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Preface to ”Multibody Systems with Flexible
Elements”

Multibody systems with flexible elements are a field of great contemporary interest in multiple

fields, with various industrial applications. Their study and the development of appropriate models

represent a desire of current research in the field of applied mechanics. The high interest in the

field is also indicated by the publications dealing with multibody systems and the large amount of

scientific literature and numerous published monographs. This book aims to contribute to this large

flow of scientific information in a representative field of current research. Mechanical systems with

elastic elements are considered where the displacements of each or some of the elements of the system

are generally large and cannot be neglected in mechanical modeling. The study of these multibody

systems covers many industrial fields, but also has applications in medicine, sports, and art. The

systematic treatment of the dynamic behavior of interconnected bodies has led to an important

number of formalisms for multibody systems within mechanics. This formalism is currently used

in many engineering fields, especially robotics and vehicle dynamics. The formalism of multibody

systems offers a means of algorithmic analysis, assisted by computers, and a means of simulating

and optimizing an arbitrary movement of a possibly high number of elastic bodies in the connection.

The domain where researchers apply these methods are robotics, simulations of the dynamics of

vehicles, biomechanics, aerospace engineering (helicopters and the behavior of cars in a gravitational

field), internal combustion engines, gearboxes, transmissions, mechanisms, the cellulose industry,

simulations of particle behavior (granulated particles and molecules), dynamic simulations, military

applications, computer games, medicine, and rehabilitation.

We hope that the present volume will present a small but useful contribution in the field of

multibody systems.

Marin Marin, Dumitru Baleanu, and Sorin Vlase

Editors

ix
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1. Introduction

The formalism of multibody systems offers a means of computer-assisted algorithmic
analysis and a means of simulating and optimizing an arbitrary movement of a possible
high number of elastic bodies in the connection. The domains where researchers apply
these methods are robotics, simulation of the dynamics of vehicles, biomechanics, aerospace
engineering (helicopters, the behavior of cars in the gravitational field), internal combus-
tion engines, gearboxes, transmissions, mechanisms, the cellulose industry, simulation
of particle behavior (granulated particles and molecules), dynamic simulation, military
applications, computer games, medicine, and rehabilitation. As a result, multibody systems
have become widely used in all industries, such as in automotive engineering, airspace
engineering, construction, and manufacturing [1–8]. It is for these reasons that there is
continuous research into the development of the field. Some of this research is presented in
this volume, in which a large group of researchers will present their latest findings. We
hope that researchers will find an interesting and useful volume of information for their
future work, but that the results will also be used by engineers for practical applications.

2. Statistics of the Special Issue

The statistics of papers called for this Special Issue, related to published or rejected
items, are as follows [9–23]: 26 total submissions, of which 15 were published (57.6%) and
11 rejected (42.3%). The authors′ geographical distribution is shown in Table 1, and it can
be seen that the 38 authors are from 9 different countries. Note that it is usual for a paper
to be written by more than one author, and for authors to collaborate with authors with
different affiliations or multiple affiliations.

Table 1. Geographic distribution of authors by country.

Country Number of Authors

Romania 22
Saudi Arabia 3

India 2
China 5
Egypt 3

Vietnam 2
Iran 2
UK 1

Poland 1

1
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3. Authors of the Special Issue

The authors of this Special Issue and their main affiliations are summarized in Table 2,
and it can be seen that there are three authors on average per manuscript.

Table 2. Affiliations and bibliometric indicators for authors.

Author Affiliation References

Marilena Ghitescu Transilvania University of Brasov, Romania [9,12,13]

Ioan-Marius Ghitescu Transilvania University of Brasov, Romania [9,12,13]

Sorin Vlase
Transilvania University of Brasov, Romania

Technical Sciences Academy of Romania, B-dul Dacia 26, 030167
Bucharest, Romania

[9,13,18,19,22]

Paul Nicolae Borza Transilvania University of Brasov, Romania [9,12,13]

Octavian Postavaru
Center for Research and Training in Innovative Techniques of Applied

Mathematics in Engineering, University Politehnica of Bucharest,
060042 Bucharest, Romania

[10]

Antonela Toma
Center for Research and Training in Innovative Techniques of Applied

Mathematics in Engineering, University Politehnica of Bucharest,
060042 Bucharest, Romania

[10]

Joseph Dianavinnarasi Department of Mathematics, Alagappa University, Karaikudi 630 004,
India [11]

Ramachandran Raja Ramanujan Centre for Higher Mathematics, Alagappa University,
Karaikudi 630 004, India [11]

Jehad Alzabut Department of Mathematics and General Sciences, Prince Sultan
University, Riyadh 12435, Saudi Arabia [11]

Michał Niezabitowski
Department of Automatic Control and Robotics, Faculty of Automatic

Control, Electronics and Computer Science, Silesian University of
Technology, Akademicka 16, 44-100 Gliwice, Poland

[11]

Ovidiu Bagdasar Department of Electronics, Computing and Mathematics, University of
Derby, Derby DE22 1GB, UK [11]

Marin Marin Transilvania University of Brasov, Romania [12,20,22]

Maria Luminita Scutaru Transilvania University of Brasov, Romania [12,19,22]

Calin Itu Transilvania University of Brasov, Romania [14]

Polidor Bratu ICECON SA, Bucharest, Romania [14,15]

Dorin Lixandroiu Transilvania University of Brasov, Romania [14]

Chen Wang
Key Laboratory of Exploration Mechanism of the Deep Space Planet
Surface, Ministry of Industry and Information Technology, Nanjing
University of Aeronautics and Astronautics, Nanjing 211100, China

[16]

Jinbao Chen
Key Laboratory of Exploration Mechanism of the Deep Space Planet
Surface, Ministry of Industry and Information Technology, Nanjing
University of Aeronautics and Astronautics, Nanjing 211100, China

[16]

Shan Jia
Key Laboratory of Exploration Mechanism of the Deep Space Planet
Surface, Ministry of Industry and Information Technology, Nanjing
University of Aeronautics and Astronautics, Nanjing 211100, China

[16]

Heng Chen Field Engineering College, Army Engineering University of PLA,
Nanjing 210001, China [16]

Attila Gerocs Doctoral School of Mechanical Engineering, “Eftimie Murgu”
University of Resita, 320085 Resita, Romania [17]

Gilbert-Rainer Gillich Doctoral School of Mechanical Engineering, “Eftimie Murgu”
University of Resita, 320085 Resita, Romania [17]

Dorian Nedelcu Doctoral School of Mechanical Engineering, “Eftimie Murgu”
University of Resita, 320085 Resita, Romania [17]
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Table 2. Cont.

Author Affiliation References

Zoltan-Iosif Korka Doctoral School of Mechanical Engineering, “Eftimie Murgu”
University of Resita, 320085 Resita, Romania [17]

Gina Diana Musca
(Anghelache)

Engineering and Agronomy Faculty in Braila, Research Center for
Mechanics of Machines and Technological Equipments, “Dunarea de

Jos” University of Galati, 810017 Braila, Romania
[18]

Carmen Debeleac
Engineering and Agronomy Faculty in Braila, Research Center for

Mechanics of Machines and Technological Equipments, “Dunarea de
Jos” University of Galati, 810017 Braila, Romania

[18]

Gabriel Leonard Mitu COMAT, SA, str. Zizinului, nr.111, 500002 Brasov, Romania [19]

Eliza Chircan Department of Mechanical Engineering, Transilvania University of
Bras, ov, B-dulEroilor 20, 500036 Bras, ov, Romania

Aatef Hobiny
Nonlinear Analysis and Applied Mathematics Research Group

(NAAM), Mathematics Department, King Abdulaziz University,
Jeddah 21521, Saudi Arabia

[20]

Faris Alzahrani
Nonlinear Analysis and Applied Mathematics Research Group

(NAAM), Mathematics Department, King Abdulaziz University,
Jeddah 21521, Saudi Arabia
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Ibrahim Abbas Mathematics Department, Faculty of Science, Sohag University, Sohag
82524, Egypt [20]
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Nasr City, Cairo 11884, Egypt [21]

Samer D. Makharesh Department of Mathematics, Faculty of Science, Al-Azhar University,
Nasr City, Cairo 11884, Egypt [21]

Dumitru Baleanu

Cankaya University, Ankara, Turkey
Institute of Space Sciences, Bucharest-Magurele, Romania

Department of Medical Research, China Medical University Hospital,
China Medical University, Taichung 40402, Taiwan, China

[10,12,21,23]

Iuliu Negrean

Technical Sciences Academy of Romania; B-dul Dacia 26, 030167
Bucharest, Romania

Department of Mechanical Systems Engineering, Technical University
of Cluj-Napoca, Str. Memorandumului 28, 400114 Cluj-Napoca,

Romania

[22]

Mohammad Reza
Mahmoudi

Institute of Research and Development, Duy Tan University, Da Nang
550000, Vietnam
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[23]
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Kim-Hung Pho
Fractional Calculus, Optimization and Algebra Research Group,

Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho
Chi Minh City 72915, Vietnam

[23]

4. Brief Overview of the Contributions to the Special Issue

The analysis of the topics identifies or summarizes the research undertaken. This
section classifies the manuscripts according to the topics proposed in the Special Issue.
There are three topics that are dominant, namely: modeling of the multibody system with
symmetries, symmetry in applied mathematics and analytical methods in the symmetric
multibody systems.

3
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Abstract: The paper presents an elastic coupling with bolts and intermediary non-metallic elements,
which allows for radial and axial deviation and can absorb shocks and torsional vibrations. The
designed bolts have a particular shape of a circular area of a length equal to the width of the non-
metallic element, a cylindrical area larger than the diameter of the cylindrical groove where the
non-metallic elements are mounted, and a cylindrical area smaller than the threaded area to avoid
stress concentrators and bolt breakage. The coupling represents a symmetrical piece, having two
planes of symmetry. Therefore, the study of such a mechanical system can be considerably simplified
considering the design and description of the repeating elements. The novelty of this coupling
consists in the existence of an intermediate disc between two half-couplings (driving and driven
half-coupling). The non-metallic elements with different shapes are made of different types of
rubber, mounted on cylindrical bolts fixed by the driving half-coupling, transmitting the motion in
both directions.

Keywords: elastic coupling; non-metallic elements; bolt; dynamic rigidity; non-collinearly shafts

1. Introduction

In the field of engingeering, an elastic coupling can make a significant contribution
when two machines work together [1–8]. For this reason, a particular study must be made
for every practical application.

For elastic couplings with bolts, a large variety of solutions and materials are used
depending on the demands and practical role. The solutions differ in dimension, design,
shape of different elements, material, etc. Two of them are standardized: version N—
normal; and version B—with spacer bush [9]. In these versions, the coupling is represented
by a symmetrical device with two planes of symmetry. So, in this paper, the study of such a
mechanical system can be considerably simplified considering the design and description
of the repeating elements. In the same time, the manufacturing of a system with repeating
elements is easier.

A wide variety of flexible couplings with rubber pins exists, in which the two half-
couplings are different from each other [10,11].

There are many flexible bolt coupling solutions. They stand out for their simplicity,
the two semi-couplings that constitute the coupling being identical [12]. The torque is
transmitted in this case through the rubber sleeves covering the bolts.

A solution with washers or rubber bushes and studs is presented in [13,14]. In
literature [15], it is studied a coupling which consists of two hubs: an elastic rubber
element and bolts with self-locking nuts [13]. This type of coupling has been used for
different machines as welding sets or compressors, as generally machineries have large
driven inertias.
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Two semi-couplings with bolts and rubber elements are present in Rupex coupling [16–19].
To connect shafts with a small parallel, angular, or axial misalignment, a coupling with

a barrel element is used. These types are used for the liaison between an electric machine
with working machines [20,21].

A solution for a coupling with holes on the circumference where cylindrical bolts are
introduced is presented in [22]. The motion is transmitted from one engine to a shaft by
bolts and rubber.

The marine coupling comprises a coupling body, with connecting pins, sleeve, screws,
and rubber [23]. The maritime coupling is characterized by the materials used for the
components. This coupling can be easily removed.

The quick-cushion rubber sleeve coupling for quick replacement includes half of the
right-hand coupling assembly, a pin, an elastic sleeve, and a nut. The sleeve can be replaced
easily and does not require co-axiality correction [24,25].

A possibility for the development of the paper is the modal analysis of such a system,
in order to identify the vibration behavior [26–31]. In the coupling solutions existing in this
moment, the non-metallic element is mounted in one of the semi-couplings in some bores
specially processed for it, which implies a higher manufacturing/execution cost of that
half-coupling, and in these conditions the non-metallic element is required at crushing, the
torque capable of being transmitted by the coupling being determined by the condition of
resistance to crushing of the non-metallic element. The maximum angular deviation that
can be taken over by these couplings is ∆α ≤ 10 if the shafts are collinear.

Elastic couplings are used to damp shocks caused by loads and to prevent dangerous
vibrations. In addition, the elastic couplings allow some compensation for the inaccuracies
of the mutual positioning of the shafts.

The non-metallic elastic elements used in the construction of couplings have very
varied construction forms. In order to achieve couplings that satisfy, to the greatest extent,
the conditions imposed by the operation, shapes are used that can modify the elasticity
and damping properties.

In the case of dynamic loads, the elastic couplings with non-metallic elements accu-
mulate and partially disperse the energy. By inserting the elastic couplings in the kinematic
chains, the resonance range can be exceeded and the possibility of resonant vibrations
is avoided.

The dampening capacity of the coupling refers to its property to disperse and to
transform energy into deformation in heat. Damping occurs when there is a difference
between the elastic load characteristic at charging and discharging the coupling.

The properties of rubber are: high elasticity, high damping capacity, constructive
simplicity, and low price. The non-metallic intermediate elements lead to the electri-
cal insulation of the connected shafts, but compared to the metallic intermediate ele-
ments, they give the coupling a lower durability, the transmitted torque being limited to
low-medium values.

From the study carried out in this domain of elastic couplings using non-metallic
elements, we found that there are elastic couplings with bolts having simple functional and
designing principles.

Such couplings are produced by specialized companies, with international reputation,
in a wide range of types and sizes. The studies made in this field are not numerous, which
is why the use of a new type of coupling requires a careful analysis of its characteristics. The
works published in the field are relatively few and books of Machine Design (courses or
monographs) present only general notions regarding the design and manufacturing [1–8].

The paper proposes a coupling that has the following advantages:

• easy assembly and disassembly of non-metallic elements; easy assembly and disas-
sembly of bolts;

• easy assembly and disassembly of intermediary disk;
• new constructive shapes of non-metallic elements which allow for non-metallic ele-

ments to relax, to be solicited and traction, and the capable moment to be transmitted
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from the condition of resistance of the non-metallic element besides crushing and
shearing and torsion;

• by mounting the non-metallic element between the plates and not in bores processed in
semi-couplings, it allows the non-metallic element to relax, this being required besides
crushing, shearing, and traction; transmits the torque in both directions regardless of
the chosen direction of rotation, as it does not become rigid;

• different elastic characteristics can be obtained, depending on the constructive shape
and the material of the non-metallic elastic element; ensures the compensation of
radial and angular deviations;

• the designed coupling has a simple construction, small overall dimensions and a low
cost, compared to the classic ones with non-metallic elements and bolts.

2. Elastic Coupling Proposed Solution

The elastic coupling with cylindrical bolts and rubber intermediate elements presented
in the paper is original, and the advantages of using such a coupling are presented below.
The designed coupling was modeled 3D with the Autodesk Mechanical soft (Figure 1).
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Figure 1. Proposed elastic coupling with bolts and elastic intermediary elements. 1—driver half-coupling; 2—driven
half-coupling; 3—elastic intermediary pieces; 4—bolts; 5—grower washers; 6—nuts; 7—intermediary disk; 8- screws; 9—pin;
10—metal supports; 11—screws.

The driver half-coupling 1 transmits the torque from the driver machine (electric
motor) to the intermediary elastic elements 3, bolts 4, fixed rigidly on the input shaft
(half-coupling 1), and further through an intermediary disc 7 to the output shaft (half-
coupling 2). The exterior diameter of the coupling is De = 176 mm and the axial gauge is
L = 129 mm. The total weight of the coupling is mt = 3 kg. The total moment of inertia is
0.0213 kg m2.

In Figure 2 the constructive type of bolt is presented. The bolts 4 are fixed to the
half-coupling 1.
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The cylindrical areas of the bolt allows the centering of the bolt in the half-coupling 1
and represents a shoulder that prevents the axial displacement of the elastic element.

The cylindrical areas of the bolt, with a diameter larger than the diameter of the
threaded area, aims to reduce the concentrating stress and breaking of the bolt.

The cylindrical area of the bolt with a diameter larger than the diameter of the threaded
area has the role of reducing the stress at the transitions from the largest diameter to the
diameter of the threaded area.

In Figure 3 the CAD model of plates 10 is presented, which are fixed to the intermedi-
ary disk 7 with two screws 11. Figure 4 presents different shapes of non-metallic element
and their dimensions. The elasticity of the non-metallic element depends largely on its
hardness (minimum 65◦ Sh).
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Figure 4. Shapes of the non-metallic element.

Semi-couplings 1 and 2, the bolts 4, intermediary disc 7 and the metallic elements 10
were realized from improved OLC 45 steel. The mechanical characteristics of the C 45 steel
are: density = 8.31 g/cm3, Young’s Modulus = 200 GPa, Poisssons’s Ratio = 0.287.

The mold used to obtain the three shapes of non-metallic elements is presented in
Figure 5. The mold consists of the upper cover 1, the intermediate ring 2 (existing in three
design versions: I, II, III, corresponding to the three shapes of the non-metallic elastic
element) and the bolt 3, inserted by pressing in the lower cover 4.
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Figure 5. Molds used to obtain the three versions of the non-metallic elements.

The experimental tests performed on the designed coupling were performance tests,
as well as tests that followed the operation of the coupling.

Studied functional parameters are the torque at the entry shaft and at the output shaft.
Preliminary activities were required to carry out the experimental tests in good condi-

tions, which consisted of:

• balancing the ends of the entrance and exit shafts of the stand;
• balancing the sensor applied on the coupling to determine the angular deformation of

the coupling in the dynamic mode.

An activity prior to mounting the coupling on the stand considered the following stages:

• balancing the subassembly formed by the intermediate disc and plates;
• balancing the subassembly consisting of the intermediate disc, plates and the driven

half-coupling;
• balancing the assembly consisting of the driving half-coupling, the intermediate disc,

the plates, and the driven half-coupling.

The purposes of the experiments are:

â measuring the torque at the input and at the output shaft;
â measuring the relative deformation that appears between the two half-couplings;
â obtaining the dynamic rigidity of the elastic coupling.

Figures 6 and 7 present the experimental stand to measure the torque in the elastic coupling.
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The installation for the dynamic testing of the prototype (Figure 6) consists of the drive
group 1, consisting of the electric motor and pump, supply pipes 2, frame 3, hydraulic
motor 4, quadrilateral mechanism 5, support bearing 6, support flange 7, transducer pulse
8, the elastic test coupling C, the angle transducer 9, the adjustable support 10, the pre-
tensioning system 11, the output shaft II, the measuring and recording system 12, the
pressure gauge 13, the hydraulic regulator 14, and the TER resistive electrical transducers.

The dimensions of the existing stand in the endowment of the department at the
moment of performing the test were: width l = 1 m, length L = 1.5 m, and height H = 1.5 m.

The measuring system 12 consists of a universal pulse NO counter, which counts the
pulses detected by the pulse transducer 8 and the TE electronic tensometer, which indicates
the value of the specific deformation. The power circuit is hydraulically driven from the
drive group 1, and by means of the supply pipes 2 the hydraulic motor 4 is supplied. The
hydraulic motor drives, by means of the quadrilateral mechanism 5, the inlet drive shaft I
supported by the support bearing 6. Support flange 7 is fixed by means of grooves to the
end of the input drive shaft I. The elastic test coupling C (half-coupling I) is attached to one
end of the flange 7, its other end being fixed by grooves to the flange of the output shaft
II. By means of the pre-tensioning system 11, the output shaft II is fixed on the adjustable
support 10, which can move in two directions orthogonal to the frame of the frame 3, thus
performing the coupling test.

To perform the dynamic coupling test, the following steps are performed: check the
position and correct operation of the prototype C (Figure 6) and of the angular transducer
9; before starting the test, move the support bearing 6 to the desired position to achieve
the amplitude of the variable moment; the power circuit is rotated until the quadrilateral
mechanism 5 reaches neutral, thus being blocked. By actuating the pretensioning system 11,
the prototype is twisted, the static torque being created in the power circuit. This moment
produces a deformation, which is measured by means of the output shaft II and the TER
electroresistive transducers glued to the shaft; when the desired stress cycle is obtained, the
action on the prestressing system 11 ceases. The stress cycle can also be identified by means
of the indicator with which the test installation is provided; by actuating the hydraulic
regulator 14 (Figure 6), the pressure in the hydraulic circuit is regulated, thus obtaining
the desired test frequency. The manometer 13 indicates the variation of the pressure in
the hydraulic circuit, and the pulse transducer 8 together with the universal numerator
in the measuring and recording system 12 signals the value of the frequency; depending
on the deformation value, from the torsion sensor calibration diagram, the values of the
maximum torque and the amplitude of the oscillating moment are estimated. Using the
angular transducer 9 and the measuring and recording system 12, the elastic deformation
of the tested coupling is measured and the rigidity of the tested coupling is calculated.

Figures 8 and 9 present the experimental stand to measure the torque in the elastic coupling.
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To determine the desired parameters, the installation is equipped with transducers
(pulse transducer, angle transducer), measuring and control devices, devices for visualizing
the studied phenomenon.

In order to determine the angular deformations of the coupling in a dynamic regime, it
was necessary to use a deformation sensor, which was applied on the driven half-coupling
2. The deformation sensor 3 was glued on a metal plate 4 made of spring steel, fixed to a
metal plate 5 (bent in the shape of the letter “L”), by means of two screws and two nuts
(Figure 8).

• Figure 8 shows the coupling C to be tested mounted on the stand, the input (I)
and output shafts (II), the conductive and driven half-coupling 2, the deformation
measuring sensor 3 fixed on a metal plate 4 in the shape of the letter L which is
attached to the half-coupling 2, where: 4—metal lamella, 5—metal plate fixed to the
half-coupling 2, 6—crank, 7—angular transducer, 8—prestressing system, 9—TER
represents resistive electrical transducers, 10—support bearing, 11—hydraulic motor,
and 12 -, 13 -, and 14—the hydraulic regulator of the stand.
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• The driving half-coupling is mounted on the input shaft I of the test stage, and the
driven half-coupling on the output shaft II of the stand.

• The electronic equipment necessary for the dynamic tests of the tested coupling
consists of two tensometric bridges and an oscilloscope. In Figure 9, item 11 represents
the tensometric bridges that measure the variation of the relative rotation angle
between the half-couplings and the torque at the output shaft and 13 is the oscillograph
that records the torque at the output shaft as a function of the relative rotation angle
between the half-couplings.

The purposes of the experiments are:

â measuring the torque at the input and at the output shaft;
â measuring the relative deformation that appears between the two half-couplings;
â obtaining the dynamic rigidity of the elastic coupling.

The coupling tests were performed in dynamic mode, taking into account two distinct
situations: (1) the two input shaft and output shaft mounted collinearly; (2) the two input
shaft-output shafts radially offset by 0.4 mm. In these situations, the variation of the torque
at the output shaft was analyzed according to the angular deformation between the two
half-couplings, a deformation that occurred as a result of the loading and unloading of
the coupling.

First, the coupling was tested in a dynamic regime without radial misalignment of
the input and output shafts. The maximum relative rotation angle between the two half-
couplings being of maximum 2.2◦ at a maximum moment at the output shaft of 44 Nm.
The second dynamic determination was performed with the input and output shafts radial
offset by 0.5 mm. The radial displacement between the input and output shafts was
obtained by the radial displacement of the output shaft.

By actuating the crank, the dynamic loading and unloading of the prototype was
performed in case of radial misalignment of the two input shafts, the oscilloscope recording
the variation of the angular deformation and the torque at the output shaft II.

The data obtained after measurement are presented in Table 1. The dynamic rigidity
of the tested couplings varies depending on the relative value of the angle between the 2
half-couplings. In the experiment a radial deviation of ∆r = 0.4 mm is considered.

Table 1. Dynamic rigidity of tested prototype with radial deviation ∆r = 0.4 mm, input-output shafts,
in dynamic regime.

Zone
Rotation Relative
Angle ϕ between
Semi-Couplings

Torsion Moment to
Entry-Out-Put Shaft

Dynamic
Rigidity

Medium
Dynamic
Rigidity,

- [Degree] [Nmm] [Nmm/Degree]

Radial deviation ∆r = 0.4 mm by input-out-put shafts, in dynamic regime

I

0.185184 5600 30,240.27

34,585
0.555551 21,730 39,114.35
0.740734 24,500 33,075.30
0.740734 24,500 33,075.30

II

0.246000 6700 27,235.77

31,979

0.462959 19,200 41,472.37
0.740734 24,500 33,075.30
0.740734 24,500 33,075.30
0.581000 19,090 32,857.14
0.442959 10,700 24,155.75
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The dynamic rigidity of elastic coupling is defined as the ratio of the torque obtained
in dynamic regime to the relative rotation angle between the semi-couplings. The medium
dynamic rigidity of coupling is obtained with relation:

kdynamic =

n
∑

i=1
kdynamic i

n
, (1)

where n represents the number of dates on graphic and kdynamic i is the partial dynamic
rigidity same of each dates

After processing the experimental data obtained with a radial misalignment by 0.4 mm
between the input and output shaft, the torque diagram is obtained. The variation of the
torque and the hysteresis of the elastic non-metallic element can be seen in Figure 10.
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Figure 10. The dynamic variation of torque to the output shaft depending on the relative rotation
angle between the two half-couplings (radial deviation ∆r = 0.4 mm).

The coupling was also tested in dynamic regime without radial misalignment of
the input and output shafts, the maximum relative rotation angle between the two half-
couplings being of maximum 2.2◦ at a maximum moment at the output shaft of 44 Nm.

The rigidity of the coupling is represented by the ratio between the torque and the
relative angular deformation between the half-couplings.

The damping causes the moment-deformation curve to change into a hysteresis
curve. The most important factors that influence the dynamic rigidity are: the operating
temperature of the coupling, the average torque, the frequency, and the amplitude of the
torque. Heating of the elastic elements can occur due to the ambient temperature or due to
internal friction under the influence of the torque. Due to the increase of the temperature
of the elastic elements, the relative angular deformations of the half-couplings increases
and both the static and the dynamic rigidity decreases. As the temperature increases,
the modulus of elasticity decreases. The rubber chosen to manufacture the non-metallic
elements is resistant to oils or diesel fuel.

The nonlinear characteristics of nonmetallic elements also depend on their geometry.
Table 2 shows the dynamic rigidity of the tested coupling calculated when the input

and output shafts are parallel, with a radial deviation of ∆r = 0.4 mm.

Table 2. Medium rigidity of tested coupling with radial deviation ∆r = 0.4 mm by input-output
shafts, in dynamic regime.

Medium Rigidity of Coupling [N·mm/Degree] in Dynamic Regime

Input-Output
Shafts: Collinear With Radial Deviation ∆r = 0.4 mm by Input-Output Shafts

18,243.25
Zone I:
Zone II:

34,585
31,979

Medium (Average): 33,282
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3. Discussion

Before testing the elastic coupling in dynamic regime, the input and output shafts
of the stand were balanced, the coupling was balanced, and a sensor was applied to the
coupling. During the experiments, progressive loading and unloading was performed.
Deformations and stress in the non-metallic material depend on the loading torque.

The rigidity depends as well on the torque Mt and on the relative rotation angle
between the half-couplings. After testing the coupling in dynamic mode, the elastic
characteristic of the coupling was obtained.

The shape of the elastic element and the material from which it is obtained, de-
termine the elastic characteristic. The maximum angular deformation between the two
half-couplings is 0.7407340 degrees when the input and output shafts have a deviation
between axes by 0.4 mm. The maximum relative angular deformation between the two
half-couplings is ∆ϕ = 2.2◦ from when no radial misalignment is introduced.

Value of medium dynamic rigidity of coupling, on the first zone of testing is
34,585 Nmm/degree. The value of medium dynamic rigidity of coupling, on the second
zone of testing is 31,979 Nmm/degree. The value of mean dynamic rigidity of coupling
is 33,282 N.mm/degree. If the two shafts are collinearly, the medium dynamic rigidity of
coupling is 18,243.25 Nmm/degree.

From the comparison of the results obtained in the dynamic test without radial offset
and with radial offset, it was found that the dynamic stiffness of the coupling is higher
in the dynamic regime. From the comparison of the results obtained in the dynamic test
without radial misalignment (input-output shafts being collinear) with the results obtained
in the dynamic test with radial misalignment (input-output shafts being non-collinear) it
is found that the maximum relative angular deformation between two half-couplings is
∆ϕ = 2.2◦ from when no radial misalignment is introduced and ∆ϕ = 0.74◦ from when
the input-output shafts are radial offset by ∆r = 0.4 mm.

The damping capacity of torsional shocks for an elastic coupling with bolts and non-
metallic intermediate elements help the system to convert a part of energy into heat and
the rest is transformed into deformation energy.

4. Conclusions

For this prototype, depending on the design and material of the elastic element,
regardless of whether the input-output shafts are non-collinear, can be obtained different
elastic characteristics and different partial and average dynamic.

The experimental dynamic stiffness obtained in the case of radial misalignment be-
tween input-output shafts is higher as in the case when input-output shafts are collinear.
During the experimental testing of this coupling, a silent operation of the prototype
is detected.

It was found that the dynamic average stiffness, if the input-output shafts are a radially
deviation of 0.4 mm, is lower than the static average stiffness, if the input-output shafts
are collinear.

Therefore, it is found that in dynamic regime without radial misalignment the tested
design version takes a maximum angular deformation of relative rotation between the two
half-couplings greater than the maximum angular deformation of relative rotation between
the two semi-couplings in dynamic regime with radial misalignment.

Figure 10 shows the nonlinear elastic characteristic of the coupling at loading and
unloading with load, the hysteresis of the coupling, as well as the fact that the coupling
has variable rigidity.

The designed coupling takes over larger angular deviations in the dynamic regime
without misalignment than the classic couplings in the current study for the constructive
dimension at which it was designed.

During the dynamic experimental testing of prototype, the following were found:
different elastic characteristics can be obtained, depending on the constructive shape and
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the material of the non-metallic element; and no vibrations or radial beats occurred, which
confirms a good design and a good execution.
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Abstract: Symmetries and their associated conserved quantities are of great importance in the study
of dynamic systems. In this paper, we describe nonconservative field theories on time scales—a model
that brings together, in a single theory, discrete and continuous cases. After defining Hamilton’s
principle for nonconservative field theories on time scales, we obtain the associated Lagrange
equations. Next, based on the Hamilton’s action invariance for nonconservative field theories
on time scales under the action of some infinitesimal transformations, we establish symmetric
and quasi-symmetric Noether transformations, as well as generalized quasi-symmetric Noether
transformations. Once the Noether symmetry selection criteria are defined, the conserved quantities
for the nonconservative field theories on time scales are identified. We conclude with two examples
to illustrate the applicability of the theory.

Keywords: time scales; Noether theory; conserved quantity

1. Introduction

Noether’s theorem, considered the most beautiful theorem in mathematical physics,
attributes a conservation law to each symmetry [1]. In fact, Noether’s theorem states that
if the Lagrangian of a physical system is not affected by a continuous transformation in
its proper coordinate system, then there is a conservation law, more precisely a quantity
that remains constant. There is also an extension of Noether’s theorem, called Noether’s
second theorem, which states that a discretization that maintains a variational symmetry
creates a proper conservation law.

In general, the studied systems are dissipative, regardless of whether they have
applicability in physics or engineering. This field of research is of particular interest due to
the few existing contributions in the literature. A consistent formalism for describing the
interaction of certain systems with the environment is described in [2]. This problem is a
particular case of a class of problems called the inverse problem of mechanics and occurs
when a Lagrangian is constructed from the equations of motion of a mechanical system.
Since the end of the last century, this topic has long been studied by many mathematicians
and theoretical physicists [3–6], and the interest of physicists in this subject has recently
increased with the quantification of dissipative systems [7–10].

The study of real-time dissipative processes, such as radiative processes, is not possible
without a technique that is capable of introducing nonconservative interactions into action.
In [11], we find a series of effective field theory techniques that can be seen as modern
theoretical tools to find the existence of hierarchies of scale for a physical problem. Power-
counting results are presented for several situations of practical interest, and several
applications of quantum electrodynamics are also illustrated. In the course notes [12], some
of the basic ideas of effective field theories are introduced, such as relevant and irrelevant
operators and scaling, renormalization in effective field theories, the decoupling of heavy
particles, power counting and naive dimensional analysis. A number of introductions to
some of the latest techniques and applications in the field can be found in [13].
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To unify continuous analysis with discrete analysis, Hilger [14] introduced calculation
on time scales. The paper presented in [15] developed the concept of the discrete calculus
of variations and showed how it can be applied to the optimization problems of discrete
systems. In [16], the authors investigate the invariant properties of the discrete Lagrangian
for conservative systems, the discrete analog of the calculus of variations and the Noether
theorem, and another work [17] extends this theory to nonconservative systems. Noether
conservation symmetries and laws for nonconservative discrete systems with irregular
lattices were developed in [18], first by finding the discrete analog of Noether identities
and then by introducing the generalized quasi-external equations and their properties.
In [19,20], the Noether symmetries and the conservation laws of nonconservative and
nonholonomic mechanical systems on time scales were analyzed—a theory that unifies the
two cases of continuous and discrete theories. For the first time, a relationship between
isochronous variations and delta derivatives was established, as well as a link between
isochronous variations and total variations on time scale. Q-versions of some basic concepts
of continuous variational calculus such as the Euler–Lagrange equation and its applications
to the isoperimetric Lagrange and optimal control problems were introduced in [21].

In the present paper, we extend the formalism of the nonconservative field theory
presented in [22] to time scales. The field theory on discrete time is very different from
classical dynamics except for the fact that it is a multi-freedom system, because every
point of discrete time has a dynamical freedom. Apart from this fundamental character,
the field theory has engineering applications in gravitation, electrostatics, magnetism,
electric current flow, conductive heat transfer, fluid flow and seepage [23].

The paper is structured as follows: In Section 2, we examine delta differentiation and
integration on time scales and review some properties that we use later. In Section 3, we
derive the Lagrange equation for nonconservative field theories on time scales. Further, in
Section 4 we discuss the criteria of symmetric and quasi-symmetric Noether transforma-
tions for two types of transformations, and then in Section 5, we define and identify the
quantities that are conserved. We end the paper with some illustrative examples.

2. Preliminaries and Notations

In this section, we give some basic knowledge about the calculus on time scales
introduced and developed by Hilger [14]. A time scale T is an arbitrary nonempty closed
subset of the real numbers. From the multitude of examples, we would like to mention
the following: the real numbers R, integers Z, natural numbers N, a sequence of points
of R with a varying step size S, the Cantor set D and sequence of closed intervals P.
In general, P is understood as a time scale which underpins differential equations with
pulses. The theory presented in this section is valid for any type of time scale.

Definition 1. The mapping σ : T→ T defined by σ(τ) ≡ inf{s ∈ T| s > τ} is called the jump
operator. Accordingly, we may define the backward jump operator ρ : T→ T to be the mapping
ρ(τ) ≡ sup{s ∈ T| s < τ}. Via these two operators, we may classify the points τ ∈ T in terms of
their right and left neighborhood as follows: τ is called right-dense, right-scattered, left-dense or
left-scattered if σ(τ) = τ, σ(τ) > τ, ρ(τ) = τ or ρ(τ) < τ, respectively.

Definition 2. If T has a left-scattered maximum M, then we define Tk = T − {M}; thus,
this k-operator cuts off an eventually existing isolated maximum of T. The graininess function
µ : Tk → [0, ∞) is defined by µ(τ) = σ(τ)− τ.

Remark 1. If T = R, then σ(τ) = ρ(τ) = τ. If T = Z, σ(τ) = τ + 1, ρ(τ) = τ − 1,
and µ(τ) = 1.
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Definition 3. A function f : T→ R is called differentiable at τ ∈ T, with derivative f ∆(τ) ∈ T,
if for each ε > 0 there is a neighborhood U of τ such that

| f (σ(τ))− f (s)− f ∆(τ)(σ(τ)− s)| ≤ ε|σ(τ)− s| , for all s ∈ U .

The derivative can also be defined in terms of a limit as follows:

f ∆(τ) ≡ ∆ f
∆τ

= lim
s→τ

f (σ(τ))− f (s)
σ(τ)− s

.

If f , g : T→ R are differentiable in τ, then one has the following properties:

f (σ(t)) = f σ(τ) = f (τ) + µ(τ) f ∆(τ) ,

(a f + bg)∆(τ) = a f ∆(τ) + bg∆(τ) ,

( f g)∆(τ) = f ∆(τ)gσ(τ) + f (τ)g∆(τ) = f ∆(τ)g(τ) + f σ(τ)g∆(τ) . (1)

Remark 2. If T = R, then f ∆(τ) = f ′(τ). If T = Z, then f ∆(τ) = f (τ + 1)− f (τ).

Definition 4. A function f : T → R is called rd-continuous if it is continuous at right-dense
points and its left-sided limits exist (finite) at left-dense points. The set of rd-continuous functions
is denoted by Crd, and the set of differentiable functions with rd-continuous derivative is denoted
by C1

rd.

Remark 3. Every rd-continuous functions have an antiderivative. In particular, if τ1 , τ2 ∈ T,
then the antiderivative function F is defined as

F(τ) ≡
∫ τ2

τ1

f (τ)∆τ ,

with ∆τ the measure on T [14].

Theorem 1. For a strictly increasing function ν : T→ R, we have the following properties:
(1) (Chain rule) Let ω : T∗ → R, where T∗ ≡ ν(T). If ν∆(τ) and ω∆∗(ν(τ)) exists, then

(ω ◦ ν)∆ =
(

ω∆∗ ◦ ν
)

ν∆ , (2)

(2) (Derivative of the inverse) For ν∆(τ) 6= 0, we have the following relation:

(
ν−1

)∆∗
(ν(τ)) =

1
ν∆(τ)

,

(3) (Substitution) If f : T→ R is a Crd function and ν is a C1
rd function, then

∫ b

a
f (ν(τ))ν∆(τ)∆τ =

∫ ν(b)

ν(a)

(
f ◦ ν−1

)
(s)∆∗s , (3)

with a , b ∈ T.

Lemma 1. (Dubois–Reymond) Let g : [a, b]→ Rn, and g ∈ Crd, then

∫ b

a
g(τ) η∆(τ)∆τ = 0 ,
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for all η ∈ C1
rd with η(a) = η(b) = 0, if and only if g(τ) = c, with c ∈ Rn.

3. Lagrange Equation for Nonconservative Field Theories on Proper Time Scales

We consider N fields ΦI(xµ), with I = 1, N and xµ = (x0, x1, x2, x3) ∈ {T × V}
with the time segment T = [t1, t2] with t ∈ T and space volume V. To capture the
nonconservative (e.q., dissipative) effects of a field that is subject to nonconservative
interactions, we must double its degrees of freedom ΦI → (ΦI

1, ΦI
2). Thus, we can explain

the correct causal evolution of the dynamics of the open system.
We denote the nonconservative Lagrange density with Ω, and it is generally an

arbitrary function of two variables, their derivatives and their space-time coordinates xµ:

Ω
[
ΦI

a

]
= Ω

(
xµ,
(

ΦI
a

)σ
,
(

ΦI
a

)∆
, ∂i

(
ΦI

a

)σ
)

, (4)

with i = 1, 3 and
(
ΦI

a
)σ
(xµ) = ΦI

a
(
σ(t), x1, x2, x3). Additionally, ΦI

a satisfies Definition 1
in the sense that

∆
∆t

ΦI
a(t, x1, x2, x3) = lim

s→t

ΦI
a(σ(t), x1, x2, x3)−ΦI

a(s, x1, x2, x3)

σ(t)− s
.

In the case of nonconservative field theories, we state Hamilton’s principle on a time
scale as

∫ t2

t1

∆t
∫

V
d3x δΩ

[
ΦI

a

]
= 0 , (5)

where the isochronous variations are represented by δ.

Proposition 1. For isochronous variations, we have the following relations:

δ
(

ΦI
a

)∆
=
(

δΦI
a

)∆
, and δ

(
ΦI

a

)σ
=
(

δΦI
a

)σ
. (6)

Proof. For the first relationship, we have

(
δΦI

a(t)
)∆

=
∆
∆t

(
δΦI

a

)
=

∆
∆t

(
∂ΦI

a
∂xµ δxµ

)
=

∆
∆t

(
∂ΦI

a
∂xi δxi

)

=
∂

∂xi

(
∆ΦI

a
∆t

)
δxi =

∂
(
ΦI

a
)∆

∂xi δxi = δ
(

ΦI
a

)∆
,

where µ = 0, 3, i = 1, 3 and we used Einstein’s summation convention.
For the second relationship, we have

(
δΦI

a

)σ
=

(
∂ΦI

a
∂xi δxi

)σ

=
∂
(
ΦI

a
)σ

∂xi δxi = δ
(

ΦI
a

)σ
.

Proposition 2. The relationship between the total variation and the isochronous variation is given
by the formula

∆ΦI
a =

(
ΦI

a

)∆
∆t + δΦI

a . (7)
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Proof. The total variation of ΦI
a is written as follows:

∆ΦI
a =

∂ΦI
a

∂t
δt +

∂ΦI
a

∂xi δxi , (8)

and the isochronous one is as follows:

δΦI
a =

∂ΦI
a

∂xi δxi . (9)

Next, we consider t = t(α), where α is a generalized parameter that has convenient
interpretations for the classical and relativistic case. We can write

∆t =
∂t
∂α

δα .

From Equations (8) and (9), we get

∆ΦI
a =

∂ΦI
a

∂t
∂t
∂α

δα + δΦI
a ,

and the demonstration is done.

We can write Hamilton’s principle (5) in the following form:

∫ t2

t1

∆t
∫

V
d3x

(
∂Ω
∂xµ δxµ +

∂Ω
∂(ΦI

a)
σ δ
(

ΦI
a

)σ
+

∂Ω

∂(ΦI
a)

∆ δ
(

ΦI
a

)∆

+
∂Ω

∂∂i(ΦI
a)

σ δ∂i

(
ΦI

a

)σ
)
= 0 , (10)

where the I indices satisfy the Einstein summation convention.
Next, we use the following relation:

∫
d3x

∂Ω
∂(∂iΦ)

δ(∂iΦ) =
∫

d3x
[
−∂i

(
∂Ω

∂(∂iΦ)

)
δΦ + ∂i

(
∂Ω

∂(∂iΦ)
δΦ
)]

. (11)

Because the edges of the volume are considered fixed, the second term of this expres-
sion does not contribute to the result. The first term in Equation (10) is a constant that does
not influence the final result. Thus, Equation (10) together with Equation (11) reduce the
Hamilton problem to

∫ t2

t1

∆t
∫

V
d3x

(
∂Ω

∂(ΦI
a)

σ δ
(

ΦI
a

)σ
+

∂Ω

∂(ΦI
a)

∆ δ
(

ΦI
a

)∆

−∂i

(
∂Ω

∂∂i(ΦI
a)

σ

)
δ
(

ΦI
a

)σ
)
= 0 ,

or
∫ t2

t1

∆t
∫

V
d3x
[(

∂Ω
∂(ΦI

a)
σ − ∂i

(
∂Ω

∂∂i(ΦI
a)

σ

))
δ
(

ΦI
a

)σ

+
∂Ω

∂(ΦI
a)

∆ δ
(

ΦI
a

)∆
]
= 0 . (12)

Proposition 3. To transform Φσ in Φ∆, we use the following relation:

∫ t2

t1

f (t)(δΦ(t))σ∆t = −
∫ t2

t1

∫ t

t1

f (τ)∆τ(δΦ(t))∆∆t . (13)

23



Symmetry 2021, 13, 552

Proof. We use Equation (1) to achieve

[∫ t

t1

f (τ)∆τ δΦ(t)
]∆

=
∆
∆t

[∫ t

t1

f (τ)∆τ δΦ(t)
]

=

[∫ t

t1

f (τ)∆τ

]∆
(δΦ(t))σ +

∫ t

t1

f (τ)∆τ (δΦ(t))∆ ,

or
[∫ t

t1

f (τ)∆τ δΦ(t)
]∆

= f (t)(δΦ(t))σ +
∫ t

t1

f (τ)∆τ (δΦ(t))∆ .

Integrating on both sides over ∆t and applying Lemma 1, on the left side of the
equality, we get zero. In Lemma 1, g(t) = 1 and

η(t) =
∫ t

t1

f (τ)∆τ δΦ(t) = (F(t)− F(t1)) δΦ(t) .

The four-volume is fixed at the boundary; therefore, η(t1) = η(t2) = 0.

Theorem 2. Lagrange equations for nonconservative theories on time scale are written

∂Ω
∂(ΦI

a)
σ − ∂i

(
∂Ω

∂∂i(ΦI
a)

σ

)
− ∆

∆t
∂Ω

∂(ΦI
a)

∆ = 0 .

Proof. Combining Proposition 3 with Equation (12), we obtain

∫ t2

t1

∆t
∫

V
d3x
[
−
∫ t

t1

(
∂Ω

∂(ΦI
a)

σ − ∂i

(
∂Ω

∂∂i(ΦI
a)

σ

))
∆τ(δΦ(τ))∆

+
∂Ω

∂(ΦI
a)

∆ δ
(

ΦI
a

)∆
]
= 0 .

Because δ
(
ΦI

a
)

are independent of each other, the following expression is obtained
with the help of Lemma 1:

−
∫ t

t1

(
∂Ω

∂(ΦI
a)

σ − ∂i

(
∂Ω

∂∂i(ΦI
a)

σ

))
∆τ +

∂Ω

∂(ΦI
a)

∆ = const.

