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Preface to “Color Image Processing”

This book presents the collection of papers that formed the Special Issue “Color Image Processing”
in the Journal of Imaging.

It reflects some of the most modern trends in color image processing. Authors from many different
research areas have contributed to the multidisciplinary character of this book.

This large variety of subjects is possible thanks to the intrinsic multifaceted nature of color, which
is a sensation created by our brain after a complicated and not yet fully understood combination of
physical, biological and neurophysiological mechanisms.

We hereafter describe in more detail the contributions in this book; whenever possible, we tried to
maintain semantic coherence by sequentially presenting papers dealing with similar subjects, as is the
case for the first four, which are characterized by a rigorous analysis of color space geometry.

“RGB Color Cube-Based Histogram Specification for Hue-Preserving Color Image Enhancement”,
by Kohei Inoue, Kenji Hara and Kiichi Urahama, deals with the problem of saturation enhancement in
a hue-preserving environment. By making use of the RGB space geometry, the authors were able to
build a model free of tunable parameters.

The analysis of color space geometry is also the basis of the second paper, ”Analytical Study
of Colour Spaces for Plant Pixel Detection”, by Pankaj Kumar and Stanley J. Miklavcic, where the
properties of several color space features were analyzed for the segmentation of plants.

A fine mathematical analysis of the YUV space is presented in “Exemplar-Based Face Colorization
Using Image Morphing”, by Johannes Persch, Fabien Pierre and Gabriele Steidl, for the purpose of
colorization via morphing techniques.

Finally, the quaternion framework for color images is the workspace for the development of
watermarking in the paper “Image Fragile Watermarking through Quaternion Linear Transform in
Secret Space”, by Marco Botta, Davide Cavagnino and Victor Pomponiu.

The paper “Histogram-Based Color Transfer for Image Stitching”, by Qi-Chong Tian and Laurent
D. Cohen, presents a novel technique for the minimization of artifacts in the stitching process based on
histogram-based color transfer.

In “Robust Parameter Design of Derivative Optimization Methods for Image Acquisition Using a
Color Mixer”, by HyungTae Kim, KyeongYong Cho, Jongseok Kim, KyungChan Jin and SeungTaek
Kim, the so-called auto-lighting algorithm is analyzed. This is a process able to maximize the image
quality of industrial machine vision by adjusting multiple LEDs, usually called color mixers. The
authors propose a method to overcome the time-consuming gradient-based methods used so far.

A modern treatment of color processing must of course incorporate the very popular machine
learning techniques. These were used in the form of convolutional neural networks (CNN) in
“Improving CNN-Based Texture Classification by Color Balancing”, by Simone Bianco, Claudio Cusano,
Paolo Napoletano and Raimondo Schettini, where they show how suitable color balancing can help
CNN performance in texture recognition.

Machine learning techniques are also used in “Automatic Recognition of Speed Limits on
Speed-Limit Signs by Using Machine Learning”, by Shigeharu Miyata, to detect speed limit signs
(characterized by color) in a complex environment.

A variant of the classical Retinex algorithm of Land is introduced in “Color Consistency and Local
Contrast Enhancement for a Mobile Image-Based Change Detection System”, by Marco Tektonidis and

David Monnin, to improve the performance of mobile change detection systems.

vii



First-order statistics are used in “Improved Color Mapping Methods for Multiband Nighttime
Image Fusion Maarten”, by A. Hogervorst and Alexander Toet, to enhance the performance of color
mapping methods in dark images by giving them a daylight look.

The paper “Illusion and Illusoriness of Color and Coloration”, by Baingio Pinna, Daniele Porcheddu
and Katia Deiana, provides a phenomenological analysis of chromatic illusion, underlying the
difference between the perceptual and cognitive phenomena associated with this kind of illusion.

Finally, the contribution “The Academy Color Encoding System (ACES): A Professional Color-
Management Framework for Production, Post-Production and Archival of Still and Motion Pictures”,
by Walter Arrighetti, provides a complete account of color encoding in professional cinema.

We believe that the large spectrum of subjects discussed in the papers can be both an inspiration
for young researchers who wish to gain a broad vision of the modern research into color, as well as a

state-of-the-art reference for established scholars in this domain.

Edoardo Provenzi

Special Issue Editor

viii
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Abstract: A large number of color image enhancement methods are based on the methods for grayscale
image enhancement in which the main interest is contrast enhancement. However, since colors usually
have three attributes, including hue, saturation and intensity of more than only one attribute of
grayscale values, the naive application of the methods for grayscale images to color images often results
in unsatisfactory consequences. Conventional hue-preserving color image enhancement methods
utilize histogram equalization (HE) for enhancing the contrast. However, they cannot always enhance
the saturation simultaneously. In this paper, we propose a histogram specification (HS) method
for enhancing the saturation in hue-preserving color image enhancement. The proposed method
computes the target histogram for HS on the basis of the geometry of RGB (rad, green and blue) color
space, whose shape is a cube with a unit side length. Therefore, the proposed method includes no
parameters to be set by users. Experimental results show that the proposed method achieves higher
color saturation than recent parameter-free methods for hue-preserving color image enhancement.
As a result, the proposed method can be used for an alternative method of HE in hue-preserving color
image enhancement.

Keywords: color image enhancement; hue-preservation; histogram equalization; histogram specification;
RGB color cube

1. Introduction

Color image enhancement is a challenging task in digital image processing with broad applications
including human perception, machine vision applications, image restoration, image analysis,
image compression, image understanding and pattern recognition [1], underwater image enhancement
and image enhancement of low light scenes [2]. Sharo and Raimond surveyed the existing color
image enhancement methods such as histogram equalization (HE), fuzzy-based methods and other
optimization techniques [3]. Saleem and Razak also surveyed color image enhancement techniques
using spatial filtering [4]. Suganya et al. analyzed the performance of various enhancement techniques
based on noise ratio, time delay and quality [5].

In color image enhancement, preserving the hue of an input image is frequently required to
preserve the appearance of the objects in the image. Bisla surveyed hue-preserving color image
enhancement techniques [6]. Zhang et al. proposed a method for hue-preserving and saturation
scaling color image enhancement using optimal linear transform [7]. Aashima and Verma proposed
a hue-preserving and gamut problem-free color image enhancement technique, and compared it
with a discrete cosine transform-based method [8]. Porwal et al. also proposed an algorithm for
hue-preserving and gamut problem-free color image enhancement [9]. Chien and Tseng proposed
a set of formulae for the color transformation between RGB (red, green and blue) and exact
HSI (hue, saturation and intensity), and used it for color image enhancement [10]. Gorai and
Ghosh considered image enhancement as an optimization problem and solved it using particle

J. Imaging 2017, 3, 24 1 www.mdpi.com/journal/jimaging
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swarm optimization [11]. Taguchi reviewed color systems and color image enhancement methods,
and introduced an improved HSI color space [12]. Menotti et al. proposed two fast hue-preserving HE
methods based on 1D and 2D histograms of RGB color space for color image contrast enhancement [13].
Pierre et al. [14] introduced a variational model for the enhancement of color images, and compared
their method with the state-of-the-art methods including Nikolova and Steidl’s method [15], which is
based on their strict ordering algorithm for exact HS [16].

Almost all of the above hue-preserving color image enhancement methods are based on the
pioneering work of Naik and Murthy [17], where a scheme is proposed to avoid gamut problem arising
during the process of enhancement of the intensity of color images using a general hue-preserving
contrast enhancement function, in which HE is a typical example for intensity transformation. Han et al.
also proposed the equivalent method from a viewpoint of 3D color HE [18]. However, Naik and
Murthy’s method cannot increase the saturation of colors to be enhanced. To overcome this problem,
Yang and Lee [19] proposed a modified hue-preserving gamut mapping method that outputs higher
saturation than Naik and Murthy’s method. Yang and Lee’s method divides the range of luminance
into three parts corresponding to dark, middle and bright colors, and handles the input colors in
different manners, that is, for dark and bright colors, their saturation is enhanced first, and then,
Naik and Murthy’s method is applied to the saturation-enhanced colors. On the other hand, for the
remaining colors with middle luminance, Naik and Murthy’s method is applied to the original colors
directly. Therefore, the saturation of the middle luminance colors cannot be improved as well as Naik
and Murthy’s method.

In this paper, we propose a parameter-free HS method for hue-preserving color image enhancement
based on the geometry of RGB color space. The proposed method can improve the color saturation in
both Naik and Murthy’s and Yang and Lee’s methods. Experimental results show that the proposed
HS method applied to Naik and Murthy’s and Yang and Lee’s methods improves the color saturation
compared with the conventional Naik and Murthy’s and Yang and Lee’s methods using HE.

The rest of this paper is organized as follows: Section 2 first defines the saturation of a color,
and then summarizes Naik and Murthy’s and Yang and Lee’s methods. Section 3 describes the detailed
procedures of HS for color image enhancement, where HE is also summarized, and then RGB color
cube-based HS method is proposed. Section 4 shows experimental results of hue-preserving color
image enhancement. Finally, Section 5 discusses the results and the utility of the proposed method.

2. Hue-Preserving Color Image Enhancement

In this section, we briefly summarize previous hue-preserving color image enhancement methods
proposed by Naik and Murthy [17] and Yang and Lee [19] after the description of color saturation.

Letp =[r, g b] Thea point in RGB color space or an RGB color vector, where r, g and b denote
red, green and blue values, respectively, and satisfy 0 <r <1, 0 < g <land0 < b < 1, and the
superscript T denotes the matrix transpose. Then, the intensity of p is given by | = r + ¢ + b [17]
satisfying I € [0,3], and the saturation of p is the perpendicular distance from the intensity axis to
p [20] as follows:

_ RS T (VPN _ [P+ (8- b2+ (b—r)?
5(”)4’”{1 |1<||1||>}” v~ (af) - 3 L

where 1 = [1,1,1]T, I is the 3 x 3 identity matrix, and | - || denotes the Euclidean norm.

Lemma 1. The saturation S(p) of p given by (1) has the following properties:

S(Bp) = BS(p), )
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where B is a positive number, and
SA=7(1-p))=75(p) ®)
for0 <y <1

The proof of Lemma 1 is given in Appendix A.

2.1. Naik and Murthy’s Method

Leta(l) = f(I)/1forl > 0, where f(I) is a function of ! for transforming the original intensity into
the modified one in the same range as its domain, i.e., f(I) € [0,3]. Then, Naik and Murthy considered
a hue-preserving transformation of the form

p'=al)p, @)

where p’ = [, ¢, 1']T denotes the transformed color vector of p. The value of a(I) will be greater
than 1 when f(I) > I. In such a case, the element value of p’ may exceed 1 and thus result in a gamut
problem. To overcome this problem, Naik and Murthy proposed a gamut problem-free procedure
as follows:

Naik and Murthy’s method

1. Case (i) If a(l) < 1, then compute p’ = a(l)p.
2. Case (ii) If «(!) > 1, then perform the following procedure:

(1)  Transform the RGB color vector p to CMY (cyan, magenta and yellow) color vector
q=1[c,my]T,wherec=1—r, m=1—gandy=1-b.

2 Findl=c+m+4+y=3-1

(3) Find f(I) =3 — f(I), a(l) = f(I)/I. Note that &(I) = [3 — f(I)] /(3 —1) < 1since f(I) > I.

(4) Compute g’ = &(l)q.

(5) Transform the CMY color vector g’ to RGB color vector p’ =1 —¢'.

Note that, in Step (3) in Case (ii), we cannot compute & (/) when I = 3 because it results in division
by zero. To avoid such difficulties, we set that p’ = 1if | = 3,and p’ = 0 = [0,0,0]T if | = 0. We find
that Case (ii) can be concisely written as follows:

Case (i) If a(I) > 1, then compute p’ =1 —a(l)(1—p) fora(l) = [3— f(1)]/ (3 —1).

Additionally, it has been proved that Naik and Murthy’s method does not increase the saturation,
thatis, S(p’) < S(p) [21].

2.2. Yang and Lee’s Method

Yang and Lee also pointed out that the color saturation of the resulting images by Naik and
Murthy’s method is low, and proposed a hue-preserving gamut mapping method, the resulting images
of which show higher saturation than that of Naik and Murthy’s.

Although Yang and Lee defined the luminance of p as n = (r + g +b)/3 = 1/3 instead of the
intensity / to describe algorithms in their paper [19], we would like to use / rather than # in this paper
consistently. Using /, we can describe Yang and Lee’s method as follows:

Yang and Lee’s method

1. Case (I) If I <1, then compute p = p/I, whose intensity is 1. Apply Naik and Murthy’s method
to p as follows:

(1) Case (I1) If f(

1) <1, then compute p”
(2) Case (I-ii) If f(

1, then compute p”

e
1 f) - p) /2

) -
l =

<
>

)
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2. Case (I) If 1 < I <2, then apply Naik and Murthy’s method to p as follows:

=:()

(1) Case (II-i) If «(!) <1, then compute p =

v
(2) Case (II-ii) If a(l) > 1, then compute p” = p’ a(l)(1—p).

3. Case (IIl) If I > 2, then transform p into the CMY color vector 4 = 1 — p, and then lower the
intensity of q to 2 as § = q/(3 —I) to have the RGB color vector p = 1 — 4. Apply Naik and
Murthy’s method to p as follows:

(1) Case (II-) If f(I)
l

1) <2, then compute p”" = f(1)p/2.
(2)  Case (II-ii) If f( =

< 14
> 2, then compute p”" =1—[3— f(I)](1— p).

)

We have the following lemma:

Lemma 2. The saturation given by Yang and Lee’s method is greater than or equal to that given by Naik and
Murthy’s method, that is, S(p’") > S(p’).

The proof of Lemma 2 is given in Appendix A.

3. Histogram Specification for Color Image Enhancement

Let P = [p;;] be a digital color image, where p;; = [y, ij, b; /-]T denotes the RGB color vector at the
position (i, ) of a pixelin P fori =1,2,...,mand j = 1,2,...,n, where m and n denote the numbers
of pixels in the vertical and horizontal directions in P, respectively. Suppose that P is a 24-bit true
color image. Then, each element of pij is an integer between 0 and 255, i.e., Tij, 8ijs bij €{0,1,...,255},
and the intensity of p; is given by lNi]' =r1ij+gij+bj€{0,1,...,L}, where L = 255 x 3 = 765.

3.1. Histogram Equalization

Let h = [hg, hy, ..., h] be the histogram of the intensity iij of pijin P. Then, the lth element of
his given by h; = Y, 2}1:1 (517”, where (51-,1-’_/_ denotes the Kronecker delta; 5i,fij =1ifl = fij and 0,
otherwise. Let H= [Ho, Hy, ..., Hp] be the cumulative histogram of h, where the [th element of H is
given by Hy = Z‘,k o k- Then, the intensity transformation function f(I) for HE is given by

L
fE(I) = round (H—LH1~> , (5)

where ‘round ()’ operator rounds a given argument toward the nearest integer, Hy = Y& o Ik = mn, and
T = round(Ll/3) for I € [0,3]. The histogram-equalized intensity image of P is given by PF = [p ] where

pli = fE< )6{01 L}. ©)

3.2. Histogram Specification

Let i = [ho,/nn,..., 1] be a target histogram into which we want to transform the original
histogram of intensity, and let H= [HO, H,...,H 1] be the cumulative histogram of i1, where the Ith
element of H is given by H; = Zk:o Jig. Then, the intensity transformation function f(I) for HS is
given by

fs(’) :argrr}(inﬂHLHk—HLHﬂ}, (7)

where A} = Y.F 7y, and [ = round(L!/3) for | € [0,3]. The histogram-specified intensity image of P
is given by P° = [pls]] where

5= f° (%l,]> e{o,1,...,L}. ®)
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3.3. RGB Color Cube-Based Histogram Specification

In this subsection, we propose a parameter-free HS method named RGB color-cube based HS.
As described in Section 2, the saturation of a color in RGB color space is defined as the perpendicular
distance between the intensity axis and a point corresponding to the color. The locus of the perpendicular
line around the intensity axis forms an equiintensity plane. Let us consider the cross section of the
equiintensity plane and RGB color cube as shown in Figure 1, where the cross sections are painted in
light blue, and Figure 1a—c show three cases of the value of the intensity / found in the equation of the
plane, 1Tp = ||11]|/, thatis,0 <1 <1, 1 <1 <2and2 <[ < 3, respectively. In these figures, the triangles
drawn by red broken and solid lines denote the cross sections of | = 1 and | = 2, respectively.

(@ (b) (9)
Figure 1. Cross sections of RGB color cube with equiintensity planes, 17p = ||1]|/, where p denotes

apointonthe plane: () 0 <1 <1;(b)1 <1 <2;(c)2<1<3.

The area of the cross section indicates the variety of saturation for a given intensity I. Let a(!) be
the area of the cross section for an intensity I. Then, we have the following analytic form of a(l):

a(l) = P12 if 0<I1<1,
al) = ar(l) =3B —V3(1-3) if 1<1<2, )
a3(l) = (3 1) if 2<1<3,

which is continuous at [ = 1 and I = 2, that is, a1(1) = a2(1) = v/3/2 and a,(2) = a3(2) = V/3/2.
Additionally, the derivative function of a(!) is given by

aj(l) = /3l if 0<I<1,
a(l)=1a()=2v3(3-1) if 1<1<2, (10)
ay(l)=+3(1-3) if 2<1<3,

which is also continuous at = 1 and I = 2, that is, 2} (1) = a5(1) = V3 and a5(2) = a}(2) = —V/3.
The integral of a(I) is given by

1 Al = [l a(x)dx = Y213 if 0<1<1,
A(l) = /O a(x)dx = { Ag(l) = Ay(1) + [Lag(x)dx = LB (3—2P 492 —91) if 1<1<2, (11)
' As(l) = Ay (2) + [3 az(x)dx = 2 [6 —(3- 1)3] if 2<1<3,

which is also continuous at [ = 1and | = 2, thatis, A;(1) = A(1) = v/3/6and Ay(2) = A3(2) = 51/3/6.
Figure 2 shows the graphs of a() and A(l), where the vertical and horizontal axes denote the function
value of a(I) or A(I) and the intensity I, respectively, and the blue and green lines denote the functions
a(l) and A(1), respectively.
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Function value

Figure 2. Area of cross section of RGB color cube and equiintensity plane, a(/), and its integral, A(I).

We propose to use a(l) and A(I) as the substitution of the target histogram and its cumulative
one in HS, respectively. The detailed procedure is as follows.
Let i© = [hf, kS, ..., iS] be the target histogram for the proposed RGB color cube-based HS.
Then, the Ith element fi; of i€ is given by
_ 3.
C_
hy =a (Zl) (12)

forl = 0,1,...,L. By means of the cumulation of K€, we have the cumulative histogram HE.
In another way, since we have the analytic form of the integral of a(I) as A(l), we can also compute
HC = [A§,HYS,..., A% from A(1) directly as follows:

- 3.
C=A <Zl> (13)

for] =0,1,...,L. Then, the intensity transformation function f(I) for RGB color cube-based HS is
given by

f€(1) = argmin { ]HLH,f — ACH; } (14)

where HS = A(3) = v/3, and [ = round(L!/3) for I € [0,3]. The histogram-specified intensity image
of P is given by P¢ = [pf]:] where

b = £ (%IJ e{0,1,...,L} (15)

The above intensity transformation functions, fE(I), f5(I) and f¢(I), can be used instead of f(1)
in Naik and Murthy’s and Yang and Lee’s methods.
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3.4. Conditions for Saturation Improvement

The above RGB color cube-based HS can be used in both Naik and Murthy’s and Yang and
Lee’s methods as well as the conventional HE. In this subsection, we summarize the conditions for
improving color saturation by the proposed HS compared with HE in the two methods.

3.4.1. Naik and Murthy’s Method

LetaE(I) = fE(1)/1, a©(1) = f€(1)/1, and p’“ be the enhanced color of p by Naik and Murthy’s
method with the proposed HS. Then, we have S(p’C) > S(p’) under the following conditions:

FE) < fC) <, if aF(1)<1 and a®(I) <1,
FE <1< < fFEM+3[1—ab()], if aF(1)<1 and a“(l)>1, 16)
S0y < Oy <1< fE), if aE(1)>1 and aC(l) <1,
1< fC(1) < FE, if af(l)>1 and a¢(l) > 1.

3.4.2. Yang and Lee’s Method

Let p”’C be the enhanced color of p by Yang and Lee’s method with the proposed HS. Then,
we have S(p""C) > S(p") under the following conditions for three cases of I:
If I <1 (Caselin Yang and Lee’s method), then we have the following conditions:

FEO <P, i A <1 and fC(0) <1,
FE() <3—2fE(), if fE(I)<1 and fC(I)>1, a7
SO < gery, if fE()>1 and fC(1) <1,
FE) < FEO), if fE(I)>1 and fC(I) > 1.

If1 < I <2(Case Ilin Yang and Lee’s method), then we have the same conditions as Equation (16)
because Yang and Lee’s method coincides with Naik and Murthy’s method.
If I > 2 (Case Il in Yang and Lee’s method), then we have the following conditions:

FE) < fFEO), if fE() <2 and fC() <2,
fC()<3_fE#, if fE()<2 and fC(I) >2, -
2[3— fE(D] < fS), i fE()>2 and fO(1) <2,
fC()<fE(l) if fE(I)>2 and fC(I)>2

4. Experimental Results

In this section, we show the experimental results of hue-preserving color image enhancement,
and demonstrate that the proposed method improve the color saturation in comparison with Naik and
Murthy’s and Yang and Lee’s methods using HE.

