include meteorological factors and environmental
sensitivity. All meteorological factors that may lead to disasters can be called meteorological
factor hazards; the sensitivity of the pregnant environment refers to the degree of strengthening
or weakening of meteorological factors in the natural surface environment.

Exposure of disaster-bearing body: Disaster-bearing body is the object of disaster-
causing factors and is the entity that bears the disaster. Exposure of the hazard-bearing body
is the result of the interaction between the hazard-causing factor and the hazard-bearing
body, and the exposure of the hazard-bearing individual to the hazard-causing factor.

Vulnerability of the disaster-bearing body: A disaster can be formed only when it
acts on the corresponding object, i.e., human beings and their socioeconomic activities.
Specifically, it refers to the degree of hazard or loss caused by the potential risk factors
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for all objects that may be threatened by the disaster-causing factors that exist in a given
hazard area, and its combination reflects the degree of loss from meteorological disasters.

Prevention and mitigation capacity: It refers to various management measures and
countermeasures used to prevent and mitigate meteorological hazards, including manage-
ment capacity, mitigation input, and resource preparation. The more proper the manage-
ment measures and the stronger the management capacity, the less potential losses that
may be suffered and the less risk of meteorological disasters.

Based on the above theory, a hierarchical analysis model for peanut drought disaster
risk assessment in Shandong Province was built (Figure 2). Figure 2 shows the model
of peanut drought risk zoning. The risk was divided into meteorological factor risk and
pregnancy disaster environmental sensitivity. The risk of meteorological factor selected was
the precipitation anomaly percentage. The environmental sensitivity of pregnant disaster
referred to the environmental factors that can enhance or weaken the risk of peanut drought.
In this paper, factors such as elevation and slope were selected. Exposure was selected as the
peanut planting area; vulnerability referred to the percentage of the peanut cultivation area;
and the factors for disaster prevention and mitigation capabilities selected were the aspects
of per capita GDP, level of education, and so on. However, when selecting indicators, they
will be selected or replaced according to the factors in the Statistical Yearbook. Please refer
to Sections 3.1-3.4 for the selection basis of specific indicators.

The

factor risk 0.7 anomaly percentage 1
—> Risk 0.5
Slope 02064
TtmnaresGrgi Elevation 02064
R River network density 0.3683
03 Land use type 01094
Soil texture 01094

—> Exposure 0.167 e Crrimmmmm o

Percentage of peanut

> Vulnerability 0.167 > cativation area 1

Per capita GDP 04226
Disaster prevention and Per capita income of farmers 02973
L> mitigation capabilities 0.167 —> Levelof education 01483

aoura01] Suopueyg ut ySnoxp nuead jo Sumoz [erjeds

Water conservation facilities  0.1622

Figure 2. Hierarchical model for peanut drought risk assessment.

2.3.2. Weighted Comprehensive Evaluation Method

The weighted comprehensive evaluation method is a method that solves the “bottom-
up” indexes in the risk hierarchy analysis and evaluation model, which takes into account
the degree of influence of each factor on the overall object and integrates the strengths and
weaknesses of each specific index and uses a numerical index to focus on the strengths
and weaknesses of the entire evaluation object. This method is especially suitable for
comprehensive analysis and evaluation of technologies, strategies, or programs and is one
of the most commonly used calculation methods. Its expression is:

mn
Yi:Zwijyifi:1/2/3/4;j:l’z"“’m (2)
i=1

In the formula, Y; represents the disaster risk index, and i, respectively represents the
risk, susceptibility, vulnerability, and disaster prevention and mitigation capabilities; Y;;
is the factor that affects the risk, susceptibility, vulnerability, and disaster prevention and
mitigation capabilities, and Wj; is the weight value of risk, susceptibility, vulnerability, and
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disaster prevention and mitigation capabilities (0 < W;; < 1), while j represents the number
of factors affecting i.
For the comprehensive risk index of natural disasters, the expressions are:

n
Y=Y WY,i=1234 3)
i=1

In the formula, Y represents the comprehensive disaster risk index; Y; is the risk index,
susceptibility index, vulnerability index, and disaster prevention and mitigation capability
index, and W; is the weight value. The stronger the disaster prevention and mitigation
capacity, the smaller the comprehensive risk index, so the “negative sign” is used.

Among them, W;; and W; are determined by the analytic hierarchy process; see research
method Section 2.3.3 for details. Each factor in the formula needs to be standardized because
of different dimensions; see research method Section 2.3.4 for details.

2.3.3. Analytic Hierarchy Process

Analytic hierarchy process (AHP) is a simple method for making decisions on more
complex and vague problems, especially for those problems that are difficult to fully
quantitatively analyze [23]. This paper used the operation principle of the analytic hierarchy
process and used the 1-9 scale method given by Saaty to construct the judgment matrix for
the pairwise relationship of the influence factors. The pairwise comparison of all influence
factors determines the weight of each influence factor, which prevents the result error
caused by the subjectivity of the expert. The qualitative comparison scale values between
the two influencing factors are shown in Table 1 below.

Table 1. Scale of AHP analysis method.

Scale b;; Definition
1 The i factor is as important as the j factor.
3 The i factor is slightly more important than the j factor.
5 The i factor is more important than the j factor.
7 The i factor is much more important than the j factor.
9 The i factor is absolutely more important than the j factor.
2,4,6,8 Between the noted levels.

The maximum eigenvector value of the judgment matrix and its corresponding eigen-
vector need to be solved by the sum-product method, and the consistency of the matrix (the
following formula) should be solved; then, this should be solved by the sum-product method.

A 0 '21 A
_ Mmax =1 =
cr= n—1 n—1 @
CI
CR= 77 <01 )

In the formula, CI is the consistency index of the judgment matrix; Ay is the largest
characteristic root of the matrix; # is the order of the discrimination matrix; CR is the random
consistency index of the judgment matrix; and RI is the average random consistency index
of the discrimination matrix. The values of RI are shown in Table 2.

Table 2. Numerical values of random consistency index RI.

M 1 2 3 4 5 6 7 8 9 10 11
RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 141 1.45 1.49 1.51
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We summarize the calculation process in Table 3, as follows.

Table 3. Judgment matrix and weights of various perceptual factors.

I I I IV V  Weight(W)  MatrixProduct AW) AW/W Ay I CR
1 1 2 2 3 3 0.368 1.851 5.03 5013 0009 0.003
12 11 2 2 0.206 1.035 5.02
mo12 11 2 2 0.206 1.035 5.02 A= LAw/m)/n
v oo1/3 12 1/2 1 1 0.109 0.548 5.03 = %I: ?1/2” -
v 13 12 12 1 1 0.109 0.548 5.03 P

213 CR=CI/RI

Note: In the table: I. river network density, II. slope, III. elevation, IV. land use type, and V. soil texture.

This paper adopted the analytic hierarchy process (AHP), taking the sensitivity of the
pregnancy disaster environmental sensitivity as an example, and constructed the judgment
matrix of each index; the calculation results are shown in Table 3. Since CR < 0.1, the matrix
passed the consistency test.

Similarly, the weights of each factor of risk, exposure, vulnerability, disaster prevention
and mitigation capacity, and comprehensive risk were obtained as shown in Figure 2.

2.3.4. Standardization

Because the dimensions of the selected factors are different, the values of each factor
vary greatly. It is necessary to normalize each factor so that the values of each factor are
between 0 and 1. When evaluating the risk of disaster-causing factors, the exposure of
the disaster-affected body, the vulnerability of the disaster-affected body, and the disaster
prevention and mitigation capacity, the correlations between the selected factors and each
evaluation index are different; some are positively correlated, and some are negatively
correlated. Therefore, when normalizing the factors with a positive correlation, if the cause
subvalue is large, the normalized value is also large, so the maximum value should be
selected for standardization. On the contrary, if the factors with a negative correlation
are standardized, the minimum standardization is selected. For example, the larger the
peanut planting area, the greater the exposure, so the great value standardization is chosen
for the peanut planting area, and Equation (6) is selected; for example, the greater the
river network density, the smaller the sensitivity of the pregnant environment, so the very
small value standardization is performed for the river network density, and Equation (7)
is selected.

Maximum standardization:

X’ - ‘Xi]'_Xmin (6)
e Xmux_Xmin
Minimum standardization:
| X o= Xij
X/ R max ] (7)
mn Xmax - Xmin

where Xj; is the index number of the j-th factor of the x factor; X' imay and X', are the
dimensionality of Xj;; and Xuax and X, are the minimum and maximum values in the
index sequence.

2.3.5. Arc-GIS Spatial Analysis

In this paper, the meteorological elements and geographic environment elements were
interpolated using the Kriging method to obtain spatial distribution maps with a spatial
resolution of 100 m x 100 m. The socioeconomic factors were resampled by administrative
units to obtain spatial distribution maps with a spatial resolution of 100 m x 100 m.
Then, according to the weights of each element, the raster calculation method was used
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to superimpose each element spatially to obtain the spatial distribution map of risk index,
exposure index, vulnerability index, and disaster prevention and mitigation capability
index. Finally, each index of risk was spatially superimposed by weights to obtain the
spatial distribution map of comprehensive risk index. The natural grading discontinuity
method was used to grade each index, and the zoning map of each index of risk zoning
and the comprehensive risk zoning map were obtained.

2.3.6. Drought Classification

A precipitation anomaly percentage indicator can visually reflect the degree of drought
caused by precipitation anomalies; therefore, the precipitation anomaly percentage of
peanuts for the entire growing period was selected as the risk indicator of a peanut drought
meteorological factor. The precipitation anomaly percentage for a certain period was
calculated according to Equation (8):

pa=" %P % 100% 8)

where Pa is the precipitation anomaly percentage (%); P is the precipitation for a certain
time period (mm); and P is the multiyear average precipitation for the corresponding time
period (mm), and the average value of 30 years was generally calculated.

In this paper, all grades of drought were calculated for each station according to (QX/T
82-2019) (Table 4) [24], and their frequencies were calculated and integrated in the formula
of the danger index of meteorological factors of drought, which was calculated as:

R =0.0960D; + 0.1611Dy, + 0.2771Ds + 0.4658D ©)

where R is the meteorological risk index of peanut drought; D) is the average number of
days in 30 years of light drought (d); Dy, is the average number of days in 30 years of
moderate drought (d); D; is the average number of days in 30 years of severe drought (d);
and De is the average number of days in 30 years of exceptional drought (d).

Table 4. The precipitation anomaly percentage drought classification table (based on meteorological
drought rating criteria).

The Precipitation Anomaly Percentage P, (%)

Level Types
Monthly Scale  Quarterly Scale Annual Scale
1 Drought-free —40< P, —25< P, —15< P,
2 Light drought —-60<P, <—-40 —-50<P,<-25 —-30<P,<-15
3 Moderate drought —80<P; <—60 —70<P,<-50 —40<P,<-30
4 Severe drought —95<P, <—-80 —-80<P,<-70 —45<P,<—-40
5 Exceptional drought P, < -9 P, < -80 P, < —45

3. Results
3.1. Spatial Distribution of Peanut Drought Risk

Peanut drought risk includes meteorological factor risk and disaster formative envi-
ronmental sensitivity, which were assigned weights of 0.7 and 0.3, respectively, based on
the AHP method (Figure 2).

3.1.1. Meteorological Factor Risk Zoning

In this paper, the daily precipitation data of 122 stations in Shandong Province from
1991 to 2020 were used for meteorological data, and the precipitation anomaly percentage
was calculated according to Equation (8), and the frequency of different drought levels
in 122 stations in Shandong Province was calculated using the precipitation anomaly
percentage according to the drought grade (Table 4); the drought grade was determined
according to the meteorological drought standard of the people’s Republic of China (QX/T
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82-2019), and the spatial distribution map of the frequency of different drought levels in
peanut in Shandong Province during the whole reproductive period was obtained, and the
spatial distribution of the frequency of different levels of drought in peanut growing areas
in Shandong Province during the entire growing period was obtained (Figure 3). These
findings show that the frequency of light drought was higher mainly in the southwestern
part of Shandong Province, with a frequency of about 1.72%, with local high values in the
northwestern and some eastern areas; the frequency of light drought in the northwestern
area was the lowest, at 0. The frequency of moderate drought was higher in Dezhou, Zibo,
Dongying, and Weifang, with the highest value being 2.14%, and lower in other areas.
Severe drought was mainly concentrated in the Jiaodong Peninsula, with a frequency of
about 2.59%, and it was also higher in some areas in western Shandong and lower in other
areas; exceptional drought was widely distributed in the province, with a higher frequency
in both northern and eastern areas at about 2.55% in the northern and eastern parts of the
province, while the frequency was the lowest in the southwest.
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Figure 3. Spatial distribution of the frequency of different drought levels for peanuts in Shandong

Province during the whole reproductive period: (a) frequency of light drought; (b) frequency of
moderate drought; (c) frequency of severe drought; and (d) frequency of exceptional drought.

The frequencies of light, moderate, severe, and exceptional drought were assigned
weights of 0.0960, 0.1611, 0.2771, and 0.4658, respectively, to construct the meteorological
factor risk index and obtain the spatial distribution of peanut drought meteorological
factor risk in Shandong Province, as shown in Figure 4. The spatial distribution of the
peanut drought meteorological factor risk in Shandong Province varied significantly. Specif-
ically, the high-value areas were mainly distributed in Liaocheng, Dezhou, Binzhou, Zibo,
Weifang, Qingdao, Yantai, and Weihai; the low-value areas were mainly distributed in
Jinan, Zaozhuang, Linyi, and Rizhao.

3.1.2. Zoning of Disaster Environment Sensitivity

Slope, elevation, river network density, land use type, and soil texture were selected
as zoning indicators for the disaster-formative environmental-sensitivity analysis. Gen-
erally, the higher the elevation, the greater the chance of a drought occurring and the
greater the sensitivity of an area to drought. Areas with greater slopes experience faster
runoff and less infiltration so less moisture is stored in the slope body, making an area
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more prone to drought. Areas with a less dense river network had lower atmospheric
humidity, making them more prone and sensitive to drought. Urbanization has resulted in
arable land, grassland, and woodland being replaced by buildings and hardened ground
that blocks rainwater from infiltrating into the soil, resulting in a worsening of drought
conditions. Therefore, areas different land use types were given unique scores (Table 5).
Areas with more clayey and heavier soil texture were less permeable to water, resulting in
weaker vertical infiltration, and they were more likely to retain ground water, which is not
conducive to the occurrence of drought disasters. Different soil textures were thus scored
as in Table 6. In the calculation of the environmental sensitivity index, all factors except the
river network density were normalized by the maximum value.
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Figure 4. Spatial distribution of peanut drought meteorological factor risk in Shandong Province.

Table 5. Land use type scores.

Land Use Type Arable land Woodland Grassland Waters Construction Land Unused Land
Score 4 2 3 1 5 6

Table 6. Soil texture composite score.

Soil Texture Overall Score Soil Texture Overall Score
Clay 1 Clay loam 2
Chalky loam 5 Loam 4
Sandy clay loam 3 Sandy loam 6
Loamy sand 6 Sand 7

The spatial distribution of elevation, slope, river network density, land use type, and
soil texture in Shandong Province are shown in Figure 5. It can be seen that the elevation
of Shandong Province ranges from —169 to 1527 m, with an average elevation of about
90 m. The slope ranges from 0 to 49.1°, and the slope is below 1.5° in most areas, and the
spatial distribution of elevation and slope is roughly the same. Areas with higher elevation
and slope are concentrated in mountainous areas, such as Tai’an, Zibo, Jinan, and parts
of Linyi in central Shandong, while the peninsula areas such as Yantai are also relatively
high. The density of the river network in the northwest of Shandong Province is obviously
higher than in the rest of the province; In particular, along the Yellow River where the river
network density is high, high-value areas are mainly distributed in Dezhou, Binzhou, Jinan,
and other parts of the region. The land use types in Shandong Province are mainly arable
land and construction land, and arable land is distributed in a large area in all cities; forest
land and grassland are more concentrated in the south and east of Shandong Province;
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the distribution of water is not concentrated; construction land is mainly distributed in
the center of each city; and the area occupied by unused land is very small. Loam and
sandy clay loam are widely distributed in Shandong Province, and clay soil is scattered in
the province.
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Figure 5. Spatial distribution of elevation (a), slope (b), river network density (c), land use type (d),
and soil texture (e) in Shandong Province.

The five factors of the zoning results for elevation, slope, river network density, land
use type, and soil texture were spatially superimposed according to the weights of 0.2064,
0.2064, 0.3683, 0.1094, and 0.1094. This resulted in the zoning results for the environmental
sensitivity risk of peanut drought pregnancy in Shandong Province, as shown in Figure 6.
Figure 6 shows the spatial distribution of this type of risk in Shandong Province had
relatively little variability, with the low-value areas concentrated along the Yellow River
and the rest sporadically distributed in Dezhou, Binzhou, Zaozhuang, and Jining. The
high-risk areas were distributed in the province, but mainly in Jinan and the cities of
Weifang, Qingdao, Yantai, Weihai, Heze, and Linyi.

3.1.3. Drought Risk Zoning for Peanuts in Shandong Province

According to the calculation from (2) and using the natural discontinuity point method
to classify the areas with risks into low, medium, and high levels of risk, we obtained a
spatial distribution map of peanut drought risk in Shandong Province (Figure 7).
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Figure 6. Spatial distribution of environmental sensitivity of peanut drought pregnancy in Shan-
dong Province.
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Figure 7. Spatial distribution of peanut drought risk in Shandong Province.

As Figure 7 shows, peanut drought risk in Shandong Province has an obvious spa-
tial distribution trend, showing the spatial distribution characteristics from high in the
northwest to low in the southeast. Low-, medium-, and high-risk areas accounted for
22.6%, 50%, and 27.4% of the province’s area, with areas of 35,685.4 km?2, 79,013.8 km?, and
43,227.8 km?, respectively. The entire area of Weihai City was a high-risk area while the
cities of Qingdao, Yantai, and Liaocheng all had relatively larger areas identified as high-
risk areas; meanwhile, the cities of Dezhou, Binzhou, Zibo, and Weifang had sporadically
distributed areas with a high risk for drought that affects peanuts. The cities of Weifang
and Dongying had a relatively large area with a moderate risk. The cities of Jining, Heze,
Tai’an, Jinan, Zaozhuang, Linyi, and Rizhao were mainly exposed to low and moderate
risks. In particular, Zaozhuang was basically in a low-risk area.

3.2. Spatial Distribution of Exposure of Peanut-Drought-Affected Bodies

In this paper, the disaster-affected body is the peanut, so the peanut planting areas
were selected as the exposure index. The larger the peanut planting area, the higher the
chance of being affected by the drought, so when calculating the exposure indeXx, the factor
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was standardized by the maximum value, and the natural discontinuity point method was
used to classify the exposure of the disaster-affected body into low, medium, and high
exposure, and the spatial distribution of the exposure of the peanut-drought-affected body
in Shandong province was obtained (Figure 8).
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Figure 8. Spatial distribution of exposure of peanut-drought-bearing bodies in Shandong Province.

Figure 8 shows that the medium- and high-exposure areas for peanut drought in
Shandong account for 76.8% of the total area of the province, with a high degree of exposure
overall. Among these areas, the high-exposure areas covered 32,669.1 km?2, or 20.7%, of
the province; these were mainly distributed in Yantai and Linyi. The medium-exposure
areas were mainly distributed in Heze, Jining, Zaozhuang, Tai’an, Jinan, Weifang, Rizhao,
Weihai, and Qingdao with an area covering 88,538.9 km?, or 56.1%, of the province. The
low-exposure area covered only 36,692 km?, mainly including the cities of Liaocheng,
Dezhou, Binzhou, Zibo, and Dongying, or 25% of the province.

3.3. Spatial Distribution of Vulnerability of Peanut-Drought-Bearing Bodies

Since this paper took administrative districts as the unit for zoning, if the planting areas
of peanuts in two administrative districts were the same, but two administrative districts
were different, the percentages of peanut cultivation area were different, as obviously their
vulnerabilities were not the same. Therefore, the percentage of peanut cultivation area was
chosen as a vulnerability indicator in this paper. The larger the percentage of the peanut
cultivation area, the stronger the vulnerability. This factor was normalized to the maximum
value in the calculation of the vulnerability index. The natural discontinuity point method
was used to classify the vulnerability of disaster-affected bodies into low, medium, and
high vulnerability, and the spatial distribution of vulnerability of peanut-drought-affected
bodies in Shandong province was obtained (Figure 9).

Figure 9 shows the vulnerability of drought-affected areas where peanuts are grown
in Shandong Province has obvious spatial regional differences. The low-, medium-, and
high-vulnerability areas accounted for 58.3%, 14.9%, and 26.8% of the province’s area, with
areas of 92,059.1 km?, 23,566.5 km?, and 42,274.4 km?, respectively. Among these, the
cities of Linyi, Rizhao, Yantai, and Weihai were areas with a generally high vulnerability
to drought. Medium-vulnerability areas were mainly distributed in the cities of Tai’an,
Zaozhuang, and Qingdao. Low-vulnerability areas were widely distributed in the cities of
Heze, Jining, Liaocheng, Dezhou, Jinan, Zibo, Binzhou, Dongying, and Weifang.
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Figure 9. Spatial distribution of vulnerability of peanut-drought-bearing bodies in Shandong Province.

3.4. Spatial Distribution of Disaster Prevention and Mitigation Capability

The capacity to prevent and mitigate disasters refers to various management measures
and countermeasures designed to prevent and mitigate meteorological disasters. The
higher the economic level of a location, the stronger the capacity of humans to prevent
and mitigate disasters. The higher the per capita GDP and income of farmers as and the
higher their education level, the better ability they will have to develop policies designed to
prevent and respond to disasters when peanut drought occurs. Improved construction of
water conservation facilities is a direct manifestation of a stronger capacity to prevent and
mitigate drought disasters; to reflect this reality, the per capita GDP and income of farmers,
their level of education, and the existence of water conservation facilities were selected as
indicators of the capacity of an area to prevent and mitigate disasters. Additionally, all
factors are normalized to the maximum value in the calculation of the disaster prevention
and mitigation capacity index. These selected indicators were given weights of 0.4226,
0.2708, 0.1443, and 0.1622, respectively, by using the AHP method. The calculations were
carried out according to (2), and the natural discontinuity point method was used to classify
the disaster prevention and mitigation capacity into low, medium, and high levels to obtain
the spatial distribution of the capacity to prevent and mitigate drought disasters related to
growing peanuts in Shandong Province (Figure 10).

Figure 10 shows the spatial distribution of the capacity to prevent and mitigate drought
disasters related to peanuts in Shandong Province is highly variable. The area with a high
level of this type of capacity covered 64,581.1 km? and was mainly distributed in Jinan,
Dongying, Weifang, Qingdao, Yantai, and Weihai, or 40.9% of the province’s area. The area
with a medium level of this type of capacity was mainly distributed in Jining, Binzhou,
Zibo, and Rizhao and covered 32,211.6 km? or 20.4% of the province’s area. The area with a
low level of this type of capacity covered 61,107.3 km? or 38.7% of the province’s area; this
area was mainly in the cities of Liaocheng, Dezhou, Tai'an, Heze, Zaozhuang, and Linyi.
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Figure 10. Spatial distribution of peanut drought prevention and mitigation capacity in Shan-
dong Province.

3.5. Spatial Distribution of Comprehensive Peanut Drought Risk

The four factors of the zoning results, risk, exposure of disaster-bearing bodies, vulner-
ability of disaster-bearing bodies, and disaster prevention and mitigation capability, were
spatially superimposed according to the weights of 0.5, 0.167, 0.167, and 0.167. This allowed
us to obtain the zoning results of the comprehensive risk of peanut drought in Shandong
Province, as shown in Figure 11. Note that the comprehensive risk of peanut drought differs
substantially in different areas. The medium- and high-risk regions were located mainly in
the west and central areas, with low-risk regions in the east. The overall spatial distribution
shows a strong degree of fragmentation. Table 7 shows the areas of the high-, medium-,
and low-risk regions in each city. In Yantai, Linyi, Liaocheng, and Weihai, high-risk regions
had the largest area. In Binzhou, Dongying, and Jinan, there were no high-risk regions. In
Tai’an, Weifang, and Heze, the medium-risk regions had the largest area. The number of
areas with medium risk in Weihai was zero. In Jinan, and Dongying, low-risk regions had
the largest area. In summary, there were no low-risk regions in Qingdao or Yantai, only
medium- and high-risk areas. High-, medium-, and low-risk regions for peanut drought
amounted to 36,833.4 km?, 83,441.1 km?, and 37,625.5 km?, accounting for 40.6%, 37.0%,
and 22.4% of the total land area, respectively.

Table 7. Low-, medium-, and high-risk areas in Shandong Province by city.

Medium-Risk Area
Area (km?) Ratio (%)

Low-Risk Area
Area (km?) Ratio (%)

High-Risk Area
Area (km?) Ratio (%)

Binzhou 5098.2 53.1 4498.6 46.9 0 0
Dezhou 3104.1 29.3 6953.8 65.6 541.1 5.1
Dongying 7082.6 98.1 135.8 1.9 0.0 0.0
Heze 1178.3 9.7 10,921.3 90.1 18.3 0.2
Jinan 10,330.0 98.9 110.3 1.1 0.0 0.0
Jining 5342.9 47.6 5862.8 522 16.3 0.1
Liaocheng 18.3 0.2 3003.9 34.3 5737.3 65.5
Linyi 13.1 0.1 10,004.1 58.2 7173.1 41.7
Qingdao 1.0 0.0 11,068.9 98.9 121.7 11
Rizhao 9.1 0.2 1940.8 36.3 3392.6 63.5
Taian 147.6 19 7484.3 95.4 214.4 2.7
Weihai 0.0 0.0 0.0 0.0 5714.6 100.0
Weifang 887.0 55 15,168.6 94.4 12.2 0.1
Yantai 0.0 0.0 153 0.1 13,961.3 99.9
Zaozhuang 3345.6 73.8 1175.7 26.0 9.1 0.2
Zibo 1076.9 17.7 5005.8 823 3.0 0.0
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Figure 11. Spatial distribution of peanut drought comprehensive risk index zoning result in Shan-
dong Province.

4. Discussion

Droughts are divided into meteorological drought, climatic drought, atmospheric
drought, agricultural drought, hydrological drought, and socioeconomic drought [25],
which correspond to different monitoring methods and indicators for different drought
types. These include precipitation (P) and precipitation anomaly percentages (Pa), a stan-
dardized precipitation index (SPI), relative wetness index, integrated drought index, soil
moisture drought index, Palmer drought index, soil moisture remote sensing model, vege-
tation water supply index, and so on [26]. Among them, atmospheric drought, agricultural
drought, hydrological drought, and socioeconomic drought involve several meteorological
factors, soil property factors, and socioeconomic factors, which are easier to obtain at
smaller spatial scales but more difficult to obtain at larger spatial scales. Therefore, this
study focused on whether precipitation during the critical growing period of peanuts met
its growth demand and therefore selected meteorological drought index and considered
only precipitation. In the future, with more and more basic data at high spatial resolution,
agricultural drought will be further considered, and parameters such as field moisture
capacity and soil weight will be added to more accurately target the water deficit in peanuts
caused by soil water deficiency during the peanut reproductive period.

In this paper, the meteorological factor risk was based on the observational results
of meteorological observation sites; the frequency of drought occurrence in the entire
growth cycle of peanuts at each site was calculated. A spatial distribution map of drought
risk was obtained using Kriging interpolation in Arc-GIS. However, spatial interpolation
methods other than Kriging exist, such as inverse distance weight interpolation, the spline
function method, and trend surface analysis. This paper further compared the results of
the centralized interpolation methods, as shown in Figure 12, which shows the spatial
distribution of the frequency of drought occurrence obtained using different interpolation
methods. The comparison shows that the spatial distribution of drought occurrence fre-
quencies obtained by different interpolation methods varied in that the results of Kriging
interpolation, inverse distance weight interpolation, the spline function method, and trend
surface analysis all differed greatly. These four interpolation methods show that the areas
with a high frequency of drought affecting peanuts during the entire growing period were
located in the northwestern and eastern areas of Shandong Province. The results of existing
studies show that the areas with drought frequency from 20% to 25% in the Yellow River
and Huaihai regions include certain planting areas in the western, northwestern, northern,
and central Yellow River basin, as well as in the northern and northeastern planting areas
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in the Huaihe River basin. The planting areas in the northwestern Huaihe River basin have
a lower drought frequency of less than 15% and are not prone to drought [19]; after image
comparison, the results obtained with Kriging interpolation method were more consistent
with the results of related studies.

W2

|

(0 (d)

Figure 12. Spatial distribution of peanut drought meteorological factors risk in Shandong Province:
(a) Kriging interpolation method; (b) inverse distance weight interpolation method; (c) spline function
method; and (d) trend surface analysis method.

In the process of risk zoning, the main indicators that were selected were exposure,
zoning of the vulnerability, and the capacity of an area to prevent and mitigate disasters,
along with social and economic indicators; however, the influence of the statistical yearbook
data based on the indicators tended to not be uniform across counties, with some indicators
available in some counties and not in others. In order to achieve uniformity, there were
cases in which adjustments or replacements were mad according to specific situations,
which would more or less affect the zoning results. Nevertheless, the influence of the
statistical yearbook information caused some indicators to be limited to the city level, so
there were no indicators at the county level in some places, which would affect the spatial
resolution of the zoning. In addition, the influence of statistical yearbook data caused the
indicators selected to not be available, such as indicators based on the physical significance
of exposure, and the vulnerability and capacity of an area to prevent and mitigate disaster
because the data were not available in the statistical yearbooks, so similar indicators had
to be substituted for these. For example, the education level of peanut farmers should be
expressed by the percentage of farmers with a diploma at each level, but some statistical
yearbooks lacked relevant information, and the number of school students had to be used
to express the local level of education. This type of treatment also affected the final risk
zoning results.

In this paper, when constructing the risk index, exposure index, vulnerability index,
disaster prevention and mitigation index, and comprehensive risk index, weights needed
to be assigned to different influencing factors. Since the above indices were used as
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dependent variables in this study and no specific data were available, methods such
as multiple regression, principal components, and neural networks could not be used.
The main advantage of the hierarchical analysis method is that it is a more appropriate
method to determine the weights of the respective variables when the specific value of
the dependent variable is not known and only the independent variable is available. It
constructs a discriminant matrix by the relative importance of two factors and solves the
weight of each factor on the premise that the matrix passes the heterogeneous consistency
test. The hierarchical analysis method organically combines qualitative and quantitative
methods of evaluation, neither one-sidedly pursuing high mathematical logic, nor simply
focusing on subjective behavior and conscious judgment, so it is widely used when the
dependent variables lack quantitative data and the weights of their influence factors need
to be determined.

This paper assessed and zoned the risk of peanut-related drought in Shandong
Province in terms of risk, exposure, vulnerability, prevention, mitigation capacity, and
integrated risk assessment. Because little in the way of related research results exist, the
analysis of this paper is comprehensive, and the zoning indices used proved to be good.
The present study provides a research example for related studies, has certain reference
value, and can promote future studies. The Jiaodong Peninsula is one of the major peanut-
production areas in Shandong Province, so the actual peanut yields per unit in Yantai and
Weihai of Shandong Province were used to verify the comprehensive peanut drought risk
result obtained in this paper, as shown in Figure 13. The comprehensive peanut drought
zoning results of the selected areas show that the high-risk areas were mainly distributed
in Weihai and the northeastern areas of Yantai, and the spatial distribution of peanut yields
per unit showed that peanut yields per unit in Weihai and the northeastern areas of Yantai
were low. This shows that peanut yields per unit were lower in areas with higher integrated
risks, indicating that the results obtained in this paper have a certain degree of accuracy
and credibility.

Comprehensive analysis of peanut drought risk zoning results showed that the spatial
distribution of peanut drought hazard, exposure, vulnerability, and disaster prevention and
mitigation capacity in Shandong Province varied widely. Yantai in Shandong Province is a
high-risk zone and also the area with the largest peanut cultivation area, the highest expo-
sure zone, and highest vulnerability zone, and the comprehensive risk of Yantai determined
it as a high-value zone. While Liaocheng in western Shandong Province is a high-value
area for comprehensive risk of peanut drought, which is mainly caused by high risk and
low disaster prevention and mitigation capacity; Weihai in eastern Shandong Province is a
high-risk area with high vulnerability, which eventually forms a high-comprehensive-risk
area. Therefore, for different regions, targeted measures can be proposed. For example,
Liaocheng should focus on improving disaster prevention and mitigation capacity, while
Yantai and Weihai should focus on improving the drought resistance of peanut varieties.
The risk assessment and zoning of peanut drought in Shandong Province can not only
improve people’s understanding of peanut drought, but also provide a reference for rele-
vant departments to develop and carry out peanut drought prevention and relief policies
and decisions.
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Figure 13. Spatial distribution of peanut yields per unit in Yantai and Weihai (a); spatial distribution

of comprehensive peanut drought risk in Yantai and Weihai (b).

5. Conclusions

The proportion of areas at medium and high risk for peanut drought in Shandong
Province was 80.6%, with the cities of Weihai, Yantai, and Qingdao having a significantly
higher risk than other cities. The proportion of medium- and high-exposure areas was
76.8%, which is high overall and distributed in patches in the cities of Yantai and Linyi. The
medium- and high-vulnerability areas accounted for 41.7% of the province’s area. Except
for the cites of Weihai, Yantai, Linyi, and Rizhao, other cities had low vulnerability. Areas
with a strong, medium, and relatively strong capacity to prevent and mitigate drought
accounted for 61.3% of the province’s area. The cities of Qingdao, Yantai, and Dongying
had the highest capacity to prevent and mitigate drought disasters among the cities of the
entire region. In addition, 76.2% of the area had medium and high integrated drought risk
for peanuts in Shandong Province; the overall integrated risk was high.

Peanut drought risk, exposure, vulnerability, disaster prevention and mitigation ca-
pacity, and integrated risk in Shandong Province all showed spatial variability, with an
inconsistent distribution of these factors across cities. The cities of Liaocheng had a sig-
nificantly higher risk, poorer disaster prevention and mitigation capacity, and an overall
higher integrated risk. The cities of Yantai had a higher risk, exposure, and overall higher
integrated risk while Yantai and Weihai had a higher risk, vulnerability, and integrated risk.
Dongying City had lower exposure, vulnerability, and integrated risk.
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Abstract: As an important source of soil moisture content during spring in high-latitude areas,
snow cover affects the occurrence of spring drought and crop yield and quality. There has not been
sufficient research on the effect of winter snow cover on spring soil moisture content. This paper
focuses on the main agricultural areas of Northeast China—the Songnen Plain and the Sanjiang Plain.
Using meteorological data of both spring soil moisture content and snow cover at 19 agricultural
meteorological stations from 1983 to 2019, the effect of snow cover on spring soil moisture content in
the Sanjiang Plain and Songnen Plain is studied by variance analysis, spatial analysis, and correlation
analysis. The results show that: (1) Compared to the Sanjiang Plain, the Songnen Plain has a
significantly lower content of soil moisture at the surface (0-10 cm) and deep layer (10-20 cm,
20-30 cm) during the entire spring and every month of spring (p < 0.05), and a greater interannual
variation of soil moisture. (2) Snow cover has a significant effect on spring soil moisture in the
Songnen Plain, but not as much as one in the Sanjiang Plain. For the Songnen Plain, snow-cover
duration and the snow-cover onset date has a lasting influence on spring soil moisture until May,
which can extend to as deep as 20-30 cm. As months go by, its influence on shallow-layer soil
gradually wears off. Maximum snow depth and the snow-cover end date only influence the April
surface soil. (3) Snow cover has a strong effect on soil moisture conservation in more arid areas.
Delayed snow-cover onset date, earlier snow-cover end date, and significantly shortened snow-cover
duration all contribute to a spring drought soil condition in the Songnen Plain.

Keywords: snow cover; spring soil moisture; impact mechanism; Songnen Plain; Sanjiang Plain

1. Introduction

Snow is the most active constituent of the cryosphere [1]. In high-latitude areas, water
is released in the form of melted snow in just a few days [2] and comprises an important
source of soil moisture in spring [3,4]. At the same time, snow cover also reduces the change
in soil moisture content and temperature by hindering the energy exchange between soil
moisture, temperature, and the environment [5], thus conserving soil moisture. However,
due to global warming, the area of snow cover has dropped significantly in the northern
hemisphere in the past few decades [6,7]. Snow duration in the northern hemisphere
decreases at a rate of 5.3 d/10 a [8]. Particularly prominent changes in snow cover are
observed in spring. Snow cover area has seen a significant reduction during spring in the
northern hemisphere [9], and snow starts to melt at a significantly earlier time in Eurasia
during spring [10-13]. The decline in snow reserves and the rapid, earlier disappearance
of snow cover, which causes the spring warming and soil aridness, have been the center
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of widespread concern in the scientific community, and they have become an important
influencing factor on the degree and duration of soil aridity in spring [14,15]. Researchers
both in China and overseas have studied the impact of snow cover on soil moisture
through the one-point method, actual observations, remote sensing, and simulation. These
studies are mainly carried out from three aspects. First, some researchers have studied
the effect of snow cover on the level of spring soil moisture. For example, Shinoda [16]
studied the relationship between snowmelt and soil moisture in Central Eurasia with data
collected at meteorological stations and found that greater annual maximum snow depth
and delayed snow-cover end date correspond to higher level soil moisture, and vice versa.
Ren et al. [17] studied the effect of snowmelt on soil water and heat conditions. Their
results indicate that snowmelt significantly increases the water content of shallow-layer
soil. Niu et al. [18] conducted field experiments to observe the change in soil moisture
content as snow melting takes place, and they concluded that snowmelt infiltration acts to
a certain extent to replenish the water content of the soil. Qi [19] found through simulation
that without snow, the soil moisture level in Northeast China will drop at least 20% in the
March to May period. Second, some researchers study the effect that the duration of the
impact snowmelt has on soil moisture. For example, Douville [20] performed simulations
with the Meteor-France GCM and suggested that the effect of spring snowmelt on soil
moisture can last until summer. McNamara [21] simulated and analyzed the variational
characteristics of soil moisture using observed data and modeling, and concluded that
snowmelt, rainfall, and evaporation jointly drive the water and heat balance in soil moisture
during late spring. Zhang et al. [22] reported that snow cover has an impact on soil moisture
mainly as it melts. Third, some researchers have investigated how the depth of snowmelt
affects soil moisture content. For example, Jan [23] proposed that 200 mm of snowmelt
water had a very small effect on spring soil moisture content for soil layers below the
90-cm horizon. Zhang [10] used soil moisture data in conjunction with snow cover stage
to analyze the influence of snowmelt on the humidity of seasonal frozen soil; the research
shows that the maximum depth of snow cover that influences soil moisture content is
20 cm. Flerchinger et al. [24] conducted experiments to simulate the physical process
of groundwater recharge by infiltrated snowmelt. It can be seen that snow cover has a
certain replenishment effect on spring soil moisture. Greater snow-cover depth and longer
snow-cover duration tend to have a more significant impact on soil moisture content.
However, there is no consistent conclusion on that how much time the effect of snow
cover can last and how deep the snow cover can affect. Different researchers have drawn
different conclusions, which may be related to differences of research areas, but there is no
further study. In addition, it is no certain answer about how much spring soil moisture is
from snow cover. All these problems require further research, which are also the scientific
problems that this study wants to solve.

As the largest crop production site in China, Heilongjiang Province often suffers from
particularly serious spring droughts. This affects crop yield and quality. However, research
on the factors influencing spring soil moisture in Heilongjiang Province has mostly been
focused on temperature and precipitation [25-28]. As a region with a stable amount of
snow cover, the effect of winter snow cover on soil moisture conservation in spring has not
been sufficiently studied. In this paper, two agricultural bases of Heilongjiang Province, i.e.,
the Songnen Plain and Sanjiang Plain, which have clearly different soil moisture contents,
are selected as the study sites. Using the soil moisture and meteorological data (1983-2019)
from 19 agricultural meteorological stations, the impact of snow cover on spring soil
moisture is analyzed for both sites. The objectives of present study were to (1) determine
the variance analysis of two agricultural bases in Heilongjiang Province. (2) discuss the
influence of snow cover on spring soil moisture content (3) reveal the contribution by
snow-cover conditions on spring soil moisture. The results of this study form the scientific
basis for the early warning of spring drought, the development of more efficient irrigation
schemes, and crop yield prediction.
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2. Materials Methods
2.1. Study Sites

The two main agricultural bases of Heilongjiang Province, the Songnen Plain and
Sanjiang Plain (Figure 1), were chosen as the study sites. The Songnen Plain is in the western
part of Heilongjiang Province. With a crop production area of 5.35 million hm?, this region
makes up 52% of the total crop production area of the province. It has a high-latitude
continental monsoon climate, with high temperature and frequent rain in summer, severe
cold and little rain in winter, and a short spring and autumn. Temperature in this region
tends to have sharp fluctuations. The summer temperature is high, with high temperature
and frequent rain occurring in the same season. The Sanjiang Plain is in the northeastern
part of Heilongjiang Province, and it has a cultivated land area of 2.696 million hm?. Tt
has a temperate humid and semi-humid monsoon climate, with large annual temperature
variation and abundant rainfall. Heilongjiang Province is one of the regions in China
that has a stable amount of snow cover. The winter snow-cover period is primarily from
November to April of the next year. During this time, the entire study area is covered with
snow, with the maximum snow depth occurring in February. The snow begins to melt in
March and completely melts in mid-April. Crop cultivation typically starts in May. Main
food crops grown in this area include rice, wheat, corn, and soybean.
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Figure 1. The study region and distribution of 19 meteorological stations in Heilongjiang Province, China.

2.2. Data Sources

Soil moisture data: spring soil moisture data for each ten days (March-May) from
19 agricultural meteorological stations (Figure 1). The time period covered spans 1983-2019.
Observations were made on three soil depth layers (0-10 cm, 10-20 cm, and 20-30 cm). The
data were obtained from the Meteorological Department of Heilongjiang Province. There
are 31 agricultural meteorological stations in Heilongjiang Province with soil moisture
data available. Provincial-wide recording of soil moisture started in 1980, but for each
station, the exact commencement time is different, ranging from 1980 to 1987. To ensure
continuity of data, soil moisture data from 19 agricultural meteorological stations spanning
1983-2019 were used in this study, with 11 stations on the Songnen Plain and 8 stations on
the Sanjiang Plain. The data collected adequately reflect the climate characteristics of the
main agricultural sites of Heilongjiang Province. Soil layers at the 0-30 cm depth range
were selected for analysis, as the past study has shown that this depth interval was found
to show the greatest variability in soil effective water content, and it is the cultivated layer
of the soil. Soil moisture observations were all made in the observation field of agricultural
meteorological stations, on grassland. No irrigation activity was carried out during the
study period. The stations are located on land with different soil types, with black loam,
sandy loam, clay loam, loam, yellow sandy soil, and dark brown loam being the most
common ones. To eliminate the impact of soil type on soil moisture content, relative soil
humidity was used to characterize soil moisture content. Relative soil humidity (RSH) is
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defined as the ratio between percent soil moisture (weight basis) and field capacity, and it
is expressed as a percentage (%). Field capacity is the greatest amount of water that can
be stably held by soil, and it is a constant value. As such, relative soil humidity can be
used to characterize soil moisture and compare the degree of soil dryness and wetness
between different regions. Using this value as an index, the degree of drought is defined
on the following scale: severe drought: RSH < 40%; moderate drought: 40% < RSH < 50%;
mild drought: 50% < RSH < 60%; suitable for agriculture: 60% < RSH < 90%; waterlogged:
RSH > 90%.

Meteorological parameters: the following daily meteorological data were used: tem-
perature, total precipitation, previous autumn precipitation, average surface temperature,
average wind speed, sunshine duration, snow-cover duration, maximum snow depth,
snow onset date, and snow-cover end date. Temperature, precipitation, surface tempera-
ture, wind speed, and sunshine duration were all taken in March-May of 1983-2019. The
previous autumn precipitation is the amount of rainfall in September-November of the
previous year. Snow-cover duration is the number of days with snow cover from August
of the previous year to July of the present year. Maximum snow depth is the greatest depth
of snow recorded from August of the previous year to July of the present year.

2.3. Data Analysis
2.3.1. Variance Analysis

The soil moisture content was analyzed by one-way analysis of variance (ANOVA).
These statistical tests determine whether the differences in the soil moisture of the Songnen
Plain and Sanjiang Plain were significant. Duncan’s shortest significant range method was
used to test the differences in the soil moisture of the Songnen Plain and Sanjiang Plain and
the level of significance. First, the sum of squares for the deviations was obtained for each
set of data. The statistical independence of the data among each treatment was then tested.
The probability of the events was given when the statistic was greater than the F value,
i.e., p{>F} = p. When p < 0.01, the difference was considered extremely significant; when
0.01 < p < 0.05, the difference was considered significant; when p > 0.05, the difference was
considered not significant.

2.3.2. Spatial Assessment Method

The spatial distribution characteristics of soil moisture content of the Songnen Plain
and Sanjiang Plain were statistically calculated via the ArcGIS Grid module and Spatial
Analyst module. The Kriging interpolation method is employed to analyze the spatial dis-
tribution of soil moisture content. Kriging is a regression algorithm for spatial modeling and
prediction (interpolation) of random processes/random fields based on covariance functions.

2.3.3. Correlation Analysis

Correlation analysis is statistical method used to discover if there is a relationship
between two variables/datasets, and the relatedness and negative /positive correlation of
this relationship. The Pearson correlation method is adopted in this paper to analyze the
relationship between soil moisture content and climate indicators quantitatively. In each
pair, the Pearson’s correlation coefficient (r) is calculated as:

r= ?:1 (xi :f) (yi - y) - (1)
VI (i =2 S (- 9)

where X represents the soil moisture content, and ¥ represents meteorological parameters.

2.3.4. Percentage Contribution

To quantitatively study the long-term percentage contribution by snow cover and other
meteorological parameters on the spring soil moisture content at different depths, multiple
linear regression was performed on soil moisture content at all depths and meteorological
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parameters of significant relevance for different spring months. The following standardized
regression equation was obtained:

S = Zal X M] (2)

where §; is the soil moisture content at different depths across spring months; M; is the
meteorological parameter significantly related to S;; and 4; is the normalization constant
of M]

Using Equation (3), the percent contribution by each meteorological parameter on
spring soil moisture across different soil depths is calculated:

a;
ConM; = —— x R? x 100% €)
i=14i
where ConM, is the percent contribution by M; to spring soil moisture; a is the normalization
constant for each meteorological parameter; 7 is the number of meteorological parameters;
and R? is the goodness of fit of the normalized regression equation.

3. Results

3.1. Comparison of Spring Soil Moisture Content for the Songnen and Sanjiang Plains for
1983-2019

3.1.1. Comparison of Spring Soil Moisture Content at the 0-30 cm Soil Depth

Figure 2 shows the spatial distribution of spring soil moisture on both the Songnen
and Sanjiang Plains for 1983-2019. The Sanjiang Plain has significantly higher soil moisture
content than the Songnen Plain. Spring soil moisture content varies between 69.35% and
97.44% for the Songnen Plain during this time period, and the average value is 81.39%. The
coefficient of interannual variation is 0.09, and the coefficient of spatial variation is 0.072.
Spring soil moisture content varies between 81.44% and 110.0% for the Songnen Plain
during this time period, and the average value is 92.37%. The coefficient of interannual
variation is 0.07 and the coefficient of spatial variation is 0.101. These results show that
the Songnen Plain has a greater interannual variation of soil moisture than the Sanjiang
Plain, whereas the intra-region variation is smaller. Variance analysis shows that there is a
significant difference in spring soil moisture content between the Songnen Plain and the
Sanjiang Plain, with that of the former significantly lower than the latter (p < 0.01).

RSH( %)
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Figure 2. The spatial distribution of spring soil moisture at the 0-30 cm soil depth on both the
Songnen and Sanjiang Plains for 1983-2019. ((a): Songnen Plain, (b): Sanjiang Plain).

Figure 3 shows the spatial distribution of spring soil moisture at the 0-30 cm depth in
different month on the Songnen Plain and Sanjiang Plain for 1983-2019. On the Songnen
Plain, the ranges of soil moisture content are 64.38-92.59%, 72.63-91.01%, and 72.30-84.73%, in
March-May, respectively. On the Sanjiang Plain, the values are 89.05-129.70%, 84.96-122.54%,
and 83.17-102.20% in March-May, respectively. It is obvious that the Sanjiang Plain has

127



Sustainability 2022, 14, 1527

higher soil moisture content than the Songnen Plain. Variance analysis shows that there
is a significant difference in spring soil moisture content between the Songnen Plain and
the Sanjiang Plain in each month, with that of the former significantly lower than the latter
(p <0.01).
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Figure 3. The spatial distribution of spring soil moisture at the 0-30 cm soil depth in different month
on both the Songnen and Sanjiang Plains for 1983-2019. ((a): Songnen Plain in March, (b): Songnen
Plain in April, (¢): Songnen Plain in May, (d): Sanjiang Plain in March, (e): Sanjiang Plain in April,
(f): Sanjiang Plain in May).

3.1.2. Comparison of Spring Soil Moisture in Across Soil Layers

Figure 4 shows the spatial distribution of spring soil moisture at different depths on the
Songnen Plain and Sanjiang Plain for 1983-2019. On the Songnen Plain, the ranges of soil
moisture content are 51.90-82.30%, 70.83-91.27%, and 76.34-98.69, at 0-10 cm, 10-20 cm,
and 20-30 cm depths, respectively. On the Sanjiang Plain, the values are 82.94-118.37%,
88.21-130.59%, and 91.81-133.29% for 0-10 cm, 10-20 cm, and 20-30 cm depths, respectively.
The soil moisture content of the Songnen Plain is lower than that of the Sanjiang Plain at
each corresponding depth. Variance analysis further shows that significant differences exist
in spring soil moisture at the depth ranges of 0-10 cm, 10-20 cm, and 20-30 cm between
the Songnen Plain and the Sanjiang Plain. For the surface soil layer of the Songnen Plain
(0-10 cm), the lowest level of soil moisture is observed in Tailai, indicating a state of mild
drought, while soil conditions at other stations are suitable for farming. Conversely, 37%
of the stations in the Sanjiang Plain feature waterlogged soil. These stations are primarily
located in the Boli-Baoging—Fuyuan region, while the soil moisture level at other stations
is suitable for agriculture.
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Figure 4. The spatial distribution of spring soil moisture at different depths on the Songnen Plain
and Sanjiang Plain for 1983-2019. ((a): 0-10 cm of Songnen Plain, (b): 10-20 cmof Songnen Plain,
(c): 20-30 cm of Songnen Plain, (d): 0-10 cm of Sanjiang Plain, (e): 10-20 cm of Sanjiang Plain,
(f): 20-30 cm of Sanjiang Plain).

Figure 5 shows a comparison of spring soil moisture at different soil depths in each
month for both the Songnen Plain and the Sanjiang Plain from 1983 to 2019. Variance analy-
sis results showed that compared to the Sanjiang Plain, the Songnen Plain has significantly
lower soil moisture content across various soil depths in spring months (p < 0.05). In some
areas of the Songnen Plain, the 0-10 cm soil layer experiences drought of varying degrees
in the March-May period (RSH < 60%, indicating mild drought), while on the Sanjiang
Plain, the soil moisture content across different soil layers shows a mostly waterlogged
state for the spring months. Compared to the Sanjiang Plain, the soil moisture content of
the Songnen Plain shows greater interannual variation during spring months, with March
being the largest in variation range (nearly 15%).
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Figure 5. The spring soil moisture at different soil depths in each month for both the Songnen Plain
and the Sanjiang Plain from 1983 to 2019. Note: “A”, “B”: Variance analysis result between the
Songnen Plain and the Sanjiang Plain.
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The above spring soil moisture distribution results show that the Songnen Plain has a
significantly lower spring soil moisture content than the Sanjiang Plain during the entire
spring season, each month of the season, across the entire soil layer, and at every depth.

3.2. Factors Influencing the Spring Soil Moisture Content of the Songnen Plain and Sanjiang Plain

Numerous studies have shown that soil moisture is closely related to meteorological
factors. Taking into consideration the climate characteristics of Heilongjiang Province,
10 meteorological factors, including snow-cover conditions, were selected to perform
correlation analysis with spring soil moisture at different depths and for each month
of spring at different depths. The 10 factors are: daily average temperature (T), total
precipitation (P), surface temperature (ST), daily average wind speed (WS), daily average
sunshine duration (SD), precipitation in the previous autumn (PPA), snow-cover duration
(SCD), maximum snow depth (MSD), snow-cover end date (SED), and snow-cover onset
date (SOD).

3.2.1. Factors Affecting Spring Soil Moisture at Different Soil Depths

Table 1 shows the correlation analysis results for spring soil moisture at different
depths. Both similarities and major differences are noticed in the meteorological factors
affecting the spring soil moisture of the Songnen Plain and the Sanjiang Plain. For both
locations, previous autumn precipitation has an impact on spring soil moisture at all soil
depths. A strong positive correlation is observed in this case, i.e., a greater amount of
previous autumn precipitation leads to higher spring soil moisture content across all the
soil layers on both the Songnen Plain and the Sanjiang Plain. The only factor affecting
the spring soil moisture on the Sanjiang Plain is previous autumn precipitation, whereas
for the Songnen Plain, spring temperature and snow-cover conditions, including snow-
cover duration, snow-cover onset date, and maximum snow depth, also play an effect.
A strong negative correlation is present between spring soil moisture on the Songnen
Plain and spring temperature, i.e., higher spring temperature leads to greater soil moisture
evaporation in spring, and thus lower soil moisture content on the plain. There is a strong
positive correlation between spring soil moisture on the Songnen Plain and snow-cover
duration. Longer duration of snow cover leads to higher soil moisture content. A strong
negative correlation exists between spring soil moisture on the plain and snow-cover onset
date. An earlier onset of snow cover leads to higher soil moisture content. There is a
significant positive correlation between surface soil moisture (0-10 cm) and the maximum
snow depth on the Songnen Plain. This means that snow depth only affects surface soil
moisture. A greater maximum snow depth means a higher amount of surface soil moisture
in spring. The table also shows a significant positive correlation between soil moisture
on the Songnen Plain at the 20-30 cm depth range and wind speed. This relationship is,
however, purely numerical and has no practical significance.