Taking the delta derivatives of the above formula, the demonstration is finished.

We define the current densities on time scale as follows:

Π0
Ia =

∂Ω

∂(ΦI
a)

∆ , Πi
Ia =

∂Ω
∂∂i(ΦI

a)
σ .

For historical reasons, it is advisable to separate the Lagrange density in conservative
and nonconservative terms; i.e.,

Ω
[
ΦI

1, ΦI
2

]
= L

(
xµ,
(

ΦI
1

)σ
,
(

ΦI
2

)σ
,
(

ΦI
1

)∆
,
(

ΦI
2

)∆
, ∂i

(
ΦI

1

)σ
, ∂i

(
ΦI

2

)σ
)

+K
(

xµ,
(

ΦI
1

)σ
,
(

ΦI
2

)σ
,
(

ΦI
1

)∆
,
(

ΦI
2

)∆
, ∂i

(
ΦI

1

)σ
, ∂i

(
ΦI

2

)σ
)

, (14)
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where L is a sum of independent non-interacting field Lagrangians for each of the fields to
be considered to be relevant within the interaction Lagrangian density K.

A more correct parametrization is obtained using the ± base, defined as [22]

ΦI
+ =

ΦI
1 + ΦI

2
2

, ΦI
− = ΦI

1 −ΦI
2 . (15)

The physical limit (PL) is given by the equations

ΦI
+ → ΦI , ΦI

− → 0 . (16)

Because only the variable “-” contributes to the physical result, we get
[

∂Ω
∂
(
ΦI
−
)σ − ∂i

(
∂Ω

∂∂i
(
ΦI
−
)σ

)
− ∆

∆t
∂Ω

∂
(
ΦI
−
)∆

]

PL

= 0 ,

or using Equation (14),

∂L
∂(ΦI)

σ − ∂i

(
∂L

∂∂i(ΦI)
σ

)
− ∆

∆t
∂L

∂(ΦI)
∆

=

[
∂i

(
∂K

∂∂i
(
ΦI
−
)σ

)
+

∆
∆t

∂K
∂
(
ΦI
−
)∆ −

∂K
∂
(
ΦI
−
)σ

]

PL

= QI .

If QI = 0, the Lagrange equations for the nonconservative field theory turn into the
usual differential equations of motion on time scales.

4. Noether Symmetries on Time Scales

In this section, we discuss some criteria for symmetric Noether transformations for
nonconservative field theories on time scales. There is no concept of a complete classifica-
tion of the conserved currents. In the following, all Φ functions will be read as ΦI

a.
On time scale, the action has the following definition:

S[Φ] =
∫ t2

t1

∆t
∫

V
d3x Ω[Φ] . (17)

Definition 5. We say that the Hamilton action (17) is invariant to the following infinitesimal
transformations, which depend on a parameter r

t∗ = t , (Φ(xµ))∗ = Φ(xµ) + εαξα(xµ) , (18)

with infinitesimal parameters εα (α = 1, r) and with the generators of the infinitesimal transforma-
tion ξα ≡ ξ Iα

a , if and only if

∫ t2

t1

∆t
∫

V
d3x Ω

(
xµ, Φσ, Φ∆, ∂iΦσ

)

=
∫ t2

t1

∆t
∫

V
d3x Ω

(
x∗µ, Φ∗σ, Φ∗∆, ∂iΦ∗σ

)
.

This transformation is called a symmetrical Noether transformation.

Theorem 3. Noether symmetric transformations corresponding to infinitesimal transformations
(18) are subject to the following conditions:

∂Ω
∂Φσ

(ξα)σ +
∂Ω

∂Φ∆ (ξα)∆ +
∂Ω

∂∂iΦσ
(∂iξ

α)σ = 0 .
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Proof. Equation (18) together with Equation (19) give

∫ t2

t1

∆t
∫

V
d3x Ω

(
xµ, Φσ, Φ∆, ∂iΦσ

)

=
∫ t2

t1

∆t
∫

V
d3xΩ

(
x∗µ, Φσ + εα(ξ

α)σ, Φ∆ + εα(ξ
α)∆, ∂iΦσ + εα(∂iξ

α)σ
)

.

Deriving both sides of the equals at εα and doing εα = 0, we obtained the desired re-
sult.

Definition 6. We say that the Hamiltonian action (17) is invariant to infinitesimal transforma-
tions (18) if and only if

∫ t2

t1

∆t
∫

V
d3x Ω

(
xµ, Φσ, Φ∆, ∂iΦσ

)

=
∫ t2

t1

∆t
∫

V
d3x

[
Ω
(

x∗µ, Φ∗σ, Φ∗∆, ∂iΦ∗σ
)
+

∆
∆t
(
∆̃G
)]

,

where ∆̃G = εαGα, Gα = Gα
(
xµ, Φσ, Φ∆, ∂iΦσ

)
. This transformation is called a quasi-symmetric

Noether transformation.

Theorem 4. Noether quasi-symmetric transformations corresponding to infinitesimal transforma-
tions (18) are subject to the following conditions:

∂Ω
∂Φσ

(ξα)σ +
∂Ω

∂Φ∆ (ξα)∆ +
∂Ω

∂∂iΦσ
(∂iξ

α)σ = − ∆
∆t

Gα .

Proof. Demonstration similar to that of the Theorem 3.

Next, we consider the following sets of transformations:

t∗ = T(xµ, εα) = t + εαξα
0(xµ) ,

(Φ(xµ))∗ = Pk(xµ, εα) = Φ(xµ) + εαξα(xµ) , (19)

k = 1, a N, and ξα
0 ≡ ξ Iα

0 .
Consider the function t ∈ [t1, t2] → β(t) = T(xµ, εα) ∈ R to be a strictly increasing

of class C1
rd whose image is a new time scale. We denote the jump operator and delta

derivatives with σ∗ and ∆∗. Between σ and σ∗, we have the following relation:

σ∗ ◦ β = β ◦ σ . (20)

Definition 7. We say that the Hamilton action (17) is invariant to the infinitesimal transforma-
tions (19) if and only if

∫ t2

t1

∆t
∫

V
d3x Ω

(
xµ, Φσ, Φ∆, ∂iΦσ

)

=
∫ β(t2)

β(t1)
∆∗t∗

∫

V
d3x Ω

(
x∗µ, Φ∗σ

∗
, Φ∗∆

∗
, ∂iΦ∗σ

∗)
+
∫ t2

t1

∆t
∫

V
d3x

∆
∆t
(
∆̃G
)

,

where ∆̃G = εαGα, Gα = Gα
(
xµ, Φσ, Φ∆, ∂iΦσ

)
. This transformation is called a generalized

quasi-symmetric Noether transformation.
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Theorem 5. Noether generalized quasi-symmetric transformations corresponding to infinitesimal
transformations (18) are subject to the following conditions:

∂Ω
∂t

ξ Iα
0 + Ω (ξα

0)
∆ +

∂Ω
∂Φσ

(ξα)σ +
∂Ω

∂Φ∆

(
(ξα)∆ −Φ∆(ξα

0)
∆
)
+

∂Ω
∂∂iΦσ

(∂iξ
α)σ = − ∆

∆t
Gα .

Proof.
∫ β(t2)

β(t1)
∆∗t∗

∫

V
d3x Ω

(
x∗µ, Φ∗σ

∗
, Φ∗∆

∗
, ∂iΦ∗σ

∗)

=
∫ t2

t1

∆tβ∆(t)
∫

V
d3x Ω

(
β(t), x∗i, Φ∗ ◦ σ∗ ◦ β,

(Φ∗ ◦ β)∆

β∆(t)
, ∂iΦ∗ ◦ σ∗ ◦ β

)
, (21)

where (Φ ◦ f )(t) = Φ( f (t), xi), i = 1, 3. To obtain the formula (21), we used the follow-
ing property:

(
Φ∗∆

∗ ◦ f
)
(t) =

(Φ∗ ◦ f )∆

f ∆(t)
(t) .

Using Equations (20), Equation (21) becomes

∫ t2

t1

∆tβ∆(t)
∫

V
d3x Ω

(
β(t), x∗i, Φ∗ ◦ β ◦ σ,

(Φ∗ ◦ β)∆

β∆(t)
, ∂iΦ∗ ◦ β ◦ σ

)
.

This equation together with the transformations (20) gives

∫ t2

t1

∆t T∆
∫

V
d3x Ω

(
T, x∗i, Pσ

k ,
P∆

k
T∆ , ∂iPσ

k

)
.

Differentiating this formula at εα and performing εα = 0 together with Equations (2) and (3),
we get

∫ t2

t1

∆t
∫

V
d3x
[

∂Ω
∂t

ξα
0 + Ω (ξα

0)
∆ +

∂Ω
∂Φσ

(ξα)σ

+
∂Ω

∂Φ∆

(
(ξα)∆ −Φ∆(ξα

0)
∆
)
+

∂Ω
∂∂iΦσ

(∂iξ
α)σ +

∆
∆t

Gα

]
= 0 .

Given the arbitrariness of the integration interval, we obtain the desired result.

5. Noether’s Theorems on a Time Scale

In this section, we define conserved quantities in nonconservative field theories on
time scales.

Definition 8. We say a function of type

I
(

xµ, Φσ, Φ∆, ∂iΦσ
)

,

is a conserved quantity in nonconservative field theories on time scales if and only if

∆
∆t

I
(

xµ, Φσ, Φ∆, ∂iΦσ
)
= 0 .

Below, we present a series of conserved quantities that are obtained from Noether sym-
metries.
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Theorem 6. The infinitesimal transformations given by the Theorem 3 have the conserved quanti-
ties of the form

Iα =
∂Ω

∂Φ∆ ξα = cα . (22)

Proof. Applying ∆/∆t to the right side of Equation (22), and after the operator
∫ t2

t1
∆t
∫

V d3x;
i.e.,

∫ t2

t1

∆t
∫

V
d3x
[

∆
∆t

∂Ω
∂Φ∆ (ξα)σ +

∂Ω
∂Φ∆ (ξα)∆

]
.

Using Theorem 2, we obtain

∫ t2

t1

∆t
∫

V
d3x
[

∂Ω
∂Φσ

(ξα)σ − ∂i
∂Ω

∂∂iΦσ
(ξα)σ +

∂Ω
∂Φ∆ (ξα)∆

]
,

and integrating by parts, we obtain

∫ t2

t1

∆t
∫

V
d3x
[

∂Ω
∂Φσ

(ξα)σ +
∂Ω

∂Φ∆ (ξα)∆ +
∂Ω

∂∂iΦσ
(∂iξ

α)σ
]
= 0 ,

where we used Theorem 3.

Theorem 7. The infinitesimal transformations given by Theorem 4 have conserved quantities of
the form

Iα =
∂Ω

∂Φ∆ ξα + Gα = cα .

Proof. Similar to the proof of Theorem 6.

Theorem 8. Infinitesimal transformations (19) together with Theorem 5 have conserved quantities
of the form

Iα =

(
Ω− ∂Ω

∂t
µ(t)

)
ξα

0 +
∂Ω

∂Φ∆

(
ξα −Φ∆ξα

0

)
+ Gα = cα .

Proof. We start from the following two definitions:

S[Φ] =
∫ t2

t1

∆t
∫

V
d3xΩ

(
xµ, Φσ, Φ∆, ∂iΦσ

)
,

and

S[Φ, Ψ] =
∫ t2

t1

∆t
∫

V
d3xΩ

(
xµ, Ψσ, Φσ, Ψ∆, Φ∆, ∂iΨσ, ∂iΦσ

)
.

Let

Ω
(

xµ, Ψσ, Φσ, Ψ∆, Φ∆, ∂iΨσ, ∂iΦσ
)
= Ω

(
Ψσ − µ(t)Ψ∆, xi, Φσ,

Φ∆

Ψ∆ , ∂iΦσ

)
.
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When Ψ(t) = t, S[Φ] = S[Φ, Ψ]. According to Definition 7, we have

S
[
ΦI

a

]
=
∫ t2

t1

∆t
∫

V
d3x

∆
∆t
(
∆̃G
)

+
∫ β(t2)

β(t1)
∆∗t∗

∫

V
d3xΩ

(
x∗µ, Φ∗σ

∗
, Φ∗∆

∗
, ∂iΦ∗σ

∗)

=
∫ t2

t1

∆tβ∆(t)
∫

V
d3xΩ

(
β(t), x∗i, Φ∗ ◦ σ∗ ◦ β,

(Φ∗ ◦ β)∆

β∆(t)
, ∂iΦ∗ ◦ σ∗ ◦ β

)

+
∫ t2

t1

∆t
∫

V
d3x

∆
∆t
(
∆̃G
)

= S[Φ ◦ β, β(t)] +
∫ t2

t1

∆t
∫

V
d3x

∆
∆t
(
∆̃G
)

.

It follows that the action S[Φ ◦ β, β(t)] corresponds to the Noether symmetry in
Definition 7. Applying Theorem 7, the Lagrange equation given in Theorem 2 has the
following conserved quantities:

Iα =
∂Ω

∂Ψ∆ ξα
0 +

∂Ω
∂Φ∆ ξα + Gα = cα .

This equation, along with the relationships

∂Ω
∂Ψ∆ = −∂Ω

∂t
µ(t)− ∂Ω

∂Φ∆ Φ∆ + Ω ,

∂Ω
∂Φ∆ =

∂Ω
∂Φ∆ ,

ends the demonstration.

6. Illustrative Examples

In this section, we discuss two particular cases of this theory; namely, a continuous
case and a discrete case.

6.1. Example 1

If T = R, then σ(t) = t and µ(t) = 0, and the Euler–Lagrange equations in Theorem 2
are written

∂Ω
∂Φ
− ∂µ

(
∂Ω

∂∂µΦ

)
= 0 .

Further, the Theorem 5 turns into

Ω̇ ξα
0 + Ω ξ̇α

0 +
∂Ω
∂Φ

ξα − ∂Ω
∂Φ̇

Φ̇ξ̇α
0 +

∂Ω
∂∂µΦ

∂µξα = −Ġα ,

and the conserved quantity in Theorem 8 becomes

Iα = Ω ξα
0 +

∂Ω
∂Φ̇

(
ξα − Φ̇ξα

0
)
+ Gα = cα .
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6.2. Example 2

Next, we consider the discrete case T = hZ. Consequently, σ(t) = t + h and µ(t) = h,
and the Ω function becomes

Ω
(

xµ, Φ(t + h, xi),
Φ(t + h, xi)−Φ(t, xi)

h
, ∂iΦ(t + h, xi)

)
.

Theorems 5 and 8 are transformed accordingly, taking into account the fact that

∆
∆t

f (t, xi) =
f (t + h, xi)− f (t, xi)

h
, and f (t, xi)σ = f (t + h, xi) .

7. Conclusions and Outlook

In this paper, we studied the Noether theorem for nonconservative field theories on
time scales. After establishing Hamilton’s principle, we extracted from it the Lagrange
equations on time scales. For two different types of infinitesimal transformations, we
established the selection criteria of Noether symmetries and based on these, we found the
conserved quantities in the nonconservative field theories on time scales. In conclusion, we
illustrated two examples for the discrete case and the continuous case to show that they
were particular cases of the theory presented in this paper.

Continuous cases are common in the literature and underpin, for example, quantum
field theory [24]. For future investigations, we want to extend our analysis to the following
physical equations: Klein–Gordon, Maxwell and Dirac, from which it would be possible to
extract the principles of time scale mechanics. Continuous theory is elegant but badly de-
fined mathematically in many places, whilst the discrete time analogues are perhaps better
defined mathematically. We would like to mention the success of the lattice field theory in
the Yang–Mills problem. If no empirical test could distinguish between their predictions,
we would rather choose the discrete theory. Possibly, using the time scale expression, we
can highlight certain intervals of interest for which we can use discrete calculation.

The study of Maxwell’s equations allows us to address this theory to particular
problems. We can discuss the case of a simple relativistic engine made of two current loops
of arbitrary geometry, in which we shall consider the mechanical momentum and energy
gained by the engine [25]. Extending this theory to the gravitational field on a time scale, we
could calculate the interaction field Lagrangians for the electromagnetic and gravitational
interactions [26]. Next, we can look for analogies between the Fibonacci sequence and
certain spatially homogeneous and isotropic universes in Friedmann–Lemaitre–Robertson–
Walker cosmology on time scales [27].

Beyond the Lagrangian and Hamiltonian dynamics of typical nonconservative field
theory investigated in this work, a range of other phenomena such as spontaneous breaking
symmetry can be theoretically studied using the same framework.

The standard case of the Nambu–Goldstone theorem remains unchanged on this time
scale, and as a consequence, the numbers of broken generators are definitely related to the
existence of the Nambu–Goldstone bosons.

Using the pioneering work of [28,29], in a subsequent work, we could calculate
both relativistically and non-relativistically the appropriate dispersion relation and the
appropriate counting for the Nambu–Goldstone bosons if we study systems in which the
symmetry is spontaneously broken. As benchmarks, within the same scenario, in future we
can use the method of operators used in [30] in non-relativistic theory, or more generally,
for both relativistic and non relativistic cases, we can check if the dynamics of Nambu–
Goldstone bosons are somehow governed by the quantum Yang–Baxter equations [31].
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Abstract: This work is devoted to analyzing an impulsive control synthesis to maintain the self-
sustainability of Wolbachia among Aedes Aegypti mosquitoes. The present paper provides a frac-
tional order Wolbachia invasive model. Through fixed point theory, this work derives the existence
and uniqueness results for the proposed model. Also, we performed a global Mittag-Leffler stability
analysis via Linear Matrix Inequality theory and Lyapunov theory. As a result of this controller
synthesis, the sustainability of Wolbachia is preserved and non-Wolbachia mosquitoes are eradicated.
Finally, a numerical simulation is established for the published data to analyze the nature of the
proposed Wolbachia invasive model.

Keywords: sustainability; mosquito borne diseases; Aedes Aegypti; Wolbachia invasion; impulsive control

1. Introduction

In the 19th century, fractional calculus (FC) theory has been built by some famous
mathematicians like Grunwald, Letnikov, Riemann, Liouville, Euler and Caputo [1–3].
Fractional order derivatives are the generalization of integer order derivatives. FC is
unavoidable due to its extensive applications in the study of real-world problems. The
main advantage of FC is that it can provide a path to understand the description of memory
and inheritance of various processes [4,5]. The book [6] plays an important role in the
area of applied fractional calculus. In recent years, researchers in the field of physics,
chemistry, Neural Networks, economic and mathematical modeling, biological problems
and engineering have been very much attracted to fractional calculus [7], because FC
interprets the whole function geometrically and globalizes its entire function.

Mosquito-borne diseases are primarily spread by female mosquitoes while taking a
blood meal from living organisms such as humans, animals and birds. A parasite, virus,
or bacteria-infected female mosquito can transmit those foreign agents to humans [8].
For instance, the Dengue virus, Zika virus, Yellow fever virus and Chikungunya are
transmitted from infected human to uninfected human via primary vector Aedes Aegypti
mosquitoes. Currently, the secondary vector for the above-mentioned diseases is Aedes
Albopictus [9–11]. In recent years, the death rate due to mosquito-borne diseases has
increased dramatically [8]. Gubler et al. [12,13] and Ong et al. [14] explained that dengue
and dengue hemorrhagic fever are a more common issue for public health. According to
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the World Health Organization (WHO) [15], per annum, mosquito-borne diseases cause
more than 40,000 deaths and 96 million asymptomatic cases in 129 countries.

Currently, there are several methods to control Aedes Aegypti mosquitoes such as
insecticide spraying, sterile insect technique, incompatible insect technique, combined
sterile insect technique, and genetic modifications. In [16,17], the authors proposed that
the Sterile insect technique is likely to be used in mosquito-borne disease control. The
authors of [18], analyzed that the particular transgenic strain can simulate the female-
specific flightless phenotype to increase the sterilization in male mosquitoes. In [19,20], the
authors discussed that the safe and effective replacement of vector population by geneti-
cally modified mosquitoes will play a significant role in mosquito-borne disease control.
Furthermore, some other types of mosquito control strategies, such as making changes in
feeding behaviors, intervention strategies, using bed nets and mosquito repellents, are also
tested [21,22].

A novel Aedes Aegypti suppression technique using the life-shortening bacterium
Wolbachia plays an important role [23–25]. It is an endosymbiotic bacterium that is re-
ported in nearly 60 percent of insect species by Wolbach (1924) [26]. The World Mosquito
Program (WMP) [27] from Australia currently release Wolbachia infected mosquitoes over
10 countries, such as countries in Latin America, India, Sri Lanka, Vietnam, Indonesia
and cities in Oceania. In that research, they found that Wolbachia is a self-sustaining
bacterium and in the presence of Wolbachia infected mosquitoes there is zero possibility
of having Dengue. The Wolbachia releasing strategy is more powerful than that of the
above-mentioned control strategies in the sense that it is self-sustaining, affordable, only
needs a small amount of release, the area covered is larger than the released area, and
the most important thing is it is not harmful to human health. The authors of [28–31]
discussed that Wolbachia can restrict the virus particles of various diseases. We know that
the virus is transmitted from infected humans to uninfected humans via female mosquitoes.
Meanwhile, if a virus-infected mosquito carries Wolbachia strain, then the virus cannot
be transmitted to an uninfected human. Because this Wolbachia strain blocks the virus
particles inside the salivary gland of mosquitoes (Ref. Figure 1).

Figure 1. Mechanism of Wolbachia among mosquitoes and human.

The Wolbachia infection is introduced into wild mosquitoes population through two
major processes such as microinjection and Introgression [32].
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Micro injection: In this process, Wolbachia strains are microinjected into aquatic stages
such as eggs, larvae and pupae.
Introgression: In this process, the Wolbachia strains are carried out to next generation
through mating. If Wolbachia infected female mated with Wolbachia infected or
uninfected male, then the produced offsprings have the Wolbachia strain (Called CI
rescue). Suppose the Wolbachia uninfected female mated with a Wolbachia infected
male then there is no viable progeny. Finally, if a non-Wolbachia female mated with a
non-Wolbachia male then there is no Wolbachia infection in the offspring.

To understand the introgression process, one can refer to Figure 2.

Figure 2. Block diagram representing the mechanism of Wolbachia infection in mosquitoes.

Furthermore, some existing mathematical models consider Wolbachia as a control
agent for mosquito-borne diseases. In [33], the author proposed a deterministic model to
control mosquito-borne diseases up to 90% via Wolbachia spread, also the author consid-
ered both human and mosquito populations to create a mathematical model. In [30,34],
the authors proposed a mathematical model depicting the life stages of mosquitoes with
Wolbachia and proved that Wolbachia has an excellent quality to control dengue virus
spread. In [35], the authors analyzed the integer ordered mathematical model consisting of
only four stages (aquatic stage with and without Wolbachia and adult female mosquitoes
with and without Wolbachia), which considered the imperfect maternal transmission and
Wolbachia invasion. In [36], the two sex mathematical model is discussed to analyze the
persistence of Wolbachia. In [37], the age and bite structured mathematical model is pro-
posed and performed the mathematical analysis. In [38], the authors discussed the linear
feedback control strategy of a mathematical model containing only three stages such as
aquatic, female Wolbachia infected and uninfected mosquitoes. In this, the author analyzed
the Wolbachia infected mosquitoes release into the seasonal environment. In [39], the
authors presented a mathematical model to depict the mechanism of the virus inside both
humans and mosquitoes. In this work, the author utilized two various types of controls like
vaccination for humans and Wolbachia infected mosquitoes’ release for mosquitoes. The
pontriyagin maximum principle was utilized to analyze the optimal control of the proposed
mathematical model. In [40], the authors discussed the Wolbachia infection among Aedes
Aegypti mosquitoes via delay differential equations. In that work, the author proposed
the delay dependent stability criteria of the proposed model by utilizing the results from
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spectrum analysis. In [41], the authors proposed an age structured fractional order mathe-
matical model to control the Aedes Aegypti mosquitoes via Wolbachia bacterium using the
Linear Matrix Inequality (LMI) approach.

As per the practical results of [27], Wolbachia should be released into every stage
to get the optimal control in a short period. Also, by utilizing fractional calculus we can
get the memory property and inheritance of this process. In nature, Wolbachia infected
mosquitoes may lose the Wolbachia infection. Because of this, invasion in Wolbachia is
unavoidable. Motivation by the above discussions, our contributions are listed below:

• A novel mathematical model, which considers the total of ten stages in Aedes Aegypti
mosquitoes (combining both Wolbachia infected and Wolbachia uninfected) is pro-
posed and the possible optimal stages to release the Wolbachia are discussed, and the
most important concept of Wolbachia invasion and Wolbachia gain are adopted.

• The Wolbachia free equilibrium, Wolbachia present Equilibrium, Zero mosquitoes,
and both Wolbachia and Non-Wolbachia mosquitoes co-existence equilibrium are
derived. And utilizing fixed point theory results, the Existence and Uniqueness results
of the Wolbachia invasive model are proposed. To attain optimal control, we utilized
an impulsive control strategy.

• We perform global Mittag-Leffler stability analysis of the proposed model via Linear
Matrix Inequality (LMI) theory and Lyapunov theory.

• In the end, by utilizing the data from the published literature, we have presented the
numerical simulation of the proposed model using MATLAB software.

The rest of the paper is arranged as follows—in Section 2, we provide some basic
Definitions, Lemmas and Theorems. In Section 3, the fractional order complete mathe-
matical model describes the interaction between Wolbachia infected and Non-Wolbachia
mosquitoes is presented. In Section 4, the possible equilibrium points are presented. In
Section 5, the Wolbachia invasive and gain model with impulsive control is presented. In
Section 6, the existence and uniqueness results are analyzed and the global Mittag-Leffler
stability results are derived in Section 7. In Section 8, the numerical simulation results are
presented. In Section 9, the work is concluded.

Notations. N denotes the space of all natural numbers, R denotes the space of all
real numbers, C denotes the space of all complex numbers, Rn denotes the space of n-
dimensional Euclidean space, Z+ denotes the space of all positive integers. Moreover, Re(·)
denotes the real part of a complex number and [.] denotes the integer part of a number.
∗ denotes the corresponding symmetric terms in a symmetric matrix. Also, c

kDα
t (·) and

c
k Iα

t (·) denotes the derivative and anti derivative of order α with respect to t respectively,
c denotes that its in Caputo sense, k denotes the initial condition and Γ(·) denotes the
Gamma function.

2. Preliminaries

In this section, we provide some basic Definitions, Lemmas and Theorems, which are
used to attain our results.

Definition 1. Ref. [4] The most important basic function in fractional calculus is the gamma
function. It is defined as follows:

Γ(z) =
∫ ∞

0
e−ssz−1 d s,

with Re(z) > 0.

Definition 2. Ref. [1] The Caputo fractional derivative of a continuous function f (t) over [k, T]
of order α ∈ C (with Re(α) > 0, α /∈ N) is

c
kDα

t f (t) =
1

Γ(n− α)

[∫ t

k
(t− η)n−α−1 dn

dηn f (η)dη

]
, (1)
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where, n = [Re(α)] + 1.
If 0 < Re(α) < 1, then the expression (1), can be rewritten as

c
kDα

t f (t) =
1

Γ(1− α)

[∫ t

k

f
′
(η)dη

(t− η)α

]
. (2)

Since, n = 1 for all 0 < Re(α) < 1.

Definition 3. Ref. [42] The Caputo sense fractional integral of a continuous function f on
L1([0, T],R) over α ∈ (0, 1] with respect to t is defined as

c
0 Iα

t f (t) =
1

Γ(α)

∫ t

0
(t− η)α−1 f (η)dη. (3)

The two parameter Mittag-Leffler function is defined as follows:[4]

Ea,b(z) =
∞

∑
l=0

zl

Γ(al + b)
,

where, z ∈ C, a > 0, and b > 0. If b = 1 the Ea(z) = ∑∞
l=0

zl

Γ(al+1) . If both a = 1 and b = 1,
the E1,1(z) = ez.

Lemma 1 (Schur Complement [43]). Let us denote three n× n matrices as Ψ1, Ψ2, Ψ3, where

Ψ1 = Ψ>1 and Ψ2 = Ψ>2 > 0. Then Ψ1 + Ψ>3 Ψ−1
2 Ψ3 < 0 if and only if

[
Ψ1 Ψ>3
Ψ3 −Ψ2

]
< 0 (or)

[ −Ψ2 Ψ3
Ψ>3 Ψ1

]
< 0.

Lemma 2. Ref. [44] For any scalar ε > 0, A, N ∈ Rn and matrix P1, then

A>P1N ≤ 1
2ε

A>P1P>1 A +
ε

2
N>N.

Let us consider the fractional order dynamical system with impulse of type,

c
kDα

t x(t) = −A1x(t) + A2 f (x(t)), t 6= tθ , θ = 1, 2, · · · , m,

∆x(tθ) = x(t+θ )− x(t−θ ) = δθ(x(tθ)), t = tθ , θ = 1, 2, · · · , m, (4)

with initial condition x(t0) = x0 ∈ Z+, where the n states is defined by
x(t) = [x1(t), x2(t), x3(t), · · · , xn(t)]> ∈ Rn and f (x(t)) = [ f (x1(t)), f (x2(t)), f (x3(t)), · · · ,
f (xn(t))]> be a function, A1 and A2 are constant coefficient matrices with the impulsive
operator δθ : Rn → Rn.

Definition 4. Ref. [44] The system (4), is said to be globally Mittag-Leffler stable at its equilibrium
points, if the following hold:

||x(t)− x∗|| ≤ [h(x0 − x∗)Eα(−κta)]b,

where x∗ is an equilibrium point, 0 < α < 1, κ ≥ 0 and a, b > 0. Moreover, h(0) = 0, h(x) ≥ 0
and h(x) is locally Lipschitz with Lipchitz constant h0.

Lemma 3. Ref. [45] Let us consider the fractional order system with impulsive control of type
(4). Suppose f (0) = 0, t > 0 and δθ(0) = 0, θ = 1, 2, 3, · · · , m. If there exists a positive definite
function V such that the following hold:
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(1) There exists positive constants α1 and α2

α1||x(t)|| ≤ V(t) ≤ α2||x(t)||, x(t) ∈ Rn.

(2) c
0Dα

t V(t) ≤ −ε1V(t), t 6= tθ , θ = 1, 2, 3, · · · , m for any scalar ε1.
(3) V(t+θ ) ≤ V(tθ), t = tθ , θ = 1, 2, 3, · · · , m.

then the equilibrium point of the system (4) is globally Mittag-Leffler stable.

Definition 5. Ref. [46] A map ν : H → H, H compact Banach space, is said to be a contraction
mapping if there exists h ∈ (0, 1) such that

||ν(m1)− ν(m2)|| ≤ h||m1 −m2||

for every m1, m2 ∈ H.

Theorem 1 (Contraction Mapping Theorem). Ref. [46] Suppose H is a complete metric space
and ν : H → H is a contraction mapping. Then, ν has a unique fixed point.

3. Model Formulation

In this section, a novel mathematical model is proposed to expose the transmission dy-
namics of the gram negative bacteria Wolbachia among Aedes Aegypti mosquitoes. While
constructing the model we have considered the total of 10 stages such as non-Wolbachia
eggs(We), non- Wolbachia larvae (Wl), non-Wolbachia pupae (Wp), non-Wolbachia adult
female (W f ), non- Wolbachia adult male (Wa), Wolbachia infected eggs (Ie), Wolbachia
infected larvae (Il), Wolbachia infected pupae (Ip), Wolbachia infected adult female
(I f ), Wolbachia infected adult male (Ia). The total population at time t is denoted as
T = We(t)+Wl(t)+Wp(t)+W f (t)+Wa(t)+ Ie(t)+ Il(t)+ Ip(t)+ I f (t)+ Ia(t). The eggs
with zero Wolbachia infection are produced at the rate Λwe by the mating process between
non-Wolbachia female (W f ) and non-Wolbachia male (Wa). There is no other possibili-
ties of having a non-Wolbachia eggs. Therefore, the reproduction rate of non-Wolbachia

mosquitoes can be calculated by the term
Λwe W f Wa

T . Along with this, the terms λwe (natural
mortality rate of non-Wolbachia eggs) and γwe (maturation rate of non-Wolbachia eggs) de-
notes the limitations in the growth of wild mosquito eggs. At the same time, after release of
Wolbachia infected mosquitoes (in both aquatic and ariel stage) in a common environment,
the production of Wolbachia infected mosquito eggs Ie(t), depends on mating between
Wolbachia infected female I f (t) and non-Wolbachia male Wa(t) and from mating between
Wolbachia infected female I f (t) and Wolbachia infected male Ia(t). Through this, the birth
rate of Wolbachia infected mosquito eggs population Ie(t) with the reproduction rate Λie is

Λie(I f Wa + I f Ia)

T
=

Λie I f (Wa + Ia)

T
.

Similarly, the increase in the growth of Wolbachia infected eggs is limited by the natural
mortality rate λie and the maturation rate γie (That is, the rate in which the corresponding
compartment moved into the next stage).

Furthermore, the quantity (1− α)γie Ie is added to the wild mosquito larvae popula-
tion. Because the term α and (1− α) denotes the probability of getting larvae with and
without Wolbachia respectively. Similarly, β and (1− β) denotes the probability of getting
pupae with and without Wolbachia respectively, ε and (1− ε) denotes the probability
rate of having Wolbachia infection in adult mosquitoes by introgression. That is, ε be
the probability of getting Wolbachia infected adults (with ρiw = probability of getting
male and (1− ρiw) = probability of getting female). Because of these reasons, the terms
(1− α)γie Ie, (1− β)γil Il , (1− ε)γip ρiw Ip and (1− ε)γip(1− ρiw)Ip are added to the corre-
sponding stages and similarly, the terms αγie Ie, βγil Il and εγip Iip are removed from the
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corresponding stages. The parameter description of the system of Equation (5) is presented
in Table 1.

Table 1. Description of parameters involved in system of Equation (5).

Parameter Description

Λwe , Λie Reproduction rate of non-Wolbachia mosquitoes
and Wolbachia infected mosquitoes respectively

λwe The natural death rate of eggs without Wolbachia infection

λwl The natural death of larvae without Wolbachia infection

λwp The natural death of pupae without Wolbachia infection

λw f The natural death of adult female mosquitoes without Wolbachia infection

λwa The natural death of adult male mosquitoes without Wolbachia infection

λie The natural death of eggs with Wolbachia infection

λil The natural death of larvae with Wolbachia infection

λip The natural death of pupae with Wolbachia infection

λi f The natural death of adult female mosquitoes with Wolbachia infection

λia The natural death of infected adult male mosquitoes with Wolbachia infection

γwe The rate at which the fraction of non-Wolbachia eggs matured into non-Wolbachia larvae

γwl The rate at which the fraction of non-Wolbachia larvae matured into non-Wolbachia pupae

γwp The rate at which the fraction of non-Wolbachia pupae matured into non-Wolbachia

immature female or male

γie The rate at which the fraction of the Wolbachia infected mosquito eggs

matured into Wolbachia infected or uninfected larvae

γil The rate at which the fraction of the Wolbachia infected mosquito larvae

matured into Wolbachia infected or uninfected pupae

γip The rate at which the fraction of the Wolbachia infected mosquito pupae

matured into Wolbachia infected or uninfected adults

ρ The probability of having male or female mosquitoes

From the above facts, the novel mathematical model that describes the transmission
dynamics of Wolbachia among Aedes Aegypti mosquitoes is proposed as follows:





c
0Dα

t We =
Λwe W f Wa

T
− λwe We − γweWe

c
0Dα

t Wl = γwe We − λwl Wl − γwl Wl + (1− α)γie Ie
c
0Dα

t Wp = γwl Wl − λwpWp − γwpWp + (1− β)γil Il
c
0Dα

t W f = ργwpWp − λw f W f + (1− ε)γip ρiw Ip

c
0Dα

t Wa = (1− ρ)γwpWp − λwaWa + (1− ε)γip(1− ρiw)Ip

c
0Dα

t Ie =
Λie I f (Wa + Ia)

T
− λie Ie − αγie Ie

c
0Dα

t Il = αγie Ie − λil Il − βγil Il
c
0Dα

t Ip = βγil Il − λip Ip − εγip Ip

c
0Dα

t I f = ρiεγip Ip − λi f I f

c
0Dα

t Ia = (1− ρi)εγip Ip − λia Ia.

(5)

The dynamics of the population can be easily understand by the schematic diagram
Figure 3 and the parameters are described in Table 1.
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Figure 3. Schematic representation Wolbachia spread dynamics among Aedes Aegypti mosquitoes.

4. Equilibrium Points

In this section, we can find the four cases of possible equilibrium points such as wild
mosquitoes only, Wolbachia mosquitoes only, co-existence of both population and zero
mosquitoes.
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4.1. Zero Mosquitoes

Suppose there is no mosquitoes, then the equilibrium point can be written as P1 =
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0). This is trivial but does not exists in nature.

4.2. Wolbachia Infected Mosquitoes Free Equilibrium

Suppose, there is no Wolbachia infected mosquitoes population then the possible
equilibrium can be written as

P2 = (W∗e1
, W∗l1 , W∗p1

, W∗f1
, W∗a1

, 0, 0, 0, 0, 0),

where,

W∗e1
=

Tλw f λwa(λwe + γwe)(λwl + γwl )
2(λwp + γwp)

2

ρ(1− ρ)Λwe γ2
wp γ2

we γ2
wl

W∗l1 =
γwe

λwl + γwl

W∗e1

W∗p1
=

γwl γwe

(λwl + γwl )(λwp + γwp)
W∗e1

W∗f1
=

ργwp γwe γwl

λw f (λw f + γw f )(λwp + γwp)
W∗e1

W∗a1
=

(1− ρ)γwp γwe

λwe(λwl + γwl )(λwp + γwp)
W∗e1

4.3. Wild Mosquitoes Free Equilibrium

After the successful replacement of Wolbachia uninfected mosquitoes by Wolbachia
infected mosquitoes the equilibrium point can be represented by

P3 = (0, 0, 0, 0, 0, I∗e2
, I∗l2 , I∗p2

, I∗f2
, I∗a2

),

where,

I∗e2
=

(λil + βγil )(λip + εγip)

αβγie γil
I∗p2

I∗l2 =
(λip + εγip)

βγil
I∗p2

I∗p2
=

Tλi f λia(λie + αγie)(λil + βγil )(λip + εγip)

Λie αβρi(1− ρi)ε2γ2
ip

γie γil

I∗f2
=

ρiεγip

λi f

I∗p2

I∗a2
=

(1− ρi)εγip

λia

I∗p2
.

4.4. Both Wolbachia Infected Mosquitoes and Non-Wolbachia Mosquitoes Co-Existence
Equilibrium

If both Wolbachia infected and Wolbachia uninfected mosquitoes present in common
environment, then the equilibrium point is

Sn =
{

W∗en , W∗ln , W∗pn , W∗fn
, W∗an , I∗en , I∗ln , I∗pn , I∗fn

, I∗an

}
, n = 3, 4.
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W∗en =

(
λwl + γwl

γwe

)(
λwp + γwp

γwl

)( TB1B2B3λi f λwa

Λie(1− ρ)ρiγwp

)
− I∗an

γwe
[

B4(λwl + γwl )

(
λwp + γwp

γwl

)
+ (λwl + γwl )

(
(1− β)γil

γwl

)(
λia B1

βγil (1− ρi)

)
+

(1− α)γie λia B1B2

αγie(1− ρi)

]

W∗ln =

(
λwp + γwp

γwl

)[ TB1B2B3λi f λwa

Λie(1− ρ)ρiγwp

− B4 I∗an

]
−
(
(1− β)γil

γwl

)[
λia B1

βγil (1− ρi)

]

W∗pn =

[
TB1B2B3λi f λwa

Λie(1− ρ)ρiγwp

− B4 I∗an

]

W∗fn
=

ργwp

λw f

[
TB1B2B3λi f λwa

Λie(1− ρ)ρiγwp

− B4 I∗an

]
+

(1− ε)ρiw λia

ελw f (1− ρi)
I∗an

W∗an =
TB1B2B3λi f

ρiΛie
− I∗an

I∗en =
B1B2λia I∗an

αγie(1− ρi)

I∗pn =
λia

(1− ρi)εγip

I∗an

I∗fn
=

ρiλia I∗an

(1− ρi)λi f

with I∗a3
> I∗a4

, both roots can be found from the quadratic equation

a1 I∗
2

a + a2 I∗a + a3 = 0,

where,

a1 =
Λwe ρB4γwp

Tλw f

;

a2 =

(
λwe + γwe

Tλw f

)(
λwe λi f ρB1B2B3

ρiΛie λw f

)(
λwa

(1− ρ)
+ B4γwp

)

(
(λwl + γwl )(λwp + γwp)B4

γwl

+
(λwl + γwl )(1− β)λia B1

γwl β(1− ρi)
+

(1− α)λia B1B2

α(1− ρi)

)
;

a3 =
Λwe ρTB2

1B2
2B2

3λwa

Λ2
ie(1− ρ)ρ2

i λw f

.
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Here,

B1 = 1 +
λip

εγip

;

B2 = 1 +
λil

βγil
;

B3 = 1 +
λie

αγie
;

B4 = 1 +
(1− ε)(1− ρiw)λia

(1− ρ)(1− ρi)εγwp

.

For more details about the calculations of Section 4, kindly refer the Appendix A section.

5. Wolbachia Invasion Model

We considered the possibility of Wolbachia loss in adult mosquitoes and possibility of
Wolbachia gain in aquatic stage mosquitoes. Then Equation (5), can be rewritten as





c
0Dα

t We(t) =
Λwe W f Wa

T
− λwe We − γwe We − η1 Ie

c
0Dα

t Wl(t) = γwe We − λwl Wl − γwl Wl + (1− α)γie Ie − η2 Il
c
0Dα

t Wp(t) = γwl Wl − λwpWp − γwpWp + (1− β)γil Il − η3 Ip
c
0Dα

t W f (t) = ργwpWp − λw f W f + (1− ε)γip ρiw Ip + η4W f
c
0Dα

t Wa(t) = (1− ρ)γwpWp − λwaWa + (1− ε)γip(1− ρiw)Ip + η5Wa

c
0Dα

t Ie(t) =
Λie I f (Wa + Ia)

T
− λie Ie − αγie Ie + η1 Ie

c
0Dα

t Il(t) = αγie Ie − λil Il − βγil Il + η2 Il
c
0Dα

t Ip(t) = βγil Il − λip Ip − εγip Ip + η3 Ip

c
0Dα

t I f (t) = ρiεγip Ip − λi f I f − η4W f

c
0Dα

t Ia(t) = (1− ρi)εγip Ip − λia Ia − η5Wa,

(6)

where η1, η2 and η3 all are the rates at which the non-Wolbachia aquatic population gain
Wolbachia infected mosquitoes infection and η4 & η5 are the rates at which the Wolbachia
infected mosquitoes losses their Wolbachia infection.

Impulsive control plays an predominant role in dynamical systems such as Neural
Networks [47,48], non–linear delay dynamic systems [49–51] and so forth. To optimize
the Wolbachia release, we can release the Wolbachia infected eggs, larvae and pupae
in the form of ’Zancu kit’ and Wolbachia infected adult female and male mosquitoes
(introgression) impulsively. The situation should be monitored weekly once by Biogents
trap (BG trap or BG sentinel trap). While monitoring, if there is less number of Wolbachia
infected mosquitoes then in that situation we should release Wolbachia infected mosquitoes
impulsively.

