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France, in 2006. He is an engineer from the Ecole Nationale Supérieure des Techniques Avancées

Bretagne (ENSTA Bretagne, formerly ENSIETA), Brest, France. He has been a researcher at the

Observatoire Midi-Pyrénées (OMP), Toulouse, France, since 2010, in charge of the scientific applications

of radar altimetry over land (hydrology and surface properties) for the Centre de Topographie des

Océans et de l’Hydrosphre (CTOH), a French observation service dedicated to scientific applications of

radar altimetry. He is working on Earth observation techniques devoted to studying the global water

cycle and climate.

Dr. Luc Bourrel received his Ph.D. degree in geophysics from the Institut National Polytechnique de

Toulouse (INPT), Toulouse, France, in 1994. He is a hydrologist and a hydroclimatologist working at
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Preface to ”The Use of Remote Sensing in Hydrology”

Remotely sensed observations are nowadays increasingly used for regional/global monitoring of

hydrological variables including soil moisture, rainfall, water levels, flood extent, evapotranspiration or

land water storage, as well as the forcing, calibration and assimilation into hydrodynamic, hydrological

and hydrometeorological models [1,2]. In the years to come, recent and future satellite sensors, some

of them specifically designed for hydrological purposes, will provide systematic observations of

hydrological parameters (e.g., surface and sub-surface storage and flux) at high spatial and temporal

resolutions [3]. Among these new Earth observation missions, the Sentinel missions, developed

by the European Space Agency (ESA) for the operational requirements of the Copernicus program

and composed of six pairs of satellites that began to be launched in 2014, will provide the most

comprehensive monitoring of environmental parameters to date [4]. The Surface Water and Ocean

Topography (SWOT), mostly from the National Aeronautics and Space Agency (NASA) and the Centre

National d’Etudes Spatiales (CNES), to be launched in 2021, will measure the Earth’s surface elevation,

its slope, and their temporal changes [5]. This will make a significant contribution to the improvement

of knowledge of the terrestrial water cycle. Prior to these missions, past and current remotely sensed

observations have already provided very useful information on land hydrology.

This book contains reviews and recent advances of general interest on the use of remote sensing for

hydrology. It is composed of the four following sections:

- Detection of the former and current surface water extent and soil moisture

The first chapter is a review on the capabilities of space-borne synthetic aperture radar (SAR) for the

detection and mapping of paleo river drainage networks under sand layers in deserts. It is followed by

two chapters presenting first applications of Sentinel-1 SAR images for estimating temporal changes

in surface water extent within Cambodia and the Vietnamese Mekong River Delta and mapping of

rice cropland in the Mediterranean Region using changing in soil moisture. Chapter four shows the

relationships between size distribution and surface coverage of thermokarst lakes from high resolution

optical images and carbon and metal storages in the permafrost zone of the Western Siberia lowland.

Chapter five presents an approach for mapping the water fraction in the floodplains of the Amazon

Basin and its dynamics using SMOS brightness temperatures.

- Monitoring of water levels

This section is composed of two chapters on the performances and potential of the CryoSat-2 SAR

and SARIn modes for lake level estimates and on the applications of Cryosat-2 altimetry data over

rivers and lakes.

- Surface water storage estimates

The two chapters of this section are devoted to surface water storage estimates with the long-term

monitoring of water level and storage of lakes using spaceborne multisensor data and the pluri-

annual surface water storage variations in the Ganges-Brahmaputra River Basin using multi-satellite

observations.

- Hydrological Fluxes: Rainfall, Evapotranspiration and Runoff

The last section of this book deals with remotely sensed observations of hydrological fluxes. It is

composed of four chapters. The first one presents an evaluation of the TRMM satellite rainfall product

vii



to analyze the long-term rainfall variability over the Pacific Slope and Coast of Ecuador. The second one

provides an assessment of the terrestrial water cycle in the European COSMO-REA6 Reanalysis using

GRACE data. The third chapter evaluates the performances of different approaches (models, satellite

products) to retrieve evapotranspiration solving either the energy of the water balances Continental in

semi-arid and arid Australian basins. The last one presents a hierarchical approach to estimate river

discharge in coastal areas from thermal images.
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Abstract: Space-borne Synthetic Aperture Radar (SAR) has the capability to image subsurface features
down to several meters in arid regions. A first demonstration of this capability was performed in
the Egyptian desert during the early eighties, thanks to the first Shuttle Imaging Radar mission.
Global coverage provided by recent SARs, such as the Japanese ALOS/PALSAR sensor, allowed
the mapping of vast ancient hydrographic systems in Northern Africa. We present a summary of
palaeohydrography results obtained using PALSAR data over large deserts such as the Sahara and
the Gobi. An ancient river system was discovered in eastern Lybia, connecting in the past the Kufrah
oasis to the Mediterranean Sea, and the terminal part of the Tamanrasett river was mapped in western
Mauritania, ending with a large submarine canyon. In southern Mongolia, PALSAR images combined
with topography analysis allowed the mapping of the ancient Ulaan Nuur lake. We finally show
the potentials of future low frequency SAR sensors by comparing L-band (1.25 GHz) and P-band
(435 MHz) airborne SAR acquisitions over a desert site in southern Tunisia.

Keywords: SAR; radar; deserts; palaeohydrography; Sahara; Gobi

1. Introduction

Space-borne Synthetic Aperture Radar (SAR) allows the mapping of continental surfaces at
centimetre-scale wavelengths. It is an active remote sensing technique, producing high resolution
images sensitive to surface topography and roughness, and to soil water content [1]. In very dry soils,
SAR is able to probe the subsurface down to several meters: it was shown that L-band (1.25 GHz) radar
is able to penetrate meters of low electrical loss material such as sand [2,3]. Thanks to the first Shuttle
Imaging Radar SIR-A mission, McCauley et al. [4] demonstrated radar subsurface imaging capabilities
for a site located in the Selima Sand Sheet, in southern Egypt. Radar images revealed buried and
previously unknown palaeodrainage channels (see Figure 1), which afterwards were confirmed by
field studies [5,6]. Later in 1995, SIR-C radar was used to map the subsurface basement structures that
control the Nile’s course in northeastern Sudan [7]. More recent studies have shown that combining
Shuttle Radar Topography Mission (SRTM) data [8] with SAR images better reveals subsurface features
that still present a topographic signature. New palaeodrainage flow directions have thus been mapped
in eastern Sahara [9], allowing better definition of drainage lines leading to oases and valleys, as well
as a better mapping of the past aquifers [10,11].

Water 2017, 9, 194 1 www.mdpi.com/journal/water
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Figure 1. (Top left) SPOT (Satellite Pour l’Observation de la Terre) image of part of the Selima
Sand Sheet located in southern Egypt (22.55◦ N–29.28◦ E). (Top right) Radar image from Japanese
polarimetric L-band synthetic aperture radar (PALSAR) of the same area, revealing numerous
palaeochannels hidden by a meter-thick layer of aeolian sand. (Bottom) Sketch of radar wave interaction
with surface sand, subsurface bedrock and palaeochannel. The radar wave is absorbed by the alluvial
sediments, leading to a weak return, while it is backscattered by the rough bedrock under the thin sand
cover, leading to a stronger return.

While the geographical coverage of the Shuttle Imaging Radar missions was limited, a more
complete L-band radar coverage of the eastern Sahara was acquired by the JERS-1 satellite of the
Japanese space agency (JAXA). It was used to produce the first regional-scale radar mosaic covering
Egypt, northern Sudan, eastern Libya, and northern Chad. This data set helped discover numerous
unknown crater structures in eastern Sahara [12]. Later in 2006, JAXA successfully launched the
Advanced Land Observing Satellite (ALOS), carrying a full polarimetric L-band SAR, named PALSAR,
which offered higher resolution imagery and a much improved signal to noise ratio as compared to
JERS-1 [13]. Full coverage of the Sahara and Arabia was acquired during June and July 2007, delivering
more than 400 PALSAR strips at a resolution of 50 m (see Figure 2). A fully automated data processing
chain allowed to produce geocoded 1◦ × 1◦ SAR scenes that can be superposed to the corresponding
1◦ × 1◦ SRTM squares, covering latitudes between 17◦ N and 37◦ N and longitudes between 17◦ W
and 60◦ E. The whole dataset is managed with the help of a web map server, allowing the import
and display of PALSAR data using Google Earth. It is freely accessible through a dedicated web
site [14]. This PALSAR dataset constitutes a unique tool for the scientific community to study the
palaeo-environment and palaeoclimate of North Africa and Arabia. It also helps in the building of
more complete geological maps and in support of future water prospecting in arid and semi-arid
regions [15]. Recently, the PALSAR dataset was extended to the Gobi Desert in Central Asia, covering
latitudes between 34◦ N and 52◦ N and longitudes between 73◦ E and 120◦ E.
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Figure 2. PALSAR strips acquired by the Japanese space agency (JAXA) over the Sahara and Arabia
during the summer of 2017.

2. Case Studies Using PALSAR L-Band Sensor

2.1. The Kufrah Palaeoriver in Eastern Sahara

Many of the major drainage basins in North Africa were influenced by the Messinian salinity
crisis in the late Miocene, when desiccation of the Mediterranean Sea promoted deep landscape
incision. In central Sahara, extensive drainage systems originating in the Tibesti mountains were
flowing northward to the Mediterranean Sea and southward to the Chad Basin. While this region is now
hyperarid, remains of past river systems have been detected using remote sensing imagery, leading some
authors to propose palaeodrainage pathways between south Libya and the Mediterranean Sea [9,16].

For the first time, PALSAR L-band images allowed an accurate mapping of a continuous
900 km-long palaeodrainage system, named the Kufrah River (see Figure 3). Its headwaters are mainly
in southern Libya with observed tributaries arising in three main areas: El Fayoud and El Akdamin
hamadas in northeastern Tibesti (Wadi Al Kufrah), northern Uweinat close to the Sudanese border
(Uweinat tributary), and the western Gilf Kebir and Abu Ras plateaux on the Egyptian border [17].
The end of the Kufrah River disperses as a network of small shallow channels across the surface of the
broad Sarir Dalmah alluvial fan, that covers more than 15,000 km2, possibly constituting an inland
delta. It is not possible to follow the river course to the north because the large and thick sand dunes
of the Calanscio Sand Sea preclude radar mapping of the subsurface. However, about 300 km away
to the northwest and emerging from beneath the Calanscio Sand Sea, lies the major, 2 to 4 km-wide,
alluvium-filled Wadi Sahabi palaeochannel that incised more than 300 m into bedrock. Analysis
of SRTM topography combined with PALSAR scenes allowed the mapping of several additional
palaeochannels located west of the Kufrah River, each of which is likely to have formed a tributary
that supplied water and sediment to the main palaeodrainage system. SRTM topography also revealed
local depressions which allow to connect the western palaeochannels and the terminal alluvial fan of
the Kufrah River to the Wadi Sahabi palaeochannel, through a 400 km-long palaeocorridor [18].

The Kufrah River is then a major palaeodrainage system in eastern Sahara, which at its maximum
extent would have drained an area of more than 400,000 km2 between the Tibesti, Al Haruj, and Gilf
Kebir massifs and connected to the Mediterranean Sea in the Sirt Basin through the Wadi Sahabi
palaeochannel, possibly discharging a comparable amount of water as does the present-day Nile.
Despite the fact we have no direct indication about the age of initiation and history of the Kufrah River,
it is very likely to be have been active during in recent (Holocene) times as proposed by Pachur and
Altmann [19]: even though L-band radar does not allow to see deeper than a couple of meters, the
palaeochannels are clearly visible in PALSAR images, suggesting that they are only at shallow depths.
Earlier (Pleistocene) phases of activity are also likely: Osborne et al. [20] proposes a “humid corridor”
that was connecting the Kufrah Basin to the Mediterranean coast 120,000 years ago. The Kufrah River
system is then clearly a major palaeohydrological feature to take into account when studying the
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past environments and climates of northern Africa, from the middle Miocene to the Holocene. It also
represents a likely corridor for fauna and human dispersal in the eastern Sahara, and thus indicates
locations where further palae-ontological, palaeo-anthropological, and archaeological field exploration
should be conducted.

 

Figure 3. The Kufrah palaeoriver system (in blue) on top of Shuttle Radar Topography Mission (SRTM)
topography (left) and on top of the PALSAR mosaic (right). The red dash line indicates a possible
corridor connecting the terminal fan of the Kufrah River to the Mediterranean coast, through the Wadi
Sahabi palaeochannel.

2.2. The Tamanrasett Palaeoriver in Western Sahara

The Green Sahara Periods (GSPs) are due to astronomically related changes and are the
consequence of the transformation of the hydrological cycle over North Africa, with the intensification
of the African summer monsoon. Changes in the position of this rain belt led to development of
important fluvial networks over the Sahara, which resulted in an increase of freshwater delivery to
surrounding oceans. Marine sediment records from the Mediterranean and Atlantic margins have
provided consistent evidence of monsoon variability in northern Africa since the middle Pleistocene.
The most recent GSP, which spans from 12,000 to 5000 years BP, is commonly referred to as the
early Holocene African Humid Period (AHP). It is well recorded in marine sedimentary archives
from the Gulf of Guinea to the northeastern Tropical Atlantic Ocean, the Mediterranean margin, and
eastern Africa.

Off the western African margin, fluvial signals have been identified in deep-sea sediments dated
from the early Holocene [21]. Recently, a large 400 km-long submarine channel system, the Cap Timiris
Canyon, has been discovered on the western Sahara margin off Mauritania [22]. The Cap Timiris
Canyon was very likely connected to a major river system in the past, and potential flow pathways
simulated from present-day topography indicates the existence of a large river system in western
Sahara, taking its sources in the Hoggar highlands and the southern Atlas Mountains. This so-called
Tamanrasett River valley has been described as a possible vast and ancient hydrographic system [23].
Although a possible link between the Tamanrasett River and the Cap Timiris Canyon has already
been suggested, no direct evidence of any fluvial activity and of a connection to the canyon has
ever been found. PALSAR images of the Mauritanian coast provide geomorphological evidence for
the existence of a palaeodrainage system located in the Arguin Bay, between Cap Blanc and Cap
Timiris (see Figure 4). This newly identified palaeodrainage system is about 500 km-long and overlaps
very well with the coastal section of the course of the Tamanrasett River inferred from topography.
The reconstruction of the complete system was not possible using PALSAR images, due to the presence
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of thick sand dunes. However, the branch of the palaeodrainage network identified using radar
represents a fifth of the total length of the Tamanrasett palaeoriver. The palaeochannels detected in
radar images are also perfectly aligned with palaeovalleys identified in the Arguin Basin, as well as
with the proximal tributaries of the submarine Cap Timiris Canyon system [24].

Figure 4. (Top) Topographic map of Mauritanian coast, showing locations of the Timiris Canyon
(black square), palaeochannels detected in PALSAR data (blue lines) and Tamanrasett River valley
(dark brown area), after [24]. (Bottom) PALSAR mosaic showing the discovered palaeodrainage system.
“Radar rivers” appear here as bright features, due to the accumulation of coarse gravels in the terminal
part of the channels, producing a higher radar return.

Thanks to orbital space-borne imaging radar, it was possible to establish the continuity of
a past giant drainage system in western Africa, from the continent (Tamanrasett River) to the shelf
(Arguin basin), and then to the bottom ocean (Cap Timiris Canyon). Overall, the identification of
this palaeodrainage system in the Arguin Bay area is very coherent with the hydrological landscape
of the western Sahara, especially during the most recent GSPs. The evidence of a fluvial activity on
the Mauritanian coast during the recent past provides a missing link between the development of
lakes over Algeria and Mauritania and fluvial evidences in Algeria. The presence of a vast fluvial
system in the past in the place of present-day major dust sources also provides a new light on the
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interplay between aeolian and fluvial supplies in the making of the terrigenous signal off western
Africa. This finding also provides valuable constraints for numerical simulations of Saharan climate
throughout the late Quaternary.

2.3. The Ulaan Nuur Palaeolake in Central Asia

Arid Inner Asia has experienced dramatic climate fluctuations over the last millennia [25] and
remains highly sensitive to ongoing climatic change. As a consequence, lakes in the Gobi Desert
underwent major level changes during the Late Quaternary, with high stages being associated
with wetter climates. The early Holocene in Mongolia is characterized by increasing temperature
and humidity, followed by a humid early-mid Holocene stage, when lakes were at high volume.
Enhanced aridity occurred during the mid-Holocene, but the beginning and end of the dry interval
differs from location to location. In the late Holocene the humidity increased due to decreased
evaporation when temperatures dropped in Mongolia. Due to its location, Mongolia is influenced
by both the North Atlantic Oscillation and the East Asian Monsoon, associated with El Nino effect,
making the region an important source for establishing Holocene climatic signals [26].

Remains of past wetter climates can be found in today’s topography in the form of palaeochannels
and palaeoshorelines, in particular in the desert of southern Mongolia [27,28]. We studied the Ulaan
Nuur depression (44.53◦ N–103.73◦ E), located in a large and flat expanse in the Omnogov province,
which was in the recent past the southern terminus for the Ongi River. We conducted the analysis of
present-day topography provided by SRTM data, coupled with PALSAR imaging. PALSAR allowed
the mapping of palaeochannels and palaeofans of ancient rivers feeding the Ulaan Nuur depression,
while SRTM topography was used to simulate various palaeolake levels and map the location of
possible palaeoshorelines [29]. We actually identified ten potential palaeochannels, strongly indicative
of watercourses feeding Ulaan Nuur in the past. Two main streams are represented by the Ongi
River (Figure 5A) and a southeastern channel (Figure 5C) that correspond to strong incision in the
bedrock. They appear as bright linear structures in PALSAR images, because coarse alluvial gravel
filling the channel bed increase the surface roughness and volume scattering effects, leading to
a strong radar return. Secondary tributes also appear to have fed the Ulaan Nuur depression from the
northwest, but with a somewhat less important water flow, creating numerous alluvial fans (Figure 5B).
Palaeoshoreline morphologies can be clearly observed in present day topography: the Ulaan Nuur
depression is bordered by wave-cut terraces in the north (Figure 5D) and in the south (Figure 5E,F).

The observed terraces actually form sequences that can be accounted for by varying lake levels.
Figure 5 shows three main lake levels that we reconstructed by artificially flooding the present-day
topography, choosing water levels in order to match the observed palaeoshorelines and channel
fans. The bigger outer lake covers an area of 19,500 km2 and is limited in the south by a sharp
west-east trending palaeoshoreline. It also corresponds in the north to the limit where the Ongi River
flows out of higher relief, and shows a bed transition from narrow to wide, indicating that the flow
competence has declined markedly downstream. A medium-size lake, corresponding to a surface of
about 6900 km2, can then be defined and limited by northwestern and southeastern alluvial fans and
shorter palaeoshorelines. The intermediate-size lake is likely to have been fed by low competence
flows from the northwest and from the southeast, which left numerous, and wide alluvial fan remnants.
It is coherent with a decrease in water level, since the Ongi River also becomes less competent between
the large and medium lake limits, as shown by a wider and shallower bed morphology. Finally,
a small-size lake, probably the most recent one, occupied an area close to 1700 km2 and was limited
in the north by a plateau and by being the termination of all mapped palaeochannels, including the
present day Ongi River. This is likely to have been the final stage of the Ulaan Nuur, by the end of the
progressive drying Holocene phase, before the present-day dry and desiccated depression.

Considering the surface area covered by the bigger extent of Ulaan Nuur lake, and taking
the present day topography as lake floor, we estimated that an amount of more than 3000 km3 of
fresh water was present in the past, filling the Ulaan Nuur depression. Considering the Holocene
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palaeoclimatology of southern Mongolia, this lake is likely to have last several thousands of years,
leading to significant amount of water infiltrating in the shallow subsurface. This suggests that shallow
water resources may be located at multiple sites in the Ulaan Nuur depression: this is a suitable
resource for small-scale community, accessible using inexpensive shallow drilling techniques.

 

Figure 5. Ulaan Nuur depression on top of SRTM topography, showing the three past lake levels
(dotted white lines) and the ten palaeochannels (solid white lines). Ulaan Nuur’s main streams are
the Ongi River (A) and a southeastern channel (C). Terminal fans of secondary tributaries (B) and
palaeoshoreline morphologies (D–F) remain visible in the present day topography.
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3. The Future of Space-Borne Imaging Radar: Low Frequency Sensors

Previous cases have shown the benefit of using L-band space-borne imaging radar for mapping
the shallow subsurface in arid environments: even a shallow investigation depth of a couple of meters
is enough to obtain significant and new information about palaeohydrography. An easy way to probe
the subsurface deeper is to go for longer radar wavelengths: while a L-band (1.25 GHz) radar can
penetrate 1–2 m of dry sand, a P-band system (435 MHz) should be able to probe the subsurface down
to more than 5 m [30]. In June 2010, we conducted an airborne P-band SAR campaign over a desert
site in southern Tunisia, using the SETHI system developed by ONERA [31]. This is the first time
a low frequency P-band radar was flown over the Sahara. We acquired several radar scenes over
the Ksar Ghilane oasis (32.98◦ N–9.63◦ E), an arid area at the limit between past alluvial plains and
present day sand dunes. Figure 6 shows the comparison between a L-band radar scene acquired by
the ALOS-2 Japanese sensor and a P-band radar scene acquired by the SETHI system: P-band radar
better reveals the subsurface features under the superficial sand layer because of its higher penetration
depth. A lower frequency radar is also less sensitive to the covering sand surface, leading to a lower
contribution of the superficial layer. Using a two-layers scattering model for the surface and subsurface
geometry shown in Figure 1, we could reproduce both the L- and P-band measured scattering levels,
which are actually comparable. At L-band, the subsurface layer produces a backscattering component
about 30 times lower than the one produced by the surface layer, while at P-band, the subsurface
layer contribution is about thirty times higher than the surface layer component. The lower surface
scattering term at P-band, due to a smoother surface roughness at a longer wavelength, is balanced
by a higher subsurface scattering term, due to a higher penetration depth. As a final result, the total
scattering level at P-band is comparable to the one at L-band, as observed by ALOS-2 and SETHI
sensors, but the P-band return is dominated by the subsurface layer [32].

This indicates that a space-borne P-band SAR should be able to very efficiently map subsurface
geological and hydrological features in arid areas. In 2021, the European Space Agency will launch its
seventh Earth Explorer mission, named BIOMASS [33]. It is being designed to provide, for the first
time from space, P-band SAR measurements to determine the amount of biomass and carbon stored in
forests by combining a low radar frequency, polarimetric, interferometric, and tomographic techniques.
It will also, as a secondary objective, map the subsurface geology in large desert regions such as the
Sahara, Central Asia, and Australia. The BIOMASS mission will then offer a unique opportunity to
reveal the hidden and still unknown past history of deserts.

 

Figure 6. (Left) SPOT image of the Ksar Ghilane oasis region in southern Tunisia, palaeochannels are
hidden by aeolian sand deposits. (Middle) ALOS-2 L-band radar image, showing some subsurface
features still blurred by the radar return of the superficial sand layer. (Right) SETHI P-band radar
image, revealing subsurface hydrological features in a very efficient way.
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Abstract: This study presents a methodology to detect and monitor surface water with Sentinel-1
Synthetic Aperture Radar (SAR) data within Cambodia and the Vietnamese Mekong Delta. It is based
on a neural network classification trained on Landsat-8 optical data. Sensitivity tests are carried out to
optimize the performance of the classification and assess the retrieval accuracy. Predicted SAR surface
water maps are compared to reference Landsat-8 surface water maps, showing a true positive water
detection of ∼90% at 30 m spatial resolution. Predicted SAR surface water maps are also compared to
floodability maps derived from high spatial resolution topography data. Results show high consistency
between the two independent maps with 98% of SAR-derived surface water located in areas with
a high probability of inundation. Finally, all available Sentinel-1 SAR observations over the Mekong
Delta in 2015 are processed and the derived surface water maps are compared to corresponding
MODIS/Terra-derived surface water maps at 500 m spatial resolution. Temporal correlation between
these two products is very high (99%) with very close water surface extents during the dry season
when cloud contamination is low. This study highlights the applicability of the Sentinel-1 SAR data
for surface water monitoring, especially in a tropical region where cloud cover can be very high
during the rainy seasons.

Keywords: SAR; Sentinel-1; surface water monitoring; neural network; Mekong Delta; Landsat-8; MODIS

1. Introduction

Studying the spatial and temporal distribution of surface water resources is critical, especially
in highly populated areas and in regions under climate change pressure. With an increased number
of Earth-observation satellites providing a large diversity of remote sensing data, there is now the
potential to monitor the surface water at regional to global scale. However, mapping surface water
is still challenging. It is difficult to provide products with the accuracy required for a large range of
applications (e.g., agriculture, disaster management, and hydrology).

Several methods have already been proposed to detect and monitor surface water with visible and
Near-Infrared (NIR) images. Ref. [1] used positive values of the Normalized Difference Water Index
(NDWI) to classify water bodies. Ref. [2] applied a threshold on NIR reflectances of the NOAA/AVHRR
satellite to delineate lakes. Ref. [3] detected surface water by identifying the positive values of the
Modification of Normalized Difference Water Index (MNDWI). Ref. [4] combined NIR data and the
Normalized Difference Vegetation Index (NDVI) to detect surface water bodies. However, cloud

Water 2017, 9, 366 11 www.mdpi.com/journal/water



Water 2017, 9, 366

contamination is a stringent constraint for these methods, limiting their application to cloud-free
conditions which is very restrictive in some regions (e.g., in the Tropics). Vegetation can also mask
the surface water partly or totally. This makes the water detection difficult or impossible under
canopy. In addition, the NIR reflectance over highly turbid water can be higher than the red reflectance,
introducing confusions in the indices used for the water detection.

Synthetic Aperture Radar (SAR) have become an important source of data to detect flood or
monitor surface water as they allow observations regardless of the cloud cover, day and night, with
spatial resolution comparable to visible and near-infrared satellite images [5]. SAR instruments have
been available on many sensors and platforms (Envisat ASAR, PALSAR, or RADARSAT, for example)
providing observations for different areas all over the globe (but normally with a limited number of
images available per year in some regions). Flood detection using different SAR observations has
been studied by many authors, showcasing the advantages of SAR instruments compared to optical
instruments in monitoring floods. Ref. [6] used a single decision tree classifier on two sets of JERS-1
SAR data to classify surface water within the states of North Carolina and South Carolina into five land
cover types (water, marsh, flooded forest, field, and non-flooded forest). Although the classifier was
simple, they reported an overall classification accuracy of nearly 90%. Ref. [7] showed the potential
of the COSMO-SkyMed data for flood detection by showing case studies in several locations all over
the globe (e.g., Tarano River overflow, Italy, April 2009; Pakistan inundation, July–September 2010;
Thailand flood, October 2010; and Australia flood, January 2011). COSMO-SkyMed instruments
provided very high resolution X-band SAR images, but covered limited areas (the highest spatial
resolution is ∼1 m for an observation area of 10 km × 10 km). X-band data from TerraSAR-X instrument
were also reported suitable for flood mapping under forest canopy in the temperate forest zone
in Estonia [8]. Ref. [9] compared four flood detection approaches over five areas (Vietnam, the
Netherlands, Mali, Germany, and China) using SAR data from the TanDEM-X mission. Although
these four approaches were designed according to different requirements, their performances were
satisfactory over the studied areas (17 out of 20 water masks reaching an overall accuracy larger
than 90%). Other studies using SAR data for water monitoring locally and regionally under different
environments can be listed, such as [10–12]. Mapping water bodies at global scale using SAR data was
limited due to the lack of global observations, and the fact that SAR data are not easy to access freely.
Ref. [13] used multi-year (2005–2012) Envisat ASAR observations to create, for the first time, a global
potential water body map at a spatial resolution of 150 m. Errors concentrated along shorelines and
coastline, but this global water map has an accuracy of ∼80% compared to the reference data.

The Mekong Delta in Southeast Asia (one of the largest deltas in the world) is a vast triangular
plain of approximately 55,000 km2, most of it lower than 5 m above sea level. The seasonal variation
in water level results in rich and extensive wetlands. For instance, the Mekong Delta region covers
only 12% of Vietnam but produces ∼50% of the annual rice (with two or three harvests per year
depending on the provinces), represents ∼50% of the fisheries, and ∼70% of the fruit production.
In the Delta, the dry season extends from November to April and the rainy season from May to October.
Many researches have been carried out to monitor the surface water in the Delta, using both optical
and active microwave satellite images. Ref. [14] produced a monthly mean climatology of the water
extent from 2000 to 2004 with a spatial resolution of 500 m, using visible and NIR MODIS/Terra
data. However, with 85% to 95% cloud cover during the wet season over the Mekong Delta [15],
remote sensing methods derived from visible and NIR images present some limitations. Different
SAR observations have also been exploited to study floods and wetlands over the Delta. Ref. [16]
mapped flood occurrence for the year 1996 over the Delta using five ERS-2 observations. Ref. [17]
used 60 Envisat ASAR observations during the years 2007–2011 to study the flood regime in the Delta.
Thanks to the launch of the Sentinel-1A &B satellites, as well as the free data policy of the European
Space Agency (ESA), Sentinel-1 SAR observations are now regularly and freely accessible for scientific
and educational purposes, over large parts of the globe. Similar to previous SAR instruments, Sentinel-1
instruments show strong potential for detecting open water bodies at high spatial resolution [18,19].
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With the advantage of higher temporal resolution than previous SAR instruments, Sentinel-1 has the
ability to monitor the seasonal cycle of water extent every six days over Europe and the boreal region,
and with slightly reduced temporal sampling elsewhere. In this study, we propose a methodology
using Sentinel-1A SAR observation for monitoring water surface extent within Cambodia and the
Mekong Delta for the year 2015. It is based on a Neural Network (NN) algorithm, trained on visible
Landsat-8 images (30 m spatial resolution). At the time of this study, the temporal resolution of
Sentinel-1 over the Delta was 12 days: it reduced to 6 days after the launch of the Sentinel-1B in
April 2016.

The Sentinel-1 SAR data and the ancillary observations are described in Section 2, including the
pre-processing steps. Section 3 presents the NN methodology, along with sensitivity tests. Results and
comparisons with other products are provided and discussed in Section 4. Section 5 concludes this study.

2. Sentinel-1 SAR Data and the Ancillary Datasets

2.1. Sentinel-1 SAR Data

Sentinel-1 is a satellite project funded by the European Union and carried out by the European
Space Agency. It is a two satellite constellation working at C-band (5.405 GHz). The major objective of
the satellites is the observations and monitoring of land and ocean surfaces day and night, under all
weather conditions [20]. The satellite operates in four exclusive imaging modes with different spatial
resolutions (the highest being 5 m) and swaths (up to 400 km). The first Sentinel-1A satellite of the
pair was launched on 3 April 2014, while the second Sentinel-1B satellite was launched on 22 April
2016. The Sentinel-1 satellites fly along a sun-synchronous, near-polar circular orbit at an altitude of
∼693 km. Incidence angle varies between 29◦ and 46◦. The two satellites provide a re-visiting time of
6 days (it was 12 days before the launch of the Sentinel-1B satellite). Sentinel-1 satellites have dual
polarization capabilities (HH, VV, HH + HV and VV + VH), giving final users the ability to access
a large variety of applications, including the monitoring of surface water. SAR images from Sentinel-1
satellites are freely downloaded from the sentinel scientific data hub [21].

In this project, 20 m resolution (10 m pixel spacing) Level-1 Ground Range Detected (GRD)
Sentinel-1 images are used, from the Interferometric WideSwath (IW) mode. These images have
been detected and projected to ground range using an Earth ellipsoid model provided by ESA.
Over the Mekong Delta, there are two polarizations available: the VH and VV polarizations. Some
pre-processing steps have to be carried out using the free Sentinel Application Platform (SNAP)
software developed by ESA, before moving to the analysis steps (see Figure 1). These pre-processing
steps are described in the “SAR Basics with the Sentinel-1 Toolbox in SNAP tutorial” [22].

First, multi-looking processing is applied to each single Sentinel-1 image (both polarizations) to
convert to 30 m spatial resolution (to match with Landsat-8 images). Applying multi-looking at the
beginning of the chain reduces the processing time for the next steps since the size of the image is
several times smaller than the original one. Second, the image is calibrated to convert values of the
raw image from digital number to radar backscatter coefficient (σ0). Third, the Refined Lee filter is
applied to reduce the speckle noise and to smooth the radar backscatter coefficient data because this
filter maintains details of the standing water boundary [23]. Other filters (Lee, Lee Sigma or Median,
for example) were tested, and results showed little differences in terms of water detection. Next, the
“terrain correction” tool is used to compensate for distortions in the SAR images, so that the geometric
presentation of the image will be as close as possible to the real world. At the end of this step, the image
is also re-projected from the satellite projection to the Earth geographic projection, and is ready for
applications. To fully cover Cambodia and the Vietnamese Mekong Delta, at least five Sentinel-1 SAR
images are needed. Figure 2 (top) provides examples of the SAR backscatter coefficients for VH (a) and
VV (b) polarizations, along with the incidence angle (c), over the Tonle Sap Lake, on 17 December 2015.
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Figure 1. Pre-processing steps for Sentinel-1 Synthetic Aperture Radar (SAR) images.

Figure 2. Examples of satellite observations from Sentinel-1 (top) and from Landsat-8 (bottom), over
the lower part of the Tonle Sap Lake (Cambodia) after the pre-processing steps: (a) SAR backscatter
coefficient at VH polarization; (b) SAR backscatter coefficient at VV polarization; (c) SAR incidence
angle; (d) The Normalized Difference Vegetation Index (NDVI) from Landsat-8; (e) Surface water
estimated from Landsat-8; and (f) Landsat-8 quality flags. The white areas are cloud-covered pixels
detected by the Landsat quality flags, and have been removed. Both Sentinel-1 and Landsat-8 images
were taken on 17 December 2015.

2.2. Ancillary Datasets

2.2.1. Inundation Maps Derived from Landsat-8 Data

Landsat-8 satellite collects visible and shortwave images (30 m spatial resolution). NIR wavelength
reflects less solar radiation than the red wavelength over water bodies [1,3], and surface water maps
can be derived from the NDVI maps (water pixels and non-water pixels correspond to negative and
positive values of NDVI, respectively) [24,25]. Other indices have been used to detect water, but
the NDVI is effective when properly corrected from the atmospheric contamination. In this study,
official and reliable atmospheric corrected Landsat-8 NDVI images are ordered directly from the U.S.
Geological Survey (USGS) website (https://espa.cr.usgs.gov/index/). To limit cloud effects, only
images with less than 10% of cloud contamination are used. The selected images are further filtered
using the Landsat-8 quality assessment to remove pixels that might be affected by instrument artifacts
or subject to cloud contamination. Figure 2 (bottom) shows the NDVI from Landsat-8 (d), the resulting
surface water map based on negative NDVI values (e), and the quality flag (f), for the same regions and
the same day (17 December 2015) as previously presented. Over the Lower Mekong Delta (lower than
latitude number 15), there are ∼250 Landsat-8 images available between January 2015 and January
2016. However, there is only ∼10% (27 images) with less than 10% cloud contamination. Among the
remaining images, only 1/3 was selected for this study since they were observed with a time difference
of less than 3 days from a Sentinel-1 image.
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2.2.2. Inundation Maps Derived from MODIS/Terra Data

In this study, the surface reflectance 8-Day L3 Global 500 m products from MODIS/Terra
(MOD09A1) are used to create surface water maps, mainly based on values of the Enhanced Vegetation
Index (EVI), the Land Surface Water Index (LSWI), and the difference between EVI and LSWI by
a methodology described in [14]. MODIS surface water maps (500 m spatial resolution) over the
Mekong Delta will be used to compare to the corresponding surface water maps derived from SAR
Sentinel-1 observations for 2015. MODIS/Terra data can be downloaded from http://reverb.echo.nasa.
gov/reverb/.

All Sentinel-1, Landsat-8 and MODIS/Terra observations used in this study are listed in Tables 1
and 2. Sentinel-1 and Landsat-8 training observations are used to train the NN (Section 3.2). Sentinel-1
and Landsat-8 test observations are used to test, optimize, and evaluate the performance of the NN
(Sections 3.3 and 4.1). NN evaluation is also based on comparisons with MODIS surface water estimates
(Section 4.3).

Table 1. List of 9 Sentinel-1 and corresponding Landsat-8 training (top) and test (bottom) observations
used in this study over Cambodia and the Vietnamese Mekong Delta. Maximum gap between
Sentinel-1 and Landsat-8 observations is only 3 days. The cloud cover percentage is indicated for each
Landsat-8 observation.

Sentinel-1 and Landsat-8 Training Observations

Image No Sentinel-1 Landsat-8 Clouds

1 16 April 2015 14 April 2015 6.29%
2 21 April 2015 21 April 2015 0.05%
3 19 August 2015 18 August 2015 7.94%
4 17 December 2015 17 December 2015 4.84%
5 29 March 2016 31 March 2016 6.22%
6 9 June 2016 10 June 2016 3.94%

Sentinel-1 and Landsat-8 Test Observations

Image No Sentinel-1 Landsat-8 Clouds

1 5 January 2016 2 January 2016 0.16%
2 3 February 2016 3 February 2016 7.5%
3 22 February 2016 19 February 2016 0.29%

Table 2. List of 20 Sentinel-1 and corresponding MODIS/Terra observations used in this study over
Cambodia and the Vietnamese Mekong Delta.

Sentinel-1 and MODIS/Terra Observations

Image No Date Image No Date

1 10 January 2015 11 14 August 2015
2 3 February 2015 12 26 August 2015
3 15 February 2015 13 7 September 2015
4 11 March 2015 14 19 September 2015
5 4 April 2015 15 1 October 2015
6 28 April 2015 16 13 October 2015
7 15 June 2015 17 25 October 2015
8 27 June 2015 18 6 November 2015
9 9 July 2015 19 30 November 2015

10 21 July 2015 20 24 December 2015
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3. Methodology

3.1. Surface Water Information from the Sentinel-1 SAR Images

Flat water surfaces act like mirrors and reflect almost all incoming energy in the specular direction,
thus providing very low backscatter. With this physical principle, detection of surface water is often
based, at least partly, on the application of a threshold on the SAR backscatter coefficient, with the low
backscatter values attributed to water bodies [6,7,16,17]. However, SAR backscatter coefficients over
water surfaces are also affected by several mechanisms related to the interaction of the signal with
vegetation or with possible surface roughness. The backscattered signals over flooded vegetation in
wetlands can be enhanced due to the double-bounce scattering mechanism [26–28]. On the other side,
the backscatter coefficients can be affected by vegetation canopy (e.g., rice) above the water surfaces
due to volume scattering from the plant components (stems or leaves) [29]. The backscatter coefficients
(especially the VV polarization) can also be influenced by the wind-induced surface roughness over
open water [17,30]. Finally, there might be ambiguities between surface water and other very flat
surfaces (such as arid regions), that could provide very similar backscatter signatures [31].

Based on a reference water mask derived from Landsat-8 NDVI, Figure 3 presents the histograms
of the backscatter coefficients for VH and VV polarizations, separately for water and non-water pixels
over the incidence angle range of 30◦–45◦ for the area shown in Figure 2. For both polarizations, the
water and non-water histograms are rather well separated, with thresholds of −22 dB and −15 dB
for the VH and VV polarizations, respectively. Using these thresholds, the surface water has been
classified separately for each polarization. The classification derived from the VH polarized image had
a stronger spatial linear correlation with the reference water mask than the one derived from the VV
polarized image (72% compared to 62%), confirming a higher sensitivity of the VH polarization to the
presence of surface water [19]. Using both polarizations for the classification increased the correlation
(76%), confirming that the two polarizations carry different information and that using both of them
increases the retrieval accuracy. These findings confirmed the study by [32] where water detection
with VV polarization was further refined using multiple-polarization.

Figure 3. For surface water delineated with Landsat-8, histograms of the water and non-water pixels
for the SAR backscatter coefficients in VH and VV polarizations for the area shown in Figure 2 (over
the incidence angle range of 30◦ to 45◦).
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The effect of the backscatter incidence angle is also tested here. For a collection of pixels located
over water (rivers, reservoirs, or lakes), the backscatter coefficient is plotted as a function of the
incidence angle between 30◦ and 45◦ (Figure 4). Similar negative correlations between incidence angle
and backscatter coefficients can also be found in [13] with ASAR data over water bodies (from ∼−5 dB
at 20◦ to ∼−20 dB at 45◦ of incidence angle).

Figure 4. The SAR backscatter coefficients (VH and VV polarizations) from the Sentinel-1 as a function
of the incidence angle over water bodies. The linear regression lines are also plotted.

As a conclusion, the SAR backscatter coefficients (VH and VV polarizations) are both sensitive
to the presence of water, but with slightly different sensitivities. The effect of the incidence angle,
although rather limited within the 29◦–46◦ range of Sentinel-1 SAR, has to be accounted for if a high
detection accuracy is required. Simple tests on thresholding techniques illustrated the limitations of
these approaches and here we suggest developing a new scheme to delineate the surface water based
on Neural Networks.

The temporal dynamics of the backscatter coefficients can also be a source of information and can
help disentangle the influence of the other surface parameters [13]. However, this temporal information
will not be investigated here.

3.2. A Neural Network-Based Classification

Here, we propose training a NN to produce surface water maps from SAR images, over the
Mekong Delta. In the remote sensing field, NNs are often used as a regression tool to estimate a
quantity. For each pixel, NN input satellite observations are represented by a vector x, and the network
outputs (i.e., the retrieval) is represented by a vector y. However, NNs can also be used as classifiers.
In this case, when trained with binary output values (y = 0 for non-water, 1 for water surfaces), the
NN becomes a statistical model for the conditional probability y = P(sur f ace = water/x), i.e., the
probability of the surface being covered by water knowing the satellite observations x. The NN output
can then directly be used as an index for water presence probability, but a threshold can also be applied
to classify the state as being covered by water or not. The threshold needs to be optimized in order to
satisfy some quality criteria, such as overall accuracy or false alarm rates.

The NN classifier needs to be trained in order to perform an optimal discrimination between
water and non-water states. A supervised learning is chosen: the NN will be designed to reproduce an
already existing classification. A dataset including a collection of SAR information x and associated
surface water state y is first built. Part of it is then used during the training stage in order to determine
the optimal parameters of the NN model. The reference dataset in the selected area is provided here by
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a Landsat-8 surface water map (NN outputs), in spatial and temporal coincidence with the Sentinel-1
SAR data (NN inputs). A maximum time difference of 3 days is tolerated, as the two satellites do not
fly in phase. Six Landsat-8 surface water maps are selected, along with the corresponding Sentinel-1
SAR observations (see Table 1 for more details on the training dataset). The selection process for the
Landsat-8 images has been described in Section 2.2.1. The images cover parts of the lower Mekong
Delta in Vietnam and Cambodia. For each image in the training dataset, the number of non-water
pixels is much higher than the number of water pixels. To avoid giving too much weight to the
non-water pixels, an equalization of the training dataset is performed: an equal number of non-water
and water pixels is selected in the training dataset. For this purpose, non-water pixels are selected
randomly in the images, to match the number of water pixels. The total number of training samples is
∼10 million pixels, half water pixels, half non-water pixels. It takes ∼5 h to train the NN (with the use
of a personal computer), but when the training is completed, a surface water map can be produced
quickly (after ∼3–4 min) from any new set of satellite inputs x. A test dataset is chosen to measure
the performance of the NN retrieval scheme with data not used in the training process. The NN
methodology is summarized in Figure 5.

Figure 5. The block diagram of the proposed Neural Network (NN) algorithm.

Several tests were necessary to determine the optimum inputs to the NN, in addition to the
obvious ones, i.e., the backscatter coefficients for both polarizations. To limit ambiguities between
flat arid surfaces and surface water, and to better capture small rivers, the spatial homogeneity of the
backscatter coefficients appeared to be a relevant parameter. The standard deviation of the backscatter
coefficients are computed locally over 100 m × 100 m boxes. As a result, the NN uses a maximum of
five different inputs x:

• SAR backscatter coefficient VH polarization (BS_VH);
• SAR backscatter coefficient VV polarization (BS_VV);
• SAR incidence angle;
• SAR standard deviation of backscatter coefficient VH over 100 m × 100 m (STD_VH);
• SAR standard deviation of backscatter coefficient VV over 100 m × 100 m (STD_VV);
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Figure 6 presents an example of the set of five input images and the target surface water map
used to train the NN. Missing areas in the maps correspond to Landsat-8 low quality pixels and are
excluded from the training. The NN model is asked to find a relationship between these five input
parameters and the corresponding water and non-water state.

Figure 6. Examples of the five inputs and the target for the NN. (a) SAR backscatter coefficient
VH polarization; (b) SAR backscatter coefficient VV polarization; (c) SAR incidence angle; (d) SAR
standard deviation of backscatter coefficient VH polarization; (e) SAR standard deviation of backscatter
coefficient VV polarization; and (f) Target surface water map based on NDVI from Landsat-8. The white
areas are cloud-covered pixels detected by the Landsat quality flags, and they have been removed.
Sentinel-1 and Landsat-8 images were acquired on 16 and 14 April 2015, respectively.

3.3. NN Sensitivity Tests

In this section, we use a test dataset of three SAR Sentinel-1 images and three corresponding
Landsat-8 reference surface water maps to make several sensitivity tests in order to optimize the
performance of the NN classification (see details of the test data sets in Table 1). Three different sensitivity
tests were carried out: (1) selecting the best threshold of the NN output to classify land/water surface;
(2) understanding the effect of the equalization of the water and non-water pixels in the NN training
dataset; (3) finding the most important satellite NN inputs. The NN performances have been evaluated
based on: spatial correlation between the SAR and Landsat-8 surface water maps, overall accuracy of
the NN, as well as higher values of true positive (TP) and true negative (TN) percentages. True positive
value indicates the NN ability to correctly detect water pixels, while true negative value illustrates its
ability to correctly detect non-water pixels (compared to the Landsat-8 surface water maps).

3.3.1. Selection of an Optimized Threshold for the NN Output

The first test is conducted to optimize the output threshold to distinguish water from non-water
pixels. Figure 7 shows the histogram of the output of the NN, separating the water and non-water pixels
according to the related Landsat-8 surface water map. The histograms of the water and non-water
clusters intersect around 0.9, meaning that the optimal threshold to separate water from non-water
pixels is close to this number. Different thresholds on the NN output values were tested (0.80, 0.85, and
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0.90): for each one, the confusion matrix and the overall accuracy are calculated, with the corresponding
Landsat-8 images as references. The overall accuracy and the spatial correlation increase from 98%
to 99% when the threshold increases from 0.80 to 0.90 (Table 3), but the true positive pixel detection
decreases from 92% (with threshold 0.80) to 89% (with threshold 0.90) and the false negative pixel
detection increases from 8% to 11%. A threshold of 0.85 is selected here because of its good water
detection performance and because it results in the predicted water surface closest to the reference
map: 4430 km2 from the Landsat-8 versus 4420 km2 from the SAR results, i.e., a limited overestimation
of 0.4% as compared to the reference map.
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Figure 7. Histograms of the NN outputs, for water (blue) and non-water (dashed red) pixels separately,
according to the corresponding Landsat-8 surface water maps. The NN uses the five initial inputs
and the training dataset is equalized. The y axis range is selected to illustrate the peak of the water
histogram.

Table 3. Confusion matrix of the NN classification for different thresholds. The NN uses the five initial
inputs and the training dataset is equalized.

Output Threshold: 0.80

Non-Water(0) Water(1) Overall Spatial
(Predicted) (Predicted) Accuracy Correlation

Non-water(0) (Actual) 99.3% 0.7% 98% 91%
Water(1) (Actual) 8% 92%

Output Threshold: 0.85

Non-Water(0) Water(1) Overall Spatial
(Predicted) (Predicted) Accuracy Correlation

Non-water(0) (Actual) 99.5% 0.5% 99% 92%
Water(1) (Actual) 9% 91%

Output Threshold: 0.90

Non-Water(0) Water(1) Overall Spatial
(Predicted) (Predicted) Accuracy Correlation

Non-water(0) (Actual) 99.6% 0.4% 99% 91%
Water(1) (Actual) 11% 89%

3.3.2. Equalization of Water and Non-Water Pixel Number

For this test, instead of using an equal number of water and non-water pixels in the training
dataset, 10% of each Sentinel-1 image is selected randomly to train the neural network, meaning that
the number of non-water pixels is several times higher (10–15 times depending on each image in
the training dataset) than the number of water pixels (as seen in Figure 7). The intersection between
histograms of the NN outputs for water pixels (blue) and non-water pixels (red) moves to 0.5 (see the
histogram in Figure 8), meaning that the value 0.5 should be selected to separate water from non-water
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clusters. As shown in Table 4, the resulting NN is very efficient at detecting non-water pixels with a true
negative detection of 99.7%, but it misses 14% of the actual water pixels (86% of true positive detection
only, compared to 91% with the equalized training dataset—Table 3). The true positive detection of
water pixels decreases because in the training database, the non-water pixels are more numerous and
as such have more weight in the retrieval than the water pixels. As a consequence, the NN is more
effective at detecting non-water pixels, and less effective at detecting water pixels. It is concluded that
the use of an equalized training data set is very important in this classification framework.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

N
um

be
r 

of
 p

ix
el

s 105

non-water
water

Figure 8. Histograms of the NN outputs, for water (blue) and non-water (dashed red) pixels separately,
according to the corresponding Landsat-8 surface water maps. The NN uses the five initial inputs
but the training dataset is not equalized. The y axis range is selected to illustrate the peak of the
water histogram.

Table 4. Confusion matrix of the NN without equalization of the training dataset, for an optimum
threshold of 0.5 on the NN outputs.

Non-water(0) (Predicted) Water(1) (Predicted)

Non-water(0) (Actual) 99.7% 0.3%
Water(1) (Actual) 14% 86%

3.3.3. Analyzing the Weight of Each NN Satellite Input

To identify the most relevant inputs for the NN classification of the water surface, 15 NNs are
trained based on all 15 different combinations of five input parameters, and their performances are
evaluated following various criteria. Table 5 presents the best results with one to five inputs and
illustrates how the overall accuracy of the NN classification increases when the number of satellite
inputs increases, as compared to the reference Landsat-8 dataset. The NN trained with only the VH
backscatter coefficient has a spatial correlation of 78% and a true positive accuracy (correctly detecting
water pixels) of 77% compared to the reference data. The spatial correlation increases to 79%, and the
true positive accuracy rises to 85% when the standard deviation of the VV backscatter coefficient is
added as an input to the NN. The VV backscatter coefficient helps to increase the performance of the
NN since both spatial correlation and true positive accuracy increase to 87% and 90%, respectively.
The standard deviation of the VH backscatter coefficient does not significantly improve the accuracy
of the NN classification. This is due to the strong linear correlation (88%) between the spatial standard
deviations of the VH and the VV backscatter coefficients (the other linear correlations among the
five input parameters of the NN are provided in Table 6). Similar to the standard deviation of the
VH backscatter coefficient, the incidence angle does not have a strong impact on the performance of
the NN since its accuracy remains nearly the same after adding the incidence angle as a new input.
The input parameters of the NN classification are listed below, from the most important to the least
important one in the NN processing:
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• Backscatter coefficient VH polarization (BS_VH)
• Standard deviation of backscatter coefficient VV polarization (STD_VV)
• Backscatter coefficient VV polarization (BS_VV)
• Incidence angle
• Standard deviation of backscatter coefficient VH polarization (STD_VH)

Table 5. The NN classification performances when adding input parameters, one at a time.

One Input: BS_VH

Non-Water(0) Water(1) Spatial
(Predicted) (Predicted) Correlation

Non-water(0) 98% 2%
78%

(Actual)

Water(1) 23% 77%(Actual)

Two Inputs: BS_VH + STD_VV

Non-Water(0) Water(1) Spatial
(Predicted) (Predicted) Correlation

Non-water(0) 98% 2%
79%(Actual)

Water(1) 15% 85%(Actual)

Three Inputs: BS_VH + STD_VV + BS_VV

Non-Water(0) Water(1) Spatial
(Predicted) (Predicted) Correlation

Non-water(0) 99% 1%
87%

(Actual)

Water(1) 10% 90%(Actual)

Four Inputs: BS_VH + STD_VV + BS_VV + Angle

Non-Water(0) Water(1) Spatial
(Predicted) (Predicted) Correlation

Non-water(0) 99.5% 0.5%
91%

(Actual)

Water(1) 10% 90%(Actual)

Five Inputs: BS_VH + STD_VV + BS_VV + Angle + STD_VH

Non-Water(0) Water(1) Spatial
(Predicted) (Predicted) Correlation

Non-Water(0) 99.5% 0.5%
92%

(Actual)

Water(1) 9% 91%(Actual)
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Table 6. Linear correlations among the five potential NN inputs.

BS_VH BS_VV STD_VH STD_VV ANGLE

BS_VH 100%
BS_VV 84% 100%

STD_VH 24% 20% 100%
STD_VV 21% 21% 88% 100%
ANGLE 25% 22% 11% 6% 100%

To conclude, the water detection ability of the proposed NN increased when the input parameters
are carefully selected and when an optimal output threshold is selected. An equal number of water
and non-water pixels should be used in the training dataset to ensure that the NN performs equally
well in classifying water and non-water clusters. The STD_VH provides limited additional information
to the NN due to its strong linear correlations with the other NN inputs. The incidence angle also
plays a limited role in the NN performance. This is partly due to the rather narrow range of incidence
angle, from 29◦ to 46◦.

4. Results and Comparisons with Other Surface Water Products

The following results and comparisons involve the optimized version of the NN classification
with five input parameters (an equalization of water and non-water pixels, and the output threshold
is 0.85). In Section 4.1, the SAR-predicted surface water maps are calculated for two test areas in the
Mekong Delta, and compared to Landsat-8 surface water maps over the Tonle Sap Lake in Cambodia
and over the Mekong river in Vietnam (see test dataset in Table 1). Other regions were tested but the
results are not shown here. Due to the lack of in-situ local inundation maps at the time of this study,
we do not have a reference dataset to confirm the accuracy of the Landsat-8 based maps. Therefore,
an inter-comparison between Sentinel-1 estimate and other existing estimates is the only way to
evaluate the new wetland product based on SAR Sentinel-1 data. First, the results are evaluated
with respect to the floodability map derived mainly from the HydroSHEDS topography dataset [33],
developed by [34] (Section 4.2). Second, time series of the SAR-derived surface water over the Mekong
Delta is compared to the MODIS/Terra-derived inundation maps based on the methodology described
by [14], for 2015 (Section 4.3)

4.1. Evaluation of the SAR NN Classification Method

Figure 9 shows the results of the classification applied over the Tonle Sap Lake in Cambodia (top)
and over the Mekong river in Vietnam (bottom), in February 2016. Figure 9a,d show the SAR-predicted
surface water maps, Figure 9b,e present the reference Landsat-8 surface water maps, whereas the
differences between these two surface water maps are shown in Figure 9c,f.

Over the Tonle Sape Lake, both Sentinel and Landsat images were acquired on the same day
(3 February 2016). The spatial correlation between the two surface water maps is 94%. The confusion
matrix for this area is given in Table 7 (left). Overall accuracy of the classification is 99%, with a true
positive water detection of 93.5%, and a false negative percentage of 6.5%. The classification correctly
detects more than 99.6% of non-water pixels compared to the reference map. The classification slightly
underestimates the surface water coverage by ∼2.5%. This is 961 km2 compared to the reference
surface water map derived from the Landsat-8 images of 986 km2.

The second case study is carried out over the Mekong river and its surrounding areas (latitude
range [10.8◦N–11.8◦N] and longitude range [104.6◦E–105.6◦E]). The optical Landsat-8 images were
taken on 19 February 2016 and the SAR Sentinel-1 images were taken 3 days later, on 22 February 2016.
These Sentinel and Landsat images were not acquired on the same day, but within 3 days in the middle
of the dry season when land surfaces in this area are not expected to change much. Similar to the first
case study, the classification works well, even though the environment here is rather complex, with
rivers and vegetated wetlands. The overall accuracy is 98.8%, with a spatial correlation of nearly 82%
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with the Landsat-8 reference surface water map. Confusion matrix for this area is shown in Table 7
(right) where the true positive percentage is 85.7%, the false negative percentage 14.3%, and 99.2% of
non-water pixels are classified correctly. The total surface water area derived from Landsat data is
325 km2, and it is 355 km2 predicted from the NN.

Figure 9. (a,d) SAR surface water maps; (b,e) Landsat-8 surface water maps; and (c,f) their differences;
over the Tonle Sap Lake (left), and over the Mekong river (right), for February 2016. Blue color presents
water pixels while orange color presents non-water pixels detected by both Sentinel and Landsat,
green color is Landsat water/Sentinel non-water pixels, and light blue color is Sentinel water/Landsat
non-water pixels.

Table 7. Confusion matrices (in numeric and percentage forms) of the SAR-predicted surface water
maps and the Landsat-8 reference surface water maps, over the Tonle Sap Lake (Left) and over the
Mekong River (Right).

Tonle Sap Lake

Non-water(0) Water(1)
(Predicted) (Predicted)

Non-water(0) 11,641,078 44,493
(Actual) (99.6%) (0.4%)

Water(1) 71,884 1,023,457
(Actual) (6.5%) (93.5%)

Mekong River

Non-water(0) Water(1)
(Predicted) (Predicted)

Non-water(0) 10,983,583 85,096
(Actual) (99.2%) (0.8%)

Water(1) 51,611 309,982
(Actual) (14.3%) (85.7%)

The same results are found when applying the NN classification to other areas. To conclude this
comparison, the proposed NN methodology correctly detected ∼90% of the water pixels observed
by Landsat-8, with a spatial correlation of ∼90%. The NN works better over open water bodies
than over other heterogeneous environments. For instance, the NN has difficulties detecting small
river branches (Southeast of the Tonle Sap Lake in Figure 9—top panel) although they are clearly
detected with Landsat-8 images. The NN can provide water maps with high accuracy compared to
the reference Landsat-8 water maps; there are differences between them. Errors could come from the
following factors:
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• The SAR responses can be affected by complex interactions with the terrain and the vegetation,
especially along small river banks. It can be difficult to account for this local complexity in
the methodology.

• In the SAR water detection method, as in any other classifications method scheme, different
parameters were selected to optimize the overall performance of the method, but local ambiguities
can still exist.

• Sentinel-1 and Landsat-8 data are not always acquired on the same day.
• Using Landsat-8 quality flags, we can remove cloud-covered pixels, but we cannot detect

cloud-shadow pixels causing ambiguities in the NN training dataset.
• Reference surface water maps derived from negative NDVI values on the Landsat-8 images are

not always perfect. Water under vegetation can be difficult to detect with Landsat-8 observations.
The NDVI values can also be impacted for highly turbid waters where the NIR reflectance can be
higher than the red reflectance.