Figure 3 shows input and output images for hue-preserving color image enhancement, where the
first top row shows the original input images, and the second to fifth rows show the corresponding
output images. The original images in the top row are collected from the Standard Image Data-BAse
(SIDBA) [22]. The second row shows the results by Naik and Murthy’s method, which uses HE for
intensity transformation to enhance the contrast. However, the color saturation has faded in all images.
As a result, the output images become close to their contrast-enhanced grayscale images. Moreover,
we can see that the 2nd (Airplane) and the 6th (Girl) images become noisy by contrast overenhancement
caused by HE. The third row shows the results of the proposed HS used in Naik and Murthy’s method
instead of HE, where the color saturation is recovered and the noise is suppressed compared with the
second row. The fourth row shows the results of Yang and Lee’s method with HE, where the 4th (Couple)
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and 6th (Girl) images have improved saturation and are more colorful than the second row of Naik and
Murthy’s method. However, the other images are similar to that of Naik and Murthy’s method. The fifth
row shows the results of the proposed HS used in Yang and Lee’s method instead of HE, where the
saturation is improved compared with the third and fourth rows.

Aerlal Airplane Balloon Couple Earth Girl Lenna Mandrill Mllkdrop Parrots Peppers Sailboat

Original images
2 a & o / £

Naik and Murthy’s method with HE

¥ Bl S A 5 7 & 2T

Naik and Murthy’s method with the proposed HS

a2
(&

Figure 4 shows the saturation images whose pixel values are given by the saturation values S(p)
in Equation (1). The order of the images are the same as that of Figure 3. The images in the second
row are not brighter than that in the first row, which demonstrates visually that Naik and Murthy’s
method cannot increase the saturation from the original images. The third row shows the saturation
images by Naik and Murthy’s method with the proposed HS, which can improve the saturation—for
example, we can see brighter regions in 7th (Lenna) to 10th (Parrots) images than the corresponding
images in the second row. The fourth row shows the saturation images by Yang and Lee’s method
with HE, which achieves higher saturation than Naik and Murthy’s method in the second row. The
fifth row shows the saturation images by Yang and Lee’s method with the proposed HS, which further
increases the saturation compared with the fourth row.

Figure 5 shows the difference maps between the enhanced and original saturation images.
These maps are generated by the following procedure: let p and p°™! be the corresponding pixels of
an original color image and its enhanced one, respectively. Then, we compute the difference of their
saturations as d = S(p°™") — S(p), and set the pixel color in the difference map by (1/2) + [d,d,0]” if
d>0,and (1/2) — [0,d, d] T otherwise. That is, cyan and green in the difference map mean a decrease

Yang and Lee s method with the proposed HS

Figure 3. Results of hue-preserving color image enhancement.

and increase in saturation, respectively, and gray (1/2) means neutral.

The top row in Figure 5 shows the difference maps between Naik and Murthy’s results with HE
and the original images, where we can see a number of deep cyan regions, which mean a decrease
in saturation from the original images. On the other hand, the second row shows the results by Naik
Murthy’s method with the proposed HS, where the cyan regions are diluted compared with the top
row. The third row shows the results by Yang and Lee’s method with HE, which gives similar results to
Naik and Murthy’s method in the top row except for the 4th (Couple) and 6th (Girl) images, in which
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we can see the yellow regions that mean the increase in saturation. The bottom row shows the results
by Yang and Lee’s method with the proposed HS, where the cyan regions are diluted as well as the
second row, and yellow regions are made deeper and broader than the third row.

Original images

Naik and Murthy’s method with HE

Naik and Murthy’s method with the proposed HS

Yang and Lee’s method with HE
Naik and Murthy’s method with HE

Yang and Lee’s method with the proposed HS

Naik and Murthy’s method with the proposed HS

Figure 4. Saturation images.

Yang and Lee’s method with the proposed HS

Figure 5. Difference maps of saturation images.

Figure 6 shows the mean saturation value per pixel for each image in Figure 4, where the vertical
and horizontal axes denote the mean saturation and the names of images, respectively. Compared with
the original images denoted by cyan bars, the Naik and Murthy’s results denoted by light green have
decreased mean saturation. The proposed HS improves the mean saturation as shown by the yellow
bars; however, the improvement is limited to the values of the original images by the fact that Naik
and Murthy’s method does not increase the saturation [21]. Yang and Lee’s results denoted by the
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orange bars indicate the values greater than or equal to Naik and Murthy’s results (light green bars),
as stated in Lemma 2. The proposed method also improves the mean saturation for Yang and Lee’s
method as shown in the red bars.

90 T T T T T T
8o ||==2 Original I |
[ Naik + HE 1

70 Naik + proposed HS 1
- 60| /=3 Yang + HE 1 | |
2 B Yang + proposed HS |
S 50| ) .
4(-“’ L] -
Y40t -
e
Z -

30 1
20 | ‘ |
il

o | il I"HII

A 111l L1 111 Ll 111
Aer. Air. Bal. Cou. Ear. Gir. Len. Man. Mil. Par. Pep. Sai.
Images

Figure 6. Mean saturation.

The total mean saturation is summarized in Table 1, where twelve mean values of each color bar
are averaged to get the values in the table. Naik and Murthy’s method denoted by Naik + HE in the
table decreases the total mean saturation from the value of the original images. The proposed method
(Naik + Proposed HS) increases the total mean saturation from Naik + HE. Yang and Lee’s method
(Yang + HE) achieves greater value than Naik + HE, which demonstrates the claim in Lemma 2, and the
proposed method (Yang + Proposed HS) also improves it.

Table 1. Total mean saturation. In this table, ‘Original’ means the original images, "Naik+HE’" means
Naik and Murthy’s method with HE, "Naik+Proposed HS” means Naik and Murthy’s method with the
proposed HS, "Yang+HE’ means Yang and Lee’s method with HE, and "Yang+Proposed HS” means
Yang and Lee’s method with the proposed HS.

Original Naik + HE  Naik + Proposed HS  Yang + HE  Yang + Proposed HS
41.89 26.84 35.98 29.97 4331

Figure 7 shows the results on the INRIA Holidays dataset [23,24], where the top row shows the
original images, and the second to fifth rows show the results by Naik and Murthy’s method with
HE and the proposed HS, and Yang and Lee’s method with HE and the proposed HS, respectively.
The number under each image denotes the mean saturation value. The proposed HS improves the
mean saturation of almost all examples except for an image with the mean saturation value 7.59, which
is lower than 8.32 given by Naik and Murthy’s method with HE.

10
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11.75 23.34 9.52
Original images

19.07
Naik and Murthy’s method with the proposed HS

TTTTT——

2430 31.90 11.14

36.26 45.61 16.97
Yang and Lee’s method with the proposed HS

Figure 7. Results on the INRIA (Institut National de Recherche en Informatique et en Automatique)
dataset with the mean saturation values.

11
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5. Discussion

In the above experimental results, we have compared four hue-preserving color image
enhancement methods: Naik + HE, Naik + Proposed HS, Yang + HE and Yang + Proposed HS.
First, we confirmed the fact that Naik and Murthy’s method does not increase the saturation of
original colors experimentally. Next, we also experimentally confirmed the claim in Lemma 2, that
is, Yang and Lee’s method can improve the saturation compared with Naik and Murthy’s method.
Moreover, we demonstrated that the proposed HS method can improve the saturation compared with
the conventional HE method used in both Naik and Murthy’s and Yang and Lee’s methods.

The target histogram for the proposed HS method is derived from the geometric shape of RGB
color space, that is, a cube with a side length of 1, and has an analytic expression that can be integrated
to obtain the cumulative target histogram used in the proposed HS. As a result, the proposed HS
method has no additional assumptions or parameters. Therefore, there is no need for users to be
bothered with any parameter settings. Additionally, the proposed HS method can suppress the contrast
overenhancement that frequently occurs when HE is used.

Consequently, the proposed HS method can be used for an alternative method of HE because it
is a parameter-free method as well as HE, and can enhance the color saturation compared with the
conventional hue-preserving color image enhancement methods, while it can suppress the contrast
overenhancement that occurs in HE frequently.
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Abbreviations

The following abbreviations are used in this manuscript:

RGB red, green and blue

CMY cyan, magenta and yellow
HSI hue, saturation and intensity
HE histogram equalization

HS histogram specification

Appendix A. Proofs of Lemmas
In this section, we prove Lemmas 1 and 2 described above.

Proof of Lemma 1. By the definition of S(p) in (1), it follows that

= g o L (2N gy = B S N
S(Bp) = | (Bp) {I ||1||<H1H) ](ﬁp)—ﬁ r’ {I ||1||<H1H) ]P—ﬁs(l’)/ (A1)

and thus Equation (2) holds. Similarly, we find that

2
S(A—1(1-p)) = S((1— 1)1+ 7p) = \/H(l 4l - (W) (A2)
17p\2
= A= 2R+ 20— )N Tp 2 pl2 [u IR +2(1 - )T + 72 (w) } (A3)

ToN2
= Iple = (1) = st (Ad)

hence Equation (3) holds. [

12
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Proof of Lemma 2. In Case (I), for I < 1, there are three cases of the position of f(I) corresponding
to the left, middle and right: f(I) < I < 1, I < f(I) < 1land! < 1 < f(I). For
f() <1 <1, wehave p” = f()p = f()p/l = a(l)p = p’, from which it follows that
S(p") = S(p'). Forl < f(I) < 1, we have p’ = 1—a(l)(1—p) for a(l) < 1, whose
saturation is given by S(p’) = a(I)S(p) from Equation (3) in Lemma 1. We also have p” = a(l)p
for a(l) > 1, whose saturation is given by S(p”) = «(I)S(p) from Equation (2) in Lemma 1.
Therefore, we have that S(p”) — S(p') = [a(l) — a(l)]S(p) = 3[f(I) = 1]S(p)/[I(3—1)] > O or
S(p") > S(p'). Forl <1 < f(I), we have S(p’) = a(I)S(p) and p” = 1—[3— f(I)](1— p)/2 for
P = p/1, whose saturation is given by S(p”) = [3 — f(1)]S(p)/2 = S(p/1)/2 = [3— f(1)]S(p)/(2]) by
Lemma 1. Therefore, we have that

) - s = (250 - 2 LD s = LSO D sy 20 )

'Qx

— =

or S(p") = S(p).

In Case (II), since Yang and Lee’s method outputs the same result as Naik and Lee’s method,
we have S(p”) = S(p’) immediately.

In Case (III), for 2 < I, there are three cases of the position of f(I) corresponding to the left, middle
and right: f(I) <2 <1, 2 < f(I) <land2 <1 < f(I). For f(I) <2 < I, wehave p' = a(l)p,
whose saturation is given by S(p ) a(l)S(p). Wealsohave p” = f(I)p/2forp=1—(1—p)/(3-1),
whose saturation is given by S(p”) = f(1)S(p)/2 = f(1)S(p)/[2(3 — I)]. Therefore, we have that

)~ 5(0) = (35255 = 1) st = 005 Pt > 0 (A6)
or S(p”") > S(p'). For 2 < f(I) <1, we have S(p') = a(I)S(p) and p"”" = 1—[3— f()](1 - p),
whose saturation is given by S(p”’) = [B— f(D)|S(p) = B - f(D]S(p)/B—=1) = a()S(p).

Therefore, we have

) - 5t) = (P50 - 10 ) st = 25 s 2 0 (*7)

3—-1 1

or S(p”) > S(p'). For2 < I < f(I), we have p’ = 1—a(l)(1 — p), whose saturation is given by
S(p') =a(l)S(p),and p”" =1—[3— f(I)](1 — p), whose saturation is given by S(p”) = [3 — f(I)]S(p) =
B—fIs(p)/(3—1) = a(l)S(p) = S(p').

Consequently, S(p”) > S(p’) holds in any case. [
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Abstract: Segmentation of regions of interest is an important pre-processing step in many colour
image analysis procedures. Similarly, segmentation of plant objects in digital images is an important
preprocessing step for effective phenotyping by image analysis. In this paper, we present results of
a statistical analysis to establish the respective abilities of different colour space representations to
detect plant pixels and separate them from background pixels. Our hypothesis is that the colour
space representation for which the separation of the distributions representing object and background
pixels is maximized is the best for the detection of plant pixels. The two pixel classes are modelled
by Gaussian Mixture Models (GMMs). In our statistical modelling we make no prior assumptions
on the number of Gaussians employed. Instead, a constant bandwidth mean-shift filter is used to
cluster the data with the number of clusters, and hence the number of Gaussians, being automatically
determined. We have analysed the following representative colour spaces: RGB, rgb, HSV, Ycbcr
and CIE-Lab. We have analysed the colour space features from a two-class variance ratio perspective
and compared the results of our model with this metric. The dataset for our empirical study consisted
of 378 digital images (and their manual segmentations) of a variety of plant species: Arabidopsis,
tobacco, wheat, and rye grass, imaged under different lighting conditions, in either indoor or outdoor
environments, and with either controlled or uncontrolled backgrounds. We have found that the best
segmentation of plants is found using HSV colour space. This is supported by measures of Earth
Mover Distance (EMD) of the GMM distributions of plant and background pixels.

Keywords: plant phenotyping; plant pixel classification; colour space; Gaussian Mixture Model;
Earth Mover Distance; variance ratio; plant segmentation

1. Introduction

Compared with the growing interest in plant phenotyping using computer vision and image
analysis, plant phenotyping by visual inspection is slow and subjective, relying as it does on human
evaluation. Two of the aims of digital imaging and image analysis are (a) the removal of any degree
of subjectivity associated with an individual human’s perception, and (b) the expedition of the
analysis procedure. This is especially important for the high throughput assessment of the phenotypic
manifestations of genetic expressions in plants.

Another and particular application of digital imaging in an agricultural setting is the detection
and identification of weeds for the purpose of spot spraying of herbicide. Spot spraying, as opposed to
blanket spraying, is more economical and environmentally less detrimental. It is worth considering
that successful application of spot spraying may also depend on weed size (volume of herbicide) as
well as weed identification (type of herbicide). Consequently, being able to estimate weed volume or
biomass by 3D reconstruction from digital images is potentially beneficial. In [1], An et al. presented a
novel method that used plant segmentation from images for 3D plant morphology quantification and
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phenotyping. Plant segmentation was used by An et al. in [2] to measure phenotypic traits such as
leaf length and rosette area in 2D images. Plant pixel detection by a Gaussian Mixture Model (GMM)
was used by Kovalchuk et al. in [3] for the automatic detection of plot canopy coverage and analysis
of different genotypes. Thus, it can be noted that an important basic precursor to both detection,
identification and 3D reconstruction [4,5] is the process of plant segmentation. That is, the binary
classification of pixels into plant and non-plant groups.

There are many approaches to segmentation. These fall into one of two camps: supervised or
unsupervised segmentation [4,6]. However, active contours or level sets and fuzzy logic can also be
used for object segmentation [7,8]. All these different methods of segmentation will benefit from the
study presented in this paper. A colour space which enhances the ability to separate plant pixels from
non-plant pixels will improve the performance of any segmentation method based on colour.

Many segmentation methods are based on colour distinction. To achieve optimal plant
segmentation, however, the natural question to first pose is which colour space is the more effective for
the detection of plant pixels? Is there a suitable transformation of {Red Green Blue} (RGB) colour space
to a representation that will make plant pixel detection more accurate and more reliable? Can a suitable
representation be found that will improve the degree to which plant pixel detection is independent of
illumination condition? Does the contrast between plant and background naturally get enhanced in
certain colour space irrespective of illumination condition? These are some of the questions we address
in this paper. Similar questions have been raised and answered for skin pixel segmentation [9-11],
shadow and traffic object detection [12-14] and image segmentation by graph cut [15,16]. It has been
shown in [17] that the choice of colour space does influence object recognition.

A related study seeking to improve plant segmentation by colour analysis was carried out by
Golzarian et al. [18] using colour indices. Colour indices, individually however, do not provide a
complete representation of a colour space. Individual indices are scalar-valued variables obtained
by a linear manipulation of the components of the three dimensional colour space vector of a pixel.
The individual colour indices considered by Golzarian et al. [18] were g, DGR, EGI, MEGI, NDI, Hue,
and the hue channel of HSV colour space. Their results showed that hue achieved the least amount of
type II error with a small loss of plant pixel. Our results and conclusions differ somewhat. We attribute
the difference in conclusions to the fact that our study is more encompassing as our larger dataset
includes a greater number of lighting conditions and a larger number of plant species. Thus, in contrast
to Golzarian et al.’s findings, our results show that HSV is overall best suited for segmentation of
plants under the majority of lighting conditions. An important aspect which has not been addressed in
this study is how color balancing would affect the plant pixel detection. Color balancing was shown
in [19] to affect texture classification studies.

This paper is organized as follows. In Section 2.1 we introduce briefly the different colour spaces
we experimented with and their mathematical relationship to each other. Then, in Section 2.2 we
outline our method for discriminating pixels into one of two classes using GMMs and evaluating the
separability of the classes by computing their class distance using Earth Mover Distance (EMD) and
variance ratios. EMD [20] has a long history for use in image processing and analysis. Rubner et al.
used EMD on cluster signature of images for image retrieval and for object tracking by Zhao et al.
in [21] and by Kumar et al. in [22]. The details of our dataset are provided in Section 2.3. We present
our results and discuss those in Section 3, and finally conclude the paper with summary comments in
Section 4.

2. Methods

2.1. Colour Representation

Colour spaces allow for different representations of intensity and colour information in colour
images. Past research activities on colour representation, psycho-visual perception of colour,
video signal transmission and computer graphics have given rise to many colour spaces having
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different desirable properties. Here, we briefly review the five well-known colour spaces RGB, rgb,
HSV, Ycber and CIE-Lab that we shall utilize and we summarize how they are related to the common
RGB colour space. A consideration of less well-known spaces such as the colour derivative spaces,
as described in Gevers et al. [23], and opponent colour space as mentioned in [24] by Gevers and
Stokman, could be made the subject of subsequent study.

2.1.1. RGB

Red, green and blue are the familiar primary colours and it is now accepted that their different
practical combinations are capable of generating almost all possible colour shades. This colour space
has been the basis for the design of CRTs, television and computer screens. Most still cameras and
scanners save their images in this colour space. However, the high correlation between channels as
well as the mixing of chrominance and luminance information makes RGB space a sub-optimal choice
for colour-based detection schemes.

2.1.2. Normalized rgb

R G ,__ B

""R+G+B * " R+G+B ~ RIG+B

This is a colour space in which intensity information is normalized, which in turn leads to a

reduced dependence on the luminance information. The normalization property, however, introduces

a redundancy amongst the three components. For instance, no additional information is available in

bsince b =1 —r — g. In such a case, the components, r and g, are referred to as pure colours due to

the absence of a dependence on the brightness of the source RGB. A mention of g space can also be
found in [23].

)

2.1.3. HSV

This colour space specifies any colour in terms of three quantities: Hue, Saturation, and Value.
It was introduced to satisfy user need to specify colour properties numerically. Hue defines the
dominant colour of a pixel, Saturation measures the colourfulness of a pixel in proportion to its
brightness, and Value is related to colour luminance. HSV is non-linearly related to RGB via the
following set of equations

o V ifB<G,
2r—0 ifB>G.
1 1/2[(R=G)+ (R—-B)]

where 6 = cos™ [(R—G)2+ (R—B)(G - B)]1/2

@

S
\%4

3 .
1-— m[mm(R, G, B)]
1/3(R+ G+ B)

A polar co-ordinate representation of HSV results in a cyclic colour space. HSV colour space was
recently used for adaptive skin classification in [25]. This colour space is similar to the colour space
representations, HIS, HLS, and HCI.

2.1.4. Ycber

This colour space is utilized in most image compression standards such as JPEG, H.261, MPEG,
and television studios (video cameras also usually save in this format). Pixel intensity is represented
by Y luminance, computed as a weighted sum of RGB values; the matrix of weights which transforms
the RGB pixel value to Ycber is given in Equation (3). The chrominance component of the pixel
information is contained in the cb and cr channels. The colour space is characterized by a simple but
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explicit separation of luminance and chrominance components. It is similar to YIQ and YUV color
spaces and linearly related to RGB as follows

Y 0299 0587  0.114 R
cr| = | 0711 —0587 —0.114| x |G 3)
cb —0.299 —0.587 0.886 B

where the matrix elements are fixed.

2.1.5. CIE-Lab

This colour space, originally proposed by G. Wyszecki [26], to approximate perceptually-uniform
colour space information has been standardized by the Commission Internationale de L’ Eclairage
(CIE). By "perceptually-uniform” one means that it was designed to approximate human vision.
The L-channel contains information about pixel intensity /brightness, while a and b store the colour
information. The CIE-Lab colour space is non-linearly related to CIE-XYZ.

L R
The RGB to Lab conversion is achieved by a transformation , M: |a| = M |G|. Standard
b B

methods exist for specifying the transformation M when the co-ordinates of the RGB system and
reference white has been specified. One such M has been used in [14] for sSRGB, D65 device-dependent
colour space. Related colour spaces are CIE-LUV and CIE-LCH. More details of the different colour
spaces could be found in [27].