Table 1. Correlation coefficient between spring soil moisture and meteorological parameters at
different layers of the Songnen Plain and the Sanjiang Plain.

Area Layer T P ST WS SD PPA SCD MSD SDD SOD
0-30 cm —0.455 ** 0.135 —0.093 0.168 0.179 0.656 ** 0.484 ** 0.28 —0.461 ** 0.176
Songnen 0-10 cm —0.420 ** 0.283 0.122 —0.013 0.057 0.628 ** 0.523 ** 0.395 * —0.386 * 0.153
Plain 10-20ecm  —0.435** 0.152 —0.05 0.119 0.149 0.660 ** 0.469 ** 0.284 —0.424 ** 0.156
20-30 cm —0.454 * —0.024 —0.309 0.352* 0.292 0.611 ** 0.414* 0.148 —0.511 ** 0.195
0-30 cm —0.204 0.139 —0.189 0.122 —0.148 0.595 ** 0.229 —0.047 0.013 —0.064
Sanjiang 0-10 cm —0.238 0.253 —0.132 0.092 —0.205 0.566 ** 0.282 0.026 —0.004 —0.100
Plain 10-20 cm —0.169 0.068 —0.200 0.146 —0.119 0.597 ** 0.178 —0.097 0.032 —0.043
20-30 cm —0.182 0.074 —0.221 0.117 —0.099 0.566 ** 0.200 —0.071 0.011 —0.041

Note: “*”, “**”: Significance at 0.05 and 0.01 levels, daily average temperature (T) (°C), total precipitation (P)
(mm), surface temperature (ST) (°C), daily average wind speed (WS) (m/s), daily average sunshine duration (SD)
(h), precipitation in the previous autumn (PPA) (mm), snow-cover duration (SCD) (d), maximum snow depth
(MSD) (cm), snow-cover end date (SED), and snow-cover onset date (SOD).
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3.2.2. Factors Affecting Soil Moisture at Different Depths for Each Month of Spring

Correlation analysis on soil moisture content at different depths for each month of
spring (Table 2) shows the following: (1) previous autumn precipitation impacts the soil
moisture at different depths for each month of spring; (2) temperature and precipitation
affect soil moisture differently for different soil depths and spring months; and (3) a
significant correlation exists between spring soil moisture on the Songnen Plain and snow-
cover conditions, whereas such a relationship is barely present on the Sanjiang Plain.
Specifically, previous autumn precipitation has a positive correlation with soil moisture at
every depth for each month of spring (except for the surface soil moisture of May), i.e., a
greater amount of precipitation in previous autumn leads to higher spring soil moisture
content for both the Songnen Plain and the Sanjiang Plain. On the Songnen Plain, the soil
moisture at each depth shows a significant negative correlation with temperature during
April and May, and a significant positive correlation with precipitation in May. On the
Sanjiang Plain, the soil moisture at each depth shows a significant positive correlation with
temperature and precipitation in May. On the Songnen Plain, snow-cover duration shows a
significant positive correlation with soil moisture at every depth for each month of spring;
snow-cover onset date has a significant correlation with soil moisture at every depth in
March. For April, this impact is demonstrated in soil layers at 10-20 cm and 20-30 cm
depths; snow-cover end date shows a significant correlation with surface soil moisture;
maximum snow depth shows a significant correlation with April soil moisture at the depth
ranges of 0-10 cm and 10-20 cm. On the Sanjiang Plain, however, a significant correlation
between surface soil moisture and snow-cover duration is observed only in March. The
correlation coefficient also shows that for the Songnen Plain, as months go by, snow-cover
duration and snow-cover onset date affect soil moisture to a lesser extent as soil depth
increases. However, these two factors continue to influence soil moisture until May. The
effect of maximum snow depth and snow cover end date is mostly observed in April.

Table 2. Correlation coefficient between spring soil moisture and meteorological parameters at
different layers in each month of the Songnen Plain and the Sanjiang Plain.

Area  Month  Layer T P ST ws SD PPA SCD MSD SDD SOD
0-10cm ~0.282 0195 0062 —0.147 0.145 0.621% 0547 % 0.230 —0390%  —0.062
March 1020 cm ~0278 —0210  —0.095  0.000 0.138 0.657** 0445 0152 —0504* 0014
20-30 cm ~0.295 ~0283 0292  0.195 0.099 0600 0372* 0.037 ~0505* 0112
Songnen 0-10cm —0.380 * 0267 0159 0089 —0.041 0507 0479*  0471* —0314 0362
po April  10-20em  —0427* 0136 0083 0179 0.022 0558*  0461*  0.363* —0343* 0267
ain 20-30em  —0.367* 0010  —0313 0410* 0.121 0567 0.441* 0.181 —0540* 0231
0-10 cm —0455*  0688™ 0137 0084  —0397* 0410 * 0.239 0318 ~0.247 0.155
May  10-20em  —0384*  0537* 0052 0017  —0.230 0532% 036" 0.303 —0.235 0216
20-30em  —0405*  0415* 0112 0109 —0.070 0530 0349+ 0271 —0364* 0252
0-10 cm ~0.192 0094  —023  0.0% 0.119 0543 0352*  —0.050 -0175  -0.138
March 1020 cm ~0.057 0108 0165 0076 0.002 0.590 ** 0.192 ~0.147 —0.020  —0.097
20-30 cm ~0.118 0158 0199 0052 ~0.069 0.576 0.200 ~0.109 0.033 ~0.046
Sanjiang 0-10cm ~0.188 —0070 0056 0.040 —0.217 0.501 0.275 0.182 0.122 0.104
P April  10-20cm ~0.092 ~0309  —0.095  0.031 0.027 0.563 0.160 0.004 0.052 0.053
ain 20-30 cm 0.044 —0316  —0077 0052 0.089 0.489 0.173 ~0.077 —0078  —0.021
0-10cm —0454*  06l6™ 0018 0034  —0427* 0.271 0.009 —0.002 0.141 ~0.159
May  10-20cm  —0513**  0503* 0167 0194  —0462*  0363* 0.095 ~0.050 0.106 ~0.020
20-30cm 0410 0497 0034 0014 0433  0385* 0.152 0.079 0.106 —0.030

Note: “*”, “**”: Significance at 0.05 and 0.01 levels, daily average temperature (T) (°C), total precipitation (P)
(mm), surface temperature (ST) (°C), daily average wind speed (WS) (m/s), daily average sunshine duration (SD)
(h), precipitation in the previous autumn (PPA) (mm), snow-cover duration (SCD) (d), maximum snow depth
(MSD) (cm), snow-cover end date (SED), and snow-cover onset date (SOD).
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3.3. Contribution by Snow-Cover Conditions on Spring Soil Moisture of the Songnen Plain

Using meteorological parameters with significant relevance to soil moisture at each
depth across all the spring months, a multiple linear regression equation is established
(p < 0.01) (Table 3) for the Songnen Plain. Following Equation (3), the percent contribution
of each meteorological factor on the spring soil moisture content of the Songnen Plain is
calculated using the normalization constant (Table 4). The conclusions that follow can
be drawn based on the percent contribution. (1) Snow-cover onset date and snow-cover
duration affect soil moisture for the entire spring. Compared to surface soil, a longer-term
effect is detected at the deeper-layer soil. For example, the effect of snow-cover onset date
on the moisture level of soil at the depth range of 20-30 cm could last until May, but the
percent contribution gradually drops from 20.99% to 18% and further drops to 8.12% in
May. The effect of snow-cover duration on the moisture level of soil at the depth ranges
of 10-20 cm and 20-30 cm also extends until May, but the percent contribution decreases
gradually. For surface-layer soil (0-10 cm), the effect of snow-cover onset date is felt until
March, and the percent contribution is 11.68%. The effect of snow-cover duration lasts until
April, but the percent contribution declines from 17.77% to 7.84%. (2) A comparison is
made between the contribution by snow-cover onset date and snow-cover duration on soil
moisture. For surface-layer soil, snow-cover duration makes a greater percent contribution
than snow-cover onset date. For example, for March surface soil, the percent contribution
by snow-cover onset date is 11.68%, and that by snow-cover duration is 17.66%. For deeper-
layer soil, the opposite trend is observed. Taking the 10-20 cm layer as an example, the
percent contributions by snow-cover onset date are 20.67% and 11.25%, respectively, for
March and April, while those by snow-cover duration are 9.02% and 3.74%, respectively.
(3) For a single month, the impact on soil moisture by snow-cover onset date gradually
increases as soil depth increases, while that by snow-cover duration gradually decreases.
Taking March as an example, the percent contributions on soil moisture by snow-cover
onset date at depth ranges of 0-10, 10-20, and 20-30 cm deep are 11.68%, 20.67%, and
20.99%, respectively, and the percent contributions by snow-cover duration are 17.77%,
9.02%, and 4.92%, respectively. Maximum snow depth and snow-cover end date contribute
greatly to the surface soil moisture during the snow melting, but the effect lasts only for
a short period. In April, they make a large contribution (up to 10.94%) to the moisture
content of just the surface soil (0-10 cm).

Table 3. Multiple linear regression model equation between spring soil moisture and meteorological
parameters at different layers of the Songnen Plain.

Month Layer Multiple Linear Regression Equation R? DF SE SE of Regression Coefficient
0-10 cm Y = 0469 xpps + 0.324%scp — 0.213xs0p 052+ 34 7g  bEA SCD SOD
March  10-20 em ¥=0.536%xpps — 0.361%x50p + 0.158xscn o604 34 712 PPA SOD - SCD
20-30 cm Y= 0,497 xpp1 — 0.388*x50p + 0.091xscp 058 34 ssy  bra SOD - SCD
0-10 cm Yy =0.370*xppa + 0.285xspp + 0.240xpsp + 0.172xscp — 0.012x7 0.491 ** 31 633 []))l(;/S\l 3[1)(51 B/IOS;? g%&% 0.8T63
April  10-20cm  y=0408"xppy — 0285y — 0248vsop +0.098xysp + 0.083scp  0.508% 31 523 oo ot 90 YD SO0
20-30em ¥ =0.377%xpps — 0369 xs0p — 0.243xr +0.175xws + 0.125xscp 0629 31 577 (I)’_ 51;9 8?3132 0_'29 ]‘_’g§3 (?.gsDa
0-10 cm ¥ =0.715%xp + 0.313%xpp — 0.204x7 + 0.178x5p 0643% 32 467 by o (I))?z 0éss 0%26
May  10-20cm Y = 0439%xp + 0427 xpps — 0.134xr +0.132¥scp 0559+ 32 457 b oA T SCD
PPA P SOD T SCD

20-30 cm y = 0.408**xppy + 0.283*xp — 0.185x50p — 0.176x7 + 0.100x50D 0.507 ** 31 472 0.024 0.035 0.097 0.667 0.039

Note: “*”, “**”: Significance at 0.05 and 0.01 levels.
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Table 4. The percent contributions on soil moisture by meteorological parameters at different layers
of the Songnen Plain (%).

March April May
Layer (cm) 0-10 10-20 20-30 0-10 10-20 20-30 0-10 10-20 20-30
PPA 25.75 30.71 26.89 16.82 18.46 18.41 14.26 21.09 17.93
SOD 11.68 20.67 20.99 - 11.25 18.00 - - 8.12
SCD 17.77 9.02 4.92 7.84 3.74 6.10 - 6.51 4.42
MSD - - - 10.94 4.43 - - - -
SDD - - - 12.97 - - - - -
T - - - 0.54 12.92 11.84 9.32 6.61 7.76
WS - - - - - 8.56 - - -
P - - - - - - 32.61 21.69 12.46
SD - — - - - - 8.11 - —

4. Discussion

(1) In the past, researchers have studied the effect of snow cover on spring soil mois-
ture. The results show that snow-cover promotes the change rate of soil moisture [29] and
has a noticeable impact on shallow-layer soil moisture [23]. Greater snow-cover depth and
longer snow-cover duration tend to have a more significant and longer-term impact on
shallow-layer soil moisture content [16]. Pan et al. [30] suggested and tested an empirical
approach to estimated root-zone soil moisture in snow-dominated regions using a soil
moisture diagnostic equation that incorporates snowfall and snowmelt processes. The
result indicated that the soil moisture diagnostic equation is capable of accurately estimat-
ing soil moisture in snow-dominated regions after the snowfall and snowmelt processes
are included in the soil moisture diagnostic equation. Qi et al. [19] have investigated
snow performs similar to an important reservoir. In March-May, the soil moisture would
decrease at least 20.1% when there is no snow, and the main cropland area suffers more.
Shinoda et al. [16] found that the yearly maximum snow depth represents a major portion of
the soil water upon snow disappearance. Potopova et al. [31] presented a detailed analysis
which showed that snow-cover characteristics can significantly influence soil water satura-
tion during the first part of the growing season, while seasonal amount of SWE can explain
up to 45% of soil moisture variability during early summer (April-May-June). Liang [32]
investigated the farmland of Northeast China and concluded that snow-cover depth has a
strong positive correlation with April and May soil moisture. This correlation is, however,
spatially differentiated, with regions showing a significant correlation concentrated mostly
in the southwestern part of Heilongjiang Province. A greater correlation was also observed
between snow-cover depth and April soil moisture by Liang et al. [30], which is in line
with the conclusion of this paper. Taking the Songnen Plain and the Sanjiang Plain in
Heilongjiang Province as examples, this study analyzes the impact of snow cover on spring
soil moisture. It is noticed that snow cover plays a greater effect on the spring soil moisture
content of part of the Songnen Plain located in northwestern Heilongjiang Province. This
effect could last until May, but it impacts April soil moisture greatly. Yet, snow cover has
less effect on the spring soil moisture content of the part of the Sanjiang Plain located in
southeastern Heilongjiang Province. Our results show that previous autumn precipitation,
snow-cover duration, and snow-cover onset date are the most important factors affecting
the soil moisture of each layer on the Songnen Plain during the spring months. Due to
the winter soil freezing, the precipitation of the previous autumn is well contained with
little loss. Snow cover also acts as an insulation layer, conserving soil moisture [5]. An
earlier onset of snow cover enhances the conservation effect on soil moisture. Soil memory
ensures that previous autumn precipitation and snow cover could have a longer-term
effect on soil moisture conservation at deeper layers, lasting until May. Snow-cover depth
and snow-cover end date mainly affect the April soil moisture content at shallow layers.
Our analysis shows that snow melting mainly takes place from the end of March to early
April. During this time, the seeping of snowmelt has a great impact on soil moisture in the
shallow layers. Greater snow-cover depth and delayed snow-cover end date lead to higher
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shallow-layer soil moisture. In May, as the temperature rises and precipitation increases,
the effect of snow cover on soil moisture gradually decreases.

(2) The effects of snow cover on soil moisture were also different in different study
areas. Douville [20] suggested that the effect of spring snowmelt on soil moisture can last
until summer. McNamara [21] found it lasts until late spring. Although Zhang et al. [22]
reported that snow cover has an impact on soil moisture mainly as it melts. Our analysis
points to clear differences in the effect played by snow-cover conditions for soil moisture of
the Songnen Plain and the Sanjiang Plain. A further comparison is made on the climatic
background of both locations. Five meteorological factors (spring temperature, precipita-
tion, surface temperature, wind speed, and sunshine duration) are selected for comparison.
The results are shown in Table 5. Variance analysis reveals significant differences in the
effect of four of these meteorological factors, except for spring temperature, i.e., compared
to the Sanjiang Plain, the Songnen Plain experiences significantly less spring precipitation,
lower surface temperature, greater wind speed, and longer sunshine duration. In particular,
the spring precipitation on the Songnen Plain is only about 70% that of the Sanjiang Plain,
which means a drier climate for the former. It can thus be concluded that snow helps
to conserve and replenish soil moisture in dry areas. For places of higher humidity, the
contribution of snow cover to soil moisture is not as significant.

Table 5. Statistical table of spring climate conditions of the Songnen Plain and the Sanjiang Plain for
1983-2019 (average value and variance analysis result).

Songnen Plain Sanjiang Plain
T 554°Ca 5.40°C2
P 69.48 mm 2 99.16 mm P
ST —288°Ca —1.86°CP
WS 3.63m/s? 3.38m/s?
SD 745.1h? 677.7hb

Note: “a”, “b”: Variance analysis result between the Songnen Plain and the Sanjiang Plain.

(3) Among all the snow-cover parameters, snow-cover duration, snow-cover onset
date, maximum snow depth, and snow-cover end date are thought to have a greater
contribution to soil moisture on the Songnen Plain. The variation characteristics of these
four snow-cover parameters have been analyzed for the Songnen Plain, and they are shown
in Figure 6. The average value of snow-cover duration is 104 d, the value of maximum snow
depth is 13.6 cm, the average snow-cover onset date is November 1, and the average snow
cover end date is April 2. On the Songnen Plain snow-cover duration showed declining
trend, and the decline rate was —0.19 d/a while the trend was not significant. The increase
rate maximum snow depth was 0.20 cm/a, which was significant (p < 0.05). Snow-cover
onset date showed increasing trend (p < 0.05), and the increase rate was 0.36 d/a. Snow-
cover end date showed declining trend (p < 0.05), and the decline rate was —0.41 d/a.
Compared with those in the 1980s, maximum snow depth on Songnen Plain increased
by 8.0 cm, snow-cover onset date was 14.4 days later, and snow-cover end date was 16.4
days earlier in the 2010s. Changes in any of these snow-cover parameters will negatively
impact the maintenance of soil moisture. Despite the significant increase in snow-cover
depth, this factor only influences the April surface soil and no noticeable influence on the
deeper layers.

(4) The soil become “wet so0il” due to the snow melting, which keeps snow signal for
a long time and interacts with the atmosphere in the long term [33]. This soil memory
can influence regional and even global climate change [34,35]. Previous studies have not
studied the spatial difference of snow-cover influence, but this study result indicates that
the impact of snow cover on soil moisture is different in different regions, which means
that the indirect impact of snow cover on climate is different when the study area changes.
In the future, more attention should be focus on the difference of snow effect in different
regions. The cause of this difference also needs further research, whether it is caused by the
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difference of soil properties or climate background. For agriculture, exploring the influence
of snow cover on spring soil moisture can improve the accuracy of soil moisture estimation
in spring and predict crop growth. Based on the estimated soil moisture, more efficient
irrigation scheme can be developed, and water resources can be rationally allocated.

y=0.192x+1073
Re=0.009

¥=0.203x+9.704
R=0.153

SCD/d

1953 1986 1989 1992 1995 1958 2001 010 20 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010 2013 2016 2019
(a) (b)
10
y=0.365x+44494 4/30
R=0210 y=0.412x+44296

R=0.147

SOD

1983 1986 1989 1992 1995 1998 2001 2004 2007 2010 2013 2016 2019 " 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010 2013 2016 2019

(0) (d)

Figure 6. Interannual variation of snow-cover parameters for Songnen Plain from 1983 to 2019.
((@): SCD, (b): MSD, (c): SOD, (d): SED).

5. Conclusions

During the period of 1983-2019, the average spring soil moisture contents for the
Songnen Plain and the Sanjiang Plain are 81.39% and 92.37%, respectively. Compared to
the Sanjiang Plain, the Songnen Plain has significant lower spring soil moisture content
and greater interannual variation of soil moisture. The Songnen Plain has a significantly
lower spring soil moisture content than the Sanjiang Plain across all soil layers for the
spring months.

Among all the meteorological factors, previous autumn precipitation is the main
influencer of the spring soil moisture content of both the Songnen Plain and Sanjiang Plain.
Snow-cover conditions have little effect on the spring soil moisture content of the Sanjiang
Plain, but affects that of the Songnen Plain greatly. For the Songnen Plain, snow-cover
duration and snow-cover onset date both correlate significantly with soil moisture across
all the spring months. The percent contribution on soil moisture by snow-cover duration
and snow-cover onset date is about 30% for March. As the months go by, the percent
contribution gradually decreases. The impact on the shallow soil layer disappears in May,
but a contribution of 12% is still felt at deeper layers (20-30 cm). The maximum snow depth
and snow-cover end date only affect April surface soil moisture for a short while, but the
percent contribution is as high as 24%.

Comparing the climate characteristics of the Songnen Plain and the Sanjiang Plain,
the former is found to have a drier climate, while the different impacts snow cover has on
soil moisture of the two areas could come from the differences in their climatic conditions.
Snow has a stronger soil moisture conservation effect for drier areas.

Analyzing the variation characteristics of snow-cover parameters in the Songnen Plain
from 1983 to 2019, it is found that the average maximum snow depth is found to increase
greatly, along with greatly delayed snow-cover onset date and much earlier snow-cover
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end date. Snow-cover duration, however, does not change significantly. In terms of the
change rate, changes in snow-cover end date and onset date happen more rapidly, and the
increase in maximum snow depth happens more slowly. Overall, changes in snow-cover
conditions intensify the decrease in spring soil moisture content on the Songnen Plain,
which may lead to reduced grain production.

This study is only limited to two agricultural bases in Heilongjiang Province and does
not conduct a detailed analysis of all the stable snow covers regions. The conclusions may
have regional limitation. It has not conducted an in-depth study on the mechanism that the
different impacts snow cover has on soil moisture of the two areas with different climatic
conditions. It will be subject to special research in the future.
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Abstract: Droughts and floods cause serious damage to agricultural production and ecosystems, and
system-based vulnerability and risk prediction are the main tools used to address droughts and floods.
This paper takes the agroecosystem as the research object, uses the vulnerability model based on
“sensitivity-exposure-adaptability” and “vulnerability-risk, source-risk receptor” drought and flood
risk models, and establishes multi-index prediction systems covering climate change, population,
agricultural technology, economy, ecology, and other factors. Using a combination of AHP and the
entropy weighting method, we predict the vulnerability and risk of droughts and floods in China’s
agroecosystem under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios from 2020 to 2050. The results
show that as the scenario changes from SSP1-2.6 to SSP5-8.5 in turn, drought and flood vulnerability
intensify, and the drought or flood vulnerability area expands to southern China. At the same time,
future drought and flood risk patterns present the characteristics of high risk in Northeast, North,
Central, and Southwest China. Therefore, major grain-producing provinces such as Heilongjiang
and Henan need to do a good job of preventing and responding to agroecosystem drought and flood
risks by strengthening regional structural and nonstructural measures.

Keywords: climate change; drought and flood; vulnerability; risk prediction; agroecosystem

1. Introduction

In the 1960s, international organizations and government agencies introduced vul-
nerability research into the scope of ecological research. With the continuous growth of
the population, the scope of the global fragile ecological environment has increased sig-
nificantly. The IPCC has officially released six scientific assessment reports on climate
change [1-5], the purpose of which is to assess the scientific understanding of climate
change, the impact of climate change, and possible countermeasures for the adaptation and
mitigation of climate change.

A large number of scholars have successively carried out research on climate change
vulnerability and risk. These studies used vegetation and ecological models and other simu-
lation studies [6-8], indicators to assess climate change vulnerability and risk [9] or focused
on adaptation measures and technological innovations for climate change risks [10-13].
Budiyono et al. [6] used vulnerability curves and flood risk assessment models; considered
local factors related to hazards, exposure and vulnerability; assessing flood risk in Jakarta
quantitatively, and they found that Jakarta is estimated to lose approximately US$321
million annually due to river flooding. Simane et al. [9] used the livelihood vulnerability
index to study the resilience and vulnerability of five different agroecosystems in Choke
Mountain communities in the Blue Nile Highlands of Ethiopia. They found that high-
altitude sloping land and low-altitude steep land exhibited relatively low adaptive capacity
and high vulnerability, but this study has drawbacks in regard to simplifying the internal
characteristics of the community and ignoring the temporal variability of vulnerability.

Senyolo et al. [12] studied innovations in climate-smart agricultural technology at
the farm level in South Africa and established a framework for classifying climate change
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risk, variability, and technological innovation. Drought-tolerant and early-maturing con-
servation agriculture, rainwater harvesting, and improved seed varieties were found to
be the most suitable technologies for climate-smart agriculture in South Africa. Durowoju
et al. [14] used monthly rainfall, temperature, soil moisture, vegetation condition index,
normalized differential water index, and the land cover index to assess agricultural and hy-
drological drought vulnerability in the Kaduna River Basin in Nigeria. They found that the
agricultural and hydrological drought and high vulnerability areas in this region account
for about 18%. Meza et al. [15] used the drought index to calculate the comprehensive haz-
ard index of irrigation and rain-fed systems and assessed the drought vulnerability and risk
of irrigation and rain-fed agricultural systems on a global scale. The analysis shows that the
drought risk of rainfed and irrigated agricultural systems presents a heterogeneous pattern
on a global scale, with higher risks in southeastern Europe and Africa. Swami et al. [16]
comprehensively assessed agriculture in Maharashtra, India, from 1966 to 2015 based on
indicators such as monsoon and temperature changes, wasteland, scattered land holdings,
human capital, physical capital, total assets, and land productivity vulnerability. The results
showed that the agricultural system in the region is fragile, and regional-level variability in
resource distribution, exposure, and sensitivity parameters was found, underscoring the
importance of regional policy development in the region.

China is a large agricultural country, and agricultural production is vulnerable to
climatic disasters, causing serious damage. Therefore, the main research object of domestic
scholars is the agricultural system [17-22]. Zhou [17] analyzed the changing laws and
trends of agricultural droughts, floods, and other meteorological disasters, such as climatic
resources, diseases, and insect pests in China under global change. He found that with
the continuous warming of the global climate and the frequent occurrence of catastrophic
events, China’s agricultural meteorological disasters also showed a significant trend of
change. Xu et al. [20] showed that the agriculture and food system, as an important area
for addressing climate change and comprehensive adaptation measures from the supply
and demand side, can effectively reduce food waste and greenhouse gas emissions from
agricultural sources and can increase the resilience of agricultural systems.

There are various approaches for assessing climate change vulnerability and risk,
each with its own advantages and disadvantages. The biological ecological simulation
method is based on theories of natural ecosystems, simulating the energy and material
exchange processes between climate, soil, water, and organisms quantitatively; however,
the establishment and application of comprehensive ecological models often requires
interdisciplinary research by several different professional fields and work teams. The
method of indicator evaluation has strong operability, but it is necessary to ensure the
scientificity and rationality of the selection of evaluation indicators. At the same time, the
index weighting methods of most studies are single and subjective. In addition, the main
object of vulnerability and risk assessment in most studies is the ecosystem, agricultural
system, economic system, or other relatively single system. Although a few studies have
taken the agroecosystem as the research object, and most assessments have included
static vulnerability and risk assessments, they have rarely considered different shared
socioeconomic pathways (SSPs).

Therefore, this paper adopts multi-index comprehensive prediction methods based on
the “sensitivity-exposure—adaptability” vulnerability framework. We established multi-
level indicator evaluation systems for the drought and flood vulnerability of agroecosys-
tems. To improve the scientificity and rationality of the evaluation indicator empowerment
and evaluation, this study uses both subjective and objective weighting methods; that is,
combining the AHP and entropy weight methods and assigning weights to the projection
indicators of drought or flood vulnerability of agroecosystems, respectively. To explore
the distribution pattern and difference in drought or flood vulnerability of agroecosystems
caused by climate change under different shared socioeconomic pathways in the future, we
use multiclimate model ensemble data under SSP1-2.6, SSP2-4.5 and SSP5-8.5, predicting
the drought or flood sensitivity, exposure, adaptability and vulnerability of agroecosystems
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under three future shared socioeconomic scenarios from 2020 to 2050. On this basis, we use
an agroecosystem drought or flood risk prediction model, considering vulnerability, risk
source, and risk receptors, to predict the drought or flood risk of China’s agroecosystem
and compare the vulnerability and risk status of agroecosystems under different shared
socioeconomic scenarios from 2020 to 2050.

2. Data and Methods

The research area of this paper includes 31 provincial administrative units in China,
except for Hong Kong, Macao and Taiwan.

2.1. Climate Data and Population Data

The data of future climate scenarios are selected from the data output by 22 global
climate models in the Sixth International Coupling Model Intercomparison Project (CMIP6)
(https:/ /esgf-node.llnl.gov/projects/cmip6)(accessed on 5 January 2022). The specific
information on the selected climate model can be found in Appendix A, Table Al. The
data include three SSP scenarios from 2020 to 2050: the monthly average temperature and
precipitation under low-forcing scenario SSP1-2.6, medium-forcing scenario SSP2-4.5, and
high-forcing scenario SSP5-8.5. We first interpolate the monthly scale data from the climate
model to meteorological stations. Then, we refer to a new statistical downscaling method
based on random weather generators in Liu and Zuo [23], correct the monthly scale data of
the climate model based on the observation data and feed them into the random weather
generator, generating climate prediction data from 699 reference weather stations in China.

The future population data includes multi-dimensional population prediction grid
data (0.5° x 0.5°) under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios from 2020 to 2050 [24].
We use GIS to add population grid data of the same provincial administrative unit to the
future provincial population data. Finally, the population forecast data of each provincial
administrative unit from 2020 to 2050 are obtained.

2.2. Socioeconomic and Agroecological Data

The agroecological and socioeconomic data used in this study are mainly from the
China Statistical Yearbook [25] by the National Bureau of Statistics of China, and the
statistical data of China’s forest resources inventory results [26]. The data categories
include agricultural disaster-affected area, agricultural fertilizer use, gross production
value of agriculture, forestry, animal husbandry and fishery, GDP per capita, total power
of agricultural machinery, total reservoir capacity, flood control area, grain sown area, per
capita water resources, agricultural ecological water consumption, and forest area.

2.3. Methods
2.3.1. Agroecosystem Vulnerability Prediction Model

To conduct scientific and accurate agroecosystem vulnerability predictions for each
provincial administrative unit in China and build drought or flood prediction indica-
tor systems for the vulnerability of agroecosystems, we use the “sensitivity—exposure—
adaptability” vulnerability model in the IPCC [3,4,27]. This paper considers vulnerability
as the degree to which a system is susceptible or unable to cope with the adverse effects
of climate change, typically characterized by high sensitivity to damage, high exposure,
and low adaptive capacity, as shown below. Among them, adaptability is defined as the
external support of assisting a province to adapt to the hazards. It does not refer to the
resilience phase of a system’s adaptation to a hazard after experiencing it. We use indicators
that reflect ecosystem service functions, economic and agricultural science and technology
development factors in human agricultural activities, and corresponding adaptation mea-
sures to define resilience. Since the higher the vulnerability is, the smaller the adaptability
is. In the data preprocessing link, this paper reversely normalizes the adaptability index
data [28,29].

Vulnerability = f (Sensitivity, Exposure, Adaptability) 1)
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2.3.2. Combination of AHP and the Entropy Weight Method to Determine the Weight

AHP is a method of subjectively determining the weight of indicators. It mainly
decomposes the evaluation objectives into different levels and indicators, and compares and
calculates the indicators at the same level to determine the weights of different evaluation
indicators [30,31].

The entropy weight method is an objective analysis method that determines the
relative weight of each index in the comprehensive evaluation by the degree of dispersion
between the evaluation index values. The main calculation steps are as follows:

First, the corresponding evaluation matrix is constructed.

A= [Ynl/ YnZ/ cee Ynm} (2)
Second, the data are normalized.

Y’] B max{Yj} — min{Yj} ®

Third, the proportion P;; of the i-th province under the j-th indicator is determined.
x,-j
Yiog i

P = i=1.2...,nj=12...m (@)

Fourth, the entropy value ¢; of the jth index is determined.
ej=—1/Innx Y  P;xIn(Py) ®)
Fifth, the jth index difference coefficient d; and weight w; are determined.
di=1-¢; (6)

w 4
YT

In this study, we use both the analytic hierarchy process and the entropy weight
method to weigh the index. The AHP has been relatively and maturely applied to the
determination of the weight of a multi-index system. The advantage of the entropy weight
method is that it considers the objective numerical characteristics of the data. The com-
bination of the two to determine the weight not only reflects the actual importance of
each vulnerability prediction index but can also reflect the objective characteristics of each
data point, making the weight of the vulnerability prediction index more scientific and
reasonable [32,33].

In determining the selection method of the combination weight, we adopt the revised
formula proposed by Wang et al. [34] by analyzing the problems existing in the commonly
used subjective and objective combination weighting formulas. That is, the original com-
mon formula: z; = vjw;/m is revised to: z; = (v; +wj)/m, and the combined weighting
calculation formula is derived from this formula, as shown below:

@)

zj = (vj +w;) /2 ®)

where 1 denotes the number of each evaluation index, m denotes the number of each
province, Yj; denotes the element in the ith row and jth column of matrix A, v; is the
weight determined by the analytic hierarchy process, w; is the weight determined by the
entropy weight method, and z; is the weight determined by the combined weighting
(Figures 1 and 2).
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Figure 1. Estimated indicator weights of drought vulnerability in China’s agroecosystem from 2020 to
2050: (a) SSP1-2.6 drought sensitivity; (b) SSP1-2.6 drought exposure; (¢) SSP1-2.6 drought adaptabil-
ity; (d) SSP2-4.5 drought sensitivity; (e) SSP2-4.5 drought exposure; (f) SSP2-4.5 drought adaptability;
(g) SSP5-8.5 drought sensitivity; (h) SSP5-8.5 drought exposure; (i) SSP5-8.5 drought adaptability.
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Figure 2. Estimated indicator weights of flood vulnerability in China’s agroecosystem from 2020
to 2050: (a) SSP1-2.6 flood sensitivity; (b) SSP1-2.6 flood exposure; (c) SSP1-2.6 flood adaptability;
(d) SSP2-4.5 flood sensitivity; (e) SSP2-4.5 flood exposure; (f) SSP2-4.5 flood adaptability; (g) SSP5-8.5
flood sensitivity; (h) SSP5-8.5 flood exposure; (i) SSP5-8.5 flood adaptability.
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2.3.3. Agroecosystem Drought and Flood Risk Prediction Model

This study is based on the research by Xu et al. [35] and IPCC [5,27] on climate change
and natural disaster risk. The drought and flood risks of agroecosystems in the context of
climate change can be expressed as a functional formula of risk source, risk receptor, and
vulnerability, and the multiplication of the three is the fundamental relationship. We use
R =f(H, V, E) to predict the drought risk or flood risk of China’s agroecosystem under the
SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios from 2020 to 2050. Among them, the risk source
refers to the frequent occurrence of drought or flood risk sources in China, and the intensity
is expressed as the probability of occurrence over the next 30 years. The risk receptor,
namely, the agroecosystem, is expressed by characterizing nine agroecosystem values,
including food production, soil formation and protection, climate and gas regulation, and
water conservation. Vulnerability represents drought vulnerability or flood vulnerability of
agroecosystems. In addition, the product of agroecosystem value and vulnerability is the
possible loss of the region and is then multiplied by the probability of drought or flooding
to obtain the risk of agroecosystem drought or flooding. The equations are as follows:

Ry=Hy xV, xE 9)

Ry =Hz xVz xE (10)
n

Hy:% (11)
_Lm

H. = =7 (12)

E=PxAxua (13)

where Ry is the drought risk of the agroecosystem in each province. Hy is the drought
probability of the agroecosystem in each province; that is, the probability of occurrence
of moderate drought, severe drought and extreme drought in a certain area from 2020 to
2050 [36]. Vy is the agroecosystem drought vulnerability in each province. E is the total
value of agroecosystem services in a certain region of China. R; is the flood risk of the
agroecosystem in each province. H, is the flood probability of the agroecosystem in each
province; that is, the probability that the daily precipitation will reach a certain condition
in a certain area from 2020 to 2050. V. is the agroecosystem flood vulnerability in each
province. }_n denotes the total number of months in which the drought in a certain area
reaches the level of moderate drought, severe drought, and extreme drought. N denotes
the total number of months in the desired year, which is 372. ) m denotes the total number
of days with daily precipitation greater than or equal to the average daily precipitation in
a certain area from 2020 to 2050. M denotes the total number of days in the desired year,
which is 11,315. P is the total value of 9 ecological services per unit area of agroecosystem
in the average state of China in the early 21st century, which is 6114.3 [37-39]. A is the
area of the agroecosystem in each region, and this study uses the area of agricultural
vegetation coverage; that is, the sown area of grain in each region. & denotes the ratio of the
estimated annual economic price of ecological services to the economic price of ecological
services in the early 21st century and uses the growth rate 8 of the consumer price index to
calculate, whichis w = (1+ ﬁ)30, The average growth rate of China’s consumer price index
is assumed to be 0.03 [40], and « is 2.4.
The flow chart is shown in Figure 3.
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3. Results and Discussion
3.1. Vulnerability Estimation

In a previous study [33], we selected sensitivity, exposure, and adaptability evalua-
tion indicators based on the “sensitivity—exposure—adaptability” vulnerability assessment
framework. We built an evaluation index system separately for China’s agroecosystem
drought or flood sensitivity, exposure, adaptability, and vulnerability from 1991 to 2019 and
conducted corresponding evaluations. The results of vulnerability assessment in the past
30 years showed that the drought-flood vulnerability of China’s agroecosystem denotes a
weakening trend from the central part to the surrounding areas of China, and the central
provinces of Henan and Hubei are at the high drought—flood vulnerability level [33]. To
ensure the accuracy of China’s agroecosystem vulnerability estimation and the continuity
of research in the next 30 years, we explore the distribution pattern and change in China’s
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agroecosystem vulnerability under different shared socioeconomic scenarios. Based on
previous assessment work, we predict the drought vulnerability and flood vulnerability of
China’s agroecosystem from 2020 to 2050.

3.1.1. Results of the Construction of the Drought Vulnerability Prediction Index System

In this study, the drought vulnerability prediction index system is constructed based
on the vulnerability model (Table 1). Meteorological indicators that combine temperature
and rainfall are used to construct drought sensitivity indicators for 2020~2050. The National
Meteorological Administration of China is used to define the probability of occurrence
of China’s high temperature yellow warning at 35 °C to characterize the state of surface
evaporation [41], and the surface water budget is characterized by precipitation to indirectly
quantify the water budget of the agroecosystem [42]. Considering that the three major
food crops in China, rice, maize, and wheat, are most vulnerable to climate change, the
growth length of the critical period of water demand is usually 15-30 days [43—46]. April
to September is considered to be the main growth period of most food crops in food
production activities [47-50]. We use the probability of the occurrence of drought for more
than 15 consecutive days and the average annual number of consecutive drought days to
scientifically describe the drought status of crops and determine the drought sensitivity of
agricultural ecology.

When constructing the drought exposure index in this paper, not only are the popu-
lation and grain sown area considered, but three different socioeconomic path factors in
the future are also included in the future population changes in different provinces. The
country’s basic agricultural policies and development planning factors are incorporated
into the changes in the sown area of food crops, and agroecological water consumption
is also included in the vulnerability analysis of agroecological drought as an assessment
indicator of the degree of human participation in arid environmental exposure.

Drought adaptability is the ability to avoid or mitigate losses due to climate change risk
by improving the level of science and technology and enhancing the ability to resist disasters
when human beings realize the task of addressing adverse and imminent environmental
changes [51]. To explore drought vulnerability in response to future extreme climate
change based on the current level of drought adaptability, this study assumes that the
drought resilience in 2020~2050 is the same as that in 1991-2019. Therefore, we select
seven indicators, including the GDP per capita, per unit grain use of agricultural chemical
fertilizers, gross production value of agriculture, forestry, animal husbandry and fishery,
forest area, per capita water resources, total power of agricultural machinery, and total
reservoir capacity.

3.1.2. Drought Vulnerability of China’s Agroecosystem from 2020 to 2050

According to the grading threshold of drought vulnerability from 1991 to 2019 delin-
eated by the standard deviation grading method [33,52], this paper divides the drought
vulnerability in the next 30 years into three grades: low, medium, and high. The results
show (Figure 4) that in the next 30 years, as the shared socioeconomic scenario increases
from SSP1-2.6 to SSP5-8.5, the drought vulnerability of China’s agroecosystem will gradu-
ally increase. In the SSP1-2.6 scenario, the only low-drought vulnerable province is Sichuan
Province, and fourteen provinces, including Heilongjiang, Liaoning, Beijing, Guizhou,
Hunan, and Guangdong, are located in drought-vulnerable areas in the agricultural ecosys-
tem. More than half of the provinces, such as Yunnan, Fujian, and Shaanxi, which are
concentrated in Northwest, Central, and East China, are located in areas with high drought
vulnerability. Under the SSP2-4.5 scenario, the vulnerability of China’s agroecosystem
is divided into two levels: medium and high drought vulnerability. Compared with the
SSP1-2.6 scenario, the range of provinces with high drought vulnerability expands to the
central and southern regions of China, and the drought vulnerability of the Henan, Hunan,
and Guangdong agroecosystems rises to the level of high drought vulnerability. In the
SSP5-8.5 scenario, the range of provinces with high drought vulnerability further extends
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to southern China compared with the SSP2-4.5 scenario, and the agroecosystem drought
vulnerability in Guizhou, Yunnan, and Guangxi rises to the high drought vulnerability
level. In summary, as the shared socioeconomic scenarios increase from SSP1-2.6 to SSP2-4.5
and SSP5-8.5, the drought vulnerability of China’s agroecosystem increases overall, and
the scope of provinces with high drought vulnerability gradually expands to the central
and southern regions.

Table 1. Prediction indicator system for agroecosystem drought vulnerability in China’s provinces
from 2020 to 2050.

Target Layer

Criterion Layer

Indicator (Unit)

Indicator Description and Calculation Method

Drought vulnerability of China’s agroecosystem

Sensitivity

Probability of high temperature
above 35 °C (%)

Positive indicator. Calculated by dividing the
cumulative number of years with the daily maximum
temperature >35 °C by the total number of years in the
desired year

Average number of consecutive
dry days per year (d)

Probability of drought for more
than 15 consecutive days per year
%

Positive indicator. According to the standardized
precipitation index (SPI) and Meteorological Drought Scale
[36]. The number of consecutive drought days refers to
the number of consecutive days when the daily SPI
reaches moderate drought, severe drought, and extreme
drought. The probability of occurrence of drought for
more than 15 consecutive days is calculated by dividing
the cumulative number of SPI reaching moderate
drought, severe drought, and extreme drought for 15
consecutive days or more in the crop growing season
from April to September in the desired year by the
number of years.

Exposure

Year-end resident population (10%)

Positive indicator. Multidimensional population forecast
data under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios
from 2020 to 2050 [24].

Grain sown area (10° hm)

Positive indicator. According to the red line policy of 1.8
billion mu of arable land in China, it is assumed that the
sown area of grain will remain unchanged after 2020.

Agroecological water
consumption (10° m3)

Positive indicator. Assuming that the per capita
agricultural ecological water consumption from 2020 to
2050 is constant, which is the same as the situation in
2004 to 2019, then the agricultural ecological water
consumption from 2020 to 2050 =}~ (2004 to 2019 per
capita agricultural ecological water consumption of each
province x annual predicted population of each
province).

Adaptability

GDP per capita (Yuan/person)

Agricultural chemical fertilizer
use per unit of grain sown area
(t/hm)

Forest area (10* hm)

Per capita water resources
(m3/person)

Gross output of agriculture,
forestry, animal husbandry, and
fishery (10° yuan)

Total power of agricultural
machinery (10* kW)

Total reservoir capacity (10° m?)

Inverse indicator. The adaptability level is assumed to
be the same as the drought adaptability status from 1991
to 2019, and the reverse normalized value of the drought

adaptability data from 1991 to 2019 is used as the
drought adaptability index.
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Figure 4. Drought vulnerability of China’s agroecosystem under the SSP1-2.6, SSP2-4.5, and SSP5-8.5
scenarios from 2020 to 2050. Note: (a) SSP1-2.6 drought vulnerability classification; (b) SSP2-4.5
drought vulnerability classification; (c) SSP5-8.5 drought vulnerability classification; (d) SSP1-2.6
drought vulnerability index; (e) SSP2-4.5 drought vulnerability index; and (f) SSP5-8.5 drought
vulnerability index.

3.1.3. Construction of the Flood Vulnerability Prediction Index System

This study builds a flood vulnerability prediction index system based on the vulnera-
bility model (Table 2). Generally, floods are characterized by a certain order of magnitude,
and long-term continuous precipitation leads to submerged or stagnant water in low-lying
areas. In this study, the probability of occurrence of heavy rain, the average annual number
of heavy rain days, and the average annual number of heavy rain days are used to con-
struct the flood sensitivity index from 2020 to 2050. Flood exposure refers to the order of
magnitude of population, production, and living, ecosystem life and environmental service
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functions, and infrastructure or economic and cultural assets that may be affected by flood
disaster losses.

Table 2. Prediction index system of agroecosystem flood vulnerability in China’s provinces from 2020

to 2050.
Target Layer C;j;;relfn Indicator (Unit) Indicator Description and Calculation Method
Positive indicator. Calculated by dividing the cumulative
Probability of rainstorm (%) number of years with daily precipitation >50 mm by the
o total number of years in the desired year *.
g A . Positive indicator. Calculated by dividing the cumulative
B verage number of rainy days . - L
E er year (d) number of days with dally.prempltaflon > 50 mm by the
é P number of years in the desired year *.
1 ber of Positive indicator. Calculated by dividing the cumulative
Average.annua number o number of days with daily precipitation at (25 mm and
days with heavy rain (d) 50 mm) by the number of years in the desired year *.
Year-end resident population Positive indicator. Multidimensional population forecast
£ a 04) data under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios from
£ 2020 to 2050 [24].
? Positive indicator. According to the red line policy of
§ v Grain sown area (10% hm) 1.8 billion mu of arable land in China, it is assumed that the
B 2 sown area of grain will remain unchanged after 2020.
& g
N 5‘ Positive indicator. Assuming that the per capita agricultural
k= ecological water consumption from 2020 to 2050 is constant,
6 A logical which is the same as the situation in 2004 to 2019, then the
kS] groecoiogica Vgate; agricultural ecological water consumption from 2020 to
iy consumption (107 m*) 2050 = Y (2004 to 2019 per capita agricultural ecological
= water consumption of each province x annual predicted
g population of each province).
% GDP per capita
.§ (Yuan/person)
= Agricultural chemical
fertilizer use per unit of grain
= sown area (t/hm)
= . 3 Inverse indicator. Adaptability is assumed to be the same as
g Waterlogging area (10° hm) the flood adaptability from 1991 to 2019, and the
_§‘ Per capita water resources reverse-standardized value of the flood adaptability data
< (m?) from 1991 to 2019 is used as the flood adaptability index

Forest area (10* hm)

Total power of agricultural
machinery (10* kW)

Total reservoir capacity (10°
m?)

Note: The data of per capita water resources are missing; therefore, the data time of per capita water resources is
selected from 2004 to 2019 *, indicating that the calculation method is based on the precipitation grade [53].

Flood adaptability refers to the active coping and adaptation capabilities brought
about by direct and indirect service functions of ecosystems, human-led agricultural science,
technology, and economic development factors. To explore flood vulnerability in response
to future extreme climate change based on the current flood adaptability level of each
province, this study assumes that the flood adaptability from 2020 to 2050 is the same as
that from 1991 to 2019. Therefore, this paper uses per capita GDP and unit grain sown
area to utilize agricultural chemical fertilizers. This is characterized by seven indicators:
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scalar volume, flood control area, forest area, per capita water resources, total power of
agricultural machinery, and total reservoir capacity.

3.1.4. Flood Vulnerability of China’s Agroecosystem from 2020 to 2050

The results of the study on the distribution pattern and changes in vulnerability to
floods in China’s agroecosystem under different SSP scenarios from 2020 to 2050 show
that (Figure 5) as the shared socioeconomic scenarios increase from SSP1-2.6 to SSP5-8.5
in turn, the degree of China’s agroecosystem flood vulnerability increases slightly, and
the number of provinces with high flood vulnerability increases. Under the SSP1-2.6
scenario, areas with high flood vulnerability include Jiangsu, Chongqing, and Guizhou.
Under the SSP2-4.5 scenario, Hebei is added to the provinces with high flood vulnerability.
Under the SSP5-8.5 scenario, Guangxi and Tibet are added to the provinces with high
flood vulnerability. In addition, under the three SSP scenarios, the areas with low flood
vulnerability include Xinjiang, Qinghai, Gansu, and Guangdong, which may be due to
the small amount of annual precipitation in the northwestern region and the insignificant
fluctuation of precipitation. As a relatively developed province in South China, Guangdong
has strong flood control and disaster-resistance agricultural infrastructure, as well as
flood-resistance and emergency-rescue capabilities. Therefore, the agroecosystem flood
vulnerability in Xinjiang, Qinghai, Gansu, and Guangdong Provinces will be lower under
the three different climate scenarios in the future. At the same time, with the increase
in greenhouse gas emissions, the fluctuation in precipitation in the southwestern region
will intensify. In addition, the terrain of the southwestern region is complex, and extreme
precipitation and flood disasters are prone to occur. Therefore, the agroecosystems in
Tibet, Chongging, Guizhou, and Guangxi in the southwestern region are more vulnerable
to floods.

It is worth noting that under the three SSP scenarios, Jiangsu has a high level of flood
vulnerability, which may be because Jiangsu is a coastal area, and climate warming causes
high precipitation intensity and frequency. The ability to cope with heavy precipitation
and floods is weak; therefore, the vulnerability of agroecosystems to floods is high. In
conclusion, as the shared socioeconomic scenarios change from SSP1-2.6 to SSP5-8.5, the
overall flood vulnerability of China’s agroecosystem increases slightly, and the range of
provinces with high flood vulnerability shows a trend of extending to the southwest.

3.2. Risk Estimation

This paper argues that the drought or flood risk of China’s agroecosystem under
climate change can be expressed as a functional equation of the combined action of risk
source, risk receptor, and vulnerability. Among them, vulnerability is the consequence
of the factors acting on risk. In the previous part of this study, we conducted drought
or flood vulnerability projections of China’s agroecosystem over the next 30 years. To
further explore the risk distribution and changing characteristics of China’s agroecosystem
in the next 30 years, the accuracy of drought risk or flood risk prediction research has been
enhanced. We also considered risk sources and risk receptors and assessed drought or flood
risk in China’s agroecosystem from 1991 to 2019, and the assessment results are shown in
Appendix A Figures Al and A2. In addition, to ensure the continuity of risk research work,
we predicted the drought or flood risk in China’s agroecosystem from 2020 to 2050.

3.2.1. Probability of Drought and Flooding in China’s Agroecosystem from 2020 to 2050

From 2020 to 2050, the probability of drought in China’s agroecosystem under the
three SSP scenarios shows that (Figure 6a) as the shared socioeconomic scenario changes
from SSP1-2.6 to SSP5-8.5 in turn, the probability of drought in each province continuously
increases. Under the SSP1-2.6 scenario, the probability of drought occurrence in each
province is 6-17%. Under the SSP2-4.5 scenario, the probability of drought occurrence in
each province is 8-19%. Under the SSP5-8.5 scenario, the probability of drought occurrence
in each province is 11-21%. Moreover, under the three different scenarios, the probability
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of the occurrence of drought in southwestern regions such as Sichuan, Chongqing, and

Yunnan is slightly higher.
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Figure 5. Flood vulnerability of China’s agroecosystem under the SSP1-2.6, SSP2-4.5, and SSP5-
8.5 scenarios from 2020 to 2050. Note: (a) SSP1-2.6 flood vulnerability classification; (b) SSP2-4.5
flood vulnerability classification; (c) SSP5-8.5 flood vulnerability classification; (d) SSP1-2.6 flood
vulnerability index; (e) SSP2-4.5 flood vulnerability index; and (f) SSP5-8.5 flood vulnerability index.

In addition, the probability of floods in the next 30 years shows (Figure 6b) that as
the scenarios change from SSP1-2.6 to SSP5-8.5 in turn, the probability of floods in each
province increases slightly. In the SSP1-2.6 and SSP2-4.5 scenarios, the probability of
flooding in each province is 22-34%. In the SSP5-8.5 scenario, the probability of flooding in
each province is 22-35%. At the same time, under the three SSP scenarios over the next
30 years, the probability of flooding in central and southern China, such as Hunan, Fujian,
Jiangxi, and Shanghai, is higher than that in northern and northwestern China.
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3.2.2. The Service Value of China’s Agroecosystem from 2020 to 2050

From 2020 to 2050, the evaluation results of agroecosystem service value in China’s
provinces show that (Figure 7) China’s 31 provincial-level administrative units, except for
Hong Kong, Macao, and Taiwan, have obvious differences in the value of agroecosystem
services. The value of agricultural ecosystem services in the main provinces, especially
Heilongjiang, Henan, and Shandong, is still relatively high. In the next 30 years, the
economic value of agricultural ecosystem services will reach approximately 211.9 billion
yuan and 157.6 billion yuan. In Beijing, Shanghai, and other regions that will still be
dominated by finance, service manufacturing, and high-tech industries in the future, the
service value of agroecosystems is relatively low, and the economic value of various services
of agroecosystems is less than 2 billion yuan. In other provinces, such as Tibet, Hainan,
Qinghai, and Anhui, in the next 30 years, the economic value of agroecosystem services will
range from 2 billion to 110 billion yuan. In conclusion, there will be significant differences
in the value of agroecosystem services in different provinces in the next 30 years, which is
related to the area of agroecosystems in various provinces in China. Heilongjiang, Henan,
and Shandong have always been important grain-producing areas in China in the past,
mainly planting rice, wheat, and other crops. At the same time, according to Several
Opinions of the Central Committee of the Communist Party of China and the State Council on
Adhering to the Prioritized Development of Agriculture and Rural Areas and Doing a Good Job in
“Three Rurals”, it clearly requires that the red line of 1.8 billion mu of arable land be strictly
adhered to and the role of agricultural and rural farmers as ballast stone should be brought
into play [54]. In the next 30 years or so, Heilongjiang, Henan, and Hebei may still serve
as China’s granaries; therefore, their agroecosystem areas will still account for a relatively
high proportion, and the economic value of agroecosystem services will be high.