4.2. Evaluation Using a Topography-Based Floodability Index

A global floodability index based on topography has been developed by [34]. It uses mainly the
Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS)
dataset [33] that has been derived from elevation measured by the Shuttle Radar Topography Mission
(SRTM) satellite. This floodability index provides a static map of an estimate of the probability for
a pixel to be inundated (between 0% and 100%) at the spatial resolution of 90 m, based only on
topography information (such as slope in the pixel, distance to the closest river, difference of elevation
with the closest river). Figure 10a presents this floodability index map over the whole Mekong Delta.
As expected, all rivers and lakes in this area have a very high probability of being inundated (over 80%).
Since this index is based only on topography, its reliability is higher for natural environments and it can
be less precise over regions with strong anthropic impact such as irrigated areas. The floodability data
is upscaled from 90 m to 30 m spatial resolution to compare with predicted SAR surface water maps
over the Tonle Sap Lake and the Vietnamese Mekong Delta. Each floodability pixel is divided into
a 3 × 3 matrix with the same value, and projected onto the Sentinel-1 grid. By comparing these two
products, we can see where and how Sentinel-1 water pixels are located with respect to the floodability
index, and test the consistency between two independent products. Figure 10b–e show floodability
maps at 30 m spatial resolution and predicted Sentinel-1 water maps, over four different areas in the
Mekong Delta. SAR surface water areas are generally located in areas with high predicted inundation
probabilities, as expected (see Table 8). A total of 98% of the SAR surface water pixels are located in
areas where the floodability index is greater than 60%, while only 2% of the SAR surface water pixels
are located in areas with a lower floodability index (≤60%). As mentioned earlier, the floodability index
only relies upon topography information, and it can be less precise over regions with strong anthropic
activities, such as irrigation. There are many rice paddies in the Lower Mekong Delta, and these
irrigated fields can be missed by the floodability index, contributing to the 15% errors of SAR water
pixels located in areas with a floodability index less than 80%. In the future, in complex-topography
environments where SAR only data could not provide the required accuracy for the water classification
(the Red River Delta in the North of Vietnam, for example), the floodability index information could
be added as another input to the NN to improve the classification performance.

Table 8. Performance of the SAR surface water classification for different ranges of floodability index.

Floodability Index ≤40 40–60 60–80 ≥80

Percentage of surface water pixels 1% 1% 13% 85%detected by the NN classification
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Figure 10. (a) Topography-based floodability index map over the Mekong Delta from [34]. (b–e)
Comparisons of floodability index maps and SAR-predicted surface water maps for four areas over
Cambodia and the Vietnamese Mekong Delta.

4.3. Comparisons with MODIS/Terra-Derived Inundation Maps

In this section, the 30 m SAR surface water maps are compared to the 500 m MODIS/Terra-derived
inundation maps, for a region in the Mekong Delta. One year (2015) of SAR Sentinel-1 and MODIS/Terra
data are extracted, over the same region (latitude [9.8◦N–11.3◦N]; longitude [104.75◦E–107◦E]).
The MODIS inundation maps are derived from the method described by [14]. We re-produced their
methodology to calculate inundation maps with three different states of non-water, water, and mixed
pixels, respectively. The total MODIS surface water is the sum of the water pixels (100% area is
inundated) and mixed pixels (part of these pixels is inundated). For a mixed pixel, we tested two
hypothesis: 25% or 50% of the pixel is inundated.

Twenty Sentinel-1 SAR observations are available over the selected region for the year 2015
(less than two images per month—see Table 2). The surface water extent calculated from the SAR and
MODIS data are presented in Figure 11. With the first assumption (25% of a mixed MODIS pixel is
covered by water), the two surface water extents have very similar seasonal cycles and amplitudes,
with a correlation of ∼99% (Figure 11-bottom). For the second assumption (the surface water extent of
a mixed pixel is increased to 50%), the difference in surface water areas increases (without significant
changes in the seasonal cycle with still high correlation with the SAR surface water time series).
With both hypotheses, the SAR and MODIS surface water extents reach their maximum at the same
time (around 20 October 2015). Total inundated areas derived from SAR and MODIS are very close
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during the dry season (January to July). The cloud contamination of the MODIS estimate is low during
that season. During the rainy season, more cloud contamination is expected in the MODIS estimates,
and the discrepancies between the two surface water extents increase. The SAR-derived surface water
estimate is expected to be more reliable due to its insensitivity to the cloud cover, but at this stage there
is no convincing dataset at this spatial resolution to confirm it, as mentioned before.

To evaluate the consistency of the spatial structure between the SAR-derived and the
MODIS-derived surface water maps, 10 SAR Sentinel-1 images were downloaded to cover the
whole Mekong Delta and the Tonle Sap Lake (five images in May and five images in October 2015).
For comparison purposes and to calculate the spatial correlation, the SAR surface water maps are
aggregated from the 30 m resolution to the 500 m resolution of the MODIS-derived inundation
maps (see Figure 12a,c). As a consequence, Sentinel-1-derived inundation maps are not binary (0 for
non-water pixels or 1 for water pixels), but they are converted into a percentage of surface water
at 500 m spatial resolution. For the dry season (Figure 12a,b—May 2015), the spatial correlation
between the two surface water maps is 68%. A total of 4% of the area is inundated for the SAR
estimation, while it is 5% for the MODIS estimates. For the rainy season (October 2015), the spatial
correlation of the two maps increases to 78%, with 8% inundated area with the SAR and 11% with
MODIS. For these calculations, we used the hypothesis of 25% inundation of the MODIS mixed
pixels. Although SAR-derived and MODIS-derived water maps have a very similar seasonal cycle
and similar spatial distribution of the water bodies, confirming the wetland seasonal cycle over
this region, there are differences in the total surface of inundated areas. It comes mainly from the
difference of spatial resolution between the two satellites. First, MODIS sensors cannot detect very
small surface water fractions due to their spatial resolution. Second, the MODIS mixed pixels include
water surfaces, vegetation surface and bare soil, and the percentage of each surface type within the
pixel is not quantified.
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Figure 11. Time series of the surface water detected by SAR (red) and MODIS data (black), over the
Mekong Delta (Latitude [9.8◦N–11.3◦N]; Longitude [104.75◦E–107◦E]), for 2015. Two hypotheses are
tested for the MODIS mixed pixels: 50% inundated (top Panel), and 25% inundated (bottom Panel).
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Figure 12. (a,c) SAR and (b,d) MODIS surface water maps at 500 m resolution over the Mekong Delta
in May (a,b) and October (c,d) 2015.

5. Conclusions and Perspectives

This study presents a methodology to monitor and quantify surface water under all weather
conditions within Cambodia and the Mekong Delta in Vietnam, using high quality Sentinel-1 SAR
observations, freely available online. The methodology is based on a neural network classification
trained with optical Landsat-8 images at 30 m spatial resolution. The information content of each
satellite input is analyzed and the inputs are selected to optimize the performance of the classification.
This method allows the detection of surface water with good accuracy when compared to visible
and NIR data under clear sky conditions, as well as when compared to a floodability map derived
from topography data. Surface water maps derived from the proposed NN show a spatial correlation
of ∼90% when compared to Landsat-8 water maps, with a true positive water detection of ∼90%.
Compared to MODIS/Terra water maps over the Delta in 2015, our products share the same wetland
seasonal cycle and dynamics, with a temporal correlation of ∼99%.

In the future, we will first apply the method to other areas under similar environments in southeast
Asia and in other parts of the globe, and second we will test it in more vegetated environments.
The final goal is to develop a general method capable of performing at the global scale to exploit the

28



Water 2017, 9, 366

full spatial coverage of the Sentinel-1 mission. For this purpose, several approaches will be tested to
improve the retrieval scheme. First, the introduction of a priori information from a topography-based
floodability index will increase information on flooding and reduce ambiguities in the SAR signal
with other surface parameters. Second, with the launch of the optical Sentinel-2 satellite, Sentinel-2
observations could be used to replace Landsat-8 data, and to train the SAR surface water classification
under clear sky conditions. The classification could then be extended to the cloudy areas using the SAR
data. Third, the temporal information in the SAR backscatter could also be exploited (i.e., minimum or
standard deviation of the time series) as this information has been shown to improve the detection
of floods [13]. Finally, the high-resolution inundation extent retrieval maps could be post-processed
in order to reduce the inherent noise in such high-spatial retrievals. We plan to test random walk
techniques for that purpose.
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Abstract: Rice farming is one of the most important activities in the agriculture sector, producing
staple food for the majority of the world's growing population. Accurate and up-to-date assessment
of the spatial distribution of rice cultivated area is a key information requirement of all stakeholders
including policy makers, rice farmers and consumers. Timely assessment with high precision
is, e.g., crucial for water resource management, market prices control and during humanitarian
food crisis. Recently, two Sentinel-1 (S-1) satellites carrying a C-band Synthetic Aperture Radar
(SAR) sensor were launched by the European Space Agency (ESA) within the homework of the
Copernicus program. The advanced data acquisition capabilities of S-1 provide a unique opportunity
to monitor different land cover types at high spatial (20 m) and temporal (twice-weekly to biweekly)
resolution. The objective of this research is to evaluate the applicability of an existing phenology-based
classification method for continental-scale rice cropland mapping using S-1 backscatter time series.
In this study, the S-1 images were collected during the rice growing season of 2015 covering
eight selected European test sites situated in six Mediterranean countries. Due to the better
rice classification capabilities of SAR cross-polarized measurement as compared to co-polarized
data, S-1 cross-polarized (VH) data were used. Phenological parameters derived from the S-1 VH
backscatter time series were used as an input to a knowledge-based decision-rule classifier in order
to classify the input data into rice and non-rice areas. The classification results were evaluated using
multiple regions of interest (ROIs) drawn from high-resolution optical remote sensing (SPOT 5)
data and the European CORINE land cover (CLC 2012) product. An overall accuracy of more than
70% for all eight study sites was achieved. The S-1 based classification maps reveal much more details
compared to the rice field class contained in the CLC 2012 product. These findings demonstrate
the potential and feasibility of using S-1 VH data to develop an operational rice crop monitoring
framework at the continental scale.

Keywords: rice mapping; Sentinel-1 A; SAR time series; remote sensing

1. Introduction

Europe is the fourth largest importer of rice in the world (Figure 1a). Over the last five years,
Europe’s annual rice imports were on average about 1 million tons (milled basis), ranging between
873 million tons in 2011 and 1190 million tons in 2015 [1]. Meanwhile, the size of rice cultivated areas
has either reduced or remained stable around 420,000 hectares (Figure 1b). Information about how the
area of rice croplands varies from year to year is an important piece of information for the European
economy being relevant for: risk management for the insurance industry [2], environmental reporting,
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contributions to greenhouse gases [3], life cycle inventory [4,5], life cycle assessment [6,7], water cycle
analysis [8], crop forecasting [9], and others.

According to the FAO Technical Guidelines, the standard procedure to derive rice cropland layers
is to manually digitize optical (near-infrared) satellite imagery [10,11]. This process provides a data
product with an internal and external quality assurance. However, the process is time-consuming,
expensive, labor-intensive and best suited for small scale applications, whereas over large regions
classification results may not always be directly comparable because the results achieved by different
experts may differ. One rice cropland layer produced in this way is part of the CORINE land cover
(CLC) product that has a resolution of 100 m and will be updated after every 4–6 years. This does
not meet the requirements of many users who prefer having annual rice cropland maps with higher
spatial resolution (e.g., 20 m).

Day–night and weather independent data acquisition capabilities of SAR sensors have made
them attractive for monitoring land surface dynamics. With the launch of Sentinel-1A/B (a C-band
space-borne SAR sensor), data with much improved spatio-temporal sampling characterizations
have become available (over Europe 20 m spatial resolution images are acquired every three days).
Furthermore, the free and open data policy adopted by the Copernicus program will make the data
accessible to a large user community, and will help accelerating the progress in geophysical research in
general and paddy rice cropland mapping in specific.

There is a long history of rice cropland area mapping with SAR sensor imagery [12–16].
Multi-temporal SAR data can be used to retrieve the rice growing cycle based on the temporal
variations in the SAR backscatter (σ◦(dB)) signal [12,16,17]. The annual variation in σ◦(dB) from rice
fields is higher than any other agricultural crop [13]. In this particular application domain, a substantial
number of studies have already been reported in the literature. Most of them used medium resolution
SAR data over test sites, mostly located in India [18], Bangladesh [19], Thailand [20], China [21–23],
Vietnam [14–16,24] and also a few in Europe [25,26]. High spatial resolution SAR data (≤20 m) have
been investigated over a fewer study sites because of the difficulty of collecting dense and long-enough
image time series [27–30].

Time series analysis of SAR backscatter values is the most common data analysis approach used
for paddy rice identification. Both single and multi-polarization SAR data have been used for rice
monitoring and the discrimination of different growth stages [14,31]. In this approach, C-band SAR
sensor have been the most attractive data source for rice mapping at regional or continental scale
because data from other SAR sensors is hampered either by limited spatial coverage (e.g., TerraSAR-X)
or longer revisit time (e.g., ALOS PALSAR).

Several investigations [14,32] demonstrated that the C-band like-polarized ratio (HH/VV) is a
useful parameter for mapping and monitoring rice cropland. Wu et al. (2011) reported that the HH/VV
ratio was best for discriminating rice from bananas, forest, and water [33]. However, Schmitt and
Brisco (2013) reported that the HH/VV combination produced a significantly lower accuracy than the
combination of HH/HV and VV/VH [34]. The backscatter coefficients of cross-polarized data have a
significant correlation with the development of rice plants [33,35]. Schmitt and Brisco (2013) also found
that the cross-polarized data gave the best relationship with rice age after transplantation. Due to the
improved spatio-temporal resolution and ability to acquire data in different polarizations (VV, VH),
S-1 is expected to improve the accuracy of rice cropland monitoring and mapping applications.

Literature review suggests that most of the studies have been limited to map paddy rice from
C-band SAR data either by using single polarization (HH) or a combination of different polarizations
(HH/VV, HH/HV or VV/VH). However, only a few of them have investigated dense VH backscatter
time series in order to have a better understanding of the SAR response to growth stages of the rice
fields. Furthermore, to our knowledge, no work using real S-1 data for paddy rice mapping in the
Mediterranean region has been published yet.

The goal of this research is to evaluate the potential and transferability of a phenology-based
classification strategy developed by Nguyen et al. (2016) [36] over a regional test site in the Mekong
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Delta to a continental scale (Mediterranean region). To achieve this objective, we used a dense time
series stack of S-1 backscatter data as input to map rice paddy area at fine spatial scale over eight study
sites in six European countries.

(a) (b) 

Figure 1. (a) Global rice imports, average of data for 2010 to 2014 [1]; and (b) the EU rice balance for
2008 to 2013 [37].

2. Study Area and Materials

2.1. Study Sites Characteristics

In the European Union (EU) the total area of cultivated rice is about 430,000 hectares. The growing
areas are mostly located in the Mediterranean countries [1] (Figure 2), where the summer seasons are
warm and dry. The normal growing season is either from April/May to September/October or from
May to October/November depending on the temperature. Italy and Spain are the top rice producer
EU member countries followed by Greece, Portugal and France [37].

Figure 2. Study sites (red) and spatial extent of the used S-1 scenes (blue).
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Rice varieties grown in Europe mostly belong to the Japonica (70%) and Indica (30%) species
group. The recent evolution of Japonica and Indica areas (in hectares) in the EU member States
is shown in Figure 3. Rice is mostly grown in congregated areas such as in the Po valley in Italy,
the Rhône delta in France, and the Thessaloniki area in Greece. In Spain, rice cultivation is more
scattered; rice growing areas are found in the Aragon region, the Guadalquivir valley, the Ebro delta
and Valencia Albufera [38]. In Portugal, rice cultivation area is concentrated mainly in three regions:
the Tagus and Sorraia valleys, the Mondego, and the Sado and Caia river valleys [39,40]. In Turkey, the
most productive regions are Thrace and Marmara, which are producing 10–15% of the total national
rice production.

Figure 3. Rice varieties areas in the EU member states [37].

Rice planting in Europe involves direct seeding into flooded soil (water seeding) or dry soil
(dry seeding). With both the farming methods, the floodwater is maintained until the harvest season.
Water is drained several times from the field prior to harvesting so that the fields can be dried and
harvesting equipment can pass through. Fields are also drained for early foliar herbicide treatments,
then re-flooded within few days. The drainage period allows certain weed species to germinate in the
aerobic environment (Figure 4).

2.2. Materials

2.2.1. Sentinel 1A Data

For this study, we accessed archived Interferometric Wide Swath (IW) mode S-1 data acquired
during the rice crop growing cycle in 2015, from April to early November to completely cover every
test site. The S-1A SAR IW mode acquisitions come from eight different tracks, whereas each test
site is covered by the same track (Figure 2). The details for each test site regarding data acquisition,
location, date, path and range of incidence angle are shown in Figure 4. All the images were obtained
from ESA as standard Level 1 GRD (ground-range detected) high resolution images. Only the S-1 IW
acquisitions with VH polarization were selected for rice cropland classification.

2.2.2. Optical Data and Ancillary Data

For the study sites in France, and Italy, multi-temporal Spot 5 (10 m spatial resolution) for the
year 2015 were downloaded from the SPOT website [41]. These optical datasets were used to produce
reference classification maps for validating the S-1 rice maps. Rice cropland area—a vector dataset
with a minimum mapping unit (MMU) of 1 hectare—over Seville in Spain for the year 2015 has been
obtained from the Institute of Statistics and Cartography of Andalusia’s website [42] Two others vector
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dataset of rice cropland area—over Valencia in Spain and Thessaloniki in Greece for the year 2015 were
retrieved from the ERMES (An Earth Observation Model Based Rice Information Service)’s website [43]
Google Earth imagery and Sentinel-2 [44] optical data were used to produce reference data for the
rest of study areas. In addition to this, the European CORINE land cover (CLC 2012) product was
also used for comparing classification results across all European test sites in a consistent manner.
The data set is not as detailed and accurate as the other two datasets. However, it is the only available
reference datasets covering all our study regions. Figure 5 shows the land cover composition over the
eight selected test sites in 2012. Rice cropland is the most common land cover in Lombardia, Italy with
33.6%, followed in Ebro, Spain (18.8%) in Valencia, Spain (12.4%), and only 2.3% of rice cropland in
Mondego, Portugal. Inland water makes up over 10% of the total land covers in Camargue, France and
below 1.5% for the others. It is the same for wetland class, e.g., 7% in Camargue, France, and below
2% for the others.

Figure 4. Growing season of paddy rice crop and the available S-1A SAR scenes over eight selected
test sites.
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Figure 5. Relative contribution of harmonized land-cover categories in eight selected test sites.

3. Methodology

The time series algorithm used in this study was introduced by Nguyen et al. [36]. It consists
of six steps as illustrated in Figure 6: (1) S-1A pre-processing; (2) segmentation to extract
the potential rice areas (σ◦ → σ◦potential); (3) time-series smoothing with a Gaussian moving
window filter (σ◦potential → σ◦potential_smooth); (4) vegetation phenology parameters extraction
(σ◦potential_smooth → DoS (Date of Start Season), DoM (Date of Maximum backscatter), LoS (Length
of Season)); (5) classification using a knowledge-based decision-tree approach; and (6) accuracy
assessment based on reference data.

3.1. Pre-Processing

All the selected S-1 SAR IW images were pre-processed (orbit correction, radiometric calibration,
resampling and geocoding) using ESA’s Sentinel-1 Toolbox. The geocoding step involved a Range
Doppler Terrain correction algorithm that uses the elevation data from the 1 arc-second DEM product
from the Shuttle Radar Topography Mission (SRTM) and POD orbit state vectors provided by ESA.
Notice that precise orbits files (POD) are produced few weeks after the acquisition and they are
automatically downloaded from ESA website [45]. In this process, data are resampled and geo-coded
to a grid of 10 m spacing preserving the 20 m spatial resolution.
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Figure 6. Systematic workflow of S-1 SAR (VH polarization) data processing, rice area classification
and validation.

3.2. Identification of Potential Rice Pixels

For the identification of potential rice growing areas, our approach is to threshold the dynamic
range backscatter image to identify image pixels that change more than the defined threshold value
(dB). Threshold value selection depends on the nature and expected changes in the magnitude of VH
backscatter and the SAR geometry (e.g., incidence angle). A generalized threshold for the rice fields
can only be determined if the optimum SAR data acquisition is guaranteed (e.g., SAR observations
are available in the flooded and vegetative stages). Otherwise, the threshold must be optimized
considering the data acquisition and the constraints of local crop calendar. S-1A provides at least one
acquisition after every 12 days over the selected study sites (see Figure 4); after the launch of S-1B the
temporal sampling was reduced to 5–6 days. Based on the visual interpretation of optical imagery for
the selected period and expert knowledge acquired from the ancillary data, a threshold of 8.5 dB was
used to extract the potential rice pixels referred to as σo

VH_potential .
Figure 7 (first column) shows sensitivity images based on dry reference (P05) and wet reference

(P95) images for all study areas, and the results of applying thresholds of 8, 8.5 and 9 dB to these
images are illustrated in following columns of the Figure 7. The CLC 2012 map is used to indicate
the compartment boundaries, and pixels exhibiting change below and upper the threshold (8.5 dB)
are classified as potential rice cropland areas. Combining Figure 6 with Figure 7 suggests a threshold
on sensitivity of 8.5 dB to extract the potential rice cropland pixels. Lowering the threshold to 8.0
dB increases area outside the potential rice cropland areas in all the study sites leads to computation
time increases. Raising the threshold to 9.0 dB decreases the potential rice cropland areas may leads
to numerous rice pixels are omitted. Thus 8.5 dB seems the better choice as long as we accept that
physically, processing time, as well as classification precision. With this threshold, the majority of the
rice cultivated areas are correctly picked out in all data sets. From the basic concept of the approach, it
is clear that classification error will occur for the rice pixels whose variation is less than the selected
threshold. Different of farming activities during the growing season (rice varieties, water level in
the fields, density of rice plants in the fields), SAR acquisitions period may give rise to this type
of misclassification.
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Mondego (Portugal) 

Sensitivity image 8.0 dB 8.5 dB 9.0 dB  
Seville (Spain) 

Sensitivity image  8.0 dB 8.5 dB  9.0 dB  
Valencia (Spain) 

Sensitivity image  8.0 dB  8.5 dB  9.0 dB  
Ebro delta (Spain) 

Sensitivity image 8.0 dB  8.5 dB  9.0 dB  

Figure 7. Cont.
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Camargue (France) 

Sensitivity image  8.0 dB  8.5 dB  9.0 dB  
Lombaria (Italy) 

Sensitivity image  8.0 dB  8.5 dB  9.0 dB  
Thessaloniki (Greece) 

Sensitivity image  8.0 dB  
8.5 dB  9.0 dB  

Marmma-Thrace (Turkey) 

Sensitivity image  8.0 dB 8.5 dB  9.0 dB  

Figure 7. Sensitivity images and potential rice cropland area extent results using different thresholds.

3.3. Time Series Filtering

Filtering the backscatter time series has the purpose of reducing the short-term influence of
environmental conditions and noise inherent in the S-1 data due to speckle and other noise-like
influences. The processed output is a smoothed backscatter signal (σo

VHpotential_smooth
), which will be used

for the extraction of different phenological stages of rice (e.g., a start of the season, heading time, and
length of season). For the temporal filtering of the σo

VH_potential time series a Gaussian smoothing filter
(with the standard deviation of 3 dB for the kernel) was used. A detailed investigation on the selection
of kernels with different standard deviation was already reported by Nguyen, Wagner et al. 2015 [16].
Moreover, in order to discriminate the rice pixels from the other land cover classes we have empirically
defined a list of three more static thresholds based on the σo

VHpotential_smooth
values.
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3.4. Extraction of Vegetation Phenology Parameters

For this step, we calculated three phenological indicators, namely, date of beginning of season
(DoS), date of maximum backscatter (DoM), and Length of the season (LoS). This allows to delineating
the areas as “rice paddy”, and all other areas were placed in a generalized “non-rice” class.
These parameters, introduced by [37], are summarized in Table 1.

Table 1. Phenological parameters for the rule-based classification.

Parameters Definition and Explanation

DoS
During the growing season, the date of the beginning of season is defined as the first local
minima in σo

VHpotentia_smooth
time-series.

DoM
During the growing season, the date when backscatter reaches a maximum value is defined
as the local maxima in σo

VHpotentia_smooth
time-series. This date must come after the date of the

beginning of season, where it reaches its local minimum backscatter value.

LoS The length of the season is defined as the number of days difference between DoM and DoS.

3.5. Rice Paddy Identification

Due to the high temporal variability in the SAR backscatter signal across the different study sites,
the raw output from the thresholding of phenological profiles contained some noisy pixels. This implies
that most fields were not fully classified as rice and non-rice class at the pixel level. Therefore, we
constrained the minimum mapping unit to the average farm size in the Mediterranean region, which
is 1/4 hectares. This means that no polygon was composed of fewer than 25 S-1 pixels (20 m spatial
resolution, 10 m pixel spacing). We implemented this through a post-classification processing step,
whereas a majority/minority analysis with the window size of 5 × 5 pixels was applied to remove the
small pixel groups in order to obtain refined classification results.

3.6. Accuracy Assessment

For validation and evaluation of classification results, standard accuracy assessment measures
were used, i.e., kappa coefficient, overall accuracy, omission error, and commission error. Rice cropland
vector layer 2015 for study site in Spain (Seville), rice cropland maps created through interpretation of
SPOT-5 data for three study sites in Spain (Valencia), Italy, and France; rice cropland raster layers 2006
from CLC 2006 for Marmara-Thrace, Turkey; and rice cropland raster layers from CLC 2012 for all
study sites were used.

4. Results and Discussion

4.1. Temporal Rice Backscatter Signature from Sentinel-1 SAR Data

Seasonal VH time series are shown in Figure 8a–h, for Mondego (Portugal), Seville (Spain),
Valencia (Spain), Ebro delta (Spain), Camargue (France), Lombaria (Italy), Thessaloniki (Greece) and
Marmma-Thrace (Turkey), respectively. In addition, Figure 8a–h also shows the results of smooth
backscatter profiles (magenta color), and the date of maximum and minimum backscatter values for the
selected rice fields (represented by the red and blue dots, respectively). To complement this analysis,
Figure 9 shows the VH backscattering coefficients and false color composites of the study sites.

Figure 9 (column 4) shows the color composites, which are created by using the multi-temporal
SAR acquisitions in order to highlight the temporal characteristics within the rice fields. The red, blue,
and green colors in these figures (Figure 9, column 4) correspond to the images acquired during the
flooded/seeding (April/May), heading (August/September) and post harvested (October/November)
period, respectively. The blue and dark green color regions in these figures (Figure 9, column 4)
indicate the rice cropland areas. At the beginning of the growing season (April–May) the σo

VH values
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from the rice fields were very low due to flooding after sowing. Thus, in the early stage of rice crop
growth the fields appeared as dark areas in SAR images. This condition corresponds to those scenes
that were acquired during the months April and May (see black areas in Figure 9, the first column).
In general, during this period the rice fields show low backscatter values, e.g., less than −20 dB (for
reference, see Figure 8). However, there are several conditions related to the soil preparation and
wind speed/direction that must also be considered. Some rice fields require a special tillage, such
as furrows, or the presence of low water level in the field for a shorter period due to the diversity
in farming activities among different parts of the region. If these furrows are shallow and under
light wind conditions, the surface is smooth irrespective of the furrow direction. However, if the
furrows are deep, the furrow direction becomes an important factor regarding SAR image acquisition
geometry. In case that the deep furrows are nearly parallel to the radar viewing direction, the surface
seems smooth in radar image. On the other hand, if the deep furrows are perpendicular to the radar
viewing direction, the surface becomes strongly rough, and the signal backscatter becomes very strong.
These results are in accordance with Brisco et al. (1991) when evaluating the effect of tillage row
direction in relation to the radar’s look direction using radar backscattering coefficient from three
different radar frequencies [45]. The Sentinel-1 data are also influenced by the incidence angle, whereas
the strength of the radar’s backscatter signal gradually decreases with the increase of incidence angle.
Therefore, backscatter is in general higher over the Marmma-Thrace (Turkey) and Mondego (Portugal)
sites, where the incidence angles were 35◦ and 36◦ compared to the other regions where the incidence
angle was about 40◦ (Figures 4 and 8).

In the second stage (vegetative stage), backscatter value increases as the vegetation grows (e.g.,
plant size increases), and eventually the SAR images show no significant difference between rice
fields and other agricultural fields or vegetated areas (see bright areas in Figure 9, second column).
One month to 45 days after the start date of the growing season it reaches the first peak in June/July.
Specifically, a simple visual inspection to the σo

VH images which were acquired at the end of July
(where DoY is around 210, Figure 8a–h)) reveals that the backscatter value has dropped suddenly,
despites the fact that vegetation is fully developed. This anomaly is observed for all study sites, except
Mondego (Portugal) and Lombaria (Italy). It is clearly illustrated in the case of Seville (Spain) and
Valencia (Spain) in the Figure 8. The scale of these changes is quite different for different study sites
due to different agricultural practices. Like in other European regions, rice crop in Seville and Valencia
(Spain) begins in mid-April with the deep placement of fertilizers under dry conditions. Flooding
starts during the first week of May and then the seeds are sown. At the end of June there is a short
dry period of ten days [46]. Furthermore, this period is characterized by the increase of the rice plant
height and the number and size of tillers that lead to make free space among narrowed or blocked rice
stems. As a result, the absence of water from the rice fields will minimize the double bounce effect of
SAR signals and this explains the decrease in backscattering values at this stage. For the other regions,
throughout the rice cultivation period, water is commonly kept at a depth of 4–8 cm, and drained
away 2–3 times during the growing season to improve the crop rooting, reduce the algae growth and
to allow application of herbicides. For the reproductive stage (August/September), backscatter values
continuously keep increasing until they achieve the maximum value in September. During this period
the values of backscattering coefficient vary between the range of −17 dB and −13 dB, which might
get influenced by the variations in incidence angle, water level in the fields, cultivation activities or
the rice varieties. However, during the ripening phase a slight decrease in SAR backscatter signal is
observed. One potential reason for this could be due to the fact that the plants will dry before the
harvesting. Normally, rice fields are drained towards the end of August to allow harvesting [47].
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Figure 8. Temporal evolution of the backscattering coefficients derived from VH polarization (where,
σo

VH = −20 (dB) is base line).
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Mondego (Portugal) 

 

6 May 2015 (R) 22 August 2015 (G) 2 November 2015 (B) RGB 

Valencia (Spain) 

19 May 2015 (R) 23 August 2015 (G) 15 November 2015 (B) RGB 
Seville (Spain) 

16 May 2015 (R) 20 August 2015 (G) 

 

12 November 2015 (B) 

 

RGB 
Ebro delta (Spain) 

11 May 2015 (R) 27 August 2015 (G) 7 November 2015 (B) RGB 

Figure 9. Cont.
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Camargue (France) 

 

7 May 2015 (R) 4 September 2015 (G) 3 November 2015 (B) RGB 
Lombaria (Italy) 

 

10 May 2015 (R) 26 August 2015 (G) 6 November 2015 (B) RGB 
Thessaloniki (Greece) 

 

16 May 2015 (R) 20 August 2015 (G) 31 October 2015 (B) RGB 
Marmma-Thrace (Turkey) 

 

17 May 2015 (R) 2 September 2015 (G) 14 November 2015 (B) RGB 

Figure 9. Columns 1–3: images of σo
VH acquired at three dates (from left to right) and; Column 4:

images of false color composite over the part of study sites.

After harvest, the fields can have diverse conditions, either bare and dry fields or covered with
weeds in wet conditions. Fields may also be flooded due to local farming activities, e.g., in some areas
fields are flooded again until January for duck hunting [46]. This event is clearly visible at the study
sites in Spain (Figures 8b–d and 9). However, the levels of change are quite different among the study
sites due to the differences in farming activities. Meanwhile, in other regions, some small crops or
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weeds cover is possible right after the rice crop is cultivated. The radar backscatter is thus variable and
in most cases can have high backscatter values. Moreover, as a result of rain which is typically high in
the winter season in the Mediterranean region, the water content in bare soil increases, and this may
also explain the increase of backscattering. Consequently, there is little possibility to interpret this last
stage of the cultivation.

4.2. Thresholds Selection

Optical data sources (Spot 5, Sentinel-2, and Google Earth imagery), vector dataset and expert
knowledge were used to create polygons for threshold selection. These polygons were carefully
selected and digitized across eight study sites. Training areas were considered in terms of distribution
and variety of rice fields (e.g., size, density, rice variety) and SAR geometry characteristic (e.g., incidence
angle) to build robust training data set. These polygons used for threshold determination were then
excluded from the set of polygons used for accuracy assessment. Time series analysis was carried out
using all available S-1 IW Mode data between April and November 2015 (Figure 8 and Section 4.1).
The overall behavior of σo

VH is comparable to our previous investigations [37]. However, the dynamic
range over different regions varies due to different incidence angles and farming activities. In Figure 8,
it is important to note that the response signal patterns from all sample parcels are very consistent.
Therefore, we can conclude that these temporal signatures are associated with the rice crop type, and
the empirical thresholds of three phenological parameters based on the σo

VHpotentia_smooth
values can be

used for the identification of rice cropland. This study, we followed the approach of Nguyen et al. [15]
who used phenological parameters (derived from σo

VH profile) to map the rice areas of eight sites in
the Mediterranean region.

For rice areas mapping, the first two key parameters, σo
DoM—the peak (maximum) of VH

backscatter and Δσo the amplitude backscatter (the difference between σo
DoM—backscatter at date of

maximum backscatter and σo
DoS—backscatter at the begin of the growing season) are very critical.

The peak and valley of VH backscatter (i.e., σo
DoM, σo

DoS) within the one rice-growing cycle can be
identified by a local extrema algorithm. To eliminate unrealistic peaks, a threshold for VH backscatter is
required. These two parameter thresholds (i.e., σo

DoM ≥ −19 dB and Δσo ≥ 2.5 dB) were selected based
on a conservative deduction from training data, limited census statistics, and expert knowledge [36].
The corresponding positions (date) and backscatter values of these two points showed in the Figure 8
where big-red dots are DoS(s) and big-blue dots are DoM(s) respectively. All areas that practice
rice crops start the growing season between May–June where the lowest backscatter is observed.
Rice flowering period then comes after more than one and a haft month (July–August) where S-1
respond signal in the temporal signature reaches the peak.

The third parameter, length of the season (LoS) which is defined as the temporal distance (number
of days difference) between the date of beginning of season and the date when maximum backscatter
value is recorded. This temporal distance has to be greater than the shortest possible rice growing
cycle and smaller than the longest possible rice growing cycle. From crop calendar and our expert
knowledge about rice growing season in the study areas, the threshold of temporal distance which is
about 50 and 120 days, respectively. If all three conditions are met then the pixel is classified as rice,
otherwise as non-rice area.

4.3. Spatial Distribution and Comparison of S-1 Derived Rice Area with Reference Data

The temporal backscatter signatures is shown in Figure 8 (and Figure S1 in the supplementary
material) served to define specific thresholds which were applied to the S-1 time series in order to
generate rice area maps for the growing season of 2015. The classification results of rice fields over
eight selected sites in the Mediterranean region are shown in Figure 10. The classification accuracy has
been assessed by comparing the classification results to the 2015 rice cropland vector layer for four
study sites in Seville (Spain), Valencia (Spain), Lombardia (Italy), and Camargue (France); and CLC
(2012) for all study sites. The confusion matrices are presented in Tables 1 and 2, respectively.
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Figure 10. Rice cropland mapping in Spain.

To provide direct comparison, the classification results in all study sites: Seville and Valencia
in Spain, and Thessaloniki in Greece were evaluated by using the reference vector dataset from the
same year 2015; Lombardia (Italy), and Camargue (France) were evaluated by using higher spatial
resolution (SPOT 5, 10 m); and Earth Imagery and Sentinel-2 data were used to produce reference
data to validate the classification results for the rest of study areas (Table 2). The Kappa coefficients,
rice user accuracy (commission error), and rice producer accuracy (omission error) were, respectively,
0.76, 70.2%, and 82.7% for Mondego, Portugal; 0.87, 86.8%, and 89.2% for Seville, Spain; 0.85, 81.7%,
and 93.3% for Valencia, Spain; 0.79, 70.3 and 95.3% for Ebro delta, Spain ; 0.85, 80.2%, and 94.0% for
Camargue, France; 0.82, 79.8%, and 86.2% for Lombardia, Italy; 0.79, 74.1%, and 94.0% for Thessaloniki,
Greece; and 0.76, 71.1%, and 84.1% for Marmara-Thrace, Turkey (Table 1). The lower accuracy level
was observed in Mondego, Portugal, Ebro delta, Spain, Thessaloniki, Greece and Marmara-Thrace,
Turkey, because of most rice fields in these regions associated with the small farms, and scattered
throughout the mixed agricultural landscape and, thus, were easily omitted with non-rice classes.
One potential source of error lies in the time difference between the reference data and the Sentinel-1
image acquisition. For example, the reference data were produced by digitizing homogenous sites of
rice fields based on the image visualization and interpretation of existing high-resolution Google Earth
imagery and Sentinel-2 optical data, while the classification maps were produced from 2015 S-1A data.
Moreover, a number of different of farming activities during the growing season (rice varieties, water
level in the fields, and density of rice plants in the fields) and SAR acquisitions period could also cause
an increase in mapping errors. Although the proposed approach can properly detect most rice areas,
some land cover types with high variation in backscatter values (e.g., wetland or seasonal water bodies
areas) can cause commission errors.

47



Water 2017, 9, 392

Table 2. Confusion matrices of the accuracy assessment.

SAR Data Mondego, Portugal

S-1

Class Non-Rice Rice Total Producer Accuracy

non-rice 4251 71 4322 98.4%
rice 35 167 202 82.7%
total 4286 238 4524 -

user accuracy 99.2% 70.2% - Kappa = 0.76

Seville, Spain

Class Non-Rice Rice Total Producer Accuracy

non-rice 10,057 140 10,197 98.6%
rice 111 919 1030 89.2%
total 10,168 1059 11,227 -

user accuracy 98.9% 86.8% - Kappa = 0.87

Valencia, Spain

Class Non-Rice Rice Total Producer Accuracy

non-rice 6344 176 6520 97.3%
rice 56 786 842 93.3%
total 6400 962 7362 -

user accuracy 99.1% 81.7% - Kappa = 0.85

Ebro delta, Spain

Class Non-Rice Rice Total Producer Accuracy

non-rice 5637 256 5893 95.6%
rice 30 606 636 95.3%
total 5667 862 6529 -

user accuracy 99.5% 70.3% - Kappa = 0.79

Camargue, France

Class Non-Rice Rice Total Producer Accuracy

non-rice 8915 252 9167 97.3%
rice 65 1023 1088 94.0%
total 8980 1275 10,255 -

user accuracy 99.3% 80.2% Kappa = 0.85

Lombardia, Italy

Class Non-Rice Rice Total Producer Accuracy

non-rice 3392 356 3748 90.5%
rice 56 1404 1460 86.2%
total 3448 1760 5208 -

user accuracy 98.4% 79.8% - Kappa= 0.82

Thessaloniki, Greece

Class Non-Rice Rice Total Producer Accuracy

non-rice 8915 357 9272 96.2%
rice 65 1023 1088 94.0%
total 8980 1380 10,360 -

user accuracy 99.3% 74.1% - Kappa = 0.79

Marmara-Thrace, Turkey

Class Non-Rice Rice Total Producer Accuracy

non-rice 22,975 453 23,428 98.1%
rice 210 1112 1322 84.1%
total 23,185 1565 24,750 -

user accuracy 99.1% 71.1% - Kappa = 0.76

For all the study sites, CLC from 2012 were also used for comparison and checking the consistency
of classification results over all study areas. Despite the limitations of the CLC data (e.g., there was
a three years difference between CLC and S-1 datasets) the results suggest that the application of
S-1 time series data for rice area mapping has produced consistent results for all the test sites with
overall accuracies (in quotation {}) ranging from 77.7% to 98.9% (kappa average at 0.53). The average
accuracies at Camargue (France), Thessaloniki (Greece) and Mondego (Portugal) are lower than that of
Seville and Valencia (Spain). The results showed relatively high error rate for both commission and
omission measure (see Table 3 for details). The best results were achieved over Seville and Valencia
(Spain) with kappa of 0.70 (Rice omission 31.9%) and 0.82, respectively (Rice omission 22.6%), which is
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significantly higher than over the other regions. The worst performance (Kappa 0.37, overall accuracy:
79.9%) was reported from Thessaloniki (Greece) with the highest commission errors (63.0%) and
omission error (nearly 30.7%). In order to better match the spatial scale between the classification map
produced and the CLC 2012 validation layer, the classification results were smoothed by gap filling
using a 10 pixels × 10 pixels window. The reason for this step is to compensate the smoothness level
between the classified map and the CLC 2012 validation layer. The CLC 2012 product is consist of large
homogeneous polygons which includes the small roads and fields boundaries, which are major source
of error in the validation process. After smoothing the classified rice map a significant improvement in
the overall accuracy and the kappa value is observed (Table 3). The comparison results in the Table 3
show that the poor results of accuracy comparison are not due to the errors classification output, but
due to the coarser resolution of the CLC 2012 product.

Table 3. Comparisons of rice crop extraction accuracies from time series S-1 data with Corine Land
cover products (CLC 2012).

Sites, Country
Kappa Overall Accuracy % Rice Commission % Rice Omission %

Comparison with CLC 2012 after Smoothing and with Original CLC 2012 (in {})

Seville, Spain 0.85 {0.70} 93.4 {88.1} 11.8 {9.3} 9.3 {31.9}
Valencia, Spain 0.93 {0.82} 98.9 {92.7} 3.8 {2.0} 9.5 {22.6}

Ebro delta, Spain 0.88 {0.52} 94.3 {77.7} 2.6 {2.8} 10.7 {49.2}
Camargue, France 0.46 {0.37} 87.8 {86.5} 17.7 {18.0} 62.3 {71.2}
Lombardia, Italy 0.60 {0.50} 83.9 {81.3} 12.6 {12.6} 37.3 {53.3}

Thessaloniki, Greece 0.57 {0.37} 83.5 {79.9} 29.8 {30.7} 34.1 {63.0}
Marmara-Thrace, Turkey 0.74 {0.52} 97.3 {94.5} 16.4 {11.3} 31.21 {60.5}

Mondego, Portugal 0.65 {0.43} 95.4 {98.9} 31.2 {40.7} 34.3 {65.7}

5. Conclusions

In this paper, we investigated a phenology-based approach to map rice crop at a continental scale
by using space-borne C-band SAR data. Time series of S-1A IW mode with 20 m spatial resolution and
VH polarization covering eight sites in the Mediterranean region were used. The results show that the
proposed approach is efficient and operationally feasible for extracting rice cropland areas with high
accuracy (above 70%) at 20 m spatial resolution (single-polarization) by using S-1A time series.

Our results show that dense SAR time series are critical for monitoring rice areas, which also gave
an insight into the farmers’ management practices within each rice cropping system.

This study emphasizes the use of annual SAR time series to generate a timely, accurate and
high-resolution rice cropland spatial extent. It will be very helpful to assist decision making in the
identification of rice areas for intensification, and areas for the development of irrigation as one of the
necessary steps in dealing with food security related issues. Despite some current limitations of gaps
in S-1A data acquisitions, this study suggests that the current and future SAR systems such as S-1B can
be used complementarily to provide valuable spatial, thematic and temporal information about rice
crop areas in the Mediterranean region and worldwide.

Information regarding the time of land preparation and water supply would be necessary to
improve the classification in areas where the temporal signature for rice is unusual. Acquiring to such
data would also help to improve the accuracy of rice cropland monitoring at the continental scale
using S-1 time series.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/9/6/392/s1.
Figure S1 Rice cropland map of 8 study sites in the Mediterranean region.
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Abstract: Despite the importance of thermokarst (thaw) lakes of the subarctic zone in regulating
greenhouse gas exchange with the atmosphere and the flux of metal pollutants and micro-nutrients to
the ocean, the inventory of lake distribution and stock of solutes for the permafrost-affected zone are
not available. We quantified the abundance of thermokarst lakes in the continuous, discontinuous,
and sporadic permafrost zones of the western Siberian Lowland (WSL) using Landsat-8 scenes
collected over the summers of 2013 and 2014. In a territory of 105 million ha, the total number of
lakes >0.5 ha is 727,700, with a total surface area of 5.97 million ha, yielding an average lake coverage
of 5.69% of the territory. Small lakes (0.5–1.0 ha) constitute about one third of the total number of
lakes in the permafrost-bearing zone of WSL, yet their surface area does not exceed 2.9% of the total
area of lakes in WSL. The latitudinal pattern of lake number and surface coverage follows the local
topography and dominant landscape zones. The role of thermokarst lakes in dissolved organic carbon
(DOC) and most trace element storage in the territory of WSL is non-negligible compared to that of
rivers. The annual lake storage across the WSL of DOC, Cd, Pb, Cr, and Al constitutes 16%, 34%,
37%, 57%, and 73%, respectively, of their annual delivery by WSL rivers to the Arctic Ocean from
the same territory. However, given that the concentrations of DOC and metals in the smallest lakes
(<0.5 ha) are much higher than those in the medium and large lakes, the contribution of small lakes to
the overall carbon and metal budget may be comparable to, or greater than, their contribution to the
water storage. As such, observations at high spatial resolution (<0.5 ha) are needed to constrain the
reservoirs and the mobility of carbon and metals in aquatic systems. To upscale the DOC and metal
storage in lakes of the whole subarctic, the remote sensing should be coupled with hydrochemical
measurements in aquatic systems of boreal plains.

Keywords: remote sensing; size; surface; volume; thermokarst; carbon; metal
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1. Introduction

The quantification of the abundance, size distribution, and water storage of lakes and reservoirs
has critical importance for the evaluation of carbon and nutrient storage, and the potential of
greenhouse gas (GHG) exchange between the Earth’s surface and the atmosphere. For these reasons,
several detailed studies have documented the lake number and size distribution on the scale of our
planet [1–3]. Thus, the use of medium resolution Landsat-7 images has allowed the creation of a global
database of lakes and water reservoirs, including all lakes larger than 0.2 ha or 45 m × 45 m [3,4].
The total number of lakes was estimated as being 117 million, with an overall surface area of
5 × 106 km2 (500 × 106 ha), which corresponds to 3.7% of the non-glaciated land area. The number of
small lakes (0.2–1 ha) is around 90 million, whereas their overall area is equal to 25 × 106 ha, which is
only 5% of the overall lake surface coverage. The small lakes exhibited a deviation from the general
power dependence between the lake size and the lake number [4,5]; as a result, the extrapolation of
power law to smaller lakes may overestimate the lake number [3]. At the same time, the small lakes
subjected to full freezing in winter or evaporation in summer, with a short residence time of water, play
a crucial role in the integration of the carbon and other elements transported from the watershed [6–8],
which is particularly important in high latitude regions, which are the most vulnerable to climate
change [9,10].

The Arctic and subarctic permafrost-bearing regions exhibit the maximal changes in the terrestrial
freshwater budget, although the hydrological responses to environmental changes strongly differ
across the boreal and subarctic regions of the subarctic [11]. In particular, in the tundra, continuous
permafrost development strongly influences water fluxes and storage, whereas in boreal plains, slow
surface and subsurface water movement produces extensive wetlands [11]. Once the permafrost
becomes discontinuous to sporadic in the south, this allows significant groundwater feeding of
rivers [12] and, presumably, lakes [13].

In this regard, the boreal and tundra plains are extremely important for a lake inventory study
because of the high coverage of the watershed area by these lakes (up to 70% in some western Siberian
river watersheds [14,15]), and fast temporal dynamics of thermokarst lake landscapes, reflecting
on-going climate change in their watersheds [16–20]. The latter brings about a shorter residence
time of lakes, whose size changes, especially at southern latitudes, due to the disappearance of
sporadic and isolated permafrost. It is also worth noting the primary role of lakes in controlling
greenhouse gas exchange with the atmosphere, both in permafrost-free [21,22] and permafrost-bearing
regions [9,23–26].

Over the past decades, the formation of thermokarst lakes and thaw ponds due to permafrost
degradation was documented in Alaska, Canada, Europe, and Siberia [27–31]. The majority of available
studies had a rather limited geographic coverage (<10,000 km2, [16,32,33]), or described relatively
small regions within larger territories [29]. The high resolution studies, down to 0.1 ha lake size,
dealt with even smaller territories (700 km2 in ref. [34]; 4 km2 in ref. [35]; 1.4 km2 in ref. [36]), whereas
the large geographic coverages, on the scale of one hundred thousand to million km2, were limited to
large lakes (>5 ha in North American Arctic, ref. [37,38] and 10–40 ha in western Siberia, ref. [39,40]).

Several studies of thermokarst lakes in Alaska, Yukon, Scandinavia, and Siberia, were focused
on monitoring the change in the lake area over the past 30–40 years, within relatively small
regions [18,29,41–45]. Remote sensing studies of the permafrost zone of western Siberia demonstrated
that the number of newly formed small thermokarst lakes (0.5–5 ha) over the past three decades exceeds,
by a factor of 20, the number of large lakes which tend to disappear during the same period [46].
Recently, the dynamics of the number and surface area of thermokarst lakes in the discontinuous
permafrost zone of western Siberia, over the period of 1973 to 2009, has been studied within the
watersheds of the Nadym and Pur rivers [47]. According to these authors, the temporal evolution
of large size (>10 ha) lakes, whose number constituted 78%–85% of all lakes, exhibited a variation
within 10%. The size distribution of thermokarst lakes followed the power law, both in eastern [30]
and western [47,48] Siberia. In particular, Polishchuk et al. [48] presented the results of the number of
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appearing and disappearing lakes in western Siberia between the 1970s and the present time, and the
laws of statistical distribution of very small lakes (<0.5 ha) on several test sites of the western Siberian
Lowland (WSL). In contrast, the present study encompasses a much larger territory of western Siberia
and provides, for the first time, a full inventory of large to small lakes (>0.5 ha).

The main goal of the present study was to establish the law of the lake number and area
distribution for the whole WSL territory and to bring together the hydrology and hydrochemistry using
available data on lake depth and carbon and metal concentration in the lake water. Towards this goal,
we classified and analyzed medium resolution Landsat-8 scenes, which provided complete coverage
of the WSL (105 × 106 ha or 1.05 million km2). The first specific objective of this study was to increase
the resolution of the lake size to 0.5 ha for the whole territory of permafrost-affected WSL, in order
to compare the results with the global database [3]. Indeed, in view of the disproportionally high
importance of small thermokarst water bodies relative to medium and large lakes in GHG emission and
C storage [49–51], a rigorous quantification of the number and area of thermokarst lakes is very timely.
The second objective of this work was to assess the water, carbon, and metal storage in thermokarst
lakes. Recent progress in the quantification of depth, and area and lake size-averaged concentrations
of major and trace elements in western Siberian thermokarst lakes [49,50,52–54], allows a first-order
evaluation of the water and element stocks in lakes and a characterization of the role of lakes in element
storage, relative to rivers draining the same territory.

2. Materials and Methods

2.1. Study Area

The studied region is located within a tundra and forest-tundra zone of the northern part of the
western Siberia lowland (1.05 × 106 km2). In the northern part of the WSL, the sporadic, discontinuous,
and continuous permafrost zones share 31.7%, 29.1%, and 39.2% of the overall territory, respectively
(Figure 1). The mean annual temperature (MAT) ranges from −0.5 ◦C in the permafrost-free region
(Tomskaya region) to −9.5 ◦C in the north (Yamburg), and the annual precipitation ranges from 400
to 460 mm. For the period of the end of July–August in the central part of the studied zone (Novuy
Urengoy), the average low daily temperature was 17.4 ◦C and 10.9 ◦C in 2013 and 2014, respectively.
The average high temperature was 23.4 and 14.9, respectively. A detailed physico-geographical
description, hydrology, lithology, and list of the soils can be found in earlier works [55,56] and
in our recent limnological and pedological studies [50,53,54,57]. The WSL has rather homogenous
landscape conditions (palsa peat bogs, forest-tundra, and polygonal tundra), lithology (Pliocene sands
and silts), soil cover (1–1.5 m thick peat, half of soil profile is frozen), and runoff (200–250 mm·year−1),
across a large gradient of permafrost coverage [58–60].

The bioclimatic sub-zones of permafrost-affected WSL regions gradually change northward, from
the northern taiga zone (38 × 106 ha) to forest tundra (13 × 106 ha), southern tundra (30 × 106 ha),
and northern tundra (24 × 106 ha). A detailed GIS survey of the WSL allowed the quantification of
the regional distribution of major wetland types and complexes [56]. According to those authors,
the sporadic permafrost zone, north of the Ob River (61◦–63◦ N), is dominated by sphagnum bogs
with pools and an open stand of trees with abundant forested (treed) shrubs- and moss-dominated
mires. The discontinuous permafrost zone (63◦ to 67◦ N) of the forested tundra and southern tundra
essentially comprises high palsa and flat palsa mires, mixed with palsa-hollow and pool-hollow
patterned mires. Flat-palsa and hollow-pool flat-palsa bogs are also abundant in this region. Finally,
further to the north, within the continuous permafrost zone of the southern and northern tundra
(67◦–73◦ N), the landscape is dominated by patterned (hollow and hollow-pool) flat-palsa bogs,
polygonal mires combined with grass and moss-dominated mires [56]. Thermokarst lakes are highly
specific water bodies of the permafrost zone of the WSL: they have a shallow depth and are rarely
connected to the hydrological network [61]. Most lakes of the northern part of the WSL freeze solid in
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winter and have frozen sediments at their bottom throughout the year [54]. The region is dominated
by the presence of thermokarst lakes having a <100 ha surface area [42,62,63].

Figure 1. Location of three permafrost zones in the study territory of western Siberia. The position of the
permafrost provenances in the western Siberian Lowland (WSL) is based on extensive geocryological
work in this region [59].

The lakes are located within peat flat-mound bogs (ridge-hollow complex, palsas, and polygonal
tundra); the bottom sediments of the lakes are dominated by peat detritus. An active thermokarst
occurs due to the thawing of syngenetic and epigenetic segregation ice, ice wedges, and ice layers
in the deep (>2 m) horizons, and is primarily due to the ice thawing of the active layer (<2 m).
The thermokarst activity produces depressions, subsidences, and ponds, which are usually separated
by flat mound peat bogs up to 2 m in height [64]. The largest thermokarst lakes that are located
within the peat bog are km-size, with a depth of 0.5–1.5 m [64,65]. The overwhelming majority of
lakes in all three permafrost-bearing zones of the WSL (sporadic, discontinuous, and continuous) have
a thermokarst origin, i.e., thawing of frozen peat and clay surface horizons [42,53,61,66]. As a result,
most thermokarst lakes of the WSL exhibit quite a shallow depth, ≤1 m, in contrast to the deeper
lakes of other Arctic regions, originating from surface disturbance, the melting of ground ice, and ice
wedges (e.g., ref. [67]).

2.2. Remote Sensing Analysis

Satellite imagery from a Landsat-8 Operational Land Imager (OLI, with 30 m resolution),
available at USGS Global Visualization Viewer [68], were used to map the lake distribution. We used
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medium-resolution Landsat-8 images collected at the end of July–August 2013–2014. This period
corresponds to the minimal coverage of the territory by lakes and minimal seasonal variation of the
lake water level. Besides, this is the period of total disappearance of ice coverage throughout all of
the studied area. The sampling of the lake water and lake depth measurements was also performed
during this period of the year. Note that, from the view point of optical remote sensing, there is no
difference between thermokarst and non-thermokarst lakes, because their reflection yield for Landsat-8
OLI is similar. However, according to published expert estimations of several zones of the WSL [42],
the majority of lakes on the WSL are of thermokarst origin.

For the total territory of 1.05 million km2, we superposed 134 images (Figure 1). We used not only
the images with <10% of cloud, but all of the images that were useful to fill the gaps in the coverage.
Nevertheless, for the mosaic, only the cloudless parts of the images were used. In the case where
several images were available for the same territory, the one which had the lowest cloud coverage in
the middle of the summer was used. The mosaic consisted of images taken in 2013 and 2014, which
were combined because the single year data could not provide full coverage of the territory.

The river waters were excluded from the analyses via the creation of the river mask. The data
of the river location were taken from national river water cadasters and open street maps. The open
ocean and marine coastal zones were also excluded from the analyses. The treatment of satellite
images was performed using standard tools of ArcGIS 10.3 software [69], which included classification,
vectorization, and surface area quantification. The automatic identification of lakes employed the
Fmask algorithm developed for Landsat images, which allows resolving the lakes under some cloud
coverage [70]. First, for the mosaic of Landsat 8 imagery, the cloud masks were defined for individual
images. Then, the cloud masks were removed from the images and replaced by cloud-free fragments
taken from other adjacent images. The minimal lake size was chosen as 0.5 ha, based on following.
The space resolution of Landsat-8 images is 30 m. Because the pixel size of the image is equal to
30 m × 30 m (900 m2), in the area of 0.5 ha, one can distinguish 5.55 pixels in size. This number
of pixels is sufficient for the reliable identification of lakes from the background digital noise of
the image. According to the works of our group and Bryksina [18,31,41,46,48], the uncertainty of
the lake area measurement using remote sensing is a few percent. Note that the thermokarst lakes
and thaw ponds of western Siberia are different from the glacial lakes of other boreal and subarctic
regions. The latter are often developed on the moraine till and crystalline rocks, and present highly
irregular shapes (skinny or elongated along the glacier direction). In contrast, due to the homogeneity
of the soil substrate in western Siberia (1–3 m thick frozen peat), the thermokarst processes in the
peat bog of this region always produce the isomeric (round, and much less common, oval) isolated
water bodies [14,31,50,61]. According to our field and topographical map-based measurements across
a sizeable latitudinal gradient of western Siberia, the share of lakes having an irregular shape is less
than 10% [49,53,54].

To assess the latitudinal dependence of thermokarst lake properties, the studied territory was
divided into latitudinal zones of 0.5◦ wide. Such a division of the territory was consistent with the
latitudinal gradient of the permafrost and landscape features of the WSL [56,71]. Using ArcGIS 10.3
software [69], we first measured the area and number of lakes on each 0.5◦-zone of mosaic of the
Landsat 8 imagery. First, we conducted the vectorization and then we determined the area of lakes
using the standard procedure of all GIS software. This allowed the quantification of the number,
surface area, and volume of lakes, the density of lakes, and the degree of land surface coverage
by lakes, as described below. The total lake area (Stot) in each 0.5-degree zone was computed from
Equation (1):

Stot =
n

∑
i

Si (1)

where Si is the surface of the i-th lake and n is the number of lakes. The lake fraction is calculated as
the ratio of Stot/So, where So is the area of each 0.5-degree zone. The lake density was computed as
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the number of lakes (n) per unit of area, n/So. In order to estimate the stock of carbon and related
elements in lakes, the lake volume (V) was computed following Equation (2):

V =
n

∑
i

hi × Si (2)

where hi is the averaged depth of the i-th lake, which primarily depends on the lake size (see Section 2.3).
We used a power dependence between the number and the surface area of lakes in the WSL

(correlation coefficient r = 0.99, p < 0.001), in accordance with global distribution law [2]:

k = A × sB (3)

where k is the relative number of lakes in the histogram intervals, s is the lake surface area, and A and
B are the empirical constants that depend on permafrost and landscape context, respectively.