2.2. Evaluation of Colour Space Representations

To evaluate the suitability of a colour space representation for the detection of plant pixels,
we differentiate background from foreground pixels based on their relative position within a GMM
which has been constructed using the respective colour space information possessed by the pixels.
The Gaussian Mixture Model is a function of a random variable, z, which in our case is the feature
vector comprising the information contained in the three pixel colour channels:

K
gmm(z, ) = Y wig(z : py, Ti) 4)
o}

The model parameter set ¢ is the set {wy, py, Zk}{f:l where K is the number of Gaussian
distributions in gmm and each g is of the form

1 1 -
§(z o) = e (7(%?) : (5)

In applying the GMM using the expectation maximization (EM) algorithm, there arises the
fundamental problem of how to predetermine the number of Gaussian functions to include in the
GMM. We ameliorate this problem by using a mean-shift algorithm to cluster both the background
pixel and foreground plant pixel data. The same fixed bandwidth is used to cluster both sets of pixel
data. Each cluster is then modelled as a Gaussian distribution with a diagonal co-variance matrix,

011 0 0
y=10 o 0. (6)
0 0 033

This is utilized to reduce computational load at the cost of an insignificant loss of accuracy.
We denote the background GMM be gminy,, and foreground plant pixel GMM be gmimf,. A distance
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function based on Earth Mover Distance (EMD) is used as a measure of the distance between gmin,,,
and gminis,. The EMD can be considered as a measure of dissimilarity between two multi-dimensional
distributions. The greater the EMD between two distributions the more dissimilar they are. It was used
by Rubner et al. in [28] for colour- and texture-based image retrieval. It was also employed by Kumar
and Dick in [22] to track targets in an image sequence. In the present case, we apply the EMD measure
to the multi-dimensional Gaussian mixture distributions that correspond, respectively, to background
and foreground/plant pixel colour in a given colour space. We then consider the relative success of
the EMD-based clustering in the different colour spaces to compare the effectiveness of the spaces.
The greater the EMD value between the background and foreground GMMs in a given colour space,
the better is that colour space for separating plant pixel from non-plant pixel. Using an EMD as a
quantifier we aim to discover in which colour space the distance between the two distributions is
maximal. We then explore how this distance varies with plant type and imaging condition.
Computing the EMD is based on a solution of the transportation problem [29]. In our case the two
distributions are the two GMMs corresponding to the two classes of plant pixel and background pixel:

8Mittpg ZIL:l wig(z:py,Ly) and %
gmmfe = Yhoq wig(z : g, o).

Here, gmmyg has L Gaussian in its model and gmni, has K. To compute the EMD between them,
L need not be equal to K.

2.2.1. EMD on GMMs

In this section we provide an overview of the use of EMD as a measure of separation/distance
between two GMM distributions. Let the two distributions, gmm,, and gmmy,, be characterized
by their weights, means, and variances, (wy, pt;, X))k, and (wy, i, Zi)X ;. The EMD is used to
compute the distance between these cluster signatures. Cluster signatures are characterised by
weights; a signature differs from a distribution in the sense that the weights are not normalized.
Also, cluster signatures do not have a cluster spread associated with them, since the GMMs have
variances associated with each Gaussian. In our case the weights wy{k = 1...K} are normalized, i.e.,
Ele wy = 1. EMD can also be used to compute the dissimilarity between unnormalized cluster
signatures. However, in our application the weights are normalized. The EMD is defined in terms of
an optimal flow fi; which minimizes the following

K L
EMD(gmmgq, gmmyg) = Y Y fudi, ®)
=1i=1

where dy = D(g(z : g, Zk), §(z : py, Zp)) is a measure of dissimilarity /distance between Gaussians
8(z : m, ) and g(z : g, Z;), and is also referred to as ground distance (GD). The computed flow after
an optimization process satisfies the following constraints

fu > 0, for1<I1<L 1<k <K
Yiafu < w, for 1<k <K o)
YR fu < w, for1<1 <L
Zszl ZZLzlfkl = mi”(Z}IlewerZLzl wy) =1

The formulation of EMD is slightly different when the weights are not normalized. For computing
the ground distance dj; we need a distance measure between two Gaussians g(z : ¢, X;) and g(z :
#y, Zx). We propose here to use a modified Mahalanobis distance to compute the ground distance dj;
between Gaussians [ and k:

die = (up — ) T (2 + ) /2]y — ) (10)
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The Mahalanobis distance, formally introduced by P.C. Mahalanobis in [30], is a measure of
similarity /difference of a multivariate data point z = (z1,2,...,zy) with a known Gaussian
distribution in the same dimension

Du(z) =/ (z—u) "2 (z—n) 11)

This distance is different from Euclidean distance in that it scales down the distance by the
standard deviation of the distribution. The intuition behind this distance is that the distance of a data
point to a normal distribution is inversely proportional to the latter’s spread. This is an important
concept in cluster analysis. The distance of a data point to a cluster is not just the Euclidean distance of
the data point to the cluster centre. It also depends inversely on the spread of the cluster. The same
intuitive notion extends to the distance between two Gaussians, as suggested by the distance function
in Equation (10). The distance between two Gaussians with similar differences in mean values increases
as their standard deviation decreases. A problem with the distance function in Equation (10) is that
it becomes unbounded as the variance of the Gaussian goes to zero. However, this phenomena is
of theoretical interest only, since for real life data sets it is seldom necessary to model something
with a zero variance normal distribution. Furthermore, a zero variance normal distribution has no
physical meaning. Other distance functions like Bhattacharyya distance, Hellinger distance, Kulback
Leibler etc., could also have been modified to formulate a distance function between two multivariate
Gaussians and in future studies we will consider this aspect of the problem.

2.2.2. Two-Class Variance Ratio

To study the discriminative power of different colour spaces with respect to segmenting plant
pixels from background pixels, we compare the results of the present approach to results of augmented
variance ratio (AVR). AVR has been used for feature ranking and as a preprocessing step in feature
subset selection [31,32], and for online selection of discriminative feature tracking [33]. AVR is defined
as the ratio of the inter-class variance to the intra-class variance of features. We use this variance ratio
to measure the power of different colour spaces to discriminate plant pixel from background pixel.
It is well known that linear discriminant analysis (LDA) and the variance ratio are inappropriate for
separating multi-modal class distributions. The plant pixel colours and background pixel colours
are generally multi-model. Therefore, we use the log-likelihood ratio, a non-linear transformation,
to transform the features of a pixel i

L(0) = tog e PP )

The parameter 0 is set to a small value, e.g., 0.001, to avoid creating a divergence (divide by zero
or logarithm of zero). The vectors pp(i) and bg(i) are the class-conditional probability distributions
(normalized histograms) of plant and background pixels, respectively, learnt from a training data set.
This log-likelihood ratio transforms the class distributions into a uni-modal form, making the use of
the variance ratio appropriate for measuring the discriminative power of the colour space feature.
The variance of L(i) for class pp(i) is

vr(Lipp) = E[L2()] = (EIL()]P W

Y pp())L2 (i) — [ pp (i) L(D))?

Similarly, the variance ratio for the background class is

var(L;bg) = Y bg(i)12(5) — (L bg () L()? (14)

20



J. Imaging 2018, 4, 42

The variance ratio now is

VR(L; pp, bg) — var(L; (pp + bg)/2)

" war(L; pp) + var(L; bg) (15)

The denominator ensures that the colour space for which the within-class variance is smaller will
be more discriminative, while the numerator favours the feature space in which the between-class
variance is larger.

2.3. Dataset and Experiments

The data set contains images of Arabidopsis and tobacco plants grown in growth chambers which
have been taken under controlled lighting conditions. A distinct subset of the data set consists of wheat
and rye grass images which have been taken in the field and thus subject to different lighting conditions.
Figure 1 shows the two imaging platforms used for imaging some of the plants used in this study.
The platform on the left is for imaging indoor plants while the platform on the right is for imaging
outdoor plants. After imaging, the plant regions were manually selected and segmented for this study.
Arabidopsis images have two types of backgrounds: one black and one red. Plant images were taken
both indoors and outdoors in order to capture as great a variety of illumination and background
conditions as possible. The complete data set comprises 378 images.

(a) (b)

Figure 1. This figure shows the two imaging platforms we have build in house for imaging plants.
(a) is the platform for imaging plants indoor and (b) is the platform for imaging outdoor plants growing
in field conditions.

For segmentation of images in different colour spaces we used mean-shift clustering and region
fusion. We selected the cluster related to leaves in a semi-supervised way and undertook a two-pass
mean-shift clustering. The first pass was to determine the leaf area and separate it from the background.
The second pass was to cluster individual leaves and separate them into different leaf areas. Different
sets of parameters were used for the two passes of the clustering algorithm as described in [6].

3. Results

The results of applying the proposed EMD measure, Equation (8), on the GMMs of foreground and
background pixels from training data are shown in Tables 1 and 2. These tables also show the variance
ratios given by Equation (15) for the two classes of pixels in different colour channels. The HSV
colour space had the highest scoring of all systems in terms of EMD distance. There appears to be
no clear uniformally high performer amongst the different colour spaces, in terms of variance ratio.
The segmentation results shown in Figure 2 and in Table 3 show that segmentation based on the HSV
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colour space was nevertheless superior in two out of three different scenarios. Table 3 shows that
segmentation in terms of percentages using the FGBGDice code provided by the LSC challenge dataset.
Finally, we show the segmentation results for the test data set in CIE-Lab colour space. The reason for
using the CIE-Lab colour space for this comparison is that this colour space was recommended by the

authors of [6].

(b)

Figure 2. This figure shows the results of segmentation using the method of mean-shift clustering, used
in the paper, for different colour spaces. Image in column (a) are the original images of Arabidopsis
and Tobacco plants. One set of Arabidopsis plant has a contrasting red background and the other has
black background. The images in column (b) are the ground truth segmentation results. The ground
truth segmentation were generated by manual labelling of the image data. In columns (c-g) are the
segmentation in different colour spaces RGB, HSV, CIE-Lab, normalized rgb, and YCbCr, respectively

Table 1. Table for different plant types and the computed Earth Mover Distance (EMD) on the Gaussian
Mixture Models (GMM) models in different colour spaces and their comparison with variance ratio in
different colour spaces. EMD based distance are higher for HSV on both plant types, where as variance

ratios are higher for normalized rgb colour space.

Plant Type  Colour Space EMD Distance

Variance Ratio

RGB 282.46 1.17

HSV 847.24 1.09

Arabidopsis CIE-Lab 246.14 2.19
nrgb 264.67 2.23

YCbCr 155.01 1.67

RGB 228.65 0.76

HSV 1389.56 0.99

Tobacco CIE-Lab 415.17 043
nrgb 347.63 111

YCbCr 235.15 0.47
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Table 2. Table for different imaging senarios for same plant type. Their computed EMDs on the GMM
models in different colour spaces and their comparsion with variance ratio in different colour spaces.
EMD based distance are higher for HSV on both background types, where as variance ratios are higher
for normalized rgb colour space for contrasting red background and CIE-Lab for the black background.

Background Type Colour Space EMD Distance Variance Ratio

RGB 230.36 1.07

Contrasting HSV 401.81 0.78
CIE-Lab 182.77 1.77

Green-Red nrgb 39.43 1.88
YCbCr 178.47 1.57

RGB 282.16 1.27

HSV 404.70 2.13

Green-Black CIE-Lab 272.88 9.17
nrgb 257.87 2.24

YCbCr 181.57 3.62

Table 3. Percentage foreground background segmentation results in the different colour spaces for
there different datasets. Al’s are Arabidopsis plants with a red background, A2’s are Arabidopsis
plants with black background and A3’s are tobacoo plants imaged in controlled growth chambers.

Percentage Foreground Background Segmentation

Plant type
RGB HSV  CIE-Lab rgb YCbCr
Al 96.32%  96.67%  93.40%  10.87% = 94.25%
A2 90.53%  9851%  95.54% = 49.69%  97.83%
A3 64.8%  89.6%  5723%  19.56%  51.79%

Table 4. Overall plant and leaf segmention results using the method of mean-shift clustering as
described in Section 2.3.

Plant Segmentation Leaf Segmentation

Plant Type
Mean Std Mean Std
Al 92.14% 2.82 % 47.14% 11.14%
A2 93.31% 2.41 % 55.16% 13.15%
A3 76.52% 35.32% 34.03% 22.35%

The segmentation results of separating plant leaves from the background obtained on the test
dataset for Arabidopsis images were quite reasonable, achieving mean values of 0.9215 with a standard
deviation of 0.0282 on A1 test images (see Table 4) and a mean of 0.93313 with a standard deviation
of 0.0241 for test images of A2 (see Table 4). Set Al are Arabidopsis plants with red background
imaged indoors under controlled lighting conditions. Set A2 comprised images of Arabidopsis
plants with black background also imaged indoors. Set A3 was composed of images of tobacco
plants at different stages of development. Some errors in plant and background segmentation
were mainly due to the presence of green moss on the background soil. The leaf segmentation
results were not as good as the plant segmentation results as the algorithm was designed mainly for
background-foreground segmentation. The results can be improved with the use of shape priors for
leaf segmentation. The accuracy of plant segmentation for the tobacco test data set was quite poor,
which could have resulted for one of two reasons. Firstly, the colours of some of the tobacco plant
leaves in the test data set were quite different from what was typically found in the training data
set. Secondly, the illumination present in the tobacco images was not as intense as that applied to
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the Arabidopsis plants. Consequently, some of the darker regions of the tobacco plants have been
classified as background.

Plant pixel detection and segmentation is certainly affected by the choice of the colour space being
used for image analysis. Hence, the choice of colour space should be given careful consideration for
plant phenotyping purposes. In this study where we considered and analysed five different colour
spaces, better plant pixel detection was achieved using the HSV colour space for almost all plant types
and under different illumination conditions. This can be attributed to the fact that HSV is a perceptual
colour space. Usually, best results of detection and segmentation are obtained in perceptual colour
spaces. This outcome is supported by Golzarian et al.’s study in [18], where the authors obtained
the least amount of type II error with a small loss of plant pixels. However, here we have shown
that the segmentation in HSV colour space gives better results under a greater variety of illumination
conditions and for a greater range of plant species.

4. Conclusions

In this paper we have presented a method for dynamically selecting the suitability of a feature
space (colour space in this case) for segmenting plant pixels in digital images which have both classes
of plant pixels and background pixels modelled by Gaussian Mixture Models. For the data set of plants
imaged under controlled lighting conditions, the proposed method of colour space selection seems to
be more effective than the variance ratio method. The HSV colour space clearly performs better for
tobacco plants and is one of the higher quality segmentation performers for Arabidopsis plant images
under two different scenarios. This conclusion extends to plants imaged either in field-like conditions
where no lighting control is possible, or close to field-like conditions where there is a mix of ambient
and controlled lighting. It is well known that the choice colour space influences the performance of
image analysis, and the use of perceptual spaces generally provide more satisfying results, whatever
database is being considered. Our experimental results on plant pixel detection under different
illumination condition supports this prevalent hypothesis. In addition, the separability analysis based
on EMD of GMMs for different colour spaces reveals the same phenomena. Our use of different
distance functions to measure the separation of Gaussian distributions, and hence GMMs, has the
added benefit of providing better analytical understanding of the results on which our conclusion
is based. In future work we would like to experiment with how color balancing [19] affects the
segmentation and detection of plant pixels.
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Abstract: Colorization of gray-scale images relies on prior color information. Exemplar-based
methods use a color image as source of such information. Then the colors of the source image are
transferred to the gray-scale target image. In the literature, this transfer is mainly guided by texture
descriptors. Face images usually contain few texture so that the common approaches frequently fail.
In this paper, we propose a new method taking the geometric structure of the images rather their
texture into account such that it is more reliable for faces. Our approach is based on image morphing
and relies on the YUV color space. First, a correspondence mapping between the luminance Y channel
of the color source image and the gray-scale target image is computed. This mapping is based on the
time discrete metamorphosis model suggested by Berkels, Effland and Rumpf. We provide a new
finite difference approach for the numerical computation of the mapping. Then, the chrominance
U,V channels of the source image are transferred via this correspondence map to the target image.
A possible postprocessing step by a variational model is developed to further improve the results.
To keep the contrast special attention is paid to make the postprocessing unbiased. Our numerical
experiments show that our morphing based approach clearly outperforms state-of-the-art methods.

Keywords: image colorization; morphing; face images

1. Introduction

Colorization consists in adding color information to a gray-scale images. This technique is used
for instance by the cinema industry to make old productions more attractive. As usual we can consider
a gray-scale image as luminance channel Y of an RGB image [1-4]. The Y channel is defined as
a weighted average of the RGB channels, see, e.g., [5]:

Y = 0.299R + 0.587G + 0.114B.

In addition to the luminance channel, two chrominance channels, called U and V, enable to
recover the RGB image. Recovering an RGB image from the luminance channel alone is an ill-posed
problem and requires additional information [3,6]. This information is provided in the literature in
two different ways, namely by manual [1,4,7] or exemplar-based [3,6,8] methods. In the first one the user
augments the image by some color strokes as basis for the algorithm to compute the color of each pixel.
The colorization of a complex scene by a manual prior can be a tedious work for the user [2]. In the
second approach a color image is used as a source of information. Here the results strongly depend on
the choice of the image. Therefore it is often called semi-automatic [1].
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In this paper, we focus on the exemplar-based methods. A common back-bones of these techniques
is the matching of the images. First, the color source image is transformed to a gray-scale image, referred
to as template which is compared with the input gray-scale image called farget. The main issue of the
exemplar-based colorization consists in matching the pixels of the template and the target gray-scale
images. The basic hypothesis in the literature is that the color content is similar in similar texture
patches [8]. Then the main challenge is the choice of appropriate texture descriptors.

In the literature, the exemplar-based methods come along with various matching procedures.
For instance, Gupta et al. [6] use SURF and Gabor features, Irony et al. [2] use DCT, Welsh et al. [8] use
standard-deviation, etc. Some of them are done after an automatic segmentation, whereas others use
local information. The seminal paper on exemplar-based colorization by Welsh et al. [8] was inspired
by the texture synthesis of Efros and Leung [9] and uses basic descriptors for image patches (intensity
and standard-deviation) to describe the local texture. Pierre et al. [3] proposed an exemplar-based
framework based on various metrics between patches to produce a couple of colorization results. Then
a variational model with total variation like regularization is applied to choose between the different
results in one pixel with a spatial regularity assumption. The approach of Irony et al. [2] is built on the
segmentation of the images by a mean-shift algorithm. The matching between segments of the images
is computed from DCT descriptors which analyse the textures. The method of Gupta et al. [6] is rather
similar. Here, an over-segmentation (SLIC, see, e.g., [10]) is used instead of the mean-shift algorithm.
The comparison between textures in done by SURF and Gabor features. Chen et al. [11] proposed
a segmentation approach based on Bayesian image matching which can also deal with smooth images
including faces. The authors pointed out that the colorization of faces is a particular hard problem.
However, their approach uses a manual matching between objects to skirt the problem of smooth
parts. Charpiat et al. [12] ensured spatial coherency without segmenting, but their method involves
many complex steps. The texture discrimination is mainly based on SURF descriptors. In the method
of Chia et al. [13], the user has manually to segment and label the objects and the algorithm finds
similar segments in a set of images available in the internet. Recently a convolutional neural network
(CNN) has been used for colorization by Zhang et al. [14] with promising results. Here the colorization
is computed from a local description of the image. However, no regularization is applied to ensure
a spatial coherence. This produces “halo effects” near strong contours. All the described methods
efficiently distinguish textures and possibly correct them with variational approaches, but fail when
similar textures have to be colorized with different colors. This case arises naturally for face images.
Here the smooth skin is considered nearly as a constant part. Thus, as we show in this paper, when the
target image contains constant parts outside the face, the texture-based methods fail.

In this paper,we propose a new technique for the colorization of face images guided by
image morphing. Our framework relies on the hypothesis that the global shape of faces is similar.
The matching of the two images is performed by computing a morphing map between the target and
the template image. Image morphing is a generic term for smooth image transition which is an old
problem in image processing and computer vision. For example in feature based morphing only specific
features are mapped to each other and the whole deformation is then calculated by interpolation. Such
method [15] was used by the film industry for example in the movie Willow. For an overview of this
and similar techniques see also [16,17]. A special kind of image morphing, the so-called metamorphosis
was proposed by Miller, Trouvé and Younes [18-20]. The metamorphosis model can be considered
as an extension of the flow of diffeomorphism model and its large deformation diffeomorphic metric
mapping framework [21-25] in which each image pixel is transported along a flow determined by
a diffeomorphism. As an extension the metamorphosis model allows the variation of image intensities
along trajectories of the flow. Shooting methods for the metamorphosis model were developed e.g.,
in [26]. For a metamorphosis regression model and corresponding shooting methods we refer to [27].
A comprehensive overview over the topic is given in the book [28] as well as the review article [29], for
a historic account see also [30]. In this paper, we build up on the time discrete metamorphosis model by
Berkels, Effland and Rumpf [31]. In contrast to these authors we apply a finite difference approach for
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the computation of the morphing maps. This involves the solution of a chain of registration problems
in each iteration step. There exists a rich literature on registration problems, e.g., [32-35], and we refer
to the books of Modersitzki [36,37] for an overview.

Having the morphing map available, the chrominance channels can be transported by this map to
the target image, while preserving its luminance channel. This gives very good results and outperforms
state-of-the-art methods. For some images we can further improve the quality by applying a variational
post-processing step. Our variational model incorporates a total variation like regularization term
which takes the edges of the target image into account. This was also proposed by one of the authors
of this paper in [3]. The method is accomplished by adapting a procedure of Deledalle et al. [38] to
keep the contrast of the otherwise biased total variation method.

The outline of the paper is as follows: in Section 2 we sketch the ideas of the morphing approach.
In particular, we show how the morphing map is computed with an alternating minimization algorithm
and describe our finite difference approach. Details of the computation are shifted to the Appendix.
Section 3 deals with the color transfer. Having the morphing map at hand we explain the transfer
of the chrominance values. In particular we address the necessary scalings. Sometimes it is useful
to apply a variational model with a modified total variation regularization as post-processing step
to remove possible spatial inconsistencies. Such a procedure is developed in Section 4. Numerical
experiments demonstrate the very good performance of our algorithm in Section 5. The paper ends
with conclusions in Section 6.

