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Preface to ”Collaborative Networks, Decision

Systems, Web Applications and Services for

Supporting Engineering and Production

Management”

This book addresses collaborative networks, decision systems, web applications and services for

supporting engineering and production management, along with other social oriented services.

The main scope and purpose consists on presenting a general overview of some main issues

related to collaborative approaches and practices, aiming at raising awareness about the importance

of collaboration not just in engineering and manufacturing and management contexts, but also

in other areas, namely in social science’s domain, along with computer science and science and

technology, in general.

The main motivation underlying the publication of this book is to provide a summarized set of

representative work regarding the application of methodologies, approaches, tools and systems that

enable us to put into practice collaboration among different kind of entities, varying from human- to

machine-centered focus, and occurring in different kinds of industrial and social contexts.

This book is not just recommended to all readers that intend to achieve or clarify the importance

of collaboration, but also to provide some concrete illustrative examples of its application domains.
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Colombia.

Ciro Gamboa, Faculty of Electrical and Electronic Engineering, Pontifical Bolivarian University,

Bucaramanga, Colombia.

Ekaterina V. Orlova, Department of Economics and Management, Ufa State Aviation Technical

University, Ufa, Russia.

Giuseppe Mangioni, Dipartimento di Ingegneria Elettrica Elettronica Informatica, Università di
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Collaborative networks and systems (CNS) have received much attention in recent
decades to reach a competitive advantage. Many contributions have arisen from the
industrial context to service-oriented companies, for instance, in the scope of artificial
intelligence. Therefore, many contributions have been put forward related to collaborative
and intelligent networks and systems [1–7].

Despite the wide range of existing work in this area, however, it continues to be imper-
ative for companies to understand and anticipate the importance of CNS in manufacturing
to enable them to reach a competitive advantage in the current global market and Industry
4.0-oriented manufacturing scenario [8,9].

These main topics strengthen the specific characteristics of CN through collaboration
to deliver products and services; decentralize decision-making; and achieve inter- and
intra-organizational integration to meet imposed performance requirements in competitive
global markets [10–12].

Moreover, in the context of CNS, normalization is a crucial step in all decision mod-
els to produce comparable and dimensionless data from heterogeneous data [5]. There-
fore, it is of upmost importance to use appropriate data-normalization techniques for
each application scenario, for instance, according to the kind of multicriteria or multiob-
jective optimization methods or algorithms used for networked supply and operations
management [2,5,13]. This is even more important in the upcoming increasingly digital era
of I4.0, along with the perceived need for big data processing in terms of the need for the
vertical and horizontal integration of data and manufacturing processes [6,10,14,15].

This Special Issue intends to contribute to collaborative and intelligent networks
and systems supporting engineering and production management, as well as fill the gap
in theories and practical applications supporting industrial companies through suitable
methods and solutions.

Collaborative Engineering (CE) assumes an important role in Industry 4.0 (or I4.0) [16,17],
namely, in the context of Collaborative Networks (CN), which includes a diverse set of com-
panies, business partners, suppliers, and other stakeholders, including customers [7,18,19].
These entities are thus connected and communicate to enable CE practices and accomplish
Collaborative Manufacturing and Management (CollM&M). CollM&M further implies
sharing something between these entities, including some tangible or intangible asset, e.g.,
manufacturing resources and/or management information [7]. By doing so, the collabo-
rating entities envision the co-creation of a product and/or service [6,7], for which I4.0’s
technologies are of utmost importance to enable and promote such joint practices, which
include human–human, human–machine, and machine–machine interactions [6,12,20].

The widened set of I4.0 technologies permits the development and application of a varying
range of management paradigms, approaches, and methods through the use of appropriate and
diverse types of supporting tools, systems, and platforms [6,8,9,11,12,20–24], including:
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- Collaboration strategies;
- Learning organizations principles;
- Chaos and complexity management;
- Game theory models and approaches for supporting production management;
- Blockchain technology applied to manufacturing and management;
- Intelligent models, methods, and tools;
- Dynamic and real-time-based decision-support approaches;
- Decentralized and distributed decision-support networks and models;
- Social-network-based models, methods, and tools;
- Hybrid intelligent decision-support and recommendation systems;
- Multiagents models, systems, and platforms;
- Machine- and deep-learning-based approaches and systems;
- Bio-inspired models and algorithms applications;
- Negotiation and group-decision-making approaches;
- Multicriteria and multiobjective models;
- Uncertainty treatment methods and tools;
- Data-normalization and data-fusion methods, techniques, and systems;
- Data analytics for manufacturing systems and management processes;
- Cloud computing, manufacturing, and big data processing approaches and tools;
- Learning and data mining and other data-science-oriented approaches and systems;
- Data visualization models and tools for promoting and supporting digital, intelligent

smart factory, and cyber–physical production systems;
- Real-time machine- and process-monitoring, diagnostics, and prognostics methods

and tools;
- Real-time management methods, tools, and platforms;
- Manufacturing execution systems;
- Open-source software applications for digital or cyber manufacturing;
- Internet of Things and associated models, devices, means and tools for cyber manu-

facturing and management.

The accomplishment this widened set of approaches, methods, tools, systems, and
platforms implies the use of appropriate CollM&M paradigms, which are related to dy-
namic, distributed, integrated, intelligent/predictive, parallel, and real-time-based contri-
butions [6,24–28].

Moreover, CollM&M has to ensure the fulfillment of an appropriate set of varying
objectives or performance measures, which include companies’ internal and external goals,
and are frequently contradicting, thus further requiring the application of multicriteria
and/or multiobjective and intelligent optimization methods, along with data acquisition,
normalization techniques, and tools, to enable further incomplete and uncertain data
processing, visualization, and analysis [2,5,13,25,29].

The cyber–physical (production) systems (C[P]PS) and smart factories, based on in-
telligent sensing systems, open and networked and distributed manufacturing systems,
along with virtual organizations and extended manufacturing environments, play a fun-
damental role in I4.0 [22,24,29,30]. In such advanced manufacturing systems (AMS), inte-
gration, distributivity, virtuality, agility, servitization, digitalization, and decentralization
are major issues for reaching suitable collaborative processes and practices in the I4.0. In
this regard, the (Industrial) Internet of Things ((I)IoT), along with smart and ubiquitous
networks based on cloud technology, enable large and complex networks and their dig-
italization [2–4,6,10,14] to carry out CollM&M [7]. In this regard, decisions and related
actions must be taken promptly and be further supported by appropriate data-visualization
systems [6,14,15,31,32].

Cloud-based M&M technology is, therefore, fundamental to enabling enhanced inter-
operability and collaborative practices (Varela et al., 2019c; Ferreira et al., 2022). Moreover,
horizontal and vertical integration between companies, business partners, factories, suppli-
ers, other stakeholders, and clients is fundamental in I4.0 [2,10,13,14,32,33].
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Exponential technology, along with advanced processes, high-performance computing,
and disruptive technologies (e.g., automation and robotics, autonomous and collaborative
robots, advanced mechatronics, micro- and nano-manufacturing, and supercomputing) are
key enablers for proper M&M in I4.0 [6,7,12,32,33].

Moreover, advanced interfaces, virtual, augmented, and mixed reality technology,
along with simulation and digital twins, further promote and enhance CollM&M among
collaborating entities. These technologies enable advanced and integrated decision-support
systems (DSS) and databases (DB), along with knowledge engineering and knowledge
bases (KB), automatic data acquisition, and a semantic web for enhancing collaboration [7].

In addition, data science, along with business intelligence, big data processing, and
data analytics, are essential pillars of I4.0 supporting CollM&M practices [6,7].

All these issues are crucial for enabling advanced, integrated, and intelligent supply
networks, projects, businesses, and their interoperable and fully supported implementation,
to reach M&M while ensuring high-quality product development and M&M practices based
on appropriate standards, means, and communication devices and protocols, to fully ensure
appropriate extended supply network management strategies [5,8,10,15,32–34].

This Special Issue aims to provide new insights regarding CollM&M models and
practices, aligned with the contemporary needs regarding the capability of co-creation
actions supported by I4.0 technology [7].

In this regard, each of the six selected papers of this Special Issue makes a novel
contribution to this purpose.

Pombo et al. present expectations and limitations of cyber–physical systems (CPS) for
advanced manufacturing in the scope of the grinding industry. In their work, the authors
refer to the importance of grinding technology in the manufacturing of high-added-value
precision parts, accounting for approximately 20 to 25% of the whole machining costs
in the industrialized world and relying heavily on the experience and knowledge of the
operatives. Thus, the authors conclude that suitable approaches are needed to overcome
these issues, and digital twin technology is promising in this regard by contributing to
the reduction and possibly even the elimination of unnecessary trial-and-error strategies
through intensive collaboration between all the involved agents from the university to
the industry. The authors highlight the successful implementation of this technique in
developing new and more realistic models for predicting wheel wear.

Miranda et al. propose a system model for offline seismic event detection in Colombia.
The authors put forward an integrated model that includes five sub-models and is based
on a machine-learning approach, and they highlight its suitability for identifying P-wave
windows in historical records that permit detect seismic events. Their proposed model
permits seeking, gathering, and storing seismic data, along with data reading, analysis,
sampling, and classification. The authors further provide some recommendations regarding
their model’s implementation in developing a seismic-event detection system.

Samala et al. put forward a systematic literature review (SLR) about investigating
degradation and upgradation models for flexible unit systems. In their work, the authors
research the so-called flexible unit systems (FUS) in the current I4.0 era and the context
of descriptive, predictive, and prescriptive analysis, aiming at integrating distributed
and digitalized systems. The authors highlight that the existing literature mostly focuses
individually on the descriptive, predictive, and prescriptive analysis paradigms. Moreover,
the authors also claim that the literature is unclear about the integration of degradation and
upgradation models for FUS. Thus, the authors carried out an SLR, through which it was
possible to identify five main issues about degradation—residual life distribution, workload
adjustment strategy, upgradation, and predictive maintenance—as major performance
measures to investigate the performance of the FUS. In this study, it was understood that
the degradation rate would affect the life and production rate of different configurations
of FUS. Moreover, it was possible to realize that the considered upgradation model and
predictive maintenance, along with advanced analytics procedures of the manufacturing
systems, are valuable and enable the systems to run with higher production rates while
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increasing the life of systems. Moreover, it was also possible to explore three research
objectives related to system configuration flexibility to improve the proposed FUS and
identify further research opportunities in this field.

Carchiolo et al. focus on co-authorship networks analysis to discover collaboration
patterns among Italian researchers. Through their study about the analysis of behaviors
of a large community of researchers and their correlations between the underlying envi-
ronments, the authors determined a set of grouping rules by law or specific institutional
policies that enabled conclusions about their performance and, importantly, affecting met-
rics to evaluate the quality of their research carried out. To this end, the coauthors created
a procedure to craft a large dataset of Italian academic researchers by considering a set
of performance indices and co-authorship information. Through their study, the authors
could automate the association of profiles and the mapping of publications to reduce the
use of computational resources. Moreover, the authors presented several examples of
how the information extracted from the datasets can help better understand the dynamics
influencing scientific performances.

Fior, Cagliero, and Garza refer in their work to leveraging explainable AI to support
cryptocurrency. The authors clarify that this research area has been attracting the attention
of many researchers and continues to be a very important research focus for private and
professional traders and investors. They further mention that forecasting financial markets
can be properly approached by using algorithmic trading systems based on AI models,
which are becoming more and more developed. Moreover, the authors state that such
approaches usually suffer from a lack of transparency, thus hindering domain experts from
directly monitoring the fundamentals behind market movements. Additionally, they men-
tion that this is particularly critical for cryptocurrency investors because studying the main
factors influencing cryptocurrency prices, including the characteristics of the blockchain
infrastructure, is crucial for driving experts’ decisions. Thus, in their paper, the authors
propose a new visual analytics tool to support domain experts in explaining AI-based
cryptocurrency trading systems. To further describe the rationale behind AI models, their
proposed approach exploits an established method, the SHapley Additive exPlanations,
which, according to their results, allows experts to identify the most discriminating features
and provides them with an interactive and easy-to-use graphical interface.

Orlova approached design technology and AI-based decision-making models for
digital twin engineering. This study proposes comprehensive technology (methodological
approach) for digital twin design to accelerate its engineering. The author clarifies that
this kind of technology consists of design steps, methods, and models and provides sys-
tems synthesis of digital twins for a complex system (object or process) operating under
uncertainty that can reconfigure in response to internal faults or environment changes
and perform preventive maintenance. The author mentions that the proposed technology
structure was developed based on a simulation model using situational “what-if” analysis
and based on fuzzy logic methods. The author applied this technology to develop a digital
twin prototype for a device at a creation life cycle stage to reduce the consequences of
unpredicted and undesirable states. Through the study, it was possible to realize unfore-
seen problems and device faults during its further operation. According to the author, the
proposed model identifies a situation as a combination of failure factors of the internal and
external environment and provides an appropriate decision about actions with the device.
Further, the authors mention that the practical significance of the research is the developed
decision support model, which is the basis for control systems to solve problems related to
monitoring the current state of technical devices (instruments, equipment) and supporting
adequate decisions to eliminate their dysfunctions.

Undertaking this Special Issue, “Collaborative and Intelligent Networks and Decision
Systems and Services for Supporting Engineering and Production Management”, was a
challenging and rewarding task for the Editors. The diversity of the manuscripts demon-
strates the broad scope and relevance of the research theme in fostering performance and
transformation for achieving collaborative practices in I4.0.
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Abstract: Research on flexible unit systems (FUS) with the context of descriptive, predictive, and
prescriptive analysis have remarkably progressed in recent times, being now reinforced in the current
Industry 4.0 era with the increased focus on integration of distributed and digitalized systems.
In the existing literature, most of the work focused on the individual contributions of the above
mentioned three analyses. Moreover, the current literature is unclear with respect to the integration
of degradation and upgradation models for FUS. In this paper, a systematic literature review on
degradation, residual life distribution, workload adjustment strategy, upgradation, and predictive
maintenance as major performance measures to investigate the performance of the FUS has been
considered. In order to identify the key issues and research gaps in the existing literature, the 59 most
relevant papers from 2009 to 2020 have been sorted and analyzed. Finally, we identify promising
research opportunities that could expand the scope and depth of FUS.

Keywords: flexible unit systems; degradation; residual life distribution; workload strategy; upgrada-
tion; predictive maintenance

1. Introduction

Recently, the manufacturing systems domain underwent a paradigm shift by intro-
ducing several key enabling technologies as a requirement of Industry 4.0 [1]. Keeping
in mind clients’ customized requirements and global manufacturers’ personalized pro-
duction, the current production and process capabilities need to be transformed. For
example, recent requirements such as shorter product life cycles, high production rates,
jobs complexity, quality products, and cost effectiveness are the most significant factors
for any manufacturing industry [2]. Considering all the foregoing requirements, and,
in addition, according with the current market demand and society requests, there is a
need to enhance the system’s capabilities by maintaining it under control from system
breakdowns and several external forces that have not been considered as a highest priority
in the past decade. To accomplish these challenges, there is a need for high machine
availability, flexibility, configurability, and accessibility of manufacturing processes, as
mentioned in [3–9]), along with another interesting contribution for emphasizing the neces-
sity of increasing the level of flexibility of manufacturing systems, which can be seen in
https://publications.muet.edu.pk/index.php/muetrj (accessed on 23 January 2021). How-
ever, various manufacturing systems available to fulfil the above-mentioned requirements
have costs affairs and high maintenance. In this review paper, we introduced a special kind
of configuration: i.e., flexible unit systems (FUS) with one degree of flexibility, two degrees
of flexibility, semi flexibility, and highly flexible configurations, where the reconfiguration
and upgradation of unit (machine) systems are easily achieved [10,11].

The common factors from different studies that affect FUS are identified as degradation
rate, residual life distribution, workload strategy, upgradation, and predictive maintenance.
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To improve the health status of the system and to make the manufacturing functions
effective and efficient, system-level health monitoring is new thinking to which nowadays
researchers are paying attention. Therefore, the degradation rate at the system level is
of the highest priority. Studies have shown that manufacturing systems are subjected to
degradation both with age and usage, including wear, cracking, and fatigue, among others;
whereas the residual life of a machine was characterized as remaining useful till its level of
degradation arrives at a predefined failure threshold [12]. Real-time production data from
complex systems produce a huge variety and volume of data. Handling this kind of data-
intensive system with conventional statistical tools may be insufficient when firms seek to
strategically conceal the data [13]. Hence, there is a need for advanced analytics such as
descriptive, predictive, and prescriptive analytics to analyze the machine’s historical data
to improve the efficiency of the system by knowing the health condition at every stage.

Given this scenario, towards summarizing the status of present research and to stim-
ulate the future investigations, the main aim of this paper is to carry out a Systematic
Literature Review (SLR) with respect to the degradation and upgradation models for FUS.
Hence, a review of manufacturing systems in the context of three analytics has been con-
sidered, particularly with flexibility as a key common word. The analysis of the reviewed
literature enabled us to develop a comprehensive conceptualization as shown in (Figure 1).
It is the conceptualization that was used to classify the findings and it was also referenced
for future research.

Figure 1. Framework addressing the topics affecting flexible unit systems (FUS).

The paper is structured as follows. In Section 2, a detailed research methodology is
used, which follows SLR’s five-step approach. Effectiveness of degradation and upgrada-
tion models on the FUS and findings have been presented in Section 3. Discussion and
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Future research agenda is explained in Section 4. Conclusions and future work directions
are pointed out in Section 5.

2. Research Methodology

This research followed the SLR as a basic scientific activity that delivers a clear and
comprehensive overview compared to descriptive literature reviews. The formation of a
basic framework for an in-depth analysis and a scientific process can be possible by using
this SLR. The systematic literature followed a sequence of five steps, as mentioned in [10],
which are as follows.

(1) Formation of questions;
(2) Finding the studies;
(3) Study preference and evaluation;
(4) Investigation and combination;
(5) Reporting and using the results.

Step 1. Formation of questions:

Research Question 1. What is the role of degradation, residual life distribution,
workload strategy, upgradation, and predictive maintenance on flexible unit systems?

Research Question 2. How to integrate the degradation and upgradation models to
the flexible unit systems?

Step 2. Finding the studies:

This step concerns how to find and choose the bibliographic database or search
engine, and additionally the search strings. The research questions have been considered
in this search for literature reviews. Following similar literature reviews [14–16] and three
bibliographic databases, i.e., Web of Science, Scopus, and Science Direct, a remarkable
quantity of published literature on degradation rate, residual life distribution, workload
strategy, upgradation, and predictive maintenance, including very relevant and important
journals in this area, has been considered. Additionally, also considered were advanced
analytics, like descriptive, predictive, and prescriptive ones, to analyze the machine’s
historical data for improving the efficiency of the system.

Tables 1–3 show the search strings searched in the data bases and the results obtained
using the three mentioned databases. However, sorting the selected research articles
and selecting the publication title between 2009–2020 shows 603 articles for the search
string “Flexible unit systems” (or) “Flexible machine systems” and “Degradation” (or)
“Degradation rate”, 167 articles for the search string “Flexible unit systems” (or) “Flexible
machine systems” and “Residual Life Distribution” (or) “Residual life”, 140 articles for
the search string “Flexible unit systems” (or) “Flexible machine systems” and “workload
strategy” (or) “workload adjustment”, 104 articles for the search string “Flexible unit
systems” (or) “Flexible machine systems” and “Upgradation”, and 243 articles for the
search string “Flexible unit systems” (or) “Flexible machine systems” and “Predictive
Maintenance”, respectively.
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Table 1. Search string and number of results from Web of Science.

Search String Search Field Date of Search No. of Results

“Flexible unit systems” (or) “Flexible machine systems”
and “Degradation” (or) “Degradation Rate” Topic 11 August 2020 273

“Flexible unit systems” (or) “Flexible machine systems”
and “Residual Life” (or) “Residual Life Distribution” Topic 11 August 2020 34

“Flexible unit systems” (or) “Flexible machine systems”
and “Workload strategy” (or) “Workload adjustment” Topic 11 August 2020 42

“Flexible unit systems” (or) “Flexible machine systems”
and “Upgradation” Topic 11 August 2020 2

“Flexible unit systems” (or) “Flexible machine systems”
and “Predictive Maintenance” Topic 11 August 2020 41

Table 2. Search string and number of results from Scopus.

Search String Search Field Date of Search No. of Results

“Flexible unit systems” (or) “Flexible machine
systems” and “Degradation” (or) “Degradation Rate”

Article title, abstract,
keywords 4 September 2020 178

“Flexible unit systems” (or) “Flexible machine
systems” and “Residual life” (or) “Residual life

Distribution”

Article title, abstract,
keywords 4 September 2020 9

“Flexible unit systems” (or) “Flexible machine
systems” and “Workload strategy” (or) “Workload

adjustment”

Article title, abstract,
keywords 4 September 2020 14

“Flexible unit systems” (or) “Flexible machine
systems” and “Upgradation”

Article title, abstract,
keywords 4 September 2020 1

“Flexible unit systems” (or) “Flexible machine
systems” and “Predictive Maintenance”

Article title, abstract,
keywords 4 September 2020 9

Table 3. Search string and Number of Results from Science direct.

Search String Date of Search No. of Results

“Flexible unit systems” (or) “Flexible machine systems” and
“Degradation” (or) “Degradation Rate” 18 September 2020 152

“Flexible unit systems” (or) “Flexible machine systems” and
“Residual life” (or) “Residual life Distribution” 18 September 2020 124

“Flexible unit systems” (or) “Flexible machine systems” and
“Workload strategy” (or) “Workload adjustment” 18 September 2020 84

“Flexible unit systems” (or) “Flexible machine systems” and
“Upgradation” 18 September 2020 101

“Flexible unit systems” (or) “Flexible machine systems” and
“Predictive Maintenance” 18 September 2020 193

Step 3. Study preference and Evaluation:

In this step, filtering criteria were explicated, to choose only relevant studies to add in
the review, in which the studies actually addressed the research questions. From 1995 to
2008, articles were excluded because they were just consigned to the small percentage of
the examples. 11 years (2009–2020) of related studies were performed to focus on recent
studies, methodologies, and technologies. The article journals of document type were
sorted from the search results and the best articles distributed in peer-reviewed journals
in English were contemplated. Colicchia et al. [17] argue that restricting the search to
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peer-reviewed journals enables one to reach better results due to the rigorous reviewing
processes inherent to such articles before their publication.

This exercise reduces the number of journal articles to 198. After checking the dupli-
cates (initially in each search string and after, taking into consideration all search strings set
together), titles and abstracts of the selected journal articles were analyzed for relevance,
which enabled us to further reduce the number of articles to 106. Articles qualified for re-
view had to fulfil the five major criteria: (i) articles related to finding the Degradation level
of manufacturing systems, (ii) articles related to finding the residual life of manufacturing
systems, (iii) articles related to adjustment strategy of workload to reduce the degradation
level of manufacturing systems, (iv) articles related to upgradation of manufacturing sys-
tems, and (v) articles focused on predictive maintenance of manufacturing systems. At this
step, the number of articles for investigation was 106. At last, a more examined analysis of
the 66 articles was made with the full gratified review.

Step 4. Investigation and Combination:

In this step, the content of each paper was analyzed to identify the key issues. Through
full-content review, different articles were excluded, which were not as per the specified
research focus of this study. In this way, the number of definite articles for the investigation
was reduced to 59, as recorded in Table 4.

Table 4. Summary of articles preferences and evaluation.

Bibliographic Database Analysis Search 1 Search 2 Search 3 Search 4 Search 5 Total

Web of Sciences 273 34 42 2 41 392

Scopus 178 9 14 1 9 211

Science Direct 152 124 84 101 193 654

Inclusion/Exclusion criteria of Web of Sciences

Date Range 193 29 26 1 28 277

Document Type 191 29 26 1 28 275

Research Area 175 26 23 1 26 251

Language 174 26 22 1 26 249

Inclusion/Exclusion criteria of Scopus

Date Range 155 9 11 1 6 182

Document Type 130 6 7 1 6 150

Research Area 109 6 6 1 6 128

Language 96 6 6 1 6 115

After checking the duplicates
(in each search) 113 22 36 3 24 198

After checking the duplicates
(in all search) 106

Analysis of (Abstract and Title) 66

After a detailed article analysis 59

Step 5. Reporting and using the results:

The data contained in 59 articles were summarized, then prepared with connected
categories, for example, methodologies used in their research and various key findings.
Table 5 shows the list of journals related to the number of articles published as well as
the year of publication. Reliability Engineering and Systems Safety, International Journal of
Advanced Manufacturing Technology, IIE Transactions on Automation Science and Engineering,
Journal of Intelligent Manufacturing, IFAC online, CIRP Annals: Manufacturing Technology,
and IEEE Transactions on Reliability contributed to 55% of the total articles published
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related to factors (degradation, residual life distribution, workload strategy, upgradation,
and predictive maintenance) related to manufacturing systems. Other journals like the
Journal of Computers & Industrial Engineering, IEEE Transactions, Journal of Manufacturing
Systems, Procedia Manufacturing, European Journal of Operations Research, and a few other
journals contributed to 45% of the total journal articles published related to factors affecting
manufacturing systems.

Table 5. List of journals related to the parameters related to the flexible unit systems.

Sl. No. Name of the Journal Number of Articles Year of Publishing

1 Reliability Engineering and Systems Safety 5 2012,14,17,19

2 IEEE Transactions on Automation Science and
Engineering 4 2015,16

3 International Journal Advanced Manufacturing
Technology 3 2015,18

4 IEEE Transactions on Reliability 3 2014,15,17
5 CIRP Annals: Manufacturing Technology 3 2017,19
6 Journal of Intelligent Manufacturing 3 2009,2014
7 IFAC online 3 2017,19
8 Journal of Manufacturing Systems 2 2018
9 International Journal of Production Research 2 2015,17

10 IIE Transactions 2 2014,15
11 Procedia Manufacturing 2 2017
12 Computers & Industrial Engineering 2 2017,19
13 IEEE Transactions on Power Systems 2 2015
14 IEEE Systems Journal 2 2019
15 European Journal of Operation Research 2 2018

16 Journal of Precision Engineering and
Manufacturing Technology 1 2009

17 Materials Today: Proceedings 1 2018

18 International Journal of Productivity and Quality
Management 1 2016

3. Findings

The relevant data were collected and studies arranged dependent on five factors,
mentioned in the research methodology. The detailed description of these five factors and
their relevance under study is as follows.

3.1. Prognostics and Health Management (PHM) for Unit Systems

In recent years, PHM has emerged as an essential approach in the global competi-
tive market, achieving advantages over others by improving system maintainability and
reliability. However, the application of PHM to flexible unit systems is a challenging
task as systems are more complex. Specifically, small and medium-sized ventures experi-
enced difficulty in applying PHM, because of the lack of resources and time for research
and development.

Shin et al. [18] explored how the Prognostics method is an intelligent answer for
enhancing the availability of unit systems and fault prognosis to evaluate residual life.
A PHM model for manufacturing systems integrated with different online sensors with
different flexible structures has been developed by [19], and Hao et al. [12] proposed a
contemporary sign partition as well as prognostics structure for multi-section systems
with non-resolute segment signals, and Fang et al. [20] developed a prognostic proce-
dure that uses multi-stream signals for predicting the residual life of partially degraded
manufacturing systems.
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3.1.1. Throughput Rate

The throughput rate is significant for the design and the activity of manufacturing
systems. A remarkable quantity of throughput rate related research has been developed to
estimate the throughput of manufacturing systems by creating analytical methods with
various unreliable machines. Hao et al. [12] characterized the “throughput rate” of a
manufacturing system, which is equivalent to summing up all the workloads from each
unit. Table 6 shows the literature related to degradation of manufacturing systems. In FUS,
this performance measure is considered one of the important expected outputs due to its
direct relevance for capacity. For example, if a FUS consists of three different machines
with different capacities, then the maximum throughput is considered as the summation
of all three machines. If the expected demand is less than the capacity of the system, the
throughput rate is equal to the demand, otherwise the throughput rate is equal to the
total capacity.

Table 6. Literature review on degradation rate related to flexible unit systems.

Literature Review on Degradation Rate in the Context of Flexible Unit Systems

Sl. No. References Findings

1 [21] The machine’s degradation was analyzed in view of an impact on machine performance and product
quality utilized as the performance index.

2 [22] A new degradation model, “Transformed Inverse Gaussian process”, has been presented in this paper.

3 [23] Shows that it can be conceivable to make robust reconfigurable manufacturing systems by taking the
degradation of modules.

4 [12] The multistage manufacturing measures have been utilized to focus on modelling the interconnection
between product quality degradation and tool wear.

5 [24] Addresses the issues of maintenance, joint production, for an untrustworthy production system
subjected to degradation.

6 [22] Researches Inverse Gaussian models for degradation investigation, with constant monotonic
degradation rates also mentioned.

7 [25] Introduces a degradation modelling system for assessing and updating the RLDs of partially degraded
segments using an FPT approach.

8 [26] Works on the availability of machines as well as random failure rate to fulfil economically a random
demand under certain constraints.

9 [27] Describes linear-quadratic stochastic production planning issues so as to fulfil a random demand.

3.1.2. Degradation

Degradation is a stochastic process, which will occur through random shocks and
also through the components being worn in manufacturing processes. Degradation rate
plays a significant role in the life of FUS because the impact of the degradation process on
different types of manufacturing systems are observed on the failure severity. A Degraded
machine impacts on the nature of the parts manufactured where the defectives rely upon the
production rate, as has been mentioned in [28]. Zied et al. [27] worked on the degradation of
the unit as stated by the rate of production. Hajej et al. [26] explained that their examination
is to investigate the impact of the production rate on the degradation level and machine
availability. Through this diverse literature, it was shown that the degradation process was
grouped in two ways, i.e., continuous degradation and discrete degradation.

Zhenggeng et al. [21] explained about multiple degradation methods, which involve
continuous degradation, as well as that discrete degradations have been modelled through
various stochastic processes, for example, Markov renewal and gamma processes. Zhang
et al. [29] proposed that the conventional Wiener process-dependent degradation is an
important degradation model technique for manufacturing systems. With this, the past
research on the degradation of manufacturing systems showed that efforts have been made
to characterize the relation between degradation rate and workload adjustment strategy by
using a Bayesian approach to find the residual life distribution literature, as is mentioned
below in Table 7.
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Table 7. Literature review on residual life distribution related to flexible unit systems.