2.3. Lake Depth and Hydrochemistry

The depth of thermokarst lakes in the WSL depends on their size. The detailed depth mapping of
~50 lakes larger than 2 ha having a solid bottom (frozen sand or silt) was performed via a Humminbird
GPS-echosounder from a PVC boat, along several transects of the lake. The minimal depth of probing
was 20 cm. The depth of the PVC boat submersion was between 5 and 10 cm, and necessary corrections
for the sensor position were made. In lakes shallower than 50 cm, a manual depth measurement with
a calibrated stick was performed. The small lakes (0.5–2 ha), having essentially frozen peat at the
bottom with a high amount of porous organic detritus, were monitored via the manual probing of the
water depth, across the lake transect or in the middle of the lake. Based on available field measurements
of the depth and surface areas of ~150 thermokarst lakes from the sporadic to continuous permafrost
zone [14,31,49,50,52–54,61,72–77], the depth was approximated to be equal to 0.54 ± 0.25 m (2 s.d.)
for lakes smaller than 2 ha, and 0.85 ± 0.25 m (2 s.d.) for lakes ≥2 ha. The average uncertainty of
these values of hi is 20% for n = 150. One has to note that the two discrete numbers of lake depth
used in this study for a survey of 727,700 lakes is a first-order approximation. However, all ~150
thermokarst lakes studied by our group over the last nine years in the WSL, across three permafrost
zones, were extremely similar and exhibited an average depth of 1.0 ± 0.5 m. This is a particular
feature of the WSL thermokarst lakes located within the polygonal tundra, the peat palsa bog, and the
ridge-lake-bog complexes.

The total stock of dissolved organic carbon, and major and trace elements in the lakes of the
permafrost zone of the WSL, was evaluated based on the available dependencies between the lake
surface area and the dissolved components of the lake water, obtained during extensive sampling
campaigns in July 2010, 2012, and July–August 2013–2014 [50,52–54,75,76]. For this, water samples
were collected from the lake surface (0.3 to 0.5 m) in pre-cleaned polypropylene containers and
filtered on-site or within 4 h after sampling through disposable acetate cellulose filter units (0.45 μm
poresize, 33 mm diameter), using sterile plastic syringes and vinyl gloves. An ultraclean sampling
procedure was used [78]. The filtered samples were stored at 4–5 ◦C in the dark, before analysis.
The concentrations of dissolved organic and inorganic carbon (DOC and DIC, respectively), cations,
and trace elements (TEs), were measured using routine methods for analyzing boreal water samples
in the GET laboratory (Toulouse) [79,80]. The DOC and DIC were measured using a Shimadzu Total
Organic Carbon Analyzer TOC 6000 with an uncertainty of 5%. The trace metals were measured
using inductively coupled plasma-mass spectrometry (ICP-MS, Agilent 7500 CE and Element XR),
with indium and rhenium as the internal standards and a precision better than ±5%.

For an estimation of the stock of DOC and metals in lakes, the area-averaged values of element
concentration in the lake water of discontinuous to continuous permafrost zones [53], complemented
with data from discontinuous [49,54,74] and discontinuous to sporadic permafrost regions [50,52], were
used. The available databases included a sufficient number of lakes of different sizes, so that the lake
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size-element concentration dependencies could be obtained for each latitudinal range. Specifically, we
sampled ~100 lakes in the discontinuous permafrost zone, ~50 lakes in the continuous permafrost
zone, and 30 lakes in the sporadic permafrost zone. For most elements, the concentrations were weakly
sensitive (p > 0.05) to the lake size for lakes >0.5 ha. The exception was dissolved organic carbon (DOC),
whose concentration was approximated by the power dependence [DOC, mg/L] = 190 × S(m2)−0.26

for lakes of 0.5 to 50 ha and is assumed equal to 10 mg/L for lakes >50 ha. Some elements exhibited
a clear latitudinal trend in the thermokarst lakes of the WSL, from south to north (e.g., Ca, ref. [53]).
This trend has been taken into account via an equation of polynomial dependence between the element
concentration (Ci) and the latitude (◦ N), applied to each latitudinal range in which the stock of water
was evaluated:

Ci = a + b × N + c × N2 (4)

where a, b, and c are the empirical coefficients, specific for each element.

3. Results

The number and surface area of lakes as a function of latitude are shown in Figure 2A,B, and
the lake density and relative coverage of the surface area are illustrated in Figure 3A,B respectively.
Presented in these plots are the average values of the territory of each 0.5◦-wide latitudinal zones.
In the region of 61◦–65◦ N (sporadic to discontinuous permafrost), there are large (a factor of two
to three) non-systematic variations of all physical parameters of the lakes. In the zone of 65◦ to
69◦ N (discontinuous to continuous permafrost), the lake number and the relative coverage decrease
with the latitude, whereas north of 69◦–70◦ N, the lake number and surface area decrease with the
latitude increase.

Note that the irregular oscillations of lake density and area coverage, visible in the 0.5◦-wide
latitudinal zones, are linked to the spatial non-homogeneity of the thermokarst lake distribution.
They disappear after a smoothing procedure in wider (2◦) latitudinal zones (red dashed line in
Figure 3). The results of measured lake parameters within the full WSL permafrost-affected territory
(1.05 million km2) are listed in Table 1 and the map of the WSL coverage by lakes is given in Figure 4.
There are 0.73 million lakes larger than 0.5 ha, with a total lake surface area of 5.97 million ha. It can be
seen from Table 1 that the lake density and lake relative coverage increase by 19.3% and 13.8% from
sporadic to continuous permafrost, respectively. The increase in the total lake number and their overall
surface area from sporadic to continuous permafrost is equal to 42% and 48%, respectively.
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Figure 2. The total number of lakes (A) and their surface area (B) along the latitude. The dashed lines
mark sporadic (S), discontinuous (D), and continuous (C) permafrost zones.
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Figure 3. Dependence of the lake density (A) and relative coverage of the surface (B) on the latitude.
The dashed black lines mark sporadic (S), discontinuous (D), and continuous (C) permafrost zones.
The dashed red lines represent the smoothing of lake number and coverage using a 2-degree grid.

Figure 4. Synthetic map of the WSL coverage by lakes based on Landsat-8 scenes. The cell size is
0.25 degree in latitude and longitude.
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Table 1. Thermokarst field parameters in different permafrost zones.

Permafrost
Total Number of
Lakes, Thousand

Total Area of
Lakes, Million ha

Lake Coverage of
the Area, %

Lake Density, Number
of Lake per km2

All territory 727.7 5.97 5.69 0.69
Continuous 305.0 2.59 6.28 0.74

Discontinuous 207.7 1.65 5.41 0.68
Sporadic 215.0 1.75 5.26 0.65

The partitioning of the lake number and surface area among different size ranges is listed in
Table 2. The main contribution to the overall area and volume (about 85% and 87%, respectively)
is provided by medium and large lakes (>5 ha), with the largest share of the total area and volume
(15.5% and 16%, respectively) being kept by lakes whose size is between 20 and 50 ha. The number
of lakes increases with a decrease in the size, but the overall surface area and water stock decrease
for lakes <20 ha. Thus, the small lakes (0.5–1.0 ha) provide only 3% of the overall area, with less than
2% of the total water volume. It is therefore expected that the overall area of numerous lakes smaller
than 0.5 ha will be lower than 3%, although high-resolution images are necessary to confirm this trend.
Empirical dependencies of lake number as a function of lake size for the three permafrost zones of
western Siberia are illustrated in Figure 5. The empirical coefficients of Equation (3) (A and B) for each
permafrost zone of the WSL territory are listed in Table 3.

Taking into account the volume of the lake water in each lake size range and across the WSL
territory (Table 3), the total amount of each dissolved (<0.45 μm fraction) element in all of the
thermokarst lakes (>0.5 ha) of the WSL were estimated (Table 4). The typical uncertainty of these
values ranges from ±20% to ±30%, with the exception of some elements (Zn, Cr, Ni, and Ba) exhibiting
±50% of the average value, due to a significant latitudinal trend and lake size dependence of element
concentration in the lake water.

Table 2. Lake number, lake area, and volume for different size ranges.

Size Range,
ha

Number of Lakes Their Surface Area Water Stock

Lakes % ha % km3 %

0.5–1 240,582 33.056 173,768 2.9 0.938 1.9
1–2 171,309 23.540 247,303 4.1 1.335 2.7
2–5 152,240 20.920 481,651 8.1 4.094 8.3
5–10 72,091 9.910 507,488 8.6 4.314 8.7
10–20 43,443 5.970 609,713 10.2 5.183 10.5
20–50 30,081 4.130 926,364 15.5 7.874 15.9
50–100 10,354 1.420 717,571 12.0 6.099 12.3
100–200 4636 0.640 638,175 10.7 5.425 11.0
200–500 2227 0.310 666,245 11.2 5.663 11.5
500–1000 511 0.070 352,499 5.9 2.996 6.1
1000–2000 169 0.020 233,803 3.9 1.987 4.0
2000–5000 57 0.010 162,680 2.7 1.384 2.8

5000–10,000 19 0.003 125,671 2.1 1.068 2.2
10,000–20,000 9 0.001 123,066 2.1 1.046 2.1

Total: 727,728 100.000 5965,997 100.0 49.40 100.0

Table 3. Parameters of Equation (3) for three permafrost zones of the WSL.

Zone A B

continuous 15.96 × 109 −2.224
discontinuous 6.82 × 109 −2.154

sporadic 1.68 × 109 −2.065
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Table 4. Dissolved organic and inorganic carbon (DOC and DIC, respectively), and major and trace
element stocks in the thermokarst lakes of the Western Siberia Lowland (105 million ha). The major
and trace elements are listed in the order of increasing atomic number (periodic table).

Element C, μg/L Stock, Ton Element C, μg/L Stock, Ton

DOC 20,000 ± 10,000 500,000 ± 150,000 Zn 10 ± 5 500 ± 250
DIC 430 ± 100 22,200 ± 5000 As 0.63 ± 13 31 ± 6

B 3 ± 1 150 ± 50 Rb 0.3 ± 0.1 15 ± 5
Mg 190 ± 40 9400 ± 2000 Sr 6 ± 2 300 ± 100
Al 120 ± 20 6000 ± 1000 Zr 0.10 ± 0.03 4.9 ± 0.5
Si 300 ± 100 15,000 ± 5000 Mo 0.05 ± 0.02 2.5 ± 0.5
K 235 ± 60 12,000 ± 3000 Ba 3.0 ± 1.5 150 ± 75
Ca 700 ± 500 30,000 ± 20,000 Cd 0.02 ± 0.005 0.99 ± 0.25
V 0.6 ± 0.2 30 ± 10 La 0.20 ± 0.06 9.9 ± 3.0
Cr 1.0 ± 0.5 50 ± 25 Ce 0.10 ± 0.03 4.9 ± 0.5

Mn 20 ± 3 900 ± 150 Nd 0.10 ± 0.03 4.9 ± 0.5
Fe 200 ± 50 10,000 ± 4000 Pb 0.26 ± 0.05 12.8 ± 2.5
Co 0.10 ± 0.025 4.9 ± 1.2 Th 0.015 ± 0.005 0.74 ± 0.24
Ni 0.4 ± 0.2 20 ± 10
Cu 0.55 ± 0.15 27 ± 7

Figure 5. Relationship between the cumulative frequency (the number of lakes versus lake area) of
lakes and the lake surface area for the whole territory of WSL (this study, red line), in comparison with
lake distribution in the world (Global, dark blue line, [81]) and in Sweden (light blue line, [81]).

4. Discussion

4.1. Thermokarst Lake Area and Land Surface Coverage

Overall, the inventory of medium and large thermokarst lakes of the WSL demonstrates
an agreement of size distribution and surface coverage of the lakes in this region, compared to
the rest of the world. The latitudinal pattern of the number of lakes and their surface area is tightly
linked to the topography and landscape conditions of the northern part of the WSL, located within the
sporadic to continuous permafrost zone. Between 61◦ and 64◦ N, the northern taiga is represented
by sphagnum-dominated bogs, with pools and an open stand of trees [56]. The maximal latitudinal
variability of lake coverage is observed within the watershed divide Sibirskie Uvaly (around 63◦ N),
where the number and proportion of lakes are strongly controlled by minor variations of local
topography, such as the alternation of ridge-mire-lake complexes and taiga zones. Further to the
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north, the lake coverage remains fairly constant between 64.5◦ and 71◦ N, corresponding to the
development of the peat palsa plateau with palsa-hollow patterned mires. The landscape here is highly
homogeneous with a dominance of watershed divides of small and medium rivers, offering large flat
surfaces suitable for the development of a thermokarst. Finally, a strong decrease in the lake number
and area northward of 71◦ N may be linked to the dominance of polygonal-roller and polygonal-fissure
mires, combined with grass and moss-dominated mires [56]. Presumably, the thermokarst processes in
the polygonal mires of continuous permafrost zone are less developed than those in the peat palsas
plateau, dominating the discontinuous permafrost zone.

Unlike the database that comprises all lakes of the Earth’s surface [3], the present study
addresses the distribution of thermokarst lakes (>0.5 ha) of the full WSL permafrost-affected territory.
A consideration of very small thaw ponds (0.005 to 0.02 ha) in thermokarst-affected regions of the WSL
increases the relative surface coverage by lakes to 10%–40%, with an average value of 20%, as shown
using Canopus-V data on 18 test sites from 400 to 4000 ha each [82]. However, the decreasing of the
minimum lake size to less than 0.1 ha over the whole area of the WSL goes beyond the goals of the
present study. It is important to note that the distribution of these very small thaw ponds may deviate
from the power dependence (Equation (3)), as reported in global databases [3,5]. The similarity of
the B value (Equation (3)) among all three permafrost zones suggests a relatively weak variation of
thermokarst lake size distribution patterns across the permafrost gradient in the WSL.

Noteworthy is the dramatic difference between the lake coverage of the WSL permafrost-affected
territory estimated in this study (5% to 6% of the area) and the proportion of wet zones in the WSL
river watersheds, assessed by ENVISAT radar altimetry (40% to 60% of the watershed area during
open water period of the year [15]). These authors defined wet zones as various objects that are either
constant in time (rivers, lakes, wetlands) or have seasonal variability (floodplains). It follows that the
actual coverage of the WSL river watersheds by shallow (<0.1–0.5 m depth) surface water may be
significantly higher than the “net” lake area. However, the estimations of the effect of flooding on land
coverage by water and the lake abundance (i.e., see ref. [83] for review), or the water level fluctuation
in lakes induced by evapotranspiration variation [84], were beyond the scope of this study.

4.2. Stock of DOC and Metals in Thermokarst Lakes of the WSL

The specificity of thermokarst lakes of the WSL is their low depth (≤1 m), which allowed, for the
first time, a reasonable inventory of the water volume and thus an evaluation of the stocks of dissolved
components (Table 4). The typical range of water residence time in the thermokarst lakes of western
Siberia is between 0.5 and 1.5 years [54]. The overwhelming majority of these lakes are not connected
to the rivers, being isolated water bodies, protected by an impermeable permafrost layer both from
the bottom (frozen sand and silt), and from the border (frozen peat). Probably for these reasons, the
on-going dynamics of thermokarst lake abundances and surface areas are not yet reflected in the
hydrological balance of large rivers in Western Siberia [40,47]. The stock of dissolved components in
lakes on the permafrost-affected WSL territory can be compared to that delivered by all rivers of the
WSL from the same territory to the Arctic Ocean. For this, watershed size-averaged, year-round fluxes
of carbon, and major and trace elements assessed in previous works [79,80], can be used. A diagram
of element stock in thermokarst lakes, relative to that in rivers of the WSL, is presented in Figure 6.
Three groups of elements can be distinguished: (i) major and trace elements, whose storage in lakes
is less than 10% of that in rivers (DIC, Mg, Ca, Sr, Ba, K, Si, B, Fe, Co, Ni, Mn, and Ce); (ii) elements
presenting non-negligible storage in lakes (20% ± 10% of that in rivers): DOC, Rb, Zn, Cu, V, Mo,
Zr, As, Nd, and Th; and finally (iii) elements having significant, 30 to 70% storage in lakes, relative
to rivers: Cd, Pb, La, Cr, and Al. It can be seen from this classification that major cations, DIC, B, Si,
and metals subjected to significant redox transformations (Mn, Fe, and Ce), are essentially present
in the rivers because they are delivered by groundwater feeding or shallow subsurface flux [79,80].
The groundwater and subsoil feeding are very low in lakes which have frozen peat on the border and
frozen sediments at the bottom, throughout the year [54]. The elements exhibiting strong affinity to
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organic matter (Al, Cr, and rare earth elements (REEs)) and metal toxicants (Cd and Pb) enriched in
moss, exhibit sizeable storage in lakes of the WSL territory. This is consistent with the surface and
suprapermafrost flow that deliver the solutes to the lakes.

Figure 6. The mass ratio of element stocks in all thermokarst lakes covering the territory of 105 million
ha to annual element delivery to the Arctic ocean by WSL rivers from the same territory.

The thermokarst lakes are typically 1–2 pH units more acidic than the surrounding rivers [50,80],
and this may enhance the solubility and mobility of many low-soluble trivalent hydrolysates (Al, Fe3+,
rare earth elements), from the lake sediment to the water column. Another important source of solutes
to the lakes is surface flow from surrounding peat bogs covered by mosses and lichens, consistent
with the essentially allochthonous source of DOM in thermokarst lakes [10,50]. A high concentration
of DOC, combined with an enrichment in Pb and Cd of the surrounding moss cover [57], may be
responsible for the sizeable proportion of metal toxicants in lakes compared to rivers. Given that
the DOC, Fe, and Al concentrations in the smallest (<100–1000 m2) thermokarst depressions and
permafrost subsidences are 3–10 times higher than that in lakes >0.5 ha inventoried in this work [50],
and that most trace elements including metal micronutrients are present in the form of organic and
organo-mineral colloids [61], the role of small thermokarst water bodies in element stock in surface
waters and potential delivery to the hydrological network, may be particularly important and are
currently strongly underestimated. For this, coupled land/water observations at a very high spatial
resolution [85] may help to constrain the reservoirs and the mobility of carbon, metals, and greenhouse
gases in adjacent aquatic and terrestrial biomes.

The role of small (<1000 m2) thermokarst lakes is especially important for the regulation of DOC
and greenhouse gas exchanges with surrounding reservoirs (hydrological network and atmosphere).
According to available observations of the discontinuous to sporadic permafrost zone of western
Siberia, the smallest thaw ponds (10 m × 10 m to 33 m × 33 m) and depressions (1–100 m2) exhibit
an order of magnitude higher concentration of CO2, up to two orders of magnitude higher methane
concentration, and a factor of three to ten higher concentrations of DOC and related metals [49,50,52].
As such, even with their contribution to the total lake surface area of 1%, these small bodies of water
may display carbon storage and GHG flux to the atmosphere, which will be comparable to those
of large and medium lakes. This hypothesis is verified in the non-permafrost European wetlands:
the peatland open water pools are known to act as a net source of CO2 to the atmosphere [86,87].
The importance of small (100–200 m2) water bodies for CO2 emission has recently been reported in the
polygonal tundra of the Lena Delta observatory [51].

The upscaling of our estimation of the DOC and metal storage in lakes, relative to the river input,
requires detailed knowledge of other lakes of the subarctic, since the riverine fluxes DOC, DIC, and
most major elements of the circumpolar region, are fairly well defined [88–90]. The extrapolation of
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results from well-studied lakes of the Mackenzie Delta region of Canada [9,91–94], the Yakutia alasses
and yedoma lakes [20,95,96], to much larger territories of boreal plains such as the WSL peatlands,
and North-Siberia and Yana-Indigirka lowlands, remains unwarranted. The lakes of these lowlands
may stand apart from other studied lakes of the subarctic, in view of their high peat context, low pH,
shallow depth, and very low salt content. At present, a large-scale comparison of carbon and metal
storage in thermokarst lakes and riverine fluxes of elements in the subarctic can only be provided for
the western Siberia lowland.

5. Conclusions

A remote sensing analysis of thermokarst lakes (>0.5 ha) in the sporadic, discontinuous, and
continuous permafrost zone of the western Siberia lowland demonstrated that the number of lakes
smaller than 1 ha exceeds 33% of the total lake number, whereas their total surface area is only 2.9%
of the total surface of WSL lakes. Within the full range of studied lake sizes and areas, a power
dependence between the number of lakes and their surface area, consistent with the world-wide
trend, is observed. The dependence of the lake number and surface coverage on the latitude exhibits:
(i) a highly variable pattern (strong oscillations) between 61◦ and 63◦ N, within the watershed divide
Sibirskie Uvaly, due to the variable topography of ridge-lake-bog complexes within the sporadic
permafrost zone; (ii) stable values of lake fraction between 64◦ and 71◦ N of the peat palsa plateau and
the discontinuous permafrost context; and finally (iii) abruptly decreasing the lake fraction northward,
north of 71◦ N, within the continuous permafrost zone of the polygonal tundra. The obtained laws
of lake number and surface area distribution allow the calculation of the total surface area and
volume of water. This yielded the dissolved metal and carbon stocks in surface aquatic systems of the
permafrost-affected zone of the WSL.

The stock of C and most metals in thermokarst lakes of the WSL does not exceed 10%–20% of
the riverine flux of the territory. However, the role of lakes in the storage of Al, Cr, Cd, and Pb is
comparable to, or even higher than, the transport of these elements by rivers. A low pH and high
DOC in WSL thermokarst lakes compared to other regions of the subarctic may be responsible for such
an important role of the WSL lakes in toxic metal storage. A high-resolution (0.01–0.1 ha) inventory
of small thermokarst lakes, most susceptible to permafrost thaw in key representative zones of the
WSL, will aid in accounting for short-term changes in water, carbon, and metal stocks, under climate
warming scenarios. The extrapolation of obtained results to the whole circumpolar region is hampered
by the lack of information on other thermokarst lakes from large (million km2-scale) territories, notably
the boreal plains.
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Abstract: Inland surface waters in tropical environments play a major role in the water and carbon
cycle. Remote sensing techniques based on passive, active microwave or optical wavelengths are
commonly used to provide quantitative estimates of surface water extent from regional to global
scales. However, some of these estimates are unable to detect water under dense vegetation and/or
in the presence of cloud coverage. To overcome these limitations, the brightness temperature data at
L-band frequency from the Soil Moisture and Ocean Salinity (SMOS) mission are used here to estimate
flood extent in a contextual radiative transfer model over the Amazon Basin. At this frequency, the
signal is highly sensitive to the standing water above the ground, and the signal provides information
from deeper vegetation density than higher-frequencies. Three-day and (25 km × 25 km) resolution
maps of water fraction extent are produced from 2010 to 2015. The dynamic water surface extent
estimates are compared to altimeter data (Jason-2), land cover classification maps (IGBP, GlobeCover
and ESA CCI) and the dynamic water surface product (GIEMS). The relationships between the water
surfaces, precipitation and in situ discharge data are examined. The results show a high correlation
between water fraction estimated by SMOS and water levels from Jason-2 (R > 0.98). Good spatial
agreements for the land cover classifications and the water cycle are obtained.

Keywords: water fraction extent; L-band; Amazon Basin

1. Introduction

Terrestrial surface water covers only about 5% of the Earth’s ice-free land surface [1,2], but plays
a key role in global biogeochemistry, hydrology and wildlife diversity [3,4]. Consequently, it is critical
to monitor the distribution of terrestrial water at large spatial and high temporal scales [5–8]. The work
in [9] estimates that nearly two-thirds of all terrestrial freshwater wetlands disappeared between 1997
and 2011. A more recent study used three million Landsat images to provide a high resolution map of
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surface water extent [10]. The authors of this study estimated that 90,000 km2 of permanent surface
water had disappeared between 1984 and 2015.

Several different methods based on mapping water bodies from remote sensing datasets were used
since the development of the Earth’s space observations: (1) visible; (2) infrared; (3) active microwave;
(2) passive microwave and; (4) hybrid approach (passive and active microwave). Each method offers
varying degrees of success in providing quantitative estimates of wetlands and inundation extents.

Water surface can be sensed by optical remote sensing methods. These methods typically exploit
the absorption of longer wavelengths of light in water, especially the near and shortwave infrared
parts of the electromagnetic spectrum [11,12]. Optical remote sensing provides very accurate mapping
of water bodies. For example, [13] senses lakes with a spatial resolution of 15 m, whereas [14] sensed
global water bodies at 30-m resolution using the Landsat data. The majority of the studies using optical
remote sensing for water bodies’ detection provided only one snapshot of the hydrology stage. Due to
the low revisit time of the optical sensors, few maps of a large area are available, and the minimum
and/or the maximum of the flooded area are not always observed. The detection of sudden changes
impacting the hydrologic cycle [10] is also not sensed with accuracy. These limitations are crucial
issues for hydrology application. However, some studies [15,16] managed to follow the temporal
dynamics of the water surface in specific places. The most important limitation of the optical sensors is
their inability to penetrate clouds and dense vegetation cover, which is essential during tropical wet
seasons over the Amazon Basin.

Active microwave (scatterometers and Synthetic Aperture Radar (SAR)) is also sensitive to the
water surface and has the ability to penetrate clouds and, to a certain extent, vegetation. Open water
surfaces are generally characterized by low backscattering coefficients. Contrary to passive microwave,
the signal is more contaminated by the vegetation. The spatial resolution of scatterometers is about
25–50 km, whereas the SAR provides higher resolution, typically around 10–150 m. Several studies
have shown the ability of active microwave to map surface water at regional scales, such as over the
Amazon region [17] and over the Arctic region [18]. Satellite altimeters are radars that observe at nadir
to measure surface topography. They provide accurate measurements of water heights in rivers, lakes
and wetlands [19–21]. Due to their high spatial resolution, altimeters do not provide sufficient spatial
coverage to analyze the water bodies’ temporal dynamics, except in polar regions [22]. The future
Surface Water Ocean Topography (SWOT) mission [23] intended to be launched in 2021 is expected to
provide K-band SAR interferometry, enabling continental altimetry.

Passive microwaves are sensitive to the distribution of liquid water in the landscape; they can
operate day and night for all weather conditions. However, they are limited by a low spatial resolution
(approximately 30 km). They can sense only large wetlands or regions where the cumulative area
of small wetlands comprises a significant portion of the field of view. Consequently, they provide
the capability to map the temporal evolution of surface water over the land surface due to their high
temporal resolution. In previous studies, passive microwave measurements have shown the capability
to sense the dynamics of terrestrial surface water at coarse resolution [24–31]. The basic principle of
the surface water measurements based on passive microwave is explained by the difference of the
emissivity between the water and the soil. Flooding surfaces decrease the emissivity in both vertical (V)
and horizontal (H) polarization and increase the difference between the two polarizations, especially
at low frequencies. This approach produces ambiguous estimation of surface water over regions
with mixtures of open water and other complex surfaces (topography effects). The work in [26,27]
has extensively studied the inundation area over the Amazon Basin with the Scanning Multichannel
Microwave Radiometer (SMMR). However, their studies focus essentially on a restricted area close to
Manaus town from 1979 to 1987.

Hybrid approaches combine the strengths of different types of sensors. For example, altimetry
data are characterized by a high spatial resolution and a low temporal resolution and can be combined
with passive microwave data having low spatial resolution and a high temporal resolution to
obtain a product with both high temporal and spatial resolution. The Global Inundation Extent
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from Multiple-Satellites (GIEMS) products are based on merged data from passive (Special Sensor
Microwave/Imager (SMM/I)), active microwave (European Remote Sensing satellite (ERS)) and data
from an optical sensor (Advanced Very High Resolution Radiometer (AVHRR)) [32].

Table 1 presents the major studies related to the observation and detection of water bodies from
space by using the techniques presented above. Visible and infrared remote sensing methods were
extensively used, but provided static maps of water bodies at the global scale or a dynamic map at
the regional scale [15,33]. A lack of studies concerning dynamic water surface extent from 2013 to the
present is clearly identified in this table.

The floodplains and wetlands of the Amazon River are important in terms of water volume and
in terms of fluxes between the land and the atmosphere. Mapping water fraction under the Amazon
tropical dense forest is challenging, but sensing water under dense vegetation remains a key issue in
the remote sensing scientific community.

In this study, we developed a method to map the temporal evolution of the water bodies at coarse
spatial resolution and weekly temporal resolution by using a microwave sensor at L-band (1.4 GHz)
called Soil Moisture Ocean Salinity (SMOS) over the Amazon Basin. The SMOS satellite operates at
L-band, and it was shown that this frequency is the most suitable, being less impacted by vegetation
than higher frequencies [34–36]. Originally, the SMOS satellite was dedicated to sense soil moisture
over land surfaces and the ocean salinity. The SMOS physical signal (brightness temperature) is highly
impacted by the presence of standing water over the ground.

Our motivation is to use a contextual radiative transfer model and a single dataset to estimate
the water fraction over the tropical basin. The area of study and the datasets used in this work are
presented in the Section 2 and 3, respectively. Section 4 presents the algorithm permitting retrieving
the water fraction extent from the SMOS data, and Section 5 contains the results and the validation.
The discussion and conclusions are presented in Sections 6 and 7.

Table 1. List of selected scientific papers on the observation of the water surface over the continents
from space. References, area of study and sensors are shown.

Remote Sensing Approach Reference Area of Study Sensors Frequency

Passive microwave
[27] Amazon Basin SSMR Q-band
[29] Boreal regions SSM/I-SSMR K- and Ka-band
[37] North Eurasian AMSR-E-QSCAT C-band

Active microwave

See [38] for a review of the SAR technique

[17] Amazon Basin ENVISAT SAR L-band
[39] High latitude regions ENVISAT ASAR C-band
[40] Mekong basin ENVISAT ASAR C-band
[41] Global scale ENVISAT ASAR C-band
[22] Boreal regions Topex-Poseidon C-band

Hybrid approaches

[42] Global scale SSM/I, ERS, AVHRR Ka- and C-band
[32] Global scale SSM/I, ERS, AVHRR Ka- and C-band
[43] Global scale SSM/I, ERS, AVHRR Ka- and C-band
[37] Global scale SSM/I, SSMI/S, ERS, QSAT, ASCAT Ku- and C-band

Optical and infrared

[44] Okavango Delta AVHRR -
[45] Brahmaputra AVHRR -
[46] Inner Niger Delta MODIS -
[47] China MODIS -
[33] Mekong Delta MODIS -
[10] Global scale Landsat -

2. Study Areas

This study focuses on the Amazon Basin, which is the largest tropical basin with an area of
approximately 6,000,000 km2 and contributes up to 15% of the global river discharge to the ocean
(approximately 200,000 m3s−1 discharge). With a sediment load of three million tons near its mouth [48]
and drainage area covers about 6,200,000 km2, almost 5% of all of the continental masses, the
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Amazon Basin is one of the most impressive hydrological basins of the world. The Amazon is
highly interconnected by floodplain channels, resulting in complex flow patterns. Figure 1 presents the
Amazon Basin with the main rivers and floodplains. Covering more than 300,000 km2, the Amazon
extensive floodplains play a crucial role for global climate and biodiversity, but they are still poorly
monitored at a large scale, limiting our understanding of their role in flood hazard, carbon production,
sediment transport, nutriment exchange and air-land interactions. Surface water stored in floodplains
represents about half of the terrestrial water storage and 15–20% of the water that flowed out of
the Amazon floodplains [49–53]. Because it extends over two hemispheres, the Amazon region is
characterized by several rainfall regimes. Rainfall shows opposing phases between the Northern
and the Southern Hemisphere with a rainy season in austral winter in the Northern Hemisphere and
summer in the Southern Hemisphere. The rainfall shows a gradient from northwest to southeast with
decreasing rainfall amount and increasing length in the dry season. For the eastern part of the basin,
the rainy season occurs from March–May, and the dry season prevails from September–November.
For the northern regions, low rainfall seasonality is observed with wet conditions throughout the year.
For more information on the Amazon hydrological regime, see [54–56].

Figure 1. Map of the Amazon Basin with the main rivers and floodplains.

3. Data

This section describes the data used to compute the water fraction extent from passive microwave
at L-band (SMOS data, topography data and skin temperature) and the data used to compare and
validate this product (precipitation data, static land cover maps, other dynamic water fraction products,
water level from altimetry and in situ river discharge data).

3.1. L-Band Brightness Temperatures from SMOS

The SMOS mission is a joint program of the European Space Agency (ESA), the Centre National
d’Etudes Spatiales (CNES) and the Centro para el Desarrollo Teccnologico Industrial (CDTI) in the
framework of the Earth Explorer Opportunity Mission initiative. It is the first satellite specifically
dedicated to soil moisture retrievals with a passive microwave radiometer at 1.4 GHz (L-band).
The physical signal of SMOS is the Brightness Temperature (TB). This signal is highly sensitive to
the water under the ground [34]. Clouds and rain have a negligible effect [57], and the atmospheric
contribution is limited and known [34]. The microwave signal is to a lesser extent sensitive to the
vegetation, but actually, the L-band signal is less impacted by the vegetation than higher frequencies.
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SMOS has a Sun-synchronous orbit at a 757-km altitude with a 06:00 LST ascending Equator
crossing time and an 18:00 LST descending Equator crossing time. The globe is fully imaged twice
every three days. The main innovative feature of SMOS is the capability for multi-incidence-angle
observations at full polarization across a 900-km swath. In this study, the SMOS Level (L) 3 TB
(RE04v300) products [58] produced by the Centre Aval de Traitement des Données SMOS (CATDS)
are used. These data are projected on the Equal-Area Scalable Earth (EASE) Grid 2 [59] with a spatial
resolution of 25 km × 25 km. The main differences between the SMOS L3 TB and the other lower
levels of data are: (i) the L3 TB products are expressed at the top of the atmosphere over the terrestrial
reference frame (H and V); and (ii) they are bin averaged every 5◦ from 2.5◦–62.5◦. In the present
study, SMOS L3 TB were used from 2010–2015 over the Amazon Basin. Angles of 32 ± 5◦, 37 ± 5◦,
42 ± 5◦ and 47 ± 5◦ in both H and V polarization were considered to retrieve the water fraction over
the tropical basin. The SMOS data were downloaded from the CATDS servers (www.catds.fr).

3.2. Topography

The digital elevation model obtained by the Shuttle Radar Topography Mission (SRTM) [60] with
a spatial resolution of 30 arc sec(approximately 1 km) was used over the Amazon Basin. These data
result from the Global 30 Arc-Second Elevation (GTOPO30) computed at the U.S. Geological Survey’s
EROS Data Center (USGS) and were available at https://Ita.cr.usgs.gov/GOTO30. The elevation
and topographic index maps over the Amazon watersheds were computed by averaging all of the
SRTM elevation values present in an SMOS pixel (Figure 2). These data are used to flag areas with an
elevation higher than 500 and/or a topographic index indicated as moderate in the SMOS flag.

3.3. Skin Temperature

The surface skin temperature produced by the European Centre for Medium-range Weather
Forecasting (ECMWF) was used in this study. This product was obtained by the SMOS L3 preprocessor,
which computed the spatiotemporal average of the ECMWF reanalysis products on the EASE 2.0 grid.

3.4. Precipitation Data

Precipitation measured by the Tropical Rainfall Measuring Mission (TRMM) were used over
the entire Amazon Basin from 2010–2015. TRMM is a joint mission between NASA and the Japan
Aerospace Exploration (JAXA) Agency and provides rainfall estimates at 0.25◦× 0.25◦ spatial resolution.
The TRMM-3B42 product [61] uses microwave data to calibrate the infrared-derived estimates and
creates estimates that contain microwave-derived rainfall estimates when and where microwave data
are available and the calibrated infrared estimates where microwave data are not available.

3.5. Static Land Cover Maps

The International Geosphere-Biosphere Programme (IGBP), the GlobeCover land cover classification
and the ESA CCI maps were used. The IGBP land cover map was obtained using images from
the Moderate Resolution Imaging Spectroradiometer (MODIS) with a spatial resolution of 0.005◦

during 2001–2012 [62]. The GlobeCover land surface map is based on data from the Advanced Very
High Resolution Radiometer (AVHRR) data and is at a 1-km spatial resolution. Data were acquired
during 1992–1993 [63]. Recently, a new release of the ESA Climate Change Initiative (CCI) Land
Cover map was made available [64]. The new water/no water global mask at 150 m was built on
previous achievements using SAR systems and further improved thanks to a combination with recent
Landsat-derived products. This dataset was based on acquisitions from the years 200–2012. Data can
be downloaded at: http://www.esa-landcover-cci.org/?q=node/162. For the three products, the
water classes were aggregated and re-sampled on the EASE v2.0 grid to obtain the water fraction (%)
present in each cell of the EASE v2.0 grid. The three products are static and are presented in Figure 2.
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Figure 2. (a) Elevation (in meters) of the Amazon Basin from the SRTM data rescaled in the EASE v2.0
grid; spatial distribution of the water surface from: (b) ESA CCI; (c) IGBP; (d) Globe Cover; (e) average
inundation extent from GIEMS from 1993–2007 over the Amazon Basin; and (f) average inundation
extent from Surface Water Microwave Product Series (SWAMPS) from 2010–20over the Amazon Basin.

3.6. Dynamics and Climatoloy of Water Fraction Data

The GIEMS products provided a long-term global map of inundation at coarse resolution by
merging passive and active data (SSM/I, ERS, AVHRR) from 1993–2007 at monthly time steps.
The GIEMS product is gridded on an equal area grid of 0.25◦ × 0.25◦ at the Equator. Over highly
vegetated areas, the GIEMS product has some limitations. For example, over the Amazon Basin,
the GIEMS product has a tendency to overestimate higher inundation fractions [32]. This product is
fully described in [42]. These data were subsequently employed in estimating surface water storage
variations in large river basins [50,65,66]. To be compared with our data, the GIEMS product was
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averaged during the full period and considered as a static climatological product. Figure 2 shows the
temporal GIEMS average over the Amazon Basin from 1993–2007.

The recent Surface Water Microwave Product Series (SWAMPS) data provided daily surface
water globally at 25-km resolution from 1992–2013. This product was based on the combination of
passive and active microwave sensors (SSM/I, SSMIS, ERS, QuikSCAT, ASCAT) and visible sensors
(MODIS). The data are described in detail and validated in [37]. In our study, only data from 2010–2013,
coinciding with SMOS data availability, over the Amazon Basin were considered. Figure 2 shows the
temporal SWAMPS average over the Amazon Basin from 2010–2013.

3.7. Water Level from Satellite Altimetry

In the Amazon Basin, water level (in meters) time series for virtual stations calculated from the
Jason-2 altimeter satellite over the period 2008–2012 were downloaded from the Hydroweb database
(http://hydroweb.theia-land.fr/). The Jason-2 satellite was launched on 20 June 2008 in the follow-on
mission to the Jason-1 satellite (2002–2008, CNES/NASA). It operates at Ku-band (13.575 GHz) and
C-band (5.3 GHz) and has a time period of ∼9.9 days [67]. The water level computation method and
the location of the virtual stations are presented in [68]. In the present study, water level time series
over 83 virtual stations from 2010–2012 inclusive were used.

3.8. In Situ River Discharge Data

Monthly in situ discharge (m3/s) observations for the Amazon River were obtained from the
Obidos gauge station (1◦00’ S, 55◦00’ W) for the period of January 2010–March 2014. Data are available
on Hidroweb (http://www.hidroweb.ana.gov.fr) from the Brazilian water agency.

4. Methods

This section describes the approach used to derive surface water extent (expressed in %) contained
in an SMOS pixel from the SMOS L3 TB. The contextual radiative transfer model and the selection
of two reference points are described below, followed by the statistical method used to compare and
validate the SWAF product.

4.1. Contextual Radiative Transfer Model to Retrieve the Water Fraction under Dense Forests

4.1.1. Description of the SWAF Algorithm

It is well known that the microwave emission is highly impacted by the dielectric constant [57].
In the present algorithm, we assumed that over the tropical basins, the pixels are only composed of
two contributions: the water and the forest, such as represented in Figure 3.

Figure 3. (a) Pixel representation with the two contributions: forest and water; (b) location of the
“water”, the “forest” and the mixed pixels.
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Therefore, for a given pixel, the TB for the entire pixel is the sum of the water contribution and
the forest contribution. The water contribution is the TB of the water weighted by the fraction of the
pixel flooded, called the Surface WAterFraction (SWAF). In the same way, the contribution of the forest
is the TB of the forest weighted by the part of the pixel not flooded (1-SWAF). The TB of the total pixel
can be expressed as:

TB(θ, p)tot = SWAF(θ, p)TB(θ, p)water + (1 − SWAF(θ, p))TB(θ, p) f orest (1)

where θ is the incidence angle, p the polarization (p = H or V), TB(θ, p)tot is the TB of the total pixel,
TB(θ, p)water the TB of the water and TB(θ, p) f orest the TB of the forest. The fraction of the water present
in an SMOS pixel depends on both the incidence angle and the polarization and can be expressed as:

SWAF(θ, p) =
TB(θ, p)tot − TB(θ, p) f orest

TB(θ, p)water − TB(θ, p) f orest
(2)

TB(θ, p)tot is the brightness temperature observed by the SMOS satellite. This observation is done
over each pixel over the Amazon Basin. However, the TB(θ, p) f orest values are extracted over a selected
pixel located at 2.137◦ S, 60.803◦ W (Figure 3) and composed exclusively of forest. The TB(θ, p) f orest
are interpolated in time from the ascending SMOS overpass. In the same way, the TB(θ, p)water time
series are computed over a selected pixel located close to Obidos (2.142◦ S, 55.449◦ W) and composed
of more than 80% water (Figure 3). Indeed, an SMOS pixel composed only of freshwater cannot been
found (water from the ocean is salty, which modifies the emissivity). Therefore, the TB(θ, p)water has
been computed as the product of the emissivity and the skin temperature provided from the ECMWF.
The Klein and Swift model [69] has been used to calculate the water emissivity. An average of the
TB(θ, p)water over the full period is computed to add more stability to the model. The TB(θ, p)water is
the only contribution that is constant in time in the model. Details about the value and the time series
of both the TB(θ, p) f orest and TB(θ, p)water are presented in the next section.
At this stage, an illustration is needed for a better comprehension of the algorithm. Figure 4 presents
the time series of the TB(θ, p)water, TB(θ, p) f orest and a pixel annually flooded considered as “mixed”
i.e., composed of both forest and water (TB(θ, p)mixed) located in Figure 3.

Figure 4. Time series of TB at H polarization (left) and V polarization (right) at two incidence angles
(32◦± 5◦ and 47◦± 5◦): the “water”, “forest” and “mixed” pixels.

As shown in Figure 4, the TB(θ, p) values over the “forest”, the “water” and the “mixed” pixels
differ slightly following the angles and the polarization. For all of the polarization and the incidence
angles, the TB(θ, p) values of the “water” pixel are the lowest, whereas the values of TB(θ, p) over the
“forest” pixel are highest. The values of TB(θ, p) over the “mixed” pixel are included between the two
contributions. Over the six years, the values of TB(θ, p)water and TB(θ, p) f orest are very constant with
time. This is not the case for the time series of TB(θ, p)mixed, which shows annual cycles due to the
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annual inundation of the Amazon River. For the “mixed” pixel, at each date, Equation (2) is computed
to obtain the SWAF value. This method is generalized over all of the pixels of the Amazon Basin (the
localization of the “mixed” pixel moved, but the water and forest reference pixels are always the same).
The SWAF(θ, p) data are computed each day with the SMOS ascending overpass and smoothed with
a sliding window of 17 days.

The passive interferometric technique has some limitations over the areas with complex
topography [70]. To avoid artifacts, SWAF data are not computed over areas with moderate topography
according to the SMOS flag. Moreover, pixels with a topography index estimated as moderate or
higher in the SMOS flag over the Amazon Basin were not considered.

4.1.2. Forest and Water TB Reference

As explained in the previous section, the time series of TB values over the “water” pixel are
averaged in time to be sure of the TB(θ, p)water stability. Results for each angle and polarization used
in the algorithm are presented in Table 2. Lower values of TB are obtained in H polarization than in V
polarization. In H polarization, the mean TB over the “water” pixel decreases with the increase of the
incidence angles. The reverse is observed in V polarization. The signal over the “water” pixel is really
stable during the full period as shown by the standard deviation, which does not exceed 1 K.

To compare the value obtained over the “water” pixel, the TB over the “forest” pixel are also
averaged. However, note that these values are not used in the SWAF algorithm. For the “forest”
pixel, the mean TB values increase for decreasing incidence angles, in both H and V polarization.
This behavior is more marked in H polarization. The standard deviation of the TB over the “forest”
pixel is higher than that observed over the “water” pixel, but does not exceed 4 K. Lower standard
deviations are obtained in V polarization than in H polarization, except at 32◦± 5◦.

Table 2. Average and standard deviation (σ) of the TB over the “water” and “forest” pixel in both H
and V polarization and at four incidence angles (32◦± 5◦, 37◦± 5◦, 42◦± 5◦, 47◦± 5◦).

“Water” Pixel “Forest” Pixel

Incidence Angle H-pol V-pol H-pol V-pol

Mean (K) σ (K) Mean (K) σ (K) Mean (K) σ (K) Mean (K) σ (K)

32◦± 5◦ 94.52 0.51 122.58 0.64 274.43 2.71 276.61 2.72
37◦± 5◦ 89.96 0.49 128.25 0.67 272.44 2.94 276.12 2.61
42◦± 5◦ 84.72 0.46 135.27 0.70 271.88 3.57 275.72 2.71
47◦± 5◦ 78.78 0.43 143.93 0.74 269.71 3.22 274.26 2.51

4.2. Statistic Scores’ Computation

In this study, we use a common set of skill scores: (i) the coefficient of correlation (r); (ii) the
p-value; (iii) the cross-correlation; (iv) the bias; and (v) the Root Mean Square Error (RMSE) value.
The Pearson correlation coefficient (r) is used to compare the dynamic behavior of the SWAF data (x)
with the dynamic evolution of other variables (y):

r = ∑n
i=1(xi − x)(yi − y)√

(∑n
i=1(xi − x)2

√
(∑n

i=1(yi − y)2
with x =

1
n

n

∑
i=1

xi and y =
1
n

n

∑
i=1

yi (3)

with n the number of elements in the x and y series. Associated with the r, the p-value is also computed
for the null hypothesis. The authors consider that for a p-value higher than 0.05, correlation values are
not significant.

The cross-correlation measures the similarity of two time series (x and y) as a function of the
displacement of one relative to the other. In this study, the displacement corresponds to the time
(in months). Therefore, the cross-correlation value is the higher correlation value obtained if the x time
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series is moved by n months with respect to the y time series.
The bias between two series (x and y) is defined as:

bias =
n

∑
i=1

(xi − yi)

n
(4)

and the RMSE value is usually used to define the accuracy of the data. It is computed as:

RMSE =

√
∑n

i=1(xi − yi)2

n
(5)

5. Results over the Amazon Basin

This section provides the SMOS water fraction results and analysis with a focus on the comparison
and the validation of the product using a set of multi-source datasets described in Section 3.

5.1. Spatial Patterns and Temporal Dynamics of the SWAF Maps

This section described the spatial and temporal behavior of the water surface extent estimated by
SMOS for the four angles and the two polarizations presented in Section 3.

Figure 5 shows the SMOS water fraction (SWAF) averaged over the 2010–2015 period for the entire
Amazon Basin. Results are presented for four angle bins: (32◦± 5◦, 37◦± 5◦, 42◦± 5◦, 47◦± 5◦) and the
two polarizations (H and V pol). From Figure 5, it can be seen that independent of the incidence angles
and polarizations, the major spatial patterns of the Amazon Basin are observed: the Amazon River and
its tributaries, the Mamore floodplain in the south of the basin, the Branco floodplain in the north of the
basin and the Balbina lake located in the north of Manaus. For a given angle, the spatial distribution
of the SWAF is close in H and V polarization. However, the percentage of water fraction estimate
is slightly higher at H polarization than V polarization. The major difference concerns the spatial
distribution of the SWAF sensed at low incidence angle (32◦± 5◦) and at high incidence angle (47◦± 5◦).
Low incidence angles reveal small patterns of SWAF and, in particular, the smaller Amazon River west
affluent. Conversely, SWAF sensed with a higher incidence angle shows only the major structure of
the flooded areas (Amazon River, Rio Negro River, Mamore plain, etc.).

Figure 6 shows the temporal dynamic of the SWAF for the full basin for the eight SMOS
configurations. For all of the angles and the polarizations, water surface extent exhibits a clear
seasonal cycle. The minimum of the inundation is observed in March, whereas the maximum of the
flooding is reached during October. This observation is valid for all of the angles and polarization.
Both in H and V polarization, for all of the incidence angles, the temporal dynamics of the SWAF
are in good agreement, except for the incidence angle of 47◦± 5◦. SWAF sensed with the highest
incidence angle underestimates the water fraction in the Amazon Basin with respect to lower angles.
In V polarization, on average, the Amazon Basin is less flooded than in H polarization. These results
are in accordance with Figure 5. During the wet season, almost 1% of the Amazon Basin is flooded,
whereas during the dry season, only 0.2% of the basin is flooded.

Figure 7 shows the monthly spatial variability of the SWAF product over the Amazon Basin.
The monthly average has been computed during the full period (2010–2015) at V-polarization and
at 32◦± 5◦ of incidence angle. The Amazon River, its main tributaries and the major floodplains
are well represented for all of the months. The maximum of the inundation of the Amazon River
is observed between March and July. The spatial and temporal variation of the Mamore floodplain
is well described by the SWAF data. This floodplain is inundated from January–June, and the least
flooding is observed during September and October. The major Amazon tributaries are more flooded
between January and May. Similar results are observed at H polarization and higher incidence angles
(not shown).

80



Water 2017, 9, 350

Figure 5. Average in time of the SMOS water fraction during 2010–2015 over the full Amazon Basin.
Both H and V polarization and the four incidence angles (32◦± 5◦, 37◦± 5◦, 42◦± 5◦, 47◦± 5◦)
are considered.

Figure 6. Spatial average of the SWAF over the full Amazon Basin in H polarization (lines) and V
polarization (dashed lines) for the four incidence angles: 32◦± 5◦ (blue), 37◦± 5◦ (red), 42◦± 5◦ (green)
and 47◦± 5◦ (black).
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Figure 7. Monthly average of the SWAF product from 2010–2015 at V-polarization and at 32◦± 5◦

incidence angle.

5.2. Comparison and Validation

In the following section, the SWAF product is compared to other data sources and variables: static
and dynamic water extent maps, water level measured by altimetry satellite, in situ river discharge
at the outlet of the basin and precipitation data. The static land surface maps obtained by optical
sensors and the GIEMS product were also used to analyze the spatial patterns. The SWAF data were
also compared to the dynamic water fraction product available over the Amazon Basin, the SWAMPS
product. Note that all of these datasets are completely independent from the SMOS water surface
extent maps.
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5.2.1. Comparison to Static and Climatological Water Extent Maps

The SWAF temporal average over the entire Amazon Basin had been compared to three static
land cover maps (IGBP [62], GlobeCover [63] and ESA CCI [64]) and the mean of the GIEMS water
fraction maps. These maps are detailed in Section 3.5 and presented in Figure 2. Main similar patterns
can be observed from the three different static land cover maps. The number of pixels partially
flooded over the Amazon Basin is higher for the GlobeCover map than for both the IGBP and ESA
CCI maps. Conversely, the ESA CCI map produces less pixels totally flooded over the Amazon
Basin than the others maps. IGBP, GlobeCover and ESA CCI maps present inundation surfaces of
220,000 km2, 360,000 km2 and 210,000 km2, respectively. Note that the static maps are based on data
from different time periods (see Section 3.5), and the inland water occupation can change with time
and anthropogenic activities.

The average GIEMS product over the 1993–2007 period is presented in Figure 2. The Amazon
River, its major tributaries, southern and northern floodplains are well depicted. On average, over the
1993–2007 period, 440,000 km2 of the surface were flooded.

Figure 8 presents the mean distribution (2010–2015) of the water fraction extent for the IGBP
map, GlobeCover map, ESA CCI map, GIEMS averaging and the temporal average of all of the SWAF
products for the eight SMOS configurations over the Amazon Basin. For all of the products, the
majority of the pixels are partly flooded, and a few of them are totally flooded. The distributions of
both IGBP and ESA CCI are very close. The GlobeCover map and the mean GIEMS product (1993–2007)
provide larger estimates of pixels flooded or partially flooded with respect to the other products, in
particular for water fraction higher than 0.4. For all of the SMOS configurations, the distributions of
the SWAF products are comprised between both the GlobeCover and GIEMS distributions and both
the IGBP and ESA CCI distributions. Between the eight SMOS configurations, only a few differences
in their spatial distributions can be noticed. Both in H and V polarizations, a decrease of the incidence
angle leads to a decrease of the detection of pixels partially flooded. In V polarization, fewer pixels are
flooded than in H polarization. This behavior is particularly marked for water fraction ranges between
10% and 40%. This trend makes the SWAF computed in V polarization closer to the IGBP and ESA CCI
maps than the SWAF calculated in H polarization for the moderately flooded pixels. Table 3 presents an
average of the number of square kilometers flooded in the Amazon Basin. Figures 5 and 8 and Table 3
confirm that, on average, the number of square kilometers flooded decreases for increasing incidence
angles, and more flooded areas are detected in H polarization than in V polarization. Independent of
the selected SMOS configuration, the number of square kilometers flooded is in the range between the
IGBP and GlobeCover estimates.

Figure 9 presents the bias (reference static maps, SWAF configurations) and the RMSE between
water surface extent for each reference maps used in Figure 8 and the water surface extent for the
eight SMOS configurations. For all of the SWAF configurations, lower bias is obtained by comparing
the SWAF data with IGBP (mean bias = 0.6%) and ESA CCI (mean bias = −0.4%). Higher bias is
obtained by comparing SWAF data with the GlobeCover map (mean bias = 5.9%). Bias between the
static maps and the SWAF data is always higher at V-polarization than at H-polarization for all of
the static maps. Moreover, the bias values increase with the growth of the incidence angles. A lower
RMSE value is obtained by comparing the SWAF data with the ESA CCI map (mean RMSE = 5.8%),
and a higher RMSE value is obtained with the GlobeCover map (mean RMSE = 17.8%). Following
the static map considered, the behavior of the SWAF data with respect to angles and polarization
differs. For IGBP and ESA CCI maps, lower values of RMSE are obtained at V-polarization than at
H-polarization, and a slight decrease of the RMSE values is observed with the increase of the incidence
angles. The contrary is noticed for the comparison with the GIEMS data. No trend concerning the
RMSE behavior is observed for the comparison between the SWAF data and the GlobeCover data.
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Table 3. Average of the number of square kilometers flooded in the Amazon Basin for the eight
SMOS configurations.

Incidence Angle (◦) H-pol V-pol

32◦± 5◦ 290,000 270,000
37◦± 5◦ 280,000 260,000
42◦± 5◦ 280,000 250,000
47◦± 5◦ 280,000 250,000

Figure 8. Histogram of water fraction for the IGBP map (red), GlobeCover map (black), the ESA
CCI (blue) and SWAF (yellow columns) for eight SMOS TB configurations (32–47 angle bins and
H/V configurations).

Figure 9. Bias (reference static maps, SWAF) and RMSE values computed between each reference maps
(GlobeCover, IGBP, ESA CCI, GIEMS) and SWAF for the eight configurations.

5.2.2. Comparison with Water Height Measured by Altimetry

For low topography slopes, the water surface extent can be related to the water height.
Other studies [32,66] had already shown that the seasonal and inter-annual variation patterns of
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the surface water extent and the water level agree well. In this present study, the water levels
measured by the Jason-2 satellite were compared with the SWAF product over 83 virtual stations
during the 2010–2012 periods. Results are presented in Figure 10. Only stations with significant
results (p-value < 0.01) are represented. The color dot indicates the correlation value for each virtual
station. The gray color dots show the virtual station with non-significant results. For all of the SMOS
configurations, the correlation value between the water fraction and the water level measured by
Jason-2 is very high (r > 0.8) throughout the Amazon River and the major tributaries. The lower
correlation values are located over areas where the relation between the water surface’s extent and the
water level is not direct. For a given angle, slight differences in terms of correlation values are observed
with respect to the polarization choice. The number of not significant stations varies following angles
and polarization. At H polarization, the number of no significant stations is equal to 36, 33, 33 and 44
for angles from 32◦± 5◦–47◦± 5◦, respectively. At V-polarization, the number of no significant stations
is slightly lower and equal to: 35, 30, 31 and 44, respectively.

To formalize this information, the sum of the correlation values for each SMOS configuration is
presented in Figure 11. Only stations with significant correlations for the eight SMOS configuration
are considered to compute this figure. The sum of the correlation values between the SWAF and the
water level estimated by altimetry is always higher at V-polarization than at H-polarization, except at
32◦± 5◦. The higher sum of correlation is obtained at V polarization and at 47◦± 5◦ incidence angle.
At high incidence angles, higher correlation values are obtained, but the number of significant stations
is lower. The contrary is observed at low incidence angles.

5.2.3. Comparison with SWAMPS Dynamic Surface Extent

The recent SWAMPS product provides a daily estimation of the surface water extent. Note that the
SWAMPS products are obtained by more complex algorithm merging active and passive microwaves
than the SWAF data. Figure 2 shows the average of the SWAMPS water fraction over the Amazon
Basin from January 2010–March 2013. Spatially, the mean SWAF and SWAMPS products are in good
agreement. Both in the SWAF and SWAMPS products, the Amazon River and its tributaries are well
represented, and the major floodplains are present. In the SWAF data, no data are provided over the
southeast part of the Amazon Basin due to high topographic index where as the SWAMPS product
shows some patterns of water surface over the same region. An important difference between the two
products is the spread of the rivers. In the SWAMPS product, all of the rivers have a larger floodplain
area than in the SWAF data. Over the two major floodplains of the Amazon Basin, different patterns
are observed in the SWAF data. This behavior is not observed for the SWAMPS data. The water surface
extents estimated by the SWAMPS data are lower than those estimated by the SWAF data.

Figure 12 shows the temporal correlation values between the SWAMPS and SWAF data from
January 2010–March 2013 for all of the SMOS configurations. The correlation value is computed
only over pixels where both SWAMPS and SWAF water fraction are present. For all of the SMOS
configurations, a good agreement (r > 0.8) between the SWAF and SWAMPS products is observed
over the Amazon River and the two largest floodplains of the basin. Over these locations, the temporal
dynamics of the surface water are well described by the two products. Concerning the Amazon
tributaries, results are more contrasting, and the SWAF and the SWAMPS seem to have a different
temporal dynamics. In terms of SMOS configurations, results are very similar whatever the incidence
angle and polarization chosen. For example, the number of pixels that obtained a high correlation
value (r > 0.8) between the SWAF and the SWAMPS products ranges between 147 (for 32◦± 5◦ in
H-pol) and 172 (for 47◦± 5◦ in H-pol). No trend is noticed between high and low angles or V and
H polarization. For the accepted correlation value (r > 0.6), the number of pixels that satisfied these
criteria ranges between 1097 (for 47◦± 5◦ in V-pol) and 1247 (for 37◦± 5◦ in V-pol). In this case, a clear
trend is observed: increasing the incidence angle leads to decreasing the number of pixels with an
accepted correlation.
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Figure 10. For each SMOS configuration, correlation values against the SWAF water surface extent and
the water level measured by Jason-2 during 2010–2012. The color dot represents the correlation value.
Gray color dots show no significant results (p-value > 0.05).
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Figure 11. For each SMOS configuration, the sum of the correlation value (r) obtained in Figure 8.
Only significant stations for all of the SMOS configuration are used for the computation.