The mathematical model which describes the transmission dynamics of Wolbachia
among Aedes Aegypti mosquitoes along with Wolbachia invasion and impulsive control is
defined as follows:
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When t 6= tθ for θ = 1, 2, ...m,




c
0Dα

t We(t) =
Λwe W f Wa

T
− λwe We − γwe We − η1 Ie

c
0Dα

t Wl(t) = γwe We − λwl Wl − γwl Wl + (1− α)γie Ie − η2 Il
c
0Dα

t Wp(t) = γwl Wl − λwpWp − γwpWp + (1− β)γil Il − η3 Ip
c
0Dα

t W f (t) = ργwpWp − λw f W f + (1− ε)γip ρiw Ip + η4W f
c
0Dα

t Wa(t) = (1− ρ)γwpWp − λwaWa + (1− ε)γip(1− ρiw)Ip + η5Wa

c
0Dα

t Ie(t) =
Λie I f (Wa + Ia)

T
− λie Ie − αγie Ie + η1 Ie

c
0Dα

t Il(t) = αγie Ie − λil Il − βγil Il + η2 Il
c
0Dα

t Ip(t) = βγil Il − λip Ip − εγip Ip + η3 Ip

c
0Dα

t I f (t) = ρiεγip Ip − λi f I f − η4W f

c
0Dα

t Ia(t) = (1− ρi)εγip Ip − λia Ia − η5Wa

(7)

When t = tθ for θ = 1, 2, ...m,




∆We(t) = 0

∆Wl(t) = 0

∆Wp(t) = 0

∆W f (t) = 0

∆Wa(t) = 0

∆Ie(t) = δ1 Ie(tθ)

∆Il(t) = δ2 Il(tθ)

∆Ip(t) = δ3 Ip(tθ)

∆I f (t) = δ4 I f (tθ)

∆Ia(t) = δ5 Ia(tθ),

with initial conditions,

We(t0) = We0 ; Wl(t0) = Wl0 ; Wt0(0) = Wp0 ; Wt0(0) = W f0 ; Wt0(0) = Wa0 ;

Ie(t0) = Ie0 ; Il(t0) = Il0 ; Ip(t0) = Ip0 ; I f (t0) = I f0 ; Ia(t0) = Ia0 ;

where We0 , Wl0 , Wp0 , W f0 , Wa0 , Ie0 , Il0 , Ip0 , I f0 and Ia0 all are positive integers. Moreover,

∆We(tθ) = We(t+θ )−We(t−θ )

∆Wl(tθ) = Wl(t+θ )−Wl(t−θ )

∆Wp(tθ) = Wp(t+θ )−Wp(t−θ )

∆W f (tθ) = W f (t+θ )−W f (t−θ )

∆Wa(tθ) = Wa(t+θ )−Wa(t−θ )

∆Ie(tθ) = Ie(t+θ )− Ie(t−θ )

∆Il(tθ) = Il(t+θ )− Il(t−θ )

∆Ip(tθ) = Ip(t+θ )− Ip(t−θ )

∆I f (tθ) = I f (t+θ )− I f (t−θ )

∆Ia(tθ) = Ia(t+θ )− Ia(t−θ ),
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with t1 < t2 < t3 · · · < tm. Let us assume that,

M(t) =
[
We(t) Wl(t) Wp(t) W f (t) Wa(t) Ie(t) Il(t) Ip(t) I f (t) Ia(t)

]>;

M∗ =
[
W∗e W∗l W∗p W∗f W∗a I∗e I∗l I∗p I∗f I∗a

]>
;

∆M(tθ) =
[
∆We(t) ∆Wl(tθ) ∆Wp(tθ) ∆W f (tθ) ∆Wa(tθ)

∆Ie(tθ) ∆Il(tθ) ∆Ip(tθ) ∆I f (tθ) ∆Ia(tθ)
]>;

Therefore, (7) can be rewritten as,




c
0Dα

t M(t) = −W1M(t) + g(M(t)), t 6= tθ , θ = 1, 2, 3, · · · , m

∆M(tθ) = M(t+θ )−M(t−θ ) = δθ M(tθ), t = tθ , θ = 1, 2, 3, · · · , m

M(t0) = M0 ∈ Z+,

(8)

where,

W1 = −




λwe + γwe 0 0 0 0 η1 0
−γwe λwl + γwl 0 0 0 −(1− α)γie η2

0 −γwl λwp + γwp 0 0 0 −(1− β)γil
0 0 −ργwp λw f − η4 0 0 0
0 0 −(1− ρ)γwp 0 λwa − η5 0 0
0 0 0 0 0 λie + αγie − η1 0
0 0 0 0 0 −αγie λil + βγil − η2
0 0 0 0 0 0 −βγil
0 0 0 η4 0 0 0
0 0 0 0 η5 0 0

0 0 0
0 0 0
η3 0 0− (1− ε)γip ρiw 0 0

−(1− ε)γip(1− ρiw) 0 0
0 0 0
0 0 0

λip + εγip − η3 0 0
−ρiεγip λi f 0

−(1− ρiεγip) 0 λia




;

g(M(t)) =




Λwe m4m5
T
0
0
0
0

Λie m9(m5+m10)
T
0
0
0
0




; δθ =




0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 δ1 0 0 0 0
0 0 0 0 0 0 δ2 0 0 0
0 0 0 0 0 0 0 δ3 0 0
0 0 0 0 0 0 0 0 δ4 0
0 0 0 0 0 0 0 0 0 δ5




;
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6. Existence and Uniqueness of Solution

By utilizing the results from fixed point theory, the existence and uniqueness results
for the system of Equation (7) were derived in this section.

Let Cn,m = H be the Banach space of all bounded continuous function defined on
[n, m] ∈ R.

For the sake of simplicity, let




c
0Dα

t We(t) = K1(t, m1(t), m2(t), · · · , m10(t))
c
0Dα

t Wl(t) = K2(t, m1(t), m2(t), · · · , m10(t))
c
0Dα

t Wp(t) = K3(t, m1(t), m2(t), · · · , m10(t))
c
0Dα

t W f (t) = K4(t, m1(t), m2(t), · · · , m10(t))
c
0Dα

t Wa(t) = K5(t, m1(t), m2(t), · · · , m10(t))
c
0Dα

t Ie(t) = K6(t, m1(t), m2(t), · · · , m10(t))
c
0Dα

t Il(t) = K7(t, m1(t), m2(t), · · · , m10(t))
c
0Dα

t Ip(t) = K8(t, m1(t), m2(t), · · · , m10(t))
c
0Dα

t I f (t) = K9(t, m1(t), m2(t), · · · , m10(t)))
c
0Dα

t Ia(t) = K10(t, m1(t), m2(t), · · · , m10(t)).

(9)

where, m1(t) = We(t), m2(t) = Wl(t), m3(t) = Wp(t), m4(t) = W f (t), m5(t) = Wa(t),
m6(t) = Ie(t), m7(t) = Il(t), m8(t) = Ip(t), m9(t) = I f (t) and m10(t) = Ia(t). Moreover,
let us assume that,





K1(t, m1(t), m2(t), · · · , m10(t)) =
ΛweW f Wa

T
− λweWe − γweWe − η1 Ie

K2(t, m1(t), m2(t), · · · , m10(t)) = γweWe − λwl Wl − γwl Wl + (1− α)γie Ie − η2 Il

K3(t, m1(t), m2(t), · · · , m10(t)) = γwl Wl − λwpWp − γwpWp + (1− β)γil Il − η3 Ip

K4(t, m1(t), m2(t), · · · , m10(t)) = ργwpWp − λw f W f + (1− ε)γip ρiw Ip + η4W f

K5(t, m1(t), m2(t), · · · , m10(t)) = (1− ρ)γwpWp − λwaWa + (1− ε)γip(1− ρiw)Ip + η5Wa

K6(t, m1(t), m2(t), · · · , m10(t)) =
Λie I f (Wa + Ia)

T
− λie Ie − αγie Ie + η1 Ie

K7(t, m1(t), m2(t), · · · , m10(t)) = αγie Ie − λil Il − βγil Il + η2 Il

K8(t, m1(t), m2(t), · · · , m10(t)) = βγil Il − λip Ip − εγip Ip + η3 Ip

K9(t, m1(t), m2(t), · · · , m10(t)) = ρiεγip Ip − λi f I f − η4W f

K10(t, m1(t), m2(t), · · · , m10(t)) = (1− ρi)εγip Ip − λia Ia − η5Wa.

(10)

By the Definition 3 of, fractional order anti derivative in Caputo sense, we have





We(t)−We(0) =
1

Γ(α)

∫ t

0
(t− η)α−1K1(η, m1(η), m2(η), · · · , m10(η))dη

Wl(t)−Wl(0) =
1

Γ(α)

∫ t

0
(t− η)α−1K2(η, m1(η), m2(η), · · · , m10(η))dη

Wp(t)−Wp(0) =
1

Γ(α)

∫ t

0
(t− η)α−1K3(η, m1(η), m2(η), · · · , m10(η))dη

W f (t)−W f (0) =
1

Γ(α)

∫ t

0
(t− η)α−1K4(η, m1(η), m2(η), · · · , m10(η))dη

Wa(t)−Wa(0) =
1

Γ(α)

∫ t

0
(t− η)α−1K5(η, m1(η), m2(η), · · · , m10(η))dη
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



Ie(t)− Ie(0) =
1

Γ(α)

∫ t

0
(t− η)α−1K6(η, m1(η), m2(η), · · · , m10(η))dη

Il(t)− Il(0) =
1

Γ(α)

∫ t

0
(t− η)α−1K7(η, m1(η), m2(η), · · · , m10(η))dη

Ip(t)− Ip(0) =
1

Γ(α)

∫ t

0
(t− η)α−1K8(η, m1(η), m2(η), · · · , m10(η))dη

I f (t)− I f (0) =
1

Γ(α)

∫ t

0
(t− η)α−1K9(η, m1(η), m2(η), · · · , m10(η))dη

Ia(t)− Ia(0) =
1

Γ(α)

∫ t

0
(t− η)α−1K10(η, m1(η), m2(η), · · · , m10(η))dη.

This implies that,




We(t) = We(0) +
1

Γ(α)

∫ t

0
(t− η)α−1K1(η, m1(η), m2(η), · · · , m10(η))dη

Wl(t) = Wl(0) +
1

Γ(α)

∫ t

0
(t− η)α−1K2(η, m1(η), m2(η), · · · , m10(η))dη

Wp(t) = Wp(0) +
1

Γ(α)

∫ t

0
(t− η)α−1K3(η, m1(η), m2(η), · · · , m10(η))dη

W f (t) = W f (0) +
1

Γ(α)

∫ t

0
(t− η)α−1K4(η, m1(η), m2(η), · · · , m10(η))dη

Wa(t) = Wa(0) +
1

Γ(α)

∫ t

0
(t− η)α−1K5(η, m1(η), m2(η), · · · , m10(η))dη

Ie(t) = Ie(0) +
1

Γ(α)

∫ t

0
(t− η)α−1K6(η, m1(η), m2(η), · · · , m10(η))dη

Il(t) = Il(0) +
1

Γ(α)

∫ t

0
(t− η)α−1K7(η, m1(η), m2(η), · · · , m10(η))dη

Ip(t) = Ip(0) +
1

Γ(α)

∫ t

0
(t− η)α−1K8(η, m1(η), m2(η), · · · , m10(η))dη

I f (t) = I f (0) +
1

Γ(α)

∫ t

0
(t− η)α−1K9(η, m1(η), m2(η), · · · , m10(η))dη

Ia(t) = Ia(0) +
1

Γ(α)

∫ t

0
(t− η)α−1K10(η, m1(η), m2(η), · · · , m10(η))dη.

(11)

Now, we define Equation (11) as

M(t) = M(0) +
1

Γ(α)

t∫

0

(t− η)α−1K(η, m1(η), m2(η), · · · , m10(η))dη,

where

M(t) =




We(t)
Wl(t)
Wp(t)
W f (t)
Wa(t)
Ie(t)
Il(t)
Ip(t)
I f (t)
Ia(t)




and K(η, m1(η), m2(η), · · · , m10(η)) =




K1(η, m1(η), m2(η), · · · , m10(η))
K2(η, m1(η), m2(η), · · · , m10(η))
K3(η, m1(η), m2(η), · · · , m10(η))
K4(η, m1(η), m2(η), · · · , m10(η))
K5(η, m1(η), m2(η), · · · , m10(η))
K6(η, m1(η), m2(η), · · · , m10(η))
K7(η, m1(η), m2(η), · · · , m10(η))
K8(η, m1(η), m2(η), · · · , m10(η))
K9(η, m1(η), m2(η), · · · , m10(η))
K10(η, m1(η), m2(η), · · · , m10(η))




.
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Let us define Cn,m as Cn,m = Fn(t0)× Hm(s) where,

s = min{We0 , Wl0 , Wp0 , W f0 , Wa0 , Ie0 , Il0 , Ip0 , I f0 , Ia0}

and

Fn(t0) = [t0 − n, t0 + n]

Hm(s) = [s−m, s + m].

Along with this, we assumed that

R = max
Cn,m
{sup

Cn,m

||F1||, sup
Cn,m

||F2||, sup
Cn,m

||F3||, sup
Cn,m

||F4||, sup
Cn,m

||F5||, sup
Cn,m

||F6||, sup
Cn,m

||F7||,

sup
Cn,m

||F8||, sup
Cn,m

||F9||, sup
Cn,m

||F10||}.

Let us define the norm at infinity as follows:

||Ψ||∞ = sup
t∈Fn

|Ψ(t)|.

Here, the operator ν: Cn,m → Cn,m is defined by

ν(M(t)) = M(0) +
1

Γ(α)

∫ t

0
(t− η)α−1K(η, m1(η), m2(η), · · · , m10(η))dη. (12)

To prove ν is well defined operator, we should prove that

||νM(t)−M(0)||∞ <




m
m
m
m
m
m
m
m
m
m




Now, let

||ν1We(t)−We(t)||∞ = || 1
Γ(α)

t∫

0

(t− η)α−1K1(η, y1(η), y2(η), · · · , y10(η))dη||∞

≤ 1
Γ(α)

t∫

0

(t− η)α−1||K1(η, y1(η), y2(η), · · · , y10(η))||∞dη

≤ R
Γ(α)

t∫

0

(t− η)α−1dη

≤ Rnα

Γ(α + 1)
,

where,

n <

(
mΓ(α + 1)

R

)1/n
.

As well as, we can prove that the other equations of (6) can satisfies this inequality.
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That is, the operator ν is well-defined if

n <

(
mΓ(α + 1)

R

)1/n
.

Now, we should prove that the operator ν satisfies the Lipschitz condition. That is,

||νM1 − νM2 ||∞ < h||M1 −M2||∞

To prove this, let

||ν1We1 − ν1We2 || = || 1
Γ(α)

t∫

0

(t− η)α−1K1(We1 , m2(η), · · · , m10(η)η)dη

− 1
Γ(α)

t∫

0

(t− η)α−1K1(We2 , m2(η), · · · , m10(η), η)dη||∞

=
1

Γ(α)
||

t∫

0

K1(η, We1 , m2(η), · · · , m10(η))

−K1(η, We2 , m2(η), · · · , m10(η))(t− η)α−1dη||

≤ 1
Γ(α)

t∫

0

||K1(η, We1 , m2(η), · · · , m10(η))

−K1(η, We2 , y2, · · · , y10)||(t− η)α−1dη

≤ 1
Γ(α)

t∫

0

||ω
N
(F(t)(We1 −We2))||(t− η)α−1dη

≤ nα|ω|||F(t)||∞
NΓ(α + 1)

||We1 −We2 ||∞
≤ h1||We1 −We2 ||∞,

with h1 = nα |ω|||F(t)||∞
NΓ(α+1) .

Similarly, we can prove that

||νWl1 − νWl2 || ≤ h2||Wl1 −Wl2 ||
||νWp1 − νWp2 || ≤ h3||Wp1 −Wp2 ||
||νW f1 − νW f2 || ≤ h4||W f1 −W f2 ||
||νWa1 − νWa2 || ≤ h5||Wa1 −Wa2 ||
||νIe1 − νIe2 || ≤ h6||Ie1 − Ie2 ||
||νIl1 − νIl2 || ≤ h7||Il1 − Il2 ||
||νIp1 − νIp2 || ≤ h8||Ip1 − Ip2 ||
||νI f1 − νI f2 || ≤ h9||I f1 − I f2 ||
||νIa1 − νIa2 || ≤ h10||Ia1 − Ia2 ||.

By the definition of Contraction mapping Definition 5, the map ν is a contraction
map if 0 < hi < 1 for all i = 1, 2, 3, · · · , 10. Therefore, ν is a contraction mapping on a
compact Banach space H. Then by Contraction mapping Theorem 1, ν has a solution and it
is unique.

This implies that, the system of Equation (7) has a solution and its unique.
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7. Stability Analysis

In the present section, the global Mittag-Leffler stability results were derived via LMI
(Linear Matrix Inequality) approach and Lyapunov method.

Assumption (A1): Assume that the function g(M(t)) satisfies the following:
For any e1, e2 ∈ Rn there exists S1 ∈ Rn×n, such that ||g(e1)− g(e2)|| ≤ ||S1(e1 − e2)||.

Theorem 2. Assume that the system (8) satisfies the assumption (A1) and the impulsive operator
satisfies that

δθ(M(tθ)) = −δ̄(M(tθ)−M∗), θ = 1, 2, · · · , m,

where M∗ is an equilibrium point of system (8).
The system (8) is said to be globally Mittag-Leffler stable if there exists a positive definite matrix Q
and positive scalars ξ and γ1 such that the following inequalities hold:

Q
−1
2 [γ1 + δ̄]>Q[γ1 + δ̄]Q

−1
2 ≤ γ1 (13)

and

Ω̃ =



−2QW1 Q ξS1
∗ −ξ 0
∗ ∗ −ξ.


 < 0. (14)

Proof. Let us consider the system (8) with the initial condition M(t0) = M0 ∈ Z+ and
an equilibrium point M∗. By using the transformation, N (t) = M(t) − M∗, then the
system (8) is transformed into

C
0 Dα

tN (t) = −W1N (t) + ḡ(N (t)), t 6= tθ , θ = 1, 2, 3, ...m (15)

∆N (tθ) = N (t+θ )−N (t−θ ) = −δ̄N (tθ), t = tθ , θ = 1, 2, 3, ...m

N (t0) = N0 ∈ Z+.

where, N (t) = (N1,N2,N3, ...,N10)
> and ḡ(N (t)) = (ḡ(N1), ḡ(N2), .., ḡ(N10))

> and
N0 = M0 −M∗. Let us consider a Lyapunov function as:

V(t) = N>(t)QN (t), (16)

where Q is a positive definite matrix. Now, the time derivative of V(t) along with the
trajectories of the system (16) is

C
0 Dα

t V(t) ≤ 2N>(t)QC
0 Dα

tN (t)

= N>(t)2Q[−W1N (t) + ḡ(N (t))]

= N>(t)(−2QW1)N (t) +N>(t)(2Q)ḡ(N (t)) (17)

By Lemma 2,

N>(t)(2Q)ḡ(N (t)) ≤ 1
ξ
N>(t)(QQ>)N (t) + ξ ḡ>(N (t))ḡ(N (t)). (18)

By assumption (A1),

ḡ>(N (t))ḡ(N (t)) = 〈ḡ(M(t))− ḡ(M∗), ḡ(M(t))− ḡ(M∗)〉
= 〈(ḡ(N (t) + M∗))− ḡ(M∗), ḡ(N (t) + M∗)− ḡ(M∗)〉
≤ N>(t)S>1 S1N (t). (19)

Combine (18) and (19) and substitute in (17) we have,
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C
0 Dα

t V(t) ≤ N>(t)(−2QW1)N (t) +N>(t)(ξ−1QQ>)N (t) +N>(t)(ξS>1 S1)N (t)

= N>(t)[−2QW1 + ξ−1QQ> + ξS>1 S1]N (t). (20)

Let, Ω = −2QW1 + ξ−1QQ> + ξS>1 S1 and Ω can be rewritten as

Ω =



−2QW1 Q S1
∗ −ξ 0
∗ ∗ −ξ−1


.

Now, pre and post multiply Ω by diag{I, I, ξ}, we get

Ω̃ =



−2QW1 Q ξS1
∗ −ξ 0
∗ ∗ −ξ


. (21)

By Schur compliment Lemma 1, Ω̃ < 0.
Furthermore, the Equation (20), can be modified as

C
0 Dα

t V(t) ≤ N>(t)Ω̃N (t)

= −N>(t)Q 1
2 [−Q−

1
2 Ω̃Q−

1
2 ]Q

1
2N (t))

let, ε1 = λmin(−Q
−1
2 Ω̃Q

−1
2 ) and we know that V(t) = N>(t)QN (t). This implies that,

C
0 Dα

t V(t) ≤ −ε1V(t). (22)

For, tθ = t, θ = 1, 2, 3, · · ·m

V(t+θ ) = N>(t+θ )QN (t+θ )

= [N (t−θ ) + δ̄N (t−θ )]
>Q[N (t−θ ) + δ̄N (t−θ )]

= N>(t−θ )[γ1 + δ̄]>Q[γ1 + δ̄]N (t−θ )

= N>(t−θ )Q
1
2 [Q

−1
2 γ1 + δ̄]>Q[γ1 + δ̄Q

−1
2 ]Q

1
2N (t−θ )

≤ N>(t−θ )QN (t−θ ) = V(N (t−θ ))

V(t+θ ) ≤ V(t−θ ) (23)

Therefore, we can easily prove that,

λmin(Q)||M(t)||2 ≤ V(t) ≤ λmax(Q)||M(t)||2. (24)

Conditions (22)–(24) satisfies the conditions of Lemma 3. Therefore by Lemma 3, our
system (8) is globally Mittag-Leffler stable at its equilibrium point.

8. Numerical Simulation

In this section, we provide an example to show the benefits of the proposed models (5)–(7).
In this, we have analyzed three cases by published data mentioned in Table 2.
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Table 2. Data from published literature.

Parameters Description Data

Λwe Reproduction rate of Wolbachia uninfected mosquitoes 1.25/day [52]
λwe , λwl , λwp The death rate of aquatic Wolbachia uninfected mosquitoes 1

7.78 /day [53]
γwe , γwl , γwp The Maturation rate of Wolbachia uninfected mosquitoes 1

6.67 /day [54]
λw f , λwa The death rate of adult Wolbachia uninfected mosquitoes 1

14 /day [53]
λie , λil , λip The death rate of aquatic Wolbachia infected mosquitoes 1

7.78 /day [53]
λi f , λia The death rate of adult Wolbachia infected mosquitoes 1

7 /day [24]
Λie Reproduction rate of Wolbachia infected mosquitoes 0.95 ∗Λwe /day [52]
γie , γil , γip The maturation rate of Wolbachia infected mosquitoes 1

6.67 /day [24]

Case 1. In this case, we have analyzed the transmission dynamics of Wolbachia among Aedes
Aegypti mosquitoes via substituting the values mentioned in Table 2.
For this consider the system (5), with initial conditions We0 = 0.9, Wl0 = 0.9, Wp0 =
0.9, W f0 = 0.3, Wa0 = 0.3, Ie0 = 0.9, Il0 = 0.9, Ip0 = 0.9, I f0 = 0.3, Ia0 = 0.3, total
population T = 3000, and the positive scalar used in Theorem 2 as ξ = 0.8513
The Figures 4–7 are depicts the dynamics of Equation (5) along with the parameters
in Table 2 at various orders of α such as α = 0.28, 0.68, 0.98 and 1. We can observe by
simulation results that, there is a notable decrease in non-Wolbachia mosquitoes and
increase in Wolbachia infected mosquitoes.
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Figure 4. Population dynamics of both WU and WI mosquitoes at α = 0.28.
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Figure 5. Population dynamics of both WU and WI mosquitoes at α = 0.68.
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Figure 6. Population dynamics of both WU and WI mosquitoes at α = 0.98.
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Figure 7. Population dynamics of both WU and WI mosquitoes at α = 1.

Case 2. In this case, we have analyzed the merits and demerits of considering the Wolbachia
invasion. For this consider the system of Equation (6) with parameters mentioned in
Table 2. We have plotted (6) with initial conditions and total population as considered
in Case 1. Along with this, the other parameters η1 = 0.03, η2 = 0.03, η3 = 0.03,
η4 = 0.5 and η1 = 0.5 are fitted.
Figures 8–11 are analyzed the dynamics of the system of Equation (6), with Wolbachia
invasion and natural Wolbachia gain at various orders α = 0.28, 0.68, 0.98 and 1. From
this we can observe that , Wolbachia infected mosquitoes tends to annihilation before
the eradication of non-Wolbachia mosquitoes. It will lead to the decay in natural CI
rescue.

0 20 40 60 80 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time t (Days)

W
o

lb
a

c
h

ia
 i
n

v
a

s
s
iv

e
 m

o
d

e
l

 

 

We

Wl

Wp

Wf

Wa

Ia

Il

Ip

If

Ia

Figure 8. Population dynamics of Wolbachia invasive model at α = 0.28.
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Figure 9. Population dynamics of Wolbachia invasive model at α = 0.68.
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Figure 10. Population dynamics of Wolbachia invasive model at α = 0.98.
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Figure 11. Population dynamics of Wolbachia invasive model at α = 0.28.

Case 3. In this case, the decay due to the natural Wolbachia invasion is managed by releasing
Wolbachia infected mosquitoes impulsively. For this case, along with the parameters
mentioned in Table 2, we have fitted the values of impulsive control as δ1 = 0.4,
δ2 = 0.4, δ3 = 0.3, δ4 = 0.5 and δ5 = 0.5, invasion rates are η1 = 0.03, η2 = 0.03,
η3 = 0.03, and gain rates are η4 = 0.5 and η1 = 0.5.
Figures 12–15 explicitly shows the dynamics of the systems of Equation (7) with
impulsive control at orders α = 0.28, 0.68, 0.98 and 1. From this we get that, at order
α = 0.28 the system leads to instability, when α = 0.68 the system started to posses
stable state and at α = 1 the both population are annihilated at initial stage compared
with Figures 7 and 11.
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Figure 12. Population dynamics of Wolbachia invasive model after impulsive control at α = 0.28.
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Figure 13. Population dynamics of Wolbachia invasive model after impulsive control at α = 0.68.
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Figure 14. Population dynamics of Wolbachia invasive model after impulsive control at α = 0.98.
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Figure 15. Population dynamics of Wolbachia invasive model after impulsive control at α = 1.
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By observing all the three cases, we can conclude that an impulsive control is an
effective control strategy at Wolbachia invasion environment.

9. Conclusions

The effect of Wolbachia invasion and gain in vector population can lead to non-
negligible in disease prevalence. Our impulsive control strategy shows that it is possible
to control the transmission and invasion dynamics of Wolbachia bacterium. Our results
shows that this method will increase the self-sustainability of Wolbachia bacterium among
Aedes Aegypti mosquitoes. Another key result of the proposed fractional order model is,
both mosquitoes population tends to annihilation after an impulsive controller synthesis.
Further works on this model such as linearization, Lyapunov construction depicts that the
created mathematical model is global Mittag-Leffler stable. In simulation performed here,
depicts the effectiveness of the proposed model. In thus, we incorporated the real-world
data from existing literature to compare the dynamical simulation of the 3 cases of model
such as in the absence of Wolbachia invasion, the presence of Wolbachia invasion and the
presence of Wolbachia invasion along with the impulsive control.
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Appendix A

Appendix A.1. Wolbachia Infected Mosquitoes Free Equilibrium

Suppose, there is no Wolbachia infected mosquitoes population then the possible
equilibrium can be written as

P2 = (W∗e1
, W∗l1 , W∗p1

, W∗f1
, W∗a1

, 0, 0, 0, 0, 0)
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where,

W∗e1
=

Tλw f λwa(λwe + γwe)(λwl + γwl )
2(λwp + γwp)

2

ρ(1− ρ)Λwe γ2
wp γ2

we γ2
wl

W∗l1 =
γwe

λwl + γwl

W∗e1

W∗p1
=

γwl γwe

(λwl + γwl )(λwp + γwp)
W∗e1

W∗f1
=

ργwp γwe γwl

λw f (λw f + γw f )(λwp + γwp)
W∗e1

W∗a1
=

(1− ρ)γwp γwe

λwe(λwl + γwl )(λwp + γwp)
W∗e1

These equilibrium points were derived by the following system of equations by putting
I∗e1

= 0, I∗l1 = 0, I∗p1
= 0, I∗f1

= 0, I∗a1
= 0.

That is,




Λwe W
∗
f1

W∗a1

T
− λwe W

∗
e1
− γwe W

∗
e1

= 0

γweW
∗
e1
− λwl W

∗
l1 − γwl W

∗
l1 + (1− α)γie I∗e1

= 0

γwl W
∗
l1 − λwpW∗p1

− γwpW∗p1
+ (1− β)γil I∗l1 = 0

ργwpW∗p1
− λw f W

∗
f1
+ (1− ε)γip ρiw I∗p1

= 0

(1− ρ)γwpW∗p1
− λwaW∗a1

+ (1− ε)γip(1− ρiw)I∗p1
= 0

That is,

(i). By solving,

γweW
∗
e1
− λwl W

∗
l1 − γwl W

∗
l1 + (1− α)γie I∗e1

= 0

We get the value of W∗l as,

W∗l =
γwe

(λwl + γwl )
W∗e

(ii). By solving

γwl W
∗
l1 − λwpW∗p1

− γwpW∗p1
+ (1− β)γil I∗l1 = 0

We get the value of W∗p as,

W∗p =
γwl

λwp + γwp

W∗l

Substitute the value of W∗l from (i),

W∗p =
γwl γwe

(λwp + γwp)(λwl + γwl )
W∗e

(iii). By solving

ργwpW∗p1
− λw f W

∗
f1
+ (1− ε)γip ρiw I∗p1

= 0
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We get the value of W∗f as,

W∗f =
ργwp

λw f

W∗p

Substitute the value of W∗p from (ii),

W∗f =
ργwp γwe γwl

λw f (λwp + γwp)(λwl + γwl )
W∗e

(iv). By solving

(1− ρ)γwpW∗p1
− λwaW∗a1

+ (1− ε)γip(1− ρiw)I∗p1
= 0

We get the value of W∗a as,

W∗a =
(1− ρ)γwp

λwa

W∗p

Substitute the value of W∗p from (ii),

W∗a =
(1− ρ)γwp γwl γwe

λwa(λwl + γwl )(λwp + γwp)
W∗e

(v). By solving

ΛweW
∗
f1

W∗a1

T
− λweW

∗
e1
− γweW

∗
e1

= 0

We get the value of W∗e as,

W∗e =
Λwe

T(λwe + γwe)
W∗f W∗a

Substitute the value of W∗f and W∗a from (iii) and (iv),

W∗e =
Tλw f λwa(λwe + γwe)(λwl + γwl )

2(λwp + γwp)
2

ρ(1− ρ)Λwe γ2
wp γ2

we γ2
wl

Appendix A.2. Wild Mosquitoes Free Equilibrium

Suppose a successful release of Wolbachia infected mosquitoes replaces the wild
mosquitoes by Wolbachia infected mosquitoes. Then the possible equilibrium points can
be found by substituting W∗e2

= 0, W∗l2 = 0, W∗p2
= 0, W∗f2

= 0 and W∗a2
= 0 in the following

system of equations

0 =
Λie I∗f2

(W∗a2
+ I∗a2

)

T
− λie I∗e2

− αγie I∗e2

0 = αγie I∗e2
− λil I∗l2 − βγil I∗l2

0 = βγil I∗l2 − λip I∗p2
− εγip I∗p2

0 = ρiεγip I∗p2
− λi f I∗f2

0 = (1− ρi)εγip I∗p2
− λia I∗a2

.

(i) By solving

0 = (1− ρi)εγip I∗p2
− λia I∗a2
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We get,

I∗a2
=

(1− ρi)εγip

λia

I∗p2

(ii) By solving

0 = ρiεγip I∗p2
− λi f I∗f2

We get,

I∗f2
=

ρiεγip

λi f

I∗p2

(iii) By solving

βγil I∗l2 − λip I∗p2
− εγip I∗p2

We get,

I∗l2 =
(λip + εγip)

βγil
I∗p2

(iv) By solving

0 = αγie I∗e2
− λil I∗l2 − βγil I∗l2

We get,

I∗e2
=

(λil + βγil )

αγie
I∗l2

Substitute the value of I∗l2 from (iii),

I∗e2
=

(λil + βγil )(λip + εγip)

αβγie γil
I∗p2

(v) By solving,

0 =
Λie I∗f2

(W∗a2
+ I∗a2

)

T
− λie I∗e2

− αγie I∗e2

Put W∗a2
= 0,

Λie I∗f2
I∗a2

T
− λie I∗e2

− αγie I∗e2
= 0

(
Λie
T

)(
ρiεγip

λi f

I∗p2

)(
(1− ρi)εγip

λia

I∗p2

)
= (λie + αγie)I∗e2

I∗p2
=

Tλi f λia(λie + αγie)(λil + βγil )(λip + εγip)

Λie αβρi(1− ρi)ε2γ2
ip

γie γil

From (i)–(v) we have the following equilibrium point,

P3 = (0, 0, 0, 0, 0, I∗e2
, I∗l2 , I∗p2

, I∗f2
, I∗a2

)
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where,

I∗e2
=

(λil + βγil )(λip + εγip)

αβγie γil
I∗p2

I∗l2 =
(λip + εγip)

βγil
I∗p2

I∗p2
=

Tλi f λia(λie + αγie)(λil + βγil )(λip + εγip)

Λie αβρi(1− ρi)ε2γ2
ip

γie γil

I∗f2
=

ρiεγip

λi f

I∗p2

I∗a2
=

(1− ρi)εγip

λia

I∗p2

Appendix A.3. Both Wolbachia and Non-Wolbachia Mosquitoes Co-Existence Equilibrium

The equilibrium point for the co-existence state can be found by solving the following
systems of equations





Λwen W∗fn
W∗an

T
− λwe W

∗
en − γwe W

∗
en = 0

γweW
∗
en − λwl W

∗
ln − γwl W

∗
ln + (1− α)γie I∗en = 0

γwl W
∗
ln − λwpW∗pn − γwpW∗pn + (1− β)γil I∗ln = 0

ργwpW∗pn − λw f W
∗
fn
+ (1− ε)γip ρiw I∗pn = 0

(1− ρ)γwpW∗pn − λwaW∗an + (1− ε)γip(1− ρiw)I∗pn = 0

Λie I∗fn
(W∗an + I∗an)

T
− λie I∗en − αγie I∗en = 0

αγie I∗en − λil I∗ln − βγil I∗ln = 0

βγil I∗ln − λip I∗pn − εγip I∗pn = 0

ρiεγip I∗pn − λi f I∗fn
= 0

(1− ρi)εγip I∗pn − λia I∗an = 0.

(i)

(1− ρi)εγip I∗pn − λia I∗an = 0

I∗pn =
λia

(1− ρi)εγip

I∗an

(ii)

ρiεγip I∗pn − λi f I∗fn
= 0

I∗fn
=

ρiεγip

λi f

I∗pn

I∗fn
=

ρiλia

(1− ρi)λi f

I∗an
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(iii)

βγil I∗ln − λip I∗pn − εγip I∗pn = 0

I∗ln =
λia

βγil (1− ρi)

[
1 +

λip

εγip

]
I∗an

Let B1 = 1 +
λip
εγip

I∗ln =
λia B1

βγil (1− ρi)
I∗an

(iv)

αγie I∗en − λil I∗ln − βγil I∗ln = 0

I∗en =
(λil + βγil )

αγie
I∗ln

I∗en =
B1B2λia

αγie(1− ρi)
I∗an

Where, B1 =

[
1 +

λip
εγip

]
; B2 =

[
1 +

λil
βγil

]

(v)

ΛIen
I∗fn

W∗an + ΛIen
I∗fn

I∗an

T
− λie I∗en − αγie I∗en = 0

W∗an =
T(λie + αγie)

Λie I∗fn

I∗en − I∗an

W∗an =
TB1B2λi f (λie + αγie)

αΛie ρiγie
− I∗an

W∗an =
TB1B2B3λi f

ρiΛie
− I∗an

Where, B3 = 1 + λie
αγie

(vi)

(1− ρ)γwpW∗pn − λwaW∗an + (1− ε)γip(1− ρiw)I∗pn = 0

W∗pn =
λwa

(1− ρ)γwp

W∗an −
(1− ε)γip(1− ρiw)

(1− ρ)γwp

I∗pn

W∗pn =
TB1B2B3λi f λwa

Λie(1− ρ)ρiγwp

− B4 I∗an

where, B4 = 1 + (1−ε)(1−ρiw )λia
(1−ρ)(1−ρi)εγwp

(vii)

ργwpW∗pn − λw f W
∗
fn
+ (1− ε)γip ρiw I∗pn = 0

W∗f =
ργwp

λw f

[
TB1B2B3λi f λwa

Λie(1− ρ)ρiγwp

− B4 I∗an

]
+

(1− ε)ρiw λia

ελw f (1− ρi)
I∗an
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(viii)

γwl W
∗
ln − λwpW∗pn − γwpW∗pn + (1− β)γil I∗ln = 0

W∗ln =

[
λwp + γwp

γwl

]
W∗pn −

[
(1− β)γil

γwl

]
I∗ln

W∗ln =
λwp + γwp

γwl

[
TB1B2B3λi f λwa

Λie(1− ρ)ρiγwp

− B4 I∗an

]

− (1− β)γil
γwl

[
λia B1

βγil (1− ρi)
I∗an

]

(ix)

γweW
∗
en − λwl W

∗
ln − γwl W

∗
ln + (1− α)γie I∗en = 0

W∗en =

[
λwl + γwl

γwe

]
W∗ln −

[
(1− α)γie

γwe

]
I∗en

W∗en =

(
λwl + γwl

γwe

)(
λwp + γwp

γwl

)[ TB1B2B3λi f λwa

Λie(1− ρ)ρiγwp

]

− I∗an

γwe

[
B4(λwl + γwl )

(
λwp + γwp

γwl

)

+
(
λwl + γwl

)( (1− β)γil
γwl

)(
λia B1

βγil (1− ρi)

)

+
(1− α)γie λia B1B2

αγie(1− ρi)

]
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(x)

Λwe

W∗f W∗a
T

− λweW
∗
e − γwe W

∗
e = 0

W∗f W∗a Λwe

T
=

(
Λwe ρB4γwp

Tλw f

)
(I∗a )

2 −
(

Λwe ρB1B2B3λi f

ρiΛIe λw f

)

×
(

λwa

(1− ρ)
+ B4γwp

)
I∗a +




Λwe ρB2
1B2

2B2
3λ2

i f
λwe

Λ2
Ie
(1− ρ)ρ2

i λw f




(λwe + γwe)W
∗
e =

(λwe + γwe)
(

λwp + γwp

)(
λwl + γwl

)

γwe γwl

− (λwe + γwe)

γwe

×
[(

λwp + γwp

)(
λwl + γwl

)
B4

γwl

+

(
λwl + γwl

)
(1− β)λia B1

γwl β(1− ρi)

+
(1− α)λia B1B2

α(1− ρi)

]
I∗a

Λwe

W∗f W∗a
T

− λweW
∗
e − γwe W

∗
e = 0

(
Λwe ρB4γwp

Tλw f

)
(I∗a )

2 −
(
(λwe + γwe)

γwe

)(Λwe ρB1B2B3λ∗f
ρiΛIe λw f

)(
λwa

(1− ρ)
+ B4γwp

)

×
[(

λwp + γwp

)(
λwl + γwl

)
B4

γwl

+

(
λwl + γwl

)
(1− β)λia B1

γwl β(1− ρi)

+
(1− α)λia B1B2

α(1− ρi)

]
I∗a +




Λwe ρB2
1B2

2B2
3λ2

i f
λwe

Λ2
Ie
(1− ρ)ρ2

i λw f


 = 0

The above equation is a quadratic equation on I∗an . That is,

a1 I∗
2

an + a2 I∗an + a3 = 0,

where,

a1 =
Λwe ρB4γwp

Tλw f

;

a2 =

(
λwe + γwe

Tλw f

)(
λwe λi f ρB1B2B3

ρiΛie λw f

)(
λwa

(1− ρ)
+ B4γwp

)

(
(λwl + γwl )(λwp + γwp)B4

γwl

+
(λwl + γwl )(1− β)λia B1

γwl β(1− ρi)
+

(1− α)λia B1B2

α(1− ρi)

)
;

a3 =
Λwe ρTB2

1B2
2B2

3λwa

Λ2
ie(1− ρ)ρ2

i λw f

.

These are the equilibrium points presented in Section 4.4.
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Marin Marin 3

Citation: Ghiţescu, I.-M.;
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Borza, P.N.; Marin, M. New

Command Mechanism of Flaps and

Wings of a Light Sport Aircraft.

Symmetry 2021, 13, 221.

https://doi.org/sym13020221

Academic Editors:

Victor A. Eremeyev and

Sergei D. Odintsov

Received: 30 December 2020

Accepted: 26 January 2021

Published: 29 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanical Engineering, Transilvania University of Brasov, B-dul Eroilor 29,
500036 Brasov, Romania; marius.ghitescu@unitbv.ro (I.-M.G.); marilenaradu@unitbv.ro (M.G.)

2 Department of Computers and Electronics, Transilvania University of Brasov, B-dul Eroilor 29,
500036 Brasov, Romania; borzapn@unitbv.ro

3 Department of Mathematics and Computers Science, Transilvania University of Brasov, B-dul Eroilor 29,
500036 Brasov, Romania; m.marin@unitbv.ro

* Correspondence: lscutaru@unitbv.ro or luminitascutaru@yahoo.com

Abstract: Commercial aircraft have well-designed and optimized systems, the result of a huge
experience in the field, due to the large fleet of aircraft in operation. For light, utility, or sports aircraft,
with a multitude of shapes, tasks, and construction types, there are different solutions that seek to
best meet the requirements of the designed aircraft. In this sense, for a sport plane, an increased
maneuverability is desired, and the system that controls flaps and wing must be properly designed.
A new flap mechanism command solution is proposed and justified in the paper, for use in sports
and recreational aviation, in order to achieve angles of braking greater than 40◦, take-off and landing
in a shorter time and over a shorter distance, as well as the gliding of the aircraft in critical flight
conditions or when fuel economy is needed. A finite element model is used to verify the optimized
command system for the flap and wing and to check if the strength structure of the aircraft is properly
designed. The main result consists of the new design command system for flaps and wings and in
verifying, by calculation, the acceptability of the new mechanism proposed from the point of view of
the strength of the materials.

Keywords: Light Sport Aircraft; conceptual aircraft design; wing; flap; aileron; weight estimation;
symmetric profile

1. Introduction

Aircraft engineering represents an intensive process full of evaluation and decision-
making [1]. Much as 80% of the life cycle costs in aeronautical engineering are determined
in the conceptual design phase [2]. In this, the phase will define the aircraft characteris-
tics, such as type of being propulsion used; the purpose of aircraft—Light Sport Aircraft;
technology of aircraft—materials, engine; occupant comfort requirements—fuselage cavity,
pressurization; ergonomics of both crew and passenger; aircraft’s aerodynamics and auxil-
iary lifting surfaces; certification basic of aircraft—Light Sport Aircraft FAR 23 [3]; ways of
manufacturing the aircraft; aircraft’s maintainability in the future; cost estimation [4].

Flight mechanics is a field studied in numerous works, and the results obtained are
already classic [5,6]. The preliminary design phase is carried out after all characteristics
presented in the conceptual phase had been made, and a rough aircraft sketch had been
made. This phase is critical where normally it is a go situation where the negative outcome
will result in a further continuation of the project until the aircraft is being manufactured [7].

In discussing the structural layout of an aircraft and its strength, it is important that
we know about the material that is being used so that we can know the material load
limit. There are several factors that influence the selection of materials that are being
used in building the structure of an aircraft, mainly material fatigue, toughness, stiffness,
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and resistance to corrosion, but the overall lightness of the material is commonly looked
upon by the structure and material engineer [8–11]. The main groups of materials that are
usually selected to be the part of aircraft are duralumin or aluminum.

All aircraft in the world, including Light Structure Aircraft (LSA), are strictly regulated
and bounded by certification based on the system of aircraft certification it possesses for
each country. Several variants of light aircraft are presented below. The light aircraft Extra
300 LT, at which the force load of the direction reaches 90 Kg [12], is a one- or two-seater
acrobat aircraft produced by German Extra Flugzeugproduktions- und Vertriebs-GmbH.

The technical characteristics of some known aircraft are shown in Table 1.

Table 1. Technical features.

Technical
Features

Airplane
Extra 300 LT

Airplane
Zlin 142

Festival
R40 Light Aircraft

F2
Light Aircraft

I.-M.G. Light
Aircraft LSA

Crew 1 1 1 1 1
Passengers 1 1 1 1 1

Engine model Lycoming
AEIO-540-L1B5

Walter/LOM
M-337AK Rotax 912ULS Rotax 912iS -

Engine power 224 kW/300 CP 156 kW/209 CP 75 kW/101 CP 100 CP 200 CP
Speed 407 km/h 272 km/h 175 km/h 252 km/h 470 km/h

Flight ceiling 4.877 m 4.250 m 4.000 m 5.000 m
Flight range 769 km 941 km 800 km 700 km

Empty weight 667 g 730 kg 354 kg 380 kg 670 kg
Take-off weight 950 kg 1090 kg 1900 kg 600 kg 970 kg

Wing span 8 m 9.16 m 9.17 m 9.872m 9.7 m
Wing surface area 10.7 m2 13.2 m2 13.97 m2 11.1 m2 11.92 m2

Height 2.62 m 2.75 m 2.47 m 2.34 m 2.57 m
Length 6.94 m 7.33 m 6.74 m 6.86 m 7 m

In the last column, the characteristics of the sport I.-M.G. light aircraft LSA studied
in the paper are presented. It is known as the Zlin 142 light aircraft, in which the load
with forces reaches 200–250 N [13]. Zlin Z 142 is a single-engine aircraft with two seats for
tourism and produced by Czechoslovak manufacturer Moravan Otrokovice (now ZLIN
Aircraft Otrokovice, Czech Republic). The Festival R40 is a single-engine aircraft with
two seats for tourism produced by SC. Aerostar Bacau S.A. [14]. The F2 light aircraft is
produced by Flight Design Hoerselberg [15]. On the light aircrafts Extra 300 LT, Zlin 142,
Festival R40, and F2, the flaps poach up to a maximum of 45◦. Before a design layout can
be started in order to obtain a new type of light aircraft with greater angles of braking,
a number of parameters must be chosen. There is a light aircraft wing with a rectangular
form and asymmetric profile, mounted at the top, which has been modeled in 3D in Solid
Works and analyzed with the finite element method (FEM) in Abaqus CAE. The wing is
made of aluminum and steel. The wing is loaded with distributed pressures, and the stress
and strain fields in the wing structure are studied [16].

A light aircraft wing has been modeled as CAD in Solid Works and imported into
ANSYS Workbench [17]. The aircraft wings are attached to both sides of the fuselage to
produce lift force [18]. A fuselage wing is used in the light acrobatic aircraft, which has been
subjected to the extended finite element method (XFEM) for determining stress intensity
factors (FIS) [19]. The presence of a crack through the attachment opening is not allowed,
as its growth due to high dynamic loads is usually rapid and can lead to catastrophic
consequences. In order to demonstrate how dangerous the appearance of the crack could
be, as well as to estimate the residual strength and life of fatigue of the cracked component,
the analyses are carried out using the maximum load that may occur during the flight.
The expected number of cycles to complete the failure is decreased, confirming that the
fastening ears must be designed using the safety approach [20]. A reconfigurable active
vibration control (AVC) system is known [21,22].

The S-LSA aircraft, for which the design methodology, design requirements, weight siz-
ing, performance sizing, weight and balance, aerodynamics, and stability and control are
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established, is presented in [23]. This aircraft is a tandem aircraft with sufficient visibility
for both occupants. There are studies on the material from which an airplane wing is made.
Tests are performed on a wing made of three types of materials: aluminum alloy, conven-
tional carbon fiber reinforced composite, and towed carbon fiber reinforced composite.
Significant performance is found in terms of the wing made of the conventional aluminum
composite [24].

A high wing of an ultra-light aircraft is known, which is followed by the structural
design and analysis of the wing. Wing design involves its initial considerations, such as
planning shape selection, aircraft location, and structural design involves design calcu-
lations for air profile selection, wing area, wing load characteristics, and wing weight.
The design is done according to the values calculated using the ANSYS FLUENT software
design [25].