Literature Review on Residual Life Distribution in the Context of Flexible Unit Systems

Sl. No. References Findings

1 [30] To predict the Residual Life under time differing conditions, the degradation rate changing and
unexpected signal bounds at condition change points have been proposed.

2 [29] In this paper, an attempt was made to audit and sum up the ongoing demonstrating improvements of
Wiener process models for assessing the Residual life.

3 [31] A data-driven technique for Residual life expectation depends on a Bayesian approach that has
been proposed.

4 [32] In this paper, remaining useful life prediction of slightly degraded parts with co-dependent
degradation processes have been shown.

5 [33] Describes the fundamental steps needed to execute the Prognostics and Health Management System,
so that the remaining useful life of CNC milling cutters can be predicted.

3.1.3. Residual Life Distribution

A machine’s or a component’s residual life estimation during its operation based on
its present condition is very important in order to find its health condition. Li et al. [30]
proposed a remaining useful life prediction by introducing the degradation rate changing
to transition function, and it jumps the degradation signals towards the measurement
function. For example, in the manufacturing industry, the usage of a prognostic health
management system for deciding the residual life of a milling cutter in a high-speed milling
machine depends on externally measured conditions, as has been mentioned in [33].

Bian et al. [32] introduced how prediction of the life of a complex manufacturing
system needs an exact estimation of degradation conditions of its constituent parts as well
as an adequate understanding of how these stages progress in the future. Si et al. [34]
proposed s degradation method to anticipate the remaining useful life of machines utilizing
a recursive channel calculation. Zhang et al. [29] surveyed modelling improvements
of the Wiener process strategies for degradation information examination, remaining
useful life estimation as their implementation in the empirics of the health management of
manufacturing systems. Mosallam et al. [31] presented two stages of an information-driven
strategy for remaining useful life prediction. It is noted that based on the residual life
of a manufacturing unit, a workload adjustment strategy will be helpful to maintain the
production rate mentioned in Hao et al. [12]. The various literature related to workload
strategy has been mentioned below in Table 8.

Table 8. Literature review on workload strategy related to flexible unit systems.

Literature Review on Workload Strategy in the Context of Flexible Unit Systems

Sl. No References Findings

1 [35] Investigates the effects of various workload strategy methodologies on manufacturing system
performance by a mathematical study.

2 [36] A workload adjustment has been proposed to find the extreme workload to the remaining working
units to fulfil the manufacturing prerequisites.

3 [37] Focuses on the dynamic workload adjustment to manage the degradation of all the units in a
compound system.

4 [38] Works on dynamic workload adjustment strategy to control the degradation of units.

3.1.4. Workload Strategy

A dynamic workload adjustment technique has been proposed by [36] to locate the
most extreme workload machinery. In their work, the highest degraded machines were
identified to satisfy the production necessities on parallel configurations. With various
benchmark instances, simulation tests have been conducted to assess the degradation
rate. Li et al. [35] explored the effects of various workload adjustment methodologies on

14



Future Internet 2021, 13, 57

a system agent-based simulation approach. To prevent the overlap of machine failure
within a period of time, Hao et al. [39] developed a method to control the degradation and
predicted failure time of each machine by adjusting the workload. Similarly, the allocation
of buffer capacity is especially important in order to obtain an acceptable throughput and
work-in-progress, as mentioned in [40].

3.1.5. Descriptive and Predictive Model Management

The arrangement of the present smart manufacturing systems is subjected to the
capacity for (a) sensibly modelling the production system, (b) predictable plant information,
(c) solving issues proficiently with computational attempts, and (d) including feedback
to raise the decision-making on top of time. Hence, enabling descriptive and predictive
analytics for the estimation of manufacturing systems performance is a greater concern in
the current information and digital age.

3.1.6. Resource Management

Resource management is the way towards planning, scheduling, and allocating re-
sources in the best possible way. More observation is on future manufacturing, where
resource management is a greater concern and it must handle more proficiently. Particu-
larly different manufacturing, as well as automotive industries, are advancing towards
utilization of resources to improve proficiency and profitability without trading off the
current manufacturing capacity. De Ryck et al. [41] proposed a methodology that makes
resource management in automated guided vehicle systems more effective. The resource
management aims at providing robust strategies in manufacturing systems to accomplish
the resource allocation and to solve related issues, for example, resource levelling, and
production layout adjustment in production planning.

3.2. Diagnostics for Unit Systems

Present manufacturing systems are outfitted with different sensors that provide con-
tinuous checking and diagnosis, but sensors cannot be equipped across all the parts in
the manufacturing system due to big data challenges. These outcomes in non-observable
parts limit our capacity to help successful and continuous real-time monitoring and fault
diagnosis activities. The exact diagnosis is the most significant step because the fault is the
primary cause of a manufacturing system’s failure in the fault treatment. Among a wide
range of possible faults in a manufacturing system, operative faults occur most often (about
70%). Djelloul et al. [42] solved maintenance optimization issues in manufacturing systems
by considering the diagnosis and suggested a hybrid neural network technique focusing on
developing a diagnosis system. Qin et al. [43] proposed that a fault identification, as well as
a diagnostic module, is depicted dependent on an internal programmable logical controller.
Generally, manufacturing industries have a large number of machines with different old
programmable logic controllers that can benefit from an upgrade to new technology. The
literature related to the upgradation of manufacturing equipment is mentioned below in
Table 9.

Table 9. Literature review on upgradation related to flexible unit systems.

Literature Review on Upgradation in the Context of Flexible Machine Systems

Sl. No. References Findings

1 [44] Introduces a plan for usage of a data preparing kit that will upgrade a manufacturing machine
allowing it to coordinate into an industry 4.0 environment.

2 [45] Explains that the traditional manufacturing industry upgrading is partially important in this trend.

3 [46] Explores the situation of a system upgrade, both electronics and mechanical, which requires extensive
software modifications.

4 [47] Considers the problems of selecting and upgrading equipment for creating and upgrading production
systems on facilities with discrete manufacturing.
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3.2.1. Upgradation

According to [48], there are four motivations for the upgradation of manufactur-
ing equipment. They are support, cost performance, reliability, and need for change.
Pavlov et al. [47] considered the issues of choosing and upgrading equipment for making
and upgrading manufacturing systems on facilities with discrete manufacturing. An ex-
ample has been taken and it solved an excess of ten equipment choice test issues for the
plan and upgrade of manufacturing systems. Garcia-Garza et al. [44] present a strategy to
identify and upgrade a data preparation unit to make it viable with an extensive system as
it advances into an Industry 4.0 condition.

Grohn et al. [46] investigated the upgradation of a production system model with
mechanical capacities, and the experimental study incorporates changing of a mechanical
plant and relocation of computerization system programming to another, more distributed
machinery configuration. Xingyu et al. [23] present a reconfigurable manufacturing sys-
tems decision-making model to ideally decide and alter operational activities continuously
considering demand fulfilling, system health, and maintenance cost. Furthermore, pre-
dictive maintenance will help to maintain the system’s health in an efficient way. The
literature related to predictive maintenance of the flexible unit systems is mentioned below
in Table 10.

Table 10. Literature review on predictive maintenance related to flexible unit systems.

Literature Review on Predictive Maintenance in the Context of Flexible Unit Systems

Sl. No. References Findings

1 [49] A general framework has been developed and that has been applied to manufacturing tools by using
predictive maintenance.

2 [50] Conducts a study of the predictive maintenance on industrial equipment.

3 [19] Presents a prognostic method that uses sensor degradation data for calculating the time to failure of
machines, with maintenance policy.

4 [51] Develops a cutting tool wears monitoring and predictive maintenance system.

5 [20] Proposes a multisensor prognostic method, that uses multistream signs to anticipate the Remaining
Useful Life of partially degraded systems.

6 [52] The proposal focuses on predictive maintenance of manufacturing systems and tools.

7 [53] Introduces the predictive maintenance system, and joints product quality as well as mission
reliability imperatives.

8 [54] An extended model with a system that connects a low-level execution condition
monitoring information.

9 [55] Presents the design and implementation of a conductance sensor for micromachining processes.

10 [56] A sensory updated degradation-based maintenance has been presented to assess the predictive
maintenance by using residual life distributions.

3.2.2. Predictive Maintenance

Nowadays, predictive maintenance is considered as the key point for many manu-
facturing industries because of a major part of the operational cost and system failure
impacts on product quality and equipment availability. Menezes et al. [55] explained that
predictive maintenance considers close past information for predicting future tendencies,
biases, behaviors, etc. through correlation. He et al. [53] introduced that predictive mainte-
nance is an analytic technique to eliminate prospective failures and improve the mission
dependability of production systems. Consequently, a coordinated predictive maintenance
procedure considering item degree and mission dependability state was proposed from rea-
soning of prediction and manufacturing. Spendla et al. [52] proposal focused on predictive
maintenance of manufacturing systems to improve the production process quality.

Dong et al. [19] have attempted to work on a flexible structure of a versatile man-
ufacturing system to satisfy different needs and item varieties and to build up a PHM
structure for assembling with different online sensors and flexible structures utilizing dif-
ferent sensors-based degradation data for registering and predicting each machine’s time to
failure. For example, Traini et al. [49] discussed the execution of predictive maintenance of
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milling cutting tool information, and the collection as validation of a structure, and [56,57]
presented a model-driven approach using embedded artificial intelligence strategies by the
development and implementation of a quality monitoring framework, and also presented
a sensory system for high precision monitoring, applicable to all machining and milling
operations on conductive materials. Kevin et al. [58] proposed a sensory updated degra-
dation based predictive maintenance strategy. Their proposed maintenance strategy used
degradation methods that combine part-specific continuous degradation data obtained dur-
ing activity to predict the remaining useful life distribution. Yildirim et al. [54] expanded
an adaptive predictive generator maintenance model that has been presented. From the
different literature, on predictive maintenance, it can be concluded that the predictive
maintenance of the machines allows extending of the machine’s life and the lowering of
maintenance costs by addressing the problems before they cause machine failures.

3.2.3. Data Management

The need for more flexible and efficient data management in manufacturing systems
is necessary to secure the maximum productivity for many manufacturing organizations.
The systems require precise and current information as ongoing activity to meet users’
expectations. For example, information and communication technology take part in a sig-
nificant role in the factors of Industry 4.0, and data management becomes a major problem
for different types of manufacturing systems. The related literature, such as Song et al. [59],
focused on data management that explains the defective data generated by the unsuit-
able operation of cyber components of a manufacturing cyber-physical system. Similarly,
Liu et al. [60] proposed an application of a Digital Twin technology in the manufacturing
area to show a significant effect in enabling the manufacturing data management.

3.2.4. Prescriptive Model Management

The prescriptive maintenance empowers manufacturers to resolve their own mainte-
nance needs without the need for a vast array of experts, as mentioned by Brian Brinkmann.
Menezes et al [55] explained that prescriptive analytics finds the best route to operate (out-
puts) in the view of given information and models (inputs). Similarly, Lepenioti et al. [61]
said that prescriptive analytics tries to locate the best action for the future in the manufac-
turing industry and it is frequently considered as the subsequent stage towards improving
data analytics maturity for business execution improvement. Moreover, prescriptive an-
alytic strategies, such as decision optimization, can handle profoundly complex issues
running from hundreds to a large number of limitations that would never be analyzed
manually, and Matyas et al. [62] proposed a prescriptive maintenance methodology for
manufacturing systems analysis, as well as simulation tools, that have been utilized to
analyze past data, i.e., machine failure data and product quality data, to guarantee a high
level of process flexibility and the quality of the product.

3.2.5. Operations Management

The job of operations management is to oversee the process of converting resources
into goods and services. Hashemi-Petroodi et al. [63] focused on the challenges of the
interactions between machine robots and humans in order to find the effective contribu-
tions of operation management’s methods to improve the working condition of hybrid
manufacturing systems. Kozjek et al. [64] research focused on investigating manufacturing
data collected from a manufacturing system during various operations conducted in an
engineer-to-order enterprise, and developed tools for scheduling of operations.

4. Discussion and Future Research Agenda

This paper presents the SLR using different articles to discuss degradation and upgra-
dation models for flexible unit systems life. Some significant issues from the review are
talked about in this section. Moreover, there is an opportunity to identify the number
of research gaps, with suggestions for future work. The discussion follows the concep-
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tualization that appeared in Figure 1. First, the 5 keywords that have been taken into
consideration are (1) Degradation, (2) Residual life distribution, (3) Workload adjustment,
(4) Upgradation, and (5) Predictive Maintenance. The keywords have helped us to find
related journal articles by searching in the three databases in the selected research area.
Authors such as [43,65,66] discussed different analytic techniques, for example, descriptive,
predictive, and prescriptive, to analyze manufacturing data for achieving competitive
benefits for the manufacturing industries.

Authors Hao et al. [12], Ben-Salem et al. [24], Peng et al. [67], Bian et al. [68], and
Hajej et al. [26] worked on the degradation of different configurations, for example, series
and parallel configuration manufacturing systems. Zhenggeng et al. [21] worked on
degradation models and various stochastic processes like gamma process and Markov
renewal process to find the degradation rate of manufacturing equipment. Zhang et al. [29]
proposed conventional Wiener process-based degradation as one of the most important
degradation model techniques among different degradation techniques. Naipeng et al. [30],
Das et al [33], Si et al. [34], Zhang et al. [29], and Bian et al. [32] worked on finding the
relationship between degradation rate and the residual life of a machine. The prediction
of the manufacturing unit’s residual life will be helpful to reduce the degradation rate by
adjusting the workload to maintain the maximum production rate.

Adam Robinson [48], Pavlov et al. [47], Garcia-Garza et al. [44], Grohn et al. [46],
Du et al. [45], Menezes et al. [55], and Dong et al. [19] investigated upgradation of a
manufacturing system, which will help to enhance the performance and reliability of
manufacturing equipment. Spendla et al. [52], Dong et al. [19], Fang et al. [20], and
Kaiser et al. [69] present the predictive maintenance of machines using sensors degradation
data for calculating the time to failure of various machines. Traini et al. [49], Zhang et al. [50],
and He et al. [53] worked on predictive maintenance analytics by considering recent past
data to eliminate prospective failures and also to improve the mission dependability of
production systems.

4.1. Research Opportunity 1: How Can Residual Life Be Predicted in FUS to Improve
Systems Efficiency

Degradation is an unavoidable characteristic, which it requires the utmost attention
to pursue. However, a lot of literature is already available to handle the degradation rate
at the component level. A limited number of papers (Hao et al. [12]; Manupati et al.) [38]
have considered system level degradation, especially in the manufacturing systems context.
A recent paradigm shift has forced the use of the Internet of Things (IoT) in almost every
stage of the product life cycle. In addition, process industries have highly benefitted from
the key technologies that emerged from this shift (Varela et al., [70] Varela and Ribeiro,) [71].
To make these processes effective and efficient, system-level health monitoring is a new
thinking among researchers paying attention to these issues. To improve the health status
of the system, an individual system’s degradation rate needs to be decreased, which in
turn improves the residual life of the machine. Here, the residual life of a machine was
characterized as remaining useful time till its level of degradation arrives at a predefined
failure threshold. The degradation and residual life follow different distributions depend-
ing on the order requirement and system status. Hence, this is a challenging work one can
take into consideration to explore further.

4.2. Research Opportunity 2: How to Deal with Heterogeneous Data Obtained from Various
Sensory Sources for Predicting the Degradation Rate of FUS?

Heterogeneous data includes multiple internal and external databases generated
from different sources obtained in various dimensions (Varela and Silva, 2008 [72], Zhang
and Gregorie, 2016) [73]. Real-time production data from complex systems produce a
huge variety and volume of data. Handling these kinds of data-intensive systems with
conventional statistical tools may be insufficient when firms seek to strategically conceal
the data [13,74–76]; Hence, to handle the heterogeneous data in FUS and predict the
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degradation rate, improving the residual life advanced analytics is essential. This area
opens wider challenges for the researchers to explore.

4.3. Research Opportunity 3: How to Develop FUS for Real-Life Problems?

In this section, we propose four different configurations derived from the real-life ex-
amples: i.e., one degree, two degree, semi-flexible, and fully flexible, shown in Figure 2a–d.
Where one degree configuration is represented, it handles the requirements to process it in
sequential order. The open braces (1, 1) represent the position and stage of the machine,
e.g., (1, 4) in Figure 2a. Consequently, for two degrees of flexibility, the configuration is
shown in Figure 2b, through which, after the jobs arrived and processed in the first machine
are chosen for the next operation to process on the second machine, it has a flexibility of
alternative machines available in the second position at the second stage. Hence, it has
position flexibility, routing flexibility, and machine flexibility to execute the operations.
Figure 2c,d represents the semi-flexible and fully flexible unit system, wherein in the semi-
flexible configurations, the second operation can be processed on more than 2 machines
unlike the restrictions presented in the previous systems. In the fully-flexible systems, the
machines have the flexibility to process any operation at a time.

  
(a) One-degree flexible configuration (b) Two-degree flexible configuration 

  
(c) Semi-flexible configuration (d) fully flexible configuration 

Figure 2. Flexible unit system with different configurations.
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5. Conclusions

A significant amount of literature related to manufacturing systems has been made
available during the last decade to conduct various investigations. However, regardless of
growing interest in these investigations, the existing literature does not bring clarity on the
degradation and upgradation strategies, and models on recently emerging FUS. Despite
the availability of many manufacturing systems, the arrangement of machines according
to demand is of crucial importance, along with the capability of simultaneously adjusting
the machines with different flexibilities to compensate the workload, and, in turn, for
reducing the degradation of the system. Moreover, an integrated approach using predictive,
prescriptive, and descriptive analytics and the parameters required to understand the
performance of the system in line with the mentioned advanced analytics are also not much
explored. To overcome this gap, this paper presented a systematic literature survey on the
proposed FUS to identify the key factors that greatly affect system performance.

The review of this study was conducted based on SLR, and 59 articles were deeply
analyzed after removing the duplicates. In this paper, from the observations, five key
parameters, i.e., degradation, residual life distribution, workload strategy, upgradation, and
predictive maintenance, were identified and their individual contributions were analyzed
in the context of FUS. From this study, it is understood that the degradation rate will affect
the life and production rate of different configurations of FUS. Moreover, the upgradation
model and predictive maintenance, along with advanced analytics procedures of the
manufacturing systems, are valuable and enable the systems to run with higher production
rate, while increasing the life of a system. Furthermore, this study analyzed different
existing research and established three research objectives to explore and improve the
proposed FUS. The authors hope that this research can serve as a guideline for more
research and discussion of FUS towards degradation and upgradation models.
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Abstract: This research considers the problem of digital twin engineering in organizational and
technical systems. The theoretical and methodological basis is a fundamental scientific work in the
field of digital twins engineering and applied models. We use methods of a system approach, statisti-
cal analysis, operational research and artificial intelligence. The study proposes a comprehensive
technology (methodological approach) for digital twin design in order to accelerate its engineering.
This technology consists of design steps, methods and models, and provides systems synthesis
of digital twins for a complex system (object or process) operating under uncertainty and that is
able to reconfigure in response to internal faults or environment changes and perform preventive
maintenance. In the technology structure, we develop a simulation model using situational “what-if”
analysis and based on fuzzy logic methods. We apply this technology to develop the digital twin
prototype for a device at the creation life cycle stage in order to reduce the consequences of unpre-
dicted and undesirable states. We study possible unforeseen problems and device faults during its
further operation. The model identifies a situation as a combination of failure factors of the internal
and external environment and provides an appropriate decision about actions with the device. The
practical significance of the research is the developed decision support model, which is the basis
for control systems to solve problems related to monitoring the current state of technical devices
(instruments, equipment) and to support adequate decisions to eliminate their dysfunctions.

Keywords: digital twin; methods for modeling digital twins; system design of digital twins; artificial
intelligence methods

1. Introduction

Under the fourth industrial revolution, the driver of innovative development in
high-tech enterprises is the technology of a “digital twin” (DT), or a virtual replica of
a cyber-physical system, a virtual prototype of real processes or products. DTs, and more
generally, computer-aided design and simulation technologies, are intended to meet the
great challenge of creating complex engineering structures and technical systems that
are optimal by the setting of conflicting performance criteria. The potential benefits of
DT include the ability to perform what-if analyses and provide decision support by fast-
verifying designs and digital tests used in changing the product, process or its components.
DT applications contribute to the growth in the competitiveness of manufactured products
by enhancing the market processes by reducing the time for product development, testing
and implementation.

However, the organizational and methodological maintenance for DT development is
still not fully developed from the point of the monitoring and coordination of physical ob-
jects. Such a methodology requires a systematic approach for an object’s design taking into
account various aspects—functions performed, including the identification and solution of
operational problems, complexity, purpose, life cycle stages and other object features.

The aim of this paper is to develop organizational and methodological maintenance
for organizational and technical systems with a DT design, which provides a systematic
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synthesis of design stages, tools (methods and models) and results aimed at accelerated DT
engineering. To achieve the goal, the following problems are solved:

1. Generalization of approaches and methods for the modeling and designing of organi-
zational and technical systems’ DT.

2. Development of the system model and technology for setting up organizational and
technical systems’ DT design process.

3. Within the framework of DT model suggestions, development of the decision sup-
port model for diagnosing a device’s technical conditions and making decisions to
eliminate its malfunctions based on artificial intelligence and fuzzy logic methods.

This article is organized as follows. The second chapter examines and critically
summarizes methods for modeling digital twins. The advantages and disadvantages of
the methods are described, and the scope of their applicability is determined. The third
chapter presents the developed methodology for systems engineering and technology for
the designing of organizational and technical systems’ DTs. The fourth chapter reflects a
numerical example of the implementation of the developed technology and considers the
digital twin of a medical device. The fifth chapter is devoted to the decision making model
based on the fuzzy logic method, which is part of the digital twin. The results obtained by
the model are discussed. The conclusions give the main results of the study and outline
their theoretical and practical significance.

2. Literature Review

There are three groups of approaches and methods used for DT designs:

• modeling methods based on the mathematical modeling of physical processes (struc-
tural models) (Simulation-Based DT) [1–5];

• modeling methods based on data (Data-based DT) [6,7];
• hybrid methods (Hybrid DT) [8–11].

Features of the above methods are given in Table 1, which summarizes modeling
approaches by certain characteristics.

Table 1. Comparative analysis of the models for DTs of organizational and technical system designs.

Feature
Modeling Approach

Mathematical Modeling Data-Based Modeling Hybrid Modeling

Object
(system)

description

Describes the laws of functioning of
an object (process) and its connection

with the external environment.
The system behavior is modeled,
causal relationships and patterns

are identified.

It is built on the basis of available
empirical data using machine
learning tools. The modeling
problem is reduced to model

parameters selection and
some function composition

It is built on the basis of
the functioning

regularities and is
adjusted with empirical

data

Modeling
principle

White box model,
cause-and-effect modeling

Black box model,
correlation modeling The gray box model

Simulation and design
direction Top down Bottom up Top down, bottom up

Description
of

information certainty

Information uncertainty is controlled
by input data and accuracy of

modeling.
Description—deterministic,

stochastic

Probabilistic description
of information based on data

distributions in training samples

Deterministic,
stochastic

Modeling methods
Numerical methods, methods of
operations research, methods of

simulation and situational modeling

Statistical methods,
extrapolation methods, machine

learning methods, big data
analytics methods

Interdisciplinary
models

26



Future Internet 2022, 14, 248

Table 1. Cont.

Feature
Modeling Approach

Mathematical Modeling Data-Based Modeling Hybrid Modeling

Predictive capability Prediction in wide ranges of parameter
values described by the model

Difficulty in predicting rare events as
well as in conditions of incomplete

data and noisy information, as well as
outside of training samples

High predictive ability
within regular/

emergency situations

Priority
approach

to decision making and
management

Decision making is based
on an analysis of the overall

performance (efficiency) of the system.
Management decisions based on the

solution of inverse problems

Decision making is based on the
analysis of monitoring data and

diagnostics. Management decisions
are based on prediction and the

solving of direct problems

Solving both direct and
inverse control problems

Type of
control system

Deviation control,
adaptive control

Deviation control,
adaptive control

Deviation control taking
into account weak

environmental signals;
reflective control

System life cycle stage All stages Exploitation Growth, stability

Operation scheme Numerical simulation + sensors→
Data acquisition→IIoT platform

Sensors + IIoT platform→
data collection→data analytics

Mathematical Modeling +
Sensors→

Data Acquisition→
IIoT-platform→analytics

Tools Matlab Simulink, ANSYS, AnyLogic,
Ithink etc.

R, Python, Statictica.
GPSS etc.

Interdisciplinary
Platforms

A generalized modeling method is the mathematical modeling of the physics (func-
tioning principles) of an object/process. The physical model provides for the computer
modeling of physical processes as well as a description of their functioning and rela-
tionships with the external environment. The construction of such models in practice is
associated with the mathematical programming methods (operations research) [12], and
simulation modeling based on its various paradigms and approaches—system-dynamic,
discrete-event or agent-based modeling [13].

Mathematical modeling is a key component of the digital transformation. To create
models that are used to create system models, the DT can use the results of detailed
three-dimensional numerical calculations performed using interdisciplinary CAE solvers.
Depending on the purpose, mathematical models can be descriptive or optimizing. The
purpose of descriptive models is to establish the laws of change in model parameters. The
optimization model provides a search for the function’s extreme value under restrictions
using numerical methods. Depending on the certainty of the initial information degree
and taking into account the time factor, linear, non-linear, stochastic programming, game-
theoretic and fuzzy logic methods can be used.

Simulation models as a subclass of mathematical models are divided into static and
dynamic; deterministic and stochastic; discrete and continuous. In continuous simulation
models the variables change continuously, the state of the simulated system changes as a
continuous function of time, and as a rule, this change is described by systems of differential
equations. In discrete simulation models, variables change discretely at certain moments in
simulation time. The dynamics of discrete models are a process of transitioning from the
moment of the next event to the moment of the next event.

Data-driven modeling includes data mining, artificial intelligence, big data and ad-
vanced analytic methods. Each of these methods imposes special requirements on the
necessary computing resources. For example, data mining methods require large-scale
storage with high bandwidth for collecting and accessing analytical data, as well as a
high scalability for the computing system for processing them; machine learning methods
require nodes with installed graphics accelerators.

Models based on data mining are used to discover knowledge in the data previously
unknown, non-trivial, or practically useful and open to interpretation, necessary for making
strategically important decisions. Artificial intelligence and machine learning are effectively
used in digital warehouse forecasting. The use of these methods makes it possible to achieve
a level of predictive accuracy higher than that based on traditional simulation methods [13].
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The use of “big data” has its limitations, associated with incomplete or noisy data,
and difficulties in predicting rare events. Extrapolation methods do not allow for such
predictions. For some products, sensors are expensive to install and maintain, sensors are
prone to errors, failures can give incorrect readings, and the results can overwhelm users
with redundant information.

Without a structural (mathematical, physical) model, it is difficult to determine the
areas of technical devices where it is advisable to locate sensors. Collecting raw data
from sensors is only part of the modeling process. At the stage when the inverse problem
appears, that is, when it is necessary to restore the picture of what is happening on the
basis of data received from sensors without a mathematical model, this problem turns out
to be intractable, since most of the collected data are unusable “garbage”, of which it is
very difficult to select a meaningful part that adequately describes the object (process).

At the same time, the mathematical modeling of objects (processes) in combination
with data-based models provides more opportunities for forecasting than models based
only on machine learning technologies. Data-driven modeling can be applied at the
operational stage of an object’s (product) life cycle, when it is possible to obtain feedback
from it. Mathematical models based on physical processes are more promising for problems
with a situational analysis and for decision making under “what-if?” condition analysis.
In addition, hybrid models can be used in non-recurring situations where there are not
enough data to apply statistical methods.

On the basis of the additional information obtained during the operation stage, the
level of adequacy of the hybrid model increases, that is, the DT is trained and makes it
possible to further predict the level of possible deviations from normal modes and damage
to equipment, or evaluate its residual life [10].

It should be noted that at different stages of DT design, there is a different amount
of data about object. At the development stage, there are no data from a real object, since
there is no physical product (product) itself, and data about an object can only be obtained
on the basis of modeling physical processes that determine the creation and functioning
of a future product. As product data accumulate, the latter can increasingly be used to
build analytical models. A mathematical model based on physical processes can be created
before the stage of creating a real object, and can predict its behavior over a wide range
when the boundary conditions of the numerical simulation problem change.

A DT with a high level of adequacy should combine both physical process models and
data-driven models. Smart digital twins with intelligent controls should combine both of
these approaches, enhancing the benefits of each of them.

The use and scope of digital twins is very wide. They are used not only in heavy
engineering [14–16], in the automotive industry [17] and building [18], in the field of
nuclear energy [19], in the aerospace [20,21] and oil and gas industries [22], in architectural
design and creating smart cities [23], and agriculture, but they are also used to improve
operational efficiency in the production of consumer goods [5], the accuracy of diagnostics
and decision making in healthcare [24], to attract customers and customize services in
the financial sector [25] and in retail [26], for organizing logistics processes and supply
chains [27], and in regional and municipal management [28,29].

Demand for and the range of application of DTs is expanding. Since their develop-
ment and implementation are based on a number of rapidly developing technologies, the
development of digital storage directly depends on the growth of the capabilities of these
technologies. This is due to:

• The development of quantum technologies and the increase in the speed of computing
systems [30,31]. If general-purpose quantum computing is ever realized, there would
be a qualitative leap in the speed of hardware systems. This will make it possible to
perform numerical analyses based on already existing (and more complex) models
in a time acceptable for the operational interaction of a physical object and its digital
copy. Today, companies are working to develop and use quantum algorithms to
model complex physical processes. The transition to such technologies will speed up
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the solution of problems based on numerical modeling, providing for the required
accuracy of algorithms under the conditions of the available computing resources
(problems of multi-parameter optimization, etc.);

• The development of 5G and 6G technologies [32–34]. These technologies have higher
throughput, lower latency, and lower battery consumption of IoT sensors. This pro-
vides an increase in the speed of signal transmissions between the physical object and
its DT. The use of 5G networks will make it possible to construct virtual reality services
as part of digital twins and make available the virtual verification and validation of
finished products.