Figure 12. Temporal correlation values between the SWAMPS and SWAF products from January
2010–March 2013 for each SMOS configuration.
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5.2.4. Link between SWAF and the Hydrological Components

Strong seasonal and interannual variations can be observed in both precipitation and surface
water extent in the Amazon Basin. Figure 13 presents the standardized anomalies (i.e., the time series
of a hydrological parameter minus the average of the time series divided by its standard deviation of
the observation period) of both precipitation from TRMM and SWAF products for the eight SMOS
configurations over the entire Amazon Basin. Note that inundation is highly linked to the precipitation
events, but can also occur in response to snow melt or heavy precipitation at upstream locations. In this
case, flooded areas and precipitation are separated in both time and space. A good agreement between
all of the SWAF products whatever the polarization or the incidence angles can be noticed, except
at 47◦± 5◦ in H polarization. For the entire Amazon Basin, the cross-correlation values between the
TRMM precipitation and the SWAF products are shown in Table 4. The best correlation values are
obtained at 42◦ ± 5◦ and 32◦ ± 5◦. In H and V polarization, similar correlation values were obtained.
The correlation value is highly impacted by the choice of the incidence angle, whereas the polarization
plays a negligible role. Note that using the angle 47◦ ± 5◦ strongly degrades the correlation value
between the precipitation and the water surface extent. By computing the time lag correlation values,
a time lag of two months was found between the precipitations and the water surface for all of the
SMOS configurations, except for the angle of 47◦ ± 5◦ (four months).

Figure 13. Monthly normalized anomalies of precipitation (TRMM data), in situ discharge at Obidos
and the SWAF at H-pol (top) and V-pol (bottom) with the four incidence angles considered in this
study. The precipitation and SWAF anomalies were computed over the entire Amazon Basin.

The time series of the Amazon River discharge is closely linked to the total amount of the surface
water extent in the whole basin [43]. Figure 13 also shows the monthly normalized anomalies of the in
situ river discharge measured at Obidos. By computing the time lag correlation values, it was found
that the maximum water surface extent often precedes the maximum Amazon discharge. For the entire
Amazon Basin, the cross-correlation values between the in situ discharge at Obidos and the SWAF
products are reported in the Table 4. High cross-correlation values are obtained between the discharge
and all of the SWAF products varying from 0.78 (47◦ ± 5 ◦ at H-pol) to 0.88 (42◦ ± 5◦ at H-pol). For all
of the SWAF configurations, the maximum water surface extent precedes the discharge by one month.
The normalized anomalies of SWAF whatever the SMOS configuration are better correlated with the
normalized anomalies of discharge than those of precipitation. The cross-correlation value between
the normalized anomalies of precipitation and discharge is equal to 0.84 with a time lag of four months
for the whole Amazon Basin.
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Table 4. Cross-correlation (r) values between TRMM precipitation, discharge at the outlet and the
SWAF products for the eight configurations over the 2010–2015 period.

Precipitation Discharge

Incidence Angle (◦) H-pol V-pol H-pol V-pol

32◦± 5◦ 0.91 0.90 0.83 0.84
37◦± 5◦ 0.88 0.89 0.86 0.85
42◦± 5◦ 0.92 0.88 0.88 0.82
47◦± 5◦ 0.83 0.85 0.78 0.83

6. Discussion

6.1. Water Surface Validation

The SWAF products and the aggregated high spatial resolution of the IGBP and ESA CCI maps
over the Amazon Basin showed a good agreement (see Figures 8 and 9). The mean bias and RMSE
between the SWAF for all of the configurations and the IGBP map is equal to 0.6% and 10%, respectively.
Better results are obtained for the comparison of the SWAF and the ESA CCI maps (mean bias = −0.4%
and mean RMSE = 5.8%). The SWAF sensitivity to seasonal and annual water fraction extent was
also demonstrated in the comparison against precipitation and discharge dynamics. The comparison
between the anomaly of water surface dynamics estimated from the SWAF products over the entire
Amazon Basin and the anomaly of discharge at the mouth of the Amazon showed a shift of one month.
This result is in good agreement with previous research papers. For example, results presenting the
same time-lag for surface water extent [43], surface water storage [49] and terrestrial water storage [71].
Our findings showed that precipitation often preceded the water surface dynamic by two months over
the Amazon Basin. These results also agree well with previous studies [43,71].

6.2. Impact of the Angles and Polarization on the Water Surface Retrievals

The SMOS mission provides data in multi-angular and full polarization modes. A specific analysis
is presented to determine the best acquisition configuration to retrieve the water fraction from SMOS.
The use of combined polarization and angles was used in this study as the single angle and channel
gave satisfactory results. As shown in the previous section, the spatio-temporal evolution of the SWAF
estimated using different angles and polarizations was very close in the Amazon Basin. Differences
are mainly present in areas far from the main Amazon river stream characterized by high vegetation
density. Table 5 summaries the best SMOS configurations (low or high incidence angles and H or V
polarizations) in order to obtain the higher agreement between the SWAF product and each variable
used for validation (land cover classification, water level, dynamic water fraction, precipitation and
discharge). “NS” stands for Non-Significant, and it is used when no trend in the results (see previous
section) was observed.

Table 5. Summary of the best SMOS configurations permitting a good agreement between SWAF and
the other variables. Green color means that good agreement was found, whereas the red color means
the opposite. See Section 5 for the results. NS, Non-Significant.

Variables H-pol V-pol Low angles High angles

Land cover classification NS NS
Water level NS NS

Dynamic water fraction NS NS
Precipitation NS NS NS NS

Discharge NS NS NS NS

Table 5 shows that the low incidence angles were more suitable to detect the dynamic water
surface extent over the tropical regions. This result was expected based on the microwave signal
theory [72]. The H-polarization tends to overestimate the water fraction extent for a low fraction
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(<50%). Over the Amazon Basin, low incidence angles at V polarization are the best configuration to
compute the water fraction extent with the SMOS data. For future studies, the authors advise to use
the SWAF products at low incidence angles and at V polarization over tropical areas. In the near future,
SWAF estimated in both H and V polarization at low incidence angle will be combined to extend the
domain of applicability of the algorithm to other environments to increase the water sensibility to the
SWAF product.

6.3. Impact of Vegetation Cover

Estimating water surface extent under dense vegetation with passive microwave is challenging.
The work in [26,27] provided estimates of the water surface extent over the Amazon Basin by using
the passive microwave SMMR sensor at 37 GHz (Q-band). They found good agreement in the seasonal
changes in inundation area and good correlations values with the water level in Manaus. However,
they noticed the effects of the vegetation on their results, in particular for small patches of open water
intermixed with vegetation canopies or from an attenuating effect of homogeneous canopies overlying
water surfaces. To overcome the vegetation attenuation, the GIEMS product mixed passive and active
microwave products at coarse spatial resolution with the optical dataset at finer resolution, which
enhances the capability to detect the small water fraction. However, this capability could be hampering
over dense vegetated area and frequently cloud-covered regions, such as the tropical ones, due to
the limitation of the optical sensors. The frequencies of the passive microwave data from SSM/I are
at 19 GHz (K band) and 85 GHz (E band), and the active one is at 5.25 GHz (C band). The work
in [34] showed that the low frequencies were less sensitive to the vegetation effects than the higher
frequency. The results presented in this study are the first to demonstrate the potential of L-band
(1.4 GHz) brightness temperature to estimate surface water extent under dense vegetation.

6.4. Limitations and Prospects of the SWAF Dataset

The most important limitation of the SWAF product is its coarse resolution inherent to the
passive microwave sensor. This limitation was already noticed for the GIEMS [42] products using
microwave sensors. This limitation implies that the water surface lower than 4% for all of the angles
and polarization could not be mapped by the SWAF products.

The SMOS sensor is based on dual polarizations and multi-angular measurements. Mountainous
areas modify local incidence angles and multi-scattering, which impacts the TB values [70] and,
consequently, the water surface estimation. The effects led to an overestimation of the water fraction.
To overcome this effect, areas with moderate to strong topographic slopes were not considered in
this study.

The snow is also an important component of the hydrological cycle. Due to the impact of the
topography slopes on the TB and the presence of the snow only over the mountainous areas in the
tropical basins, the temporal evolution of the snow coverage from the Andes Mountains has not been
investigated in this study.

The method developed in this study is based on the impact of surface water at the L-band
signal and based on the stability over time of the TB measured over dense forests. Some additional
computation was performed to measure the sensitivity of the SWAF product to the “forest” reference
point. It was found that instead of choosing only one reference “forest” pixel, but a set of pixels
composed only of forest, the mean TB increases by 3 K for all of the incidence angles and polarization.
This value is included in the incertitude range. However, this growth on the TB “forest” reference
value tends to increase the SWAF by 8%. Concerning the “water” reference point, no change was
observed by choosing a set of pure water pixels. Moreover, the method applied in this study could
not be applied in areas where the TB over vegetation is not stable over time or not dense enough.
Future work will concentrate on the extension of the current algorithm to other environments by using
multi-angular information. By solving this limitation, the water fraction would be estimated at the
global scale by using only one dataset and a simple approach.
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7. Conclusions and Prospect

This study presents the validation and the link to other hydrological components of regional
(Amazon Basin) daily and multi-year (2010–2015) water surface extent maps from the SMOS mission
at coarse resolution (25 km × 25 km). The SWAF product is based on L-band acquisitions. At such a
frequency, the signal is highly sensitive to the standing water above the ground, and it is expected to
penetrate deeper in the vegetation than at higher frequencies, such as visible and infrared or microwave
at higher frequencies. As the L-band signal is more sensitive to open water under dense vegetation,
the SWAF product provides surface water extent estimates (percentage of inundation in a pixel of
25 × 25 km) with a high temporal resolution (<3 days) based on the accumulation of daily surface
water extent in the Amazon Basin between 2010 and 2015. The SWAF product is computed from the
L-band, and it can be computed easily and quickly without any ancillary data. Over this basin, the
water surface extent showed a strong seasonal and interannual variability with two marked droughts
in 2010 and 2015.

The SWAF data were compared to three sets of static land cover maps provided from visible
sensors (IGBP, GlobeCover and ESA CCI) and the average inundation extent from GIEMS over
1993–2007. It was found that the SWAF products are close to the IGBP and ESA CCI maps. On average
and during the 2010–2015 period, 270,000 km2 were inundated over the Amazon Basin. A slight
overestimation of the flooded areas could be noticed. Over the Amazon Basin, the SWAF products
were highly correlated with water levels measured by Jason-2 (r > 0.8) for the significant stations.
The temporal dynamics of the SWAF products were also validated against precipitation (TRMM
data) and in situ discharge at the mouth of each river. It was found that over the Amazon Basin,
the precipitations often precede the inundation by three months, and the water surface extent impacts
the discharge at the mouth of the Amazon after one month. As expected by the microwave theory,
the mall water fraction could not be detected by the large footprint of SMOS. This implied that
low water fraction extent (<4%) could not be mapped by the SWAF products. The mountainous
areas were also a limitation of the SWAF products. The topography-modified local incidence angles
implied significant impact on the microwave signal and, consequently, on the water surface estimation.
The effects led to overestimation of the water fraction. To avoid this effect, the areas with high
topography slopes were flagged in the SWAF products.

Based on the SMOS product, the SWAF products declined with several incidence angles at two
polarizations (H and V). It was clear that high incidence angles (>47◦± 5◦) were not suitable to sense
the water surface from the L-band microwave signal. The H-polarization tended to increase the lower
value of the water fraction extent with respect to the V-polarization. The SWAF products computed
with different angles and polarizations led to similar results with very slight differences over the
Amazon Basin. For future use, the authors advise the use of SWAF computed with low incidence
angles (32◦± 5◦ and/or 37◦± 5◦) at V for the Amazon Basin.

The methodology permitting retrieval of the water fraction applied in this study does not require
much computation time and can be easily be applied to another L- band microwave dataset, such as
the new Soil Moisture Active and Passive (SMAP) data or an older dataset (SSM/I. . . ). The method
had been validated over the Amazon Basin by taking advantage of the numerous data and research
performed over this area.

In the near future, this recent water surface fraction product can be easily extended with the
future SMOS data and the Soil Moisture Active and Passive (SMAP) data to obtain a long record of
inundation products under dense vegetation. These data will be useful to better understand the water,
carbon and methane cycles over the tropical areas. By adding a third component (saturated soil) on
the first-order radiative transfer, this method is likely to be applied in other regions in the world.
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Abbreviations

The following abbreviations are used in this manuscript:

SAR Synthetic Aperture Radar
SWOT Surface Water Ocean Topography
V Vertical
H Horizontal
SMMR Scanning Multichannel Microwave Radiometer
GIEMS Global Inundation Extent from Multi-Satellites
SSMI/I Special Sensor Microwave/Imager
ERS European Remote Sensing
QSAT QuickSCAT
ASCAT Advanced Scatterometer
SSM/S Special Sensor Microwave/Sounder
SMOS Soil Moisture and Ocean Salinity
SMAP Soil Moisture Active and Passive
ESA European Space Agency
CNES Centre National d’Etude Spatiale
CDTI Centro para el Desarrollo Teccnologico Industrial
L Level
EASE Equal-Area Scalable Earth
SRTM Shuttle Radar Topography Mission
USGS U.S. Geological Survey
IGBP International Geosphere Biosphere Programme
AVHRR Advanced Very High Resolution Radiometer
MODIS Moderate Resolution Imaging Spectroradiometer
CCI Climate Change Initiative
NASA North America Space Agency
TRMM Tropical Rainfall Measuring Mission
ECMWF European Center for Medium range Weather Forecasting
SWAF SMOS WAter Fraction
ENVISAT ENVironment SATellite
TB Brightness Temperature
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Abstract: Over the last few decades, satellite altimetry has proven to be valuable for monitoring
lake levels. With the new generation of altimetry missions, CryoSat-2 and Sentinel-3, which operate
in Synthetic Aperture Radar (SAR) and SAR Interferometric (SARIn) modes, the footprint size is
reduced to approximately 300 m in the along-track direction. Here, the performance of these new
modes is investigated in terms of uncertainty of the estimated water level from CryoSat-2 data and
the agreement with in situ data. The data quality is compared to conventional low resolution mode
(LRM) altimetry products from Envisat, and the performance as a function of the lake area is tested.
Based on a sample of 145 lakes with areas ranging from a few to several thousand km2, the CryoSat-2
results show an overall superior performance. For lakes with an area below 100 km2, the uncertainty
of the lake levels is only half of that of the Envisat results. Generally, the CryoSat-2 lake levels also
show a better agreement with the in situ data. The lower uncertainty of the CryoSat-2 results entails
a more detailed description of water level variations.

Keywords: satellite altimetry; CryoSat-2; water level; lakes

1. Introduction

Satellite altimetry has played an increasingly important role in lake level estimation over the
past 20 years, where the number of gauges has been declining. The measuring technique provides
almost global data sets, which makes it possible to study continental surface hydrology at all scales,
independent of borders and national policies. The spatial and temporal coverage varies between
missions. The TOPEX/Poseidon and the Jason 1–3 satellites were/are operating in a 10-day repeat
cycle, while the European Remote Sensing (ERS) 1 and 2, Envisat, and Saral/Altika satellites were
operating in a 35-day repeat cycle. Many of these conventional missions, with a footprint diameter
of several kilometers, were originally intended for ocean applications. However, the use of satellite
altimetry for inland water applications has evolved into a separate field of research. Some of the
first results were obtained by [1], who estimated water level time series of lakes and reservoirs with
the TOPEX/Poseidon satellite, and thereby demonstrating a successful use of satellite altimetry for
hydrology applications. Since then, numerous studies have estimated not just the water levels of lakes
from altimetry but also of rivers and wetlands. Ref. [2] combined lake levels obtained from different
missions with bathymetry and imagery to derive changes in lake water storage. Ref. [3] studied
annual water level oscillations of the remote Lake Namco on the Tibetan Plateau, and Ref. [4] used
conventional altimetry together with high resolution imagery to estimate lake water storage of small
lakes. Ref. [5] used Geosat altimetry data to estimate river levels at different positions of the Amazon
river. Ref. [6] validated water levels obtained from the different retrackers available from Envisat over
the Amazon basin with in situ data, and Ref. [7] demonstrated that reliable water level estimates can
be obtained from Envisat over narrow branches of the Mekong River by accounting for the hooking
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effect. Ref. [8] derived water level heights for both rivers and wetlands from TOPEX/Poseidon, and
Ref. [9] used 10 Hz data from TOPEX/Poseidon to study water level changes over Louisiana vegetated
wetlands between 1992 and 2002. Ref. [10] studied seasonal water level variability of boreal wetlands
in Western Siberia from Envisat. Over time, the data quality and the methodology to process the
data have greatly improved. Currently, root mean square error (RMSE) estimates of just a few cm are
obtained for selected lakes when comparing with in situ data [11].

CryoSat-2 and the recently launched Sentinel-3 represent a new generation of altimetry missions.
These satellites apply Synthetic Aperture Radar (SAR) technology [12], which entails a reduction of
the footprint in the along-track direction to approximately 300 m [13]. The smaller footprint size
allows for monitoring much smaller lakes more accurately than previously. CryoSat-2 covers the
Earth up to 88 degree latitude and has a repeat period of 369 days. The number of satellite crossings
over a given lake therefore depends on the lake extent in the east–west direction and the latitude [14].
Hence, smaller lakes are not visited sufficiently to capture the seasonal signal. On the other hand,
significantly more lakes are visited. Recently, some studies regarding lake level estimation including
new processing strategies of CryoSat-2 data have been carried out. Ref. [15] presented a new waveform
retracker based on cross-correlation of a modeled CryoSat-2 waveform with the observed waveforms.
Ref. [16] demonstrated that the SAR mode provides an increased precision for small lakes compared to
conventional altimetry. Ref. [11] presented a novel SAR mode retracker, which utilizes information
from several waveforms simultaneously, and [17] demonstrated that waveform classification might be
a powerful tool to handle erroneous data. Ref. [14,18] used CryoSat-2 data to investigate the trend and
seasonal signal of lakes on the Tibetan Plateau.

Here, we intend to quantify the quality of CryoSat-2 data in the SAR and SARIn modes for
lake level estimation and prove its better performance over smaller lakes compared to conventional
altimetry from Envisat. This has previously only been done in studies where a few lakes were
investigated [16,17].

To quantify the quality of the lake levels derived from CryoSat-2, we perform a thorough
investigation of the performance of CryoSat-2 compared to conventional altimetry as observed by
Envisat. The study is based on a set of 145 lakes which are covered by both CryoSat-2 (SAR or SARIn
mode) and Envisat (LRM). The lakes are located in Canada, Finland, and Denmark and have areas
ranging from a few to several thousand km2. A way to evaluate the data is to consider the standard
deviation of the predicted water level for each crossing over a given lake. For each lake, the standard
deviations are summarized by the median, which hereafter is referred to as the median of standard
deviation (MSD). The MSD gives a measure of how accurately the water level is estimated, which
subsequently determines how small water level variations that can be observed. We estimate the MSD
for each lake and test its dependence on lake area, in order to evaluate the improvement available
with the new altimetry modes. In situ data is available for selected Canadian lakes, which enables the
evaluation of the ability to capture annual and interannual signals. Finally, the mean water level of
Danish lakes is evaluated against accurate laser scanner data.

2. Deriving Water Levels from Satellite Altimetry

In satellite altimetry [19], the distance to the surface, the range R, is measured. This is done by
emission of an electromagnetic transmitted pulse traveling with the speed of light. The reflected signal
is subsequently received by the antenna on-board the satellite. The range is derived from the two-way
travel time of the pulse. Assuming the altitude h of the satellite is known with respect to a reference
ellipsoid, the surface elevation H relative to this ellipsoid is given by the following simple relation (see
Figure 1):

H = h − R. (1)

The range provided by the satellite is often referenced to the center of the range window and is
therefore only an approximate estimate (see Figures 1 and 2). The range window is the area in the
direction of the pulse where the satellite can pick up the reflected signal. For CryoSat-2, the range
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window is 60 and 240 m for for the SAR and SARIn modes, respectively. To estimate the exact range,
on-ground processing, referred to as retracking, must be performed. Retracking is the procedure
of identifying the surface on the leading edge of the waveform (see Figure 2). The waveform is
the received power as a function of the power bins in the range window. In empirical retracking,
the surface or retracking point is typically defined as the decimal bin along the leading edge, which
is associated with a certain power threshold. The distance between the center bin and the retracking
point in the waveform defines the retracking correction Rretrack (see Figure 2).

Figure 1. The principle of satellite altimetry.

Figure 2. Explanation of the retracking correction.

The range must also be corrected for any path delay that occurs when the signal travels through
the atmosphere and for geophysical signals that influence the elevation of the water surface. Hence,
the range is corrected for the ionosphere, wet and dry troposphere, solid Earth tide, ocean loading tide,
and geocentric polar tide, which are combined in the correction term Rgeo. The water level above a
reference geoid N is derived from the following expression:

H = h − (R + Rretrack + Rgeo)− N. (2)
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3. Study Area

To evaluate the performance of both the SAR and SARIn modes, several relevant regions in
Canada, Finland and Denmark are selected. These regions have a large concentration of lakes. There are
25 Danish lakes included in the study, which all are smaller than 40 km2. These lakes are situated in a
relatively flat terrain. In this area, CryoSat-2 is operating in the SAR mode. There is a total of 120 Finish
and Canadian lakes, which are covered by CryoSat-2 in SARIn mode, and these lakes range in area
from 51 to 27,816 km2. A large fraction of the lakes has complex coastlines and several small islands.
Figure 3 displays the study areas: A, Finland, B, Denmark, and C, Canada. The location of the lakes is
marked with triangles.

Figure 3. An overview of the lakes included in the study.

4. Data

We use the CryoSat-2 European Space Agency (ESA) L1b baseline C and the Envisat Radar
Altimetry (RA) Geophysical Data Record (GDR) data products, which are thoroughly described in
the following subsections. These products also include the geophysical corrections Rgeo described
above. The applied geoid model is the Earth Gravitational Model 2008 (EGM2008) [20]. To extract
measurements from water returns, lake masks from the Global Lakes and Wetlands Database [21] and
the Danish Geodata Agency [22] are applied.

4.1. Envisat

Envisat operated from 2002 to 2012 in a 35-day repeat cycle, with a distance between tracks
of approximately 85 km at the Equator. The Radar Altimeter 2 (RA-2) onboard Envisat was
a dual-frequency altimeter operating at Ku- and S-band, with the Ku-band channel being the primary
altimetry radar and the additional S-band channel being used to correct for ionospheric effect. The Ku
radar operated as a pulse-limited altimeter which emitted pulses at 1800 Hz, but with a subsequently
averaging of 100 return pulses onboard the satellite, resulting in an 18 Hz product being transmitted to
the ground stations. The pulse-limited altimeter gives circular footprints which are slightly elongated
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in the along-track direction due to the averaging of the return pulses. The size of the RA2 footprint
was 10 km to 15 km depending on the height distribution within the illuminated surface area. In this
study, we use the range measurements based on the Ice1 retracker [23], which is based on the Offset
Center of Gravity (OCOG) retracker.

4.2. CryoSat-2

The CryoSat-2 satellite was launched in 2010. The SAR Interferometer Radar Altimeter (SIRAL)
onboard CryoSat-2 is a single frequency Ku band altimeter capable of operating in three different
modes: Low Resolution Mode (LRM), SAR mode, and SARIn mode. In LRM, the SIRAL operates
like a conventional altimeter with properties comparable to RA2; however, to allow seamless switch
between the different modes, it emits pulses at 1970 Hz. In SAR mode, the pulse repetition frequency
(PRF) is increased to 17.8 kHz and pulses are emitted in bursts of 64 pulses. The high PRF ensures
that the return pulses are correlated, and it is therefore possible to apply Doppler processing of the 64
pulses. In the Doppler processing, it is possible to divide the area illuminated by all 64 pulses into
64 areas in the along-track direction. The result is a footprint that is pulse limited in the across-track
direction and Doppler limited in the along-track direction. The Doppler beams from different bursts
that illuminate a selected area on the ground are then averaged to form the waveform. Since the
along-track footprint is Doppler-limited, it is not dependent on the height distribution within the
illuminated area. The SARIn mode is similar to the SAR mode but includes an additional receiving
antenna that allows determination of the position of the reflecting surface in the across-track direction.

The CryoSat-2 data contains waveforms with 256 and 1024 bins for SAR and SARIn, respectively.
The waveforms are retracked by an empirical sub-waveform retracker; the Narrow Primary Peak
Threshold (NPPT) [24], which is part of the Lars Advanced Retracking System (LARS) [25]. In SARIn,
it is possible to correct the range for off-nadir returns, and, in this study, this correction is performed
according to [26].

4.3. In-Situ Data

Height measurements from a national survey were extracted for a subset of the Danish lakes.
The survey was conducted in 2014 and 2015 with the aim to improve the Danish elevation model.
The data set contains laser scanner data with a point density of four to five measurements per square
meter. The heights are referenced to DVR90, but has been converted to heights above the WGS84
reference ellipsoid with the software “KMSTRANS” [27]. The error of the data is less than 5 cm in the
vertical direction. The data is available from [22].

In situ data of the water level is freely available for several lakes in Canada from the Government
of Canada [28]. Lakes in the study area, which are measured with both CryoSat-2 and Envisat and
where in situ data is available, are Great Slave, Athabasca, Wollaston, Claire, Nonacho, and Reindeer.
The water levels are referenced to different datums, e.g., the Geodetic Survey of Canada Datum.

5. Methods and Data Processing

Waveforms related to returns from inland water might be multi-peaked due to land contamination
in the signal or from the presence of strong off-nadir signals. Such complex waveforms might result in
noisy and potentially erroneous water levels, and it is essential to handle these in a robust manner.

To construct lake level time series, we follow the approach described in [16], in which a state-space
model is used to reconstruct the time series. The model consists of a process part and an observation
part. The process part intends to describe how the true water levels vary over time. It is implemented
as a random walk, which implies that water levels measured within a short time span will tend
to be more alike. The observation part describes how the measurements relate to the true water
level. The measurement distribution is described by a mixture between a Gaussian and a Cauchy
distribution. Compared to a pure Gaussian distribution, this describes the situation where a fraction of
the measurements is wrong or extremely noisy. The heavier tails of the Cauchy distribution will have
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the effect of reducing the influence of such erroneous observations. The described state-space model
represents a robust model in the sense that the estimated water levels are not substantially biased by
erroneous observations. The process enables the model to exploit the temporal correlation in the true
water levels. A detailed description of the model is found in [16].

The state-space model has been implemented in a software package “tsHydro” written in the
open source language “R”. The package is built via the R-Package Template Model Builder (TMB) [29],
which is a tool to construct complex state-space models using Automatic Differentiation and the
Laplace approximation to obtain accurate and stable optimization [30]. The package offers the user the
possibility to easily estimate robust water levels. To construct time series, the user must provide an
input file that contains the following columns, the time in decimal years, the track number and the
raw water levels. The program returns the predicted water level at each time step together with its
standard deviation. The package is freely available from Github [31].

Before applying the “tsHydro” package, a rough outlier criterion is applied. For each lake,
the median of all water levels is estimated. Subsequently, water levels above and below the median
±5 m are removed. A limit of 5 m is not recommended in general, since lake levels may vary several
meters over time. However, for the lakes in this study, a limit of 5 m was found appropriate.

The MSD is used as a summary measure of the uncertainty for each data type (DT), CryoSat-2 or
Envisat, at each lake. We wish to quantify and test if the different data types result in different levels of
uncertainty. It is also expected that the lake area has an influences on the uncertainty, which must be
taken into account. The lakes are divided into three groups (AG) defined by their area: small <100 km2,
medium 100–1000 km2, or large >1000 km2. Each uncertainty measurement, MSD, is described by the
following standard two-way analysis of variance (ANOVA) model:

log(MSDi) = μ + α(DTi) + β(AGi) + γ(DTi, AGi) + εi. (3)

Here, i = 1, . . . , N, where N is the number of observations. μ is a common intercept. The model
parameters α describe the main effect of the data types. The model parameters β describe the main
effects of the lake area groups. The model parameters γ describe the interaction effect between the lake
area group and data types. The interaction term describes how the effect of data types differs in the
various lake area groups. If the hypothesis H0 : γ = 0 is rejected (by a standard F-test), then the effect
of data types is not the same in all lake area groups. The noise term for the logarithm of the MSDs is
assumed to follow a normal distribution εi ∼ N(0, σ2).

6. Results

In this study, we have predicted CryoSat-2 and Envisat water levels for 145 lakes to evaluate the
performance of the SAR and SARIn modes compared to conventional altimetry.

6.1. Evaluation of MSD, Uncertainty

The median of the standard deviations of the predicted water levels, MSD, which is a measure of
the uncertainty, was evaluated for all lakes. Figure 4A displays the estimated MSD of CryoSat-2 and
Envisat as a function of the lake area. The MSDs of the CryoSat-2 and Envisat results lie in the range of
1–8 cm and 1–28 cm, respectively. The MSD of the CryoSat-2 results is generally lower, where the most
pronounced difference is seen for lakes with a small area. For large lakes, the MSD is similar for the
two data sets. Figure 4B displays the MSD ratio, showing Envisat over CryoSat-2, as a function of the
lake area. Values above and below 1 indicate lakes where the CryoSat-2 or Envisat results have the
lowest MSD, respectively. For most lakes, this ratio demonstrates that the MSD of CryoSat-2 is less
than half as the MSD of Envisat.
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Figure 4. (A) the MSD of CryoSat-2 (blue) and Envisat (orange) as a function of Area; (B) the MSD
ratio as a function of area. Values above and below 1 indicate ratios, where CryoSat-2 or Envisat have
the lowest MSD, respectively.

6.2. The Significance of Lake Area with Respect to MSD

The model for the logarithm of the median of standard deviations (3) was validated by visual
inspection of the residuals. The hypothesis that the difference between the two data types is the same
for all three area groups was rejected by a standard F-test (p-value 0.006716). The difference between
the two data types is different for the three area groups. For the smallest area group, the MSD was
2.2 times higher for Envisat than for CryoSat-2 with a 95% confidence interval of [1.9–2.7]. For the
medium area group, the MSD was 1.7 times higher for Envisat with a confidence interval of [1.5–2.0].
Finally, for the largest area group, the MSD was 1.3 times higher for the Envisat, but the difference
was not significant, as the confidence interval [0.9–1.8] included 1. A detailed description of the MSD
distributions for the three area groups are shown in Figure 5.

Figure 5. Histograms of MSD for CryoSat-2 and Envisat in the three area groups; group 1 (<100 km2),
group 2, (100–1000 km2), and group 3 (>1000 km2). The vertical black line indicates the median of
the MSDs.
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6.3. Comparison with In Situ Data

6.3.1. Canadian Lakes

The second measure of performance of CryoSat-2 and Envisat to measure water level variations is
the agreement with the true water level. The true water level is represented by in situ measurements
of the water level. In situ measurements are available for six Canadian lakes: Great Slave Lake,
Lake Athabasca, Reindeer Lake, Lake Wollaston, Lake Claire, and Lake Nonacho. Since the satellite
and the in situ data are referenced with respect to different datums, a bias in the water levels is
estimated and subtracted from the satellite data. Figure 6 shows the estimated time series of the
water level together with the in situ data for the six lakes. The circles represent the water level of the
retracked data, while the crosses represent the model based predictions. In general, the predicted
satellite-based time series follow the in situ data quite well. For the lakes Wollaston, Nonacho, and
Reindeer, the CryoSat-2 based time series give a better representation of the water level variations than
the Envisat based solution. This is quantified by RMSE estimates, which are listed in Table 1. For Great
Slave Lake, both satellite based models reveal erroneous water level estimates, although the overall
variation is well represented. These estimates result in an artificially increased RMSE value.

Figure 6. Water level time series for the six Canadian lakes: Great Slave, Athabasca, Wollaston, Claire,
Nonacho, and Reindeer. The gray (Envisat) and blue (CryoSat-2) circles represent the raw retracked
water levels. The black (Envisat) and blue (CryoSat-2) crosses represent the predicted water level, and
the red line is the in situ water levels.
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Table 1. RMSE values for CryoSat-2 and Envisat.

Lake RMSE CryoSat [m] RMSE Envisat [m] Area [km2]

Great Slave 0.68 0.54 27,816
Athabasca 0.19 0.25 7782
Reindeer 0.12 0.19 5597
Wollaston 0.05 0.17 2272

Claire 0.20 0.23 1326
Nonacho 0.06 0.24 847

6.3.2. Danish Lakes

Here, we compare the laser based heights with the mean water levels obtained from CryoSat-2
and Envisat. To account for the range bias between the two missions, the Envisat heights have been
corrected with a bias of −0.69 cm [32] to be comparable with the CryoSat-2 heights. The mean water
level for each lake is constructed as a weighted average of the predicted water levels for each crossing.
Figure 7A displays the height with respect to the WGS84 reference ellipsoid for the laser, CryoSat-2, and
Envisat data. The height estimates and their corresponding standard deviations are collected in Table 2.
The agreement between the satellite based estimates and the laser scanner data is generally good,
except for the lake Fårup Sø. For the lake Gudensø, there is a discrepancy between the CryoSat-2 and
the Envisat estimates. Figure 7B displays the ratio of standard deviations. As indicated by Figure 7B,
the CryoSat-2 based solutions generally have a smaller standard deviation.

Figure 7. (A) the WGS84 elevations for the Danish lakes based on laser scanner data, CryoSat-2 and
Envisat; (B) the ratio [Envisat/CryoSat-2] of the standard deviation of the estimated mean water level.

Table 2. Heights in meter above WGS84 for selected Danish lakes.

Lake Laser CryoSat-2 Height CryoSat-2, sd Envisat, Height Envisat, sd Area [km2]

Arresø 40.41 40.10 0.004 39.67 0.009 39.67
Mossø 62.34 62.22 0.008 62.41 0.039 16.34

Skanderborgsø 63.01 62.82 0.008 63.12 0.030 8.67
Juelsø 60.91 60.75 0.011 60.38 0.025 8.43

Tystrup Sydsø 44.43 44.07 0.009 44.55 0.165 6.73
Gyrstinge Sø 58.20 59.94 0.011 60.53 0.021 2.04

Fårup Sø 88.17 126.18 0.053 133.44 0.714 0.96
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7. Discussion

The water level for each crossing, based on CryoSat-2 and Envisat data, was estimated for
145 lakes with areas between 1 and 27,816 km2. The MSDs of the CryoSat-2 and Envisat results
were compared, and the predicted water levels were compared with in situ data. In the following,
the applied methodology and the results are discussed in detail.

As expected, the new modes, SAR and SARIn, generally lead to an improved estimate of the
water level compared to conventional altimetry. The analysis performed here has quantified that the
effect is most pronounced for smaller lakes. For larger lakes, the lower uncertainty is insignificant
due to the larger number of measurements. Here, it should be mentioned that, despite the high
quality of the CryoSat-2 data as demonstrated in Figure 5, the uncertainty is also affected by the lake
setting because topography and off-nadir signals may considerably increase the noise in the data.
An example of this is seen for the Danish lake Fårup Sø in Figure 7. This lake has an area of just
0.96 km2. The terrain surrounding this lake is relatively steep and in the vicinity smaller lakes located
at a higher elevation are present. This configuration of terrain and surrounding lakes causes the water
levels to be incorrectly estimated in the retracking process. However, by inspecting the retracked
water levels, CryoSat-2 is actually able to capture the “correct” water level at some crossings (see
Appendix A).

Estimating the water level for inland water bodies is challenging, since the raw retracked
measurement can be noisy and erroneous (Figure 6), which easily influences the estimate. However,
a robust method here that is able to account for erroneous observations in an objective manner was
used. The estimates are, therefore, less sensitive to outlying observations (see Figure 6). For Great
Slave Lake, a large fraction of erroneous water level estimates is present for both data sets. The applied
method is clearly unable to detect the “correct” water level in this case. However, a closer inspection
of the data reveals groups of erroneous data at these times (see Figure 8). In fact, at most of these times,
no data at the “correct” level is present. The large fraction of erroneous data causes the state-space
model to give the data a too high weight compared to the underlying process. This results in a
wrong estimate of the water level. Situations like these are a weakness of the applied model. It is
possible that a future extension of the model to account for the correlation between observations on
the same track could reduce the weight of such sets of incorrect observations, which could give a more
correct reconstruction.

Figure 8. The water level time series of Great Slave Lake between January 2012 and May 2012. The gray
(Envisat) and blue (CryoSat-2) circles represent the raw retracked water levels. The black (Envisat) and
blue (CryoSat-2) crosses represent the predicted water level, and the red line is the in situ water levels.
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Here, we have chosen to use the MSD as a measure of quality, since it represents the uncertainty
of the estimated water level for a given crossing. The individual observations are often very noisy
and mixed with outliers, hence the MSD of the estimated lake level is a more accurate measure with
respect to the usefulness of the data. It is a measure of how detailed the water level can be described
over time. The temporal variations of the lake level can be tracked in greater details when the MSD is
at a low level.

For a subset of the Danish lakes, the satellite-based mean water levels above WGS84 were
compared to laser scanner data collected between 2014 and 2015 (Figure 7). Both data sets showed a
good agreement. The minor height difference might partly be explained by the retracking bias which
can be of several cm or small variations in the inter-mission bias. Furthermore, the laser data were
collected after the time period of the Envisat data. However, the water level variation of Danish lakes
is small. Based on Google Earth, the lake Gudensø has an elevation similar to the lakes Mossø, Juelsø,
and Skanderborg Sø. This indicates that the CryoSat-2 based height is closer to the “correct” height.

8. Conclusions

Based on the results found in this study, it can be concluded that the CryoSat-2 derived lake
levels have a significant lower MSD compared to Envisat for lakes with an area smaller than 1000 km2.
Furthermore, the CryoSat-2 results show an overall better agreement with in situ data for the six
Canadian lakes. The RMSE values are in the range of 5–68 cm and 17–54 cm for CryoSat-2 and
Envisat, respectively. Both CryoSat-2 and Envisat based mean water levels agreed well with the
laser scanner data. These results reveal a promising potential of Sentinel-3, which is operating in
the SAR mode globally with a repeat period of 27 days. Hence, assuming that the data quality of
Sentinel-3 resembles that of CryoSat-2, water level variations below 10 cm can potentially be captured
for relatively small lakes.
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Appendix A

Table A1 shows all the observed water levels of Fårup Sø from CryoSat-2 and Envisat.

Table A1. Water levels of Fårup Sø.

Time CryoSat-2 Height CryoSat-2 Time Envisat Height Envisat

2011.259 126.881 2003.367 133.756
2011.259 161.100 2003.750 110.016
2011.616 112.106 2004.612 141.591
2011.616 105.081 2004.994 132.531
2013.631 147.994 2005.186 134.269
2013.631 147.963 2005.953 139.167
2014.640 112.315 2007.008 138.599
2014.640 88.106 2008.636 110.615
2015.292 88.038 2009.690 110.621
2015.292 88.019 2010.265 136.480
2015.648 125.739 2010.745 110.055
2015.648 125.606
2016.656 148.264
2016.656 148.020
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Abstract: Monitoring the variation of rivers and lakes is of great importance. Satellite radar
altimetry is a promising technology to do this on a regional to global scale. Satellite radar altimetry
data has been used successfully to observe water levels in lakes and (large) rivers, and has also
been combined with hydrologic/hydrodynamic models. Except CryoSat-2, all radar altimetry
missions have been operated in conventional low resolution mode with a short repeat orbit (35 days
or less). CryoSat-2, carrying a Synthetic Aperture Radar (SAR) altimeter, has a 369-day repeat and
a drifting ground track pattern and provides new opportunities for hydrologic research. The narrow
inter-track distance (7.5 km at the equator) makes it possible to monitor many lakes and rivers
and SAR mode provides a finer along-track resolution, higher return power and speckle reduction
through multi-looks. However, CryoSat-2 challenges conventional ways of dealing with satellite
inland water altimetry data because virtual station time series cannot be directly derived for rivers.
We review the CryoSat-2 mission characteristics, data products, and its use and perspectives for
inland water applications. We discuss all the important steps in the workflow for hydrologic analysis
with CryoSat-2, and conclude with a discussion of promising future research directions.

Keywords: CryoSat-2; radar altimetry; inland water altimetry; hydrology; water height

1. Introduction

Rivers and lakes are important fresh water resources. The global distribution of rivers and
lakes is shown in Figure 1. They supply drinking water for many people in the world [1] and in
particular for the vast majority of people in poverty. However, these people often are also vulnerable to
flooding from the very same rivers. For instance, the Brahmaputra River sustains lives and livelihood
along its banks, while draining through the Assam Valley. However, floods occur in monsoons
every year and severe floods have happened frequently in the last decade, which caused huge losses
to life and property [2]. Just like rivers, lakes serve many purposes. Not only do they provide
freshwater for human use, including agriculture, but they also maintain important natural processes
and ecosystems [3]. Nevertheless, many lakes around the world are shrinking and some have vanished
under the influence of climate change and anthropogenic activities while in other regions, lakes are
expanding (e.g., inner Tibetan Plateau) [4–8]. Therefore, global monitoring of the variation of rivers
and lakes is an important research topic.
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Figure 1. Global surface water distribution. (Zoom-in figures at bottom are from Kivalliq Region in
Canada, Amazon River basin, source region of Congo river basin, and Tibetan Plateau, respectively.
Data source: Global Surface Water Explorer [9]).

Water level is one basic and key quantity in hydrological research, which is closely related to
discharge in rivers and water volume in lakes and reservoirs. Traditionally, water level observations are
recorded in situ by water-level recorders or visual readings from a staff gauge. These gauging stations
are normally established at point scale and often organized on a national basis. Thus, the spatial
resolution is limited and the data release is slow [10]. Moreover, the number of freely accessible
gauging station records in rivers is decreasing since the late 1970s [11]. Also, data sharing is
a big problem, especially in transboundary river basins [12]. Here, water level observations from
satellite remote sensing have advantages over traditional observations. First, remote sensing
has universal spatial coverage, i.e., transboundary and inaccessible or dangerous regions are
also covered. Second, data acquisition is normally free and timely, which paves the way to operational
forecasting systems. With respect to observing water level, satellite altimeters make it possible to
monitor water levels in lakes and sufficiently large rivers with acceptable spatio-temporal resolution.
Satellite altimetry has been an important tool in inland water monitoring although the technique was
initially designed for monitoring oceans [13–19]. For example, satellite altimetry makes it possible to
monitor the water level and storage variation of hundreds of lakes in the Tibetan Plateau [17,20,21].
Another application is supporting river discharge modelling, in particular in transboundary areas
and remote areas, such as the Brahmaputra or Amazon river basins, etc. [22–24]. An alternative
technology for precise remote sensing of water heights is Global Navigation Satellite System (GNSS)
Reflectometry [25–27]. This technique requires, however, ground-based or airborne GNSS receivers in
the vicinity of the lake or river.

The precision of altimetry measurements has improved significantly from the first satellite
altimeter (on Skylab, 1973). The list of past and current satellite altimetry missions includes GEOS-3,
SeaSat, Geosat, TOPEX/Poseidon, Geosat Follow-on, Jason-1/2/3 from the National Aeronautics and
Space Administration (NASA). From the European Space Agency (ESA) there are ERS-1/2, ENVISAT,
CryoSat-2, and Sentinel-3. Besides that, some other missions are also in operation, such as HY-2A
planned by China, or SARAL/AltiKa as a joint Indian–French project (see Table 1 for an overview).
All the above mentioned missions carry radar altimeters. Besides radar altimeter missions, there has
been a satellite lidar mission, ICESat, which provided similar data products for inland waters.
Common to all missions except CryoSat-2 is a repeat orbit with a short repeat cycle of 10 to 35 days.
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Such repeat cycles have sparse ground track patterns with an inter-track distance of at least 80 km at
the equator. Precision and bias are compared across various satellite radar altimetry missions in [28].

Table 1. Summary of satellite altimetry missions.

Satellite Agency Period
Altitude

(km)
Altimeter

Frequency
Used

Repetitivity
(Day)

Equatorial
Inter-Track

Distance (km)

Skylab NASA May 1973–
February 1974 435 S193 Ku-band

GEOS 3 NASA April 1975–
July 1979 845 ALT Ku and

C-band

SeaSat NASA July–
October 1978 800 ALT Ku-band 17

Geosat US Navy October 1985–
January 1990 800 Ku-band 17

ERS-1 ESA July 1991–
March 2000 785 RA Ku-band 35 80

Topex/
Poseidon

NASA/
CNES

September 1992–
October 2005 1336 Poseidon Ku and

C-band 10 315

ERS-2 ESA April 1995–
July 2011 785 RA Ku-band 35 80

GFO US Navy/
NOAA

February 1998–
October 2008 800 GFO-RA Ku-band 17 165

Jason-1 CNES/
NASA

December 2001–
June 2013 1336 Poseidon-2 Ku and

C-band 10 315

Envisat ESA March 2002–
April 2012 800 RA-2 Ku and

S-band 35 80

OSTM/
Jason-2

CNES/
NASA/

Eumetsat/
NOAA

Jun 2008–
present 1336 Poseidon-3 Ku and

C-band 10 315

CryoSat-2 ESA April 2010–
present 720 SIRAL Ku-band 369 7.5

HY-2 China August 2011–
present 971 Ku and

C-band 14, 168

Saral ISRO/
CNES

February 2013–
present 800 AltiKa Ka-band 35 80

Jason-3

CNES/
NASA/

Eumetsat/
NOAA

January 2016–
present 1336 Poseidon-3B Ku and

C-band 10 315

Sentinel-3A ESA February 2016–
present 814 SRAL Ku and

C-band 27 104

ESA’s CryoSat-2 is distinctive due to its long repeat (369 days) and corresponding drifting
ground track pattern and due to the SIRAL instrument (see details in Section 3). For short-repeat
missions, one can derive water level time series at the locations where the satellite’s ground track
regularly intersects with the water body—the so-called virtual station. This eases many aspects of
processing altimetry data and integrating it into hydrologic models (more details in Section 6.3).
CryoSat-2 with its drifting ground track pattern and a repeat cycle of 369 days has an entirely different
sampling pattern. For this reason, use of CryoSat-2 for inland water research, especially river modeling,
has been limited so far. However, the long-repeat orbit has the advantage of short inter-track distances
(larger spatial coverage, see Table 1); moreover, CryoSat-2 has other important advantages, for example,
a finer along-track resolution (for SAR and SARIn modes) compared to traditional pulse-limited
radar altimeters [29]. The drifting ground track pattern with a small inter-track spacing of 7.5 km
at the equator enables (i) monitoring of a much larger number of lakes and (ii) derivation of high
resolution water level profiles along rivers. Moreover, these dense ground tracks increase the temporal
resolution for large lakes. These characteristics create new opportunities for hydrologic research:
Nielsen et al. [18] showed that small lakes (~9 km2) can be observed by CryoSat-2. Schneider et al. [30]
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calibrated a hydrodynamic river model with CryoSat-2 observations. Published study results show
that performance of CryoSat-2 achieves root mean square error (RMSE) of a few centimeters for
lakes [18,31] and between about 30 cm down to less than 5 cm using special data handling strategies
for the Amazon River [32].

In this paper, we review the application of CryoSat-2 altimetry data over inland waters since its
operation started in April 2010 up to today. Specifically, we first present the basic principle of satellite
radar altimetry, and provide a CryoSat-2 mission overview. Then, we present data processing and data
products, and review the use of CryoSat-2 altimetry data over lakes and rivers, and finally we discuss
prospects of potential use of CryoSat-2 in hydrological applications.

2. Basic Principles of Radar Altimetry

In satellite radar altimetry, a microwave pulse is sent out by the altimeter, reflected by the surface,
and finally part of its echo is recorded at the altimeter. The time series of returned power measured by
the altimeter is commonly referred to as waveform [33] (inset in Figure 2). The principle of satellite
radar altimeters obtaining surface height is to measure the two-way travel time of the microwave
pulse travelling between the altimeter and the surface. This time interval can be then converted into
a distance, also called range (Figure 2), by multiplying with the speed of light at which electromagnetic
waves travel. With the position of the satellite, i.e., the altitude of satellite, surface height can be
obtained by subtracting the range from the altitude of satellite. A Doppler Orbit and Radio Positioning
Integration by Satellite (DORIS) receiver is deployed on-board for real-time measurements of satellite
position, velocity and time. The measurement accuracy of the satellite position is 2–6 cm [34].

 

Figure 2. Altimetry principle of water level measurement (Modified from [35]).

The range window, i.e., the elevation window where the satellite altimeter is sensitive to
observations, has to be adapted dynamically to the topography. This can either be done in closed loop
or open loop. In open loop, the range window is positioned based on a DEM. Closed loop means
that the altimetry instrument itself constantly adapts the range window based on measurements [36],
which is the mode implemented on CryoSat-2.

In general, waveforms returned from small inland open water bodies have a single strong peak
due to the quasi-specular scattering of the smooth water surface. Those returned from large rough
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water bodies usually have only one peak with a steep leading edge and a slowly decaying trailing
edge (Figure 3). If the exact location of the leading edge in the return waveform can be determined,
the signal travel time can be estimated, therefore the range (and ultimately the surface elevation) can
be calculated [37]. This is performed by the on-board tracker.

However, due to the diversity of reflecting surfaces, waveforms change dramatically in shape
and power. Waveforms returned from inhomogeneous terrain (e.g., water and land transition
area) usually have a complicated shape with multiple peaks [32,38]. Therefore, the leading edge
of the returned waveform deviates from the altimeter tracking position (nominal tracking point),
causing an error in the measured range which is accounted for by retracking [39] (Figure 3).

Figure 3. Illustration of waveform showing the nominal tracking point and retracking point.

The altimeter waveform is provided in a set of power signals with respect to time at a specified
number of sample bins [37] (Figure 3). Waveform retracking is the process of finding the mid-bin of
the leading edge (retracking point) in the return waveform to calculate the difference between the
nominal tracking position and the retracking position (Figure 3), thus correcting the on-board tracker
range [37,38].

Rcorr = R + Rrtrk − ΔRgeo (1)

where R is the range computed by the on-board tracker; Rrtrk is the retracker correction and ΔRgeo is
the sum of corrections including ionosphere, wet and dry troposphere, solid earth tide, ocean loading
tide, and pole tide. All corrections are available in the L1b data product. Thus, the corrected range
Rcorr between the satellite and water surface can be derived.

For hydrological purpose, one can conveniently refer the surface to the geoid. Finally, the surface
elevation H is obtained by subtracting the corrected range R and geoid undulation N from the satellite
altitude h:

H = h − Rcorr − N (2)

3. Mission Overview

ESA’s CryoSat-2 satellite was launched on 8 April 2010. The primary objectives of this mission are
monitoring the Arctic sea ice thickness variation and the influence of the Antarctic and Greenland ice
sheets on global sea-level [34,40]. However, like previous satellite altimetry missions, it also proved to
be useful for monitoring of inland water levels [13,19,41].
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3.1. Instrument

The radar altimetry instrument on CryoSat-2 is called SIRAL (Synthetic Aperture Interferometric
Radar Altimeter). It is a single Ku-band radar altimeter using the full deramp range compression.
It is operating in three distinct modes: Low Resolution Mode (LRM), Synthetic Aperture mode
(SAR), and Synthetic Aperture Interferometric mode (SARIn) (Figure 4). Over the central regions
of the ice sheets and most of the continental area, the instrument will provide the measurements
as a conventional radar altimeter in LRM. SAR mode enhances the along-track spatial resolution to,
for example, measure ice flows and narrow leads of open water which cannot be achieved by LRM. It is
also used over some coastal regions. SARIn mode is used over the topographic surfaces of the ice-sheet
margins, over mountain glaciers, and over other regions of interest, for example, large river systems
such as the Danube or Congo River. In this mode, the altimeter performs synthetic aperture processing
with two antennas and thus precisely determines the position of the ground surface in the return pulse.
The operation mode is selected from a geographical mask [42] (see Figure 4), which is updated every
two weeks to allow for changes in sea ice extent. Especially the two-antenna SARIn mode makes
CryoSat-2 unique among current satellite altimetry missions. For more details, please refer to [34,43].

 

Figure 4. Geographical mode mask 3.8 (synthetic aperture radar (SAR) mode in red, SARIn mode in
blue, all remaining areas in low resolution mode (LRM) [42]).

3.2. Orbit

Satellite radar altimeters sample elevation globally along the orbit ground track. Orbits are
constrained by the equations of motion. The primary factors that affect the orbit geometry are the
altitude, inclination and eccentricity [44]. CryoSat-2’s orbit is non-sun-synchronous with a mean
altitude of 717 km and a high inclination of 92◦. The repeat period is 369 days or 5344 orbits.
However, the orbit also has a 30-day subcycle, which encompasses the full 369-day repeat by
successive shifts. In other words, the orbit shifts about 7.5 km at the equator every 30 days and
returns to the same place every 369 days. More information is detailed in [43].

3.3. Ground Track

As already mentioned, CryoSat-2’s orbit is long-repeat (geodetic orbit) and leads to a particular
drifting ground track pattern (Figure 5). Up to today, with the exception of CryoSat-2, all satellite
altimeters used to measure river water levels were on short-repeat orbits. The resulting ground tracks
for the main missions are displayed in Figure 5 for the Brahmaputra River in the Assam Valley, India as
an example. At locations where the conventional missions with short-repeat cycles intersect with
the river (or a lake), time series of water level measurements are established. This also means that
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processing efforts, such as water masking, can be limited to these specific locations, which are spaced
with the inter-track distance indicated in Table 1. Besides that, observations from short-repeat orbits
result in water level time series with relatively high temporal resolution. The availability of dense time
series eases outlier filtering and integration into hydrologic models. CryoSat-2 however, as can be
seen from Figure 5 and Table 1, has a much smaller inter-track distance. This requires, amongst others,
continuous water masks for processing. The challenges of dealing with the drifting ground track are
described in Section 5.1 for lakes and Section 6.1 for rivers.

Figure 5. Ground track patterns. Inset: Ground tracks of CryoSat-2 over a period of 16 days.
Main: Ground tracks of different altimetry missions over the Assam Valley with the Brahmaputra
River in South Asia. Jason-1/2/3 have a repeat cycle of 10 days, Sentinel-3A and B of 27 days,
and Envisat, ERS-2 and SARAL/AltiKa of 35 days. CryoSat-2 has a full repeat cycle of 369 days.

3.4. Footprint

The ground footprint size is an important characteristic that determines what the altimeter can
measure [36]. The footprint is the area on the Earth’s surface illuminated by the radar beam. For the
pulse-limited altimeter (used by all previous radar altimetry missions), a very short duration of the
pulse means that a small area is illuminated simultaneously. This is also referred to as the Pulse-limited
Footprint (PLF) [45].

LRM on CryoSat-2 is the conventional pulse-limited radar altimeter mode (Figure 6). One pulse is
transmitted with a very short duration (3.125 ns), so the pulse does not illuminate the whole beam
width at the same time. Specifically, the illuminated area continues to grow linearly until the rear of
the pulse intersects the surface at nadir [33]. Thereafter, the footprint becomes annulus with constant
area for smooth surfaces. The radius r can be calculated:

r =
√

c · τ(c · τ + h) (3)

where c is the speed of light, h is the altitude of the satellite and τ is the pulse length. For LRM, r is
about 830 m and thus the PLF area is about 2.15 km2. It should be noted that the true illuminated area
may be discontinuous or irregular in shape due to the roughness and slope of surface [46].

In SAR/SARIn modes, the delay/Doppler beam allows the relative along-track position to be
estimated relative to the position of the altimeter (Figure 6). Therefore, the illuminated area has
two independent variables, i.e., along-track position and cross-track position (time delay) [47]. In the
cross-track direction, the illuminated area width is the same as that in LRM. In the along-track direction,
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it can be seen as sharpened beam-limited. The illuminated area can be approximated by the rectangle
defined by the cross-track radius and along-track width Δx (Figure 6d).

fD =
2vr

c
fc (4)

vr = v · sinθ (5)

fc =
c
λ

(6)

Δx = h · sinθ (7)

Therefore, Δx can be expressed as:

Δx =
λ · h
2v

· fD (8)

where v is the velocity of the satellite; λ is the wavelength; fD is approximately equal to the inverse of
the time during which the surface is covered by the beam, i.e., PRF/64 [34].

The pulse-limited width in the cross-track direction is about 1.65 km and the sharpened
beam-limited width in the along-track direction is about 300 m, thus the footprint for SAR/SARIn is
about 0.5 km2.

The SAR/SARIn modes compensate for the extra delay and thus the return waveform is much
sharper than that derived from LRM [47] (Figure 6e,f). In addition, in SARIn mode, two antennas
allow to precisely determine the ground position of the returned echo, because the returned echo is
not necessarily from nadir point.

 

Figure 6. Comparison of a conventional pulse-limited radar altimeter and a SAR altimeter:
(a,b) footprint side view; (c,d) footprint plan view; and (e,f) waveform. Adapted from [47].
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4. Data Products

ESA provides different datasets (ftp://science-pds.cryosat.esa.int). Here, we give an introduction
to Level-1b and Level-2 datasets which are used in inland water research.

4.1. Level-1b Data

Level-1b data contain the reflected waveforms and average waveforms (for LRM and SAR) along
with the measurement time and geographical location. Calibration corrections are included and have
been applied to the window delay computations. Signal propagation delays and other geophysical
corrections are included in the data products but have not been applied to the range, therefore,
the range needs to be corrected by taking these corrections into account. Data record structure is
described in [34].

4.2. Level-2 GDR Data

Level-2 GDR (Geophysical Data Record) data, i.e., ground elevation, corrected for range and
geo-physical effects (see Equation (2)), are produced by ESA systematically. They are the result of
retracking and correcting the above discussed Level-1b data. Furthermore, other research groups
produce their own Level-2 data, usually based on ESA’s Level-1b data [31,32,48].

4.3. Level-3 (Along-Track) Products

Besides the ESA L2 product, very few sources provide water level data. AltWater (http://altwater.
dtu.space/) from DTU space (National Space Institute, Technical University of Denmark) is the only
one providing L3 water levels (along-track product) derived from CryoSat-2. While this product just
covers a limited amount of lakes and reservoirs, those who aim at rivers or other inland water bodies
need to process time series from scratch. Figure 7 gives a brief overview of the procedure to produce
time series for lakes and water level for rivers. More details for time series construction are given in
Sections 5 and 6.

 

Figure 7. Flow chart of CryoSat-2 data processing.
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5. Use of CryoSat-2 over Lakes

CryoSat-2, due to its special ground-track pattern, visits many lakes at global scale and provides
water levels for smaller lakes than any of the previous missions. In the following sections, we will
present lake level and storage variations analysis using CryoSat-2 data.

5.1. Time Series Construction

Unlike in situ hydrometric equipment which records the water level at a fixed location, altimetry
provides multiple along-track measurements at different locations during a very short time slice
(Figure 8). In order to investigate the variation of water level, the first step is to construct a water
level time series. The most straightforward method is taking an average of all values along one track.
However, outliers in the altimetry observations should be excluded. They occur, for example, near the
shore because the waveforms are contaminated by land.