2. Image Morphing

Our colorization method is based on the time discrete image metamorphosis model [31]. We briefly
explain the model used also in the numerical part of [31] in Section 2.1 and describe our numerical
realization for digital images by a finite difference approach in Section 2.2. Note that in [31] a finite
element approach for the spatial discretization was proposed without a detailed description. Finite
element methods are highly flexible and can be also applied, e.g., for shape metamorphosis. However,
having the rectangular structure of the image grid in mind, we propose to use finite differences for the
spatial discretization. Then, in Step 1 of our alternating algorithm, we can build up on registration
methods proposed e.g., by Haber and Modersitzki [34].

2.1. Morphing Model Based on [31]

Let Q C R? be an open, bounded domain with Lipschitz continuous boundary. We are given
a gray-value template image liemp : (2 — R and a target image Ity : (2 — R which are supposed to be
continuously differentiable and compactly supported. For K > 2 set

Ip = Itemp/ I = Lar.

In our application, the template image will be the luminance channel of the color source image
and the target image the gray-scale image we want to colorize. We want to find a sequence of K — 1
images I together with a sequence of mappings ¢ on (), i.e.,

I'=(L,....Ixk-1), @:=(¢1,---,9x),

such that
Ik~ 10¢, forallx €,

see Figure 1, and the deformations ¢, have a small linearized elastic potential defined below. To this
end, we suppose for k =1, ..., K that ¢ is related to the displacement vy by

9100 = x— 0(x) = (" (*)) , x=(yyTen, M

¥ — vp2(x)
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and set v := (9v1,...,0k). The (Cauchy) strain tensor of the displacement v = (v1,v2)T : Q — R?is
defined by

1 ™ 9,01 1(9yv1 + 9x07)
e(v) = 2(Vv+ Vo') = (%(35/01 +9.0) 3,02 ,

where Vv denotes the Jacobian of v. The linearized elastic potential is given by

S(v) = /Q W trace <€T(U)£(U)> + %trace (e(0))* dx, ()

where y, A > 0. Then we want to minimize
K
J(A,v) = Z /Q [l — I 0 gi|® + S(vp) dx, subjectto Ip = Lemp, Ix = ltar- 3)
k=1"

This functional was used in the numerical part of [31]. Note that the term S(v) may be
accomplished by a higher order derivative

/(')|Dmvk(x)|2dx, m>2, @)

which ensures in the time continuous setting that ¢ is indeed a diffeomorphism, see [22]. In the
time discrete setting the additional term does not guaranty that ¢, k = 1,..., K, is a diffeomorphism.
Hence we do not include (4) into our functional (3), as the linearized elastic potential S is sufficient for
our purposes.

91 P2 Pr+1 Pr+2 PK
I e L Ik |

Pk PK-1

Ip

LIk

—

Figure 1. [llustration of the image path and the diffeomorphism path, where Iy := ltemp and Ix := ltar
are the given template and target images.

The minimizer (I, v) of the functional provides us with both a sequence of images I along the
approximate geodesic path and a sequence of displacements v managing the transport of the gray
values through this image sequence. For finding a minimizer of (3) we alternate the minimization over
Iand v:

1. Fixing I and minimizing over v leads to the following K single registration problems:

arg min Jp(vy) ::/O\kalk,loq)k|2+3(vk)dx, k=1,...,K, ®)
(43 -

where gy is related to vy by (1).
2. Fixing v, resp., @ leads to solving the following image sequence problem

K
arglmin Tp(1) == Z /Q [T — Tr_q 0 @p)? dx. (6)
k=1

This can be done via the linear system of equations arising from Euler-Lagrange equation of the
functional which we describe in the Appendix A.
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Note that Miller et al. [39] considered for two given image sequences I := (Ij)].li ;jandJ == (]j)jl\i 1
(e.g., related to corresponding image patches) the registration problem

N
argmin/ Z|Ij —Jio ¢|? + S(v) dx

v Q =1
where ¢ is related to v by (1). In contrast to our problem these authors search for the same mapping v
and the N template-target pairs are known.
2.2. Space Discrete Morphing Model

When dealing with digital images we have to work in a spatially discrete setting. Let

Gp={1,...,m}x{1,...,n}
be the (primal) image grid, i.e., It : Gp — R and Iremp : Gp — R. We discretize the integrals on the
integration domain Q = [%,n1 + 1] x [}, 15 + 1] by the midpoint quadrature rule, i.e., with pixel

values defined on G,. For discretizing the operators in (2) we work as usual on staggered grids. For the
application of mimetic grid techniques in optical flow computation see also [40]. Let

Gi={3,...m—3}x{3...,ma—1}
be the (inner) dual grid, i.e., G, shifted by % in each direction, and
g1 = {%,...,nl — %} x{1,...,m}, Go:=A{1,...,m} x {%,...,nz— %}

We start by considering the registration problems in the first alternating step (5) and turn to the
image sequence problem in the second step (6) with (A2) afterwards.

Solution of the Registration Problems

Letus fixk € {1,...,K} in (5) and abbreviate T := I;_1, R := I; as template and reference image,
resp., and v := vg. Then we have to find a minimizer of the continuous registration problem

0) = [ IR(X) =T (x=0(x)) [* + S(v) dx @)

where the elastic potential in (2) can be rewritten as

A
= y/ (9x01)? 8 01 + Ox vz) (ayvz)2 dx + E/Q (9xv1 +E)yvz)2dx.

For the spatial discrete setting we assume that T, R : QP — R’ are given. Further, we consider
v = (v1,02)T with vy : G; — Rand v, : G — R. In contrast to [34] we assume no flow over the image
boundary and set

vl(nl—%y) ye{l,...,n},
v 1

0,
h(x,np—3)=0, xe€{l,...,n}.

See Figure 2 for an illustration. We approximate d,v; for x = (x,y)T € G, by

0, x=1,
(D1,xv1) (%, y) = vl(x-i-%,y)—vl(x—%,y), x=2,...,n1—1,
0, X =ny,
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and dyv; forx € {1,...n; —1}andy € {1,...,n, — 1} by

(Dryo)(x+ 3,y +3) = { vi(x+Ly+1) —oi(x+1y), x=1...,m—1,

and similarly for the derivatives with respect to vp. Then we obtain

A 2
=) n ( Dy 01)?(x) + (Dz,yvz)z(X)) + 5 ((D1,201) (%) + (Day02) (x)) ®)
x€Gp
2
+ Z ((D1,yv1)(x) + (D2,x02)(x)) "
xegd
o Grid points of G,
m— Grid points of Gy
? Grid points of Ga
. = . [ = . [ = . [ = . 1Y .
(1,1) (1,6)
i 7 T T 7 7
. = . | =4 . [ =3 . [ =3 . 1Y -

. g . | =4 . | =4 ] | =4 . 12 .

7 7 7 7 7 7

] i g . | =4 . | = . | =4 . [ .
(5,1) (5,6)

Figure 2. Illustration of the grids, where empty boxes mean zero movement.

To discretize the data term in (7) we need to approximate T (x — v(x)). Since v is not defined on
Gp we use instead of v its averaged version Pv = G, — RR? given by

0, x=1
(Prvp)(x,y) = %(vl(x—%,y)-i-vl(x-i-%,y)), x=2,...,m—1,
0, X =m
and similarly for P,v; in y-direction. Let the continuous function T on Q = [1,11] x [1,1,] be

constructed from given values of T on G, by interpolation. Here we restrict our attention to bilinear
interpolations, see (A3), but more sophisticated approaches are possible. In summary, the discrete
registration problem reads

arngninj(v) =) IR() =T (x = (Po)(x)) >+ S(v),

ngp
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where S(v) is given by (8). We solve this nonlinear least squares problem by a Gauss-Newton like
method described in the Appendix B.

Multilevel Strategy

As usual in optical flow and image registration we apply a coarse-to-fine strategy. First we
iteratively smooth and downsample our given images. On the coarsest level we perform a registration
to obtain a deformation on the coarse grid. We apply a bilinear interpolation v of this deformation to
construct intermediate images on the finer level by

L) = (T+ §Rog™ =) (x— kolx)), () =x—o(x), ©)
where T, R are the start and end images at the new level. Then we use the alternating algorithm on
this level with K < K images to obtain deformations and intermediate images on this level. Going
to the finer level by bilinear interpolation, we construct more intermediate images by interpolating
between neighboring images with (9). We repeat this process until we reach the maximal number K of
images and finest level. The multilevel strategy of the algorithm is sketched in Algorithm 1.

Algorithm 1 Morphing Algorithm (informal).
1: To:=T,Ry =R, Qp:=Q
2: create image stack (T, ..., Tj), (Ro, ..., R;) on (Qy, ..., Q) by smoothing and downsampling
3: solve (3) for T}, R; with K = 1, for 9
41 —1-1

5. use bilinear interpolation to get v on (), from

6:

7

8.

9

. obtain K; images II(O) from T, R;, v by (9)
- while! > 0 do
find image path I; and deformation path ¥; minimizing (3) with initialization II(O)

I—=1-1
10: if1> 0 then
11: use bilinear interpolation to get I; and v; on (),
12: fork=1,...,K do
13: calculate K; intermediate images between I k1, I1 with v; ; using (9)
14: 1T:=1

3. Face Colorization

In this section, we describe a method to colorize a gray-scale image based on the morphing
map between the luminance channel of a source image (template) and the present image (target).
The idea consists in transferring of the chrominance channels from the source image to the target one.
To this end, we work in the YUV color space. For the importance of the chrominance channels in
color imaging, see, e.g., [41,42]. While in RGB images the color channels are highly correlated, the
YUV space shows a suitable decorrelation between the luminance channel Y and the two chrominance
channels U, V. The transfer from the RGB space to YUV space is given by (see, e.g., [5])

Y 0,299 0,587 0,114 R
u | =1 -014713 -0,28886 0,436 G |. (10)
\4 0,615 —0,51498 —0,10001 B

Most of the colorization approaches are based on the hypothesis that the target image is the
luminance channel of the desired image. Thus, the image colorization process is based on the
computation of the unknown chrominance channels.
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3.1. Luminance Normalization

The first step of the algorithm consists in transforming the RGB source image to the YUV image
by (10). The range of the target gray-value image and the Y channel of the source image may differ
making the meaningful comparison between these images not possible.

To tackle this issue, most of state-of-the art methods use a technique called luminance remapping
which was introduced in [43]. This affine mapping between images which aims to fit the average and
the standard deviation of the target and the template images is defined as

var(Iiar)

var 1 Uy —mean(ly)) + meanfur),

ltemp =

where mean is the average of the pixel values, and var is the empirical variance.

3.2. Chrominance Transfer by the Morphing Maps

Next we compute the morphing map between the two gray-scale images Iliemp and Iar with
model (3). This results in the deformation sequence ¢ which produces the resulting map from the
template image to the target one by concatenation

P =¢@jo@po..0¢k.

Due to the discretization of the images, the map ® is defined, for images of size 17 x 13, on the
discrete grid G == {1,...,m1} x {1,...,m}:

P:G = [1,m] x[Ln], x— d(x),

where ®(x) is the position in the source image which corresponds to the pixel x € G in the target
image. Now we colorize the target image by computing its chrominance channels, denoted by
(Utar(x), Viar(x)) at position x as

(Utar (x), Viar (%)) = (U(P(x)), V(®(x))). 1)

The chrominance channels of the target image are defined on the image grid G, but usually
®(x) ¢ G. Therefore the values of the chrominance channels at ®(x) have to be computed by
interpolation. In our algorithm we use just bilinear interpolation which is defined for ®(x) = (p,q)
with (p,q) € [i,i+1] x [j,j+1], (i,j) € {1,...,m —1} x{1,...,np — 1} by

o =utn = w5 0) (357)

Finally, we compute a colorized RGB image from its luminance Iiay = Yiar and the chrominance
channels (11) by the inverse of (10):

R(x) 1 0 1,13983 Yiar (%)
Gx) | = 1 —0,39465 —0,58060 Ugar (%) 12)
B(x) 1 2,03211 0 Viar(x)

forall x € G. Figure 3 (Image segements with unified background of George W. Bush https://commons.
wikimedia.org/wiki/File:George-W-Bush.jpeg and Barack Obama https://commons.wikimedia.org/
wiki/File:Barack_Obama.jpg both in public domain.) summarizes our color transfer method.
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Figure 3. Overview of the color transfer. The mapping @ is computed from Model (3) between the
luminance channel of the source image and the target one. From this map, the chrominances of the
source image are mapped. Finally, from these chrominances and the target image the colorization result
is computed.

4. Variational Methods for Chrominance Postprocessing

Sometimes the color transfer computed from the morphing map can be disturbed by artifacts.
To improve the results, post-processing steps are usually applied in the literature.

Variational approaches are frequently applied in image colorization either directly or as
a post-processing step, see, e.g., [1,3,44]. For instance, the technique of Gupta et al. [6] uses the
chrominance diffusion approach of Levin et al. [1].

In this paper, we propose a variational method with a total variation based regularization as
a post-processing step to remove possible artifacts. We build up on the model [3] suggested by one of
the authors. This variational model uses a functional with a specific regularization term to avoid “halo
effects”. More precisely, we consider the minimizer of

1= (0,V) = argmin TVy,_ (U, V) + & / IU(x) = Uae(x) ] + V(%) = Viar(x)Pdx,  (13)
@)

with

TV (U V) : /\/v\VYtar|2+\vu\2+\VV|2dx

The first term in (13) is a coupled total variation term which enforces the chrominance channels
to have a contour at the same location as the target gray-value image. The data fidelity term is the
classical squared Lp-norm of the differences of the given and the desired chrominance channels. Note
that the model in [3] contains an additional box constraint.

The parameter y manages the coupling of the chrominance channels with the luminance one.
It has been shown in [3] that a parameter value around 25 can be used for most images. The parameter
« is related to the object size in the images. If some colors on large objects leak on small ones, this
parameter has to be increased. On the other hand, if some artifacts are still present in the result, the
value of « has to be decreased. We apply the primal-dual Algorithm 2 to find the minimizer of the
strictly convex model (13). It uses an update on the step time parameters T and o, as proposed by
Chambolle and Pock [45], as well as a relaxation parameter 6 to speed-up the convergence. Here we use
the abbreviation b := (Utar, Viar) and u := (U, V). Further, p is the dual variable which is pixel-wise
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in R®. The parameters T and ¢ are intern time step sizes. The operator div stands for the discrete

divergence and V for the discrete gradient. Further, the proximal mapping Pg is given pixel-wise, for
6

p € R® by

0
0
Pg(p) = _r 5y, where pi=p-—o 0 (14)
max (1, |52 L
X
d,Y

Algorithm 2 Minimization of (13).

1 b, —u

2. p¥ « V0

3: 0« 0.001, T+ 20

4: for n > 0 do

5. p"tl Py (pt 4 oVu")
: 1

6 s u" 41 (div(p"*!) +ab)
1+ ta

7: 6= 1/\/ 1+ ta

8: T=0t oc=0/0

9: ﬁn+1 . uhtl + 9(u"+1 _ u")

10: 11 ut™.

As mentioned in the work of Deledalle et al. [38], the minimization of the TV-L, model produces
a biased result. This bias causes a lost of contrast in the case of gray-scale images, whereas it is visible
as a lost of colorfulness in the case of model (13). The authors of [38] describe an algorithm to remove
such bias. In this paper, we propose to modify this method for our model (13) in order to enhance the
result of Algorithm 2.
The CLEAR method of [38] relies on the refitting estimator Rs(y) of the data y from the biased
estimation £(y):
Rs(y) € argmin [[h(y) — y|3 (15)

heHy

where H; is defined as the set of maps 1 : R" — R? satisfying, Vy € R":
h(y) = 2(y) + pleqy) (y — 2(y)), withp € R,
where ],?(y) is the Jacobian of the biased estimator with respect to the data y:

x(y N

e—0 €

J(y) contains some structural information of the biased estimator £ such as the jumps. A closed
formula for p can be given:

(Tss) (0)10)
-~ =~ L if ], ) 0
p=13 Ty @ @70,

1 otherwise.

where § = y — (). With Equation (15), the refitting process is as closer as possible to the original data.
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The final algorithm is summarized in Algorithm 3. Note that it uses the result # of Algorithm 1
as an input. The proximal mapping IT,(7) within the algorithm is defined pixel-wise, for variables
p €RCand p € R, as

p it fpll <1

p otherwise,

where p and p are defined as in (14).

Algorithm 3 Debiasing of Algorithm 2.

wW=pu"=0b

b« b—1

=57 =6

PO Vu, p¥ « Vi

o<+ 0.001, T+ 20

- for n >0 do

Pt Pg (p" 4 oVa")

N d YNy

8: f)"+1 — Hpﬂ+0vﬁn (}5" + O'Vﬁn)
u® + 1 (div(p"*1) + ab)

9: w1
1+ T
o S|
1+ ta

11: 0=1/v1+ 1«

12: T=0t oc=0/0

13w e T gt — )
Fh+l n+1 A+l an
14: i —a"th et — i)
@)
Ttz HATT A0
15: p 4 fla+=]3 ,
1 otherwise.

16: Udebiased < 4+ Pﬁ+oo~

The results obtained at the different steps of the work-flow are presented for a particular image
in Figure 4. First we demonstrate in Figure 4c that simply transforming the R, G, B channels via
the morphing map gives no meaningful results. Letting our morphing map act to the chrominance
channels of our source image and applying (12) with the luminance of our target image we get , e.g.,
Figure 4d which is already a good result. However, the forehead of Obama contains an artifact; a gray
unsuitable color is visible here. After a post-processing of the chrominance channels by our variational
method the artifacts disappear as can be seen in Figure 4e.
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(a) Source (b) Target (c) RGB morphing (d) (UV) mapping (e) Final result

Figure 4. Illustration of the colorization steps of our algorithm. (a) The color source image; (b) The
gray value target image; (c) The transport of the R, G, B channel via the morphing map is not suited
for colorization; (d) The result with our morphing method is already very good; (e) It can be further
improved by our variational post-processing.

5. Numerical Examples

In this section, we compare our method with

- the patch-based algorithm of Welsh et al. [8],
- the patch-based method of Pierre et al. [3], and
- the segmentation approach of Gupta et al. [6].

We implemented our morphing algorithm in Matlab 2016b and used the Matlab intern function
for the bilinear interpolation. The parameters are summarized in Table 1. Here A = y and K are
the parameters for the morphing step. The parameters  and « appear in the variational model for
post-processing and were only applied in three images. The number of deformations K depends on
the size and details of the image, i.e., large detailed images need a larger K as small image having not
so much details. Usually K = 24 was a good choice for our experiments. The parameter A controls
the smoothness of the deformation, i.e., a small value leads to large movements which might not be
reasonable, while for large values the deformations become zero and the image metamorphosis is just
ablending. In our experiments, a value of magnitude 1072 lead to good results.

Table 1. Parameters for our numerical experiments.

Image " K v 3

Figure 5-1.row  0.025 24 50 0.005
Figure 5-2.row  0.05 24 25 0.005
Figure 5-3.row  0.05 12 - -
Figure 5-4.row  0.05 24 - -
Figure 6-1.row  0.005 32 - -
Figure 6-2.row 0.0075 18 50 0.05
Figure 6-3.row  0.04 24 - -
Figure 7 0.0075 18 - -
Figure 8 001 25 - -
Figure 9-1.row  0.005 25 - -
Figure 9-2.row  0.01 25 - -
Figure 9-3.row  0.01 25 - -
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Welsh et al. Gupta et al. Pierre et al.

Figure 5. Comparison of our approach with state-of-the-art methods on photographies. In contrast
to these methods our model is not based on texture comparisons, but on the morphing of the shapes.
Therefore it is able to handle faces images, where the background has frequently a similar texture as
the skin.

First we compare portraits in Figure 5 (Image segments of Steve Jobs https:/ /commons.wikimedia.
org/wiki/File:Steve_Jobs_Headshot_2010-CROPjpg image courtesy of Matthew Yohe, Albert Einstein
https:/ /commons.wikimedia.org/wiki/File:Einstein_Portr_05936.jpg in public domain, Catherine
Deneuve https:/ /commons.wikimedia.org/wiki/File:Catherine_Deneuve_2010.jpg image courtesy
of Georges Biard and Renée Deneuve https://commons.wikimedia.org/wiki/File:Ren%C3%A9e_
Deneuve.jpg in public domain.) starting with the modern photographies in the first row. The approach
of Welsh et al. [8] is based on a patch matching between images. The patch comparison is done
with basic texture descriptors (intensity of the central pixel and standard-deviation of the patches).
Since the background, as well as the skin are smooth, the distinction between them is unreliable if
their intensities are similar. Moreover, since no regularization is used after the color transfer, some
artifacts occur. For instance, some blue points appear on Obama’s face, see Figure 5, first row. The
approach of Pierre et al. [3] is based on more sophisticated texture features for patches and applies
a variational model with total variation like regularization. With this approach the artifacts mentioned
above are less visible. Nevertheless, the forehead of Obama is purple which is unreliable. The method
of Gupta et al. [6] uses texture descriptors after an over-segmentation, see, e.g., SLIC [10]. The texture
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descriptors are based on SURF and Gabor features. In the case of the Obama image, the descriptors are
not able to distinguish the skin and other smooth parts, leading to a background color different from
the source image. Our method is able to colorize the second image in a more reasonable way; i.e., face
and background color are different and the tie gets a blue color. However, our methods is not perfect
so far. For example part of the forehead of Obama becomes gray is due to the gray hair of Bush, which
has a gray value closer to the forehead as to the hair of Obama.