• The development of strong artificial intelligence technology [35,36] will make it possi-
ble to build a data center in which the role of a person in making managerial decisions
will be minimized. DTs will be able to provide decision making autonomously, coor-
dinate these decisions with other DTs, and perform self-testing and diagnostics with
subsequent troubleshooting. Such decision support systems based on digital data will
ensure the adoption of complex decisions in aggressive and dangerous environments
without the presence of a person.

3. Methodology for Systems Engineering and Technology for Digital Twin Design

Following [37], and dividing the behavior types of a real system into Predicted De-
sirable (PD), Predicted Undesirable (PU), Unpredicted Desirable (UD), and Unpredicted
Undesirable (UU), in this work, we build a Digital Twin Prototype that describes the pro-
totypical physical artifact. It contains the necessary components to describe and produce
a physical version that twins the virtual version. We consider the “create” life cycle stage
of the system (physical object). At the create life cycle stage of the system, the problem
is to foresee its possible states and develop a decision support system to neutralize the
consequences of unforeseen events.

While the traditional approaches have been to verify and validate the requirements,
or the predicted desirable (PD), and to eliminate the problems and failures, or the predicted
undesirable (PU), the Digital Twin prototype can help to identify and eliminate the un-
predicted undesirable (UU) states. This problem is solved on the basis of changing the
simulation parameters within the possible range, and investigates a variety of different
situations; it is possible to explore the variety of behavioral patterns of the system that can
lead to serious catastrophic problems. Such modeling will allow for designing the physical
object in a virtual space with a number of possibilities, and will significantly reduce the
consequences of UUs.

The purpose is to develop an approach for digital twin engineering of a physical
object (device) that will minimize undesirable unpredictable behavior. This will mitigate or
eliminate the negative consequences of such risks. To do this, we propose the following
methodology.

The process of DT construction is a multi-stage process and consists of the design
and engineering stage, digital modeling and technological testing (Figure 1). In this paper,
we consider only the first stage of design and engineering.

 

Figure 1. Digital twin and stages for its development.
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DT is defined as a system consisting of a physical object digital model and two-
way information links with the physical object or its components. DT is based on a
digital model in the form of mathematical and computer models, as well as documents
that describe the structure, functionality and behavior of a newly developed or operated
product (object) at various stages of its life cycle, for which, based on the results of digital
or other tests, an assessment of compliance with the requirements for the product was
carried out. In this case, a digital model is created using computer simulation software
and describes the structure, functions and behavior of the product being developed. The
content and functionality of the digital model depends on the stage of the product’s life
cycle. The conformity assessment of a digital product model generally includes verification
and validation procedures for mathematical and computer models. A computer model is
implemented in a computing environment and is a collection of data and program code
required to work with data. The computer model is based on a mathematical model, that is,
a model in which information about the modeling object is presented in a formalized form.

The organizational requirements to create a digital twin include the use of a software
and technological platform for digital twins, which should include: (a) computer model-
ing software controls; (b) project management tools: (c) tools for collecting, processing,
analyzing, visualizing, cataloging, storing, transferring computer models and computer
simulation results; (d) means of tracking all changes in design, technological solutions and
modifications of computer models, and options for engineering calculations; (e) means
of reporting results; (f) means of data protection and organization of joint work of project
participants in accordance with access rights; (g) computer simulation tools for planning the
usage of an object (product) for its intended purpose; (h) maintenance and repair support.

The organizational and methodological support of DT is not fully developed in terms
of the coordination of modeling and management processes including structural, functional
and informational modeling. To fill this gap, we propose to form a work plan by its stages
like triads: problem–content–results. These require a systems approach and design for all
life cycle stages of a physical object, including the identification and solution of emerging
problems in the process of its operation.

We develop the following technology, which provides organizational and methodolog-
ical support for the development and operation of DT for the organizational and technical
system and is presented in Figure 2. The proposed technology combines the stages of its
design, methods and models, and provides for the accelerated engineering of DT.

 

Figure 2. Technology for digital twin development (stage “Design and Engineering”).
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The proposed technology allows, firstly, to carry out a system analysis of a physi-
cal object, taking into account the uncertainty of the external environment on the basis
of heterogeneous tools for qualitative and quantitative analysis. Secondly, it forms an
adequate mathematical model of the physical object, taking into account the results of
the conceptualization stage, and develops a computer model and implements a test of it.
Thirdly, it can be the basis for DT engineering and forming a decision support system.

The operational scheme of the proposed technology consists of five steps. First, it is
necessary to identify the problems and describe the contradictions that arise in the devel-
opment and implementation of digital twins in the industry. Next, we should determine
the goals of the DT implementation, set problems based on the goal and describe the
project. At the second step, the decomposition (scanning) of physical object takes place.
The functions and properties as well as the technical parameters of the considered system
(equipment, device) are described. Further, its structural and functional model is built.
The third step is devoted to the analysis of the external environment of the functioning of
the technical system. Using STEP (Social–Technological–Economic–Political) and SWOT
(Strengths–Weaknesses–Opportunities–Threats) analysis, we determine important internal
and external factors and expertly evaluate their impact on the effectiveness of DT. At the
fourth step, mathematical and computer modeling tools and methods for DT designing
are chosen. In addition, a decision support system is being built based on the selected
mathematical model, and simulation experiments are being carried out.

4. Empirical Results

As an example of the implementation of the proposed technical device at the creation
life cycle stage—a neonatal intensive care incubator with microprocessor controls for
monitoring the parameters of temperature, oxygen concentration, air humidity, temperature
and body weight is considered. Application of the technology is described by the steps
defined in Figure 2.

Step 1. The incubator is designed for the nursing and intensive care of newborns,
including premature babies with critically low weight (from 500 g). The incubator provides
an adjustable heat supply, the required air humidity and oxygen concentration in the
children’s module, and body weight control.

Step 2. First, we form the structural and functional models of the device. The block
diagram is shown in Figure 3 and consists of a sensor system, control system, temperature
control system and oxygen supply. The observed parameters of the device are: (a) air
temperature; (b) skin temperature; (c) relative air humidity; (d) oxygen concentration;
(e) body weight.

The construction of a functional model allows for clearly fixing what processes are
carried out—what information objects are used when performing functions of various
levels of detail. The model shows the areas of responsibility of the process executors and
the course of the process itself, the relationships between processes and the results. The
functional model is the basis for identifying problems and weaknesses in the operation of
the device.

The functional model of the incubator is formed on the basis of the notation of system
modeling of business process IDEF0. Figure 4 shows the first level of decomposition and
reflects the main functions.
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Figure 3. Block diagram for the technical device.

 

Figure 4. Functional diagram for the device’s operation (first decomposition level).

Step 3. At the next step, the diagram of cause-and-effect factor relationships is formed
to identify possible causes of failures. Based on a qualitative analysis of similar devices
of this class [38], it can be assumed that the following six factors are the main sources of
incubator malfunction: (1) medical personnel; (2) technical staff; (3) external environment;
(4) sensor system; (5) control system; (6) power system. The diagram shows the decomposi-
tion of these factors in the form of problems that, acting in isolation or together, can lead to
incubator failure (Figure 5).
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Figure 5. Diagram of cause-and-effect factor relationships for the appearance of possible malfunctions.

Decision Support Model for Diagnosing the Technical Condition of Equipment Based on Fuzzy
Logic Methods

Steps 4, 5. Identified problems and possible causes of equipment failure show that
a number of factors and causes are described not in quantitative, but in qualitative form.
Therefore, a decision support system should use possibilities to use different measurement
scales of the simulated device properties. Problems of this type can be solved using artificial
intelligence methods and fuzzy logic models [39–41].

The category of technical condition depends on many factors, both qualitative and
quantitative. The developed model considers fault factors that are related to the internal
technical condition of the device itself, that is, faults associated with the baby module
engine, power cable, oxygen connection system, valve impeller system, humidity sensor,
temperature sensor of the main and additional, etc.

The implementation of the fuzzy modeling process is carried out by using the Fuzzy
Logic Toolbox module of the MATLAB software tool. Fuzzy inference is implemented
based on the Mamdani algorithm.

To diagnose the technical condition of a device, its qualitative description is made
using linguistic expressions (logical rules). Twenty-five input variables are used, reflecting
the state of the equipment subsystems, determining one of the four possible decisions on
the action with the equipment (output variable)—to take out of service, to repair, to conduct
additional preparation for operation, to keep in service (Table 2).

Table 2. Description of input and output variables.

Indicator Description Values

Input variables

I1 Adjusting height position of the baby unit Impossible, possible
I2 Adjusting oblique position of the baby unit Impossible, possible
I3 Baby module engine Fault, overheat, serviceable
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Table 2. Cont.

Indicator Description Values

I4 Baby unit switch mechanism Fault, correct
I5 Position height mechanism of the baby module Turns off, does not turn off
I6 Air temperature under the hood Low, normal, high
I7 Filter Dirty, clean

I8 Filter installation time More than three months,
less than three months

I9 Water in the tank of the humidifying system Absent, present
I10 Valve system Dirty, clean
I11 Indicator Red, network, flicker
I12 Power cable Not attached, attached
I13 Sound signal 3, 2, intermittent, continuous
I14 Fan impeller Installed wrong, installed correctly
I15 Fan Faulty, correct
I16 Display humidity sensor Faulty, correct
I17 Regulating humidity sensor Faulty, correct
I18 Main skin temperature sensor Fault, serviceable, not connected, connected
I19 Secondary skin temperature sensor Fault, serviceable, not connected, connected
I20 Air oxygen concentration Low, medium, high
I21 Oxygen connection system Fault, correct
I22 Control system Fault, good
I23 Obsolescence Absent, present
I24 Physical deterioration Not removable, removable
I25 Fusible link Burnt out, not burned out

Output variable

O1 Technical condition and operation with device
To take out of service, to repair,

to conduct additional preparation for operation,
to keep in service

Linguistic variables and the range of their possible values are described in Table 3.

Table 3. Description of linguistic variables.

Indicator Qualitative Meaning Range of Linguistic Values

I1, I2, I4, I5, I7, I8, I9, I10, I12, I14,
I15, I16, I17, I21, I22, I23, I25

“Impossible”, “Faulty”, “Not turn off”, “Dirty”,
“More than 3 months old”, “Missing”, “Not

connected”,
“Installed incorrectly”, “Cannot be repaired”

(0; 0.35; 0.7)

I1, I2, I4, I5, I7, I8, I9, I10, I12, I14,
I15, I16, I17, I21, I22, I23, I25

“Possible”, “Serviceable”, “Disconnecting”,
“Clean”,

“Less than 3 Months”, “Present”, “Attached”,
“Installed Properly”, “Retiring”

(0.4; 0.7; 1)

I3, I6, I11, I20. “Low”, “Red”, “Low”, “Fault” (0; 0.2; 0.4)
I3, I6, I11, I20 “Normal”, “Network”, “Medium”, “Overheat” (0.3; 0.5; 0.7)

I3, I6, I11, I20
“Increased”, “High”, “Central alarm”,

“Serviceability” (0.6; 0.8; 1)

I13, I18, I19, O1 “Take it out of service”, “Not operating” (0; 0.175; 0.35)
I13, I18, I19, O1 “Repair”, “Serviceable” (0.2; 0.375; 0.55)

I13, I18, I19, O1
“Intermittent”, “Perform additional preparation

for operation”, “Not connected” (0.4; 0.575; 0.75)

I13, I18, I19, O1 “Continuous”, “Keep in service”, “Connected”, (0.65; 0.825; 1)

The accumulation of the conclusion according to all the rules is carried out using the
operation of max-disjunction. The center of gravity method is used for defuzzification.
By implementing a fuzzy inference system at the defuzzification stage, we obtain a decision
about operation modes under conditions of known input data.
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The rule base for making decisions on the technical condition and action with the
device in the event of a malfunction is determined using a set of production rules of the
“If-Then” type (selectively):

• If (I1 is “possible”) and (I2 is “possible”) and (I3 is “serviceable”) and (I4 is “faulty”)
and (I5 is “not turn off”) then (O1 is “to repair”);

• If (I1 is “possible”) and (I2 is “possible”) and (I3 is “serviceable”) and (I4 is “service-
able”) and (I5 is “not turn off”) then (O1 is “to keep in service”);

• If (I7 is “clean) and (I9 is “present”) then (O1 is “to keep in service”);
• If (I11 is “red”) and (I13 is “2”) and (I20 is “low”) and (I21 is “serviceable”) then (O1 is

“to repair”);
• If (I20 is “average”) and (I21 is “serviceable”) then (O1 is “to keep in service”);
• If (I11 is “central alarm”) and (I13 is “3”) and (I20 is “medium”) and (I22 is “faulty”)

then (O1 is “to repair”);
• If (I23 is “present”) and (I24 is “non removable”) then (O1 is “to take out of service”);
• If (I23 is “missing”) and (I24 is “non recoverable”) then (O1 is “to take out of service”);
• If (I1 is “not possible”) and (I2 is “possible”) and (I3 is “overheating”) and (I4 is

“correct”) and (I5 is “shutdown”) then (O1 is “to conduct additional preparation
for operation”).

5. Discussion of Results

Using the developed technology and model, we conduct the situational “what-if”
analysis, and identify a device’s technical conditions and its possible faults. The model
delivers decisions in various situations, determined by a combination of input variables.
We consider multivariate situations with different input factor combinations. The following
types of situations are tested: (1) light network indicator is on, continuous signal sounds;
(2) red alarm indicator flashes, signal “3” sounds; (3) baby module does not function.
Results of the situational analysis are presented in Tables 4–6.

Table 4. Modeling results on Situation 1.

Situation 1:
If Indicator is “Network” and Sound Signal is

“Continuous” and . . .

Input Variables
Output Variable O1

I11 I13 I12 I25 Others

1-1. Power cable is “not connected” 0.5 0.8 0.2 0.7 0.7 0.59
1-2. Power cable is “connected” 0.5 0.8 0.8 0.8 0.7 0.92
1-3. Fusible link is “burnt out” 0.5 0.8 0.1 0.35 0.7 0.376

1-4. Fusible link is “not burnt out” 0.5 0.8 0.9 0.2 0.7 0.95

Table 5. Modeling results on Situation 2.

Situation 2:
If Indicator is “Flicker” and
Sound Signal is “3” and . . .

Input Variables
Output Variable O1

I11 I13 I12 I25 Others

2-1. Main skin temperature sensor is “not connected”,
secondary skin temperature sensor is “connected” 0.1 0.3 0.5 0.8 0.6 0.74

2-2. Main skin temperature sensor is “connected”,
secondary skin temperature sensor is “not connected” 0.1 0.3 0.9 0.6 0.6 0.65

2-3. Main skin temperature sensor is “not connected”,
secondary skin temperature sensor is “not connected” 0.1 0.3 0.7 0.55 0.6 0.574

2-4. Main skin temperature sensor is “fault”, secondary
skin temperature sensor is “fault” 0.1 0.3 0.1 0.2 0.6 0.454

2-5. Main skin temperature sensor is “serviceable”,
secondary skin temperature sensor is “fault” 0.1 0.3 0.35 0.1 0.6 0.89

2-6. Main skin temperature sensor is “fault”, secondary
skin temperature sensor is “serviceable” 0.1 0.3 0.3 0.4 0.6 0.95
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Table 6. Modeling results on Situation 3.

Situation 3:
Baby Module Does not Function

Input Variables
Output Variable O1

I1 I2 I3 I4 I5 Others

3-1. Position height mechanism of the baby module is
“not turn off”, baby unit switch mechanism is “fault”,

baby module engine is “serviceable”
1 1 0.7 0.2 0.4 0.5 0.464

3-2. Position height mechanism of the baby module is
“not turn off”, baby unit switch mechanism is “correct”,

baby module engine is “fault”
1 1 0.1 0.7 0.3 0.5 0.52

3-3. Position height mechanism of the baby module is
“not turn off”, baby unit switch mechanism is “fault”,

baby module engine is “fault”
1 1 0.3 0.5 0.2 0.5 0.34

3-4. Adjusting the height position of the baby unit is
“impossible”, baby module engine is “overheat” 0.25 1 0.5 0.9 1 0.5 0.62

3-5. Adjusting the height position of the baby unit is
“impossible”, baby module engine is “fault” 0.3 1 0.1 0.9 1 0.5 0.376

3-6. Adjusting the height position of the baby unit is
“impossible”, baby module engine is “serviceable” 0.1 1 0.8 0.9 1 0.5 0.75

3-7. Adjusting oblique position of the baby unit is
“impossible”, baby module engine is “fault” 1 0.5 0.2 1 0.8 0.5 0.45

3-8. Adjusting oblique position of the baby unit is
“impossible”, baby module engine is “overheat” 1 0.2 0.6 1 0.8 0.5 0.68

3-9. Adjusting oblique position of the baby unit is
“impossible”, baby module engine is “serviceable” 1 0.6 0.9 1 0.8 0.5 0.7

In the situation when the indicator is “network” and the sound signal is “continuous”,
a fusible link is “burnt out”, and the appropriate decision made by model is “to repair”.
In the situation when the indicator is “flicker”, the sound signal is “3” and the main
skin temperature sensor is “connected”, the secondary skin temperature sensor is “not
connected”, the decision is “to conduct additional preparation for operation”. If the position
height mechanism of the baby module is “not turn off”, the baby unit switch mechanism is
“fault”, and the baby module engine is “fault”, then the decision is “to take out of service”.

The developed decision making model for eliminating device malfunctions as a part
of its DT takes into account internal and external factors and allow for identifying the
malfunction problem and suggesting the appropriate decision to provide a regular mode of
device operation. In the framework of decision support systems of DT, the model provides
a reduction in device downtime, reduced repair costs and improved operational efficiency.

6. Conclusions

The focus of this paper is the complex process of DT construction. In this study,
we have given a comprehensive analysis of approaches and methods for organizational
and technical systems’ DT design. DT construction requires multi-stage technology, and
consists of design and engineering stage, digital modeling and technological testing. In this
paper, we consider the design and engineering stage.

The design and engineering stage is quite time consuming and includes steps to study
object properties and its connections with the external environment, describe its structure
and functioning, and identify possible problems in the process of functioning. In order to
organize the work at this stage and describe the operation of the device, its structure and
possible failures in the operation, this study proposes an approach to organizing the design
process. As a numerical example, we use the device at the design stage of its life cycle; we
study possible unforeseen problems during its further operation. Possible combinations of
failure factors of the internal and external environment are modeled, and the model based
on fuzzy rules is proposed for making management decisions in such situations.

It is shown that for complex organizational and technical systems functioning un-
der uncertainty, there is no comprehensive and universal methodological approach for
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organizing a DT design and its accelerated engineering. We consider the digital twin proto-
type for a device in the creation life cycle in order to reduce the number and consequences
of unpredicted undesirable states. The new theoretical results have been obtained over
investigation:

1. The technology for organizing systems’ DT design has been proposed. The technology
differs from others in that it combines design stages, methods and models, and
provides DT accelerated engineering.

2. The decision support model for diagnosing the technical condition of a technical
device has been developed. The model is based on methods of situational analysis
and fuzzy logic, and provides decision making under miscellaneous internal and
external factors having a quantitative or qualitative nature. The model increases the
accuracy and reliability of a decision support system and provides a synthesis of
effective decisions in various situations and combinations of heterogeneous factors.
Using observations of the object state, the model identifies, responds to changes and
provides a basis for making decisions about future actions.

The practical importance of the developed technology and the model is that they are
the foundation for decision support systems to observe the current state of technical devices
(instruments, equipment) and to develop adequate decisions to eliminate its malfunctions.
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Abstract: Grinding is a critical technology in the manufacturing of high added-value precision parts,
accounting for approximately 20–25% of all machining costs in the industrialized world. It is a
commonly used process in the finishing of parts in numerous key industrial sectors such as transport
(including the aeronautical, automotive and railway industries), and energy or biomedical industries.
As in the case of many other manufacturing technologies, grinding relies heavily on the experience
and knowledge of the operatives. For this reason, considerable efforts have been devoted to generating
a systematic and sustainable approach that reduces and eventually eliminates costly trial-and-error
strategies. The main contribution of this work is that, for the first time, a complete digital twin (DT) for
the grinding industry is presented. The required flow of information between numerical simulations,
advanced mechanical testing and industrial practice has been defined, thus producing a virtual mirror
of the real process. The structure of the DT comprises four layers, which integrate: (1) scientific
knowledge of the process (advanced process modeling and numerical simulation); (2) characterization
of materials through specialized mechanical testing; (3) advanced sensing techniques, to provide
feedback for process models; and (4) knowledge integration in a configurable open-source industrial
tool. To this end, intensive collaboration between all the involved agents (from university to industry)
is essential. One of the most remarkable results is the development of new and more realistic
models for predicting wheel wear, which currently can only be known in industry through costly
trial-and-error strategies. Also, current work is focused on the development of an intelligent grinding
wheel, which will provide on-line information about process variables such as temperature and forces.
This is a critical issue in the advance towards a zero-defect grinding process.

Keywords: cyber-physical systems; digital twin; advanced manufacturing; grinding process;
grinding wheel

1. Introduction and Literature Review

Digital solutions for improving the performance of high added-value manufacturing industries are
paving the way towards the digitalization of industrial companies. Machine-tool manufacturers have
taken the lead in the development of tools such as Celos or Savvy [1], which provide excellent platforms
for digitalization. Digitalization of the manufacturing sector is running parallel to current societal and
economic developments. In a survey conducted in 2020, Eurostat states that the manufacturing sector
employed more than 28.5 million people in the EU in 2017 [2], with this sector occupying third place in
the employment rankings [3]. CECIMO (The European Association of the Machine Tool Industries),
in its annual survey on machine-tool production, states that since January 2017, industrial production
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has grown by 3.0% in the EU [4], emphasizing the importance of the manufacturing sector in current
European society.

With regard to the development of manufacturing technologies in the EU, in a recent survey
carried out in 2019 [5], it is stated that “the production processes will become increasingly digital and
less mechanical”, whilst also pointing out that “Digitisation is expanding possibilities to: design and
test products or processes virtually (simulation); repair industrial apparatus remotely; and automate
the constant fine-tuning of processes.” A recent paper [6], studied in detail the main aspects and
technologies that will enable this revolution, along with the main application domains.

The grinding process is key in the manufacturing of high added value parts in many industrial
sectors such as aerospace, the automotive industry, and energy production [7]. Its characteristics
make it the best choice when smooth tolerances and good surface quality must be achieved in
difficult-to-machine materials. This fact is of critical importance in the previously mentioned industrial
sectors in which new materials are being developed every day, and the precision requirements continue
to become more demanding [8]. Thus, together with high-quality ground parts, the grinding process is
required to be highly productive whilst also meeting sustainability demands [9].

Grinding will also play a leading role in facing some of the challenges related to the development
of e-mobility (according to Bloomberg NEF, in 2040 there will be more electric vehicles than combustion
vehicles), the need to expand aircraft fleets (which, according to the Aerospace and Defense Industries
Association of Europe, is a sector that is expected to see considerable growth up until 2032) and the
new challenges to be met in terms of ensuring clean and sustainable energy systems [10]. Grinding is
adapting successfully to the current situation and, according to a recent report [11], the grinding wheel
market is predicted to show an annual growth rate of around 2.83% until 2025, particularly in the
niche market sectors such as those mentioned previously. This fact reflects the industrial importance of
the process and highlights the necessity for industrial companies to optimize their grinding processes
in order to be competitive in the 21st century global society. In spite of these encouraging data, it is
important to note that the global situation of the industry is continuously changing [12] and that
grinding technology must be prepared to be competitive within this framework.

Cyber-physical systems (CPS) will be critical for facing these new challenges. The digital twin
(DT) concept is now key for optimizing capabilities of manufacturing processes. In [12], this concept is
widely analyzed and applied to the manufacturing processes and it has been defined as “a mirror of
the real world that provides a means of simulating, predicting and optimizing physical manufacturing
systems and processes”. Usually, the DT is thought to be the same as a model or a theoretical simulation
of a given process, but it is, in fact, much more: A digital twin is a high-fidelity representation of the
operational dynamics of its physical counterpart, enabled by almost real-time synchronization between
the cyberspace and physical space [13]. In a recent work [14], a digital twin-based design platform
was validated with a case study of the hollow glass smart manufacturing system. The application
to lean production is addressed in [15], comparing the performance of three pull control strategies
by simulation. In both cases results prove the efficiency of the approach. However, no references
have been found to put the focus on the process itself, which is particularly critical in the case of the
grinding industry.

The selection of the grinding process is based on the fact that it is one of the most complex
machining processes, that involves a large number of variables that, to some extent, cannot be directly
controlled. For instance, tool wear in milling or turning is a well-known fact, with good predictive
models being currently available. It is also possible to know tool wear in turning or milling by using a
pre-setting tool station. However, the mechanisms of wheel wear in grinding are extremely complex
because of the composite nature of the grinding wheel. In fact, wheel wear is only indirectly known
in grinding, because of its effect on part damage. Also, problems such as grinding burn (because of
excessive contact temperatures) do not affect turning or milling. Many other aspects such as part
finishing, spark-off operations, etc. can be also cited. In summary, grinding is more heavily based on
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experience than other machining processes, for which models are available; therefore, it is an optimal
technology to test the impact of digital twins in the machining industry.

According to this, a number of elements must be included within a DT such as process modelling,
the characterization of grinding wheel mechanical behavior, and process monitoring.

1.1. Process Modelling

Process modelling is a classic research topic. One of the most popular modelling areas concerns
the thermal aspects of the grinding process due to their importance for impacting process performance.
In the 1970s Malkin and Anderson [16] developed the first systematic analysis of the thermal elements of
the grinding process, including simple analytical models based on classic heat conduction mathematical
solutions. Several analytical developments were made by various authors such as Snoeys et al. [17],
Lavine et al. [18,19], Ueda et al. [20], Rowe et al. [21,22], or even in the subsequent works of Malkin et al.,
summarized in [23]. The most recent research investigations into modelling the grinding process have
usually been based on numerical methods because these have a greater capacity to represent reality in
comparison with analytical approaches. In this case, these methods are not only focused on thermal
issues [23,24], but also on the characterization of material removal mechanisms [25,26], dressing process
performance [27] or methods to advance wheel surface modelling [28]. Doman et al. [29] conducted a
complete review of the most recent advances in grinding modelling. Although not a very recent study,
it perfectly summarizes the work that has been done, along with the work that needs to be carried out
in the future. The development of sound models for the grinding process is of critical importance,
because they allow a deeper understanding of the physical phenomena and the interactions among
complex process variables. However, it is a fact that process models commonly fail when they are
transferred to industrial workshops. In many cases, the causes for this situation is the complexity of
the models (that limits their practical application) and the lack of actual real-time information of the
machine and the process. Because of this, integration of such models in industrial practice requires a
new and complete approach.

1.2. Wheel Characterization

When developing a theoretical model of a real phenomenon, one of the key issues is the
characterization of the behavior of the modelled object. Classic models focus on the ground part and
traditional metal characterization methods are employed to characterize both thermal and mechanical
properties. Whilst this characterization is very useful for analyzing the influence of the process
parameters on the ground part, on several occasions this information is shown to be insufficient,
such as, for example, when wheel wear needs to be modelled or the behavior of a single abrasive
grain must be reproduced. In spite of the importance of characterizing the grinding wheel mechanical
behavior (e.g., for a wheel wear model) relatively few studies have addressed this issue. In regard to
including material characteristics in the models, Young’s modulus is used to characterize the elastic
behavior of the wheel. This classic approach involves associating the hardness of the wheel with
its Young’s modulus [30]. However, classic studies suggest that this hypothesis is not completely
correct [31] and using the same grade for different wheels can lead to variations in Young’s modulus
values. There is a lack of knowledge about this important issue in wheel modelling. Additionally,
relatively few studies can be found regarding the fracture behavior of the grinding wheel. Given the
nature of the grinding wheel structure, it should be regarded as a quasi-brittle material. In recent
years, various research groups have focused their efforts on developing discrete element method
(DEM) solutions to characterize the fracture behavior of these types of materials [32–34] Furthermore,
in [35,36] the authors characterize the fracture behavior of the grinding wheel using a DEM model,
they propose an experimental procedure for quantifying mechanical parameters (Brazilian test applied
to grinding wheels) [35], and they describe tests for characterizing the grinding wheel material [36].
Unfortunately, this approach has not been validated for the classical problem of wheel wear. It is

41



Future Internet 2020, 12, 159

therefore not possible to know if the models developed for the bond material correctly represent the
wear behavior of the wheel. Extensive work must still be done in this direction.

1.3. Process Monitoring

In the case of the grinding process, this is a complex issue due to the characteristics of the
process, including accounting for the small contact area between the tool (grinding wheel) and the
ground part, high temperature gradients in the contact region (103–104 K/s) [37], poor accessibility
to the contact zone, and the large quantity of grinding fluid over the working zone [23]. The easiest
parameter to be acquired is the power consumption of the grinding wheel spindle during the process.
Although this is a very useful parameter, it only reveals a relatively limited amount of information
about the process; thus additional sensors must be used in order to extract useful data from the
process. In this regard, a number of attempts have been made to measure grinding temperatures,
in both classic and new research works. In particular, the first attempts to measure temperatures with
thermocouples were carried out in the 1950s [38], but until the 1990s no reliable data were extracted [39].
Later, several developments were reported in various studies [40,41]—every thermocouple solution
presents an unsolvable problem, that is, the difficulty in following the high temperature gradients in
the grinding zone. In [42] a state-of-the-art classification of the thermal measuring devices used and
methods for material removal processes are presented. Considering these issues, a recent study by
Urgoiti et al. [37] developed a new two-color pyrometer-based optical fiber system for measuring the
temperature of the ground part. In [43] a new possibility was proposed for the in-process measurement
of workpiece temperature in cylindrical grinding. This last work, together with [44], in which the
authors propose wireless data transmission, could form the basis of future temperature acquisition
devices. Whilst the reviewed studies indicate that considerable efforts have been made to accurately
measure the grinding temperatures, there is no suitable technology for implementing this process in
an industrial setting. The importance of this issue is shown in [45], where a complete review was
carried out on the detection of grinding burn. Moreover, in their work, Teixeira et al. [46] propose an
additional method for detecting thermal damage in ground parts, which reinforces the current need
for thermal monitoring within the industry.