 

(A) 

(B) 

Figure 8. CryoSat-2 ground tracks over Taro Co in the Tibetan Plateau. Upper: ground tracks;
bottom: measurements from track 18942, indicated by red dots on the left figure.

There exist several methods to generate along-track water levels. Kleinherenbrink et al. [48] suggested
a tailored outlier removal procedure to derive the along-track mean lake level. More specifically,
they utilized the mode and a threshold as the filter to identify outliers. The threshold of 1 m was chosen
under the assumption that the measurements should not deviate more than 1 m from the mode.
Schwatke et al. [49] employed several criteria to remove outliers, such as height error threshold, using
the deviation around the median of measurements from a moving part of each track (7 km and
3 km) and support vector regression, which applies a linear regression with zero-slope constraint.
However, these two approaches provide different results on outlier detection (Figure 2 in [49]).
Similarly, Göttl et al. [31] excluded outliers using the moving 5-point standard deviation with
a threshold of 10 cm. Nielsen et al. [18] proposed a robust method to obtain the mean water level,
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which assumes that the observation error follows a mixture distribution between a Gaussian and
a Cauchy distribution. The advantage of this method is that the estimated mean water levels are
not significantly biased by the outlying observations. The accuracy of all methods also depends
on the water mask, that is, to make sure that spurious measurements are not dominant in each
individual track.

The time series can be constructed by a straightforward connection of all along-track mean
measurements if each individual along-track mean is accurate. Several methods are employed to
estimate the water level time series, taking into account the error of measurements. In [50], besides
simply connecting individual measurements, two weighted moving averaging methods were used
to construct the time series. Specifically, three consecutive measurements are averaged using their
error as weighting factor. Kalman filtering is used for the construction of water level time series
in DAHITI [49]. The water surface was assumed to be controlled by deterministic and stochastic
processes. By taking the accuracy of each track height into account, this algorithm produces an optimal
estimate of water level time series. Similarly, Nielsen et al. [18] proposed a state-space model to
describe the lake level variation with time under the assumption that lake level observations taken
in a short time span are more strongly correlated. In this model, the true unobserved water level is
described by a simple random walk. The model provides predictions of the evolution of the true lake
water level. Lake levels produced with the described procedure by Nielsen et al. can be found in the
aforementioned AltWater database.

5.2. Lake Level Trend Estimation

In order to investigate the characteristics of lake level changes, both inter-annual and intra-annual,
generally linear or periodic non-linear regression models are used.

The Tibetan Plateau is a crucial test ground for inland water altimetry research due to the vast
number of lakes, most of them unmonitored. Kleinherenbrink et al. [17] studied 30 lakes on the Tibetan
Plateau and Tian Shan areas over a 2-year period. They used a simple harmonic model to determine
the phases and amplitudes for both annual and semi-annual variations in addition to a long-term trend.
This was successful except for some lakes, which probably exhibit water level changes with different
cycles, and thus cannot be captured by this harmonic model. Jiang et al. [21] studied 70 lakes on the
Tibetan Plateau over the past five years using a weighted linear regression model. Their results show
that lakes are still rising at similar rate to that of 2003–2009, especially in the northern Tibetan Plateau.

Other studies focused on specific individual lakes. Song et al. [51] investigated the variation of
Namco based on multiple data sources including Cryosat-2 using an iterative reweighted linear model.
Similarly, Tourian et al. [52] studied the desiccation of Lake Urmia in Iran.

Lake levels, especially in endorheic lakes, like the majority of the lakes in Tibetan Plateau,
are sensitive to regional climate change, which leads to changes in precipitation and evaporation.
Moreover, lake level change is also controlled by regional hydrological conditions. Many studies have
investigated the driving factors of significant lake level changes in order to understand and explain
the mechanisms behind the change. However, lake rise on the Tibetan Plateau seems to be driven by
many factors and their interactions [17,21,53–56], and a simple, process-based model remains elusive.
In this context, CryoSat-2 can play an important role to further our understanding of lake response to
climate change due to its dense spatial coverage.

5.3. Lake Storage Calculation

The relationship between water volume and water level is known if the bathymetry is available
(Figure 9). We can calculate it by summing all small volumes as below:

V =
n

∑
i=1

(H − Hi)A (9)
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with V total storage, H lake surface height, Hi the bottom elevation of each volume, and A is the
sectional area of volume. This can be used to establish the stage-storage curve. Thus, the instantaneous
storage can be calculated using altimetry data.

However, for real-world applications, the bathymetric data is often unavailable. Instead of the
total storage, storage changes can be estimated combining lake level with corresponding extent, both
of which can be obtained from remote sensing datasets. Then, we can calculate the storage change
under the assumption that the volume is a circular cone [57] (Figure 9):

S =
1
3
(H2 − H1)

(
A1 + A2 +

√
A1 × A2

)
(10)

where, S is the storage change; H2, H1 and A2, A1 are lake levels and areal extents at different dates,
respectively. Sometimes, the estimation of storage change based on a constant extent gives a reasonable
approximation [58]. However, with the high temporal resolution SAR imagery from Sentinel-1,
dynamic lake storage changes can be estimated. For example, Baup et al. [59] estimated the volume of
small lakes by combining high-resolution SAR images and altimetry.

Figure 9. Illustration of lake storage and storage change calculation.

Water storage of lakes and reservoirs inferred from altimetry is of great value to regional water
management and hydrologic modeling. In addition, it contributes to the understanding of total
water storage changes (including ground water storage) variation inferred from GRACE. For example,
the lake mass change inferred from altimetry accounts for 61% of storage increases derived from
GRACE in the inner Tibetan Plateau [20].

6. Use of CryoSat-2 over Rivers

In general, the application of satellite altimetry requires the river to be of a certain minimum
width around a hundred to a few hundred meters due to the footprint size of the altimeter.
Otherwise, the waveform is too contaminated by the surrounding land surface. Furthermore, steep
river valleys make it hard for the range window to be adapted to the river water surface if the altimeter
operates in closed loop mode such as on CryoSat-2 [60]. Another important factor is the orientation
of the river in relation to the ground track: All satellite altimetry missions have ground tracks with
a predominantly north–south direction, which gives most regular observations over rivers flowing in
the east–west direction.

6.1. Masking and Filtering

The unique drifting ground track pattern of CryoSat-2 challenges common ways of dealing with
satellite altimetry data over rivers. All the conventional satellite altimetry missions have an inter-track
spacing between two consecutive ground tracks of at least 80 km at the equator. This is also reflected in
the processing methods of the currently active databases for inland water satellite altimetry: HydroWeb
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(http://www.legos.obs-mip.fr/en/soa/hydrologie/hydroweb/) applies rectangular masks at the
locations of the virtual stations [61]. The DAHITI (http://dahiti.dgfi.tum.de/en/) database uses
simple latitude thresholds, exploiting the fact that the altimetry satellites’ ground tracks run in
a predominantly north–south direction [49]. CryoSat-2 however has a much finer inter-track spacing
of approximately 7.5 km (compare Figure 4 and Table 1). This means that, instead of locally limited
river masks, continuous river masks are needed.

Another database, the ESA project River&Lake (http://tethys.eaprs.cse.dmu.ac.uk/RiverLake/
shared/main), already used a continuous global river mask, however it is static and at low
resolution [62], not accounting for potential changes in the course of the rivers over the years.
High-resolution and potentially dynamic water masks, to take into account changes of the water
body’s extent, are derived from remote sensing imagery. Often, optical imagery, e.g., from Landsat, is
used [30,63]. Such optical imagery provides high spatial and temporal resolution (30 m and 16 days,
respectively, in the case of Landsat), is available freely, and easy to process. However, issues with cloud
cover can severely limit the actual amount of data available, for example, making it possible to only
derive one mask each year for the Brahmaputra River [30] as shown in Figure 10. Recently, readily
processed, global and multi-temporal water masks from Landsat imagery have been made available, for
example, the Global Surface Water Explorer [9]. Such masks could support the development of global
altimetry databases. However, there also exists a weather independent alternative to derive water masks:
SAR imagery. Since the start of the Sentinel-1A mission in 2014 as part of the Copernicus programme,
high resolution SAR imagery is freely available. Its use could improve the river masks significantly, and
hence improve the amount and quality of the extracted CryoSat-2 water level observations.

 

Figure 10. CryoSat-2 SARIn data over the Brahmaputra River in the Assam Valley. The map displays
data for 2014, while the graph shows all data from the river stretch in the map view for 2010 to 2015,
displaying the river water level profile observed by CryoSat-2.

Besides the challenges to river masking, the absence of a (short) repeat cycle also means that
time series analysis for outlier filtering and uncertainty estimation of the observations cannot be
applied for CryoSat data over rivers, at least not directly: In the case of virtual station time series,
water level amplitudes can be observed during the course of a year, potentially detecting outliers.
Both DAHITI and HydroWeb use some outlier filtering based on the whole time series for their virtual
station products.
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Due to these challenges, neither DAHITI nor HydroWeb (nor the now inactive River&Lake
database) currently offer readily available water level measurements over rivers from CryoSat-2,
but only from the repeat orbit missions.

6.2. Densification

For various purposes, such as the creation of time series and the validation of CryoSat-2
observations against in situ station observations, it can be necessary to interpolate the spatio-temporally
distributed observations of CryoSat-2 onto certain points (e.g., virtual stations). To achieve this,
there exist, in principle, three methods:

First, the interpolation of water level observations along the river, using the water level slope.
This water level slope can, for example, be estimated from the very same data, as done by
Villadsen et al. [19] with CryoSat-2 data over the Ganges and Brahmaputra rivers. They interpolated
the CryoSat-2 data to Envisat virtual stations along the Brahmaputra River and found a reasonable
agreement between Envisat and CryoSat-2 data. However, such simple interpolation introduces errors,
for example, by not taking into account changing water level slopes between a high- and low-flow
season or approaching or receding flood waves.

Another suggestion was made by Tourian et al. [50]. They used quantiles of relative water
levels at virtual stations, and transferred those to defined stations using simple time lags along the
river network. By this, they can densify multi-mission altimetry datasets. They also included CryoSat-2
data in their study. However, the application of this method to CryoSat-2 still is challenging as the
proposed method derives the quantiles from empirical cumulative distribution functions. With the
proposed method, these distributions can only be derived from virtual station time series with
a sufficient number of observations at the same location. For CryoSat-2, the quantile values were
interpolated from downstream and upstream virtual stations with a short repeat cycle. This interpolation
potentially introduces errors: In a direct comparison of in situ and CryoSat-2 data close to the in situ
stations, Tourian et al. found that CryoSat-2 performs better than most other missions. Its inclusion
in the entire dataset of repeat orbit missions however slightly deteriorated the performance of the
multi-mission dataset.

The third possibility is the spatio-temporal interpolation of the scattered CryoSat-2 observations
to obtain continuous water level surfaces. Such an interpolation should be aware of the correlations
of the water levels in time and in space, due to the river network and the physics of river flow.
Kriging methods have been suggested for such tasks and applied, for example, with synthetic SWOT
data over the Ganges-Brahmaputra-Meghna Delta [64] or the Tennessee River [65]. A multi-mission
dataset has been interpolated with spatio-temporal kriging by Boergens et al. [66], however also here
CryoSat-2 was not included. This is due to the fact that the method requires the altimetry data to be
in the form of virtual station time series. Simple spatio-temporal interpolation of CryoSat-2 water
level observations can be successful, at least for simple river networks as shown by Bercher et al. for
CryoSat-2 data over a tributary of the Amazon River [67]. Their results, however, were not validated
against in situ data.

6.3. Merging with Hydrodynamic Models

River discharge is one key component of the water cycle and is one of the most important
quantities for the hydrology community. Although discharge can be inferred from altimetry data based
on Manning’s equation if cross-sectional geometry and roughness are available or can be estimated,
the estimates of discharge are only produced at the time of altimetry overpasses [68]. As discussed
above, data based densification approaches also have their shortcomings and inaccuracies. The best
estimators of water levels, continuous in time and space, are hydrodynamic models. Such models then
can be informed by altimetry data in different ways.

On the one hand, calibration of model parameters such as channel shape and channel roughness
is possible. This was performed with data from conventional altimetry missions such as Envisat
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and ERS-2 [69,70], TOPEX/Poseidon [71]. Schneider et al. [30] exploited the fine spatial resolution
along the course of a river (compare Figure 10). Here, CryoSat-2 data was used over the Brahmaputra
River in combination with Envisat virtual station data to calibrate cross section shapes and datums of
a hydrodynamic model of the river. The calibrated model is able to reproduce water level–discharge
relationships with an accuracy that hardly can be obtained by using globally available DEMs such as
SRTM for model parameterization only.

On the other hand, satellite altimetry data also can be used to update the states of a hydrodynamic
river model, i.e., its water levels via data assimilation. This has, for example, been successfully
demonstrated with Envisat data over the Brahmaputra River [22], the Amazon River [72] or over the
Zambezi River [16]. Jason-2 altimetry has successfully been assimilated to a hydrodynamic model of
the Ganges-Brahmaputra-Meghna river system in a real-time flood forecasting system [73]. As for
many of the aforementioned methods, all these studies, however, do use altimetry data in the form
of virtual station time series. To assimilate CryoSat-2 data, a flexible modelling-data assimilation
approach is needed, being able to handle altimetry measurements arbitrarily distributed in time
and space. One such framework was proposed by Schneider et al. [74], and has been tested with a 1D
hydrodynamic model of the Brahmaputra River. With this modelling and data assimilation approach,
any kind of altimetry data, including multi-mission datasets, can be ingested.

7. Discussion and Perspectives

CryoSat-2, with its SIRAL altimetry instrument, began a new era of SAR altimetry, which outperforms
conventional altimeters by providing a finer along-track resolution [32]. However, to date, applications of
CryoSat-2 data for hydrologic studies are scarce. This is due to the new challenges posed by CryoSat-2
compared to previous missions which originate from the drifting ground track pattern. These issues,
mentioned above, are reflected in the limited availability of CryoSat-2 water level data in inland water
altimetry databases.

However, besides the new altimetry instrument, CryoSat-2 has other advantages over the previous
short-repeat missions. The small inter-track distance is beneficial over lakes: For example, the study
of Kleinherenbrink et al. [17] shows that CryoSat visited 125 lakes with at least four passes over the
period February 2012 to January 2014 in the Tibetan Plateau and Tian Shan area. Actually, CryoSat-2
sampled more than 400 lakes with at least ten passes over 6 years in the Tibetan Plateau (Figure 11),
including practically all lakes with surface areas exceeding 5 km2. This is unachievable using previous
altimetry missions. Moreover, the study of Nielsen et al. [18] indicates that CryoSat-2 has better
precision than Envisat with regard to mean water level. Therefore, CryoSat-2 shows great advantages
over other missions in lake level monitoring.

CryoSat-2 also can be used beneficially over rivers. One important novelty and advantage of
CryoSat-2 is that its ground track pattern allows deriving high-resolution water level profiles [26]
(Figure 10). Similarly, data from ICESat with slightly lower along-river resolution than CryoSat-2 has
been used for a hydraulic characterization of the Congo River [75], allowing to derive water surface
slopes with greater detail than those previously derived from virtual station altimetry. Such hydraulic
characteristics of rivers can be used to parameterize or calibrate hydrodynamic models of the same
rivers, with higher spatial resolution than previously possible. Furthermore, with a flexible data
assimilation approach, CryoSat-2 data can be used to update hydrodynamic models [74].

Moreover, the higher resolution and the better signal-to-noise ratio of SAR/SARIn data allow
monitoring water levels of narrow rivers [30,76], for which the application of satellite altimetry for
water level measurements has been restricted in the past [77]. Given that most major rivers are less
than 1 km wide [78,79], SAR altimetry will be of great value for river water level monitoring due to
its higher spatial resolution and higher precision. With the operation of Sentinel-3A and upcoming
Sentinel-3B, SAR altimetry is likely to get more attention in river monitoring with the increase in both
accuracy and coverage (inter-track distance at the equator 52 km of the constellation).
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Figure 11. Map of lakes in the Tibetan Plateau seen by Envisat/SARAL ((A), in red) and CryoSat-2
(SARIn mode from 2010 to 2016 in black); (C) Zoom-in of the red rectangle in (B); (D) CryoSat-2
measurements of four lakes which have surface areas between 10 to 420 km2.

Some of the strategies developed for CryoSat-2, such as new approaches to densification of
altimetry measurements and combination with hydrodynamic models will support processing and
application of data from the upcoming SWOT mission. SWOT, expected to be launched in 2020 by
NASA, will be the first satellite altimetry mission to provide images of water heights (instead of
points at nadir) [80]. Hence, its capabilities and potential applications over inland water bodies have
been assessed in many studies [64,81–84]. The mission’s new sampling pattern will require some
of the techniques developed for CryoSat-2 data, such as flexible data assimilation approaches or
interpolation methods. Also, SWOT will provide instantaneous water level profiles along rivers within
single measurements (images). This is different from CryoSat-2, which provides water level profiles
sampled in a series of consecutive overflights. Combination of all the different missions and data types
will greatly enhance our understanding of water storage and flow characteristics and support model
calibration and operational forecasting.

8. Conclusions

Being an ongoing mission, CryoSat-2 will continue to build up its dataset starting in 2010. In this
review, promising applications of CryoSat-2 over lakes and rivers have been summarized. CryoSat-2
can be used beneficially over inland water. If exploited correctly, it features some significant advantages
over previous short-repeat cycle missions mostly related to its drifting ground track pattern and
resulting shorter inter-track distance.

Using CryoSat-2 data requires moving beyond the concept of virtual stations, or station data
in general. Some of the data processing developed for CryoSat-2 inland water altimetry data will be
useful for handling data delivered by the state-of-the-art Sentinel-3 altimeter. In general, the technology
push created by CryoSat-2 can ultimately lead to data processing and model integration techniques
being able to effectively handle altimetry datasets with arbitrary spatio-temporal distribution,
or multi-mission datasets. This could also include new, unconventional data types, such as data
acquired from UAVs (Unmanned Aerial Vehicle).

The new generation of SAR altimeters (Sentinel-3, Jason-CS/Sentinel-6 and SWOT) is expected
to provide higher resolution data at unprecedented spatial coverage. This will further improve our
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abilities to monitor surface water variations, especially in data-sparse regions, and also help to advance
forecasting applications.
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Abstract: Lake Urmia, the second largest saline Lake on earth and a highly endangered ecosystem,
is on the brink of a serious environmental disaster similar to the catastrophic death of the Aral Sea.
Progressive drying has been observed during the last decade, causing dramatic changes to Lake
Urmia’s surface and its regional water supplies. The present study aims to improve monitoring of
spatiotemporal changes of Lake Urmia in the period 1975–2015 using the multi-temporal satellite
altimetry and Landsat (5-TM, 7-ETM+ and 8-OLI) images. In order to demonstrate the impacts of
climate change and human pressure on the variations in surface extent and water level, Lake Sevan
and Van Lake with different characteristics were studied along with the Urmia Lake. Normalized
Difference Water Index-Principal Components Index (NDWI-PCs), Normalized Difference Water
Index (NDWI), Modified NDWI (MNDWI), Normalized Difference Moisture Index (NDMI), Water
Ratio Index (WRI), Normalized Difference Vegetation Index (NDVI), Automated Water Extraction
Index (AWEI), and MultiLayer Perceptron Neural Networks (MLP NNs) classifier were investigated
for the extraction of surface water from Landsat data. The presented results revealed that MLP NNs
has a better performance in the cases where the other models generate poor accuracy. The results
show that the area of Lake Sevan and Van Lake have increased while the area of Lake Urmia has
decreased by ~65.23% in the past decades, far more than previously reported (~25% to 50%). Urmia
Lake’s shoreline has been receding severely between 2010 and 2015 with no sign of recovery, which
has been partly blamed on prolonged droughts, aggressive regional water resources development
plans, intensive agricultural activities, and anthropogenic changes to the system. The results also
indicated that (among the proposed factors) changes in inflows due to overuse of surface water
resources and constructing dams (mostly during 1995–2005) are the main reasons for Urmia Lake’s
shoreline receding. The model presented in this manuscript can be used by managers as a decision
support system to find the effects of building new dams or other infrastructures.

Keywords: water management; drought monitoring; long-term change detection; anthropogenic
activities; wetland identification
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1. Introduction

Lakes and rivers are the most accessible inland water resources available for ecosystems and
human consumption [1] and they are valued for their ability to store floodwaters, protect shorelines,
improve water quality, and recharge groundwater aquifers [2,3]. Therefore, the information of the
long-time lake water storage variations is fundamental for understanding the impact of climate
change and human activities on the water resources [4]. For these reasons, many responsible
organizations operate a number of inland water level stations to collect information for water resources
management [1,5–7]. However, still many remotely located lakes have not been gaged, especially in
developing countries [8–10].

Because of the use of advance techniques (e.g., remote sensing), the number of gaging stations
have decreased in recent years around the globe [5,6,8,11]. Remote sensing technology for monitoring
changes is widely used in different applications such as land use/cover change [12,13], disaster
monitoring [14,15], forest and vegetation changes [16,17], urban sprawl [18,19], and hydrology [20,21].
The knowledge about water resources can be efficiently improved by the use of remote sensing
which include radar, microwave, infrared, and visible sensors. Among the mentioned remote sensing
methods, microwave remote sensing provides a unique capability for mapping inundation area and
delineate water boundaries over large areas of the Earth’s land surface [5,22]. The exploitation of
satellite data about water bodies provide reliable information for the assessment of present and future
water resources, climate models, agriculture suitability, river dynamics, wetland inventory, watershed
analysis, surface water survey and management, flood mapping, and environment monitoring, which
are critical for sustainable management of water resources on the Earth [1,23–25].

Lake surface areas (especially closed lakes) [1] are sensitive to natural changes and thus may serve
as significant proxies for variations in regional environmental and fluctuations in global climate [26–28].
Changes in the areal extent of lake surface water may occur due to various factors, including the
progressive unveiling of the lake basin by sediments, climate change, tectonic activity causing uplift or
subsidence, and the development of drainage faults [27,29,30].

Satellite remote sensing for the analysis of water volume variation has been used very often in the
related literature [31]. Birkett [32], Frappart et al. [33] and Crétaux et al. [11] have used successfully
satellite radar altimetry to derive water levels of water bodies [8]. Duan et al. [8] estimated water
volume variations in Lake Mead from four satellite altimetry and imagery datasets [31]. Recently,
Baup et al. [34] combined high-resolution satellite images and altimetry to estimate the volume changes
of the lakes that are mainly used for irrigation in France [31]. Surface water volume changes derived
from the combination of altimetry and imagery were removed from the total water storage anomaly
estimated using observations from the GRACE gravimetry from space mission to estimate soil water
content variations [35–37].

Yan et al. [38] detected the dynamic changes in surface areas of Lake Qinghai using Landsat
TM/ETM+ images based on the model which relies on the fact that water bodies appear dark in
middle and near infrared bands [1,39]. These studies provide reliable estimation of lake fluctuation
in water levels and areas, which is of great significance for water resources management under the
background of climate change [1]. However, these studies have focused on the detection and analysis of
variations in surface extent and water level in response to either climate change or human-environment
interactions [1,40].

Among the models proposed for water feature extraction from satellite data, multi-band ratio
models are the most popular models for surface water extraction [27]. Komeili et al. [41] developed
NDWI-PCs model based on Normalized Difference Water Index (NDWI) and Principal Component
Analysis (PCA) for extracting water features from Landsat TM, ETM+, and OLI imagery over
Lake Urmia. Xu [42] developed a modified NDWI (MNDWI) in which the middle infrared (MIR) band
was replaced with the near infrared (NIR) band in order to decrease false positive from built-up lands.
Ouma et al. [43] developed a Water Index (WI) model using Tasseled Cap Wetness (TCW) index and
NDWI for Landsat TM and ETM+ imagery over Rift Valley lakes in Kenya [27].
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The other proposed models include semi-automated change detection approaches [27], e.g.,
single band density slicing and Maximum Likelihood (MXL) model presented by Frazier et al. [44],
conceptual clustering technique and dynamic thresholding proposed by Soh et al. [45], supervised
classification model proposed by Alecu et al. [46], multivariate regression method [47] and automated
spectral-shape procedure presented by Yang et al. [48]. The last but not least proposed algorithms
are automatic extraction methods, for instance, Support Vector Machine (SVM) and Spectral Angle
Mapper (SAM) models presented by Jawak et al. [49], object oriented multi-resolution segmentation
model developed by Shao et al. [50], and fuzzy intra-cluster distance within the Bayesian algorithm
proposed by Jeon et al. [51]. To the best of the authors’ knowledge, a detailed analysis of Artificial
Neural Networks (ANNs) models for automatic surface water extraction has not yet been presented in
the related literature, whereas ANNs models can be very competitive in terms of accuracy and speed
for image classification.

Starting from these motivations, the purpose of the present paper is to demonstrate: (1) the
potential of ANNs approach for a fast, robust, accurate and automated water feature extraction
without using any ancillary data; and (2) the detection and analysis of variations in surface extent and
water level in response to both climate change and human-environment interactions using multisensory
remote sensing techniques.

In order to examine the robustness of the algorithm, the result of the proposed model has been
compared with the results of different satellite-derived indexes including Normalized Difference Water
Index (NDWI) [41,52], Modified Normalized Difference Water Index (MNDWI) [42], Water Ratio Index
(WRI) [41,53], Normalized Difference Vegetation Index (NDVI) [41,54], Automated Water Extraction
Index (AWEI) [41,55], and Normalized Difference Water Index (NDWI) and Principal Component
Analysis (NDWI-PCs) [41] models, which are the latest models published in the related literature about
extraction of surface water from satellite imagery. The datasets (for the period 1975–2015) prepared
over Urmia Lake, Lake Sevan, and Van Lake (situated in similar geographical regions) have been
used in the Experimental Section because the mentioned lakes are under intensive natural and human
driving forces.

The paper starts with a description of our study areas in Section 2. Section 3 describes
complementary datasets that have been used in this paper. In Section 4, our approach and algorithms
to extract and analyse the surface water extent of the lakes using satellite imagery has been shown.
The proposed model, which has been used for deriving the lakes water levels and lakes surface areas
from satellite data, is presented in Section 5. The results from satellite altimetry and satellite imagery,
together with local climate data, are used in the same section for discussing about the impact of factors
such as climate change and anthropogenic activities on the drying up of the studied lakes. Section 6
will summarize and conclude the results of this study.

2. Study Areas

2.1. Urmia Lake

The Urmia Lake basin is located in the northwest of Iran at ~37◦ N and 45◦ E (Figure 1). In Urmia
Lake basin, the elevation increases from 1174 m at Urmia Lake to 3861 m above sea level in the Sahand
Mountains [56]. The main water of the lake is supplied from 21 seasonal or permanent (the main
inputs are Zarrine-Rud, Aji Chay, Baran duz, and Godard), and 39 periodic rivers and springs [57,58].
The watershed area covered about 52,000 km2 which is 3% of Iran’s land [59]. The basin with
6.4 million inhabitants is important in terms of housing, industrial and agricultural activities for the
East Azerbaijan Province in Iran [56,60].

A unique feature of Lake Urmia is its hypersaline environment, with salinity ranging from 217
to more than 300 g/L, approximately eight times higher than seawater [57,61–63]. Lake Urmia, with
its 102 islands, is defined as a national park and international biosphere reserve by UNESCO (United
Nation Education, Scientific and Cultural Organization) because of its ecological importance [64–67].
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Climate in the lake’s basin is controlled by the mountains surrounding the lake. Urmia Lake is
situated in a semi-arid area, having a temperature range between ~0 ◦C and −20 ◦C in winter and
up to ~40 ◦C in summer with a mean annual temperature of 11.2 ◦C, an average precipitation and
evaporation rate of 341 and 1200 mm/year, respectively. The annual average evaporation from the
lake surface is ~1 m [58,67–69]. The intensity of bird migration (there are 212 species) to the area highly
depends on the primary production of Lake Urmia, and particularly on availability of salt-adjusted
brine shrimp [57,70,71].

There are 9 cities adjacent to the lake, where agriculture is the main part of the economy and the
major source of income for the communities. About 70% of cultivated lands in western part of the lake
are wheat lands. The other main crops are oats, fruits, and vegetables (especially grape and apple).
During 1979 to 2006, irrigated land in the watershed area increased by 8% of the Urmia’s watershed
area [72]. Construction of the 15 km highway in the early 1990s across the lake has divided the lake
into two parts (35.5% in north and 64.5% in south) [72].

2.2. Lake Sevan

Lake Sevan is situated in the northern part of the Armenian Volcanic Highland at ~45.2◦ E and
40◦ N (Figure 1), in Gegharkhounik Marz Province. In Lake Sevan basin the elevation increases from
1854 m at Sevan Lake to 3583 m above sea level in the Sevana, Vardenis and Geghama Mountains.
A peculiarity of Lake Sevan includes the small ratio between the catchment and surface area of the
lake is only 3:1, compared to other major lakes (10:1 on average) [73]. Lake Sevan has comparatively
“soft water” (mineralization = 700 mg/L) [73] in comparison with the other neighbouring great lakes
like Lake Van, Caspian Sea, and Urmia Lake.

Twenty-eight rivers and streams flow into Lake Sevan, and the River Hrazdan flows out of the
lake. The average annual temperature of the lake is 5 ◦C. Annual precipitation ranges from 340 to
720 mm, of which 17% falls in the winter, 37% in the spring, 26% in the summer and 20% in the
autumn [74]. There are six species of fishes in the Lake Sevan basin. The lake is an important stop for
migratory birds (210 species), especially in October–December before the lake becomes covered with
ice [75]. The main economic activities in the basin are agriculture and fisheries. Approximately 20% of
the livestock in the country is raised in the basin. Ninety per cent of fish catch and 80% of crayfish
catch of Armenia is from Lake Sevan [76].

The outflow of water from the lake has been artificially regulated since 1933 during the Soviet
period for hydropower and irrigation. Before the increased artificial outflow, the surface of Lake Sevan
was at an altitude of 1916.20 m with a surface area of 1416 km2 and volume of 58.5 km3. The water-level
decreases from this artificial outflow process influenced an array of hydrological and ecological
conditions at the lakeshore and in the lake [77].

2.3. Van Lake

Van Lake (with the large drainage basin of 12,500 km2) is a saline closed-basin lake located (~43◦ E
and 38.30◦ N) in Eastern Anatolia, Turkey (Figure 1). It is the largest lake in Turkey and the largest soda
lake in the world [78]. The average elevation of basin is 2829 m above mean sea level that increases
from ~1626 m at the lake to 4032 m above sea level in mountain regions. The total surface area of its
catchment basin is about 5000 km2 [79].

Several rivers and streams (including the Karasu, Hosap, Güzelsu, Bendimahi, Zilan and
Yeniköprü Streams) flow into Van Lake without any outlet. The lack of outflows causes the
accumulation of salts in the lake and increases the salinity because of the water discharges by
evaporation [78,80]. The local climate of the Lake Van area is characterized by strong seasonality,
expressed as cold winters from December to February with mean temperatures below 0 ◦C, and warm,
dry summers in July and August with mean temperatures exceeding 20 ◦C. Cold, dry air masses
originating from high northern latitudes acquire moisture when passing over the Mediterranean Sea,
reaching Lake Van from the southwest [81,82]. Annual precipitation ranges from 400 to 700 mm [83].
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According to Aksoy et al. [78], because of the high water salinity of the lake, it cannot be used for
drinking or irrigation and also only limited species of fresh water fish could survive in this condition.
The natural vegetation is steppe dominated by sub-euxinian oak forest; however, there is hardly any
natural vegetation left, and instead, there is a predominance of agricultural land [68,84]. In the last
decade, the water level in Van Lake has risen ~2 m and, consequently, the low-lying inundated along
the shore are now concerning local administrators and government official, and affecting irrigation
activities and people’s properties [85].

Figure 1. The geographical locations of Lake Urmia, Lake Sevan, and Van Lake in Middle East.

3. Data

3.1. Landsat and Digital Elevation Model (DEM) Dataset

The model, which has been used in the classification phase, is trained and tested on Landsat
database. The training and test datasets consist of the mosaicked Landsat images for each five years
(from the same season) from 1975 to 2015. Each study area contains nine mosaicked Landsat images
(total 81 images for all three study areas). All of the images have been obtained from the US Geological
Survey (USGS) Global Visualization Viewer [82].

Digital Elevation Model (DEM) maps have been extracted from Shuttle Radar Topography Mission
(SRTM) 1-Arc-Second global data. SRTM 1-Arc-Second global elevation data offer worldwide coverage
of void filled data at a resolution of 30 meters (1-arc-second) and provide open distribution of this
high-resolution global dataset [83].

3.2. Radar Altimetry Dataset

Altimetry, as the only source of information for most lakes in remote areas, is a technique that has a
proven potential for hydrology science [69]. GEOSAT (1986–1988), ERS-1 (1991–1996), Topex/Poseidon
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(1992–2005), GFO (2000–2008), ERS-2 (1995–2011), ENVISAT (2002–2012), Jason-1 (2001–), Jason-2
(2008–), Altika (2013–), Sentinel-3 (2016–), and Jason-3 (2016–) are several satellite altimetry missions
that have been launched since the late 1980s. The combined global altimetry datasets have more than
two-decade-long history and are being continuously updated [86,87].

Over the past 10 years, HYDROWEB has developed a web database [4,69,88] containing time
series over water levels of large lakes and wetlands on a global scale. The lake levels provided by
HYDROWEB are based on the merged Topex/Poseidon, Jason-1 and 2, ENVISAT and GFO data.
The monthly level variations of almost 150 lakes and reservoirs are freely provided by multi satellite
altimetry measurements.

4. Methods and Algorithms

4.1. An Overview of MultiLayer Perceptron Neural Networks (MLP NNs)

For applying a binary classification to extract water features, an artificial neural networks classifier
has been used. Artificial Neural Networks (ANNs) algorithms classify regions of interest using a
methodology that performs similar functions to the human brain such as understanding, learning,
solving problems and taking decisions [89]. ANNs architecture consists of three units that include
input layer, hidden layer and output layer (Figure 2). In most ANNs models, hidden layers use
non-linear activation functions for processing the data [90].

Figure 2. The block diagram shows the model of a neuron, which forms the basis for designing ANNs.

Formally, a one-hidden-layer MLP is a function f : RD → RL , where D is the size of input vector
x and L is the size of the output vector f (x), such that in matrix notation:

f (x) = G
(

b(2) + W(2)
(

s(b(1) + W(1)x)
))

(1)

with bias vectors b(1) and b(2); weight matrices W(1) and W(2); and activation functions G and s.
The vector h (x) = Φ (x) = s

(
b(1) + W(1)x

)
constitutes the hidden layer. Typical choices for s include

tanh (a) = (ea − e−a) / (ea + e−a) or the logistic sigmoid function, with sigmoid (a) = 1/
(
1 + e−1).

The logistic sigmoid function ranges from 0 to +1. However, it is sometimes desirable to have
the activation function range from −1 to +1, in which case the activation function assumes an
anti-symmetric form (e.g., tanh function) with respect to the origin [89,91].

4.2. Methodology

The considered dataset contains an overall number of 81 Landsat images (before mosaicking).
The methodology of this investigation is summarized and represented in Figure 3.
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Figure 3. Schematic representation of the methodology.

4.2.1. Image Pre-Processing

As a pre-processing task for image classification, radiometric calibration, atmospheric correction,
mosaicking, and co-registration have been applied to the datasets. Radiometric calibration and
atmospheric correction were conducted according to Schroeder et al. [92]. All the images covering the
study areas for each year were mosaicked and then co-registered with less than 0.5 pixel of Root Mean
Square Error (RMSE). Around 47 control points were selected for co-registration of each image with
the reference image.

The stripes in Landsat ETM+ data (caused by the SLC in the ETM+ instrument failed on
31 May 2003) have been removed according to Taravat et al. [93]. Pixels not affected by striping
are used to construct spline functions describing spatial grey level distributions of an image [93].

The sub-images containing the lakes basin for each lake were extracted using the Area of
Interest tool of ENVI (Environment for Visualizing Images) software to make classification and image
interpretation more expedient and focused (Figure 4). The data were then projected in geographical
latitude/longitude projection and WGS84 datum. Furthermore, the image was exported into TIFF
format for further analysis.

4.2.2. Image Classification

After the pre-processing phase, all images have been classified by MLP neural networks, which
have been found to be the best suited topology for pixel level classifications [89]. In a multilayer
perceptron model instead of feeding the input to the logistic regression, the hidden that has a nonlinear
activation function layer(s) is used while the top layer is a soft max layer. The soft max function
is the gradient-log-normalizer of the categorical probability distribution, which is used in various
probabilistic multiclass classification methods including multinomial logistic regression, multiclass
linear discriminant analysis, naive Bayes classifiers and artificial neural networks [94].

In MLP model, the connections between perceptrons are forward and every perceptron is
connected to all the perceptrons in the next layer except the output layer that directly gives the
result. MLP utilizes back propagation for training the network [90,91]. In the proposed model, Landsat
data in spectral bands 480, 560, 660, and 825 nm have been used as the input of the model.

4.2.3. Models Comparison

In order to evaluate the performance of the proposed model for surface water extraction, the results
have been compared with the results of MNDWI, AWEI, NDVI, NDWI, WRI, and NDWI-PCs, which
are the popular classifier methods presented in the latest papers published in the related literature
about extraction of surface water from satellite imagery [41].
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Figure 4. Standard false colour composite of Landsat imagery over Lake Urmia basin (first row);
Lake Sevan basin (second row); and Van Lake basin (third row) at two different epochs: 2015
(left column); and 1975 (middle column). In the right column of the figure, the elevation map of
the basins has been shown.

4.2.4. Time Series Change Detection

In order to analyse the time series of height above reference surface variations of lakes which have
been extracted from radar altimetry data, Pruned Exact Linear Time (PELT) algorithm has been used.
PELT model is considered for identifying the points within a dataset where the statistical properties
change. PELT model is based on the algorithm of Jackson et al. [95], but involves a pruning step within
the dynamic program. Killick et al. [96] has proven that PELT model leads to a substantially more
accurate segmentation than Binary Segmentation. In PELT model, a number of changes (m) together
with their positions are:

τ1: m = (τ1, . . . , τm) (2)

Each change position is an integer within (1, n − 1). “m” will split the data into m + 1 segments,
with the ith segment containing y(τi−1 + 1):τi, where y is an ordered sequence of data. The general
approach to identify multiple changes is defined as:

m+1

∑
i=1

(C(y(τi−1 + 1) : τi)) + β f (m) (3)

where C is a cost function for a segment and β f (m) is a penalty to guard against over fitting.
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5. Results and Discussion

In order to detect the surface area changes of the lakes in the period 1975–2015, the water
surface of each lake in each temporal image was extracted using MLP classifier. In the MLP classifier,
100,000 pixels (extracted from the Landsat dataset) have been used for training/testing the net.
The training sets contain 60% of the data, and the test sets contain the remaining 40%. Pixel selection
for the training/test set has been performed randomly and repeated six times.

After the several attempts to properly select the number of units in the hidden layers, architecture
4-10-4 has been finally chosen for its good performance in terms of classification accuracy, Root-Mean
Square Error (RMSE), and training time. In total, 35,000 training cycles were sufficient to train the
network. The inputs of the net consist of Landsat data in spectral bands 480, 560, 660, and 825 nm, and
the output provides the pixel classification in terms of water body, urban area, bare lands, and green
lands. One MLP classifier has been used in classifying all the images (Figure 5).

Figure 5. Temporal surface area changes (every five years) map in the period 1975–2015 for:
(a) Urmia Lake; (b) Lake Sevan; and (c) Van Lake.

An accuracy assessment has been carried out in order to assess the classifiers more appropriately.
For each of the 27 mosaicked images, 20,000 pixels (which is 6% of each image) have randomly been
selected and then labelled by visual interpretation. The same procedure has been used to calculate
the accuracy of the MNDWI, AWEI, NDVI, NDWI, WRI, and NDWI-PCs classifiers for each of the
27 mosaicked images.

For visual interpretation, Landsat ETM+ data in spectral bands 560 nm, 660 nm, and 825 nm have
been used in RGB format. The main reason for using this combination is the high contrast of water
and dry/land areas (due to the high absorption and reflectance of NIR (825 nm) by water and the
terrestrial vegetation and dry soil, respectively) in NIR band [31].

The accuracy of the whole dataset classified by MLP ANNs is 95.52% with a standard deviation
of 2.00%, 3.88% and 4.47% commission (the samples which are committed to the wrong class) and
omission (the samples which are omitted from the right class) errors and average, respectively.
The average accuracy computed for the NDWI-PCs (which generates the best results after MLP
NNs) is 86.10% with a standard deviation of 2.47%, 7.67% and 13.90% commission and omission errors
and average, respectively. An improvement of 9.42% in accuracy has been obtained on the dataset
classified by MLP NNs with respect to the same dataset classified by the NDWI-PCs model. Moreover,
MLP classifier generated less Commission error with respect to the NDWI-PCs model. The results of
accuracy assessment applied to different models are displayed in Tables 1 and 2.

The outputs of the MLP NNs classifier have been overlaid to produce the surface water changes
(for each five year) in time-series started from 1975 to 2015 (Figure 6). The results show that the
Urmia Lake surface area was ~4724.69 km2, ~4111.12 km2, ~3184.73 km2, and ~1642.71 km2 in 2000,
2005, 2010, and 2015, respectively (Table 3).
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Table 1. The average values of commission and emission error (In %) achieved by different models for
surface water extraction.

MinOm MaxOm MeanOm St.DevOm MinCm MaxCm MeanCm St.DevCm

MNDWI 13.60 26.80 23.69 3.75 17.60 25.50 15.02 3.09
AWEI 12.60 28.50 20.79 4.02 9.70 22.10 12.33 2.94
NDVI 10.80 30.00 20.28 5.26 9.30 30.39 14.95 6.16
NDWI 13.80 21.30 17.03 2.69 3.40 10.80 7.27 2.93
WRI 14.00 22.00 18.68 2.26 5.30 10.8 7.89 2.11

NDWI-PCs 10.80 18.00 13.90 2.47 4.50 10.80 7.67 2.36
MLP

ANNs
2.50 10.00 4.47 2.00 1.40 8.50 3.88 2.19

Table 2. The average values of the accuracies for different types of anomalies.

Min % Max % Mean % St.Dev

MNDWI 73.20 86.40 76.33 3.73
AWEI 71.50 87.40 79.20 4.20
NDVI 70.00 89.20 79.71 5.27
NDWI 78.70 86.20 82.96 2.69
WRI 78.00 86.00 81.31 2.26

NDWI-PCs 82.00 89.20 86.10 2.47
MLP ANNs 90.00 97.50 95.52 2.00

Figure 6. Lake Urmia surface area change maps generated using MLP NNs classifier.

The Urmia Lake surface area has decreased ~613.57 km2 between 2000 and 2005, ~926.39 km2

between 2005 and 2010, and ~1542.02 km2 between 2010 and 2015, while the Lake Sevan and Van Lake
surface areas have increased ~14.69 km2 and ~16.15 km2 between 2000 and 2005, 9.93 km2 and
~5.99 km2 between 2005 and 2010, and 3.57 km2 and ~1.37 km2 between 2010 and 2015, respectively.
The most intense changes in Urmia Lake is detected between 2010 and 2015, during which the lake
lost ~65.23% of its surface area in comparison with the year 2000 and 48.41% of its surface area in
comparison with the year 2010.

In order to analyse the time series of height above reference surface variations of lakes extracted
from radar altimetry data, two models have been used. In the first model, the time series were treated
as a whole under the hypothesis that the time series has a decreasing (blue lines in Figure 7) trend
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in Urmia Lake and an increasing trend in Sevan and Van Lakes (Figure 7). In the second model, by
applying PELT algorithm, the time series have been divided into segments (black lines in Figure 7)
with its own statistical characteristics that are similar within each subseries and different between
subseries. It seems that the increasing mono-trend (red lines in Figure 7) fitted to the whole time series
can have different behaviour when multiple inner trends are taken into account.

Figure 7. Time series of height above reference surface variations of: (a) Urmia Lake area between 1992
and 2011; (b) Lake Sevan area between 2002 and 2015; and (c) Van Lake area between 2002 and 2015
extracted from radar altimetry data.
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Table 3. The lakes surface area changes (km2) generated by MLP NNs classifier.

Urmia Lake Surface Area Lake Sevan Surface Area Van Lake Surface Area

1975 5235.85 1259.52 3751.22
1980 4977.71 1255.95 3749.84
1985 5132.71 1246.02 3743.85
1990 5214.18 1231.33 3727.70
1995 5821.82 1236.03 3768.73
2000 4724.69 1234.77 3738.77
2005 4111.12 1226.04 3691.45
2010 3184.73 1236.74 3726.48
2015 1642.71 1230.15 3716.44

The generated results revealed a significant change in the surface area of Urmia Lake. These
changes confirm different natural and human-made external driving forces in the watershed area.
Investigations on the Urmia Lake water level breakpoints on 2000 and 2008 shows that the lake had
experienced rapid changes in its history. These rapid changes could refer to intensive dam construction
on one the hand and intensive and extensive cultivation activities by increasing the irrigation land
on the other hand (Figures 8 and 9). The above-mentioned changes from 2000 to 2015 have been
confirmed by the surface area generated using MLP NNs classifier.

Moreover, monitoring the lake’s long term changes (Figure 6) and comparing them with long
term anthropogenic activities (e.g., land use change, land over use, dam construction and urbanization
as it has been shown in Figure 8) in the watershed area of the lake indicate that the unsustainable land
management has been significantly impact in drying up the Urmia Lake as well.

The results also show that with increasing the intensive human activities in different periods,
the drying trend increased. For instance, there are 51 dams in Urmia Lake basin which have been
constructed to supply irrigation demands (Figure 9). Moreover, based on the authors knowledge,
there are 224 projects (72 reservoir dams, 124 weirs and conduction facilities, 17 pumping stations and
10 flood controlling and artificial feeding) under study, 231 of which were assessed to be constructed
in the near future [62]. The under construction projects regulate 1499.9 MCM water (under study
projects regulate 657.2 MCM water). Therefore, total regulated water volume will be 3869.1 MCM
within approximately 20 years [62].

Figure 9 shows the most important projects in this area. Long term climate change and
perturbation enhanced the negative effects of mismanagement and caused critical condition for the
Urmia Lake in the resent years. As it has been shown in Figure 10, the annual average precipitation on
Urmia Lake basin was 382.4 mm from 1966 to 1990, which has been decreased to 315.5 mm from 1991
to 2015. The temperature average over Urmia Lake basin was nearly 11.6 ◦C from 1966 to 1990 that has
reached an average of 12 ◦C from 1991 to 2015.

140



Water 2016, 8, 478

Figure 8. Temporal land use changes (every five years) in the period 1975–2015 for: (a) Urmia Lake
basin; (b) Lake Sevan basin; and (c) Van Lake basin.
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Figure 9. The geographical locations of dams (grouped by the year of operation) over Lake Urmia basin.

Figure 10. Time series of annual Precipitation (mm) and Temperature (◦C) for the Urmia Lake basin
between 1966 and 2015.

6. Conclusions

In this study, a multisensory, multitemporal remote sensing approach has been used to monitor
water level and storage variations of Urmia Lake, Lake Sevan, and Van Lake. In order to examine the
proposed model, these three study areas have been selected because they are under intensive natural
and human driving forces. Landsat TM, ETM+ and OLI multitemporal images and Topex/Poseidon,
Jason-1 and 2, and GFO satellite data have been used together with climate data to identify lake
parameters (water level variations) and separate them from other land cover types (surface water
extraction). The results show that, the Urmia Lake’s water level and area decrease at a significant rate,
which is dramatically high in comparison with Lake Sevan and Van Lake.
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Furthermore, an approach based on multilayer perceptron neural networks algorithm has been
introduced for surface water change detection, which shows high performance in simultaneously
detecting the surface water changes in comparison with the other state of the art models presented in
the related literature. In conclusion, the proposed model (as a global model which can be applied to
another datasets just with some parameter adjustments based on the type of data) has been proven to
be effective in detecting the water surface changes in different lakes. The construction of the NN model
can be a time consuming process (which is considered as the weakness of the model in comparison
with the other algorithms) since building up the NN architecture is synonymous to a strenuous activity
involving trial and error.

Then, the impact of factors such as climate change (e.g., rain variation) and anthropogenic
activities (e.g., dam construction and water overuse) have been demonstrated. The results show that
despite the long-term transformation of the environment by human activities as well as climate change
in the watershed area of the three lakes, Lake Urmia is in critical situation and urgent action is needed
for the lake to survive. It can be concluded that construction of dams in Urmia Lake basin was not the
main factor in declining the lake level but the drying up of Urmia Lake has been occurred due to a
chain of reasons, which are highly influenced by anthropogenic activities and climate change.

Managing water supply and irrigation, strict water rights, and modifying farming to conserve
water and averting new dam construction in the basin are suggested to help Urmia Lake to make a
recovery. However, continuous time series of temperature, precipitation and other meteorological
observations and estimations (e.g., evaporation and aridification) on the lake and in the watershed,
as well as of the discharge of surface water to the lake would help to better constrain the water balance.
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Abstract: Surface water storage is a key component of the terrestrial hydrological and biogeochemical
cycles that also plays a major role in water resources management. In this study, surface water
storage (SWS) variations are estimated at monthly time-scale over 15 years (1993–2007) using
a hypsographic approach based on the combination of topographic information from Advance
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Hydrological Modeling
and Analysis Platform (HyMAP)-based Global Digital Elevation Models (GDEM) and the Global
Inundation Extent Multi-Satellite (GIEMS) product in the Ganges-Brahmaputra basin. The monthly
variations of the surface water storage are in good accordance with precipitation from Global
Precipitation Climatology Project (GPCP), river discharges at the outlet of the Ganges and the
Brahmaputra, and terrestrial water storage (TWS) from the Gravity Recovery And Climate Experiment
(GRACE), with correlations higher than 0.85. Surface water storage presents a strong seasonal signal
(~496 km3 estimated by GIEMS/ASTER and ~378 km3 by GIEMS/HyMAPs), representing ~51% and
~41% respectively of the total water storage signal and it exhibits a large inter-annual variability with
strong negative anomalies during the drought-like conditions of 1994 or strong positive anomalies
such as in 1998. This new dataset of SWS is a new, highly valuable source of information for
hydrological and climate modeling studies of the Ganges-Brahmaputra river basin.

Keywords: Ganges-Brahmaputra; surface water storage; multi-satellite; floodplains
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1. Introduction

Continental freshwater is crucial for all forms of life. Despite their minor quantitative contribution
to the total water storage on Earth (<1%), surface water stored in rivers, lakes, wetlands, floodplains
and even man-made reservoirs plays a major role in climate variability, also affecting biogeochemical
and trace gas cycles. As a part of the hydrologic cycle, investigating the spatio-temporal variation of
the surface water storage (SWS) is fundamental to the study of the global water cycle while providing
a critical parameter for water resources management [1].

Until recently, our knowledge of surface water dynamics relied on sparse in situ observations
and hydrological models. Traditional in situ gauge measurements quantify the water discharge in
river channels, but no information is provided by these measurements regarding the diffusive flow
over floodplains associated to rivers or wetlands. Furthermore, the number of gauging networks
is, in general, limited especially in remote areas with difficult access such as tropical regions. When
available, discharge data and hydrological observations are often classified by governments due to
transboundary issues and their access is restricted for scientific usage [2,3].

The ability to estimate SWS variability at large scales is becoming increasingly important because
of the need to predict the availability of freshwater resources and also to link this variability to climate
change and extreme events such as droughts and floods [4]. Recent advancements in remote sensing
made the study of surface water dynamics possible at regional to global scale [3]. Multi-satellite remote
sensing techniques now offer important information on land surface waters, such as the variations
of surface water extents at the global scale [2,5,6] provided by the Global Inundation Extent from
Multi-Satellites (GIEMS). This information is complementary to radar altimetry observations that
systematically monitor the water levels in lakes, large rivers, wetlands and floodplains [7,8].

Recent efforts have been undertaken to quantify the surface freshwater storage and its variations
at seasonal to inter-annual time scales using satellite observations. A technique developed by [9] to
estimate SWS variations combines surface water extent observations with altimeter-derived height
variations in rivers, wetlands, and inundations [10]. This technique was firstly developed over the
Rio Negro, a sub-basin of the Amazon [9], and it was tested over the Ob River basin [11] and the
Orinoco [12]. Over the Amazon [4], SWS variations over the period 2003–2007 helped to quantify
and characterize the extreme drought of 2005. Over the Ganges-Brahmaputra River system [13],
SWS obtained from a combination of GIEMS and ENVISAT observations helped to map sub-surface
water variations by decomposing the total terrestrial water storage (TWS) variations measured by the
Gravity Recovery And Climate Experiment (GRACE).

Another technique to estimate SWS was proposed by [14], and combines surface water extents
from GIEMS with topographic data derived from Global Digital Elevation Model (GDEM), using
a hypsographic curve approach. The latter technique was firstly developed and assessed over the
Amazon watershed [14] and helped to characterize the SWS anomaly during the 1997 and 2005
extreme droughts.

In the present study, we propose to estimate and analyze SWS variations over the
Ganges-Brahmaputra (GB) system using the hypsographic curve technique proposed by [14]. The GB
system drains a large part of the Indian sub-continent and hosts more than 700 million people. It is
the third largest freshwater outlet to the world’s oceans, being exceeded only by the Amazon and
the Congo drainage basins [15]. The basin is facing strong climate variability with alternate periods
of floods and droughts. Due to the population growth, the excessive use of water for industrial and
agricultural purposes, many water management challenges are emerging in this region [16]. The Indian
sub-continent is facing acute shortages of drinking and agricultural water supply, aggravated by
geogenic arsenic contamination of groundwater reservoirs, especially in Bangladesh [17].

Sections 2 and 3 present respectively the study domain and the datasets used in this study.
In Section 4, we briefly describe the SWS estimation technique [14]. The results are presented and
discussed in Section 5; an evaluation is performed by comparing the new estimates with SWS estimates
provided by the GIEMS-ENVISAT combination technique [13], as well as other external datasets
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such as GRACE-derived TWS variations, satellite altimetry-derived river discharge observations and
precipitation. Conclusions and perspectives are provided in Section 6.

2. Study Area

The Ganges-Brahmaputra-Meghna (hereafter referred to as the Ganges-Brahmaputra basin or GB)
is a transboundary river system draining a large area of ~1.7 million km2 and crossing India, China,
Nepal, Bhutan, and Bangladesh (Figure 1).

The headwaters of the Ganges (G) and Brahmaputra (B) Rivers originate in the Himalayan range
in China. The Ganges heads in the Gangotri glacier whilst the Brahmaputra River head is located in the
southern slopes of Kailash Mountain in the Trans-Himalaya [15]. After flowing southwest into India
and then turning southeast, the Ganges River converges with Brahmaputra in Bangladesh and flow
into the Bay of Bengal where the GB delta is formed. Before merging with the Ganges, the Brahmaputra
River flows east through the southern area of China, then flows south into eastern India and turns
southwest crossing Bangladesh borders. The Ganges watercourse is classed as a meandering channel
while Brahmaputra is a braided one [18,19].

The GB River basin is unique in the world in terms of its climate and great availability of
freshwater that is highly seasonal and driven primarily by monsoonal rainfall that dominates discharge,
with a lesser contribution from snowmelt [15].

Figure 1. Ganges and Brahmaputra River basin, with the respective catchment areas shown in light
gray (Ganges) and dark gray (Brahmaputra). The black lines show the main rivers (thick line) and
associated tributaries (thin line) hydrography. Political borders are shown in a gray line. The red and
the yellow circles correspond to the locations of Bahadurabad and Hardinge Bridge in situ gauging
stations respectively where altimeter-derived river discharges are estimated.

3. Datasets

3.1. Global Inundation Extent from Multi-Satellites (GIEMS)

The complete methodology that captures the extent of episodic and seasonal inundation, wetlands,
rivers, lakes and irrigated agriculture, at the global scale, is described in detail in [2,5,6,20,21].
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The technique uses a complementary suite of satellite observations covering a large wavelength range:
(1) passive microwave emissivities between 19 and 85 GHz. These are estimated from the Special
Sensor Microwave/Imager (SSM/I) observations by removing the contributions of the atmosphere
(water vapor, clouds, rain) and the modulation by the surface temperature [22,23]. The technique uses
ancillary data from the International Satellite Cloud Climatology Project (ISCCP) [24] and the National
Centers for Environment Prediction (NCEP) reanalysis [25]; (2) Advanced Very High Resolution
Radiometer (AVHRR) visible (0.58–0.68 μm) and near-infrared (0.73–1.1 μm) reflectances and the
derived Normalized Difference Vegetation Index (NDVI); (3) backscatter at 5.25 GHz from the European
Remote Sensing (ERS) satellite scatterometer.

Observations are averaged over each month and mapped to an equal area grid of 0.25◦ resolution
at the equator (each pixel covers 773 km2) [2,6]. An unsupervised classification of the three sources
of satellite data is performed and the pixels with satellite signatures likely related to inundation
are retained. For each inundated pixel, the monthly fractional coverage by open water is obtained
using the passive microwave signal and a linear mixture model with end-members calibrated with
scatterometer observations to account for the effects of vegetation cover [6,20]. As the microwave
measurements are also sensitive to the snow cover, snow and ice masks are used to filter the results
and avoid any confusion with snow-covered pixels [2]. Because the ERS scatterometer encountered
serious technical problems after 2000, the processing scheme had to be adapted to extend the dataset
and monthly mean climatology of ERS and NDVI-AVHRR observations are used [2,5]. Fifteen years of
global monthly water surfaces extent for the period 1993–2007 are available [5]. This dataset has been
extensively evaluated at the global scale [2,6,26] and for a wide range of environments [9,21,27,28].
It has also been used for climatic and hydrological analyses, such as the evaluation of methane surface
emissions models [29,30] and the validation of the river flooding schemes coupled with land surface
models [31–35].

The spatial distribution of GIEMS was evaluated against high-resolution (100 m) SAR images
in [6] and in [36] over the Amazon basin leading to an overall GIEMS uncertainty of ~10% for GIEMS.
Over the Indian Sub-Continent (and especially GB), the spatial distribution of GIEMS was evaluated
against static surface water dataset (Global Lake and Wetland Dataset, GLWD-3, [37]) and other
related hydrological variables (precipitation, altimeter-derived river heights, river discharge) in [5,21],
as well as using other regional surveys representing various components of wetland and open-water
distributions [38].

Figure 2 shows GIEMS characteristics over the GB basin. Figure 2a,c show the annual mean and
annual maximum extent of surface water respectively, averaged over 15 years (180 months). They
exhibit very realistic distributions of major rivers (Ganges-Brahmaputra-Meghna River systems) and
their tributaries and distributaries. Associated inundated areas, wetlands and the region of the Bengal
delta are well delineated even in the presence of complex areas characterized by extensive flooding.
The associated standard deviations (Figure 2b) show relatively high values (<50%), illustrating the high
seasonal and inter-annual variability of hydrologic processes within the GB system. This is also shown
in Figure 2d where the mean amplitude of the water extent (difference between the mean maximum
and the mean minimum over the record for each pixel) exhibits very high values. It should be noted
here that despite the fact that GIEMS is able to capture the distributions and variations of surface
freshwater in the GB basin, some very high maximum values of surface water extents (Figure 2c) could
be related to the fact that the method encounters difficulties in some regions to discriminate between
very saturated/moist soil and standing open water, especially in the delta region. This can lead to
an overestimation of the actual surface water extents, especially for pixels with high flood coverage
(see the histograms in Figure 2d of [2]).
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Figure 2. Main characteristics of the spatial distribution of the surface water extents provided by
Global Inundation Extent Multi-Satellite (GIEMS) for the Ganges-Brahmaputra (GB) basin (all values
as areal fractions of 773 km2 GIEMS cells): (a) Mean surface water extent for the 1993–2007 period;
(b) Associated standard deviation; (c) Mean annual maximum; (d) Mean annual amplitude.