The second and the third rows of Figure 5 focus on the colorization of old photographies.
This challenging problem is a real application of image colorization which is sought, e.g., by the
cinema industry. Note that the texture of old images are disturbed by the natural grain which is not the
case in modern photography. Thus, the texture comparison is unreliable for this application. This issue
is visible in all the comparison methods. For the portrait of Einstein the background is not colorized
with the color of the source. Moreover, the color of the skin is different from those of the person in
the source image. For the picture of Deneuve, the color of her lips is not transferred to the target
image (Deneuve’s mother) with the state-of-the-art texture-based algorithms. With our morphing
approach, the shapes of the faces are mapped. Thus, the lips, as well as the eyes and the skin are well
colorized with a color similar to the source image. In the last row we have two images of the same
person. Here the state-of-the-art-texture-based methods give unlikely results, especially the methods
of Welsh et al. and Gupta et al. lead to a non smooth colorization of the background and the face,
respectively. Our method provides a reasonable result with only small artifacts around the glasses.

¥

Source. Target. Welsh et al. Gupta et al. Pierre et al. Our.

Figure 6. Results including painted faces. Only our morphing method is able to colorize the target
images in an authentic way.

In Figure 6 (Image segments of self-portraits of Vincent van Gogh https://commons.wikimedia.
org/wiki/File:Vincent_Willem_van_Gogh_102.jpg and https://commons.wikimedia.org/wiki/File:
Vincent_van_Gogh_-_Self-Portrait_-_Google_Art_Project.jpg both in public domain, a photography
of a woman https://pixabay.com/en/woman-portrait-face-model-canon-659352/ licensed CCO,
a drawing of a woman https:/ /pixabay.com/en/black-and-white-drawing-woman-actor-1724363/
licensed CCO, a color image of Marilyn Monroe https://www.flickr.com/photos/7477245@N05/
5272564106 created by Luiz Fernando Reis, and a drawing of Marilyn Monroe https:/ /pixabay.com/
en/marilyn-monroe-art-draw-marilyn-885229/ licensed CCO0), we provide results including painted
images. Note that we use the same Van Gogh self-portraits as in [31]. Due to the low contrast of the
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ear and suit to the background we add here the same segmentation information as in [31], which
means our images are two dimensional during the calculation for the results shown in the first row
of Figure 6. In these examples the similarity of the shapes between the source and target images is
again more reliable than the matching of the textures so that only our morphing approach produces
suitable results. Consider in particular the lips of the woman in the second and third row. A non
post-processed result for the woman in the second row is shown in Figure 7. Comparing the two
images we see that only small details change but most of the colorization is done by the morphing.

Figure 7. Color transport along the image path.

Figure 7 visualizes the path of the color transfer. As the morphing approach calculates at the
same time an image and mapping path, we can not only show the final colorization result, but also the
way the color is transported along this path. We illustrate this by the image in second row of Figure 6.
The UV channels are transported via the mapping path of the Y channels of the source and the target
images, where every second image along the path is shown. We see that even though the right part of
the images undergoes large transformations, the eyes and the mouth are moved to the correct places.
Note that the final image does not contain a post-processing, in contrast to those in the second row of
Figure 6. However, the result is already quite good.

Figure 8 is included to evaluate the quality of our colorization method. We took two photographs
of the same person in different poses. Assuming that the color of the person does not change due to
the movement, we have a ground truth target image and can do a quantitative comparison using the
PSNR. We see that the visual superiority of our result is confirmed by the much higher PSNR.

In Figure 9 we considered three RGB image pairs. Using the luminance of one of the images as
target and the other one as source and conversely we colorized the target image and computed the
PSNR. In Table 2 the PSNR values of the colorization with our method and the state-of-the-art methods
are shown. The performance of our method is very convincing for all these example images.
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Source. Original. Target. Welshetal.  Guptaetal.  Pierreetal.
PSNR =24.50 PSNR =29.61 PSNR =28.80 PSNR =31.83 PSNR = 43A05

Figure 8. Results on a color image turned into a gray-scale one for a quantitative comparison.
The qualitative comparisons with the state-of-the-art methods are confirmed by the PSNR measures.

Table 2. Comparison of the different PSNR values for the image pairs in Figure 9.

Gray  Welshetal.[8] Guptaetal.[6] Pierre etal.[3] Our

Figure 9-1. row 1. pair  24.8023 20.0467 26.3527 33.7694 44.7808
Figure 9-1. row 2. pair ~ 24.5218 23.9513 25.9457 34.4231 45.4682
Figure 9-2. row 1. pair  24.3784 22.6729 27.5586 32.0119 41.1413
Figure 9-2. row 2. pair  23.7721 23.2375 25.9375 30.1398 39.4254
Figure 9-3. row 1. pair ~ 24.5950 30.3985 243112 31.5263 42.3861
Figure 9-3. row 2. pair ~ 24.3907 27.7816 25.6207 31.8982 42.4092

222

Source. Target. Our. Diff. Source. Target. Our. Diff.

Figure 9. Multiple colorizations of known RGB-images with difference plots measured in Euclidean
distance in R?.

Remark (Limitations of our approach). In all our experiments our method leads to good results and
outperforms the state-of-the-art colorization methods. However, the method is not perfect and the face images
can not be arbitrarily deformed. Since the morphing is only done in the Y channel, the illumination of the faces
should be similar. For example there is a shadow on the left side of the images in the second row of Figure 5.
Mirroring one of the images would lead to bad matching results. The same holds true for the features themselves,
s0 we can not expect to match bright hair perfectly to dark hair, as we see for example in Figure 4d.

Since the deformations are close to diffeomorphisms, features should not be excluded or appear. For example,
the left eye in the last row of Figure 9 starts in the middle of the face and moves to the edge, so a part of the
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skin-color stays in the eye. Similarly in the second matching here the eye moves from the edge to the inside, so
the skin obtains the color from the background.

By a proper initialization the faces should be aligned in such a way that there are no similar features atop of
each other, e.g., a left eye in the source should not be atop of the right eye of the target. However with more prior
knowledge we could use the given features as landmarks and perform a landmark matching, e.g., [46], for the
initialization on the coarsest level.

6. Conclusions

In this paper, we propose an finite difference method to compute a morphing map between
a source and a target gray-value image. This map enables us to transfer the color from the source
image to the target one, based on the shapes of the faces. An additional variational post-processing
step with a luminance guided total variation regularization and an update to make the result unbiased
may be added to remove some possible artifacts. The results are very convincing and outperform
state-of-the-art approaches on historical photographies.

Let us notice some special issues of our approach in view of an integration into a more global
framework for an exemplar-based image and video colorization. First of all, our method works well
on faces and on object with similar shapes, but when this hypothesis is not fulfilled, some artifacts can
appear. Therefore, instead of using our algorithm on full images, a face detection algorithm can be used
to focus on the face colorization. Let us remark that faces in image can be detected by efficient, recent
methods, see, e.g., [47]. In future work, the method will be integrated into a complete framework for
exemplar-based image and video colorization.

Second, the morphing map has to be computed between images with the same size. This issue can
be easily solved with a simple interpolation of the images. Keeping the ratio between the width and
the height of faces similar, the distortion produced by such interpolation is small enough to support
our method.
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Appendix A. Solution of the Image Sequence Problem

Fixing v, resp., ¢ leads to the image sequence problem (6). In the following we show how this
problem can be solved via the linear system of equations arising from Euler-Lagrange equation of the
functional. We mainly follow [31].

The terms in J,,(I) containing I are

/Q|1k (@r+1(0) = I (9 + [T (%) = T (9 (x) [ dx.
Assuming that ¢ is a diffeomorphism, the variable transform y := @1 (x) gives
160 = Bt (911 00) Pleet Voicly (93l ()1 41100 = it (px(x0) 2 dx
= 100 = fir (93t () ) Pldet Vi (9314 (6)) 17+ 116(x) = e (i) P

Setting
a (911 () = Idet Vo (9 (x)) 17,
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the Euler-Lagrange equations read fork =1,...,K—1as

(100 = Teea (9 0D o (@14.00) + Ke(x) = Ta (9(x)) =0,
~L1 () + (14 (91 00) ) 1) = ac (9 (0)) (o (0) = 0. (A1)

We introduce
XK(X) =X, Xk,l(x) = ng(Xk(X)), k=1,...,K,

which can be computed for each x € ) since the ¢, k = 1,..., K are given. Then (A1) can be rewritten
fork=1,...,K—1as

=1 (X1 (x)) + (1 + a (X1 (%) Ie (Xi(x) = a (Xip1 (%)) Tegr (X1 (x)) = 0. (A2)
In matrix-vector form, this reads with
Fo = lemp (X0(x)), Fx = Leg(x), Fo=L (Xk(x)), k=1,...,K-1
for fixed x € Qand F := (Fy,...,Fx_1)T as
AF = (F,0,...,0,ax_1F¢)", A= tridiag(—1,1 + ay, —ak)f;f.

Assuming that gy > 0 which is the case in practical applications, the matrix A is irreducible
diagonal dominant and thus invertible.

Appendix B. Gauss-Newton Method for the Registation Problem

We consider the nonlinear least squares problem in (7)

arg;ninj(v) = 2 [R(x) = T (x — (Po)(x)) > + S(v).

xegp
' . . . . . . 1 n=1n
Let us first write S(v) in a convenient matrix-vector notation. Using v; = <Ul (x+ 3, y)) )
XY=
11
_ 1 _
RrR™M 1,n2/ vy = <Ul (x,]/ + j))xy=1 € Rmm2 1 and
0 11
11 0 -1 1
Dyy = e R, Dyy = € Rr2-2xm-1,
0 0 -1 1 -1 1 0
0 0 0 0 0o -1 1
and similarly Dy, € R~ and D,,, € R"*"2~! we obtain
A i
_ 2 T 2 T |2 T 2
8(@) = (IID1,01 [} + [[02D3, [2) + Z1ID101 + 0205, |2 + E o1 DT, + Do}
where | - ||r denotes the Frobenius norm of matrices. Reshaping the v;, i = 1,2 columnwise into

avectors v; € R~ and v, € R"(2~1) (where we keep the notation) and using tensor products
® of matrices

Diy=1In, ®D1y, Dax:=1Iy,-1®Dsyx, Diy=D1,®I;-1, Diy:=Doy® Iy
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the regularizing term can be rewritten as

VD1, 0
0

) VHDay
S(v) =|svl]3, S:= \/ng \/WDZX

272
\/g Dy \/g D2y
The nonlinear data term in the registration problem with the columnwise reshaped image T(v) of

(T(x— (Pv)(x)))xeg,, and R of (R(X))xegp reads
D(v) = |R = T(v)|>

We linearize the term at a previous iterate v e,

D(v) % [R=T(v") + Vo T(v)) (v—v) |3,
(r)
G r

We comment on the computation of G(") below. Then we consider

IR =T(v) + G0 (v—v) |+ |sv]}

The gradient is given by
<(G(7))TG(V) + sTs)v _ (G(f))TG(V)V(') _ (G(V))T(R _ T(vm)).

Setting the gradient to zero we obtain for v

-1
vi=v() ((G“))TGW + sTs) ((G(’))T(T(v<’)) —R)+ sTsz)

-1
W ((6)T60 1 578) v, (v)

As we want to minimize 7, the next iterate is given by

-1
v+ = () (%)l((d”)Tc“) +8's) Vo7 (v),
where | € N is the smallest number such that 7 (vc*1)) < 7 (v(9), if V, 7 (v(")) is not zero.

"o o [ —PIoxT(x — (P1o7) (x),y — Pova(x))
61 = Vi) = <P§Taﬂ(x ~ (Pioy) () — Broalx)

Then we have for an arbitrary point

Since T is computed by linear interpolation from (T'(x) )xegp'
,ny — 1} that

(pg)elii+ 1 x[j,j+1],Gj)e{l,....ng =1} x {1,...
. y  TGj) T(i,j+1) i+1—gq
Hpg)=G+1=pp=i) <T(i+1,j) T(i+l,j+l)>< P > (A3)

Finally we comment on the computation of
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Then

WT(p,q) = (j+1-q) (TG +1,j) = T(Q, /) + (g = ) (T +1,j+1) = T(i, f)),
9T(pq) = (i+1-p)(T(i,j+1) = TG j))+ (p—)(T(E+1,j+1) - T(i+1,))).

Hence the derivatives can be calculated from the forward differences of T in x- resp. y-direction

and appropriate weighting.

References

1.  Levin, A,; Lischinski, D.; Weiss, Y. Colorization using optimization. ACM Trans. Graph. 2004, 23, 689-694.

2. TIrony, R.; Cohen-Or, D.; Lischinski, D. Colorization by example. In Proceedings of the 16th Eurographics
Conference on Rendering Techniques, Konstanz, Germany, 29 June 29-1 July 2005; pp. 201-210.

3. Pierre, F; Aujol, ].E; Bugeau, A.; Papadakis, N.; Ta, V.T. Luminance-chrominance model for image
colorization. SIAM ]. Imaging Sci. 2015, 8, 536-563.

4. Yatziv, L.; Sapiro, G. Fast image and video colorization using chrominance blending. IEEE Trans. Image Process.
2006, 15, 1120-1129.

5. Jack, K. Video Demystified: A Handbook for the Digital Engineer; Elsevier: Amsterdam, The Netherlands, 2011.

6. Gupta, RK,; Chia, AY.S; Rajan, D.; Ng, E.S.; Zhiyong, H. Image colorization using similar images.
In Proceedings of the 20th ACM International Conference on Multimedia, Nara, Japan, 29 October-2
November 2012; pp. 369-378.

7. Horiuchi, T. Colorization algorithm using probabilistic relaxation. Image Vis. Comput. 2004, 22, 197-202.

8. Welsh, T.; Ashikhmin, M.; Mueller, K. Transferring color to greyscale images. ACM Trans. Graph. 2002, 21,
277-280.

9.  Efros, AA; Leung, TK. Texture synthesis by non-parametric sampling. In Proceedings of the 7th
IEEE International Conference on Computer Vision, Kerkyra, Greece, 20-27 September 1999; Volume 2,
pp- 1033-1038.

10. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P; Stisstrunk, S. SLIC superpixels compared to
state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274-2282.

11. Chen, T.; Wang, Y.; Schillings, V.; Meinel, C. Grayscale image matting and colorization. In Proceedings of
the Asian Conference on Computer Vision, Jeju Island, Korea, 27-30 January 2004; pp. 1164-1169.

12. Charpiat, G.; Hofmann, M.; Schélkopf, B. Automatic image colorization via multimodal predictions.
In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2008; pp. 126-139.

13. Chia, A.Y.S.; Zhuo, S.; Kumar, R.G.; Tai, YYW.; Cho, S.Y.; Tan, P,; Lin, S. Semantic colorization with internet
images. ACM Trans. Graph. 2011, 30, 156.

14. Zhang, R.; Isola, P.; Efros, A.A. Colorful image colorization. In European Conference on Computer Vision;
Springer: Berlin/Heidelberg, Germany, 2016; pp. 1-16.

15.  Smythe, D.B. A Two-Pass Mesh Warping Algorithm for Object Transformation and Image Interpolation; Technical
report; ILM Technical Memo Department, Lucasfilm Ltd.: San Francisco, CA, USA, 1990.

16.  Wolberg, G. Digital Image Warping; IEEE Computer Society Press: Los Alamitos, CA, USA, 1990; Volume
10662.

17. Wolberg, G. Image morphing: A survey. Vis. Comput. 1998, 14, 360-372.

18. Miller, M.L; Younes, L. Group actions, homeomorphisms, and matching: A general framework.
Int. J. Comput. Vis. 2001, 41, 61-84.

19. Trouvé, A.; Younes, L. Local geometry of deformable templates. SIAM ]. Math. Anal. 2005, 37, 17-59.

20. Trouvé, A; Younes, L. Metamorphoses through Lie group action. Found. Comput. Math. 2005, 5, 173-198.

21. Christensen, G.E.; Rabbitt, R.D.; Miller, M.I. Deformable templates using large deformation kinematics.
IEEE Trans. Image Process. 1996, 5, 1435-1447.

22.  Dupuis, P; Grenander, U.; Miller, M.L. Variational problems on flows of diffeomorphisms for image matching.
Q. Appl. Math. 1998, 56, 587-600.

23. Trouvé, A. An infinite dimensional group approach for physics based models in pattern recognition.

Int. J. Comput. Vis. 1995, 28, 213-221.

46



J. Imaging 2017, 3,48

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

45.

46.

47.

Trouvé, A. Diffeomorphisms groups and pattern matching in image analysis. Int. |. Comput. Vis. 1998,
28,213-221.

Beg, M.E,; Miller, M.L; Trouvé, A.; Younes, L. Computing large deformation metric mappings via geodesic
flows of diffeomorphisms. Int. ]. Comput. Vis. 2005, 61, 139-157.

Richardson, C.L.; Younes, L. Metamorphosis of images in reproducing kernel Hilbert spaces.
Adv. Comput. Math. 2016, 42, 573-603.

Hong, Y.; Joshi, S.; Sanchez, M.; Styner, M.; Niethammer, M. Metamorphic geodesic regression. Med. Image
Comput. Comput. Assist. Interv. 2012, 15, 197-205.

Younes, L. Shapes and Diffeomorphisms; Springer: Berlin, Germany, 2010.

Miller, M.L; Trouvé, A.; Younes, L. Hamiltonian systems and optimal control in computational anatomy:
100 years since D’ Arcy Thompson. Anni. Rev. Biomed. Eng. 2015, 17, 447-509.

Miller, M.L; Trouvé, A.; Younes, L. On the metrics and Euler-Lagrange equations of computational anatomy.
Annu. Rev. Biomed. Eng. 2002, 4, 375-405.

Berkels, B.; Effland, A.; Rumpf, M. Time discrete geodesic paths in the space of images. SIAM |. Imaging Sci.
2015, 8, 1457-1488.

Christensen, G.E.; Johnson, H.]. Consistent image registration. IEEE Trans. Med. Imaging 2001, 20, 568-582.
Fischer, B.; Modersitzki, ]. Curvature based image registration. J. Math. Imaging Vis. 2003, 18, 81-85.
Haber, E.; Modersitzki, J. A multilevel method for image registration. SIAM ]. Sci. Comput. 2006,
27,1594-1607.

Han, J.; Berkels, B.; Droske, M.; Hornegger, J.; Rumpf, M.; Schaller, C.; Scorzin, J.; Urbach, H. Mumford-Shah
Model for one-to-one edge matching. IEEE Trans. Image Process. 2007, 16, 2720-2732.

Modersitzki, J. Numerical Methods for Image Registration; Oxford University Press: Oxford, UK, 2004.
Modersitzki, . FAIR: Flexible Algorithms for Image Registration; SIAM: Philadelphia, PA, USA, 2009.
Deledalle, C.A.; Papadakis, N.; Salmon, J.; Vaiter, S. CLEAR: Covariant LEAst-square Refitting with
applications to image restoration. SIAM |. Imaging Sci. 2017, 10, 243-284.

Miller, MLL; Christensen, G.E.; Amit, Y.; Grenander, U. Mathematical textbook of deformable neuroanatomies.
Proc. Natl. Acad. Sci. USA 1993, 90, 11944-11948,

Yuan, J.; Schnérr, C.; Steidl, G. Simultaneous higher order optical flow estimation and decomposition.
SIAM . Sci. Comput. 2007, 29, 2283-2304.

Bertalmio, M. Image Processing for Cinema; CRC Press: Boca Raton, FL, USA, 2014.

Nikolova, M.; Steidl, G. Fast Hue and Range Preserving Histogram Specification: Theory and New
Algorithms for Color Image Enhancement. IEEE Trans. Image Process. 2014, 23, 4087-4100.

Hertzmann, A_; Jacobs, C.E.; Oliver, N.; Curless, B.; Salesin, D.H. Image analogies. In Proceedings of
the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA,
12-17 August 2001; pp. 327-340.

Peter, P.; Kaufhold, L.; Weickert, J. Turning diffusion-based image colorization into efficient color
compression. IEEE Trans. Image Process. 2016, 26, 860-869.

Chambolle, A.; Pock, T. A first-order primal-dual algorithm for convex problems with applications to
imaging. . Math. Imaging Vis. 2011, 40, 120-145.

Joshi, S.C.; Miller, M.I. Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Process.
2000, 9, 1357-1370.

Chen, D.; Hua, G.; Wen, E; Sun, ]. Supervised transformer network for efficient face detection. In European
Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 122-138.

® (© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
[

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

47



&> ?zzgng WVI\D\Py

Atrticle
Image Fragile Watermarking through Quaternion
Linear Transform in Secret Space

Marco Botta I'*, Davide Cavagnino ! and Victor Pomponiu 2

1
2

Dipartimento di Informatica, Universita degli Studi di Torino, 10149 Turin, Italy; davide@di.unito.it
Agency for Science, Technology and Research, 1 Fusionopolis Way, 487372 Singapore, Singapore;
victor.pomponiu@gmail.com

*  Correspondence: marco.botta@unito.it; Tel.: +39-011-670-6789

Received: 14 June 2017; Accepted: 5 August 2017; Published: 11 August 2017

Abstract: In this paper, we apply the quaternion framework for color images to a fragile watermarking
algorithm with the objective of multimedia integrity protection (Quaternion Karhunen-Loeéve
Transform Fragile Watermarking (QKLT-FW)). The use of quaternions to represent pixels allows to
consider the color information in a holistic and integrated fashion. We stress out that, by taking
advantage of the host image quaternion representation, we extract complex features that are able
to improve the embedding and verification of fragile watermarks. The algorithm, based on the
Quaternion Karhunen-Loeve Transform (QKLT), embeds a binary watermark into some QKLT
coefficients representing a host image in a secret frequency space: the QKLT basis images are
computed from a secret color image used as a symmetric key. A computational intelligence technique
(i-e., genetic algorithm) is employed to modify the host image pixels in such a way that the watermark
is contained in the protected image. The sensitivity to image modifications is then tested, showing
very good performance.