Another interesting parameter to be measured is wheel wear—traditionally defined by the
G-ratio—which represents the volumetric wear of the grinding wheel compared with the amount
of ground material. Although the information provided by this parameter is quite useful, again,
additional information about the evolution of the grinding wheel surface characteristics is required
for a full evaluation of the process performance. There have been considerable developments in
recent years in optical devices and software analysis [47–50] for evaluating the evolution of wear flat,
and usually the percentage of apparent wear flat area has been used as the wear parameter [23]. In [50]
an example of an image analysis application for detecting abrasive grain wear flat was presented.
Several attempts have been made to analyze the wear of new types of abrasives [51], which is a key
issue in the profile of modern grinding processes [52]. According to the works analyzed, in-machine
wheel wear measuring devices will be a fundamental aspect to be studied in future research works,
particularly for heavy-duty profile ground parts such as those to be analyzed in this project proposal.

It is also important to analyze the dynamic control of the grinding process. The influence of the
dynamic behavior on the quality of the ground part is quite important, since this is the main factor
responsible for the appearance of leads and micro leads in the ground surface, or the presence of long
wavelength surface marks. When analyzing dynamic behavior, the main problem to arise concerns
the difficulty to position the accelerometers near to the grinding zone, which limits the possibility
of achieving a highly accurate analysis, particularly when there is a need to analyze low amplitude
vibratory phenomena. Several works can be found in the literature, particularly in relation to the
avoidance of vibratory effects such as chatter [53–56] and the appearance of surface marks [56,57].
Accelerometers are still usually positioned relatively far away from the contact point between wheel and
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workpiece. Research work and technology development must be done to try to analyze displacement,
velocity and acceleration as close as possible to the contact zone.

Finally, in the field of process monitoring, acoustic emission analysis is worth noting; it represents
a powerful tool for extracting information about the performance of the process. In [58] a review
was conducted of studies regarding acoustic emission during monitoring of the grinding process.
Although this review is quite old, recently published works show that the use of acoustic emission in
grinding is a very useful tool to monitor the state of wheel wear [58], dressing tool behavior [59] or the
avoidance of thermal damage [60].

Analysis of the state-of-the-art and of the needs of the current grinding industry showed that
DT technology could be a very powerful tool to analyze, design and optimize industrial grinding
processes [12]. In [61], the authors made the first attempt to use a DT applied to the grinding process,
which focused on minimizing the environmental impact of the process by analyzing the wheel dressing
cycles. However, in this work there is not concern for critical issues such as wheel wear, occurrence of
part damage because of grinding burns, etc. It is therefore, a very limited approach to the complex
technology of grinding.

The main contribution of this work is that, for the first time, a complete digital twin (DT) for the
grinding industry is presented. The required flow of information between numerical simulations,
advanced mechanical testing and industrial practice has been defined, thus producing a virtual mirror
of the real process. The underlying hypothesis is that process knowledge is distributed between very
different agents (wheel manufacturer, machine-tool builders, end-users of the process, and fundamental
research groups), and it is necessary to effectively share this knowledge. The aim is to produce a
virtual mirror of the real process, integrating innovative monitoring systems (intelligent grinding
wheel) and original theoretical and experimental approaches for the grinding processes. First, the local
ecosystem in which the DT is being developed is presented. Section 3 presents the global structure
of the DT. This structure integrates four different high-tech layers. Each layer is described in detail,
and interactions between the layers are discussed. In this paper, an open platform is proposed that
is capable of integrating the knowledge generated in the other layers, thus becoming the actual user
interface of the DT.

2. A Local Ecosystem for a Viable DT for the Grinding Industry

The development of a transferable DT for industry can only be accomplished with the participation
of all agents involved in the research, development and industrialization of the technology. This section
describes the umbrella under which the concept of a DT for the grinding industry will be developed.
The DT is being developed in the Basque Country under the initiative of the Basque Digital Innovation
Hub (BDIH). The BDIH is a connected network of advanced manufacturing assets and services
infrastructure available to companies for training, research, testing and validation. This initiative offers
technological solutions, primarily for SMEs (Small and medium-sized enterprises), in order to meet
the challenges of Industry 4.0. To this end, a digitally linked network is created, which consists of a
public–private collaboration involving R&D infrastructures, pilot plants and specialized know-how
in different areas of advanced manufacturing. The aims of the network are to develop R&D projects,
the scaling of industrial projects, and the exhibition of cutting-edge technologies, whilst also serving as
a resource for training and acceleration of start-ups.

The BDIH is divided into six work areas that are classified according to knowledge and technology,
among which the Smart and Connected Machines—Digital Grinding Node is particularly noteworthy.
Grinding is a critical manufacturing process which combines the technological complexity of the process
with the high demand for quality and fine precision of the process. Moreover, grinding is usually the
last process in the manufacturing chain, which ensures the final quality of the manufactured parts.
In the Basque Country there are numerous companies that use the grinding process, along with many
grinding machine manufacturers. Therefore, in research centers and universities, various research
groups are focused on grinding, including the Grinding Process Research Group (UPV/EHU) and the
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IDEKO technological center. In this sense, the mission of the Digital Grinding Node is to collect and
coordinate the knowledge and assets of the main agents that develop their activity in the areas of
knowledge associated with grinding. Thereby, the Digital Grinding Node forms a multidisciplinary
distributed space in which Basque companies—particularly SMEs—can find solutions to their concerns
and needs for knowledge; the companies can take advantage of numerous developments within the
field of grinding that cover its multiple variants, including cylindrical, surface, centerless, vertical,
and horizontal grinding, and different types of workpiece materials, grinding wheels, and coolants.

3. A Proposed Transferable DT for the Grinding Industry

Due to its heavy dependence on non-systematic knowledge, which means that the process relies
on extensive trial-and-error strategies, the grinding sector needs to advance towards a complete,
transferable and ready-to-use digital twin (DT) through the integration of advanced models of the
grinding process, original simulative mechanical tests, and state-of-the-art process sensors.

Since at present grinding technology is linked to high-added value products and markets
(e.g., the aerospace, automotive, and railway sectors), by achieving this goal grinding companies
(machine-tool builders, wheel manufacturers and end-users of the process) will directly benefit from
zero-defect production strategies and reduced setup times in a process that is highly dependent on
trial-and-error experimental approaches.

The present work proposes a down-top approach composed of different layers of the DT.
The underlying hypothesis is based on the fact that process knowledge is distributed between very
different agents (wheel manufacturer, machine-tool builders, end-users of the process, and fundamental
research groups), and it is necessary to effectively share this knowledge. The aim is to produce a
virtual mirror of the real process, integrating innovative monitoring systems (intelligent grinding
wheel) and original theoretical and experimental approaches to grinding processes. The structure of
the DT is composed of four layers, which integrate: (1) scientific knowledge of the process (advanced
process modeling and numerical simulation); (2) characterization of materials through specialized
mechanical testing; (3) advanced sensing techniques, to provide feedback for the process models;
and (4) knowledge integration in a configurable open-source industrial tool. Each layer is described in
detail in the following paragraphs, while Figure 1 illustrates the general concept underlying the DT.

Figure 1. Structure and interaction between layers in the digital twin (DT) for the grinding industry.
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3.1. Layer 1: Numerical Modeling of Mechanical Behavior of the Grinding Wheel Using Advanced
Process Simulation

One of the main reasons for the lack of systematic knowledge about the behavior of the grinding
process itself, and in particular, the behavior of the abrasive tool (the grinding wheel) lies in the fact that
grinding wheels are manufactured by mixing abrasive and bonding agents along with certain other
components. Since the specification is not fully standardized, and there are no standard mechanical
tests for wheel characterization, the result is that it is very difficult to predict the behavior of a grinding
wheel for a given part. Although general rules can be followed, the industrial practice of leading wheel
manufacturers (Tyrolit, Saint-Gobain, etc.) for the optimum selection of a grinding wheel is absolutely
dependent on each specific application. Due to this fact, wheel manufacturers are continuously
developing new types of grinding wheels, mixing different grain shapes and sizes, inducing porosity
in an artificial way or changing the bonding material properties in order to meet the requirements of
new materials to be ground. The development of adequate grinding wheels is particularly important
when profile wheels must be used. In this case, whilst it is possible to find not only an optimal material
removal rate and good surface quality, it is also important to take into account minimum volumetric
wear of the wheel in order to achieve optimal geometrical accuracy. Although this is one of the
biggest challenges faced by the current industrial environment, very little information can be found in
the scientific literature regarding the link between grinding wheel characteristics and performance.
Consequently, in industrial practice, extensive trial-and-error experiments must be carried out in order
to determine the optimum parameters for a given application.

In order to meet this challenge, scientific process models can be considered as the deepest layer of
a DT of the process. As shown in the literature review, a number of different theoretical models of
the process are available. Unfortunately, few of these can be generalized to industrial practice due
to the unique specifications of each grinding wheel structure. Thus, a model of the process must
consider the interactions between the different components of the grinding wheel, namely abrasive
grits, bonding agents, and porosity, along with the interaction between the grinding wheel and the
part to be machined.

In the present study, the discrete element method (DEM) has been selected as the optimum
numerical tool for the modeling and simulation of the grinding process. DEM models allow for
reproducing the granular structure of the grinding wheel and the mechanical behavior of the bonding
bridges. Likewise, the development of cohesive beam models allows for the simulation of continuous
bodies using DEM [62]. The mechanical properties of the bonding agent can be replicated at a
microscopic level in such a way that the complete behavior of the wheel body can easily be reproduced,
regardless of its composition. The interactions with the part material can also be modelled; by doing
so, it is possible to predict critical process data such as the contact forces, temperatures and power
consumption. The effect of wheel rotation can also be included in the model, which is an interesting
contribution, particularly for high-speed grinding processes. These possibilities are supported by
preliminary investigations conducted by our research group, such as those published in [63,64].
Nonetheless, intensive research is currently being carried out to optimize DEM models and their
application to the DT of the grinding process. Figure 2 shows a DEM model of a high-performance
alumina grinding wheel. This model is being developed in collaboration with the wheel manufacturer
UNESA (Abrasivos UNESA, S.A.,Hernani, Spain) and the ENSAM of Bordeaux. In the present DEM
model the real grinding process is modelled. To this end, not only real grinding parameters are
considered, but also the composition of real grinding wheels. Firstly, a discrete grinding wheel is
built in order to characterize the mechanical behavior of the wheel, especially the behavior of the
bond. To this end the size of the discrete elements (DEs) are equal to the real abrasive grain, 350 μm.
This hypothesis allows the isolation of a bond fracture from the other types of wheel wear. In order to
minimize the computational cost of the model, instead of modelling the real grinding wheel, which has
an actual diameter of 400 mm, a wheel with a reduced diameter of 30 mm is modelled. Likewise,
the width and thickness are also reduced, and are modelled with a width of 5 mm and a wheel thickness
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of 10 mm. The modification of the external diameter of the grinding wheel also affects different process
parameters, such as the grinding wheel speed or the contact length, therefore the corresponding
parameter correlations are also performed. Moreover, the real contact length and the real contact time
is considered in the DEM model, therefore, a specific workpiece shape is designed. Finally, the real
force generated during grinding is introduced in the model with the aim of reproducing the mechanical
behaviour of the grinding wheel during the grinding process.

Figure 2. The discrete element method DEM model of a high-performance alumina grinding wheel.

Layer 1 only makes sense by interacting with the rest of the elements of the digital twin. Thus,
mechanical characterization of the properties of both the bonding agent and the abrasive grits requires
the development of advanced and specific mechanical tests for the wheel, which is considered a
quasi-brittle material. Layer 2 focuses specifically on those tests (see below), and the knowledge
generated in Layer 2 must immediately be made available to the DEM models that constitute Layer 1.
Moreover, the model can also be fed with actual data inputs from the industrial process (see Layer 3 in
this Section). Finally, the DT must address the classic problems of computationally heavy numerical
models, which are barely applicable to production-oriented industrial workshops. The integration
with Layer 4 is therefore a key issue for the DT.

3.2. Layer 2: Advanced Testing for Mechanical Characterization of Alumina Grinding Wheels

As previously mentioned, one of the drawbacks for mechanical characterization of grinding
wheels is their composition. The wheels are composed of abrasive grains, bonding agents and pores,
and each of these elements have different mechanical properties. Moreover, during grinding wheel
manufacturing, high temperatures are reached, which also modifies the mechanical properties of the
body. Whilst there are studies in the literature that have conducted in-depth analyses to determine the
mechanical properties of abrasive grains, there is no consensus regarding the values of such properties.
Moreover, the most recent trend has been to manufacture customized grinding wheels depending
on the particular needs of each case. Thus, for each application, there are differences in abrasive
and bonding materials and grain shape and wheel porosity, which hinders establishing a common
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characterization of grinding wheels. Therefore, following a review of the literature regarding the
mechanical properties and behavior of grinding wheels and composites, it is concluded that the best
option is to characterize the mechanical behavior of these grinding wheels as a concrete, and thus,
quasi-brittle material.

Quasi-brittle materials show a nonlinear response, combining a moderate strain hardening (which
is a characteristic of metallic materials) with sharp softening responses representative of brittle materials.
With regard to the behavior of the wheel binder during grinding, among the various mechanical
properties, particular attention is paid to the ultimate principal tensile strength σmax which will be
used as an input parameter in the DEM model proposed in Layer 1. Likewise, Young’s modulus
E and the Poisson coefficient ν are the two other input mechanical properties in the DEM model.
The development of precise experimental methods for determining these variables also becomes a
primary objective when developing the DT of the process. The behavior laws of the grinding wheel
material, assumed to be a quasi-brittle material, must be determined by mechanical tests such as the
Brazilian test, which is described in the following paragraphs.

In the reviewed literature, the Brazilian tests are carried out using a disk, as shown in Figure 3a.
However, this specimen configuration does not take into account the shape of the grinding wheel,
which has a central hole. Moreover, the shape of the specimen determines the beginning of crack
propagation. Therefore, new specimens are designed and manufactured as shown in Figure 3b.
The specimen presents a central hole and flat surfaces to secure the specimen and to impose the load.

Figure 3. A disk specimen configuration used for (a) conventional Brazilian tests and (b) modified
Brazilian tests.

The modified Brazilian tests need to include digital image correlation (DIC) analysis and
fractography in order to thoroughly analyze crack propagation together with the quantification
of ultimate principal tensile strength σmax. The values of ultimate tensile strengths varied between 60
and 85 MPa for the different specimens that were tested. The values were archived, as this information
is critical for feeding the DEM simulation model presented in Layer 1. The ultimate tensile strength
determines the fracture of the bonding agent and thus the wear of the grinding wheel.

3.3. Layer 3: A New Generation of Grinding Process-Monitoring Systems: Intelligent Grinding Process

Numerical models (as described in Layer 1) and simulative testing (Layer 2) are fundamental for
obtaining a better understanding of the grinding process. However, these are more strongly related to
the scientific knowledge of the process and do not allow for efficiently considering a large number of
weaker interactions related to actual machining. Some examples of these interactions in the grinding
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process include the influence of the workpiece holding, the effect of coolant flow, and the presence of
vibrations. Eventually, extremely complex and heavy process models could incorporate these types
of effects, but then the industrial applications would be even more limited. To solve this problem,
a digital twin must be able to collect actual and in-process information about process variables and
incorporate this information, in order to update existing models.

Due to the nature of the grinding process, current instrumentation is very limited. The interaction
between wheel and workpiece occurs at very high contact speeds (in many cases, higher than 100 m/s),
with extremely high local contact pressure (1–2 GPa), whilst generating local temperatures close to
the melting temperature of the component material. In this case, temperature gradients are extremely
steep, which makes the process of temperature measurement very difficult.

All these problems must be addressed by the DT of the grinding process. Intensive research
work is being conducted to set up advanced instrumentation that can provide the existing models
with useful information. Thus, power measurement has already been implemented in grinding
machines, and the information collected was made available to the user through the GREAT software
(see Layer 4). Since too high a contact temperature may ruin an expensive component, a sensorized
grinding wheel is currently being developed for actual temperature measurement. This wheel will
use two-color pyrometry and a wireless connection with Layer 4, so that the machine user can access
real-time information about the effect of grinding temperatures on the component being manufactured.
Sensors are also being developed to control the dynamic behavior of the wheel. In this case, the use
of virtual sensors could represent a potentially interesting alternative if combined with artificial
intelligence models from which useful indicators can be extracted. Finally, optical sensors for the
control of wheel effective topography and contact conditions will also be integrated in Layer 3,
including micro cameras and image recognition software to identify both volumetric wear and the
appearance of wear flat in abrasive grains.

3.4. Layer 4: Grinding Research Assisting Tool (GREAT)

Computational models of the process, such as those described in Layer 1, provide a more in-depth
understanding about the large number of interactions among process variables. However, these types
of simulations are time-consuming, and usually require high-performance hardware to run and speed
up the model computations. These factors drastically limit the industrial application of scientific
models. Moreover, the use of platforms such as the previously mentioned GranOO (which is not
a commercial software) requires trained and specialized researchers that can define the boundary
conditions and simplify hypotheses. Clearly, this is not easily achievable in a machine-tool workshop.

With the aim of integrating all the developed knowledge within an instrument that can be used on
the shop floor, an intuitive and easy-to-use software tool is being developed. The software, called GREAT
(Grinding Research Assisting Tool, Figure 4) is already in its first version, and incorporates only a
limited number of apps that help the user in the task of process optimization. The apps developed are
listed here:

• Power acquisition
• Power analysis
• Specific energy analysis
• Power consumption predictor
• Grinding burn analysis
• Wheel-material data base
• Wheel wear measurement
• Dresser wear measurement
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Figure 4. Layer 4: The Grinding Research Assisting Tool (GREAT).

GREAT is being developed in Python, and it is based on a simple user-interface that assists
the user during grinding operations. In order to do so, the results obtained from numerical models
developed in Layer 1 must be converted into a set of tables and equations that will be stored in the
wheel–material database (see Figure 4). Data for the specific grinding wheel are fed from Layer 2.
The reduced models are correlated with the current grinding operation through the interaction with
Layer 3, since the GREAT software must be able to receive data from the different sensors implemented
both on the machine and on the grinding wheel. Thus, at the current stage it is possible to integrate
actual power consumption data (power acquisition module in Figure 4). Since the software is open and
completely scalable, in the near future it is anticipated that data from temperature sensors, force gauges,
accelerometers and other advanced instrumentation will be included. Moreover, one of the advantages
of this software is the developed user-friendly interface, which is intuitive and easy to use. This feature
makes GREAT a suitable tool for both industrial and academic environments.

It is worth noting that the DT is not a static concept. As new grinding apps are continuously
optimized, they will be incorporated into the DT and updated in GREAT. In this regard, GREAT is
also conceived as an open user interface. Existing knowledge will be presented in a user-friendly
application, although the scientific fundamentals can be complex and deep, as explained in Layers 1 to
3. For instance, it is expected that new modules for wheel wear quantification (based on optical sensors
to be developed in Layer 3), measurement of the mechanical properties of the wheel (to be developed in
Layer 2), monitoring of dressing devices (to be developed in Layer 2), and others will become available
and incorporated in the near future. Finally, the aim is to have a “cloud system” accessible to the end
user via the internet so that they are able to receive assistance according to their particular needs.

4. Conclusions

This paper presents a general approach to the development of a digital twin that can be effectively
applied in the grinding industry. In view of both the existing knowledge and advances in technology,
the following conclusions can be drawn:

- If the DT is to be useful for industry whilst serving as a virtual mirror of the manufacturing
process, interaction between industry, applied research and fundamental research is essential.
This means that industrial companies, research centers and university groups must share
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knowledge, facilities and case studies for the application. The Digital Grinding Node, as part of
the Basque Digital Innovation Hub, thus provides the optimum ecosystem for this development.

- The new approach to the DT for the grinding industry involves the interaction between four layers,
namely process simulation, advanced testing of materials, state-of-the-art process monitoring and
finally, an easy-to-use open interface that can be transferred to SMEs.

- Fundamental process simulation must go a step further and become a useful tool, not only for a
better understanding of complex physical phenomena, but to reduce process setup times and
to eliminate trial-and-error strategies typical of the manufacturing industries. For the DT of the
grinding process presented in this paper, DEM modeling has been considered as the optimum
simulation method, given the characteristics of the abrasive wheel material.

- Process simulation only becomes realistic when it is fed with actual and reliable data. Therefore,
further efforts must be made within the fields of mechanical testing of grinding wheels and
process monitoring using advanced sensors. Extensive research work will need to be devoted to
both issues in the coming years.

- The proposed DT is not a closed tool, instead it is open so that it can incorporate new technologies
for data acquisition and processing, new types of mechanical tests, and of course, new wheel
materials and machine capabilities. Still, the proposal will be valid, because it incorporates the
key factors for the grinding process.

- Finally, the knowledge developed must be effectively transferred to SMEs. Since heavy
fundamental models, which involve the use of complex programs and costly hardware are
not feasible for workshops, the development of easy-to-use applications for process optimization
is of primary importance. In this paper, an open platform is proposed that is capable of integrating
the knowledge generated in the other layers, thus becoming the actual user interface of the DT.

Author Contributions: Conceptualization, J.A.S.; formal analysis, I.P. and R.L.; funding acquisition, R.L.;
investigation, L.G.; project administration, J.A.S.; resources, R.L.; software, I.P.; supervision, J.A.S.; validation, R.L.;
writing—review and editing, L.G. All authors have read and agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge the funding support received from the Spanish Ministry of
Economy and Competitiveness and the FEDER operation program for funding the project “Scientific models
and machine-tool advanced sensing techniques for efficient machining of precision components of Low-Pressure
Turbines” (DPI2017-82239-P).

Acknowledgments: The authors gratefully acknowledge the Basque Digital Innovation Hub (BDIH) initiative of
the Basque Government. The research work has been carried out in facilities of the Digital Grinding Node.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Savvy Data Sistems. Available online: https://www.savvydatasystems.com/es/inicio (accessed on
21 September 2020).

2. Eurostat-1. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Manufacturing_
statistics_-_NACE_Rev._2 (accessed on 21 September 2020).

3. Eurostat-2. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN-20171024-1
(accessed on 21 September 2020).

4. CECIMO. Available online: https://www.cecimo.eu/wp-content/uploads/2019/03/CECIMO_Statistical_
Toolbox_3_2018.pdf (accessed on 21 September 2020).

5. EPMA. Available online: https://www.epma.com/dm-industry-news/833-eurofound-report-future-of-
manufacturing-in-europe-april-2019/file (accessed on 21 September 2020).

6. Pilloni, V. How data will transform industrial processes: Crowdsensing, crowdsourcing and big data as
pillars of industry 4.0. Future Internet 2018, 10, 24. [CrossRef]

7. Klocke, F.; Soo, S.L.; Karpuschewski, B.; Webster, J.A.; Novovic, D.; Elfizy, A.; Axinte, D.A.; Tönissena, S.
Abrasive machining of advanced aerospace alloys and composites. CIRP Ann. 2015, 64, 581–604. [CrossRef]

50



Future Internet 2020, 12, 159

8. Miao, Q.; Ding, W.; Kuang, W.; Yang, C. Comparison on grindability and surface integrity in creep feed
grinding of GH4169, K403, DZ408 and DD6 nickel-based superalloys. J. Manuf. Process. 2020, 49, 175–186.
[CrossRef]

9. Souza, A.M.; da Silva, E.J. Global strategy of grinding wheel performance evaluation applied to grinding of
superalloys. Precis. Eng. 2019, 57, 113–126. [CrossRef]

10. Sustainable Development. Available online: https:/www.un.org/sustainabledevelopment/energy/
(accessed on 21 September 2020).

11. Global Grinding Wheels Sales Market Report 2019. 2019. Available online: https://www.giiresearch.com/
report/qyr458117-global-grinding-wheels-sales-market-report.html (accessed on 21 September 2020).

12. Lu, Y.; Liu, C.; Wang, K.I.-K.; Huang, H.; Xu, X. Digital Twin-driven smart manufacturing: Connotation,
reference model, applications and research issues. Robot. Comput. Integr. Manuf. 2020, 61, 101837. [CrossRef]

13. Schleich, B.; Anwer, N.; Mathieu, L.; Wartzack, S. Shaping the digital twin for design and production
engineering. CIRP Ann. 2017, 66, 141–144. [CrossRef]

14. Liu, Q.; Leng, J.; Yan, D.; Zhang, D.; Wei, L.; Yu, A.; Zhao, R.; Zhang, H.; Chen, X. Digital twin-based
designing of the configuration, motion, control, and optimization model of a flow-type smart manufacturing
system. J. Manuf. Syst. 2020. [CrossRef]

15. Huang, G.; Chen, J.; Khojasteh, Y. A cyber-physical system deployment based on pull strategies for
one-of-a-kind production with limited resources. J. Intell. Manuf. 2020. [CrossRef]

16. Malkin, S. Thermal aspects of grinding Part 2: Surface Temperatures and Workpiece Burn. J. Eng. Ind. 1974,
96, 1184–1191. [CrossRef]

17. Snoeys, R.; Leuven, K.U.; Maris, M.; Wo, N.F.; Peter, J. Thermally induced damage in grinding. CIRP Ann.
Manuf. Technol. 1978, 27, 141–144.

18. Lavine, A.S.; Malkin, S.; Jen, T.C. Thermal Aspects of Grinding with CBN Wheels. CIRP Ann. 1989, 38,
557–560. [CrossRef]

19. Lavine, A.S.; Jen, T.-C. Coupled heat transfer to workpiece, wheel, and fluid in grinding, and the occurrence
of workpiece burn. Int. J. Heat Mass Transf. 1991, 34, 983–992. [CrossRef]

20. Ueda, T.; Sato, M.; Nakayama, K. Cooling Characteristics of Cutting Grain in Grinding. CIRP Ann. 1996, 45,
293–298. [CrossRef]

21. Rowe, W.B.; Morgan, M.N.; Qi, H.S.; Zheng, H.W. The Effect of Deformation on the Contact Area in Grinding.
CIRP Ann. 1993, 42, 409–412. [CrossRef]

22. Rowe, W.B.; Black, S.C.E.; Mills, B.; Qi, H.S.; Morgan, M.N. Experimental Investigation of Heat Transfer in
Grinding. CIRP Ann. 1995, 44, 329–332. [CrossRef]

23. Malkin, S.; Guo, C. Grinding Technology—Theory and Applications of Machining with Abrasives; Industrial Press
Inc.: New York, NY, USA, 2008.

24. Wang, Z.; Yu, T.; Wang, X.; Zhang, T.; Zhao, J.; Wen, P.H. Grinding temperature field prediction by meshless
finite block method with double infinite element. Int. J. Mech. Sci. 2019, 153–154, 131–142. [CrossRef]

25. Anderson, D.; Warkentin, A.; Bauer, R. Experimental and numerical investigations of single abrasive-grain
cutting. Int. J. Mach. Tools Manuf. 2011, 51, 898–910. [CrossRef]

26. Zhang, Y.; Fang, C.; Huang, G.; Xu, X. Modeling and simulation of the distribution of undeformed chip
thicknesses in surface grinding. Int. J. Mach. Tools Manuf. 2018, 127, 14–27. [CrossRef]

27. Pombo, I.; Cearsolo, X.; Sánchez, J.A.; Cabanes, I. Experimental and numerical analysis of thermal phenomena
in the wear of single point diamond dressing tools. J. Manuf. Process. 2017, 27, 145–157. [CrossRef]

28. Liu, W.; Deng, Z.; Shang, Y.; Wan, L. Parametric evaluation and three-dimensional modelling for surface
topography of grinding wheel. Int. J. Mech. Sci. 2019, 155, 334–342. [CrossRef]

29. Doman, D.A.; Warkentin, A.; Bauer, R. Finite element modeling approaches in grinding. Int. J. Mach.
Tools Manuf. 2009, 49, 109–116. [CrossRef]

30. Klocke, F. Manufacturing Processes 2: Grinding, Honing and Lapping; Springer: Berlin/Heidelberg,
Germany, 2009.

31. Matsuno, Y.; Yamada, H. Elastic moduli of grinding wheel based on a simplified model. J. Ceram. Assoc. Jpn.
1982, 90, 320–325. [CrossRef]

32. Tarokh, A.; Fakhimi, A. Discrete element simulation of the effect of particle size on the size of fracture process
zone in quasi-brittle materials. Comput. Geotech. 2014, 62, 51–60. [CrossRef]

51



Future Internet 2020, 12, 159

33. Ma, Y.; Huang, H. A displacement-softening contact model for discrete element modeling of quasi-brittle
materials. Int. J. Rock Mech. Min. Sci. 2018, 104, 9–19. [CrossRef]

34. André, D.; Girardot, J.; Hubert, C. A novel DEM approach for modeling brittle elastic media based on distinct
lattice spring model. Comput. Methods Appl. Mech. Eng. 2019, 350, 100–122. [CrossRef]

35. Li, H.; Yu, T.; Zhu, L.; Wang, W. Modeling and simulation of grinding wheel by discrete element method and
experimental validation. Int. J. Adv. Manuf. Technol. 2015, 81, 1921–1938. [CrossRef]

36. Li, H.; Yu, T.; Zhu, L.; Wang, W. Analysis of loads on grinding wheel binder in grinding process: Insights
from discontinuum-hypothesis-based grinding simulation. Int. J. Adv. Manuf. Technol. 2015, 78, 1943–1960.
[CrossRef]

37. Urgoiti, L.; Barrenetxea, D.; Sánchez, J.A.; Pombo, I.; Álvarez, J. On the influence of infra-red sensor in the
accurate estimation of grinding temperatures. Sensors 2018, 18, 4134. [CrossRef]

38. Littman, W.E. The Influence of the Grinding Process on the Structure of Hardened Steel. Ph.D. Thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1953.