3.2.3. Drought and Flood Risks in China’s Agroecosystem from 2020 to 2050

The drought-risk distribution patterns and changes in China’s agroecosystem under
different SSP scenarios from 2020 to 2050 show that (Figure 8), in the next 30 years, the
drought-risk patterns of China’s agroecosystem under the three SSP scenarios will denote
high drought risk in Northeast, North, Central, and Southwest China. As the scenario
increases from SSP1-2.6 to SSP5-8.5, in turn, the drought risk gradually increases, and the
number of provinces with high drought risk also increases and shows a trend of extending
to the south. In the SSP5-8.5 scenario, the overall drought risk in China is severe. Under
the SSP1-2.6 scenario, half of China’s provinces have a high drought-risk level, mainly
distributed in the Heilongjiang River, Huaihe River, and the Yangtze River Basins, including
Heilongjiang, Anhui, Sichuan, and other places. Under the SSP2-4.5 scenario, the high
drought-risk provinces expand further south, adding Hunan and Jiangxi provinces. Under
the SSP5-8.5 scenario, the range of provinces with high drought risk expands to the south
again, adding Guizhou and Guangxi. However, under the three SSP scenarios, the western
provinces of China, such as Tibet and Qinghai, are always low and medium drought-risk
provinces. Regarding the spatial distribution characteristics of drought risk in China, the
research of Chou et al. [55] showed that drought disasters in China have a trend of drought
extending from north to south, especially in the Yangtze River Basin, where drought and
extreme precipitation increase. This is consistent with the distribution of the high drought-
risk areas of China’s agroecosystem extending to the south as the scenario intensifies in
this study.
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Figure 6. Probability of drought and flooding in China’s agroecosystem under different SSP scenarios

from 2020 to 2050. Note: (a) Probability of drought; and (b) probability of flooding.
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Figure 7. The value of agroecosystem services in China from 2020 to 2050.

The distribution pattern and changes in China’s agroecosystem flood risk from 2020
to 2050 (Figure 9) show that the flood risk pattern of China’s agroecosystem presents
the characteristics of high flood risk in the northeastern, northern, central, eastern, and
southwestern provinces. In the next 30 years, approximately 60% of China’s provinces
are at high risk of flooding, including Heilongjiang, Henan, Shandong, Sichuan, and
other provinces. This may be related to the fact that Heilongjiang, Henan, Sichuan, and
other provinces represent the major grain crop production provinces in China. The grain
sown area occurs prior to other provinces in the country, and the service value of the
agroecosystem is relatively high. These provinces are located in the Heilongjiang, Huaihe,
and Yangtze River Basins. The water systems in the basins are rich, and they are prone
to large floods in the whole basin. Therefore, the risk of flooding in the agroecosystem is
relatively high. Under these three SSP scenarios, Tibet, Qinghai, Ningxia, Xinjiang, Gansu,
Beijing, and Shanghai exhibit moderate-to-low flood risk characteristics. Alpine landforms,
such as the Himalayas, Kunlun Mountains, Tianshan Mountains, and Qilian Mountains,
block the transport of water vapor; therefore, there is less precipitation. In addition, hilly
landforms and mountainous landforms in this area account for a large area, the climate
is warm and dry, and the runoff of mountain rivers also shows a downward trend [56].
However, Beijing and Shanghai are regions represented by financial services and high-end
industries. The service value of the agroecosystem is low; therefore, the risk of flooding
is low.
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Figure 8. Drought risk of China’s agroecosystem under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios
from 2020 to 2050. Notes: (a) SSP1-2.6 drought risk; (b) SSP2-4.5 drought risk; and (c) SSP5-8.5
drought risk.
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Figure 9. Flood risk of China’s agroecosystem under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios
from 2020 to 2050. Note: (a) SSP1-2.6 flood risk; (b) SSP2-4.5 flood risk; and (c) SSP5-8.5 flood risk.

4. Conclusions and Discussion

This study takes China’s agroecosystem as the research object and adopts a multi-
index comprehensive prediction method based on the “sensitivity—exposure—adaptability”
vulnerability prediction model. Taking into account factors such as climate change, soci-
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ety, population, agricultural science and technology, economy, ecology, etc., a multilevel
indicator evaluation system was established for the drought and flood vulnerability of
agroecosystems. Using a combination of subjective empowerment and objective empower-
ment methods, the drought and flood sensitivity, exposure, adaptability, and vulnerability
of agroecosystems under three socioeconomic scenarios, SSP1-2.6, SSP2-4.5, and SSP5-8.5, in
the next 30 years were estimated. On this basis, the drought and flood risk prediction model
of agroecosystems was used to consider vulnerability, risk sources, and risk receptors. The
drought and flood risks of the agroecosystem from 2020 to 2050 were predicted, and the
vulnerability and risk status of China’s agroecosystem under different shared social and
economic scenarios in the future were compared and analyzed. The main findings are
as follows:

M

@)

@)

In the next 30 years, as the shared socioeconomic path changes from SSP1-2.6 to SSP5-
8.5 in turn, the drought and flood vulnerability of China’s agroecosystem will increase
in general, the scope of provinces with high drought vulnerability will gradually
expand to the south, and provinces with high flood vulnerability will gradually
extend to the southwest.

From 2020 to 2050, the regional distribution pattern of drought risk showed the
characteristics of high drought risk in agroecosystems in Northeast, North, Central
China, and Southwest China. The flood risk pattern showed the characteristics of high
flood risk in the agroecosystem in Northeast, North, Central, East, and Southwest
China. As the scenarios changed from SSP1-2.6 to SSP5-8.5 in turn, the number of
provinces with high drought risk increased and showed a trend of extending to the
south. Under the SSP5-8.5 scenario, the drought risk of the agroecosystem is high,
and 60% of the provinces in China have a high risk level of flooding.

It is worth noting that under the SSP5-8.5 scenario, Heilongjiang and Jilin in Northeast
China, Henan, Hubei, Anhui, Hunan and Jiangxi in Central China, Inner Mongolia
and Hebei in North China, Shandong and Jiangsu in East China, and Sichuan, Yun-
nan, Guizhou, and Guangxi in Southwest China, the drought and flood risk in the
agroecosystem in these provinces will be higher in the next 30 years. Northeast and
Central China belong to China’s commodity grain bases. Crops have a long history
of planting, and plant growth is easily restricted by drought and floods, resulting
in a higher risk of drought and floods in the agroecosystems of Northeast and Cen-
tral China. These provinces need to strengthen the use of irrigation infrastructure;
promote water-saving irrigation technologies, such as sprinkler irrigation and drip
irrigation; attach importance to investment; use advanced agricultural machinery and
equipment; strengthen soil protection measures; and gradually develop climate-smart
agriculture. At the same time, Northeast and Central China should continue to im-
plement policies on drought, flood, and climate change adaptation; make emergency
response and preparation for drought and flood risks in terms of equipment, facili-
ties, funds, and technology; and make full use of credit, savings, markets, and other
financial instruments to ensure restoration and construction in disaster-affected areas.
The climate in North China is unstable and water resources are in short supply all year
round. The supply of water resources mainly depends on China’s South-to-North
Water Diversion Project. The precipitation and reservoir capacity in this region cannot
meet the regional agricultural and ecological water consumption, but floods caused
by heavy rains often occur. According to the data, in July 2021, a heavy rainstorm
occurred in the central and northern parts of Henan, resulting in flood disasters
that affected 14.786 million people in 150 counties in Henan Province and caused
a direct economic loss of 120.06 billion yuan, of which Zhengzhou City was 40.9
billion CNY, accounting for 34.1% of Henan province [57]. East China belongs to the
southeastern coastal area, with a low altitude, adjacent to the Bohai Sea and the Yellow
Sea, with vertical and horizontal rivers, insufficient freshwater resources, and a high
risk of drought and flooding in the agroecosystem. On the one hand, these areas
need to pay attention to the regular maintenance of dams, pipelines, and reservoirs
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for water supply and storage systems. The southwestern provinces of China have
complex topography, spanning the three steps of my country’s landforms, with many
mountains and ridges, and their altitudes are mostly 4000-5000 m. It is cold in winter
and cool in summer, and the distribution of water and heat is uneven [58], so the risk
of drought and flood in the agroecosystem is high. These areas need to advocate that
farmers can diversify crops in agricultural planting and production activities, adopt
intercropping, crop rotation, and other planting methods, select drought-resistant
and flood-resistant crops, and adjust planting dates and planting structures. Farmers
should adopt diversified livelihood strategies, actively participate in education and
training on water conservation, farming methods, drought and flood awareness, and
risk management, and apply them to daily agricultural production and life activities.

(5)  According to the natural geographical and socio-economic background and char-
acteristics of each province in China, we select indicators such as socio-economic
development, agriculture, ecological environment, human activities, and agricul-
tural science and technology. We combine statistics and forecast data from different
repositories and establish indicator systems for predicting the vulnerability of the
agroecosystem to drought and flood disasters. At the same time, this study uses the
combination of AHP and the entropy weighting method to reduce the uncertainty
of prediction and enhance the repeatability of this study. In addition, in future re-
search work, a multi-indicator evaluation system can be constructed based on the
local natural and human context, which can be applied not only to the agricultural
system, ecosystem vulnerability, and risk assessment but also to food security, the
economic system, and human health risk assessment work. Moreover, compared with
the methods used in other studies such as water scarcity and similar indicator reports,
the indicator system constructed in this study involves many fields such as society,
nature, climate change, human activities, technological level, economic development,
and so on. At the same time, based on the vulnerability and risk assessment of China’s
agroecosystem in the past 30 years, a comparative analysis of the vulnerability and
risk distribution and characteristics of SSP1-2.6, SSP2-4.5, and SSP5-8.5 in the next
30 years is carried out in order to ensure the coherence and credibility of this research.

(6) In the next step of research, we can consider adding effective actions that farmers and
agricultural production cooperatives have taken or may take and conduct adaptive
analysis based on relevant driving factors and risk patterns to more accurately for-
mulate and adjust relevant adaptation strategies and reduce ecosystem vulnerability
and risk loss. Moreover, in future research, agroecosystem types or large geomorphic
units can be used as the basic unit of classification for agroecosystem disaster risk
estimation to take into account the influencing factors of different geomorphic units
and climatic regions in China.
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Appendix A

Table Al. Brief introduction of 22 global climate models in CMIP6.

Schema Name

The Institution

Mode Resolution

(Longitude x Latitude)

ACCESS-CM2

Commonwealth Scientific and Industrial Research Organization of
Australia, Australian Research Council Centre of Excellence for Climate
System Science

1.875° x 1.25°

ACCESS-ESM1-5

Commonwealth Scientific and Industrial Research Organization
of Australia

1.875° x 1.25°

BCC-CSM2-MR China National Climate Center 3.2° x 1.6°
FGOALS-g3 Institute of Atmospheric Physics, Chinese Academy of Sciences 1.8° x 0.8°
CanESM5 Canadian Centre for Climate Modeling and Analysis 2.8125° x 2.8125°

CanESM5-CanOE

Canadian Centre for Climate Modeling and Analysis

2.8125° x 2.8125°

CNRM-CM

French National Centre for Meteorological Research, European Centre
for Computational Research and Advanced Training

1.4° x 1.4063°

CNRM-CM6-1-HR

French National Centre for Meteorological Research, European Centre
for Computational Research and Advanced Training

1.4° x 1.4063°

French National Centre for Meteorological Research, European Centre

CNRM-ESM for Computational Research and Advanced Training 147 > 1.4065°
IPSL-CM Pierre Simon Laplace Institute, France 1.4° x 1.4063°
EC-Earth3 European Centre for Medium-Range Weather Forecasts 0.7031° x 0.7031°
EC-Earth3-Veg European Centre for Medium-Range Weather Forecasts 0.7031° x 0.7031°
GFDL-ESM4 NOAA Geohydrodynamics Laboratory 2.88° x 1.8°
GISS-E2-1-G NASA Gold Institute for Space Studies 2.88° x 1.8°
INM-CM4-8 Lr;sstictil;;ec ;)Sf Numerical Mathematics of the Russian Academy 2° % 15°
INM-CM5-0 f)r;sstictiléf\ec ;)sf Numerical Mathematics of the Russian Academy 2° % 15°
MIROC6 Japan Marine Earth Science and Technology Agency 1.4063° x 1.3953°
MIROC-ES2L Japan Marine Earth Science and Technology Agency 2.8125° x 2.8125°
MRI-ESM Japan Meteorological Institute 1.125° x 1.125°

MPI-ESM1-2-HR

German Max Planck Institute for Meteorology, German
Meteorological Office

0.9375° x 0.9375°

MPI-ESM1-2-LR

Max Planck Institute for Meteorology, Alfred Wegener
Institute, Germany

1.875° x 1. 875°

UKESM1-O-LL

UK National Centre for Atmospheric Science, UK Met Office
Hadley Centre

3.2° x 1.6°

159



Sustainability 2022, 14, 10069

Drought Risk
| | Low

Medium
0 High

0 750 1,500
km

Figure A1l. Drought risk in China’s agroecosystem from 1991 to 2019.
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Figure A2. Flood risk of China’s agroecosystem from 1991 to 2019.
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Abstract: Rainfall severely impacts human mobility in urban areas and creates significant challenges
for traffic management and urban planning. There is an urgent need to understand the impact of
rainfall on residents’ travels from multiple perspectives. Taxi GPS data contains a large amount of
spatiotemporal information about human activities and mobility in urban areas. For this study, we
selected the central area of Zhuhai as the study area and used taxi data from August 2020 for the
investigation. Firstly, we divided the taxi data into four scenarios, i.e., weekdays with and without
rainfall and weekends with and without rainfall and analyzed and compared the trip characteristics
for the different scenarios. Then, using the traffic analysis zone (TAZ) as the node and taxi flow
between TAZs as edges, we constructed a network and compared the network indicators under
the different scenarios. Finally, we used the Leiden algorithm to detect communities in different
scenarios and compared the network indicators of the communities. The results showed that on days
with rainfall, taxi flow and its spatial and temporal distribution pattern changed significantly, which
affected transportation supply and demand. These findings may provide useful references for the
formulation of urban transport policies that can adapt to different weather conditions.

Keywords: human mobility; rainfall; taxi GPS data; complex network; community; Zhuhai central areas

1. Introduction

The study of human mobility can be used to capture spatiotemporal operational
patterns in urban areas and to understand the complex relationship between human
activity and the urban environment. This understanding plays an important role in various
aspects, such as floating population access, traffic forecasting, urban planning, and epidemic
modeling [1-3].

Traditional studies of human mobility usually adapt travel diary survey data, which
are expensive and labour-intensive to obtain. However, because these data often have
problems, such as a small sample size, a short time span, and slow update speed, they
cannot thoroughly reflect the spatiotemporal regulation of urban group activities over
time. Additionally, the accuracy of the data can also be questionable as a result of the
subjectivity of the survey design and the interviewees. With the development of positioning
and information and communication technologies (ICTs), humans have entered the era
of big data. The proliferation of various sensors and positioning technologies makes it
possible to collect large-scale and high-precision big data on human mobility in a long
time sequence (such as mobile phone data, bus smart card data, and taxi data). These
datasets contain abundant information about individual spatiotemporal activities, which
contributes to understanding human mobility patterns at a more precise spatiotemporal
level [4-6]. As one of the representative types of data on traffic and travel, taxi data have
become an important basis for studies of human mobility patterns [7].

As a component of the human living environment, weather conditions have significant
impacts on daily trips made by inhabitants [8-11]. Taking taxi travel as an example,
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the rainfall not only affects the demand for taxis but also leads to changes in the taxi
flow between areas. Additionally, it is likely that changes in road conditions caused
by rainfall affect driving speed, travel time, and choice of route during the taxi journey
from passenger pickup to the destination. [12,13]. In brief, people’s travel is influenced
by weather conditions, and their travel strategies usually vary significantly in different
weather conditions [14,15]. As a result, understanding how weather impacts human travel
patterns can contribute to improving the public transport service, and better satisfying the
travel demands of passengers under different weather conditions [16].

Studies of human mobility patterns that consider weather factors generally focus on
the field of transportation, usually analyzing several aspects, including traffic volume [17],
the speed and density of traffic flow [18,19], and traffic jams [20]. In addition, weather
changes make a big difference to vehicles, road conditions, driving behaviors (such as
psychology, judgement, and reflection) and the riding environment [21].

When considering complex and changeable weather factors, current research mainly
focuses on the association between different weather factors and human travel activities,
such as the demand for and security of traffic travel under various weather conditions,
including elevated temperatures, smog, and high winds [22,23]. These studies, for the
most part, investigated the impact of weather factors on people’s travel behaviors using
various modes of transportation from four perspectives: number of journeys, modes of
travel, travel speed, and travel time [24-28]. In addition, many studies regard rainfall as
having the most significant impact on people’s daily travel activities [29,30]. In particular,
normal travel time is usually delayed, and elastic demand is restricted and decreased in
rainstorm conditions, resulting in significant changes in the spatiotemporal distribution of
traffic demand [31].

However, because they lack sufficient space-dependent visual representation, current
research studies mainly focus on the overall statistical analysis and do not explore the
characteristics of the spatiotemporal distribution of people’s travel activities under different
weather conditions. Because weather conditions have several significant impacts on human
travel patterns and their spatial differences, the scarcity of study in this field needs to
be addressed, with particular regard to the significant spatial impact of two weather
conditions, the spatial change of people’s travel behavior patterns, and their interplay [32].
As a result, analysis of the impacts of changes in weather conditions on people’s travel
behavior patterns requires multiscale, comprehensive analysis and visual expression.

In addition, complex geospatial networks can combine statistics on the network index
with a spatial analysis based on statistical analysis and spatial visualization of network
characteristics [33,34]. Mobility network statistics can thus describe and evaluate how
human mobility is distributed and developed on different scales. Therefore, these complex
network-based analytical methods improve the understanding of urban mobility [35-37].

In this study, taking Zhuhai City, Guangdong Province, China as the study area,
we combined geospatial complex networks with multiscale geospatial analysis to extend
empirical research on human travel patterns by analyzing the impact of rainfall on hu-
man mobility. By dividing the taxi data into four scenarios: weekdays without rainfall,
weekdays with rainfall, weekends without rainfall, and weekends with rainfall, we aimed
to: (1) explore the feasibility of using taxi data to investigate human mobility in urban
areas under rainfall conditions; (2) compare the differences in basic travel characteristics
and explore the changes in the spatial distribution of trips in the different scenarios; and
(3) quantitatively explore the impacts of rainfall on human mobility at the whole network
and community network levels using the complex networks method.

2. Study Area and Data
2.1. Case Study: Zhuhai, China

This study was conducted in Zhuhai, China, which is in southern China and borders
Macao to the south, with a total area of approximately 1736 km?. According to the seventh
national population census conducted at the end of 2020, the residential population of
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Zhuhai was 2.44 million. Zhuhai consists of three districts (Xiangzhou, Doumen, and
Jinwan) and five economic function districts (Hengqin, Gaoxin, Baoshui, Wanshan, and
Gaolan). As the location of municipal government, Xiangzhou is the most flourishing
district. In Zhuhai, the central part of Xiangzhou district is called the Zhuhai Central Area,
and this represents the city center of Zhuhai. The central area occupies 153.15 km? and has
a population of 1.12 milion, which is 46.08 percent of the total residential population. The
spatial map of Zhuhai and its central area is shown in Figure 1. In this study, we focused
on human mobility in the central area.
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Figure 1. (a) Location of the study area in China; (b) Location of the study area in Zhuhai City;
(c) Overview of the study area-Zhuhai Central Area.

2.2. Data Source

To address our research questions and examine the association between human mobil-
ity and rainfall, three datasets from Zhuhai, China were used in this study. The first dataset
was the weather conditions dataset, which consisted of one-hour measurements of weather
conditions for two weather stations from the Meteorology Bureau of Zhuhai. Since drizzle
and showers have minor effects on human mobility, this study defined days with rainfall
as those with a total precipitation exceeding 25 mm and a duration of more than 6 h. Using
this definition, we selected ten days with rainfall in August 2020, six weekdays and four
days at weekends. In order to identify differences in human mobility on days with rainfall,
twelve days without rainfall were also selected, half of which were weekdays and the other
half at weekends. As shown in Figure 2, the daily precipitation in Zhuhai was plotted as a
bar graph, and the dates of the four scenarios are represented by different colors.
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Figure 2. Zhuhai precipitation in August 2020 and the four scenarios.
The second dataset was taxi GPS trajectories for the same twenty-two days in August
2020. For study purposes, only the car IDs, pick-up and drop-off locations, and times-
tamps were considered (Table 1). The data covered trips taken by 2,165,106 passengers in
3284 taxis. Each trip represents a purposeful human movement from origin to destination.
We used ArcGIS to calculate the TAZs (Traffic Analysis Zones) based on the pick-up and
drop-off locations. In this sense, these trips can reflect spatial connections made through
human movements and serve as edges to build spatial interaction networks.
Table 1. Processed trip record data.
. . . Trip Trip .. S
Pickup Dropoff Pickup Pickup Dropoff Dropoff : 1 Origin Destination
D Datetime  Datetime  Longitude Latitude  Longitude Latitude Dl?lt:;‘ce DE:S:_:;’ n TAZ TAZ
1 August 1 August
1001 2020 2020 113.470733  22.215318 113.4896 22.224246 2700 4.8 12 165
19:06:02 19:10:53
1 August 1 August
1002 2020 2020 113.532791  22.256026  113.541893  22.240246 2900 7.4 39 41
17:19:50 17:27:37
2 August 2 August
1003 2020 2020 113.548533  22.222178  113.506586  22.226488 6300 13.1 126 170

18:49:03

19:02:14

In order to analyze changes in human mobility using the complex network method,
taxi OD points were integrated into different TAZs. Thus, the last dataset consists of the
TAZ data for the central area, consisting of 199 vector polygons (Figure 1).

3. Methodology

This section presents the methodological framework proposed in this study. Figure 3
shows our framework, which consists of two major components. In the first component, we
first calculated basic trip characteristics for different scenarios, such as trip distance and trip
duration, and then analyzed the spatial distribution of the trip in the four scenarios using
kernel density estimation. In the second component, we constructed the entire networks
for the four scenarios, and from these we detected the mobility communities in order to
investigate the impact of rainfall on human mobility by comparing the whole network and
community network indicators.
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Figure 3. Workflow of the analytical framework.

3.1. Basic Mobility Characteristics

As each trip is simplified to a vector < (Ox, Oy, Om, Ot), (DX, Dy, D, Dt) >, the basic
trip patterns can be analyzed from the following two perspectives: Firstly, the properties
of all trips, such as distance and duration, can be computed and the associated statistical
distributions of the four scenarios are thus obtained. Trip distance Trip ;s and trip duration
Trip g, Were calculated as follows:

Tripgist = D — Om 1)

Tripgura = Dt — Ot (2)

Secondly, we used kernel density estimation to investigate the spatial distribution of
the trips in the different scenarios. Kernel density estimation is a nonparametric method for
estimating a density function from a random sample of data. The kernel density estimation
f(x) was calculated as follows:

£ = ek (S5 ®

where &1 is the bandwidth, 7 is the number of discrete points in the bandwidth range, and
K(x) is the kernel function.

3.2. Complex Network Analysis
3.2.1. Network Construction and Community Detection

To capture a holistic picture of the urban mobility network, we extracted the travel
connection relationships between each pair of origin and destination (OD) TAZs and
aggregated all the taxi trips to construct a weighted directed network. This is defined as
G = (V,E), where V = {v1,vy,- - - , v, } contains all distinct visited TAZs, where n is the
number of TAZs in the central area. The edge set E = { (I;;, w;;)|i,j € V A\i # j} contains
all existing directed trips, where J;  represents the directed flow between pairs of TAZs. w; ;
is the weight of edge /; ;, which corresponds to the taxi trip flow of TAZs.

Urban mobility subnetworks were constructed using community detection. Commu-
nity detection methods aim to identify partitions (structures composed of communities)
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which maximize the density of intragroup connections and thus find dense optimal sub-
graphs in large graphs. In other words, the community detection technique was used in
our study to detect TAZs that had a higher quantity of interactions with each other than
with the other TAZs, which means that people located in those TAZs have closer links with
each other than those located elsewhere.

The Louvain method is a popular community detection algorithm that has the advan-
tage of minimizing computation time [38]. However, it can yield arbitrarily badly connected
communities. The Leiden technique is used to identify well-connected and locally optimal
dynamic mobility communities in urban areas [39]. So, in this study, we used the Leiden
technique to identify the dynamic urban mobility communities. This algorithm mainly
consists of the following three phases: (1) local movement of nodes, (2) refinement of the
partition, and (3) aggregation of the network based on the refined partition, using the
nonrefined partition to create an initial partition for the aggregate network. For the network
construction and analysis in this study, we used the Leidenalg package and the Python
NetworkX package.

3.2.2. Statistical Indicators of Network

Degree, strength, connectivity, and clustering coefficient can be used to reflect the
topology characteristics of the network. To further investigate the discrete characteristics of
network indicator distribution, a standardized measure coefficient was used to represent
the discrete characteristics of the network. By comparing the temporal changes of these
indicator values in different weather conditions, we can obtain a better understanding of
the impact of rainfall on network mobility.

Node degree is an important quantity that reveals the spatial heterogeneity of urban
mobility [40]. Nodes with larger degrees represent more highly connected areas in the city.
In a network, the degree of a node is the number of edges directly connected to the node, as
shown in the following formula. In this study, it was the total number of passengers who
were picked up or dropped off at a TAZ.

ki = YjevN (v, v)) )

The strength of edge and node are two indicators for the analysis of the network flow.
Edge strength W represents the taxi flow in a specific direction between the two TAZs.
Node strength S; is employed to generalize the degree measure of weighted networks,
which is defined as the sum of the taxi flow on all edges associated with node i. The
calculation formula is as follows:

W=y (%)

Si = LievW (01, 7)) (6)

where r; represents one trip in this direction, and m is the total number of such trips.
The connectivity of the network ¢ is quantitatively calculated as follows:

2 XL
6= N2

@)

where N is the number of nodes and L is the number of edges. A large J indicates that the
taxi connections between TAZs were relatively denser and, thus, the network had better
overall connectivity.

Clustering coefficients include the local clustering coefficient and the average cluster-
ing coefficient. The local clustering coefficient of a node describes the likelihood that the
neighbors of this node are also connected. If a node has a high local clustering coefficient
value, this indicates local cohesiveness and a high tendency to form groups. For node i, its
local clustering coefficient is the fraction of the links that are present among the total possi-
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ble links between its neighbors. There are several generalizations of clustering coefficient
to weighted graphs, and the definition by [41] is a local node-level quantity. Its formula is

1 Wij + Wip
Ccv — Lk A oaaa: 8
i Si(ki l)Z]/h 2 aijAinajn ( )

where s; is the strength of the node 7, ;; are elements of the adjacency matrix, k; is the node
degree, w; j are the weights. The average clustering coefficient of all nodes, (Cy), can be
applied to quantify the density of the entire network. The calculation formula is as follows:

_ Tiev Cali)

(Cu) = i

)

Closeness centrality is tightly related to the notion of distance between nodes. It is
calculated as the average of the shortest path length from the node to every other node in
the network. The calculation formula is as follows:

N-1
" Ligjd(if)

where N is the number of nodes in the network, and d(i, j) is the shortest path between
nodes i and j. The larger the CC;, the higher the node’s closeness centrality, and the better
its connection with other nodes.

For any indicator x of the network, such as degree or strength, we use the standardized
measure coefficient of variation CV (x) to further investigate the discrete characteristics of
network indicator distribution. The calculation formula is as follows:

[x]
CV(x) = +— 11
0= ay
where [x] is the standard deviation and (x) is the average value. In particular, the coefficient
of variation is not affected by measurement scale and dimension.

4. Results
4.1. Basic Statistics and Spatial Distribution of Trip Data

To analyze the general distribution of trips in the different scenarios, average daily
statistics of the total number of trips, trip duration, and trip distance of each taxi were
calculated, as shown in Figure 4. In the figure, NRWD and RAWD represent weekdays
without rainfall and weekdays with rainfall, respectively, and NRWE and RAWE represent
weekends without rainfall and weekends with rainfall, respectively. These abbreviations
have the same meaning in the diagram below.

Overall, the average number of trips at weekends was slightly higher than on week-
days. As expected, in terms of weekdays, the number of trips on days with rainfall was
obviously lower than on days without rainfall. This is likely to be because people canceled
nonessential travel. By the same token, at weekends, there were also more taxi trips on days
without rainfall than on days with rainfall. From Figure 4b, we can see that trip distance
did not differ significantly between weekdays and weekends and was slightly higher on
days without rainfall than on days with rainfall. Figure 4c shows that the trip duration at
weekends was slightly reduced compared to weekdays.
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Figure 4. Average daily statistics of taxi trip in the four scenarios. (a) Trip flow; (b) Trip distance;
(c) Trip duration; (d) Hourly trip flow.

The demand for taxis changes in time and space according to the travel needs of
citizens. Figure 4d shows the hourly changes for the four scenarios; the x-axis indicates the
time horizon of 24 h and the y-axis is the number of trips. On weekdays, three peaks can be
observed: (1) a morning peak starting around 8 a.m., (2) an afternoon peak around 2 p.m.,
and (3) an evening peak starting around 8 p.m. During the first peak period, the trip flows
were not affected by the rainfall. At the second and third peak hours, the taxi flow on days
without rainfall was significantly higher than it was on days with rainfall. At weekends,
the maximum trip flow occurred in the evening peak hours, in contrast to the maximum
trip flow on weekdays which was during the morning peak hour.

To gain a better understanding of the patterns of taxi services, we further investigated
the proportions according to different trip distances and durations, as shown in Figure 5.
In general, the difference in the proportion of different distances and durations was not
obvious. In Figure 5a, we can see that almost all trips were within 15 km and that 85 per
cent of trips were within 7 km. Figure 5b shows that almost all trips took less than 35 min,
with more than 85 percent taking less than 15 min.

When comparing trip flow by distance on weekdays and weekends, the proportion
for days with rainfall was higher than for days without rainfall when the distance was less
than 3 km, and the result was reversed once the distance exceeded 3 km. Compared to
the trip duration in Figure 5a, the average weekend duration was shorter than it was on
weekdays, and the proportion that took less than ten minutes was greater on weekends.
This may be related to the fact that travel needs on the weekends are mainly leisure and
close to home.

To investigate the spatial patterns of taxi passengers in the four scenarios, we interpo-
lated the daily average pick-up location in each scenario using the kernel density estimation
method. Kernel density estimation can intuitively reflect the spatial distribution of taxi
passengers in the different scenarios, and can also represent the changes by comparison of
the density results.

As shown in Figure 6, we identified several identical hot spots, which represent the
locations with high passenger flow in the four scenarios. The highest are located near
Zhuhai Railway Station and Gongbei Port. On days with rainfall, the passenger density
decreased, and some hot spot areas were not obvious. Hot spots such as Mingzhu Railway
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Station, Mingyang Plaza, and Huafa Plaza were not affected by rainfall on weekdays or
weekends. Fuhuali Plaza was a significant hotspot on weekends without rainfall, but the
hotspot disappeared on weekends with rainfall.
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Figure 5. (a) The proportional distribution of trip distance in the four scenarios; (b) The proportional
distribution of duration in the four scenarios.
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Figure 6. Spatiotemporal comparison of kernel density interpolation results.
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4.2. Complex Network-Based Analytical Indicators
4.2.1. Indicator Analysis of Whole Network

The network was constructed according to the taxi trajectory data for weekdays with
rainfall, weekdays without rainfall, weekends with rainfall, and weekends without rainfall,
respectively. Then, the complex network indicators introduced in 2.2 were calculated, as
shown in Table 2.

Table 2. The whole network indicators in four scenarios.

Indicators Description NRWD RAWD NRWE RAWE
L The number of edges 24194 21522 24232 20491
<K> Node average degree 244.38 216.3 243.54 205.94
5 Network connectivity 1.234 1.087 1.224 1.035
<Cw> Average clustering 0.816 0.794 0.812 0.773
<S> Node average strength 939.26 891.92 948.43 928.19
CV(S) Coefficient of variation of node strength 1.39 1.43 1.41 1.43
<W> Edge average strength 3.84 412 3.89 451
CV(W) Coefficient of variation of edge strength 3.08 3.08 3.10 2.99

Compared to days without rainfall, the number of connections between TAZs (i.e., the
number of network edges) decreased significantly during the corresponding period of
days with rainfall, both on weekdays and at weekends. Additionally, the negative impact
of rain at weekends was stronger than that on weekdays. On days without rainfall, the
number of network edges (L) increased from weekdays to weekends, following the same
trend as the average daily trip flow. However, there were fewer connections between TAZs
on weekends with rainfall than on weekdays with rainfall compared to the average daily
trip flow.

The change in the number of network edges affects the average degree of nodes <K>.
<K> decreased as network edges decreased on days with rainfall. Overall, rainfall reduced
the external contact of TAZs by 11.5% on weekdays and 15.4% on weekends. Similarly,
the network connectivity () of the network showed an obvious decline on days with
rainfall. However, there was no significant change between weekdays and weekends.
Finally, analysis of the average cluster coefficient C showed that it decreased on days with
rainfall. The decrease in network edges due to rainfall reduced the connection density and
the number of closed triplets between TAZs, thereby weakening the cluster connection
between TAZs.

In terms of network strength, the node strength <S> and edge strength <W> of week-
days with and without rainfall, were lower than they were at weekends. As expected, days
with rainfall had lower node strength than days without rainfall. Conversely, edge strength
was intense on days with rainfall. That is, as the number of edges decreased on days with
rainfall, the average edge strength was higher than it was on days without rainfall.

In terms of flow distribution, the coefficients of variation of node strength CV(S) on
days with rainfall were higher than on days without rainfall both on weekdays and at
weekends. When we compared this value for weekdays and weekends, the CV(S) did
not change on weekdays with rainfall, whereas the value increased from weekdays to
weekends on days with no rain. This means that the distribution of node strength on
days with rainfall was more homogeneous compared to weekdays and weekends without
rainfall. The same coefficient of variation of edge strength CV(W) on weekdays indicated
that rainfall on weekdays had no effect on the heterogeneity of edge strength distribution,
but rainfall on weekends had a significant effect on edge strength distribution.

In order to better compare the changes of various indicators on days with rainfall, we
computed and visualized the indicators of each network node on weekdays and weekends.
In terms of direct connection indicators, the spatiotemporal distribution of the difference in
node degree K and local clustering coefficient Cw on the weekdays and weekends with
rainfall is shown in Figure 7.
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Figure 7. Visualization of the difference between K and C.

The difference in TAZ degrees between weekdays and weekends with rainfall de-
creased significantly at most of the TAZ nodes, spatially in the periphery of the study area.
This means that the number of travel connections between TAZs decreased because of
rainfall. At weekends, the node degree decreased more than on weekdays. This means that
the impact of rainfall on the number of travel connections between TAZs was minor on
weekdays. The large areas of dark blue in Figure 7b indicate that TAZs in these locations
reduced some unnecessary travel connections on weekends with rainfall. As shown in
Figure 7, the local clustering coefficient of most TAZs did not change significantly on the
weekdays. However, at weekends, the number of TAZs with lower C increased significantly,
and the TAZs with weakened C showed the characteristics of a large weakening range. For
the spatial distribution, although some TAZs with increased C could be found both on the
weekdays and weekends, they were relatively uniform and in a mixed state.

To further investigate the connection between TAZs, the differences in node strength S
and closeness centrality CC on days with and without rainfall were calculated. As shown in
Figure 8, we found that regardless of whether it was a weekday or the weekend, the TAZs
with the highest node strength decline were mainly concentrated in commercial areas such
as Huafa, Fuhua, and Yangming Plaza. Only a few TAZ nodes with slightly poor traffic
conditions increased in node strength on the days with rainfall. This means that on days
with rainfall, people with strong travel needs may prefer taxis. On days with rainfall, the
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closeness centrality of TAZs decreased overall on weekdays and weekends, which means
that rainfall weakened the indirect connectivity between TAZs.
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Figure 8. Visualization of the difference between S and CC.

4.2.2. Indicators Analysis of Community Network

Using the Leiden algorithms, we detected network communities from the dataset
of the four scenarios. As shown in Figure 9, four communities were detected on the
weekdays and five communities were detected at the weekends, and different communities
are visualized in different colors.

On weekdays, the spatial pattern of the four communities was very similar. The
red community C1, where Jida is located, had an enclave in its southern area on days
without rainfall. The blue community C2, consisting of Shishan, Xiangwan, Cuixiang, and
Meihua, extended southwards on days with rainfall. On days without rainfall, there were
a few enclaves between different communities, but on days with rainfall, the enclaves
disappeared, and the pattern of each community was more concentrated.

Compared with weekdays with rainfall, the structures of communities change more
on weekends with rainfall. The TAZ number of the yellow community clearly decreased.
By absorbing a small part of the yellow community, the red community extended to the
northwest and the blue community to the east. As for the weekdays, on weekends with
rainfall, each community was more compact, with no enclaves.
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To carry out a more detailed exploration at the community level, we calculated the
network connectivity 5, the average clustering coefficient <C>, the coefficient of variation
of node strength CV(S), and the coefficient of variation of edge strength CV(W) of these
four community networks. The results are shown in Table 3.
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Figure 9. The detected communities of the four datasets.
Table 3. The network indicators of communities of four scenarios.
Weekdays without Rainfall ‘Weekdays with Rainfall Weekends without Rainfall Weekends with Rainfall
Community c1 2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4 cs c1 2 c3 c4 cs
5 1884 1857 1211 1487 1852 1898 1042 1309 1985 1814 1182 1389 1755 1827 1906 0964 1217  1.679
<C> 0975 0961 0778 0876 0966 097 0731 0864 0995 0959 0749 0853 0945 0958 0962 0725 082 0919
CV(S) 0738 0984 122 098 0742 0998 123 1001 065 1009 143 0954 088 0753 0989 1437 0937 0904
CV(W) 121 173 1883 1682 121 1834 1741 1601 1121 1766 2362 1521 1458 1221 18 2032 1329 1512

On weekdays, with the exception of community C2, the network connectivity 5 and
average clustering coefficient <C> of all the communities decreased on days with rainfall, as
shown in Table 2. This indicates that most communities had higher clustering characteristics
on weekdays with rainfall. In addition, community C3, where Nanwan is located, exhibited
the lowest clustering characteristics on weekdays both with and without rainfall. In terms
of network flow, the CV(S) of node strength for all communities increased on days with
rainfall, whereas the CV(W) of communities C3 and C4 differed from the overall trend. As
can be seen from Figure 6, the traveler density in the C3 and C4 areas was relatively small,
so the coefficient of variation of edge strength was lower on the days with rainfall.
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At weekends, we found that the network structure was relatively unstable, and its
connectivity was more affected by rainfall. As on weekdays, only the network connectivity
5 of community C2 increased on weekends with rainfall. Additionally, it can be seen from
Table 2 that the average clustering coefficient <C> of community C2 increased slightly on
weekends with rainfall. This means that on the days with rainfall, the community network
near Zhuhai Railway Station and Gongbei Port not only maintained high connectivity but
also maintained high aggregation characteristics among the TAZs. On weekends with
rainfall, the CV(S) and CV(W) tend to vary by communities. The CV(S) and CV(W) of
communities C1 and C5 showed the same increasing trend on weekends with rainfall, but
C4 was the opposite, with both showing decreasing trends.

5. Summary and Discussion

Urban China currently faces a low-level natural disaster in terms of rainstorms and
flooding, which have a significant impact on travel. Based on taxi data in different scenar-
ios, this study analyzed the impact of rainfall on residents’ travel using basic statistical
analysis and complex network analysis, and conducted comparative analysis and detailed
discussion from time and space dimensions.

This study benefits from the advantages of taxi data in terms of the large sample size,
its accuracy, and its individual dimension. Acquiring the spatial-temporal characteristics
of inhabitants’ travel on various days with rainfall can help us to further understand the
impact of rainfall on travel in urban areas. In addition, it contributes to a deeper under-
standing of the interaction between residents’ daily travel and the complex geographic
environment of cities and provides more detailed support for decision-making, planning,
and management of urban transportation and land use systems.

However, this study also has some limitations in data and methods. For instance, it
only discusses the impact of rainfall factors on residents’ travel based on taxi trajectory data,
and the analysis is performed on a time scale of days. In the future, other travel data (such as
smart card data and mobile signaling data) could be used for further investigation, and this
could be analyzed in depth by hours (such as morning and evening peak or different hours
of the day). In addition, our research defined days with rainfall as those with continuous
rain for 6 h and an amount of rain greater than 25 mm. Only one month’s worth of data was
used for the analysis. With the accumulation of data, it would be possible to thoroughly
analyze the impact on human travel behavior at different levels of rainfall and extreme
rainfall conditions. Moreover, rainfall has a certain spatial and temporal heterogeneity.
This study did not analyze the travel impacts of changes in rainfall conditions within a day,
such as how long the delayed impact of rainfall on travel lasted and what the conditions
were for the recovery of mobility in different regions after rain. Neither did we consider
what factors directly affected the recovery time for human mobility. In future work, we
will use hourly rainfall data and analysis of travel characteristics to answer these questions.
Finally, this study only focused on the impact of rainfall on residents’ travel, and the impact
of other weather factors (such as temperature, relative humidity, and wind speed) could be
considered in the future.

6. Conclusions

In this paper, we took the central area of Zhuhai as our research area, and based on
taxi data, used basic statistics and complex network analysis methods to compare and
analyze human mobility in four scenarios. The research conclusions are as follows:

(1) Taxi GPS data are highly informative and exploitable in the field of human mobility
analysis. Using the location and times at which passengers were picked up and
dropped off in taxi trip GPS data, we can analyze activity levels across the city and
the way people move around the city;

(2) Rainfall has a reducing effect on trip flow whether on weekdays or at weekends,
as well as on trip distance and trip duration, but has no significant impact on the
appearance and duration of peak hours. From the spatial distribution of passengers,
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it is evident that rainfall has little effect on most hotspots, with the exception of a few
commercial centers;

(3) From the perspective of the whole mobility network, rainfall has a significant effect
on the network indicators. For instance, the edges of the network and the average
degree of nodes decreased significantly on days with rainfall. Node and edge strength
in some commercial areas declined significantly on the days with rainfall;

(4) There were more mobility communities were detected on weekends than on weekdays.
The number of communities on weekdays and weekends did not change because of
rainfall. For communities located in transportation hubs or port areas, the changes in
network indicators were opposite to those of other communities.
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Abstract: Climate-related risks pose a great threat to urban safety, infrastructure stability and so-
cioeconomic sustainability. China is a country that crosses diverse geomorphic and climatic regions
in the world and is frequently affected by various climate hazards. In this study, we propose a
comprehensive analysis on the spatial pattern of major climate hazards in China from 1991 to 2020,
including rainstorms, droughts, heatwaves, coldwaves, typhoons, and snowstorms, and generate an
integrated sketch map on multi-hazard zones. It is detectable that South of the Yangtze River is in
danger of heatwaves, rainstorms, and typhoons, while the North China Plain is more likely to suffer
droughts. Coldwaves, snowstorms, and freezing mainly affect Northeast China, Northwest China,
and the Qinghai-Tibet Plateau. In the view of climate governance, cities are hotspots affected by
intensified climate hazards in a warmer climate. There is an urgent need to incorporate a climate
adaptation strategy into future city construction, so as to improve social resilience and mitigate
climate impacts in rapid urbanization process. Specific adaptation measures have been developed
from the perspectives of land-use planning, prevention standard, risk assessment, and emergency
response to facilitate the understanding of climate resilience and urban sustainability.

Keywords: climate hazards; geospatial analysis; urban adaptation; risk management; China

1. Introduction

Climate action has emerged as one of the defining issues attracting great attention
from scientists, governments, and the public. A warming climate is believed to boost the
frequency of extreme events and hence aggravate climate risks in the future, endanger the
sustainable development of human society [1,2]. China, located in the southeast of the
Eurasian continent and the west of the Pacific Ocean, is one of the countries with the most
severe climate hazards in the world [3,4]. Climate hazards in China are characterized by
various kinds, high frequency, long duration, distinct seasonality, and regional differen-
tiations. In monsoon regions, the hazards of coldwaves, strong winds, and snowstorms
concentrate in winter, while the hazards of rainstorms, heatwaves, droughts, and typhoons
occur frequently in summer. Moreover, the interaction of compound hazards can lead to
the nonlinear amplification in hazard intensity, resulting in more serious socioeconomic
impacts [5,6]. Since the 21st century, climate risks in China remain high due to the elevated
exposure caused by rapid economic growth and urbanization process, and climate-related
economic losses have been climbing in recent years (Figure 1).

Since the impacts of climate hazards are experienced locally, it is understandable
that certain cities located in hazard zones have the needs to occupy a crucial position
in adaptation agenda [7-10]. Allied to the urbanization trend in China, the pressing
nature of adaption in cities becomes apparent. Cities create unique microclimates, complex
topographies, and plentiful emission of heat and mass of buildings and allied with their
heavy reliance on interconnected networked infrastructure, high population densities, and
multifarious population constitutions, increase exposure to climate hazards, while poor
governance structures or inadequate urban design exacerbate climate risks [11-13].
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Figure 1. Direct economic losses caused by meteorological disasters in China from 2001 to 2020.

At present, actions on climate adaptation are mainly concentrated in national and
supranational levels, while the potential for climate adaptation in urban level remains
grossly underestimated [14]. Scholars points out that urban planning, as an important pol-
icy tool to optimize urban land-use and arrange public infrastructures, should become one
of the main ways for implementing climate adaptation strategies [15-17]. However, due to
some practical problems such as the inadequate understanding of climate hazards and the
lack of technical standards, traditional urban planning in China has not played the leading
role in climate actions. A literature review shows that many attempts have been made to
focus on the impacts of climate hazards on urban areas [18-20] and incorporate climate
adaptation an important part of urban planning and city expansion management [21-24].

Given that previous studies on climate hazards in China are scattered in a certain
hazard type or a certain region, this study first conducts a comprehensive analysis on the
spatial patterns of multiple climate hazards in China, then clarifies the difficulties and
challenges that urban development faces in mitigating climate impacts. On this basis,
specific suggestions on building climate-resilient cities in China are proposed from the
perspectives of land-use planning, prevention standards, risk assessment, and emergency
response in order to facilitate collaborations between economic, social, and climate policies
and provide scientific reference for policy makers dealing with climate risks.

2. Data and Method

Daily observations of 2419 national meteorological stations in China from 1 January
1991 to 31 December 2020 are adopted in the research. The datasets are compiled and
issued by the Meteorological Information Center (MIC) of the China Meteorological Ad-
ministration (CMA), and it can be accessed from http://data.cma.cn (28 October 2021).
The preliminary quality control has been conducted by the MIC, through checking spatial
consistency, temporal consistency, and internal consistency and adjusting the suspicious
records [25]. The variables used include daily precipitation, daily mean temperature, daily
maximum/minimum temperature, and weather phenomena. There are some missing
records in the dataset. To obtain reliable climatic statistics, two steps are processed. First,
the annual mean value is taken as a missing one when the total missing records exceed 20%
of a year. Second, the station with the consecutive annual mean values less than 30 years is
removed from the calculation.

The daily records of weather phenomena are used to identify the snowfall day.

The CMA TC database is also adopted in the analysis [26]. The TC best-tracks are
applied to derive major typhoon tracks affecting China.

The hazard data from 2001 to 2020 are collected from “Annuals of Meteorological
disaster (2020)”, including direct economic losses, affected population, mortality, affected
croplands, crop failure areas, and collapsed buildings.

In this analysis, a hot day is defined when the daily maximum temperature reaches
35 °C and above. A rainstorm is identified with the daily precipitation reaches 50 mm and
above. The scientific basis of these definitions are from Warning Signals for Meteorological
Hazard issued by the CMA. Drought is defined based on the meteorological drought
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composite index (MCI) [27,28], which is adopted to monitor drought operationally by the
CMA. The MClI is calculated by precipitation and mean temperature in each station. A
snowstorm day is identified when the daily snowfall reaches 10 mm and above.

3. Spatial Pattern of Multiple Climate Hazards in China

Figure 2 shows the spatial pattern of the major climate hazards in China from 1991 to
2020. It is detectable that Southeastern China and Northwestern China are the two hazard
zones that are frequently affected by heatwaves (Figure 2a). The number of annual hot
days reaches 20 to 30 in the south of the Yangtze River, Hainan, and Chonggqing. They
are even greater in southern Xinjiang, Junggar Basin, and Western Inner Mongolia, being
generally 30 to 50 hot days on annual average. Turpan Basin is the region with the highest
temperature in China, with more than 60 hot days on annual average. In addition, a
historical extreme temperature of 49.0 °C has been recorded in Turpan city, Xinjiang. The
heatwaves in China usually occur from May to September. It has negative effects on human
health and agriculture production, while long-lasting heatwaves can also strain energy
supplies by leading to a surge in demand for water and electricity. Due to accelerated
climate warming, the areas affected by heatwaves in mainland China expanded from 468
km? in the 1990s to 515 km? in the 2010s (Figure 3a), which indicates that the heatwave risk
will continue to aggravate in the future.
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Figure 2. Climatological spatial pattern of (a) hot days, (b) rainstorm days, (c) drought days, and
(d) snowfall days in China from 1991 to 2020.
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Figure 3. Areas affected by (a) heatwaves, (b) rainstorms, (c) droughts, and (d) snowstorms in China
from 1991 to 2020.

China’s rainfall is greatly influenced by the East Asian monsoon. With the northward
movement of the East Asian monsoon, the monsoon rain belt experiences three notable
stationary stages and forms the pre-summer rainy season in South China, the Meiyu in the
Yangtze River, and the rainy season in North China [29-35]. Accompanying the southward
retreat of the East Asian monsoon, a flood season caused by tropical cyclones affects South
China again [36,37]. Rainstorms occur frequently in the rainy seasons and tend to result
in floods. As shown in Figure 2b, the annual number of days with rainstorm decreases
from southeast to northwest in China. There are generally four to eight rainstorm days in
the south of the Yangtze River and more than eight days in coastal South China, but it is
almost rare in Western China. Compared with the 2010s and 1990s, the areas affected by
rainstorms in mainland China expanded from 361 km? to 382 km? (Figure 3b), indicating
the intensification of rainstorm hazard in nearly 30 years.

Meteorological droughts refer to surface water shortage due to the imbalance between
evapotranspiration and precipitation in a certain period, which has serious impacts on crop
growth and even causes crises of water resources. Seasonality and regionality features the
meteorological droughts in China. It mainly occurs in late spring, summer, and autumn in
North China, in autumn and winter in South China, and in winter and spring in Southwest
China. Generally, meteorological droughts mostly occur in North China, Huang-Huai Plain,
Eastern Inner Mongolia, and Southwestern China, with an annual number of drought days
being more than 60 days (Figure 2c). From 1991 to 2020, the areas affected by droughts
in China shows a weak upward trend, shrinking from 218 km? in the 1990s to 165 km? in
the 2010s (Figure 3c). However, an increase in drought occurrence are observed in North
China, eastern Northwest China, and eastern Southwest China (Figure not shown).

The winter climate in China is dominated by the East Asian winter monsoon [38-41].
The strong East Asian winter monsoon leads the active cold air generating in the polar
area to China and results in chilly weather, strong winds, snowstorms, and ice freezing, etc.
The cold air is usually active in late autumn, winter, and early spring, which could lead to
damages in houses and infrastructures and can adversely affect agriculture, transportation,
livestock, and fishery production. The cold air breaks out southward along four main
paths, including the west path, the middle path, the west path, and the concurrent east-
west path [42]. The active cold air tends to cause snowfall. Heavy snowfall, especially
snowstorms, has a great impact on agriculture, animal husbandry, communication, energy
supply, and traffic. Figure 2d shows the climatic distribution of annual snowy days.
Snowfall mostly occurs in the northern Xinjiang autonomous region, Northeast China,
the Tibetan Plateau, and Inner Mongolia, with the annual snowfall days reaching 30 days
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and above. The annual snowfall days appear the most in Southern Qinghai and Eastern
Inner Mongolia, being over 60 days, and these areas are also prone to snowstorm [43,44].
Compared with the 2010s and 1990s, the areas affected by snowstorms in China shrank
from 319 km? to 253 km? but varies widely on an inter-annual scale (Figure 3d).