Keywords: data hiding; fragile watermarking; image authentication; color image processing;
quaternions; genetic algorithm (GA); Karhunen-Loeve Transform (KLT)

1. Introduction

The protection of digital media is one fundamental topic in the present age, in which practically
every kind of content is represented in digital form. Without an integrity guard system, the
transmission via open and unsecured networks of digital assets could not be verified. Researchers have
developed and are still devising various techniques to solve the problem. For example, digital signature
is a method to ensure authenticity and proof of origin for a digital media; Message Authentication
Codes are another method to authenticate the integrity of a digital media for a restricted set of entities.
Both methods require appending a certain amount of information to the protected digital object.

Another effective solution to defend digital objects from various attacks is digital watermarking [1].
Watermarking techniques insert a signal in the digital object itself with various purposes: content
authentication, content integrity, copyright protection, traitor tracing, etc.

Depending on the application requirements, various watermarking methods (not necessarily
excluding one other) have been devised, every one having specific properties. We briefly recall these
characteristics in the following.

A watermarking algorithm may be robust or fragile: the first kind is intended to survive
(intentional) modifications of the digital object aimed at its removal (while maintaining an acceptable
quality of the resulting object); fragile watermarks have the opposite purpose: being destroyed at
the minimal modification of the digital object, and possibly localizing the modified area. Therefore,
robust watermarks are useful for copyright protection and track of origin, whilst fragile ones may be
used for authentication and integrity check purposes. Some fragile watermarks have been devised
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to accept minimal modifications (like high quality JPEG compression of an image), and are thus
called semi-fragile; others have the ability, after detecting an altered area, to (partially) restore the
original object.

Another property of watermarking methods is the capacity to recover the original (host) object
from the watermarked one by authorized entities: an algorithm that possesses this ability is called
reversible, and non-reversible (or lossy) otherwise.

The present work is devoted to fragile watermarking of color images, thus in the following we
will restrict the subject to this type of data only.

The watermark signal may be inserted mainly into two different domains, namely the spatial
and the frequency domains. The spatial domain refers to the pixels of the image, so the watermark
signal is embedded by modifying the pixel values. On the contrary, the frequency domain generally
refers to a transformed space, like the Fourier (DFT), Discrete Cosine (DCT), Karhunen-Loeve (KLT) or
Singular Value Decomposition (SVD), into which the pixels are projected producing a set of features
(typically coefficients) used for watermark embedding. Embedding into frequency domains requires
the inverse step to obtain pixels again: we note that some works ignore the possibility that the inverse
operation returns floating point pixel values and the necessary rounding to integer values may, in
general, remove part or all of the watermark. We already developed [2] and optimized a methodology
based on Genetic Algorithms (GAs) to overcome this problem, using a modification of the approach
suggested in [3]. The use of the KLT is peculiar with regard to other linear transforms like DFT and
DCT because the kernel used by the KLT is not fixed but is instead computed from a set of samples
(in our case, a set of subimages obtained from a secret key image): this allows the creation of a secret
space of features that provide the necessary security for hiding a watermark signal.

In this paper, we consider bitmap images coded in RGB format having a bit-depth of 8 bits per
channel. The objective is to adapt the methodology of a previously developed fragile watermarking
algorithm for gray scale images to color images considering the holistic representation of the color
information: we believe that the quaternion framework is a powerful representation, which could offer
the optimal interplay between the robustness and imperceptibility components of the watermarking
scheme and also improves on known ones [4]. In particular, [5] defines the computation of eigenvectors
and eigenvalues for a set of color pixels, and proposes the Quaternion Karhunen-Loeve Transform
(QKLT). We think that the QKLT is a valuable tool that can be seemly incorporated into a fragile
watermarking framework since the color information is processed as a whole and not as three
independent channels, easing the protection of the integrity of an image even using a reduced number
of watermark bits with regard to other approaches. The QKLT gives a formalization for the KLT of
a color image combining the RGB values of a pixel. Moreover, the use of the QKLT defines a single
approach in computing the secret space where the watermark is inserted, differently from the methods
used in [4] which consider the three color channels as separate entities allowing many different KLT
basis computation approaches that, even if correct and with very good performance, lack a motivation
for the choice of one with regard to the other and lead to empirical combinations of the vectors of the
three channels.

Thus, the main contribution of this work is the development of a fragile watermarking algorithm
for color images which employs the channel color information as integrated producing very high
quality images with a high level of security in detecting unauthorized modifications.

The quaternion framework we propose has been integrated into the modular watermarking
architecture [4] by developing a new module that computes the suitable features for the watermarking
process and brings improvements on various directions, as it will be detailed in the experimental
results section. In particular, the use of quaternions allows to keep the transform space dimension
limited to n? instead of 312 (where 12 is the number of pixels per subimage) because quaternions
incorporate the whole color information instead of keeping it separate and requiring to consider vectors
three times bigger to take into account the correlation among color channels. The resulting algorithm
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has smaller running times and a higher sensitivity in detecting tampering, while maintaining the same
high quality of the watermarked images as the other approaches presented in [4].

The main characteristics, novelties and improvements of the presented algorithm with regard to
previous fragile watermarking algorithms are:

(a) representation of color pixels using quaternions, which translates in integrating the color
information employing a linear transform that considers this holistic interpretation, and
embedding with a smaller impact on the host image;

(b) improved running times for watermarking embedding with regard to a previous algorithm
developed in the same framework;

(c) increased sensitivity to attacks;

(d) very high quality of the watermarked images, along with a good and flexible localization potential
(satisfying almost all application contexts);

(e) flexibility in payload embedding for a chosen localization capability;

(f) application of the QKLT to the fragile watermarking domain.

The paper is organized as follows: firstly, we survey some works on the representation of color
images in the quaternion framework and on image watermarking. Then, with the aim of making
the paper as self-contained as possible, we devolve a section to briefly recall some basic concepts
on quaternions, and afterwards we present the QKLT. The section on the watermarking algorithm
QKLT-FW (Fragile Watermarking) presents the steps for embedding and extracting the watermark
with the aim of detecting and localizing alterations to the image. Then, experimental results are shown
along with a comparison with existing algorithms. In the final section we draw some conclusions on
the developed algorithm and discuss the obtained performance.

Regarding notation, in this paper, we represent matrices, vectors and scalars by capital letters,
bold lowercase letters and plain lowercase letters, respectively. All vectors are column-wise by default.

2. Related Works

2.1. Quaternion Signal Processing

In the last decade, quaternion signal processing (QSP) has started to be widely employed and
several common signal processing transforms have been extended to the quaternion domain. For
instance, the quaternion Fourier transform (QFT) was firstly introduced by Sangwine [6] and later
extended with new results [7].

Other works proposed descriptors for the quaternion Singular Value Decomposition (QSVD), the
quaternion Eigenvalue Decomposition (QEVD) and the QKLT.

The calculation and properties of the SVD for quaternion matrices (generated by vector-array
signals) were extensively studied in [8].

According to the previous works, the main purpose of using the quaternion counterpart of these
tools is that it can naturally account for the correlation among color channels, providing a holistic
representation [9] of color images. Thus, the quaternion theory treats a color image as a vector field
and processes it directly, without losing color information.

The paper [5] is the basis on which our work is founded. Le Bihan and Sangwine present the SVD,
the Eigenvalue Decomposition and the KLT for quaternion matrices applied to color images: they call
them QSVD, QEVD and QKLT respectively. Their work also refers to many previous papers on the
topic of quaternion matrices.

An application where quaternion representation is finding an active field of research is digital
watermarking. The next subsection of this paper will review the most representative and recent works
devoted to quaternion-based watermarking.
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2.2. Quaternion-Based Watermarking

The first application of quaternions for robust digital watermarking was within the Fourier
framework. In particular, [10] applies the QFT defined in [11] to perform robust image watermarking;
given that the QFT depends on a parameter y (which is a pure quaternion satisfying > = —1), a study
aimed at finding the best y value to achieve both invisibility and robustness to attacks is described
in that paper. In [12], the watermarking algorithm inserts a robust watermark into the scalar part of
some selected QFT coefficients, and the detection stage deals with attacks through a least squares
support vector machine applied to pseudo-Zernike moments of the scalar QFT matrix of the possibly
attacked image.

An et al. [13] also used the QFT for devising a robust watermarking scheme. To be able to
hide large payloads, i.e., the number of features allocated for watermark embedding, an improved
quantization index (QIM) algorithm was proposed to compress the watermark bits. Due to the use of
QIM, the scheme is able to extract the watermark without the use of the host image, which greatly
increases its applicability. The simulations carried out prove that the watermarking algorithm based on
QFT and the improved QIM with distortion compensation attains a good tradeoff between invisibility
and robustness.

Later, Tsui et al. [14] developed a pair of watermarking algorithms working in the La*b* space. The
first one applies the Spatio-Chromatic Discrete Fourier transform (SCDEFT) to the a* and b* pixel values,
then a binary watermark is inserted into the yellow-blue component, maximizing the watermark
intensity and keeping the distortion below a Just Noticeable Difference level. The second one embeds
a quaternion watermark into the QFT coefficients of the image, taking into account the Human Visual
System (HVS) characteristics.

To overcome the limitation of the previous works which spread the watermark information over
a limited number of RGB color channels, Chen et al. [15] employ a full 4D discrete QFT (QDFT) of
the host color image. In their complete framework, which introduces three schemes, they provide the
symmetry preconditions of the unit quaternions necessary for the QDFT in order to achieve the correct
watermark extraction in the case of no-attacks. The experimental results show that the proposed
framework offers a good performance in terms of capacity and robustness against attacks. However,
the imposed preconditions for the unit pure quaternion affects the payload of the watermark, i.e., the
number of features allocated for watermark embedding. Furthermore, the study lacks a theoretical
analysis of the probability of false detection and a thorough comparison with the existing works.

In [16], Shao et al. have explored a joint robust watermarking and encryption technology based
on the quaternion gyrator transform (QGT) [17] and double random phase encoding (DRPE). The main
idea is to encrypt the watermark via DRPE and then to insert the encrypted bits into the mid-frequency
coefficients of the QGT of the host image. It is important to note that the scheme requires some side
information, related to the host image, in order to recover the watermark.

The Quaternion Polar Harmonic Transform (QPHT) has been used in [18] to devise a robust
watermarking scheme in order to increase the security of the watermark information. The transform is
a parameterized version of the linear canonical transform with the parameters belonging to the real
special linear group defined as the set of 2 x 2 real matrices having the determinant equal to 1. Due to
the large space where the correct parameters for the forward and backward transform are lying, the
proposed scheme has a high level of security. Moreover, the scheme shows satisfactory performance in
terms of robustness, capacity and imperceptibility of the watermark.

Yang et al. [19] also apply the quaternion algebra and Polar Harmonic Transform (PHT) to
introduce an invariant color image watermarking scheme. The selection of PHT was motivated by its
appealing properties compared to others moment-based transforms, e.g., (pseudo) Zernike moments:
noise robustness, low computational complexity, better reconstruction accuracy and numerical stable
solutions. An in-depth analysis of invariance properties (rotation, scaling and translation) of the QPHT
moments is given in the paper along with the criterion used for the selection of the watermarking
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coefficients. More precisely, only the set of coefficients that offer the highest reconstruction accuracy
are chosen by using the following relation

nl’

S= {M,’il and ML l=4m,m€Z}, (1)
where Mfi ;and Mﬁ,l denote the QPHT right and left coefficients respectively, n is the order and [ is
the repetition parameter. The encrypted watermark bits are inserted by adaptively modulating (via

quantization) the selected coefficients. For instance, for the right coefficients the embedding rule is

2A d |M§,I‘ A _
- roun |t we=1

e

|ME | (0<k<PxQ), (2)
2A - round z—g/’ f%, wr =0

where |-| denotes the modulus operator, round(-) represents the round operator, A is the watermark
strength factor, wy is the bit of the watermark of size P x Q. One of the drawbacks of the scheme is

the inability to fully extract the watermark from the watermarked coefficient ‘M/ 5/1 since the QPHT

coefficients can be obtained approximately for a digital image.

2.3. Image Authentication

The problem of image authentication has been also addressed by Al-Otum [20]. The paper
proposes a semi-fragile watermarking scheme based on the DWT. The watermark, i.e., the
authentication information, is implanted into the DWT coefficients of all image blocks of a color
channel, randomly chosen. In order to better capture the characteristics of the image, a modified DWT
(a reminiscent of the wavelet packet decomposition [21]) is used to compute the approximation of
the horizontal, vertical and diagonal components. The method is semi-blind since it requires some
auxiliary information (i.e., quantization thresholds are computed and passed to the detector) in order
to extract the watermark, which limits its applicability. A security issue with this scheme is that for each
block the authentication value, i.e., weighted mean values of the difference-color features, is computed
only from the approximation horizontal and vertical components, ignoring the diagonal coefficients.

Besides detecting whether it has been tampered by common signal processing operations, the
Lin et al. [22] scheme adds the recovery functionality of the affected image regions. To achieve these
goals, they make use of several tools chosen to meet the requirements of watermarking schemes:
lattice-based embedding into the DCT coefficients to lower the impact of the hidden data and a secret
sharing approach to reconstruct the watermark with recovery capability.

In [23], a watermarking method is introduced which authenticates the compressed indexed
representation of a color image. The authentication watermark is embedded into the LBSs of indexes of
the compressed color images. To overcome the issue that arises when the modified index LSB coincides
with the watermark bit, the scheme adopts an improved tamper verification procedure which consists
of introducing interdependency relationships among pixels in each row or column.

In [24], the authors exploit the standard deviation information to devise an authentication method.
Two sorts of information are embedded into the image: an authentication watermark and some image
information that enables the recovery of tampered blocks. The two watermarks follow different
insertion procedures. The authentication bits are just inserted into the LSBs of the image. To insert
the recovery data, the scheme proceeds by firstly using the standard deviation to classify the image
blocks into three classes. Afterwards, each block is prepared for embedding by mapping it to the DCT
domain followed by quantization. Interestingly, the amount of information to be embedded in each
block is adaptively modified and is determined by its class.

In the following section, we briefly introduce two algorithms for the authentication of images,
which will be used to perform a comparison with our method (these algorithms do not make use of
quaternion representations, but have very high Peak Signal-to-Noise Ratio (PSNR) and sensitivity).
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A secure method for fragile image watermarking was introduced in [25]. The algorithm contrasts
Vector Quantization attacks, may detect tampering and authenticates an image. The image is
subdivided into a hierarchy of blocks. The LSBs of a block contain authentication information (a
Message Authentication Code, MAC, or a signature) of the block itself and part of the MAC (or
signature) of the upper layers in the hierarchy obtained by merging the block with other blocks (like in
a quadtree decomposition). Thus, a block not in the lowest level of the hierarchy is authenticated by
bits contained in the LSBs of the blocks at the lowest level composing it. This algorithm has a 100%
tamper detection capability, but suffers a low PSNR due to the large quantity of data necessary to store
a MAC or a signature.

MIMIC 9 is a modular framework developed for the fragile watermarking of color images. It
embeds a watermark in a transformed secret space (defined by the Karhunen-Loeve transform), using
several different embedding techniques, such as LSB embedding and syndrome coding.

3. Quaternions

Quaternions are a representation of numbers ina hypercomplex space. A quaternion g is defined

in a four-dimensional vector spaceHasg =s 1 +v; 1 +0; ] + v k where the basis of the vector space is
- = = - —
composed by the vectors 1 , 1, j, k. The number s is called the scalar part and v = v; 1 +; j +ork

constitutes the vector part, so a quaternion is also written as g = (s, ?) The basis vectors have the
property that

—

—2 —2 —2
=j =k =-1, ®)

i
which has several implications, like the non-commutativity of multiplication. The four operations
are performed in the usual way of vector spaces, taking into account the previous property. When

o
D=0= (0, 0, 0) the quaternion is said scalar, whilst when s = 0 it is called pure.

The L, norm (or simply the norm) of a quaternion q = (s, ;) is| qll=/s*+v*+ vjz + 0% and
the Ly normis || g ||, = [s| + [vi] + |o;] + |vg]-

The multiplicative inverse of a quaternion ¢ is computed as g+ = /| ¢ ||* where 7 = (s, —?) is
the complex conjugate of 4. Due to the non-commutative property of multiplication, it is possible to
divide a quaternion a by g in two possible ways, namely 2~ and g~ 'a

A very good introduction to quaternions is [26]. In the following, we will use matrices having
quaternion elements. An overview on this topic can be found in [27].

Quaternions and Color Images

Following the use of quaternions to represent and process color image pixels introduced in [28],
a color pixel expressed in the RGB space by the triple (7, g, b) is represented by the pure quaternion

— — —
(0, ri +gj +bk), so every pixel is considered as an element of H.

4. The Quaternion Karhunen-Loéve Transform

The general definition of a linear transform is a mapping between different bases of vector spaces.
Given a d-dimensional column vector x, a linear transform is defined by a d x d orthonormal matrix
@ (called kernel, whose rows form a vector basis) that maps x to y, i.e., the same vector expressed in
a different basis, by means of the relation (forward transform) y = ®x. The vector x may be again
obtained from y by means of the inverse transform x = &1y, that given the orthonormality of ® may
be also written as x = ®'y (where @' is the conjugate transpose of ®). Differently from some common
transforms which have fixed kernels for a fixed d, like Discrete Cosine, Fourier, Hadamard, and
Haar transforms, the discrete Karhunen-Loeve Transform, KLT, (also known as Hotelling Transform,
Principal Component Analysis, or Eigenvector Transform) computes a kernel from a set of vectors.
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The ability of the KLT is to orient the basis ® along the d directions of maximum data expansion of the
vectors used to compute the kernel.

The QKLT is based on the Quaternion Eigenvalue Decomposition (QED) [5].

An eigenvector associated to a matrix A is defined as a vector x which multiplied by the
matrix results in a multiple of the vector itself, i.e.,, in general Ax = Ax = xA, where A is
the associated eigenvalue. But in H the product is not commutative, so two possible kinds
of eigenvectors can be defined, namely left eigenvectors/eigenvalues for which Ax;, = Apxp
and right eigenvectors/eigenvalues satisfying Axg = xgAgr. As stated in [5] and papers cited
therein, left eigenvalues pose many theoretical problems, so in our work we will use right
eigenvectors/eigenvalues only.

It is possible to compute the right eigenvalues and their associated eigenvectors of a quaternion
matrix A with the decomposition A = VEV' as stated in [5], where the columns of V contain the
eigenvectors and E is a diagonal matrix containing the eigenvalues. If A is hermitian (i.e., Va;; € A at
row i and column j, a;; = @), as is the case with the covariance matrix we will compute on a color
image, then the eigenvalues are real, i.e., Ag € R (in general, instead, Ag € C).

Consider a set of column vectors U = {x;}, compute the average vector, my = E[x;] where
E[-] is the expected value operator, and successively the Hermitian covariance matrix Cy =
E {(x,- —my)(x; fmu)/]. Decomposing Cy as Cy = B I' B returns, as previously stated, the
eigenvalues in the diagonal of I' and the associated eigenvectors forming an orthonormal basis as
columns of B. It is useful to give an ordering to the eigenvectors: sorting in non-increasing order of the
eigenvalues’ norm results in moving in the first positions the eigenvectors having, on average, more
importance in the reconstruction of the vectors in U. The KLT (or QKLT, if the vectors’ components
are quaternions) of a vector z (of size d) may then be written as y = BT (z — my), where the transpose
operator T moves the eigenvectors in rows: the d components of y are called coefficients of the
transform and the position in y is called order of the coefficient. Obviously, the inverse QKLT is
computed as z = (BT) _ly + my. A more extensive discussion of the QKLT is presented in [5] and
references cited therein.

5. Genetic Algorithms

A GA is a method of computation inspired by the evolution of living beings.

When the parameters of a problem may be encoded in a data structure (called individual) and a
function exists to evaluate the quality of an individual in representing a solution to the problem, then
a GA may be employed. The GA explores the space of the possible outcomes evolving a population of
individuals (initially randomly created, as in real evolution) evaluating them through a fitness function,
and reproducing the best ones to converge to an individual that represents a (local) optimal solution.

The GA executes a cycle for a maximum number of times (each iteration is called epoch) or until a
viable solution is found, according to the following high level Algorithm 1:

The population is evolved by first reproducing the individuals and then picking the ones that will
be part of the population for the next epoch.

Reproduction operates by selecting pairs of individuals (we made this with tournament selection,
in which two pairs are chosen, and the individual with the best fitness in each pair is selected) and
applying with probability p. a crossover operator, which exchanges random subsets of genes in
corresponding positions. The resulting individuals have a probability p,, to have a mutation of one of
its genes (this aims to create potentially better individuals avoiding to fall into local optima).

After reproduction has taken place, all the individuals are evaluated according to the fitness
function to create the new population for the next epoch: strategies like tournament selection, total
or partial replacement may be applied in this phase. Also, if an individual has a fitness below a
pre-defined THRESHOLD then the cycle is terminated and the individual given as output (we assume
that the smaller the fitness the better the individual).
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Algorithm 1: GENETIC EVOLUTION

INITIALIZE POPULATION

solution = ¢

e=0

best fitness = THRESHOLD

while best fitness > THRESHOLD and ¢ < MAX_EPOCHS
REPRODUCE POPULATION
EVALUATE FITNESS OF EVERY INDIVIDUAL
IF best fitness < THRESHOLD THEN

solution = individual having best fitness

ELSEe=¢+1
UPDATE POPULATION

RETURN solution

6. The QKLT-FW Watermarking Algorithm

This section describes the various components of the watermarking algorithm. We call this
algorithm Quaternion Karhunen-Loeve Transform Fragile Watermarking (QKLT-FW).

The input to the algorithm are the host color image I;, to be watermarked, and a secret key,
in the form of a color image I;. The images, both in bitmap format, are divided into contiguous
non-overlapping sub-images (or blocks) of size n x n: if the dimensions of I; are not a multiple of
n then the remaining part (<n) is not considered, whilst for simplicity we assume that for I, of size
N x M both N and M are multiples of 1 leading to N5 = N x M/n? blocks. The output of the
algorithm is a fragile watermarked image Iy.