39. Kohli, S.; Guo, C.; Malkin, S. Energy Partition to the Workpiece for Grinding with Aluminum Oxide and
CBN Abrasive Wheels. J. Eng. Ind. 1995, 117, 160–168. [CrossRef]

40. Xu, X.P.; Yu, Y.Q.; Xu, H.J. Effect of grinding temperatures on the surface integrity of a nickel-based superalloy.
J. Mater. Process. Technol. 2002, 129, 359–363. [CrossRef]

41. Lefebvre; Vieville, P.A.; Lipinski, P.; Lescalier, C. Numerical analysis of grinding temperature measurement
by the foil/workpiece thermocouple method. Int. J. Mach. Tools Manuf. 2006, 46, 1716–1726. [CrossRef]

42. Davies, M.A.; Ueda, T.; M’Saoubi, R.; Mullany, B.; Cooke, A.L. On The Measurement of Temperature in
Material Removal Processes. CIRP Ann. 2007, 56, 581–604. [CrossRef]

43. Baumgart, C.; Heizer, V.; Wegener, K. In-process workpiece based temperature measurement in cylindrical
grinding. Procedia CIRP 2018, 77, 42–45. [CrossRef]

44. Brinksmeier, E.; Eckebrecht, J.; Wilkens, A. Wheel based temperature measurement in grinding. Adv. Mater. Res.
2011, 325, 3–11. [CrossRef]

45. He, B.; Wei, C.; Ding, S.; Shi, Z. A survey of methods for detecting metallic grinding burn. Measurement 2019,
134, 426–439. [CrossRef]

46. Teixeira, P.H.O.; Rego, R.R.; Pinto, F.W.; Gomes, J.d.; Löpenhaus, C. Application of Hall effect for assessing
grinding thermal damage. J. Mater. Process. Technol. 2019, 270, 356–364. [CrossRef]

47. Oliveira, J.F.G.; Coelho, R.T.; Neto, C.K. Development of an Optical Scanner To Study Wear on the Working
Surface of Grinding Wheels. Mach. Sci. Technol. 1999, 3, 239–253. [CrossRef]

48. Godino, L.; Pombo, I.; Sanchez, J.A.; Alvarez, J. On the development and evolution of wear flats in
microcrystalline sintered alumina grinding wheels. J. Manuf. Process. 2018, 32, 494–505. [CrossRef]

49. Xu, L.; Niu, M.; Zhao, D.; Xing, N.; Fan, F. Methodology for the immediate detection and treatment of wheel
wear in contour grinding. Precis. Eng. 2019, 60, 405–412. [CrossRef]

50. Lachance, S.; Bauer, R.; Warkentin, A. Application of region growing method to evaluate the surface condition
of grinding wheels. Int. J. Mach. Tools Manuf. 2004, 44, 823–829. [CrossRef]

51. Nadolny, K. Wear phenomena of grinding wheels with sol–gel alumina abrasive grains and glass–ceramic
vitrified bond during internal cylindrical traverse grinding of 100Cr6 steel. Int. J. Adv. Manuf. Technol. 2015,
77, 83–98. [CrossRef]

52. Miao, Q.; Ding, W.; Kuang, W.; Xu, J. Tool wear behavior of vitrified microcrystalline alumina wheels in
creep feed profile grinding of turbine blade root of single crystal nickel-based superalloy. Tribol. Int. 2020,
145, 106144. [CrossRef]

53. Barrenetxea, D.; Marquinez, J.I.; Bediaga, I.; Uriarte, L. Continuous workpiece speed variation (CWSV):
Model based practical application to avoid chatter in grinding. CIRP Ann. 2009, 58, 319–322. [CrossRef]

54. Ahrens, M.; Fischer, R.; Dagen, M.; Denkena, B.; Ortmaier, T. Abrasion Monitoring and Automatic Chatter
Detection in Cylindrical Plunge Grinding. Procedia CIRP 2013, 8, 374–378. [CrossRef]

55. Yan, Y.; Xu, J.; Wiercigroch, M. Non-linear analysis and quench control of chatter in plunge grinding. Int. J.
Non-Linear Mech. 2015, 70, 134–144. [CrossRef]

56. Liu, Y.; Wang, X.; Lin, J.; Kong, X. An adaptive grinding chatter detection method considering the chatter
frequency shift characteristic. Mech. Syst. Signal Process. 2020, 142, 106672. [CrossRef]

57. Merino, R.; Barrenetxea, D.; Munoa, J.; Dombovari, Z. Analysis of the beating frequencies in dressing and its
effect in surface waviness. CIRP Ann. 2019, 68, 353–356. [CrossRef]

52



Future Internet 2020, 12, 159

58. Jayakumar, T.; Mukhopadhyay, C.K.; Venugopal, S.; Mannan, S.L.; Raj, B. A review of the application of
acoustic emission techniques for monitoring forming and grinding processes. J. Mater. Process. Technol. 2005,
159, 48–61. [CrossRef]

59. Badger, J.; Murphy, S.; O’Donnell, G.E. Acoustic emission in dressing of grinding wheels: AE intensity,
dressing energy, and quantification of dressing sharpness and increase in diamond wear-flat size. Int. J.
Mach. Tools Manuf. 2018, 125, 11–19. [CrossRef]

60. Yang, Z.; Yu, Z.; Xie, C.; Huang, Y. Application of Hilbert–Huang Transform to acoustic emission signal for
burn feature extraction in surface grinding process. Measurement 2014, 47, 14–21. [CrossRef]

61. Kannan, K.; Arunachalam, N. A Digital Twin for Grinding Wheel: An Information Sharing Platform for
Sustainable Grinding Process. J. Manuf. Sci. Eng. 2019, 141. [CrossRef]

62. André, D.; Iordanoff, I.; Charles, J.L.; Néauport, J. Discrete element method to simulate continuous material
by using the cohesive beam model. Comput. Methods Appl. Mech. Eng. 2012, 213–216, 113–125. [CrossRef]

63. Osa, J.L.; Sánchez, J.A.; Ortega, N.; Iordanoff, I.; Charles, J.L. Discrete-element modelling of the grinding
contact length combining the wheel-body structure and the surface-topography models. Int. J. Mach.
Tools Manuf. 2016, 110, 43–54. [CrossRef]

64. Godino, L.; Pombo, I.; Girardot, J.; Sanchez, J.A.; Iordanoff, I. Modelling the wear evolution of a single
alumina abrasive grain: Analyzing the influence of crystalline structure. J. Mater. Process. Technol. 2020,
277, 116464. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

53





Citation: Fior, J.; Cagliero, L.; Garza,

P. Leveraging Explainable AI to

Support Cryptocurrency Investors.

Future Internet 2022, 14, 251. https://

doi.org/10.3390/fi14090251

Academic Editors: Leonilde Varela

and Goran D. Putnik

Received: 26 June 2022

Accepted: 20 August 2022

Published: 24 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Leveraging Explainable AI to Support Cryptocurrency Investors

Jacopo Fior *, Luca Cagliero and Paolo Garza *

Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca Degli Abruzzi, 24,
10129 Torino, Italy
* Correspondence: jacopo.fior@polito.it (J.F.); paolo.garza@polito.it (P.G.); Tel.: +39-011-090-7084 (J.F.)

Abstract: In the last decade, cryptocurrency trading has attracted the attention of private and
professional traders and investors. To forecast the financial markets, algorithmic trading systems
based on Artificial Intelligence (AI) models are becoming more and more established. However, they
suffer from the lack of transparency, thus hindering domain experts from directly monitoring the
fundamentals behind market movements. This is particularly critical for cryptocurrency investors,
because the study of the main factors influencing cryptocurrency prices, including the characteristics
of the blockchain infrastructure, is crucial for driving experts’ decisions. This paper proposes a new
visual analytics tool to support domain experts in the explanation of AI-based cryptocurrency trading
systems. To describe the rationale behind AI models, it exploits an established method, namely
SHapley Additive exPlanations, which allows experts to identify the most discriminating features
and provides them with an interactive and easy-to-use graphical interface. The simulations carried
out on 21 cryptocurrencies over a 8-year period demonstrate the usability of the proposed tool.

Keywords: quantitative trading; cryptocurrencies; blockchain

1. Introduction

Cryptocurrencies are digital assets whose transfers and accounting are cryptograph-
ically estabilished through the blockchain [1]. Even though they are not backed by any
physical asset, they have become popular financial assets for online trading. After bitcoin,
which is the first and most famous cryptocurrency [2], many different cryptocurrencies
have been created, thus increasing the options to invest in cryptoassets significantly.

Following the recent trends on algorithmic trading, many research efforts have been
devoted to designing cryptocurrency trading systems based on Machine Learning (ML) and
Artificial Intelligence (AI). Existing methods rely on algorithms that span from classical clas-
sification and regression methods (e.g., [3–7]) to Deep Learning architectures (e.g., [8–11]).
The aim is to learn predictive models from historical data related to cryptocurrency assets
(e.g., markets, blockchain-related data, news) and apply them to forecast the future price
directions. A recent survey on cryptocurrency trading can be found in [12].

Although Machine Learning-based solutions have shown to achieve better perfor-
mance than simpler heuristic methods [12], they suffer from the lack of transparency. In
fact, most state-of-the-art classification models, including all the Neural Network-based
approaches, are not explainable; i.e., domain experts cannot gain insights into the model
decisions. Cryptocurrency markets can be influenced by a large variety of factors, including
the underlying market trends, the characteristics of the blockchain, and the sentiment of
financial investors on the virtual assets. This prompts the need for new approaches aimed
at explaining ML reasoning in cryptocurrency trading.

This work focuses on leveraging an established eXplainable AI (XAI) method, namely
SHapley Additive exPlanations (SHAP) [13], to provide domain experts with an effective
visualization of the ML reasoning behind cryptocurrency trading. SHAP quantifies the
contribution of different features on classifier predictions, thus highlighting the contribution
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of different factors to the decisions of the ML-based system. We aim at addressing the
following research questions:

• Q1: What are the most discriminative features for cryptocurrency price prediction?
• Q2: How can cryptocurrency investors be provided with quantitative estimates of

the influence of specific features and feature categories on machine learning-based
cryptocurrency predictions?

• Q3: How can we evaluate the statistical dependency of the Machine Learning (ML) fea-
ture ranks returned by SHAP in different time periods and on different cryptocurrencies?

To address Q1, this paper explores a large variety of features computed on the daily
price series of 21 different cryptocurrencies. The analyzed features are established for
cryptocurrency trading [12] and encompass the price- and volume-related series, the
technical indicators summarizing the momentum, volatility, and moving averages of the
original price series, and the blockchain-related features. The latter are particularly relevant
to the scope of the present study because they are peculiar to cryptoassets.

To address Q2, we use eXplainable AI methods based on the Shapley value [14] to
provide cryptocurrency traders with evidence of the main factors influencing algorithmic
trading. We present a new eXplainable AI tool for visualizing and monitoring the activities
of Machine Learning-based systems, with particular attention paid to the blockchain-based
features influencing the decision process.

To tackle Q3, we apply the Rank Biased Overlap similarity measure [15] to quantify the
pairwise agreement between the top-10 features shortlisted by SHAP. We also performed
the experiment using feature subcategories and categories rather than individual features.

The experiments carried out on a 8-year period produce the following main outcomes:

• O1: The high variability of the feature importance across different cryptocurrencies.
This confirms the relevance of eXplainable AI solutions for cryptocurrency traders.

• O2: A visual eXplainable AI tool, namely Crytpocurrency-based Machine Learning
Explainer (CryptoMLE, in short). Some practical examples of use of CryptoMLE are
also presented.

• O3: The dependency among the feature ranks is weak, whereas those among feature
subcategories and categories are stronger.

The paper is organized as follows: Section 2 overviews the related literature. Section 3
details the dataset employed in the study. Sections 4 and 5 introduce the fundamentals
of Shapley values and SHAP and presents the Visual Analytics tool, based on SHAP, to
support cryptocurrency investors’ activities. Section 6 summarizes the main empirical
results, whereas Sections 7 and 8, respectively, report a discussion of the main achievements
and open issues and draw the conclusions of the present work.

2. Comparison with Prior Works

Table 1 summarizes the main characteristics of the existing approaches to eXplainable
AI (XAI) in finance, including the Crytpocurrency-based Machine Learning Explainer
(CryptoMLE) presented in this paper. We analyze the current and prior works under the
following aspects:

1. The considered assets, which encompass specific stocks, cryptocurrencies, or a combi-
nation of the above (e.g., the stocks belonging to the Standard&Poor500 U.S. index).

2. The features under analysis, which describe the environmental and market charac-
teristics considered by the classification models (including the blockchain-related
features for cryptocurrency assets).

3. The availability of a user interface to support domain expert decisions.
4. The main model used to explain ML-based decisions (e.g., SHAP [13] for the proposed

CryptoMLE tool).
5. The resolution of the analyzed data (typically, one sample per trading day).
6. The goal of the approach (e.g., support decision making with data-driven insights for

CryptoMLE).
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The main goal of this work is to present a visual analytics tool providing AI-based ex-
planations for cryptocurrency investors. Notice that our goal is not to propose a new, more
effective trading system but rather to provide experts with an interactive tool, based on XAI,
to explain the decisions of algorithmic trading approaches and make appropriate decisions.

Similar to [16–18], CryptoMLE provides domain experts with a graphical interface.
Unlike all the prior works on algorithmic trading, it also allows them to interactively collect,
analyze, and compare data models trained in multiple time periods. Analogously to [18],
CryptoMLE analyzes a large number of cryptocurrencies. Unlike [18], it also considers
blockchain-related data.

CryptoMLE relies on SHAP [13], whereas other approaches (e.g., [17,19]) adopt simpler
explainable models such as partitional clustering and decision tree, which are known to be
less robust to noise and model bias than SHAP. The work recently proposed in [20] is, to the
best of our knowledge, the first attempt to use SHAP in algorithmic trading. Unlike [20],
this work (1) Addresses short-term cryptocurrency trading instead of long-term portfolio
management. Hence, it compares the outcomes of classification models predicting next-day
cryptocurrency price; (2) Presents a graphical tool for supporting decision making. It
also allows experts to interact with the tool and gain insights into specific market trends;
(3) Analyzes a significantly larger set of cryptocurrencies (21 vs. 8).

Table 1. Comparison with prior works. Legend: crypto = cryptocurrency/cryptocurrencies,
BC = blockchain, MA = market data, V = Exchanged volumes, TA = technical analysis, B6 = CME
Globex British Pound futures, SPF = S&P E-mini Futures.

User Interface

Paper Asset Features Graphical Interactive XAI Model XAI Resolution XAI Goal

CryptoMLE 21 crypto BC, MP, TA Yes Yes SHAP [13] Daily Decision making

[21] S&P index MA No No Ablation, permutation,
added noise, integrated
gradients [22]

Daily XAI model com-
parison

[23] CHES120 China MA No No Custom LightGBM-
based model [24]

10 s, 30 s, 1 min
ticks

Matching testing
and real-trading
performances

[20] 8 crypto MA No No SHAP [13] Daily Portfolio manage-
ment approach for
crypto

[19] The BTC crypto BC, MA No No K-means clustering, de-
cision tree classifier [25]

Daily Valuation method
for cryptocurrency
markets

[16] The ETH crypto MA, TA Yes No Adversarial Deep Neu-
ral Networks [26]

Daily Display reversal
patterns on candle-
stick charts [27]

[17] The S&P stocks MA, TA, News Yes No decision tree classifier Daily Identify the most
impactful words in
business-specific
stock market
sectors

[18] 18 crypto MA, Reddit Yes No Ensemble meth-
ods, co-occurrence
analyses [25]

Daily Correlation analy-
sis between crypto

[28] B6, SPF MA, V No No Decision trees [25],
SHAP [13]

Daily Adapt market data
to the Machine
Learning pipeline.

3. Data Overview and Categorization

We collect historical data about the 21 most popular cryptocurrencies within the time
period from 2011 to 2018 (For the cryptocurrencies whose year of introduction is after
2011, we gathered data from the date they became available.). In the experiments we
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sampled cryptocurrency data at a daily granularity. However, the performed analyses can
be straightforwardly extended to finer or coarser aggregation levels.

We consider three main feature categories:

• The Blockchain-related (BC) features, which describe the underlying characteristics of
the distributed ledger technology enabling each cryptocurrency [18].

• The Market Data (MD) features, which represent the main cryptocurrency Open–
High–Low–Close–Volume (OHLCV) price series as well as a selection of summarized
features derived from the candlestick chart [29].

• The Technical Analysis (TA) features, which include a variety of momentum indicators,
volatility indices, and oscillators that are commonly used in Technical Analysis on
both cryptocurrencies and regulated market assets [8].

The features are aggregated into the corresponding category and subcategory ac-
cording to the hierarchy reported in Table 2. We considered a large variety of features
among the most established for cryptocurrency trading (according to [12]). To foster
the reproducibility of our work, both the analyzed dataset and the project code are pub-
licly available for research purposes (https://dbdmg.polito.it/dbdmg_web/index.php/
leveraging-explainable-ai-to-support-cryptocurrency-investors/, accessed on 1 August
2022). A detailed description of the dataset features is available at https://dbdmg.polito.it/
dbdmg_web/wp-content/uploads/2022/08/features.xlsx, accessed on 1 August 2022.

Table 2. Categories and subcategories of the features present in the dataset.

Category Subcategory Description

Blockchain Addresses Metrics representing an index of network activity and
interest.

Economics Metrics regarding the ratio of the USD network value
divided by the adjusted transfer value (in USD).

Exchange
Metrics representing the currency flow for known cen-
tralized exchange addresses for both deposits and with-
drawals.

Fees and Revenues

Metrics covering the network’s efficiency in terms of trans-
fer costs, representing fees for doing operations on the
blockchain such as transactions and smart contract execu-
tion.

Market
Metrics covering the economic aspects of cryptocurrency
markets such as capitalization, BTC exchange price, ROI
and volatility returns.

Mining Metrics representing protocol-specific parameters.

Network Usage Metrics covering blockchain activity in the form of mined
block and their size.

Supply Metrics that aim to explain token supply and its distribu-
tion among wallets.

Transactions Metrics addressing transferred value and throughput of
the network.

Market Data Prices Features directly derived from Open, High, Low, Close
prices of the current timestamp.

Volume Features directly derived from the trading volume of the
current timestamp.

Volatility Features directly derived from current volatility of the
currency.

History Features derived from the historical time series of Open,
High, Low, Close prices and Volume.

Candlestick Analysis Features concerning the analysis of the candlesticks
shapes.
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Table 2. Cont.

Category Subcategory Description

Technical Analysis Trend Indicators
Trend-following indicators whose values help as-
sess the direction and strength of established
trends.

Momentum Indicators Indicators used to determine the strength or weak-
ness of a stock’s price.

Volatility Indicators Indicators measuring how far the security moves
away from its mean price.

Volume Indicators Indicators representing a security’s bull and bear
power.

3.1. Blockchain-Related Features

We gathered BC features containing various specific properties of the enabling blockchain
architecture, which are aggregated on a daily basis. The 30 features belonging to the
BC category cover different aspects addressed by the following subcategories: Address,
Economics, Exchange, Fees and Revenues, Market, Mining, and Network Usage. They are likely
to show direct or indirect relations with the cryptocurrency bid and ask prices. Hence,
they can be deemed relevant by the Machine Learning model to obtain accurate price
predictions.

The high variability of the technologies enabling each cryptocurrency makes cross-
cryptocurrency analyses of BC features particularly relevant to understand the rationale
behind Machine Learning predictions. For example, the in-depth analysis of the blockchain
supply and mining features can reveal an increasing/decreasing interest of the cryptocur-
rency investors in particular virtual assets.

3.2. Market Data Features

MD features characterize temporal trends in cryptocurrency prices [11]. The data we
gathered include the raw Open–High–Low–Close–Volume (OHLCV) price series, the resid-
uals from the Seasonal-Trend Decomposition using Loess (STL) [30], and the characteristics
of the shapes of the candles in the candlestick chart [29].

3.3. Technical Analysis Features

Technical analysis provides a synthetic description of price- and volume-related
trends [27]. They were derived from the historical price and volume series using the
TA-Lib Python library (https://ta-lib.org/, accessed on 10 January 2022).

The TA feature category describes notable price-related properties of the cryptocur-
rency such as momentum, volatility, oversold/overbought conditions, etc. Recently, they
have shown to be relevant to cryptocurrency trading as well [8].

4. SHapley Additive Explanation Values

SHapley Additive Explanation (SHAP, in short) [13] is a method to explain individual
predictions. It is based on the Shapley value, whose applications to eXplainable AI rely on
coalitional game theory [14].

4.1. The Shapley Value

Given a set of players P = {P1, P2, . . ., Pn}, a player coalition C is a P ’s subset cooperating
to accomplish a specific task. The utility U (P) evaluates the payoff of the coalition for the
task, whereas the marginal utility U (Pj) indicates the additional contribution provided by a
new player Pj being added to the coalition P , i.e.,

U (Pj) = U (P ∪ Pj)− U (P)
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The Shapley value [14] is the expectation of the marginal contribution U (Pj) in all
possible coalitions.

SV i =
1
n ∑

S⊆N\Pi

U (P ∪ Pi)− U (P)

(n−1
|C| )

Computing the exact Shapley value entails enumerating all the possible coalitions,
which is computationally prohibitive in real-world contexts.

4.2. Additive Feature Attribution Methods

Given a training dataset consisting of a set of features F = {F1, F2, . . ., Fn}, each value
of an individual feature Fi acts as a player in a coalition. The number n of considered
features can be interpreted as maximum coalition size.

Let f be a complex prediction model, trained on F instances. For the sake of simplicity,
we assume the financial forecasting model f predicts the next-day closing price direction
(i.e., Uptrend or Downtrend) of a specific cryptocurrency based on the past samples observed
in the last W days (Hereafter, we will disregard the Stationary class (neither uptrend nor
downtrend)).

We seek explanations of f clarifying the effects of features in F . Specifically, we aim at
explaining the prediction f (x) of an instance x of F by computing the contribution of each
individual feature.

Within this scope, the Shapley value of feature Fi indicates how to fairly distribute the
payout among the features; i.e., it quantifies the effect of the individual feature Fi on the
outcome of the prediction task. To generalize players as sets of feature values, we exploit
the additive feature attribution method to linearly combine the individual Shapley values.

The explanation model g is defined as a linear combination of binary features associ-
ated with each feature Fi:

g(z′) = φ0 +
n

∑
i=1

φi · z′i , z′ ∈ 0, 1n

where z′i is a binary variable denoting either the presence of a feature (z′i = 1) or its absence
(z′i = 0). φi is the Fi’s attribution value, which quantifies the effect of Fi on f (x). The
explanation model sums the effect of all individual feature attributions approximating
the output.

4.3. The SHAP Explanation Model

In [13], Shapley values are leveraged to explain Machine Learning models by applying
sampling approximations to the original Shapley expression. Specifically, it approximates
the effect of removing a variable from the model by integrating over samples from the
training dataset.

The key steps of the SHAP model generation are as follows:

1. Generate random sample coalitions z′′ of m < n features in F , where z′′ ∈ 0, 1m.
2. Sample coalitions to valid instances.
3. Train a regression model on the generated instances, whose target is the prediction for

a coalition.

To move from coalitions of feature values to valid data instances (Step 2), instance
values are taken from the instance x we want to explain for all features that are present in
the coalition (z′′ = 1), whereas the other features are randomly sampled from the training
dataset instances for all the absent features (z′′i = 0).

The regression function (Step 3) corresponds to the weighted linear explanation model
g previously defined according to the additive feature attribution method.
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5. The CryptoMLE Tool

Receiving advice from algorithmic advisors is becoming more and more popular for
financial analysts [31]. However, relying on sophisticated Machine Learning models trained
on massive datasets is particularly risky in financial market forecasting, because the ML
models often act as black boxes and domain experts are not keen to trust.

EXplainable AI models provide insights into ML algorithms by indicating which
features are more important and how they could affect ML predictions [32]. They can return
either local or global explanations. In the former case, the insight is about a particular
instance x. The local model estimates the effect of the features in F on f (x) [13]. Conversely,
global models summarize the main patterns driving ML decisions (on whatever instance).
In this work, we conveniently combine the local explanations of the cryptocurrency price
predictions provided by SHAP to model the global influence on ML models of individual
features, features subcategories and categories.

We present a visual eXplainable AI tool, namely Crytpocurrency-based Machine
Learning Explainer (CryptoMLE, in short). It supports cryptocurrency traders and investors
in monitoring the performance of quantitative Machine Learning-based cryptocurrency
predictions. CryptoMLE consists of an interactive dashboard summarizing the main feature
contributions to the ML price predictions.

A snapshot of the dashboard interface is depicted in Figure 1. The plot in the upper
side of the dashboard shows the SHAP time series of the 10 most influential features in the
prediction of class uptrend. The purpose is to explain how ML works within a restricted
time period and how ML decisions vary over time. More specifically, a time series value
sampled on day d consists of the mean Shapley value of a given feature Fi computed over
the W days preceding d (Since historical data are collected at a daily granularity, each time
point in the series corresponds to a distinct trading day.). The mean Shapley value of Fi
indicates the effect of Fi on the ML model trained on d using a sliding window approach.

For example, according to the SHAP series plot in Figure 1, the MD feature close_resid
appears to be the most influential one in the period between August 2017 and April 2018,
whereas between May 2018 and December 2018, Close_resid and High_resid are joint winners.
The SHAP series plot can be useful, for instance, for discretionary traders who need to
select and monitor a relatively small subset of visual features.

Figure 1. Interactive dashboard snapshot. Uptrend class. LTCUSD. Training window size W = 90.

The bee-swarm summary plots in the lower side of the dashboard snapshot are pop-up
windows that analysts might activate when they are interested in gaining insights into the
characteristics of the ML model trained on a particular day. It shows the Shapley values
of all instances belonging to a training window of size W (i.e., W points per feature). For
the sake of readability, only the top-10 features in order of decreasing Shapley value are
visualized.
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For example, according to the left hand-side bee-swarm summary plot in Figure 1,
close_resid, volume_pct_tag8 macd_12_26, and low_close_dist_pct_d30 are the only features
obtaining a significant number of positive Shapley values during the training window from
the beginning of February 2017 to the end of July 2017. Comparing different summary plots
over time can be useful, for instance, for detecting temporal changes in the ML decisions.
Traders can manually verify and possibly revise the current trading strategy based on the
alarms triggered by the eXplainable AI tool.

To generate the plot, we apply the procedure described in Algorithm 1 considering one
cryptocurrency at a time. First, the dataset Dc, containing the data of the cryptocurrency
c, is split into train and test, and the feature importance scores are computed based on a
general-purpose Machine Learning model trained on Dtrain (e.g., XGBoost [33]). Then, we
generate a ranked feature list, based on the importance score, and tune the system hyper-
parameters. This first phase aims at performing feature selection and parameter tuning
before training the following models. To have up-to-date and contextualized models, one
model is retrained for each test date/time-step t considering the latest W days preceding t,
using the previously defined feature subset and hyperparameters; i.e., we employ a sliding
window approach to train ML models tailored to the time-steps t. Finally, the trained ML
models (one per test time-step) are analyzed to compute the SHAP series and the summary
plots, thus enabling the visual exploration of the ML reasoning at different time points. The
procedure is repeated for all cryptocurrencies of interest.

Algorithm 1: CryptoMLE: Procedure of dashboard generation for a cryptocurrency.

Input : F: feature set;
Dc: dataset associated with cryptocurrency c;
W: sliding training window;
fpr: chosen Machine Learning model for the prediction step;
f f s: chosen Machine Learning model for the feature selection step;

output : SH: time series of average Shapely values per-feature;
BS: bee-swarm summary plots for each point of the test-set;

/* Train-test dataset split */

Dtrain, Dtest ← SplitDataset (Dc)
/* Feature selection */

Mfs ← TrainFeatureSelectionModel ( f f s, Dtrain, F)
R ← FeatureImportanceRankingForModel (Mfs)
Fs ← SelectFeaturesFromRanking (R, F)
/* Hyper-parameters tuning */

P ← TuneHyperparameters ( fpr, Dtrain, Fs)
/* Dashboard generation */

foreach time-step t ∈ Dtest do
Mpr ← TrainPredictionModel ( fpr, D(t−W,t), Fs, P)
BSt ← ProduceBeeswarmPlot (Mpr)

end

SH ← ProduceShapTimeSeries (BSt)
return SH, BS∗

6. Experimental Results

In this section, we simulate a session of Machine Learning-based forecasting of 21 cryp-
tocurrency prices explained by CryptoMLE.

The rest of the section is organized as follows.

• Section 6.1 clarifies the experimental settings and the reproducibility aspects.
• Section 6.2 reports the main findings related to Research Question 1, i.e., What are the

most discriminative features for cryptocurrency price prediction? Empirical outcome O1
compares the feature importance plots relative to different cryptocurrencies.
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• Section 6.3 addresses the Research Question 2, i.e., How to provide cryptocurrency in-
vestors with quantitative estimates of the influence of specific features and feature categories on
Machine Learning-based cryptocurrency predictions? The empirical outcome O2 consists
of a selection of SHAP series and bee-swarm summary plots highlighting interesting
trends in the analyzed cryptocurrencies.

• Section 6.4 addresses the Research Question 3, i.e., How can we evaluate the statistical
dependence of the ML feature ranks returned by SHAP in different time periods and on different
cryptocurrencies? We address O3 by evaluating the pairwise agreement between the
shortlisted feature ranks using the Rank Biased Overlap similarity measure [15].

6.1. Experimental Design

In the following, we describe the hardware used to perform the experiments and the
experimental settings to improve reproducibility.

Hardware settings. We run experiments in a single-node setting on an HPC facility.
The node runs Ubuntu 20.04.2 LTS, with an 8 CPU threads Intel(R) Xeon(R) Gold 6140 CPU
@ 2.30 GHz and 40 GB of RAM.

Experimental settings and reproducibility. The source data described in Section 3 and a
detailed per-feature description are available for research purposes. We also release the
guidelines for dashboard creation (again for research purposes only).

As a representative ML model for both classification and feature importance estimation,
we used the XGBoost classifier available in the SK-Learn library [33]. It is both efficient and ac-
curate. To run SHAP [13], we use the publicly available code released by the paper’s authors.

6.2. Empirical Outcome O1: Feature Importance across Cryptocurrencies

The pie charts in Figures 2–5 show the feature importance scores (returned by the
XGBoost ML model) computed over all cryptocurrencies (see Figure 2) and separately for
BTCUSD, BCHUSD, and ETHUSD (see Figures 3–5). BTCUSD is, by far, the most famous
cryptocurrency. BCHUSD is a fork of BTCUSD, whereas ETHUSD is another extremely
popular cryptocurrency.

Figure 2. Hierarchical mean feature importance over all the analyzed cryptocurrencies.
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Figure 3. Hierarchical mean feature importance for BTCUSD.

Figure 4. Hierarchical mean feature importance for BCHUSD.
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Figure 5. Hierarchical mean feature importance for ETHUSD.