China is heavily affected by the tropical cyclones generated in the northwest Pacific
Ocean and the South China Sea. Typhoons not only bring wild winds and huge waves but
are also accompanied by heavy rainfall and storm surges, causing serious socioeconomic
impacts. Typhoons occur from April to December, especially from July to September,
and are observed with three main moving paths to affect China: the northwest path, the
westward path, and the offshore turning path. Recent decades have witnessed an average
of 26 typhoons generated in the northwest Pacific Ocean every year, and about 7 of them
land in China. The average length of typhoon season in China is 104 days and shows a
shortening trend in recent years, but the intensity and duration of landing typhoons are
increasing.

The disastrous impacts of climate hazards in China during 2001-2020 are estimated
from six aspects, including affected population, mortality, affected cropland, crop failure
areas, collapsed buildings, and direct economic losses (Figure 4). In terms of affected popu-
lation, floods and droughts account for a high proportion, 31.9% and 34.4%, respectively.
The highest proportion of deaths is caused by rainstorms and floods at 52.1%, followed
by severe convective weather at 36.2%. Drought is the dominant hazard to agricultural
production, accounting for 48.1% of total affected croplands and 46.2% of total crop failure
areas. Rainstorms and floods cause the majority of collapsed buildings among all hazards,
occupying 73.8% of the total. In terms of direct economic losses, the highest proportion of
43.1% is caused by rainstorms and floods, followed by droughts and tropical cyclones, and
comparatively limited losses can be seen in snowstorms and freezing.
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Figure 4. The proportional composition in disastrous impacts of affected population, mortality,
affected croplands, crop failure areas, collapsed buildings, and direct economic losses caused by
climate hazards.

To learn the integrated spatial pattern of climate hazards in China, a comprehensive
hazard map is generated combining heatwaves, rainstorms, droughts, snowstorms, as well
as the main moving paths of coldwaves and typhoons during 1991 to 2020. The hazard
zones are identified with comparative thresholds that are at least one standard deviation
above the spatial average of certain indices in China (refer to Figure 2). Specifically, the
heatwave hazard zone refers to an area with more than 20 hot days per year, the rainstorm
hazard zone refers to an area with more than 4 rainstorm days per year, the drought hazard
zone refers to an area with more than 45 drought days per year, and the snowstorm hazard
zone refers to an area with more than 40 snowfall days per year.

As shown in Figure 5, most areas of China are affected by different types of climate
hazards. Northern China is most susceptible to coldwaves and snowstorms. Droughts
dominate central-eastern China and coldwaves also have widespread impacts in this re-
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gion. Heatwaves, rainstorms, and typhoons superimpose in Southeastern China, and
coldwaves may also reach south of the Yangtze River. It is obvious that there are various
types of climate hazards in China with broadly negative impacts. Southeastern China, in
particular, is heavily affected by multiple hazards simultaneously, and the dense popula-
tion and concentrated economic activities are expected to further amplify climate-related
socioeconomic risks.
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Figure 5. Mapping of multiple climate hazards in China during 1991-2020.

4. Strategies for Addressing Climate Hazards in Urban Development
4.1. Impacts of Climate Hazards on Urban Development

Climate hazards have negative impacts on urban development. Cities, where humans
gather and economic activities are concentrated, have been rapidly expanding during
Chinese urbanization in recent decades and hence have become hotspots affected by
climate hazards [45-47]. Since climate changes are expected to drive the intensification of
climate hazards, it is imperative to build climate-resilient cities to mitigate climate risks. In
order to facilitate decision making on urban risk management, some issues and solutions
have been discussed as follows based on the climate hazard patterns in China.

Climate hazards are proposed to be taken into consideration in urban planning from
two aspects: climate change and extreme events. Climate change affects urban develop-
ment through long-term changes such as rising sea levels, environmental aridification,
and the intensification of urban heat/rain island effects, while extreme events have an
immediate impact through heavy rainfalls, typhoons, and heat/cold waves. From the
perspective of climate impacts, extreme-temperature-related impacts include increased
summertime strain on materials, peak electricity loads in summer (conversely, reduced
heating requirements in winter) [48-50]. Extreme-precipitation-related impacts include
increased flooding (street, basement, sewer) and reduction in water quality [51,52]. Sea-
level-rise-related impacts include inundation of low-lying areas, expansion of wetlands,
increased structural damage, and impaired operations [53-55]. In warmer climate, heat-
waves are projected to increase in frequency, intensification, and duration; inland flooding
induced by precipitation extremes are likely to exacerbate, while flash droughts are also
simulated to intensify in the future. Under this trend, climate risks are expected to bring
greater challenges to urban development in the future.
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The potential changes in climate hazards increase the complexity of urban planning
for policymakers. For example, sea-level rise may cause the low-lying coastal areas, flood
plains, and steep slope areas to become unaccommodated for residence; an increase in
drought may result in the underground and drinkable water to be in short supply. Policy-
makers should fully understand the hazard exposure of residents and urban systems and
consider how to reach the balance between urban developments and climate risks. Given
that building of climate-resilient cities in China has a high priority, we have developed a
strategic framework to achieve urban sustainability, shown in Figure 6.

Identification of Urban Climate Hazards

Heat wave Rainstorm
Snowstorm Drought
Cold wave Typhoon

Strategies for Building Climate-resilient Cities

Adaptive capacity-based city expansion management
Improving technical standards for hazard prevention
Integrating risk assessment into urban planning

Enhancing emergency response for extreme events

Achieving Urban Sustainability under Climate Risks

Figure 6. A Strategic framework for building climate-resilient cities in China.

4.2. Adaptive Capacity-Based City Expansion Management

City adaptive capacities are defined as the ability to absorb and recover from climate
impacts [7]. Factors determining adaptive capacity include but are not limited to the
following: income levels and Gross Domestic Product (GDP), natural resource availability
and distribution, levels of public cognition on climate risks; the availability of technological
capacity and adaptation options, the availability and quality of environmental factors (e.g.,
land, water, raw materials, biodiversity), infrastructure quality and provision, ability to act
collectively to develop and implement adaptation responses, and public education as well
as emergency skills.

As the expansion of cities aggravates the overwhelming energy consumption, trans-
portation systems, and drainage systems, it is necessary to restrict the extent of cities
according to environmental conditions. Moreover, the integrated assessment of climate
risks, vulnerabilities, and adaptive capacities may provide a solution on city expansion. The
types of climate hazards, levels of vulnerability and capacity, and socio-economic character-
istics should be taken to promote the efficiency of adaptation planning and policy making
in each city. The probability of climate extremes in the present and the foreseeable future
can be estimated by climate models, and socioeconomic exposure as well as vulnerabilities
are always changing with time, resulting in certain uncertainties of climate risks. Hence, the
urban development path should be matched with the enhancement of adaptive capacity.
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4.3. Improving Technical Standards for Hazard Prevention

Improving technical standards is good practice for preventing climate hazards at
hardware level. It is necessary to develop risk assessment models for city construction
based on scenario simulations. To date, urban climate assessment mainly relies on historical
events or trend extrapolation but lacks the understanding of potential or unprecedented
risks. In particular, specific industries and regions are rarely focused [56]. With the advances
in numerical simulation, scientists obtained climate projection by using a combination
of dynamic and statistical methods. Regional climate models can further improve the
temporal and spatial resolution of climate simulations and enhance the performance of
urban extreme weather and climate events. Given the differences in geographical location,
economic level, and urban adaptability, each city in China should independently estimate
the potential risks based on climate simulations and then formulate the specialized urban
development plans.

The technical standards involve various industrial sectors, such as road traffic, water
supply and drainage, electricity, communications, gas, flood control, and greening space. At
present, climate change is limitedly considered in the technical standards referring to urban
construction. Moreover, the infrastructure standards are far below the requirements of
defense of climate hazards in coastal China [57,58]. The increased occurrence of compound
hazards in coastal areas highlights the necessity of cross-department collaboration. For
example, the prevention standards for coastal flooding caused by river flood, extreme
rainstorm, and storm surge need to be jointly designed by meteorological, hydrological,
and oceanic departments [5]. In the future, the formulation of technical standards will
no longer be a simple technical issue but require more consideration of compound or
cascading effects of multi-hazards on urban operations through multi-industry modeling
and public participation [59-61].

4.4. Specifying Climate Risk Assessment as a Mandatory Part of Urban Planning

As the application of climate risk assessments in China’s urban planning is not manda-
tory, the potential impacts of climate risk are significantly underestimated [62,63]. This
neglect can directly affect the normal operation of the social activities, as the climate hazard
can damage the critical infrastructure in cities (e.g., power transmission tower, signal tower,
water storage and supply system, railway stations, hazardous substance installations).
Appropriate climate risk assessments can minimize the negative impacts of climate hazards
and protect human life, health, and property.

The expanding urban area, increasing populations and growing economic status have
elevated exposure of cities. Meanwhile, warming temperatures have intensified climate
hazards in urban areas. This double pressure makes it necessary to consider climate
risk assessment in urban planning, and due to the close and complicated connections of
infrastructure in different sectors, it is not wise to consider risk management when the
construction is already completed. Oppositely, the best timing of risk assessment is the
preliminary stage of urban planning. To set climate risk assessment as a mandatory issue in
urban planning has been approved an effective and economic way to enhance the climate
resilience in many newly developed cities around the world.

4.5. Strengthening Emergency Management for Extreme Climate Hazards

As mentioned above, many cities are vulnerable to facing future climate changes. In
order to mitigate climate risks, emergency management for extreme climate events should
be strengthened. Both direct and indirect interventions contribute to the improvement
of emergency management capabilities. Direct intervention is to improve the existing
emergency management methods. For example, flood protection strategies should be
adjusted according to the precipitation intensity. Indirect intervention includes reducing
the vulnerability of cities through strategic spatial planning. For example, public transport
networks should be designed or improved for easier access and then to reduce the exposure
to high temperature in heatwave events.
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Urban emergency infrastructures are also crucial to respond to extreme climate haz-
ards, serving as a lifeline for people exposed to extreme events. Routine maintenance and
stress testing of emergency infrastructures should be strengthened to maximize rescue
functions. Since emergency management cannot take effect simply through the command
of planning strategies, increasing public knowledge and awareness of extreme climate
events is essential for vulnerability reduction and risk mitigation. Administrative man-
agement strategy should also combine with public initiatives, and the important role of
scientific researches in supporting decision making should be constantly strengthened and
verified in practice.

5. Conclusions and Discussion

China is one of the countries with the highest climate risks in the world due to its
monsoon phenomenon and complex climate patterns. Here, we systematically reveal the
spatial pattern of multiple climate hazards in China, including heatwaves, rainstorms,
snowstorms, droughts, as well as the moving paths of coldwaves and typhoons. On this
basis, we summarize the impacts of climate hazards on urban development, and further
propose to incorporate the strategic goals of climate adaptation into urban development of
China, hoping to mitigate climate risks and enhance urban sustainability.

The Southeastern China and Northwestern China are two hazard zones with more
than 30 hot days annually, and the extent of hazard zone has been expanding in recent
30 years. Cities located in the heatwave hazard zone face great risks to human health and
energy supply. South of the Yangtze River, especially in coastal South China, belongs to
the hazard zone of rainstorms. Cities located in rainstorm hazard zone face great risks
of urban waterlogging, river flooding, and triggered geological hazards. Drought mostly
occurs in North China, the Yellow River-Huaihe River basin, eastern Inner Mongolia,
and Southwestern China, with more than 45 drought days annually. Cities located in
the drought hazard zone face great risks of water supply and agriculture production.
Coldwaves, accompanied by strong winds, snowstorms, and ice freezing, frequently invade
northern Xinjiang, Northeast China, Tibetan Plateau, and Inner Mongolia, threatening
public infrastructures, transportation, and energy supply in cities along the way. Cities
located in southeast coastal China should be prepared for typhoon system that bring wild
winds, heavy rainfall, and storm surges in summer half year.

Given that cities are hotspots affected by intensified climate hazards in a warmer world,
some specific adaptation measures have been developed to facilitate the construction of
climate-resilient cities. Specifically, city scale and land-use pattern should be formulated by
urban carrying capacity assessment. Technical standard of public infrastructures should
be improved to resist intensified climate hazards. Local risk assessment should become a
mandatory part of urban planning to guide future development away from hazard zones.
Emergency response capabilities should be strengthened by stress testing to reduce the
disastrous impacts of extreme hazards.

Due to the current underestimations of climate impacts on urban development, there
is an urgent need to improve climate adaptation. If climate-related policies and actions are
still marginalized, the steady deterioration of urban sustainability could lead to irreversible
economic and social issues in the foreseeable future. Several actions proposed in this study
could provide a guideline for building climate-resilient cities that are better able to address
climate change in the coming future.
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Abstract: In the context of global climate change and urban expansion, extreme urban weather events
occur frequently and cause significant social problems and economic losses. To study the climate
risks associated with rapid urbanization in the global context of climate change, the vulnerability
degree of urban agglomeration is constructed by the Grey Model (GM (1, 1)). Based on the sixth
phase of the Coupled Model Intercomparison Project (CMIP6) data sets SSP1-2.6, SSP2-4.5, and
SSP5-8.5, drought, heat wave, and flood hazards under different emission scenarios are calculated.
The vulnerability degree of the urban agglomeration and the climate change hazard were input into
the climate change risk assessment model to evaluate future climate change risk. The analysis results
show regional differences, with the Beijing-Tianjin-Hebei urban agglomeration having good urban
resilience, the Yangtze River Delta urban agglomeration having slightly higher overall risk, and the
Pearl River Delta urban agglomeration having the highest relative risk overall. On the whole, the
higher the emission intensity is, the greater the risk of climate change to each urban agglomeration
under different emission scenarios.

Keywords: climate change; urban agglomeration; drought; heat wave; flood; risk assessment; GM (1, 1)

1. Introduction

The global climate system has significantly warmed in the past century, with the global
average surface temperature increasing by approximately 0.9 °C from 1900 to 2018 [1].
China has a high incidence of extreme weather events. In the context of global warming
and high incidence of extreme weather events, this paper studies the inherent relationship
between the high incidence of extreme weather events and climate warming. The multi-
scenario risk assessment of drought, high temperature, heat wave, and flood under climate
change and urban expansion is a hot topic in urban sustainable development. In this
paper, we predict the risks of drought, heat wave, and flood during the next 30 years based
on the BCC-CSM2-MR data sets SSP1-2.6, SSP2-4.5, and SSP5-8.5. This paper focuses on
the climate change risks to the three major urban agglomerations: Beijing-Tianjin-Hebei,
Yangtze River Delta, and Pearl River Delta in China, which is significant for the study of
climate change risks to large urban agglomerations in other countries.

In their research, domestic and foreign scholars have carried out many studies on the
responses of urban agglomerations to climate change. According to the Intergovernmental
Panel on Climate Change (IPCC)’s Fifth Assessment Report (AR5) [2], climate change risk
is quantified as a function of hazard, exposure, and vulnerability. However, there are
two shortcomings at present. First, previous climate change risk studies focused on the
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risk of a certain disaster in a particular city; however, in the context of climate change,
more attention should be paid to the risk of multiple disaster types and complex disaster-
bearing bodies, and the evolution characteristics of each disaster risk in time and space
are also worth examining [3-5]. Second, a large number of studies have focused more on
internal factors and climate risks such as hazards, exposure, and vulnerability [6,7], while
ignoring the risk forcing of external factors such as urbanization and climate change [8].
According to the United Nations Strategy for Disaster Reduction (ISDR), climate change
and urbanization are the two main factors that make human beings more vulnerable to
disasters [9]. Though the AR5 delineates exposure as a separate component of the risk, in
this study, we included exposure as an integral part of the vulnerability. Therefore, the
vulnerability degree of an urban agglomeration is defined based on the comprehensive
consideration of exposure and vulnerability. The concept of vulnerability involves different
disciplines and professional fields such as sociology, economics, and disaster management.
In this paper, the vulnerability degree of an urban agglomeration refers to the degree to
which the social system affected by climate pressure and the urbanization process has been
damaged because of its own sensitivity and vulnerability. Hazard, as the core of climate
change risk, is used to identify the location and intensity of weather events such as drought,
heat wave, and floods [10]. Based on the vulnerability of urban agglomerations and the risk
of climate change, this paper establishes a basic model for climate change risk assessment.

The three major urban agglomerations along the east coast of China are important
engines of regional economic and social development; however, they are also vulnerable to
climate change. Edward pointed out that the impacts of sea level rise and extreme weather,
such as heat waves and floods, have seriously affected the economic life of coastal cities,
and it is very important to adapt to the impact of climate change on coastal cities through
economic construction and emergency response [11]. Global warming, melting glaciers,
and the rising sea level have a huge impact on coastal cities, making them more vulnerable
to rainstorms and floods [12,13]. With the acceleration of urbanization and the impact
of global warming, the frequency and intensity of extreme events such as droughts, heat
waves, and floods increase, which has a huge impact on the power supply, water supply,
and transportation in urban infrastructure [14,15]. In this paper, the vulnerability of urban
agglomerations and the hazard of climate change are input into the climate change risk
assessment model to comprehensively estimate the future climate change risks to the three
major urban agglomerations in eastern China. The combination of natural ecosystems and
socioeconomic systems can help to control the degree and probability of the impact of
climate change on the three major urban agglomerations. This can provide a scientific basis
for disaster prevention and mitigation, and emergency response in cities.

2. Research Area

With the acceleration of urbanization, population and industries have been concen-
trated in the eastern coastal areas of China, forming three city clusters: Beijing-Tianjin—
Hebei, Yangtze River Delta, and Pearl River Delta [16]. These generally have a large
population density and rapid economic development. At the same time, a nationally
important transport hub exists around the port and the nuclear power plant, which means
that the degree of exposure and vulnerability of these urban agglomerations to disasters
and large economic losses is bigger than other cities. Therefore, eastern China’s urban
agglomeration, with the highest level of national economic contribution, has become a
potential large-scale disaster-bearing body.

In the eastern coastal area with the largest population density distribution and the
highest level of national economic development, the three urban agglomerations of Beijing,
Tianjin, and Hebei, the Yangtze River Delta, and the Pearl River Delta are the most mature
and competitive urban agglomerations in China [17]. Table 1 shows their location infor-
mation and basic characteristics while Figure 1 shows their geographical distribution and
the prefecture-level cities they contain. With the rapid growth of China’s economy and the
continuous evolution of its cities, urban agglomeration has gradually become the symbol of
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a higher stage of urban development. It can strengthen the interconnection among various
cities, promote the process of economic integration, and encourage the rapid growth of the
regional economy. On the other hand, because of the high concentration of resources, envi-
ronment, ecosystem, and social economy in urban agglomerations, they have a stronger
impact on the exposure, sensitivity, and vulnerability to extreme weather events, and the
risk to them from climate change is significant. Therefore, studying the climate, economic
change characteristics, and development laws of these three urban agglomerations is of
great significance for promoting their social development process as the main bodies in
China and the balanced and stable development of various regions.
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Figure 1. Distribution and names of the three major urban agglomerations in China.

Table 1. Three urban agglomerations in China and their basic characteristics.

Name Range GeI(’)grfal'Jhlcal Basic Characteristics
osition
With Beijing, Tianjin
as the center, It covers an area of
including Located north of the 183,088 km?, has a
Beiii o Shijiazhuang, North China Plain, population of 90.09
eijing-Tianjin- Baodi the center of illion, and a GDP of
Hebei Urban aoding, e center of million, and a P o
Acelomeration Zhangjiakou, Northeast Asia in CNY 7.70 trillion. It is the
88 Tangshan, China, bordering on  capital economic circle of
Qinhuangdao, Bohai Sea. China and the largest and
Langfang, Cangzhou, most dynamic area.
Chengde.
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Table 1. Cont.

Name

Range

Geographical
Position

Basic Characteristics

Yangtze River
Delta Urban
Agglomeration

With Shanghai and
Nanjing as the center,
including Suzhou,
Wuxi, Changzhou,
Zhengjiang, Nantong,
Yangzhou, Taizhou
(in Jiangsu),
Hangzhou, Ningbo,
Jiaxing, Huzhou,

Located in the lower
reaches of the
Yangtze River,

bordering on the
Yellow Sea and the
East China Sea, with
many ports, it is an
impact plain formed

The area is 132,065 km?,
with a population of
11.47 million and a GDP
of CNY 15.02 trillion. Tt is
an important zone
between the ,,one belt,
one road” and the
,Yangtze River Economic
Belt” and is the most

Pearl River
Delta Urban
Agglomeration

Shaoxing, Zhoushan before the Yangtze densely distributed area
and Taizhou (in River enters the sea. and largest economic
Zhejiang). zone in China.

It has an area of 55,061
. . km?, population of 0.63
With Guangzhou, Tt is located at the million and a GDP of

Shenzhen as the
center, including
Zhuhai, Foshan,
Jiangmen, Dongguan,
Zhongshan, Huizhou,
Zhaoqing.

Pearl River estuary in
the south central part
of Guangdong
Province. It is
adjacent to Hong
Kong and Macao.

CNY 8.10 trillion. As one
of the most dynamic
economic groups in the
Asia Pacific region, it is
also the gateway for the

southern region to open
up to the outside world.

Note: the data are calculated according to the China Statistical Yearbook 2018 and the statistical yearbook of relevant
provinces (cities) for 2018.

3. Data and Methods
3.1. Data
Data Sources

The historical climate data were taken from the National Meteorological Information
Center of China (http://data.cma.cn (accessed on 22 November 2021)). The meteorological
stations of Beijing-Tianjin—-Hebei, Yangtze River Delta, and Pearl River Delta were selected.
To maintain the homogeneity of the data, this paper selected the daily average temperature
(unit: °C), daily average precipitation (unit: mm), daily maximum temperature (unit: °C),
monthly average temperature (unit: °C), and relative humidity (unit: %) from 1981 to 2019.

The social and economic data used in this paper were taken from the China National
Statistical Center (http:/ /www.bjstats.gov.cn (accessed on 22 November 2021)). The China
Statistical Yearbook provided the GDP per capita (unit: yuan), permanent population (unit:
thousand), urban population (unit: thousand), urban area (unit: thousand ha), total area
(unit: thousand ha), and proportion of primary industry in the GDP (unit: %) of the
Beijing—Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta urban regions from 1981
to 2019.

The future climate scenario data came from the BCC-CSM2-MR climate model of
the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The model uses
320 (longitude) * 160 (latitude) grid points to cover the globe. It is newly developed
by the National Climate Center. The ability of the BCC-CSM2-MR climate model to
simulate the climate mean state and global warming trend, quasi-biennial oscillation
(QBO), tropical intraseasonal oscillation (MJO), and diurnal variation in precipitation for
the 20th century has significantly improved [18]. In this paper, daily temperature (unit: °C),
daily precipitation (unit: mm), and daily relative humidity (%) from 2020 to 2050 were
selected. Three emission scenarios, SSP1-2.6, SSP2-4.5, and SSP5-8.5, were selected for
the climate prediction experiment (https:/ /esgf-node.llnl.gov/search/cmip6/ (accessed
on 22 November 2021)). Table 2 shows the main characteristics of various representative
concentration paths.
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Table 2. Main characteristics of various representative concentration paths.

Scenario Component SSP1-2.6 SSP2-4.5 SSP5-8.5
Radiative forcing 2.6 Wm 2 4.5Wm~—2 8.5 Wm 2
Greenhouse gas emission Very low Medium-low High

3.2. Method

In this paper, the AHP is used to construct the vulnerability assessment system of the
three major urban agglomerations. Using an integrated meteorological drought index, heat
wave index, and flood index, the risk to the three urban agglomerations of meteorological
disasters was evaluated. In this paper, the vulnerability of urban agglomerations and
the hazard of climate change were input into the climate change risk assessment model
to comprehensively estimate the future climate change risk to the three major urban
agglomerations in eastern China. Figure 2 shows the flow chart of climate change risk
assessment. The specific methods are as follows:

Population density

GDP per capita

. Socio-
economic economi

c data

Population urbanization rate

Proportion of urban area to total

the
vulnerability
degree

area

Proportion of primary industry in

GDP the risk

of
climate
change

Comprehensive meteorological
drought index

Heatwave index

Flood Index

the hazard
of climate
change

Figure 2. Flow chart of climate change risk assessment.

3.2.1. Grey System Model GM (1, 1)

The GM (1, 1) model constructed by Deng is a method to solve the lack of data and
shortage of information, and create a fuzzy long-term description of the law of development
of things [19]. Socioeconomic data include the GDP per capita (unit: yuan), permanent
population (unit: thousand), urban population (unit: thousand), urban area (unit: thousand
ha), total area (unit: thousand ha), and proportion of primary industry in the GDP (unit: %).
As the data are affected by many factors, it was difficult to use a single linear trend for
effective prediction. Therefore, this paper used the GM (1, 1) to predict the socioeconomic
data from 2020 to 2050. The GM (1, 1) is a method to solve the problems of insufficient data,
poor information, and high fitting accuracy [20]. The GM (1, 1) uses differential equations
to fully explore the essence of the system. This theory takes a small amount of irregular
raw data as samples and organizes them in a regular series after data accumulation [21].
Then, a reduction process is performed to obtain the forecasted data for the target year.
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Let the original variable be X0 = {X(O) (i),i=1,2,.. .,n},X(O)(i) > 0. By adding

X©), we obtain the following results:

X0 =IxW@), k=1, 2 .., n} M
where .
XD k) = Y XO (1) = XV (k - 1) +XO (k) @

The following differential equations were established to create the GM (1, 1) model:

ax@)

1) —
T +aX u 3)

3.2.2. Analytic Hierarchy Process

The AHP is a decision analysis method that decomposes factors related to decisions
and conducts qualitative and quantitative analyses [22]. When facing a complex problem,
it conducts a deeper analysis of its internal influencing factors and uses less quantitative
information to mathematically carry out the decision-making process. This method is
widely used at present [23]. Its basic principle is to decompose the decision-making process
into different hierarchical structures. Experts assign quantitative scores according to the
relative importance of each element to construct a judgment matrix A.

The calculation results of the matrix must pass a consistency test to avoid the contra-
dictory situation where A is more important than B, B is more important than C, and C is
more important than A for each internal element [24]. Clis a consistency indicator. Smaller
values of Cl indicate greater consistency. Rl is a random consistency index, which is related
to the order of the judgment matrix. In general, the greater the order of the matrix, the
greater the possibility of random consistency deviation.

The random consistency ratio further evaluates the judgment matrix.

CR = CI/RI “4)

When CR is less than 0.1, matrix A is considered to have satisfactory consistency;
otherwise, the judgment matrix must be revised.

To better evaluate the vulnerability degree of urban agglomeration, this paper stan-
dardized the above data and used the AHP to determine the weight of the GDP per unit
area, the population density, the population urbanization rate, the proportion of urban area
in total area, and the proportion of primary industry in the GDP (see Appendix A).

3.2.3. Vulnerability of the Carrier

This paper selected the GDP per unit area, the population density, the population
urbanization rate, the proportion of urban area in the total area, and the proportion of
primary industry in the GDP as the indicators of the vulnerability of the carrier.

The index analysis model of the vulnerability degree evaluation index system is
as follows:

Z = LU;W; (5)

where Z is the vulnerability degree of each coastal urban area; this paper divided the GDP
per unit area, the population density, the population urbanization rate, the proportion
of urban area in total area, and the proportion of primary industry in the GDP into five
grades: Uj; is the grade of the i-th index in an urban area; W; is the weight of index i, which
was obtained with the AHP (see Table 3).
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Table 3. Analytic hierarchy process.

Population Density GDP per Capita Population Proportion of Urban  Proportion of Primary
(People/km?) (Thousand Yuan) Urbanization rate Area to Total Area Industry in GDP
1 <200 <20 <0.5 <0.15 <6.4
2 200-500 20-50 0.5-0.6 0.15-0.30 6.4-12.7
3 500-1000 50-80 0.6-0.7 0.30-0.50 12.7-17.7
4 1000-1500 80-100 0.7-0.8 0.50-0.70 17.7-28.2
5 >1500 >100 >0.8 >0.7 >28.2
weight 0.31 0.29 0.12 0.13 0.15

See Appendix A for the calculation process.

3.2.4. Calculation of Meteorological Risk Index

In this paper, the hazard of climate change refers to drought, heat wave, and flood.
The comprehensive meteorological drought index, heat wave index, and flood index
were calculated to describe the hazard degrees of the three meteorological disasters. The
following are the calculation methods of the three indexes.

A: Comprehensive Meteorological Drought Index

The comprehensive meteorological drought index (CI) was used to analyze the
spatiotemporal characteristics of drought in the three urban agglomerations in eastern
China [25]. The smaller the value of the CI, the greater the absolute value, indicating that
the drought in this region is more serious. It reflects the drought situation of a certain
region on a long time scale and has been widely used since it was first proposed [26]. The
comprehensive meteorological drought index (CI) is calculated by the following formula:

CIl = aZzy + bZgy + cMzg (6)

where: ais 0.4; bis 0.4; cis 0.8. Z3p and Zgg are the standardized precipitation index (SPI)
values in the last 30 and 90 days, respectively, and M3 is the relative humidity index in the
last 30 days. The specific calculation process has been detailed in the literature [27].

B: Heat Wave Index

The heat wave index reflects the duration of extremely high temperatures because
China occupies a vast area with a large regional climate difference, and its tolerance to
high temperatures is variable [28]. In this paper, the local daily meteorological data from
May to September from 1981 to 2019 were used to first calculate the torridity index of the
samples whose maximum temperature was greater than 33 °C. After sorting the torridity
index sequence into ascending order, the median was selected as the local critical value
of torridity, which represents the comfort level of the human body with respect to the
meteorological environment [29].

The torridity index (E;) is calculated by the following formula:

When RH < 60%, E; = 1.8 x T, —0.55 x (1.8 x T, —26) x (1—0.6)+32  (7)

When RH > 60%, E, = 1.8 x T, — 0.55 x (1.8 x T, — 26) x (1 — RH) + 32 (8)

where T, represents ambient temperature/°C and RH stands for average daily relative
humidity /%.
After calculating the torridity index, the heat wave index (Hji) is calculated as follows:

N-1 1

T+l )

N-1
HI=12x (Er —Er') +0.35Y_ 1/nd;(Er; — Er') +0.15 ;
7 1

i=1 i=1
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where i is the previous day, and the number of days from day i before the day is nd;. The
torridity index of the day is Er, the critical value of torridity is E+’, and the torridity index
of day i before the day is Er;.

C: Flood Index

The flood index (FI) is based on the cumulative precipitation of a region for 3 consecu-

tive days.
N+2

FI=Yp (10)
i=N
where P; is the precipitation on day i of a city, and P; is in units of mm.

3.2.5. Climate Change Risk Assessment Model

Disaster risk generally considers disaster-causing factors and the disaster-bearing body:
Risk = Hazard * Vulnerability 11)

Disaster risk is equal to the product of disaster hazard and vulnerability of the disaster-
bearing body [30].

This paper improved the disaster risk model to better describe the impact of climate
change and urbanization on assessing the climate change risk.

R=(D+H+F)*V (12)

where R represents the risk of climate change, D represents the drought hazard, H repre-
sents the heat wave hazard, F represents the flood hazard, and V represents the vulnerability
of urban agglomerations.

4. Results and Discussion
4.1. Vulnerability of Three Urban Agglomerations from 1981 to 2019

China’s three major urban agglomerations are all located in the eastern coastal areas.
Most of the country’s infrastructure was built in the 21st century. Science and technology
are the fundamental driving forces for us to improve the level of disaster tolerance. With
meteorological risk and disaster occurrence rising yearly, it is very important to evaluate
the climate change tolerance of these rapidly developing urban agglomerations.

This paper considered the three major urban agglomerations in eastern China as the
research area and their social conditions as the research object to analyze through the
following indicators:

According to the theory of natural disaster systems, the above five indicators were
selected and stratified [31]. To better evaluate vulnerability, this paper standardized the
above data and used the AHP to determine the weight of the five elements in the evaluation
of the vulnerability degree of the carrier (see Table 3).

The vulnerability degree was divided into five registration regions according to the
values of each vulnerability degree: the lowest vulnerability, low vulnerability, medium
vulnerability, high vulnerability, and the highest vulnerability, and the spatial description
and expression were mapped, as shown in Figure 3.

Figure 3 shows that the vulnerability degree of each urban agglomeration was rela-
tively low in 1985, then increased over time. The main reason is that the three major urban
agglomerations were expanding with the continuous advancement of urbanization and
inward population migration. As a major component of the natural ecosystem, human
beings are in a fragile and vulnerable state. The rapidly increasing population density
increases the vulnerability of urban agglomerations. In addition, it can be seen from the
figure that the high vulnerability in 2015 was mainly concentrated in the first-tier cities
Beijing, Tianjin, Nanjing, Wuxi, Suzhou, Shanghai, Foshan, Guangzhou, Shenzhen, and
Dongguan. In the vulnerability assessment of urban agglomerations, a higher GDP means
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higher economic benefits for the city and higher risks to the city when meteorological
disasters strike. On the whole, among the three major urban agglomerations in 2015, the
most vulnerable urban area was the Yangtze River Delta, which is also currently the city
agglomeration with the largest GDP output among the three major urban agglomerations,
contributing approximately one-fifth of the national GDP. Compared with the Yangtze
River Delta and the Pearl River Delta, the vulnerability degree of the Beijing—Tianjin-Hebei
urban agglomeration was generally lower, which was consistent with its economic develop-
ment in recent years. During this time, the economic development gap between Beijing and
Tianjin, and other cities in the Beijing-Tianjin—-Hebei region has become increasingly obvi-
ous. There is a significant gap between the rich and the poor in the Beijing-Tianjin-Hebei
urban agglomeration.
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Figure 3. Evolution of the spatial pattern of the vulnerability degree of the three urban agglomerations in 1985, 1995, 2005,
and 2015 (A-D): Beijing-Tianjin-Hebei; (E-H): The Yangtze River Delta; (I-L): Pearl River Delta.
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4.2. Risk of Meteorological Disasters in Urban Agglomerations from 1981 to 2019
4.2.1. Comprehensive Meteorological Drought Index

Figure 4 shows the geographical distribution of the annual average drought index in
the three eastern coastal urban agglomerations. The smaller the CI value is, the drier the
region is. From this, we can see that the Beijing-Tianjin-Hebei region generally presented
the characteristics of wetness in the west and dryness in the east [32]. The drought index in
the Yangtze River Delta region gradually decreased from south to north, with the drought
degree in the northern part notably stronger than in the southern part. The reason for this
is that, in the plum rain season, the western Pacific Ocean brings much water vapor from
south to north, and the Yangtze River Delta urban agglomeration maintains steady and
sustained precipitation. The distribution of the drought index in the Pearl River Delta
region was lower in the northwest and higher in the southeast. The reason for this may be
that the West Pacific subtropical high brought much water vapor and precipitation to the
southeast of the Pearl River Delta, therefore the drought index in the southeast direction
was greater.
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Figure 4. Geographical distribution of the annual mean comprehensive meteorological drought index in the three urban
agglomerations (A): Beijing-Tianjin—Hebei; (B): Yangtze River Delta; (C): Pearl River Delta.

Overall, the western part of the Beijing-Tianjin-Hebei region is located on the North
China Plain, and the integrated meteorological drought index CI was minimal. The Beijing—
Tianjin—-Hebei region was the driest among the three major coastal urban agglomerations
in eastern China, followed by the Yangtze River Delta and the Pearl River Delta, which had
the lowest drought index. Located in the southeastern coastal area of China, the Pearl River
Delta urban agglomeration is closer to the ocean and has abundant water vapor. From
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its definition, we can see that the factors affecting the strength of the drought index were
precipitation and potential evapotranspiration. Therefore, the drought index of southern
coastal cities was larger than that of northern inland cities, and the drought situation of the
three urban agglomerations had a spatial trend of drying from south to north.

4.2.2. Heat Wave Index

Figure 5 shows the geographical distribution of the annual average number of heat
wave days in the three urban agglomerations from 1981 to 2019. According to the definition
of heat waves, the factors influencing the magnitude of the heat wave index include
ambient temperature and relative humidity. Summer is the season of the year’s highest
temperatures; during the day, temperatures rise faster inland than in coastal areas, and the
relative humidity is lower. In the Beijing-Tianjin-Hebei and Yangtze River Delta urban
agglomerations, the number of heat wave days was higher in the west and lower in the
east, while, in the Pearl River Delta region, the number was higher in the north and lower
in the south. Therefore, the geographical distribution of heat wave days in the three urban
agglomerations was reasonable.
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Figure 5. Geographical distribution of annual mean heat wave days in the three urban agglomerations during 1981-2019
(A): Beijing-Tianjin—-Hebei; (B): Yangtze River Delta; (C): Pearl River Delta.

In addition, we can also see that the maximum number of heat wave days occurred in
Zhaoqing in the Pearl River Delta, and the minimum number was near Qinhuangdao in
the Beijing-Tianjin-Hebei area. This is because the Pearl River Delta urban agglomeration
is in low latitudes and Zhaoqing is the most interior of the Pearl River Delta cities. During
the year, the ambient temperature is higher, and the relative humidity is lower in summer.
As a result, the Pearl River Delta had more heat wave days. As Qinhuangdao is located in
northern China, the environmental temperature in summer was lower than that in southern
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China. It is also located in the offshore area, which is affected by the sea breeze, and,
therefore, Qinhuangdao had lower temperatures and higher ambient humidity. Therefore,
Qinhuangdao had the lowest average number of heat wave days. In general, the number
of heat wave days in Chinese cities mainly depends on the geographical location, with
obvious spatial agglomeration and distribution [33].

4.2.3. Flood Index

The annual mean geographical distribution of the flood index in the three urban
agglomerations is shown in Figure 6. In the last 39 years, the spatial pattern of precipitation
in the Beijing-Tianjin—Hebei urban agglomeration was more in the east and less in the
west, which was mainly because of the different terrain features and urban development in
the Beijing-Tianjin—Hebei region. Zhangjiakou lies near the Taihang Mountains, a region
where descending air and dry adiabatic warming causes the temperature to rise. With
less atmospheric moisture and higher temperatures, the flood index near Zhangjiakou
was the lowest of the regions studied [34]. The flood index value of the Yangtze River
Delta urban agglomeration gradually decreased from south to north because the amount
of water vapor brought from the Pacific Ocean was higher in the south, therefore there was
more precipitation. The Pearl River Delta urban agglomeration is located in the subtropical
monsoon climate zone, and its flood index value was the largest among the three cities,
showing a trend of being higher in the south and lower in the north. Precipitation mainly
occurs in the westerly belt of the subtropical high and is also affected by weather systems
such as typhoons. The region is also affected by the intertropical convergence zone. The
Pearl River Delta region thus received the most precipitation [35].
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Figure 6. Geographical distribution of the annual mean flood index in the three urban agglomerations (A): Beijing-Tianjin—
Hebei; (B): Yangtze River Delta; (C): Pearl River Delta.
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4.3. Vulnerability Degree of Urban Agglomeration in 2020-2050

In the context of global warming, extreme meteorological events occur frequently,
posing a serious threat to the future and human development. The impact of these me-
teorological disasters on human beings depends not only on the severity of the disasters
themselves but also on social and economic factors such as population and social struc-
ture [36]. Therefore, predicting the vulnerability of urban agglomerations during 2020-2050
is crucial to assessing the risk of future climate change.

Based on the Grey model GM (1, 1), this paper predicted the population, GDP, and
other social and economic factors from 2020 to 2050. We standardized the above data
and used the AHP to determine the weight of the five elements in the evaluation of
the vulnerability degree of the carrier, including population density, GDP per capita,
population urbanization rate, proportion of urban area in total area, and proportion of
primary industry in the GDP. The vulnerability of the urban agglomeration in 2020-2050
was calculated, and the spatial description and expression were carried out as shown
in Figure 7.
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Figure 7. Vulnerability degrees of the three major urban agglomerations during 2020-2050.

Compared with the meteorological disaster risk, which mainly focuses on extreme
weather events, the vulnerability degree of urban agglomerations is more concerned with
the role of humans and the GDP [37]. In this paper, the vulnerability degree of urban
agglomeration refers to the degree to which the social system, with regards to how it is
affected by climate pressure, has been damaged because of its own sensitivity and vulnera-
bility. As shown in Figure 6, the high vulnerability of the three urban agglomerations in the
future will mainly be concentrated in the new first-tier cities: Beijing in the Beijing-Tianjin—
Hebei region, Shanghai in the Yangtze River Delta region, and Shenzhen and Guangzhou in
the Pearl River Delta region. With the rapid development of the economy, these cities will
bear an increasing population. As the main component of the natural economy, the rapid
increase in population increases the vulnerability of cities. In general, the vulnerability
of the three major urban agglomerations in the future will mainly be concentrated in the
Yangtze River Delta and the Pearl River Delta. In comparison, the future vulnerability of
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the Beijing-Tianjin—Hebei region in China is relatively low, and its resistance to extreme
disaster events is stronger.

4.4. Climate Change Hazard in Urban Agglomerations under Different Emission Scenarios during
2020-2050

Based on the climate scenarios of SSP1-2.6, SSP2-4.5, and SSP5-8.5 according to CMIP6
in the near and middle periods (2020-2050), this paper obtained future meteorological
elements such as daily mean temperature, daily maximum temperature, daily precipitation,
and daily relative humidity under different scenarios. The comprehensive meteorological
drought index (CI), heat wave index (HI), and flood index (FI) were calculated to quanti-
tatively evaluate the hazard of climate change in urban agglomerations under different
emission scenarios from 2020 to 2050.

Based on the comprehensive meteorological drought index, heat wave index, and
flood index, this paper calculated the mild, moderate, and severe occurrence frequencies of
drought, heat wave, and extreme flood events. As shown in Table 4, this paper obtained
the hazard level of extreme events in different regions based on the method of overlap
analysis. Overlap analysis involves the overlay of mild, moderate, and severe drought,
heat wave, and flood maps to generate a new data layer with attributes.

Table 4. Extreme event hazard classification index system.

Index Mild Moderate Severe
CI —12<CI<-0.6 —-18<CI<—12 CI<-18
HI 28 <HI<65 6.5 <HI<10.5 HI > 105
FI 30mm<FI <50mm 50 mm < FI <70 mm FI > 90 mm

Figure 8 shows the hazards of extreme meteorological events such as drought, heat
wave, and flood under different emission scenarios. As seen in Figure 8A-C, among the
three urban agglomerations, the drought hazard of Beijing-Tianjin-Hebei will be the largest,
followed by the Pearl River Delta region, and, finally, the Yangtze River Delta region. The
serious drought in the Pearl River Delta is mainly due to the high annual temperature in
the Pearl River Delta region and the long-term absence of precipitation in a specific season,
which lead to the frequent occurrence of winter and spring drought. At the same time,
with the increase in greenhouse gas emission intensity, the drought hazard in Beijing and
Tianjin will have an increasing trend. On the one hand, Beijing and Tianjin are located
in the North China Plain at high latitudes, which makes it difficult for warm and wet air
from the ocean to reach the Beijing-Tianjin-Hebei city region. On the other hand, with
the increase in greenhouse gas emissions and the further aggravation of global warming,
temperatures in the Beijing-Tianjin—-Hebei urban agglomeration are also increasing. In
addition, Beijing and Tianjin, as two super large first-tier cities in the Beijing—Tianjin-Hebei
urban agglomeration, have obvious urban heat island effects. Therefore, Beijing and Tianjin
will have the greatest hazard of drought in the future.

As seen from the middle row (D, E, F) of Figure 8, the hazard of heat waves will be the
lowest in the Beijing-Tianjin-Hebei urban agglomeration, followed by the Yangtze River
Delta, and the highest in the Pearl River Delta urban agglomeration, from 2020 to 2050.
Solar radiation decreases with increasing latitude, therefore the hazard of heat waves will
gradually decrease from south to north. However, the hazard of heat waves in some cities
in the Yangtze River Delta will also be relatively high because the Yangtze River Delta
city cluster is located in the middle and lower reaches of the Yangtze River. In summer,
under the subtropical high, atmospheric subsidence prevails and the temperature rises
rapidly, forming a summer drought. At the same time, the hazard of heat waves is also
relatively high. With the increase in emissions, the heat wave hazard of the three major
urban agglomerations on the east coast of China will continue increasing.

206



Sustainability 2021, 13, 13037

Legend
Wazard

|
|
| medium
B vien
B iehest

(B)

Legend
Tazard
B ovest
B o

| medium
- high
B vichest

N
Legend
Tlazard
.
s
| medium

s
I

>z

Legend
TMazard

|
| medium
- high
B vt

Legend
Hazard

|
B o
[ medium
- high
- highest

Legend
Tazard

|
—

L | medium
- high
B vt

Figure 8. Hazards of drought (A-C), heat wave (D-F), and flood (G-I) in the three urban agglomerations under different
emission scenarios: SSP1-2.6 (A,D,G), SSP2-4.5 (B,E,H), and SSP5-8.5 (C,F I).

}N\
Legend
Tazard

o

.
| | medium
-

B viehest

From the bottom row (G, H, I) of Figure 8, it can be seen that the flood hazard of the
three major urban agglomerations in 2020-2050 will be concentrated in the middle and
lower reaches of the Yangtze River. That is, the Yangtze River Delta urban agglomerations
will have the greatest flood hazard, while the Pearl River Delta urban agglomerations in
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the low latitudes will have the middle flood hazard, and the Beijing-Tianjin-Hebei region
in the middle and high latitudes will have the least flood hazard. The main reason for this
is that there are many plains in the middle and lower reaches of the Yangtze River, and
the terrain is relatively low and flat. Flooding mainly depends on the precipitation. The
Yangtze River Delta urban agglomeration is located in the monsoon climate zone with
heavy rain in summer. Huang pointed out that approximately 46% of the world’s regions
may suffer from moderate or high hazards of extreme precipitation changes in the future.
The frequency of extreme precipitation events will increase under the RCP8.5 scenario,
and most regions will show high flood hazards [38]. There was no significant difference in
the spatial distribution of flood hazards under the three scenarios analyzed in this paper
(SSP1-2.6, SSP2-4.5, and SSP5-8.5); however, with the increase in emission intensity, the
disaster hazard of floods increased.

Based on the hazard assessment of drought, heat wave, and flood, and according to the
spatial distribution pattern of meteorological disasters, this paper regionalized the hazards
of climate change in the three major urban agglomerations in eastern China [39], as shown
in Figure 9. It can be seen from the figure that the Pearl River Delta urban agglomeration
will experience the greatest hazard of climate change, followed by the Yangtze River Delta,
and the Beijing-Tianjin—-Hebei urban agglomeration. The hazard of climate change will
gradually decrease from south to north. With the increase in emission intensity, the climate
change hazard of SSP5-8.5 in the high emission scenario will cause the largest changes.
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Figure 9. Climate change hazard of the three urban agglomerations under different emission scenarios (A): SSP1-2.6;

(B): SSP2-4.5; (C): SSP5-8.5.

4.5. Climate Change Risk Zoning of Urban Agglomerations under Different Emission Scenarios
during 2020-2050

In this paper, the disaster risk was divided into two parts: the disaster-causing factor
and the bearing body. Drought, heat wave, and flood were regarded as disaster-causing
factors, and urban agglomerations were regarded as bearing bodies. Disaster risk was equal
to the product of disaster risk and the vulnerability of the disaster-bearing body. Therefore,
these factores were brought into the climate change risk assessment model to obtain the
climate change risk to the three urban agglomerations under different emission scenarios.

Figure 10 shows that the future climate change risk to the Beijing-Tianjin—-Hebei urban
agglomeration will mainly be concentrated in Beijing and Tianjin, which have higher
populations and GDPs. Therefore, when large meteorological disasters occur, these two
urban agglomerations will be more vulnerable to risks, while other cities in the Beijing—
Tianjin-Hebei region will show good urban resilience. However, the climate change risk to
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the Yangtze River Delta urban agglomeration will be different, the regional coordination is
not consistent and the overall risk will be slightly stronger than that to the Beijing-Tianjin—
Hebei urban agglomeration. In addition, the risk of climate change will be high in the
Pearl River Delta urban agglomeration, among which Guangzhou and Shenzhen are the
cities with the highest risk in the entire Pearl River Delta region. Overall, the higher the
emission intensity, the greater the risk of climate change in each urban agglomeration; this
conclusion was also consistent with the previous research results [38,40].
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Figure 10. Climate change risks in the three urban agglomerations under different emission scenarios (A): SSP1-2.6;

(B): SSP2-4.5; (C): SSP5-8.5.

5. Conclusions and Discussion

The risk of climate change to the three major urban agglomerations in eastern China is
the result of the combined effects of climate factors and social and economic factors, which
need to be cross-analyzed by multiple disciplines and fields. To solve this problem, we se-
lected a climate change risk assessment model as a bridge between natural science analysis
and humanistic socioeconomic analysis. The vulnerability degree of urban agglomerations
and the hazard of climate change were input into the climate change risk assessment model.
Based on the perspective of climate change economics, this paper analyzed the risk of
climate change to the three major urban agglomerations in eastern China.

In terms of vulnerability, high vulnerability was mainly concentrated in Beijing, Tian-
jin, Nanjing, Wuxi, Suzhou, Shanghai, Foshan, Guangzhou, Shenzhen, Dongguan, and
other first-tier cities as well as new first-tier cities. These cities tend to be associated with
a higher GDP and population, and they are at a higher risk when meteorological dis-
asters strike. On the whole, among the three urban agglomerations, the Yangtze River
Delta region was the most vulnerable, followed by the Pearl River Delta region, and the
Beijing-Tianjin—Hebei region.

With climate change, drought characteristics in the north and south have changed. In
general, the Beijing-Tianjin-Hebei urban agglomeration will have the largest drought haz-
ard in the future, followed by the Pearl River Delta urban agglomeration, and the Yangtze
River Delta urban agglomeration. The hazard of heat wave in urban agglomerations in
China mainly depends on geographical location, with obvious spatial agglomeration and
distribution. The hazard of heat wave gradually decreases from south to north, and the
hazard of heat wave in inland cities is higher than that in coastal cities in the same urban
agglomerations. In China, future flood hazards will be concentrated in the middle and
lower reaches of the Yangtze River; that is, the Yangtze River Delta will have the largest
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flood hazard, the Pearl River Delta the middle flood hazard, and the Beijing-Tianjin-Hebei
region the lowest flood hazard.

Among the three coastal urban agglomerations in eastern China, the Pearl River
Delta has the highest hazard of climate change, followed by the Yangtze River Delta. The
Beijing-Tianjin-Hebei urban agglomeration has the lowest hazard of climate change. The
hazard of climate change gradually decreases from south to north. With the increase in
emission intensity, the hazard of climate change in the high emission scenario SSP5-8.5
tends to increase.

The risk of future climate change to the Beijing-Tianjin-Hebei urban agglomeration
will be mainly concentrated in Beijing and Tianjin, while other cities in the Beijing-Tianjin—
Hebei region will show good urban resilience. However, the risk of climate change to
the Yangtze River Delta is different, and the regional coordination is not consistent. The
overall risk of climate change to the Yangtze River Delta is slightly stronger than that to the
Beijing-Tianjin—Hebei urban agglomeration. In addition, the risk of climate change to the
Yangtze River Delta urban agglomeration is high overall, among which Guangzhou and
Shenzhen are the highest risk cities in the entire Yangtze River Delta region.

Under different emission scenarios, the higher the emission intensity, the greater the
future temperature rise, and the greater the risk of climate change that is faced by each
urban agglomeration. Therefore, the high incidence of disaster events is closely related
to climate warming. Energy saving, emission reduction, low carbon, and environmental
protection are effective measures to delay the temperature rise and reduce the frequency
of disasters in the future. Therefore, formulating corresponding policies and measures
according to the characteristics of climate change in different urban agglomerations is
essential to effectively respond to climate change, improve urban resilience, and maintain
steady and rapid economic growth.