There is a study of the design and development of a new light aircraft, which meets
the standards of the European regulations on ultra-light aircraft and the US regulations for
light sports aircraft. The aircraft is a two-seater model [26]. To this end, the development
of the wings, propeller, and fuselage is performed with extra caution to get the best
possible results.

In connection with an aerodynamic profile used for an ultralight aircraft sailing
at low speed, the invention relates to an aerodynamic profile for an ultralight aircraft,
which maintains the aerodynamic performance of a main aerial profile made of plastic.
Air wing pressure is reduced by bending a curved surface from a leading edge to the
bottom surface and improves manufacturing comfort and structural strength by increasing
the thickness of a leading-edge [27].

The invention relates to the weight-shift-controlled airplane that is characterized by
a novel design of airplanes with closed passenger compartment and that combines the
advantages of conventional aerodynamically controlled airplanes with those of weight-
shift-controlled ultra-light airplanes. The inventive weight-shift-controlled airplane com-
prises a passenger compartment with a fitted propeller as the pressure drive and a chassis,
an airfoil 1, and an adjustable support system between the passenger compartment. The air-
foil 1 allows that the airfoil is tilted for controlling the airplane [28,29].

The utility model discloses and provides a flap control mechanism of a Light Sport
Aircraft. The flap control mechanism is simple in structure, reduces resistance, and allows
each flap to be independently controlled and completely sealed in a flap structure. The flap
control mechanism of the Light Sport Aircraft comprises flaps and a flap driving mecha-
nism, wherein the flap driving mechanism is arranged in the flaps and is used for enabling
each flap to be independently operated and unfolded; the utility model is applied to the
technical field of airplane structures [30]. All these results give an image of the effort made
to obtain optimized solutions for the control mechanisms of a light aircraft.

The presented literature summarizes the main researches performed for the study of
some types of related airplanes, with constructive solutions close to the structure studied in
the paper. There are two aspects that are studied in the paper: first, the proposed solution
for the control mechanism, and then a study of the strength of the aircraft structure to see if
the proposed solution for the mechanism is compatible with the requirements appearing
in the aircraft structure. The mechanism introduced in the control system must not cause
stresses that exceed the strength of the material.

The paper is in line with this research trend, proposing a new system optimized for
the control of flaps and wings of I.-M.G. Light Sport Aircraft.

The new Light Sport Aircraft has a maximum take-off weight of 900 Kg, and the
cruising speed is 470 km per hour, and the maximum flight ceiling is 5000 m. In the
design of the aircraft, it has been considered that the parts of the aircraft must be simple to
manufacture and install and accessible to repair.

In determining the aerodynamic shape and design dimensions of the light aircraft,
the optimal design of the aircraft is considered, easily taking into account the parameters
influencing the aerodynamic shape of the fuselage and the wing, as well as the systems
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and mechanisms of the flap and aileron that are mounted in these areas. The technical
characteristics of a new proposed I.-M.G. light aircraft are shown in Table 1 (column 5).
In the new I.-M.G. light aircraft, the constructive solution of the flaps control mechanism
allows the flaps to be braced up to a maximum of 55◦. The fuselage is to accommodate the
engine, people, fuel, and baggage. The two seats are arranged in a cote-a-cote configuration.

The new model of light aircraft proposed has a certain aerodynamic shape, symmetry
geometry, and good stability being made up of middle wings of rectangular shape and
having in section a symmetrical profile, from the fuselage with a certain aerodynamic shape,
propeller helmet, ailerons, flaps, cockpit, vertical tail, horizontal tail, rudder with profiled
shapes. The choice of the optimal solution, from an engineering and maneuverability
point of view but also of the simplicity of the solution, is made following the analysis of
some functional models, varying the parameters of the proposed model until obtaining an
advantageous solution from several points of view.

The purpose of this article is to create the virtual model of the I.-M.G. light aircraft,
the flap, and the wing that will be built and analyzed, optimizing the shape of these using
CAD-CAE systems with CATIA V5R21 software. The subject of the paper is the proposal of
a new flap and wing control mechanism. It is obvious that this mechanism is incorporated
in a complex mechanical structure, with multiple functions and requirements, to which it
must respond accordingly. Therefore, in order to see if this new type of mechanism satisfies
the needs, a calculation of the strength of the structure of the entire plane is made in order
to determine the deformations, strains, and stresses that appear in the components of the
structure. The new type of mechanism changes the stresses that can occur in the elements
of the aircraft structure, and it must be verified if, in these conditions, safety is ensured
from the point of view of strength. To achieve this, the FEM is applied.

2. A New Model of I.-M.G. Light Sport Aircraft

The light aircraft and its flap control mechanism improve the dynamic behavior of the
aircraft easily through the aircraft’s constructive shape and the vole control mechanism
that allows braking angles greater than 40◦ required for take-offs and landings over a short
distance and in a shorter and greater load time, as well as the operation of the aircraft
in critical flight conditions or when fuel economy is required, the airplane being able to
hover in these situations, under conditions of reduced manufacturing costs. The proposed
Light Sport Aircraft designed has as its areas of use sports and recreational aviation with a
maximum capacity of two seats and having a certain aerodynamic shape and has on its
wings mounted steering voles without a run-away, in order to achieve angles of braking
greater than 40◦, take-off and landing in a shorter time and over a shorter distance, as well
as the gliding of the aircraft in critical flight conditions or when fuel economy is needed.

The main components of this light aircraft variant are the propeller helmet, propeller,
cockpit, plane fuselage, a left wing with symmetrical profile, a right wing with symmetrical
profile, ailerons (one on each wing) with symmetrical profile, flaps (one on each wing)
with symmetrical profile, the depth on the horizontal tail, the left horizontal tail, the right
horizontal tail, the direction on the vertical tail, the vertical tail. The newly designed light
aircraft, named I.-M.G., shown in Figure 1, has a maximum take-off weight of 900 Kg,
and the cruising speed is 470 km per hour, and the maximum flight ceiling is 5.000 m.

In determining the aerodynamic shape and design dimensions of the light aircraft,
the optimal design of the aircraft is considered, easily taking into account the parameters
influencing the aerodynamic shape of the fuselage and the wing, as well as the systems
and mechanisms of the flap and aileron that are mounted in these areas (Figure 1).
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Figure 3 presents the structure of the wing with a symmetrical profile unequipped
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The control mechanism of the voles of a light aircraft, shown in Figure 4, transmits the
rotational motion from a valve lever 1 (1—leading element being the input into the mech-
anism), to a torsion tube 2, to the kinematic drive elements 3, to the kinematic actuators
4, to the complex connecting bodies 5, which transmit the rotational motion, on the one
hand, to the non-snake-board curvature flaps 6, and, on the other hand, the kinematic
connecting elements 9 transmit the movement between the complex connecting bodies 5
and the oscillating arms 10.
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Elements 7 finally transmit the movement from the oscillating arms 10 to the 6th of
the frictionless curvature for the escape board, thus transmitting the rotational movement,
amplifying the force, and transmitting the mechanical power from lever 1 to the non-
snake-board curvature flaps 6 (final driven elements set in motion with elements 1–10),
with the aim of achieving larger gears corresponding to a high-performance flight regime
characteristic of these aircraft and allowing take-off and landing over a short distance and
in a short time.

The kinematic connecting elements (9, 8) are arranged at an angle with values between
(0◦ . . . 90◦) to the complex connecting bodies 5 and the oscillating arms 10, respectively,
to the non-snake-board curvature flaps 6 and the oscillating arms 10. When operating the 1
control valve, the rotational movement is transmitted to a torsion tube 2, in solidarity with
the kinematic drive elements 3 articulated at the base by the rotational couplings of A and
A1 (which is the base, A and A1) and further to the kinematic actuators 4 by the rotation
couplings of B and B1.

From the kinematic actuators 4, 16, the movement is transmitted to the kinematic
actuator 5 through the rotational couplings in E and E1, the kinematic actuator 5 elements
being connected to the bases by the rotational couplings in C and C1. These five bodies
have three links (rotation couplings E, F, G, E1, F1, G1, respectively) and bases C and C1,
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respectively. The rotational couplings in F and F1 provide the connection between bodies
5 and bodies 9, and the rotation couplings in G and G1 provide the connection with the
output bodies 6 (the endless curvature of the escape board, the asymmetric profile flap).

From bodies 5 via rotational couplings F and F1, the rotational movement is transmit-
ted to bodies 10 and 20 by means of the rotational couplings J and J1, and from the 10 in
rotational bodies of H and H1, the movement is transmitted to bodies 8, and then through
the rotational couplings I and I1 to the non-snake-board curvature flaps 6 (6—output body
= final driven element). Bodies 10 have a base connection through the rotational couplings
in D and D1. This flap control mechanism of the new I.-M.G. light aircraft allows the volts
to be braced up to a maximum of 55◦.

In Figures 5 and 6, the proposed optimized solution for the command system and the
kinematical model of the mechanism are presented.
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3. Significant Loads on I.-M.G. Aircraft

The fundamental factors to be taken into account in the design of this type of aircraft,
class LSA, are the strength, weight, and reliability of the aircraft material. The aircraft
housing shall be of low weight, but the strength shall make the total mass of the empty
aircraft as small as possible and be able to support an additional load, crew, and fuel to be
operated for as long as possible. The materials to be used in the manufacture of the aircraft
must be reliable so as to minimize the likelihood of material failure and sudden failure
during operation. In this section, we have tried to get more ideas on the strength of the
aircraft structure, as it is a part of the field of the research study.

Before going deeper into understanding the loads and stresses acting on an aircraft
that will lead to the idea of aircraft strength, we first must recognize the major forces on
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aircraft. This is illustrated in Figure 7, where these major forces occur when the aircraft is
in steady unaccelerated flight or called straight and level flight. The forces acting on the
aircraft during a flight are thrust, drag force, weight, and lift [31–33]. This is illustrated in
Figure 7 in horizontal rectilinear and uniform flight. Thrust is the forward force produced
by the propeller.
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Figure 7. Major equivalent forces acting on the aircraft during straight and level flight.

The total weight consists of the weight of the empty aircraft plus the weight of the
two crew members plus the weight of the fuel plus the weight of the aircraft installations
plus the weight of the crew baggage.

4. Optimization, Using Finite Element Model, of Wing and Flap

The method of finite elements is used as a need to study the state of deformations and
stresses in the structure of the light aircraft named I.-M.G. The wing structure is analyzed
using the CATIA computer-aided engineering (CAE) FEA software [34].

The properties of the material are diversified according to the type of element and
the type of problem to analyze. The mechanical characteristics of the material/materials
used are defined. For the analysis of elastic structures, restrictions are necessary on the
movements of translation and rotation with known values. To analyze the elastic mechan-
ical structures, the loading of the model is carried out by inserting concentrated forces
in knots and/or normal pressures in the centers of the faces of the finished elements or
moments. Figure 8 shows the 3D model of the wing with a symmetrical profile realized
from duralumin. The introduction of the values of the material characteristics necessary for
the analysis with finite elements is done using the material library of the CATIA software,
from which the metallic material from duralumin is chosen, with the following characteris-
tics: Young’s modulus = 7.31 × 1010 N/m2, Poisson ratio = 0.33, density = 2790 kg/m3.
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To generate the model, the finite element method is performed, which involves the
static analysis of the structure under conditions of imposed constraints and independent
time loads. The link with the base imposed on the model is defined by canceling the
6 degrees of possible freedom associated with the lateral surface of the wing (Figure 9) [22].
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The loading of the model is a uniform pressure after the Y-axis on the face of the
wing. The model solution is offered by soft. The displacement field of the wing with a
symmetrical profile from duralumin is presented in Figure 9, the maxim displacement
being 9.72 mm.

The introduction of the values of the material characteristics necessary for the analysis
with finite elements is done using the material library of the CATIA software, from which
the metallic material from aluminum is chosen, with the following characteristics:
Young’s modulus = 7.0 × 1010 N/m2, Poisson ratio = 0.346, and density = 2710 kg/m3.

The finite element method is performed to generate the model, involving the static
analysis of the structure under conditions of imposed constraints and independent time
loads. The liaisons with the base imposed on the model are defined by canceling the
6 degrees of possible freedom associated with the lateral surface of the wing (Figure 10).
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For the flap, the material characteristics of duralumin and aluminum are defined,
and the structure is analyzed with finite elements to obtain the Von Misses field of defor-
mations and stresses. The aim is to see the influence of the material on the deformations
appearing in the structure of the flap. The mechanical characteristics of aluminum and
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duralumin are presented in Table 2. It can be observed that the elasticity module for
duralumin is higher than the elasticity module for aluminum, and the Poisson’s coefficient
for duralumin is lower than the Poisson’s coefficient for aluminum.

Table 2. Mechanical characteristics of aluminum and duralumin.

Mechanical Characteristics
Material

Duralumin Aluminum

Young’s elasticity modulus, E (N/m2) 7.31 × 1010 7 × 1010

Poisson coefficient ν 0.33 0.346
Density, ρ (kg/m3) 2790 2.710

Figure 11 shows the symmetric profile, which can be made by aluminum and which
has relief holes that also have a functional role, through which the rods of the control
mechanisms and the 3D model of the flap with symmetric profile from duralumin are
passed. The introduction of the values of the material characteristics necessary for the
analysis with finite elements is done using the material library of the CATIA software.
Boundary conditions are presented in Figure 12. To generate the model, the finite element
method is performed, which involves the static analysis of the structure under conditions
of imposed constraints and independent time loads.
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The displacement field is calculated, the maxim displacement being 0.106 mm. The re-
sults of Equivalent Von Misses stress is visualized in Figure 13, the maxim value being
2.63 × 106 N/m2.
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Figure 13. Von Misses stress in the flap with symmetric duralumin profile.

The link with the base imposed by the model is defined by canceling the 6 degrees
of possible freedom associated with the lateral surface of the flap (Figure 14). The load-
ing of the model is a uniform pressure, after Y-direction, on the face of a wing made
from aluminum.
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Figure 14. Boundary conditions and load with the force of flap.

The displacement field in the flap with the symmetric aluminum profile is presented
in Figure 15. The maxim displacement is 0.011 mm to the extremity free of the flap from
aluminum.
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Table 3 presents the results of finite element analysis for the wing with a symmetric
profile. Table 4 shows the results of finite element analysis for the flap with a symmet-
ric profile.

Table 3. The results of finite element analysis for the wing with a symmetric profile.

Wing with Symmetric Profile

Obtained Results
Material

Duralumin Aluminum

Maximum deformation
obtained, (mm) 1.45 × 103 1.45 × 103

Table 4. The results of finite element analysis for the flap with a symmetric profile.

F = 270 N Flap with Symmetric Profile

Obtained Results
Material

Duralumin Aluminum

Maximum deformation
obtained, (mm) 0.106 0.11

Maximum von Misses stress,
(N/m2) 2.63 × 106 2.63 × 106

Equivalent Von Misses stress in the flap with the symmetric aluminum profile is
presented in Figure 16, the maxim value being 2.63 × 106 N/m2.
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5. Discussions

The modern design process is a complex process that involves, among other things,
the use of modeling methods and analysis based on the use of high-performance software.
The finite element method offers solutions to the problems to identify the fields of variation
in stresses and deformations. Field identification problems provide a spatial distribution
of dependent variables, mathematical modeling of distributions, and dependencies being
achieved by differential equations and expressions that contain integrals. CAD modeling
of the I.-M.G. light aircraft and finite element analysis are done with the Catia V5 software
using the Part Design module that allows the creation of the 3D model of pieces and the
application of material characteristics specific to the material chosen for the creation of
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the pieces, features existing in the material library of the program or by introducing in the
program the material characteristics specific to the material of the piece created.

After solid modeling in the CATIA Part Design module, the piece is considered to
have a material (aluminum, duralumin), with physical properties, important during the
analysis. These values are indicated by default by the CATIA program after selecting the
piece in the specification tree and choosing the material “Aluminum/Duralumin” in the
“Library” dialog window.

For the finite element analysis of the I.-M.G. light aircraft, the Catia V5 R21 software is
used with the CATIA Generative Structural Analysis Module.

From the FEM analysis of the symmetrical profile wing of I.-M.G. aircraft loaded with
a force, uniformly distributed and analyzed in two situations (duralumin, aluminum), it is
apparent that the maximum deformation occurs in the duralumin wing. From the FEM
analysis of the symmetrical profile wing and for the asymmetric profile wing loaded each
with force, uniformly distributed, and analyzed in two situations (duralumin, aluminum),
it is apparent that the deformation is minimal in the case of the asymmetric profile wing.

The advantages of this mechanism consist of a simple realization, easy maintenance,
low-cost price but also the achievement of excellent performances for the studied plane.
For this reason, it becomes important to study the compatibility of this type of mech-
anism with the structure of the studied aircraft. From all the results presented above,
this compatibility, from the point of view of strength, is ensured.

6. Conclusions

The ever-increasing complexity of the products leads to some difficulties in design
and manufacture. There are several solutions to this feature of modern production—the
most used being the realization of new tools and technologies to support the approach of
the project without significantly affecting the time of realization or the quality obtained.

Thus, improvements are imposed in the processes of design, calculation and optimiza-
tion, simulation of manufacturing, or in the way of information management. Between all
this, the assisted design presents a decisive link.

Reducing the duration of the product production cycle is possible when the design,
manufacture, and finite element method are increasingly integrated.

CATIA allows the design of parts and assemblies directly in three dimensions, without
first drawing the plates in representation (two-dimensional). Note that calculations can be
made, which can be of great help to the engineer who wants to hold a single platform for
CAD-CAE-CAM domains.

On the I.-M.G. light aircraft, a static analysis is carried out, with uniformly distributed
forces, after the state of tensions and deformations in the analyzed parts is obtained.
The I.-M.G. Light Sport Aircraft is designed with the median wing with a rectangular
section, with a symmetrical profile. The wing is equipped with a flap and an aileron.
The median wing is advantageous in terms of interaction with the fuselage. By increasing
the length of the wings, the length of the flaps is also increased, which increases the lift
during the take-off and landing of the aircraft slightly. The proposed I.-M.G. lightweight
aircraft is designed by using original component elements like shape and size to improve
the aerodynamics of the aircraft and its stability as follows: rectangular-shaped median
wings and with an asymmetrical profile in its section so that the profile string forms an
angle with the forward direction, of a range to a value greater than the fuselage length,
L = (1.1...1.3) ∗ Lf , and implicitly increasing the surface of the flaps, which may allow the
airplane to glide in critical flight situations when the engine is no longer running or when
needed for fuel economy, allowing the aircraft to behave easily and like a plane, the central
plane of the fuselage, the propeller helmet, the previous fuselage (hoods), the propellers
and the handles of curvature without a run-out board (one on each wing), the cabin in
which the crew sits, the depth, drift, direction, rear fuselage, stabilizer, and the 2nd section
of the central fuselage. By mounting the flaps on the wings, the landings are smooth,
and the plane does not hit the ground. The designed constructive solution of the flaps
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control mechanism for the new I.-M.G. light aircraft allows the steering to be braced up to
a maximum of 55◦, this value being superior to the classic solutions of mechanisms with
flaps that poach up to a maximum of 45◦. The finite element analysis of the flap and wing
offers us a convenient solution with real maneuverability advantages.

A comparison of the stress and strain fields that occur in the aircraft structure when
equipped with the new type of control mechanism, with the stress field that occurs when
equipped with current mechanisms [35], shows that these fields are admissible from the
point of view of strength. So the proposed mechanism is compatible with the structure
analyzed in the paper, and the calculated stress is lower than the limit stress.
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Abstract: The paper presents a new constructive and functional solution of flexible coupling with
bolts and nonmetallic intermediary elements. The bolts have a special shape in the sense that they
have a milled area on a certain length equal to the width of the non-metallic element, a cylindrical
area that reduces the stress concentrators at the diameter passages. The novelty of this coupling
consists of the existence of one intermediary disk between two semi couplings (driver and driven
semi couplings). This is fixed by the semi-coupling on the right side, the intermediary disc having
milled four locations in which to mount the left, as the right has a metal plate with a special shape
of eight metallic plates that are mounted with screws in the four milled places processed on the
intermediate disc. The nonmetallic elements have various forms and can be made from different
qualities of rubber mounted on the bolts. Eight milled bolts (four on each semi-coupling) allow the
transmission of the torsion moment in both directions of rotation, in one direction becoming rigid
and thus behaving like a safety coupling. Finite element method is used to obtain the mechanical
response of this new type of coupling.

Keywords: flexible coupling; bolt; non-metallic element; finite element method; elastic characteristic

1. Introduction

Rotating machines in which the drive system and the working machine are different
require an adapting element in order to transmit power between the two sides. For this,
a drive shaft can be used with universal joints or a particular coupling system. Ideally,
the two shafts should be properly connected by a rigid coupling so that the two shafts
work as one. This offers advantages such as not allowing relative movement between the
two shafts, the motor, and the conduced shaft. Vertically positioned applications, such
as vertical pumps, use this solution. More used, however, are flexible couplings, which
aim to transmit torque or rotary motion without slipping and to compensate for axial,
parallel, or angular misalignment. Additionally, the non-linear flexibility of the couplings
makes the dynamics of the rotary movement smoother and improves the dynamic response
for both the electric motor and the work machine. Examples of such couplings can be
pumps, air pumps, engine generator sets, conveyors, crushers, vibrating screens, etc. In
practice, flexible coupling can be a major contributor to performance problems of the two
machines [1–8], which is why an extensive study is required for each particular application.

Flexible couplings with bolts used in industrial application are presented in a wide
variety of constructive solutions, in accordance with their functional role and the demands
they must respond to. These demands differ not only by dimensions for each constructive
solution but also by the shape of the elastic element. Two of these variants are standardized:
variant N, normal, and variant B, with spacer bush [9]. In general, couplings are frequently
used in the composition of mechanical transmissions. Flexible couplings with non-metallic
elements are of great importance due to the numerous and very diverse fields of activity
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of equipment and installations they equip (compressors, pumps, generators, pulleys,
cranes, conveyors, mixers, piston motors, general industrial applications, as well as in the
metallurgical industry, the mining industry, the paper industry, and the pulp industry). In
applications, the couplings are made in a great diversity of constructive solutions, a unitary
and generally accepted classification of them being difficult. Specific to flexible couplings
with non-metallic elements is the fact that the transmission of rotational motion and torque
is achieved through the non-metallic element, which dampens shocks and vibrations and
can take axial, radial, angular, or combined deviations. The stress characteristic of non-
metallic coupling elements together with their size and shape of these elements represent a
key design factor for mitigating the transmission of power between the sides of coupling.

Herein are presented some constructive coupling solutions for flexible coupling. These
emphasize the advantages of the proposed solution, its applicability, and the way in
which this solution meets the requirements of the industry. Known from literature [10],
constructive solutions that include flexible bolt coupling consist of two identical semi-
couplings. In this case, the torsion moment is transmitted through the rubber sleeves
mounted on the bolts, which are rigidly fixed in the other half of the coupling. The profiled
sleeves mounted on the bolts are fixed at one end. This type of coupling transmits small
and medium.

There are flexible couplings with rubber pins whose half-couplings are machined
differently from each other. Thus, one has holes for pins, and the other has the holes
machined so as to allow the mounting of rubber bushes. The holes are arranged in a circle
on the circumference of each coupling half [11,12].

In [13,14] is presented flexible coupling with studs and washers or rubber bushes. The
rubber elements are mounted in one coupling half on the studs, and on the other, the studs
are fixed with flanges. Flexible coupling allows, within certain limits, the relative rotation
of semi-couples and the variation of shafts alignment.

The Guardian Superflex coupling has two hubs: a super flexible rubber element
and a bolts with self-locking nuts [15]. The Superflex Coupling has been used world-
wide on a variety of applications, including light towers, air pumps, welding sets, and
other machinery with large driven inertia. The coupling consists of two cast iron hubs,
a super-elastic rubber element, and a locking hardware. In a rigid coupling, the torque
is transmitted from one half of the coupling to the other through the bolts, and in this
arrangement, shafts need to be aligned [16].

A flexible Rupex coupling consists of two semi-couplings, bolts and non-metallic
rubber element. The non-metallic element is mounted on bolts fixed only on one side of the
coupling [17,18]. This coupling absorbs shocks and cushions vibrations. The movement
is transmitted from one half-coupling to the other through non-metallic elements fixed
with bolts.

Flexible couplings with bolts and bushings are made up of two semi-coupled panels
that are mounted on the shafts of the machine [19]. These pieces allow additional torsional
flexibility compared to simple cylindrical pieces.

Bolt and barrel bushings couplings are widespread on engineering applications.
A flange coupling and non-metallic barrel element is used to connect trees that have
a small parallel misalignment, angular misalignment, or axial misalignment. This coupling
works with coupling surge. In general, this is used to assemble electric machine with
working machines [20–22].

A flexible coupling with elastic rubber bushings and pins consists of two semi-
couplings with different flanges having conical bore inside and elastic rubber bushings
that are mounted on notched head pins [23]. The flexible coupling with elastic rubber
bushings allows an increased load-bearing capacity and durability. The resulted stiff-
ness characteristics are non-linear and asymmetrical. These couplings are used by the
transport systems.

The rubber-cushioned sleeve bearing coupling is fast to replace, and this comprises a
right half coupling body, a pin, a flexible sleeve, and a nut [24]. The flexible sleeve can be
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quickly replaced, and it does not need a coaxially correction after replacement. Due to this,
an improved production efficiency is obtained.

It is well known that the flexible coupling consists of fixing screws, transition sleeves,
elastic rubber rings, a connecting pressure disc, a brake wheel, and studs [25]. The multiple
holes for screws and sleeves are evenly distributed alternately on the same circle in the left
brake wheel. The connecting pressure disc and the brake wheel are fixedly connected by
the fixed screws. The flexible coupling cannot be worn completely and has a long service
life. The coupling can be easily removed.

In case of maritime couplings, it is known that these consist of two different half-
couplings, a tapered sleeve, screws, drive couplings, connecting pins, elastic rubber rings,
nuts, transition sleeves, and connecting pressure plates [26]. Depending on the maritime
coupling, the service life of the coupling can be extended by the transition sleeves and
the rate of replacement of rubber spring rings, and the frequency of maintenance can
be reduced, thus maintenance is convenient. The marine coupling especially shows its
superiority when it is used in places where the maintenance is difficult.

A constructive solution of flexible coupling with bolts can be made up by two half-
couplings. These have distributed holes on their circumference on a certain circle diameter
where cylindrical bolts are placed. These are threaded at one end, being alternately
mounted on the two semi-couplings [27]. The movement is transmitted from one half-
coupling to another by bolts and non-metallic elements.

Another constructive solution for flexible coupling with bolts and non-metallic el-
ements consists of a coupling part placed radially and having non-metallic elastic link
elements. As these elements use materials with composite structures as armatures, the
different shape and the used materials generate the desired anisotropy. Additionally, the
deformation characteristics of link elements will be different. Thus, the coupling is able to
be adapted for a wide set of applications without major changes. In mounting processes,
different solutions can be adopted by usage of specific mounting pieces having different
kinds of shape, size, and screws. By usage of anysotropic link elements in correlation
with disc shape, bolt placement, spacer elements, and screws, all of these generate cheaper
and simpler solutions for transfer of movement by coupling. Shape, size, and materials
used for link elements represent key factors for adapting to application by the amount of
energy that can be absorbed inside coupling. Additionally, the coupling’s elements design
influences the time response of the system at variation of torque from both sides: motor
and load. Moreover, by using elastomer based link elements, these provide a lubrication
effect that has beneficial effects for coupling lifespan and its usage [28].

The study of the specialized literature in the field of flexible couplings with non-
metallic elements revealed the existence of flexible couplings with non-metallic elements
with relatively simple functional and constructive principles. These couplings are made in a
wide range of types and sizes, being produced by specialized companies with international
reputation. Because the literature in the field of flexible couplings with non-metallic
elements is very poor, new research is welcome in the field.

Published articles are very rare, and the books (courses, monographs, etc. [1–8])
present general references regarding design and construction. In modern transmissions,
the couplings are mounted immediately after the drive motor, which can be direct current
motor with series or parallel excitation or with permanent magnets or could be asyn-
chronous or synchronous motors. The motor or the load torque inherently vary in time
function as a result of machine functioning and also as a result of functioning of the control
system. The designer is able to design a coupling that smooth movement harmonics in
time (speed angular acceleration in time). The dynamic response of the acting system
can by optimized by the designed coupling for target work-torque, speed, and for the
transient regimes. Thus, the designed coupling is able to perform oscillation dumping
during transitory and stationary regimes.
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The problems that appear with the couplings listed above would be related to the
following: a technological achievement, generally difficult assembly of the component
elements, and generally high loads on the coupling elements.

Our paper proposes a coupling system that has several advantages: easy disassembly
of non-metallic elements; easy disassembly of bolts; by mounting the non-metallic element
between the plates and not in bores processed in semi-couplings, it allows the non-metallic
element to relax, this being required besides crushing, shearing, and traction; transmits the
torque in both directions, in a direction of rotation that becomes rigid and thus behaves like
a safety coupling (which means that it fulfills a new function with this coupling compared
to the classic solutions of bolt couplings and non-metallic elements); fulfills the function of
limiting the load in order to avoid breaking the non-metallic elements.

2. Description of the Proposed Flexible Coupling with Milled Bolts and
Non-Metallic Elements

In the literature, there is no flexible coupling solution with milled bolts and non-
metallic elements by type of coupling designed (Figure 1). The novelty of this coupling
consists of the existence of one intermediary disk which has four processed holes, the
intermediary disk being mounted between two semi couplings. The disk is and fixed to the
right half-coupling with screws and centered with the semi-coupling with one cylindrical
pin of eight metallic plates fixed with one left and one right to each processed hole on
the intermediate disc (there are four disk stakes arranged at 90 degrees). The nonmetallic
elements from different qualities of rubber are mounted with bolts and with eight milled
bolts, four on each semi-coupling. By using the milled bolts, four mounted on each half-
coupling, the transmission of the movement and the torque in both directions are obtained.
Each metal plate attaches to the intermediate disc by means of two screws.
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In existing locations between two plates (there are four locations), a non-metallic
element is mounted. Non-metallic rubber elements of different qualities are mounted in
the space between two plates, thus there are four non-metallic elements mounted. At the
same time, the non-metallic element is mounted on the bolts.

This is a new flexible coupling with bolts that differs from the classic solutions of
flexible couplings with milled bolts and non-metallic elements by the existence of the
intermediate disc, the existence and the form of non-metallic plates and of non-metallic
elements that have various constructive forms that can be changed, and by the existence of
the eight milled bolts, which are mounted/fixed with four on each half-coupling (Figure 1).
On each semi-coupling, four milled bolts are mounted, fixing each semi-coupling bolt by
means of a nut and a Grower washer.

In this constructive variant, the bolts 4 and 12 are milled, and their number is eight,
four on each semi-coupling. The contact between the milled faces of the bolts is about the
length equal to the width of the non-metallic element 3 [9].

The number of bolts mounted on each semi-coupling is four and equals the number of
non-metallic elements 3 mounted between the metal plates 10 fixed to the intermediate disk
7, and this number is equal to the maximum number of milled holes on the intermediate
disk so as not to endanger the strength of the milled disk and the allocators. The milled part
of the bolts allows the transmission of the movement and the torque from one half-coupling
to another. The two milled areas of two bolts (one on each half-coupling) come into contact
(Figure 1 on the width of the non-metallic element. There are four mounted milled bolts
from a total of eight on each half-coupling; only four milled bolts work at a chosen direction
of rotation.

The semi-couplings are approximately identical, the constructive differences consisting
of the presence on the driven semi-coupling 2 at the level of diameter Ds, of four equidistant
holes, three of them being threaded, for fixing by means of screws 8 the intermediate disk
7 of the driven semi-coupling 2, and of the fourth orifice for centering by means of the
cylindrical pin 9 of the intermediate disc on the driven semi-coupling. The subassembly
consists of the half-coupling (2), the milled bolts 12 fixed by the semi-coupling by means of
the Grower washers 5 and the M8 nuts 6, the metal plates 10 fixed to the intermediate disc
7 by means of the screws 11 in the space between the plates and the non-metallic elements
3, which come into contact with the milled bolts that are fitted. The intermediate disk 7
is fixed to the semi-coupling driven 2 by means of the screws 8, the centering of the disk
in relation to the intermediate disk being achieved by means of the cylindrical pin 9. In
the coupling component, in the milled locations on the intermediate disc 7 are mounted
four subassemblies plates 10, a non-metallic element 3, and screws 11, one in each milled
location of the type shown in Figure 1.

The non-metallic element has various shapes presented below in the form of the letter
H. The foot of the letter H ensures fastening and centering in the places of the plates.

The non-metallic element 3 that is mounted between the plates is made of the same
rubber quality. Non-metallic element 3 can be made of three rubber qualities (natural
rubber, NR; butadiene rubber acrylonitrile, NBR; ethylene propylene diene rubber, EPDM.
When designing the coupling, the influence of the shape of the non-metallic element and
the quality of the rubber on the coupling performance were taken into account.

In the optimal design process of the flexible coupling with milled bolts and non-
metallic elements, the following aspects were taken into account:

• Driver machine (electric motor): characterized by engine power P(kW) and speed n
(rot/min);

• Maximum diameter of d (mm) shafts on which the semi-couplings are mounted;
• Coupling gauge: L (mm)—length of coupling, De (mm)—exterior diameter of semi

coupling;
• Limits (minimum, maximum) of the torsion moment transmitted by coupling: Mtmin,

Mtmax (Nmm);
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• Performing the functions characteristic of flexible couplings with non-metallic ele-
ments: transmission of rotational motion and torsion moment; taking over the position
albeit deviations of the shafts; shock and vibration damping;

• Safety in operation: superior mechanical strength of the fastening screws of the two
semi-couples of the cylindrical centering stud;

• Economic requirements: execution processes and means of economic processing;
• Establishment of technology for semi-manufactured: non-metallic elements made by

vulcanization; semi-couplings are obtained by free forging or molding; the intermedi-
ate disc is obtained by free forging; bolts are made of round laminated steel; metal
plates are made of square laminated steel;

• Maintenance conditions: simple maintenance; visual control at each use;
• Ergonomic costs and requirements: simple constructive form; minimum material

consumption, cost per minimum product.

The main parameter resulting from the characteristic of the flexible couplings is the
torque. Another important parameter is the rigidity, which represents the dependence of
the relative rotation angle ϕ of the half-couplings, depending on the value of the torque Mt.

The flexible coupling with milled bolts and non-metallic elements is characterized by
damping capacity and rigidity. The existence of the flexible coupling in the mechanical
systems favorably influences their behavior at oscillating loads, frequently encountered
in operation, high values of the degree of damping leading to a quieter operation of
the mechanical systems equipped with such a coupling. In this constructive version, by
applying at the input of a torque in the direction indicated by the continuous arrow (I) (see
Figure 1), the torque is transmitted from entry driver semi-coupling 1, by shape, through
the milled bolts 4 to the milled bolts 12, fixed rigidly by the semi-coupling 2, in this sense,
the coupling becoming rigid. In the direction of rotation indicated by the interrupted
arrow (II), the milled bolts 4 act on the elastic element 3 of different constructive forms,
compressing it in the direction of movement.

Figure 2 presents the 3D model of the constructive form of the milled bolt realized in
Autodesk Mechanical Desktop 6 Power Pack [29] and Catia V5 [30]. The milled bolts 4 and
12 are fixed to the semi-coupled leading 1 and driven 2 by means of Grower washers and
nuts that prevent the bolts from breaking. The cylindrical area of the bolt with a diameter
greater than the diameter of the milled area is intended to reduce the stresses concentrators
and break the bolt at the passage of diameter from the diameter of the milled area to the
diameter of the cylindrical zone to the right of the threaded area. The cylindrical area with
the largest diameter in the bolt component represents a shoulder, stopping on the milled
end of the bolt, which is mounted in the opposite direction. The installation of the milled
bolts 4 of the driver semi-coupling 1 is done easily. From right to left, the bolts are inserted
into the bores processed in the driver semi-coupling 1, then Grower washers 5 and nuts
6 are mounted, and the nuts are tightened. The installation of the milled bolts 12 of the
driven semi-coupling 2 (the right half-coupling, Figure 1) is easy as well. From left to right,
the bolts are inserted into the handles processed in the semi-coupled driven 2, and then
the Grower washers 5 and the nuts 6 are mounted, and the nuts are squeezed against the
unraveling of the bolts.
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Figure 3 presents the 3D model of forms of plates on the left side and on the right side.
Each plate has a milled channel, in which one end of the non-metallic element is mounted,
while the other end of the non-metallic element is mounted in the processed channel in
the plate fixed on the opposite side of each milled slot located on the intermediate disk.
Figure 4 shows the subassembly consisting of plates 10, non-metallic element 3 mounted
between those two plates, and screws 11, the subassembly being part of the constructive
variant of the prototype. For fixing the metal plate 10 of the intermediate disc 7, two
screws 11 are sufficient for low execution costs for the plate and the intermediate disc,
saving material and reducing the weight of the coupling. Figure 5 shows the subassembly
consisting of the semi-coupling of the driver 1, the milled bolts 4, the Grower 5 washers,
and the nuts 6, the subassembly being part of the constructive variant of the prototype.
Semi-coupling drive 1 input transmits the torsion moment from the electric motor to the
milled bolts 4 fixed by this semi-coupling.
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Figure 5. The maximum deformation of nonmetallic element from natural rubber.

The milled bolts 4 and 12, the metallic elements 10, the intermediary disc 7, and the
semi couplings 1 and 2 can be made from improved OLC 45 steel (improved quality rolled
steel brand with 0.45% carbon content). The mechanical characteristics of the improved
OLC 45 (equivalent steel is C 45) steel are: density = 8.31 g/cm3, Young’s modulus =
200 GPa, Poisson’s ratio = 0.287.

The coupling was modeled with Computer Aid Design (CAD) in the Autodesk Me-
chanical Desktop 6 Power Pack and Catia V5.

The non-metallic element is required for crushing and traction. The bolt is required
for bending.
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3. Calculus Element, Execution and Testing of Flexible Coupling with Milled Bolts
and Non-Metallic Elements

The numerical modeling of the performances of the designed coupling is performed
on the basis of a calculation scheme, this being presented in Figure 4 [9].

According to the assembly of Figure 4a, the bolt is an integral part of the semi-coupling
1. Non-metallic elastic elements are incompressible, as they can change their shape, but
they do not change their volume to a large extent.

Two hypotheses are used in the calculus:

• the bolts are considered uniformly loaded;
• the pressures are considered uniformly distributed along the bolt.

During operation, other additional loads act on the coupling elements, such as: inertia
loads, which appear in the non-stationary operating mode of the transmission equipped
with coupling; shock and vibratory loads, which occur in both non-stationary and stationary
operating modes; loads due to the elements of the couplings. The magnitude of the load
acting on the couplings depends on: the characteristic of the motor car, the operating mode
of the driven car, the influence of the coupling on the moment of inertia, the rigidity, and
the vibration behavior of the kinematic chain.

Due to the fact that it is not possible to know exactly the variation of the torque over
the entire operating time, the coupling calculation is performed at an imposed value of cal-
culation torque Mtc. Taking into account the additional loads that may occur at installation
or during operation, the so-called torsion moment of calculation Mtc, is calculated with the
formula:

Mtc = Ks Mtn ≤ Mtcn (1)

where KS is a safety factor experimentally obtained and offered by literature [1], Mtn is
nominal torque calculated using the power of the electric motor P and its corresponding
rotation speed n, with the relation Mtn = 9.55 · 106 · P [kW]

n [rot/min] [Nmm] [9].
Assuming that all bolts are loaded evenly and their number is z, the force loading a

bolt is
F =

2Mtc

zD1
(2)

The crush check is performed at the bolt level. Assuming the uniform distribution of
pressures along the generator and in section, the crushing between the bolt and the elastic
element is determined by the relation [12].

σs =
F
As

=
2Mtc

zD1dbl2
≤ σas (3)

where: As is the crushing surface, db is the bolt diameter, l2 is the length on which the crush-
ing occurs (l2 = b, b being the thickness of the non-metallic element), σas is the permissible
crushing resistance (σas = (5 . . . 7)MPa), and Mtc is the calculation torque [9,11].

Applying a traction, the stress is given by [12]:

σt =
Ft

At
=

2Mtc

zD1 At
≤ σat (4)

where: At is the section area (At = (h2 − db)b—for the shape of Figure 2), σat = 1.5 MPa
from [9].

The bending stress is

σi =
Mi
Wz

=
32Fl2
πd3

b
=

64Mtcapil2
πzD1d3

bl2
≤ σai (5)

where σai = (0.25 . . . 0.4)σ02, σ02 = 400 MPa—for bolt realized from improved OLC 45 steel.
The values obtained applying Equation (5) is σi = 9.54 MPa 〈〈 σai = 160MPa .
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Angle of relative rotation of those semi couplings is offered by:

∆ϕ =
4Mtc

zD2
1

1
Eb


 l − db

h
+ 4

√
h + db
h− db

arctg

√
h + db
h− db

− 4db√
h2 − d2

b

arctg

√
h + db
h− db

− π


 (6)

The rigidity is obtained by

kr =
Mt(∆ϕ)

∆ϕ
=

zD2
1

4
bE[

l−db
h + 4

√
h+db
h−db

arctg
√

h+db
h−db

− 4db√
h2−d2

b

arctg
√

h+db
h−db

− π

] (7)

The non-metallic element was studied with the finite element method(FEM) [30,31].
The deformation of the non-metallic element is presented in Figure 5. Von Mises stresses
appearing in the non-metallic element are presented in Figure 6. This numerical has
been used to determine the elastic response of the components of the proposed coupling.
A total of 13,482 octree (parabolic tetrahedron) discretization elements were used. The
FEM analysis shows a non-metallic element deformation of 1.76 mm. The experimental
determinations performed in static regime gave a maximum deformation of the non-
metallic element of 1.77 mm.
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Figure 6. The maximum Von Mises stress of nonmetallic element from natural rubber.

The maximum Von Mises stresses are presented in Figure 7. The results of the ex-
perimental tests of the coupling containing the non-metallic element 3 made of natural
rubber are presented in the following figure. The static characteristic can be seen (when the
input-output shafts are collinear) with a hysteresis loop of the non-metallic element. The
nonlinear character of the characteristic of the non-metallic element exists both for loading
and for unloading. The experimental setup made to perform the measurement is presented
in Figure 8.

Curve 1 from Figure 9 presents variation of torque of input shaft in time. Curve 2 in
the same figure presents variation of output torque of output shaft during unloading. Mti
represents the input torque and Mto the output torque.
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Figure 9. Measured torque in static mode.

The shock takes place by deforming the non-metallic elastic intermediate element,
which transforms the shock energy into mechanical deformation work Le (the area under the
load characteristic). Part of this energy (the area between the charging and the discharging
characteristics) is transformed into heat, representing the mechanical friction work Lf in
the coupling. In non-metallic intermediate elements, friction takes place inside the elastic
element (internal friction). From calculus results, mechanical deformation work Le =
211.94 J. The high values of the shock absorption capacity lead to the quiet operation of
the transmission equipped with such a coupling, even to oscillating loads. The flexible
coupling with damping also improves the behavior in vibrational mode.

Figure 10 shows the experimental torque at the input and the output shaft as well as
for the attenuation factor of the constructive variant of the prototype tested in dynamic
mode with the input shafts (collinearly output). The damping capacity of torsion shocks is
the characteristic of flexible couplings to convert some of their energy into heat, the rest
being converted into deformation energy, which will be returned to the system after the
shock action ceases.
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Figure 10. Variation of moments to the input and the output shaft in dynamic approach; input and output shafts are
collinear.

Figure 10 shows the variation of the relative rotation angle between the semi-coupled
and the torsion moment at the dynamic output shaft, the data recording speed at the
oscillograph being 100 mm/s in time of 1 s. In this figure can be seen the dynamic
characteristic with a hysteresis loop of the non-metallic element. The hysteresis loop is
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smaller and more attenuated in dynamic mode. In dynamic behavior, the shocks and
the vibrations are higher, and the coupling damps these shocks and vibrations very well
through the non-metallic elements. The relative rotation angle between the dynamic
couplings is 2.25◦, and the input the output shafts have collinearity. In dynamic mode,
the coupling must also take over the overloads that appear during starting as well as the
shocks that may occur during the operation of the system equipped with coupling. For
Figure 11, from calculus results, a mechanical deformation work Le = 394.11 J.
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4. Discussion

The main parameter resulting from the characteristic of the flexible couplings is the
torque. Another important parameter is the rigidity, which represents the dependence of
the relative rotation angle ϕ of the half-couplings, depending on the value of the torque
Mt. The verification of the proposed mathematical model for determining the elastic
characteristic of the flexible couplings, the validation of the constructive solution, and
the adopted technology are performed by comparing the theoretical diagrams with the
experimental ones, determined both in static and dynamic mode.

Following the calculation using FEM for the three shapes presented in Figure 4, we
obtained results presented in Table 1.

Table 1. Results of verification calculations at the solicitation of traction and crushing for non-metallic element (theoretical
values).

Form Shape Obtain Results

Shape 1 σtF1 = 0.43 MPa 〈 σat = 1.5 MPa ; σsF1 = 0.24 MPa 〈 σas = 7 MPa .
Shape 2 σtF2 = 0.55 MPa 〈 σat = 1.5 MPa ;σsF1 = 0.24 MPa 〈 σas = 7 MPa .
Shape 3 σtF2 = 0.35 MPa 〈 σat = 1.5 MPa ; σsF1 = 0.24 MPa 〈 σas = 7 MPa .

From the results presented for the effective stresses to traction/compression and
crushing, it follows that the three constructive forms of the non-metallic element resist
crush and traction, which indicates a correct design.

The torque that can be transmitted and that resulted in the three cases is presented in
Figure 12. The maximum torque that can be transmitted by the coupling is determined by
the traction conditions.
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The third case, presented in Figure 4, allows the coupling to transmit a maximum
torque of 188.232 Nmm.