3.2. ASTER-GDEM to Derive Hypsographic Curves

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) GDEM was
developed jointly by the National Aeronautic and Space Administration (NASA) and the Ministry of
Economy, Trade and Industry (METI) of Japan. The ASTER instrument, launched onboard NASA’s
Terra spacecraft in December 1999, has an along-track stereoscopic capability using its near infrared
spectral band and its nadir-viewing and backward-viewing telescopes to acquire stereo image data
with a base-to-height ratio of 0.6. The basic characteristics of stereoscopy and its application to
the ASTER system for GDEM generation are explained in detail in [39]. The horizontal spatial
resolution is 15 m and one nadir-looking ASTER visible and near-infrared (VNIR) scene corresponds
to 60 km2. The methodology used to produce the ASTER GDEM involves automated processing of
the entire 1.5-million ASTER scenes archived from the start of observation until August 2008 [39,40].
The processing includes stereo-correlation to produce ~1,264,000 individual scene-based ASTER DEMs,
cloud masking to remove cloudy pixels, stacking all cloud-screened DEMs removing residual bad
values and outliers, averaging selected data to create final pixel values, and then correcting residual
anomalies. The ASTER-GDEM covers land surfaces between 83◦ N and 83◦ S and is partitioned into
22,600 tiles of 1◦ × 1◦ (containing at least 0.01% of land area). ASTER-GDEM has a 1” (30 m) spatial
horizontal resolution and is referenced with respect to the WGS84/EGM96 geoid. Several studies
have dealt with the evaluation of ASTER-GDEM at local to regional scales [41–44]. Pre-production
accuracies for the global product were estimated at ~20 m vertically and ~30 m horizontally. In this
study, we use the ASTER-GDEM Version 2 released in October 2011 [45].

3.3. SRTM-GDEM to Derive Hypsographic Curves as Used in CaMa-Flood and HyMAP Models

The SRTM (Shuttle Radar Topography Mission) [46] mission is a joint effort between the NASA,
the National Geospatial Intelligence Agency (NGA), the German (Deutsches Zentrum für Luft-und
Raumfahrt) and the Italian (Agenzia Spaziale Italiana) spatial agencies. The instruments of SRTM
mission embarked on Endeavour in February 2000 and acquired radar data during its 11-day
mission which allows the construction of a GDEM of all land surfaces between 60◦ N and 56◦ S [46].
In this study, we use SRTM30 DEM modulated (error correction) as in [47] (CaMa-Flood) and [33]
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(HyMAP). See [48] for a detailed description of error corrections and the construction of SRTM-derived
hypsographic curves.

3.4. Complementary Datasets Used for Validation

3.4.1. Multi-Satellite Surface Water Storage from GIEMS and ENVISAT Radar Altimeter

Maps of water levels over the floodplains of the Ganges-Brahmaputra basin were obtained by
combining observations from GIEMS and altimetry-based water levels at monthly time-scale over the
2003–2007 period where all the datasets overlap [13]. Water levels for 58 ENVISAT RA-2 altimetry
stations were interpolated with respect to the inverse of the distance from the gridpoint over inundated
surfaces from GIEMS [2,5]. Each monthly map of surface water levels has a spatial resolution of 0.25◦

and is referenced to the EGM2008 geoid [49]. The error on these estimates is lower than 10% [13]. A map
of minimum water levels was estimated for the entire observation period using a hypsometric approach
to take into account the difference of altitude between the river and the floodplain (see [12,13] for more
details). This dataset is made available by the Centre de Topographie des Océans et de l’Hydrosphère
(CTOH) [50].

3.4.2. GRACE Level-2 Monthly Solutions

The Gravity Recovery And Climate Experiment (GRACE) mission, launched in March 2002,
provides measurements of the spatio-temporal changes in Earth’s gravity field. At basin scale, GRACE
data can be used to derive the monthly changes of the total land water storage (TWS) [51,52] with
an accuracy of ~1.5 cm of equivalent water thickness when averaged over surfaces of a few 100 km2 [53].
Three processing centers, including the Center for Space Research (CSR), Austin, TX, USA, the German
Research Centre for Geosciences (GFZ), Potsdam, Germany, the Jet Propulsion Laboratory (JPL),
Pasadena, CA, USA, and the Science Data Center (SDC) are in charge of the processing of the GRACE
data and the production of Level-1 and Level-2 solutions. Level-2 solutions consist of time series
of monthly averages of Stokes coefficients (i.e., dimensionless spherical harmonics coefficients of
geopotential) developed up to a degree between 90 and 150 that are adjusted from along-track
inter-satellite range GRACE measurements. These coefficients are mostly related to water storage
variations on land. In this study, we use the Level-2 Release 05 solutions. The presence of an unrealistic
high frequency noise corresponding to north-south striping is caused by orbit resonance during the
Stokes coefficients determination and aliasing of poorly modeled short-term phenomena. To attenuate
the noise in the Level-2 GRACE solutions, we applied an Independent Component Analysis (ICA)
approach to the combination of GFZ/UTCSR/JPL solutions of the same monthly period to isolate
statistically independent components of the observed gravity field (i.e., the continental water storage
contribution from the high frequency noise) [54,55].

3.4.3. GPCP Monthly Rainfall Product

In order to further evaluate our various estimates of the satellite-derived surface water storage,
we will compare them with precipitation over the Ganges and Brahmaputra watersheds estimated
by the Global Precipitation Climatology Project (GPCP). GPCP, established in 1986 by the World
Climate Research Program, quantifies the distribution of precipitation over the globe [56]. We use
the Satellite-Gauge Combined Precipitation Data product of GPCP Version 2.1 data (monthly means
from 1993 to 2008) with a spatial resolution of 2.5◦ in latitude and longitude. Over land surfaces,
the uncertainty in the rate estimates from GPCP is generally lower than over the oceans due to the in
situ gauge input (in addition to satellite) from the GPCC (Global Precipitation Climatology Center).
Over land, validation experiments have been conducted in a variety of locations worldwide and the
results suggest that, while there are known problems in regions of persistent convective precipitation,
non-precipitating cirrus or regions of complex terrain, the estimated uncertainties range between 10%
and 30% [56].
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3.4.4. River Discharges

In situ river water level and discharge are infrequently recorded by the Bangladesh Water
Development Board (BWDB) [57] at the two basin outlet stations before the confluence of the two
rivers, at the Hardinge Bridge station (24.07◦ N; 89.03◦ E) for the Ganges and the Bahadurabad station
(25.15◦ N; 89.70◦ E) for the Brahmaputra (Figure 1). Here, we will use the discharge for each river
derived from satellite altimeter as in [58] for the 1993–2007 period.

4. Methods

4.1. GIEMS Surface Water Extent Thresholding

Previous analysis [2,21,38] suggested that GIEMS overestimates the actual surface water extents in
regions of very saturated soils. To overcome this issue, we use external information on flood coverage
from the Dartmouth Flood Observatory (DFO) database that provides surface water extent for the
period 2002–2015 [59]. It comprises the Surface Water Record (SWR), a comprehensive record of
satellite-observed changes in the Earth’s inland surface waters, compiled from the flooding history
over the period 2002–2015. Extent of surface water is mostly derived from NASA MODerate-resolution
Imaging Spectroradiometer (MODIS) Terra and Aqua sensors with, in some cases, additional
information from Radarsat, ASTER, or other higher spatial resolution data [60]. Water areas are
accumulated over 10 days to minimize the effect of cloud cover. Inundation maps are made available
at a spatial resolution of 250 m on 10◦ × 10◦ tiles. A color code indicates maximum flood extent each
year. This dataset is commonly used for estimating flood extent limits when processing other remotely
sensed observations (e.g., [13,61,62]). It was resampled on the GIEMS low resolution grid providing
a percentage of inundation for each grid point equal to the inundation extent given by the SWR divided
by the area of the GIEMS grid element (773 km2). The resulting MODIS inundation mask over the
Ganges-Brahmaputra is presented in Figure 3. One can see that the main river channels, along with
the major floodplains and wetlands are well depicted over the basin. However, compared to GIEMS
estimates (Figure 2), many pixels present lower maximum extents, especially in the upstream regions.

In the following, the DFO MODIS-derived inundation map is used to create an inundation mask
in order to limit the surface water extent given by GIEMS over the Ganges-Brahmaputra. For each
pixel of GIEMS, monthly surface water extent SGIEMS(α, t) is modulated by multiplying it by the ratio
of maximum inundation extent of MODIS SMODIS(α) and the maximum monthly extent value of
GIEMS over the record such as:

SGIEMS(α, t) = SGIEMS(α, t)× SMODIS(α)

max(SGIEMS(ti=1,...,180))
(1)

Figure 3. MODerate-resolution Imaging Spectroradiometer (MODIS)-derived surface water extent
(MODIS inundation extent mask in the followings) over the GB system given in percentage of the
pixel area.
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4.2. The Hypsographic Curve Approach

The method to estimate surface freshwater storage consists in the combination of the surface
water extent from GIEMS product with a global digital elevation model (GDEM), using a hypsographic
curve approach that relates the flooded area to the elevation. We will derive here two estimates using
two global datasets of hypsographic curves derived from ASTER-GDEM and SRTM30 DEM (simply
named as HyMAP in the following) as processed for CaMa-Flood and HyMAP models. The three-step
methodology to construct the hypsographic curve and estimate SWS is described in details in [14],
and is briefly summarized below:

1. The first step is to construct the hypsographic curve for each pixel of the surface water extent
dataset (GIEMS). The corresponding GDEM elevation points for each pixel of GIEMS product
(equal-grid of 773 km2) are selected. The elevation distribution function is then created and
converted (by integration) to a curve of cumulative frequencies. The latter function presents the
so-called hypsographic curve that consists of an area-elevation relationship, constructed for each
pixel of the GIEMS data set.

2. In the second step, a translation is applied to set to zero the lowest elevation of the hypsographic
curve by subtracting the lowest value from all other elevations. The hypsographic curve is then
converted into an area-surface water volume relationship by estimating the surface water volume
associated with an increase of the pixel fractional open water coverage by filling the hypsographic
curve from its base level to an upward level, following [13]:

V(α) =
α

∑
i=1

(h(i)− h(i − 1))× S
100

× i (2)

where V is the surface water volume (in km3) for a percentage of flood/inundation α

(an increment i of 1% in percentage of inundation is chosen), S is the area of a GIEMS pixel
(773 km2), and h the elevation (in km) for a percentage of flood/inundation α given by the
hypsographic curve.

3. In the last step, the surface water storage of each pixel is estimated for each month by combining
the hypsographic curve with the monthly variations of surface water extent from GIEMS using
Equation (2). The estimated surface water storages are not absolute. They correspond to the water
volume present over a reference surface that is the topography or the elevation of the surface
corresponding to the minimum water levels during the observation period. Thus, the estimated
water storage represents the increment above the minimum storage.

Examples of hypsographic curves at several locations in the GB basin are shown in Figure 4.
One can see that, in most cases, the hypsographic curves from ASTER-GDEM and STRM30-HyMAP

are very similar (Figure 4c,h,i,l,o) or showing small differences of less than few km3 (Figure 4a,b,j,n,p).
In some cases, the differences are large (Figure 4e,g). Those differences can be attributed to the
raw DEM product specificities (mode of acquisition, resolution, uncertainties, and errors). Indeed,
both DEMs have been estimated with extremely different techniques (SRTM-30 is based on radar
observations while ASTER-GDEM is made using near infrared spectral band). Moreover, one of the
major limitations of satellite-derived DEMs is that they are not always representing bare earth but
can include vegetation and man-made structures. ASTER-GDEM can also be affected by cloud cover,
such as very low but dense boundary layer clouds in tropical regions. All those effects are difficult
to filter in the raw data products despite large processing and can result in erroneous high elevation
topographic data, inducing further large errors in the hypsographic curves.

In order to prevent overestimation of surface water volumes due to high elevation values
at the upper edge of the hypsographic curve for some pixels, we proposed a correction method
which is thoroughly explained in Section 3.2 of [14] over the Amazon basin. This method mainly
consists in calculating for each pixel the standard deviations (STD) of the water volume derived
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from ASTER-GDEM and STRM30-HyMAP hypsographic curves over 5% flood coverage windows.
Standard deviation values are then used as proxies of realistic magnitude of surface water volume
changes. Unrealistic variations expressed by high standard deviations (higher than the threshold fixed
at 0.4 km3) are carefully replaced by a fitter value of the surface water storage based on a simple linear
regression analysis using the 10 previous water volume values of the hypsographic curve.

Figure 4. Surface volume profile (equivalent to the hypsographic curve), i.e., the relationship between
the surface water storage within each grid cell and the inundated area of a 773 km2 pixel (in percent)
for several locations over the GB basin. Red curves are from Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER)-Global Digital Elevation Model (GDEM) and black curves from
Hydrological Modeling and Analysis Platform (HyMAP)-GDEM. The blue dashed line is the maximum
coverage of surface water and the green dashed line is the minimum coverage of surface water
observed by GIEMS during the period 1993–2007. The dashed red curves and the dashed black
curves represent the hypsographic curves from ASTER-GDEM and HyMAP-GDEM respectively,
after corrections are applied (see [14] for details.). (a–p) correspond to 16 different locations in the
Ganges-Brahmaputra basin.

4.3. Time Series of Basin Scale Total Water Storage (TWS)

The time variations of volume of TWS anomalies from Level-2 GRACE solutions are computed
following [51]:

ΔVTWS(t) = R2
e ∑

j∈S
Δhtot

(
λj, ϕj, t

)
cos

(
ϕj
)
ΔλΔϕ (3)
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where Δhtot
(
λj, ϕj, t

)
is the anomaly of TWS at time t of the pixel of coordinates

(
λj, ϕj

)
and Re is the

radius of the Earth (6378 km).

5. Results and Discussion

Combining the corrected ASTER-GDEM (and HyMAP) hypsographic curves and the GIEMS
satellite-derived observations corrected from MODIS, we can now estimate, for the first time,
the long-term Ganges-Brahmaputra SWS and spatio-temporal variations for the period 1993–2007.

Figure 5 shows the spatial distribution of SWS characteristics (annual mean, standard deviation,
mean annual maximum, and mean annual amplitude estimated for the study period) for the entire
GB basin. Realistic spatial patterns are observed with the upstream pixels characterized by smaller
water volumes in contrast with the downstream region. Major river channels are well delineated from
the head to the outlet (or the confluence in case of a tributary), as well as the extensive floodplains
present along their stream. Following the spatial distribution observed in GIEMS products (Figure 2),
both floodplains associated with the river channels in the GB basin and delta plains in southern
Bangladesh are well represented. SWS standard deviation (Figure 5b) and mean annual amplitude
(Figure 5d) highlight the regions with strong variability such as the Meghna floodplains (between
longitudes 90◦ E and 94◦ E and latitudes 22◦ N and 26◦ N) and the river confluences in Bangladesh
that form the Bengal delta.

Figure 6 presents the monthly variations of basin-scale SWS for the 1993–2007 period for the
Ganges (a), Brahmaputra (b) and the entire GB system (c). It corresponds to surface water volumes
estimated before (green for ASTER and black for HyMAP) and after (blue for ASTER and red for
HyMAP) the use of the MODIS inundation mask.

In order to evaluate the present method, our results were compared to SWS variation estimates
from [13]. The technique used in the latter study is based on the combination of water extents given by
GIEMS and altimetry-based water levels. It should be noted that the technique used by [13] also applies
a MODIS mask to the GIEMS dataset. The SWS time series obtained by the present study (ASTER in
blue and HyMAP in red) and by [13] (green) are presented in Figure 7 along with GRACE-derived
TWS variations (black) over the same period and same geographical locations mentioned above.

Figure 5. Main characteristics of the surface water storage (SWS) spatial distribution provided by the
hypsographic curve approach (GIEMS/ASTER): (a) Mean surface water storage over the 1993–2007
period; (b) Associated standard deviation; (c) Mean annual maximum of SWS; (d) Mean annual
amplitudes of SWS. It should be noted that water volumes below 0.1 km3 are not shown in this figure.
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Figure 6. Monthly mean surface water storage variations for the period 1993–2007 estimated by the
combination of GIEMS water extents (before and after the usage of a MODIS mask) and a GDEM
(ASTER or HyMAP) over: (a) Ganges; (b) Brahmaputra, and (c) Ganges-Brahmaputra River basins.

The variations of SWS (Figure 6) after the use of the MODIS mask maintain a similar variation
pattern (correlation coefficients higher than 0.94 over G, B and GB for ASTER and HyMAP) along
with a significant decrease in amplitude. For the entire GB system, SWS ASTER mean amplitude
decreases from ~1612 km3 to ~496 km3 and SWS HyMAP mean amplitude decreases from ~1339 km3

to ~378 km3. Mean annual amplitudes estimated using the two techniques (GIEMS-MODIS/GDEM
and GIEMS-MODIS/Alt) over G, B and GB are given in Table 1. The magnitude of SWS corrections is
higher in the Ganges than the Brahmaputra; this might be the result of relatively higher agricultural
coverage in the Ganges basin. These results are consistent with the evaluation of SWS over the
GB basin carried out by [13] as shown in Figure 7, giving a SWS mean amplitude of 410 km3 and
a SWS/TWS ratio ~0.45. The Pearson correlation coefficient calculated between SWS estimated by
the two techniques is higher than 0.95 for the different couples of time series (SWS GIEMS/Alt–SWS
GIEMS/ASTER and SWS GIEMS/Alt-SWS GIEMS/HyMAP) over G, B, and GB.

A strong seasonal cycle is observed with maximum surface water volume in August, one month
before the TWS peak and a minimum volume in March–April one month before the TWS minima
(Figure 7). The maximum lagged correlation coefficient between TWS and the SWS time series
(ASTER and HyMAP) is always higher than 0.9, with a lag time of one month. The delayed seasonal
phases of TWS relative to SWS can be explained by the lower flow velocities of water in the soil and
in groundwater in comparison to the surface water movement, causing recharge and drainage to
continue after the maximum and minimum of SWS. In agreement with the results from [13], these new
datasets confirm that SWS contributes annually to ~50% of TWS variations for both river basins.
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Figure 7. Monthly basin-scale SWS variations estimated using the GIEMS/GDEM approach (blue
for ASTER and red for HyMAP), by the GIEMS/Altimetry technique (green) and total water storage
(TWS) variations estimated using Gravity Recovery And Climate Experiment (GRACE) for the period
2003–2007 over: (a) Ganges; (b) Brahmaputra, and (c) Ganges-Brahmaputra River basins.

Table 1. Mean annual amplitudes of SWS variations estimated by GIEMS/GDEM and GIEMS/Altimetry
techniques over the G, B, and GB system.

Mean Annual Amplitude (km3)

Basin
Using GDEM Using Altimetry

GIEMS/ASTER GIEMS/HyMAP GIEMS/Alt
Ganges 254 172 300

Brahmaputra 253 212 250
Ganges-Brahmaputra 496 378 410

In the following, SWS estimates are compared and evaluated with two other related hydrological
variables: satellite altimeter-derived river discharge measured at Hardinge Bridge and Bahadurabad
(see Figure 1 for locations) and basin-scale estimates of precipitation from GPCP. Figures 8 and 9 show
the annual variations (a), the mean seasonal cycle (b) and the inter-annual variations (c) of SWS (blue),
precipitation (gray), and discharge (red) over the Ganges (Figure 8) and the Brahmaputra (Figure 9)
River basins. The normalized anomalies shown in Figures 8c and 9c are obtained by removing the mean
seasonal cycle of 1993–2007 and normalizing by the corresponding standard deviation. Considering the
similarity between SWS obtained by GIEMS/ASTER and GIEMS/HyMAP, only SWS GIEMS/ASTER
time series are presented in the figures below.

SWS time series (GIEMS/ASTER and GIEMS/HyMAP) show high consistency (Figures 8a and 9a)
with precipitation (R > 0.87) and discharge (R > 0.90) time series for the period 1993–2007. As shown in
Figures 8 and 9, there is no delay between precipitation and SWS at basin scale as intense local rainfall
during the annual monsoon results in fast soil saturation followed by quasi-instantaneous inundation
of large extents and SWS variations. In contrast, SWS leads discharge by one month in Ganges and
Brahmaputra: this time lag corresponds to the residence time of water in floodplains before flowing
into the mainstream. The mean seasonal cycle (Figures 8b and 9b) in the GB watershed shows well
the increase in the SWS as a consequence to the wet south-west monsoonal high rainfall rate between
June and September. Over the period 2003–2007, there is also a close correspondance between SWS
and TWS for both river basins (R > 0.91). Maximum cross-correlation coefficients (Rmax) calculated for
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annual and inter-annual variations are given in Table 2 along with the corresponding time lags. Note
that correlation coefficients between inter-annual time series of TWS and SWS were not computed due
to the short period of observation.

Inter-annual variations shown in Figures 8c and 9c, highlight the years when wetter and dryer
events take place. For the Ganges River basin, extreme negative anomalies associated to SWS occur
in 1993, 1994, 2001 and 2006; as for the Brahmaputra basin, the years 1994, 1997, 2006 and 2007
show significant negative anomalies. High positive anomalies lasting several consecutive months
are especially observed in 1998 and 2004 over the Ganges, with many other years over the record
showing smaller positive anomalies. The years 1998 and 2004 show strong positive anomalies for the
Brahmaputra basin.

 

Figure 8. Surface water storage (blue) time series comparison with precipitation (gray) and discharges (red)
over the Ganges catchment: (a) Annual variations; (b) Mean seasonal cycle; (c) Inter-annual variations.

 

Figure 9. Surface water storage (blue) time series comparison with precipitation (gray) and
discharges (red) over the Brahmaputra catchment: (a) Annual variations; (b) Mean seasonal cycle;
(c) Inter-annual variations.
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Table 2. Maximum cross correlation (Rmax) coefficients and time lags calculated between SWS time
series (GIEMS/ASTER and GIEMS/HyMAP) and the three related hydrological parameters: TWS,
discharge and precipitation.

Rmax (Time Lag in Month)

Basin Technique Parameter
Annual Time

Series
Inter-Annual Time

Series

Ganges

GIEMS/ASTER
TWS 0.91 (−1) /

Discharge 0.87 (0) 0.3 (0)
Precipitation 0.87 (0) 0.51 (0)

GIEMS/HyMAP
TWS 0.91 (−1) /

Discharge 0.86 (0) 0.26 (0)
Precipitation 0.88 (0) 0.50 (0)

Brahmaputra

GIEMS/ASTER
TWS 0.94 (−1) /

Discharge 0.90 (0) 0.34 (0)
Precipitation 0.89 (1) 0.38 (0)

GIEMS/HyMAP
TWS 0.94 (−1) /

Discharge 0.91 (0) 0.38 (0)
Precipitation 0.90 (1) 0.33 (0)

In order to further illustrate such drought/flood events in the Ganges-Brahmaputra River system,
Figure 10 shows spatio-temporal patterns of SWS for the two contrasted years of 1994 and 1998.
Figure 10a–c show the temporal variability of SWS (over the Ganges, the Brahmaputra, and the entire
Ganges-Brahmaputra respectively, estimated by GIEMS/ASTER technique) for 1994 and 1998 as
compared to their mean seasonal cycle (estimated over the period 1993–2007). For both the Ganges and
Brahmaputra basins, SWS estimates in 1998 are larger than the mean seasonal cycle values, especially
during the monsoon season. This is in agreement with several past studies that characterized the 1998
monsoon season as extremely “flooded”, with for instance [15,63] reporting that during the summer of
1998 over 60% of Bangladesh was inundated for nearly three months. Figure 10e, showing the spatial
distributions of SWS anomalies for July 1998, illustrates well the patterns of these major flood events
with large positive anomalies over the entire GB system. On the other hand, it is interesting to note that
SWS estimates in 1994, which is characterized as a drought year, are below the mean seasonal cycle
only for the Brahmaputra basin as reported in [64]. Nevertheless, Figure 10d shows that major drought
patterns are well observed over the Brahmaputra and the main channel of the Ganges. The drought
observed over the main Ganges channels is compensated by positive anomalies distributed over the
rest of the basin, which diminish the signature of the drought over the entire basin.

This case scenario highlights the importance of the new SWS dataset that helps spatialize
large-scale drought/flood patterns. Nevertheless, it should be also noted that when estimating SWS
during severe droughts (which involved the low end of the hypsographic curves), the proposed method
assumes that we cannot have access to water storage below the minimum values that GIEMS/ASTER
and GIEMS/HyMAP can provide. This can be a potential source of uncertainties when estimating
the extreme low storage values of exceptional drought years. Indeed, in order to capture correctly
the extreme low storage values during droughts, ASTER and SRTM-GDEM should have produced
credible elevation data for those periods at the low end of the histograms. Unfortunately, it is not
possible at this stage to verify such information.

Investigating the large-scale climate causes of these anomalous drought/flooding events in the
Ganges-Brahmaputra is far beyond the scope of this paper, but the new availability of these long-term
continuous estimates of SWS will help such future studies. For instance, these new observations are
in accordance with the results of [65], which investigate how the occurrence (or co-occurrence) of
different climate modes (El-Niño, La Niña and Indian Ocean Dipole (IOD) events) affects the variability
of precipitation in the GB basin, as well as the occurrences of major flood and drought events: for
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instance, major droughts, such as the one observed in 1994, are linked to a positive Indian Ocean
Dipole (pIOD) mode, whereas major floods, such as the one in 1998 for the entire GB system, might be
linked to a negative Indian Ocean Dipole (nIOD) mode.

Figure 10. Spatio-temporal variations of SWS estimated by the GIEMS/ASTER technique for the two
years of 1994 and 1998: (a–c) show the SWS mean seasonal cycle (black) and its standard deviation
(shaded gray) for the 1993–2007 period along with SWS variations for 1994 (red) and 1998 (blue)
over the Ganges, the Brahmaputra, and the Ganges-Brahmaputra respectively; (d,e) show the spatial
distribution of SWS anomalies over the GB system for July 1994 and July 1998 respectively.

6. Conclusions

This study presents an estimation and evaluation of SWS variations over the Ganges-Brahmaputra
system between 1993 and 2007. The technique used to determine the water volume variations consists
in combining water extents from GIEMS with topographic information extracted from GDEMs (ASTER
and HyMAP). It follows the method developed by [14] and previously applied in the Amazon basin.
Due to the presence of extensive saturated soils (resulting from intense irrigation practices) in the GB
basin, the inundated extent detected using GIEMS was overestimated. A MODIS-based static mask
was applied to discriminate between flooded and water saturated soil, providing realistic surface water
extent. Our results show realistic spatial distribution of surface water reservoirs over the GB compared
with previous estimates based on GIEMS and altimetry-based water levels. Basin integrated time series
of SWS (G, B and GB) exhibit strong annual and inter-annual variations. For the entire basin, a mean
amplitude of ~496 km3 of SWS is estimated by GIEMS/ASTER while GIEMS/HyMAP gives a mean
amplitude of ~378 km3, accounting for 41% and 51% of the seasonal amplitude of TWS respectively.

The monthly SWS estimates are evaluated against monthly SWS time series estimated by another
technique (GIEMS/Alt) and other related hydrological variables such as satellite altimetry-derived
river discharge, precipitation and GRACE-derived TWS. Correlations higher than 0.86 were observed
among all variables. Lower correlations are calculated when subtracting the seasonal cycle (between
0.23 and 0.51).

In this study, we use ASTER and SRTM-GDEM, which as global satellite-derived DEMs show
a series of characteristics, artifacts and anomalies that can cause significant problems or errors when
used for hydrological applications [47,48]. It includes the influence of vegetation cover, man-made
constructions and even errors due to cloud cover, such as very low but dense boundary layer clouds in
tropical regions that are difficult to correct. These effects may introduce inaccurate elevation in the
DEM with consequences on the hypsographic curve technique that we developed. These issues should
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be investigated in future studies and the future release of the DEM from TerraSAR-X for some key
regions, such as the Ganges-Brahmaputra delta, might help to solve some issues.

This new data set provides valuable information on the hydrology of the Indian Sub-Continent.
It can be used for a better understanding of the complex relationship between the water cycle, climate
variability and human activities, for estimating the sub-surface water storage and discharge to the
ocean and their impact on key parameters for oceanography of the Bay of Bengal such as salinity and
temperature [65–67] and for the validation of regional/global hydrological models.

This methodology had already been tested in the Amazon basin. The present study shows its
validity in a very different environment. As GIEMS and the DEMs are available globally, this study is
also a first step towards the development of such a database at the global scale. There is also ongoing
work to extend the GIEMS time series from 2007 to present. A consistent global SWS dataset from 1993
to present will play a key role in the definition and development of the future hydrology-oriented
satellite missions such as the NASA-CNES SWOT (Surface Water and Ocean Topography) dedicated
to surface hydrology [68,69].
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Abstract: A dense rain-gauge network within continental Ecuador was used to evaluate the quality
of various products of rainfall data over the Pacific slope and coast of Ecuador (EPSC). A cokriging
interpolation method is applied to the rain-gauge data yielding a gridded product at 5-km resolution
covering the period 1965–2015. This product is compared with the Global Precipitation Climatology
Centre (GPCC) dataset, the Climatic Research Unit–University of East Anglia (CRU) dataset, the
Tropical Rainfall Measuring Mission (TRMM/TMPA 3B43 Version 7) dataset and the ERA-Interim
Reanalysis. The analysis reveals that TRMM data show the most realistic features. The relative bias
index (Rbias) indicates that TRMM data is closer to the observations, mainly over lowlands (mean
Rbias of 7%) but have more limitations in reproducing the rainfall variability over the Andes (mean
Rbias of −28%). The average RMSE and Rbias of 68.7 and −2.8% of TRMM are comparable with
the GPCC (69.8 and 5.7%) and CRU (102.3 and −2.3%) products. This study also focuses on the
rainfall inter-annual variability over the study region which experiences floods that have caused high
economic losses during extreme El Niño events. Finally, our analysis evaluates the ability of TRMM
data to reproduce rainfall events during El Niño years over the study area and the large basins of
Esmeraldas and Guayas rivers. The results show that TRMM estimates report reasonable levels of
heavy rainfall detection (for the extreme 1998 El Niño event) over the EPSC and specifically towards
the center-south of the EPSC (Guayas basin) but present underestimations for the moderate El Niño
of 2002–2003 event and the weak 2009–2010 event. Generally, the rainfall seasonal features, quantity
and long-term climatology patterns are relatively well estimated by TRMM.

Keywords: rainfall variability; El Niño events; in situ data; TRMM; Ecuadorian Pacific slope and
coast; Esmeraldas and Guayas basins
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1. Introduction

Spatio-temporal analysis of rainfall is crucial for water-resource management including water
supply, risk management, sustainable agriculture and hydrological infrastructure. These aspects
must be addressed and discussed before promulgating public policies in order to achieve the best
climate-adapted development. Over South America, at continental scale, the rainfall distributions
and related processes, such as moisture sources and transport, atmospheric circulation over oceans
and continents, and the Andes range forcing, are fairly well-documented [1–4]. At regional scale, the
Ecuadorian Pacific slope and coast (EPSC) is an area of particular interest due to its physiographic
features (surface, altitudinal range and the considerable horizontal distance from the coastal border to
the watershed division on the high Andes) because they have a strong impact on the spatial variability
of rainfall. In addition, the El Niño-Southern Oscillation (ENSO) is commonly identified as the main
driver of temporal rainfall variability along the Ecuadorian coastal region and how the influence of
this is different on the Andes [5].

High-rainfall events over the EPSC, generally associated with El Niño events, are responsible for
increases in runoff that cause major floods over Ecuador and Peru. The results of a 35-year simulation
of rivers’ runoff over the Pacific Slope and coast of South America (PSCSA) showed that 15% of the total
PSCSA runoff comes from the EPSC [6] making it one of the main runoff surfaces over the PSCSA. By
comparison, the Peruvian Pacific slope produces 17% of the PSCSA runoff over the area that is six times
the area of the EPSC [6]. This highlights the importance of conducting more detailed climatological
and hydrological studies over the whole EPSC and also in its two largest basins (the Guayas and
Esmeraldas basins) considering different types of ENSO events in terms of strength and seasonality.

The rainfall distribution and anomalous heavy rainfall in the coastal area of Ecuador are known
to be related to the strong positive Sea-Surface Temperature Anomalies (SSTA) in the El Niño 1 + 2
region (N1 + 2) located between 0–10◦ S/80–90◦ W [7]. The spreading of atmospheric instability in
the N1 + 2 Pacific region to the eastern escarpment of the Andes could be a result of the temporary
eastward shift of the Walker circulation [8]. Moreover, over the Andes, the rainfall patterns are driven
by the influence of both the Pacific Ocean and the Amazon basin [8] and the combinations of regional
and local atmospheric processes which interact with the topography [5,7,9–11]. Currently, various
datasets are available to study different aspects of the Ecuadorian climate, such as the spatio-temporal
rainfall patterns over this region. These datasets include the best rainfall estimates from gauge analyses
such as the best-estimate precipitation rate with multiple independent precipitation estimates of the
Tropical Rainfall Measuring Mission (TRMM) sensors and rain-gauge analysis (TRMM 3B43 monthly
Version 7 product) or called TRMM Multi-Satellite Precipitation Analysis (TMPA/3B43) [12] that later
we will name only TRMM.

A few studies have investigated the rainfall patterns over Ecuadorian areas [9,13,14], but
they do not examine in detail the entire EPSC surface. One of the objectives of this study is to
better understand rainfall behavior over the EPSC. A critical step to achieving this goal consists in
identifying the best regionally available dataset (e.g., based on synoptic observations from in situ
networks, model reanalyzes, or derived from remote sensing) to represent the rainfall patterns over
the EPSC. Consequently, this identified dataset will provide a more realistic framework to advance
further hydro-climatic studies. Of course, in situ observations, that pass a quality-control process,
constitute the most valuable source of information for climate studies. However, post-processing of
satellite information contribute to enhancing the products that are only based on in situ observations,
particularly on areas where it is too difficult to install a weather station. Over South America,
TRMM products were used for regional analyses of rainfall variability already tested, e.g., the
Peruvian [15–17] and Central Andes [18], Brazil [19], Andean–Amazon River Basins [20,21] or the
Amazon Basin [22]. Therefore, this study aims to test whether TRMM information represents the
climatological conditions of the EPSC obtained from in situ observations better than the other three
datasets (Global Precipitation Climatology Centre (GPCC), Climatic Research Unit–University of East
Anglia (CRU), and ERA-Interim Reanalysis). To determine which global dataset provides the better
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results, a monthly 5-km resolution product was generated from the rain gauge network that covers the
entire EPSC region. This product served as reference for the comparison with the four other datasets.

This study is organized as follows: the details of the study area are presented in Section 2, whilst
Section 3 presents the data. First, the quality-control process applied to the information of all available
rain gauges in Ecuadorian territory that are maintained by the Meteorological and Hydrological
National Institute of Ecuador (INAMHI); second, the process to generate the 5-km gridded rainfall
dataset applying the cokriging method (COK) to the rain-gauge data; and last, a brief overview of the
other rainfall products. Section 4 presents methods for comparing the different products based on
statistical metrics, principal component analysis (PCA), and an analysis of selected El Niño rainfall
events corresponding to different types and amplitudes. Section 5 is dedicated to the summary of the
results. Section 6 presents the discussion. Finally, Section 7 presents the conclusions of this work.

2. Study Area

Ecuador is located in north-western South America, between Colombia and Peru, between
81.03◦ W–75.16◦ W, 1.48◦ N–5.04◦ S. Ecuador extends from the Pacific coast in the west to the Amazon
plain in the east. Following a north–south direction, the Andes range crosses the entire Ecuadorian
territory. Along this section, the Andes are divided in two main chains, the western and eastern ranges.
These two quasi-parallel lines form an inter-Andean zone characterized by several valleys where
many human settlements are found, including the capital of Ecuador, Quito. The highest watershed
altitude divides the territory into two large drainage surfaces, with main flow directions towards the
Pacific Ocean and the Amazon basin respectively (Figure 1). Over the western Andes slopes, rainfall is
produced from moist air coming from the Pacific Ocean, whilst over the western Andes the moisture
comes from the Amazon basin and the Atlantic Ocean. The eastern side, through the trade winds,
generally receive more moist air than the western slope [5,23]. In addition, the inter-Andean valleys
are influenced by both the oceanic and continental air masses [5], the prevailing easterly moisture flow
extends across the mountains depending on the speed of trade winds, especially in the south (around
3◦ S), where the mountain chain is generally lower [10].

Our study area, the EPSC, is delimited to the west by the Pacific Ocean and to the east by the
Andes watershed division. From west to east, the EPSC can be divided into the coastal region, the
low-altitude coastal cordillera (extending from 1◦ N to 2◦ S, with a maximum altitude of 860 m.a.s.l.),
an inland low valley, the western flanks of the Andes, the western high Andes ranges until they reach
the tropical glaciers, and finally an inter-Andean region in the north (Figure 1). The EPSC covers an
area of ~116,436 km2 and represents about 47% of Ecuadorian territory with a total wide range of
altitudes varying from 0 to 5870 m.a.s.l. from the coastal border to the higher Andes summits. Due
to the complex topography of the study area, 74 basins are delimited according to level five of the
Pfafstetter methodology [24]. The Esmeraldas and Guayas basins are the largest of the EPSC, covering
19,680 km2 and 32,300 km2 respectively, together representing 44.6% of the EPSC surface.

The singular rainfall distribution of the EPSC is related to the two relevant mountains chains. The
coastal border is characterized by low rainfall (<600 mm/year); the rainfall amount increases over the
low coastal cordillera; and eastwardly, between this chain and the start of the Andes foothills, rainfall
amounts reach the maximum of the region (>2000 mm/year). Then, to the east, rainfall decreases
with altitude towards the high Andes (~400 to 1200 mm) [25]. Over the entire region, large rainfall
variability is associated with the influence of the Pacific Ocean warming during extreme El Niño
events [7], which induce extensive floods that can become devastating during the extreme El Niño
years [26] over the lowlands.
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Figure 1. Topographical map of continental Ecuador obtained using the digital elevation model of the
Shuttle Radar Topographic Mission (SRTM) at 1 km of spatial resolution. The Pacific slope and coast
(study area) is delineated with a red line and the two largest basins (Esmeraldas and Guayas) with
orange and purple lines respectively. The other hydrographic basins are delineated with black lines
according to level 5 of the Pfafstetter methodology. There are in total 74 basins for the Pacific slope and
coast and three basins for the Amazon slope.

3. Data

3.1. In Situ Rainfall Data

The in situ observations are composed of the monthly rainfall records from 325 selected
meteorological stations (262 gauges on the Pacific slope and coast, and 63 on the Amazon slope)
with at least 10 years of data over the 1965–2015 period (Figure 2). The meteorological stations network
is managed by INAMHI. The method applied to select the stations with valid long-term records is
described in Section 3.1.1.
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Figure 2. The rain gauges of the Pacific slope and coast (EPSC) network (the 262 stations are represented
using circles and the colors represent the rainfall record length of the stations for the 1965–2015 period).
The rain gauges of the Amazon slope (63 stations) are represented using triangles. The study area
(EPSC) is delineated using a black and bold line. The Esmeraldas and Guayas basins are delineated
using orange and purple lines, respectively. The topography is represented using the digital elevation
model (SRTM at 1 km of spatial resolution).

3.1.1. Data Homogenization and Validation

The raw data from the rain gauge network operated by INAMHI (370 gauges) were first
quality-checked with the methodology applied in [27,28]. In the following analysis a valid station
record should contain at least 10 years of observations and pass the quality-assessment and
regionalization processes using the Regional Vector Method (RVM) [29]. The RVM assumes that for
the same rainfall regime in a climatic zone, the total annual rainfall presents a pseudo-proportionality
(little random variation) associated with the rain distribution in the zone. Based on this method,
the coherence of the gauge data was checked grouping the gauges by watersheds and altitudinal
ranges. Then, they were regrouped iteratively to check their homogeneity. The main statistical criteria
for regrouping stations are based on thresholds applied to the standard deviation of the differences
between annual pluviometrical indices of stations and the regional vector indices; and to the correlation
coefficient between the regional vector and annual pluviometric values of stations [27,28]. During
this process, an exhaustive geographical supervision was conducted using a background isohyet map
with all data under review. This allowed excluding stations with doubtful data and those that did
not correspond to any group and did not represent real climate zones. After this process, 45 gauges
were excluded.

Belonging to the EPSC, 262 stations were grouped and selected; however, due to the low-gauge
density over the Amazon region, only 63 stations were taken into account for this region. The
information from these stations was used to perform an interpolation of the rainfall for all the
Ecuadorian continental territory.
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3.1.2. Rainfall Data Interpolation

Mountainous or sparsely populated regions often lack stations, so the meteorological information
that represents these places does not exist or is limited. To solve these problems, spatial interpolation
methods are convenient approaches. These techniques create continuous data over the region with
missing information from sampled point values adjacent to a determined location.

The 325 validated gauges were interpolated using the cokriging method (COK) [30] for the
whole Ecuadorian territory but the results are only applied to the EPSC. The Digital Elevation Model
(DEM) of the Shuttle Radar Topographic Mission (SRTM) at 1-km resolution, provided by the National
Aeronautics and Space Administration–National Geospatial-Intelligence Agency (NASA–NGA) and
available at [31] was used as the external covariable for COK. Considering the gauge network density
and the covariable resolution, the results of COK were obtained at a spatial resolution of 5 km. The R
language and the libraries raster [32], gstat [33], were mainly used to perform the COK on the rainfall
records. The library automap [34] was used to get the best fit for the variogram model. The best values
to fit the variogram model were selected by testing the following four models: exponential, spherical,
Gaussian and Matern–Stein. Considering the whole period, the best-fit indices were obtained with the
exponential model, and therefore it was chosen.

The COK method was selected to interpolate the rainfall data because it allows avoiding the
instability caused by highly redundant secondary data [35]. Improved results over the Andes have
already been shown using this method [36] as well as over complex terrain in general [37]. However,
despite the advantages of COK, the main weakness of the Kriging method is the tendency to produce
maximum rainfall values over the summits rather than on the slopes [38]. Despite this limitation,
the COK interpolation produces better results compared to those obtained in a previous study using
simple Kriging and Cressman [39]. The gridded rainfall data obtained with COK represents adequately
the rainfall variation by altitude. This better representation is thanks to the DEM data used by the
COK method, which allows representing coherent rainfall changes by altitude, especially over the
slope and the Andes.

In order to show a brief summary of the EPSC features and the results obtained with the validated
gauges, Figure 3a shows the topography of the study area using SRTM (1 km of spatial resolution)
and Figure 3b presents a three-dimensional view of the relief. The average annual rainfall map for the
1965–2015 period obtained using the COK spatial rainfall interpolation is presented in Figure 3c. The
monthly mean rainfall variability averaged over the whole region is presented in Figure 3d.

The rainfall spatial distribution (Figure 3c) shows the lowest rainfall region (<750 mm/year)
located on the central coastal border between latitudes 1◦ S and 2.5◦ S. This is associated with the
limited displacement of the Inter-Tropical Convergence Zone (ITCZ) to the south in normal conditions,
which is truncated by the cold water of the south-west Pacific inhibiting the development of convection
processes [40]. Towards to the east, the rainfall increases over the low-altitude coastal cordillera (~750
to 1500 mm/year) and reaches the highest rainfall (~1500 to 3500 mm/year) on an inter-valley between
the low coastal cordillera and the Andes (1◦ N to 1◦ S and 79.5◦ W to 78.5◦ W). Finally, on the eastern
side of the EPSC, over the Andes range, the rainfall decreases (~750 to 1750 mm/year).
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Figure 3. (a) Pacific slope and coast (EPSC) topography; and (b) south–north perspective
3D-topography view showing the low-altitude costal cordillera (west) and the Andes (east);
(c) multiyear average rainfall distribution from 325 rain gauges (262 stations from the EPSC) for
the 1965–2015 period obtained with the cokriging interpolation method (COK) at 5 km grid resolution
in mm/year; and (d) the rainfall averaged over the whole region (mm/month) for the 1965–2015 period.

3.2. Rainfall Products

The gridded in situ rainfall obtained with COK interpolation as described in Section 3.1.2 was used
to evaluate four commonly used gridded monthly rainfall datasets. They include two global gridded
gauge-analysis products (CRU and GPCC), a reanalysis product (ERA-Interim) and the satellite-based
estimate product from the TRMM monthly rainfall estimates with 3B34 algorithm, version 7. The
details of the products used are shown in Table 1.
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Table 1. Description of the regional gridded interpolated rain-gauge product and four external rainfall
datasets used in this study.

Product and
Version

Spatial
Resolution

Time Period
Available

Source and Reference
Using Period

(Common Period)

Ecuadorian rain gauges

Interpolated
Rainfall (Cokring) 5 km (0.04◦) 1965–2015

Meteorological and
Hydrological National

Institute of Ecuador
(INAMHI)

1970–2015

Global rain-gauge dataset

GPCC, v7 0.5◦ 1901–2013

Global Precipitation
Climatology Centre
(GPCC), National

Meteorological Service
of Germany [41]

1970–2013

CRU, v3.22 0.5◦ 1901–2013
Climate Research Unit
(CRU), University of

East Anglia [42]
1970–2013

Reanalysis

ERA-Interim
(Synoptic monthly

mean)
0.125◦ 1979–present

European Centre for
Medium-Range

Weather Forecasts
(ECMWF) [43]

1979–2015

Satellite

Tropical Rainfall
Measuring Mission
(TRMM) 3B43 V7

0.25◦ 1998–2015

National Aeronautics
and Space

Administration
(NASA) Goddard

Space Flight Centre
[44]

1998–2015

4. Methods

4.1. Evaluation of the Rainfall Products

The interpolated in situ observations obtained with COK were considered as the reference data to
assess the quality of the four rainfall products described in Section 3.2. Three standard comparison
metrics were used: the Pearson correlations coefficient (Crr), the Root Mean Squared Error (RMSE)
and the Relative bias index (Rbias), the latter expressed in percentage (Equations (1)–(3)):

Crr =
1

n − 1

n

∑
t=1

∑
(

P(λ, ϕ, t)− P(λ, ϕ, t)
σp

)(
x(λ, ϕ, t)− x(λ, ϕ, t)

σx

)
(1)

RMSE =

√
1
n

n

∑
t=1

[(P(λ, ϕ, t)− x(λ, ϕ, t)]2 (2)

Rbias =
∑n

t=1(P(λ, ϕ, t)− x(λ, ϕ, t))
∑n

t=1 P(λ, ϕ, t)
× 100 (3)

where n is the number of months; P is the monthly observed interpolated rainfall of the grid located at
the coordinates (λ, ϕ) in the month t; P and σP, represent respectively the mean and standard deviation
of P; x, corresponds to the monthly series rainfall of the compared product; x and σx represent,
respectively, the mean and standard deviation of x.
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The comparisons were performed over the longest time period of common availability by
resampling the in situ observations at the same original resolution of the four tested products (see
Table 1): for ERA-Interim at 0.125◦, for TRMM at 0.25◦ and for the rainfall products GPCC, CRU at 0.5◦.

4.2. Evaluation of the Tropical Rainfall Measuring Mission (TRMM) Rainfall Product

Principal Component Analysis (PCA) (or the Empirical Orthogonal Functions (EOF))
technique [45,46] is a commonly used method to characterize the spatio-temporal variability of physical
fields in climate-related studies. It was applied to the centered and deseasonnalized anomalies of
the interpolated monthly gridded in situ observations obtained in Section 3.1.2, over the 1965–2015
period. Given that, TRMM shows the best comparison metrics in terms of the criteria presented in
4.1 among the four tested products; we performed a more detailed evaluation of the TRMM data
over the overlapping period with the gridded in situ observations (1998–2015). In particular, the
PCA was also applied on the centered and deseasonalized anomalies to analyze the spatio-temporal
variability of rainfall estimates from TRMM and compare them to those obtained using the gridded in
situ observations.

Furthermore, the TRMM estimates were also evaluated during El Niño events over the entire
EPSC area and over the two largest river basins (Esmeraldas and Guayas basins). The results of the
comparison will be presented for each study region and each El Niño event as the percentage of Rbias
of the TRMM rainfall estimates and the total rainfall episodes.

The duration of El Niño rainfall events were selected according to the consecutive positive values
of the Southern Oscillation Index (SOI) [47]; El Niño intensity was ranked according to the NOAA
Oceanic Niño Index (ONI) [48]; sea-surface temperature anomaly (SSTA) as weak (0.5 ◦C to 0.9 ◦C
SSTA), moderate (1 ◦C to 1.4 ◦C SSTA) and extreme (≥2 ◦C SSTA). Finally, the events’ ranking was
fine-tuned according to the observed rainfall quantity in the study area. The events intensity for
the EPSC was also adjusted regarding the SOI values because the ONI only considers the mean of
extended reconstructed sea-surface temperature anomalies (ERSST.v4) [49] in the El Niño 3.4 region
(5◦ N–5◦ S, 120◦–170◦ W). According to these criteria, and for the overlapping data period, the El Niño
events selected were: El Niño 1998 (January 1998–September 1998) ranked as extreme, the El Niño of
2002–2003 (January 2002–September 2003), 2007–2008 (September 2007–September 2008) ranked as
moderates and El Niño of 2009–2010 (October 2009–September 2010) ranked as weak. It should be
noted that only a part of El Niño 1997–1998 (from January 1998) could be analyzed due to the data
availability of TRMM.

5. Results

5.1. Rainfall Products Comparison

The first step consists of determining the rainfall product that provides the better rainfall estimates
compared with in situ observations. The results of the comparison between in situ observations
interpolated with COK and the four rainfall products described in Section 3.2 are presented in Table 2
and Figure 4.
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Table 2. Results of the comparison between the four rainfall products and in situ gridded (interpolated
with COK) observations. The monthly time-series comparison is shown, along with the gridded
resolution of the comparison, the mean annual precipitation with the mean bias difference of each
product with the interpolated observations. Finally, the results of the three comparison metrics:
correlation, RMSE and relative bias. The comparison was made in reference to the common temporal
periods and the original grid resolutions of the four rainfall products compared (see Table 1).

Rainfall Source
Compared

Times
Series

Resolution
(Degrees)

Mean Annual
Precipitation

(mm/year) and
Difference with

Observations in %
(in Parenthesis)

Mean
Correlation
with Obs

Mean
RMSE with

Obs
(mm/year)

Mean of Relative
Bias Index (Rbias)

(%) with Respect to
Observations

Interpolated
observations

(COK)

Common
periods

respectively
0.008 1537.1

ERA-Interim Total
precipitation 1979–2015 0.125 4117.4

(+167.9%) 0.69 288.2 −177.1

TRMM 3B43 V7 1998–2014 0.25 1345.5
(−12.5%) 0.82 68.7 −2.8

GPCC V7 1970–2013 0.5 1331.8
(−13.4%) 0.83 69.8 5.7

CRU V3.22 1970–2013 0.5 1468.2
(−4.5%) 0.66 102.3 −2.3
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Figure 4. Maps of (a) linear correlations; (b) root mean squared error (RMSE) (in mm) and; (c) relative
bias (in %) between interpolated in situ observations with COK and the four studied rainfall datasets
(ERA-Interim, TRMM 3B43 V7, GPCC V7, CRU V3.22).
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An analysis of variance (ANOVA) was performed on the four global rainfall products and the in
situ one, all resampled at 0.5◦ of spatial resolution (corresponding to 10,572 samples in the EPSC from
1998 to 2013 at monthly time-scale) in order to determine if the differences between the datasets are
significant. The different datasets do not perfectly follow the normal distribution, but they have almost
all similar variances (20,388, 14,849, 18,646, 24,670 mm2 for the observations, TRMM, GPCC and CRU,
respectively), except ERA-Interim (95,579 mm2). Results of the ANOVA give a F-statistic of 2839 and a
p-value close to 0. As the ERA-Interim does not perfectly fit the assumption of the ANOVA and also as
the results of the comparison with the in situ data show important differences with the in situ dataset,
an ANOVA on the in situ product, TRMM, GPCC and CRU was then performed. A F-statistic of 33.85
and a p-value of 7.6 × 10−22 were obtained. A final ANOVA on the in situ data, TRMM and GPCC
was performed as CRU provides quite different results from the other datasets. A F-statistic of 6.78
and p-value of 0.0011 were obtained. In all the cases, the null hypothesis was rejected, showing that
the results presented in Table 2 and Figure 4 are statistically significant.

Considering the global products only based on in situ observations, better results are obtained
using the GPCC product than the CRU (correlation 0.83 versus 0.66 and RMSE of 69 versus 102 mm).
This is likely to be due to the use of a larger number of rain gauges in GPCC than in CRU [42,50]. ERA
Interim reanalysis monthly mean data show a large rainfall overestimation over the central region of
the EPSC (Guayas basin). This was already observed in other studies in the same latitude range as
Ecuador [51] and over the Peruvian Andes [52].

The two rainfall estimates that provide the best results are GPCC and TRMM products with Crr
higher than 0.8 and Rbias lower than 6%. The major advantage of TRMM over GPCC is its higher
spatial resolution (0.25◦ against 0.5◦) and the availability of more frequently updated data. TRMM
underestimates the total rainfall (−12.5%) with a Rbias, mean Crr and RMSE of −2.8%, 0.82 and
68.7, respectively (Table 2). TRMM exhibits the best score in the lowlands, with high correlation, low
RMSE and low Rbias compared to the other products (Figure 4). Nevertheless, the performance of
TRMM is quite low over the high-altitude regions, as already mentioned in several studies [16,53–57]
(Figure 4a,c). This can be explained by the fact that the rainfall data from TRMM are derived through
an inverse approach from the brightness temperature at the cloud top [58]. The TRMM processing
scheme of microwave and infrared (IR) data has to cope with the highly heterogeneous terrain with
varying brightness temperatures which affects the rainfall estimates [18]. Generally, the microwave
signal as seen from space is strongly dependent on surface type [17], and is affected by the presence
of topography that is especially the case over the Andes [59]. The Andes cause strong scattering of
the electromagnetic waves emitted by the Precipitation Radar (PR). This is a large source of error for
rainfall estimation [38,44] and also may severely affect the infrared retrieved estimation of rainfall [54].

5.2. Identification of Spatio-Temporal Rainfall Variability with TRMM

As a second step, as showed in 5.1, the TRMM product was chosen among the other rainfall
products because of its evaluation scores, which were some of the best, and also because of its higher
spatial resolution (0.25◦ × 0.25◦).

PCA was applied on deseasonalized anomalies to both the TRMM product and the gridded
interpolated observations averaged at 0.25◦ of spatial resolution over 1998–2015. According to North’s
rule of thumb [60], the first five PCA modes are significant, but only the first three PCA modes will
be discussed because the higher-order modes explain a variance lower than 5% and are difficult to
interpret. Figure 5 shows these three first modes, which represent 76% (53, 13 and 10%, respectively)
of the explained total variance for the gridded observations and 86% (69, 10, and 7%, respectively) for
TRMM. The spatial structures of both rainfall products are very similar, especially the first spatial and
temporal component, which accounts for the highest explained variance. The explained variances
obtained are lower for the observations resampled at the 0.25◦ × 0.25◦ resolution than for TRMM.
This difference is because the PCA method is less able to represent (as explained variance) the more
detailed spatial distribution of observed resampled grid rainfall than the TRMM estimates.
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Figure 5. Comparison of spatial and temporal components of the first (a), second (b) and third (c) first
Principal Component Analysis (PCA) modes obtained on the deseasonalised rainfall anomalies for the
gridded observations and TRMM estimates. The comparison was performed at the spatial resolution
of the TRMM 3B43 V7 product (0.25°) and over the common period of availability of the two datasets
(1998–2015).

Very similar spatial and temporal patterns, with Crr = 0.91 and 0.95 and RSME = 55 mm and
0.07 respectively, were found for the first PCA mode (Figure 5a). For the spatial component, small
differences can be observed in terms of amplitude. TRMM represents more rainfall variability: lower
over the Andes foothills and higher over the lowlands. The temporal component is dominated by
the signature of the ENSO events, especially the extreme event of 1998 and the moderate event
of 2002–2003. For the second PCA mode, showing a meridional dipole, the spatial patterns are
very similar between TRMM and the re-gridded deseasonalized anomalies’ observations (Crr = 0.91,
RMSE = 45 mm), although the amplitudes of the dipole centers are smaller for TRMM, especially over
the north of the EPSC (ITCZ migration region) and on the coastal center and south border (Humboldt
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Current influence). The temporal components are quite different (Crr = 0.57 and RMSE = 0.27). In
particular, TRMM exhibits a stronger variability with respect to the observations (Figure 5b). Similar
spatial and temporal patterns with, respectively, Crr = 0.81 and 0.82 and RSME = 34 mm and 0.19 were
found for the third PCA mode. However, a clear east–west gradient is present in the in situ gridded
rainfall. It does not appear so clearly for TRMM (Figure 5c).

5.3. Identification of Spatio-Temporal Rainfall Variability during El Niño-Southern Oscillation (ENSO) Events
with TRMM

As a third and final step, three regions were studied for extreme, moderate and weak El Niño
events selected in Section 4.2 over the whole EPSC and its two largest basins (Esmeraldas and Guayas).
Time series and maps of average rainfall (1998–2015 period), as well as temporal events and cumulative
rainfall maps over each study area and for each El Niño event are presented in Figure 6.

5.3.1. Pacific Slope and Coast

For the EPSC, the monthly averaged time variations of the observed rainfall were well estimated
in the TRMM product. They present a low Rbias of −6.9% with respect to the observations. As shown
in Table 3, the 1998 El Niño event was the strongest rainfall event of the entire period 1998–2015 over
the EPSC with 75.1% above the pluri-annual monthly average rainfall. Next was the moderate El
Niño event of 2007–2008, with a cumulative rainfall event of 9.3% above the monthly average. The
moderate and weak events of 2002–2003 and 2009–2010, with an average rainfall of −3.5% and −0.8%,
respectively, were the closest to the monthly average of the EPSC. The best represented event by TRMM
was the moderate 2002–2003 El Niño, and the worst was the weak 2009–2010 El Niño (Figure 6a).

The spatial and temporal results presented in Figure 6a show that the 1998 El Niño, for the
9 months considered, produced a maximum cumulative rainfall event between 3500 and 4000 mm
over most of the lowlands and the high rainfall was observed towards the south until 2.5◦ S. During
2002–2003 El Niño, a maximum cumulative rainfall event of 6000 mm in 21 months was located in
the northern region (~1◦ N to 0.5◦ S). For the 2007–2008 El Niño, the maximum cumulative rainfall
event of 3500 mm in 13 months was located over the north of the region (~1◦ N to 0.5◦ S). During the
2009–2010 El Niño, with a duration of 12 months, the maximum cumulative rainfall event of 3500 mm
was located in the north (~1◦ N to 1◦ S). For all of these four events, high rainfall was delimited at the
west and east by the low coastal cordillera and the Andes range, respectively (Figure 6a).