In the study of the risk of climate change, we only selected three extreme climate
events, drought, heat wave, and flood, because they are the most typical and widely
distributed meteorological and hydrological events. However, in fact, the risks of climate
change are not limited to drought, heat wave, and flood, but also include hail, typhoons,
cryogenic freezing, and other disasters. However, the timing and regional nature of these
events were more obvious, therefore they were not included in this study. In this paper,
five factors: GDP per unit area, the population density, the population urbanization rate,
the proportion of urban area in total area, and the proportion of primary industry in the
GDP, were considered in the calculation of the vulnerability index of the bearing body, and
the semiquantitative method of expert scoring was also used with the AHP method, which
may affect the results of risk estimation. In addition, the Grey model is only suitable for
medium and short-term prediction, and the accuracy of long-term prediction is limited.
In this paper, the climate data of the BCC-CSM2-MR model were selected to predict the
future SSP1-2.6, SSP2-4.5, and SSP5-8.5 emission scenarios. Because of the limited space,
the multi-model ensemble average requires further study.
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Appendix A
Table Al. Experts Scores Technique.
Population . Population Proportion of Urban  Proportion of Primary
Density GDP per Capita Urbanization Rate Area to Total Area Industry in GDP
professor A 5 43 1.7 2 3
professor B 5 5 1.8 3 22
professor C 5 48 2 22 2.1
professor D 5 47 2.3 12 2.3
average value 5 47 1.95 2.1 2.4
Table A2. Analytic hierarchy Process data.
Population GDP per Popu!atu?n Proportion of I"roportlon of
Densit Capita Urbanization  Urban Areato  Primary Industry
y P Rate Total Area in GDP
Population density 1 1.064 2.564 2.381 2.083
GDP per capita 0.94 1 241 2.238 1.958
Population urbanization rate 0.39 0.415 1 0.929 0.813
Proportion of urban area to total area 0.42 0.447 1.077 1 0.875
Proportion of primary industry in GDP 0.48 0.511 1.231 1.143 1
Table A3. Analytic hierarchy Process results.
Index Feature Vector Weight Value Maximum Eigenvalue Ci
Population density 1.548 30.960%
GDP per capita 1.455 29.102%
Population urbanization rate 0.604 12.074% 5 0
Proportion of urban area to total area 0.65 13.003%
Proportion of primary industry in GDP 0.743 14.861%
Table A4. Random consistency table.
n 3 4 5 6 7 8 9 10
R 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49
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Abstract: To consolidate the achievements in the elimination of absolute poverty in China and
prevent rural populations from returning to poverty as a result of meteorological disasters, this study
analyzed the spatiotemporal characteristics of rainstorms and droughts and their socioeconomic
impacts on China’s contiguous poverty-stricken areas (CPSAs) from 1984 to 2019. The annual
number of rainstorms and drought days in CPSAs of China reached approximately 1.9 days/year
and 44.6 days/year, respectively. It gradually decreased from southeast to northwest. Rainstorms
showed a significant increasing trend of 0.075 days/decade, while there is no significant trend in
drought days. Due to rainstorms and droughts, the average annual number of people affected and
direct economic losses in CPSAs reached 34 million people/year and 29 billion Chinese yuan/year,
accounting for 22.9% and 12.6% of China’s total amounts, respectively. The average annual loss rate
due to disasters in this region reached 1.6%, which is 0.6% higher than the national level. Furthermore,
the distinct features and socioeconomic impacts of rainstorms and droughts were identified on the
southeastern and northwestern sides of the population density line (PDL) along Tengchong-Aihui
in China. Droughts have often impacted the regions located along the PDL, while rainstorms and
droughts have occurred more frequently in the regions to the southeast of the PDL than in the regions
to the northwest of the PDL. As a result, the affected population and direct economic losses due to
rainstorms and droughts in the regions to the southeast of the PDL were 8.8 and 9.2 times and 3.3 and
7.4 times higher, respectively, than those in the regions on the other side of the PDL. Although the
losses were greater, the disaster resistance capabilities were significantly improved in these regions.
In contrast, the regions to the northwest side of the PDL exhibited a significant increasing trend in
losses with a relatively low disaster resistance capabilities. This study revealed that it is necessary
to improve the capability of meteorological disaster prevention and reduction in China’s CPSAs,
especially in the regions to the west of the PDL, which could further contribute to the realization of
United Nations Sustainable Development Goals.

Keywords: contiguous poverty-stricken areas; rainstorms and droughts; direct economic losses;
disaster-affected population

1. Introduction

The United Nations Sustainable Development Goals (SDGs) clearly state that by
2030, all forms of poverty are to be eradicated worldwide [1]. However, more than
700 million people (10% of the world’s population) still live in extreme poverty. The Out-
line for Poverty Alleviation and Development in Rural China (2011-2020) delineated
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14 contiguous poverty-stricken areas (CPSAs) in China based on economic levels and set
the net income of farmers to 2300 yuan (constant 2010 prices) as the national standard for
poverty alleviation. As of 23 November 2020, all 832 poverty-stricken counties in China
have been removed from poverty. The poverty reduction target of the United Nations
2030 Agenda for Sustainable Development has been achieved 10 years ahead of schedule,
contributing to more than 70% of the reduction in global poverty [2]. Most of these areas
are located in plateau, mountainous and hilly areas with a harsh natural environment,
low economic status and relatively lagging social development and represent high-risk
areas for meteorological disasters in China [3]. Among these disasters, rainstorms and
droughts are the two meteorological disasters with the highest proportion of the total
socioeconomic impact, with 24% of the agricultural population endangered by rainstorms
and droughts with a long duration and wide range, reaching losses of 67.35 billion yuan in
2016 alone [4,5].

At the global warming level of 1.5 °C, the droughts in CPSAs will change from mild
to moderate, which will increase significantly in three prefectures of Southern Xinjiang
and the Tibet Region [6]. Meanwhile, the intensity of rainstorms will increase in more than
85% of CPSAs in a 1.5 °C warming scenario [7]. Since the disaster resistance capabilities
in poor areas are relatively low, natural hazards like rainstorms and droughts are a major
reason why people become and stay poor [8]. Therefore, a comprehensive understanding of
the spatiotemporal characteristics and socioeconomic impacts of rainstorms and droughts
in CPSAs is important for preventing populations that have been lifted out of poverty
from falling back into it again due to meteorological disasters, which further contributes to
poverty eradication consolidation processes in China.

Previous studies have found that the frequency and intensity of rainstorms and
droughts in China have increased since the 21st century, and the affected population and
economic losses due to rainstorms and droughts have significantly increased [9-11]. How-
ever, these studies mainly focused on a specific region, such as exploring rainstorms and
disaster-induced losses in eastern China [12]. There remains a lack of comprehensive stud-
ies of meteorological disaster conditions in CPSAs. In recent years, the demand for natural
hazard data has increased, and numerous databases have emerged, e.g., NatCatSERVICE,
a global-scale database launched by Munich Re (MUNICH RE), and the Emergency Events
Database (EM-DAT) published by the University of Leuven, Belgium. China has also
created databases such as the China Meteorological Administration Disaster Database,
China Natural Disaster Database and China Meteorological Disaster Yearbook, according to
different application needs, which provide a good opportunity to study the socioeconomic
impacts of meteorological disasters in specific regions [9,13-16].

Hu Huanyong proposed the well-known population density line (PDL) in 1935, re-
vealing the basic pattern of the population distribution in China. It showed that 64% of
the areas northwest of the Aihui-Tengchong line in China is in habited by only 4% of the
population [17,18]. The PDL is strongly correlated with the regional climate, and the PDL
coincides closely with the climate dividing line between arid and humid zones in China [19].
This result is very consistent with the 400 mm isohyetal line and the 10 °C annual mean
temperature line, and the temperature and precipitation characteristics of the above CPSAs
also basically coincide with this dividing line [17]. The divergence of human factors on
both sides of the PDL is also significant; CPSAs in China are mainly distributed on both
sides of the PDL, and the economy in the regions to the east of the PDL is more developed
than that of the regions to the west of the PDL [20,21].

Therefore, based on rainstorm and drought data, direct economic losses and affected
population data, this study determined the spatial and temporal evolutionary character-
istics of the socioeconomic impacts of rainstorms and droughts and revealed the unique
characteristics which distinguish this region from the disaster conditions in China. Further-
more, this study compared and analyzed rainstorm and drought characteristics with the
PDL as the boundary. The results of this study can provide a scientific basis for the CPSAs
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considered to overcome climate change challenges, prevent a return to poverty resulting
from meteorological disasters and further contribute to the realization of SDGs.

2. Data and Methods
2.1. Study Area

CPSAs are mainly located in the mountains, hills and highlands of Central and Western
China, with complex and diverse topographic conditions and fragile ecological environ-
ments (Figure 1) [22]. For the convenience of description, the regions to the east of the PDL
(Regions5-11, R5-11 for short), the regions along the PDL (Regions1-4, R1-4 for short) and
the regions to the west of the PDL (Regions12-14, R12-14 for short) were classified. The
regions along the PDL (R1-4) include the Southern area of Daxing’anling Mountains, the
Yanshan-Taihang Mountain area, the Lvliang Mountain area and Liupanshan area, which
have a temperate continental climate, with an average annual precipitation of approxi-
mately 500 mm, a mean temperature of approximately 4-8 °C, a maximum temperature of
16 °C, and a minimum temperature of 0 °C, which decreases with increasing latitude. The
regions to the west of the PDL (R12-14) include the three prefectures of southern Xinjiang,
the Tibet region and Tibetan areas in four provinces which belong to the plateau mountain
climate zone of China. The annual precipitation is very low, approximately 300 mm, and
the average annual temperature reaches below 4 °C, a maximum temperature of 10 °C,
and a minimum temperature of —6 °C. The regions to the east of the PDL (R5-11) have
a subtropical monsoon climate, with an average annual precipitation of over 1000 mm
and an average annual temperature ranging from approximately 13 to 18 °C, a maximum
temperature of 23 °C and a minimum temperature of 10 °C [20].
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Figure 1. The contiguous poverty-stricken areas (CPSAs) (1. Southern area of Daxing’anling Moun-
tains; 2. Yanshan-Taihang Mountain Area; 3. Lvliang Mountain Area; 4. Liupanshan Area; 5. Qinba
Mountain Area; 6. Dabie Mountain Area; 7. Wuling Mountain Area; 8. Wumeng Mountain Area;
9. West Yunnan Border Area; 10. Yunnan, Guangxi and Guizhou rocky desertification area; 11. Luox-
iao Mountain Area; 12. Three prefectures of Southern Xinjiang; 13. Tibet Region; 14. Tibetan Areas in
Four Provinces).

During 1984-2019, the average annual total population of these CPSAs reached
210 million people, accounting for 16.7% of the total population of China. The average
annual total gross domestic product (GDP) reached 1989.3 billion yuan, accounting for
only 7.7% of the total GDP of China. The population of the above CPSAs grew from
180 million people to 230 million people, and the total GDP increased from 57.3 billion
yuan to 7621.9 billion yuan (Figure 2a,b). The multi-year average GDP per capita in this
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region reached RMB 8943 per person, accounting for only 46.9% of China’s per capita GDP
of RMB 19,079 per person (Figure 2c). This indicates that compared to the entire country,
the CPSAs considered, accounting for 40% of the total area of China, contain a relatively
small population and are relatively economically under-developed.
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Figure 2. Time series of (a) total population (million people), (b) total GDP (billion yuan), (c) GDP
per capita (yuan) in CPSAs, China during 1984-2019. Green lines denote their ratio compared to
China’s total.

2.2. Datasets
2.2.1. Observational Data

The CNO05.1 dataset from the National Climate Center in China with a high spatial
resolution (0.25°) for the period of 1984-2019 was used to depict climate regimes and iden-
tify rainstorms and droughts, including a daily maximum temperature, a daily minimum
temperature, a daily mean temperature, precipitation and wind speed [23,24].

2.2.2. Meteorological Disaster Dataset

The Chinese meteorological disaster dataset with Chinese county units constructed by
the National Climate Center based on meteorological disaster data collation standards was
used in this study [25]. Two categories of disasters were selected, including rainstorms and
floods and mudslides triggered by rainstorms, and droughts. This study mainly focused on
the direct economic losses and affected population during the period of 1984-2019. In order
to better reflect the situation of the CPSAs, we compared it with the national situation when
describing the socioeconomic impacts of rainstorms and droughts. The socioeconomic
impacts in CPSAs and China were averaged using the direct economic losses and affected
population in the given regions, respectively.
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2.2.3. Socio-Economic Data

The GDP and the population of China with a spatial resolution of 1 km were taken from
the Geographic Science and Resource Environment Data Center of the Chinese Academy of
Sciences [26,27]. The dataset covers the periods of 1990, 1995, 2000, 2005 and 2010. The data
of the remaining years within the data range were obtained via cubic spline interpolation to
ensure data continuity. Cubic spline interpolation was used to divide the data into several
segments. Each segment constructed a cubic function, and each segment function smoothly
connected with another [28]. Finally, the linear trend extrapolation method was used to
further extrapolate the post-2010 values to 2019 [29]. The CPSAs and national values were
calculated as the mean value of the grid points in the regions in which they are located.

2.3. Methods
2.3.1. Definitions of Rainstorms and Droughts

Corresponding to the two categories of disaster from the Chinese meteorological
disaster database, the following definitions were used to identify the characteristics of
rainstorms and droughts. Since all the socio-economic impact of rainstorm, floods and
mudslides were triggered by rainstorms, we mainly focused on the characteristics of
rainstorms in this study. The number of rainstorm days was defined as the number of
days with a daily precipitation exceeding 50 mm, according to the China Meteorological
Administration, which has been widely used in previous studies [30,31]. According to the
revised national meteorological drought grade standard, the daily meteorological drought
comprehensive index (MCI) was calculated by using the historical daily rainfall, the average
temperature, the maximum temperature, the minimum temperature and wind speed [32].
MCI was widely used for monitoring drought and is preferable to other indices in terms
of effect and monitoring capacity [33,34]. The number of drought days was defined as the
number of days of medium drought conditions or above (MCI < —1.5) [35,36].

2.3.2. Consumer Price Index (CPI) Standardization

The CPI reflects the movement of prices in economic operations and constitutes an
important indicator of the degree of inflation [37]. To eliminate the influence of inflation and
ensure comparable direct economic losses due to rainstorms and droughts over time, this
study selected 2019 as the base year and converted and standardized the direct economic
losses data for other years by the 2019 market value [38].

2.3.3. Assessment of the Disaster Resistance Capability

The disaster resistance capability evaluation index used in this study was the loss-to-
GDP rate (the loss-to-GDP rate is the direct economic losses caused by disasters in a certain
area compared to the GDP of that area in a given year, referred to as LGR) [39]. The lower
the percentage of the direct economic losses in a given region is, the higher its disaster
resistance capability.

2.3.4. Linear Trend Detection
In this study, the Mann-Kendall (M-K) nonparametric test method was used to assess

the trend of elements, which can reduce the influence of outliers and missing measurements
on trend estimation [40,41].

3. Spatiotemporal Characteristics of Rainstorms and Droughts
3.1. Temporal Characteristics

The average number of rainstorm days in CPSAs from 1984 to 2019 was 1.9 days/year,
ranging from 1.5 days (1997) to 2.3 days (2016) (Figure 3a). The average number of drought
days in CPSAs reached 44.6 days/year, ranging from 21.8 days (1990) to 67.3 days (2011),
(Figure 3b). The rainstorm days showed a significant increasing trend of 0.075 days/decade,
while there was no significant trend in drought days (Figure 3a,b).
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Figure 3. Time series and trend of accumulated (a) rainstorm days (days/year) (daily precipitation >
50 mm) and (b) droughts days (MCI < —1.5) (days/year) averaged over the CPSAs during 1984-2019.

3.2. Spatial Characteristics

The spatial distribution of rainstorm and drought days in the CPSAs considered
revealed distinct characteristics on both sides of the PDL. From 1984 to 2019, the number of
rainstorm days in CPSAs gradually decreased from southeast to northwest, with multi-year
average values of 3.1 and 0.3 rainstorm days in the regions to the east of the PDL and
the regions along and to the west of the PDL, respectively (Figure 4a). The number of
drought days in CPSAs also gradually decreased from southeast to northwest, and the
multi-year average number of drought days in the regions along and to the east of the PDL
and to the west of the PDL reached 50.2 and 25.2 days, respectively (Figure 4b). It could be
observed that the number of rainstorm and drought days in the regions to the east of the
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PDL decreased from east to west, and only the drought conditions in the regions along the
PDL were very severe, while the number of rainstorm and drought days in the regions to
the west of the PDL was relatively low.
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Figure 4. Spatial distribution of (a,b) annual average (days/year) and (c,d) linear trends (days/year)
of (a,c) rainstorm days and (b,d) droughts days in CPSAs during 1984-2019.

During 1984-2019, the number of rainstorm days in the Southern area of Daxing’anling
Mountains (R1), the Dabie Mountain area (R6), the West Yunnan Border Area (R9) and
the Tibetan areas in the four provinces (R14) showed decreasing trends, while the increas-
ing trends of rainstorm days in other regions of CPSAs were not statistically significant
(Figure 4c). The number of drought days increased in certain areas of the Dabie Mountain
area (R6), the Lvliang Mountain area (R3), the West Yunnan Border Area (R9), the southern
Tibetan areas in four provinces (R14) and the eastern Tibet region (R13). In contrast, the
drought days in other regions, especially in the three prefectures of southern Xinjiang (R12),
the Tibet region (R13) and the Tibetan areas in four provinces (R14), showed a significant
decreasing trend (Figure 4d).

4. Socioeconomic Impacts of Rainstorms and Droughts

In order to illustrate the affected population and direct economic losses in CPSAs,
comparisons were made between the CPSAs and the whole nation.

4.1. Affected Population

In terms of the total affected population, the average population affected by rainstorms
and droughts in CPSAs from 1984-2019 reached 34 million people/year, accounting for
22.9% of the national population affected by rainstorms and droughts, which is higher
than the national share of the population in this region (16.7%) (Figure 5a). From 1984 to
2019, both CPSAs and China’s disaster-affected population increased before 2000 and then
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decreased. The maximum occurred in 2010, reaching 90 million and 326 million, respectively.
Moreover, to identify the affected population, the ratio of the average population affected
by rainstorms and droughts to total population in CPSAs and China were 16% and 11.7%,
respectively. By contrast, the ratio in CPSAs was 1.6% and 6.8% higher than that in China
during 1984-1999 and 20002019, respectively. Notably, the affected population in CPSAs
increased after 2000.
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Figure 5. (a) Rainstorm and drought-affected population (million people) and its proportion in total
population (%), and (b) direct economic losses caused by rainstorms and droughts (billion yuan) and
its proportion in GDP (%) in CPSAs and China during 1984-2019.

As shown in Figure 6, the impact of rainstorms was more serious than droughts.
Among the fourteen regions in CPSAs, the Wuling Mountain area (R7) exhibited max-
imum occurrence of 4.804 million people/year and 2.773 million people/year affected
by rainstorms and droughts, respectively. By contrast, the Tibet region (R13) exhibited
a minimum occurrence of 0.087 million people/year and 0.048 million people/year, re-
spectively. From 1984 to 2019, the multi-year average of rainstorm and drought-affected
population in CPSAs showed different characteristics between the eastern and western
sides of the PDL (Figure 6a,b). Divided by PDL, the number of people affected by rain-
storms and droughts in the regions to the east of the PDL reached 16.4 million people/year
and 12.4 million people/year, which are 8.8 and 3.3 times higher than the population in
the regions along and to the west of the PDL, respectively. In particular, the impact of
rainstorms and droughts on the population in the regions to the east of the PDL was
particularly severe.

4.2. Direct Economic Losses

In terms of total disaster losses, the average direct economic losses resulting from rain-
storms and droughts in CPSAs reached 29 billion yuan/year from 1984-2019, accounting
for 12.6% of the total national disaster losses, which is higher than the national share of the
GDP of the region (7.7%) (Figure 5b). The direct economic losses due to rainstorms and
droughts in CPSAs and China reached a peak of 93.1 billion yuan and 633.9 billion yuan
in 1996 and 1998, respectively. The disaster-related losses in 1991, 1994, 1996, 1998, 2010,
2013 and 2016 were relatively high. To identify the extent of economic losses, the ratio of
the mean direct economic losses due to rainstorms and droughts to GDP in CPSAs and
China were 1.6% and 1%, respectively. Except for 1991, the ratio of disaster losses to GDP
in CPSAs was higher than that of in China.
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Figure 6. Spatial distribution of (a,b) disasters-affected population (million people) and (c,d) disasters-
caused direct economic losses (billion yuan) due to (a,c) rainstorms and (b,d) droughts in CPSAs
during 1984-2019.

From 1984 to 2019, the multi-year average direct economic losses resulting from
rainstorms in CPSAs also showed significantly distinct characteristics between the eastern
and western sides of the PDL. The economic losses caused by rainstorms were higher
than those caused by droughts (Figure 6¢,d). The region hit hardest by economic losses
resulting from rainstorms and droughts was the Wuling Mountain area (R7), with direct
economic losses of 7.103 billion yuan/year and 1.445 billion yuan/year resulting from
rainstorms and droughts, respectively. The Lvliang Mountain area (R3) and Tibet region
(R13) attained the lowest losses resulting from rainstorms and droughts, with losses of
0.098 billion yuan/year and 0.023 billion yuan/year, respectively. Divided by PDL, the
direct economic losses due to rainstorms and droughts in the regions to the east of the PDL
reached 20.3 billion yuan/year and 5.7 billion yuan/year, which are 9.2 and 7.4 times higher
than those in the regions along and to the west of the PDL. Notably, the disaster-related
losses in the regions to the east of the PDL were very severe.

As shown in Figure 7a, the trend of the total economic losses attributed to rainstorms
and droughts from 1984 to 2019 increased, except in the Dabie Mountain area (R6), which
showed a decreasing trend. All 13 other regions showed increasing trends, especially the
regions along and to the west of the PDL, where the disaster-related losses increased faster.
Among these areas, the Dabie Mountain area (R6), the Wuling Mountain area (R7) and the
Luoxiao Mountain area (R11) showed statistically insignificant trends, while the increasing
trends in the remaining 11 regions were significant at a confidence level of 95%.
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Figure 7. Spatial distribution of linear trends of (a) direct economic losses caused by rainstorms and
droughts and (b) disaster resistance capability over CPSAs during 1984-2019. Black dots indicate the
results are significant at a confidence level of 95%.

4.3. Disaster Resistance Capability

To identify the disaster resistance capability in each CPSA, average values of the LGR
from 1984 to 2019 were calculated in this study (Figure 8). As shown by the solid line
in Figure 8, the annual mean LGR in CPSAs is 1.1%. The LGR in the areas to the east of
the PDL was generally higher than the average and the disaster resistance capabilities
were relatively low. Among these regions, the disaster resistance capabilities in the Wuling
Mountain area (R7) and the Luoxiao Mountain area (R11) were the lowest, with the LGR
reaching 3% and 2.9%, respectively. The disaster resistance capabilities in the regions along
and to the west of the PDL were relatively high.
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Figure 8. The average GDP per capita (yuan) and loss-to-GDP rate (LGR) (%) in CPSAs during
1984-2019. The serial numbers of CPSAs are the same as Figure 1. (1. Southern area of Daxing’anling
Mountains; 2. Yanshan-Taihang Mountain Area; 3. Lvliang Mountain Area; 4. Liupanshan Area;
5. Qinba Mountain Area; 6. Dabie Mountain Area; 7. Wuling Mountain Area; 8. Wumeng Mountain
Area; 9. West Yunnan Border Area; 10. Yunnan, Guangxi and Guizhou rocky desertification area;
11. Luoxiao Mountain Area; 12. Three prefectures of Southern Xinjiang; 13. Tibet Region; 14. Tibetan
areas in four provinces).

The disaster resistance capabilities in CPSAs increased during 1984-2019, except for
the Tibet region (R13) (Figure 7b). Among fourteen regions in CPSAs, the trends in the
Yanshan-Taihang Mountain area (R2), the Lvliang Mountain area (R3), the Qinba Mountain
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area (R5), the Dabie Mountain area (R6), the Wuling Mountain area (R7) and the Luoxiao
Mountain area (R11) are significant at a confidence level of 95%. In the regions to the east
of the PDL, for example the Dabie Mountain area (R6) and the Wuling Mountain area (R7),
the resistance capabilities increased faster than other regions.

5. Summary and Discussion
5.1. Summary

The population, GDP and GDP per capita in CPSAs reached 210 million people,
1989.3 billion yuan, and 8943 yuan per person, accounting for 16.7%, 7.7%, and 46.9% of
China’s total amounts, respectively. To consolidate the achievements in the elimination
of absolute poverty in China and prevent rural populations from returning to poverty
due to meteorological disasters, this study analyzed the spatiotemporal characteristics of
rainstorms and droughts and their socioeconomic impacts in China’s CPSAs from 1984
to 2019.

The annual average rainstorm and drought days in CPSAs were approximately
1.9 days/year and 44.6 days/year, respectively. It gradually decreased from southeast
to northwest. The number of rainstorm days showed a significant increasing trend of
0.075 days/decade, while the decreasing trend of the number of drought days was not
significant. Due to rainstorms and droughts, the average annual affected population and
direct economic losses in CPSAs reached 34 million people/year and 29 billion yuan/year,
accounting for 22.9% and 12.6% of China’s total amounts, respectively. The average an-
nual loss rate due to disasters in this region reached 1.6%, which is 0.6% higher than the
national level.

Furthermore, distinct features and socioeconomic impacts of rainstorms and droughts
were identified on the southeastern and northwestern sides of the PDL along Tengchong-
Aihui in China. Droughts often impacted the regions located along the PDL, while rain-
storms and droughts occurred more frequently in the regions to the southeast of the PDL
than in the regions to the northwest of the PDL. As a result, the affected number of people
and direct economic losses due to rainstorms and droughts in the regions to the southeast
of the PDL reached 16.4 million people/year and 20.3 billion yuan/year, and 12.4 million
people/year and 5.7 billion yuan/year, which were 8.8, 9.2, 3.3 and 7.4 times higher than
those in the regions to the northwest of the PDL. Although there were more affected people
and higher direct economic losses due to rainstorms and droughts in the regions to the east
of the PDL, the disaster resistance capabilities were significantly improved. In contrast, the
regions to the northwest side of the PDL showed a significant increasing trend of losses
with relatively low disaster resistance capabilities.

5.2. Discussion

From the perspective of rainstorms and droughts, drought conditions were more
severe in regions along the PDL, and both rainstorms and droughts were relatively severe
in the regions to the east of the PDL. In addition, the number of rainstorm days significantly
increased in the entire study area. Rainstorm-induced disasters became increasingly serious,
and only the number of rainstorm days in the Southern area of Daxing’anling Mountains
(R1), the Dabie Mountain area (R6), the West Yunnan Border Area (R9) and the southern
part of the Tibetan areas in four provinces (R14) showed a decreasing trend. The number
of drought days decreased in the entire study area, especially the drought conditions in
the three prefectures of southern Xinjiang (R12), the Tibet region (R13) and the Tibetan
areas in four provinces (R14), whereas the drought conditions in the West Yunnan Border
Area (R9) and the southern part of the Tibetan areas in four provinces (R14) and the
number of drought days in the West Yunnan Border Area (R9), the southern Tibetan areas
in four provinces (R14) and the eastern Tibet region (R13) notably increased.

According to a comprehensive analysis of the direct economic losses, economic level
and disaster resistance capabilities in CPSAs, the disaster-related losses significantly in-
creased, and at a higher rate than that of the regions to the east of the PDL, while the
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disaster resistance capabilities did not increase significantly. The situation in the regions
to the east of the PDL was the opposite, with high disaster losses but at a lower rate, and
the disaster resistance capabilities were improving. The disaster resistance capabilities in
the Lvliang Mountain area (R3), the Liupan Mountain region and the three prefectures of
southern Xinjiang (R12) were satisfactory, although the GDP per capita was slightly lower
than that in the other regions. It is worth noting that the disaster resistance capabilities
in the Yanshan-Taihang Mountain area (R2), the Wuling Mountain area (R7), Yunnan, the
Guangxi and Guizhou rocky desertification area (R10) and the Tibet region (R13) were rela-
tively low. The GDP per capita in these 4 regions is higher than that of other regions, their
cost in disaster prevention and reduction might be relatively low (Figure 8). These regions
should enhance the disaster prevention consciousness and increase investment in disaster
reduction and prevention facilities. Meanwhile, the number of affected population due to
rainstorms and droughts in CPSAs showed a remarkable increase after 2000 (Figure 5a).
This might be ascribed to the increase in rainstorm days and population exposed to the
disasters since the population in CPSAs increased after 2000, with a growth of 39.7% rel-
ative to 1984-1999 (Figure 2a). Therefore, the government should take the occurrence of
rainstorms and droughts into consideration during urban planning and land use planning
in CPSAs to reduce the exposure and risk of population and economy to disasters.

For a long time, the international community has paid great attention to the relation-
ship between poverty and natural disasters. For example, the reduction of rainfall has
slowed the economic growth of sub-Saharan Africa [42]. Climate change has plunged 6.5%
of the population of Latin America into poverty and vulnerability [43]. Previous studies
have reported that disasters will aggravate poverty and recovery is not straightforward
for poor people [44]. Under global warming, the frequency and intensity of rainstorms
and droughts might increase significantly over CPSAs [6,7]. Correspondingly, the average
annual direct economic losses due to rainstorms is expected to be 4 times and 17 times
higher than it is currently under global warming of 1.5 °C and 4.0 °C [45]. As the relatively
poor area in China, it is necessary to pay close attention to the socio-economic impact and
risks of rainstorms and droughts over CPSAs in the future. Hence, the above-mentioned
regions with high GDP per capita but low disaster resistance capabilities should strengthen
their awareness of disaster prevention and mitigation, enhance early warnings and disaster
relief inputs in response to meteorological disasters, and improve the disaster resistance
capabilities to meet climate change challenges. This is an important part of consolidating
China’s gains in poverty eradication and further contributing to the realization of SDGs.
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Abstract: Severe air pollution in China has caused significant tourism transformation for pursuing
fresh air in microclimate tourism markets. Contemporary practices simply measure the air freshness
of destinations and scenic spots using a single index, i.e., primarily negative oxygen ions (O, ™). This
index cannot comprehensively reveal scenic spots” air freshness degree and determine the dynamic
interactions between air freshness and scenic spots” tourism development, thus inducing an illusion
of air freshness for the target scenic spots. Meanwhile, the current fresh air index primarily ignores
connections with the microclimate index of scenic spots and cannot provide a multidimensional
index for scenic spots to take advantage of both air and microclimate resources for diverse tourism
products and service production. Therefore, this study proposes a multidimensional index, the fresh
air-natural microclimate comfort index (FAI-NMCI), connecting the fresh air index with the natural
microclimate comfort index of scenic spots together from transdisciplinary and multidisciplinary
perspectives. This study utilizes FAI-NMCI to measure four scenic spots of Fujian Province, and
reveals in-depth results of scenic spots’ air freshness and natural microclimate comfort degree together.
The results demonstrate that the four scenic spots in Fujian province of China had different levels
of air freshness degree and natural microclimate comfort degree in 2018. The natural scenic spots
were mostly distributed in Healing Fresh, Very Fresh, and Super Fresh levels of FAI with the most
comfortable and comfortable levels of NMCI. The cultural scenic spots were mostly distributed
in Relatively Fresh and Healing Fresh levels of FAI with the most comfortable and comfortable
levels of NMCIL. Meanwhile, the FAI-NMCI of natural and cultural scenic spots also had significant
differences within 24 Jieqi, which will promote dynamic and creative utilization of those resources in
microclimate tourism development.

Keywords: fresh air index; natural microclimate comfort index; fresh air-natural microclimate
comfort index; scenic spots; Fujian province

1. Introduction

Air pollution influences tourists” and residents’ (potential tourists’) health, which will
directly or indirectly affect demand in the tourism market [1]. Exposure to air-polluted
environments leads to various health problems [2], such as respiratory infections [3,4],
asthma [5,6], stroke, and even lung cancers [7]. Additionally, air pollution, especially fog
and haze pollution, also impacts the psychological health [8,9] and mental disorders [10]
of tourists and potential tourists, which directly increases healthcare expenditures [11],
health costs [12], and other socioeconomic burdens [13,14] and socioeconomic costs [15] for
tourists and local residents. Meanwhile, the factors of natural microclimate and the comfort
of the natural microclimate as a whole also influence tourists” decision-making for specific
destinations or scenic spots, impacting tourists’ behavior and the constant and dynamic
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tourist flow [16] from one region to another because of dynamic natural microclimate
changes [17,18]. Under an air pollution background, the increasing fresh air demand of
tourists in China has attracted tourists to destinations with fresh air to experience comfort in
natural microclimates. Fresh air and natural microclimate together provide friendly, healthy,
and comfort natural tourist attractions in the contemporary Chinese tourism market. Air
freshness and microclimate comfort degree together as vital environmental information
have significantly influenced tourists, destination and scenic spot management, as well as
tourism market development, which has seldom been explored by contemporary research
and practice.

Actually, the most popular index for measuring air freshness and air quality is the
air quality index (AQI), which utilizes primary air pollutant components such as PM, 5,
PM;g, SO, NO,, CO, or O3 to measure air quality. AQI studies have developed according
to specific research purposes or considering practical utilization; for example, many studies
have explored relationships between the AQI and years of life lost [19] and the aggregated
effects of internal indicators at a short-term scale [20]. However, AQI reveals the degree of
air pollution situations of cities or some air-polluted areas, such as factories or streets, rather
than scenic spots. It also neglects the degree of air freshness through adding indicators
of O, to measure the health and beneficial degree of fresh air [21]. Moreover, current
studies of the fresh air index primarily utilize singular indicators, only O, ~, to measure air
freshness, without considering air pollutants” influence on the comprehensive air freshness
degree [22].

For the natural microclimate of scenic spots, many studies primarily utilize one index
or two indexes to analyze and reveal the natural microclimate comfort degree, which can
mainly be summarized as the temperature-humidity index (THI) [23], wind-cold index
(WCI) [24], index of cloth loading (ICI) [25], and human comfort index (HCI) [26]. However,
it is vital to note that current indexes do not consider rain factors to measure the influence
of rain volume on the comfort degree, which provides an opportunity to establish a rain
comfort index and construct a new comprehensive index including all primary factors of
the natural microclimate of scenic spots. Additionally, the natural microclimate comfort
degree of scenic spots has seldom been integrated with the fresh air index in contemporary
studies due to a lack of comprehensive air freshness data and natural microclimate factor
data at the same time, along with the existence of some research barriers.

Integration embraces the power to reveal the actual distribution of real scenic spot air
freshness and natural microclimate resources. Based on individual economic development
trends of different places, it is essential to point out that the air freshness degree of scenic
spots needs to be classified according to WHO standards [27] and actual situations together,
which calls for stricter standards of fresh air, with gradual improvement in standards. For
more in-depth exploration and development of scenic spots with fresh air and natural
microclimate tourism resources, it is indispensable to classify different levels or add more
actual levels of air freshness degree and natural microclimate degree in future research
because the current classification needs to be developed based on more accurate research.

For sustainable development of destinations and scenic spots with fresh air and natural
microclimate comfort resources, this paper establishes a fresh air index (FAI) based on com-
prehensive identification of fresh air components and the index construction methods and
experiences of AQI, constructs natural and cultural FAI according to the different threshold
standards, and creatively constructs a natural microclimate comfort index of scenic spots
through taking advantage of the current index and adding a rain comfort index, connecting the
fresh air index (FAI) and the natural microclimate comfort index (NMCI) together to assess the
air freshness degree of destinations and the natural microclimate comfort degree. For in-depth
air and microclimate resource distributions in the tourism market, this paper proposes an
improved fresh air-natural microclimate comfort index to systematically analyze fresh air
resources and natural microclimate comfort resources together in Chinese scenic spots by
classifying seven levels of the fresh air index (FAI) and seven levels of the natural microclimate
comfort index (NMCI). Based on the comparative advantages of embracing relatively fresher
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air, this paper takes four scenic spots of Fujian Province, China, as an example and analyzes
the natural and cultural scenic spots’ fresh air-natural microclimate comfort degree to promote
the sustainable utilization and development of fresh air and natural microclimate comfort
resources in the microclimate tourism market.

2. Materials and Methods

This study utilizes the comprehensive index construction method to construct one
fresh air-natural microclimate comfort index (FAI-NMCI), then creatively applies this index
to four scenic spots of Fujian Province to reveal the actual air freshness and microclimate
comfortable degree at the same time.

2.1. Methodology of Fresh Air-Natural Microclimate Comfort Index Construction and Evaluation
2.1.1. Definition and Essence of Fresh Air

Different from polluted air, fresh air not only contains basic air components and air
structures, but also contains more beneficial air components, such as negative oxygen ions
(O27), which are also treated as “air vitamins” for promoting human health [28,29] and
include no harmful, or less harmful air components, such as PM; 5, PMjg, SO, NO,, CO,
or Oz, that are harmless standards. Therefore, fresh air has beneficial and no harmful
characteristics and can be simply defined and summarized as follows:

Fresh air (FA) = beneficial air components (BAC) + no harmful air components (NAC)

According to the aforementioned analysis, fresh air could be summarized as having
health essences from protecting and promoting human health perspectives, which could be
represented by a higher concentration of healthy air components and a lower concentration
of polluted air components.

In this study, negative oxygen ions (O, ) were adopted to represent beneficial air
components and were selected to reveal general nonharmful air components that severely
caused air pollution in China. SO, NO,, CO, or O3 was chosen to represent local special air
contaminants in different regions of China. Therefore, to illustrate fresh air in specific scenic
spots of China, this study constructed a fresh air structure with selected air components,
which can be summarized as follows:

Fresh Air = Beneficial Air Components (O, ™) + No Harmful Air Components {PM; 5+PM;(+(SO2, NO,, CO or O3)}

2.1.2. Improved Fresh Air Index of Natural and Cultural Scenic Spots

We compared the contemporary single-factor fresh air index of Fujian, Hubei, and
Zhejiang provinces of China, utilizing only negative oxygen ion (O, ) degree and PM; 5,
to assess scenic spots” air freshness (Table 1). The Meteorological Service Center of Fujian
Province, China, and the authors of this paper have creatively proposed a comprehensive
fresh air index by considering both the healthy air component factor negative oxygen ion
(O77) and the low degrees of PMj 5 and PM as general polluted air components that exist
in different regions of China, and NO,, SO,, CO, and Og as particular air pollutant factors in
specific regions of China, determined by local geological and economic structure features.

The subindices of the beneficial air component IFAIB are expressed as the ratio of
the negative oxygen ion (O,~) concentration to the 24 h average standard O, level
(1000 ions/cm?) (Table 2) recommended by the World Health Organization Air Quality
Guidelines for fresh air [30-32]. That is, IFAlg can be written as:

IFAIg = S (1)
S
where IFAIp represents the subindices of the beneficial air component in scenic spots, Cg
represents the negative oxygen ion (O, ™) concentration of scenic spots, and Sg represents
the 24 h average standard O~ level (1000 ions/cm?®) of scenic spots.
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Table 1. Comparison of methods and classification of air freshness in different provinces of China.

PM;, 5 O, Concentration .
Measurement Method Levels Concentration (ug/m®) (N Tons/cm®) Level Evaluation
Level 1 <35 1500 < N Very Fresh
Measurement method Level 2 <35 1000 < N < 1500 Fresh
of fresh air in Fuiian Level 3 <35 500 < N < 1000 Relatively Fresh
) Level 4 <35 100 < N <500 General
Level 5 <35 0<N <100 Not Fresh
Level 1 <35 1200 < N High Concentration, Air Fresh
Measurement method Level 2 <35 500 < N <1200 ng}l;glzgfzeelftr;?e(;?{ Air
of fresh air in Hubei Middle Concei,\tration Air
Level 3 <35 300 < N < 500 ’
Generally Fresh
Relatively Low Concentration,
< <
Level 4 <35 100 < N <300 Air Relatively Not Fresh
Level 5 <35 0<N <100 Low Concentration, Air Not Fresh
Level 1 <35 0<N<50 Not Fresh
Level 1 <35 50 < N < 200 Not Fresh
Level 1 <35 200 < N <500 Not Fresh
Measurement method Level 2 <35 500 < N <900 General
of fresh air in Zhejiang Level 3 <35 900 < N < 1200 Relatively Fresh
Level 4 <35 1200 < N < 1800 Fresh
Level 5 <35 1800 < N < 2100 Fresh
Level 6 <35 >2100 Very Fresh

Table 2. Standard concentration degree of indicators of fresh air components.

Concentration Degree

Dimension Indicators Average Time Unit
I 1I
Beneficial Air Negative Oxygen Ion (O, 7) 24 h mean 1000 1000 ions/cm?
Components & V8 2 !
Sulfur Dioxide (SO,) 24 h mean 50 150 3
, — Hg/m
Nitrogen Dioxide (NO,) 24 h mean 80 80
No Harmful Air Carbon Monoxide (CO) 24 h mean 4 4 mg/m?
Components Ozone (O3) day maximum 8 h mean 100 160
Particulate Matter 10 (PM1q) 24 h mean 50 150 ug/ m3
Particulate Matter 2.5 (PM; 5) 24 h mean 35 75

Notes: Data source from Ambient Air Quality Standards of China (GB3095-2012). The category I region used I
concentration degree, and the category II region used II concentration degree. The category I region is the place of
natural conservation, famous scenic spots, and other special conservation regions that need special protection.
The category II region is the residential regions, the mixed region with commercial, transportation, and residents,
the cultural regions, industrial regions, and rural regions.

The subindex IFAIp; of nonharmful air components is expressed as the negative ratio
of air pollutant concentrations, Cp;, to the recommended short-term Ambient Air Quality
Standards of China (GB3095-2012) [33], Sp;. That is, IFAl,; can be written as:

[FAL; — — P @)
P TS
where IFAL,; represents the subindices of no harmful air components in scenic spots, Cp;
represents air pollutant concentrations of scenic spots, and Sp; represents the recommended
short-term air pollutant concentration standards of scenic spots.

The short-term Ambient Air Quality Standards of China [34] used in natural scenic
spots are defined as concentrations with average times of 24 h means of 50 j1g/m? for PMjy,

232



Sustainability 2022, 14,1911

35 pg/m3 for PM, 5, 50 p.g/m3 for SO,, 80 p.g/m3 for NO,, and 4 rng/m3 for CO, and
running an 8 h mean of 100 pg/ m3 for O3. The short-term Ambient Air Quality Standards
of China used in cultural scenic spots are defined as concentrations with average times of
24 h means of 150 pg/m3 for PMyg, 75 ug/m3 for PM, 5, 150 pg/m3 for SO,, 80 ug/m3
for NO,, and 4 mg/ m? for CO, and running an 8 h mean of 160 ug/ m3 for O3. The24 h
average standard O, ~ level recommended by the World Health Organization Air Quality
Guidelines for fresh air is 1000 ions/cm? in category I and II regions (Table 2).

The natural and cultural fresh air index is the sum of IFAIB and the sum of subindices
of no harmful air components, IFAIp;, which can be written as:

FAI = IFAIg + ) "IFAI,; = ) IFA; ®)

where FAI refers to the fresh air index, IFAIp refers to subindices of beneficial air compo-
nents, ) IFAL,; indicates the sum of subindices of no harmful air components, and ) IFAI;
indicates the sum of subindices of fresh air components j.

The classifications of natural and cultural FAIs of scenic spots and their levels were
explored in this paper. According to Table 1, the FAI of natural scenic spots utilizes category
I region standards to further explore different threshold levels, while the FAI of cultural
scenic spots utilizes category II region standards (Table 2).

According to the China Industrial Technical Regulation on Grade of Air Negative
(Oxygen) Ion Concentration (QX/T 380-2017) [32] and Local Technical Regulation on Grade
of Air Negative (Oxygen) Ion Concentration of Hubei Province (DB42/T 1198-2016) [30],
the concentration degree of negative oxygen ion (O,~) increase per 500 ions/cm? will
enhance air freshness and have a beneficial influence on human health.

According to the World Health Organization (WHO) air freshness grading standard of
the negative oxygen ion index, when 1800 < O, < 2100, O, has natural healing power,
and when O, > 2100, it has therapeutic and rehabilitation effects [35]. Therefore, on
the basis of a higher standard than the WHO standard for negative oxygen ion therapy,
this paper proposes that when 2500 < O,~ < 3000, PM; 5, PMjg, O3, NO,, SO, and CO
decreased in proportion, and the air freshness degree is at the Healing Freshness Level, the
resulting air freshness level of the scenic spot reaches the healing standard. Then, when
3000 < O, < 3500 and when O, > 3500, the air could have a more active influence on
human health, which could further promote the air freshness degree to very fresh and
super fresh levels.

According to the World Health Organization Air Quality Guideline (WHO AQQG), a
PM, 5 and PM; decrease of 5 ug/ m? will reduce mortality risk by approximately 3% [31],
an O; decrease of 5 pg/m? will reduce daily mortality by approximately 0.12-0.25% [31],
an SO, decrease of 5 pg/m? will reduce daily mortality by approximately 0.09-0.29% [31],
a CO decrease of 0.5 mg/ m? will also reduce mortality risk or health risk [31], and an NO,
decrease of 5 ug/ m? will reduce daily mortality by approximately 0.29% [36].

This paper further classifies the FAI threshold range of natural and cultural scenic
spots according to the different standards of natural and cultural scenic spot air quality
standards in China and the WHO standards, which are summarized in Tables 2 and 3,
respectively. The air freshness degree of natural and cultural scenic spots could be classified
into seven levels: Not Fresh, General, Fresh, Relatively Fresh, Healing Fresh, Very Fresh,
and Super Fresh (Tables 3 and 4).

2.1.3. Improved Natural Microclimate Comfort Index

It is obvious that those indices usually assess two or three factors of natural microcli-
mate, such as THI analyzes temperature and humidity factors, WCI analyzes wind and
temperature factors, ICI analyzes wind, temperature, and solar radiation factors, and HCI
analyzes temperature, humidity, and wind factors. Therefore, it is a trend in Chinese
tourism research to utilize the indices mentioned above to comprehensively analyze the
degree of natural microclimate comfort in tourists’ destinations [37-40]. However, there
is also a lack of consideration of the influence of precipitation factors on the degree of
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natural microclimate comfort in contemporary Chinese tourism research. According to
climate comfort analysis of scenic spots, when precipitation < 1.0 mm, there is nearly no
influence on tourists. When precipitation < 3.0 mm, it is within tourists’ precipitation
comfort range, which will provide a rainfall microclimate for tourists to experience and
appreciate rainfall scenery in scenic spots, while when precipitation > 10.0 mm, tourism will
decrease dramatically because large volumes of rainfall make tourists feel uncomfortable
and cause them to stop tourism activities and leave scenic spots [41].

Table 3. Threshold range of natural scenic spot FAI levels.

SB Spi FAI (Fresh Air Index)
0, PM, 5 PM;, 03 SO, NO, cO In Natural Scenic Spot Levels
(Ion/em®)  (pg/m®)  (ug/m®)  (ug/m3)  (ug/md) (ug/m®) (mg/m?)
>3500 <10 <25 <75 <25 <55 <15 FAL >2 Super Fresh
3000 15 30 80 30 60 2 1.2 <FAI<2 Very Fresh
2500 20 35 85 35 65 25 04 <FAI<12 Healing Fresh
2000 25 40 90 40 70 3 —0.4 <FAI <04 Relatively Fresh
1500 30 45 95 45 75 3.5 —12 <FAI<-04 Fresh
1000 35 50 100 50 80 4 —2<FAI<-12 General
<1000 >35 >50 >100 >50 >80 >4 FAI < -2 Not Fresh
Table 4. Threshold range of cultural scenic spot FAI levels.
SB Spi FAI (Fresh Air Index)
0, PM,5 PM;, 03 SO, NO, co In Cultural Scenic Spot Levels
(Ion/em®)  (ug/m®)  (ug/m®)  (ug/m3)  (ug/m®) (ug/m®) (mg/m?)
>3500 <25 <75 <85 <75 <55 <15 FAI > 2.14 Super Fresh
3000 35 90 100 90 60 2 1.31 <FAI<214 Very Fresh
2500 45 105 115 105 65 25 0.48 < FAI <1.31 Healing Fresh
2000 55 120 130 120 70 3 —0.35 < FAI <048 Relatively Fresh
1500 65 135 145 135 75 35 —1.17 < FAI < —-0.35 Fresh
1000 75 150 160 150 80 4 —2 <FAI<-1.17 General
<1000 >75 >150 >160 >150 >80 >4 FAI < -2 Not Fresh

Therefore, this paper proposes a rain comfort index (RCI) to assess the comfort degree to
which different volumes of rainfall influence tourists in scenic spots. The RCI refers to the
influence of rainfall on the extent of human comfort in a natural microclimate environment.
According to the Chinese grade of precipitation standard (GB/T 28592-2012) and considering
tourism activities usually within a 12 h range, this paper chose a 12 h precipitation standard
to measure rainfall levels; that is, drizzle < 0.1 mm, light rain 0.1~4.9 mm, moderate rain
5.0~14.9 mm, and heavy rain 15.0~29.9 mm. Based on the above analysis, this paper defined
the comfort range of precipitation as between 0.1 (drizzle) and 10.00 mm (moderate rain) for
tourists in scenic spots and then constructed the RCI as follows:

RCI = R/R,

where RCI refers to the rain comfort index, R refers to actual rainfall, and Ry refers to
standard rainfall, that is equal to 0.1 mm (drizzle) in this paper. Then, seven levels of RCI
of different comfort degrees were classified, which are summarized in Table 5.

By considering all factors of the natural microclimate, this paper proposes the natural
microclimate index (NMCI):

THI + WCI + ICI + HCI 4 RCI
5

NMCI =
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Table 5. Threshold range of RCI levels.

RCI Levels RCI

Very Uncomfortable >100
More Uncomfortable 80 < RCI < 100
Relatively Uncomfortable 60 < RCI <80

Comfortable 0 <RCI<30

Relatively comfortable 30 <RCI<40
Less comfortable 40 < RCI <50
Uncomfortable 50 < RCI < 60

By assessing each subindex of the NMCI (THI, WCI, ICI, HCI, RCI) and defining them
into their own comfort levels, the results are summarized in Table 6. For subindices of
NMCI, such as THI, WCI, ICI, HCI, and RCI, which have their own levels of standards
and classification patterns, it is essential to standardize each subindex of NMCI for further
calculation of NMCI. This paper summed up and calculated their average comfort levels
through reclassifying each subindex of NMCI into seven levels (d, ¢, b, A, B, C, D) and
assigning values (thatis,d =2,c=3,b=4, A=5,B=6,C=7,D =8). Then, the average
THI + WCI + ICI + HCI + RCI/5 value was calculated to determine the final levels of NMCI
in Table 7.

When 5 < NMCI < 6, the NMCI is at the most comfortable level; when 4 < NMCI < 5,
the NMCl is at the comfortable (cool comfort) level; when 6 < NMCI < 7, the NMCl is at the
comfortable (warm comfort) level; when 3 < NMCI < 4, the NMCl is at the less comfortable
(cold less comfortable) level; when 7 < NMCI < 8, the NMCI is at the less comfortable
(hot less comfortable) level; when 2 < NMCI < 3, the NMCl is at the uncomfortable (very
cold uncomfortable) level; when NMCI > 8, the NMCl is at the uncomfortable (very hot
uncomfortable) level (Table 7).

2.1.4. Combined Fresh Air-Natural Microclimate Comfort Index

After the construction of the fresh air index (FAI) and the natural microclimate comfort
index (NMCI), this paper comprehensively constructed a parallel fresh air-natural microcli-
mate index for assessing the air freshness degree and natural microclimate comfort degree
of specific scenic spots in China. This approach utilizes the fresh air index and natural
microclimate comfort index to analyze scenic spots and then connects them together to
explore fresh air and natural microclimate tourism resources in depth (Table 8).

2.2. Data Source

This study chose four fresh air index monitoring stations within four scenic spots of
Fujian Province, China. That is, the Pingnan Baishuiyang-Yuanyang Brook Scenic Spot
in Ningde City, the Gutian Conference Site Scenic Spot in Longyan City, the Yongding
earth building (Tulou) Scenic Spot in Longyan City, and the Wuyi Mountain Scenic Spot in
Nanping City (Figure 1 and Table 9).

Pingnan Baishuiyang-Yuanyang Brook Scenic Spot is a natural scenic spot. It has a
total area of 66 square kilometers, integrating streams, peaks, rocks, waterfalls, caves, lakes,
and other landscapes. There are more than 10 kinds of national protected animals, such
as Silver Pheasant, Python, and Pangolin, which are found in the “Natural Animal and
Botanical Garden” (Figure 1 and Table 9).

Gutian Conference Site Scenic Spot is a cultural scenic spot. It is located in the south
of Meihua Mountain, with a planned area of 7.6 square kilometers. In October 2015, it
was successfully promoted to a national 5A tourist attraction and won the honorary titles
of “National Top Ten Excellent Patriotism Education Bases” and “National Red Tourism
Classic Scenic Spots” (Figure 1 and Table 9).
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Table 7. Threshold range of NMCI Levels.

Value Range Levels

2 < NMCI<3 Very cold uncomfortable

3 < NMCI<4 Cold less comfortable

4 <NMCI <5 Cool comfort

5 <NMCI<6 The most comfortable

6 <NMCI<7 Warm comfort

7 <NMCI <8 Hot less comfortable
NMCI > 8 Very hot uncomfortable

Table 8. Threshold range of FAI-NMCI Levels.

FAI Value Range
in Cultural
Scenic Spot

FAI Value Range
in Natural
Scenic Spot

FAI > 2.14
1.31 <FAI<2.14
0.48 <FAI <131
—0.35 < FAI < 0.48
—1.17 < FAI < —-0.35
—2 <FAI<-1.17
FAI < -2

FAI > 2
12 <FAI<2
04 <FAI<12
—04 <FAI <04
—12 < FAI< —04
2 <FAI<-12
FAI< -2

FAI Levels NMCI Value Range NMCI Levels
Super Fresh 2 <NMCI<3 Very cold uncomfortable
Very Fresh 3<NMCI<4 Cold less comfortable
Healing Fresh 4 < NMCI<5 Cool comfort
Relatively Fresh 5<NMCI<6 The most comfortable
Fresh 6 <NMCI<7 Warm comfort
General 7 <NMCI < 8 Hot less comfortable
Not Fresh NMCI > 8 Very hot uncomfortable
Wuyi  Mountain
Scenic Spot in
Nanping City

Gutian Conference

Site Scenic Spot in

Longyan City
Yongding Tulou
Scenic Spot in
Longyan City

b
(Fresh Air Monitoring Station)

Pingnan
Baishuiyang-Yuanyang
Brook Scenic Spot in
Ningde City

Figure 1. The four scenic spots and their monitoring stations in Fujian Province, China.
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Table 9. Four scenic spots and their location information.

Scenic Spots Site Number  Longitude Latitude Altitude Located City Located Specific Site
Wuyi Mountain Scenic Spot F9269 117.96245 27.6677 408 Nanping City Wuyi Mountain
Gutian Conference Site Scenic Spot F7490 116.8376 25.2261 730 Longyan City Gutian County
Pingnan Baishuiyang-Yuanyang . . S
Brook Scenic Spot F3749 119.058 27.0736 679.2 Ningde City Ping'nan County
Yongding earth building (Tulou) F7590 117.015 24.667 431 Longyan City Yongding County

Scenic Spot

Yongding earth building (Tulou) Scenic Spot is a cultural scenic spot. It is a unique
magical mountain residential building. It has a long history, unique style, large scale, and
exquisite structure. In July 2008, it was successfully listed in the world heritage list (Figure 1
and Table 9).