5. Conclusions

The following criteria must be taken into account when designing such a coupling:
the coupling must take axial, radial, and/or angular deviations; the relative movement
between the semi-couplings to be done without shocks; the coupling must have a low
rigidity; feature to have an increasing slope and high damping capacity; changing the
non-metallic elastic elements to achieve the modification of the coupling elasticity; in case
of damage to a non-metallic element, the coupling can continue to operate; destroyed
elastic elements can be easily replaced; the component elements of the coupling must not
have protrusions/roughness, thus increasing the safety in operation.

The study permits us to draw the following conclusions:

• the coupling has the possibility to transmit the torque in any direction;
• the proposed solution of coupling ensures compensation of radial and angular devia-

tions;
• in the case of small deformations, E ≈ constant, and taking into account the other

constants in the expression of rigidity, it appears that the characteristic of the coupling
is linear;

• the calculation algorithm of the flexible coupling with milled bolts and non-metallic
elements presented is original and based on the hypothesis made in the paper;

• the maximum moment that can be transmitted by the coupling is 188.232 N·m for the
third form of the non-metallic element;

• when exceeding the torsion moment determined from the tensile strength condition
of the non-metallic element, the elastic element will break, thus the coupling can also
perform the safety function (load limitation);

• from the calculations performed, it results that the rigidity of the coupling is small
when the non-metallic elements are made of natural rubber (NR);

• the rigidity of the coupling is high when the non-metallic elements are made of
ethylene propylene diene rubber (EPDM);
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• this type of coupling can be used in mechanical engineering, lifting installations, or in
electromechanical systems;

• the coupling designed and executed has a simple construction, small size, and a low
cost compared to the classic ones with non-metallic elements and bolts.

The main objective was the level of performance of the coupling, namely the torque of
being transmitted by the coupling. Experimental determinations were made in different
cases by loading and unloading. Another objective was to carry out tests in different modes
(static and dynamic, respectively) taking into account the situation that the two input and
output shafts are collinear. From the point of view of functional performance (the torque
transmitted by coupling to a load-discharge cycle and the torque to input shaft I and output
shaft II, respectively), the coupling performed well, the values obtained experimentally
being close to the theoretical ones.

The tested construction variant has a very good shock and vibration attenuation factor
of up to 9%.

Figures 9 and 11 show the non-linear characteristic of non-metallic elements at loading
and unloading, which means that the flexible coupling with milled bolts and non-metallic
elements has the non-linear characteristic, and the coupling is with variable rigidity. Damp-
ing occurs if there is a difference between the elastic loading characteristic and the elastic
unloading characteristic of the coupling. The hysteresis loop is smaller and more attenuated
in dynamic mode. In dynamic mode, the shocks and the vibrations are higher, and the
coupling damps these shocks and vibrations very well through the non-metallic elements.

From the dynamic variation of the torsion moment at the output shaft according to
the relative angle of rotation between the two semi-couples it can be observed that the
non-metallic element has a negligible hysteretic loss, on a small portion of the discharge
characteristic practically coinciding with the loading. Note the non-linear nature of the
non-metallic element feature when loading and unloading.
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Abstract: All the installations, devices, and annexes within the laser and the gamma ray production
system within the ELI-NP project from Magurele are installed on an inertial platform that weighs
over 54,000 tons. The platform is made of concrete, is insulated from the outside environment,
and is supported by spring batteries and shock absorbers. The flatness of this platform respects
some very strict standards, and, taking into account the processes that take place on the platform,
the transmission of the different trepidations of the environment to the inertial mass must be extremely
low. For this reason, a static study and a vibration analysis of the platform, performed in this
paper, are required. The static analysis verifies if the flatness of the platform can be observed in
operating conditions, and the dynamic analysis verifies how excitations coming from the external
environment can be transmitted to the measuring equipment. The finite element method is used
both to determine the deformability of the concrete platform for different loads, placed at different
points and to determine its eigenvalues and its eigenmodes of vibration. The obtained results are
analyzed and constructive solutions are proposed to improve the realized system, through a judicious
placement of the installations and the distribution of the masses on the platform.

Keywords: stability; laser; nuclear installation; insulation; Extreme Light Infrastructure; gamma ray

1. Introduction

ELI-NP abbreviation represents Extreme Light Infrastructure-Nuclear Physics facility and is
a project incorporating 13 European countries. The researches presented in the paper concern a
study of the inertial platform of the project developed in Magurele-Bucharest. This project has two
components: a very high intensity laser system (10–30 PW) and a very brilliant, intense γ beam of
up to 19 MeV, 0.1 % band width, and 1013 γ/s, both positioned on a concrete insulating platform.
The ELI-NP facility has the following purposes: to include new experiments and to upgrade the laser
power and gamma beam intensity and energy and to include the most ambitious and far-reaching
projects as well as the ones that are yet to be discovered. It may include an upgrade of the γ beam
facility, using a superconducting energy recovery linac reaching to higher intensities of 1015 γ/s and
improved bandwidth. The realization of the project was possible due to the support provided by the
EU and the management and scientific supervision was carried out by an international committee of
renowned specialists. The gamma beam system being under construction at ELI-NP will provide a
very bright photon beam with unprecedented bandwidth and tunability. To fully take advantage of
this performance, a number of interesting physics cases were identified in the WhiteBook [1] of the
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ELI-NP project and then detailed in the Technical Design Reports [2]. Two of the major experimental
directions are the study of Nuclear Resonance Fluorescence (NRF) and the study of states above the
neutron emission threshold [3,4]. Both these experimental set-ups state in their technical design reports
the desire to use isotopically enriched targets. The gamma source under construction at ELI-NP is
especially well suited for these studies because of the small beam size at the target position which
allows matching the full beam flux with a very small target. Nevertheless, this advantage can quickly
turn into an experimental quagmire if the overlap between the beam spot at the target position and the
target is not very good or at least measurable. To achieve this is necessary to realize a good insulation
and to reduce significantly the vibration of the ground transmitted to the platform of the laser and
gamma beam system. The researcher must realize a very precise target alignment with the gamma
beam and this is not possible if the transmissibility of the vibration is not satisfactory controlled.
The design of the inertial platform imposes the implementation of a high precision of positioning the
devices, the pieces, the alignment system for the experiments due, in the more general view, to the
huge impact on the experiments. This engineering achievement is unique in its size and the results
obtained in the design and study of this structure should be known for future projects.

The complexity of the study comes from the fact that the ELI-NP will deliver a beam of high energy
photons of unprecedented intensity within a very small opening angle, and for this, the precision
become an important thing. Insulation of the base platform is a means of reducing the transmission
of vibrations in buildings, and the first attempt to address the problem in this way was in the 60 s
(last century) [5,6]. Since then, many types of springs have been fitted to many constructions in order
to reduce the effects of anthropogenic source vibrations. In most cases, the building rests on steel
springs or rubber elements. The aim is to reduce the transmission of vibrations by at least 10 dB for
frequencies above 10 Hz, but this goal is rarely achieved [7]. An important element in insulation is the
type of spring used but also important are the cost of operation and the difficulty of implementing
the system. A more accurate modeling allows the choice of parameters for the elastic and dissipative
elements that correspond as well as are possible to the final purpose of vibration isolation.

The design of inertial platform used to ELI-NP laser project represents a unique achievement
realizing the insulation of the laser and gamma beam installations from the excitations that may come
from the environment. The solutions found for this project can be useful for similar isolation conditions
imposed by other project. Such projects and their design are very rare, and the results obtained within
them are even more important, through the information they bring, to the scientific community.

If the platform is considered as a rigid with six degrees of freedom (Steward platform), the isolation
methods have been intensively studied. There are several parameters that influence the ability of such
a system to be isolated. A study method using a genetic sorting algorithm is developed in [8]. In these
cases, genetic algorithms have been shown to have higher optimization efficiency, better computational
accuracy, and reduced optimization time.

A dynamic model for a 6-axis hybrid vibration isolation system based on a cubic configuration
of Stewart platform is proposed. The displacement excitations and the loads are simultaneously
considered using a Newton-Euler formulation. A force feedback control principle is proposed and
studied. Numerical simulation strengthens confidence in the proposed method [9].

An analysis of a six-degree-of-freedom (DOF) active vibration isolation system is presented in [10].
The system is applied to isolate a Stewart platform, for a better and precise control and for a wide range
of earth-based systems. The paper presents the design and analysis of the platform as a performing
and robust vibration isolation system. A prototype has been realized and tested.

Anthropogenic sources of vibration are currently complex due to large flexible structures,
activities of all kinds, daily and transport. The inertial platform of a laser system is, in the first
approximation, a system with 6 degrees of freedom and can be studied with classical means of analysis.
A presentation of these methodologies is made in [11] in which the latest generation technology and
the ways of active vibration isolation for the precise realization of the experiments on the platform
are reviewed.
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An inerter-based vibration isolation system (IVIS) using an analytical model is established and
validated by comparing the experimental and numerical results and is presented in [12].

A platform to prevent the vibration caused by the low-frequency seismic excitation is presented
in [13]. This design isolates the horizontal and vertical vibrations simultaneously. For this, a combination
of a rolling isolation system and four three-parameter isolator with active damping is used. The dynamic
model offers the numerical results that show an effective suppression of the vibrations.

In [14], a new type of vibration isolation to reduce the dynamic response in case of an excitation
with wide frequency range is proposed. For installations used in nuclear physics, there are researches
presented in [15–18].

2. Methodology and Model of the Inertial Platform

The inertial platform is suspended on a number of almost 1000 spring and shock absorber batteries.
All installations in the ELI-NP project are located on a platform (Figure 1) that should be isolated
from the influence of any vibrations of the environment. The mass of the entire concrete platform,
without partition walls, roofs, and equipment is about 25,000 tons. If you add the partition walls,
then it reaches about 35,000 tons, and if you add all the equipment expected and roofs, you get a mass
of 54,000 tons. The concrete used for the building is steel reinforced.
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The platform is placed on a series of springs and dampers (Figures 2 and 3) that have the role of
isolating the equipment on the platform from any excitations that could come from the environment.
Due to the dimensions of the platform and the particularly large mass, the concrete can deform under
the action of its own weight or the weight of the walls and equipment placed over the platform.
The numerous springs located at a short distance from each other have the role of uniformizing the
loads that appear in the elastic supports of the platform. In this way, the loads that press on the
platform as well as its own weight will not give large deformations of the platform plate. The fact that
it is possible to act on the springs so that some are active and others do not allow an adjustment and
control of the uniformity of the platform support on the base table.Symmetry 2020, 12, x FOR PEER REVIEW 4 of 23 
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Essentially, the platform consists of two concrete blocks, rigidly connected to each other, placed on
spring batteries that evenly distribute the weight on the floor. On the concrete platform are placed
massive concrete blocks, with thicknesses of 1600 mm or more, over which are placed concrete slabs
as a roof. On this whole structure are placed the equipment and different control and measurement
systems. Experiments with laser beam and gamma beam ray are conducted on the concrete platform.
The platform must ensure a very good isolation from the anthropic activities around the building,
isolation imposed by the experiments that are performed on the platform. At the same time,
the platform’s response to an earthquake must be within certain parameters that ensure the integrity of
the structure in a high-intensity earthquake.

For the analysis of this structure and of the static and dynamic response to the action of some
external (of natural or anthropic source) excitations, a model was made using the finite element method.
This method was the main tool used in this paper. Based on the numerical results obtained, a study
was made of the deformability of the massive concrete block in static case. It was studied to what
extent the deformations of the concrete block can influence the flatness of the entire platform and what
would be the influence of additional loads placed on this block, in different positions. Then, the modal
numerical analysis of the system was made, obtaining the eigenfrequencies of the elastic structure
suspended on the spring batteries. The first three eigenfrequencies represent the frequencies of the
rigid movement of the platform mass. In the other modes of vibration, the effect of the deformability
of the concrete slabs can be observed.

For the analysis of this structure and of the static and dynamic response to the action of some
external, natural, or anthropic excitation, a calculation model was made using the finite element
method. This method was the main tool used in this paper. Based on the numerical results obtained,
a study was made of the deformability of the massive concrete block in static case. It was studied to
what extent the deformations of the concrete block can influence the flatness of the entire platform
and what would be the influence of additional loads placed on this block. Then, the modal numerical
analysis of the system was made, obtaining the eigenfrequencies of the elastic structure suspended on
the spring batteries. The first three eigenfrequencies represent the frequencies of the rigid movement
of the platform mass. In the other modes of vibration, the effect of the deformability of the concrete
slabs can be observed.

The types of analyzes performed are in the linear domain (linear static analysis). Under these
conditions, the equations used follow Hooke’s law. Software used to prepare the model:
Altair HyperMesh. Solver for running analysis: OPTISTRUCT. The type of elements used has
4 corner nodes with 24 degrees of freedom (3 × 4 translations + 3 × 4 rotations).
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3. Static Analysis

The insulation platform consists of a solid concrete block, made up of two parts, i.e., one of
them (which we call the main part) having a thickness of 1600 mm and the other (which we call
secondary) having 600 mm. At the dimensions of the construction and at the masses to be placed on
top, the deformability of the platform becomes important for obtaining precise (accurate) experiments.
For this reason, it is necessary to study the deformability of the concrete platform both under the
action of its own weight and as a result of additional loads. The spring suspensions of the platform
must be distributed as evenly as possible, and thus, a support system has been designed on about
1000 spring batteries. The inactive elements in the spring batteries can be activated in case of need
and can rebalance portions of the platform, leveling its deformations and the tensions that appear
in it. Each battery consists of 3–7 springs, and between the springs are located vibration dampers.
The springs can be operated (i.e., support the platform) or are not in service, do not support the
platform at this time, but can be released and become active, if necessary. Thus, a study was made of
the stresses and deformability of the platform placed on the spring batteries, without additional masses
placed on top. The finite element method was used to determine the stress and stress that occurs in the
platform block. Figure 4 shows the set of two blocks consisting of the main body (shown in yellow,
1600 mm thick) and the secondary body (shown in green, 600 mm thick). The positions where 1000 tons
of loads will be applied successively are shown in purple. We put in a limited area, equivalent with the
basic surface of a wall (approx. 20 m2), the considered supplementary mass.Symmetry 2020, 12, x FOR PEER REVIEW 6 of 23 
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Figure 4. The platform made by two solid blocks.

In Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, and Figure 11, two cases are presented
in parallel: the case of the unloaded platform (total mass 25,000 tons) and the case of the platform
with vertically mounted walls (total mass 35,000 tons). The deformation of the concrete platform
loaded with its own weight; placed on the spring batteries, is presented in Figure 5, i.e., on the left is
the 25,000 ton variant, while on the right is the 35,000 ton variant. Figure 6 shows the deformability

103



Symmetry 2020, 12, 1972

of the platform if the load of 1000 tons is applied in point 1. A logarithmic scale is used for a better
visualization of the deformation situation. In Appendix A, the deformations using a linear scale are
represented (Figures A1–A4).
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The finite element model used has a number of 50,898 nodes and a number of elements of
50,053. CBUSH type elements (12 degrees of freedom) were used for modeling the spring batteries,
and QUAD4 plate elements (24 degrees of freedom per element) were used for the discretization of the
element plates [19–22]. The mechanical properties of the concrete, used in this paper, are obtained from
literature [23]. We mention that the concrete is reinforced with steel. In this case, it is expected that the
Young’s Modulus can increase. Some studies [24,25] show that, in reality, the increase in the Young’s
modulus is not significant. For a fiber volume ratio of 0.025, the Young’s modulus is 30.000 N/mm2,
the value considered in our study. In [26] has been presented the values of reinforced concrete offered
by Eurocode (Structural design calculations according to Eurocodes). The Poisson’s ration used is
0.2, as recommended by [26]. The connection with the ground, after the three directions, is made by
means of suspension springs. The springs are fixed to the ground and are connected to the inertial
mass (boundary conditions). The rigidity of a single spring is kz = 1.85e + 6N/m after the vertical
direction and kx = ky = 0.55e + 6 N/m for the other two directions. The dampers have the coefficient
cx = cy = cz = 2000 kNs/m.

In Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, and Figure 11, the graphical
representations are made in case the loads are applied in points 1–6. The stresses that appear in the
plate, for the studied cases, are presented in Appendix B (Figure A5).

In order to see how the placement of additional weights or the removal of weights from the
platform can influence the deformability of the platform, it was considered an operation that was
performed in the modification of a concrete wall placed in position 4 in Figure 12. The wall that was
removed weighed 250 tons. The deformation field in the two cases was presented in Figure 12. If the
figure is analyzed, it is found that there are no significant differences between the two situations, i.e.,
the removal of a wall of 250 tons will not significantly influence the placement of the platform.Symmetry 2020, 12, x FOR PEER REVIEW 9 of 23 
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4. Modal Analysis

The elastic elements that influence the vibration behavior of the platform are the spring batteries
on which the platform is placed and the deformability of the platform under the action of its own
weight, the weight of the walls, and the weight of the equipment.

Analysis of the vibrations of the concrete slab placed on the spring batteries is made using the
model with finite elements presented in Section 3 [27–31]. We are interested in the vibrations of the
concrete platform caused by the elastic suspension based on placement the equations of motion of the
platform are given by:
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[ m ]
{ ..

x
}
+ [ c ]

{ .
x
}
+ [ k ]{ x } = {

f (t)
}
, (1)

where [m] is the inertial matrix, [c] is the damping matrix, [k] is the stiffness matrix (these three matrix
are real, symmetric and positive definite), { x} is the vector of generalized displacements,

{ .
x
}

is the

column vector of velocities, and
{ ..

x
}

is the vector of the generalized accelerations.
Let us consider the form free vibrations of this system, a particular expression of (1):

[ m ]
{ ..

x
}
+ [ k ]{ x } = 0, (2)

then, the time dependence of { x } is harmonic

{
x(t)

}
= C{u} cos(ωt−ϕ), (3)

where C is constant, ω is the circular frequency, and ϕ is the initial phase shift.
Substitution of (3) into (2) yields

[ k ]{ u } = ω2[ m ]{u }. (4)

Equation (4) has nontrivial solutions if and only if:

det
(
[ k ] −ω2[ m ]

)
= 0. (5)

If n is the dimension of the system, Equation (5) represents a polynomial:

(
ω2

)n − I1
(
ω2

)n−1
+ I2

(
ω2

)n−2 − . . . .+(−1)nIn = 0, (6)

with the real and positive solutions: ω2
1,ω2

2, . . . . . . ,ω2
n. Equation (6) possesses, in general, n distinct

roots, referred to as eigenvalues. For everyω2
i , the linear homogeneous system (4) is written in the form:

(
[ k ] −ω2[ m ]

)
{u } = 0, (7)

we obtain the solution {ui }, i = 1, 2, . . . , n. These vectors are the eigenmodes of vibration.
The case of multiple roots is not considered herein. The square roots of the eigenvalues are the

system of natural frequencies,ωr, usually presented in order of increasing magnitude (see Table 1).

Table 1. Eigenfrequencies (in Hz).

Nr. 25,000 Tons 35,000 Tons 54,000 Tons

1 2.27 1.90 1.53
2 2.43 2.03 1.64
3 2.49 2.08 1.68
4 3.38 2.82 2.28
5 3.40 2.84 2.29
6 3.45 2.89 2.33
7 3.60 3.01 2.42
8 3.66 3.06 2.47
9 3.89 3.26 2.62
10 3.92 3.28 2.64
11 4.00 3.34 2.69
12 4.04 3.38 2.73
13 4.14 3.46 2.78
14 4.38 3.66 2.95
15 4.42 3.69 2.96
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Table 1. Cont.

Nr. 25,000 Tons 35,000 Tons 54,000 Tons

16 4.43 3.71 2.98
17 4.52 3.78 3.04
18 4.57 3.82 3.07
19 4.60 3.85 3.10
20 4.64 3.88 3.12
21 4.72 3.95 3.19
22 4.79 4.00 3.23
23 4.97 4.16 3.36
24 5.04 4.21 3.4
25 5.06 4.23 3.41
26 5.18 4.33 3.49
27 5.33 4.46 3.6
28 5.42 4.54 3.66
29 5.57 4.66 3.76
30 5.64 4.72 3.8
31 5.67 4.74 3.83
32 5.84 4.88 3.94
33 6.05 5.06 4.08
34 6.3 5.27 4.25
35 6.38 5.33 4.31
36 6.62 5.53 4.47
37 6.69 5.59 4.51
38 6.90 5.77 4.66
39 7.10 5.93 4.79
40 7.13 5.96 4.81

In the paper, a calculation was made of the eigenfrequencies (resonance frequencies) and of the
eigenmodes of vibration of the concrete slab. In Figure 13, Figure 14, Figure 15, Figure 16, Figure 17,
Figure 18, Figure 19, Figure 20, Figure 21, and Figure 22, the first 10 modes of vibration are represented.
Modes 10–20 are represented in Appendix C (Figures A5–A15).
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Figure 16. Eigenmode 4. Hz82.24 =ω ;  

  

(a) perspective (b) top view 

Figure 15. Eigenmode 3. ω3 = 2.08 Hz.

Symmetry 2020, 12, x FOR PEER REVIEW 12 of 23 

 

 
 

(a) perspective (b) top view 

Figure 15. Eigenmode 3. Hz08.23 =ω ;  

  

(a) perspective (b) top view 

Figure 16. Eigenmode 4. Hz82.24 =ω ;  

  

(a) perspective (b) top view 

Figure 16. Eigenmode 4. ω4 = 2.82 Hz.
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Figure 16. Eigenmode 4. Hz82.24 =ω ;  

  

(a) perspective (b) top view 

Figure 17. Eigenmode 5. ω5 = 2.86 Hz.
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Figure 18. Eigenmode 6. Hz89.26 =ω .;  

  

(a) perspective (b) top view 

Figure 19. Eigenmode 7. Hz01.37 =ω ;. 

  

(a) perspective (b) top view 

Figure 18. Eigenmode 6. ω6 = 2.89 Hz.
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(a) perspective (b) top view 

Figure 19. Eigenmode 7. ω7 = 3.01 Hz.
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(a) perspective (b) top view 

Figure 20. Eigenmode 8. ω8 = 3.06 Hz.
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5. Discussion

The paper studies the response of the inertial platform supported on sets of spring batteries
on ground base to identify if excessive vibrations exist and how are the different ground vibration
transmitted to the platform. On the platform, a lot of devices and instruments are distributed implying
in the scientific researches and the necessary annexes. Usually, vibrations coming from the vehicles and
other anthropic activities and transmitted through the ground are nonstationary vibrations. To reduce
the influence of these vibrations on the inertial platform, this is suspended on a set of spring batteries
and dampers that can be activated or not. This suspension constitutes an excellent tool to reduce the
transfer of the unwanted vibrations to the studied platform.

The deformability of the concrete platform under the action of its own weight and under the
action of the weight of the walls is also studied. It is found that the relative deformations and stresses
that occur in the platform material are relatively small, so there are no problems related to the strength
and cracking of the platform, even if it is charged at high loads.

The platform consists of two plates, one main, on which are found most of the instruments and
devices and where the massive partition walls are raised, which is about 1600 mm, and the second
platform, which I called secondary, smaller and thinner, is only 600 mm, and weighs about half the
weight of the unloaded main board. If the main board is loaded with all the equipment and partitions,
the platform weighs about 1/6 of the total weight of the platform. This platform is found to have
significant amplitudes in its eigenmodes, so in the case of external excitations with frequencies close to
the natural frequencies of the entire platform, we can expect an amplification of these excitations at
the secondary platform. The problem can be solved by activating additional springs from the spring
batteries that support the secondary platform.

Additionally, another problem that can be mentioned is the fact that the eigenfrequencies of
the platform are found in the range where the earthquakes that take place in the area have the
excitation frequencies.

6. Conclusions and Future Works

The results based on the obtained model allow the formulation of some conclusions regarding the
achievement of the objectives proposed within the project. The static analysis of the platform indicates
that under the action of its own weight, supported on the elastic springs, the platform deforms the most
by 26 mm, which corresponds to a strain of about 0.1%. In addition, under the action of additional
weights that could appear on the platform (mainly these weights are represented by different dividing
concrete walls), the deformations that can occur are not important. The calculation made with masses
of 1000 tons (much exaggerated compared to the real situation—the hardest wall we identified has
less than 250 tons) placed in different parts of the platform indicated to us, in the most unfavorable
case, a deformation of about 250 mm corresponding to a strain of 1%. This situation shows us that
any constructions on the platform or changes in the architecture will not influence its flatness and,
therefore, the operation of the measuring instruments that impose certain strict conditions.

The dynamic analysis of the platform indicates a large number of natural frequencies below
5 Hz, which is a negative aspect from the point of view of the platform’s behavior in earthquakes.
Anthropic activities will not influence the behavior of the system, taking into account the frequencies
generated by these activities. Instead, the effects of a catastrophic event (earthquake) could amplify
the possibilities of vibration in certain directions of the platform, which could lead to destruction
and damage to the installation. For this reason, a careful calculation is required to the structure’s
response in case of an earthquake and its permanent monitoring for the analysis of the transmissibility
of external excitations. The ELI-NP project has a decoupling system for earthquakes, the need for an
additional isolation system of the entire mass should be studied. Such a study, the necessity of which
has been demanded by the researches made, is to be carried out.
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Figure A1. Deformation of the concrete platform placed on the spring batteries: (a) under its own
weight and (b) loaded with 1000 tons in point 1.
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Figure A4. Deformation of the concrete platform loaded with 1000 tons in points 6.

Comment: The load of 1000 tons represents only a hypothetical load, to see how the platform
deforms in extreme situations. In practical cases, it is hard to believe that a task will be added,
even 10 times less, in point 6 studied. Usually, a large load can occur when a wall is realized or removed.
A real situation was encountered when a 250 tons wall was removed. The deformation in this case
was much smaller than the one calculated for the hypothetical case. A simulation with a heavier wall
was made in Figure 12. It has been found that in this case, the difference between deformations was
much smaller. At the same time, the dimensions of the structure are of the order of tens of meters and
250 mm compared to 25 m representing a strain of 1%.
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Appendix B. Stress Field in the Platform (Expressed in MPa)
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Abstract: The dynamic model of the system of bodies with elastic connections substantiates the
conceptual basis for evaluating the technological vibrations of the compactor roller as well as of the
parameters of the vibrations transmitted from the vibration source to the remainder of the equipment
components. In essence, the multi-body model with linear elastic connections consists of a body
in vertical translational motion for vibrating roller with mass m1, a body with composed motion of
vertical translation and rotation around the transverse axis passing through its weight center for the
chassis of the car with mass m and the moment of mass inertia J and a body of mass m’ representing
the traction tire-wheel system located on the opposite side of the vibrating roller. The study analyzes
the stationary motion of the system of bodies that are in vibrational regime as a result of the harmonic
excitation of the m mass body, with the force F(t) = m0rω2 sinωt, generated by the inertial vibrator
located inside the vibrating roller. The vibrator is characterized by the total unbalanced m0 mass
in rotational motion at distance r from the axis of rotation and the angular velocity or circular
frequency ω.

Keywords: multibody; elastic bonds; vibrations; initial matrix; stiffness matrix

1. Introduction

The real-time assessment of the degree of compaction of the foundation soil both with stabilized
natural soil as well as mixed with stone mineral aggregates or in the case of compaction of asphalt
concrete layers, requires precision and high sensitivity of the dynamic response in amplitude of the
compactor roller to the changes of soil rigidity as a result of the compaction process.

After each passage on the same compacted layer, the final rigidity of the soil has a new value,
higher than the initial rigidity. In this case, after each passage, there can be estimated, through an
appropriate instrumental system, the modified amplitude of vibration in correlation with the new state
of compaction of the soil corresponding to modified rigidity.

Currently, there are several companies manufacturing vibration compactor machines that use
instrumental and computer systems for capturing, treating, and processing the specific signal to the
vibration of the vibrating roller. Usually, the dynamic calculation model used is reduced to that of the
vibrating roller system with a single degree of freedom, without taking into account the effect of the
other vibrating moving masses of the machine.

Frequently, for vibration regime at frequencies in the range of 40–50 Hz, the system ensures the
degree of compaction in real time based on the change in rigidity with each passing on the same layer
of land. In this case, the first two resonant frequencies are neglected, although they may be important
in the work process.

At frequencies between 15 and 30 Hz, the automatic analysis of technological vibration systems
produce errors 30% larger, which leads to major inconveniences. For these reasons, the current dynamic
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study highlights the influence of the masses of the body assembly at various dynamic regimes for
functional frequencies from 15 Hz to 80 Hz. According to the category of the compaction technology,
that is, the change in final rigidity after each passage of the compacted layer, there are many scientific
and technical approaches with case studies on technologically defined sites that require a more complete
dynamic approach, highlighting the influences of the body system on the dynamic response and of the
degree of compaction [1,2].

The numerical data used for the case study represent parametric values established on an
experimental basis both in the laboratory and “in situ”. [2,3]

2. Multibody System Model

The dynamic multibody model of the vibrating roller is presented in Figure 1 [4–6], where the
following notations are used:

I1—elastic connection point of the vibrating roller with vertical translational movement;
I2—connection point of the elastic system to the front side of the car chassis;
I3—connection point between the rear of the car chassis to the traction unit consisting of tire-wheels;
m’—mass of the vibrating roller;
m—mass of the car chassis;
J = Jz—moment of mass inertia in relation to the transverse axis z passing through the center of

mass C of the car chassis;
m1—mass of the traction group;
k1—rigidity of the compacted material;
k2—rigidity of the elastic connection system and dynamic insulation between the vibrating roller

and the front chassis;
k3—combined rigidity of the traction wheel tires in contact with the compacted material;
a, b—distances of the C mass center in relation to the I2 and I3 ends of a chassis, so that a + b = l,

where l = I2I3 is the equivalent length of the chassis;
x, ϕ = ϕz—instantaneous displacements of the chassis; and
x1, x2, x3—absolute instantaneous displacements relative to a fixed reference system.

Symmetry 2020, 12, x FOR PEER REVIEW 2 of 11 

 

dynamic study highlights the influence of the masses of the body assembly at various dynamic 

regimes for functional frequencies from 15 Hz to 80 Hz. According to the category of the compaction 

technology, that is, the change in final rigidity after each passage of the compacted layer, there are 

many scientific and technical approaches with case studies on technologically defined sites that 

require a more complete dynamic approach, highlighting the influences of the body system on the 

dynamic response and of the degree of compaction [1,2]. 

The numerical data used for the case study represent parametric values established on an 

experimental basis both in the laboratory and “in situ”. [2,3] 

2. Multibody System Model 

The dynamic multibody model of the vibrating roller is presented in Figure 1 [4–6], where the 

following notations are used: 

I1—elastic connection point of the vibrating roller with vertical translational movement; 

I2—connection point of the elastic system to the front side of the car chassis; 

I3—connection point between the rear of the car chassis to the traction unit consisting of tire-

wheels; 

m’—mass of the vibrating roller; 

m—mass of the car chassis; 

J = Jz—moment of mass inertia in relation to the transverse axis z passing through the center of 

mass C of the car chassis; 

m1—mass of the traction group; 

k1—rigidity of the compacted material; 

k2—rigidity of the elastic connection system and dynamic insulation between the vibrating roller 

and the front chassis; 

k3—combined rigidity of the traction wheel tires in contact with the compacted material; 

a, b—distances of the C mass center in relation to the I2 and I3 ends of a chassis, so that a + b = l, 

where l = I2I3 is the equivalent length of the chassis; 

x, φ = φz—instantaneous displacements of the chassis; and 

x1, x2, x3—absolute instantaneous displacements relative to a fixed reference system. 

 

Figure 1. Dynamic multibody model with linear elastic connections. 

Instantaneous displacements of points i = 1, 2, 3, can be determined with the following matrix 

relation [7,8]: 

𝑢𝐼𝑖 = {

𝑥𝑖
𝑦𝑖
𝑧𝑖
} + [

0 −𝜑𝑧 𝜑𝑦
𝜑𝑧 0 −𝜑𝑧
−𝜑𝑦 𝜑𝑥 0

] {

𝑥𝑖
𝑦𝑖
𝑧𝑖
}  (1) 

where x, y, z are the tri-orthogonal instantaneous linear coordinates of the mass center belonging to 

each rigid body I1 and C, respectively. 

𝜑𝑥 , 𝜑𝑦, 𝜑𝑧—the tri-orthogonal instantaneous angular coordinates relative to the competing x,y,z 

axes in the center of mass of each rigid body C1 and C2, respectively. 
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Instantaneous displacements of points i = 1, 2, 3, can be determined with the following matrix
relation [7,8]:

uIi =



xi
yi
zi


+




0 −ϕz ϕy

ϕz 0 −ϕz

−ϕy ϕx 0






xi
yi
zi


(1)

where x, y, z are the tri-orthogonal instantaneous linear coordinates of the mass center belonging to
each rigid body I1 and C, respectively.

ϕx,ϕy, ϕz—the tri-orthogonal instantaneous angular coordinates relative to the competing x,y,z
axes in the center of mass of each rigid body C1 and C2, respectively.
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For the m1 mass body with vertical translational motion and the null instantaneous angular
coordinates, that is ϕx = ϕy = ϕz = 0, the displacement of the I1 ≡ C1 point is

uI1 =



x1

0
0


+




0 0 0
0 0 0
0 0 0






0
0
0


= x1 (2)

For the mass body m and moment of inertia Jz = J, with the instantaneous angular coordinates
ϕx = ϕy = 0 and ϕz = ϕ, it has a plane motion (x, ϕ), so that the displacements of points I2 and I3 can
be determined as follows:

uI2 =



x
0
0


+




0 −ϕ 0
ϕ 0 0
0 0 0






0
a
0


= x− aϕ (3)

uI3 =



x
0
0


+




0 −ϕ 0
ϕ 0 0
0 0 0






0
−b
0


= x + bϕ (4)

2.1. Kinetic Energy of the Multibody System

Taking into account the motion of body C1 of mass m1 with translation coordinate x1 and of
the assembled body C2C3 with mass m + m’, moment of mass inertia J + m′b2, with coordinates x,
ϕ (vertical translation and rotation), the kinetic energy of the assembly of bodies is [9,10]

2E =
〈 .
q, M

.
q
〉
=

.
qTM

.
q. (5)

where
.
q is the column vector of the generalized velocity with

.
qT

=
[ .

x1
.
x

.
ϕ

]
;

M—symmetric and positively defined inertia matrix; and〈 .
q, M

.
q
〉
—scalar product between vectors

.
q and M

.
q.

Matrix M of the entire system of instantaneous moving bodies with generalized coordinates x1, x,
and ϕ, consists of inertial elements of zero order m1, m + m’, one order m’b and two order J + m′b2,
placed on the main diagonal and symmetrically in relation to it, highlighting an inertial coupling due
to a C3 body eccentrically assembled on body C2. In this case, matrix M can be written as follows:

M =




m1 0 0
0 m + m′ m′b
0 m′ J + m′b2




(6)

The analytical expression of the kinetic energy, based on relations (5) and (6), can be developed in
the form of

2E = m̃1
.
x2

1 + m̃2
.
x2

+ m̃3
.
ϕ

2
+ 2m̃23

.
x

.
ϕ (7)

where the following notations were used for the inertia coefficients m2, m3, and m23, so m̃2 = m + m′;
m̃3 = J + m′b2; m̃23 = m′b.

2.2. Elastic Potential Energy

For the elastic elements, modeled as linear springs with rigidities k1, k2, k3, the vector of the elastic
deformations v, with vT =

[
v1 v2 v3

]
has the following components [7,11]:

v1 = x1

v2 = uI2 − x1 = x− aϕ− x1 (8)
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v3 = x3 = x + bϕ

Thus, vector v can be written as

v =



x1

x− aϕ− x1

x + bϕ


(9)

The transition from the elastic deformations vector v
=

to the vector of instantaneous displacements

q with qT =
[

x1 x ϕ
]

can be done by the linear transformation of

v = Aq (10)

where A is the matrix of the linear transformation as an operator of influence of the displacements on
deformations.

Taking into account relations (9) and (10), matrix A can be formulated as follows:

A =




1 0 0
−1 1 −a
0 1 b




(11)

The potential elastic energy 2V can be formulated based on the use of the scalar product between
vectors v and K0 v, where K0 = diag

[
k1 k2 k3

]
, as follows:

2V = 〈v, K0v〉 (12)

Using the linear transformation (10) where A has the property of a self-adjoint operator inside the
scalar product, relation (12) becomes

2V =
〈
Aq, K0Aq

〉

or
2V =

〈
q, ATK0Aq

〉
=

〈
q, Kq

〉
(13)

where K is the rigidity matrix of the multibody elastic system.
In this case, matrix K = ATK0Aq can be written as

K = ATK0Aq =




k1 + k2 −k2 ak2

−k2 k2 + k3 −ak2 + bk3

ak2 −ak2 + bk3 a2k2 + b2k3




(14)

It is found that matrix K is symmetrical and positively defined with elastic coupling elements
symmetrically placed in relation to the main diagonal. In general form, matrix K can be written
as follows:

K =




k11 k12 k13

k21 k22 k23

k31 k32 k33




(15)

where elements kij are those in formulation (15), that is:

k11 = k1 + k2; k12 = −k2; k13 = ak2

k21 = −k2 ; k22 = k2 + k3; k23 = ak2 + bk3

k31 = ak2; k32 = −ak2 + bk3; k33 = a2k2 + b2k3

124



Symmetry 2020, 12, 1617

The potential elastic energy in analytical form, in this case, can be formulated in the form of
2V = Φ, as follows

2V = (k1 + k2)x2
1 + (k2 + k3)x2 +

(
a2k2 + b2k3

)
ϕ2 − 2k2x1x + 2(−ak2 + bk3)xϕ+ 2ak2x1ϕ = Φ (16)

Elastic force Qj, which corresponds to the generalized coordinate qj can be written as follows:

QV
j = −∂V

∂q j
(17)

In this case, deriving the relation (16) in the form of 2V = Φ in relation to coordinate q j, that is
∂(2V)
∂q j

= ∂Φ
∂q j

leads to ∂V
∂q j

= 1
2
∂Φ
∂q j

, and thus we obtain



QV
1 = − ∂V

∂q1
= − 1

2
∂Φ
∂q1

QV
2 = − ∂V

∂q2
= − 1

2
∂Φ
∂q2

QV
3 = − ∂V

∂q3
= − 1

2
∂Φ
∂q3

(18)

Taking into account function Φ in relation (16) and the fact that q1 = x1, q2 = x and q3 = ϕ,
applying relations (18), we obtain



QV
1 = − 1

2
∂Φ
∂q1

= −(k1 + k2)x1 + k2x− ak2ϕ

QV
2 = − 1

2
∂Φ
∂q2

= −(k2 + k3)x + k2x1 − (−ak2 + bk3)ϕ

QV
3 = − 1

2
∂Φ
∂q3

= −
(
a2k2 + b2k3

)
ϕ− (−ak2 + bk3)x− ak2x1

(19)

2.3. Disruptive Force

The harmonic excitation is given by the disruptive force F(t) = F0 sinωt, where the amplitude of
the force is F0 = m0rω2. This is applied on body C1 in order to generate forced vibrations in the vertical
direction so that the mass body m1 and coordinate x1 only have vertical translational movement.

In this case, the vector of disruptive forces is

fT =
[

F0 sinωt 0 0
]

The generalized force corresponding to the disruptive force after the generalized coordinated qj
can be determined as follows:

QF
j =

δL j

δq j
(20)

where δL j is the virtual mechanical work of force F;
δq j—virtual variation of coordinate qj,
In this case, forces QF

1 , QF
2 , QF

3 emerge as

QF
1 =

Fδx1

δx1
= F = F0 sinωt (21)

and
QF

2 = QF
3 = 0 because δL2 = δL3 = 0.

3. Analysis of Forced Vibrations

The response of the multibody system with elastic connections is given by the excitation given by
the harmonic force F(t) = F0 sinωt. F0 = m0rω2 defines the inertial force of mass m0 in the rotational
motion at distance r with the circular frequency ω in relation to the axis of rotation of the vibrating
device placed symmetrically inside the vibrating roller [1,2,8].
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For the multibody system, the Lagrange equations of the second kind can be applied as follows [5,11]:

d
dt



∂E
∂

.
q j


−

∂E
∂q j

= QV
j + QF

j , j = 1, 2, 3 (22)

where E is the kinetic energy expressed by relation (7), and the generalized forces QV
j and QF

j are given
by the relations (19) and (21), respectively.

Taking into account relations (7), (19), and (21), respectively, the Lagrange equations of the second
kind given by relation (22), for each degree of freedom, can be written in the form



m1
..
x1 + (k1 + k2)x1 − k2x + ak2ϕ = F0 sinωt

m̃2
..
x + m̃23

..
ϕ+ (k2 + k3)x− k2x1 + (−ak2 + bk3)ϕ = 0

m̃23
..
x + m̃3

..
ϕ+

(
a2k2 + b2k3

)
ϕ+ (−ak2 + bk3)x + ak2x1 = 0

(23)

In stationary forced mode, the dynamic response is given by the solutions of the system of linear
differential Equation (23), as follows: 

x1 = A1 sinωt
x = Ax sinωt
ϕ = Aϕ sinωt

(24)

which introduced together with
..
x1,

..
x and

..
ϕ in system (23) results in an algebraic system having as

unknown amplitudes A1, Ax, and Aϕ, as



a11A1 + a12Ax + a13Aϕ = F0

a21A1 + a22Ax + a23Aϕ = 0
a31A1 + a32Ax + a33Aϕ = 0

(25)

Coefficients aij i, j = 1, 2, 3 have the following expressions thus determined:



a11 = k1 + k2 −m1ω2

a22 = k2 + k3 − m̃2ω2

a33 = a2k2 + b2k3 − m̃3ω2

a12 = a21 = −k2

a13 = a31 = −ak2

a23 = a32 = −ak2 + bk3 − m̃23ω2

(26)

The determinant of the unknown coefficients based on relation (25) emerges as follows:

D = a11a22a33 + 2a12a13a23 − a11a23
2 − a22a13

2 − a33a12
2 (27)

Condition D = 0 generates the pulse equation, from where there emerges three real values of ω
that coincide with the three own pulses ωnj, j = 1, 2, 3.

Amplitudes A1, Ax, and Aϕ are obtained by solving out the algebraic equation system (25) applying
Cramer’s method, so that we have

A1 =
(
a22a33 − a23

2
)m0rω2

D
(28)

Ax = A2 = (a13a23 − a12a33)
m0rω2

D
(29)

Aϕ = A3 = (a12a23 − a13a22)
m0rω2

D
(30)
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For a vibrating equipment modeled as a multibody system, the parametric values resulting from
the numerical evaluation are given as follows: m1 = 2·103 kg; m̃2 = 4.5·103 kg; m̃3 = 32·103 kgm2;
m̃23 = 106 kgm; k1 = (1; 2; 4; 6)·107 N/m; k2 = 106 N/m; k1 = 1.25·106 N/m; m0r = 2 kgm; a = 1 m;
b = 2 m.

For the variation of ω in the range of values (0 ÷ 400) rad/s, the response curves of amplitudes
A1(ω), A2(ω), and A3(ω) were drawn and represented in Figures 2–4 for four discrete values of
rigidity k1. Thus, three own pulses emerge of which the first two at the values ωn1 = 12.23 rad/s,
ωn2 = 22.24 rad/s, are common and constant for the four values of rigidity k1 = (1; 2; 4; 6)·107 N/m;
the last value of the own pulse ωn3 is different according to rigidity k1. In this case, for kj, j = 1, 2,

3, we have k1 = 107 N/m, ω(1)
n3 = 74.73 rad/s, k1 = 2·107 N/m, ω(2)

n3 = 102.1 rad/s, k1 = 4·107 N/m,

ω
(3)
n3 = 142.6 rad/s, and k1 = 6·107 N/m, ω(4)

n3 = 174.1 rad/s. It can be found that in the post-resonance
regime for ω > ωnj, amplitude A1 tends asymptomatically toward a constant value and stable motion
at the value A1 = 1.245 mm, and amplitudes A2 and A3 tend toward very small values, of the order
1.87 × 10−3 mm, respectively, 3 × 10−7 rad.
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In order to determine the resonance pulses to ensure a post-resonance regime, only the significant
linear elastic case was considered, obviously with the neglect of the viscous effects.

The low numerical values of amplitudes A2 and A3 in post-resonance highlight the fact that the
forced vibrations transmitted from body C1 to body C2 are negligible.

The amplitude variation curves in Figures 2–4 were numerically elevated for the previously
specified parametric data for a towed vibrating roller, with a hydrostatic system for continuously
changing the excitation pulsation (i.e., the angular velocity of the eccentric mass of the vibrator).
Thus, the resonance pulses were measured for each case, with an accuracy of ±5 Hz compared to
the numerically obtained value. A Bosch hydrostatic control system and a Bruel & Kjaer vibration
measurement system were used.

4. Conclusions

The structural assembly of a vibrating roller can be modeled as a system of two rigid bodies
with linear elastic connections so that two contradictory desiderata can be achieved simultaneously,
namely: achieving technological vibrations for body C1 (vibrating roller) and the significant reduction
of the vibrations transmitted to body C2 (machine chassis) in the control cabin was assembled with the
working space for the operating mechanic and the drive unit.

In this context, the modeling of the multi-body system was conducted taking into account the
inertial characteristics in direct correlation with the possible and significant movements of the two rigid
bodies. Thus, the vertical translational motion of body C1 of mass m1 is characterized by a coordinate
or a single dynamic degree of freedom that describes the vertical instantaneous displacement.

The motion of the C2 body is characterized by two degrees of dynamic freedom defined by the
x and ϕ coordinates. They describe the instantaneous vertical translational motion and respectively,
the instantaneous angular rotational motion around the horizontal axis passing through the center of
gravity of body C2. In this case, the multibody system is characterized by three degrees of dynamic
freedom noted with x1, x, and ϕ.

As a result of the dynamic study developed in the paper, based on the numerical analysis and the
experimental results obtained on five categories of equipment, the presented model faithfully describes
the dynamic behavior of the tested equipment. In this context, the following conclusions can be drawn.