5.3.2. Esmeraldas Basin

In the Esmeraldas basin, the monthly average rainfall was generally underestimated by TRMM,
with an average Rbias of −16.4%. The rainfall during El Niño events of 1998, 2002–2003, 2007–2008
and 2009–2010 exceeded by 43.2%, 3.4%, 8.1% and 5.9% the pluri-annual monthly average rainfall
observations. The extreme 1998 El Niño was the major rainfall event. The Rbias comparison of rainfall
observations and TRMM estimates of El Niño events of 1998, 2002–2003, 2007–2008 and 2009–2010 are
presented in Table 3.

The rainfall during the extreme El Niño of 1998 and the weak 2009–2010 El Niño are, respectively,
the best and worst estimated using TRMM. The rainfall during the weak 2009–2010 El Niño was the
most underestimated by TRMM. Regarding the spatial rainfall distribution of the events (Figure 6b),
the maximum accumulated rainfall was observed in the central and southern regions of this basin.
The upstream basin (in the Andes) was, in all cases, the region with least rainfall and lower variability.
This spatial distribution is in accordance with the zonal rainfall distribution showed by the multiyear
average rainfall map and the first spatial PCA mode.
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Figure 6. Rainfall comparison of the gridded observations and TRMM estimates at 0.25◦ of spatial
resolution, during the El Niño events of 1998, 2002–2003, 2007–2008 and 2009–2010. The top image
corresponds to the map of the observed pluri-annual monthly average rainfall of the period 1998–2015
and the monthly comparison of four El Niño events with the mean rainfall observed and estimated by
TRMM for (a) the Pacific slope and coast, for (b) the Esmeraldas basin, and for (c) the Guayas basin.
The other maps are the spatial cumulative rainfall observations and the comparisons of the temporal
average series by El Niño event, between observations and TRMM made for the (a) Pacific slope and
coast and for (b) the Esmeraldas basin and (c) Guayas basin.
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5.3.3. Guayas Basin

In the Guayas Basin, the monthly average rainfall was also underestimated by TRMM, with an
average Rbias of −8.5% (lower than in the Esmeraldas basin). El Niño events of 1998, 2002–2003,
2007–2008 and 2009–2010 presented 100.7%, −21.3%, 0.8% and −7.5% more/less rainfall with reference
to the average of the basin (Table 3). The extreme 1998 El Niño presented the largest impact on the
rainfall variability compared to the EPSC and Esmeraldas basin. The moderate El Niño of 2002–2003
was the best estimated, and the worst was the weak El Niño of 2009–2010.

The distribution of average rainfall (Figure 6c) indicates that it was mostly concentrated in the
northern basin region (normal seasonal ITCZ influence). The largest rainfall amounts occurred in the
center and along the north–south border of the basin during the 1998 El Niño event. The total rainfall
(4000 mm in 9 months) was distributed over most of the lowlands in the region delimited by the Andes
and the low-altitude coastal cordillera. For all events, less rainfall was found in the Andean part of
the basin. This spatial distribution is in accordance with the multiyear average rainfall distribution
and with the zonal and meridional rainfall-variability distribution (N–S increase and W–E decrease)
showed by the spatial PCA modes (EOF1 and EOF2) of Figure 5.

6. Discussion

Our work presents a detailed rainfall distribution for the EPSC, which shows a significant
correlation with orographic features. The high amount of climatology rainfall is concentrated in
the north at the western windward side of the Andes and in the low coastal cordillera due to the
intense low-level convergence when the ITCZ is placed on the north of the equator (almost in line
with the oceanic ITCZ) in austral winter [4]. The mountain slopes exposed perpendicularly to frequent
winds that transport moisture [11] can produce this highest amount of rainfall. This could also be
supported by a larger cloud frequency observed in the north (~0) than the south (~4 S) [61]. The
spatial rainfall distribution over the EPSC is clearly delimited by its two mountain chains, which
act as weather divisions, mainly the Andes, as the major borderline between Pacific and Amazonian
climatic influences. These two chains have permanent interactions with tropospheric flow, which is
more remarkable during the rainy season due the ITCZ seasonal migration and the interannual ENSO
influence periodicity (ranging from 2 to 7 years [62]). The particular case of the coastal border, where
the rainfall amount is minimum, can be related to the influence of the SE Pacific anticyclone and the
cold water upwelling of the Humboldt Current in austral winter [61]. As for the temporary rainfall
distribution over the EPSC, the first rainfall seasons starts in November–December when the ITCZ
begins its southern displacement, then a second marked season, due to the direct influence of the ITCZ
on convective processes, starts in Jan–May reaching a maximum in March. A third season with lower
(minimum) rainfall occurs during Jul–Sep due to the northward shift of the ITCZ, during the northern
hemisphere summer, and the intensified Walker circulation that produces advective low cloud [63].

The largest interannual variability within the EPSC region is mostly produced by the ENSO
conditions and influenced by the seasonal meridional migration of the ITCZ. This relationship
is supported by the fact that the ITCZ migration is delayed (favored) during warm (cool) ENSO
phases [64] because the ITCZ generally migrates toward a differentially warming hemisphere [65].
The spatial component of the second EOF mode is consistent with the higher cloud frequency during
the ITCZ meridional migration over the EPSC and, therefore, closely related to the ENSO events
represented by the first EOF mode. The spatial component of the first EOF specifically reveals the
zonal rainfall variability influence of El Niño events, which is highest over the lowlands, specifically
higher over the center south (Guayas basin), low over the Andes slope, and very low over the Andes.
This was clear, for example, during the extreme 1998 El Niño, with a high rainfall variability impact
towards the center-south according to the spatial rainfall variability presented by the first EOF mode
and the event rainfall accumulation over the Esmeraldas and Guayas basins. The higher rainfall
variability for the Guayas basin (center-south region) than for the Esmeraldas basin (north region) can
be accounted for by evidence of historic strong and extreme El Niño events, which clearly separate
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the moist northern Ecuadorian coast, under the normal influence of the ITCZ, from the south coast of
Ecuador, which is the driest region and sensitive to ENSO events [66]. It should be noted that the ITCZ
shift during warm ENSO episodes reduces rainfall by about 100 mm/year along the northern edge of
the normal ITCZ over the eastern Pacific [67], mostly in December–February (DJF) and March–May
(MAM). It is equally important to mention that the western and central Pacific ITCZ shifts southward
by about 2◦ S on typical ENSO conditions, and by about 5◦ S during strong El Niño events (such as in
1983 and 1998) [65] with the longitudinal ITCZ structure modified by ENSO’s zonal rearrangement of
convection [67].

Although the monthly global datasets as GPCC and CRU obtained by interpolating global gauges’
observations allow for fairly good rainfall data for the study region, TRMM 3B34 V7 is the better source
among all the datasets considered in this study. TRMM showed good agreement with gauge data
compared with GPCC and CRU, and it showed to be superior to the global atmospheric reanalysis of
ERA-Interim. Nevertheless, TRMM presents some overestimations over lowlands (mean Rbias of 7%)
and has more underestimations over the Andes (mean Rbias of −28%) when compared with in situ
gauges. For the El Niño rainfall events, TRMM presents mostly underestimations for the considered
El Niño events. This could be explained because the TRMM dataset is the result of the combination
of multiple independent precipitation estimates from the TRMM microwave imager (TMI), visible
and infrared scanner (VIRS), rain gauge data and the precipitation radar (PR). PR underestimates
rainfall rate for extremely intense convective rainfall [68], especially for extreme precipitating systems
that contain significant mixed phase and/or frozen hydrometeors [69], as on the Andes. There is
also the limitation of the VIRS data that provide information of cloud-top height, which do not
correlate well enough with ground precipitation [70]. Different cloud types may have similar cloud-top
temperatures and are associated with different amounts of rainfall at the ground [71]; for higher
convective cloud there are normally underestimations compared to low-level short convection [72].
Finally, the TMI also missed the light and heavy rainfall because of its small scale (swath width of
758.5 km) [73] and/or type of rainfall according to its nature as, for example, the warm rain (derived
from non ice-phase processes in clouds) [74]. As shown by [61], over Ecuadorian territory the average
cloud-top height increases from west to east during the wet season (December–May), which means
W–E rainfall cloud-top height increases; thus, this results in important underestimation over the Andes
against a reasonably small overestimation over lowlands. It could also suggest that during the lower
rainfall season (July–September), as shown in [75], TRMM overestimations over the dry areas could be
attributed to sub-cloud evaporation.

7. Conclusions

Comparison of the gridded observations with the commonly used rainfall datasets from GPCC,
CRU, ERA-Interim reanalysis, and the satellite estimates from TRMM 3B43, showed that the
satellite-based rainfall product provides the more reliable estimates. Overall, considering the 1998–2015
period, there is a good agreement between observations and TRMM with an average lowest RMSE
of 68.7 mm/year and Rbias of −2.8% for the entire EPSC. We can note that, for the lowlands, the
Rbias obtained (7%) are closer (small overestimation) to the observations than for the Andes (−28%)
(underestimation). These results can be related to the uncertainties associated with the TRMM 3B43
algorithm and the errors from the different sensors onboard the satellite (TMI, PR and VIRS) which
are responsible for underestimations of the rainfall during the wet season (December–May) when
top-cloud heights increase from W–E of the EPSC over the Andes slopes and inter-Andean basin.

Very similar spatial and temporal patterns were found, especially for the first mode (Crr = 0.91
and 0.95 and RSME = 55 mm and 0.07 mm), when applying the PCA to deseasonalized anomalies of
rainfall from TRMM 3B43 and in situ gridded observations over the EPSC between 1998 and 2015. For
the spatial component, some differences can be observed in terms of rainfall variability amplitude and
structures form over the Andes foothills (lower for TRMM) and over the lowlands (higher for TRMM).
The first temporal component is dominated by the signature of the ENSO events, especially the extreme
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event of 1998. The first PCA spatial mode clearly shows the location of heavy rainfall impact of El
Niño events and their zonal rainfall variability influence, which is highest over the lowland and lower
towards the Andes.

The TRMM 3B43 product showed a generally good capability for providing realistic rainfall
estimates during extreme El Niño 1998 (mean Rbias of +7.7%), and moderate El Niño of 2002–2003
(mean Rbias of −2.4%) over the EPSC. Nevertheless, rainfall for the El Niño 2007–2008 and 2009–2010
events were underestimated by TRMM (mean Rbias of −11% and −17.1%) over the EPSC and more
notably underestimated for the 2009–2010 event for the Esmeraldas (−23.7%) than the Guayas basin
(−18.9%). General good agreement was also found over the Esmeraldas basin for the extreme
El Niño 1998 (mean Rbias 6.3%) and over the Guayas basins for the extreme 1998 and moderate
2002–2003 El Niño events (mean Rbias of +8.5%, +5.3%) in spite of small overestimations. All these
results confirm that TRMM 3B43 V7 reports reasonable levels of heavy rainfall detection over the
EPSC and specifically towards the center-south of the EPSC (Guayas basin) but presents a general
underestimation for the moderate and weak El Niño events. Over the whole EPSC, the seasonal
features and quantity are relatively well estimated by TRMM and the long-term climatology patterns
are well represented. The present study validates the use of remotely sensed rainfall data in regions
with sparse rain-gauge stations and high rainfall variability, taking into account the potentialities and
limitations of satellite estimates.
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Abstract: Precipitation and evapotranspiration, and in particular the precipitation minus
evapotranspiration deficit (P − E), are climate variables that may be better represented in reanalyses
based on numerical weather prediction (NWP) models than in other datasets. P− E provides essential
information on the interaction of the atmosphere with the land surface, which is of fundamental
importance for understanding climate change in response to anthropogenic impacts. However,
the skill of models in closing the atmospheric-terrestrial water budget is limited. Here, total
water storage estimates from the Gravity Recovery and Climate Experiment (GRACE) mission
are used in combination with discharge data for assessing the closure of the water budget in the
recent high-resolution Consortium for Small-Scale Modelling 6-km Reanalysis (COSMO-REA6)
while comparing to global reanalyses (Interim ECMWF Reanalysis (ERA-Interim), Modern-Era
Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)) and observation-based
datasets (Global Precipitation Climatology Centre (GPCC), Global Land Evaporation Amsterdam
Model (GLEAM)). All 26 major European river basins are included in this study and aggregated
to 17 catchments. Discharge data are obtained from the Global Runoff Data Centre (GRDC), and
insufficiently long time series are extended by calibrating the monthly Génie Rural rainfall-runoff
model (GR2M) against the existing discharge observations, subsequently generating consistent model
discharge time series for the GRACE period. We find that for most catchments, COSMO-REA6
closes the water budget within the error estimates. In contrast, the global reanalyses underestimate
P − E with up to 20 mm/month. For all models and catchments, short-term (below the seasonal
timescale) variability of atmospheric terrestrial flux agrees well with GRACE and discharge data
with correlations of about 0.6. Our large study area allows identifying regional patterns like negative
trends of P − E in eastern Europe and positive trends in northwestern Europe.

Keywords: water cycle; GRACE; water budget equation; atmospheric reanalyses; numerical weather
prediction models; precipitation minus evapotranspiration; COSMO-REA6

1. Introduction

Precipitation (P) minus evapotranspiration (E) represents the net flux of water between the
atmosphere and the Earth’s surface. Globally, P − E is close to zero since land and ocean areas
balance each other nearly, but not perfectly, as can be deduced from the present gain of water
stored on continents [1,2]. Over land areas, in the temporal mean, P − E is slightly positive since
average evapotranspiration should not be greater than precipitation. Here, precipitation minus
evapotranspiration links the terrestrial water budget to atmospheric moisture transports and, through
latent heat flux, to the Earth’s surface energy budget. The precipitation versus evapotranspiration
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deficit thus represents an important boundary condition for climate modeling and hydrological studies.
Its temporal evolution can be traced to changes in climate forcing (temperature, precipitation, wind,
CO2 levels, etc.), the direct and indirect impacts of anthropogenic activities such as groundwater
abstraction and land use change and the hydrological response of the system. Simulations have
shown that while P − E over oceans follows thermodynamical scaling with global warming, the
“wet-get-wetter, dry-get-drier” scaling does not seem to apply over land [3]. Thus, investigating P − E
is very important to develop more elaborate scaling laws.

Various measurement techniques and observation datasets for precipitation and
evapotranspiration exist [4,5]. In reanalyses, precipitation and evapotranspiration are generated
based on numerical weather prediction (NWP) modeling and the assimilation of many datasets, with
the result that P − E is usually better simulated compared to P and E individually. It is known that
P, E and P − E have biases in reanalyses and do not close budgets [6–8]. Regional reanalyses seek
to improve over global reanalyses through improved process representation and high-resolution
modeling, but it is difficult to quantify improvements with independent datasets.

Reanalyses usually do not close the water budgets within error bars due to assimilation increments
and since data errors and model inconsistencies necessarily propagate into the estimates. Assessing
the closure of water and energy cycles enables diagnosing the error level and also understanding how
well numerical weather prediction modeling can derive unobserved fields as residuals. The objective
of this study is to validate the net flux of water between the atmosphere and the land surface in global
and regional reanalyses including the regional European Consortium for Small-Scale Modelling 6-km
Reanalysis (COSMO-REA6, [9]), differentiating per river basin and utilizing total water storage (TWS)
measurements obtained from the Gravity Recovery and Climate Experiment (GRACE) satellites and
discharge observations. To this end, we equate areal averages of P − E for 26 river catchments grouped
into 17 target areas through the terrestrial water budget equation to the observations of TWS change
ΔS and discharge R.

GRACE data, commonly expressed as monthly gridded fields of total vertically-integrated water
storage change, provide an opportunity to close the terrestrial water balance and thus replace the
assumption that storage does not change over long time intervals. The GRACE mission consists
of two satellites in tandem formation, chasing each other at about a 450-km altitude and equipped
with a highly precise K-band ranging system. Variations of the inter-satellite distance can then be
converted to gravitational potential change and further to mass change that is typically expressed
as total water storage change per area. Several studies have combined GRACE-derived river basin
averaged water storage change with discharge measurements [10,11] for either constraining P − E [12]
or combining with observed precipitation data for area-wide estimates of evapotranspiration [13–15].
However, challenges related to the use of GRACE data are the need to average over large regions,
signal attenuation related to the peculiar filtering required to smooth out spatially-correlated data
noise and signal leakage from neighboring regions.

Our study follows essentially the approach outlined in [8]; yet the availability of 20 years of
COSMO-REA6 reanalyses enables us to assess trends over the 11-year period (2003–2013) common
with the GRACE mission data. Moreover, the present study now covers all major European river
basins with 26 rivers aggregated to 17 catchment areas. For this, we had to reconstruct discharge
data missing in the Global Runoff Data Centre (GRDC) database using a simple model-based
approach. This allows evaluating, for the first time, regional patterns of consistency over the whole of
Europe for P − E datasets from the regional reanalysis COSMO-REA6, the global Interim ECMWF
Reanalysis (ERA-Interim [16]) and the global Modern-Era Retrospective Analysis for Research and
Applications, Version 2 (MERRA-2, [17]). For comparison, observation-based precipitation from the
Global Precipitation Climatology Centre (GPCC) Version 7 dataset [18] and evapotranspiration from
the Global Land Evaporation Amsterdam Model (GLEAM [19,20]) are evaluated. We anticipate that
this study will be useful for (1) COSMO modelers, to diagnose model deficiencies and eventually bring
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forecast and reanalysis closer to observations and (2) scientists that study the evolution of the water
cycle over Europe, using reanalysis data including (but not limited) to COSMO-REA6.

We found that for all but one of the investigated catchments, discharge time series could not
be retrieved complete from the Global Runoff Data Centre (GRDC). While several methods exist
to fill or continue discharge time series based on satellite altimetry and rating curves [21,22], upon
remotely-sensed water surface or inundation and water area–discharge rating curves [23], and upon
hydraulic equations and using remote sensing measurement of other hydraulic variables such as river
width or flow velocities (e.g., [24]), here, we resort to simulating discharge with the monthly Génie
Rural rainfall-runoff model (GR2M, [25]) while calibrating it against discharge observations from
GRDC using the most recently available data. We test this approach, and all results are accompanied
by a thorough error assessment.

Our results suggest that the high-resolution COSMO-REA6 reanalysis indeed improves the closure
of the water budget compared to the global reanalyses. Due to the large study area, regional patterns
were visible, e.g., positive trends of P − E over western and central Europe and negative trends of
P − E over eastern Europe.

The paper is organized as follows. Section 2 describes the datasets used in this study and
introduces the study area. Section 3 outlines our method for generating consistent time series of P, E,
R and ΔS. In Section 4, first the individual components of the water budget equation are evaluated
for selected river basins. Then, the closure of the water budget equation is assessed, followed by
more detailed analyses of the two sides of the water budget equation, by contrasting mean values,
amplitudes and trends. Additional discussions follow in Section 5.

2. Data and Models

2.1. Study Area

Twenty-six major European river basins were considered in this study (Figure 1). The border of
each basin is defined by the catchment associated with the most downstream gauging station. Small
neighboring catchments are merged together for water budget analyses taking into account the main
European watersheds (marked by colors in Figure 1). This is necessary because of the limited spatial
resolution of GRACE-derived TWS. The 17 combined catchments are listed in Table 1 together with
their size ranging from ~70,000 km2 for the Po to ~800,000 km2 for the Danube.

Table 1. The target catchments and their size.

Catchment Size (km2) Catchment Size (km2)

Danube 807,000 Meuse-Rhine 180,601
Daugava-Narva 120,500 Neman 81,200

Dnepr 463,000 Neva 281,000
Don 378,000 Oder 109,729

Douro-Tagus 158,981 Po 70,091
Ebro 84,230 Rhone 95,590

Elbe-Ems-Weser 178,039 Southern Bug-Dniester 112,300
Garonne-Loire-Seine 227,000 Vistula 194,376

Guadalquivir-Guadiana 107,878
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Figure 1. Study area: 26 European river basins, which are aggregated to 17 catchments as indicated by
the different colors.

2.2. GRACE

The twin satellite mission GRACE (Gravity Field and Climate Experiment [26]) has been
measuring spatial and temporal variations of the Earth’s gravity field since 2002. GRACE consists
of two satellites following each other on the same orbit. An inter-satellite K-band microwave link
observes orbit variations caused by an inhomogeneous mass distribution on Earth. Temporal variations
in gravity can then be converted to mass changes in terms of equivalent water height according to [27]
taking into account the elastic loading effect.

In this study, we use GRACE release 05 (RL05) time series [28] provided by the German Research
Center of Geosciences (GeoForschungsZentrum, GFZ). The monthly GRACE solutions were smoothed
using a DDK4 filter [29] to account for the typical anisotropic error striping patterns. To consider
the effect of seasonal and secular geo-center variations, we added the degree-one spherical harmonic
coefficients provided by [30,31] to the GRACE solutions. The C20 coefficient, which cannot be well
determined by GRACE, was replaced by a result obtained from satellite laser ranging [32]. Already
during the GRACE processing chain, temporal gravity field variations caused by tides (ocean, Earth
and pole tides), as well as by atmospheric and non-tidal ocean mass variations were subtracted
from the observations prior to the gravity field estimation step. Additionally, the mass trend caused
by glacial isostatic adjustment (GIA) [33] was removed in post-processing. Therefore, the resulting
mass variations primarily reflect hydrological water storage changes. For a realistic estimation of
the GRACE measurement accuracy, we used the calibrated errors provided by GFZ, as well as the
standard deviations provided together with the degree-one and of the C20 coefficients in our variance
propagation procedure (see Section 3.4).
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2.3. Numerical Weather Prediction Models

2.3.1. COSMO-REA6

COSMO-REA6 is among the first reanalysis results covering only a part of the globe, but at a much
larger spatial and temporal resolution than all available global reanalyses (see the next subsections).
Other regional reanalyses are the North American Regional Reanalysis (NARR) [34], the arctic system
reanalysis [35], or the recent European reanalyses from the U.K. MetOffice [36], or the Swedish
Meteorological and Hydrological Institute (SMHI) [37].

The general goal of these regional reanalyses is to provide a physically consistent and
homogeneous climate dataset of the atmosphere and land surface that resolves atmospheric patterns
on spatial scales from 500 km down to about 10 km (also known as atmospheric mesoscale). Important
weather and climate phenomena are situated in the mesoscale range e.g., frontal passages, land sea
circulations or deep convection events. Furthermore, the effects of orography and land sea distribution
(especially with respect to precipitation) are expected to be much better represented than in models with
grid sizes of 50–100 km, which are common in global models due to the computational burden. Global
reanalyses still play an important role because they provide the atmospheric boundary conditions to
the regional high-resolution models.

The COSMO-REA6 uses the regional assimilation and forecasting system of the German National
Meteorological Service (Deutscher Wetterdienst, DWD) [38]. It combines the non-hydrostatic forecast
model COSMO with the continuous data assimilation method nudging [39]. The region covered by
COSMO-REA6 is identical to the European Coordinated Regional Climate Downscaling Experiment
at 0.11◦ resolution (CORDEX-EU11) domain, but with a grid size of 0.055◦ (~6 km), on a rotated
latitude-longitude grid with 40 vertical layers in the atmosphere, between the surface and about a 20-km
height. Prognostic variables are the three-component wind velocity vector, temperature, pressure
and various water substance concentrations to account for the generation of clouds and precipitation
in liquid and solid phases. Observations come from different observing systems like radiosondes,
air planes, vertically pointing wind profilers, surface stations, buoys and ships. Depending on the
observing system and the observed variable, windows of influence are defined that spread the actual
observations to the neighboring grid cells in space and time. Nudging means that each equation for the
prognostic variables temperature, pressure, wind velocity and moisture concentration is supplemented
by an additional forcing term. This forcing term drives the model solution at any time and at all
grid points to the respectively spread observations using a prescribed time scale. Note that this
procedure will provide consistent prognostic variables through their physical connection dictated by
the equations, but it cannot provide consistent budgets of energy and water because the additional
forcing terms always add energy, water and momentum to the system proportional to the difference
between the simulated and the observed values. Fluxes like precipitation and evapotranspiration are
derived internally from the necessary state variables, but are in general not assimilated. Therefore, an
evaluation of precipitation, evapotranspiration and other energy or water fluxes with independent data
as is presented here is an important contribution to the overall quality assessment of the COSMO-REA6
or any other regional reanalysis.

The actual setup of COSMO-REA6, including the necessary preparation of land surface variables,
like soil moisture, and oceanic variables, like sea surface temperatures, can be found in [9]. Here also,
a first quality assessment of COSMO-REA6 is presented. Precipitation as one of the most interesting
climate variables is further evaluated in [40], where also a comparison over Germany of the global
reanalysis ERA-Interim, the U.K. Met Office and SMHI European reanalyses and an even higher
resolution COSMO reanalysis at a 2-km grid size is presented, showing among other features the
importance of resolution in representing precipitation.
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2.3.2. ERA-Interim

The global Interim ECMWF Reanalysis (ERA-Interim) provides gridded fields of atmospheric and
land surface variables with approximately 79-km grid spacing considering 60 vertical levels. The model
output covers the time span from 1979 onwards at three-hourly resolution. The main objectives of the
ERA-Interim reanalysis are a realistic representation of the hydrological cycle and temporal consistency
in order to estimate reliable trends [16]. The sequential data assimilation system is based on the 4D-Var
method [41]. In a 12-hourly cycle, the current state of the atmosphere is estimated from a forecast
model combined with an important number of observations originating in the majority from satellites.

In this study, synoptic monthly means of precipitation and latent heat flux are evaluated, which
are computed by the model from temperature, humidity, wind speed and radiometer observations.
Compared to [8], here, we use a finer grid of 0.75◦ × 0.75◦.

2.3.3. MERRA-2

While in [8], we assessed the performance of the Modern-Era Retrospective analysis for Research
and Applications (MERRA) model, here we moved on to its successor MERRA-2. For data assimilation,
an incremental analysis update scheme is applied by the Goddard Earth Observing System Version 5
(GEOS-5). MERRA-2 assimilates new observation types such as hyperspectral radiance, microwave,
GPS radio occultation, ozone and aerosol datasets [17]. One particular improvement of MERRA-2 is the
correction of precipitation biases using observation-based precipitation from different sources [42,43].
However, in this study, we assess the uncorrected precipitation in order to compare with the other
two reanalyses.

MERRA-2 is provided by the Goddard Earth Sciences Data and Information Service Center (DISC)
from 1980 onwards with one-hourly temporal resolution on a 0.625◦ × 0.5◦ grid. Here, monthly
outputs of modeled precipitation and surface latent heat flux are assessed.

2.4. Observational Datasets

In this study, the ability of P and E from NWP models to close the water budget equation is
compared to the performance observation-based datasets, i.e., the Global Precipitation Climatology
Centre (GPCC) dataset for P and the Global Land Evaporation Amsterdam Model (GLEAM) for E.

2.4.1. GPCC

We used the recent version of the GPCC Full Data Reanalysis (V7) that covers the period 1901–2013
and is available at 0.5◦ resolution from the GPCC web site [18]. The precipitation dataset is based on
75,000 gauging stations world-wide, which are subject to strict quality control. The monthly product is
optimized for water budget studies [44]. GPCC data were also used as a reference by [9] for assessing
the quality of P generated by COSMO-REA6.

2.4.2. GLEAM

GLEAM estimates the individual components of evapotranspiration using satellite observations
together with model data and a set of algorithms [19,20]. First, the Priestley and Taylor equation [45]
is used to calculate potential evaporation from net radiation and air temperature observations.
Then, actual evaporation is derived by applying a multiplicative stress factor based on microwave
vegetation optical depth and soil moisture observations. Three datasets exist with different forcings
and spatio-temporal coverages. Of these, two datasets of limited geographical extent are exclusively
based on satellite data. Here, we use the only global dataset, GLEAM_v3.0a. For GLEAM_v3.0a, net
radiation and air temperature are obtained from ERA-Interim, but all other required input datasets
(precipitation, soil moisture, vegetation optical depth, snow water equivalent) are observation based.
GLEAM_v3.0a has a spatial resolution of 0.25◦ and is a daily dataset, which spans the period 1980–2014.
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In [8], we used a gridded E dataset based on the current global network of eddy covariance towers
(FLUXNET) provided by the Max Planck Institute (MPI) Jena. The MPI dataset is available only until
2011 and was therefore replaced by GLEAM. However, the authors of [20] found good agreement of
GLEAM and FLUXNET data.

2.5. Discharge

Monthly discharge data from the Global Runoff Data Centre (GRDC) are available for limited
periods of time only (Figure 2). Merely 10 out of 26 stations used in this study provide data covering
parts of the GRACE time span. Approaches for extending discharge data in time became ever
more relevant during the last few years [46], e.g., satellite altimetry, runoff-precipitation ratio and
runoff-storage relationships. Here, we created a consistent discharge time series by calibrating the
lumped rainfall-runoff model GR2M [25]. GR2M (a) is a simple empirical monthly model, (b) achieves
good results for river basins of different sizes and with different hydrological conditions [47] and
(c) allows for easy inclusion of error estimation. Further model improvement was achieved by
extending GR2M using a distributed Hydrologiska Byrans Vattenavdelning (HBV) type snow model.

For each of the 26 river basins, the GR2M-snow model was calibrated against GRDC data using
the 10 most recent continuous years available (marked in light blue in Figure 2). Then, the model was
run for the GRACE time span. In addition, error estimates were obtained by running GR2M-snow
several times with disturbed forcings and disturbed parameters. Finally, discharge from GR2M-snow
was merged for the 17 aggregated catchments including error propagation. The resulting discharge
time series were used in the further course of this study. While time series of P, E and ΔS are averaged
over each basin, discharge is available at the most downstream gauging station, which also defines the
border of the catchment.

Figure 2. Discharge available from the Global Runoff Data Centre (GRDC) for the most downstream
gauging stations of the rivers in our study region. The monthly Génie Rural rainfall-runoff model with
snow extension (GR2M-snow) is calibrated against the 10 most recent continuous years of each basin
(marked by light blue). In red, the Gravity Recovery and Climate Experiment (GRACE) time span is
indicated.
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3. Methodology

Water storage changes ΔS and discharge R are linked to net atmospheric-terrestrial flux P − E via
the water budget equation:

ΔS + R = P − E. (1)

Consistent time series of water flux and storage are required for assessing the closure of the water
budget equation. In this section, we first describe the derivation of the time series of P − E and ΔS.
Afterwards, the set up of the rainfall-runoff model GR2M is presented aiming at the computation of
discharge time series R covering the whole GRACE period. Finally, evaluation measures and the error
assessment strategy are described.

3.1. Consistent Time Series of Atmospheric-Terrestrial Flux P − E and Storage Change ΔS

First, GRACE-derived gridded total water storage (TWS) anomalies S were centered to the 11-year
study period by removing the mean static field computed from 2003–2013. Next, monthly time series
of P, E and S were computed by spatially averaging over all grid cells of the target area. Finally, storage
changes ΔS were obtained for each month τ as central differences from the GRACE storage time series
according to:

ΔS(τ) =
1
2
(Sτ+1 − Sτ−1), (2)

where Sτ−1 is the previous month and Sτ+1 the next month. Central differences in contrast to backward
or forward difference operators avoid introducing a phase shift in the TWS change time series. Spatial
averaging of TWS involves attenuation of the signal due to the spectral characteristics of GRACE data
and further distortion due to the filtering procedure, known as the leakage effect [48]. Depending
on the mass distribution, filter properties, and target area, mass is transported either into the basin
(leakage in) or out of the basin (leakage-out). This effect becomes particularly large if the basin is very
small or if the mass distribution outside and inside of the basin differs significantly [49]. Consequently,
GRACE-derived time series of TWS change need to be rescaled. To this end, time-variable rescaling
factors were derived for each target area separately. Assuming that the spatial distribution of P − E
approximately corresponds to the spatial distribution of ΔS, a number of different P and E datasets
were used to simulate the effects from spectral resolution, filtering and leakage. A robust estimate for
the multiplicative rescaling factor of each month was obtained from the median of the analyzed P − E
datasets. More detailed information on the derivation of consistent time series are provided by [8].

3.2. Using GR2M-Snow for Generating Modeled Discharge Time Series

The 2-parameter rainfall-runoff model GR2M requires as input monthly precipitation and
potential evapotranspiration and includes two stores, a production store of variable size and a routing
store with a fixed capacity of 60 mm. Monthly discharge is simulated by calibrating the capacity of
the production store and an exchange coefficient, which accounts for the exchange of water with the
outside of the basin. GR2M was extended by a distributed HBV-type snow model, which requires
gridded temperature as input and adds three more calibration parameters (melting temperature,
melting coefficient and temperature separating rain and snow). If the temperature is smaller than
a defined value, snow is added to the corresponding grid cell, and if the temperature exceeds the
melting temperature, the melting coefficient defines the amount of snow that is subtracted from the
grid cell. Then, snow loss is accumulated over all grid cells and considered as additional precipitation.
The precipitation and temperature datasets were obtained from the European daily high-resolution
gridded dataset (E-OBS [50]) and potential evapotranspiration from the Climate Research Unit (CRU)
data set TS3.22 [51]).
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GR2M-snow was calibrated for each of the basins against observed discharge for the 10 most
recent continuous years available from GRDC (Figure 2) minimizing the squared difference of observed
and simulated discharge. As GRDC data are erroneous for Neman and Vistula watersheds, those basins
were calibrated against data from E-RUN (observational gridded runoff estimates for Europe) [52].
Then, the model was run for the time span 1950–2013. As the validation period for each basin, the
next 10 years available before the calibration period were chosen. In addition, error estimates were
derived by generating an ensemble of simulated discharge by disturbing both the parameters and
the input datasets. The input datasets were disturbed with noise following a Gaussian distribution,
applying a standard deviation of 1 ◦C for temperature, 20% for precipitation and 5% for potential
evapotranspiration. The variabilities of the five calibration parameters follow uniform distributions
with appropriate uncertainty assumptions chosen for each parameter individually. For each river
basin, 1000 model runs were performed, and from the ensemble of modeled discharge time series,
the standard deviation was computed. The resulting error band fits well to the difference between
GRDC and GR2M-snow (see Section 4.1). Furthermore, we were able to reproduce the results from [8]
using discharge simulated by GR2M-snow within the error estimates. However, we are aware of
limitations of this approach, e.g., when river dynamics changed over time due to river management
and/or construction.

The skill of GR2M-snow in simulating discharge is evaluated by assessing different measures for
the validation period, i.e., the mean bias and the root mean squared error (RMSE) between observed
and simulated discharge, and Nash–Sutcliffe (NS) coefficients [53] for the time series with seasonal
cycle and for de-trended and de-seasoned time series. NS coefficients are computed according to:

NS = 1 − ∑τ(
√

Robs,τ −
√

Rsim,τ)
2

∑τ(
√

Robs,τ −
√

Robs)2
, (3)

where Robs is observed discharge from GRDC, Robs the temporal mean of observed discharge and Rsim
simulated discharge from GR2M-snow. Here, NS coefficients are computed from the root of discharge
in order to avoid too much weight on high discharge values. An NS coefficient of one means perfect
agreement between observed and modeled discharge; values between zero and one imply that the
model better simulates discharge than the mean of observed discharge. In the case of NS coefficients
smaller than zero, the mean of observed discharge better represents actual discharge than the model.

3.3. Evaluation of the Water Budget Equation

The performance of the individual P − E datasets is assessed with respect to ΔS + R using the
following measures computed for the whole study period (2003–2013). A four-parameter model was
fitted to the time series of basin averages for both sides of the water budget equation:{

P − E
ΔS + R

}
= a + bτ + c sin

(
2π

T
τ

)
+ d cos

(
2π

T
τ

)
+ ε, (4)

where T is the annual period and ε the residuals. A difference between the mean a of the time series of
ΔS + R and P − E is defined as the bias of atmospheric-terrestrial flux. Parameter b corresponds to the
trend, and amplitude and phase shift are derived from c and d. Additionally, correlations of the time
series and of de-seasoned and de-trended time series ε̂ were investigated.

3.4. Error Assessment

For assessing the significance of our results, we performed a thorough error assessment for ΔS+ R.
Calibrated errors given for monthly GRACE Stokes coefficients were propagated to the basin-averaged
TWS changes ΔS while taking into account errors from degree-1 and -2 coefficients. However, the
resulting error estimates might be too optimistic, as we neglect errors from the GIA model and from
the rescaling procedure. The uncertainty of simulated discharge was obtained from ensemble runs
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with the GR2M-snow model by disturbing model parameters and input datasets. Then, errors were
propagated further to ΔS + R for each of the aggregated catchments.

4. Results

Overall, the results presented below show the skill of the individual P − E datasets in closing the
water budget equation over Europe. First, the individual components of the water budget equation
are analyzed. Then, both sides of the water budget equation are contrasted for selected target areas.
Finally, biases, amplitudes and trends are illustrated and discussed for the whole study area.

4.1. Modeled Discharge from GR2M-Snow

Discharge simulated from GR2M-snow generally fits well to available discharge from GRDC
within the error bounds. Figure 3 shows discharge for the Rhine basin from GRDC (blue) and
GR2M-snow (red). Only a few peaks from GRDC exceed the ensemble-based standard deviation (grey).
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Figure 3. Discharge R for the Rhine from Global Runoff Data Centre (GRDC) (blue) and simulated
from Génie Rural rainfall-runoff model (GR2M)-snow (red) including the standard deviation (grey).

The influence of discharge on the closure of the water budget equation depends not only on its
magnitude, but also on the magnitude of TWS change. The magnitude of discharge and its standard
deviation vary for the individual river basins with temporal means between 3 and 61 mm/month
(Table 2). The largest values are found in central Europe where mean discharge rates are larger than
40 mm/month and corresponding standard deviations larger than 7 mm/month (Rhine, Rhone and
Po). In contrast, many basins in eastern Europe, in France and on the Iberian peninsula have mean
discharge rates of about 10–20 mm/month and standard deviations of only 2–5 mm/month. In general,
the standard deviation derived from ensemble runs amounts to 20%–30% of simulated mean monthly
discharge (Table 2). An exception is the Daugava, where the standard deviation is about 40% of
simulated discharge. Root mean squared errors (RMSE) between observed and simulated discharge
have in most basins approximately the size of the simulated standard deviations.

The bias of mean discharge for the validation period is smaller than 2 mm/month (Table 2) except
for Po (4.0 mm/month) and Rhone (2.5 mm/month), and thus, we neglect its contribution to the closure
of the water budget equation. Nash–Sutcliffe coefficients (NS) were computed for the validation phase
and confirm that the calibration of GR2M-snow was successful for most basins. In western and central
Europe, the NS coefficients reach values between 0.6 and 0.9. Only some basins in eastern Europe
(Narva, Dnepr, Southern Bug and Don) have NS coefficients smaller than 0.3. Discharge from Don
contains some extreme peaks during the validation time span that are not simulated by GR2M-snow,
resulting in a negative NS coefficient. NS coefficients for de-seasoned and de-trended time series
(computed according to Equation (4), extended by semiannual signals) are mostly between 0.2 and 0.6.
Again, the largest values are obtained for western and central Europe with NS coefficients between 0.35
and 0.65. Negative NS coefficients of de-seasoned and de-trended time series are found for Danube,
Don, Neva and Po indicating changes in the short-term behavior of discharge between the calibration
and the validation time span. However, correlations are between 0.8 and 0.9 for the original time series
and between 0.7 and 0.8 for de-seasoned and de-trended time series. Exceptions are the rivers Don
and Neva, where correlations of de-seasoned and de-trended time series amount only to 0.3 and 0.4.
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Table 2. Evaluation of simulated discharge from GR2M-snow for the validation period of each river
basin: mean values, mean standard deviation (Std.), root mean squared errors (RMSE), bias of the
mean and Nash–Sutcliffe (NS) coefficients for time series with seasonal cycle and de-seasoned and
de-trended (des., det.) time series are computed as defined in Section 3.2. Due to missing observations,
no validation could be performed for Seine and Tagus (* Neman and Vistula are calibrated and validated
using E-RUN (observational gridded runoff estimates for Europe) because of erroneous GRDC data).

Catchment
Mean Std. RMSE Bias NS NS

( mm
month ) ( mm

month ) ( mm
month ) ( mm

month ) des., det.

Danube 19.1 4.8 4.2 0.4 0.67 −0.34
Daugava 18.0 7.9 9.1 0.9 0.60 0.28
Dniester 13.8 4.0 5.9 −0.9 0.65 0.38
Dnepr 8.2 2.6 4.1 −0.5 0.42 0.22
Don 4.8 1.7 2.1 0.2 −0.12 −0.22

Douro 11.0 2.9 6.2 −1.0 0.61 0.45
Ebro 14.9 3.6 6.2 0.23 0.73 0.25
Elbe 11.9 3.1 4.2 −0.1 0.69 0.17
Ems 28.3 5.6 9.8 1.6 0.84 0.49

Garonne 33.7 6.7 11.2 2.5 0.81 0.38
Narva 16.2 4.1 4.0 1.2 0.62 0.42

Guadalquivir 3.4 1.2 4.6 −1.2 0.63 0.53
Guadiana 4.0 1.4 6.1 −1.8 0.66 0.65

Loire 23.8 5.2 7.4 1.8 0.84 0.35
Meuse 35.2 7.4 11.0 1.7 0.84 0.50

Neman * 14.6 4.7 5.8 −3.2 0.69 0.58
Neva 22.3 4.5 3.5 −0.5 0.66 −0.73
Oder 15.3 3.7 4.4 0.5 0.59 0.27

Po 61.4 16.4 20.4 4.0 0.51 −0.11
Rhine 38.2 7.3 7.6 1.1 0.77 0.36
Rhone 51.1 11.8 10.6 1.7 0.76 0.45

Southern Bug 5.7 2.1 4.5 −0.3 0.21 0.07
Vistula * 15.3 4.3 4.8 −1.0 0.54 0.29

Weser 22.5 5.1 7.3 0.1 0.83 0.51

4.2. Time Series of Fluxes and Storage Change

The noise of ΔS depends mainly on the size and the shape of the target areas [49]. For example,
the Danube has a smooth time series with standard deviations of about 10 mm/month, while the time
series of the Po is very noisy, and the standard deviations reach up to 30 mm/month, which is half of
the annual amplitude (Figure 4). In fact, with a size of only 70,000 km2, the Po basin is likely too small
for obtaining reliable TWS information from GRACE.

In the following, time series of fluxes for five catchments from different regions in Europe and of
different sizes are discussed in more detail: (a) Guadiana-Guadalquivir on the Iberian peninsula, which
is a small region and the most southern target area with very dry climatic conditions, (b) Rhine-Meuse
in central Europe with a medium size and large precipitation events in the Alpine region, (c) Neva, the
most northern basin, (d) Dnepr, a catchment with particularly low precipitation rates, and (e) Danube,
the largest river basin in Europe. Some, but not all findings from these regions can be transferred to
basins with similar climatic conditions (see Section 4.3).

The magnitude of river discharge varies in the individual basins depending on the climatic
conditions (Figure 5, black dashed line). In Guadiana-Guadalquivir and Dnepr, discharge is small with
mean annual values of 7–9 mm/month and 0–14 mm/month. In contrast, discharge plays an important
role in central Europe (Rhine-Meuse) where it amounts to mean annual values of 30 mm/month,
which is one third of precipitation. While discharge in the Neva basin is relatively constant with a weak
annual cycle, in the Rhine-Meuse and Danube basins, it is clearly related to individual precipitation
events. For most basins, discharge contributes about 10%–20% to the error of the left-hand side of the
water budget equation. The highest error contribution from discharge is found in the Danube basin

200



Water 2017, 9, 289

with 40%, which is mainly due to the small standard deviation of GRACE data caused by the large
basin size.
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Figure 4. Total water storage (TWS) change ΔS (red) and its standard deviation (grey) for two selected
river basins.
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Figure 5. Monthly total precipitation P from different models and simulated discharge R (black dashed)
for selected catchments of the study area.

Monthly total precipitation is highly variable for European river basins (Figure 5). The chosen
catchments represent different climatic conditions over Europe, e.g., there is nearly no precipitation in
summer in Guadiana-Guadalquivir; Neva has a very pronounced annual cycle; and in Rhine-Meuse,
individual precipitation events are visible. All model-derived time series show similar features as the
observation-based dataset GPCC. However, while in the Danube basin, peaks from all models have
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about the same size, we find in the Dnepr and Neva basins smaller peaks for the COSMO-REA6 model
compared to the other datasets. The authors of [54] showed that COSMO-REA6 has an enhanced
skill in representing individual precipitation events compared to ERA-Interim. Moreover, the authors
of [9] found that COSMO-REA6 and ERA-Interim overestimate P over parts of Russia and parts of
the Alps compared to GPCC. In our study, this is confirmed by particularly high P rates in the Rhone
basin for COSMO-REA6 with a temporal mean of 90 mm/month and peaks of up to 180 mm/month.
Furthermore, in line with [9], we found that all reanalyses underestimate P in the catchment of
Garonne-Loire-Seine compared to GPCC. Besides, MERRA-2 simulates exceptional high P rates in the
Neva basin where its temporal mean is more than 10 mm/month higher than the temporal mean from
the other datasets.

Evapotranspiration is characterized by a distinct annual cycle over Europe with different
amplitudes depending on the regional climate (Figure 6). Large differences are found between the
individual E datasets with a mean spread of 17 mm/month (maximum 43 mm/month) in the Danube
basin, up to a mean spread of 28 mm/month (maximum 96 mm/month) in the Neva basin, and a
mean spread of 29 mm/month (maximum 68 mm/month) in the catchment of Guadiana-Guadalquivir.
Interestingly, E for the catchments on the Iberian peninsula does not only show a large spread between
the models, but also patterns beyond the annual cycle. Moreover, all models except ERA-Interim
suggest a small, but not regularly occurring secondary peak of evapotranspiration in winter in
Guadiana-Guadalquivir. One might speculate that this sub-annual variability is due to the interaction
of large-scale variability with regional characteristics, e.g., effects of the North Atlantic Oscillation
(NAO). In summer, evapotranspiration from ERA-Interim is twice as large as E from COSMO-REA6 in
Guadiana-Guadalquivir. Furthermore, in the Guadiana-Guadalquivir basin, MERRA-2 fits best to the
observation based dataset GLEAM.

In general, MERRA-2 overestimates E compared to the observation-based dataset GLEAM with
the most extreme values in the Neva catchment, where the temporal mean is 20 mm/month higher
than the temporal mean from the other models. In contrast, outputs from COSMO-REA6 show the
smallest E in all considered basins. It is striking that for most basins, the maximum value in summer
is quite the same for COSMO every year, whereas for the global models, it varies from year to year.
The year 2010 stands out with high evapotranspiration values for some models, which could be
explained by the heat waves over Russia and the Iberian peninsula.

The previous analyses already indicated that the performance of the models shows regional
differences. This also impacts the closure of the water budget equation (Figures 7 and 8). Modeled
P − E is mostly within the error bars of ΔS + R even in smaller basins (Figure 7). However, MERRA-2
tends to underestimate P− E especially in summer due to large E estimates. Furthermore, ERA-Interim
cannot close the water budget equation on the Iberian peninsula as E is overestimated in this region.
It is worth noticing that P − E from COSMO-REA6 matches ΔS + R well for all selected catchments.
The other models mainly differ from ΔS + R by a constant shift. Correlations between ΔS + R and
P− E are between 0.5 and 0.9 and mostly about 0.7 for all models (Figure 9a), which is mainly attributed
to the annual cycle.

A closer look at short-term variability is taken in Figure 8. For this purpose the mean, trend and
annual signals according to Equation (4) (extended by semiannual signals) were subtracted from the
flux time series. De-seasoned and de-trended time series show similar patterns for both sides of the
water budget equation in all basins. Short-term variability also depends on the climatic conditions
of the target catchment, e.g., in the Dnepr basin de-trended and de-seasoned P − E and ΔS + R have
maximum values of 50 mm/month, whereas in Guadiana-Guadalquivir catchment, maximum values
of 100 mm/month exist.
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Figure 6. Monthly total evapotranspiration E from different models for selected catchments of the
study area.
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Figure 7. The closure of the water budget equation ΔS + R = P − E is assessed for selected river basins.
The left side of the equation is represented by the red line and includes propagated standard deviations
(black). All time series are smoothed with a three-month moving average filter to facilitate interpretation.
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Best agreement between de-trended and de-seasoned ΔS + R and P − E is achieved for the
Danube with correlations of about 0.7 (Figure 9b). In most basins, the correlation is about 0.5,
with a few exceptions like the Ebro, Neman, Don and Neva, where correlation is smaller than 0.3.
Especially in smaller basins, outliers in the GRACE time series have a huge impact on correlation.
Furthermore, in some basins, the agreement between ΔS + R and P − E changes with time, e.g., in the
Guadiana-Guadalquivir and Neva basins, models and ΔS + R disagree during the first three years of
the study period, but then again match very well (Figure 8).
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Figure 8. De-seasoned and de-trended time series of P − E and ΔS + R (red) for selected river basins.

Figure 9. Correlation of ΔS + R and P − E from COSMO-REA6 Reanalysis for (a) the original time
series, as shown in Figure 7, and (b) de-trended and de-seasoned time series, as shown in Figure 8.
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4.3. Statistics of the River Basins

After integration, biases in fluxes produce incorrect trends in storage, i.e., underestimating
P − E leads to a negative trend in storage, and overestimating P − E leads to a positive trend in
storage. Figure 10a–d shows the bias of the water budget equation for the individual P − E datasets.
The global models ERA-Interim and MERRA-2 tend to underestimate P− E (indicated by the red color).
For ERA-Interim, the largest biases (about 20 mm/month) are obtained on the Iberian peninsula, which
we attribute to deficiencies in the E estimate as discussed before. In contrast, in eastern Europe, both
global models perform quite well with biases smaller than 10 mm/month. Although MERRA-2 shows
the largest biases in central Europe (15 mm/month for Rhine-Meuse), it improved with respect to
MERRA, which was assessed in [8], and had biases of about 25 mm/month in some central European
basins. Results for the basins of Po and Rhone should be interpreted with caution as the basins are too
small for deriving reasonable storage changes from GRACE data, and moreover, simulated runoff is
rather uncertain in these basins (Table 2).

Biases of COSMO-REA6 are smaller than 10 mm/month in all basins, and in many basins, even
smaller than 5 mm/month. In central Europe, COSMO-REA6 tends to underestimate P − E, whereas
in eastern and western Europe, it overestimates P − E. The relevance of the bias is illustrated by
Figure 10e, which provides the standard deviation of the temporal mean of ΔS + R. This value is
mostly between 2 mm/month and 3 mm/month; it is smaller for large basins like Danube and Dnepr
and higher for the very small basins like Po, Rhone and Ebro. We can conclude that the biases found
in COSMO-REA6 are relevant only for a few basins. The observation-based datasets GPCC and
GLEAM also tend to overestimate P − E with large values in the catchments of Garonne-Loire-Seine
(−9 mm/month), Dnepr (−7 mm/month) and Dniester-Southern Bug (−8 mm/month). Interestingly,
no obvious biases are found in the eastern basins for all model-based time series of P − E.

A more complete picture of the closure of the water budget is obtained by analyzing the amplitude,
phase and trend of ΔS + R and P − E derived from the parameters estimated from Equation (4).
The amplitude of P− E is predominantly affected by modeled evapotranspiration, which differs largely
for the individual models (Figure 6). The regional patterns and the magnitudes of the amplitudes
of COSMO-REA6 fit well to the amplitudes of ΔS + R with exceptions only in a few basins, e.g., on
the Iberian peninsula (Figure 11). In contrast, GPCC in combination with GLEAM and ERA-Interim
overestimate the amplitude of P − E with respect to GRACE by 15–20 mm/month in all basins west
of the Rhine. The amplitude of P − E from MERRA-2 is particularly large in the French basins, the
Rhine and the eastern basins with values of about 50 mm/month. The Danube basin stands out as all
P − E time series and also ΔS + R agree very well regarding the amplitude with values between 31
and 35 mm/month. While COSMO-REA6 and ERA-Interim have nearly no phase shift, MERRA-2 and
GPCC+GLEAM are contaminated with phase shifts of up to 10 days.

Negative trends in fluxes imply increasingly fast drying; positive trends mean that a region
experiences increasingly fast wetting. Within the time span considered here, all models agree that
eastern Europe tends to become more and more dry and central and northwestern Europe more and
more wet (Figure 12). This conclusion is confirmed by ΔS + R; however, GRACE and discharge time
series indicate larger negative trends in eastern Europe than the models. The authors of [55] found
similar trend patterns investigating runoff over Europe, with negative trends over eastern Europe
and positive trends over northwestern Europe for the time period 1963–2000. In contrast, the authors
of [3] found negative trends for changes of P − E between 1976–2005 and 2070–2099 in our whole
study region. The authors of [56] compared P and E for the time periods 1948–1968 and 1985–2005
and identified drying trends over parts of eastern Europe and the Iberian peninsula, but no sign
of wetting trends over northwestern Europe. The largest positive trends in northwestern Europe
are found by COSMO-REA6 with 1–3 mm/month/year. Over the Iberian peninsula, the results are
unclear. While ERA-Interim and COSMO-REA6, reanalyses show positive trends of P − E on the
Iberian peninsula; GPCC + GLEAM and ΔS+ R identify positive trends only in the southern catchment
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Guadiana-Guadalquivir and negative trends in the northern part of the peninsula; and MERRA-2
indicates no trend at all.
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Figure 10. (a–d) Bias of the water budget equation given in equivalent water height (EWH): red color
means that P − E is underestimated, and blue color means that P − E is overestimated. (e) provides as
a reference the propagated error of the left side of the water budget equation.
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Figure 11. Amplitudes of P − E and ΔS + R given in equivalent water height (EWH).
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(c) Trend ERA-Interim
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(d) Trend MERRA-2
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Figure 12. Trend of P − E and ΔS + R given in equivalent water height (EWH).

5. Discussion and Outlook

Our results suggest that the high resolution COSMO-REA6 reanalysis better closes the water
budget equation than global reanalyses. This means COSMO-REA6 can be seen as an important step
forward in the consistent representation of the water cycle over Europe and, thus, advances climate
monitoring on regional scales. In fact, in comparison to global NWP models, COSMO-REA6 improved
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the representation of small-scale variability, especially with respect to the accuracy of precipitation
events [9].

We investigated the closure of the water budget equation for all major European river basins,
aggregated to 17 catchment areas. This allowed us to distinguish regional patterns for the performance
of the individual models over Europe. Previously, most water budget studies focused on large river
basins worldwide (e.g., [14,57,58]). Only a few studies investigated the closure of the water budget
over different river basins in Europe [8,10]. However, [10] assessed moisture flux convergence instead
of P − E. Due to the limited resolution of the early GRACE releases, they found very poor agreement
between GRACE and ECMWF data. In [8], we focused on only four catchment areas in central Europe,
which were too few for determining regional patterns. We summarize that the current study provides
unique insights into the performance of different P − E datasets over Europe due to (i) the extension
of the study area, (ii) the long study period of 11 years and (iii) the usage of the latest GRACE release.

Discharge was modeled applying a simple calibrated rainfall-runoff model instead of using
gauge observations like in most water budget studies (e.g., [8,14]). In doing so, we circumvented
the problem of lacking recent discharge data; yet, this approach may have limitations, and further
research is required. Modeling introduces additional uncertainty to the left-hand side of the water
budget equation, which was taken into account by modeling the error of simulated discharge via
ensemble runs. We obtained errors of 20–30% of the magnitude of discharge, which we believe is a
rather conservative estimate. Furthermore, the NS coefficients indicate a successful calibration of the
model in most river basins. However, it should be kept in mind that the computed errors do not take
into account changes due to human activities (e.g., dams, redirection) between the calibration time
span and the GRACE time span. Nevertheless, the largest contribution to the error of ΔS + R (about
60–80%) originates from GRACE as discharge is much smaller in most basins. Especially in the very
small river basins (e.g., Rhone, Po), the GRACE data should be interpreted with caution due to their
excessive noise on such small spatial scales.

For most catchments, modeled P − E from COSMO-REA6 lies within the error ranges derived
for ΔS + R. Biases are mostly smaller than 5 mm/month. In contrast, ERA-Interim and MERRA-2
underestimate P− E with particularly large biases over the Iberian peninsula for ERA-Interim and over
Rhine-Meuse for MERRA-2. This confirms the results obtained in [8] for central Europe. However, it is
worth noticing that the bias of MERRA-2 became smaller compared to the bias obtained for MERRA
in [8]. We attribute this to changes in the data assimilation system. For hydrological studies and
climate modeling, it is particularly important to reduce the bias of P − E in order to avoid introducing
unrealistic trends in storage.

Evapotranspiration was found to be the most uncertain component of the water budget equation
over Europe. In accordance with [14], who compared E from various models to GRACE-based
estimates and detected significant differences in the mean annual cycles, we found differences in the
annual amplitude of up to 50 mm/month between the individual E datasets. In particular, on the
Iberian peninsula and for the northeastern catchments, large uncertainties for E were determined. It is
likely that the spread of the models on the Iberian peninsula arises from the differences of potential
evaporation and actual evaporation in this region.

The annual amplitude of P − E is mainly affected by the annual cycle of E. Compared to ΔS + R,
the global datasets overestimate the annual amplitude especially in western Europe. In contrast to this,
the amplitude of COSMO-REA6 agrees well with the amplitude of ΔS + R.

Finally, trends from P − E and ΔS + R indicate that northwestern and central Europe becomes
increasingly wetter, whereas eastern Europe becomes increasingly drier. However, the trend estimates
are only representative for the study period of 11 years, and no reliable conclusions can be drawn for
longer time spans.

Our investigations of the closure of the water budget over Europe show regional patterns that can
be associated with different regional climatic conditions. Therefore, the strengths and weaknesses of
the individual datasets were analyzed for regions representing these varying characteristics. All in
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all, the regional COSMO-REA6 allows a better modeling of the water cycle than the global reanalyses,
which we attribute to its higher spatial resolution.

For future studies, the assessment of the closure of the water budget equation on a grid instead
of on catchment scale may provide a more detailed picture of regional differences. In this scope,
the availability of gridded runoff is critical. Besides, for actually closing the water budget equation,
contributions from pumping, aquifer systems and runoff into the ocean need to be investigated.
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Abstract: This study examines the dynamics and robustness of large-scale evapotranspiration
products in water-limited environments. Four types of ET products are tested against rainfall in
two large semi-arid to arid Australian basins from 2003 to 2010: two energy balance ET methods which
are forced by optical satellite retrievals from MODIS; a newly developed land surface model (AWRA);
and one approach based on observations from the Gravity Recovery and Climate Experiment
(GRACE) and rainfall data. The two basins are quasi (Murray-Darling Basin: 1.06 million km2)
and completely (Lake Eyre Basin: 1.14 million km2) endorheic. During the study period, two extreme
climatic events—the Millennium drought and the strongest La Niña event—were recorded in the
basins and are used in our assessment. The two remotely-sensed ET products constrained by the
energy balance tended to overestimate ET flux over water-stressed regions. They had low sensitivity to
climatic extremes and poor capability to close the water balance. However, these two remotely-sensed
and energy balance products demonstrated their superiority in capturing spatial features including
over small-scale and complicated landscapes. AWRA and GRACE formulated in the water balance
framework were more sensitive to rainfall variability and yielded more realistic ET estimates during
climate extremes. GRACE demonstrated its ability to account for seasonal and inter-annual change in
water storage for ET evaluation.