Wuyi Mount Scenic Spot is a natural scenic spot. It is located at the junction of Jiangxi
and northwest Fujian Provinces and at the southeast foot of the north section of Wuyi
Mountain vein, with a total area of 999.75 square kilometers. It is a famous scenic spot and
summer resort in China (Figure 1 and Table 9).

Since the PMj 5, PMj, and Oj standards in natural and cultural scenic spots have
different regulations in practice, this paper attempts to establish natural and cultural scenic
spot FAIs to distinguish air freshness evaluations. In addition, natural and cultural scenic
spots have different environmental backgrounds and social interaction intensities, which
will significantly influence the air freshness degree of scenic spots. Meanwhile, for tourists,
the fresher the air in scenic spots, the better the traveling experience, so they could utilize
the FAI of natural scenic spots to measure all scenic spots in practice. For destination
and scenic spot management, it is vital to distinguish the difference between natural and
cultural scenic spots and to evaluate the related and compared freshness within natural
scenic spots and cultural scenic spot categories. This paper chose the Wuyi Mountain
scenic spot and Baishuiyang scenic spot as natural scenic spots of Fujian Province and the
Yongding Tulou scenic spot and Gutian Conference Site scenic spot as cultural scenic spots
of Fujian Province.

According to local air characteristics, Os is a special air component that influences
the local air freshness of Fujian Province. Therefore, data on four indicators, O, ~, PM; 5,
PM;p, and O3, from 1 January to 31 December 2018 were collected. Temperature, relative
humidity, wind speed, solar radiation, and precipitation data of the four scenic spots were
collected from 1 January to 31 December 2018. Therefore, this paper utilized negative
oxygen ion (Oy ), PM; 5, PMyg, and O3 data for each day of 2018 of the four scenic spots
to calculate their fresh air index (FAI). Then, temperature, relative humidity, wind speed,
solar radiation, and precipitation data were utilized on each day of 2018 to calculate the
natural microclimate comfort index (NMCI) of the four scenic spots.

The data for natural microclimate factors were collected from the National Meteoro-
logical Information Center of China (http://data.cma.cn/, accessed on 1 February 2022)
and provided by the Fujian Meteorological Service Center, China (http://fj.cma.gov.cn/,
accessed on 1 January 2022), and the data for fresh air index subindices were provided
by the Fujian Meteorological Service Center, China (http://fj.cma.gov.cn/, accessed on
1 January 2022). The data were generated from the four scenic spots” microclimate and
air freshness index monitoring equipment. More precisely, one set of negative oxygen
ion monitoring stations (model HuaTron FR500) and one set of air index stations (model
HuaTron AEI365) were built in the above four scenic spots (Figure 1 and Table 8).

3. Results
3.1. FAI-NMCI of Natural Scenic Spots

In the Wuyi Mountain scenic spot, the FAI levels were mainly distributed in the upper
levels; for example, the Super Fresh level was approximately 164 days (accounting for 47%),
the Very Fresh level was approximately 67 days (accounting for 19%), and the Healing
Fresh level was approximately 56 days (accounting for 16%), which was approximately
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287 days in 2018, accounting for almost 82% (Figure 2A). Meanwhile, the NMCI primarily
included three levels. The comfortable level was approximately 246 days (accounting for
67%), which also embraced the cool comfort level (168 days, 46%) and the warm comfort
level (78 days, 21%). The most comfortable level was approximately 116 days (accounting
for 32%), while the less comfortable level was approximately 3 days (accounting for only
1%) (Figure 2B). Therefore, in the Wuyi Mountain scenic spot, the FAI-NMCI was mainly
distributed within the upper fresh-comfort range, which was approximately 246 days of
upper freshness levels and 362 days of comfort in 2018 (Figure 2A,B).

— General, 2, 1% A

. 1{5%

Healing Fresh, 56. ra Not Fresh, 1, 0% The

16% 4 Comfor
Less Comfortable; — =——
3.1%
Fresh® General® Healing Fresh® Not Fresh® Relatively Fresh® Super Fresh® Very Fresh ® Less Comfortable ® The Most Comfortable ® Cool Comfortable ® Warm Comfortable
Very Fresh, 36,
10% c — D
Super Fresh. 51.
P Fresh, 86, 25% G
C
L ‘Warm
Comfortable, 68,
19%
Not Fresh. 10, Less Comfortable, 15, 4%
3%
Fresh® General @ Healing Fresh® Not Fresh® Relatively Fresh® Super Fresh® Very Fresh ® Less Comfortable ® The Most Comfortable ® Cool Comfortable ® Warm Comfortable

Figure 2. FAI and NMCI levels of Wuyi Mountain (A,B) and Baishuiyang scenic spot (C,D) of Fujian
Province, China.

In the Baishuiyang scenic spot, the FAI levels were distributed from the Not Fresh
level to the Super Fresh level. More precisely, the Fresh level was approximately 86 days
(accounting for 25%), the Relatively Fresh level was approximately 74 days (accounting for
21%), the Super Fresh level was approximately 51 days (accounting for 15%), the Healing
Fresh level was approximately 40 days (accounting for 11%), and the Very Fresh level was
approximately 36 days (accounting for 10%), which indicated the dynamic fluctuation of
FAI in the Baishuiyang scenic spot, and the FAI reached or exceeded the Fresh level for
approximately 287 days, accounting for approximately 78.63% (Figure 2C). At the same time,
the NMCI was mainly distributed at the comfortable level (185 days, 51%), among which the
cool comfort level was 117 days (accounting for 32%) and the warm comfort level was 68 days
(accounting for 19%). Meanwhile, the most comfortable level was also in a large proportion
(45%) and was approximately 165 days. The less comfortable level was approximately 15 days
and accounted for 4% (Figure 2D). Therefore, in Baishuiyang scenic spot, the FAI-NMCI was
mainly distributed within the middle fresh-comfort range, which was approximately 160 days
of middle freshness and 185 days of comfort in 2018 (Figure 2C,D).

In Wuyi Mountain scenic spot, the FAI mainly fluctuated between —2.69 and 32.7, that
is, it fluctuated between Not Fresh and Super Fresh levels. The NMCI mainly fluctuated
between 3.6 and 7.2, that is, it fluctuated between cold less comfortable and hot less
comfortable levels. Within the whole year of 2018, from January to April, the NMCI
gradually increased from 4 to 5 (in the cool comfort level), while the FAI was mostly more
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than 5 (in the Super Fresh level) in the second half of January, decreased dramatically
to —1.87 (in General level) in early February, then slightly increased to Relatively Fresh,
Healing Fresh, and Very Fresh levels, and some Super Fresh levels, which also fluctuated
in this period. From May to the first half of July, the NMCI increased from 5 to 6 and 6 to
7, which generally entered into the most comfortable level and increased into the warm
comfort level in this period, which fluctuated mainly within these two levels; meanwhile,
the FAI mainly fluctuated between Fresh and Super Fresh levels and reached the highest
FAI of approximately 3.7 in June, which was more than the threshold value of Super Fresh
(FAI > 2) by approximately 16.35 times. From the second half of July to the first half
of September, the NMCI remained at the warm comfort level, while the FAI decreased
gradually from more than 5 to lower than 3, although it was also mainly within the Super
Fresh level. Then, the FAI increased to more than 5 in the second half of August and
increased to more than 20 in the first half of September. From September to October, the
NMCI decreased gradually from the warm comfort level to the most comfortable level,
while the FAI also decreased to lower levels, such as the Fresh level and Relatively Fresh
level, although some days reached the Healing Fresh level and Very Fresh level. When
entering November and December, the NMCI decreased from 5 to lower than 4, which
is a decrease from the cool comfort level to the cold less comfortable level, while the FAI
increased gradually to the Super Fresh level in the middle of November and then decreased
dramatically in the second half of November and the first half of December. When the
NMCI decreased to the cold less comfortable level in December, the FAI fluctuated, while
most fluctuated between the Healing Fresh and Super Fresh levels (Figure 3A).

M, -

M3 s snlen 1N

Scemic Spot . F Al in Baishuiyang Scenic Spot —— NM( Baishuiyang Scenic Spot

Figure 3. FAI and NMCI of Wuyi Mountain (A) and Baishuiyang scenic spots (B) of Fujian Province
on each day of 2018.

In Baishuiyang scenic spot, the FAI mainly fluctuated between —2.83 and 34.27, which
fluctuated between the Not Fresh level and Super Fresh levels, while the NMCI mainly
fluctuated between 3.4 and 7.2, which fluctuated between cold less comfortable and hot less
comfortable levels. Within the whole year of 2018, from January to early June, the NMCI
gradually increased from 4 to nearly 7, namely, it increased from cool comfort to the most
comfortable level and then to the warm comfort level, while the FAI was mostly below 0,
namely, it fluctuated between the Not Fresh level and the Relatively Fresh level. From the
middle of June to August, the NMCI fluctuated and gradually increased from 6 to more
than 7, that is, from the warm comfort level to the hot less comfortable level; meanwhile,
the FAT increased from 0 to between nearly 5 or more than 5 on some days, which mainly
fluctuated between the General level and the Super Fresh level. From September to
November, the NMCI fluctuated mainly between 6.5 and 5, which indicated that the
natural microclimate fluctuated from the warm comfort level to the most comfortable
level from early September to late November. The FAI slightly and gradually increased in
September and then decreased drastically below 0 from late September to early October,
namely, decreased from the Super Fresh level to the Not Fresh or General level, mainly
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during the National Holiday of China (approximately seven-day long holiday). After the
seven days of the National Holiday of China, the FAI increased dramatically and reached
the highest level of the year (FAI = 34.27), then fluctuated within the Super Fresh level
(mainly between 2 and 14). From late November to December, the NMCI decreased below
5 but higher than 4, namely, at the cool comfort level, and the FAI also decreased to a lower
level of the year, which primarily fluctuated between the General level and the Healing
Fresh level (Figure 3B).

It is essential to point out that the FAI of the Wuyi Mountain and Baishuiyang scenic
spots have some higher FAI values, such as more than 30 or even higher, which is primarily
because of the higher O, levels and the lower PM; 5, PM;, and Oj3 levels in scenic spots.
When scenic spots have a high O, concentration, it will significantly influence the entire
FAl value.

More precisely, within 24 Jieqi of Wuyi Mountain scenic spot and Baishuiyang scenic
spot, the FAI-NMCI can be summarized as in Figure 4. For example, it is obvious that in
Lesser Cold and Greater Cold Jieqi, both the Wuyi Mountain and Baishuiyang scenic spots
were at the cool comfort level, although Wuyi Mountain was at the Super Fresh level and
was fresher than Baishuiyang, which was only at the Fresh level. At the start of Spring,
the FAI of both Wuyi Mountain and Baishuiyang decreased, which was not because of the
decrease in negative oxygen ions (O, ) at the two scenic spots but because of the increase
in PM; 5 and PMjg due to the large number of tourists and tourism transportation entering
those two scenic spots (Figure 4).

From Rain Water to Spring Equinox Jieqi, although the two scenic spots were also
within the cool comfort level, the FAI both experienced a drastic increase from the General
to the Super Fresh level in Wuyi Mountain and from the Not Fresh to the Relatively
Fresh level in Baishuiyang. In Pure Brightness and Grain Rain Jieqi, Baishuiyang entered
into the most comfortable level while Wuyi Mountain remained at the cool comfort level.
Meanwhile, for more tourist travel to Baishuiyang, the FAI was at a relatively lower level,
that is the General level, than Wuyi Mountain (Super Fresh and Healing Fresh level). At
the Start of Summer Jieqi, Wuyi Mountain was at the Super Fresh and warm comfort levels,
while Baishuiyang was only at the Fresh level and was still within the cool comfort level.
In Grain Full Jieqi, Baishuiyang had increased freshness and became warm. In the Grain
in Ear Jieqi, Wuyi Mountain entered the most comfortable level and was in a Super Fresh
situation (Figure 4).

3.2. FAI-NMCI of Cultural Scenic Spots

In the Yongding Tulou scenic spot, the FAI levels were mainly distributed in Healing
Fresh (159 days, 38%) and Relatively Fresh (74 days, 18%), while they were also distributed
in Not Fresh (115 days, 27%). The Super Fresh (29 days, 7%), Very Fresh (31 days, 7%), and
Fresh (14 days, 3%) levels were in small proportions (Figure 5A).

The NMCI was distributed in the comfort domain, that is, the most comfortable domain
(149 days, 41%), and the comfort domain (216 days, 59%), which included the cool comfort
domain (133 days, 36%) and the warm comfort domain (83 days, 23%) (Figure 5B). In the
Gutian Conference Site scenic spot, the highest levels of FAI were at the Healing Fresh level
(166 days, 48%) with a large proportion, and the Relatively Fresh level (146 days, 42%), while
the Very Fresh (24 days, 7%) and Fresh (12 days, 3%) levels had a small proportion, and the
Super Fresh level was not reached (Figure 5C). Meanwhile, the NMCI included three levels:
the most comfortable (110 days, 30%), and the comfort (250 days, 69%), which embraced the
cool comfort level (160 days, 44%) and the warm comfort level (90 days, 25%) (Figure 5D).
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Figure 4. 24 Jieqi FAI-NMCI of Wuyi Mountain and Baishuiyang scenic spots.

In the Yongding Tulou scenic spot, the FAI mainly fluctuated between —0.97 and 14.81,
which fluctuated between Fresh and Super Fresh levels. The NMCI mainly fluctuated
between 3.80 and 6.80, which fluctuated between cold less comfortable and warm comfort
levels (Figure 6A). Throughout 2018, the FAI and NMCI of the Yongding Tulou scenic spot
experienced dynamic fluctuations. From January to March, the NMCI increased gradually
from 3 to above 4, that is from cold less comfortable to the cool comfort level, and the FAI
mainly fluctuated between —0.35 and 0.48, that is mainly at the Relatively Fresh level. From
late March to the middle of April, the NMCI continued to increase from 4 to above 5, that is
from cool comfort to the most comfortable level. Meanwhile, the FAI increased dramatically
above 2 and reached the Very Fresh level and fluctuated into the high level of Relatively
Fresh. From May to September, the NMCI fluctuated from 5 to above 6, that is from the
most comfortable to the warm comfort level, and the FAI mainly fluctuated within the
Relatively Fresh level. When entering October, the NMCI decreased from above 6 to below
5, that is from warm comfort to the most comfortable level. The FAI increased drastically
and reached the highest level (14.81) of the year, and most of FAI values were higher than
6 in the second half of October, that is it mainly fluctuated at the Very Fresh level. From
November to December, the NMCI decreased from above 5 to below 4, that is from the most
comfortable to the cold less comfortable level, while the FAI primarily fluctuated within
the Relatively Fresh level until in the middle of December, when it increased dramatically
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to more than 12, namely, in the Very Fresh level, then decreased quickly and fluctuated
between the Fresh and Relatively Fresh levels (Figure 6A).
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Figure 5. FAI and NMCI levels of Yongding Tulou (A,B) and Gutian Conference Site scenic spots
(C,D) of Fujian Province, China.
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In the Gutian Conference Site scenic spot, the FAI mainly fluctuated between —0.76
and 2.03, that is it fluctuated between Fresh and Super Fresh levels, while the Super Fresh
level was lower than the Yongding Tulou scenic spot by approximately 7 times. The NMCI
mainly fluctuated between 3.20 and 7.2, that is it fluctuated between cold less comfortable
and hot less comfortable levels (Figure 5B). For the first five months of 2018, from January
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to May, the NMCI increased from more than 4 to more than 6, that is from cool comfort
to the most comfortable level, and then to the warm comfort level. The FAI fluctuated
between below —0.5 and 1, that is it fluctuated between the Fresh and Healing Fresh levels.
From June to August, the NMCI increased from above 6 to above 7, that is from warm
comfort to the hot less comfortable level. The FAI was mainly above 0.5 and some days
even above 1, that is primarily at the Healing Fresh level. From September to November,
the NMCI decreased from above 6 to 5, that is from warm comfort to the most comfortable
level, while the FAI mainly fluctuated between 1 and 1.5, that is it fluctuated between
Healing Fresh and Very Fresh levels. In December, the NMCI decreased and mainly varied
between 4 and 4.2, that is mainly at the cool comfort level, while the FAI also decreased
and mainly fluctuated above 0.5 or below 0.5, that is mainly at the Relatively Fresh and
Healing Fresh levels (Figure 6B).

More precisely, within 24 Jieqi of the Yongding Tulou scenic spot and Gutian Conference
Site scenic spot, the FAI-NMCI could be summarized as in Figure 7 for satisfying tourists’
diverse fresh air-natural microclimate comfort preferences and demands through the provi-
sion of proper microclimate tourism products and services in each Jieqi, or different Jieqi with
approximately similar air freshness and natural microclimate comfort degrees.
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4. Discussion and Conclusions

Comparing FAI-NMCI in natural scenic spots of Fujian province, the Wuyi Mountain
scenic spot had more days of upper-level air freshness and natural microclimate comfort
degree than Baishuiyang scenic spot, which was mainly distributed within the middle
fresh-comfort range. In cultural scenic spots of Fujian province, the Gutian Conference Site
scenic spot had more days of middle-level air freshness and natural microclimate comfort
degree than Yongding Tulou scenic spot, which had even more days of air freshness at the
Not Fresh level.

Comparing fluctuating ranges of FAI of the four scenic spots in Fujian Province, the
natural scenic spots had wider FAI fluctuation ranges, which was primarily determined
by the higher concentration of negative oxygen ions and lower concentrations of PM; 5,
PM;, and Oz, while, the cultural scenic spots had relatively shorter FAI fluctuation ranges,
which was profoundly influenced by the relatively lower concentration degree of negative
oxygen ions and higher concentration degree of PM; 5, PM;, and O3.

Comparing fluctuating ranges of NMCI of four scenic spots in Fujian province, the
NMCI mainly fluctuated between 3.20 and 7.2, which indicated that their natural micro-
climate comfort degree primarily fluctuated between cold less comfortable and hot less
comfortable levels, except the Yongding Tulou scenic spot, which fluctuated between cold
less comfortable and warm comfort levels.

In short, the four scenic spots in Fujian Province of China had different levels of air
freshness degree and natural microclimate comfort degree in 2018. The natural scenic
spots were mostly distributed in Healing Fresh, Very Fresh, and Super Fresh levels of
FAI, with the most comfortable and comfortable levels of NMCI. The cultural scenic spots
were mostly distributed in Relatively Fresh and Healing Fresh levels of FAI, with the most
comfortable and comfortable levels of NMCI. Meanwhile, the FAI-NMCI of natural and
cultural scenic spots also had significant differences within 24 Jieqi, which will promote
dynamic and creative utilization of these resources in microclimate tourism development.

Therefore, the fresh air-natural microclimate of scenic spots has become a vital tourist
attraction in the contemporary Chinese tourism market under the background of severe air
pollution. Tourists with different physiological and psychological conditions will be more
suited to different levels of air freshness and natural microclimate comfort levels, such
as elderly tourists, pregnant women tourists, and children tourists will be vulnerable to
polluted air environments and require more fresh and comfortable natural microclimates,
such as Super Fresh and the most comfortable level of scenic spots, which has more negative
oxygen ions (O, ™) and lower PM; 5, PM;g, and O3, with a more comfortable temperature,
humidity, wind speed, solar radiation, and precipitation.

Moreover, the dynamic fresh air-natural microclimate fluctuation revealed by FAI-
NMCT of scenic spots will properly indicate the air freshness and natural microclimate
comfort degree information for both the demand side and the supply side of the tourism
market, which will profoundly promote fresh air-natural microclimate tourism resources’
distribution and redistribution, accelerate fresh air-natural microclimate in-depth tourism
resources combination and integration from a creative microclimate tourism development
perspective, and further drive fresh-microclimate tourism development in destinations
and scenic spots with comparative advantages of fresh air and a comfortable natural
microclimate for triggering their in-depth transformation and improvement.

From a theoretical contribution perspective, this paper constructed the FAI-NMCI to
harmoniously combine air resources and microclimate resources together, which could
empirically evaluate air and microclimate tourism resource values for tourists, the tourism
market, and the society as a whole. Moreover, it could figure out overlapping study areas
of air tourism, climate tourism, health tourism, ecological tourism, and so forth, which
have significant theoretical innovation through transdisciplinary, multidisciplinary, and
interdisciplinary integration research in China’s tourism market. This is a new research
trend that has seldom been explored by researchers and could become an important research
domain for future multidisciplinary, transdisciplinary, and interdisciplinary exploration.
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From a socioeconomic practical application perspective, the creation and utilization
of FAI-NMCl is significant for fresh air and comfortable microclimate tourism resources’
distribution and redistribution in the tourism market. Meanwhile, it could also become
a vital health tourism market indicator, which simply reveals the air freshness degree
and microclimate comfort degree for tourists and some potential tourists pursuing health
tourism experiences and long-term health-improving vacations. FAI-NMCI could indicate
a scenic spot’s air freshness and microclimate comfort levels specifically on different days of
a year, which also could be calculated and summarized into 24 Jieqi, 12 months, 4 seasons,
and so forth. Under contemporary China’s high-quality tourism development background,
this could provide accurate information not only for demand and supply sides of the
tourism market but could also become an important and comprehensive index for related
governmental management and NGOs.

The limitation of this paper is we only applied the FAI-NMCI to four scenic spots
of China because of data collection limitations and the short time construction of the air
freshness index infrastructure, with only 1-2 years of data sources. This new index has
only been applied in Fujian Province rather than other provinces of China, which need
to be explored in the future. This index could reveal not only the natural conditions of
tourism resources but could also indicate tourism practices, tourists” and destinations’ social
behavior patterns, as well as socioeconomic development patterns of some destinations,
which could be explored through introducing multidisciplinary methods in future research.

Author Contributions: Conceptualization, X.Y., C.L. and S.J.; methodology, X.Y. and C.L.; software,
X.Y. and C.L.; validation, X.Y., M.B. and C.L.; formal analysis, X.Y. and C.L.; investigation, X.Y. and
C.L.; resources, X.Y. and C.L.; data curation, X.Y. and C.L.; writing—original draft preparation, X.Y.,
C.L. and SJ.; writing—review and editing, X.Y.,, M.B., C.L. and S.J.; visualization, X.Y. and C.L.;
supervision, C.L.; project administration, C.L.; funding acquisition, C.L. and S.J. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the National Science Foundation of China (42101238),
the start-up funding of Minjiang University (32304307), and the Project of Central Leading Local “Fujian
Mental Health Human-Computer Interaction Technology Research Center” (2020L.3024).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data are not publicly available due to the privacy of data policy of
Fujian Meteorological Service Center.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yang, T.; Liu, W. Does air pollution affect public health and health inequality? Empirical evidence from China. J. Clean. Prod.
2018, 203, 43-52. [CrossRef]

2. Schmid, D.; Korkmaz, P.; Blesl, M.; Fahl, U.; Friedrich, R. Analyzing transformation pathways to a sustainable European energy
system—Internalization of health damage costs caused by air pollution. Energy Strat. Rev. 2019, 26, 100417. [CrossRef]

3. Jones, B.A,; Fleck, J. Shrinking lakes, air pollution, and human health: Evidence from California’s Salton Sea. Sci. Total Environ.
2020, 712, 136490. [CrossRef]

4. Liu, K; Yang, B.-Y.; Guo, Y.; Bloom, M.S.; Dharmage, S.; Knibbs, L.D.; Heinrich, J.; Leskinen, A.; Lin, S.; Morawska, L.; et al. The
role of influenza vaccination in mitigating the adverse impact of ambient air pollution on lung function in children: New insights
from the Seven Northeastern Cities Study in China. Environ. Res. 2020, 187, 109624. [CrossRef]

5. Ding, L.; Zhu, D.; Peng, D.; Zhao, Y. Air pollution and asthma attacks in children: A case-crossover analysis in the city of
Chongging, China. Environ. Pollut. 2017, 220, 348-353. [CrossRef]

6. Li, Z.; Xu, X;; Thompson, L.A.; Gross, H.E.; Shenkman, E.A.; DeWalt, D.A.; Huang, 1.-C. Longitudinal Effect of Ambient Air
Pollution and Pollen Exposure on Asthma Control: The Patient-Reported Outcomes Measurement Information System (PROMIS)
Pediatric Asthma Study. Acad. Pediatr. 2019, 19, 615-623. [CrossRef]

7. Raaschou-Nielsen, O.; Beelen, R.; Wang, M.; Hoek, G.; Andersen, Z.].; Hoffmann, B.; Stafoggia, M.; Samoli, E.; Weinmayr, G.;

Dimakopoulou, K.; et al. Particulate matter air pollution components and risk for lung cancer. Environ. Int. 2016, 87, 66-73.
[CrossRef]

246



Sustainability 2022, 14,1911

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

Wei, E; Wu, M.; Qian, S.; Li, D.; Jin, M.; Wang, J.; Shui, L.; Lin, H.; Tang, M.; Chen, K. Association between short-term exposure to
ambient air pollution and hospital visits for depression in China. Sci. Total Environ. 2020, 724, 138207. [CrossRef] [PubMed]
Tzivian, L.; Winkler, A.; Dlugaj, M.; Schikowski, T.; Vossoughi, M.; Fuks, K.; Weinmayr, G.; Hoffmann, B. Effect of long-term
outdoor air pollution and noise on cognitive and psychological functions in adults. Int. ]. Hyg. Environ. Health 2015, 218, 1-11.
[CrossRef]

Buoli, M.; Grassi, S.; Caldiroli, A.; Carnevali, G.S.; Mucci, F; Iodice, S.; Cantone, L.; Pergoli, L.; Bollati, V. Is there a link between
air pollution and mental disorders? Environ. Int. 2018, 118, 154-168. [CrossRef]

Zeng, ].; He, Q. Does industrial air pollution drive health care expenditures? Spatial evidence from China. . Clean. Prod. 2019,
218, 400-408. [CrossRef]

Bai, R;; Lam, ].C.; Li, V.O. A review on health cost accounting of air pollution in China. Environ. Int. 2018, 120, 279-294. [CrossRef]
Zhang, X.; Ou, X;; Yang, X.; Qi, T.; Nam, K.M.; Zhang, D.; Zhang, X. Socioeconomic burden of air pollution in China: Province-level
analysis based on energy economic model. Energy Econ. 2017, 68, 478-489. [CrossRef]

Hao, Y,; Peng, H.; Temulun, T.; Liu, L.-Q.; Mao, J.; Lu, Z.-N.; Chen, H. How harmful is air pollution to economic development?
New evidence from PM2.5 concentrations of Chinese cities. J. Clean. Prod. 2018, 172, 743-757. [CrossRef]

Xia, Y.; Guan, D.; Jiang, X.; Peng, L.; Schroeder, H.; Zhang, Q. Assessment of socioeconomic costs to China’s air pollution. Atmos.
Environ. 2016, 139, 147-156. [CrossRef]

Lopes, H.S.; Remoaldo, P.C.; Ribeiro, V.; Martin-Vide, J. Perceptions of human thermal comfort in an urban tourism destination—A
case study of porto (portugal). Build. Environ. 2021, 205, 108246. [CrossRef]

Yang, X.; Dong, L.; Li, C. Microclimate tourism and microclimate tourism security and safety in China. Tour. Manag. 2019,
74,110-133. [CrossRef]

Jeuring, ].H.G. Weather perceptions, holiday satisfaction and perceived attractiveness of domestic vacationing in The Netherlands.
Tour. Manag. 2017, 61, 70-81. [CrossRef]

Zeng, Q.; Fan, L.; Ni, Y;; Li, G.; Gu, Q. Construction of AQHI based on the exposure relationship between air pollution and YLL
in northern China. Sci. Total Environ. 2020, 710, 136264. [CrossRef]

Ruggieri, M.; Plaia, A. An aggregate AQI: Comparing different standardizations and introducing a variability index. Sci. Total
Environ. 2012, 420, 263-272. [CrossRef]

Yuan, M.; Liu, X.; Guo, J.; Huang, Y.; Song, W. Analysis of Eco-Tourism Climate Resources in Xingwen, China Based on the
Comfort Index and the Negative Air (Oxygen) lon. . Geosci. Environ. Prot. 2021, 9, 154-163. [CrossRef]

Tan, J.; Chen, Z.; Luo, X.; Yang, W.; Shu, S.; Xu, J. Distribution characteristics of atmospheric negative oxygen ions in scenic spots
of Hubei Province and the influence of meteorological conditions. Resour. Environ. Yangtze River Basin 2017, 26, 314-323, (In
Chinese with English abstract).

Lucenio, N.L.; Angrimani, D.D.S.R.; Bicudo, L.D.C.; Szymanska, K.J.; Van Poucke, M.; Demeyere, K.; Meyer, E.; Peelman,
L.; Mullaart, E.; Broekhuijse, M.L.; et al. Exposing dairy bulls to high temperature-humidity index during spermatogenesis
compromises subsequent embryo development in vitro. Theriogenology 2019, 141, 16-25. [CrossRef] [PubMed]

Oliver, ].E. Climate and Man’s Environment: An Introduction to Applied Climatology; John Wiley & Sons: New York, NY, USA, 1973;
pp. 145-147.

Fischer, W.H. Human climates of northern China. Atmos. Environ. (1967) 1979, 13, 747-748. [CrossRef]

Yu, Y.; Wang, X.; Briindlinger, R. Improved Elman Neural Network Short-Term Residents Load Forecasting Considering Human
Comfort Index. J. Electr. Eng. Technol. 2019, 14, 2315-2322. [CrossRef]

World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen
Dioxide, Sulfur Dioxide and Carbon Monoxide. License: CC BY-NC-SA 3.0 IGO. 2021. Available online: https://apps.who.int/
iris/handle/10665/345329 (accessed on 4 February 2021).

Liu, R; Lian, Z; Lan, L.; Qian, X.; Chen, K.; Hou, K.; Li, X. Effects of negative oxygen ions on sleep quality. Procedia Eng. 2017,
205, 2980-2986. [CrossRef]

Nimmerichter, A.; Holdhaus, J.; Mehnen, L.; Vidotto, C.; Loidl, M.; Barker, A.R. Effects of negative air ions on oxygen uptake
kinetics, recovery and performance in exercise: A randomized, double-blinded study. Int. ]. Biometeorol. 2013, 58, 1503-1512.
[CrossRef]

DB42/T1198-20162016; Hubei Province Air Negative Oxygen Ion Concentration Grade. Hubei Provincial Bureau of Quality and
Technical Supervision: Wuhan, China, 2016.

WHO. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide-Global Update 2005; Druckpart-
ner Moser: Rheinbach, Germany, 2005; pp. 217-415.

QX/T380-2017; Air (Negative) Oxygen Ion Concentration Grade, Meteorological Industry Standard of The People’s Republic of
China, Compilation of Meteorological Industry Standard of The People’s Republic of China. China Meteorological Administration:
Beijing, China, 2017.

GB3095-2012; Ministry of Environmental Protection and General Administration of Quality Supervision, Inspection and Quaran-
tine, Ambient Air Quality Standard. China Environmental Science Press: Beijing, China, 2012.

Wu, R.; Song, X; Bai, Y.; Chen, J.; Zhao, Q.; Liu, S.; Xu, H.; Wang, T.; Feng, B.; Zhang, Y.; et al. Are current Chinese national
ambient air quality standards on 24-hour averages for particulate matter sufficient to protect public health? . Environ. Sci. 2018,
71, 67-75. [CrossRef]

247



Sustainability 2022, 14,1911

35.
36.

37.

38.
39.

40.

41.

Yao, Y. Distribution characteristics of air anion concentration in Zhejiang Province. Meteorol. Sci. Technol. 2019, 47, 1006-1013.
Liu, N.M,; Liu, L.Q.; Xu, M.-M; Liang, E.C.; Pan, X.C. Relationships between ambient nitrogen dioxide and population mortality
of respiratory disease in Beijing. ]. Environ. Health 2014, 31, 565-568.

Lam, C.K.C.; Gallant, A.; Tapper, N. Perceptions of thermal comfort in heatwave and non-heatwave conditions in Melbourne,
Australia. Urban Clim. 2018, 23, 204-218. [CrossRef]

Martin, M.B.G. Weather, climate and tourism a geographical perspective. Ann. Tour. Res. 2005, 32, 571-591. [CrossRef]
Nasrollahi, N.; Hatami, Z.; Taleghani, M. Development of outdoor thermal comfort model for tourists in urban historical areas; A
case study in Isfahan. Build. Environ. 2017, 125, 356-372. [CrossRef]

Lai, D.; Lian, Z.; Liu, W.; Guo, C.; Liu, W,; Liu, K; Chen, Q. A comprehensive review of thermal comfort studies in urban open
spaces. Sci. Total Environ. 2020, 742, 140092. [CrossRef] [PubMed]

Cui, X,; Liang, C.; Wu, J.; Wang, C.; Chen, L.; Liu, H. Forecasting method of tourism meteorological index in Kaiping Diaolou
scenic spot. Guangdong Meteorol. 2018, 40, 57-60, (In Chinese with English Abstract).

248



Q‘g? sustainability

Article

Spatial-Temporal Characteristics of Arctic Summer Climate
Comfort Level in the Context of Regional Tourism Resources
from 1979 to 2019

Yutao Huang !, Xuezhen Zhang 2, Dan Zhang ?, Lijuan Zhang 1'*, Wenshuai Zhang !, Chong Ren !, Tao Pan !,
Zheng Chu 3 and Yuying Chen !

Citation: Huang, Y.; Zhang, X.;
Zhang, D.; Zhang, L.; Zhang, W.; Ren,
C.; Pan, T,; Chu, Z.; Chen, Y.
Spatial-Temporal Characteristics of
Arctic Summer Climate Comfort
Level in the Context of Regional
Tourism Resources from 1979

t0 2019. Sustainability 2021, 13, 13056.
https://doi.org/10.3390/s5u132313056

Academic Editor: Oran Young

Received: 17 October 2021
Accepted: 18 November 2021
Published: 25 November 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information
Service in Cold Regions, Harbin Normal University, Harbin 150025, China; huangyutao0128@163.com (Y.H.);
vincentzhang1993@gmail.com (W.Z.); rch408785202@gmail.com (C.R.); ptaovip@gmail.com (T.P.);
chenyuying000@gmail.com (Y.C.)

Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,

Beijing 100101, China; xzzhang@igsnrr.ac.cn (X.Z.); zhangdan@igsnrr.ac.cn (D.Z.)

Heilongjiang Meteorological Sciences Research Institute, Harbin 150030, China; chuzheng1985@126.com

*  Correspondence: z1j19650205@163.com

Abstract: In the context of global warming, a key scientific question for the sustainable development
of the Arctic tourism industry is whether the region’s climate is becoming more suitable for tourism.
Based on the ERA5-HEAT (Human thErmAl comforT) dataset from the European Center for Medium-
range Weather Forecasts (ECMWF), this study used statistical methods such as climatic tendency
rate and RAPS to analyze the spatial-temporal changes in Arctic summer climate comfort zones from
1979 to 2019 and to explore the influence of changes in climate comfort on Arctic tourism. The results
showed the following: (1) With the increase in the Arctic summer temperature, the universal thermal
climate index (UTCI) rose significantly from 1979 to 2019 at a rate of 0.457 °C/10a. There was an
abrupt change in 2001, when the climate comfort changed from “colder” to “cool”, and the climate
comfort has remained cool over the past decade (2010-2019). (2) With the increase in Arctic summer
temperatures, the area assessed as “comfortable” increased significantly from 1979 to 2019 at a rate
of 2.114 x 10° km?2/10a. Compared with the comfortable area in the 1980s, the comfortable area
increased by 6.353 x 10° km? over the past 10 years and expanded to high-latitude and high-altitude
areas, mainly in Kola Peninsula, Putorana Plateau, and Verkhoyansk Mountains in Russia, as well as
the Brooks Mountains in Alaska. (3) With the increase in Arctic summer temperatures, the number
of days rated comfortable on 30% of the grid increased significantly from 1979 to 2019 (maximum
increase: 31 days). The spatial range of the area with a low level of comfortable days narrowed and the
spatial range of the area with a high level of such days expanded. The area with 60-70 comfortable
days increased the most (4.57 x 10° km?). The results of this study suggest that global warming
exerts a significant influence on the Arctic summer climate comfort level and provides favorable
conditions for further development of regional tourism resources.

Keywords: Arctic; universal thermal climate index (UTCI); spatial-temporal changes; 1979-2019

1. Introduction

According to the sixth assessment report of the Intergovernmental Panel on Climate
Change (IPCC), the average global surface temperature has increased by 1.09 °C over the
past century [1]. The report in the Arctic Climate Impact Assessment also pointed out that,
in the context of global warming, climate change in the Arctic is mainly manifested in the
melting of ice sheets in the Arctic, the continuous decrease in the volume of snow and
frozen soil in the Northern Hemisphere, the frequent occurrence of extreme weather events,
and the significant changes in the ecosystem in the Arctic [2]. Accordingly, climate change
turned into a severe environmental problem, and soon it will have significant impacts
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on our lives, our world, and also on tourism [3]. Climate change has affected the length
and quality of the tourist season, the choice and consumption of tourist destinations, the
decision making of tourist activities, and the operating costs of the tourism industry [4].
Climate change directly causes the redistribution of tourist flows, geographically and
seasonally, and climatic conditions that are attractive to tourists may shift to high latitudes
and high altitudes [5]. Climate change also indirectly affects tourism by causing water
shortages, floods, deterioration of water quality, changes in natural landscapes, reduction
in biodiversity, forest fires, and spread of diseases [6,7]. Global warming could lead to the
spatial-temporal redistribution of climate comfort [8]. The Arctic is the highest latitude
region of the Northern Hemisphere, as well as a region sensitive to global climate change [9].
The heating rate of the Arctic is twice that of the global average [10]; thus, analyzing the
characteristics of climate change in the Arctic is of great significance for the development
of Arctic tourism resources.

In recent years, tourism in high-latitude regions has become increasingly popular.
For instance, the number of tourists in Greenland increased from 26,410 in 1999 to 57,223
in 2008, which was equivalent to the total population of Greenland [11]. The number of
summer tourists to Alaska also increased significantly [12]. The average annual growth
rate in the number of tourists in Iceland has doubled over the past few years [13]. The
increase in the climate comfort level in Norway has led to a huge increase in summer
tourism; the number of tourists in the Svalbard Islands, for example, has quadrupled [14].
This significant increase in the number of tourists indicates that the climate comfort level
in the Arctic has improved due to global warming, and the need to carry out quantitative
studies on these changes is urgent. Roshan et al. [15] used the physiologically equivalent
temperature (PET) to identify and evaluate bioclimatic conditions of 40 meteorological
stations in Iran. It showed that Iran’s comfortable days transferred to early spring and late
autumn and an increase in the frequency of thermal comfort condition was observed in
almost half of the stations. Roshana et al. [16] also used stations data to show that both SET,
PET, and UTCI increased in Iran from 1995 to 2014. Eludoyin et al. [17] have examined the
variations in the thermal condition of Nigeria in terms of the temperature, relative humidity,
effective temperature (ET), temperature-humidity index (THI), and relative strain index
(RSI) and concluded that thermal stress has increased in Nigeria from 2000 at most stations,
especially in the south and north-western regions. Feng et al. [18] used the improved classic
THI model to analyze the spatiotemporal evolution of annual and monthly average climate
comfort in China from 2005 to 2018. The results showed that the annual average comfort
level in China changed from cold to comfortable. Wu et al. [19] used 591 stations data to
calculate the change of China’s climate comfort index values between 1966 and 2016 and
came to the same conclusion. In China, the climate comfort levels in high-altitude regions,
plateaus, and mountains have improved significantly [20-24]. Zeng et al. [25] investigated
the spatial and temporal variations of the universal thermal climate index (UTCI) of the
China-Pakistan Economic Corridor (CPEC) from 1979 to 2018 and concluded that the UTCI
generally exhibited a positive trend of 0.33 °C/10a over the past 40 years, and the seasonal
variation characteristics of the UTCI showed an upward trend in all four seasons. The
tourist comfort zone in North America moved from low altitude to high altitude and from
low latitude to high latitude [26]. For example, southern Florida, Arizona, and particularly
Mexico have decreased the warm tourist season and Canada, Georgia, and South Carolina
have extended the warm tourist season. Alaska’s tourist season also extended, which now
starts 10 days earlier than in the 1940s [20]. Some scholars have analyzed the thermal
comfort in different regions of Europe. Napoli et al. have assessed the thermal bioclimate of
Europe for the summer season and concluded that an increase in heat stress up to 1 °C was
observed from 1979 to 2016 [27]. Some scholars pointed out that southern Europe (Crete
Island in Greece, Eastern Mediterranean, Athens, Madrid (Spain), Novi Sad (Vojvodina,
Northern Serbia)) were under high temperature and pressure, and climate warming has
led to a significant increase in the frequency and duration of high-temperature heat waves
in southern Europe and a decline in climate comfort [28-35]. In central Europe, climate
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change has led to an increase in the number of strong and very strong heat stress days
in Poland [36]. Tourists from Germany, Ireland, and the UK would spend more holidays
in their home country, and the tourism of Ireland and Britain has moved north [37]. In
northern Europe, warming has increased the length of nature and wilderness tourism and
the “midnight sun” season in Finland and Sweden [5], and increased comfort in Norway
has led to an increase in summer visitors [14]. Climate change could considerably enhance
northwestern Europe’s comfort level [38,39]. It can be seen that climate changes have led
to the redistribution of tourism climate resources in time and space. The existing studies
are mostly based on station data analysis, with lower spatial resolution. The area of study
is mostly concentrated on the low and middle latitudes of the Northern Hemisphere, but
little attention has been paid to the changes in comfort level in the Arctic, where there have
been the highest rates of temperature increase.

The climate comfort index, which is widely used in public health, urban planning,
tourism, and leisure, is an important index for quantifying the climatic suitability of tourism
destinations [40] and as a basis for studying the effect of climate change on tourism [41].
With the measurement of the environment variables, direct indices were initially drawn by
the researchers. Including wet-bulb temperature [42], Kata temperature [43], wet-bulb globe
temperature (WBGT) [44], temperature-humidity index (THI) [45], effective temperature
(ET) [46], and wind chill index (WCI) [47], direct indices were widely used because they
are simple and easy to use. As the study of climate comfort went further, the researchers
realized that besides environmental factors such as temperature and humidity, behavioral
variables such as metabolic rate and the thermal insulation and moisture permeability
of clothing that affected the heat comfort should also be considered [48]. Thus, some
researchers raised experiential indices, such as the predicted four-hour sweat rate (P4SR),
that included the behavioral variables [49]. Because of the lack of the scientific simulation
of human response in experiential indices, thermodynamic theorem was used to simulate
the heat exchange between the human body and environment, by which climate comfort
indices such as physiological equivalent temperature (PET) [50] and the universal thermal
climate index (UTCI) were raised. Comparing with the PET index, the environmental and
behavioral factors that affected the climate comfort indices were more fully considered in
the UTCI. The human multi-joint reaction to the external environment was in the model of
climate comfort index to simulate the dynamic physiological response of the pedestrian
and construct the thermal stress index the human body accepted during exposure outdoors.
According to the thermal stress index, the UTCI is divided into 10 comfort levels from hot to
cold [51]. The UTCl is considered the most advanced, comprehensive, and universal human
comfort index [52,53], and it is applicable to various climates, seasons, temporal, and spatial
scales, as well as being widely used in urban zoning and tourism planning [54,55]. The
ERA5-HEAT (Human thErmAl comforT) dataset from the European Center for Medium-
range Weather Forecasts (ECMWF) was used in this study. The objectives of the present
study were to (1) determine the spatial pattern of Arctic summer climate comfort, (2) reveal
the spatial-temporal characteristics of Arctic summer climate comfort, and (3) discuss the
influence of climate change on Arctic summer climate comfort. It provides a scientific basis
for sustainable development of tourism in the region.

2. Materials and Methods
2.1. Study Area

In this study, 800 km? of the northern land in the Arctic Circle (66°34’ N) was taken
as the study area, including parts of Greenland (territory of Denmark), Canada, Alaska
(the United States), Russia, Norway, Sweden, Finland, and Iceland. Located in the North
Frigid Zone, the study area is covered by sea ice year-round and experiences polar weather
(Figure 1). The average temperature in the coldest month reaches —40 °C-—20 °C, so
the area is an important cold source for the world. The weather is characterized by a
long, extreme cold winter, and a short, cool summer; the annual average precipitation is
100-250 mm, which reaches 500 mm in the Greenland sea area, and summer precipitation
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is usually in the form of rain. Due to its climate characteristics, the Arctic region has unique
tourism resources, and current tourism in the region mainly focuses on glaciers, auroras,
gorges, endemic species, skiing, underwater diving, and boating on the ice sea.

0° study arca

Figure 1. Location of the study area (shaded area) and the average temperature in the Arctic from
1979 to 2019.

2.2. Datasets

1. Thermal comfort data: The climate comfort data were drawn from the ERA5-HEAT
dataset of ECMWEF from 1979 to the present, with a spatial resolution of 0.25° x 0.25°
and a time interval of one hour. The UTCI from 1979 to 2019 was analyzed in this
study, and the data were downloaded from the ERA5-HEAT website Available online:
https:/ /cds.climate.copernicus.eu/cdsapp#!/dataset/ (accessed on 28 May 2020). Accord-
ing to the thermal physiological response of the human body, the UTCI thermal stress was
divided into 10 levels (Table 1).

Table 1. UTCI equivalent temperatures categorized in terms of thermal stress and thermal perception.

UTCI (°O) Stress Category Comfort Level UTCI (°O) Stress Category Comfort Level
>46 Extreme heat stress Extreme hot 0~9 Slight cold stress Cool
38~46 Very strong heat stress Very hot —13~0 Moderate cold stress Colder
32~38 Strong heat stress Hot —27~—13 Strong cold stress Cold
26~32 Moderate heat stress Hotter —40~-27 Very strong cold stress Very cold
9~26 No thermal stress Comfort <—40 Extreme cold stress Extreme cold

2. Arctic climate data: To analyze the climate background of the changes in Arctic
comfort and analyze the changing factors of the UTCI, we chose temperature, wind speed,
relative humidity, and sunshine duration for the analysis. These climate elements were
obtained from the ERA5 dataset. Again, the time range drawn from ERA5 was from 1979
to the present, the spatial resolution was 0.25° x 0.25°, and the time interval was one hour.
The temperature and wind speed data were used directly, whereas the sunshine duration
and relative humidity required further processing: sunshine duration was replaced by total
cloud cover (TCC) [56] and relative humidity was calculated by the average temperature
and dew-point temperature. The specific equation is as follows:

f= % x100% (1)

E = 6.11exp5417.753((1/ 273.16) — [1/( 273.16 + Td)]} @
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Ew = 6.11exp5417.753{(1/ 273.16) — [1/( 273.16 + T)]} ®3)

where f is relative humidity, E is actual vapor pressure, E;, is saturated vapor pressure, Td
is dew point, and T is temperature.

2.3. Methods
2.3.1. Trend Analysis Method

A univariate linear regression equation of the cold region area variable (y) and the
corresponding time (x) was established:

y=ax+b (i=12,...,n) (4)

where a is the linear regression coefficient indicating the rate of change in the spatial extent
of the cold region. The positive or negative value of a indicates that the spatial extent of
the cold region is increasing or decreasing over time. The positive value of a indicates the
spatial extent of cold region is increasing while the negative value of a indicates the spatial
extent of cold region is decreasing.

2.3.2. Rescaled Adjusted Partial SUMS (RAPS) Method

The rescaled adjusted partial sums (RAPS) visualization approach can be used for
preliminary visual inspection of a time series, to gain a feel for the data, and/or to guide
and focus subsequent statistical tests and analyses [57]. The RAPS of the X} are defined
as follows:

K y,—Y
t
X = s k=1,...,n 5
k t:Zl » ()
where Y =[Yt;t =1, ..., n] represent a time series of a climatic variable, Yis sample mean,
Sy? is variance, n is number of values in the time series, and k is counter limit of the current
summation.

2.3.3. Correlation Analysis

Correlation analysis is a statistical method used to discover if there is a relationship be-
tween two variables/datasets, and the relatedness and negative/positive correlation of this
relationship. The Pearson correlation method is adopted in this paper to analyze the rela-
tionship between comfortable area, comfortable days, and climate indicators, quantitatively.
In each pair, the Pearson’s correlation coefficient (r) is calculated as:

11( ]/1
\/21 (% —X) \/Zl 1 (

where X represents the average comfortable areas or days and ¥ is the average of a given
climate variable.

The study based on the UTCI data in the ERA5-HEAT dataset provided by ECMWEF
used MATLAB software for spatial data calculation and overlay analysis (Figure 2). We
used the Pcolor function of MATLAB to achieve graphical visualization.

v) ©
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Figure 2. The framework of the study.

3. Results
3.1. Change of UTCI in the Arctic Summer (1979-2019)

The average UTCI value in the Arctic summer from 1979 to 2019 was 0.025 °C
and the comfort level was “cool”. The UTCI value increased significantly at a rate of
0.457 °C/10a (p < 0.01), for a total increase of 1.874 °C, and the thermal stress level also
increased (Figure 3a). The results of RAPS analysis showed (Figure 3b) that there was an
obvious change in the UTCI value in the Arctic summer in 2000, which indicates that a
transformation occurred in the comfort level in the early 21st century. The UTCI anomaly
map (Figure 3c) also shows that the negative anomaly changed to a positive anomaly in
the early 21st century (2001) and the UTCI changed from a relatively low value stage to a
relatively high value stage. Further analysis reveals that the UTCI value was —0.501 °C
and the comfort level was “colder” before the abrupt change (1979-2000). After the abrupt
change (2001-2019), the UTCI value was 0.634 °C and the comfort level was “cool”, which
indicates that there was an obvious change in the comfort level of the Arctic summer in the
21st century.
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Figure 3. Change in Arctic summer UTCI from 1979 to 2019: (a) time series, (b) RAPS, (c) anomaly series.
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3.2. Change in the Area Rated “Comfortable” in the Arctic Summer

It can be seen from Section 3.1 that the spatial distribution of comfortable areas ex-
panded with the increase in the UTCI value for the Arctic summer from 1979 to 2019
(Figure 4a). The area of summer comfortable zones in the Arctic from 1979 to 2019 was
1.541 x 10° km?, covering 19.152% (i.e., nearly 1/5) of the total Arctic land area. The
comfortable area in the decade before and after was 1.218 x 10° and 1.864 x 10° km?2,
respectively. The summer comfortable area was largest in 2019, at 2.44 x 10° km?,
and smallest in 1996, at only 0.921 x 10° km?2, with an annual variation coefficient of
23.304%. The increase rate for the summer comfortable area in the Arctic from 1979 to
2019 was 2.114 x 10° km?/10a, which was significant (p < 0.01). The total increase area
was 8.667 x 10° km?, which indicates that the summer comfortable area in the Arctic has
been expanding. The RAPS analysis results indicate (Figure 4b) that there was an obvious
change in the size of the Arctic summer comfortable area in 2000, which was consistent
with the change in the UTCI value. The comfortable area before and after the abrupt change
was 1.307 x 10° and 1.811 x 10° km?, respectively. This finding was further verified by
the area anomaly (Figure 4c), which indicates that there was a significant expansion in the
Arctic summer comfortable area in the early 21st century.

1979 1985 1991

(a)

08
1997 2003 2009 2015 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 1978 1984 1990 1996 2002 2008 2014 2020

(b) (c)

Figure 4. Change in Arctic summer comfortable area from 1979 to 2019: (a) time series, (b) RAPS, (c) anomaly series.

The spatial distribution of the areas with different comfort levels in the Arctic over
the past ten years was further analyzed (Figure 5). The Arctic summer comfortable area
from 2010 to 2019 was 1.864 x 10° km?, accounting for 23.2% of the Arctic land area. These
comfortable areas were mainly distributed in Eurasia and North America (66.5°-70 °N),
mid-eastern Russia, Norway, Sweden, and Finland in northern Europe, Alaska and the
Yukon territory in Canada, as well as scattered areas along the coast of Greenland and
islands of Canada, north of 70 °N (Figure 5a). Compared with the ten years from 1979 to
1988, the Arctic summer comfortable area increased by 6.353 x 10° km?, accounting for 7.9%
of the Arctic land area (Figure 5b). In terms of spatial distribution, the comfortable area
mainly expanded to high-latitude and high-altitude regions (66.5°-70 °N) and, specifically,
in the Kola Peninsula, Putorana Plateau, Verkhoyansk Mountains in Russia, and Brooks
Mountains in Alaska (Figure 5c¢). It is, therefore, possible for tourism to be developed in
the Arctic regions rated comfortable, especially those newly designated as comfortable.
Sightseeing in gorges, fishing, and watching rare species can be carried out in the peninsula
regions and adventures, such as polar mountain climbing and outdoor expeditions, can be
developed in the mountainous and plateau regions.
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Figure 5. Spatial distribution and variation of Arctic summer comfortable area: (a) 2010-2019,
(b) 1979-1988, (c) spatial variation of the decade before and after.