The outermost circular crown of the pie chart in Figure 2 reports the average impor-
tance scores per feature by considering all cryptocurrencies. Specific price-related features,
such as close_resid (i.e., the Seasonal-Trend decomposition using LOESS of the closing price
series [30], have shown to be the most relevant to predict future cryptocurrency prices).
However, the selected features are not the same for all cryptocurrencies and also include
blockchain-related ones. For example, hashrate_pct, which indicates the amount of com-
putational operations that a miner or the network of miners is capable of carrying out, is
particularly relevant to BitCoin casH (BCH), which has been created to specifically address
efficiency issues of the most established BTC cryptocurrency. Conversely, it is not relevant
to Ethereum (ETH) because ETH is known to be weakly correlated to BTC.

To have a higher-level view of which features are more discriminating for a given cryp-
tocurrency, we also aggregate the feature importance scores per subcategory and category
(see the two inner crowns in Figure 2 and the bar charts). The most relevant features are
those belonging to category Blockchain (average score 0.48), which is followed by Market
data (0.46) and Technical analysis features (0.16). This means that to drive their investments,
cryptocurrency traders should closely monitor blockchain-related features first rather than
simply analyzing price-related features (e.g., moving averages, momentum [27]).

Focusing on the most influential subcategories, they encompass the properties of the
supply chain, namely Supply (BC category), the historical cryptocurrency prices, i.e., History
(MD category), and the blockchain network activity metrics, namely Addresses (BC category).
It is worth noticing that restricting the in-depth analysis to these feature subsets allows
experts to ignore almost 70% of the original features.

The variability in feature importance across different cryptocurrencies is also quite
significant (see Figures 3–5). For example, for ETHUSD, the blockchain-related features
turn out to be slightly less significant than for BTCUSD and BCHUSD, which is possibly
due to the primary influence of the blockchain architecture on the price movements of
the BiTCoin-related assets. Ethereum (ETH) is partly uncorrelated with BC and weakly
dependent on blockchain-related properties such as hash rate and transaction counts.
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6.3. Visual Explanations

We report the dashboard snapshots for three representative combinations of cryptocur-
rency and prediction class (see Figures 6–11).

From the line chart in the upper side of Figure 6, we can see how the average Shapley
value changes over time for the top-10 most influential features for class Uptrend. Some
features (e.g., close_resid) are always highly relevant regardless of the considered time period,
whereas some others show variable influence. The latter can be dynamically included in
the trading system models according to the feedback collected from the eXplainable AI
tool. Moreover, traders can also use the provided information to assess the reliability of the
performed predictions. If the features associated with the highest absolute Shapley values
are, based on the prior knowledge of traders, remarkable features, traders will become
more confident in the returned predictions and thus will likely use them in the design of
the cryptocurrency trading strategy. In a nutshell, the visual explanation of CryptoMLE
has a twofold aim: (1) understand the rationale behind ML decisions, and (2) discover
potentially interesting (cryptocurrency-specific) patterns that are worth considering in the
future trading activities.

Figure 6. Interactive dashboard snapshot. Uptrend class. BTCUSD. Sliding training window size
W = 90.

Figure 7. Interactive dashboard snapshot. Downtrend class. BTCUSD. Sliding training window size
W = 90.
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Figure 8. Interactive dashboard snapshot. Uptrend class. BCHUSD. Sliding training window size
W = 90.

Figure 9. Interactive dashboard snapshot. Downtrend class. BCHUSD. Sliding training window size
W = 90.

Figure 10. Interactive dashboard snapshot. Uptrend class. ETHUSD. Sliding training window size
W = 90.
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Figure 11. Interactive dashboard snapshot. Downtrend class. ETHUSD. Sliding training window
size W = 90.

The charts in the bottom part of Figure 6 report the Shapley values computed for
three representative windows of size W (i.e., the ones associated with the first, the middle,
and last date of the considered evaluation period). Each chart reports, for the top-10 most
influential features, the Shapley values associated with the predictions made within the
considered time window (i.e., one point in the plot per prediction). The absolute Shapley
value indicates the strength of the feature influences. Its sign indicates whether the value
of the feature positively or negatively impacts on the prediction of the Uptrend label. If
the Shapley values associated with a feature are close to −1 or 1, it means that the feature
affects the prediction more significantly than the other ones. As for the SHAP series plot,
the variability in the summary plots over time strongly depends on the underlying market
conditions. For example, in the last quarter of 2018, AI model predictions turn out to be
primarily influenced by the historical price series, whereas in the previous quarters of 2018,
the influence of blockchain-related features is more evident. Based on these results, domain
experts can investigate more in depth the reasons behind such a strategy change to judge
the reliability of the algorithmic trading approach. More specifically, in the last quarter of
2018, all the BitCoin-related plunged, and such an evident market downtrend is prevailing
for algorithmic trading systems.

Figure 7 reports a similar information but the class label Downtrend is considered,
i.e., those charts try to explain which features impacted more on the prediction of the label
Downtrend. Some features are relevant for the prediction of both class labels, whereas
others are specific for each class.

Figures 8–9 and Figures 10–11 report similar pieces of information for BCHUSD and
ETHUSD, respectively. We can notice that some of the top features are shared between
BTCUSD and BCHUSD, whereas ETHUSD is more affected by other blockchain-related
features. Most of the top features categories are shared among all the three considered
features.

Tables 3 and 4 report the top-3 most influential features per cryptocurrency and class in
terms of average Shapley value. The achieved results confirm that for most of the analyzed
cryptocurrencies, the subcategories of the most influential features are independent of the
predicted class label.
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Table 3. Most influential features for class Uptrend.

Crypto Top1_Feature Top1_Subcategory Top2_Feature Top2_Subcategory Top3_Feature Top3_Subcategory

ADA close_resid market_data_prices splyact180d_pct blockchain_supply adi_pct technical_analysis_volume
BCH close_resid market_data_prices nvtadj_pct blockchain_economics adrbal1in1bcnt_pct blockchain_address
BNB close_open_pct_d30 market_data_candlestick_analysis splyadrbalntv100k blockchain_supply capact1yrusd blockchain_market
BTC close_resid market_data_prices txcntsec blockchain_transactions txtfrvalmedntv blockchain_transactions
BTG close_resid market_data_prices high_low_dist_pct_d7 market_data_candlestick_analysis low_pct_lag4 market_data_history
DASH close_resid market_data_prices adrbal1in1mcnt_pct blockchain_address low_pct_lag3 market_data_history
DOGE close_open_pct_d30 market_data_candlestick_analysis close_resid market_data_prices txtfrvalmedntv blockchain_transactions
EOS close_resid market_data_prices open_pct_lag6 market_data_history low_pct_lag3 market_data_history
ETC adrbalntv0_01cnt blockchain_address gaslmtblk blockchain_fees gaslmttx blockchain_fees
ETH open_resid market_data_prices close_resid market_data_prices close_open_pct market_data_candlestick_analysis
LINK txtfrcnt blockchain_transactions splyadrtop1pct_pct blockchain_supply caprealusd blockchain_market
LTC close_resid market_data_prices high_resid market_data_prices txtfrcnt blockchain_transactions
NEO adi_pct technical_analysis_volume close_resid market_data_prices txtfrcnt blockchain_transactions
QTUM low_resid market_data_prices volume_pct_lag9 market_data_history open_pct_lag5 market_data_history
TRX high_resid market_data_prices close_resid market_data_prices high_pct_lag8 market_data_history
WAVE txcntsec blockchain_transactions low_resid market_data_prices adi technical_analysis_volume
XEM cmo_14 technical_analysis_momentum high_pct_lag2 market_data_history close_resid market_data_prices
XMR close_resid market_data_prices high_lag2 market_data_history rema_8_15_pct technical_analysis_trend
XRP close_resid market_data_prices close_open_pct_d3 market_data_candlestick_analysis close_pct_lag7 market_data_history
ZEC high_resid market_data_prices close_resid market_data_prices close_pct_lag3 market_data_history
ZRX txtfrvalmeanusd blockchain_transactions high_pct_lag2 market_data_history txtfrvaladjntv_pct blockchain_transactions

Table 4. Most influential features for class Downtrend.

Crypto Top1_Feature Top1_Subcategory Top2_Feature Top2_Subcategory Top3_Feature Top3_Subcategory

ADA splyadrtop100_pct blockchain_supply splyact1yr_pct blockchain_supply close_resid market_data_prices
BCH adrbal1in1mcnt_pct blockchain_address diffmean_pct blockchain_mining adrbal1in1mcnt blockchain_address
BNB splyadrbalntylk_pct blockchain_supply splyadrbal1in1k_pct blockchain_supply low_close_dist_pct_d30 market_data_candlestick_analysis
BTC splyact4yr_pct blockchain_supply close_resid market_data_prices open_resid market_data_prices
BTG close_resid market_data_prices low_resid market_data_prices txtfrvaladjusd blockchain_transactions
DASH close_resid market_data_prices isstotl_isstot365_pct blockchain_supply high_resid market_data_prices
DOGE volume_pct_lag3 market_data_history high_resid market_data_prices txtfrvalmedntv blockchain_transactions
EOS close_pct_lag8 market_data_history close_resid market_data_prices open_pct_lag4 market_data_history
ETC close_resid market_data_prices splyactever_pct blockchain_supply nvtadj blockchain_economics
ETH gaslmtblk_pct blockchain_fees close_resid market_data_prices adrbalntv10kcnt blockchain_address
LINK high_close_dist_pct_d3 market_data_candlestick_analysis splyadrbalusd1m blockchain_supply close_resid market_data_prices
LTC close_resid market_data_prices volume_pct_lag1 market_data_history close_open_pct_d30 market_data_candlestick_analysis
NEO close_resid market_data_prices low_pct_lag9 market_data_history low_close_dist_pct market_data_candlestick_analysis
QTUM close_pct_lag10 market_data_history low_resid market_data_prices open_lag9 market_data_history
TRX fi_13_pct technical_analysis_volatility close_resid market_data_prices high_resid market_data_prices
WAVE close_pct_lag7 market_data_history close_resid market_data_prices volume_pct_lag3 market_data_history
XEM low_resid market_data_prices volume_pct_lag2 market_data_history low_lag4 market_data_history
XMR close_resid market_data_prices txcnt_pct blockchain_transactions close_volatility_7d market_data_volatility
XRP close_resid market_data_prices adrbalntv1mcnt_pct blockchain_address volume_pct_lag4 market_data_history
ZEC close_resid market_data_prices close_pct_lag8 market_data_history low_spl_d1 market_data_prices
ZRX high_close_dist_pct_d3 market_data_candlestick_analysis splyadrbal1in10k_pct blockchain_supply low_resid market_data_prices

6.4. Statistical Dependence between Feature Ranked Lists

We evaluate the agreement between the feature ranked lists associated with the 21 cryp-
tocurrencies using the Rank Biased Overlap similarity measure [15]. The goal is to verify
whether ML predictions on different cryptocurrencies are influenced by the same features,
feature subcategories, or categories.

Tables 5 and 6, respectively, report the pairwise similarity matrices for the classes
Uptrend and Downtrend. They allow us to identify specific cryptocurrency clusters char-
acterized by relatively high pairwise similarities. For instance, XMR and ZEC are highly
similar, which is probably because they are both focused on privacy aspects.

Table 5. Pairwise similarity among cryptocurrencies. Class Uptrend.

ADA BCH BNB BTC BTG DASH DOGE EOS ETC ETH LINK LTC NEO QTUM TRX WAVE XEM XMR XRP ZEC ZRX

ADA 1.00 0.84 0.98 0.84 0.89 0.94 0.94 0.72 0.80 0.78 0.68 0.94 0.85 0.72 0.76 0.90 0.81 0.90 0.88 0.91 0.86
BCH 0.84 1.00 0.85 1.00 0.74 0.89 0.84 0.61 0.66 0.94 0.84 0.84 0.69 0.61 0.59 0.74 0.63 0.71 0.77 0.81 0.78
BNB 0.98 0.85 1.00 0.85 0.90 0.96 0.96 0.74 0.82 0.80 0.70 0.96 0.84 0.74 0.78 0.88 0.79 0.88 0.89 0.93 0.87
BTC 0.84 1.00 0.85 1.00 0.74 0.89 0.84 0.61 0.66 0.94 0.84 0.84 0.69 0.61 0.59 0.74 0.63 0.71 0.77 0.81 0.78
BTG 0.89 0.74 0.90 0.74 1.00 0.84 0.91 0.83 0.65 0.79 0.52 0.91 0.79 0.83 0.87 0.79 0.83 0.96 0.96 0.94 0.76
DASH 0.94 0.89 0.96 0.89 0.84 1.00 0.95 0.77 0.76 0.84 0.74 0.95 0.80 0.77 0.75 0.84 0.73 0.82 0.87 0.92 0.89
DOGE 0.94 0.84 0.96 0.84 0.91 0.95 1.00 0.78 0.73 0.84 0.65 1.00 0.84 0.78 0.82 0.84 0.78 0.89 0.94 0.97 0.86
EOS 0.72 0.61 0.74 0.61 0.83 0.77 0.78 1.00 0.45 0.67 0.40 0.78 0.62 1.00 0.96 0.62 0.66 0.81 0.84 0.81 0.66
ETC 0.80 0.66 0.82 0.66 0.65 0.76 0.73 0.45 1.00 0.54 0.81 0.73 0.74 0.45 0.51 0.90 0.66 0.64 0.62 0.68 0.87
ETH 0.78 0.94 0.80 0.94 0.79 0.84 0.84 0.67 0.54 1.00 0.73 0.84 0.68 0.67 0.65 0.68 0.66 0.75 0.82 0.87 0.72
LINK 0.68 0.84 0.70 0.84 0.52 0.74 0.65 0.40 0.81 0.73 1.00 0.65 0.62 0.40 0.38 0.78 0.54 0.51 0.55 0.60 0.82
LTC 0.94 0.84 0.96 0.84 0.91 0.95 1.00 0.78 0.73 0.84 0.65 1.00 0.84 0.78 0.82 0.84 0.78 0.89 0.94 0.97 0.86
NEO 0.85 0.69 0.84 0.69 0.79 0.80 0.84 0.62 0.74 0.68 0.62 0.84 1.00 0.62 0.66 0.85 0.96 0.80 0.78 0.81 0.81
QTUM 0.72 0.61 0.74 0.61 0.83 0.77 0.78 1.00 0.45 0.67 0.40 0.78 0.62 1.00 0.96 0.62 0.66 0.81 0.84 0.81 0.66
TRX 0.76 0.59 0.78 0.59 0.87 0.75 0.82 0.96 0.51 0.65 0.38 0.82 0.66 0.96 1.00 0.66 0.70 0.85 0.88 0.84 0.67
WAVE 0.90 0.74 0.88 0.74 0.79 0.84 0.84 0.62 0.90 0.68 0.78 0.84 0.85 0.62 0.66 1.00 0.81 0.80 0.78 0.81 0.96
XEM 0.81 0.63 0.79 0.63 0.83 0.73 0.78 0.66 0.66 0.66 0.54 0.78 0.96 0.66 0.70 0.81 1.00 0.85 0.82 0.79 0.75
XMR 0.90 0.71 0.88 0.71 0.96 0.82 0.89 0.81 0.64 0.75 0.51 0.89 0.80 0.81 0.85 0.80 0.85 1.00 0.93 0.90 0.74
XRP 0.88 0.77 0.89 0.77 0.96 0.87 0.94 0.84 0.62 0.82 0.55 0.94 0.78 0.84 0.88 0.78 0.82 0.93 1.00 0.96 0.79
ZEC 0.91 0.81 0.93 0.81 0.94 0.92 0.97 0.81 0.68 0.87 0.60 0.97 0.81 0.81 0.84 0.81 0.79 0.90 0.96 1.00 0.83
ZRX 0.86 0.78 0.87 0.78 0.76 0.89 0.86 0.66 0.87 0.72 0.82 0.86 0.81 0.66 0.67 0.96 0.75 0.74 0.79 0.83 1.00
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Table 6. Correlations among cryptocurrencies. Class Downtrend.

ADA BCH BNB BTC BTG DASH DOGE EOS ETC ETH LINK LTC NEO QTUM TRX WAVE XEM XMR XRP ZEC ZRX

ADA 1.00 0.88 0.98 0.95 0.76 0.85 0.76 0.56 0.86 0.97 0.83 0.69 0.64 0.56 0.55 0.76 0.66 0.85 0.87 0.69 0.82
BCH 0.88 1.00 0.86 0.87 0.76 0.73 0.76 0.54 0.74 0.85 0.79 0.54 0.47 0.54 0.54 0.62 0.51 0.73 0.75 0.54 0.82
BNB 0.98 0.86 1.00 0.93 0.74 0.87 0.74 0.53 0.86 0.95 0.82 0.71 0.66 0.53 0.52 0.78 0.68 0.87 0.85 0.71 0.80
BTC 0.95 0.87 0.93 1.00 0.84 0.86 0.84 0.66 0.87 0.98 0.89 0.72 0.68 0.66 0.63 0.80 0.70 0.86 0.88 0.72 0.87
BTG 0.76 0.76 0.74 0.84 1.00 0.90 1.00 0.83 0.91 0.82 0.96 0.83 0.79 0.83 0.68 0.90 0.81 0.90 0.92 0.83 0.97
DASH 0.85 0.73 0.87 0.86 0.90 1.00 0.90 0.69 0.99 0.88 0.95 0.87 0.82 0.69 0.57 0.94 0.84 1.00 0.98 0.87 0.93
DOGE 0.76 0.76 0.74 0.84 1.00 0.90 1.00 0.83 0.91 0.82 0.96 0.83 0.79 0.83 0.68 0.90 0.81 0.90 0.92 0.83 0.97
EOS 0.56 0.54 0.53 0.66 0.83 0.69 0.83 1.00 0.71 0.62 0.78 0.64 0.66 1.00 0.84 0.75 0.65 0.69 0.72 0.64 0.80
ETC 0.86 0.74 0.86 0.87 0.91 0.99 0.91 0.71 1.00 0.89 0.95 0.86 0.81 0.71 0.58 0.93 0.83 0.99 0.99 0.86 0.94
ETH 0.97 0.85 0.95 0.98 0.82 0.88 0.82 0.62 0.89 1.00 0.86 0.75 0.70 0.62 0.59 0.82 0.72 0.88 0.90 0.75 0.85
LINK 0.83 0.79 0.82 0.89 0.96 0.95 0.96 0.78 0.95 0.86 1.00 0.81 0.77 0.78 0.65 0.89 0.79 0.95 0.96 0.81 0.99
LTC 0.69 0.54 0.71 0.72 0.83 0.87 0.83 0.64 0.86 0.75 0.81 1.00 0.95 0.64 0.48 0.92 0.98 0.87 0.85 1.00 0.80
NEO 0.64 0.47 0.66 0.68 0.79 0.82 0.79 0.66 0.81 0.70 0.77 0.95 1.00 0.66 0.50 0.88 0.98 0.82 0.80 0.95 0.76
QTUM 0.56 0.54 0.53 0.66 0.83 0.69 0.83 1.00 0.71 0.62 0.78 0.64 0.66 1.00 0.84 0.75 0.65 0.69 0.72 0.64 0.80
TRX 0.55 0.54 0.52 0.63 0.68 0.57 0.68 0.84 0.58 0.59 0.65 0.48 0.50 0.84 1.00 0.59 0.49 0.57 0.59 0.48 0.67
WAVE 0.76 0.62 0.78 0.80 0.90 0.94 0.90 0.75 0.93 0.82 0.89 0.92 0.88 0.75 0.59 1.00 0.90 0.94 0.92 0.92 0.87
XEM 0.66 0.51 0.68 0.70 0.81 0.84 0.81 0.65 0.83 0.72 0.79 0.98 0.98 0.65 0.49 0.90 1.00 0.84 0.82 0.98 0.78
XMR 0.85 0.73 0.87 0.86 0.90 1.00 0.90 0.69 0.99 0.88 0.95 0.87 0.82 0.69 0.57 0.94 0.84 1.00 0.98 0.87 0.93
XRP 0.87 0.75 0.85 0.88 0.92 0.98 0.92 0.72 0.99 0.90 0.96 0.85 0.80 0.72 0.59 0.92 0.82 0.98 1.00 0.85 0.95
ZEC 0.69 0.54 0.71 0.72 0.83 0.87 0.83 0.64 0.86 0.75 0.81 1.00 0.95 0.64 0.48 0.92 0.98 0.87 0.85 1.00 0.80
ZRX 0.82 0.82 0.80 0.87 0.97 0.93 0.97 0.80 0.94 0.85 0.99 0.80 0.76 0.80 0.67 0.87 0.78 0.93 0.95 0.80 1.00

We performed a further experiment to compare the list of categories of the features
that are more relevant for predicting Uptrend or Downtrend. We considered three different
windows/time periods (P1, P2, P3) to analyze also the impact of the time dimension. Table 7
reports the results. For each cryptocurrency, we report the computed correlations in P1, P2,
and P3. For almost all cryptocurrencies, the correlation value is stable with respect to the time
slot and is higher than 0.7. Hence, for almost all cryptocurrencies, the decision about the class
label is based on the same categories of features independently of the predicted label.

Table 7. Uptrend/Downtrend correlations.

Crypto P1 P2 P3

ADA 0.72 0.62 0.80
BCH 0.82 0.90 0.66
BNB 0.92 0.76 0.80
BTC 0.90 0.83 0.78
BTG 0.96 0.90 0.93
DASH 0.77 0.99 0.97
DOGE 0.87 0.75 0.99
EOS 0.91 1.00 0.93
ETC 0.77 0.65 0.74
ETH 0.69 0.81 0.75
LINK 0.82 0.78 0.71
LTC 0.83 0.94 0.84
NEO 0.94 0.64 0.64
QTUM 0.60 0.76 0.93
TRX 0.76 0.84 0.82
WAVE 0.89 0.75 0.76
XEM 0.59 0.82 0.67
XMR 0.95 0.98 0.79
XRP 0.80 0.82 0.86
ZEC 0.87 0.70 0.87
ZRX 0.59 0.89 0.87

7. Discussion

Explainability plays an important role in many Machine Learning-driven applications,
including quantitative cryptocurrency trading. Despite their accuracy, ML models are
deemed as not reliable enough, as domain experts do not trust the automated solutions.
In the financial, in particular, a clear explanation of the rationale behind machine-driven
decisions is deemed as unavoidable.

EXplainable AI opens the ML black boxes providing global or local explanations based
on the underlying data features. Due to their high dimensionality and multi-faceted nature,
cryptocurrencies are particularly suited to eXplainable AI. The main purposes are:
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• The enhancement of existing crytpocurrency trading systems based on the collected
feedback on the current market trends.

• The online support to discretionary traders, who commonly monitor the financial
markets and execute trading operations in real time.

CryptoMLE is designed for supporting the monitoring of ML model performances
on cryptocurrency markets. To enhance trading system strategies, CryptoMLE helps
cryptocurrency investors verify the predictive rules inferred by the ML algorithms against
the domain knowledge. To support online discretionary traders’ activities, it shortlists the
most influential cryptocurrency features that are worth monitoring. The SHAP series and
the SHAP summary plots provide them with a simple, interactive environment to obtain
actionable feedback based on the recent ML outcomes.

The main takeaways from the empirical outcomes can be summarized as follows:

• Feature relevance to cryptocurrency price forecasting is either generalized, i.e., valid for
all cryptocurrencies independently of time periods and market conditions (e.g., for
the Close_rel feature), or selective, i.e., valid only for a subset of features and for specific
time periods. For the latter feature subset, CryptoMLE provides experts with an
automated way to recognize them and leverage their predictive power for quantitative
trading.

• Based on the prediction outcomes, the relevance of the individual features is highly
variable (see the dashboard snapshots in Figures 6–11). To drive short-term cryptocur-
rency investments, it is crucial to monitor the most likely causes of market movements.
For example, the percentage variations of the trading volume between current and pre-
vious days (namely volume_pct*) appear to be relevant to predict BCHUSD variations
(see Figure 9), whereas they are less influential in the prediction of other cryptocur-
rency prices.

• The influence of feature subcategories and categories is less sensitive to the market
conditions, but they can be tailored to particular cryptocurrencies. For example, a
cryptocurrency is more likely to be more influenced by BC features than others. This
can be easily verified using CryptoMLE in real trading simulations.

• The discrepancies between the observed results among the target class (e.g., Uptrend,
Downtrend) are often negligible. Therefore, traders relying on both long- and short-
selling trading strategy can easily and quickly interact with CryptoMLE to gather all
the required information.

• Simpler ML models analyzing only the prices of the target cryptocurrency assets
appear to be suboptimal because, according to the achieved results, cryptocurrency
prices are likely to be relevantly influenced by many other features (see, for instance,
BCHUSD and ETHUSD). This confirms the utility of the CryptoMLE graphical inter-
face, which provides human experts with a summary of the main feature contributions
to the ML predictors.

8. Conclusions and Future Works

This paper introduced an eXplainable AI tool for cryptocurrency price forecasting. It
presented a visual interface based on which domain experts can infer actionable depen-
dencies among input data features and Machine Learning predictions. The interactive
dashboard consists of an SHAP series plot, showing the temporal variation of the mean
Shapley values associated with the most recent ML predictions, and a selection of pop-up
summary plots, which are snapshots of the main features’ influences at given time points.
The empirical simulation, which was run on a 8-year period, showed the variability of the
model explanations across 21 cryptocurrencies and three reference time periods in terms of
selected features, feature subcategories and categories.

As future work, we plan to leverage the Shapley values in quantitative intraday trading.
Specifically, we aim at dynamically adapt algorithmic decisions in crtyptocurrency trading
based on the relevant feedback provided by domain experts through the graphical interface.
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Abstract: This paper presents an integrated model for seismic events detection in Colombia using
machine learning techniques. Machine learning is used to identify P-wave windows in historic
records and hence detect seismic events. The proposed model has five modules that group the basic
detection system procedures: the seeking, gathering, and storage seismic data module, the reading of
seismic records module, the analysis of seismological stations module, the sample selection module,
and the classification process module. An explanation of each module is given in conjunction with
practical recommendations for its implementation. The resulting model allows understanding the
integration of the phases required for the design and development of an offline seismic event
detection system.

Keywords: seismic event detection; detection model; seismology; classification

1. Introduction

Earthquakes have been one major concern to societies around the world. Earthquakes are a
consequence of earth tectonics, which cause intercontinental plate drifts. Deformation energy is stored
along the plates. Once one or more fault lines exhaust their elastic deformation capacity, rupture
occurs and the stored energy is released as seismic waves, propagating along with the earth’s crust.
Depending on the amount of energy released and the depth of rupture, seismic waves can hit civil
infrastructure, causing major impacts. Such events as in Sumatra (Indonesia, 2004), Haiti (2010),
and Tohoku (Japan, 2011) are proof of how devastating can earthquakes be over human infrastructure
and society as well. In Colombia, the Armenia earthquake (1999, Mw 6.2) is referenced as the worst
seismic event for the country, which forced the government to call for an updating of the existing
design and construction code. The resulting document was introduced into the Colombian legislation,
making it a mandatory practice among civil infrastructure designers and constructors [1,2].

Earthquake engineering is a branch of engineering born to reduce the effects of earth seismicity.
The approaches that earthquake engineering take can be seen from two perspectives: a study of the
seismic phenomena and a study of the structural response after the seismic event. Research in earthquake
engineering has increased in depth as new materials and computational power have been conceived.
Simple techniques for the characterization of earthquake events can be used intensively in an attempt
to formulate methodologies that provide people with a time frame to evacuate civil infrastructure
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during significant seismic events. However, current methodologies involving computational power
deal with limitations in storage capacity (storage of seismic traces and raw data), processing capabilities
(multichannel seismic acquisition), and lack of compatibility and integration of software resources,
adding difficulties for the implementation of a successful seismic event detection technique [3–5].

Few academic research groups in Colombia, including the Colombian Geological Service, dedicate
their efforts to boost techniques and methodologies focused on the seismic phenomena. Most of the
research efforts aim toward a better understanding of both site seismic and structural responses, while
some research has been carried on the understanding of local seismicity. Countries such as Mexico
and Chile, both with similar seismic characteristics as Colombia, dedicate their research efforts to
improve cities’ structural resilience and to improve the social response during seismic events as well.
The proposal of this research paper is a system model for offline seismic event detection in Colombia,
where a set of integrated modules for reading and processing historical seismic raw data deals with
the reduction of the computational costs for the successful detection of seismic events.

This article structures the proposal of a machine learning-based model for the detection of seismic
events as follows: (a) problem statement (seismology and seismic data recording), (b) earthquake
detection methodologies (traditional vs. current approaches), (c) seismic detection model proposal
(model architecture and modules description), and (d) article conclusions.

2. Problem Statement

Countries over the Pacific coast of Southern America have a long history of catastrophic earthquake
events. According to the US Geological Survey, five of the top 20 largest earthquake events occurred
since the earlier 1900s, including the largest, have occurred along the fault line traced by the borders
of the Nazca Plate that subducts below the South American Plate [6]. The tectonic environment in
Colombia can be described by its two main fault zones: (a) Romeral zone (intraplate seismic zone that
runs from north to south of the country’s Pacific coast with an approximate length of 1200 km) and
(b) the frontal fault of Eastern Cordillera (fault system that divides the Colombian Andean territory
from its eastern great plains, most likely a southern border of the Caribbean Plate) [7]. One local seismic
zone on the Colombian northeast of great activity is the Bucaramanga Seismic Nest, where at least
eight events with a magnitude Mw > 4.7 occur each year [8].

Typical geological and seismic observation services such as SGC in Colombia provide seismic
analysis in a two-stage fashion: first, by acquiring and storing seismic records (which can include
up to three spatial components of accelerations, velocities, and ground displacements) and second,
by performing seismic event recognition by looking for particular seismic characteristics within
the stored data. Then, the geological service within a short time frame reports the occurrence of a
seismic event, which is usually information that commonly contains the event magnitude and its
approximate geolocation. [9–11]. This two-step procedure is complex, since it involves algorithms to
read, synchronize, and process seismic data information. Geological services usually rely on black-box
software that performs these tasks, closing the door to monitor sub-stages and therefore not letting the
user integrate alternative algorithms that could eventually improve and/or fit specific site characteristics
to the seismic data analysis sub-stage [12,13].