(a) The dynamic model of the multibody system with elastic connections is characterized by the
inertia matrix M and by the rigidity matrix K, both symmetrical in relation to the main diagonal;

(b) The elements of inertial coupling m23 = m′b and of elastic coupling −k2, ak2 and −ak2 + bk3 are
found in the differential equations of motion (23) with significant effects on the equation of own pulses
(27) and of amplitudes A1, A2, A3 as a dynamic response to the harmonic excitation F(t) = m0rω2 sinωt.
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(c) The numerical and experimental analysis on a vibrating roller equipment, with mass, elastic and
excitation data, for the evaluated case study, provides the following conclusions:

- the first two own pulses with relatively low values ωn1 = 12.23 rad/s and ωn2 = 22.24 rad/s were
influenced by the fact that the inertial effect is large enough and rigidity k2 of the elastic connection
system between bodies C1 and C2 is low enough for good post-resonance vibration isolation at
ω > ωn3;

- the last own pulse ωn3, is mainly influenced by rigidity k1 of the compaction soil. Thus, for four
distinct values of k1, which correspond to successive passages on the same layer of road structure,
in the compaction process, there emerged four distinct values of the own pulses (resonance) ωn3,
in ascending order, as follows: 74.73 rad/s, 102.1 rad/s, 142.6 rad/s, 174.1 rad/s [12].

(d) The family of curves for amplitudes A1, A2, and A3 represented in Figures 2–4 highlights the
fact that in the post-resonance regime for ω > ωn3, amplitude A1 of the technological vibrations is
constant and stable for ω ∈ (300 . . . 400) rad/s, and amplitudes A2 and A3 tend toward small values,
assuring the favorable effect of dynamic insulation for body C2.

(e) The analytical relations (26), (27), and (28) can be used for the parametric optimization of the
dynamic response, as follows:

- amplitude A1 of the technological vibrations, which must be constant and stable at the excitation
pulse ω, must meet the post-resonance operating condition ω > 1.5 ωn3. Practically, it is
recommended that ω = 2ωn3 to achieve the technological requirements of efficient compaction;

- amplitudes A2 and A3 of body C2 must have low values so that the degree of isolation of the
vibrations transmitted from the body C1 to be Iv ≥ 95%; and

- the first two own pulses or resonance circular frequencies must be within the range (10 ÷ 60) rad/s,
so that the influence of the two resonance zones for ω = ωn1 and ω = ωn2 becomes negligible for
stable optimal operation [13].

Given the above, the analytical approach of the dynamic behavior of multibody systems with
effective applications for vibratory rollers for compacting road structures can be useful in the stage of
establishing technical design solutions as well as in the parametric optimization stage.

This can be achieved by adjustments and tuning that can be made during the working process
such as the discrete change in steps, the static moment m0r, and/or the continuous modification of the
excitation pulse ω that can be achieved with the hydrostatic actuation of the vibrator [14].
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Abstract: Reusable launch vehicles (RLVs) are a solution for effective and economic transportation
in future aerospace exploration. However, RLVs are limited to being used under simple landing
conditions (small landing velocity and angle) due to their poor adaptability and the high rocket
acceleration of current landing systems. In this paper, an adaptive RLV landing system with
semi-active control is proposed. The proposed landing system can adjust the damping forces of
primary strut dampers through semi-actively controlled currents in accordance with practical landing
conditions. A landing dynamic model of the proposed landing system is built. According to the
dynamic model, an light and effective RLV landing system is parametrically designed based on the
response surface methodology. Dynamic simulations validate the proposed landing system under
landing conditions including the highest rocket acceleration and the greatest damper compressions.
The simulation results show that the proposed landing system with semi-active control has better
landing performance than current landing systems that use passive liquid or liquid–honeycomb
dampers. Additionally, the flexibility and friction of the structure are discussed in the simulations.
Compared to rigid models, flexible models decrease rocket acceleration by 51% and 54% at the
touch down moments under these two landing conditions, respectively. The friction increases rocket
acceleration by less than 1%. However, both flexibility and friction have little influence on the distance
between the rocket and ground, or the compression strokes of the dampers.

Keywords: reusable launch vehicles; soft landing; magnetorheological fluid; numerical simulation;
multibody systems with flexible elements

1. Introduction

As one of the most important technologies for aerospace exploration, advances in launch vehicles
have greatly promoted aerospace developments [1]. Reusable launch vehicles (RLVs) can achieve fast
and cheap launches by dividing the launch costs into several launch missions. Since the 1950s, many
countries have focused on developing RLVs. From American X-series spacecraft to the Falcon-series
rockets of SpaceX, RLVs have always been a hot topic in aerospace technology [2].

The landing system is a critical subsystem of RLVs, the malfunction of which can cause recycle
failure [3]. The design of RLV landing systems is quite difficult, because it requires high reusability,
effective impact absorption, reliability, and heat resistance [4]. The Delta Clipper proposed by the
McDonnell-Douglas Corporation was the first RLV to use a vertical soft-landing system. The Delta
Clipper was to be a single-stage-to-orbit vehicle that took off vertically and landed vertically [5].
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However, the project was aborted due to lack of funding, and it has not been used in practical
engineering. The New Shepard proposed by the Blue Origin Corporation completed a sub-orbital
experiment and landed vertically via retractable landing legs. However, it was only just able to
reach the Kármán Line (100 km a.s.l.) [6]. The Falcon-series rockets proposed by SpaceX were the
first to realize the application of vertical landing in aerospace missions. The landing gears of the
Falcon-series rockets use four sets of landing gears with liquid dampers that include primary struts,
auxiliary struts, and locking mechanisms [7–9]. The Ariane Group, the French Space Agency, and the
Deutsches Zentrum für Luft- und Raumfahrt have also proposed a new low-cost reusable rocket
project called Callisto. Callisto uses four landing legs to absorb the impact energy, which is similar
to the Falcon-series rocket [10,11]. However, it is still in the design stage. Yue [12–15] and Lei [16]
proposed a vertical landing system with novel oleo–honeycomb dampers and conducted many landing
experiments. The oleo–honeycomb dampers were able to improve the landing performance of the
RLV under dangerous conditions. However, it was necessary to replace the aluminum honeycomb
after every landing. In summary, the current landing systems employed by RLVs use passive liquid
or liquid–honeycomb dampers to absorb impact energy. These two kinds of passive dampers have
complex structures, as well as greater mass and rocket accelerations. Additionally, they are not
able to adjust damping forces in order to meet practical landing conditions, which require a low
landing velocity and angle, making the recycling of rockets more difficult. There is limited research on
controllable landing systems in RLVs.

In this paper, an RLV landing system with semi-active control is proposed. Its dynamic landing
model, control approach, and parameterized design are introduced. Furthermore, the proposed
landing system is validated by means of multiple rigid bodies and multiple coupled flexible–rigid
dynamic simulations. The influence of structural flexibility and friction during the RLV landings is also
discussed in the dynamic simulations. Section 2 introduces the overall scheme, working principles,
and control approach of the proposed RLV landing system. Section 3 introduces the landing dynamic
model and parameterized design of the RLV landing system. Section 4 validates the proposed landing
system and discusses the influence of structural flexibility and friction on the RLV landing performance
with reference to the simulations.

2. Working Principles of the RLV Landing System

2.1. Overall Scheme of the RLV Landing System with MRF Dampers

Figure 1 shows the overall scheme of the RLV landing system with magnetorheological fluid (MRF)
dampers, which consists of a rocket and four sets of landing gears. Each set of landing gear includes
a primary strut (including a damper and deployment), an auxiliary strut, and a pad. The primary
strut damper is full of MRF, whose profile is shown in Figure 2. The primary strut damper includes a
master cylinder (the inner diameter is D), a piston (compose of a magnetic core and a group of coils,
the length is L), a piston rod (the diameter is d), a nitrogen accumulator, and a gap between the piston
and cylinder (the width is h). The magnetic properties of the primary strut materials are shown in
Table 1. The MRF-132DG produced by the Lord Company is used as an example in this paper. Its main
specifications are shown in Table 2.
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Figure 2. The cross-section diagram of the primary strut damper.

Table 1. The magnetic properties of primary strut materials.

Structure Material Relative Permeability Conductivity (S/m) Relative Permittivity

Cylinders Aluminum 1 3.774 × 107 1.000022202
Magnetic core AISI1010 500 6.452 × 106 1

Coils Copper 1 5.998 × 107 0.9999935542
Gas in the accumulator Nitrogen 1 0 1

Table 2. Main specifications of MRF-132DG.

Parameters Value

Viscosity 0.112 Pa s
Density 2.95 g/cm3

Solid content by Weight 20.98%
Maximum Yield Stress 48 kPa
Operating Temperature −40∼+130 ◦C

There are N turns coils on the magnetic core of the piston. The length of the magnetic flux density
lines along the coils is L1, the length of the magnetic flux density lines in the gap is h, and the length
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of the arched magnetic flux density lines out the cylinder is L2. Based on the Maxwell equation and
Ampere circuit rule, ∫

L1

B1·dl +
∫

2h

B2·dl +
∫

L2

B3·dl = µmNI (1)

where B1 is the magnetic flux density in the magnetic core area, B2 is the magnetic flux density in the
gap, B3 is the magnetic flux density out the cylinder, and µm is the magnetic constant. The magnetic
flux density B is in T, the magnetic field intensity H is in A/m, the electric current I is in A. Due to the
magnetic field intensity in the magnetic core area and gap is much larger than that out the cylinder,
the magnetic field intensity in the gap is

H2 =
B2

µm
=

NI −H1L1

2h
(2)

The relationship between yield stress and magnetic field intensity of MRF-132DG [17,18] is

τ = 2.717× 105 × 0.321.5239tanh(6.33× 10−3·H2) (3)

During the landing, the viscosity and plasticity of the MRF change quickly under the magnetic
fields produced by energized coils. When the piston moves and pushes the MRF to flow through the
gap between the cylinder and piston, the coils energize and produce magnetic fields. The MRF becomes
semi-solid from the liquid in milliseconds, and its yield stress is controlled by different magnetic fields
to absorb the impact energy. After landing, MRF will return to the liquid state without the magnetic
fields [19].

2.2. Working Principles of the RLV Landing System

When the rocket approaches the recycle-platform, four sets of landing gears deploy simultaneously
and prepare for the landing impact. After the sensors of pads touch the recycle-platform and the RLV
entries landing state, four primary strut dampers absorb the impact energy by their compressions
and extensions. Their damping forces of primary strut dampers consist of the controllable parts and
uncontrollable parts. The uncontrollable parts are determined by the viscosity and velocity of the MRF,
and the air-spring forces of accumulators. The controllable parts are related to the yield stress of MRF,
which are controlled according to the acceleration, jerk, pitch angle, and roll angle of the rocket [20].

2.3. Control Approach of the RLV Landing System

Due to the landing process is quite short, which requires a fast and robust control approach. Fuzzy
control is suitable for complex systems and can decrease the response time significantly. Furthermore,
the nonlinear characteristics of fuzzy control can increase the system robustness [21–24].

During the landing, the acceleration, jerk, pitch angle, and roll angle of the rocket are set as
inputs. These four inputs are from rocket sensors to the control system of damping forces. Meanwhile,
the yield stresses of four primary struts controlled by currents are set as outputs. The currents can
control the damping forces of every primary strut, respectively. These four outputs are from the control
system of damping forces and act on four primary strut dampers.

The highest acceleration of the RLV should be smaller than 2 g to protect the precise electronic
instruments. Its jerk is set as [−2amax, 2amax]. The pitch angle and roll angle are set as [–3, 3], due to
landing angles of the current RLVs are from −3◦ to 3◦ [2]. The output yield stresses of MRF in
four primary strut dampers are set as [0, 100% Maximum] to adapt to different landing conditions.
Considering the control accuracy and efficiency, the acceleration a is divided into four equal fuzzy
sets (Z, S, M, B). The jerk da is divided into two equal fuzzy sets (Z, B). Both the pitch angle alpha and
roll angle beta are divided into three equal fuzzy sets (N, Z, P). The output yield stresses are divided
into seven equal fuzzy sets (Z, S, SM, M, SB, MB, B). The membership affiliations between physical
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parameters and fuzzy sets for the inputs are shown in Figure 3. The membership affiliations between
physical parameters and fuzzy sets for the outputs are shown in Figure 4.Symmetry 2020, 12, x FOR PEER REVIEW 5 of 20 
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Figure 4. Membership Affiliations of outputs.

The control principles are (a) While the acceleration is increasing and less than the setting value,
controllable damping forces are small. (b) While the acceleration is increasing and larger than the
setting value, controllable damping forces are zero. (c) While the acceleration is decreasing and larger
than the setting value, controllable damping forces are zero. (d) While the acceleration is decreasing
and less than the setting value, controllable damping forces are big. Moreover, the output damping
forces are also determined by the pitch angle and roll angle of the rocket. Detailed fuzzy control rules
for inputs and outputs are shown in the Appendix A.
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3. Landing Dynamic Analysis and Parameterized Design of RLV Landing System

3.1. Landing Dynamic Analysis of the RLV Landing System

Based on the working principles and control approach of the proposed RLV landing system,
its landing dynamic model is required to design the detailed structures. The RLV is composed of
an elastic part and four non-elastic parts, as shown in Figure 5. The elastic part includes the rocket,
four primary strut deployments, and cylinders of four primary strut dampers. The non-elastic parts
include piston rods of four primary strut dampers, four auxiliary struts, and four pads [25]. Due to the
RLV being symmetric, a quarter landing dynamic model of the RLV is built, as shown in Figure 6.
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Figure 6. Quarter landing dynamic model of the RLV landing system.

The coordinate system is at the center of the bottom surface of the rocket. The revolute joint
between the primary strut and rocket is A (xA, yA). The sphere joint between the primary strut and
auxiliary strut is B (xB, yB). The projection of the revolute joint between the auxiliary strut and rocket is
C (xC, yC). The horizontal distance xC between the origin and C is R. The angle between the primary
strut and ground is α. The angle between the auxiliary strut and ground is θ. The vertical distance yA

between the origin and A is H1. The mass center of the elastic part is P1 (0, H1 + H2). Due to auxiliary
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struts occupy most mass of non-elastic parts, whose center can be simplified as the mass center of
non-elastic parts. It is 0.5(xB + xC,yB + yC), which is shown as

P2
(1

2
H2

tanα− tanθ
+ R,

1
2

(
3H1 + H2 + R2 tanα+

H2R tanα
tanα− tanθ

))
(4)

The landing dynamic models of elastic parts are


mp1

··
xp1

= −Fp cosα− Fa cosθ
mp1

··
yp1

= Fp sinα+ Fa sinθ−mp1
g

(5)

where Fp is the damping force of the primary strut, Fa is the damping force of the auxiliary strut.
The landing dynamic models of non-elastic parts are


mp2

··
xp2

= Fp cosα+ Fa cosθ− µFn

mp2

··
yp2

= Fn − Fp sinα− Fa sinθ−mp2
g

(6)

where µ is the friction coefficient. Fn is the contact force between the pad and ground, shown as
follows [26]

Fn =

{
0, q > q0

k(q0 − q)e − c
·
qstep(q, q0 − d, 1, q0, 0), q ≤ q0

(7)

where q is the distance criterion of the impact function, q0 is the trigger distance of the impact function.
k is the stiffness, e is the contact force exponent, c is the contact damping, and d is the penetration depth.

According to the cross-section diagram of the primary strut damper in Figure 2, the damping
force of the primary strut damper Fp is

Fp = Fc + Fu + FNi

= 3πD2Lτ
4h +

3ηL[π(D2−d2)]
2

4πDh3 v + 0.5ρKentry
Ap

4

Agap2 v2

+0.5ρKexit
Ap

4

Agap2 v2 + AnP0
(V0

V

)1.1
(8)

where Fu is the uncontrollable damping force of the MRF damper. Fc is the controllable damping
force of the MRF damper. FNi is the air-spring force caused by the accumulator [27–29]. Fentry is
local resistance caused by the abrupt enlargement, and Fexit is local resistance caused by the abrupt
contraction. ρ is the density of MRF. Kentry is the local resistance coefficient of the entry, and Kexit is the
local resistance coefficient of the exit. v is the piston velocity. Ap is the piston area. Agap is the gap area
between the master cylinder and piston, and An is the cross-section area of the master cylinder. P0 is
the initial pressure of the accumulator. V0 is the initial volume of the accumulator, and V is the volume
of the accumulator during the landing.

3.2. Parameterized Design of the RLV Landing System

According to the proposed landing dynamic model, H1, α, and θ determine the buffer effects
of Fa and Fp, and the efficiency and performance of landing systems [30]. Hence, a parameterized
design of the RLV landing system is proposed according to these three parameters to get an effective
landing system. The lower and upper limits of these three parameters are given in Table 3. The rocket
acceleration, compression strokes of dampers, and the distance between the rocket and ground are
the most important indexes for the design of a landing system [31]. A large rocket acceleration will
damage structures and instruments [32]. Large compressions of primary strut dampers will cause the
rocket to incline or tip over. The distance between the rocket and the ground should be large enough
for a safe landing [33]. The mass is also an important index for spacecraft, a lighter landing system
means a lower launch cost. Hence, these four design targets of the landing system are selected as
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responses, as shown in Table 4. The parameterized design principle based on the response surface
methodology (RSM) is shown as follows



Minimize{D} = Min
{

4
√

R1R2(RP1 −R3)R4

}

s.t.



24 ≤ θ ≤ 30
42 ≤ α ≤ 53

1200 ≤ H1 ≤ 1800

(9)

where RP1 is the initial distance between the mass center of the rocket and the ground.

Table 3. Lower and upper boundaries of parameters [34,35].

Codes Design Parameters Lower Limits Upper Limits

A The angle between the auxiliary strut and ground (θ) 24◦ 30◦
B Angle between the primary strut and ground (α) 42◦ 53◦
C The vertical distance between point A and C (H1) 1200 mm 1800 mm

Table 4. Design target parameters.

Responses Design Targets Goal

R1 Highest rocket acceleration (m/s2) Minimize
R2 Greatest compression stroke (mm) Minimize
R3 Distance between rocket and ground (mm) Maximum
R4 Mass of a set of landing gear (kg) Minimize

{D} is the desirability function, which shows the desirable ranges for each response Ri. The function
combines these four responses in a non-dimensional way. Its design goal is the smallest rocket
acceleration, compression stroke, the mass of a set of landing gear, and the largest distance between
the rocket and ground.

The RSM builds an approximate model between the codes (design parameters) and responses
(design targets) via function fitting. The RSM assumes every code is an n-dimensional vector x∈En,
which is the independent variable of its response function y. Their relationship is y = f (x). Based on
lots of simulation data, an approximate function of the response ỹ is obtained by the undetermined
coefficient method. Considering the efficiency and accuracy, a quadratic function with cross terms is
used, which is shown as follows

ỹ = a0 +
n∑

j=1

a jx j +
n∑

i=1

n∑

j=1

ai jxix j (10)

where a0 is the undetermined coefficient of the constant term, aj is the undetermined coefficient of
the one-degree term, and aij is the undetermined coefficient of the quadratic term. ỹ is close to y by
keeping their sum of error squares smallest via the least square principle [36].

According to the ranges of the three parameters (factors) in Table 3, landing dynamic simulations
are carried to get corresponding four design targets (responses) under different parameter combinations.
Their results are the RSM sampling, as shown in the appendix. Based on the RSM sampling and fit
function in Equation (10), accurately fitted functions between codes and responses are obtained by
the undetermined coefficient method, as shown in Table 5. These code coefficients of functions show
the influences of codes on responses [37]. The influences of three codes and their extended codes on
R1 is C > B > A > BC > AB > A2 > C2 > AC > B2. The influences of three codes and their extended
codes on R2 is B2 > A2 > A > AC > C2 > BC > C > B > AB. The influences of three codes and their
extended codes on R3 is A > C > AC > C2 > B2 > A2> AB > BC > B. The influences of three codes and
their extended codes on R4 is C > A > AC > A2, B2, C2 > BC > AB > B.
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Table 5. Fitted functions between codes and responses.

Response Fitted Functions

R1 R1 = +61.879 + 0.531A + 2.978B + 5.535C − 4.194AB − 13.779AC − 0.248BC − 8.078A2 − 25.670B2 − 10.901C2

R2 R2 = +21.472 + 7.281A − 14.109B − 6.472C − 24.521AB + 7.265AC − 0.111BC + 24.440A2 + 34.093B2 + 6.040C2

R3 R3 = +1121.000 + 317.666A − 520.112B + 263.320C − 118.180AB + 194.039AC − 130.021BC − 35.514A2 + 40.594B2 + 129.553C2

R4 R4 = +87.578 + 3.815A − 11.215B + 5.924 C − 3.3477AB + 3.329AC − 2.125BC

Based on these four functions, the predicted values versus actual values of four responses are
shown in Figures 7–10. The points above or below the line indicate that they are over or under
prediction. The data points of plots are randomly scattered along the 45◦ oblique line, which suggests
that these four functions are accurate. These fitted functions can provide powerful support for the
following parameterized design.

Symmetry 2020, 12, x FOR PEER REVIEW 9 of 20 

 

Table 5. Fitted functions between codes and responses. 

Response Fitted Functions 

R1 R1 = +61.879 + 0.531A + 2.978B + 5.535C − 4.194AB − 13.779AC − 0.248BC − 8.078A2 − 25.670B2 − 10.901C2 

R2 R2 = +21.472 + 7.281A − 14.109B − 6.472C − 24.521AB + 7.265AC − 0.111BC + 24.440A2 + 34.093B2 + 6.040C2 

R3 
R3 = +1121.000 + 317.666A − 520.112B + 263.320C − 118.180AB + 194.039AC − 130.021BC − 35.514A2 + 40.594B2 + 

129.553C2 

R4 R4= +87.578 + 3.815A − 11.215B + 5.924 C − 3.3477AB + 3.329AC − 2.125BC 

Based on these four functions, the predicted values versus actual values of four responses are 

shown in Figures 7–10. The points above or below the line indicate that they are over or under 

prediction. The data points of plots are randomly scattered along the 45° oblique line, which suggests 

that these four functions are accurate. These fitted functions can provide powerful support for the 

following parameterized design. 

 

Figure 7. Predicted versus actual values of the highest rocket acceleration. 

 

Figure 8. Predicted versus actual values of damper greatest compression stroke. 

Figure 7. Predicted versus actual values of the highest rocket acceleration.

Symmetry 2020, 12, x FOR PEER REVIEW 9 of 20 

 

Table 5. Fitted functions between codes and responses. 

Response Fitted Functions 

R1 R1 = +61.879 + 0.531A + 2.978B + 5.535C − 4.194AB − 13.779AC − 0.248BC − 8.078A2 − 25.670B2 − 10.901C2 

R2 R2 = +21.472 + 7.281A − 14.109B − 6.472C − 24.521AB + 7.265AC − 0.111BC + 24.440A2 + 34.093B2 + 6.040C2 

R3 
R3 = +1121.000 + 317.666A − 520.112B + 263.320C − 118.180AB + 194.039AC − 130.021BC − 35.514A2 + 40.594B2 + 

129.553C2 

R4 R4= +87.578 + 3.815A − 11.215B + 5.924 C − 3.3477AB + 3.329AC − 2.125BC 

Based on these four functions, the predicted values versus actual values of four responses are 

shown in Figures 7–10. The points above or below the line indicate that they are over or under 

prediction. The data points of plots are randomly scattered along the 45° oblique line, which suggests 

that these four functions are accurate. These fitted functions can provide powerful support for the 

following parameterized design. 

 

Figure 7. Predicted versus actual values of the highest rocket acceleration. 

 

Figure 8. Predicted versus actual values of damper greatest compression stroke. Figure 8. Predicted versus actual values of damper greatest compression stroke.

Combining the design principle in Equation (10) and the fitted functions in Table 5, the final
design result based on RSM is shown in Table 6.
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Table 6. Final design parameters and targets.

Parameters (Design Parameters) Responses (Design Targets)

A (θ) B (α) C (H1) Highest rocket
acceleration

Greatest compression
stroke

Distance between
rocket and ground Mass

29.58◦ 52.42◦ 1800 mm 17.79 m/s2 47.31 mm 1286.82 mm 85.12 Kg

4. Landing Dynamic Simulations

Based on the design parameters in Section 3, a dynamic model of the RLV with semi-active control
is built in MSC Adams to validate the proposed landing system, as shown in Figure 11. The rocket
diameter is 2250 mm. The entire RLV weighs 5200 kg. Its center of mass is located at (0, 6017 mm,
0). The coordinate system is at the center of the bottom surface of the rocket, as shown in Figure 6.
The highest rocket acceleration and greatest damper compression conditions are selected as examples
because they are two of the most important design parameters of landing gears. These two conditions
are shown in Figure 12. Their motion parameters are shown in Table 7.
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Figure 12. Two typical landing conditions of the RLV.

Table 7. Parameters of two typical landing conditions.

Landing Condition Vertical Velocity Horizontal Velocity Pitch Angle

Highest acceleration −2 m/s 1 m/s 0◦
Greatest compression −2 m/s 1 m/s 3◦

Furthermore, the influences of structural flexibility and friction on landing performance are
discussed in dynamic simulations. The end centers of the primary strut deployments and damper
cylinders are fixed in their modal analysis. Their 20 order models are calculated in MSC Patran
to obtain flexible primary struts. The flexible structures are imported into MSC Adams to conduct
multiple coupled flexible–rigid dynamic simulations. Structural flexibility and friction will influence
rocket acceleration, energy absorption, and compression strokes [38]. Different combinations of rigid
structures, flexible structures, and frictions are simulated to analyze the proposed RLV landing system
more accurately.

4.1. Highest Rocket Acceleration Condition

Under the highest rocket acceleration condition, four sets of landing gears touch the ground at
the same time. The accelerations and the distances between the rocket and the ground are shown
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in Figures 13 and 14, respectively. L1 is taken as an example, whose damping forces and damper
compression strokes are shown in Figures 15 and 16, respectively.Symmetry 2020, 12, x FOR PEER REVIEW 12 of 20 
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Figure 13 shows that all rocket accelerations of these four situations possess the same tendency.
At about 0.003 s, four pads touch the ground, and peaks appear vertically. Subsequently, the rocket
accelerations decrease vertically and remain at about 4 m/s2. During the landing, the controllable
damping forces Fc of four primary strut dampers belong to Z and S. Their uncontrollable damping
forces Fu slowly decrease versus time due to compression velocity decrease. The highest rocket
acceleration of the entire rigid model is 25.95 m/s2. The highest rocket acceleration of the entire rigid
model with friction is 27.57 m/s2, which is the largest in these four situations. The highest rocket
acceleration of the model with flexible primary struts is 12.73 m/s2, which is the smallest in these four
situations. Additionally, structural flexibility causes fluctuations in acceleration and damping force.
Adding friction to the flexible model, the highest rocket acceleration increases to 13.13 m/s2, and the
fluctuations of the rocket acceleration and damping force also increase. The highest rocket accelerations
for these two flexible situations decrease by about 51% at the touch down moment. At the same time,
the damping force peaks of L1 decrease by about 5%, because the flexible structures absorb parts of the
impact energy. However, after the instantaneous contact, rocket accelerations and damping forces of
these four situations are close to each other.

The highest rocket acceleration of current landing systems with passive liquid dampers is
37.2 m/s2 under the highest acceleration landing condition [2,17]. Compared to this, the highest
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rocket acceleration of the proposed landing system with semi-active control decrease about 30.2%.
By controlling the damping forces of the four primary strut dampers, the RLV has much lower rocket
accelerations and impact forces, which can protect the structures and instruments better during rocket
recycle. As shown in Figures 14 and 16, the distance between the rocket and the ground and the
compression strokes of L1 are close to each other in these four situations. In conclusion, friction has
little influence on landing performance. However, structural flexibility has a strong influence on rocket
acceleration and the damping forces of primary struts.

4.2. Greatest Damper Compressions Condition

Under the greatest damper compressions condition, L3 touches the ground first. Second, L2 and
L4 touch the ground together. Finally, L1 touches the ground. In brief, it is a kind of 1–2–1 landing
condition. The rocket accelerations and the distances between the rocket and the ground are shown in
Figures 17 and 18. Because L3 touches the ground first, L3 is taken as an example. The damping forces
and compression strokes of L3 are shown in Figures 19 and 20.Symmetry 2020, 12, x FOR PEER REVIEW 14 of 20 
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Figure 20. Strokes of primary strut 1 of RLV under the greatest compressions landing condition.

At about 0.005 s, L3 touches the ground, and rocket accelerations and damping forces increase
vertically. At about 0.085 s, L2 and L4 touch the ground at the same time. The rocket accelerations
increase vertically again. At about 0.167 s, L1 touches the ground, and the rocket accelerations increase
vertically for a third time. From 0.167 s to 0.310 s, the controllable damping force Fc of L1 belongs to Z,
and the controllable damping forces Fc of L2, L3, and L4 belong to S. Their uncontrollable damping forces
Fu decrease versus time slowly due to the decrease of compression velocities. The air-spring forces
FNi increase because damper compressions increase. Hence, their resultant forces remain basically
stable. Additionally, the pitch angle gradually decreases to 0 due to the horizontal velocity and control
of the damping forces. The rocket accelerations increase slightly during this time. After 0.310 s,
four controllable damping forces Fc belong to Z together, and the rocket accelerations have a small
vertical decrease.
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Under the greatest damper compressions condition, the compression strokes of the proposed
landing system with semi-active control are close to those of current landing systems. However, the
highest rocket acceleration of current landing systems with passive liquid dampers is about 22.5 m/s2 [2].
The highest rocket acceleration of the proposed landing system with a rigid model is 5.37 m/s2, which
is a decrease of about 76.1%. Additionally, the highest rocket accelerations also decrease by about 54%
at the three touch down moments in these two flexible situations. At the same time, damping forces
decrease by about 11% in these two flexible situations. Except for the three touch down moments,
the rocket accelerations and damping forces of flexible situations are a little higher than those of rigid
situations. Structural flexibility also causes an approximately 0.005 s delay, and fluctuations of rocket
accelerations and damping forces. The compression strokes of primary strut dampers and distances
between the rocket and ground are also close in these four situations.

In conclusion, these two typical landing conditions prove that the proposed landing system has better
landing performance than current landing systems with passive liquid or liquid–honeycomb dampers.
On one hand, structural flexibility decreases rocket acceleration and damping force. On the other hand,
friction increases rocket acceleration and damping force a little. Both flexibility and friction have little
influence on the compression strokes of the primary strut dampers and the distances between the rocket
and the ground. Structural flexibility should be considered in the design of RLV landing systems.

5. Conclusions

A landing system for reusable launch vehicles with semi-active control was proposed in this
paper. Its control approach and landing dynamic model were built. According to the dynamic model,
an effective and light landing system was parametrically designed based on the response surface
methodology. The parameterized design achieved the best-desired design targets under limited ranges
of design parameters, guiding the design by fitted functions between design parameters and targets.
The parameterized design provided a fast and high-efficiency approach to designing a landing system.
Dynamic landing simulations validated the proposed landing system under landing conditions with
the highest rocket acceleration and greatest damper compressions. The simulation results proved that
the proposed landing system with semi-active control has better landing performance than currently
available landing systems that use passive liquid or liquid–honeycomb dampers. Additionally,
the simulation results show that structure flexibilities decrease rocket accelerations by about 50% at
the touch down moments. At the same time, they also decrease the damping forces of the primary
strut dampers by 5% and 11% at the touch down moments under two typical conditions. However,
the friction has little influence on landing performance.
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Notation

The following symbols are used in this paper:
α Angle between the primary strut and ground
θ Angle between the auxiliary strut and ground
µ Friction coefficient
τ Maximum yield stress of MRF
ρ Density of MRF
η Viscosity of MRF
a0 undetermined coefficient of the constant term
aj the undetermined coefficient of one-degree term
aij the undetermined coefficient of the quadratic term.
c Contact damping of the impact function
d Penetration depth of the impact function
e Contact force exponent of the impact function
k Stiffness of the impact function
q Distance function of the impact function
q0 Trigger distance of the impact function
v Piston velocity
Ap Piston area
Agap The gap area between the master cylinder and piston
An Cross-section area of the master cylinder
D Diameter of piston
D Diameter of piston rod
Fa Force of auxiliary strut acting at point C
Fc Controllable damping force of MRF damper
Fp Force of primary strut acting at point A
Fu Uncontrollable damping force of MRF damper
FNi Air-spring force caused by the accumulator
Kentry Local resistance coefficient of the entry
Kentry Local resistance coefficient of the exit
H1 Vertical distance between the origin and point A
H2 Vertical distance between the mass center P1 of elastic parts and point A
L Length of coils
R Horizontal distance between the origin of rocket coordinate system and point C
R1 Highest rocket acceleration
R2 Greatest compression stroke
R3 Distance between rocket and ground
R4 Mass of a set of landing gear
RP1 Initial distance between the mass center of the rocket and the ground
V Volume of accumulator
V0 Initial volume of accumulator
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Appendix A

Table A1. Fuzzy control rules for inputs and outputs [39].

Inputs Outputs

Acceleration Jerk alpha beta τ1 τ2 τ3 τ4

B All All All Z Z Z Z
Z Z Z Z B B B B
Z B Z Z MB MB MB MB
S Z Z Z SB SB SB SB
S B Z Z M M M M
M Z Z Z SM SM SM SM
M B Z Z S S S S
Z Z P Z S SB MB SB
Z B P Z S M SB M
Z Z N Z MB SB S SB
Z B N Z SB M S M
Z Z Z P SB S SB MB
Z B Z P M S M SB
Z Z Z N SB MB SB S
Z B Z N M SB M S
Z Z N P MB SB SB MB
Z B N P SB M M SB
Z Z P N SB MB MB SB
Z B P Z M SB SB M
Z Z N N SB MB MB SB
Z B N N SB SB M M
Z Z P P SB SB MB MB
Z B P P M M SB SB
S Z P Z Z M SB M
S B P Z Z SM M SM
S Z N Z SB M Z M
S B N Z M SM Z SM
S Z Z P M Z M SB
S B Z P SM Z SM M
S Z Z N M SB M Z
S B Z N SM M SM Z
S Z P P M M SB SB
S B P P SM SM M M
S Z N N SB SB M M
S B N N M M SM SM
S Z P N M SB SB M
S B P N SM M M SM
S Z N P SB M M SB
S B N P M SM SM M
M Z P Z Z SM M SM
M B P Z Z S SM S
M Z N Z SM Z M SM
M B N Z S Z SM S
M Z Z N SM M SM Z
M B Z N S SM S Z
M Z Z P SM Z SM M
M B Z N S SM S Z
M Z N N M M SM SM
M B N N SM SM S S
M Z N P M SM SM M
M B N P SM S S SM
M Z P N SM M M SM
M B P N S SM SM S
M Z P P SM SM M M
M B P P S S SM SM
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Table A2. RSM sampling.

Run Factor 1:
A(θ/◦)

Factor 2:
B(α/◦)

Factor 3:
C(H1/mm)

Response 1: R1
(amax/m/s2)

Response 2: R2
(Strokes/mm)

Response 3: R3
(Distance/mm)

Response 4: R4
(Mass/kg)

1 27 42 1800 23.3495 79.5787 2240 108.446
2 24 42 1500 17.7913 64.4743 1112.8 91.6878
3 30 42 1500 33.193 113.355 2113.5 109.83
4 27 42 1200 20.5145 82.2504 1448.6 89.412
5 30 53 1500 30.0239 46.4953 902.999 79.913
6 27 47.5 1500 61.8792 21.4722 1121 85.2949
7 27 47.5 1500 61.8792 21.4722 1121 85.2949
8 24 47.5 1800 69.0255 18.5479 1028.8 87.5495
9 24 47.5 1200 21.6645 56.0716 894.954 85.2949

10 27 47.5 1500 61.8792 21.4722 1121 85.2949
11 27 53 1800 29.5464 40.7394 873.652 82.5555
12 30 47.5 1200 44.3331 70.8267 1013.2 82.452
13 30 47.5 1800 36.5785 62.3615 1923.2 98.0229
14 27 53 1200 27.7053 43.8536 602.336 72.0231
15 24 53 1500 31.3973 95.6979 375.021 75.1617
16 27 47.5 1500 61.8792 21.4722 1121 85.2949
17 27 47.5 1500 61.8792 21.4722 1121 85.2949
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Abstract: Starting with the last century, a lot of enthusiastic researchers have invested significant
time and energy in proposing various drives capable to generate linear propulsion force. Regrettably,
only a few of these devices passed the patent phase and have been practically materialized. The aim
of this paper was to simulate the dynamic behavior of an inertial propulsion drive (IPD) developed
by the authors, to demonstrate its functionality. The core of the IPD consists of two symmetric drivers
that each performs rotation of eight steel balls on an eccentric path. We propose three solutions for
the element which maintain the off-center trajectory of the balls. For the simulation, we used the
multibody system approach and determine the evolution of the displacement, velocity, and power
consumption. Further, we analyze the collisions between the elements of the system and the influence
of this phenomenon on the dynamic behavior of the IPD. We found that collisions generate impact
forces which affect the ball acceleration values achieved by simulation. We have concluded that the
developed system is capable to generate linear movement. In addition, in terms of velocity and power
consumption, the best constructive version of the retaining disk is that which has a cylindrical inner
bore placed eccentric relative to the rotation center of the balls.

Keywords: multibody; propulsion drive; linear motion; eccentric trajectory

1. Introduction

Inertial propulsion drives belong to a promising field of research and have therefore gained the
attention of scientists and engineers in recent decades. These mechanisms are multi-body systems with
eccentric masses in motion, usually presenting symmetry on one or two axes to compensate undesired
forces in the direction orthogonal to the displacement. Displacement is produced by a propulsion
force developed as a reaction to the variable centrifugal forces which are acting on a number of masses
rotating on an eccentric trajectory.

It is a huge controversy about the effectiveness of inertial force-based propulsion drives because
they challenge Newton’s laws of motion [1]. In a National Aeronautics and Space Administration
(NASA) report [2] anti-gravitational systems are considered to be impossible, but no discussion on
specific inertial propulsion drives (IPDs) is made. In opposition, Allan Jr. wonders rhetorically: “Why
does classical mechanics forbid inertial propulsion devices when they evidently do exist?” Thus, in his
book [3], he presents a series of working inertial propulsion devices [4–6].

It is also shown that the inertial system proposed by Couloumbe [7] is not linked to gravity
and may work in space. While this IPD is not gravity-based, it does not fall under the “restrictions”
formulated by Millis and Thomas [2]. Numerous other patents are known [8–25]. Sadly, only a few
of them exchange the stage of patent to the practical materialization. Here, the Dean Drive [26],
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with applications in the construction of inertial pumps and vibration elevators [1], or the Thornson
Apparatus [27], which was able to develop a velocity of 1.6 miles per hour installed on a canoe in a
swimming pool, can be mentioned.

An example of a patent without practical materialization is the propulsion unit proposed by
Booden [9]. It converts the energy of two identical electromagnetically spinning assemblies of weights,
which are rotating in opposite directions, in a unidirectional thrust. The invention relies on rotating
elements with variable gyration radius around a center axis in order to provide an imbalance of
centrifugal force to generate propulsion in a given direction.

Similarly, Cuff [10] discloses a mechanism for varying the radius of rotation of a plurality of
rotating weights and for selectively modifying the direction of the resultant unbalanced force generated
by these rotating masses. More particularly, the device comprises of two commonly non- rotating
circular cams, disposed eccentrically, which engage a pair of cam followers that are linked to connecting
rods which are successively joined to the gyrating weights. The direction of the unbalanced resultant
force can be adapted by simply rotating, in concordance, the two commonly non- rotating cams.

The propulsion apparatus suggested by Dobos [11] includes a platform and a shaft placed
perpendicularly on it. The shaft supports a disk which carries on the circumferential edge portion a
plurality of reservoirs filled with liquid and spaced completely around the circumference of the disk.
Each reservoir contains a buoyantly positioned hollow piston with a road which extends outwardly
from the reservoir. An adaptable movable cam with a cam track is mounted on the shaft assembly—this
is placed eccentrically relative to the axis of the shaft assembly. The piston rod ends are placed in
opposition to the cam track. Thus, the movement of the pistons generates a relative displacement of
the liquid in the reservoirs in response to the contact of the piston rods with the cam track, creating an
unbalanced centrifugal force, which moves the platform in a preselected linear direction.

Another IPD using fluids for converting rotary motion into linear displacement was more recently
proposed by Deschamplain [21]. His motion imparting system contains a centrifuge with a chamber
partially filled with a quantity of fluid. A motor imparts a rotary motion to the centrifuge, the water
being moved outwardly under the action of centrifugal forces. During the rotation of the centrifuge,
an object is at its exterior end positioned within the fluid and at its interior end positioned exterior of
the fluid in the air. Parallel with the axis of the centrifuge, but laterally offset is placed a rod which is
rotated by a driver with the same speed as the centrifuge. A coupling connects the rod with the object.
The centrifugal forces which occur during the simultaneously rotation of the rod and centrifuge are
converted to a linear force.

In addition, in a recent patent, Murray [23] comes up with a mechanical force generator for
converting the energy of centrifugal force in propulsion force by rotating a cage assembly around its
longitudinal axis. Thus, the cage rotates secondary shafts which turn sets of eccentrics for generating a
net force in a direction which is transversal on the rotation axis of the cage assembly. Two pairs of
eccentrics turn such that for each 90◦ rotation of the carrier cage, the pairs of eccentrics have their
mass centers located rather between an unbalanced and a balanced condition, but, at each quarter of
complete rotation, one pair of eccentrics is every time generating a power stroke.

The effect of friction between the IPD and the external supporting surface was studied in [28].
Like it was concluded in similar researches [29,30], it was found that friction is important for providing
movement. Other authors [31,32] consider that IPD’s are able to produce displacement on frictionless
supports or in space because reaction forces are not necessary.

Provatidis [33] makes a critical review regarding the actual state-of-the-art of inertial devices
capable to move the objects on which they are attached, concluding, same as Robertson and Webb [34]
that “the replacement of rockets by other advanced means is an ongoing procedure” and “the death of
rocket science is only a matter of time.”

The aim of this paper is to present an IPD developed by the authors which is using two groups of
rotating masses. Furthermore, the mathematical relations, deducted for the kinematic of these rotating
masses are introduced, the analytical results being compared with the outcomes of simulation data
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obtained by involving a professional software. Three versions of trajectories for the rotating masses
are considered, and the best solution in terms of displacement velocity and power consumption is
proposed for the construction of the system. Finally, to validate the functionality of the system, the most
efficient version is built and experimental proofs are carried out.

2. Description of the Proposed IPD

The propulsion of the device developed by the authors [35] is based on producing a resultant
centrifugal force for driving the assembly. As shown in Figure 1, the multi-body system consists of two
identical groups disposed symmetrical relative to the direction of displacement. Each group consists of
8 equal steel balls (1/1 ÷ 1/8) with radii of 5 mm, placed between two rotating plates (2/1 and 2/2), which
are foreseen in radial direction with 8 hemispherical slots for guiding the steel balls. The trajectory of
the balls is maintained by the inner bore of a retaining disk (3).
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The retaining disk is designed in three constructive versions, as shown in Figure A1
(see Appendix A):

- Version 1: Inner bore with a radius of R1 = 41 mm and the center placed eccentric at a distance e
= 20 mm, relative to the center of the slotted plates;

- Version 2: Inner bore consisting of a semicircle with a radius R2-1 = 44.6 mm, two straight
portions tangent to the semicircle and an arc of radius R2-2 = 61 mm, concentric with the first
radius semicircle;

- Version 3: Inner bore consisting of two semicircles with radii R3 = 41 mm and centers placed at a
distance of e = 20 mm, which are connected by two straight portions tangent to the semicircles.
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For rotating the two constructive groups with the same angular speed, but in opposite directions,
two spur gears (4/1 and 4/2) with the same number of teeth are used. The gears are supported by the
shafts (5/1 and 5/2), which are also driving the slotted plates (2/1 and 2/2). The longer shaft (5/1) is
connected with the driving motor which rotates the assembly with a constant speed n = 1200 rot/min.
The retaining disk (3) is locked on the base plate (6) of the system, which lies on four rubber rollers of
40 mm diameter and fixed axis.

Rotating the plates 2/1 and 2/2 with a constant angular velocity ω, on each of the 8 steel balls acts
a centrifugal force. As the balls are forced to follow a circular trajectory, but with variable radii Ri(t),
these centrifugal forces are variable in time and may be expressed in (1):

Fci(t) = m0 ·ω2 ·Ri(t), (1)

where:

Fci(t) [N]—centrifugal force acting on the balls;
m0 [kg]—mass of the balls;
ω [rad/s]—angular velocity of the rotating plates;
Ri(t)—trajectory radius of ball i.

The resultant of the centrifugal forces acting on the 8 steel balls produces the linear propulsion of
the assembly.

3. Analytical Investigation of the Three Proposed Constructive Alternatives

In this study, the physical quantities which describe the kinematics of the system are calculated in
regard with the three constructive alternatives of the retaining disk. Furthermore, the deduction of the
analytical expressions for the displacement, velocity and acceleration of the steel balls is presented.