3.3. Change in the Number of Arctic Summer Comfortable Days from 1979 to 2019

There was an average of 23 Arctic summer days rated comfortable from 1979 to 2019,
accounting for a quarter (25%) of the entire summer, while in the decade before and after
there were 21 and 26 such days, respectively. The largest number of comfortable days was
seen in 2019 (30 d), and the smallest was 18 d in 1992. The annual variation coefficient
was 10.955%. The increase rate in comfortable days from 1979 to 2019 was 1.458 d/10a,
which was significant (p < 0.01), and the total increase was 6 d, which indicates that the
season for Arctic summer tourism activities has been significantly extended (Figure 6a).
The RAPS analysis results showed that there was an obvious change in the number of
comfortable days around 2000, which is consistent with the changes in UTCI values
(Figure 6b). The number of comfortable days before and after the abrupt change was 22 d
and 25 d, respectively. This finding was further verified by the anomaly of days (Figure 6c¢),
indicating that a significant change occurred in the number of comfortable days in the early
21st century.

Comlortuble Days Anomuly(d)
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Figure 6. Change in the number of Arctic summer comfortable days from 1979 to 2019: (a) time series, (b) RAPS,

(c) anomaly series.

Figure 7 shows the spatial distribution of Arctic summer comfortable days from 1979
to 2019. The number of days in all grid cells rated comfortable has clearly been increasing,
the area with a statistically significant increase accounted for 30% of the total Arctic area,
and the increase rate ranged —1.972-7.498 d/10a. The largest increase in the number
of comfortable days was in the Qeqertarsuaq region of western Greenland (31 d) and
the second largest increase was in northern and eastern Siberia of Russia (824 d). The
summer tourism seasons were extended in the areas with a large increase in the number of
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comfortable days, and the tourism structure could be adjusted appropriately to invest in
tourism infrastructures to meet the needs created by this extension.
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Figure 7. Rate of spatial change for the number of Arctic summer comfortable days from 1979 to 2019.

These Arctic summer comfortable days not only appear in the increase in grid cells but
also in the change of space areas with the same level of comfortable days. Table 2 displays
the area distribution of comfortable days at various frequency levels between the period
of 1979-1988 and 2010-2019. The areas with 0-10, 10-20, 20-30, and 40-50 comfortable
days decreased from 1979 to 1988 and from 2010 to 2019, with regions experiencing only
0-10 comfortable days declining most (by 2.96 x 10° km?). Areas with 30-40, 50-60, 60-70,
70-80, and 80-90 comfortable days increased, with areas having 60-70 comfortable days
increasing most (4.57 x 10° km?).

Table 2. Areas of comfort days at different levels in 1979-1988 and 2010-2019.

(105 km?) 0-10d

11-20d 21-30d 31-40d 41-50 d 51-60 d 61-70 d 71-80 d 81-92d

2010-2019 9.74
1979-1988 12.70
Difference —2.96

12.79 11.90 9.57 8.07 8.93 6.66 1.67 0.04
15.13 12.12 9.54 9.05 7.02 2.09 0.64 0.00
—2.34 —0.22 0.03 —0.98 1.91 4.57 1.03 0.04

In the past ten years (2010-2019), there was an average of 26 comfortable Arctic
summer days, which were distributed in North America and Eurasia, excluding Green-
land (Figure 8a). These basically followed a zonal distribution and gradually decreased
with an increase in latitude. Mid-eastern Russia, northern Europe, Canada, and Alaska
(66.5°-70 °N) had a large number of comfortable days (maximum: 90 d) and the regions
north of 70 °N had a smaller number of comfortable days (average: 20 d), accounting for
21.74% of the Arctic summer. Compared with the early 1980s (Figure 8b), the number of
comfortable days increased by 5 d.

In summary, there was an obvious increase in the range and number of comfortable
days (between 10 d and 30 d) in the Arctic, which were mainly distributed in mid-eastern
Russia (66.5°-70 °N), Greenland, and Ellesmere Island, north of 80 °N (Figure 8c). The
increase in the number of comfortable days extends the summer tourism season in the
Arctic, providing tourists more time to enjoy the natural scenery and creating the potential
for higher economic benefits.
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Figure 8. Spatial distribution and change in the number of Arctic summer comfortable days from
1979 to 1988 and from 2010 to 2019: (a) 2010-2019, (b) 1979-1988, (c) Spatial transformation.

4. Discussion

As an area sensitive to global warming, the climate comfort level in the Arctic has
changed with the warming climate, which has had positive effects on the regional tourism
industry. Therefore, it is of great significance to study the changes in the areas of the
Arctic that can be rated comfortable during the summer, with a particular focus on the
influence of climate comfort level on tourism in the context of global warming. In this
study, a quantitative analysis was carried out on the spatial-temporal evolution of the
Arctic summer climate comfort zones from 1979 to 2019, as well as the influence of the
change in the climate comfort levels on Arctic tourism. The results of this analysis may be
helpful in optimizing the Arctic tourism industry, promoting the development of tourism
destinations, and providing scientific and quantitative support for the development of
Arctic tourism. The following aspects were discussed in this study.

Factors that influence the climate comfort level include temperature, relative humidity,
wind speed, and sunshine duration. The relationship between meteorological elements
and climate comfort level was analyzed based on the ERA5-HEAT dataset. Figure 9 shows
the interannual changes in Arctic summer average temperature, relative humidity, wind
speed, and TCC from 1979 to 2019, which had averages of 3.809 °C, 79.461%, 4.128 m/s,
and 70.249%, respectively. The temperature rose significantly from 1979 to 2019 (p < 0.01),
with a rate of 0.418 °C/10a and a total increase of 1.714 °C. The relative humidity, wind
speed, and TCC fluctuated greatly, but the change was not significant (p > 0.05), which
indicates that the temperature increase was the main climate change factor in the Arctic.
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Figure 9. Changes in the average temperature, relative humidity, wind speed, and total cloud cover in the Arctic summer

from 1979 to 2019.

The correlation between the comfortable area and the number of comfortable days
and various meteorological factors was also analyzed (Table 3). The comfortable area and
number of days were positively correlated with the average temperature (p < 0.01) and
negatively correlated with TCC; the positive correlation coefficient was much larger than
the negative correlation coefficient. Thus, it appears that the comfortable area and days are
mainly affected by the temperature and TCC, with the temperature being the main factor.
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Table 3. Correlation coefficients between comfortable area, comfortable days, and meteorological
factors in arctic summer from 1979 to 2019.

Temperature Relative Humidity =~ Wind Speeds TCC
Comfortable Area 0.818 ** 0.07 —0.218 —0.340 *
Comfortable Days 0.944 ** 0.086 —0.309 —0.514 **

Note: “*”, “**”: Significance at 0.05 and 0.01 levels.

The spatial correlation coefficients between the number of comfortable days and
temperature, relative humidity, wind speed, and TCC in the Arctic summer are analyzed
(Figure 10). It showed that there are significant spatial correlations between comfort-
able days and temperature, relative humidity, wind speed, and TCC, which are basically
distributed between 66.5-70 °N and can reach 80 °N in areas such as Canada’s Queen
Elizabeth Islands and Ellesmere Island, indicating that the Arctic summer comfortable days
of 66.5-70 °N is related to temperature, relative humidity, wind speed, and TCC. However,
there are differences between different elements in the relevant regions. Statistics showed
that the areas where summer comfortable days are significantly correlated with tempera-
ture, relative humidity, wind speed, and TCC are 5.719 x 106, 3.24 x 10°,3.974 x 10°, and
5.412 x 10° km?, respectively. The average significant correlation coefficients are 0.776,
—0.447, —0.506, and —0.609, respectively, indicating that the Arctic summer comfortable
days have a more significant correlation with temperature, and temperature is the most
important factor affecting summer climate comfort.

Relative Humidity |80

Wit Speeds 180

Figure 10. Spatial correlation coefficients between the number of comfortable days and temperature, relative humidity,

wind speed, and TCC in Arctic summer from 1979 to 2019 (R: correlation coefficient).

The spatial pattern of and change in climate comfort levels in the peri-Arctic nations
and regions has been previously studied. For instance, the spatial pattern of the summer
UTCI index in Russia from 2001 to 2015 was analyzed by Vinogradova et al. [58] based on
data from 500 meteorological stations in Russia. The results showed that the comfortable
zones were distributed in most areas of Russia in summer, and a moderate thermal stress
level was observed in daytime in southern Europe. In a study by Yu et al., the hourly
weather data from meteorological stations were used to calculate the modified climate
index for tourism [20]. The authors suggested that the weather conditions in parts of
regions in Alaska had improved greatly from 1942 to 2005, which extended the tourism
season. Based on the temperature, precipitation, TCC, and visibility data, Forland et al.
found that “warm” weather in Norway, north of the Arctic Circle, increased from 1981
to 2010, the summer tourism season was extended, and the improvement in the summer
climate comfort level led to an increase in the number of tourists, quadrupling in the
Svalbard Islands [14]. According to statistics, from 1990 to 2005, the annual growth rate of
Iceland’s Arctic cruise tourists was 19.19%, from 7952 in 1990 to 266,070 in 2015, an increase
of more than 30 times; in 2019, the number of overnight tourists in Greenland increased
to 264,711 people, equivalent to 3.47 times the total population of the island; from 1996
to 2018, cruise tourism in Svalbard also increased greatly, and cruise tourists increased
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by 1.94 times [59]. These studies, to some extent, verify the findings of the present study,
which showed that the Arctic summer comfortable zones have expanded and the tourism
areas increased, while the number of comfortable days has significantly increased and the
summer tourism season has been extended.

The results of this study showed that the Arctic summer comfortable zones have
expanded and there are more comfortable days, which has created favorable conditions for
tourism. In recent years, Norway, Iceland, Russia, and Canada have set up Arctic tourism
routes and promoted the development of ecological tourism in the region [60]. The Arctic
is the region least affected by human activities in the world, and unplanned or inadequate
development of tourism resources could eventually lead to the degradation of the natural
environment. Tourists are also likely to bring new species and germs into the region [61].
To achieve the sustainable development of Arctic tourism, the various countries involved
should adhere to the concept of global integration and cooperate to complete legal systems
for Arctic tourism development to ensure ecological balanced and sustainable growth in
the region.

5. Conclusions

The average summer UTCI value in the Arctic was 0.025 °C from 1979 to 2019 and
the comfort level was cool. The UTCI increased significantly at a rate of 0.457 °C/10a and
there was an abrupt change in 2001. The Arctic summer comfort level changed from colder
to cool after this abrupt change.

The average comfortable area in the Arctic summer from 1979 to 2019 was
1.541 x 10° km?, accounting for a fifth of the Arctic land area. These comfortable zones
were mainly distributed in mid-eastern Russia, Norway, Sweden, and Finland in north-
ern Europe, as well as Alaska and the Yukon territory in Canada. The comfortable area
increased significantly at a rate of 2.114 x 10° km?/10a from 1979 to 2019. Compared with
the 1980s, the comfortable area has increased by 6.353 x 10% km? in recent decades, mainly
expanding to high-latitude and high-altitude regions, specifically distributed in the Kola
Peninsula, Putorana Plateau, Verkhoyansk Mountains in Russia, and Brooks Mountains
in Alaska.

The average number of Arctic summer comfortable days was 23 from 1979 to 2019,
accounting for a quarter of the entire summer. These were distributed zonally and grad-
ually decreased from low to high latitudes. The number of comfortable days increased
significantly from 1979 to 2019, at a rate of 1.458 d/10a. Compared with the early 1980s,
the number of comfortable days has increased by 5 d over the past decades. The range and
number of summer comfortable days has increased significantly, and the largest number of
comfortable days was seen in the Qeqertarsuaq region of western Greenland (31 d), while
the area seeing 60~70 summer comfortable days expanded the most (by 4.57 x 10° km?).

This study is only limited to the Arctic region and does not conduct a detailed analysis
of the Northern Hemisphere or typical Arctic tourism cities. It has not conducted an
in-depth study on how the Arctic climate comfort changes under the background of future
climate change. It will be subject to special research in the future.

The improvement of Arctic summer climate comfort and the extension of suitable
tourist seasons will enhance the attractiveness of Arctic tourist destinations while promot-
ing the development and utilization of Arctic natural resources. Sightseeing in gorges,
fishing, and watching rare species can be carried out in the peninsula regions and adven-
tures, such as polar mountain climbing and outdoor expeditions, can be developed in the
mountainous and plateau regions. Despite vigorously developing Arctic tourism activities,
it is necessary to protect and manage Arctic tourism resources to ensure the sustainable
development of Arctic tourism.
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Abstract: Three Earth system models (ESMs) from the Coupled Model Intercomparison Project
phase 6 (CMIP6) were chosen to project ecosystem changes under 1.5 and 2 °C global warming
targets in the Shared Socioeconomic Pathway 4.5 W m~2 (SSP245) scenario. Annual terrestrial gross
primary productivity (GPP) was taken as the representative ecological indicator of the ecosystem.
Under 1.5 °C global warming, GPP in four climate zones—i.e., temperate continental; temperate
monsoonal; subtropical-tropical monsoonal; high-cold Tibetan Plateau—showed a marked increase,
the smallest magnitude of which was around 12.3%. The increase was greater under 2 °C of global
warming, which suggests that from the perspective of ecosystem productivity, global warming poses
no ecological risk in China. Specifically, in comparison with historical GPP (1986-2005), under 1.5 °C
global warming GPP was projected to increase by 16.1-23.8% in the temperate continental zone,
12.3-16.1% in the temperate monsoonal zone, 12.5-14.7% in the subtropical-tropical monsoonal zone,
and 20.0-37.0% on the Tibetan Plateau. Under 2 °C global warming, the projected GPP increase
was 23.0-34.3% in the temperate continental zone, 21.2-24.4% in the temperate monsoonal zone,
16.1-28.4% in the subtropical-tropical monsoonal zone, and 28.4-63.0% on the Tibetan Plateau.
The GPP increase contributed by climate change was further quantified and attributed. The ESM
prediction from the Max Planck Institute suggested that the climate contribution could range from
—12.8% in the temperate continental zone up to 61.1% on the Tibetan Plateau; however, the ESMs
differed markedly regarding their climate contribution to GPP change. Although precipitation
has a higher sensitivity coefficient, temperature generally plays a more important role in GPP
change, primarily because of the larger relative change in temperature in comparison with that
of precipitation.

Keywords: GPP; climate change; CMIP6; ESM

1. Introduction

Gross and net primary productivity (GPP and NPP, respectively) are representative
indicators that reflect ecosystem production capacity [1-3]. Many previous studies have
considered future GPP/NPP change. For example, Huang et al. [4] evaluated NPP varia-
tions in the 21st century under various climate scenarios using the Lund-Potsdam-Jena
dynamic global vegetation model. They found that total NPP in China is projected to
increase continuously under different scenarios, with CO, concentration playing the dom-
inant role. Using a machine learning model to constrain the spatial uncertainty in GPP
projections, Schlund et al. [5] predicted a higher increase in GPP in northern high latitudes
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over the 21st century under the Representative Concentration Pathway [6] 8.5 W m 2
(RCP8.5) in comparison with regions closer to the equator. Under 1.5 °C of global warm-
ing, the GPP in China is expected to increase by 15.5% =+ 5.4% on a stabilized pathway
and by 11.9% + 4.4% on a transient pathway [7]. Zhang et al. [3] explored the trend
features of GPP/NPP in the 21st century under the Shared Socioeconomic Pathway [8]
24.5 W m~?2 (SSP245) with the Beijing Climate Model. Their results predicted the overall
trends of increase in both the near-term and long-term terrestrial GPP/NPP. However, in
certain districts, the trend of GPP/NPP showed an initial increase followed by a decrease.
Wang et al. [9] investigated the variation in NPP over the 21st century using the Earth
system models (ESMs) of the Coupled Model Intercomparison Project phase 5. The results
obtained under all four RCP scenarios suggested an increasing trend of NPP over China,
especially in western areas.

In summary, GPP/NPP in China under different scenarios is expected to show a
trend of increase in the 21st century. However, large uncertainties exist in the various
ESMs [5,9]. Under the global warming targets of 1.5 and 2 °C above preindustrial levels set
by the Paris Agreement, many regional impacts wait to be assessed. In particular, as the
Coupled Model Intercomparison Project enters into the 6th phase (CMIP6), more and more
ESMs have distributed their latest climate simulation under the Shared Socioeconomic
Pathways (SSPs). How the latest ESMs will project the future ecosystem change in China
and the corresponding climate attribution remains to be determined and revealed. In
a recent study on performance in presenting historical terrestrial GPP in China, three
out of seven ESMs evaluated were found to perform well in terms of climatological GPP,
spatial pattern, and the ecosystem—climate relationship [10]. Consequently, these three
ESMs were chosen in this study to predict ecosystem change under the warming targets.
The ecological indicator of annual GPP was applied to measure the general state of the
ecosystem. Changes in annual GPP predicted using the different ESMs were quantified
with respect to the different climate zones in China. Furthermore, the relationship between
the ecosystem and climate variables was tested and built through linear correlation and
multiple regression. Relying on the model-specific parameters of the ecosystem response
to the climate, the climate-related GPP changes were revealed and quantified.

2. Materials and Methods
2.1. Data

In this study, three ESMs that performed well in historical GPP reproduction [10] were
chosen to project future GPP in China: (1) the Beijing Climate Center Climate System Model
(BCC-CSM2-MR) [11], (2) the Euro-Mediterranean Centre on Climate Change coupled cli-
mate model (CMCC-CM2-SR5) [12], and (3) the Max Planck Institute for Meteorology Earth
System Model version 1.2 (MPI-ESM1.2-HR) [13]. Specifically, BCC-CSM2-MR and MPI-
ESM1-2-HR, out of seven ESMs, gave the best estimation of climatological GPP in China
from 1980 to 2013. MPI-ESM1-2-HR performed best in characterizing the spatial structure.
BCC-CSM2-MR and CMCC-CM2-SR5 best captured the response of the ecosystem to the
climate [10]. The land surface models used for the three ESMs were BCC-AVIM2.0, CLM4.5,
and JSBACH3.2. Major improvements or parameterizations have been made to these
models in comparison with their predecessors; they make use of new scientific under-
standing to better simulate vegetation phenology [12-14]. These ESMs could provide not
only the monthly GPP, but also the monthly surface air temperature and precipitation. In
CMIP6, new SSPs were employed for climate modelling. The SSPs included five narratives
describing alternative socio-economic developments, such as sustainable development,
fossil-fueled development, etc. [8]. The middle of the road development—i.e., the SSP2
scenario—featured a continuation of the current fossil fuel-dominated energy mixed with
intermediate challenges for both mitigation and adaptation, which resembled the historical
pattern most [8]. SSP245, as the sole scenario of SSP2 implemented in CMIP6, was thus
chosen to represent the most possible future world. Historical data (1980-2013) were ap-
plied to determine the ecosystem-climate relationship—i.e., correlation and multiple linear
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regression. Data from the BCC-CSM2-MR, CMCC-CM2-SR5, and MPI-ESM1.2-HR ESMs
were output as 1.125° x 1.125°,0.9375° x 1.25°, and 0.9375° x 0.9375° grids, respectively.
Because the grids were not uniform, they were first transformed to a 1° x 1° grid through
bilinear interpolation for comparative purposes.

A climate division map of China was applied for regional analysis. It divided the coun-
try into four climate zones—i.e., temperate continental, temperate monsoonal, subtropical—
tropical monsoonal, and high-cold Tibetan Plateau, as in He et al. [15] and Zhang et al. [16].

2.2. Methods
2.2.1. Bilinear Interpolation

Bilinear interpolation can produce a smoother interpolation than that achieved using
the nearest neighbor method [17]. Thus, it was applied to transform fields from various
grids of the ESMs into the formal 1° x 1° grid. In this approach, g (111, 113) is defined as a
linear combination of the values of its four nearest neighbors. Given the four neighbors
with coordinates f (119, 129), f (111, 121), f (12, n22), and f (1113, n123) (i-e., the four nearest
neighbors of f (111, 1)), the geometrically transformed field g (111, 1) is computed as:

g(mi,np) = Ag+ Ainy + Apny + Aznyny. (1)

The bilinear weights Ag, A1, Ay, and A3 are found by solving:

Ag 1110 o0 monizg | f (110, m29)
Ay | _ | 1 ngg niny f(n1,n21) @
Aa 1 113 nop nyonon f(n12,1n22)
Az 1 113 123 n13nn3 f(mi3,m23)

2.2.2. Area Weighting

Regional and global mean variables—e.g., temperature, precipitation, and GPP—on
the 1° x 1° grid are calculated through area weighting:

TV % . % cos(0;) L V;cos(6:)
1
— i (3)

1
Y %’é . %’é cos(6;) ZCOS(ei)
i i

V‘reg =

where 6 represents the latitude of the grid, R is the Earth’s radius, and V is the variable.

2.2.3. Linear Correlation and Multiple Regression

The correlation coefficient r is used to test the relationship between ecosystem produc-
tivity and climate factors. The formula can be expressed as follows:

n n n
ny ECi— Y EYC
i=1 =1 i=1

4)

n n 2 n n 2 !
\/HZ Ef - (XL E) '%12 CG-(XC)
i=1 i=1 i=1 i=1
where E and C represent ecosystem productivity and climate factors, respectively.
The interannual variation in GPP reflects year-to-year differences attributable mainly to
climate variations [18,19]; therefore, the relationship between GPP and climate—i.e., precipita-
tion and surface air temperature—was explored using a multiple regression approach [20]:

Yy =axr +bxp +¢, (5)

where y is the detrended anomaly of the carbon flux GPP, variable xt is the detrended
annual temperature anomaly, and xp is the detrended annual precipitation anomaly. The fit-
ted regression coefficients a and b define the apparent carbon flux sensitivity to interannual

267



Sustainability 2021, 13, 11744

variations in temperature and precipitation, and ¢ is the residual error term. The use of the
detrended time series instead of the original nonstationary time series in the above linear
correlation and regression analysis provides a robust estimate of their relationship [21-23].

Some definitions set 19862005 as a reference period when the global surface air temper-
ature was 0.61 °C warmer than preindustrial levels [24,25]. We adopted this definition and
defined the 1.5 and 2 °C warming periods as the first time when the 20-year-moving-average
global temperature was 0.89 and 1.39 °C warmer, respectively, than that from 1986-2005 in
the models. The corresponding changes in ecosystem and regional climate were based upon
the reference period of 1986-2005. It is also necessary to point out that 20 years is a duration
that is commonly applied to represent a climate state in the scientific world [26-28].

3. Results and Discussion
3.1. GPP Distribution and Projected Changes

The climatological GPP distribution produced by each of the three ESMs from 1986 to
2005 is shown in Figure 1. The ESMs all produce a similar spatial pattern of GPP, showing
high (low) values in the southeast (northwest) of China. Regionally, the GPP in the subtropical—-
tropical monsoonal zone is largest, followed in descending order by the temperate monsoonal
zone, Tibetan Plateau, and temperate continental zone. The three ESMs produced comparable
estimates in the climate zones except in the monsoonal regions, where CMCC-CM2-SR5
produced larger estimates, especially in the subtropical-tropical monsoonal zone.
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Figure 1. Climatological GPP distribution (unit: gC m—2 yr’l) from 1986 to 2005 from (a) BCC-CSM2-MR, (b) CMCC-CM2-
SR5, and (c) MPI-ESM1-2-HR. The four delineated regions represent the climate zones temperate continental (TC), temperate
monsoonal (TM), subtropical-tropical monsoonal (STM), and high-cold Tibetan Plateau (TP). (d) Regional GPP from the
ESMs (PgC yr~!: petagram of carbon per year) (BCC: BCC-CSM2-MR; CMCC: CMCC-CM2-SR5; MPI: MPI-ESM1-2-HR).
The bars and lines represent the standard deviation during the 20 years.
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The GPP change under 1.5 °C of global warming is shown in Figure 2. Throughout
China, the GPP of all three ESMs showed a positive anomaly except over certain individual
grid points. In the subtropical-tropical monsoonal with MPI-ESM1-2-HR, the negatively
changed grids tend to concentrate (Figure 2e). The areal GPP reduction may be related to
reduced local precipitation. However, many factors could contribute to the GPP change in
addition to precipitation and temperature, such as land-use change, soil moisture, wind
speed, humidity, solar radiation, nitrogen deposition, etc. Thus, it is really hard to be
conclusive. Moreover, the aggregated negative grids tend to dissipate under 2 °C global
warming (Figure 3e). The GPP change patterns differ among the models (Figure 2). For
example, the largest anomaly in the output of BCC-CSM2-MR appears over the southeast-
ern Tibetan Plateau, whereas the largest anomalies in the output of CMCC-CM2-SR5 and
MPI-ESM1-2-HR appear in the central and southern parts of the subtropical-tropical mon-
soonal zone, respectively. The absolute GPP change is largest in the subtropical-tropical
monsoonal zone; however, the relative change is rather small and stable among the models
(Figure 2 right). The absolute change is smallest in the temperate continental zone owing to
its low base value in GPP. The relative change is large over the Tibetan Plateau, and there
are strong differences in the magnitude of the GPP increments among the different models.

The GPP anomaly under 2 °C of global warming shows a spatial pattern similar to
that found under 1.5 °C global warming but with a stronger intensity (Figure 3). Regional
statistics indicate that the regional GPP changes will be larger under 2 °C of global warming.
The projected increment of GPP in China under the different warming targets is consistent
with previous findings [5,7,29]. This suggests that from the perspective of GPP, there is
no ecological crisis in the projected future climate within the studied domain [3]. As with
1.5 °C warming, the subtropical-tropical monsoonal zone with the highest GPP value
contributed the most to the increment in China’s GPP under 2 °C of warming. However,
the increase rate does not show much difference in magnitude when compared with that
of other regions. It is worth noting that the rate of increase in GPP is substantial on the
Tibetan Plateau—i.e., the increase is nearly 63% with regard to BCC-CSM2-MR. Thus, the
Tibetan Plateau would appear to be the region most susceptible to the effects of climate
warming, although the influence could be considered positive and beneficial.

The seasonal GPP anomalies under the 1.5 and 2 °C warming scenarios are shown in
Figures 4 and 5, respectively. The spatial modes between the two warming scenarios are
similar, noting that the magnitude in the 2 °C warming is much larger than in the 1.5 °C
warming. In spring and summer, the GPP anomalies are the most prosperous, as they
correspond to the growing season in China, while they drop to become the weakest in
winter. In spring and winter with all ESMs, the GPP all over China generally shows a
positive anomaly, with only sporadic negative points. Some negative changes occur in
summer and autumn, especially with BCC-CSM2-MR and MPI-ESM1-2-HR. For BCC-
CSM2-MR in summer, the negative GPP anomalies concentrate in the Huaihe River, which
divides the subtropical-tropical monsoonal and temperate monsoonal regions. However,
there were no negative changes in GPP at the zone scale. For MPI-ESM1-2-HR in summer
and autumn, we observed some negative changes over the grassland in the temperate
continental, which is similar to the results of Ma et al. [30]. They found that large areas
in Northern China showed a decreasing trend in NPP under global warming, although
the overall NPP increased significantly. The fact that only one ESM obtained similar
results also indicates the large inter-model spread in representing the future GPP change.
The negative changes in the temperate continental were weakened under the 2 °C warming
scenario (Figure 5).
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Figure 2. (Left) Spatial distribution of GPP anomaly (gC m~2 yr~') and (right) the respective regional GPP changes
under 1.5 °C of global warming. (a,b) BCC-CSM2-MR, (¢,d) CMCC-CM2-SR5, and (e,f) MPI-ESM1-2-HR. Numbers in the
right-hand panels represent the relative change in comparison with regional GPP from 1986 to 2005.
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Figure 3. (Left) Spatial distribution of GPP anomaly (gC m~2 yr~1) and (right) the respective regional GPP changes under
2 °C of global warming. (a,b) BCC-CSM2-MR, (¢,d) CMCC-CM2-SR5, and (e,f) MPI-ESM1-2-HR. Numbers in the right-hand
panels represent the relative change in comparison with regional GPP from 1986 to 2005.
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3.2. Climate Attribution

The variation in GPP is closely related to climate [20,31], and the correlation parame-
ters within the studied ESMs are provided in Table 1. It can be seen that GPP is correlated
significantly with at least one climate variable. There are cases in which GPP correlates
negatively with temperature, such as in the temperate continental zone with MPI-ESM1-
2-HR and in the temperate monsoonal zone with BCC-CSM2-MR, which imply inherent
differences in ecological modeling between the different ESMs [9,10]. On the Tibetan
Plateau, it is unanimous within the ESMs that GPP is most closely related to temperature
rather than to precipitation. Because the ESMs substantially overestimate precipitation
over the Tibetan Plateau [32-34], it is possible that precipitation is not the primary climate
factor constraining the regional ecosystem.
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Figure 4. Seasonal GPP anomaly distribution under 1.5 °C of global warming (gC m~2 yr~'). The four rows from up
to down represent spring, summer, autumn, and winter, respectively. The three columns from left to right represent
BCC-CSM2-MR, CMCC-CM2-5R5, and MPI-ESM1-2-HR, respectively.

272



Sustainability 2021, 13, 11744

50°N

35°N

20°N

50°N

35°N

20°N

50°N

35°N

20°N

50°N

35°N

20°N

The corresponding climate changes—i.e., precipitation and surface air temperature— under
the warming targets are shown in Tables 2 and 3, respectively. The mode of temperature change in
the four regions is consistent among the models. The hottest region—i.e., the subtropical-tropical
monsoonal zone—increases least under the effects of warming. Both CMCC-CM2-SR5 and
MPI-ESM1-2-HR produced similar estimates of temperature change, whereas the estimates from
BCC-CSM2-MR were larger, especially over the monsoonal regions.
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Figure 5. Seasonal GPP anomaly distribution under 2 °C of global warming (gC m~2 yr~1). The four rows from up to down
represent spring, summer, autumn, and winter, respectively. The three columns from left to right represent BCC-CSM2-MR,
CMCC-CM2-SR5, and MPI-ESM1-2-HR, respectively.

There is a greater model variety regarding the change in precipitation. Under 1.5 °C of
warming, there are negative changes—e.g., in the temperate monsoonal zone with CMCC-
CM2-SR5 and in the subtropical-tropical monsoonal zone with both BCC-CSM2-MR and
CMCC-CM2-SR5. Conversely, under 2 °C of warming, there are no negative changes, but
the incremental differences for one certain region are huge. These results indicate the large
uncertainty in the precipitation projections made by the ESMs. It is also worth noting
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that in comparison with their variabilities, the change in temperature under the warming
scenarios is reasonably large, whereas the precipitation change is rather limited [10].

The apparent sensitivity of climate to the ecosystem of each of the ESMs is shown
in Table 4. The response of the ecosystem to climate varies strongly among the models.
For some ESM regions, climate plays a crucial role, such that the variation in climate
explains more than half of the variation in GPP. However, for certain other ESM regions,
the degree of explanation attributable to climate is rather small—e.g., MPI-ESM1-2-HR
in the subtropical-tropical monsoonal zone and BCC-CSM2-MR on the Tibetan Plateau.
For one particular region, the same climate factor might affect the ecosystem differently
in the various models. Taking the subtropical-tropical monsoonal zone as an example,
precipitation is the major influencing factor and affects the ecosystem positively with
BCC-CSM2-MR and CMCC-CM2-SR5. However, with MPI-ESM1-2-HR, the correlation
between precipitation and GPP is insignificant and negative (Tables 1 and 4). Moreover,
the overall climate contribution to ecosystem variation with MPI-ESM1-2-HR is very small
(Table 4). These features further reflect the inherent differences of ecological modeling
within the ESMs.

Table 1. Correlation parameter r between GPP and climate variables during the historical period
of 1980-2013. * denotes correlation that is significant at the 0.1 level; ** denotes correlation that is
significant at the 0.05 level; *** denotes correlation that is significant at the 0.01 level.

GPPvs. P TC ™ STM TP
BCC 0.68 *** 0.74 *** 0.62 *** 0.1
CMCC 0.72 *** 0.58 *** 0.42 ** —0.01
MPI 0.81 *** 0.36 ** —0.26 0.23

GPPvs. T
BCC —0.09 —0.35** —0.25 0.35 **
CMCC 0.17 0.42 ** 0.34 * 0.74 #**
MPI —0.42 ** 0.13 0.33* 0.62 ***

Table 2. Regional temperature change (°C) in comparison with that of the reference period of
1986-2005 under 1.5 and 2 °C (in parentheses) of global warming.

TC ™ STM TP
BCC 1.37(2.21) 1.66(2.37) 1.16(1.86) 1.37(2.10)
CMCC 1.28(1.94) 1.12(1.78) 0.81(1.27) 1.19(1.71)
MPI 1.18(1.89) 1.1(1.79) 0.83(1.69) 1.14(2.02)

Table 3. Regional precipitation change (mm yr~!) in comparison with that of the reference period of
1986-2005 under 1.5 and 2 °C (in parentheses) of global warming.

TC ™ STM TP

BCC 12.47(28.22) 8.11(47.13) —6.18(57.36) 10.37(32.23)

CMCC 11.31(45.68) —20.08(16.22) —51.89(20.50) 30.24(94.89)
MPI 2.65(8.66) 6.91(19.23) 32.83(46.13) 11.5(9.42)
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Table 4. Sensitivity parameters of GPP to climate variables during the historical period of 1980-2013
through the multiple linear regression approach. The final row shows the explained variance of
climate to GPP through multiple regression.

Temperate Continental BCC CMCC MPI
P 0.8 0.72 0.77
T 0.26 0.14 —-0.1
Var 52.20% 54.00% 66.50%
Temperate monsoonal
P 0.78 0.54 0.66
T 0.06 0.35 0.52
Var 55.40% 45.90% 30.20%
Subtropical-tropical monsoonal
P 0.64 0.51 —0.15
T 0.06 0.44 0.28
Var 38.10% 36.30% 13.10%
Tibetan Plateau
P 0.16 —0.1 0.46
T 0.38 0.75 0.75
Var 15.00% 55.70% 57.50%

Based on the ecosystem—climate relationship (Table 4) and the known climate changes
(Tables 2 and 3), the GPP change over the climate zones with the different ESMs is attributed
quantitatively in Figure 6. As mentioned before, some contributions from the climate
factors are negative, for which there are two major reasons. First, the climate change is
negative—e.g., the negative precipitation change leads to a negative contribution to GPP.
Second, the correlation between the climate factor and GPP is negative—e.g., temperature
and GPP in the temperate continental zone in MPI-ESM1-2-HR. A positive anomaly in
temperature could also lead to GPP reduction. The climate contribution to the variation
in GPP changes among the studied ESMs. Even with the same model—e.g., MPI-ESM1-
2-HR—it can be —12.8% in the temperate continental zone and 61.1% on the Tibetan
Plateau. Generally, under the effects of global warming, the influence of temperature
on the ecosystem is larger than that of precipitation. This is mainly because the relative
change in temperature is much larger than that in precipitation. On the Tibetan Plateau,
where temperature is the most constraining factor (Tables 1 and 4), temperature plays a
more dominant role than precipitation in the increase in GPP (Figure 6). In addition, it
is observed that the relative GPP increase in the Tibetan Plateau is much larger than that
in other regions. On the one hand, it is related to the low baseline value of GPP in the
Tibetan Plateau (Figure 1d). A light increase in the GPP of the Tibetan Plateau is salient in
relative values compared to the respective change in the subtropical-tropical monsoonal
region. On the other hand, this may be related to the vegetation structure on the Plateau.
Demonym plants can be divided into three types based on their photosynthesis patterns
(i.e., C3, C4, and crassulacean acid metabolism). C3 photosynthesis produces a three-
carbon compound during the Calvin cycle, while C4 photosynthesis makes an intermediate
four-carbon compound that splits into a three-carbon compound for the Calvin cycle.
They favor different conditions of nature. The conditions on the frigid Tibetan Plateau are
unsuitable for the growth of C4 plants [35]. Consequently, the plateau is dominant by C3
plants [36]. C3 plants are more efficient in vegetative growth than C4 plants in response to
the increasing air CO; [37]. As a result, GPP increases more rapidly with increased air CO,
in the Tibetan Plateau than in other regions containing both C3 and C4 plants.
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Figure 6. Climate contributions to GPP change with the different ESMs under (a) 1.5 and (b) 2 °C of global warming. Bars
represent the absolute climate contributions (PgC yr~1). Percentages represent the relative climate contributions to the
overall GPP changes.

4. Conclusions

To evaluate the GPP change under 1.5 and 2 °C of global warming, this study selected
three CMIP6 ESMs (i.e., BCC-CSM2-MR, CMCC-CM2-SR5, and MPI-ESM1-2-HR) that
performed well in historical GPP modeling; the principal conclusions derived are as follows:

1. Under 1.5 and 2 °C of global warming, the projections of the ESMs indicate that global
warming introduces no ecological risk in China. Although certain individual grid
points showed negative GPP changes, regional GPP showed a marked increase, the
smallest magnitude of which was more than 10% greater than that from 1986 to 2005.

2. Specifically under 1.5 °C warming, the GPP in the temperate continental zone is pro-
jected to increase by 16.1-23.8% in comparison with the historical value (1986-2005).
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Similarly, GPP is projected to increase by 12.3-16.1% in the temperate monsoonal zone,
12.5-14.7% in the subtropical-tropical monsoonal zone, and 20.0-37.0% on the Tibetan
Plateau. Under 2 °C warming, the increase in GPP is projected to be even greater—i.e.,
23.0-34.3% in the temperate continental zone, 21.2-24.4% in the temperate monsoonal
zone, 16.1-28.4% in the subtropical-tropical monsoonal zone, and 28.4-63.0% on the
Tibetan Plateau.

3. Climate change is projected to contribute positively to GPP change, except in the
temperate continental zone with MPI-ESM1-2-HR. Although precipitation has larger
sensitivity parameters, temperature generally plays a more important role in GPP
change because of the larger change relative to its own variability in comparison with
that of precipitation.

The output of the three studied ESMs showed a marked spread, not only in GPP
change but also in the accountability of climate to the ecosystem. In addition, the change in
climate, especially precipitation, differed strongly within the models, which indicates the
large uncertainty in the climate projections of the ESMs. All of these add to difficulties in
attributing future GPP change to climate. Moreover, this study analyzed the influence of
annual precipitation and temperature upon the ecosystem productivity. However, GPP
variation depends not only on these, but also on wind speed, humidity, solar radiation,
nitrogen deposition, etc. Future studies should be more comprehensive in building the
regressed equations between GPP and the impact factors. This study failed to analyze the
contribution of CO, to the GPP increase. This was due to the lack of gridded/regional
CO; concentration data. Future research should take into account the CO, effect when
analyzing the GPP change and be more specific about vegetation of C3 and C4 types. This
study is more general in that it focuses on the general productivity of the climate zones.
Future studies should be refined to specific vegetation covers, such as forest, grass, etc.
The fact that different ESMs lack consensus in the response mechanism of the ecosystem
to climate, even over one specific climate zone, highlights that there is still a long way for
ecological modeling in China to go.
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Abstract: The China—-US trade conflict will inevitably have a negative impact on China’s trade
imports and exports, industrial development, and economic growth, and will affect the achievement
of climate change goals. In the short term, the impact of the trade conflict on China’s import and
export trade will cause the carbon emissions contained in traded commodities to change accordingly.
To assess the impact of the trade conflict on China’s climate policy, this paper combines a model from
the Global Trade Analysis Project (GTAP) and the input-output analysis method and calculates the
carbon emissions in international trade before and after the conflict. The conclusions are as follows:
(1) The trade war has led to a sharp decline in China-US trade, but for China as a whole, imports
and exports have not changed much; (2) China’s export emissions have changed little, its import
emissions have dropped slightly, and its net emissions have increased; and (3) China’s exports are
still concentrated in energy-intensive industries. Changes in trade will bring challenges to China’s
balancing of climate and trade exigencies. China-US cooperation based on energy and technology
will help China cope with climate change after the trade conflict.

Keywords: trade conflict; carbon emissions; import and export trade; cooperative emission reduction

1. Introduction

Currently, the world economy suffered unexpected shocks [1], affected by the epidemic
COVID-19 [2]. The United States and China are the two largest economies: China relied on
its institutional advantages to control the number of domestic cases [3] and the economy
recovered rapidly in the US due to the popularization of vaccines. American citizens are
eager for excess savings during the retaliatory consumption epidemic, and many industries
are experiencing inflation [4]. Among their major suppliers, in addition to China, countries
in south and southeast Asia are hardest hit by the epidemic, and it is even difficult for India
to control its own situation [5,6]. The trade tensions between China and the United States
tend to ease, and have been an important factor affecting international trade in recent years.

In July 2018, the United States began to impose 25% tariffs on an array of Chinese
exports worth US $34 billion [7], and China and the United States began a trade war
that has had an enormous impact on the economic development of the two countries as
well as the world economy and global trade [8,9]. The strategic conflict between China
and the US emerged at the end of 2017, when China was portrayed as a competitor in a
Trump administration National Security Report [10]. The trade conflict between China
and the United States reflects the strategic competition between the two countries in the
new industrial revolution. In turn, future trade agreements may be conditioned on climate
agreements in international negotiations. Biden’s presidential campaign plan called for
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binding agreements on enhanced climate ambition, including shipping and aviation, and
Biden may support the adoption of a carbon border adjustment [11,12].

Economic growth and rapid industrialization are considered to be the main reasons for
the sharp increase in emissions [13]. Since 2006, China has been the world’s largest carbon
emitter [14]. At the same time, China is also the largest net exporter of carbon dioxide
emissions in goods and services [15,16]. The increase in emissions embodied in China’s
trade has caused problems for international trade and climate policy: China and other
emerging markets have a comparative advantage in manufacturing and are an essential
part of international trade; however, at the same time, because China’s carbon-intensive
manufacturing yields much more carbon emissions than the manufacture of the same
products in developed regions, trade has increased global carbon emissions [17-20].

With the rapid development of international trade, the production chain of goods and
services is no longer limited to one or two countries, and more production and consumption
take place in different countries. Current accounting schemes for carbon emissions are
mainly based on emissions from production, with less consideration of the consumption
side [21,22]. There are two principal methods for consumption-based carbon emissions
accounting: life cycle assessment (LCA) and input-output analysis (IOA) [23-25]. The
LCA method is typically used for relatively simple and traceable inspections of production
chains such as households and enterprises. On the other hand, input-output analysis is
widely used at the national and sector levels [26-28]. This method can be further divided
into three model frameworks: single region input-output (SRIO), bilateral trade input—
output (BTIO), and multi-regional input-output (MRIO).

The SRIO model is mostly used to study the implied energy and emissions in a coun-
try’s trade, taking the country as a whole and assuming the same production technology;
the BTIO model takes into account technological differences between different countries
and uses separate energy consumption and emissions factors; neither of these two methods
can accurately reflect the relationship between industry and trade among various sectors
in each country [29]. The MRIO model distinguishes between the technical and economic
structures of different countries as well as the flow of imported and exported products [30].
With the improvement of input-output tables among countries, this method is increasingly
employed in research on large-scale hidden emissions in global trade. In its trade war
simulation, this paper mainly focuses on changes in China’s trade and the resulting changes
in emissions. The single region input—output model can meet the paper’s research needs
with fewer data requirements than the other models, so the SRIO model is adopted.

Here, we combine existing methods to simulate the impact of the trade conflict
on China’s commodity trade value [31,32] and to discuss the impact on China’s energy
industry and the path of carbon reduction. In order to track global import and export
changes caused by trade conflicts, we use the model of Global Trade Analysis Project
(GTAP) [33] to simulate the trade situation of 29 sectors in 14 regions. We calculate the
emissions embodied in China’s trade by a single input-output (SRIO) model of emissions
and trade as of the year 2018. Our calculations only include carbon emissions from China’s
imports and exports, and emissions from other regions are not included.

2. Materials and Methods
2.1. Materials and Data

The GTAP model data are from the GTAP v10 data package [34], which contains the
input-output tables and trade volumes of countries across the world. This paper uses
a recursive method to project the 2014 data in the model to 2018 [35], and the currency
is US dollars. The energy statistics for China’s carbon emissions accounting come from
the Energy Statistics Yearbook [36—40], and the emissions factors are derived from the
revised emissions factors in Liu’s study [41]. Due to the slow updating of China’s statistical
data, energy statistics for 2018 have not been released, so energy data of 2017 are used to
generate carbon emissions data. At the same time, due to the difficulty of obtaining foreign
data, this paper combines the emissions data contained in the GTAP’s own database and
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assumes that foreign countries in each region have similar technical levels and are unified
into the same emissions coefficient matrix. Abbreviations for regions and departments can
be found in Tables A1 and A2.

2.2. Methods
2.2.1. The GTAP Model

The model from the Global Trade Analysis Project (GTAP) is a multi-country multi-
sector application general equilibrium model designed based on neoclassical economic
theory (Hertel, 1997, GTAP, 2019; Walmsley et al.,, 2012). The GTAP, led by Thomas
W. Hertel, a professor at Purdue University in the United States, was developed and
has been widely used in the analysis of trade policies. In the GTAP model framework,
they first establish a sub-model that can describe in detail the behavior of each country’s
production, consumption, government expenditure, etc., and then link the sub-models into
a multi-country multi-sector general equilibrium model through international commodity
trade. When we carry out policy simulations in this model framework, it is possible to
simultaneously discuss the impact of the policy on factors such as production, imports
and exports, commodity prices, factor supply and demand, factor compensation, gross
domestic product, and social welfare levels in various countries.

The GTAP model assumes that the market is perfectly competitive, the returns to scale
of production are constant, producers minimize production costs, consumers maximize
utility, and all product and input factor markets clear. At the same time, each country
has only one account, and all taxes, financial assets, and capital and labor income are
accumulated in this account. The income in the account is divided into three parts: private
consumption, deposits, and government consumption. The private expenditure equation
uses the fixed difference elastic utility equation. The government’s utility equation takes
the form of a Cobb-Douglas equation.

GTAP establishes connections between countries (regions) through trade. Domestic
products and imported products from different regions are incomplete substitutes; that is,
they follow the Armington hypothesis and are characterized by a set constant elasticity
of substitution. When the construction of a country’s economic model is completed, the
commodities and capital flows of international trade (the “global banking” sector) are
added to it to form a multi-country economic model. At this time, there is a substitution
relationship between imported products and domestic products, and the Armington hy-
pothesis is adopted for product compounding; that is, imported products and domestic
products are regarded as different products, and they have an incomplete substitution
relationship between each other.

In the GTAP model, there are two international departments (national banks and
international transportation departments). The savings of each country are aggregated into
international banks and distributed among the countries according to the return on capital.
The price expression of import and export commodities in the GTAP model is as follows:

pFOB _ pEX (1 + TEX) )
PCIF _ PFOB(l + F) 2
pIM _ pCIF (1 + TIM) )

PEX
pCIF

where PFOB represents the export port price, represents the domestic price of exported
goods, PC!F represents the import port price, represents the domestic price of exported
goods, P'™ represents the domestic price of imported goods, TEX and T'™ represent export
and import tariffs (or subsidies), and F is the freight cost.
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2.2.2. Production-Based Carbon Emissions Calculation

We calculate the production-based emission according to the IPCC sectoral approach [41].
Emissions are calculated based on the sectoral consumption of different fuels, as shown in
equation below.

CE’] = ADL] X NCVI X CCl X O‘f (4)

where CEj; refers to the carbon dioxide emissions generated by the combustion of fossil
fuel type i in sector j; AD;; represents the fossil fuel consumption of the corresponding
type and sector; NCV; refers to the net calorific value, i.e., the calorific value generated by
each fossil fuel combustion unit; CC; refers to the CO, emissions per unit of net calorific
value generated by fossil fuel i; and Oj; refers to the oxygenation efficiency. The fossil
fuel emissions factors (NCV; x CC;) we adopted are from a study by Liu [41], in which
602 groups of coal samples from all coal mines in China were sampled and weighted to
obtain the national average emissions factor. Reference values for emission factors can be
found in Table A3.

2.2.3. Input-Output Method to Calculate Trade Emissions

One method of consumption-based carbon emissions accounting is to compile an
inventory based on the final consumption location of goods and services, and another
including the total amount of the emissions contained in the imports used in production,
and subtract the two quantities. The emissions included in exports reflect the interre-
gional exchange of energy supply, commodities, and materials. Environmentally extended
input-output analysis (EIO) can be used to calculate the emissions from regional imports
and exports.

Input-output analysis is a method used to study the production balance among
various sectors of the national economy. If we start from the assumption of general
equilibrium, the dependence of the product volume of each sector is expressed as a system
of equations. Then, based on statistical data, a matrix or checkerboard-shaped balance table
is made to show the overall picture of the balance between the supply of and demand for
products in various sectors of the national economy; from this is derived the total amount
of products in each sector. The proportion of the product volume required by other sectors
(called the technical coefficient) is used to determine the relevant parameter values in the
above equations.

According to Leontief’s input-output analysis method [42], the following models can
be established:

X=AX+Y )

where X is the N*1 order total output column vector, N is the number of economic sectors,
Y is the N*1 order final product column vector, and matrix A is the direct consumption
coefficient.

After conversion, it can be transformed into:

X=(I-A)"'Y=BY (6)

Here, B is the Leontief inverse matrix, that is, the complete demand coefficient matrix,
and I is the identity matrix.

Next, we can obtain the demand coefficient matrix C of carbon emissions in each
industry,

c=x°1-A)" )

where XC represents the carbon emissions on the production side of each sector.
Finally, we can obtain the carbon emissions in import and export trade,

cim = cy'™ 8)

Cout — C‘Yﬂllt (9)
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where C™ and C°"t represent the carbon emissions contained in imports and in exports,
respectively, and Y and Y°"! represent the import and export trade volumes, respectively.

3. Results
3.1. Goods Traded before and after the Trade Conflict

The model used in this paper is the GTAP model developed by researchers at Purdue
University in the United States. It is a multi-country, multisector computable general
equilibrium model and is widely used in quantitative analyses of the impact of international
trade policies.

The trade conflict model setting reflects a scenario in which the United States imposes
tariffs on different trade commodities to eliminate the trade deficit, and China counters with
tariffs of its own. We run our simulations based on the list of 25% tariffs imposed on several
key sectors. Changes in macroeconomic variables such as commodity trade variables in
the process are the result of China’s response to the impact of the trade war. Given the
uncertainties surrounding different national policies, no scenario analysis was performed
on this basis for other countries’ policies (such as the EU’s countermeasures to the US’s
increase in tariffs, countries around the world speeding up RCEP negotiations, etc.).

Table 1 shows the impact of the trade war on China’s exports in various sectors. It can
be seen that China’s exports to the United States have fallen sharply, but its exports to other
countries have increased. The total exports of most sectors have increased, mechanically
leading to an increase in emissions from China’s trade.

Table 1. Changes in China’s exports to different countries.

Sectors USA Oceania  EastAsia  SEAsia SouthAsia  Namerica La-Amer EU-28 MENA SSA Other
Transport —0.74 0.06 0.05 0.05 0.07 0.00 0.05 0.06 0.06 0.06 0.06
ElectricalEq ~ —0.07  —0.05 —0.06 —0.06 —0.04 ~0.13 ~0.06 —006  —005  —005 —005
ElectronicEq ~ —0.15 —0.07 —0.07 —0.08 —0.06 —0.14 —0.08 -0.07 -0.07 -007  —0.07
FerrousMetal ~ —0.02  —0.03 —0.04 —0.04 ~0.03 ~0.09 ~0.04 —003  —003  —003 —003
Total —0.33 0.00 —0.04 —0.04 —0.01 —0.05 0.00 —0.02 0.00 0.00 —0.02
Table 2 shows the impact of the trade war on China’s imports in various sectors. It
can be seen that overall imports have been slightly reduced, and the changes are not very
different across the various sectors. Imports from the United States and North America
have changed significantly, mainly due to the increase in import costs caused by tariffs.
Under the influence of this trend, Chinese imports from other countries have also been
slightly reduced, mechanically leading to a reduction in the emissions contained in China’s
imported products. If we take the two together, China’s trade exports have increased
while its imports have decreased, and China’s consumption-based carbon emissions have
decreased in turn.
Table 2. Changes in China’s imports from different countries.
Sectors USA Oceania  EastAsia SEAsia SouthAsia Namerica LatinAmer EU-28 MENA SSA Other
GrainsFesFis ~ —0.67 0.09 0.10 0.09 0.10 0.06 0.09 0.09 0.10 0.10 0.10
ProcFood —0.66 0.01 0.01 0.00 0.02 —0.04 0.01 0.01 0.01 0.01 0.01
Transport —0.74 0.06 0.05 0.05 0.07 0.00 0.05 0.06 0.06 0.06 0.06
ChemicalPro ~ —0.76 0.02 0.02 0.01 0.03 —0.03 0.02 0.02 0.03 0.03 0.03
Total —0.33 0.00 —0.04 —0.04 —0.01 —0.05 0.00 —0.02 0.00 0.00 —0.02

3.2. Carbon Emissions Contained in China’s Trade with the US

According to the value of international trade and the emissions coefficient matrix,
we calculate the emissions changes in these main sectors for the two countries and the
emissions changes of other sectors.

In Figure 1a, it can be seen that the carbon emissions contained in goods imported
from the United States by China in several major sectors have been reduced. Due to the
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difference in carbon emissions intensity, the changes in emissions contained in chemical
products are obviously greater, and the decreasing imports from other sectors also have
the effect of decreasing the emissions contained in those sectors. As seen in Figure 1b, the
changes in carbon emissions from China’s exports to the United States are different from
the changes in emissions from imports. Except for those of the nonferrous metal sector, the
carbon emissions of sectors with tariffs are all relatively low, while the emissions of other
sectors have increased by a large margin. This is similar to the result of the trade analysis.
The import shrinkage effect caused by the trade conflict has mechanically reduced China’s
import emissions from the United States. However, at the same time, export emissions are
controlled by the trade market and have grown slightly in other sectors that do not levy
tariffs, with only small changes overall. On the whole, China’s net emissions to the United
States have decreased.