To establish methods for the detection and analysis of seismic events, the disposition of a set of
historical seismic records that can be stored, read, and processed is essential to develop an accurate
detection of future events (classic approach of learning from data). However, it is difficult to find a
seismic dataset that fits the requirements for later processing stages, and when retrieved, the seismic
files are not easy to interpret, as they include specific seismic parameters contained in legible formats
that only specialized software such as SEISAN and SeisComP can process [14,15].

Moreover, several factors make an integral analysis of these Colombian historical records unfeasible:
(a) limitations on the storage capacity, (b) limitations on the compatibility between current software
resources, (c) limitations on the processing power required, (d) use of techniques that are not integrated
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within the detection models, and (e) low flexibility of the existing tools for modifications and adequations
of storage and processing algorithms [16,17].

Furthermore, the online detection of coming earthquakes can be done by picking the seismic
phases manually or by establishing a fixed-threshold approach; these techniques are statistically
earthquake-proven for significant earthquakes and signals with low sampling rates and few numbers
of components, given a higher signal-to-noise ratio. When high samples rates are considered from
multiple three-dimensional seismological stations, the phases may be picked differently, introducing
bias into the detection [18].

In this sense, a system model for offline seismic event detection for the Colombian region is
proposed, which allows the identification of patterns and dynamics in historical records, using machine
learning techniques.

The following sections present a theoretical basis and the description of the model for seismic
event detection.

3. Earthquake Detection Methodologies

Seismic detection algorithms are used by public and/or private services dedicated to monitor
and study seismic activity. Several agencies dedicate efforts to maintain an updated database of
information that can help scientists and engineers analyze any activity that could represent a hazard to
the infrastructure and population, including volcanic and seismic activities [19]. Data collected include
ground motion records (accelerations, velocities, and/or displacements), which are used by detection
algorithms as input data.

Several approaches have been conceived to perform seismic events detection. In the seismic
signal, amplitude, shape, power, or several other time-domain characteristics can be used to formulate
a detection procedure [19,20], depending on the desired purpose of the outcome. In practical terms,
seismic signals are identified by monitoring isolated ground vibrations, which under changes in
amplitude, frequency content, or motion direction indicate the arrival of seismic waves [20]. Current
developments on earthquake signals monitoring aim to provide faster and more reliable detection
algorithms for warning systems [21].

3.1. Traditional Approaches

Detection algorithms for earthquake detection assume that seismic signals correspond to ground
vibrations isolated from human activity. Only stationary background noise is registered prior to
earthquake waves’ arrival. To automate the process of identifying the arrival of earthquake waves,
specialized detection algorithms are required. These algorithms deal with the task of effectively
discriminating background noise from seismic events, to avoid the recording of unnecessary data or
the loss of actual seismic signals. Then, detection algorithms require having a high rate of positive
event identification, which is easily achieved when strong motions occur (e.g., triggers such as signal’s
threshold can discriminate noise from strong seismic signals). However, if a seismic event is detected
far from the causative fault, a decrease in the signal’s amplitude can be expected, making it harder for
the algorithm to perform a positive event detection.

The simplest approach for an earthquake detection system is a front detection system, which
consists of the direct monitoring of a given seismic source. Monitoring the signal’s amplitude allows a
central managing system to perform pre-defined tasks such as shutting down the power on certain areas
or generating alerts of populated areas far enough from the strong ground motion epicenter. Mexico’s
earthquake monitoring system (SASMEX) implements front detection for this purpose. The front
detection approach requires the analysis of most of the seismic signal to validate the trigger, dismissing
valuable time that can be used to alert a wider area in case of a strong ground motion event. To deal
with this, further approaches attempt to wider the alert time window by analyzing a shorter segment
of the seismic signal, requiring more elaborated metrics that can be positively correlated to a significant
earthquake event. Some of those metrics include the average noise level, predominant signal period,
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or cumulative energy [22]. However, these algorithms have a high rate of false alarms when dealing
with weak-motion earthquake events [23]. Detection triggers are also specialized to work with
frequency-domain data. In this case, signal energy metrics are used as thresholds (e.g., average power).
Transform methods such as Fourier or Walsh and signal filtering have been used to provide faster
and more reliable detection algorithms [5]. Time-frequency domain techniques such as the wavelet
transform have been used to track the initiation of ground motion [24,25]. A technique found more
reliable and widely used is based on the short-time average through the long-time average ratio
(STA/LTA). The technique is based on the fact that when seismic events occur, the current signal average
(STA) is different from the long-term signal average (LTA) where no events occurred [5,26].

Figure 1 shows the implementation of the STA/LTA algorithm over a strong-motion record.
The seismic record (top figure) shows the arrival of P-waves in the interval 5–10 s. P-waves
(P for primary) travel across the earth’s mantle in tension–compression mode. Rocks have their
highest stiffness (force to deformation ratio) for compression forces, and thus, compression waves can
travel the fastest across the earth’s mantle, arriving at the surface prior to secondary waves. After 10 s,
the seismogram on the top figure shows the strongest acceleration recorded by the seismic station for
the event. Secondary and surface waves arrive at the seismic station seconds later than P-waves. Cities
with poor seismic resilient infrastructure usually take the highest toll on human and economic losses
when they experiment strong ground accelerations.

Figure 1. Short-time average through the long-time average ratio (STA/LTA) algorithm.

Figure 1 (middle) shows the STA and LTA parameters. It can be seen that the short-time average is
useful to indicate the arrival of the seismic event as it suddenly arises from a very low value (assumed
to be noise). The long-time average is less sensitive to the arrival of the seismic signal but keeps track
of the signal’s duration. The STA/LTA ratio (Figure 1, bottom) points out the location of the seismic
event’s start point, which is one of the most important features required by any detection methodology.

The STA/LTA algorithm has shown to be very effective due to its simplicity [5,27,28], but it
requires the optimization of user-defined parameters to obtain a high rate of positive-event detection.
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Parameters such as the sampling rate, detection threshold, or even, pre-event and post-event parameters
are required to achieve a desired positive detection with the algorithm.

3.2. Current Approaches

Actual developments of detection algorithms take advantage of current technological advances
that allow the capture, processing, and storage of data with high resolution. A large amount of available
data today is used for advanced and still rarely used techniques: local similarity (quantifies consistency
of data between neighboring stations) [29], probability (parameters such as distance to the seismogenic
zone or signal phases are treated as random variables with an associated probability) [30], data
mining (establishes a fingerprint of seismic waves for later comparison) [31], neural networks (neural
network-based algorithms are trained to identify several characteristics of seismic waveforms) [19],
and social sensing (based on trending hashtags or key words on social media, algorithms can trigger
responses on alert systems) [32–34]. These approaches are all computational powerful and help identify
waveforms on large historic seismic arrays that were not processed so far or that could have been
processed by techniques with less accuracy. The cost of these techniques is the computational time.
In terms of computational efficiency, the STA/LTA concept [26,35] arises as a traditional and yet highly
efficient parameter for earthquake detection.

4. Seismic Detection Model Proposal

This research paper proposes the model presented in Figure 2—a set of modules in which seismic
signals can be processed—from the seismic data collection to the detection mechanism expressed in
the classification process module. The applicability of the model is directly related to the selection
of the geographical zone whose seismicity is to be studied—in this case, the northeastern region of
Colombian. The size of the study area, the rate of occurrence of events, and the homogeneity of the
subsoil are some of the variables that directly influence the number of observations to be analyzed
and the performance of each of the modules, which is why a careful selection of the region of interest
must be first carried out. Applicability of the model on a different geographical region would require
historic seismic arrays specific to the location.

 

Figure 2. Model for offline seismic event detection.

The modules are described below as follows: Seismic data seeking and gathering, Reading
and interpretation of the seismic data, Analysis of seismological stations, Sample selection,
and Classification process.

4.1. Seismic Data Seeking and Gathering

To analyze seismic signals by algorithmic means, it is necessary to have a set of records that can
be manipulated. In this first step, a download of the historical seismic records is made, filtering by the
chosen region. A set of seismological records of each station is obtained.

Depending on the region of interest, it is possible to obtain seismological records through
web services, such as the United States Geological Survey (USGS), the European-Mediterranean
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Seismological Centre (EMSC), the National Earthquake Information Center (NEIC), the National
Institute of Seismology, Volcanology, Meteorology, and Hydrology of Guatemala (INSIVUMEH),
the Mexican National Seismological Service (SSN), the National Seismological Center of Chile (CSN),
or the Colombian National Seismological Network (RSNC by its Spanish acronym), among others.
These web services allow downloading data of seismic events one by one, although it is usually
necessary to provide searching filters, generally concerning magnitudes, depths, and dates.

The seismic records are usually of public access, so it is possible to request the set of desired
data directly to the seismology agency responsible for its storage. Another easier way to do this
data-gathering process is to use automated interaction web tools to download the requested files,
such as the creation of web snippets using the web-scraping technique, which allows interacting
with the web resources of the web service. This technique is usually legally authorized by the RSNC
and other services, since all the information downloaded is public access and no intromission for
non-authorized domains or web resources is made. Although the scraping procedure is legally accepted,
it is recommended to inform the geological services about this practice when executed.

The technological infrastructure needed to download and to store seismic files depends on the
volume of data to be processed. In Colombia, the RSNC gathers the seismic records into two categories:

• Trace files (Waveforms), which contain the seismic samples taken by all seismological stations
available around the region of interest.

• Parameter files (Sfiles), which provide detailed information about the seismic events, such as the
longitude and latitude of the epicenter and the P-wave and the S-wave arrival times, among others.

The seismic traces recorded in the Waveform files are usually a large size because they record
non-event samples that occur before and after the seismic event picking. Their content is dependent on
the duration of the recorded earthquake. Each trace file can have a storage size from approximately
5 MB if it corresponds to a microseism that has been registered by one or few seismological stations,
or a specific seismic event registered by a couple of stations, and up to approximately 120 MB, if it is
registered by most seismological stations with a duration close to five to ten minutes. The RSNC
registers up to 10,000 seismic events per year, with an average of 60 MB of storage per seismic record.

The seismic records may not be stored completely. The storage of all the records allows faster
access for later processing stages; however, as has already been shown, the computational load applied
to the data storage is high. On the other hand, storing portions of data that are processed and then
erasing the unrequired portions, or processing the records one by one so that the results are stored
and the records are erased are two recommended procedures to save storage space. Nevertheless,
if the data are processed one by one, any subsequent processes to be done or corrections to previous
processes will force to access the data sources again, which will hinder processing.

4.2. Reading and Interpretation of the Seismic Records

Once the seismic records are obtained, it is necessary to understand the format in which the data
are presented, to establish the mechanisms by which they will be read. After reading the data, a sample
selection is proposed, which depends on the characteristics found, and a set of memory instances that
represent the trace files and read parameters is obtained as an output.

Among the most common international formats for the Sfiles [36] are HYPO71, HYPOINVERSE,
and Nordic formats. The most used international formats for Waveform files are SEED, miniSEED,
and SimpleASCII [37]. There are comprehensive seismological analysis tools capable of reading a
wide range of formats of these two types of files, such as SEISAN and SeisComP. It is also possible
to read the files through native programming languages or using libraries linked to these languages,
such as SEISPP for C++ [38], Obspy for Python [39], or the open-source tools made available by the
USGS for Java [40].

The implementation of specific architectures for reading multiple seismic records is of utmost
importance. It is vital to analyze the computational capacity in terms of volatile memory, mainly
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by considering the techniques exposed and the data stored during the seeking and gathering of
seismic records. Therefore, a sub-module can be incorporated for balancing the computational load,
which includes techniques for transforming volatile information into non-volatile (hard disk storage),
as well as considering parallel processing mechanisms to facilitate the processing of large sets of
seismic records.

Additionally, it is pertinent to include file selection algorithms that can discard repeated files
or easily identifiable irregularities in both parameter files and trace files to prevent their storage.
This process is called data wrangling, in which a data-cleaning procedure is required. Among the
irregularities found in the seismic records from the RSNC are inconsistencies in the format, absence of
trace files that correspond to existing parameter files, lack of start and end times of the event in the
records, as well as non-existent P-wave and S-wave arrival times in some of the records recorded by
the seismological stations. A key process to clean the seismic data from the RSNC is shown in Figure 3.

 

Figure 3. Seismic data cleaning process for RSNC files.

The data cleaning process is executed from three approaches: (1) the validation of the sought
and gathered files, (2) the validation of the seismic samples in these files, and (3) the validation of the
stations that register these samples.

In the first stage of this cleaning process in the file validation approach, it is checked that
the sfile and waveform files can be read correctly for processing. First, if the files cannot be read,
the inconvenience may be the source of the data. Secondly, it is verified that there are no repeated
files, because the complexity of processing grows and there is no compensation to the investigation for
processing the same data more than once. Third, it is verified that the general sfiles data files have a
correct record of the corresponding waveform file. If in any of these stages there are inconsistencies, it is
recommended that the file(s) are discarded, as they may create a bias in the general seismic analysis.

In the second stage of the cleaning process that focuses on the validation of the samples, it is
convenient to check first if there is a record of the start and end time of the events that is homogeneous
between each sfile and waveform files, secondly, that the P-waves have been recorded in both files.

Finally, in the third stage of the cleaning process, changes in the seismological station sensors,
their relocation, or periods in which they have stopped operating must be considered. This permits the
definition of a time interval in which the analysis will be executed, with the certainty that the dynamics
of the waves will not be altered by external changes that do not concern the merely seismological field.

4.3. Analysis of Seismological Stations

Once the historical seismic archives are read, an analysis of the seismological stations that have
recorded the events of interest is carried out, so that those that best represent the events and allow
a reduction of the computational load in the processing of the data can be selected. The selected
seismological stations are obtained as an output of this process.
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Each seismic station provides a specific recording pattern that is dependent on several factors:

• The distance from the hypocenter and the epicenter (hypocenter and epicenter distances) to the
geographic position of the station defines the amount of attenuation of the seismic wave.

• The geomorphology to which the seismic waves are exposed on the way to the station defines the
propagation pattern and the attenuation of the seismic waves.

• The natural and artificial noise sources demean the seismic records due to the loss of quality
regarding the content associated with seismic information, adding sources of information that
concern other events that are not from a seismic nature.

• The technical parameters of the stations such as measurement channels, signal-to-noise ratio,
analog-to-digital conversion, sampling rates, sensitivity, and dynamic range define how the
seismic event is perceived from an analog source to a digital environment.

Then, these factors influence the composition and patterns of the traces that are transmitted to the
monitoring site and stored for further offline processing. Each Colombian station records the seismic
events individually by considering the named factors. The more stations that detect the event, the more
data that can be transmitted, processed, and stored.

When a microseism occurs, usually few stations record it, since it can be a noise event due to a
local disturbance on the surface or a seismic event of very low magnitude and/or considerable depth.
In this case, the amount of data that contains useful information is not extensive and can be analyzed
quickly and stored without major physical space costs.

However, when there are long-term, shallow, or large-scale seismic events that are perceived in
various regions, the computational capacity for analysis and storage is high. Therefore, selecting a set
of stations to analyze the traces that are recorded allows the dimensionality reduction of the data and
reduction of the computational load.

Defining the stations to be studied is a process that requires a strong seismological criterion;
however, the use of algorithms for statistical analysis facilitates the discernment between station
selection criteria. For example, using libraries for the geographical mapping of stations and seismic
epicenters, clustering and sampling the data exposed in the parameter files, among other procedures,
allow contrasting the information stored and decide about the stations that best represent the
events analyzed.

Figure 4 proposes a general procedure for the selection of the seismological stations used to
identify the presence of seismic events in the Colombian monitored signals.

 

Figure 4. Seismological station selection process.

At first sight, it is necessary to identify the geo-referenced position of the stations, so that there
is a spatial perspective of their distribution. Depending on the area under monitoring, the stations
of interest will be those closer to this area. This is because the dynamics of local earthquakes are
more marked and detectable than the dynamics of regional earthquakes and teleseisms, which have
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attenuated and difficult to model features. It is recommended that more than two stations be selected,
as events that have a non-seismic nature can be detected as such if only the activity is monitored in one
or two stations.

In the second stage, it becomes clear to calculate the identification rate of seismic events labeled by
each station, according to the monitoring region. This supports the selection of the stations concerning
their geo-referenced position, as it is an indicator of the proximity of the stations to the epicenters
(epicentral distance) and the signal attenuation index when arriving at the stations.

The stations with the highest identification rate of seismic events must be checked against their
epicentral distance. A good relationship for the choice, as the third stage in this process, is to select the
stations that have identified the most earthquakes, with a short epicentral distance. It is advisable to
include the processing capacity as a third attribute in the selection process, since an additional station
can signify the processing of 210,000 additional samples, on average.

4.4. Sample Selection

The sample selection process can be carried out in parallel to the station analysis process, since
these two processes are independent of each other. There are several factors to consider when selecting
a Colombian seismic event sample, as it was shown in Section 4.2:

• Inconsistencies in the file formats: There are different formats in which a seismic file can be
structured, as SEED and miniSEED. During the processing and storage stages, the data are
susceptible to be modified or lost, since there are multiple sources of information. Sometimes,
these modifications alter the file formats, making them inconsistent. The files that present
inconsistencies in the format and cannot be read correctly must be discarded.

• Absence of trace files that correspond to SEED and SAC existing parameter files: As part of the
data storage process, the seismic information extracted from the seismic events (Sfiles) and the
seismic samples (Waveforms) are recorded in separate files, as described in previous sections.
Some of them are stored as part of the dataset without being associated. In this way, cases in
which seismic information is recorded and samples were lost and vice versa can be found. Those
files where the description data do not correspond to the seismic traces must be discarded.

• Lack of start and end times and/or inexistence of P-wave and S-wave arrival times in the events
recorded: when a seismic event is recorded, some variables are measured, among which are the
start time and end time of the event and the P-wave and S-wave arrival times. These values are
very important to train classification algorithms, as some specific samples can be extracted from
the seismograms, knowing when the earthquake began and when it finished. Unfortunately, some
files can be well stored but lacking one or more of these four key parameters. In this case, it should
be analyzed whether it is possible to determine the start or end date of the event by processing the
seismic traces. If this is not possible, the files must be discarded.

It is also important to consider the structural changes of the stations, such as changes in the
sampling frequency, sensors, digitizers, and number of spatial components, among others. These
variations, although some of them are subtle, represent substantial alterations in the seismic patterns
that might not be detected, since the detecting algorithms learn from specific patterns shown in the
learning stages.

The inconsistencies in the files may be a consequence of the wrong acquisition, processing,
and storage processes that are sometimes attributable to the algorithms that execute those processes
for the seismology entities of each region or country.

In Colombia, between 20% and 30% on average of the selected files within the initial population
of seismic events are propense to be discarded due to these inconsistencies, although some regions
that are affected by very strong seismic events have accurate and well-stored files [41]. Other less
frequent irregularities that may occur are (a) recording of the seismic data from stations that are
inactive, (b) recording of the seismic data from components that the seismological station does not have
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(e.g., the registration of three components for stations with monoaxial sensors), (c) recording seismic
traces with a different sampling frequency from that described in the sensor datasheet, (d) recording of
the seismic traces with different sampling frequencies among the components from the same station,
either by components or by events, (e) the annotation of the P-wave in the traces is outside the
measurement period of the seismic events, and (f) recording of all relevant seismic attributes described
of the seismic signals with a magnitude of zero.

4.5. Classification Process

The analysis of seismological stations and sample selection processes provide the input datasets
to the classification process, regarding seismological stations and seismic record datasets, respectively.
With these inputs, the classification process implements supervised learning strategies using the
selected seismological stations to detect the seismic event. The outputs of the classification process
are (a) the average performance metrics of the classification approach and (b) the classification model,
which is trained and validated, as described in Figure 5. The performance metrics are related to the
ability of the classifier to differentiate between a seismic event and a non-seismic event, i.e., a binary
classification, and the classification model corresponds to the implementation of the classifier, and it is
able to classify new signals and provide the event detection output.

 

Figure 5. Block diagram of the classification process.

The identification and classification of seismic events can be done using different techniques,
as described in Section 3. For instance, the phase picking of seismic waves is widely used for real-time
monitoring, detection, and localization with the P-wave picking is the main method for detection in early
warning systems. Several algorithms for P-wave picking have been proposed in the time-domain [42],
whereas the STA/LTA and its variations are the most implemented algorithm in observation and
detection networks [43]. In Colombia, the SeisComP3 software is currently used by the RSNC for
the acquisition of seismic data from stations located throughout the national territory. With the
STA/LTA-based AutoPick module, the P-wave is detected by a SeisComP3 implementation [44,45].

Traditional approaches such as STA/LTA are suitable options for the classification algorithm.
Nevertheless, these approaches have limitations regarding their adaptability to the behavior of seismic
waves [5,46,47]. As [48] state, the automatic picking of seismic waves can remove the ambiguity derived
from the lack of synchronization between channels and signals proceeding from the seismological
stations. Furthermore, [48–50] have shown that STA/LTA and cross-correlation approaches have a high
rate of Types I and II errors (namely false negative and false positive) due to excessive noise that cannot
be removed from the source and very low-frequency components that might not be enhanced. These
factors can be handled accurately (as far as possible) using machine learning techniques.

Considering that the dynamic behavior of seismic signals recorded by sensors is subject to many
factors that influence the signal, as denoted in Section 4.2, machine learning algorithms represent an
appropriate alternative for the development of classification models, since they enable the abstraction
of attributes associated with the signals, based on the modeling of large training datasets. Machine
learning algorithms rely on the quantity and quality of data and, as described in Sections 3.2 and 4.1,
current seismological services can provide huge amounts of data that can be processed to obtain
datasets to classify seismic records such as the ones provided as output in the Sample Selection process.

As [51] state, machine learning algorithms are particularly well-used in seismology due to their
facility to model complex relationships of a wide range of variables. Since the majority of tasks in
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this context are normally targeting classification problems, machine learning drives a well-structured
solution, since it can build a predictive environment in which a model is trained over sample data
and tested over unseen data, guaranteeing the generalization of the solution against the data and the
context. Sometimes, this procedure can be harmful if there is not enough data to proceed with the
training procedure or when the representative descriptors (features or covariates) are almost the same
as the number of samples. In these cases, additional machine learning approaches can be implemented,
such as feature selection using forward or backward procedures [52].

With the selection of a machine learning algorithm as the classification algorithm, the classification
process can be configured with a set of subprocesses depending on the specific machine learning
algorithm requirements, which may be feature-based or time-series-based. The proposed set of
subprocesses for the classification process is shown in the subprocesses diagram of Figure 6.
The sequence of subprocesses can fulfill the classification capabilities for attribute-based or time
series machine learning algorithms.

 

Figure 6. Classification process.

To set up the subprocesses, it is necessary to determine the number of classification models desired
to represent the dynamics perceived by the stations. A single classification model might represent the
events linking all the stations throughout a centralized fusion, or multiple classification models might
correspond to each station separately throughout decentralized functions (such as the ones proposed
by bagging techniques). In the case of decentralized fusion, each station has its classification model;
hence, the Pre-processing and the Model definition stages need to be done separately for each selected
station. The results provided by the per-station models can be composed into a combined result in the
Testing subprocess using logical functions or more complex integration functions, producing a single
classification model based on individual station analysis.

When the selected stations and the Seismic events dataset enter the classification process, the first
subprocess that manipulates the datasets is the Seismic dataset slicing subprocess. This subprocess
oversees linking the events to the selected stations and splits the Seismic events dataset into datasets
per station if a decentralized schema is going to be used. In the Pre-processing stage, six subprocesses
oversee formatting the dataset into a scheme ready to be used as input for a learning algorithm in the
Model definition stage. Each subprocess in the Pre-processing stage is applied to every component that
the signal may contain.

After the Seismic dataset slicing, the seismic signals associated with each event in the dataset are
filtered in the Signals filtering subprocess. This subprocess considers the influence of noise sources that
affect the seismic signals. The considered noise sources are the soil vibrations produced by natural
causes and the instrumental noise associated with the measurement equipment hardware [41]. The filter
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choice is crucial for the classification model performance, since the quality of the signal depends
largely on the quality of the filter; therefore, the ability of the learning algorithm to generalize P-wave
dynamics relies on the filter. It is recommended to make a frequency analysis to obtain the frequency
components of the signals and the noise. The suggested frequency band is between 1 and 12 Hz [53],
and different filter techniques can be applied to this subprocess [54].

When the Signals filtering subprocess is performed successfully, the dataset is relocated to the
Signals normalization subprocess, whose objective is to standardize the scale of the signals to the
[−1, 1] interval according to the minimum and maximum value of each signal and remove the direct
current component that is commonly added by the instrumentation. Then, the normalized signals are
re-sampled in the Signals re-sampling subprocess. The definition of a common sampling rate for the
signals is necessary due to the variety of the sampling rates that the signals may have, which are the
outcome of diverse sampling properties that the acquisition devices and the digitalization algorithms
present in the seismological stations.

The seismic signals associated with each record are commonly signals that contain information
before the arrival of the P-wave and after the arrival of the S wave. To focus on the P-wave dynamics, in
the P-wave picking subprocess, the identification of the time where the P-wave arrived is performed. This
picking time annotation is commonly found in the Sfiles. Then, in the Signal synchronization subprocess,
the picking time obtained in the P-wave picking is used to determine the exact sample where the P-wave
arrived, relying on the defined sampling rate used in the Signals re-sampling subprocess, and a standard
amount of samples is selected for a homogeneous duration time for each signal component. Therefore,
all the signals representing an event start at the same time according to their P-wave time and end at
the same time depending on the selected duration time.

The last Pre-processing subprocess is the Windows extraction subprocess whose purpose is to extract
segments from the signals where the P-wave dynamics are contained and segments where there is
no P-wave. The window length in samples is subject to the P-wave picking time and the window
duration. A 2-s window is a recommended length [55]. It is necessary to obtain non-P-wave windows
as well, since the classification algorithm learns to distinguish between the attributes of a P-wave
and the attributes of a non-P-wave signal. Therefore, it is recommended to have the same number of
windows concerning P-waves and non-P-waves to avoid class imbalance issues. With the Window
extraction subprocess, the dataset of filtered, re-sampled, and synchronized signals associated with the
events turns into a windows dataset with two classes, P-wave and non-P-wave, which is a common
approach for the binary classification of seismic events.

With the window dataset, it is possible to generate a feature dataset that is commonly used by
some feature-oriented machine learning techniques. A feature is a description of a record; the seismic
events can be statistically described in terms of time, frequency, and non-linearity, among others.
The features selection has a huge impact on the classification model’s metrics, since they define how
the classification algorithm perceives the seismic events. Each event is represented by a set of features
in a matrix, and each feature acts as an input to the classification algorithm.

The Pre-processing stage differs from feature-based learning algorithms and time-series learning
algorithms. The Signals filtering, Signals re-sampling, and Signals normalization subprocesses may be
skipped depending on the time series technique, and some extra processes must be carried out, such
as checks for stationarity, correlation, and autocorrelation. It is necessary to indicate the location of
the P-wave in the signals (P-wave picking) to synchronize the signal’s arrival and duration throughout
the dataset (Signals synchronization) and to determine the characteristics of the moving window
(Window extraction).

The input dataset for a feature-based technique is a set of single values that describes the original
P-waves and non-P-waves in the seismic signals. Among the most commonly used machine learning
feature-based algorithms applied to P-wave detection are Hidden Markov Models [56], Bayesian
Networks [57], Support Vector Machines [58–60], Logistic Regression [53,61,62] and Artificial Neural
Networks (ANN) [41,53,63–67]. Conversely, the input dataset for a time-series technique is a set of
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signals split into P-wave signals and non-P-wave signals. Among the most used time-series forecasting
techniques (TTF) for P-wave detection are Autoregressive Integrated Moving Average (ARIMA) [68],
Seasonal ARIMA (SARIMA) [69], and ARIMA with Exogenous Regressors (ARIMAX) [70]. Some
time-series forecasting recent methods used for P-wave detection include Pure Linear Neural Networks
(PLNN) [71] and Polynomial Neural Networks (PNN) [72].

By following the suggested set of subprocesses and using a machine learning algorithm as the
ones previously described, the classification process outputs a classification model and a set of metrics
associated with that classification model. The produced model is suitable for performing the offline
detection of seismic signals through the identification of P-waves. The mentioned metrics indicate
the performance of the classification algorithm with the best set of hyperparameters scored on the
test set records. The classification model, as denoted in the graph of the resulting classification model
(Figure 7), can be interpreted as a system with testing preprocessed signals as the input to a function
that contains the resultant algorithm responsible for the event detection. The output of this algorithm
is a value that indicates whether the input signal contains a P-wave or not, in case of being a binary
classification process.

 

Figure 7. Classification model.

The classification model is the result of the System Model for Offline detection. It is recommended
to generate several classification models by testing different approaches. In this sense, depending
on the performance of the classification model reflected on the metrics, a change in the selection of
classification process parameters, such as the filter type and length of the window, among others,
may be considered to improve the classification performance. In the same way, other parameters that
belong to macro processes, such as the number of stations in the Analysis of seismological stations or
filtering the seismic records by magnitude range in Seismic data seeking and gathering, may have a
huge influence on the classification performance.

Some studies have been carried out using the proposed System Model to perform the identification
of P-waves in Colombia. In [41], a dataset of seismological records of events with epicenter in the
department of Santander, Colombia between 2010 and 2017 was selected in the Seismic data seeking
and gathering process. In the Reading and interpretation of the seismic records process, the records
were described in the Nordic format. Then, in the Analysis of seismological stations, four stations were
selected according to the epicenter distance. In the Sample Selection process, 20% of the downloaded
records gathered were discarded due to inconsistencies in seismic attributes. Finally, in the Classification
Process, the selected classification algorithm was logistic regression. The classification model was
composed of four logistic regressors, one per each station, and a decentralized voting function that
applied a logical function to the output of each regressor, to produce a binary output (P-wave or
not P-wave). The obtained classification model produced an accuracy of 98.26% for the detection
of the P-wave.

Similarly, in [41], the use of the System Model was applied to a dataset of events with an epicenter in
Santander, using four stations. In the binary classification process, the selected classification algorithm
was a feed-forward back-propagation Artificial Neural Network (ANN) after being cleaned and the
missing values handled appropriately. Unlike the voting function applied in [53], the classification
algorithm relied on the behavior associated with all the stations, which were analyzed as a group in a
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centralized function represented by the ANN. The degree of polarization, the ratio of vertical power to
total power, skewness, and kurtosis of the three-component seismic data for each station were used as
the selected features to feed the training process of the named ANN binary classifier. All the input
features were extracted from observations whose classes were balanced and equally distributed in the
datasets. With the described settings, the obtained classification model produces an accuracy of 99.24%
for the detection of the P-wave.