Keywords: evapotranspiration; GRACE; land surface model; water balance; energy balance; Australia

1. Introduction

Evapotranspiration (ET) governs water and energy exchange between the atmosphere and the
Earth’s surface [1]. Globally, more than half of the solar energy absorbed by the land surface is used
for evaporation and transpiration [2]. Annually, approximately 60% of the water precipitated over
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land returns to the atmosphere via the ET process [3]. This percentage could even reach more than
90% in some semi-arid and arid regions such as inland Australia [4,5]. Accurate ET quantification,
especially at a catchment or basin scale, is necessary for water resources allocation and irrigation
schedule design [6,7]. It is also beneficial for understanding regional climate change and hydrological
interactions [8,9].

Numerous continental or global ET datasets (or products) have been produced (e.g., [1,10–17]);
they represent the prevailing methods relying on satellite retrievals [18–20], upscaling ground
observations [1,9], or simulations from land surface models (LSMs) [16,21], global general
circulation models [15,21], and atmospheric reanalysis [1,15]. The mechanisms lying behind these
ET estimates/models are usually either based on the energy balance (e.g., Penman–Monteith
equation, residual method of surface energy balance, and flux tower measurements) or water budget
(e.g., catchment water balance method) [22]. Due to the discrepancy in model structure, forcing datasets,
parameterization, upscaling schemes, calibration strategies, as well as validation sources, contemporary
ET products/models in and/or between the same categories may have a poor agreement [16,23,24].
Vinukollu et al. [1] reported that the largest uncertainties were found in transition zones between
humid and dry regions. Hu et al. [25] also found large spatial inconsistency between two ET remote
sensing (RS) datasets (MODIS and LSA-SAFMSG) in some semi-arid regions in Europe. Long et al. [16]
showed that two RS ET estimations (from MODIS and AVHRR) behaved abnormally higher than LSM
during extremely dry conditions.

In water-limited regions, ET estimates based on the energy balance method could be questionable,
as they highlight the energy rather than the water to be the dominant factor in controlling the ET process.
Some studies have commented that RS ET products/models may not be sensitive to soil moisture and
water deficit [7,26,27]. The use of thermal infrared for forcing surface energy balance models with
surface temperature was usually providing coherent estimation of ET and water stress [18,23,28–30].
However, up to now, no dataset of ET derived from thermal infrared data are available at the continental
or global scale. In addition, eddy covariance tower observations (constrained by energy balance at
field/paddock scales and assuming homogeneous landscapes within an image pixel) are commonly
employed as an independent source in large-scale ET validation, which may not be able to fully
uncover the deficiency in energy-balance-constrained (RS-based) ET products.

From the points above, semi-arid and arid basins are interesting regions to spot the potential
weaknesses of current ET products; the catchment water balance method would be an ideal approach
for ET estimation or validation under dry conditions. GRACE satellites make the change in terrestrial
water storage (ΔS) detectable at inter- or intra-annual scales [31,32], which further assist the basin-scale
ET inter-comparison [33,34]. In this study, we introduced ET estimates derived from regional GRACE
solutions (with a higher spatial resolution and less “striping” noises) as an independent source,
to compare with three other (two RS-based and one LSM-based) sets of ET products over two large
Australian semi-arid and arid basins. Our objective is to assess their overall performance and sensitivity
to rainfall variability. To our knowledge, few studies have specifically targeted the water-limited basins
to examine the reliability of large-scale ET products.

2. Materials and Methods

2.1. Study Areas

The Murray-Darling Basin (MDB) and Lake Eyre Basin (LEB) were chosen as study areas (Figure 1).
Both basins are sufficiently large to meet the minimum spatial resolution of GRACE. The Lake Eyre
basin is endorheic, while the Murray-Basin can be considered as sub-closed since there has been no or
very limited outflow to the ocean in the past two decades [35,36]. In both basins, ET is the dominating
process redistributing the precipitation.
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Figure 1. (a) Location map of the Murray-Darling and Lake Eyre Basin with climate zone according
to the Koppen–Geiger classifications (adapted from [37]): A, equatorial; B, arid; C, warm temperate;
W, desert; S, steppe; f, fully humid; s, summer dry; m, monsoonal; w, winter dry; h, hot arid; k, cold
arid; a, hot summer; b, warm summer. (b,c) Digital elevation model (DEM) and land use maps were
accessed from [38,39], respectively.

The Lake Eyre Basin (1.14 million km2) encompasses 81.5% hot dessert (arid climate) and ~15%
hot steppe (semi-arid climate). Rainfall within the basin varies widely and is usually unable to
meet the atmospheric demand. The annual rainfall over the arid region of the LEB barely reaches
200 mm/year while the north-east edge receives rainfall of up to 700 mm/year under the influence of
infrequent tropical storms [40]. The annual potential evaporation (PET) averaged from 1961 to 1990
is of 1453 mm/year (sourced from Australian Bureau of Meteorology data). Floods in the basin
are ephemeral and extremely variable [41]. Flows and floodwaters that form during heavy rainfall
events carry only 1% of total rainfall; a large fraction (~99%) of rainfall is lost through evaporation and
transpiration [35].The Murray-Darling Basin (1.06 million km2) contains a transition from subtropical to
dry arid climate. Rainfall distributions within the basin vary greatly, decreasing from the south-eastern
and eastern boundaries (between 600 and 800 mm) towards its western and north-western boundaries
(between 100 and 300 mm). The average annual PET was 1236 mm/year (1961–1990). The basin
consists of three large river systems and ~30,000 wetlands [42]. As the country’s food bowl, ~80% of
its area is used for agriculture [43]. Nearly half the surface water is redistributed by irrigation [35].
Many areas in the basin have little or no regular runoff [36,44]; the water levels were reduced to
historically low levels during the Millennium Drought from mid-1990s to 2009 [45,46].

2.2. Datasets and Methods

2.2.1. Rainfall, Potential Evaporation, and Discharge Data

Rainfall data, provided by the Australian Bureau of Meteorology (BoM, Melbourne, Australia,
data access: [47]), were used for two purposes: (1) to be used with GRACE’s measurements to obtain
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basin-scale ET estimates through the water balance equation; (2) to evaluate ET datasets and identify
their potential deficiencies. The rainfall data is a gridded daily product interpolated from weather
station observations [48].

In addition, potential evaporation (hereafter, denoted as Ep) data was obtained from Australian
Water Availability Project (AWAP, Canberra, Australia, data access: [49]). Within the Priestley–Taylor
framework, Ep was forced by the gridded meteorological data obtained from BoM [50]. A comparison
of rainfall with potential evaporation gives a first indication of areas that are mainly controlled by
the availability of water versus energy. Both the rainfall and Ep datasets have a spatial resolution of
0.05◦ × 0.05◦, and are available from January 2003 to December 2010.

We took the Lock 1 discharge measurements (see the location in Figure 1c) as the river outflow
from the MDB. The data was originally archived as daily records (accessed from: [51]), and were further
aggregated to monthly equivalent water height (mm/month) divided by total basin area. The LEB is a
completely closed basin and no discharge data were required for this basin.

2.2.2. Model-Based ET Estimates

Three continental modelled ET products were used in this study: PT-CMRS, PM-Mu
(a.k.a. MOD16), and AWRA-L. They vary in approach, data inputs, and ground calibration (see Table 1).
To make these datasets consistent in time and space, ET results sourced from the three models were
converted into monthly values from 2003 to 2010 at 0.05◦ (~5 km) spatial resolution. A brief summary
of the forcing datasets, mechanism, and the major features for each ET model is given in Table 1.

• PT-CMRS model

The model. forced by MODIS retrievals and gridded meteorological datasets, was modified based
on the Priestley–Taylor (PT) formula ([52]; see Equation (1)) to dynamically represent the actual ET
variations over the Australian continent (hereafter, denoted as “PT-CMRS”).

ETPT-CMRS = α
Δ

Δ + γ
(Rn − G), (1)

where Rn is the surface net radiation(MJ m−2 d−1); G is the soil heat flux (MJ m−2 d−1); Δ is the slope
of the curve relating saturation water vapor pressure to temperature (kPa K−1); γ is the psychometric
constant (kPa K−1). The prominent advantage associated with the PT method is that it does have
limited input data requirement; wind speed is not compulsory in the model.

The developers replaced the original empirical constant α = 1.26 with a flexible scaling factor
formulated by the Enhanced Vegetation Index (EVI) and the Global Vegetation Moisture Index
(GVMI) [53]. This scheme allows GVMI to separate surface water bodies against bare soil when
EVI is low and to detect vegetation water content when EVI is high. Also, the PT-CMRS model
accounts for precipitation interception. This model was calibrated at seven flux sites in Australia and
validated in 227 catchments. Readers can refer the details about the PT-CMRS ET model from [45].
Data can be downloaded from: [54].
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• PM-Mu model ([10,13])

Based on Cleugh’s method [10], the MOD 16 ET data set developed by Mu ([13]; denoted
here as ‘PM-Mu’) -integrated MODIS-retrieved leaf area index (LAI) into the Penman-Monteith
(PM) equation ([55]; see Equation (2)), and improved the estimation of surface resistance and
soil evaporation [13].

ETPM−Mu =
(Rn − G)Δ + ρacp(es − ea)/ra

λ[Δ + γ(1 + rs/ra)]
, (2)

where ρa is the mean air density at constant pressure (kg m−3); cp is the specific heat of air at constant
pressure (MJ kg−1 K−1); (es − ea) is the water vapor pressure deficit between the saturated air pressure
and the actual air pressure (kPa); rs and ra represent the surface/aerodynamic resistance (m s−1);
λ is latent heat of evaporation (MJ m−2 d−1).

Further modifications were described in [19]. The dataset is available at global scale. Results have
been tested at global and flux-site scales. Data can be downloaded from: [56]. The PM model is
process-based and constrained by energy balance. It requires considerably more input data than the PT
model; some of this data (especially the wind speed) are barely available over large basins or regions.
However, meteorological data have been obtained from atmospheric model reanalysis or gridded
meteorological datasets.

• ET estimates from AWRA-L land surface model

The AWRA (Australian Water Resources Assessment) ET output (denoted as “AWRA”)
was produced by a multi-model system simulating hydrological processes and dynamics in landscape,
river and groundwater systems, and water use all over Australia [57]. This system is jointly
developed by the BoM and the Commonwealth Scientific and Industrial Research Organization
(CSIRO). Either the PM or the PT functions were used, depending on the availability of wind speed
data [58]. Within each cell, ET is summarized as:

E = Ei + Et + Eg + Es + Er, (3)

where Et is vegetation transpiration; Ei, Er, Eg, and Es are evaporation from rainfall interception, open
water bodies, groundwater, and soil profiles, respectively. AWRA ET estimates balance the requirement
between water/energy conservation and data unavailability. However, the model neglects lateral
water flows, which leads to an underestimation of ET over areas receiving inflows, such as wetlands,
floodplains, and irrigated farmland. Gauged runoff and eddy covariance flux tower observations were
used to visually fit some components and parameters of the model.

2.2.3. ET Estimates from GRACE Rainfall and Discharge Observations

A number of studies have derived ET estimates from GRACE observations in large basins,
e.g., [11,33,34].

Here we computed ET estimates using regional GRACE solutions which are characterized by
reduced north-to-south striping (using constrained regularization) and no contamination from other
parts of the world [59,60]. Several studies over different continents—South America [61], Australia [62],
and Africa [63]—demonstrated that this regional approach offers a reduction of both north-south
striping due to the distribution of GRACE satellite tracks and temporal aliasing of correcting models
that are present in the global GRACE solutions. GRACE regional solutions were available at a spatial
resolution of 2◦ × 2◦ from 4 July 2003 to 3 December 2010 at intervals of 10 days [62]. Change in the
basin water storage (ΔS) is calculated as the difference between two successive GRACE terrestrial
water storage anomalies (TWSA) against the average (ΔTWS):

ΔTWS = ΔS = TWSt2 − TWSt1. (4)
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Using the water balance equation at basin-scale, ET was obtained as the difference between the
total amount of rainfall over the basin (P), the river discharge at the outlet (Q) and the change in ΔS
over a specific time period Δt:

ET = P − Q − ΔS, (5)

To be consistent with the above modelled ET datasets, calculations were performed over 30-day
time period. Missing data from 20 January 2004 to 29 January 2004 were linearly interpolated.
Combining GRACE ΔTWS observations and BoM rainfall datasets, monthly basin-average ET estimates
over the MDB were computed using Equation (5) with all variables set. However, due to the fact that Q
is unavailable at gridded-cell scale, GRACE ET maps were approximated as (P − ΔS) with Q assumed
to be negligible. This operation was also applied to the LEB.

2.2.4. Evaluation of ET Estimates Using the Budyko Diagram Scheme

Water balance at basin-scale is governed by Equation (5). In the Budyko framework, the nature of
the annual water balance is determined by the ratio E/P (evaporation efficiency) as a function of Ep/P
(drought index or climatic aridity) accounting for the partition of rainfall between evaporation and
runoff [64]:

E
P
=

{[
1 − exp (−Ep

P
)

]
Ep

P
tan h(

P
Ep

)

}0.5
(6)

In extremely dry cases, if a basin is provided with sufficient evaporative energy but limited
precipitation, then E will approximate to P; conversely, E will be mainly determined by Ep in a wet
basin. These form two asymptotes to constrain the Budyko curve in a boundary. A Budyko diagram is
usually used at long-term average scale. Since GRACE could provide the annual basin water storage
change information, we assumed that the Budyko diagram could be valid at inter-annual time step.
Annual E and P were presented as Ea and Pa, respectively.

Noticing that the indices of Ea/Pa and Ep/Pa could be sensitive to the different sources of Pa and
Ep, we assumed that Ep/Pa would not vary widely as Ep in MDB and LEB is much larger than Pa; Pa is
based on measurements from rainfall stations.

3. Results

3.1. Spatial Evaluation

Figure 2 shows the spatial distribution across the two basins of average annual ET for each
dataset and average annual rainfall over the 2003–2010 period. The estimated annual ET maps are
spatially consistent with corresponding rainfall maps. The highest ET rates were found in south-eastern
MDB (>800 mm/year) where the climate is more humid and intense canopy transpiration occurs.
The northern parts of MDB and LEB also present a high ET rate of 400–600 mm/year, which is
attributed to the strong ET fluxes caused by tropical rainstorms during the summer. Controlled by an
arid climate, 100–200 mm/year of rainfall, the central part of the LEB and the western MDB show the
lowest ET rates of all four datasets.

However, we identified some differences between ET estimates. Over the extremely dry regions of
the central LEB (rainfall: 100–200 mm/year), ET estimates from AWRA and GRACE were more
reasonable than the values provided by two energy balance constrained methods (PM-Mu and
PT-CMRS) which predicted 200–300 mm/year of water lost via ET processes over the central LEB.
Over humid regions, PM-Mu estimated an annual ET flux lower than the other three methods.
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Figure 2. Spatial distribution of mean annual rainfall (P) and mean annual ET derived from PT-CMRS,
PM-Mu, AWRA, and GRACE across the Murray-Darling and the Lake Eyre Basins. Boxes A, B, and C
show areas that are zoomed in Figure 3.

Figure 3 zooms in three smaller regions (boxes A, B, and C shown in Figure 2) that are prone to
inundation (A and B) or irrigation (C). The red patches in contrast to the dry background in PT-CMRS
represent the high-ET patterns over irrigated areas as well as flood plains composed of open water
bodies and dense forests, demonstrating the dataset’s ability to capture relatively small ET features
and heterogeneities over those landscapes. This ability is mostly attributed to the integration of
MODIS-based EVI and GVMI indices in PT-CMRS [53]. Although it was also driven by MODIS optical
products, PM-Mu did not clearly present those small-scale ET features in space. AWRA also considered
ET flux from canopy cover and open waters as well as saturated soil. Nevertheless, its coarse gridding
system and fractional index parameterization for different land covers make the model homogenize
those landscape features.

Figure 3. Zoom in mean annual ET values from the four models over three smaller regions
(boxes A, B, and C shown in Figure 2) that are prone to inundation or irrigation.

3.2. Temporal Evaluation

3.2.1. Seasonal Variations

Table 2 shows the mean seasonal ET estimates and corresponding rainfall averaged over the
period 2003–2010 and the fractions of ET to rainfall. The four methods used to estimate ET in this
study were able to capture the seasonal ET patterns in each basin. LEB is much drier (has little rainfall
against high potential evaporation requirement) than the MDB. Therefore, it is likely that the ET fluxes
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in the LEB is lower than in the MDB through the four seasons. However, in a comparison of the
magnitude of seasonal ET to rainfall, the four methods behaved inconsistently. Again, seasonal PM-Mu
estimates were constantly lower than other ET datasets in MDB, with the lowest ratio of 0.4 found in
winter. The ratios of ET/P are frequently above 1.0 in PT-CMRS and PM-Mu during the dry seasons
in LEB; the largest ratios (1.5 for PT-CMRS and 1.6 for PM-Mu) are observed in autumn, indicating
that estimated ET is greater than the rainfall by 20–30 mm on average. This is also clearly shown
by the large gap in Figure 4b. Both methods PM-Mu and PT-CMRS actually did not use the input
data directly related to water balance (as rainfall or groundwater storage variations) or to water stress
(as thermal infrared data) but mainly relied on the evolution of vegetation as monitor from remote
sensing data. Inclusion of thermal data could have picked some low and high moisture conditions.
LAI alone may not capture the variation on soil moisture, typically when the bare soil evaporation
becomes significant after rainfall or under extreme dry conditions. By comparison, constrained by
rainfall in its algorithm, mean seasonal ETs estimated by AWRA and GRACE were closer to the rainfall
levels, with their ratios falling into a range of 0.7–1.2.

Figure 4. Monthly ET time series derived from the four ET datasets with rainfall and potential
evaporation (Ep) over the MDB (a) and LEB (b) from 2003 to 2010.
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In Figure 5, ET estimates during the peak Millennium Drought and the La Niña spell are compared
with mean monthly values averaged over August 2003 to July 2010. The peak of the Millennium
Drought occurred in August to December 2006 for the MDB and January to May 2008 for the LEB;
monthly rainfall reduced by 20–40 mm on average. The La Niña caused abnormally high rainfall over
the MDB (December 2009–May 2010) and the LEB (November 2009–April 2010). Four ET methods
responded to the climate extremes dynamically. The smaller the anomalies were, the more similar
the modelled ET estimates were to their multi-year average, and vice versa. Small anomalies were
found in PT-CMRS and PM-Mu, which implies that ET estimates reproduced by these two energy
balance constrained models do not apparently vary during the extremely wet or dry spells. AWRA and
GRACE performed sensitively to climatic extremes. In spite of some spikes, the GRACE-based ET
product tended to provide a relatively high/low ET with a magnitude consistent with rainfall.

Figure 5. Monthly ET anomalies during extreme climatic events: peak of Millennium drought and
La Niña computed as deviation to monthly averages for the whole study period (August 2003 to
July 2010). MDB (a) and LEB (c) during the peak of the Millennium drought; MDB (b) and LEB (d)
during the La Niña period.

3.2.2. Inter-Annual Variations

Inter-annual comparisons were performed at basin-scale to test the response of the four ET
datasets. Figure 4 shows monthly ET estimated by the four ET methods over the MDB and LEB from
2003 to 2010 (GRACE ET starts from August 2003), against the rainfall and potential evapotranspiration
(Ep) for the same period. At monthly time steps, the correlation coefficients (R) were computed to
measure the agreement between each ET pair as well as their sensitivity to rainfall.

Monthly Ep rates (ranging from 50 to 250 mm/month in MDB and from 80 to 250 mm/month in
LEB) were always higher than the rainfall levels throughout the study period, indicating water-limited
conditions. In that case, ET fluxes in our study areas is predominantly controlled by water availability
rather than by energy. Two energy-based models show a quite low linear correlation with rainfall;
RPT-CMRS = 0.35 and RPM-Mu = 0.41 for the MDB, and RPT-CMRS = 0.51 and RPM-Mu = 0.37 for the LEB.
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Remarkable differences can be found during wet (ETPT-CMRS and ETPM-Mu < P) or dry spells (ETPT-CMRS

and ETPM-Mu > P; particularly in LEB). By comparison, AWRA has high correlation with rainfall in
both basins, 0.7 < R < 0.8. AWRA and GRACE ET estimates were closer to rainfall levels (especially
GRACE) due to the fact that they were forced by rainfall data. They also had a good consistency with
each other: RMDB = 0.67 and RLEB = 0.69. Although PT-CMRS had a higher linear relationship with
AWRA (0.77 ≤ RMDB/LEB ≤ 0.79), the amplitude of the PT-CMRS was significantly lower than AWRA
during the extreme seasons. In general, the two energy-balanced products exhibited similar patterns
at monthly time steps, and displayed large differences with AWRA and GRACE-based ET in dry and
wet periods. PM-Mu was systematically lower than other ET sources in MDB.

Figure 6 presents the capability of each ET dataset in capturing ET variations in different
hydrological years. PM-Mu constantly provided the lowest ET estimates over the MDB; a common
short of ~100 mm/year was found when compared to PT-CMRS. Compared to AWRA and GRACE
estimates, PT-CMRS provided larger values over the MDB in dry hydrological years but lowest values
during wet years (e.g., August 2009–July 2010; impacted by La Niña event). ET overestimation by the
two energy balance constrained models was commonly observed in the LEB, with annual ET flux twice
or larger than the rainfall during the extremely dry hydrological year of August 2004–July 2005 and
August 2007–July 2008. Moreover, these two estimates did not exhibit any response to rain variations
from year to year and provided almost constant annual values. Constrained by the water balance
equation, AWRA and GRACE showed a good sensitivity to annual rainfall variations both in timing
and magnitude. GRACE-derived ET estimates at annual scales showed larger inter-annual variations
than AWRA over the MDB (with ET larger than rain for some years), while very similar results were
obtained over the LEB.

Figure 6. Annual rainfall and ET computed in each hydrological year from August 2003 to July 2010
for the MDB (a) and the LEB (b).
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A Budyko diagram was used to confirm that ET fluxes in our two basins were determined by
water availability rather than the energy factor. Estimates were plotted in the Budyko diagrams to
examine the variation of the water closure property across hydrological years (Section 2.2.4).

The aridity indices in the Budyko diagrams (Figure 7) confirm that LEB is more arid than MDB
(LEB: 4.0 < Ep/Pa < 11.5; MDB: 2.7 < Ep/Pa < 5.0). In MDB, Ea/Pa ratios estimated by PM-Mu were
sitting in a range 0.5–0.8, demonstrating a systematically low percentage of rainfall transforming
into ET. For the same basin, PT-CMRS had some Ea/Pa values lying beyond y = 1 in some dry
years (larger Ep/Pa), manifesting a slight outperformance of PT-CMRS ET during drought conditions.
Such a phenomenon was more apparent in the LEB. The dryer the year in the LEB (Ep/Pa > 10),
the more unrealistically the PM-Mu and PT-CMRS estimates; Ea/Pa ratios reached 1.8 (PM-Mu) and
1.7 (PT-CMRS) when LEB received the lowest annual rainfall (158.6 mm/year) from August 2007 to
July 2008. By comparison, Ea/Pa predicted by the two water-balance-constrained methods (GRACE
and AWRA) were much closer to the asymptotic curve. AWRA and GRACE predicted 85.1% and
97.5% of rainfall lost via evaporation in both basins during the wettest year August 2009–July 2010,
respectively; that is to say, 15% (from AWRA) and 2.5% (from GRACE) of rainfall would be converted
into runoff and exit the basin or be stored in the aquifer.

(a) (b)

Figure 7. Budyko diagrams for the MDB (a) and the LEB (b). Ea represents the annual ET estimated by
PT-CMRS, PM-MU, AWRA and GRACE. Pa is annual rainfall. Ep is potential evapotranspiration based
on the Priestley–Taylor method. All the terms were computed for each hydrological annual year from
2003 to 2010.

4. Discussion

Catchment/basin water balance method provides the simplest way to solve ET estimation by
meeting only three water budget components as its input variables. However, the component of ΔS is
usually the hardest part to access or measure. In most cases, the common way to address the absence
of ΔS is to regard it as negligible over a long-term period [31,32,65]. But when it comes to the annual
or inter-annual scales, neglecting of ΔS would lead to an imbalance of water budget equation [66–68].
In fact, short-term ΔS can be a crucial component in water budget, particularly when a basin meets
climate extremes. Time series of ΔS anomaly over the MDB and the LEB exhibits large annual (several
tenths of mm of equivalent water height) and inter-annual variations (with a decrease from 2003 to
2009 and an increase since) between 2003 and 2010 (Figure 8). Table 3 presents GRACE-derived annual
ΔS in different water years over the MDB and LEB: remarkable changes in water storage occurred
during August 2005–July 2006 (a water deficit of −20.3 and −70.4 mm/year occurred in LEB and
MDB, respectively) and August 2009–July 2010 for LEB only (a water gain by 31.8 mm/year). Such a
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water loss or gain in ΔS would take up 10–20% of total annual rainfall for both basins. By including
GRACE-estimated ΔS, the closure of the basin water balance equation is improved; what’s more,
the phase and amplitude of the annual and seasonal cycle of ET can be ascertained [69].

 

Figure 8. Time series of terrestrial water storage anomaly (TWSA) between 2003 and 2010 from GRACE
regional solutions over the MDB (red) and the LEB (blue).

Table 3. Annual changes in terrestrial water storage (ΔS) over the MDB and the LEB between 2003 and
2010. Annual ΔS was computed as the TWS difference between the end month (August) and the start
month (July) within a hydrological year (unit: mm/year).

Basin
August 2003
–July 2004

August 2004
–July 2005

August 2005
–July 2006

August 2006
–July 2007

August 2007
–July 2008

August 2008
–July 2009

August 2009
–July 2010

Average

LEB −0.9 −2.3 −20.3 2.7 2.2 0.6 31.8 2.0
MDB −21.9 33.6 −70.4 27.7 −4.2 −6.7 −2.2 −4.4

In terms of the uncertainty of GRACE-based ET estimates, they are largely dependent on the
quality of GRACE TWSA and thus computed ΔS. A previous study using regional GRACE solutions
over Australia found an uncertainty of 19.1 mm when computing the standard deviation of the
TWSA over a xeric region [52]. Another major source of uncertainty associated with GRACE ET
estimates is attributed to the quality of rainfall data. Usually, arid and semi-arid basins have poor
rainfall monitoring networks. In our case, MDB has much denser monitoring networks than LEB does;
the latter has a large unpopulated region without rainfall stations [63]. At basin scales, the RMSE
calculated between BoM and TRMM 3B43 rainfall datasets are 3.0 and 27.4 mm/month for MDB and
LEB, respectively. By blending gauge records with ancillary rainfall data, such as radar and satellite
measurements or an ensemble method, may improve the accuracy of rainfall input data [63,64].

Optical satellite imagery allows landscape conditions such as vegetated surface, biome types,
and surface standing waters to be distinguishable at unprecedentedly high spatiotemporal resolution
(e.g., 0.05◦ and 8/16 days for MODIS), which facilitates an enhancement in simulating large-scale ET
processes. For example, an integration of RS vegetation index (VIs, including LAI, NDVI, and EVI)
allows for a separation between plant transpiration and soil evaporation, as well as for adding the
canopy rainfall interception component into ET modelling. In our study, PM-Mu employs a complex
and process-based scheme to address vegetation transpiration and soil evaporation separately; the new
version sets up numerous thresholds to define canopy stomatal conditions over biomes and wet
canopy [19]. PT-CMRS combines the EVI and GVMI indexes into a simple and dynamic scaling
strategy of the Priestley–Taylor framework to deal with transpiration or evaporation from vegetation,
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open water bodies, and bare soil; it does consider canopy rainfall interception but merely as a scaled
precipitation component. In addition, PT-CMRS ET estimates heavily rely on ground calibration
(none of the flux tower sites are distributed in inland dry areas) [53]. Obviously, there is a tradeoff
between accuracy and parsimoniousness in ET modelling, as well as a consideration of data availability
from ground observations.

In arid and semiarid environments, soil evaporation often makes up the majority of the total ET
due to low vegetation coverage. This means that ET models should be able to reflect the relation with
soil moisture conditions. Land surface models like AWRA partition precipitation to soil moisture and
groundwater systems (other LSMs may not), and thus put a soil moisture constraint onto ET. However,
the soil water constraint of energy-based ET products, such as PM-Mu and PT-CMRS, tends to be
weak; most models tend to determine ET fluxes by energy factor, in particular based on net radiation
estimation rather than by water constraint. Long et al. [16] mentioned that such RS-based ET models
only make soil moisture implicitly linked to VIs and atmospheric variables. PM-Mu has soil moisture
information indirectly linked to the LAI/NDVI and vapor pressure deficit (VDP); so does PT-CMRS,
replaced by EVI and GVMI. These models implicitly assume that vegetation develops in agreement
with water availability, which may be true over a long term or “standard” climatic period, but can fail
in conditions when drought or rainfall present situations far from average. These models also rely
on parameters (e.g., describing stomatal response) that are difficult to assess at large scale, as well as
on the accuracy of land use maps. In semi-arid and arid regions, such as MDB and LEB, rain may
fall and evaporate directly from bare soil, hence without major influence on vegetation indices and
derived ET estimates. That is a potential explanation as to why satellite ET datasets like PT-CMRS
and PM-Mu are less sensitive to rainfall/soil moisture and cannot balance well the water budget in
these arid and semi-arid environments. Other RS-based ET models rely on the use of thermal infrared
data that provide a strong link to water stress and moisture availability and which may improve
significantly energy balance estimates. However, today there are no available operational ET products
based on thermal infrared, in particular because such models are difficult to implement over large
areas such as a continent or even a country. They either rely on a highly accurate characterization of
spatial variation of climatic variables (in particular air temperature) or require a very homogeneous
climatic zone for implementation.

5. Conclusions

This study, examines the dynamics of continental ET products in water-limited environments.
Four ET datasets derived from PT-CMRS, PM-Mu, AWRA, and GRACE were compared in the
Murray-Daring and Lake Eyre Basins, against rainfall variations and during climate extremes.
Two energy balance constrained ET methods, PT-CMRS and PM-Mu, which are forced by optical
satellite retrievals, have poor response to high water variability; they provided unrealistically high ET
values (beyond the rainfall) during the drought and low values when rainfall became exceptionally
high. This problem can be attributed to the lack of water constraint following water balance. In contrast,
AWRA and GRACE are forced by rainfall data, demonstrating their dynamics in addressing the
spatial/temporal rainfall variability over water-limited environments. Absolute error associated with
each ET product is not directly measurable but a measure of error may be established via a basin-scale
comparison with the ensemble mean.

Our results imply that: (1) current ET models based on the energy balance and derived using
optical data are not accurate over water-limited areas and that they may need to include further water
constraint(s) for ET estimation over arid and semi-arid regions; (2) GRACE observations provide a
valuable tool for quantifying basin-scale water storage change at annual or sub-annual scales, as well
as an independent source for large-scale ET mapping and validation; (3) a promising way to enhance
ET estimation over large water-limited basins/regions may rely on merging high-resolution (but poor
in basin-water-balance-constrained) optical RS-based ET products with well water-balance-constrained
(but coarse in spatial resolution) GRACE ET estimates [20,70].
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Abstract: Background: The hierarchical use of remotely-sensed imagery from satellites, and then
proximally-sensed imagery from helicopter sand drones, can provide a range of spatial and temporal
coverage that supports water quality monitoring of complex pollution scenarios. Methods: The study
used hierarchical satellite-, helicopter-, and drone-acquired thermal imagery of coastal plumes
ranging from 3 to 300 m, near Naples, Italy, and captured temporally- and spatially-overlapping
in situ samples to correlate thermal and water quality parameters in each plume and the seawater.
Results: In situ sampling determined that between-plume salinity varied by 37%, chlorophyll-a varied
by 356%, dissolved oxygen varied by 81%, and turbidity varied by 232%. The radiometric temperature,
Trad, for the plume area of interest had a correlation of 0.81 with salinity, 0.74 with chlorophyll-a,
0.98 with dissolved oxygen, and −0.61 with turbidity. Conclusion: This study established hierarchical
use of remote and proximal thermal imagery can provide monitoring of complex coastal areas.

Keywords: remote sensing; hydrology; drones; environmental forensics

1. Introduction

Rapid water quality monitoring of receiving waters is important for the protection and
preservation of water and related terrestrial resources. However, in natural systems water quality
pollution phenomena can occur across a range of spatial scales, and involve a variety of chemical
pollutants, making them difficult and costly to rapidly monitor with in situ retrieval of samples and
with a fixed spatial or temporal scale remote sensing approach. Ideally, water quality monitoring
of pollutant target areas is spatially and temporally flexible to facilitate the environmental forensics
process of characterizing the path of the pollutant between the source and target. To monitor pollution
phenomena with extensive spatial or temporal scales, remotely-sensed imagery provides distinct
benefits not easily achieved by in situ techniques [1,2] particularly when the pollution interface is
affected by dispersion generated by terrestrial inflows to coastal zones [3]. A hierarchical monitoring
program is proposed in this manuscript to extend the benefits of water quality monitoring to sites where
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there are spatial, temporal, financial, and radiometric constraints prohibiting the use of more traditional
monitoring with in situ sampling, in situ sensor networks, and remote sensing. A hierarchical
monitoring program can use a combination of satellite, helicopter, and drone imagery, as well as
in situ sampling (Figure 1), to cover the spatial and temporal scales, and radiometric needs, of the
pollution phenomena.

Figure 1. Illustration of the hierarchical monitoring program using (A) satellite, (B) helicopter, (C) drone
and (D) field boat to study the mixing of channel plumes in the coastal zone.

Prior to the emergence of remote sensing hydrology and the evolution of distributed sensor
networks, water quality monitoring was traditionally performed using an in situ sample of the
water column. In situ samples are either analyzed in real-time by the sampling instrument, such as
placing the dissolved oxygen meter into the target water body, or preserved for subsequent analysis
in a laboratory. The temporal, spatial, and financial limitations of this approach have encouraged
development of remote sensing and in situ sensor-based monitoring. Remote sensing has used
airborne and spaceborne hyperspectral and thermal imagery to characterize water quality parameters,
establishing relationships with the spectral or temperature signal and the water quality parameter [4].
Hyperspectral sensors detect tens to hundreds of narrow spectral bands throughout the visible,
near-infrared, and mid-infrared portions of the electromagnetic spectrum in order to better discriminate
between different targets and, as such, can contain the temperature signal [5]. However, hyperspectral
sensors generate large volumes of data that create challenges for data storage, manipulation, and water
quality analysis.

Nearly all airborne sensors are considered high spatial resolution, ranging between 25 and
0.5 m, and include the Airborne Visible Infrared Imaging Spectrometer manufactured by NASA
that provides 17 m resolution, 224 bands, across a 12 km swath width [6]. Spaceborne sensors that
are high-resolution (e.g., 20 to 0.5 m) are typically limited to eight bands, and are often operated
by commercial firms providing contracted monitoring services [6]. Moderate-resolution sensors
include the government-operated Landsat-8 (30 m resolution, 10 bands, 16 day revisit interval)
and the Hyperspectral Imager for the Coastal Ocean (100 m resolution, 128 bands, 10 day revisit
interval) [6–8]. Satellite microwave radiometers used for sea surface temperature water quality studies
include the Advanced Microwave Scanning Radiometer-2, with resolution ranging from 5 × 3 km to
62 × 35 km [6].

To summarize the constraints a water quality monitoring program may face with these sensors,
at high spatial resolution the monitoring is typically limited to pre-arranged, fee-based campaigns,
and, if publicly-available moderate-resolution sensor data are sufficient for the site, the 10 to 16 day
revisit interval may become a constraint. As an alternative to radiometric monitoring, finer spatial-and
temporal-scale monitoring is available via in situ wireless sensor networks, which relay auto-sampled
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water quality data to a base station [9]. For some sites, the constraint of these systems include
installation, operation, and maintenance costs, their inability to detect pollution extents due to
spatial gaps in coverage, and potential interference of the in situ sensor with other activities in
those coastal waters.

Thermal infrared imagery, or thermographic data, compared with hyperspectral imagery, are
relatively inexpensive and, as such, can allow more resources for increasing spatial and temporal
resolution. To capture the peak spectral emission of objects on Earth’s surface, and thereby obtain
a suitable signal to noise ratio, the thermographic image should be captured between 9 and 11 μm,
which is near the middle of the long-wave infrared electromagnetic spectrum. The thermographic data
offer a limited radiometric signal, but contain valuable information on surface properties affecting
the energy flux characteristics and dynamics. The radiant energy detected by thermal sensors is a
composite of energy emitted by the investigated surface that is transmitted through the atmosphere
and energy that is emitted by the atmosphere. While the water-atmosphere coupling complicates
interpretation of thermographic data, with proper signal processing researchers can estimate a number
of environmental variables important to Earth system science modelling [10].

The thermographic image measures the radiometric temperature, Trad (K), which is related to
the thermodynamic, or kinetic, temperature, Tkin (K), is typically measured with a thermometer.
The principle of thermographic data analysis is based on the physical phenomenon that all objects at
a temperature >0 K emit thermal radiation as a function of the body’s Tkin, and emissivity, ε, which
typically ranges 0 ≥ ε ≤ 1 depending on properties of the material.

As described by the Stefan-Boltzman law [5], the spectral radiant flux of a black body object, Mb,
(W/m2) is:

Mb = σT4
kin (1)

where σ is the Stefan-Boltzman constant, 5.6697 × 10–8 W m–2 K–4. As explained by Kirchoff’s Law [5],
Equation (1) presumes the black body is a perfect absorber and emitter, with an ε = 1, but otherwise
the spectral radiant flux of a real-world object, Mr, is:

Mr = εσT4
kin (2)

where ε < 1, which is the case for most substances [11]. In our work we use the Stefan-Boltzman law to
relate the apparent radiant temperature, Trad (K) of the real world object to Mr as:

Mr = σT4
rad (3)

where Trad is measured by thermal remote sensing. By combining Equations (2) and (3), we can
then obtain:

ε = T4
rad/T4

kin (4)

and establish emissivity as the property relating the remotely sensed Trad and the in situ measured
Tkin. This same relationship was established by Equation 1.7 in Kuenzer and Dech [12].

In standard processing of multi-pixel infrared thermographic image, it is possible to set only
one emissivity value for the whole image. If the observed surface is heterogeneous material (e.g.,
spatially-varying water chemistry, soil moisture, lithology, or vegetation), the homogenous emissivity
will generate erroneous kinetic temperatures for some pixels. However, these discrepancies are
diminished when emissivity values approach 1, which is the case for some natural surfaces, such
as water. The detection of possible water quality anomalies in coastal waters is made possible by
the processing of the multi-pixel thermographic image using a homogeneous emissivity value; for
seawater an emissivity value of 0.986 is recommended [13,14]. In monitoring of seawater, when a
thermographic pixel captures the radiometric temperature of non-seawater material with the same
kinetic temperature but different emissivity than the seawater, the thermographic sensor estimates an
erroneous kinetic temperature. In situ measurement of the kinetic temperature in parallel with remote
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sensing of the radiometric temperature would allow for the derivation of the emissivity. With advances
in technologies for in situ and remote sensing data capture, monitoring campaigns that use both
techniques for data capture are increasingly effective in spatially extending inferences about water
quality [15,16]. Spatial variation of emissivity across a thermographic image can generate noticeable
spatial variation in kinetic temperature [17,18]. In order to utilize anomalies in the thermographic
image, it is important to obtain images with an appropriate point of view, spatial resolution, and sensor
accuracy [19].

This goal of this research is to determine if coastal water quality monitoring across an area
with multiple channel inflows can be achieved using infrared thermographic imagery collected
from a hierarchical monitoring program. The research question is whether Trad from remote or
proximal imagery has a strong correlation (>60) with water quality parameters within channel
plumes entering a coastal area. There are a range of spatial scales in ecosystem management, and
hierarchical monitoring is developed to cross that range using a variety of thermal monitoring
platforms. Applied ecosystem science requires monitoring across variable spatial, temporal, and
organizational scales [20], and scientific knowledge guiding data management and fusion across
time and space [21]. For the study of a coastal area receiving inputs from rivers of varying spatial
extent, temporal flows, and water quality characteristics, a hierarchical monitoring program will utilize
various tools. Typically, environmental coastal monitoring actions have been provided by an in situ
aquatic vessel that collect a low spatial and temporal density of sample data, are time consuming, and
are accomplished only with significant advance planning. The hierarchical monitoring program with
Trad might be used to efficaciously deploy monitoring with more sophisticated and precise analytical
tools, such as in situ sampling or remote and proximal sensing with hyperspectral instruments.

2. Materials and Methods

The study area was the coastal zone northwest of Naples, Italy where four channels deliver
terrestrial discharges that can jeopardize coastal water quality. The four channels discharging to this
section of coast are the Volturno with a ~300 m wide channel at the outlet, Regi Lagni with a ~100
m wide channel, Agnena with two ~15 m wide channels bifurcating around a seawall at the outlet,
and Cuma with a ~3 m wide channel at the outlet. This coastal zone is a critical area that requires
monitoring due its important ecological value and the risk of pollution from discharge draining
the adjacent terrestrial area. The principal water quality concerns are discharges from wastewater
treatment plants and discharges from factory agricultural activities. The coastal bathymetry, warm
season intensification of currents, and diurnal reversal in winds act together to create a very complex
surface dynamic, resulting in different flushing mechanisms and exchange patterns between the
coastal zone with the river plumes discharging to the coast and the outer Tyrrhenian waters [22].
Vertical mixing of the water is less pronounced in the warm season due to a stable thermocline [22].
This thermocline is disrupted by the cooler weather and increase in precipitation during the winter
months, but in the warm season stratification of the water column allows for formation of a surface
mixed layer 30 to 40 m thick [23]. Water quality is particularly important during the warm season
when there is more recreational contact with the water due to sport and tourist activities, and for this
reason the study was conducted in July during peak use of the coastal area.

The hierarchical monitoring used temporally and spatially overlapping satellite, helicopter, and
drone platforms (Figure 1) in order to simultaneously obtain thermal images of the targets (Figure 1).
The selection of an imaging platform for water quality monitoring is based on the suitability of
platform characteristics (Table 1) to detect, recognize, and identify criteria for characterizing the
thermal anomalies of the plume (Figure 2). These criteria are specific to each sensor and target, and
may involve: ratios of image spatial resolution or image swath size to the target size; matching of
image spectral resolution to target thermal properties; and time to achieve target image relative to
target time constraints. In cases where a thermal imaging platform is suitable, targeted, overlapping
in situ monitoring may be deployed; otherwise un-targeted, wide in situ sampling might be used.
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The first step of the hierarchical monitoring was coordinating with flight dates for Landsat-8. After each
flight, the Landsat imagery was retrieved and reviewed for evidence of discharging plumes, noted by
different reflectance than the seawater, from the channels into the coastal zone. Evidence of discharging
plumes was identified in the Landsat-8 images obtained on 18 June 2013, both in the natural look and
TIRS band 10 thermal imagery. Given plume detection with Landsat-8, the second step in hierarchical
monitoring was deployment of the helicopter, drone, and field boat, either immediately, or to coincide
with the next Landsat-8 flight. In this project all monitoring was coordinated to temporally overlap
with the Landsat-8 flight date of 27 June 2013. The helicopter was a rotorcraft AW139 (Augusta
Westland, Rome, Italy), with a pilot and photographer, and acquired imagery at a flight acquisition
of 300 m, with Star SAFIRE QWIP (FLIR, USA) + FLIR T620 camera (FLIR, USA), providing images
with ~10 cm resolution. The unmanned drone was a StillFly 6–R Natural Drone (San Diego, CA,
USA), and acquired imagery at a flight acquisition of 50 m with a FLIR T620, providing resolution
with ~2 cm resolution [24,25]. The thermal cameras used by the helicopter and drone missions used a
constant emissivity value of 0.986, and were set for ambient parameters in the thermal sensor control
software, including atmospheric temperature, relative humidity, and distance, which was used by the
T620 camera to compensate for the atmospheric interference and provide an accuracy of 2 mK in the
measurements. Images were rejected if they had poor view angles (e.g., too oblique) and if they had
extreme solar reflection off the water surface.

Table 1. Hierarchical monitoring platforms of satellite, helicopter, and drone, with the associated
thermal image sensor, target distance, swath size, spatial resolution, and spectral resolution.

Hierarchical
Monitoring

Platform

Thermal
Image Sensor

Target
Distance

(km)

Image Swath
Size (km)

Image Spatial
Resolution (m)

Image Spectral
Resolution

(μm)

Satellite Landsat 8 TIRS 705 190 100 Band 10:
10.60–11.19

Helicopter FLIR T620 0.3 ~4.7 0.12 7–14
Drone FLIR T620 0.05 ~0.13 0.02 7–14

Figure 2. Flowchart illustrating the choice of platform in hierarchical monitoring, related to target
detect, recognize, and identify criteria. All three platforms may be needed for a set of distinct targets.

The in situ samples were coordinated to spatially and temporally overlap with the thermal
imagery about the discharge plumes (Figure 3). A field boat was provided by the Regional Agency for
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the Environmental Protection and it carried an Ocean Seven 320 Plus multi-parameter Conductivity
Temperature Depth (CTD) probe. The boat was used for in situ sampling to test the correlation with
Trad, however, once this was performed subsequent monitoring would not require the costly concurrent
collection of in situ samples. To coordinate the spatial congruence of the in situ sampling and proximal
sensing, the operator of the field boat navigated to the coordinates of the areas of interest where
thermal anomalies in the water were detected, with coordinates sent by radio between the helicopter
and boat crews. The CTD in situ samples provided measurement of water kinetic temperature, Tkin,
salinity, dissolved oxygen, chlorophyll-a, and turbidity. The CTD records were acquired at a frequency
of 24 Hz, the highest allowed by the probes, taking the surficial measurements at 50 cm from the
surface. During the CTD acquisitions the wind speeds measured 6 m/s at the weather station close to
the sampling area, and this condition suggests the surface layer of the water was completely mixed
with a homogeneous Tkin sampled at the 50 cm depth [26].

Figure 3. Landsat-8 image of the study area with dots indicating the location of the field boat sampling
sites, within the channel discharge areas of interest.
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The third step of the monitoring program was to post-process the data and obtain the dataset
of water quality and temperature. The thermographic imagery was post-processed to delineate the
area of interest and obtain the average Trad value from that area, as well as other statistical data on the
distribution of the Trad values. The in situ sampling provided one temperature parameter, Tkin, and the
proximal sensing provided one temperature parameter, Trad, the combination of the two parameters
allowed for a third parameter equal to the difference Tkin − Trad, and a fourth parameter of emissivity,
ε, derived using the relationship between Tkin and Trad. An optional fourth step of the monitoring
program was to post-process the imagery to define the edges of the areas of interest, where the plumes
met with the coastal water. This involves extracting statistical information about the IR temperature
spectra, defining standard thermal patterns related to the phenomenology of water pollution [27].
In this study, the consistent temperature difference along the perimeter suggested the edge of the
channel plumes, which was confirmed with using Canny edge detection [28] (see image Figure 4 for
the Volturno channel).

 

Figure 4. Thermal image of the Volturno plume with polygons over the channel, seawater, and plume
areas of interest, which correspond to histograms of radiometric temperature; and (upper right side)
edges of the Volturno channel plume as white lines to the right of the image.

3. Results and Discussion

Plumes discharging from the four channels into the coastal waters were observed and captured
with the helicopter thermographic camera. To capture the largest plume from the Volturno channel,
with a channel width of ~300 m, the helicopter was used to take an oblique image (Figure 4), while
less oblique images were used for the Agnena plume (Figure 5), Regi-Lagni plume (Figure 6), and
the Cuma plume (Figure 7). The Cuma channel width was ~3 m, sufficient to allow for an area of
interest to be delineated in the channel using the helicopter-acquired ~10 cm thermographic image.
For more detailed analysis of the mixing zone between the Cuma channel discharge and coastal water,
the drone-acquired ~2 cm thermographic image provides excellent detail (Figure 7). The Landsat-8
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imagery performed its function as a first step of the hierarchical monitoring, and was sufficient to
confirm that spectral differences existed along the coastal zone, and initiated the subsequent monitoring
step 2, proximal image collection, and step 3, image post-processing, in the hierarchical program.

 

Figure 5. Thermal image of Agnena plume with histogram of radiometric temperature for areas of the
channel, seawater and area of the plume.

 

Figure 6. Thermal image of Regi Lagni plume with histogram of radiometric temperature for areas of
the channel, seawater, and area of the plume.
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Figure 7. Thermal image of Cuma plume with histogram of radiometric temperature for areas of the
channel, seawater, and area of the plume; and (in upper right side) drone-acquired thermal image of
the mixing zone in the Cuma channel outlet.

The in situ water quality measurements were obtained for one sample of coastal seawater beyond
the plumes, one sample in the Volterno plume, one sample in the Agnena plume, two samples in
the Regi Lagni plume, and two samples in the Cuma plume (Figure 3, Table 2). The salinity of the
coastal seawater was 3.4% (i.e., 34 parts per thousand), while the salinity of plumes had a maximum
of 3.7% and a minimum of 2.7%. The chlorophyll-a of the coastal seawater was 0.93 μg/L, while the
chlorophyll-a of plumes had a maximum of 2.5 μg/L and a minimum of 0.97 μg/L. The dissolved
oxygen of the coastal seawater was 87% of saturation, while the dissolved oxygen of plumes had a
maximum of 107% and a minimum of 59.3%. The detection of dissolved oxygen above 100% saturation
is relatively common in coastal sites due to the production of pure oxygen by photosynthetically-active
organisms, as well as a momentary lack of equilibrium of dissolved oxygen between the water column
and air column. The turbidity of the coastal seawater was 0.93 FTU (Formazin turbidity unit), while the
turbidity of plumes had a maximum of 5.6 FTU and a minimum of 0.9 FTU. The kinetic temperature of
the coastal seawater was 22.1 ◦C, while the kinetic temperature of plumes had a maximum of 23.7 ◦C
and a minimum of 21.9 ◦C.

Table 2. Water quality parameters measured during the in situ field campaign, with salinity in %,
chlorophyll-a in μg/L, dissolved oxygen (DO) in % saturation, turbidity in Formazin turbidity units
(FTU), and kinetic temperature in ◦C.

Locations Salinity % Chl-a μg/L DO% Sat Turbidity FTU Tkin
◦C

Volturno Plume 3.4 0.97 107 1.70 21.90
Agnena Plume 3.7 0.55 87 2.05 22.10

Regi Lagni Plume 1 3.3 2.20 65 2.29 22.48
Regi Lagni Plume 2 2.7 1.66 59 5.65 22.90

Cuma Plume 1 3.7 2.25 100 1.94 23.06
Cuma Plume 2 3.7 2.51 102 1.94 23.65

Coastal Seawater 3.4 0.93 87 0.93 22.10
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The kinetic temperature, Tkin, measured by the CTD in situ, and the radiometric temperature, Trad,
measured from IR imagery, were used with Equation (4) to derive the emissivity, ε, for the areas of
interest (Table 3). The derived ε values ranged from 0.93 to 0.97, with seawater at 0.97; this seawater
ε value deviates from the standard of 0.98 and illustrates that ε can vary around a common value
due to the variation in environmental and viewing conditions [29,30]. The Tkin, Trad, the difference
Tkin − Trad, and the ε for each area of interest was correlated with the water quality parameters
(Table 4). The correlations with in situ water quality data were consistently the best for the parameters
of Tkin, Trad and ε, which were identical, or within 0.01 of each other, and worst for the parameter
of Tkin. The absolute values of the Trad correlations were just 0.02 to 0.06 below the absolute values
of the ε correlations, and 0.21 to 0.36 higher than the absolute values of the Tkin correlations. Given
that parameterizing ε and Tkin requires in situ measurement, the Trad correlations were of particular
interest because Trad can be collected remotely and expedite monitoring. For in situ salinity Trad had
a correlation of 0.81, for chlorophyll-a Trad had a correlation of 0.74, for dissolved oxygen Trad had a
correlation of 0.98, and for turbidity Trad had a correlation of −0.61.

Table 3. Water in situ kinetic temperature, Tkin (◦C), IR thermographic radiometric temperature, Trad

(◦C), the difference of Tkin and Trad, and the derived emissivity, ε, for the areas of interest.

Locations Tkin
◦C Trad

◦C Tkin − Trad
◦C ε

Volturno Plume 21.90 17.50 4.40 0.942
Agnena Plume 22.10 19.90 2.20 0.971

Regi Lagni Plume 1 22.48 17.10 5.38 0.929
Regi Lagni Plume 2 22.90 17.30 5.60 0.926

Cuma Plume 1 23.06 20.08 2.98 0.960
Cuma Plume 2 23.65 20.90 2.75 0.963

Coastal Seawater 22.10 19.90 2.20 0.971

Table 4. Correlation coefficients between water quality parameters salinity (%), chlorophyll-a (μg/L),
dissolved oxygen (DO, % saturation), turbidity (Formazin turbidity units, FTU), and in situ kinetic
temperature, Tkin (◦C), IR thermographic radiometric temperature, Trad (◦C), the difference of Tkin and
Trad, and the derived emissivity, ε, for the areas of interest.

Variables Salinity % Chl-a μg/L DO %Sat Turbidity FTU

Tkin 0.48 0.51 0.77 −0.25
Trad 0.81 0.74 0.98 −0.61

Tkin − Trad −0.87 −0.78 −1.00 0.69
ε 0.86 0.77 1.00 −0.67

In the Regi Lagni channel there was no detected difference between the channel continental water
and the seawater mixing zone water, attributed to a more complete mixing along this section of the
coast. All channels had a relatively low discharge during the warm season, with water temperatures
warmer than the seawater for all channels, but the larger Volturno, which drains a larger river basin
with high-altitude tributaries that may feed cooler water. The smallest channel, the ~3 m wide Cuma,
had the highest levels of chlorophyll-a, while the medium sized channel, the ~100 m wide Regi Lagni,
had the next highest levels of chlorophyll-a, suggesting they may be the most polluted channels.
The reported values of oxygen under saturation suggest the presence of a high level of photosynthesis,
and the Cuma channel had the highest chlorophyll-a and second highest dissolved oxygen values.
The high turbidity values from all channels, above the 0.93 FTU of the seawater, suggest the channels
are carrying a high concentration of particulate matter, which may carry additional contamination.

The two temperature variables that correlated best with water quality parameters, the difference
Tkin and Trad and ε, which is from a ratio of Tkin and Trad, are based on using both kinetic and radiometric
temperatures. However, in typical applications of this monitoring program the Tkin and ε will not be
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available. Only with in situ measurements will Tkin be available, and only with Tkin can ε be derived,
As intended in this study, Trad is the most available temperature parameter from this monitoring
program, and in this application it had a much stronger correlation with the water quality parameters
than the Tkin. The Trad correlations were, on average, 71% better than the Tkin correlations, and ranged
from 144% better for turbidity to 27% better for oxygen. The Trad correlations were all above 0.6, and
three were above 0.74, while three of the Tkin correlations were below 0.51.

The study demonstrates how thermographic data can support a coastal monitoring program that
targets the water quality impact of channel plumes discharge along the coast. This study addressed
the research question by establishing a strong correlation between Trad and four common water quality
parameters. In a subsequent application of this hierarchical monitoring program, the second step
would not require a concurrent field boat with in situ sampling and, instead, would just collect Trad
for areas of interest within the thermographic imagery acquired by the helicopter and/or drone.
If the plumes and seawater areas had different values of Trad for any one channel, then in situ
samples could subsequently be obtained to characterize the water quality. The limitations of the
monitoring program include the inability to estimate the water quality parameter concentration using
the Trad, and predictive equations are difficult to establish given the sensitivity of Trad to variation
in ambient air temperature, water temperature, and emissivity of the pollutant. At sites where
thermographic data alone are insufficient for the monitoring program, other approaches have been
used. The fusion of optical data and synthetic aperture radar have been used for feature-based
detection of environmental hazards [31,32], and ratios of multi-spectral bands have been used to
detect surface contamination of soil and water [33,34]. Monitoring programs can also use remote
sensing-based detection cyanobacteria together with knowledge of flow paths to make inferences of
the impact and source of water pollution [35].

Without the hierarchical monitoring via helicopter, prior coastal monitoring for this region limited
its focus to pollution from the largest channels, including the Volturno, and another large channel
further north, called the Garigliano [36–39]. Due to the larger discharge plumes from these rivers, they
have been considered to be the principal cause of water quality impairment. This research revealed
that the smallest channel, the Cuma, and the medium-sized channel, the Regi Lagni, had the highest
concentrations of chlorophyll-a, which can lead to significant local degradation of coastal water quality.
Indeed, the contaminant concentrations from the small channels originate with wastewater treatment
and agricultural runoff, and can be higher than those of the larger rivers. The lower flow rates from
these small channels do not generate significant plume dispersion, and constrain the dilution and
degradation of the pollutant during transport. During the warm season the coastal currents are mostly
onshore, due to local land-sea breezes, and the river discharge and pollutants are retained in the
littoral area.

In summary, the hierarchical sampling protocol might search for thermal anomalies first using
satellite data, if the channel width is large enough, and then proceed to helicopter or drone data
depending on channel size and distance between channels. Collaboration between teams with
environmental expertise and teams with access to helicopters and drones may be critical to combine
resources and complete the monitoring program. The collaboration with governmental authorities
for access to helicopters can satisfy their needs for pollution monitoring, and ideally fit within their
operational requirements in terms of both flight regulations and the mission goals, while satisfying the
scientific aims and requirements to analyze the data. The application of this methodology produces
multi-resolution data that can be processed to highlight thermal anomalies, and the inferences with
respect to water quality are enhanced using local knowledge of pollutant sources. Indeed, with a
proper knowledge of the environmental dynamics, such as the interaction of the channels and coastal
currents, this application can link thermal anomalies and environmental criticalities.
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4. Conclusions

This research demonstrated that a hierarchical use of remotely-sensed imagery from satellites,
then helicopter, and then proximal sensed imagery from drones, provides a range of spatial and
temporal coverage to support water quality monitoring of complex pollution scenarios. The research
established that the thermal infrared cameras can be used in the monitoring of water quality anomalies,
with the radiometric temperature, Trad, strongly correlating with water quality parameters of salinity,
chlorophyll-a, dissolved oxygen, and turbidity. The Landsat-8 remotely-sensed imagery was used as a
first step to identify that plumes were discharging into the coastal water. The helicopter was used as a
second step to obtain proximal imagery with a spatial resolution of ~10 cm, able to sample the plumes
discharging from ~300 to ~3 m channels. The area of interest in the proximal thermal imagery captured
Trad values that had a correlation of 0.81 with salinity, of 0.74 with chlorophyll-a, 0.98 with dissolved
oxygen, and −0.61 with turbidity. This study demonstrates the utility of using thermal imagery in
cases where more advanced monitoring is unable due to spatial, temporal, and financial constraints.
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