The idea of the whole method is to hide a key-and-host-image dependent binary watermark into
a set of secret features (QKLT coefficients) defined by the key image, considering the color pixels as pure
quaternions. The host image is divided into sub-images (of size n x 1) and a portion of the watermark is
embedded in each of them (see Figure 1). The alteration of a sub-image of Ir will, with high probability
(we will discuss this point in a following section), modify the part of the watermark embedded in
it, allowing the detection and localization of the attack by simple comparison of the expected and
extracted watermarks.

In the following, we describe the steps to be performed to watermark an image with QKLT-FW.

nxn RGB

subimage .
nxn quaternion

1 G subimage
R Quaternion

representation QKLT
nxnx3 n? quaternion
pixels coefficients
n

1 n

Figure 1. Quaternion representation of a sub-image and Quaternion Karhunen-Loéve Transform
(QKLT) coefficients derivation.

6.1. QKLT-FW Basis Generation

This step is performed by a unit that, receiving as input a key image I;, divides it into
non-overlapping blocks of size n X n and returns a QKLT orthonormal basis and an average sub-image
as previously described: obviously the basis is composed of 12 basis vectors each composed of 1>
quaternions, and the average sub-image is a vector of n? quaternions.
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This computation may be performed only once for a set of images to be watermarked using the
same key. Due to the dependence of the watermark on the host image, in principle a large amount of
images may be watermarked with the same key without any possible leak on the computed secret basis.

6.2. QKLT-FW Integrity Data Generation

The secret bit string W used as watermark is made dependent on the host image to avoid
transplantation and cut-and-paste attacks. It is obvious that this step must be executed for every
host image to be watermarked with a particular key. Also, W should depend on the key (image),
otherwise the bit string will not be secret (this is not strictly necessary, given the use of a secret space
of embedding, but improves the whole security avoiding a possible search of embedded known bit
strings); thus W = S(I,, Ii).

We implemented S (that may, and must, be public) as a procedure that:

e  selects a set of pixels K}, in I; in pre-defined positions;

e uses the values of these pixels to address a set of pixels Hj, in Ij,;

e applies the values of the pixels in H, to address a set of pixels in I which in turn are used as seed
of a cryptographic hash function (c.h.f.) like SHA-3;

e  generates W by iteratively applying the c.h.f. until the required length is reached.

The pixels in the set H, are not modified by the embedding algorithm because if only one of them
is altered, a different watermark W4 will be computed during verification, leading to a completely
altered image. Indeed, this is the result obtained from an attack that modifies a pixel in Hy: the
localization property is lost but not the alteration detection.

If cropping is considered a possible attack (e.g., in case the protected images may be of any size),
it is necessary to make the watermark dependent also on the image size (i.e., concatenating the height
and the width of the image to the seed of the c.h.f.). A cropped (or enlarged) image will produce a
different watermark during verification, thus many blocks will be flagged as forged: the localization
will be lost but the attack will still be detected (effectively, cropping changes the relative position of a
block with regard to borders).

6.3. QKLT-FW Embedding

To watermark a host image I, composed of Np sub-images, the algorithm inserts s watermark bits
in every block of 1 x n color pixels (we call this payload s bits-per-block, or s bpb): thus, the previous
step Integrity data generation will build a string W of size s - Np bits.

To perform the insertion, different methods may be used. In the MIMIC framework [4], various
embedding techniques were presented, but we briefly discuss only the two that are used here in
conjunction with the QKLT:

e  Bit Collect Module (BCM): s QKLT coefficients are selected to store each one a bit of the s
watermark bits;

e  Syndrome Coding Module (SCM): the s watermark bits per block are recorded as the syndrome
of a word of r bits; these r bits are stored in »* QKLT coefficients. Many possible codes may be
used to perform syndrome coding, e.g.,, Hamming, Hadamard, Golay, BCH. See [4] for a deeper
discussion on this topic.

In the present implementation, we chose to store one bit in one QKLT coefficient, having chosen
a-priori the orders of these coefficients. From previous studies, we found that the order does not
particularly influence the performance of the whole algorithm, so we presently use contiguous
coefficients starting from the third (a key dependent choice is also an option, but we feel this a
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little improvement in security against an increased implementation complexity). A (quaternion)
coefficient c is considered to carry the bit value b in position p (fixed a-priori) computed as

b=odd(int(277 || c|])), 4)

where || ¢ || is the norm of the coefficient, int is a function that truncates a real number to its integer
part, and odd is a function that returns 1 if its argument is odd and 0 otherwise.

In general, a sub-image does not already contain the required watermark string of s bits: the duty
of the GA is to compute a modification & of the sub-image such that it stores the correct bit string.
The modification Z is, in the present case, a vector of n> components specifying the alterations to be
applied to the RGB values of the n? pixels: we found that for an 8 bit-per-channel image, it is sufficient
to have the set of possible alterations as small as { -3, —2, —1,0,1, 2,3}, leading, as we will show, to
a very good PSNR. Thus, the GA evolves a population of individuals each composed by n? genes:
the absolute value of the alteration indexes the channel (i.e., 1 is red, 2 is green and 3 is blue) whilst
the sign specifies if the pixel must be incremented or decremented by 1 (0 meaning no modification
to the pixel). The fitness function of the GA takes into account two main properties of the resulting
sub-image: the presence of the watermark and the PSNR with regard to the original. The GA runs for
a maximum amount of epochs or until a viable solution is found.

When all the blocks have been processed by the GA, then the watermark has been embedded into
I, producing Iy.

We may summarize a high level behavior of the GA as:

° If:Ih

e  For every sub-image X of Iy

a. have a population of individuals representing modifications &;
b.  apply, in turn, every modification &; to ¥ obtaining ¥;
c. compute the QKLT of every X; and extract the bits according to (4)
d. if, for some ;, the watermark is stored and the PSNR is high (i.e., above a threshold) then
save X in place of X and proceed to the next sub-image
e. otherwise evolve the population &; and go to step b.
e Outputly

6.4. QKLT-FW Extraction

This step uses the key image Iy and the watermarked (and possibly altered) image Ir. From Iy, the
QKLT basis and the average sub-image are derived. Then, the QKLT is performed on the N blocks
of I, selecting the chosen coefficients and extracting s bits from every block (using BCM or SCM and
Equation (4)). The extracted watermark WE is the concatenation of the s - Np bits.

6.5. QKLT-FW Verification

From both Iy and I; the watermark bit string, W is computed as shown in the QKLT-FW Integrity
data generation step: this string is compared with the one extracted in the QKLT-FW Extraction phase WE.
Differing bits in homologous positions mean an alteration in the corresponding sub-image, signaling
that an attack to the integrity of Iy has been performed.

6.6. Public and Secret

As the specific GA algorithm used and its parameters are instrumental for embedding only,
they are not required by the verifier and are not part of the secret embedded, thus knowledge of the
GA configuration would not compromise the security of the method and so its parameters may be
left public.
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The use of QKLT, the block size, the order and number of coefficients used and the bit embedding
position may also be left public, but they give a hint in brute force attacks: anyway the space of all
possible basis images is so large, for not naive (i.e., small) 7, that the attack is unfeasible. The indexes
used to address the pixels in I to create K, may be public, and the suggestion is to keep the size of
the set H, small to reduce the probability that an attack alters the pixels in this set, leading to a loss
of localization.

Finally, the key image must be kept secret: a compromised key image invalidates all the images
authenticated with it.

7. Experimental Methodology

The parameters we used to evaluate the performance of the algorithms are the PSNR, the Structural
Similarity index (SSIM) and the sensitivity.

For a d bit-per-pixel channel image, the PSNR of a watermarked image | I with regard to
the host image I, is defined in the quaternion framework, considering the quaternion m =

— — —
(0, (27 —1)i + (29 —1)j + (29 — 1) k) that represents the peak pixel value, as:

2 2
PSNR = 101og; "] ____lm] >
ot Do | 1@ — 1) ||

m.s.e.

= 10log,, @)

where m.s.e. is the mean squared error between the host and the watermarked images, and I, (2) and
I f(z) are their z-th pixel quaternion representation.

The SSIM defined in [29] measures the difference between two images taking into account the
characteristics of the Human Visual System. Its values range in the interval [—1, 1], with a value of 1
expressing that two images are identical. As it resulted to be greater than 0.998 in all the experiments,
we do not report the SSIM value explicitly for each setting in the result tables.

Sensitivity of level D refers to the percentage of detected altered image blocks when a single
pixel of that block is modified by +D or —D intensity levels in a single channel. To compute the
sensitivity of level D we initialize to 0 two counters TOTBLOCKS and DETECTED, and considering
all the watermarked images of our experiments (as we will see, 500 images) for every image the
respective watermark is generated and the following nested cycles are performed:

FOR EVERY BLOCK IN THE IMAGE

FOR EVERY PIXEL IN THE BLOCK
TOTBLOCKS = TOTBLOCKS + 1;
ALTER THE PIXEL ADDING D AND, IF THE MODIFICATION IS POSSIBLE (That is, no overflow takes
place), CHECK THE BLOCK USING THE VERIFICATION PROCEDURE TO TEST IF THE ATTACK IS
DETECTED, IN WHICH CASE DO DETECTED = DETECTED + 1;
ALTER THE PIXEL ADDING —D AND, IF THE MODIFICATION IS POSSIBLE (That is, no overflow takes
place), CHECK THE BLOCK USING THE VERIFICATION PROCEDURE TO TEST IF THE ATTACK IS
DETECTED,IN WHICH CASE DO DETECTED = DETECTED + 1;

When all the images have been examined, the ratio DETECTED/TOTBLOCKS represents the
sensitivity of level D.

In this paper, we report the results for sensitivity levels 1 and 2, in order to show that QKLT-FW is
very sensible to the smallest possible pixel alterations.

It should be pointed out that this kind of test is deeper that any image processing or compression
algorithm that may be used to attack an image because any such algorithm, if it performs an alteration
to a pixel, will be at least 1 intensity level: therefore, it is obvious that the detection of image processing
or compression attacks can only lead to better performance than the worst cases examined by us.
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The GA parameters were set as the following: a population size of 100 individuals, a crossover
probability of 0.9 and a mutation probability of 0.04; the termination condition was 2000 generations
total or the best solution did not change for 10 generations.

Firstly, we show the performance of the proposed algorithm in terms of PSNR, embedding time
(on a Linux workstation equipped with 4GB RAM and an Intel(R) Xeon(R) E5410 2.33GHz processor)
and sensitivity, in order to support our claims (b), (c) and (d) stated in the introduction. The set of
images was composed of 500 images selected from the databases [30,31]; the images were cropped to
256 x 256 pixels to cut the computation times.

Table 1 reports the averages of PSNR, execution times and sensitivity for some system parameter
settings (payload, embedding method, syndrome coding) of QKLT-FW. Moreover, the insertion position
p (see Equation (4)) was fixed to 0.

Table 1. Results for some settings of Quaternion Karhunen-Loeve Transform Fragile Watermarking
(QKLT-FW) (the best performances with regard to the parameter are highlighted in boldface).

. . Sensitivity Sensitivity
Payload (bpb) Insertion Module PSNR (dB) Time (s) +1(%) 12 (%)
8 BCM 61.97 + 0.1 22.65 + 1.67 67.29 +8.22 88.61 £2.82
12 SCM (Golay {24,12,8}) 62.23 +0.11 121.5 £8.77 90.53 +2.91 99.25 +0.23
12 BCM 62.25+0.18 347 £24 93.07 &+ 1.05 99.78 + 0.06
16 BCM 59.44 + 0.1 87.68 £+ 18.06 82.75 +£7.07 97.36 + 1.11

We also performed a test using smaller blocks of size 6 x 6, embedding 6 bpb using BCM as
Insertion module: the PSNR resulted in 62.3961 4= 0.23853 dB with a computation time of 45.8534 +
19.3611 s. As it may be seen, the quality is very high with a slightly increased computation time due to
the augmented number of blocks: this is because the overhead is due to the computation of the genetic
algorithm and the reduced dimension of the block does not completely compensate for this. This is
only an example of the flexibility of the proposed algorithm, as the size and shape of the blocks can be
set according to the localization resolutions, payload and running times required by the application.

As a visual example of the results of the watermarking and verification processes (i.e., what the
naive user perceives), the Appendix A reports the F16 watermarked image with blocks of size 8 x 8,
an attack to it and how the algorithm detects the tampered region(s).

Then, we compared the performance with those resulting from running the algorithms [25],
implemented for color images, and [4] on the same set of images (as MIMIC was already compared
with others in [4] and resulted to be qualitatively better). Table 2 shows the comparison among these
algorithms. In the case of [25], the intrinsic properties of the algorithms forced the specific values of
bpb and block size: on the contrary, both MIMIC and QKLT-FW revealed a better flexibility allowing
more combinations of block sizes and payloads. Note that the sensitivity (of any level) of [25] is
100%, thanks to the use of MACs for the protection of the blocks. Due to the MAC size, [25] requires
embedding a larger number of authentication bits reducing the PSNR.

Table 2. Comparison among different embedding algorithms.

. Payload  Block Size PSNR . Sensitivity
Algorithm (bpb) (pixel) dB) Time (s) +2 (%)
[25] 213.125 256 56.71 ~2 100
MIMIC SRM [4] 12 64 62.7 37.32 £ 1.96 93.43
MIMIC BCM192 [4] 12 64 58.47 72.97 +0.83 96.49
QKLT-FW 12 64 62.25 3470 2.4 99.79

As can be seen in Table 2, QKLT-FW exhibits an improved performance over the baseline
systems considered. Indeed, with an equivalent watermarked image quality, the quaternion approach
improves with regard to running time and sensitivity. It is worth pointing out that the quaternion
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framework produces an integrated information with regard to the color components (or multi-channel
components), allowing the application of all the properties of quaternions for color image processing,
in particular the QKLT.

8. Conclusions

In summary, we emphasize that with a simple data type modification from real value to
quaternion, the proposed system shows a better performance for detecting and localizing the content
alterations. As already noted in [4], [25] has the advantages of a sensitivity of 100% and of a predictable
computing time, but its main drawbacks are a lower PSNR and the space required to store the
authentication data, that implies the use of large blocks needed to save the authentication information,
reducing the localization capability.

The proposed algorithm based on QKLT has thus the following properties and advantages:

e  high PSNR and high SSIM, resulting in very high quality of the watermarked images, both
objective and subjective (see Table 1);

e high sensitivity to modifications because even single pixel modifications of two intensity levels
may be detected in more than 99.7% of the cases (see Table 2): this makes the probability that any
real attack goes undetected close to zero in practice;

e flexible and good localization capability, as shown working on blocks of different sizes, namely
6 x 6 and 8 x 8 color pixels, and different payloads;

e easily integrated into the MIMIC framework as a new Watermark Distilling Unit, improving the
running times of previously developed algorithms in the same framework (as can be seen in
Table 2).

It should be noted that, in some cases, the GA may not converge to a solution due to the intrinsic
stochastic approach that embeds the watermark in every image block; it is possible to cope with
this problem by running the GA multiple times on the blocks reporting a convergence problem, also
reducing the tightness of some constraints (e.g., on the possible modification the GA may perform on
the pixel values).

As for MIMIC [4], the security of the method is based on the secrecy of the image from which
the KLT basis is derived: from that image a secret embedding space is derived, so the transform
coefficients cannot be determined, in particular their less significant bits. Moreover, the watermark
string is dependent both on the key image, on the host image, and on the host image size: this prevents
copy-and-paste attacks, transplantation attacks, VQ attacks, cropping and embedding attacks. Note
that in the MIMIC framework, a trivial substitution attack is always possible: changing a block with a
random one will go undetected 1 every 2° attempts, if s bpb are embedded. But, in an image with U
blocks, the probability of not detecting any modification is 1/2U°: this is a very small number, even
for an image with a small number of blocks. We stress the fact that the use of quaternions as color
pixel representation opens up the possibility of applying the presented approach to color images with
alpha channel (i.e., four-dimensional pixels), as an integrated approach. This is one of our future
research directions.

Author Contributions: All authors equally contributed to the design and implementation of the described
algorithms and experiments, as well as to write and proofread the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this appendix we report, as example, the result of watermarking one of the image used in the
experiments: Figure Al shows the watermarked image (we do not report the original image because,
given the very high PSNR no differences with Figure A1 may be appreciated by the human eye),
whilst Figure A2 presents the watermarked image altered by a tamper on the right part of the sign (the
number 1100 has been modified, by copying and pasting two areas, to 1010).
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In Figure A3, the output of the verification procedure on the image in Figure A2 is presented: the
forged area is correctly evidenced by marking the blocks which contain at least one modified pixel.

Figure A1l. Watermarked color image, publicly available from the McGill Calibrated Color Image
Database [30] (http://tabby.vision.mcgill.ca/html/welcome.html), PSNR = 67.02 dB (with zoom
on detail).

Figure A3. Verified image, with (nineteen) tampered blocks evidenced as crossed areas.
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Abstract: Color inconsistency often exists between the images to be stitched and will reduce the
visual quality of the stitching results. Color transfer plays an important role in image stitching.
This kind of technique can produce corrected images which are color consistent. This paper presents
a color transfer approach via histogram specification and global mapping. The proposed algorithm
can make images share the same color style and obtain color consistency. There are four main
steps in this algorithm. Firstly, overlapping regions between a reference image and a test image are
obtained. Secondly, an exact histogram specification is conducted for the overlapping region in the
test image using the histogram of the overlapping region in the reference image. Thirdly, a global
mapping function is obtained by minimizing color differences with an iterative method. Lastly,
the global mapping function is applied to the whole test image for producing a color-corrected image.
Both the synthetic dataset and real dataset are tested. The experiments demonstrate that the proposed
algorithm outperforms the compared methods both quantitatively and qualitatively.

Keywords: color transfer; color correction; image stitching; histogram specification; global mapping curve

1. Introduction

Image stitching [1] is the technique for producing a panorama large-size image from multiple
small-size images. Due to the differences in imaging devices, camera parameter settings or illumination
conditions, these multiple images are usually color inconsistent. This will affect visual results of image
stitching. Thus, color transfer plays an important role in image stitching. It can maintain the color
consistency and make the panorama be more natural than the results without color transfer.

Color transfer is also known as color correction, color mapping or color alignment in the
literature [2-7]. This kind of technique is aimed to transfer the color style of a reference image
to a test image. It can make these images to be color consistent. One example is shown in Figure 1,
from which we can obviously see the effectiveness of color transfer in image stitching.

Pitie et al. [8,9] proposed an automated color mapping method using color distribution transfer.
There are two parts in their algorithm. The first part is to obtain a one-to-one color mapping using
three-dimensional probability density function transfer, which is iterative, nonlinear and convergent.
The second part is to reduce grain noise artifacts via a post-processing algorithm, which adjusts the
gradient field of the corrected image to match the test image. Fecker et al. [10] proposed a color
correction algorithm using cumulative histogram matching. They used basic histogram matching
algorithm for the luminance component and chrominance components. Then, the first and last active
bin values of cumulative histograms are modified to satisfy the monotonic constraint, which can avoid
possible visual artifacts. Nikolova et al. [11,12] proposed a fast exact histogram specification algorithm,
which can be applied to color transfer. This approach relies on an ordering algorithm, which is based
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on a specialized variational method [13]. They used a fast fixed-point algorithm to minimize the
functions and obtain color corrected images.

Figure 1. An example of color transfer in image stitching. (a) reference image; (b) test image; (c) color
transfer for the test image using the reference color style; (d) stitching without color transfer; (e) stitching
with color transfer. Image Source: courtesy of the authors and databases referred on [2,14].

Compared to the previous approaches described above, we combine the ideas of histogram
specification and global mapping to produce a color transfer function, which can extend well the
color mapping from the overlapping region to the entire image. The main advantage of our method
is the color transfer ability for two images having small overlapping regions. The experiments also
show that the proposed algorithm outperforms other methods in terms of objective evaluation and
subjective evaluation.

This paper is an extended version of our previous work [15]. Compared with the conference
paper [15], more related work are introduced, more comparisons and discussions are included in this
paper. The rest of this paper is organized as follows. The related work is summarized in Section 2.
The detailed proposed color transfer algorithm is presented in Section 3. The experiments and the
result analysis are shown in Section 4. The discussion and conclusion are given in Section 5.

2. Related Work

Image stitching approaches can combine multiple small-size images together to produce
a large-size panorama image. Generally speaking, image alignment and color transfer are the two
important challenging tasks in image stitching, which has received a lot of attention recently [1,16-20].
Different kinds of image alignment methods or different color transfer algorithms can construct
different approaches for image stitching. Even though color transfer method is the main topic studied
in this paper, we also introduce the image alignment algorithms to make this research be comprehensive
and be understood easily. A brief review of the methods for image alignment and color transfer is
presented below.

2.1. Image Alignment

Motion models describe the mathematical relationships between the pixel coordinates in one
image and the pixel coordinates in the other image. There are four main kinds of motion models
in image stitching, including 2D translations, 3D translations, cylindrical and spherical coordinates,
and lens distortions. For a specific application, a corresponding motion model needs to be defined first.
Then, the parameters in the motion model can be estimated using corresponding algorithms. At last,
the considered images can be aligned rightly to create a panorama image. We summarize two kinds of
alignment algorithms, including pixel-based alignment and feature-based alignment.
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2.1.1. Pixel-Based Alignment

The pixel-based alignment methods are to shift or warp the images relative to other images and to
compare the corresponding pixels. Generally speaking, an error metric is firstly defined to compare the
difference between the considered images. Then, a suitable search algorithm is applied to obtain the
optimal parameters in the motion model. The detailed techniques and the comprehensive description
are available in [1]. A simple description of this method is given below.