5. Conclusions

The proposed five modules of the seismic detection model facilitated the comprehension of the
integration of the phases of an offline detection system. A set of historical seismic records is first
downloaded and read (depending on the format of the data). The data can be filtered to make it easy
to process by the subsequent phases. A selection of seismological stations that recorded an event of
interest may allow the reduction of the computational load. This selection can be made based on the
distances, geomorphology, noise sources, and technical parameters of the stations. The identification of
a seismic event is a binary classification task, i.e., the presence/absence of a P-wave on the seismic signal.

The proposed model allows specifying detection and classification tasks for seismic events, which
is applicable to the Colombian region. However, it can be extrapolated to other regions, as the detailed
procedures are general enough to be applied in the local seismological networks that have monitoring
stations with data formats and equivalent measurements.
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Abstract: The study of the behaviors of large community of researchers and what correlations
exist between their environment, such as grouping rules by law or specific institution policies, and
their performance is an important topic since it affects the metrics used to evaluate the quality of
the research. Moreover, in several countries, such as Italy, these metrics are also used to define
the recruitment and funding policies. To effectively study these topics, we created a procedure
that allow us to craft a large dataset of Italian Academic researchers, having the most important
performance indices together with co-authorships information, mixing data extracted from the
official list of academic researchers provided by Italian Ministry of University and Research and the
Elsevier’s Scopus database. In this paper, we discuss our approach to automate the process of correct
association of profiles and the mapping of publications reducing the use of computational resources.
We also present the characteristics of four datasets related to specific research fields defined by the
Italian Ministry of University and Research used to group the Italian researchers. Then, we present
several examples of how the information extracted from these datasets can help to achieve a better
understanding of the dynamics influencing scientist performances.

Keywords: network sciences; social network; coauthorship networks

1. Introduction

In the last years, the use of bibliometrics [1] gained greater and greater importance
in the evaluation of researchers and scientific projects, and it is currently used in several
countries (such as Italy) to rank researches and universities, and the attempts at performing
this kind of quantitative analysis have often been referred to as “science of science” [2–4].
However, the use of citation indexes is quite old as witnessed by pioneering works of
Garfield [5] in the 1950s, and de Solla Price [6]. Today, there are several metrics that tries to
quantify the quality and impact of researchers [7–10]. On the other hand, co-authorship
networks, i.e., networks where nodes represent scientists and a link between any couple
of nodes means the corresponding researchers have co-authored at least a paper, have
been extensively studied with the aim of understanding the collaboration patterns among
scientists. To approach such a task there are many challenging issues as, for instance,
data collection and filtering, definition of domain-specific metrics and algorithms, data
visualization, and mining. Co-authorship networks have been widely explored from the
perspective of complex networks [11,12], since such representation allows discovering
structural and dynamic patterns of scientific collaborations, often hidden, or neglected in
the bibliometric approach. Barabási et al. [13] and Newman [14,15] examined the “small-
world” and “scale-free” features in the co-authorship networks using the datasets in the
disciplines of mathematics, neuro-science, physics, biomedical studies, and computer
science. Several works followed the path of these pioneering papers deepening the “scale-
free” and “small-world” characteristics [16–18] or investigating the mechanisms for the
evolution of the co-authorship networks [19–21].
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The enrichment of co-authorship networks with bibliometrics indices allow studying
the characteristics and dynamics of such complex networks. In this work, we discuss
why and how we created a co-authorship dataset from the Italian academic context. In
particular, each academic working in an Italian university belongs to an academic discipline
(i.e., a grouping by topic imposed by law), which is also used for evaluation and career
advancement, and we believe that this fact has a strong impact on both bibliometrics
and how academic collaborations arise. Here, we selected four academic disciplines
(Mathematical Analysis—MAT/05, Economics—SECS-P/01, Information Processing Systems—
ING-INF/05, and Informatics—INF/01) that have almost the same number of researchers but
cover different research topics. We built the dataset starting from the profile of Italian
researchers and obtaining all the available bibliometrics querying the Scopus database, and
we extracted all the bibliometrics up to end of 2021. This paper presents the details of the
datasets crafting, such as mapping, solving ambiguity, etc., some preliminary analysis and,
finally, a discussion about their characteristics.

The next section briefly summarizes the state-of-the-art, Section 3 deals with method
and materials used to create datasets, while Section 4 presents the above-mentioned exam-
ple and conclusions reports about results, open problems, and further development.

2. Related Works

Co-authorship networks have been of great interest for several decades [11,12] and
have been one of the main topics in network science research. For instance, in the pioneering
work [15], Newman constructed some networks in which nodes are scientists (extracted
from bibliographic databases in biology, physics, and mathematics) and two nodes are
connected by an edge if they have co-authored almost a paper. Such network were used
to study collaboration patterns over time, and how they vary between subjects. Newman
highlighted that “the co-authorship network is as much a network depicting academic society
as it is a network depicting the structure of our knowledge. Additionally, perhaps because of this,
it has received far less attention than have citation networks”. In [22] the authors presented a
study showing how some topological features impact on some bibliographic indices using
networks that encompass only a subset of Italian scientists.

In addition to the works already mentioned in the introduction that mainly focused
on network topological properties, such as the “scale-free” and “small-world” properties,
other authors used the co-authorship networks to evaluate the performance of a set of
researchers. Hâncean et al. [23] exploited the co-authorship networks among the most
productive European researchers, over a 12-year time window, looking at the impact
of collaboration upon the citations aiming at discovering the best European researchers.
Weihua et al. [1] examined the impact of early co-authorship on the careers of junior
researchers in four specifics scientific. In [24], the authors explored the correlation between
centrality metrics in co-authorship networks and Hirsch index [8] (H-index). In [25], the
level of collaboration is evaluated through the definition of a specific centrality index
called φ. Other authors examined the evolution over time of the co-authorship networks.
For example, Parish et al. [26] studied the dynamics of productivity in different fields
of scientific research while Xie [27] proposed a hyper-graph model for simulating the
evolution of large co-authorship networks.

Of course, whatever is the goal of the study the starting point is always the choice of
scientists to study and the construction of the network itself. It is straightforward that the
number of scientists included, but also the set of features, the time interval and several other
elements could influence the final results, therefore the method and sources selected are
fundamental by themselves to guarantee meaningful results. The main contribute of this
paper is the description of the strategies used to construct a dataset from which derive the
co-authorship networks enriched by several well-established performance parameters. We
also explain issues met during the setup, such as the presence of ambiguous or duplicated
information, how to manage missing information, how to combine results and so on.
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The source of bibliometrics information is the Elsevier’s Scopus Database [28], while
the scientists used as seeds was the Italian researchers belonging to official academic
organizations. Although there are many other bibliographic databases available, such as
Web Of Science (WoS) [29] and Google Scholar [30], we decide to use the Scopus Database
since it is widely recognized in Italy, contains almost all publication types and is used as a
reference for many Italian academic ranking by law. However, in literature can be found
several examples where co-authorship networks are based on different data sources, such
as [31] that extracts data from WoS.

Among the recent co-authorship networking available in the literature based on
Scopus, Di Bella et al. [32] proposed a temporal analysis of the co-authorship network
of Italian Institute of Technologies, and Pradhan et al. [33] evaluated the performance of
some universities; both selected the authors (nodes of the network) according the authors’
affiliation. Fujita and Vitevitch, in [34], quantified the extent to which Psychology is
multidisciplinary, and how it changed over time using the tool provided by network
science. They studied the citation network from all the articles published in journals
identified by the Web of Science as Multidisciplinary-Psychology for each year from 2008
to 2018.

In our proposal the selection criteria are based on a classification, performed in Italy
by law, that groups researchers belonging to public universities according to topics simi-
larity called “Settori Scientifici Disciplinari” that can be translated in English in academic
disciplines or specializations. The peculiarity of the proposed dataset is the extension of the
network to direct collaborator and collaborators of collaborators outside the authors used
as seed, since we believe that topological properties strongly depend on the full network.
To the best of our knowledge, such kind of study has not been carried out so far.

3. Data Collection

The collection of meaningful and useful data is a task with many challenges. When
dealing with collaborations among researchers, the key issues come from the multiple data
sources and the data not being structured, which translates, for instance, into ambiguous
names or duplicate author profiles. In this section, we introduce the data sources and the
data-collection methodology used to build the collaboration networks.

3.1. Data Sources

The sources of data used to create the dataset are: the list of researchers employed
in Italian public universities provided by Italian Ministry of University and Research
(MUR) [35] and the well-known Elsevier’s Scopus database. Data were collected at the end
of 2021 and contains all records presents in Scopus and Ministry’s list at the moment. In
particular, the former—which is updated daily and provides the profile of the researchers
that are employed in the Italian academia—are used as seed data, and the latter are used
to retrieve all the researchers’ publications and bibliometrics. As shown in Figure 1,
reporting a slice of the data, the information is partially structured, all fields are in Italian
language and some of them—such as department or structure—are in free form that do
not allow to directly use them to query Scopus. To build a coherent dataset, we build a
network starting from the (seed) researchers that belong to a given academic discipline,
i.e., the group of people that belong to the research area, as defined by the Italian Law.
Specifically, we selected the academic researchers belonging to MAT/05 “Mathematical
Analysis” (“Analisi matematica”), SECS-P/01 “Economics” (“Economia politica”), ING-INF/05

“Information Processing Systems” (“Sistemi di elaborazione delle informazioni”), and INF/01

“Informatics” (“Informatica”). We selected these academic disciplines because they have a
similar number of academics that allows performing a thorough analysis in a reasonable
amount of time, they are all scientific disciplines and share some research topics, but are
significantly different from each other. Moreover, the authors of this paper belong to
one of them (ING-INF/05) and, thus, are aware of some of its dynamics, which can help in
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the analysis of the academics’ habits. Of course, other academic disciplines share these
characteristics and would allow to extend the dataset in the future.

Figure 1. Excerpt of data as provided by MUR. Column labels are role, family and given name,
gender, university, school, sector, department, or structure, and note about service.

The Elsevier’s Scopus database, according to their fact sheet [28], holds more than
1.8 billion of cited references dating back to 1970, more than 17.6 million of author profiles,
and more than 84 million of records. We queried the database using the provided APIs,
which expose curated abstracts and citation data from all journals indexed by Scopus, in
agreement to their policies [36,37].

3.2. Mapping and Ambiguity

Once chosen the academic disciplines and collected information from both sources we
must combine them into a unique dataset that contains the information related to academic
discipline and all bibliometrics. Unfortunately, no unique identifier, such as OrcID, is
present in Ministry’s list therefore the ambiguity must be resolved using the information
related to affiliation (columns Ateneo, the University’s name, and Struttura di appartenenza,
the department). Moreover, the Scopus database is built from the information present
in published papers and has multiple profiles for the same author (often already linked),
homonyms and partial registrations (researchers registered with partial names or omitted
information), and each of those issues can lead to the wrong network representation.

The Scopus Search API is organized into three clusters: Affiliation that has Affiliation
Profile, Author that contains Author Profiles, and Scopus contains the abstracts and relevant
metadata. Searching against Author cluster retrieves the following attributes useful to
uniquely identify the author: “dc:identifier” that is the Scopus unique identifier associated
with profile, “OrcID” if any, “surname”, “given-name”, and “affiliation” split into name,
city and country. Despite the details of information given by the query, there are still some
problems in mapping the data from the MUR’s list to a unique Scopus profile. We report
the most important ones in the following:

1. The surname and given-name in the Ministry list is always the legal name while the
corresponding fields in Scopus may be abbreviated, misspelled, alias, reverted, and
incomplete. For instance, Ministry List refer to “Michele Giuseppe Malgeri” while
Scopus profile only contains “Michele Malgeri”, some authors have more than one
profile that often are not combined, sometimes surname and given-name are inverted,
and, of course, several authors with same (or similar) names may exist.

2. The Ministry list affiliation reports the official name of the institution, meaning that
the name is always in Italian, while Scopus often contains the abbreviations, acronyms,
or the English translation of the University’s name. Of course, again, misspelling and
typos may be always present.

3. Spaces, stippling, national characters (e.g., the use of accented vocals).
4. Authors during their activity may change affiliation several times, therefore multiple

profile could be present.

To face the problems connected with misspelling, stippling, and typos, before the pro-
cessing each name is cleaned removing all punctuation, unnecessary spaces, and mapping
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national characters, if any, to a normalized form. Comparisons are performed using the
Levenshtein distance [38]. The prepare_queries setups the set of queries using the author’s
surname and the shuffle of the given name (if more than one) and the initials of the name,
for instance “Malgeri Michele Giuseppe”, where the surname is “Malgeri”, generates the
queries listed in Listing 1:

Listing 1. List of queries generates by Malgeri Michele Giuseppe. If they fail third condition about
affiliation is discarded and queries will be repeated.

AUTHLAST(Malgeri) and AUTHFIRST(M) and AFFIL(Università di Catania)

AUTHLAST(Malgeri) and AUTHFIRST(MG) and AFFIL(Università di Catania)

AUTHLAST(Malgeri) and AUTHFIRST(Michele) and AFFIL(Università di Catania)

AUTHLAST(Malgeri) and AUTHFIRST(MicheleG) and AFFIL(Università di Catania)

AUTHLAST(Malgeri) and AUTHFIRST(MicheleGiuseppe) and AFFIL(Università di Catania)

AUTHLAST(Malgeri) and AUTHFIRST(Giuseppe) and AFFIL(Università di Catania)

AUTHLAST(Malgeri) and AUTHFIRST(GiuseppeMichele) and AFFIL(Università di Catania)

We describe the algorithm used to search for the Scopus profile of Italian researchers
from the Ministry’s list in Algorithm 1. Please note that, for sake of simplicity, the algorithm
does not include the use of the researcher’s affiliation and the validation of data, which is
performed when few matches are found.

Algorithm 1 Searching for a matching profile between Ministry’s list and Scopus Authors’ cluster.

procedure search_ f or_author(profile)
matches ← []
queries ← prepare_queries(pro f ile)
for all query ∈ queries do

result ← search_against_Author_Cluster(query_string)
if surname == result.surname then

result.distance ← Levenshtein_distance(pro f ile.given_name, result.givenname)
append(match, result)

end if
end for
if match 	= ∅ and min(distance) < threshold then

return(Found)
else

return(Failed)
end if

end procedure

Table 1 reports the dimension of data from Ministry’s list and the relative consolidated
data. Let us note that, by law, a researcher, at a given time, must belong to one academic
discipline, therefore, we use that value from Ministry’s list. The last column reports the
percentage of authors that could not be associated to any Scopus profile either because of
failed disambiguation or because the author is not even present in the database. Let us also
note that, while it may be possible to recover some of the missed profiles, for instance by
manually inserting the researcher’s OrcID or Scopus identifier, we simply discard these
few records since the error introduced not affect significantly the dataset being created.

Table 1. The results of searching and mapping.

Academic Discipline Total in the SSD Matched % of Missed

MAT/05 723 679 6.08%
SECS-P/01 733 674 7.77%
ING-INF/05 843 785 5.75%
INF/01 1027 966 6.76%
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3.3. Making the Coauthorship Network

After matching and recovering the profile of Italian academic researchers from the
MUR’s list, the next step is to retrieve the publication list of each of them and build
the co-authorship networks. Specifically, we build a network for each of the “academic
disciplines” (SSDs) under study, where nodes are researchers and links among them
represent collaborations. More in detail, given two nodes u and v, the edge (u, v) represents
the fact that researchers u and v have co-authored a paper. We enrich the networks with
bibliometrics about the researchers (such as H-index, number of published documents,
of citations and of co-authors, Years of activity, etc.) from the Scopus’ database, and also
associate the number of co-authored papers as the edge weight w(u,v).

Although the algorithm used to obtain the publications and build the networks is
quite trivial, it must be optimized to reduce the number and the complexity of the queries
to avoid filling the query quotas provided by Elsevier and avoid throttling. Please note that
such queries were performed against the Scopus cluster instead of Scopus Author because
the information about each publication is useful for further processing and verification. Let
us also note that, to reduce the number of API calls, we query 25 documents with each call,
and we cache result to avoid to repeat a query.

The algorithm, described in Algorithm 2, was executed three times to explore the
co-authorship at different “depths”, that is, the maximum number of hops from the seed
nodes to explore:

1. Depth-zero: that is the co-authorship of Italian researchers only, i.e., it contains only
vertices that belong to Ministry’s list.

2. Depth-one: in this step we added only authors that have direct connections with
Italian researchers.

3. Depth-two: starting from deep-two we also included the co-authors of co-authors
(’two’ means that we stopped the deep first search at the second step).

Of course, depth-two network contains depth-one that, in turn, contains depth-zero.

Algorithm 2 Deep first search of common publications.
procedure Create_Coauthorship(author_list)

vertices ← []
edges ← []
for all author ∈ author_list do

if author /∈ vertices then
append(vertices, author)

end if
result ← search_against_Scopus_Cluster(authors) � search for all author’s documents
for all document ∈ result do

for all coauthor ∈ extract_authors(result) do � extracts list of authors from result
if (author, coauthor) /∈ edges then

append(edges, (author, coauthor))
weight((author, coauthor)) ← 1
append(document, seto f _documents((author, coauthor)))

else if document /∈ seto f _documents((author, coauthor)) then
weight((author, coauthor)) = weight((author, coauthor)) + 1)

end if
end for

end for
end for

end procedure

4. Inside the Data

In this section, we briefly analyze the topology of 12 networks (built as described in the
previous section) and the bibliometrics of the authors, and highlight some characteristics of
the collected samples.
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4.1. Structure of the Networks

As detailed in the previous sections, we have built the co-authorship networks using
the list of Italian academic researchers from four different “academic disciplines” as seeds:
for each discipline, we build three subnetworks where we include all the researchers
separated by up to one, two, or three degrees of collaborations. As shown in Table 2,
reporting the number of nodes and edges of the three datasets, the networks built at
different depths have different size. This is expected, since the networks may also include
researchers from other institutions or countries. We also extract the Giant Connected
Component (GCC, also known as Largest Connected Component, LCC) of the networks,
i.e., the largest cluster of connected nodes, capturing the largest group of researchers that
have a finite degree of separation from each other. The sizes of such components are shown
in Table 3.

Table 2. Italian co-authorship networks size of the academic disciplines under analysis.

Academic Discipline
Depth-Zero Depth-One Depth-Two

Vertices Edges Vertices Edges Vertices Edges

MAT/05 679 1990 7891 13,764 338,475 1,042,750
SECS-P/01 674 784 10,736 13,404 727,060 2,512,882
ING-INF/05 784 3759 46,879 84,127 1,900,424 6,897,383
INF/01 966 4327 43,339 78,283 1,824,553 6,666,596

Table 3. Giant Connected Components size of the Italian co-authorship networks of the academic
disciplines under analysis.

Academic Discipline
Depth-Zero Depth-One Depth-Two

Vertices Edges Vertices Edges Vertices Edges

MAT/05 613 1970 7712 13,599 338,462 1,042,745
SECS-P/01 458 752 9309 12,042 727,028 2,512,863
ING-INF/05 758 3758 46,851 84,101 1,900,413 6,897,354
INF/01 929 4318 43,324 78,271 1,824,552 6,666,596

We also plot the GCC of the depth-one networks (for the sake of readability, as the
larger networks would be unintelligible) in Figure 2 that highlights the Italian researchers.
Let us note that the co-authorship networks of ING-INF/05 and INF/01 disciplines show
similar collaboration patterns, which is expected considering the large overlap in research
interests and topics between them.

In Table 4, we report some topological characteristics of the depth-two networks,
describing their size, edge density, and connection patterns. As the Reader may notice,
although the computer science-related fields have comparable size, the networks show a
very different number of nodes and edges among academic fields. On the other hand, the
average degree, strength, and link weight are comparable. Another interesting difference
among the disciplines is in the average local clustering coefficient and in the transitivity,
which shows that the researchers in computer science-related fields are more prone to
collaborate. We also compute the degree and strength assortativity, as defined in [39,40].
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(a) MAT/05 (b) SECS-P/01

(c) ING-INF/05 (d) INF/01

Figure 2. These figures highlight the core of co-authorship networks (orange/clear) with respect to
direct coauthors (blue/darker).

Table 4. Characteristics of the Largest Connected Component of the Depth 1 networks.

SECS-P/01 MAT/05 ING-INF/05 INF/01

Number of edges 12,042 13,599 84,101 78,271
Number of nodes 9309 7712 46,851 43,324
Avg. degree 2.58717 3.52671 3.59015 3.61329
Density 0.00028 0.00046 0.00008 0.00008
Avg. link weight 2.12465 2.62593 2.91573 2.93882
Avg. strength 5.49683 9.26089 10.46791 10.61878
Avg. local clustering coefficient [11] 0.08487 0.23174 0.27827 0.26523
Transitivity [41] 0.00364 0.04231 0.01994 0.02194
Avg. k-core [42,43] number 0.09904 0.30368 0.09470 0.11534
Max k-core number [42,43] 3 6 17 8
Degree assortativity [39] −0.05231 −0.13266 −0.12238 −0.12909
Strength assortativity [40] −0.02465 −0.09091 −0.11980 −0.01308
Avg. Shortest Path Len. 6.25596 4.44838 3.86187 3.93791
Diameter 16 16 9 10
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4.2. Bibliometrics

In this Subsection, we analyze the bibliometrics associated to the authors. Figure 3
represents the depth-0 networks with a node and edge size proportional to the author’s
H-index and number of coauthored publications, respectively. Such figures allow to ap-
preciate that relevant nodes are often heavily connected, i.e., they are hubs, and also the
different habits and policies of the academic disciplines is clearly show by this represen-
tation: researchers in the SECS-P/01 discipline collaborate with other Italian researchers
belonging to the same discipline less than others, which also translates into a larger number
of small Connected Components; MAT/05 shows a very small core with a sort of “tail”, a
chain of collaborations; INF/01 and ING-INF/05 exhibit a large core and a far denser collabora-
tion network.

(a) MAT/05 (b) SECS-P/01

(c) ING-INF/05 (d) INF/01

Figure 3. Italian academics’ co-authorship networks at depth-0. Vertices and edge widths are
proportional to the author’s H-index edge weights, respectively. The Giant Connected Component
colored in orange/clear. For sake of readability, the nodes with degree di < 5 have been filtered out.

The distributions of the most relevant bibliometrics indices contained in the dataset
are shown in Figure 4 with darker color standing for larger density. Again, a strong
similarity can be observed between computer science-related fields, while the economics
and mathematical analysis disciplines show different distributions. For instance, the
H-index range is wider in the ING-INF/05 and INF/01 than the other disciplines, and the
distribution is fat-tailed. Regarding the number of documents, of citations and of coauthors
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the distributions of INF/01 and SECS-P/01 show a very dense area around small value. On
the other hand, number of years activity is similar across all disciplines.

Figure 4. Distribution of some bibliometric indices in the academic disciplines.

Another interesting analysis that could be performed on the networks is related to
the “Science of Success”. Here, we show, in Figure 5, the correlation between H-index
and some indices. More specifically, the figure plots the relation between H-index and the
other features in the four dataset using a linear model regression and a confidence interval.
Table 5 shows the Pearson product-moment correlation coefficient between H-index and
the other features in the four dataset. Once again, the table highlights a very strong overlap
of ING-INF/05 and INF/01 disciplines for all the bibliometric indices whilst the Pearson’s
correlation of SECS-P/01 is markedly different.

(a) Document count.(a) Document count.

(b) Citation count.

Figure 5. Cont.
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(c) Co-author count.(c) Co-author count.

(d) Years of activity

Figure 5. Correlation among H-index and bibliometric indices in the academic disciplines, from left
to right academic disciplines are: MAT/05, SECS-P/01, ING-INF/05, and INF/01.

Table 5. Pearson’s correlation among H-index and bibliometric indices in the academic disciplines.

Bibliometric Indices ING-INF/05 MAT/05 SECS-P/01 INF/01

documents count 0.80 0.85 0.85 0.82
citations count 0.84 0.86 0.49 0.84
coauthors count 0.30 0.23 0.27 0.37
Year of activity 0.38 0.43 0.49 0.44

4.3. Multidisciplinarity

In this subsection, we aim at answering the following questions: do researchers belonging
to different academic disciplines work together? and does the grouping imposed by the Italian law
affect the collaboration patterns among researchers? To do so, we merge the networks of the
different disciplines together and show the resulting networks in Figure 6.

(a) depth-zero. (b) depth-one.

Figure 6. Co-authorship network of the four academic disciplines (ING-INF/05 dark orange, INF/01
cyan, MAT/05 is orange, and SECS-P/01 is violet).
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At first, we limit the analysis to the depth-zero networks Figure 6a, which only include
Italian academic researchers. As shown in the plot, the number of collaborations across the
disciplines under study is very low. More in detail, there is almost no cooperation between
researchers in MAT/05, SECS-P/01, and the computer-science related ones, while researchers
ING-INF/05 and INF/01 have coauthored more papers, which is expected since the strong
overlap in the research topics [44]. We later extend the networks by including the direct
coauthors, i.e., by merging the depth-one networks. The resulting network, depicted in
Figure 6b, shows that there is some (indirect) collaboration among groups, and a very strong
overlap in the groups of INF/01 and ING-INF/05. (Let us note that in depth-1 and depth-2
some authors can be coauthors of researchers belonging to different academic disciplines,
so they are present in both networks; we represent them as blue points). By merging the
networks at depth-two, the size of the largest cluster grows a lot, which shows that other
researchers (e.g., researchers from the same field but working for private institutions or
living abroad) bridge the various groups. Please note that we omit the resulting figure
since the network would be too large and dense.

5. Conclusions

The collaboration patterns among researchers, and also their relation to higher per-
formance metrics are widely investigated problems, with applications, for instance, in the
science of success. In this work, we propose and briefly study a new dataset of collaboration
among Italian academic researchers. In particular, we first describe the data-collection pro-
cess, the challenges and the solution to various problems. Then, we build and analyze the
collaboration networks, in search of the different characteristics of four different academic
disciplines (groups of researchers defined by the Italian law), however we mainly focused
on the approach to build the datasets giving some example of the analysis that could be
completed leaving explanation of the results to further works. Our results show similar
collaboration patterns among researchers of computer science-related fields (ING-INF/05

and INF/01) and, even if with a limited extent, collaborations among them. On the other
hand, researchers from Economics (SECS-P/01) and Mathematical analysis (MAT/05), tend to
collaborate less with other Italian colleagues.

5.1. Discussion

In this section we provide a brief discussion on contribution of this paper that mainly
lies in the datasets and their features, the analysis of them have the purpose to inspire fur-
ther researches aiming at both studying this specific co-authorship with a well established
approach and to explore new approaches, such us the use of the network science tools, to
understand hidden mechanism that drive the behavior of scientist communities.

The creation of new dataset represents an important contribution itself, however, it
must cover a real world case that exploits some new characteristics and creation strategies
to add to previous studies. The case described in this paper has the following peculiarities:

• The scientist community is stable and well-defined since it is defined by law;
• The four dataset share some characteristics (scientific/technical topics, publication areas)

but have different publication policy (e.g., number of authors, type of contribution);
• The algorithm, as discussed, can be used to easily extract more academic disciplines

in a reasonable time;
• Almost all problems dealing with ambiguity and wrong classification has been solved

(the error are ≈5%, of course, the error can be reduced by human involvement, but it
does not modify the structure of co-authorship network;

Measuring the performance of scientist using performance indices, such us biblio-
metrics, is widely debated but, since it is adopted by more and more institution any
contribute that study the correlation between network structure and bibliometrics, if any,
permit defining more correct policies (such as recruitment policies) or limit abuses (e.g.,
publishing “salami slices” with similar methods and slightly different results). However,
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the exploratory examples of analysis provided in this paper simply aim at validating the
datasets and show its effectiveness in highlight specific characteristics.

5.2. Future Works and Limitations

Future works may involve enriching and improving the dataset, for instance, by
extending the groups analyzed either to other academic disciplines or to more collaboration
hops. Moreover, further analysis can be performed, for example, with data science and
network science approaches. Finally, an attempt to explain both the internal behaviors and
the difference among academic disciplines is a further step in the comprehension of some
dynamics and could lead to understand why some people are more successful than others.

The dataset, since covers several years and long-lasting collaborations could be used
to explore the trust relationship among scientists and the impacts of aging [45], or strategies
and the cost to build strong communities [46].

The dataset proposed in this paper, as well as the proposed analysis, does not include
any studies on the content of the co-authored paper and on the different contribution of each
author (if any are documented). Some additional features, present in Scopus DB, such as
abstracts and keywords using text analytic techniques [47], could allow searching for very
similar publication, and, for instance, to evaluate the impact in bibliometrics but also in co-
authorship. However, the dataset contains all information useful to enhance and complete
the included information since it includes most of the unique key universally adopted (e.g.,
OrcID, Scopus-id) that can be used to query both Scopus itself and other archives.

Author Contributions: The authors contributed equally to each stage of this work. All authors have
read and agreed to the published version of the manuscript.

Funding: This work has been partially supported by the project of University of Catania PIACERI,
PIAno di inCEntivi per la RIcerca di Ateneo.

Data Availability Statement: The networks analyzed in this study were derived from Elsevier’s
Scopus DB and are available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, W.; Aste, T.; Caccioli, F.; Livan, G. Early coauthorship with top scientists predicts success in academic careers. Nat. Commun.
2019, 10, 5170. [CrossRef] [PubMed]

2. Zeng, A.; Shen, Z.; Zhou, J.; Wu, J.; Fan, Y.; Wang, Y.; Stanley, H.E. The science of science: From the perspective of complex
systems. Phys. Rep. 2017, 714, 1–73. [CrossRef]

3. Clauset, A.; Larremore, D.B.; Sinatra, R. Data-driven predictions in the science of science. Science 2017, 355, 477–480. [CrossRef]
4. Fortunato, S.; Bergstrom, C.T.; Börner, K.; Evans, J.A.; Helbing, D.; Milojević, S.; Petersen, A.M.; Radicchi, F.; Sinatra, R.; Uzzi, B.;
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