3.1. Version 1 of Retaining Disk: Cylindrical Bore Placed Eccentric Relative to the Center of the Slotted Plates

For finding the analytical expressions of the elements which characterize the kinematics of one of
the balls, having the center in Ci, a Cartesian system denoted with xO1y was attached to the center O1

of the slotted plates (2/1 and 2/2). Furthermore, as shown in Figure 2, the circle with radius R1 and
center in O2, represents the inner bore of the retaining disk (3). As mentioned before, the retaining disk
is placed eccentric, relative to the center of the slotted plates, at a distance e.
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Following the procedure described in detail in [36,37] and the notations from Figure 2, the Cartesian
coordinates and the trajectory radius of the center Ci may be written as in (2) and (3):

x(t) =
e
2

sin 2ωt + cosωt
√
(R1 − r)2 − e2 cos2ωt, (2)

y(t) = e sin2ωt + sinωt
√
(R1 − r)2 − e2 cos2ωt, (3)

By deriving Equations (2) and (3), the components of the ball velocity are obtained as follows in
(4) and (5):

vx(t) =
.
x(t) = ωe cos 2ωt−ω sinωt

√
(R1 − r)2 − e2 cos2ωt +

ωe2 cosωt · sin 2ωt

2
√
(R1 − r)2 − e2 cos2ωt

, (4)

vy(t) =
.
y(t) = ωe sin 2ωt +ω cosωt

√
(R1 − r)2 − e2 cos2ωt +

ωe2 sinωt · sin 2ωt

2
√
(R1 − r)2 − e2 cos2ωt

. (5)

Furthermore, deriving the expressions of the velocities, the components of the ball acceleration
along the x and y axis are expressed as follows in (6) and (7):

ax(t) = −2ω2e sin 2ωt−ω2 cosωt
√
(R1 − r)2 − e2 cos2ωt + ω2e2 cos 3ωt√

(R1−r)2−e2 cos2 ωt
−

− ω2e4 cosωt·sin2 2ωt

8·[(R1−r)2−e2 cos2 ωt]
3/2

(6)

ay(t) = 2ω2e cos 2ωt−ω2 sinωt
√
(R1 − r)2 − e2 cos2ωt + ω2e2 sinωt√

(R1−r)2−e2 cos2 ωt
−

− ω2e4 sinωt·sin2 2ωt

8·[(R1−r)2−e2 cos2 ωt]
3/2

(7)

3.2. Version 2 of Retaining Disk: Inner Bore Consisting of a Semicircle, a Circular Arc and Two Straight Portions

Similar to the previous case, a Cartesian system denoted with xOy was attached to the center O of
the slotted plates (2/1 and 2/2). The inner bore of the retaining disk has at this constructive version a
special design, consisting of a semicircle with center in O and radius R2-1, a circular arc with radius
R2-2, concentric with the semicircle and two straight portions of length R2-1, which are tangent to the
semicircle (see Figure 3).
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Using the notations from Figure 3, the Cartesian coordinates and the trajectory radius of the center
Ci of a ball, may be written, depending on the position angle α, as follows in (8):

x(t) =



R2−1 − r α ∈ (0; 45]
(R2−2 − r) cos(ωt) α ∈ (45; 135]
r−R2−1 α ∈ (135; 180]
(R2−1 − r) cos(ωt) α ∈ (180; 360]

, y(t) =



(R2−1 − r) tan(ωt) α ∈ (0; 45]
(R2−2 − r) sin(ωt) α ∈ (45; 135]
(r−R2−1) tan(ωt) α ∈ (135; 180]
(R2−1 − r) sin(ωt) α ∈ (180; 360]

, (8)

The components of the ball velocity vx and vy are obtained in (9) by deriving (8):

vx(t) =
.
x(t) =



0 α ∈ (0; 45]
ω(r−R2−2) sin(ωt) α ∈ (45; 135]
0 α ∈ (135; 180]
ω(r−R2−1) sin(ωt) α ∈ (180; 360]

vy(t) =
.
y(t) =



ω(R2−1−r)
cos2(ωt) α ∈ (0; 45]

ω(R2−2 − r) cos(ωt) α ∈ (45; 135]
ω(r−R2−1)

cos2(ωt) α ∈ (135; 180]

ω(R2−1 − r) cos(ωt) α ∈ (180; 360]

(9)

Correspondingly, the components of the ball acceleration ax and ay are obtained in (10) by
deriving (9):

ax(t) =
.
vx(t) =



0 α ∈ (0; 45]
ω2(r−R2−2) cos(ωt) α ∈ (45; 135]
0 α ∈ (135; 180]
ω2(r−R2−1) cos(ωt) α ∈ (180; 360]

ay(t) =
.
vy(t) =



2ω2(R2−1−r) sin(ωt)
cos3(ωt) α ∈ (0; 45]

ω2(r−R2−2) sin(ωt) α ∈ (45; 135]
2ω2(r−R2−1) sin(ωt)

cos3(ωt) α ∈ (135; 180]

ω2(r−R2−1) sin(ωt) α ∈ (180; 360]

(10)

3.3. Version 3 of Retaining Disk: Inner Bore Consisting of Two Identical Semicircles with the Centres Located at
a Distance “e” and Two Straight Portions Tangent to the Semicircles

For the analytical approach of this constructive version, the Cartesian system denoted with xOy
was attached to the center O of the slotted plates. This time, the inner bore of the retaining disc consists
of two equal semicircles of radius R3. One of the centers of the semicircles is located in O, while the
other is placed at the distance e in vertical direction. The two semicircles are connected by two vertical
segments tangent to the semicircles (see Figure 4).
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3.3. Version 3 of Retaining Disk: Inner Bore Consisting of Two Identical Semicircles with the Centres Located 
at a Distance “e” and Two Straight Portions Tangent to the Semicircles 

For the analytical approach of this constructive version, the Cartesian system denoted with xOy 
was attached to the center O of the slotted plates. This time, the inner bore of the retaining disc 
consists of two equal semicircles of radius R3. One of the centers of the semicircles is located in O, 
while the other is placed at the distance e in vertical direction. The two semicircles are connected by 
two vertical segments tangent to the semicircles (see Figure 4). 

 
Figure 4. Kinematic of a ball at Version 3 of the retaining disk. Figure 4. Kinematic of a ball at Version 3 of the retaining disk.
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Depending on the position angleα and using the notations from Figure 4, the Cartesian coordinates
of the center Ci of a ball, can be expressed in (11) and (12):

x(t) =



R3 − r α ∈ (0;α∗]
e
2 sin 2ωt + cosωt

√
(R3 − r)2 − e2 cos2ωt α ∈ (α∗; 180− α∗]

r−R3 α ∈ (180− α∗; 180]
(R3 − r) cos(ωt) α ∈ (180; 360]

, (11)

y(t) =



(R3 − r) tan(ωt) α ∈ (0;α∗]

e sin2ωt + sinωt
√
(R3 − r)2 − e2 cos2ωt α ∈ (α∗; 180− α∗]

(r−R3) tan(ωt) α ∈ (180− α∗; 180]
(R3 − r) sin(ωt) α ∈ (180; 360]

, (12)

where in (13):
α∗ = arctan

e
R3 − r

. (13)

α* is the position angle of the inflection point, where the trajectory of the balls changes from
circular to linear and vice versa.

In the same way, by deriving twice the expressions of the ball coordinates, the velocities and
accelerations may be deducted as follows in (14)–(17):

vx(t) =



0 α ∈ (0;α∗]

ωe cos 2ωt−ω sinωt
√
(R3 − r)2 − e2 cos2ωt + ωe2 cosωt·sin 2ωt

2
√
(R3−r)2−e2 cos2 ωt

α ∈ (α∗; 180− α∗]
0 α ∈ (180− α∗; 180]
ω(r−R3) sin(ωt) α ∈ (180; 360]

(14)

vy(t) =



ω(R3−r)
cos2(ωt) α ∈ (0;α∗]

ωe sin 2ωt +ω cosωt
√
(R3 − r)2 − e2 cos2ωt + ωe2 sinωt·sin 2ωt·

2
√
(R3−r)2−e2 cos2 ωt

α ∈ (α∗; 180− α∗]
ω(r−R3)

cos2(ωt) α ∈ (180− α∗; 180]

ω(R3 − r) cos(ωt) α ∈ (180; 360]

(15)

ax(t) =



0 α ∈ (0;α∗]

−2ω2e sin 2ωt−ω2 cosωt
√
(R3 − r)2 − e2 cos2ωt + ω2e2 cos 3ωt√

(R3−r)2−e2 cos2 ωt
−

− ω2e4 cosωt·sin2 2ωt

8·[(R3−r)2−e2 cos2 ωt]
3/2

α ∈ (α∗; 180− α∗]

0 α ∈ (180− α∗; 180]
ω2(r−R3) cos(ωt) α ∈ (180; 360]

(16)

ay(t) =



2ω2(R3−r) sin(ωt)
cos3(ωt) α ∈ (0;α∗]

2ω2e cos 2ωt−ω2 sinωt
√
(R3 − r)2 − e2 cos2ωt + ω2e2 sinωt√

(R3−r)2−e2 cos2 ωt
−

− ω2e4 sinωt·sin2 2ωt

8·[(R3−r)2−e2 cos2 ωt]
3/2

α ∈ (α∗; 180− α∗]

2ω2(r−R3) sin(ωt)
cos3(ωt) α ∈ (180− α∗; 180]

ω2(r−R3) sin(ωt) α ∈ (180; 360]

(17)

4. Motion Simulation of the IPD

Like in our previous researches [38,39], the resources of the Motion module [40] from SolidWorks
(SW) program were used. SW Motion is a module powered by ADAMS technology, being a virtual
prototyping tool for technicians involved in assessing the performance of their design

There are two equations which are governing the three dimensional (3D) motion of a rigid body
in the Motion module. The first one is Newton’s second law of motion, which affirms that the sum
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of externally applied forces on a rigid body is equal to the rate of change of linear momentum P, as
written in (18): ∑

F =
dP
dt

, (18)

This equation for bodies with constant masses (m), simplifies to the more commonly known
form (19): ∑

F = ma, (19)

with a for the acceleration of the body.
The second equation starts from the premise that the sum of the moments about the center of

mass of a rigid body, due to external forces and couples, is equal to the rate of change of the angular
momentum H of this body, which may be expressed in (20):

∑
M =

dH
dt

. (20)

The program applies the modified Newton–Raphson iteration method in several time steps.
Setting very small time steps, the program is able to predict the position of parts at the next time step,
starting from the initial conditions or the precedent time step.

Following steps were employed in the motion study:

# Design of the components shown in Figure 1b;
# Generation of the assembly;
# Specification of the speed for the rotary motor (1200 min−1);
# Specification of gravity;
# Specification of solid body contacts;
# Specification of the mates.

To specify the rotary motor parameters, the motor icon was chosen, while the inner cylindrical face
of the slotted plates (2/1 and 2/2) was selected, together with constant speed from the motor type list.

Furthermore, selecting the gravity icon, axis Z as direction of action and the value of 9806.65 mm/s2,
the gravitational forces acting on the mechanism were simulated. Finally, the mates between parts
were applied in the motion study between the components of the assembly.

A Solid Body Contact 1 was imposed between the first group, defined as the left situated balls
(1/1 ÷ 1/8) and the second group, defined as the left situated retaining disk (3) and the base plate (6)
generated as a single part together with the left rotating plates (2/1 and 2/2).

Next, a Solid Body Contact 2 was imposed between the first group, defined as the right situated
balls (1/1 ÷ 1/8) and the second group, defined as the right situated retaining disk (3) and the base plate
(6) generated as a single part together with the left rotating plates (2/1 and 2/2).

For both of Solid Body Contacts one type of material applicable to touching faces during contact
were imposed. As the retaining disks were manufactured by 3D printing, from polylactide (PLA)
filament, the selected material combination was acrylic with steel. For every material combination
the elastic properties of the materials involved in contact phenomenon are selected automatically by
SolidWorks Motion.

The simulation was performed without considering any friction, because we intended to compare
the simulation outcomes with the analytical results, where, as simplifying hypothesis for constructing
the mathematical model, the friction was neglected. It’s obvious that the friction is influencing the
results, but we have to mention that in this case we are dealing with rolling friction, which may be
neglected, in accordance with the most similar mathematical models.

The analysis time of the study was imposed to 0.2 s. Within this time, at a speed of the slotted plates
n = 1200 rot/min, they rotating 4 times, the duration of a complete rotation being 0.05 s. Furthermore, for
the motion analysis were set 1440 frames per second, namely 72 frames for one rotation, meaning that

162



Symmetry 2020, 12, 1422

the results were obtained at every 5◦ indexing of the slotted plates. Moreover, during the simulation
was used a “precise contact” with an accuracy of 0.0001, while the contact resolution was set to medium.

5. Results and Discussion

In the first stage of the simulations, the coordinates, velocities and accelerations of a ball where
computed for a complete rotation of the slotted plates. Furthermore, the simulation outcomes were
examined in contrast with the analytical calculations accomplished by using Equations (2)–(17).
The obtained results regarding the physical quantities which describe the kinematics of the ball (x, y,
vx, vy, ax and ay) as functions of the rotation angle α are presented, for the three constructive versions
of the retaining disk, in Figures A2–A4 (see Appendix A).

As it can be observed from Figures A2 and A3, in the case of the displacements and velocities,
the outcomes obtained by analytical calculation and SW simulation are almost identical, for all three
constructive variants of the retaining disk. This confirms first that the analytical relations are correct
and, second that the virtual model constructed in SW corresponds with the reality.

A deviation between the analytical and simulation approach can be observed at the retaining disk
having the inner bore consisting of a semicircle, a circular arc and two straight portions (Version 2),
the highest differences being observed around the points where the ball is changing the trajectory from
circular to linear and vice versa.

Regarding the differences between the accelerations that are observed in Figure A4, these may
be justified by the fact that in the simulation the effect of the collision between the ball and the inner
bore of the retaining disk is taken into consideration, phenomenon which we neglect at the analytical
calculation. Each collision generates an impact force which affects the acceleration values achieved
by simulation.

Furthermore, the displacement and velocity of the whole system was simulated. Figure 5 depicts
the displacements of the system for the three investigated versions of the retaining disk. As it can be
noticed, immediately after starting the turning of the slotted plates, because of the high inertia, the
systems get an impulse, but after the first turn (T > 0.05 s), they become steady and the displacements
grow linearly.Symmetry 2020, 12, x FOR PEER REVIEW 10 of 21 
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Within the simulation time, the highest displacement (y = 0.22 mm) was shown by Version 1 of
the retaining disk, the other two variants getting similar results. Note that the system modeled by
Version 3 has, except for the start phase, a negative displacement up to the fourth rotation (t = 0.17 s).

In terms of velocities, the comparison between the three constructive alternatives of the retaining
disk is depicted in Figure 6. Figure 6a shows the variation of the velocities during the whole simulation
time (0.2 s), while Figure 6b illustrates the average velocities within the last complete rotation of
the slotted plates. As it can be observed, the highest average velocity of the system is obtained at
Version 1 (0.586 mm/s), while for Versions 2 and 3 the simulation highlighted speeds of 0.127 mm/s and
0.270 mm/s respectively.
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Another benefit of the Motion module from SolidWorks is that it furnishes very easy information
regarding the power consumption for driving the system, data which would be harder to attain by an
analytical approach. Relevant information on this issue is shown in Figure 7, during the last rotation of
the system and for the three investigated alternatives of the retaining disk.Symmetry 2020, 12, x FOR PEER REVIEW 11 of 21 
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The theoretical background on which the computation of the power consumption in the Motion
module is based starts from the well-known relation of the output power of a motor, which is the
product of the torque (T) that the motor generates and the angular velocity (ω) of its output shaft.
Moreover, applying Newton’s Second Law for rotating bodies, the torque generated by the motor is
equal with the product between the mass moments of inertia (I) of the body which is rotated about the
axis of the motor and the angular acceleration (α) of this body.
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As it can be observed, after the system became stable, the power consumption graph shows a
few peaks, the most relevant one being experienced at Version 2. Version 3 shows also some power
consumption peaks and Version 1 is the most stable in terms of power variation, requesting in average
the smallest power for driving the system.

Summarizing, the most advantageous version of the IPD, in terms of velocities, displacements
and power consumption, is Version 1 of the retaining ring.

6. Experimental Proof of the Concept

The obtained results encouraged the authors to build a prototype of the IPD [41]. For this, the
additive manufacturing, using 3D printing was involved for producing the slotted disks (2/1 and 2/2),
the gears (4/1 and 4/2), the retaining disks (3) and the two bearing covers which are sustaining the
driving shafts. Figure 8 shows some details of these parts and the printer.

For driving the system, an angle grinder with a power of 1010 W and five steps of speed (3900,
7000, 9000, 10,500 and 12,000 rpm) was employed.

The tests aimed to determine experimentally the displacement speed of the IPD at the upper
mentioned driving speeds. Therefore, the device covered a distance of 200 mm, the required traveling
time being measured. For each driving speed step, three timings were made, the average displacement
speed being calculated as the ratio between the distance traveled and the average travel time. Figure 9
shows a picture of the experimental setup, while Table 1 presents the measurement results and the
calculated average displacement speed.
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Table 1. Measurement results.

Distance
[mm]

Driving Speed
n [rpm]

Measured Time [s] Average Time
tm[s]

Average Speed
vm [mm/s]t1 t2 t3

200

3900 15.0 15.1 15.0 15.03 13.31
7000 12.0 12.1 12.1 12.07 16.57
9000 9.1 9.1 9.0 9.07 22.05

10,500 6.0 6.0 6.0 6.00 33.33
12,000 4.0 4.0 4.1 4.03 49.63

It is obvious that the displacement speed grows with the increase of the driving speed. Thus,
by amplifying the driving speed 3.08 times (from 3900 to 12,000 rpm), the average speed increases
3.73 times (from 13.31 to 49.63 mm/s). To have a better image regarding the influence of the driving
speed on the average displacement speed of the IPD, Figure 10 provides a graphical representation of
this interdependence.
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Since the optimization of the IPD design was performed by numerical simulation at a speed lower
than the speed at which the experimental measurements were done, the numerical simulation using
Motion module from SW was redone at a driving speed of 3900 rpm. In order to maintain reasonable
computation duration, the analysis time for the motion study was set to 4 s. The simulation outcomes
regarding the displacement of the system are shown graphically in Figure 11.
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Figure 11. Results of movement simulation at n = 3900 rpm and T = 4 s.

As one can observe, the behavior of the IPD is identical to that shown during the simulation
presented in Chapter 5. This means that, immediately after the system starts to be driven, its movement
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increases sharply, and then decreases, just as suddenly, after which, the distance traveled by the
device increases smoothly. At the end of the analysis time, the IPD has covered a distance of 4.67 mm.
The distances traveled by the IPD after intermediate durations of 2, 2.5, 3 and 3.5 s are shown in Table 2.

Table 2. Displacements resulted from SolidWorks (SW) simulation after different times.

Time
t [s] 2 2.5 3 3.5 4

Distance
y [mm] 1.69 2.32 3.02 3.80 4.67

For the experimental tests, the device displacements after durations of 2, 3 and 4 s, respectively,
were measured with a dial gauge. For each of the above mentioned durations, three distance
measurements were made, the average distance of the three measurements being compared with
the simulation outcomes. Table 3 presents the measurement results, in opposition to the simulation
outcomes and the percentage differences between the two approaches.

Table 3. Comparison of displacements obtained by experimental measurement and simulation.

Time
t [s]

Measured Distance [mm] Average Distance
ymed [mm]

Simulation Distance
ysim [mm]

Deviation
∆y [%]y1 y2 y3

2 1.55 1.49 1.53 1.52 1.69 10.06
3 2.85 2.83 2.86 2.85 3.02 5.74
4 4.25 4.15 4.23 4.21 4.67 9.85

As it can be observed, there is a good correlation between the simulation and the experimental
results, with maximum differences of 10%. This confirms, on the one hand, that the experiments were set
correctly and, on the other hand, that the 3D model and numerical simulation were performed correctly.

As the ability of the IPD concept to develop unidirectional movement has been also proven by
experimental test, the future researches are aiming to study the efficiency of the drive and the influence
of external factors, such as friction between wheels and ground, in order to improve the construction
and to optimize the kinematic and dynamic behavior.

7. Conclusions

In this paper, a multibody inertial propulsion drive with symmetrically placed balls rotating on
eccentric trajectories was presented. In this context, three versions of trajectories for the rotating masses
of the IPD were investigated. Starting from the coordinate equations of the balls, their velocities and
accelerations were analytically deducted, for each of the constructive version. Furthermore, using
the Motion module from SolidWorks (SW), a kinematic and dynamic simulation was completed, the
outcomes being examined in contrast with the analytical results. It was observed that in case of the
displacements and velocities, the results obtained by the two approaches are almost identical, for all
the three constructive variants of the retaining disk. The bigger differences in matter of accelerations
between simulation and the analytic procedure were explained by the fact that in the analytical
approach the collisions between the balls and the inner bore of the retaining disk were neglected.
Furthermore, the 5◦ step with which the motion analysis was performed, in order to have a reasonable
duration of the simulation, could be another reason for these differences.

Moreover, the kinematic and dynamic performances of the three constructive versions were
compared. In terms of displacements, Version 1 ensures a 5, respective 10 times longer displacement
within the simulation time, compared to Versions 2 and 3. Regarding velocities, the IPD equipped with
Version 1 of the retaining disk is in average with 4.61, respective 2.17 faster than the IPD’s foreseen
with retaining disks constructed in Version 2 and 3 respectively. Moreover, Version 1 requires by far the
smallest power consumption for driving the system. Therefore, it was concluded that the variant of
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retaining disk with cylindrical bore placed eccentric relative to the center of the slotted plates (Version 1)
is the most advantageous version of the IPD regarding displacement, velocity and power consumption.

For proofing the ability of the device to generate linear movement, experimental tests were also
performed. Thus, operating the system with five different driving speeds, it was obvious that the IPD’s
average displacement speed grows with the increase of the driver speed.

Finally, the present study confirms that the IPD developed by the authors is functional and capable
to generate unidirectional linear movement, being especially suitable for spaces where the gravity
is missing.
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Abstract: The existing literature provides various computational models related to the dynamic
behavior of strand wire ropes. It starts from the simple longitudinally oscillating beam, to the
complex nonlinear multi-body configuration based on helical structural symmetry. The challenge
is the prior availability of characteristic parameters for material behavior, structural configuration,
and functional capability. Experimental investigation is the main source for evaluation of these
characteristics. However, tests have specifically been performed according to each case, minimizing
the generalization aspect. This is the main frame of this study. Hereby, the authors propose an
ensemble of spectral investigations, applied to a reduced set of experimental tests regarding wire rope
dynamics. The research goal consists of wire rope characterization in terms of the flexible and adaptive
groups of parameters, related to the conservative and dissipative behaviors. An experimental setup
is considered here according to the rope exploitation conditions in order to enable an extension of the
method application from the experimental mode to the operational mode. Experiments are conducted
based on classical vibration measurement procedures. The analysis is performed using a spectral
method ensemble, including discrete Fourier transform, time-frequency joint analysis, and the Prony
method. The result show that the proposed assessments can provide suitable information related to a
large group of wire rope models.

Keywords: strands wire rope; experimental transitory vibrating regime; stiffness; damping; joint
time-frequency analysis; Prony method; matrix pencil method

1. Introduction

Strand wire ropes take part in most existing engineering elements. Wire ropes have a very
large area of utilization, ranging from various types of anchorages, traction systems, and industrial
applications, to cranes and hoisting systems. Being widely used and providing a very important
structural/functional role, strand wire ropes have enabled many actual studies, specifically in terms
of being able to accurately evaluate behavioral characteristics under operational conditions. It is
also important to predict the extreme charging conditions and the risks in the exploitation of these
flexible elements.

The authors of [1] present a co-simulation method based on both multi-body dynamics and finite
element analysis. They have developed a dynamic model in the ADAMS/Cable software package
related to preliminary evaluation of the time history response of dynamic force in wire rope. Secondly,
they have implemented a finite element-based model within ABAQUS FEA software, followed by
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static and dynamic computational investigations. The computational results were compared with
experimental data, and the results proved accuracy and reliability. Concluding, the authors present the
stress distribution and spectrum of wire rope under dynamic loading during the hoisting process and
show the most dangerous regions.

The work of [2] contains a model for the dynamic analysis of a load lifting system. The novelty
of this analysis is sustained by the method used for solving the model, which is a high-precision
direct integration method. Hereby, the author obtained more precise results in the same time with less
computing time and high accuracy.

Within [3], Haniszewski proposed a test setup for experimental investigations regarding dynamic
phenomena accompanying the lifting process of a load, which allows simultaneously monitoring
of a large number of parameters in different regions of the crane system. Based on this test bench,
the author developed both experimental and analytical investigations. The same author treated the
problem of negative vibrations, which can appear during the use of hoisting systems [4]. Taking into
account the various available models for rope and the major importance of rope within the entire
hoisting system, he proposed both modified Bouc–Wen and Voigt–Kelvin models. The results were
analyzed in the terms of a dynamic factor.

In his paper [5], Argatov presents a refined variant of a discrete mathematical model that is useful
in the analysis of a simple helical wire rope. The model details the transverse contraction of a strand
due to both the Poisson’s ratio and the local contact deformations. The last aspect was approached as a
frictionless unilateral plain strain problem. The author obtained an asymptotic model with constitutive
equations in a closed form, being able to accurately predict the deformations of a wire rope strand
subjected to both tensile and torsional loads.

A new theoretical method for the analysis of wire ropes simultaneously charged by both tensile
and torsional loads was proposed in [6]. The study used the beam assumption and thin rod theory,
applied to each wire within the strand structure. A kinematic model was developed on the basis of the
hypothesis that is no relative sliding between adjacent wires.

Experiments based on monitoring the longitudinal vibration of a wire rope were developed
by Hamilton and presented as part of a study [7]. The author used the principle of a spring-mass
oscillator in order to evaluate the parameters of the rope in terms of the elastic and damping properties.
The study investigated the transitory vibrating regime of the experimental system containing a mass
suspended by a wire rope. The results revealed an acceptable accuracy for wire rope lengths less than
2 m and with differences less than 1% when changing the length.

Simple and reliable theoretical models were presented by Raoof and Davies in their work [8],
based on correlations developed by Raoof and Kraincanic. These models are useful to characterize
independent wire rope core (IWRC) or fiber core (FC) large-diameter multi-strand wire ropes.
The analytical expressions presented by the authors allow the prediction of the axial stiffness with
the hypothesis of no-slip or full-slip. These simple models were established based on a very large
experimental third-party database which sustains the reliability of the approaches.

The Stomer–Verlet method presented in [9] is very useful in the motion analysis of a multi-body
system with wire rope connections between bodies. This method was derived from a discrete
Euler–Lagrange (DEL) equation. One main advantage of this approach comes from the fact that
the stretching of wire ropes can be mathematically modeled as a constraint for stability. During
computational investigations, the DEL equation, with wire ropes as constraints, provides relatively
stable solutions.

Within their studies [10,11], Kaczmarczyk and Ostachowicz proposed an interesting distributed
parameter model for the dynamic analysis of the behavior of a deep mine hoisting cable.
They approached the non-stationary aspects of the problem due to the coupled transversal-longitudinal
responses, involving non-linear partial differential equations in a mathematical model. A discrete
formulation of this model was obtained using a Rayleigh–Ritz procedure, finally using a non-linear,
non-stationary, coupled second-order ODE system applicable for computational-based analyses [10].
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The authors treated the problem both in fast and slow time scales in order to investigate the complete
response of the system. Equivalent proportional damping was considered for the solving procedure
for the stiff problem. The results indicate various transient resonances within non-linear evolutions of
the system. An important finding is that small changes in excitation characteristics are able to induce
large changes in dynamic response due to the shifting of the resonances [11].

Computational approaches regarding the behaviors of the wire ropes and cables during intensive
and variable dynamic exploitation regimes can be consulted in various research reports [12–14]. Hereby,
extensive analyses of the problem regarding cable dynamics during the lifting process have been
provided within studies [12,13], where the simulations were based on linear and non-linear, lumped or
continuous mass distribution models. In addition, the dynamics of wire ropes, such as in the main
hoisting component of technological equipment, have been treated in computational research [14].

Hobbs and Raoof presented a relevant analysis procedure based on an exhaustive literature review
inside their research paper [15]. The contact between the wires within the rope strands, the axial
stiffness, the hysteresis variability with the charge characteristics, the loaded cable bending problem,
and the axial cyclic charging of strand-based wire ropes were clearly presented and extensively
discussed within this article. In addition, particular attention was given to the aspects regarding the
localized and repeated bending phenomena that frequently occurs close to the cable terminations.

An interesting approach successfully combining computational-based simulation with
experimental investigations is provided within [16]. In addition, it has to be mentioned that the second
edition of Costello’s study [17] details a comprehensive analysis of wire behavior dynamics and provides
useful information for computational approaches based on extensive experimental investigations.
In the same area of experimental-based analyses of lifting process dynamics, the research presented
in [18] must be mentioned.

Demšić and Raduka [19] proposed an analytical model developed for inhomogeneous boundary
conditions which takes into account the system nonlinearities in terms of quadratic and cubic
formulations. The authors used both a numerical integration procedure and multiple scales of
a perturbation method in order to solve the reduced mathematical model and the parametric
oscillations, respectively.

A comprehensive study regarding special cables used at cable-supported bridges was provided
within [20]. The authors investigated a wide palette of parameters that are able to characterize the bridge
behavior under dynamic loads. Among these, they analyzed the anomalies of damping properties
and nonlinear parametric vibration. One has to note the experimental developments presented within
this study.

Elata et al. proposed an interesting computational model for the dynamic response analysis of
wire ropes with an independent core that are axially charged by a load and a torque [21]. The model
fully supposed a double-helix configuration for component wires and assumed a fiber elastic response
of individual wires, thus it becomes able to provide the values of the stress at the wire level.

The previous briefly introduction does not have the intention to be exhaustive but has the role
of revealing the available literature related to theoretical and applicable research studies into the
field of wire ropes. These studies are useful through their gains in dynamics modeling, simulation,
and practical implementation. Considering the wide applications of strands wire ropes, this clearly
results in the necessity of large and various categories for knowing the characteristic parameters
in order to carry out reliable computational analyses. However, the available studies individually
treat each type of problem regarding the wire rope dynamic behavior. Operational tests are rather
nonexistent. Experimental investigations have been strictly developed for particular cases of simulation
models and they do not supply generalizable characteristics. Computational models have plenty of
representations, both from the point of view of behavioral schematizations and also solving techniques.
Nevertheless, these approaches require many parameters to accurately perform the analysis.

Hereby, the present study presents some useful assessments based on experimental dynamics
investigation which are able to provide a flexible and adaptive set of data according to a large category
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of numerical models. Flexible means that the post-processing procedure can be extended in respect to
the requirements (in terms of parameter type and precision). This is a qualitative approach. Adaptive
means that the number of evaluated parameters can be permanently harmonized with the model
order. This is a quantitative approach. The main advantages are supplied by the reduced experimental
investigations volume, and, in addition, by the capability of operational implementation (where the
exploitation regime implies dynamic evolution or the system supports external dynamic perturbation).
Thus, the goal of this research is the estimation of wire rope characteristics, closely related to the model
complexity, where these parameters will be assumed.

2. Materials and Methods

This research was primarily based on experimental investigations which have developed using
a dedicated laboratory setup. Thus, the first stage of analysis features a set of experimental tests
developed on strands wire rope samples subjected to both static and dynamic loads. The second stage
of analysis features the acquired data post-processing, which were used to evaluate the characteristic
parameters derived from the wire rope transitory dynamics.

2.1. Experimental Setup

The experimental laboratory setup used for the first stage of analysis is presented in Figure 1.
It consists of a rigid latticed tower that sustains the inspected wire rope sample. The free end of the
rope can be charged by a permanent static load and, additionally, by a dynamic excitation. For analysis,
a short dynamic pulse was used, in terms of singular acting and strong enough hammer impact [22].
The shock was axially applied downwards of the suspended mass (static load) in a vertical direction,
thus, the secondary effects regarding the transversal dynamics of the wire rope were minimized.

Dynamic evolution of the entire ensemble was monitored by a computer-based analysis system that
is able to acquire signals from both accelerometers and force transducers (see Figure 1a). The acquisition
was assured by the cDAQ-9174© chassis (National Instruments, USA), supplied with NI-USB-9233©
(National Instruments, USA) for accelerometers and NI-USB-9237© (National Instruments, USA) for
the strain–bridge-based force transducers.

The main parameters regarding the motion of the loading mass hung from the free end of the
tested wire rope were monitored through the mass vertical direction oscillations and, respectively,
the force within the rope sample (see Figure 1c). These jobs were carried out with the help of a
CCP-ICP© 320C34 (PCB, USA) uniaxial accelerometer with a magnetic mounting base and a S9-20kN
(HBM, Germany) strain-bridge based traction force transducer.

The unavoidable residual transitory dynamics of the tower were directly monitored at its upper
side, nearby the device that sustains the inspected rope (see Figure 1b). This operation was carried out
by two accelerometers (the same type as that mounted on the loading mass), mounted for both the
vertical and the horizontal directions of possible motion provided by the free end of the tower. It was
assumed that the lateral oscillations of the tower during the tests could be neglected (there were no
external excitations applied in that direction and the experimental site does not supply any essential
basement displacements).
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side of the tower, with the hung rope device and residual motion monitoring transducers; (c) 
detailed view of the wire rope charging device with an additional mass applied and transducers for 
monitoring the forces and oscillations, respectively. 
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means that the rope has a fiber core, both for the strands and for the rope. The unitary length mass is 
0.11 kg/m and the theoretical failure load is 9.82 kN. 

According to [23] (pp. 40–45), the fill factor f and the rope mass factor w can be used in order to 
characterize the nominal metallic cross-section area S from the circumscribed area Su of the cable, 
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Taking into account the diameters ratio δ/d = 0.4/6 = 0.067, the fill factor f yields a value of 0.32. 
Thus, the nominal metallic cross-section area yields S = (π/4) fd2 = 9.05 mm2. Respectively, with a 
rope mass factor w = 0.306, the nominal rope length-related mass, evaluated with widely accepted 
empirical expression m = 0.01 wd2, acquires 0.11016 kg/m, which accurately approximates the 
initially provided value from the producer. 
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Figure 1. The laboratory experimental setup: (a) General view with a latticed tower, wire rope sample,
static charging device, and compute-based acquisition system; (b) detailed view of the upper side of
the tower, with the hung rope device and residual motion monitoring transducers; (c) detailed view of
the wire rope charging device with an additional mass applied and transducers for monitoring the
forces and oscillations, respectively.

2.2. Tested Wire Rope Sample Characteristics

The strands wire rope considered in this analysis was a regular 6(12+FC)+FC commercial cable,
type CA1AA072A© (CABLERO, Romania), 6 mm diameter, based on 6 strands with 12 steel wires
of 0.4 mm diameter, designed for a 288-kg maximum service load. The symbol FC within its code
means that the rope has a fiber core, both for the strands and for the rope. The unitary length mass is
0.11 kg/m and the theoretical failure load is 9.82 kN.

According to [23] (pp. 40–45), the fill factor f and the rope mass factor w can be used in order to
characterize the nominal metallic cross-section area S from the circumscribed area Su of the cable, and,
respectively, the nominal rope length-related mass m.

Taking into account the diameters ratio δ/d = 0.4/6 = 0.067, the fill factor f yields a value of 0.32.
Thus, the nominal metallic cross-section area yields S = (π/4) fd2 = 9.05 mm2. Respectively, with a rope
mass factor w = 0.306, the nominal rope length-related mass, evaluated with widely accepted empirical
expression m = 0.01 wd2, acquires 0.11016 kg/m, which accurately approximates the initially provided
value from the producer.

The axial stiffness Ewr of a wire rope was evaluated using Hruska’s approach [8]:

H =
Ewr

Esteel
=

m∑
j=1

(
n∑

i=1
Si cos3 αi

)
cos3 β j

m∑
j=1

(
n∑

i=1
Si/cosαi

)/
cos β j

, (1)
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where Esteel denotes the steel Young’s modulus, m is the total number of the rope strands, n denotes the
total number of wire layers in each strand, including the king wire that is considered the first layer,
and Si is the cross-sectional area of wire within layer i of a strand j. The angles αi and βj respectively
denote the lay angle of layer i in strand j and the lay angle of the strand j of the wire rope. Analyzing
the denominator of the right-hand-side term in Equation (1), it can obviously be seen that it represents
the total net steel area of the normal cross-section of the wire rope. The equation uses the hypotheses of
a king wire having αi = 0 and the elliptical shapes of wires and strands within the normal cross-section
of the rope.

The parameters in Equation (1) were evaluated based on the schematization depicted in Figure 2a,
where 2rs denotes the diameter of the strand circular distribution, D is the wire rope diameter, L is the
cable sample length, hs denotes the strand step, and β is the lay angle of the strand. The evaluation of
the lay angle of the wires within the ropes, αi, can be obviously obtained based on the same procedure.

The images in Figure 2b contain a region of the cable sample and a sectional view, respectively,
and this helps to identify the geometrical parameters of the wire rope sample in terms of the helical
step, diameter of circular distribution, and the lay angles of the wires and the strands.

Taking into account that the area Si and angles αi and βi have constant values, Equation (1)
acquires a simple expression in respect to these angles. For the inspected rope type, the strand diameter
is 2 mm, the strands step is 46 mm, and the wires step (within the strand) is 20 mm. Hereby, H = 0.8152
and the axial stiffness Ewr = 1.712 × 105 MPa (assuming Esteel = 2.1 × 105 MPa), which is a value that is
framed by the available literature data [23]. In addition, supposing the usual elongation of ε � 1.7%,
the stress yield σ � 2910 MPa (also in the range of available values for this kind of small diameter FC
steel wire ropes).
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Figure 2. The evaluation of the wire rope geometrical parameters: (a) The model of the strands wire
rope, used for evaluation of the parameters involved in the lay angle computation of the strand and the
rope, respectively [23] (p. 25); (b) detailed images of the wire rope used for the experiments, showing
longitudinal and sectional views.
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2.3. Post-Processing Techniques

The second stage of analysis featured the numerical investigations of the acquired signals (in terms
of forces and accelerations) in order to accurately estimate the main parameters of the dynamic
evolution of the experimental ensemble and, finally, to obtain the characteristics of the wire rope
sample. It was initially assumed that the characteristics might be required not as simple basic values,
but as extended sets of data, being able to accurately approximate the nonlinear dynamics of such
a system.

Available methods for harmonics investigations include Fast Fourier Transform (FFT) techniques,
adaptive filter applications, artificial neural networks, singular value decompositions (SVD),
and higher-order spectra (HOSA) [22,24]. Most of these methods are able to work properly for
moderate noise levels within analyzed signals and for a narrow domain of frequencies. These methods
suppose that the signal only contains harmonics with fixed periodicity intervals. However, real signals
might contain (and this is usually the case) inter-harmonics when the periodicity provides variable
and very long intervals.

The Prony method, which is intended for use here, assumes that a sampled signal can be
re-formulated as a linear combination of exponential functions [25–28]. This approach is not a spectral
estimation technique, but it has a close relationship to squares linear prediction algorithms, which are
usually used in auto-regressive (AR) or auto-regressive moving average (ARMA) parameter estimation
methods. Opposite to AR/ARMA techniques, which try to fit a random model to the second-order data
statistics, the Prony method seeks to fit a deterministic exponential-based model to the analyzed signal.

According to the previously mentioned arguments, in order to extract sinusoidal and/or exponential
signals from time series data, the Prony method provides a feasible tool. This method allows the
decomposition of a complex signal to a sum of exponential functions and transforms this entire
computational process into solving a set of linear equations [25–28].

Hereby, assuming a signal x(t), available through n samples, where x[1], x[2], ..., x[n], it can be
approximated by m terms [25–28]:

y[i] =
m∑

k=1

Ak exp[(bk + jωk) (i− 1)Ts + jψk], (2)

where i = 1, n, Ak denotes the amplitude, Ts denotes the sampling period, αk denotes the damping
factor, ωk denotes the angular velocity, ψk denotes the initial phase, and j2 = −1. This discrete-time
expression can be concisely formulated in the form of the following:

y[i] =
m∑

k=1

hk zi−1
k , (3)

where, based on exponentials, the following can be expressed:

hk = Ak exp( jψk), zk = exp[(bk + jωk)Ts]. (4)

Considering Equation (3), the estimation problem results from the minimization of the squared
error over the n initial signal values (initial data) as follows [25–28]:

∆ =
n∑

i=1

∣∣∣ε[i]
∣∣∣2, (5)

where

ε[i] = x[i] − y[i] = x[i] −
m∑

k=1

hk zi−1
k . (6)
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Taking into account this nonlinear problem, we adopted the Prony method, which uses linear
equation solutions [26–28]. In fact, this method (also known as a polynomial Prony method), assumes
an autoregressive model of order p, which supposes that the value of the sampled signal x[i] linearly
depends on the preceding p values of x. In order to apply this method, one may use one of the available
techniques for solving. Hereby, the original method proposed by Prony (a two-step method which
additionally imposes an n = 2p condition and, in some cases, can become unstable due to ill-conditioned
matrix equation solving) was considered. In addition, it can be taken into account the matrix pencil
method (MPM), which solves an eigenvalues problem (with the main advantage that is less sensitive
to the noises within the signal) [25,28].

In this study, the authors have chosen the MPM. This method starts from two matrices, namely,
Y1 ∈ Cmxn and Y2 ∈ Cmxn. Generally, the set of matrices, with the expressions (Y2 − λY1) and (λ ∈ C),
form a matrix pencil. For the case of sampled initial signal x, a rectangular Henkel matrix Y is
considered, with the pencil parameter p, in the following form [25,28]:

Y =




x[1] x[2] · · · x[p] x[p + 1]
x[2] x[3] · · · x[p + 1] x[p + 2]

...
...

. . .
...

...
x[N − p] x[N − p + 1] · · · x[N − 1] x[N]



(N−p)×(p+1)

. (7)

The matrix Y helps to obtain the matrices Y1 and Y2. Thus, Y1 results from Y without the last
column and, respectively, Y2 results from Y, but without the first column [25–28]:

Y1 =




x[1] x[2] · · · x[p]

x[2] x[3] · · · x[p + 1]
...

...
. . .

...

x[N − p] x[N − p + 1] · · · x[N − 1]



(N−p)×p

, Y2 =




x[2] · · · x[p] x[p + 1]

x[3] · · · x[p + 1] x[p + 2]
...

. . .
...

...

x[N − p + 1] · · · x[N − 1] x[N]



(N−p)×p

. (8)

Supposing that m denotes the real number of poles of the function x[i], with the conditioning
m ≤ p ≤ n−m, it can be seen that zk, where (k = 1...p), are the generalized eigenvalues of the matrix
pencil (Y2 − λY1). Taking into account that matrices Y1 and Y2 are ill-conditioned, the QZ algorithm is
not stable enough to provide adequate results. In this case, it is more accurate to use the following
expression:

zk = eig
(
Y+

1 Y2
)
, (9)

where Y1
+ denotes the Moore–Penrose pseudo-inverse matrix of Y1. In such conditions, the damping

bk and the frequency fk = 2πωk results from the eigenvalues of zk [25,28].

bk =
ln|zk|

Ts
, fk =

1
2πTs

arctan
[

Im(zk)

Re(zk)

]
. (10)

Finally, by solving the system [25,28]

Zp×p hp×1 = xp×1, (11)

the amplitude Ak and the phase ψk [25,28] may be found:

Ak = |hk|, ψk = arctan
[

Im(hk)

Re(hk)

]
. (12)
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3. Results

The experimental investigations considered many tests based on five wire rope samples with
the characteristics presented in the previous chapter of this paper. The number of rope samples was
initially stipulated by the research theme. Within this process, the variables were (1) the static loading
mass, (2) the application mode of the initial shock, and (3) the acquisition procedure in terms of analog
data filtering, taking into account or not prior sampling of the signals. Based on the initial evaluation of
the results, the authors adopted two significant cases for presentation and discussion within this paper.

Hereby, it was considered that the static loading masses should be 19 and 8 kg, respectively.
The same rope sample was used, with an effective length L = 2.200 m between the hook devices. It was
assumed that the analog filtered signal (low-pass filter with fcut = 400 Hz) was provided by the force
transducer. For both cases, multiple tests were performed. Two situations for each case were adopted
for graphical presentation.

The raw acceleration signals are presented in Figure 3, acquired onto the loading mass and nearby
the upper hanging point (in both the vertical and horizontal directions). Each set of diagrams contain
the three timed signals and the corresponding FFT spectral magnitude, respectively.

The signals provided by the force transducer (raw digital and analog filtered signals) are depicted
in Figure 4, where each group of diagrams represent both the timed evolution and spectral composition
(in terms of the FFT magnitude).

The diagrams in Figure 5 present the results of a joint time-frequency analysis [22] of the absolute
motion of the loading mass in terms of acceleration. The exclusive motion of the mass results through
elimination of the parasitic motions, recorded on the upper hanging device, from the signal directly
acquired at the loading point (see Figure 1). The absolute acceleration of the mass, as a function of time,
is presented in Figure 6, together with its spectral composition. Obviously, the diagrams in Figure 6
are related to each testing situation. The essential magnitudes were evaluated and red circles were
marked on the spectral diagrams in order to identify the minimum set of eigenfrequencies in the
system evolution. The evaluation of these points was performed with the help of a computational
routine which identifies the peaks within the signal [22] that simultaneously satisfy the following
conditions: Minimum height raised above 10% of maximum magnitude and prominence greater than
0.03 (value adopted based on the initial analysis of all signals spectra). The procedure only takes into
account the first five peaks, because the analysis of high frequency range does not meet the purposes
of this research. These aspects have to be mentioned because of the various numbers of marked peaks
on the spectra graphs in Figure 6.
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diagrams in Figure 6 are related to each testing situation. The essential magnitudes were evaluated 
and red circles were marked on the spectral diagrams in order to identify the minimum set of 
eigenfrequencies in the system evolution. The evaluation of these points was performed with the 
help of a computational routine which identifies the peaks within the signal [22] that simultaneously 
satisfy the following conditions: Minimum height raised above 10% of maximum magnitude and 
prominence greater than 0.03 (value adopted based on the initial analysis of all signals spectra). The 
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The authors have evaluated the transfer function, taking into account the force signal, as the 
input to the system, and the loading mass acceleration signal, as the output of system [22,24,29]. In 
order to facilitate a comparative analysis between excitation, the transfer function, and system 
response, Figure 7 simultaneously presents the three spectra (in terms of the FFT magnitude). The 
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Figure 5. Joint time-frequency analysis of the absolute motion of the loading mass in terms of the
acceleration signal: (a) First situation within the case of m = 8 kg; (b) second situation within the case of
m = 8 kg; (c) first situation within the case of m = 19 kg; (d) second situation within the case of m = 19 kg.
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Figure 6. Timed evolution and related spectral magnitude of the absolute motion in terms of acceleration,
recorded at the loading mass: (a) First situation within the case of m = 8 kg; (b) second situation within
the case of m = 8 kg; (c) first situation within the case of m = 19 kg; (d) second situation within the case
of m = 19 kg. Note: Red circles on the right-side diagrams denote the maximum peaks satisfying the
imposed conditions (see text for details).
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The authors have evaluated the transfer function, taking into account the force signal, as the input
to the system, and the loading mass acceleration signal, as the output of system [22,24,29]. In order
to facilitate a comparative analysis between excitation, the transfer function, and system response,
Figure 7 simultaneously presents the three spectra (in terms of the FFT magnitude). The four groups of
diagrams in Figure 7 correspond to each considered test.
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One interesting parameter that is able to characterize the system behavior under dynamic 
excitations is the dynamic rigidity [30]. This parameter relates to the perturbing force with the 
system response (in terms of displacement) and provides information regarding the dynamic 
evolution of this ratio in respect to the perturbation frequency. The spectra of dynamic rigidity, 
according to the four considered cases, are presented in Figure 8. 