Given an image Iy(x;), the goal is to obtain where it is located in the other image Ij(x;).
The simplest solution is to compute the minimum of the sum of squared difference function:

1

E(u) =Y (h(xi+u) —Ip(x;))* = Zeiz, @

where 1 is the displacement vector, e; = I (x; + 1) — Ip(x;) is the residual error. To solve this minimization
problem, the search algorithms will be adopted. The simplest method is the full search technique.
For speeding up the computation, coarse-to-fine techniques based on image pyramids are often used
in the practical applications.

2.1.2. Feature-Based Alignment

The feature-based alignment methods are to extract distinctive features (interesting points) from
each image and to match every feature. Then, the geometric transformation between the considered
images is estimated. The most popular feature extraction method is the scale-invariant feature
detection [21]. The most widely used solution for feature matching is the indexing schemes based
on finding nearest neighbors in high-dimension spaces. For estimating the geometric transformation,
a usual method is to use least squares to minimize the sum of squared residuals by

Ers =) |Inl* = 1115 (xis p) — &I, b))
1 1

where 9?: is the detected feature point location corresponding to point x; in other images, f; is the
estimated location, and p is the estimated motion parameter. Equation (2) assumes all feature points are
matched with the same accuracy, which does not work well in the real application. Thus, the weighted
least square is often used to obtain more robust results via

Ewis = Y o7 2||ril%, 3
;

where Uiz is a variance estimate.

2.2. Color Transfer

The color transfer problem is well reviewed in [2,5]. A brief introduction is summarized below.

2.2.1. Geometry-Based Color Transfer

Geometric-based color transfer methods compute the color mapping functions using the
corresponding feature points in multiple images. Feature detection algorithms are adopted to obtain
the interesting points. Scale-Invariant Feature Transform (SIFT) [21] and Speeded-Up Robust Feature
(SUREF) [22] are the two most widely used methods for feature detection. After obtaining the features
of each image, the correspondences between the considered images are matched using the RANdom
SAmple Consensus algorithm (RANSAC), which can remove the outliers efficiently to improve
the matching accuracy. Then, the correspondences are used to build a color transfer function via
minimizing the color difference between the corresponding feature points. Finally, this transfer
function is applied to the target image to produce the color transferred image.
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2.2.2. Statistics-Based Color Transfer

When the feature detection and matching are not available, the geometry-based color transfer can
not work. In this situation, the statistical correlation [23] between the reference image and the testimage
is used to create the color mapping function, which can transfer the color style of the reference image
to the test image and enforce the considered images to share the same color style. Reinhard et al. [24]
proposed a simple and traditional statistics-based algorithm to transfer colors between two images,
which was also extended by many researchers. Papadakis et al. [25] proposed a variational model for
color image histogram transfer, which used the energy functional minimization to finish the goal of
transferring the image color style and maintaining the image geometry. Hristova et al. [26] presented
a style-aware robust color transfer method, which was based on the style feature clustering and the
local chromatic adaptation transform.

2.2.3. User-Guided Color Transfer

When the feature matching information and the statistical information of the considered
images are both difficult to be obtained, it is essential to adopt user-guided methods to create the
correspondences and use them to build the color transfer mapping function. The transfer function
between images can be obtained from a set of strokes [27], which are user-defined by painting on
the considered images. Then, the transfer function can be computed via different minimization
approaches. The other kind of method is the color swatch based algorithm [28], which is more related
to the construction of the correspondences between the considered images. The color mapping function
is obtained from swatched regions in one image and can be applied to the corresponding regions in
the other image.

3. The Proposed Approach

This paper proposes a method of color transfer in image stitching using histogram specification
and global mapping. Generally speaking, there are four steps in this algorithm. Firstly, there are
two given images to be stitched. The image with good visual quality is defined as the reference
image, and the other is defined as the test image. Overlapping regions between these two images are
obtained using a feature-based matching method. Secondly, histogram specification is conducted for
the overlapping regions. Thirdly, using corresponding pixels in the overlapping region, which are
original pixels and the pixels after histogram specification, the mapping function is computed with
an iterative method for minimizing color differences. At last, the whole color transferred image is
produced by applying the mapping function to the entire test image.

3.1. The Notations and the Algorithm Framework

R is a reference image,

T is a test image,

R_O is the overlapping region in the reference image,

T_O is the overlapping region in the test image,

T_O_HS is the result of histogram specification for T_O,
(4,7) is the location of pixels in images,

k is the pixel values, k € [0, 1, ..., 255] for 8-bit images,

e(k) := {(i,j) € T_O | T_O(i,j) = k},

Map is a color mapping function,

T_O_Map is the result of color transfer for T_O using the color mapping function,
Diff is pixel differences between two images,

PSNR is the peak signal-to-noise ratio between two images.
The algorithm framework is described in Figure 2.
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Figure 2. The framework of the proposed algorithm. Image Source: courtesy of the authors and databases
referred on [29].

3.2. The Detailed Description of This Algorithm

In this section, we will describe the proposed algorithm in detail.

3.2.1. Obtain Overlapping Regions between Two Images

In the application of image stitching, there are overlapping regions between input images.
Due to little changes of scenes, differences of image capture angles, differences of focal lengths and other
factors, the corresponding overlapping regions are not exactly pixel-to-pixel. Firstly, we find matching
points between the reference image and the test image, using the scale-and-rotation-invariant feature
descriptor (SURF) [22]. Then, the geometric transformation will be estimated from the corresponding
points. In our implementation, the projective transformation is applied. After that, these images can
be transformed and placed to the same panorama [1]. At last, we obtain overlapping regions using the
image correspondence location information. This part is described in Algorithm 1.
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Algorithm 1 Obtain overlapping regions between two images.

1: Input two images R and T, then compute the feature point correspondences R; <+ T; using SURF,

i=1,2,..,N, where N is the number of feature point correspondences.
2. Estimate the geometric transform fforms using the correspondences, the following term

is minimized:
N
min Y (R; — tform(T,-))Z.
i=1
3: Warp these two images and put in the same panorama using the geometric transform tforms,

define two matrixes M; and M to store position information.
4: Obtain overlapping regions using the image correspondence location information described in My

and M.

3.2.2. Histogram Specification for the Overlapping Region

In this step, we will make exact histogram specification for the overlapping region in the test
image to match the histogram of the overlapping region in the reference image. The histogram is
calculated as follows:

Hist(k) = Slk, T(i, ), 4)

mXmn ! 1

1 m n
i=1j=

where

5la,b] 1, ifa=b,
a,b] =
0, otherwise.

T is an image, k are pixel values, k € [0, 1, ...,255] for 8-bit images, m and n are the height and
width of the image, and 7 and j are the columns and rows of pixels.

Histogram specification is also known as histogram matching, which is aimed to transform
an input image to an output image fitting a specific histogram. We adopt an algorithm in [11] to
perform the histogram specification in overlapping regions between the reference image and the test
image. The detailed algorithm is described in Algorithm 2.

Algorithm 2 Histogram specification for the overlapping region.

1. Input: T_O is the overlapping region in the test image, hist is the histogram of R_O, u(®) = T_0O,

a = 0.05, = 0.1, iteration number § = 5, ¢y = 0.
2: Fors =1,..,,S, compute

u® =T_0 -y (BVTy(Vul)),

where V is the gradient operator, V7 is the transposition of V, 37 1(x) = lfiglcxl, n(x) = ﬁlxl’
3: Order the values in IIy according to the corresponding ascending entries of u#'>), where

Iy := {1,..., N} denote the index set of pixels in T_O.
4. Fork =0,1,...,255,

set ¢(k41) = C(k) + hiSt(k) and T_O_HS[C(k) +1]=..= T_O_HS[C(k+1)] =k.
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3.2.3. Compute the Color Mapping Function

In this step, we will get the color mapping function from corresponding pixels in T_O and
T_O_HS. This operation is conducted for the three color channels, respectively.
For each color channel, a mapping function is computed as follows:

Map(k) = K<mcin Y. (1-0_HSG,j) - c)2> +o.5>J, 5)

(irj) € (k)

where k € [0,1,...,255] for 8-bits images, | (x)] is the nearest integer of x towards minus infinity,
e(k) :={(i,j) € T_O | T_O(i,j) = k}. The nearest integer of c is the mapping value corresponding
to k. In the minimization problem of Equation (5), the value of c is usually not an integer. Thus, we use
the nearest integer as the corresponding mapping value of k.

During the estimation of a color mapping function, we embed some constraint conditions like the
related methods [3,30]. Firstly, the mapping function must be monotonic. Secondly, some function
values may be obtained by interpolation methods, due to some pixel values k not existing in the
overlapping regions. In our implementation, the simple linear interpolation is used. The detailed
algorithm is described in Algorithm 3.

Algorithm 3 Compute the color mapping function.

1: Input: T_O is the overlapping region in the test image, T_O_HS is the result of histogram
specification for T_O. The following steps will be conducted for the three color channels,

respectively.
2: For k = 0,1, ...,255, minimize the function:

Map(k) = K(;ncin Y (T_O_HS(i,j) —c)2> +o.5>J.

(i,j) €e(k)
3: For some value of k, the set (k) is the empty set. Then, the corresponding k can not be computed

in the above step and will be obtained using interpolation methods.

3.2.4. Minimize Color Differences Using an Iterative Method

Firstly, color transfer is conducted in the overlapping region T_O by the color mapping function
obtained at the previous step. The result is denoted as T_O_Map. Secondly, pixel value differences
Diff, and the PSNR between T_O_HS and T_O_Mayp is computed. Thirdly, the pixels (i,) will
be removed from (k) := {(i,j) € T_O|T_O(i,j) = k}, when Diff(i,j) is larger than the preset
threshold Thd_Diff, since this kind of pixel is considered to be outliers. Finally, a new color mapping
function can be obtained by the algorithm described in Algorithm 3.

Repeat these processes until reaching the preset iteration times or PSNR increase is smaller than
the preset threshold Thd_PSNR. After these iterations, the final mapping function is applied to the
whole test image. Then, the corrected image shares the same color style with the reference image.
In other words, the two images are color consistent, which are suitable for image stitching. The detailed
algorithm is described in Algorithm 4.

70



J. Imaging 2017, 3, 37

Algorithm 4 Minimize color differences using an iterative method.

1: Input: T_O is the overlapping region in the testimage, Map is the color mapping function obtained
in Algorithm 3, e(k) := {(i,j) € T_O | T_O(i,j) = k}, maximal iteration number S, Thd_Diff

is a threshold value, Thd_PSNR is a threshold value.
2: Obtain T_O_Map by applying Map to T_O, using

T_O_Map(i,j) = Map(T_O(i,j)).

3: Compute pixel-to-pixel differences by

Diff(i,j) = |T_O_Map(i,j) — T_O_HS(i,7)]| .

4: Remove pixels (i, ) from e(k), when Diff (i, f) is larger than the preset threshold Thd_Diff.
5. Compute the PSNR increase for T_O_Map.
6: With the new sets &(k), repeat Algorithm 3 and steps 2 to 5 in Algorithm 4 until reaching the

maximal iteration number or PSNR increase is smaller than the threshold Thd_PSNR.

4. Experiments

4.1. Test Dataset and Evaluation Metrics

Both synthetic image pairs and real image pairs are selected to compose the test dataset.
Test images in this dataset are chosen from [2,3,14,29]. The synthetic data includes 40 reference/test
image pairs. Each pair is from the same image, but with different color style. The image with good
visual quality is assigned as a reference image, and the other is assigned as a test image. The real
data includes 35 reference/test image pairs. These image pairs are taken under different capture
conditions, including different exposures, different illuminations, different imaging devices or different
capture time. For each pair, the image of good quality is assigned as a reference image and the other
as a test image.

Anbarjafari [31] proposed an objective no-reference measure for illumination assessment. Xu and
Mulligan [2] proposed an evaluation method for color correction in image stitching, which has been
adopted in our evaluation. This method includes two components: color similarity between a corrected
image G and a reference image R, and structure similarity between a corrected image G and a test
image T.

The Color Similarity CS(G, R) is defined as CS(G,R) = PSNR(G_O,R_O). PSNR is the
Peak Signal-to-Noise Ratio [32] and G_O,R_O are the overlapped regions of G and R, respectively.
The higher value of CS(G, R) indicates the more similar color style between the corrected image and
the reference image. The definition of PSNR is given by

2

PSNR(A,B) =10 X lOglo(m),
m n (6)
1 AT
MsEB) = S 8 A B

where A and B are the considered images, L = 255 for 8-bit images, and m and n are the height and
width of the considered images.

The structure similarity SSIM(G,T) is the Structural SIMilarity index, which is defined
as a combination of luminance, contrast and structure components [33]. The higher value of SSIM (G, T)
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indicates the more similar structure between the corrected image and the test image. The definition of
SSIM is described by

N
SSIM(A,B) = % Y SSIM(a;, b;), 7)
i=1

where N is the number of local windows for an image, and a;, b; are the image blocks at the ith local
window of the image A and B, respectively. The detailed computation of SSIM (a;, b;) is described by

SSIM(a,b) = [I(a,b)]* X [c(a,b)]F X [s(a,b)]", ®)
where [(a,b) = %/C(ﬂ/b) = %’Smb) = futG y, and gy, are the mean

luminance values of the windows a and b, respectively, ¢, and oy, are the standard variance of the
windows a and b, respectively, oy, is the auto-covariance between the windows a and b, Cy, Cz, C3 are
small constants to avoid divide-by- zero error, and «, B, ¢ are constants controlling the weight among
the three components. The default settings recommended in [33] are: C; = (0.01L)?2, C, = (0.03L)?,
Ci=% L=2550a=B=9=1

In the following parts, we compare our algorithm with the methods proposed in [9-11]. These
methods transfer the color style of the whole reference image to the whole test image. The source
codes of Pitie’s and Nikolova’s methods are downloaded from their homepages. The source code of
Fecker’s method is obtained from [2].

4.2. Experiments on Synthetic Image Pairs

Each synthetic image pair from [2,14,34,35] describes the same scene (exactly pixel-to-pixel) with
different color styles. Our algorithm is applied to color correction in image stitching, so we cropped
these image pairs to have various overlapping percentages, which simulates the situation in image
stitching. Then, color transfer methods are applied to the corresponding image pairs that have different
overlapping percentages. In the following experiments, we cropped each image pair with four different
overlapping percentages (10%, 30%, 60% and 80%), respectively. Thus, we have 40 X 4 = 160 synthetic
pairs to make numerical experiments. As shown in the Table 1, our algorithm outperforms other
methods in terms of color similarity and structure similarity.

Table 1. Comparison for synthetic dataset (average of 40 image pairs for each overlapping percentage).
CS is the Color Similarity index, SSIM is the Structural SIMilarity index.

. CS (dB) SSIM
Overlapping
Percentage  Pitie Fecker Nikolova Proposed  Pitie  Fecker Nikolova Proposed
10% 1821 1834 18.39 22.03 0.7924  0.8033 0.8165 0.8834
30% 20.16  20.28 20.31 24.11 0.8101  0.8181 0.8299 0.8867
60% 21.93  21.83 22.02 24.19 0.8417  0.8461 0.8545 0.8853
80% 2339 2324 23.43 24.31 0.8662  0.8674 0.8721 0.8857

From the experimental results of these algorithms, we can also make a conclusion that our
algorithm obtains the better visual quality of correction results even though the overlapping percentage
is very small. The ability of color transfer for image pairs having narrow overlapping regions is very
important in the application of image stitching. This advantage can make our color correction algorithm
more suitable for image stitching. In Table 1, we can also observe that the proposed method is not
significantly better than other algorithms when the overlapping percentage is very large. For example,
when the overlapping percentage is 80%, the difference between the proposed method and Nikolova’s
algorithm [11] is very small. Since we adopted Nikolova’s algorithm for transferring the color style in
the overlapping region, the proposed method is almost the same as Nikolova’s algorithm when the
overlapping percentage is close to 100%.
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Some visual comparisons are shown in Figures 3-6. In Figure 3, the overlapping regions include
the information describing the sky, the pyramid and the head of the camel. The red rectangles
indicate the transferred color has some distance from the reference color style in the reference image.
The yellow rectangle indicates the transferred color by the proposed method is almost the same as
the reference color style. We can also observe easily that our algorithm transfers color information
more accurately than other algorithms. For more accurate comparison, we show the histograms of the
overlapping regions in Figure 4. The histograms of the overlapping regions in the reference image and
in the test image are totally different. The histograms of the overlapping regions after color transfer
algorithms are closer to the reference. In addition, the results by the proposed method are the closest
one, which indicates the proposed method outperforms other algorithms.

Reference Test

k3

Pitie [8] Fecker [9] Nikolova [10]

Figure 3. Comparison for the synthetic image pair. Image Source: courtesy of the authors and databases
referred on [2,14].

Red

P OO )

Blue

TR IIIT)
g A 0 LR

Reference Test Proposed Pitie [8] Fecker [9] Nikolova[10]

Figure 4. Histogram comparisons for overlapping regions in Figure 3. The first column shows the
histograms (three color channels, respectively) of overlapping regions in the reference image, the
second column shows the corresponding histograms in the test image, the third column shows the
corresponding histograms of overlapping regions after the proposed method, the fourth column shows
Pitie’s result, the fifth column shows Fecker’s result, and the last column shows Nikolova’s result.

In Figure 5, the red rectangles show disadvantages of other algorithms, which have transferred
the green color to the body of the sheep. The yellow rectangle indicates the advantage of our algorithm,
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which has transferred the right color to the sheep body. In Figure 6, the rectangles describe the airplane
body that exists in the overlapping region. The red rectangles show disadvantages of other algorithms
that transferred the inconsistent color to the airplane body. The yellow rectangle indicates that the
proposed method transfers the consistent color to the airplane body.

Pitie [8] Fecker [9] Nikolova [10]

Figure 5. Comparison for the synthetic image pair. Image Source: courtesy of the authors and databases
referred on [2,14].

Pitie [8] Fecker [9] Nikolova[10]

Figure 6. Comparison for the synthetic image pair. Image Source: courtesy of the authors and databases
referred on [2,14].
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4.3. Experiments on Real Image Pairs

In the experiments above, we make the comparisons using synthetic image pairs, which have
exactly the same overlapping regions. However, overlapping regions are not usually exactly the same
(not pixel-to-pixel) in the real application of image stitching. Thus, we make some experiments for real
image pairs.

Objective comparisons are given in Table 2, which indicates that our algorithm outperforms other
methods in terms of color similarity and structure similarity. Subjective visual comparisons are also
presented in Figures 7-10. In Figure 7, the red rectangles show disadvantages of other algorithms,
which have transferred the green color to the tree body and the windows. The yellow rectangles
indicate the advantage of our algorithm, which transfers the right color to the mentioned regions.
The histogram comparisons for the overlapping regions are shown in Figure 8, which indicates the
proposed method outperforms other algorithms. More results and the comparisons are given in
Figures 9 and 10.

Test Proposed

Enmm T LY v
S mimnml o mmm L
Sumimy gy . S ImHmy

Pitie [8] Fecker [9] Nikolova [10]

Figure 7. Comparison for the real image pair. Image Source: courtesy of the authors and databases

referred on [29].
ot Uo ) e od e W L
SESNE W N N
Blue ; % ; é ; ..... é
| .Re.fer;nc,e o T.est. o lPr;th-Jse-d a Pitie[s]- Fecker‘ [9; | Nikolova Elo,]

Figure 8. Histogram comparisons for overlapping regions in Figure 7. The first column shows the
histograms of overlapping regions in the reference image, the second column shows the corresponding
histograms in the test image, the third column shows the corresponding histograms of overlapping
regions after the proposed method, the fourth column shows Pitie’s result, the fifth column shows
Fecker’s result, and the last column shows Nikolova’s result.
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Table 2. Comparison for real image pairs (Average of 35 pairs).

Pitie  Fecker Nikolova Proposed

CS(dB) 1898 19.04 19.12 21.19
SSIM  0.8162 0.8334 0.8255 0.8531

Test

Pitie [8] Fecker [9] Nikolova[10]

Figure 9. Comparison for the real image pair. Image Source: courtesy of the authors and databases
referred on [29].

sl ™S aasbilie
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%;‘uwf = 12 »1¢;g3€: '
Pitie [8] Fecker [9] Nikolova [10]
Figure 10. Comparison for the real image pair. Image Source: courtesy of the authors and databases
referred on [3].

5. Discussion

In this paper, we have proposed an efficient color transfer method for image stitching, which
combines the ideas of histogram specification and global mapping. The main contribution of the
proposed method is using original pixels and the corresponding pixels after histogram specification to
compute a global mapping function with an iteration method, which can effectively minimize color
differences between a reference image and a test image. The color mapping function can spread well
the color style from the overlapping region to the whole image. The experiments also demonstrate the

advantages of our algorithm in terms of objective evaluation and subjective evaluation.

As our work relies on the exact histogram specification, bad results of histogram specification
will decrease the visual quality of our results. Even though the problem of histogram specification has
received considerable attention and has been well studied during recent years, some future work can

be conducted to improve the results of this kind of algorithm.
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In the detailed description of the proposed algorithm, we have shown that our method is building
the color mapping functions using the global information and without using the local neighbor
information. In future work, we will consider the information of local patches to construct the color
mapping functions, which may be more accurate to transfer colors. Another problem is that the
mapping function is computed for each color channel. This simple processing does not consider
the relation of the three color channels, and this may produce some color artifacts. In our future
work, we try to obtain the color mapping function considering the relation of the three color channels.
The minimization is completed with an iteration framework, and the termination conditions include
computing PSNR. These operations need high computation, so a fast minimization method will also
be considered in the future work.
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