0.0 -
/
/
/
5 o —
mmchange —sim 1.0
0
mmchange ——sim
-2.0
-5
-10 -3.0
Transport  ElectronicEq ElectricalEq FerousMetal  Others GrainsFesFis ProcFood Transport  ChemicalPro Others
a b

Figure 1. Changes in commodity carbon emissions from major sectors (MtCO,) before and after the China-US trade conflict,

where (a) represents emissions from China to the United States and (b) represents emissions from the United States to China.

3.3. Changes in China’s Trade Emissions with the Rest of the World

Figures 2 and A1 shows the changes in China’s export emissions to various countries
in the world. Figure 2a shows the absolute change, and Figure 2b shows the percentage
change. On the whole, China’s exports to the world are mainly concentrated in the
industrial and service industries at this stage, while the sectors with the largest export
emissions are the electricity and water sectors, with emissions that are much higher than
those of other sectors. Since the start of the trade conflict, except for in a few major sectors
in which tariffs have been imposed, emissions have decreased, and those of other sectors
have increased slightly.

Figures 3 and A2 shows the changes in emissions from China’s imports from various
countries in the world. Figure 3a shows the absolute change, and Figure 3b shows the
percentage change. It can be seen that the distribution of emissions from China’s imports is
relatively even, with transportation services accounting for the largest share. Since the start
of the trade conlflict, the import emissions of all sectors have fallen, and China’s import
trade has been more affected.
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Figure 2. Changes in the world’s carbon emissions from China’s exports, where (a) represents the change in carbon
emissions (MtCO,) and (b) represents the percentage change.
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Figure 3. Changes in the world’s carbon emissions from China’s imports, where (a) represents the change in carbon
emissions (MtCO,) and (b) represents the percentage change.

4. Discussion
4.1. Spatial Distribution of Emissions Included in China’s Trade

To further discuss the impact of the trade conflict on carbon emissions, this paper
examines the changes in China’s import and export emissions from different countries from
a spatial perspective. As seen in Figure 4, whether through imports or exports, China’s
share of carbon emissions to the United States is smaller than the shares of other Asian
countries. Due to the influence of spatial location, the countries that trade most with China
are Asian countries. Whether because of transportation costs or the demand for a large
number of daily necessities caused by population growth, these countries have closer trade
ties with China. In contrast, China-US trade is more concentrated in certain sectors. Before
the trade conflict, China’s exports to the United States were electronic products, which
accounted for 1/3 of all of China’s exports and half of China’s total exports of electronic
products. Since the start of the trade conflict, the share has plummeted to approximately
1/8. On the other hand, the emissions coefficient of electronic products is so low that even
before the trade conflict, the carbon emissions of electronic products accounted for only
1/50 of China’s total emissions from exports to the United States.

Unlike China’s exports to the United States, China’s imports from the United States are
the main component of the changes to China’s imports. Compared with the emissions from
imports from other countries and regions, which have shown only minor changes, China’s
emissions from imports from the United States have been reduced by nearly one-third,
which has had an impact on China’s overall import situation. Although China’s import
market is not highly dependent on the United States, the United States is an important
source of imports for Chinese agricultural products and transportation equipment. China’s
response to the tariffs has also had a considerable impact on these two sectors, which have
seen their imports reduced by nearly 70%.
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Figure 4. Spatial distribution of emissions included in China’s trade (MtCO,), where (a) represents emissions of exports

and (b) represents emissions of imports.

4.2. Emissions Characteristics of China’s Net Exports

As the “factory of the world”, China has always been an export-oriented country,
meaning that its carbon emissions from exports are higher than those from imports from
other countries. Based on this, we calculate China’s net emissions from international
trade based on the previous results. As shown in Figure 5, China exports a large amount
of carbon emissions in industries with high energy consumption, such as nonferrous
metals, minerals, coal, and petroleum gas production. Excluding a few major sectors,
the net emissions of other sectors are much lower. This situation is related to the long-
term economic growth mode of the Chinese government. The government has invested
heavily in energy-intensive industries to drive the rapid growth of the country’s GDP.
However, this situation is currently improving. With the adjustment of national strategies,
environmental governance has been given equal importance to economic growth. Green
sustainable development and the ensuing energy consumption revolution both reflect the
Chinese government’s determination to adapt to climate change. China is determined to
start from multiple angles to resolve the contradiction between trade development and
emissions growth.

288



Sustainability 2021, 13, 10324

250 60%
200 50%
40%

150
30%

100
20%

50
| o 10%
MineralProdu FerrousMetal ~ ElecWater  Trajas€omnm Dthers 0%
-50 -10%
-100 -20%

==net emission (MtCO2) —e—percentage change (%)
Figure 5. China’s net export emissions and percentage change.

4.3. The Impact of the Trade Conflict on Climate Change

The most direct impact of human activities on climate change occurs through increases
or decreases in carbon dioxide emissions. Based on the above results, China’s carbon
emissions in international trade have not changed much in the short term after the start of
the trade conflict. Although import emissions have decreased, emissions from exports, the
main component of China’s trade, have not decreased but rather have increased. However,
from a long-term perspective, the impact of the trade conflict on China’s adaptation to
climate change is likely to be more pronounced.

First, the trade conflict between China and the United States has had an impact not
only on trade but also on the social economy of the two countries. The Chinese economy is
in a “new normal” phase, the transitional stage from extensive growth based on scale and
speed to intensive growth based on quality and efficiency. The negative impact of the trade
conflict on China’s economy is bound to delay its progress. As mentioned above, China’s
main exports in international trade come from the massive output of its energy-intensive
industries. To ensure the steady development of the domestic economy and eliminate the
negative effects of the trade conflict, government investment in these industries is not likely
to change significantly.

Second, China has recently put forward a goal of achieving carbon neutrality by 2060.
This plan is closely related to China’s abundant wind power, hydropower, geothermal,
and other new energy potential. China’s abundant natural resources make it possible to
achieve this goal. However, the new energy industry has a great demand for technology
and equipment. China’s current level of technology is not adequate to support independent
achievement of its objectives. The import of technology and equipment is thus vital to the
development of new energy. The trade conflict between China and the United States is set
to have an impact on China’s imports in and slow down the development of its domestic
new energy industry, such that more effort will be required to achieve green development
goals such as carbon neutrality.

Finally, as the economy develops, China’s energy dependence will increase. Although
China has a large amount of low-cost coal resources, considering the concept of green
development, coal energy must gradually be replaced. On the other hand, China will
have a higher degree of dependence on oil and natural gas, which are not abundant in the
country, and thus will face much external uncertainty. In the international energy market,
the United States will become a major oil and gas exporter in the market with the realization
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of its shale gas revolution and energy independence strategy. In the face of China’s massive
natural gas demand, energy cooperation between China and the United States may offer a
new opportunity to improve the trade imbalance between the two countries.

5. Conclusions

The trade conflict between China and the United States has had an impact on China’s
import and export markets, which in turn has affected the carbon emissions contained
in China’s imports and exports in international trade and will affect China’s response
to climate change. In China-US trade, the trade volume of goods subject to tariffs has
been greatly reduced, while in other sectors, import emissions have increased and export
emissions have decreased. For the global market, China’s export emissions to the rest of the
world have increased slightly, while import emissions have decreased slightly. The trade
conflict will cause China’s net export emissions to continue to increase, with the change
concentrated in energy-intensive industries.

At the same time, it can be seen that although the trade share between China and the
United States is not large in comparison with the world total, some of the sectors involved
in the trade war are the main sectors involved in trade between the two countries, and
they all contribute a large share to China’s total trade volume. The sharp decline in trade
in these sectors will also have impacts and raise opportunities in China’s inland markets.
On the other hand, the trade conflict will affect China’s social economy from other angles
in the long run as well as some of China’s strategies to adapt to climate change. Whether
through a negative impact on the domestic economy or restricted imports of technology
and equipment, the trade conflict will slow down the development of China’s new energy
industry. The energy trade may provide an opportunity to solve the problem of the trade
imbalance between the two countries.

This paper still has many shortcomings, especially in terms of data. On the one hand,
due to the difficulty of obtaining data from all countries, we assume that the regional
emission intensity is consistent, and there will be considerable uncertainty; on the other
hand, we have also simplified the additional levy departments when it comes to tariff
plans, due to the GTAP model. It is not easy to completely match the actual situation. We
selected key departments to impose tariffs and simulate.

Author Contributions: Conceptualization, J.C. and W.D.; methodology, E.Y.; software, EY.; validation,
EY. and Z.W.; formal analysis, Z.W.; resources, J.C.; data curation, FY.; writing—original draft
preparation, EY.; writing—review and editing, J.C.; visualization, E.Y.; supervision, J.C.; project
administration, J.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program
of China (2018YFC1509003, 2016YFA0602703) and the National Natural Science Foundation of
China (42075167).

Data Availability Statement: Not applicable.

Acknowledgments: The authors sincerely thank State Key Laboratory of Earth Surface Processes
and Resource Ecology for supporting this research.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

290



Sustainability 2021, 13, 10324

Appendix A

Table Al. Category of countries.

Region Abbreviations Comprising Description
China chn China
USA usa USA
Oceania aus, nzl, xoc Oceania
EastAsia hkg, jpn, kor, mng, twn, xea, brn East Asia (Except China)
SEAsia knm, idn, lao, mys, phl, sgp, tha, vm, xse Southeast Asia
Namerica can, mex, Xxna North America
LatinAmer arg, bol, bra, .Chl’ col, ecu, pry, per, ury, ven, xsm, Cri, gtm, hnd, Latin Amercia
nic, pan, slv, xca, dom, jam, pri, tto, xcb
EU 28 aut, bel, bgr, hrv, cyp, cze, dnk, est, fin, fra, deu, grc, hun, irl, ita, European Union 28
Iva, 1tu, lux, mlt, nld, pol, prt, rou, svk, svn, esp, swe, gbr
MENA bhr, irm, isr, jor, kwt, omn, qat, sau, tur, are, xws, egy, mar, tun, xnf ~ Middle East and North Africa
ben, bfa, cmr, civ, gha, gin, nga, sen, tgo, xwf, xcf, xac, eth, ken,
SSA mdg, mwi, mus, moz, rwa, tza, uga, zmb, zwe, xec, bwa, nam, Sub-Saharan Africa
zaf, xsc
RestofWorld che, nor, xef, alb, blr, rus, ukr, xee, xer, kaz, kgz, tjik, xsu, arm, zae, Rest of World
geo, Xtw
Table A2. Category of sectors.
Sectors Reclassified Sectors in GTAP Sectors in China Category

GrainsFesFis

Coal
QOilGas

OtherMineral

ProcFood
BeveragesTob

Textile
Wearing
LeatherProd

WoodProduct

PaperProduct
Transport
MetalProduct

OthLightMnfc

PetroleumCoa

ChemicalPro
BasicPharmac
RubberPlasti
MineralProdu
FerrousMetal
OtherMetal

ElectronicEq

Grain, Fes, Fis
Coal
QOil, Gas

Mineral

Food Production

Beverage production, Tobacco

Production
Textile
Wearing
Leather Production

Wood Production

Paper Production
Transport Equipment
Metal Production

Light Manufacture

Petroleum, Coal production

Chemical Production
Basic Pharmacy
RubberPlastic
Mineral Production
Ferrous Metal Production
Other Metal Production

Electronic Equipment

Farming, Forestry, Animal Husbandry, Fishery,

and Water Conservancy Primary industry

Coal Mining and Dressing Energy production
Petroleum and Natural Gas Extraction Energy production
Ferrous Metals Mining and Dressing,
Nonferrous Metals Mining and Dressing, Enerev production
Nonmetal Minerals Mining and Dressing, 8y P
Other Minerals Mining and Dressing
Food Processing, Food Production Light industry
Beverage Production, Tobacco Processing Light industry
Textile Industry Light industry
Garments and Other Fiber Products Light industry
Leather, Furs, Down, and Related Products Light industry
Logging and Transport of Wood and Bamboo,
Timber Processing, Bamboo, Cane, Palm Fiber Light industry
and Straw Products
Papermaking and Paper Products Light industry
Transportation Equipment Light industry
Metal Products Heavy industry
Furniture Manufacturing, Printing and Record
Medium Reproduction, Cultural, Educational Light industry
and Sports Articles
Petroleum Processing and Coking, Raw E ducti
Chemical Materials, and Chemical Products nergy production
Chemical Fiber Heavy industry
Medical and Pharmaceutical Products Light industry
Rubber Products, Plastic Products Heavy industry
Nonmetal Mineral Products Heavy industry
Smelting and Pressing of Ferrous Metals Heavy industry
Smelting and Pressing of Nonferrous Metals Heavy industry
. . . Electric Equipment
Electric Equipment and Machinery and Machinery
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Table A2. Cont.

Sectors Reclassified Sectors in GTAP Sectors in China Category
Electronic and Telecommunications Electric Equipment
ElectricalEq Electrical Equipment Equipment, Instruments, Meters, Cultural and qp
Office Machiner and Machinery
y
Ordinary Machinery, Equipment for Special
OthHeavyMnfc Other Heavy Manufacture Purposes, Instruments, Meters, Cultural and Heavy industry
Office Machinery, Other
Manufacturing Industry
Production and Supply of Electric Power,
ElecWater Electricity, Water Steam and Hot Water, Production and Supply ~ Energy production
of Tap Water
GasManufactu Gas Manufacture Production and Supply of Gas Energy production
Constructio Construction Construction Construction
TransComm Trans Commerce Transportahon,.Sto.r age PO.St and Services industry
Telecommunication Services
OthServices Other Services Wholesale, REtfaﬂ Trade and Catering Services industry
Services, Others
Table A3. Emission factors of each type of fuels.
No. Fuels in China’s Energy Statistics Fuels in This Study NCV; x CC; (t C/10* ton)
1 Raw coal Raw coal 5.5272
2 Cleaned coal Cleaned coal 6.8432
3 Other washed coal Other washed coal 3.948
4 Briquettes Briquette 4.7376
5 Gangue Coke 8.7864
6 Coke oven gas Coke over gas 34.5989
Blast furnace gas
7 Converter gas Other gas 17.8367
Other gas
8 Other coking products Other coking products 7.686
9 Crude Oil Crude oil 8.6344
10 Gasoline Gasoline 8.316
11 Kerosene Kerosene 8.624
12 Diesel oil Diesel oil 8.686
13 Fuel oil Fuel oil 9.073
Naphtha
Lubricants
Paraffin
14 White spirit Other petroleum products 8.772
Bitumen asphalt
Petroleum coke
Other petroleum products
15 Liquefied petroleum gas (LPG) LPG 9.4
16 Refinery gas Refinery gas 8.686
17 Nature gas Nature gas 59.5948

There are 26 kinds of fossil fuels in China’s energy statistics system. Because the
quality of some fuels is similar to that of other fuels, this paper combines these fuels into
17 types. Among the 17 types of fossil fuels, raw coal, crude oil, and natural gas are the
main energy sources, and the other 14 fuels are classified as secondary energy sources.
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Figure Al. Changes in the world’s carbon emissions from China’s exports, where (a) represents the change in carbon
emissions (MtCO,) and (b) represents the percentage change.
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Figure A2. Changes in the world’s carbon emissions from China’s imports, where (a) represents the change in carbon
emissions (MtCO,) and (b) represents the percentage change.
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Abstract: Revealing the spatial differentiation of ecosystem service (ES) trade-offs and their responses
to land-use change along precipitation gradients are important issues in the Loess Plateau of China.
We selected three watersheds called Dianshi (300 mm < MAP (mean annual precipitation) <400 mm),
Ansai (400 mm < MAP < 500 mm), and Linzhen (500 mm < MAP < 600 mm). A new ES trade-
off quantification index was proposed, and quantile regression, piecewise linear regression, and
redundancy analysis were used. The results were as follows. (1) Carbon sequestration (TC) and soil
conservation (SEC) increased, but water yield (WY) decreased in the three watersheds from 2000
to 2018. (2) The effect of forests on trade-offs was positive in three watersheds, the main effect of
shrubs was also positive, but the negative effect appeared in the TC-WY trade-off in Ansai. Grassland
exacerbated trade-offs in Dianshi, whereas it reduced trade-offs in Ansai and Linzhen. These effects
exhibited respective trends with the quantile in the three watersheds. (3) There were threshold values
that trade-offs responded to land-use changes, and we could design land-use conversion types to
balance ESs. In general, the water consumption of grass cannot be ignored in Dianshi; shrubs and
grass are suitable vegetation types, and forests need to be restricted in Ansai; more forests and shrubs
can be supported in Linzen due to higher precipitation, but the current proportions of forests and
shrubs are too high. Our research contributes to a better understanding of the response mechanisms
of ES trade-offs to land-use changes.

Keywords: ecosystem services trade-offs; land-use change; soil conservation; carbon storage; water
yield; precipitation gradient; Loess Plateau

1. Introduction

Ecosystem services (ESs) are defined as the benefits that humans derive from natural
ecosystems directly and indirectly [1,2]. The relationships among ESs are often identified
as trade-offs and synergies. A trade-off is defined as one ES increasing at the expense
of another, and a synergy is a situation in which multiple ESs increase or decrease syn-
chronously [3,4]. How to balance multiple ESs is still a major challenge in ecosystem
management. The trade-off analysis of ESs provides an integrative and dialectical ap-
proach to understand ES relationships, and based on trade-off analysis, land management
decisions can be made to realize maximal and sustainable ES supply [5-8].

Precipitation is the key factor controlling many ecological processes, especially in
water-stressed regions [9,10]. Previous studies have found that primary production and
carbon sequestration [11,12], biodiversity [13], plant cover and growth [14,15], soil-water
carrying capacity [16], nutrient recycling and storage [17-19], elemental stoichiometry [20],
and hydrologic processes [21,22] change along precipitation gradients. Therefore, precip-
itation gradients should be an important factor in ecosystem management. There is an
obvious precipitation gradient in the Loess Plateau of China that provides an appropriate
geographical area for studying regional differences on a landscape scale.
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The vegetation cover increased observably by the Grain-for-Green Program (GFGP)
launched in 1999. As a result, ecosystem services are undergoing significant change,
whereby soil conservation services and the carbon sequestration of local ecosystems are
enhanced, but water yield and soil moisture are decreased. These changes threaten regional
water resource security and revegetation sustainability, especially in arid and semiarid
regions. Therefore, ES trade-offs on the Loess Plateau have attracted the attention of
scholars and local governments. A series of studies have been carried out on trade-off and
synergy identification, the spatial distribution of ES trade-offs, drivers for trade-offs, ES
optimization models, and land-use management in view of trade-offs [5,23-27]. A key
conclusion of previous studies is that ES trade-offs and water scarcity are caused by exces-
sive revegetation (land-use conversion) in arid areas [25,27]. However, only a few studies
focused on ES trade-offs along the precipitation gradient and only performed trade-off anal-
yses of soil moisture, aboveground carbon, soil organic carbon, total nitrogen, and plant
diversity based on field sampling and investigation along the precipitation gradient [28,29].
Thus, the spatial differentiation of ES (carbon sequestration, soil conservation, water yield)
trade-offs and the response of the trade-offs to land-use change at the watershed scale
along the precipitation gradient have not been clarified, and the existing theoretical basis is
insufficient for land management and decision making across the precipitation gradient on
the Loess Plateau.

We selected three watersheds called Dianshi (300 mm < MAP (mean annual precip-
itation from 2000 to 2018) < 400 mm), Ansai (400 mm < MAP < 500 mm), and Linzhen
(500 mm < MAP < 600 mm) along the precipitation gradient in the central Loess Plateau.
We used the INVEST (Integrated Valuation of Ecosystem Services and Trade-offs) model
to calculate carbon sequestration, soil conservation, and water yield in 2000 and 2018.
We proposed a new indicator to quantify ES trade-off intensity. The objectives of this
study were to (1) reveal the spatial differentiation of land-use conversion and ES trade-
offs in various precipitation regions, (2) reveal the effects of land-use conversion on ES
trade-offs at different intensity levels (trade-off intensity under different quantiles) and
determine the threshold values at which trade-offs respond to land-use conversion, and
(3) develop recommendations for land-use planning for three precipitation regions in the
central Loess Plateau.

2. Materials and Methods
2.1. Study Area

The Loess Plateau of China is located in the middle reaches of the Yellow River
basin, where there is an obvious precipitation gradient. The mean annual precipitation
(MAP) gradually decreases from 700 mm in the southeast to 200 mm in the northwest,
and the precipitation contours are nearly parallel in the central Loess Plateau. The veg-
etation types change with precipitation from dry steppe to forest-steppe and deciduous
broad-leaf forest. Three independent catchments along the precipitation gradient in the
central Loess Plateau were selected (Figure 1). They are controlled by the “Dianshi”,
“Ansai”, and “Linzhen” hydrometric stations, where runoff and sediment are observed.
The Dianshi (300 mm < MAP < 400 mm), Ansai (400 mm < MAP < 500 mm), and Linzhen
(500 mm < MAP < 600 mm) watersheds are located in three precipitation zones, as illus-
trated in Figure 1. The study area is characterized by an arid and semiarid continental
monsoon climate zone and has typical loess geomorphic landforms and eroded terrains.
The soils are mainly derived from loess, a fine silt soil that is weakly resistant to erosion, and
this region is considered the most eroded in the world. The soil layer of the Loess Plateau
is deep, the groundwater level is mostly between 30 and 80 m, and it hardly participates in
the water cycle process of the soil-vegetation-atmosphere transfer system [30]. The natural
vegetation was destroyed, and considerable secondary vegetation was planted. The main
forest species include Robinia pseudoacacia, Pinus tabulaeformis, and Platycladus orientalis, and
the shrubs include Caragana korshinskii and Hippophae rhamnoides. Grassland communities
are mainly composed of Artemisia gmelinii, Lespedeza davurica, and Stipa bungeana. Local
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people cultivate millet, maize, and broom corn millet in croplands. The percentage of the
population dependent on agriculture (including crop farming, forestry, animal husbandry
and fishery) decreased from 72.3% in 2000 to 57.9% in 2015 [31].
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Figure 1. The location of the study area (soil texture class was obtained from the soil map of China in
the Harmonized World Soil Database).

2.2. Data Sources

We downloaded Landsat images from the USGS [32] and generated land-use maps
(30 m x 30 m) by supervised classification. We obtained meteorological data from the
China Meteorological Data Service Center [33]. We obtained a DEM (30 m x 30 m) from the
ASTER Global Digital Elevation Model provided by the Geospatial Data Cloud, Computer
Network Information Center, Chinese Academy of Sciences [34]. The soil data were
obtained from the Soil Map of China in the Harmonized World Soil Database [35].

2.3. Assessment of ESs and Land-Use Changes

The Hydrology Tool of ArcGIS 10 was used to divide the Dianshi, Ansai, and Linzhen
watersheds into 240, 817, and 543 subwatersheds, respectively. We calculated and analyzed
ESs at the subwatershed level in this study.

2.3.1. Soil Conservation (SEC)

Soil conservation was assessed by the “sediment delivery ratio” (SDR) model of
InVEST3.3.2. First, the average amount of annual soil loss with existing vegetation was
calculated by the revised universal soil loss equation (RUSLE) [36]. Then, the SDR was
used to calculate the soil loss actually reaching the watershed outlet, and the SDR was
directly calculated from the conductivity index using the sigmoid function [37]:

SLA, = Ry-Ky-LSy-Cy-PySDR; @)

where SLA, is the annual actual soil loss that reaches the watershed outlet on pixel x; Ry is
the rainfall erosivity factor on pixel x; Ky is the soil erodibility factor; LSy is the topographic
factor; Cy is the cover and management factor; and Py is the engineering measures factor.
SDR,; is the sediment delivery ratio on pixel x.
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The potential soil loss reaching the watershed outlet (SLPy) was the condition without
vegetation coverage and engineering measures (Cy = 1, Py = 1):

SLP, = Ry-Ky-LSxSDR; @)

Finally, the actual value of the soil conservation on pixel x (SCy) was calculated as the
difference between the SLA, and SLP,:

SCy = Ry Ky LSx(1 —-Cy-Pyx)SDR; ©)

The model accuracy was evaluated by the sediment loading data at the outlet of the
watershed, and the relative error between the calculated value and measured value was
3.5%, 2.3%, and 2.8% in Dianshi, Ansai, and Linzhen, respectively.

2.3.2. Water Yield (WY)

The water yield was assessed from the “Water Yield” submodel of InVEST based on

the Budyko curve and annual average precipitation. The annual water yield Yy on pixel x
is calculated as follows:

Yy =(1— AET/Py)-Px “4)

where AET) is the annual actual evapotranspiration on pixel x and Py is the annual precipi-
tation on pixel x. The calculations of AET, are core technology in WY estimation, which
can be found in the INVEST User’s Guide [38]. The overall process is as follows: For forest,
shrub, grassland, and cropland, AETy was computed by an expression of the Budyko
curve proposed by Fu [39] and Zhang et al. [40]; for construction land and water bodies,
AET, was directly computed from the reference evapotranspiration and has an upper limit
defined by the precipitation.

2.3.3. Carbon Sequestration (TC)

Carbon storage directly depends on the carbon content of the four major carbon
pools in the ecosystem, namely, aboveground biomass, underground biomass, soil carbon,
and dead matter. The carbon model of INVEST can evaluate the total carbon storage by
summing the four carbon pools according to the land-use maps. The data for the four major
carbon pools were obtained by our field survey [41].

2.3.4. Calculation of Land-Use Changes

The ESs and land-use changes were defined as the values of the final stage minus those
of the initial stage. The land use transfer matrix in a watershed was obtained by “Raster
Calculator”, and the area of one land-use type transfer to another in a small watershed was
calculated by the “TabulateArea” of ArcGIS 10.

2.4. Calculation of the Trade-Offs between ESs

The methods for quantifying ES trade-offs are still inadequate. The correlation co-
efficient [42] and root mean square error [5,29,43] are often used to calculate trade-off
values. However, the correlation coefficient usually needs time series data, and the root
mean square error method only reflects static trade-offs at a single given time. Thus, we
proposed one indicator for quantifying ES trade-offs on the premise that trade-offs have
been identified between two ESs. This indicator is based on the idea that trade-off intensity
is determined by the degree of relative waxing and waning between ESs, and it is calculated
as follows:

If trade-off relation can be identified between ecosystem service A and B:

1 ESAty — ESA1\? ESB7y — ESByq \ 2
T == —ole - =oAL i %
Bag 3 (\/( ESAp ) + ESBr, x 100% (5)
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If synergy relation can be identified between ecosystem service A and B:

1 ESA7y — ESAr\ 2 ESBry — ESBr \? .
TBap=—35 \/(ESAH) + T ESBr % 100% (6)

where TR 4p is the trade-off/synergy value between ecosystem service A and ecosystem
service B; ESAr1 and ESAT; correspond to ecosystem service A at times T1 and T2, respec-
tively (time T1 is earlier than T2); and ESBrq and ESBt; correspond to ecosystem service B
at times T1 and T2, respectively.

First, the ES data of the subwatersheds were prepared for the three watersheds.
Second, the data in which the change direction of ES4 and ESg was inverse (the increase in
one coincides with the decrease in the other), indicating a trade-off between the two ESs,
were selected, and TR 4p was calculated by these data. Finally, the data in which ES4 and
ESp increased or decreased simultaneously, indicating synergy between the two ESs, were
selected, and TR 4 was calculated by these data to represent synergy intensity.

2.5. Statistical Analyses

Most ES trade-off and land-use change data did not conform to a normal distribution
and exhibited heteroscedasticity, so robust statistical methods were employed. Spearman
correlation analysis and quantile regression do not require the homogeneity of variance
assumption, and they are robust to outliers [44,45] and have been widely used in macroe-
cology. Thus, they were used to reveal the relationship between ES trade-offs and land-use
changes. Quantile regression estimates a portion (certain quantiles reflecting various
levels of trade-off intensity) of the response variable instead of estimating the mean of
the response variable as in ordinary least squares regressions. Thus, quantile regression
provides a much more complete picture of the land-use changes influencing ES trade-offs.
In addition, piecewise linear regression was used to identify the thresholds of ES trade-off
responses to land-use changes. In contrast to simple linear regression, piecewise linear
regression explores a more detailed trend of the relationship between variables [46,47].
Redundancy analysis (RDA) was applied to reveal the effects of land-use conversion
(e.g., cropland conversion to forest and grassland conversion to shrub) on ES trade-offs. A
Monte Carlo permutation test based on 499 random permutations was conducted to test
the significance of the marginal and conditional effects [48].

Spearman correlation analysis and quantile regression were conducted using Statal5.1.
Piecewise linear regression was performed with the segmented package in the statistical
software R. RDA was performed using CANOCO?5.0.

3. Results and Discussion
3.1. Temporal and Spatial Variations in ESs along the Precipitation Gradient
3.1.1. Land-Use Transformation along the Precipitation Gradient

As illustrated in Table 1, cropland and grassland were the major land-use types and
covered 98.7% of the Dianshi watershed in 2000, whereas the grassland, cropland, and shrub
types became dominant and covered 93.7% of the area in 2018. From 2000 to 2018, cropland
was mainly transformed into grassland, and grassland was mainly transformed into shrubs
and cropland. Therefore, “planting grass” was the primary vegetation rehabilitation
method (grassland reached 61.2% of the total area), while “afforestation” was secondary in
Dianshi (forest and shrub accounted for only 17.6% of the total area).

The major land-use types were grassland and cropland (96.8%) in the Ansai watershed
in 2000, whereas forest and grassland (75.8%) became the major types in 2018. The main
land-use transformation characteristics in Ansai were that cropland was mainly converted
to forest and grassland, grassland was mainly converted to forest and shrubland, and forest
and grassland had equal areas in 2018 (approximately 37%).
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Table 1. Land-use transformation matrix from 2000 to 2018 (%).

FoL in ShL in GrA in CrOin CoL in WaB in Total in
2018 2018 2018 2018 2018 2018 2000
FoL in 2000 0.11 0.09 0.41 0.04 0.01 0.00 0.66
ShL in 2000 0.12 0.06 0.08 0.01 0.00 0.00 0.27
GrA in 2000 1.18 6.41 28.03 5.01 0.62 0.23 4147
o CrO in 2000 2.92 6.72 32.55 14.07 0.91 0.03 57.20
Dianshi CoL in 2000 0.00 0.01 0.03 0.02 0.08 0.00 0.14
WaB in 2000 0.00 0.01 0.12 0.04 0.00 0.09 0.27
Total in 2018 434 13.29 61.22 19.19 1.62 0.35
Change from 2000 to 2018 3.68 13.02 19.74 —38.01 1.48 0.08
FoL in 2000 0.96 0.12 0.27 0.10 0.05 0.01 1.51
ShL in 2000 0.59 0.21 0.54 0.09 0.03 0.00 1.46
GrA in 2000 20.01 6.97 22.89 3.63 1.07 0.25 54.82
) CrO in 2000 17.36 5.46 13.09 482 1.26 0.04 42.03
Ansai CoL in 2000 0.04 0.00 0.01 0.04 0.07 0.00 0.16
WaB in 2000 0.01 0.00 0.01 0.00 0.00 0.00 0.03
Total in 2018 38.96 12.77 36.82 8.67 247 0.30
Change from 2000 to 2018 37.45 11.31 —18.00 —33.35 2.31 0.27
FoL in 2000 2.37 1.75 0.50 0.30 0.05 0.00 497
ShL in 2000 23.35 12.44 7.14 434 0.89 0.01 48.18
GrA in 2000 10.10 955 297 1.91 0.40 0.08 25.02
) CrO in 2000 4.75 3.43 5.45 6.78 1.07 0.14 21.61
Linzhen CoL in 2000 0.00 0.02 0.01 0.03 0.03 0.00 0.09
WaB in 2000 0.00 0.01 0.01 0.09 0.00 0.02 0.12
Total in 2018 40.58 27.20 16.08 13.45 244 0.25
Change from 2000 to 2018 35.61 —20.98 —8.94 —8.16 2.35 0.13

FoL: forestland, ShL: shrubland, GrA: grassland, CrO: cropland, CoL: construction land, WaB: water body. An example to explain the
meaning of the transformation matrix: Figure 6.41 in the second column of the third row means that 6.41% of grassland in 2000 was
changed to shrubland in 2018.

The dominant land-use types were shrub, grassland, and cropland (94.8%) in the
Linzhen watershed in 2000, whereas forest, shrub, and grassland (83.9%) became the
dominant types in 2018. From 2000 to 2018, shrubs were mainly converted to forest,
grassland was mainly converted to forest and shrubs, and cropland was mainly converted
to grassland, forest, and shrubs. In brief, forested land was preferentially selected for
revegetation in Linzhen.

The soil organic matter content was 0.76%, 1.18%, and 1.33% in Dianshi, Ansai, and
Linzhen, respectively, before the GFGP, according to data from the Second National Soil Sur-
vey of China. The soil carbon sequestration rates were 0.43, 0.51, and 0.21 Mg ha~2-year~!
by revegetation, respectively [49]. Therefore, land-use transformation improved vegetation
and soil conditions, which meant that local soil erosion would be reduced, and the agricul-
tural production environment and farmers’ livelihoods would become increasingly better.

3.1.2. Changes in ESs from 2000 to 2018 along the Precipitation Gradient

As illustrated in Figure 2, TC and SEC generally increased in the three watersheds
from 2000 to 2018 (most ATC and ASEC were positive values), whereas WY decreased
(most AWY were negative values). This phenomenon indicated that TC and SEC increased
at the cost of decreasing WY. Therefore, a synergistic relationship can be identified between
TC and SEC as well as trade-offs between the two ESs and WY. Similar conclusions were
found by some studies on the Loess Plateau of China [5,50]. The amount of variation
in the ESs changed with the precipitation gradient. With regard to the mean value of
AESs, the increments of TC were approximative in the Ansai and Linzhen watersheds and
were larger than those in Dianshi. The increment of SEC exhibited the trend of Linzhen >
Ansai > Dianshi. The decrease in WY exhibited the trend of Dianshi > Ansai > Linzhen.
These findings indicate that although TC and SEC were enhanced to some extent by the
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GFGP in Dianshi, where rainfall was the smallest, this gain was offset by the significant
decrease in WY. However, there were some small watersheds where the change trends of
TC and WY were opposite, especially in the Linzhen and Ansai watersheds. The reason for
this is that construction land increased in these small watersheds, which reduced TC and
increased WY.
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Figure 2. Boxplot of ES changes in three watersheds (ATC, ASEC, and AWY represent ES changes from 2000-2018).

3.1.3. The Correlation between Land-Use and ESs Change

The ATC value was significantly positively and negatively correlated with the change
in forest and grassland, respectively, in the three watersheds (Table 2). ATC was signifi-
cantly negatively correlated with the change in cropland in Dianshi and Ansai only. The
correlations between ASEC and AForest and AShrub were significantly positive in Ansai
and Linzhen, whereas the correlations were significantly negative with grassland change.
AWY was significantly positively and negatively correlated with the changes in cropland
and shrubs, respectively, in the three watersheds. In general, increasing forest was ben-
eficial to TC and SEC and was not conducive to WY, whereas the influence of cropland
showed the opposite trend [25,27,51]. Somewhat differently, shrubs were beneficial to
TC, and grasslands were not conducive to WY in Dianshi, but the influences of shrubs
and grasslands were opposite in Ansai, and this influence was not significant in Linzhen.
Land-use change characteristics and rainfall differences in the three watersheds caused
these phenomena.

Table 2. Spearman correlation analysis between land use and ES change.

AESs Watershed AForest AShrub AGrassland ACropland
ATC Dianshi 0.730 ** 0.402 ** —0.291 ** —0.410 **
Ansai 0.922 ** —0.167 ** —0.723 ** —0.262 **
Linzhen 0.891 ** —0.002 —0.445 ** —0.02
ASEC Dianshi —0.014 0.087 0.035 —0.157*
Ansai 0.299 ** 0.076* —0.169 ** —0.330 **
Linzhen 0.196 ** 0.237 ** —0.351 ** 0.063
AWY Dianshi —0.006 —0.145* —0.527 ** 0.852 **
Ansai —0.530 ** —0.099 ** 0.412** 0.203 **
Linzhen —0.082 —0.276 ** —0.023 0.917 **

The asterisks * and ** indicate p < 0.05 and p < 0.01 respectively.
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3.2. ESs Trade-Offs along the Precipitation Gradient
3.2.1. Comparing ES Trade-Offs in Three Precipitation Regions

As illustrated in Figure 3, the variation tendencies in the two types of trade-offs along
the precipitation gradient were not consistent. The mean value of the TC-WY trade-off
exhibited the trend of Ansai > Linzhen > Dianshi, and the mean value of the SEC-WY
trade-off exhibited the trend of Linzhen > Dianshi > Ansai. Additionally, the variability of
the ES trade-offs was large, and the variability increased with the rainfall gradient. Small
watersheds with negative trade-off values appeared, indicating that synergic relationships
could be identified among ESs in some small watersheds.
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Figure 3. Boxplot of ESs trade-offs in three watersheds.

3.2.2. The Spatial Distribution of ESs Trade-Offs

As illustrated in Figure 4, the spatial distributions of the TC-WY trade-off and SEC—
WY trade-off were similar in the Dianshi watershed; the high trade-off value regions were
distributed in the northern watershed (lower reaches), whereas the low value regions were
dispersedly distributed in the central section of the watershed. The trade-off intensity is
determined by the degree of relative waxing and waning between ESs. The land-use change
trends were that forest increased and cropland decreased in Dianshi, and such land-use
transfers usually enhanced TC and SEC and reduced WY [23,25,27,51]; as a result, trade-off
intensity increased. Using map overlay analysis between land-use and ES trade-offs, we
found that the high trade-off-value areas overlapped with the areas where the increments
of forest and grassland and the decrement of cropland were high. Therefore, land-use
change is the direct reason for the ES trade-off.

The TC-WY and SEC-WY trade-offs decreased gradually from the southeast (lower
reaches) to the northwest (upper reaches) in the Ansai watershed, which was consistent
with the spatial distribution of the forest increment and in the decrements in grassland and
cropland. In addition, there were small watersheds with negative trade-off values (two ESs
both increased and decreased) near the main valley, indicating a synergistic relationship
between the two ESs. The main reason for this was that forest and construction land slightly
increased near the valley due to the flat terrain and convenient transportation; thus, the
three ESs increased synchronously.

Except for some high trade-off areas assembling in the southwest, other high and low
trade-off areas were fragmented and interlaced in the Linzhen watershed. The high trade-
off areas coincided with the areas where grassland and cropland decreased and forests
increased, whereas the low trade-off areas mainly coincided with the areas where grassland
and forests increased slightly, cropland increased moderately, and shrubland decreased.
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Figure 4. The spatial distribution of ES trade-offs in the three watersheds.

3.3. The Effects of Land-Use Changes on ESs Trade-Offs
3.3.1. The Effects of Land-Use Changes on ES Trade-Offs in Different Quantiles

Quantile regression is a method of estimating the conditional quantiles of a response
variable distribution in a linear model that provides a more complete view of possible
relationships between variables in ecological processes [45]. Forested land had significant
positive effects (enhancing the trade-off) on TC-WY trade-offs in the three watersheds,
and this positive effect exhibited the trend of Dianshi > Ansai > Linzhen (Table 3). The
positive effect (regression coefficient) fluctuated by approximately 1.4 in various quantiles
in the Dianshi watershed. This positive effect increased with the increase in quantiles, and
it was the highest in the 80th and 90th quantiles in the Ansai and Dianshi watersheds,
respectively. Forested land also had positive effects on the SEC-WY trade-off in the three
watersheds, and this positive effect decreased along the precipitation gradient until the
positive effect was not significant (the regression coefficients were only significant in the
30th-60th quartiles in the Linzhen watershed where the precipitation was the highest).
The positive effect was highest in the 10th quantile; then, it declined with the quantile in
the Dianshi watershed, and it was the highest in the 60th and 40th quantiles in the Ansai
and Linzhen watersheds, respectively. Therefore, although the forest cover was low in the
Dianshi watershed, the response of the trade-offs to forest cover was the strongest in this
watershed, especially at a low trade-off level. This response was weaker as precipitation
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increased, possibly because higher rainfall can compensate for the negative effect of forest
cover on water yield.

Table 3. Quantile regression between land-use changes and ES trade-offs.

. TC-WY Trade-Offs SEC-WY Trade-Offs
Land-Use Quantile
Dianshi Ansai Linzhen  Dianshi Ansai Linzhen
Forest 10th 1.485 ** 1.061 ** 0.614 ** 0.411 ** 0.168 ** 0.051

20th 1.366 ** 1.099 ** 0.658 ** 0.271 ** 0.168 ** 0.089
30th 1.378 ** 1.173 ** 0.648 ** 0.296 ** 0.225 ** 0.126 **
40th 1.395 ** 1.186 ** 0.695 ** 0.316 ** 0.257 ** 0.135 **
50th 1.453 ** 1.213 ** 0.724 ** 0.263 ** 0.254 ** 0.092 **
60th 1.374 ** 1.286 ** 0.81 ** 0.256 ** 0.287 ** 0.07 **
70th 1.411 % 1.316 ** 0.816 ** 0.307 ** 0.284 ** 0.045
80th 1.378 ** 1.322 % 0.96 ** 0.273 ** 0.286 ** 0.032
90th 1.309 ** 1.296 ** 1.125 ** 0.232* 0.258 ** 0.004

Shrub 10th 0.801 ** 0.231* 0.016 0.362 ** 0.282 ** 0.083 **
20th 0.687 ** 0.041 0.024 0.3 ** 0.211 ** 0.078 **
30th 0.668 ** —0.149 * 0.017 0.273 ** 0.213 ** 0.086 **

40th 0.668 **  —0.281 ** 0.066 0.264 ** 0.173 ** 0.079 **
50th 0.644*  —0.313 ** 0.082 * 0.238 ** 0.183 ** 0.057 **

60th 0.6 ** —0.327 % 0.109 * 0.186 ** 0.183 ** 0.055 **
70th 0.552 ** —0.204 0.151** 0.162 ** 0.125 ** 0.056 **
80th 0.455 ** -0.179 0.235 ** 0.151 0.12* 0.085 **
90th 0.284 0.009 0.376 ** 0.185 0.183 ** 0.095 **

Grassland 10th 0282*  —0.716** —0.227*  (0.441** —0.09 ** —0.12*
20th 0.221 ** —-0.86*  —0.287*  0382*  —0.118** —0.072**
30th 0.194 * —0.942*  —0295*  0.324*  —0.171* —0.046

40th 0.081 —1.004**  —0.308 **  0.286 ** —0.199 ** —0.046
50th 0.009 —1.038** —0.343*  0.251 ** —0.222 ** —0.034
60th —0.04 —-1.075* —0331*  0.175** —0.228 ** —0.024
70th —0.152 —1.125*  —0.381 ** 0.139 * —0.268 ** —0.017
80th —0.155 —1.152**  —0.454 ** 0.112* —0.265 ** —0.014
90th —0.158 —1.185**  —0.511** 0.125* —-0.297*  —0.035*
Cropland 10th —0.837* —0.561* —0.493* —0.637* —0.256** —0.726**
20th —0.742*  —0.719* —-0.344*  —-0.59*  —-0.308** —0.667 **
30th —-0.717*  —0.789* —-0.302* —-0.613*  —035*  —0.664**
40th —-0.738*  —0.887* —-0.317* —0.621* —0.353** —0.644 **
50th —-0.753*  —0.955* —-0.317* —0.609** —0.362** —0.564 **
60th —-0.735*  —0983*  —-0.281* —0581* —0.403* —0.574**
70th —0.724 % —1.047 ** -0.17 —0.553**  —0.403 **  —0.551 **
80th —0.791*  —1.084 ** —0.114 —0.538**  —-0.373*  —0.536 **
90th —0.866 **  —1.207 ** —0.164 —0476*  —0.361* —0.569 **

The asterisks * and ** indicate p < 0.05 and p < 0.01 respectively.

Shrubland had significant positive effects on the TC-WY trade-off, except for the
90th quantile in the Dianshi watershed, and the positive effects were larger in the Dianshi
watershed than in the Ansai and Linzhen watersheds, denoting that the TC-WY trade-off
in the Dianshi watershed is most sensitive to changes in shrubland. The positive effects
decreased as the quantile increased in Dianshi. The effects of shrubs on the TC-WY trade-
off presented a “U” pattern as the quantile increased in Ansai (shrubs intensified the
trade-off first and then reduced the trade-off). The effects on the TC-WY trade-offs were
enhanced as the quantile increased in Linzhen. Shrubs had significant positive effects
on SEC-WY trade-offs in the three watersheds, exhibiting the trend of Dianshi > Ansai
> Linzhen. The positive effects declined first and then rose as the quantile increased in
the three watersheds. For low- and medium-rainfall regions, shrubland had a stronger
influence on the SEC-WY trade-offs at low trade-off levels, and the influence was weaker at
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high trade-off levels. For high rainfall regions, the influence was stronger at high trade-off
levels and weaker at moderate trade-off levels.

Grassland only had significant positive effects on TC-WY trade-offs in the 10th-30th
quantiles in the Dianshi watershed, denoting that increasing grassland still exacerbated
trade-offs at low trade-off levels, but the influence of grassland disappeared at moderate
and high trade-off levels. In contrast, grassland significantly inhibited TC-WY trade-offs at
all trade-off levels in the Ansai and Dianshi watersheds. The inhibitory effect of grassland
was strongest at high trade-off levels and stronger in Ansai than in Linzhen. Grassland
had significant positive effects on the SEC-WY trade-offs in the Dianshi watershed, and
the effects decreased as the quantile increased. Whereas grassland significantly inhibited
SEC-WY trade-offs in the Ansai watershed, the inhibitory effects were the strongest at
high trade-off levels. The inhibitory effects were weaker in Linzhen than in Ansai, and the
regression coefficients were statistically significant only in the 10th, 20th, and 90th quantiles.
The results indicate that the water consumption of grassland could exacerbate trade-offs
in low precipitation regions, especially at low trade-off levels. However, grassland could
inhibit trade-offs in medium-precipitation and high-precipitation regions, so grassland
could be arranged in high trade-off regions.

Cropland had inhibitory effects on the TC-WY trade-offs in the three watersheds.
The regression coefficients fluctuated by approximately 0.77 in Dianshi, and the inhibitory
effects were the highest at high trade-off levels in Ansai and low trade-off levels in Linzhen.
Cropland also had inhibitory effects on the SEC-WY trade-offs in the three watersheds,
exhibiting the general trend of Linzhen > Dianshi > Ansai. The inhibitory effects were
highest at low trade-off levels in Dianshi and Linzhen and were highest at moderate
trade-off levels in Ansai.

3.3.2. The Threshold Values at Which ES Trade-Offs Respond to Land-Use Changes

The influences of independent variables of different ranges on dependent variables
can be revealed by piecewise linear regression, and we can use piecewise linear regression
to identify the inflection point of trade-off responses to land-use changes. As illustrated
in Figure 5, the intensive effect (slope of piecewise functions) of forest cover on trade-offs
was higher when the increment of forested land exceeded 34.0% and 18.6% in Ansai and
Linzhen, respectively, but this intensive effect was almost unchanged across the total
range of the independent variable in Dianshi. Shrubland reduced the trade-offs when
the shrub increased less than 8.2%, 20.1%, and —45.4% in Dianshi, Ansai, and Linzhen,
respectively, whereas shrubland exacerbated trade-offs when the increment exceeded these
thresholds. This phenomenon meant that the “golden mean” and limited increase in
shrubs were good strategies. TC and SEC were very small, and WY was large (trade-
off was intense) when there were few shrubs. In these circumstances, planting shrubs
would enhance TC and SEC with low water consumption, and the trade-off would be
reduced. However, the sustained planting of shrubs would reverse the relative size of
ESs and strengthen the trade-off due to water deficiency. Therefore, although the water
consumption of shrubs was less than that of forests, the water consumption of shrubs still
cannot be ignored. Grassland reduced the trade-offs when the grassland increased less
than 16.5% in Dianshi, but grassland exacerbated trade-offs when the increment exceeded
the threshold, which was caused by very low rainfall in Dianshi. Generally, it is more
reasonable to establish grassland in arid regions [5,52] because the water consumption of
grassland is usually lower and grassland can provide higher WY and maintain other ESs
at a relatively high level [5,25,27,53]. However, too much grassland may exceed the soil-
water carrying capacity for vegetation, especially in low rainfall areas such as the Dianshi
watershed. Grassland reduced trade-offs in Ansai, and the inhibitory action was relatively
stable across the total range of grassland change. Grassland reduced trade-offs in the initial
stage of grassland change in the Linzhen watershed, whereas grassland slightly enhanced
trade-offs when the increment of grassland exceeded —16.9%. The comprehensive analysis
of the threshold value, segmental slope, and land-use proportions of the initial period
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(2000) showed that to control ES trade-offs, forest needed to be limited, especially in the
Dianshi and Ansai watersheds, and shrubland proportions needed to be controlled at 8.5%
and 21.6% in Dianshi and Ansai, respectively, whereas grassland proportions needed to be
controlled at 58.0% in Dianshi. In addition, Wang et al. [29] also calculated the trade-offs
between soil moisture and soil organic carbon, total nitrogen, and species richness at a
single time point in the Loess Plateau of China, and the inflection point of the trade-offs
responding to the precipitation gradient was identified.
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Figure 5. The threshold value at which ES trade-offs respond to land-use changes (trade-off value of
ordinate label was the mean value of TC-WY and SEC-WY trade-offs).

3.3.3. The Effects of Land-Use Transformation on ESs Trade-Offs

The conversion of cropland and grassland to forests and shrubland was the main rea-
son for the trade-off increase in the three watersheds, but which land-use transformations
could reduce the trade-offs were different in the three watersheds (Table 4). Grassland
conversion to cropland, cropland remaining unchanged, and grassland and cropland
conversion to construction land could reduce the trade-offs in the Dianshi watershed.
Grassland remaining unchanged, cropland conversion to grassland and construction land,
and grassland conversion to construction land could reduce the trade-offs in the Ansai
watershed. Forest and shrubland conversion to cropland could reduce the trade-offs in
the Linzhen watershed. Therefore, it is necessary to ensure a certain proportion of crop-
land in low precipitation regions as well as certain grassland in medium precipitation
regions, and forested land and shrubland need to be reduced appropriately in the high
precipitation region.

3.4. Recommendations of ES Regulation for Various Precipitation Regions

Forests are propitious to carbon sequestration, soil and water conservation, climatic
regulation, and atmospheric purification, but they are not propitious to water yield, es-
pecially in arid regions [11,50,54,55]. However, the function of cropland is contrary to
that of forested land [25,27]. As a land-use type, grassland is a compromise [5,27]. Thus,
regulating the proportions of several land use types can realize the balance of various
ESs and reduce their trade-offs. For the low precipitation region (Dianshi watershed),
the balancing of trade-offs could be achieved by restricting forest, shrub, and grassland,
increasing cropland properly in low trade-off areas, while keeping most of the current crop-
land unchanged, converting grassland to cropland reasonably, and converting grassland
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and cropland to construction land moderately in high trade-off areas. For the medium
precipitation region (Ansai watershed), restricting shrubs in low trade-off areas, restricting
forests, and increasing shrubs, grasslands, and croplands appropriately in high trade-off
areas could increase the balance in trade-offs, and specific land-use transformations such as
keeping current grasslands unchanged, converting cropland to grassland and construction
land, and slightly converting grassland to construction land could also improve the balance.
For high precipitation regions (Linzhen watershed), increasing cropland in low trade-off
areas, restricting forested land and shrubland, and increasing grassland and cropland in
high trade-off areas could help achieve balance. The main land-use transformation tactic is
the conversion of forest and shrubs to cropland. In addition, some useful measures can
be implemented in the whole study area, such as enhancing the quality of the current
vegetation, improving the community structure, increasing biodiversity, tending forests
and shrubs, rational grazing in grassland, employing conservation tillage, developing
water-saving agriculture, and applying forest-crop intercropping.

Table 4. Marginal (Marg, %) and conditional effects (Cond, %) of land-use transformation (LUT) on
ES trade-offs (mean value of TC-WY and SEC-WY trade-offs).

Dianshi Watershed Ansai Watershed Linzhen Watershed

LUT Marg LUT Cond LUT Marg LUT Cond LUT Marg LUT Cond
Lero-ro 431 Leroroi43.1  Leroroi459  Leroroi459  Lonpcr 434 Lo 434
LarapoL 362 Lgrac 226 LgaroL437 Lo 197 Leonar 353 Lponcr 145
Lora-c 343  Lcosnt 96 Larag 203 Lara-for 75 Lgra-For 226 Lgra-roL 10.8
Lero-c 282 Lorogra 71 Lorog 191 Lgasnn 7.3 Leropor6-6 Lero-rorll3

Lcro-shr 12.6 Leroc 121 Lgac 55 Lgrash 6.6
Leac 79 Leac 99

Lcroc 6.3 Loni-gi 59

Lgrag 5.0

FoL: forestland, ShL: shrubland, GrA: grassland, CrO: cropland, CoL: construction land, WaB: water body.
Lcro-rol, represents the land-use type change from cropland to forestland. Land-use transformation with gray
shadow represents negative effects on trade-offs, and others represent positive effects.

3.5. The Limitation of the Methods and Results

The InVEST model was used to calculate ESs in this study. Depending on many
advantages, such as simplicity and convenience, flexible operation, and strong spatial
expression ability of output results, the IN'VEST model is widely applied to ecosystem
management and decision making. However, the principles of calculations are simplified
for many ESs. For example, errors in the emp