Additionally, in the second stage of analysis, the Prony method was used in order to estimate 
an extended range of spectral parameters, such as the amplitude, frequencies, damping, and phase. 
Practical implementation of this procedure uses MPM. During the analysis, different values for the 
pencil parameter were tested, finally adopting the value of 512. This value assures an adequate ratio 
between the additional parameters and computational resource requirements.  

Hereby, the diagrams in Figure 9 show the amplitude, damping factor, and damping ratio 
respectively, in respect to the frequency. These diagrams were grouped according to the four 
presented experimental cases. Supposing that the Prony algorithm directly provided amplitudes 
and damping factors, the damping ratio was subsequently evaluated based on the available data 
from the Prony/MPM implementations. In addition, an equivalent value of the damping ratio was 
estimated using the hypothesis of the same energy values supplied for both the initial system 
(simulated by the finite sum of exponential functions) and for an equivalent 
single-degree-of-freedom (SDoF) system with a natural frequency identical to the dominant 

Figure 7. Transfer function of the tested ensemble, comparatively presented with the input and output
spectra (magnitudes): (a) First situation within the case of m = 8 kg; (b) second situation within the
case of m = 8 kg; (c) first situation within the case of m = 19 kg; (d) second situation within the case of
m = 19 kg.

One interesting parameter that is able to characterize the system behavior under dynamic
excitations is the dynamic rigidity [30]. This parameter relates to the perturbing force with the system
response (in terms of displacement) and provides information regarding the dynamic evolution of this
ratio in respect to the perturbation frequency. The spectra of dynamic rigidity, according to the four
considered cases, are presented in Figure 8.

Additionally, in the second stage of analysis, the Prony method was used in order to estimate
an extended range of spectral parameters, such as the amplitude, frequencies, damping, and phase.
Practical implementation of this procedure uses MPM. During the analysis, different values for the
pencil parameter were tested, finally adopting the value of 512. This value assures an adequate ratio
between the additional parameters and computational resource requirements.

Hereby, the diagrams in Figure 9 show the amplitude, damping factor, and damping ratio
respectively, in respect to the frequency. These diagrams were grouped according to the four presented
experimental cases. Supposing that the Prony algorithm directly provided amplitudes and damping
factors, the damping ratio was subsequently evaluated based on the available data from the Prony/MPM
implementations. In addition, an equivalent value of the damping ratio was estimated using the
hypothesis of the same energy values supplied for both the initial system (simulated by the finite sum
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of exponential functions) and for an equivalent single-degree-of-freedom (SDoF) system with a natural
frequency identical to the dominant frequency within the signal spectra [22,30–32]. Taking into account
the five maximum dominant spectral peaks previously evaluated, this results in the five maximum
values of the equivalent damping ratio. These equivalent values are depicted in the damping ratio
graphs within Figure 9 with dashed red lines.

Supposing that each frequency provided by the Prony/MPM algorithms can be considered the
natural frequency of a SDoF linear model, with a correspondent amplitude, damping, and phase
(also available from the same algorithm), it becomes simple to evaluate a theoretical response of a
multi-degree-of-freedom (MDoF) linear model as a finite sum of all components supplied by the
Prony method.

These cumulative responses have a graphical representation, such as a function of two variables,
e.g., the perturbation and the natural frequencies (see Figures 10a, 11a, 12a and 13a). The correlated
overlapping spectral diagrams, following the SDoF natural frequency parameter, are presented in
Figures 10b, 11b, 12b and 13b. The global response of the equivalent MDoF model was depicted using a
blue continuous thick line on each diagram within Figure 10, Figure 11, Figure 12, Figure 13 according
to the assumed tests/cases for presentation.
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Figure 9. Amplitudes, damping factor, and damping ratio provided by the Prony method as functions
of the modal frequencies (according to the first 512 terms of signal decomposition): (a) First situation
within the case of m = 8 kg; (b) second situation within the case of m = 8 kg; (c) first situation within
the case of m = 19 kg; (d) second situation within the case of m = 19 kg. Red dashed lines within the
damping ratio diagrams denote an equivalent damping ratio (see text for details).
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Figure 10. Double-spectra evolution of the first 512 terms in the exponential function decomposition
according to the Prony method with the first test within the case of m = 8 kg: (a) Behavior of each
component in respect to the perturbation frequency in the range of interest; (b) overlapped spectral
diagrams. The blue continuous thick lines on the graphs denote the response spectra of the linear
system, assuming the available terms.
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component in respect to the perturbation frequency in the range of interest; (b) overlapped spectral
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assuming the available terms.
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Figure 12. Double-spectra evolution of the first 512 terms in the exponential function decomposition
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Figure 13. Double-spectra evolution of the first 512 terms in the exponential function decomposition
according to the Prony method for the second test within the case of m = 19 kg: (a) Behavior of each
component in respect to the perturbation frequency in the range of interest; (b) overlapped spectral
diagrams. The blue continuous thick lines on graphs denote the response spectra of a cumulative linear
system, assuming the available terms.

4. Discussion

A comparative analysis of the raw acceleration signals reveals dominant frequencies within the
spectra. A pertinent evaluation of these values must take into account the force signal spectra. Thus,
the spectral peaks in the range of interest becomes quite visible around 10 Hz and in the domain of
90–400 Hz. The loading mass acceleration spectra presents a rather wide plate evolution from 10 to
1000 Hz, containing a maximum of three essential peaks, comparative with the other two acceleration
signals, which provide many of distinctive peaks (see Figure 3). This qualitative difference is due to the
initial shock directly applied to the mass and, respectively, to the dissipative and elastic characteristics
of the rope mounted between the two points of acceleration monitoring. The spectral force diagrams,
which are even as noisy as the acceleration diagrams, provide two clear main peaks around the values
of 10 and 200 Hz, respectively (see Figure 4). An interesting signal is that acquired nearby the upper
hanging device in the horizontal direction, because this preponderantly contains the effects due to the
support tower bending motion. Hereby, the spectrum of this signal contains a very clear maximum in
the range of 9.25 to 10.75 Hz, depending on the test case, which represents the first modal frequency of
the tower. This preliminary analysis offers the primary qualitative findings, which are useful for the
next evaluations.

The effective (absolute) acceleration of the loading mass is able to characterize the dynamics
of the wire rope used to suspend the mass oscillator. This signal was obtained from the initial
acceleration recorded on the mass, through elimination of the perturbing signals due to additional
unavoidable motion of the support tower. Timed evolutions of these signals were firstly evaluated
using a joint time-frequency algorithm and the results are depicted in Figure 5. This investigation helps
to correctly identify the time-frequency areas within the effective mass acceleration signal, showing
the transitory regimes of each dominant frequency in terms of both the initial time and during the
timed evolution. The results show the two relevant spectral components supplied by the support
structure (low frequency area) and, respectively, by the rope–mass-vibrating ensemble (with most
relevant values centered around 200 Hz).

Following the previous qualitative results, the acquired signals were quantitatively analyzed
using, firstly, a classical FFT algorithm. The magnitude diagrams were computationally scanned for
the five maximum peaks (this value was settled after the preliminary analysis that had indicated the
average number of peaks provided by the entire test set).

As it can be seen in Figure 6, the peaks were grouped around 10 and 200 Hz. For the cases/situations
within this paper, the frequency values of marked peaks in Figure 6 are presented in Table 1. For the
first case (m = 8kg), the scanning procedure identified five values in each situation. For the second
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case, the procedure yielded only three values, where all attended the domains of interest. Additionally,
identified components at 2.5, 6.75, 220, and 302 Hz appeared in a certain singular situation. However,
following the graphs, it can be clearly seen that these dominant frequencies were also included by all
signals, but with various amplitudes and prominences, thus that they were not constantly pointed out
by the algorithm. Low values (2.5 and 6.75 Hz) result from the cable transversal parasitic oscillations
and high values (220 and 302 Hz) results from the dynamics of the hooking devices.

Table 1. Peaks frequencies related to the diagrams in Figure 8.

Case/Situation of Analysis Frequency (Hz)

m = 8 kg/situation I 2.499938, 6.749831, 9.99975, 11.24972, 190.9952
m = 8 kg/situation II 9.99975, 11.24972, 188.7453, 219.9945, 301.9925
m = 19 kg/situation I 9.249769, 10.74973, 186.7453
m = 19 kg/situation II 9.249769, 10.74973, 189.4953

Force and acceleration can be assumed as the input and the output, respectively, of the rope–load
ensemble. Hereby, the transfer function, in terms of driving point function, becomes easily estimated
for each inspected case (see Figure 7). The effective acceleration of loading mass (Figure 6), double
integrated during the analysis time, was considered in order to obtain the displacement signal.
The driving point transfer function represents the system admittance viewed through the input point,
thus it is able to provide useful information related to the evolution of dynamic rigidity with respect
to the excitation frequency (Figure 8). Targeted frequencies around 190 Hz were pointed out in the
dynamic rigidity graphs, but low frequencies (9 to 11 Hz) were not present because this parameter
exclusively characterizes the wire rope dynamics.

Starting from the hypothesis that the product kL = ES = const., where k denotes the rigidity, L is
the wire rope sample effective length, E is the rope Young’s modulus, and S denotes the effective
sectional area of the rope [7,14,30], it can be seen that the sample rigidity features a constant value for
all assumed tests because the same cable sample with a constant length was used. According to initial
evaluation of the rope parameters (see the values within Section 2.2), the rigidity was 7.04 × 105 Nm−1.
The experimental results provided rather different values for the cable rigidity because of dynamic
effects (in fact, we discussed the dynamic rigidity). Thus, the values of this parameter acquired the
following values: 9.8 × 105 Nm−1 for the case of m = 8 kg and 24 × 105 Nm−1 for the case of m = 19 kg.

The secondary stage of analysis was related to the dissipative characteristics provided by the
experiments. The dissipation of the wire rope-loading mass ensemble could be globally characterized
through an overall damping factor, evaluated based on timed effective acceleration diagrams
(see Figure 6). The simplest evaluation procedure consists of an exponential function-based interpolation
of the magnitude of the Hilbert Transform applied to the inspected function [22,31]. This method,
such as the classical procedure of the logarithm decrement, is affected by certain operational errors
regarding the initial parameters, the time length of the processed signal, and the nonlinearities within
the system evolution. However, it was adopted because it avoids the uncertainness of the maximum
point picking procedure.

The results according to the Hilbert Transform-based method are presented in Table 2. It has to be
noted that there is a relative wide spread of the values, which may produce certain difficulties in the
selection of the parametrical values for some MDoF computational models.

In order to accurately simulate the behavior of a real ensemble, an equivalent linear MDoF
theoretical system is suitable for use. The dissipative characteristics of such models require
supplementary parameters. Thus, an additional computational procedure was adopted, based on Prony
approximation and MPM, which were briefly presented in Section 2.3. The results of these analyses
were comparatively presented in Figure 9, and the MDoF system approximations were, respectively,
depicted in Figures 10–13. The evaluation had supposed the value of 512 for the pencil parameter. Thus,
256 serviceable values were yielded, respectively, for the amplitude, damping, and phase parameters,
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in respect to the frequency. These values can be taken into account for any linear computational model
intended to simulate the dynamic behavior of a wire rope.

Within some practical situations, a computational approximation is often required with the
simplest models, such as the SDoF schematization [16,33]. An equivalent value of the dissipative
characteristic is required for these cases. Using an algorithm that supposes a SDoF system, enabling
the same energy with the initial MDoF system, it becomes easy to evaluate the equivalent damping
parameter (in terms of the damping ratio) [22,30–32]. Successively, we assumed the natural frequencies
for the SDoF system (see values in Table 1) and the equivalent damping ratios were computed.
In addition, the damping factors were also evaluated. The results are given in Table 3. It has to be
noted that there are consistent values within each testing case, but a wide spread between the cases,
which shows the rope dissipation dependence with respect to the loading conditions.

Table 2. Overall damping factors related to the diagrams in Figure 8.

Case/Situation of Analysis Overall Damping Factor (s−1)

m = 8 kg/situation I 24.5810
m = 8 kg/situation II 23.8685
m = 19 kg/situation I 12.7252
m = 19 kg/situation II 14.2641

Table 3. Equivalent damping factors and ratios related to the diagrams in Figure 8.

Case/Situation of
Analysis

Equivalent SDoF
Damping Ratio (-)

Equivalent SDoF
Damping Factor (s−1)

m = 8 kg/sit. I 0.0312, 0.0312, 0.0312, 0.0312, 0.0192 0.4908, 1.3233, 1.9589, 2.2047, 23.0028
m = 8 kg/sit. II 0.0311, 0.0312, 0.0186, 0.0174, 0.0193 1.9567, 2.2024, 22.0632, 24.1166, 36.6487
m = 19 kg/sit. I 0.0312, 0.0312, 0.0072 1.8117, 2.1062, 8.3916
m = 19 kg/sit. II 0.0312, 0.0312, 0.0077 1.8152, 2.1102, 9.1820

Comparative analysis of values in Tables 2 and 3 reveals certain differences between the damping
factors for the two evaluative algorithms. Basic justification of this fact results from the appreciative
qualitative character of the first proposed algorithm. However, this technique was presented because it
is easily implemented and requires reduced computing resources (comparative to the second technique).
Regarding the differences between the values of the two cases according to the second algorithm
(significant values in Table 3 are denoted in boldface), the damping factor depends on the excitation.
Thus, in Table 4, the damping coefficient was exclusively provided as that evaluated for the significant
values. The average values of this parameter were 360.528 and 333.906 Nsm−1, which presents a 2.1%
and 4.7% maximum deviation related to the computed values.

The investigation of the diagrams in Figures 10–13 shows that, for any considered case/situation,
the spectra of the equivalent linear MDoF system does not enable the low frequencies related to the
dynamic behavior of the tower structure. This approach supplies the frequencies of interest. The signal
spectrum additionally contains high frequencies due to the wave propagation within the wire rope.
Hereby, Prony method/MPM assessments are able to provide the required data for any linear MDoF
system approximation.

Table 4. Equivalent damping coefficients related to the data in Table 3.

Case/Situation of Analysis Equivalent SDoF
Damping Coefficient (Nsm−1)

m = 8 kg/situation I 368.048
m = 8 kg/situation II 353.008
m = 19 kg/situation I 318.896
m = 19 kg/situation II 348.916
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5. Conclusions

The discussion section contains findings related to both the conservative and dissipative aspects
within dynamic behaviors of strands wire ropes. It was shown that the methods used for investigation of
dynamic data are able to provide suitable information, depending on the numerical model requirement.
The findings within this study were systematically presented, starting with a SDoF model (completely
characterized by the global damping and stiffness) and progressing to complex MDoF approaches
(which usually require a variable range frequency, depending on the dissipations and rigidities).
Hereby, the presented assessments have demonstrated the flexibility and adaptability of the proposed
techniques and, additionally, with the advantage of reduced experimental investigations. This study
only includes laboratory tests based on an experimental setup, according to the initial research theme.
This limitation does not restrict the applicability of the findings, as per the study objective. However,
the operational mode of application was not completely proven. This research sustains the feasibility
of the proposed post-processing assessments. Future developments will be focused on operational
test applications using the same analysis technique but instead applied to operationally acquired
signals. Thus, it will be able to provide suitable arguments for enlarging the utilization range of the
authors’ assessments.
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Abstract: The paper uses Kane’s formalism to study two degrees of freedom (DOF) mechanisms with
elastic elements = employed in a wind water pump. This formalism represents an alternative, in our
opinion, that is simpler and more economical to Lagrange’s equation, used mainly by researchers
in this type of application. In the problems where the finite element method (FEM) is applied,
Kane’s equations were not used at all. The automated computation causes it to be reconsidered in
the case of mechanical systems with a high DOF. Analyzing the planar transmission mechanism,
these equations were applied for the study of an elastic element. An analysis was then made of the
results obtained for this type of water pump. The matrices coefficients of the obtained equations were
symmetric or skew-symmetric.

Keywords: Kane’s equations; planar mechanism; Lagrange’s equations; dynamics; finite element
method (FEM); multibody system (MBS); wind water pump

1. Introduction

The analytical mechanics gave, from the beginning, several equivalent formalisms useful in the
analysis of mechanical systems with a large number of degrees of freedom (DOF). The advantage of these
approaches lies in the fact that they are suitable for generalizations. However, in practice, despite a
relatively large number of analysis possibilities, the Lagrange’s equation was used. The success
of this method is based on the fact that it operates with classical and well-known notions of
mechanics. However, due to the significant progress of the last five decades in the field of numerical
computing methods and the use of computers in all domains, a reconsideration of these methods is
required. Some of these formalisms can bring advantages in terms of modeling, writing algorithms,
and computational time. The advantages and the drawbacks are summarized at the end of this
section. By using a convenient method, it is possible to reduce the computing operations. For example,
Hamilton’s method leads us to a system of first-order differential equations; therefore, there is no
need to transform the second-order system of differential equations into a first-order system of
differential equations.

The last decade shows us that we have begun to reconsider all the formalisms of analytical
mechanics. This is a consequence of the desire to facilitate the representation of mathematical models
and the need to reduce the amount of equations and steps that are required. Worldwide, there are
different studies that have applied and analyzed alternative ways of obtaining the equations of motion.
In the following, we show a summary of some of the most significant research studies on the subject.

Even if alternative methods were used in the analysis of multi body systems (MBSs), such as
Gibbs–Appell equations, Hamilton equations, Maggi’s equations, Jacobi’s equations, Kane’s equations,
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etc., for problems that required the application of the finite element method (FEM) method, Lagrange’s
equations were used almost exclusively. The disadvantage is the high level of calculus due to the large
number of DOF. It is natural, therefore, to identify the most advantageous methods in terms of volume
and calculus time. We mention that, even though different methods were used, the resulting system of
differential equations was the same.

Using the results presented in [1–16], the following conclusions can be formulated regarding
the advantages and the drawbacks of modeling an elastic mechanical system using the equivalent
formalism of analytical mechanics.

As a method currently used, the Lagrange’s equations (LE) method, preferred in the case of
mechanical systems with a high DOF, has proven that it can be successfully applied to a wide range of
situations. The main advantage of the method is that basic and well-known notions are used. In the
finite element analysis (FEA) of MBS systems with elastic elements, this method has been used by
almost all researchers. Mechanical systems modeled with various types of finite elements have been
studied using this method. In the first step, the equations of motion are computed. The next step is the
assembly of these equations, which implies the writing of the constraint conditions between the finite
elements, expressed generally by non-holonomic conditions. This step is actually the elimination of
Lagrange’s multipliers from the obtained algebraic differential system (DAE). It has been proven that
the method of LE is convenient for many applications [1–7]. The use of other equivalent formulations
in analytical mechanics has been only sporadically investigated in relation to these problems.

The most used method by researchers to study such systems is the Lagrange’s method. The main
reason is the degree of generality and abstraction that this method allows (as opposed to the Euler
method, where every liaison force must be introduced and determined), but also the fact that researchers
are accustomed to it. A major disadvantage is the fact that one must determine the multipliers, which,
for large systems, can become a difficult thing.

Gibbs–Appell (GA) equations, although rarely used in the study of mechanical systems,
have obvious advantages in terms of the representation form to be used. Compared with LE,
it has advantages regarding the required computation time [8].

The disadvantage is that researchers are less familiar with some notions, such as energy of
accelerations. The GA formalism is useful for non-holonomic systems. Advantages of the GA
method have been presented in studies related to the calculus of MBSs with rigid elements [9].
The final equations obtained by applying this method are identical to those obtained with LE, but the
computational effort is lower [10]. The major advantage of the method is that Lagrange’s multipliers do
not appear in the written equations; the method eliminates them directly and, as a result, the number
of unknowns is lower [11]. These advantages have been observed by the researchers and, lately,
the method tends to become a [12] procedure. Gibbs–Appell equations have the advantage that the
level of calculus involved in the modeling process is smaller. On the other hand, this method involves
the introduction of a notion that researchers are less accustomed to operate with, namely the energy
of accelerations.

Most analytical methods lead to a system of second-order differential equations. To solve this kind
of system using commercial software, it is necessary to transform it by introducing additional variables
to a system of first-order differential equations. Hamiltonian mechanics allows obtaining a system of
first order and thus shorter time is needed to solve it. In this way, a time-consuming stage in the process
of transforming from second-order differential equation systems to first-order differential systems is
avoided. However, the method has a disadvantage in the need to perform numerous preliminary
calculations [16]. We do not know a concrete study of all the aspects involved in the use of this method.

The last years have revealed increasing interest from researchers for Maggi’s equations (ME),
which were little applied and which are an alternative formalism to the other formalisms in analytical
mechanics [13,14]. The interest is also generated by the development of modern mechanical
manufacturing systems (robots and manipulators) [15]. In the case of the study of non-linear
systems, the feedback linearization technique involves the application of ME. However, this method is
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rarely used, despite all these advantages, and is less familiar to researchers. The use of Maggi’s and
Kane’s equations (two equivalent formulations of the same principles) has advantages in the analysis
of non-holonomic systems. The liaison conditions, expressed linearly, can be used immediately in the
equations of motion. It also has the advantage that the obtained equations no longer contain Lagrange
multipliers or the liaison forces from the Newton–Euler equations.

The paper aims to analyze the possibility of using Kane’s equations to derive the equations of
motion for a finite element and also to identify the advantages of this approach for the researchers.

In order to test the possibility of applying the method and to find the potential problems that
might appear during its use, we made an application based on a planar mechanism.

2. Finite Element Kinematics

In our application, we used a one-dimensional finite element to study a planar mechanism with
two degrees of freedom. To apply Kane’s equation (KE), it is necessary to know the kinematic of the
element. In such analysis, the velocity and the acceleration of a point are of significant importance
and are expressed in terms of nodal coordinates. An analysis of this problem can be found in [2–6].
The shape function that was used helped determine the displacements field in terms of independent
nodal coordinates. (Figure 1)
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Figure 1. Plane finite element.

The new position vector M’ of an arbitrary chosen point M becomes [7]:

{rM′ }G = {rM}G +
{
f
}
G = {rM}G + [R]

{
u
v

}
= {ro}G + [R]

{
x
0

}
+ [R][N]{δ} (1)

where
{
f (u, v)

}
is the displacement vector; the shape functions are in [N] =

[
N(u)
N(v)

]
=

[
N(1)
N(2)

]
,

and {δ} =
{
δ1

δ2

}
and {δ1}, {δ2} are the displacement vectors. The slope is [6]:

β =
dv
dx

=
d
dx

([
N(v)

]
{δe}

)
=

[
N′
(v)

]
{δe} (2)

With G index, we denote a vector or a matrix with components in the global coordinate system,
and with L index, we denote a size with components in the local system.
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From Equation (1), the velocity of a point results in:

{vM′ }G =
{ .
rM′

}
G
= {vO}G +

[ .
R
]{ x

0

}

L
+

[ .
R
]
[N]{δ}L + [R][N]

{ .
δ
}
L

(3)

Calculated in [6,7], where {vO}G =
{ .
rO

}
G

is the velocity vector of the origin of the mobile
coordinate system.

The transformation of a vector is performed by the matrix [R]:

{t}G = [R]{t}L (4)

In Appendix A are presented more results used in the paper.

3. Kane’s Equations Used in Conjunction with FEA

Kane’s method and equations have represented, during the last decades, a method that was
successfully applied in the study of MBS systems. The KE method can be used for both holonomic
and non-holonomic systems and can eliminate some of the disadvantages of classical methods in
analytical mechanics (Newton–Euler and Lagrange). From a theoretical point of view, Maggi and
Kane equations are equivalent, representing the same method very well suited for systems with
non-holonomic constraints [17]. The application of Kane’s equations was determined by the need to
study complex flexible structures such as robots and manipulators [18]. It has been found that applying
this method allows efficient calculation for these systems [19–22]. The advantage of these equations
is that they do not contain constraints forces [23]. The paper presents the necessary formalism to
derive the motion equation for a finite element. A planar mechanism is studied, but the method can
be applied for every type of an elastic MBS. Of course, the specific form of the equations must be
calculated each time considering the shape functions required by the specific finite element chosen.

A short presentation of the Kane’s equations is presented in Appendix B. For an elastic finite
element, considered as a solid, the Kane’s equation can be written as:

N∑

i=1

Fi
∂vi

∂
.
qk

=

∫

V

a
∂v
∂

.
qk

dm k = 1, n (5)

where by k = 1, n is meant k = 1, 2, . . . . . . , n.
Differentiating the expression of velocity Equation (3), we obtain:

{aM′ }G = {ao}G +
[ ..
R
]{ x

0

}
+

[ ..
R
]
[N] {δ}L + 2[R] [N]

{ .
δ
}
L
+ [R] [N]

{ ..
δ
}
L

(6)

From Equation (1), we obtain:

∂{v′M}G
∂
{ .
δ
}
L

= [R][N] and



∂{v′M}G
∂
{ .
δ
}
L




T

= [N]T[R]T (7)

The expression ∂{T}
∂{δ} , if {T} = [A]{δ}, is [A]. It is possible to write:



∂{vM′ }G
∂
{ .
δ
}
G




T

{aM′ }G = [N]T[R]T{aM′ }G (8)
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∫

V

(
∂{vM′ }G
∂
{ .
δ
}
G

)T

{aM′ }G =



∫

V
ρ[N]TdV


{aO}L +

∫

V
[N]T([ε]L + [ω]L[ω]L){r}LρdV+

+



∫

V
[N]T([ε]L + [ω]L[ω]L)[N]ρdV


{δ}L + 2



∫

V
ρ[N]T[ω]L[N]dV



{ .
δ
}
L
+



∫

V
[N]T[N]ρdV



{ ..
δ
}
L

= −
[
mi

O

]
{aO}L −

{
qi(ε)

}
−

{
qi(ω)

}
+ [k(ε)]{δ}+ [k(ω)]{δ}+ [c(ω)]

{ .
δ
}
L
+ [m]

{ ..
δ
}
L

(9)

The following notations were made:

[m] =

∫

V

[N]T[N]ρdV = [m11] + [m22] ;
[
mi

O

]
=

∫

V
ρ[N]d V; (10)

[c(ω)] =

L∫

0

[N]T[ωL][N]ρAdx = ω([m21] − [m12]) ; [k(ε)] =

L∫

0

[N]T[εL][N]ρAdx = ε([m21] − [m12]); (11)

[k(ω)] = −
L∫

0

[N]T
[ .
R
]T[ .

R
]
[N]ρAdx =

L∫

0

[N]T[ωL][ωL][N]ρAdx = −ω2([m11] + [m22]) (12)

{
qi(ε)

}
=

L∫

0

[N]T[εL]

{
x
0

}
ρAdx = ε{m2x} ;

{
qi(ω)

}
=

L∫

0

[N]T[ωL][ωL]

{
x
0

}
ρAdx = ω2{m1x} (13)

We obtain:

[m]
{..
δ
}
+ 2ω([m21] − [m12])

{ .
δ
}
+

(
[kb] + [ka] + ε([m21] − [m12]) −ω2([m11] + [m22]) + [kg]

)
{δ} =

=
{
qext

}
+

{
qliaison

}
− ε{m2x} −ω2{m1x} −

[
mi

o

]{..
ro
}
L

(14)

In Equation (14), Equation (7) was applied. Thus, in a nodal point, k acts as generalized forces
{Fk} composed by the external forces (concentrated and distributed), the liaison forces, and the forces
deriving from a potential. The corresponding velocities of these points can be found inside the velocities
vector

{ .
δ
}
G

. We obtain:



∂{vM′ }G
∂
{ .
δ
}
G




T

{Fk}ρdV = ([k] + [k(ε)] + [k(ω)] + [kg]){δ}L −
{
qext

}
L
−

{
qliaison

}
L

(15)

{
qext

}
L

is the generalized external nodal forces vector, ([k] + [k(ε)] + [k(ω)] + [kg]){δ}L—is the vector of

forces deriving from a potential,
{
qliaison

}
L
—is the liaison vector [6], and {vM′ } is, in this representation,

the velocity of the nodal point k.

4. Study of a Planar Mechanism Used in a Wind Water Pump

The mechanism of the transmission of the wind water pump is presented in Figure 2 [24].
The elements of the mechanism are rigid despite the B C’ beam, which is considered linear elastic.

To determine the constraint forces in the connection point, we consider all the elements of the
mechanism being rigid (it is a first approximation, and we consider that the deformability of the beam
does not influence the rigid body motion of the mechanism) [25,26]. In this case, if we know the
moment offered by the electric engine and the friction in the joint after the integration of the equations,
we can compute the liaison forces in the hinges B and C’. These forces can be introduced now in the
finite element model.

However, due to the many parameters that we have to take into account and which are difficult to
determine or approximate, we used another method of determining the liaison forces. Recordings
were made of the movement of some characteristic points of the mechanism, their trajectories were
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obtained, and, based on them, the speed and the acceleration fields of the mechanism were determined.
Knowing the accelerations and the equations of motion, we could determine the forces that appeared
in the two hinges (by solving a linear system) and use them in the finite element model.
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Figure 2. Kinematic mechanism of the transmission of a wind water pump.

In Figure 3 are presented the points where the markers were glued. These forces are necessary for
writing the equations of motion of the BC’ elastic beam. They were determined previously using Kane’s
equations. After this step, we computed the free vibrations of the equation system that was obtained.
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The markers placed on the bar were tracked using a video analysis and modeling program.
Following the recording of the markers’ positions with the help of the analysis program, the speeds
and the accelerations of the points were determined as well as the trajectories traveled by them.

In Figure 4 are presented the trajectories of each chosen point on the bar using the data taken
by the video analysis program. These are represented according to the positions given by the main
coordinate axes of the chosen system, XOY, OX being the horizontal axis and OY the vertical axis.
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Figure 4. Test bench.

For analysis and processing of the results as well as for the modeling with finite elements, simple
codes written in MATLAB were used. This was done due to the simplicity and the versatility of this
programming environment. Some of its advantages would be that it allows the easy implementation
of algorithms, it is possible to develop codes easily, corrections can be made quickly, it allows the use
of relatively large data sizes of the studied system, and it shows fast graphical results. The trajectories
were presented in Figure 5.
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The velocity and the acceleration fields (Figure 6) were determined using the aforementioned
optical method. The acceleration fields are presented in the figures below for the five nodes studied.
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The value of the maximum acceleration was 14.33 m/s2.
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The model of the beam divided in finite elements is presented in Figure 7. In the hinge B
and C, we could introduce the reactions previously determined using the optical measurement and
solving the linear system of equation containing the reaction (liaison forces). Then, it was possible
to perform a modal analysis of the beam. The results presented in the graphs below were taken for
the same operating angular velocity, 140 rpm, this being the maximum speed at which experimental
measurements were made (Figure 8).
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In the following, we try a comparison between the use of Kane’s and Lagrange’s equations based
on reference books [27,28]. The procedure follows a series of similar steps. The differences occur when
Lagrange’s formulas and Kane’s formulas are actually applied (Figures 9 and 10). The number of
distinctive operations in the two cases is studied. There are still elementary matrix operations, but we
do not make the comparison there, considering that the number of terms in the case of Lagrange’s
method is significantly higher than in the case of applying Kane’s method (Table 1).
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Table 1. Comparison between the numbers of operations for the two methods.

∂Ec
∂

.
qk

, ∂Ec
∂qk

(
∂{vM′ }G
∂
{ .
δ
}

G

)

Number of elements Number of elements

1 10 30 1 10 30

Number of operations

78 1008 9486 6 33 93

From the analysis of the presented calculus, it was found that there was an obvious difference
between the numbers of differences implied by the two methods. Apparently, the difference was very
large and should have led to significant time savings if the method of Kane’s equations was applied.
In reality, this step represented only a fraction of the multitude of operations necessary to perform.
Consequently, the economy achieved was much smaller. For example, in the case of writing a calculus
program in MATLAB for the calculation of the beam studied in the paper, which was discretized in 30
finite elements, the comparison led to a decrease in calculation time of only 7%.
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5. Conclusions and Discussions

The literature studied suggests that LE presents some advantages for the researchers. The main
disadvantage is the need to determine the Lagrange multipliers from the DAE obtained, which is
difficult to achieve in the case of large DOF systems. This involves numerous calculations and large
computational times. By comparison, the GA method seems to eliminate this disadvantage but
introduces a new notion, energy of the accelerations. An alternative is ME, very useful when the
constraints are non-holonomic. The last years have indicated an interest in researchers towards this
method in the context of the need to study complex systems such as robots and manipulators applied
at the present time on a large scale in the manufacturing industry. Hamiltonian formalism has the
advantage of obtaining a system of first-order differential equations, which can become a plus in
the case of using numerical calculation. However, the complexity of the intermediate calculations
makes the method inconvenient for the researchers. The KE method, which is equivalent to the ME
method, has begun to be used more widely in the last decade, with studies also led by the automation
industry and industrial robots. In the paper, the KE formalism was applied to determine the dynamic
response of an elastic MBS. The application considered was that of the transmission of a water pump
driven by the wind. The finite element chosen was a one-dimensional element where classical third
and fifth degree interpolation polynomials were used. It can be seen that KE can be a successful
alternative in determining the equations of motion with the advantage of being economical. The uses
of these equations present a natural alternative for non-holonomic mechanical systems. A comparison
between the two methods was made in the paper. For the example highlighted in the paper, which is
of small size, this difference may seem minor, but for large systems with high DOF, the difference may
become significant.
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Kane’s equations can be an economical and a simple alternative to the problem. The mentioned
methods and the other known ones from the analytical mechanics with their equivalents will be
re-evaluated in the context of the development of the modern industry, characterized by working
mechanisms with high speeds and high loads. This implies the fact that new technologies and software
development on these new methods are needed.
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Appendix A

Matrix [R] is:

[R] =




cosθ − sinθ 0
sinθ cosθ 0

0 0 1




(A1)

It being orthonormal, results:

[R][R]T = [R]T[R] = [E] =




1 0 0
0 1 0
0 0 1




(A2)

We use the notations:
[ .
R
]
= ω




− sinθ − cosθ 0
cosθ − sinθ 0

0 0 0




(A3)

[ω]G =
[ .
R
]
[R]T = −[R]

[ .
R
]T

=




0 −ω 0
ω 0 0
0 0 0




(A4)

and:

[ω]L = [R]T[ω]G[R] =




0 −ω 0
ω 0 0
0 0 0




(A5)

The skew symmetric operator angular velocity, expressed in global reference frame is [ω]G, and in
the local reference frame [ω]L. The angular velocity vector of the solid is ω. There are the relations:

[ω]G = −[ω]TGand[ω]L = −[ω]TL (A6)

Differentiating Equation (A5) it obtains:

[ ..
R
]
= ε




− sinθ − cosθ 0
cosθ − sinθ 0

0 0 0



−ω2




cosθ − sinθ 0
sinθ cosθ 0

0 0 0




(A7)

and the angular acceleration operator:

[ε]G =
[ .
ω
]
G
=




0 −ε 0
ε 0 0
0 0 0




(A8)
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in the global reference frame and:

[ε]L =
[ .
ω
]
L
=




0 −ε 0
ε 0 0
0 0 0




(A9)

in a local reference frame. After some elementary calculus, results are:

[ ..
R
]
[R]T =




−ω2 −ε 0
ε −ω2 0
0 0 0




(A10)

[R]T
[ ..
R
]
=




−ω2 −ε 0
ε −ω2 0
0 0 0




(A11)

Since we are dealing with a plane problem, we can reduce the size of the matrices used. Thus, the
rotation matrix is:

[R∗] =
[

cosθ − sinθ
sinθ cosθ

]
(A12)

And all previously written formulas can be reduced to relations between two-dimensional
squared matrices.

Appendix B

Kane’s equations [29].
It starts from the relationship [1,16]:

N∑

i=1

(
Fi −miai

) ∂ri
∂qk

= 0 ; k = 1, n (A13)

In analytical mechanics, it is shown that we have the relation:

∂ri
∂qk

=
∂vi

∂
.
qk

; k = 1, n ; i = 1, N (A14)

Substituting in Equation (A13) we obtain:

N∑

i=1

(
Fi −miai

) ∂vi

∂
.
qk

= 0 ; k = 1, n (A15)

If noted:
∂vi

∂
.
qk

=
∂vi
∂uk

= v(k)i ; k = 1, n ; i = 1, N (A16)

It results in:
N∑

i=1

Fi
∂vi
∂uk

=
N∑

i=1

miai
∂vi
∂uk

; k = 1, n ; i = 1, N (A17)

where, with Fi, the external forces acting in nodes were noted.
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Abstract: This work uses the “fractional order bio-heat model” (Fob) model of heat conduction to offer
a new interpretation to study the thermal damages in a skin tissue caused by laser irradiation. The
influences of fractional order and the thermal relaxation time parameters on the temperature of skin
tissue and the resulting thermal damage are studied. In the Laplace domain, the analytical solutions
of temperature are obtained. Using the equation of Arrhenius, the resulting thermal injury to the
tissues is assessed by the denatured protein ranges. The numerical results of the thermal damages
and temperature are presented graphically. A parametric analysis is dedicated to the identifications
of suitable procedures for the selection of significant design variables to achieve an effective thermal
in the therapy of hyperthermia.

Keywords: fractional derivative; skin tissues; thermal damages; Laplace transforms

1. Introduction

Recently, the development of studies shows that the problem of heat transfer in living tissues
introduces many complications. However, there are various discussions and findings in this field.
Approaches of heating operations have been used in modernistic medicine, such as hyperthermia [1],
laser tissue soldering [2], and laser surgery [3]. Some applications of bioheat models in clinical
hyperthermia were discussed, especially regarding large, thermally unequilibrated blood vessels that
have a worthy impact on the temperature distribution and cause serious temperature inhomogeneities.
Through this clinical procedure, the applications of moving heat source on the skin tissue considering
the perfusions rate is seen in some plastic surgery processes, such as in the use of laser radiation
for spots or tattoos or in the heat actions of the cornea, using the laser for correcting hyperopia and
removing moles.

In 1948, Pennes [4] presented the temperature distribution in the forearm skin temperature. The
formulation can be analyzed by various approaches to get the solution of the heat transfer model
for infinite thermal wave propagations, which is based on classical Fourier thermal conductions. In
point of fact, it is still found that heat spreads at a finite rate in the biological tissue because they have
highly nonhomogeneous inner structures. To dissolve the paradox that occurred in Penne’s bio-heat
formulation, thermal wave theory of bio-heat transfer is presented, which is based on heat waves
constitutive relations, as given in [5,6]. Abbas and Hobiny [7] investigated the analysis of thermal
damage in skin tissue subject to moving heat sources. The homotopy perturbation method [8] and the
finite-decomposition method have also been applied [9]. Esneault and Dillenseger [10] investigated

213



Symmetry 2020, 12, 602

the temperature increment over times in hypothermia by the finite difference approach. Zhu et al. [11]
estimated the depositions of light energy in tissues and the rate operation model for the thermal
damage resulting from the use of the theorem of diffusions.

Many current models of physical processes have been successfully modified using fractional
computation. We can say that the totality of integral theories and fractional derivatives was created in
the last half of the last century. Definitions and different methods of fractional derivatives have become
the main focus of numerous investigations. Using the fractional time derivative, many physical models’
processes have been successfully modified. Ezzat et al. [12,13] introduced a new fractional bio-heat
model using the fractional heat conduction equation. Ghanmi and Abbas [14] studied the fractional
transient heating within the skin tissue owing to a moving heat source. Mondal et al. [15] investigated
the transient heating within skin tissue owing to time-dependent thermal therapy in the context of
memory-dependent heat transport law.

The analytical solutions are very interesting owing to their lower expense and accurate estimation
compared with experimental and numerical calculations. Using the finite element approach,
Diaz et al. [16] introduced the solutions of thermo-diffusions model in the tissue to study the resulting
thermal damage. When a real phenomenon regarding heat transfer in a bounded media is studied,
the nonlinear models and linear models of thermal transfer were developed and their numerical
or analytical solutions are presented. Abbas and Zenkour [17] used the Green–Naghdi model
to study the effect of rotation and initial stress on thermal shock problem for a fiber-reinforced
anisotropic half-space. Abbas et al. [18] studied the effect of thermal dispersion on free convection in a
fluid-saturated porous medium. Abbas [19] investigated the effects of relaxation times and a moving
heat source on a two-temperature generalized thermoelastic thin slim strip. El-Naggar et al. [20]
studied the effects of the initial stress, magnetic field, voids, and rotation on plane waves in generalized
thermoelasticity. Marin and Marin et al. [21–23] used various models to study the dipolar bodies.
Abbas [24] studied the nonlinear transient thermal stress analysis of a thick-walled FGM cylinder with
temperature-dependent material properties. Zenkour and Abbas [25] used the finite element method
to study the magneto-thermoelastic response of an infinite functionally graded cylinder.

This paper explores the effect of fractional order derivative on the thermal damage of living tissue
using a bioheat model. The numerical results can be used as a substantiations division for living
tissue interaction such as continual scanning laser interaction. The comparisons are made with the
calculations obtained in the cases of the absence of the fractional time derivative and the thermal
relaxation time parameters.

2. Mathematical Model

A semi-infinite biological tissue under thermal isolation is considered. On the basis of Cattaneo [5]
and Ezzat et al. [12], the fractional bio-heat formulation in skin tissue can be expressed by

k∇2T =

(
1 +

ταo
Γ(α+ 1)

∂α

∂tα

)(
ρc
∂T
∂t

+ωbρbcb(T − Tb) −Qm −Qext

)
, 0 < α ≤ 1, (1)

Taking into consideration the above definition, it is possible to write the following:

∂αh(r, t)
∂tα

=



h(r, t) − h(r, 0), α→ 0,

Iα−1 ∂h(r,t)
∂t , 0 < α < 1,

∂h(r,t)
∂t , α = 1,

(2)

Iνh(r, t) =
∫ t

0

(t− s)ν

Γ(ν)
h(r, s)ds, ν > 0, (3)

lim
ν→1

∂νh(r, t)
∂tν

=
∂h(r, t)
∂t

. (4)
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The full spectrum of the local thermal condition can be described through the standard thermal
condition using the definition of the fractional derivative given in Equation (2). The different values
of fractional parameter 0 < α ≤ 1 cover two types of conductivity: 0 < α < 1 for low conductivity
and α = 1 for normal conductivity. Here, k is the thermal conductivity of tissue, ωb is the rate of
blood perfusion, t is the time, ρb is the blood mass density, ρ is the tissue mass density, Tb is the blood
temperature, T is the tissue temperature, τo is the thermal relaxation time, c is the specific heat of
tissues, cb is the specific heat of blood, Qm is the metabolic heat generations in living tissue, and Qext

refers to the heat generated per unit volume of tissues. Gardner et al. [26] suggested the laser thermal
source form by the following:

Qext(x, t) = Ioµa
[
U(t) −U(t− τp)

][
C1e−

k1
δ x −C2e−

k2
δ x

]
, (5)

where U(t) is the unit step function, µa is the coefficient of absorption, Io is the intensity of the laser, τp

is the exposure time of the laser, and δ is the penetration depth. C1, C2, k1, and k2 are the functions of
diffuse reflectance Rd and are mentioned in [26]. The penetration depth is defined by the following [26]:

δ =
1√

3µa(µa + µs(1− g))
(6)

where µs is the scattering coefficient and g is the factor of anisotropy. Now, both the lower and
upper surfaces are supposed to be thermally isolated as the boundary conditions and the reference
temperature are equal to its normal temperature. So, the initial conditions and the boundary conditions
are presented as

− k
∂T(L, t)
∂x

= 0, −k
∂T(0, t)
∂x

= 0 (7)

T(x, 0) = Tb,
∂T(x, 0)
∂t

= 0.0 (8)

For appropriateness, the non-dimensional forms can be given by

T′ = T−To
To

, T′b =
Tb−To

To
, t′ = k

ρcL2 t, τ′o = k
ρcL2 τo, τ′p = k

ρcL2 τp, x′ = x
L ,

k′1 = L
δ k1, k′2 = L

δ k2, Rb =
ρbωbocbL2

k , Rm = L2Qm
kTo

, Rr =
L2Ioµa

kTo
.

(9)

In terms of these non-dimensional form of physical quantities in (9), the governing Equation (1)
initial and boundary conditions can be expressed as (for appropriateness, the dashes have been ignored)

∂2T
∂x2 =

(
1 +

ταo
Γ(α+ 1)

∂α

∂tα

)(
∂T
∂t
−Rb(Tb − T) −Rm −Rr f (x, t)

)
(10)

∂T(0, t)
∂x

= 0,
∂T(L, t)
∂x

= 0 (11)

T(x, 0) = 0,
∂T(x, 0)
∂t

= 0 (12)

where f (x, t) =
[
U(t) −U(t− τp)

][
C1e−k1x −C2e−k2x

]
.

The transforms of Laplace for any function M(x, t) can be expressed by

M(x, s) = L[M(x, t)] =

∞∫

0

M(x, t)e−stdt, s > 0, (13)

where s is the parameter of Laplace transform. Thus, the governing equations are expressed as
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d2T
dx2 − f1T = − f2 − f3e−k1x − f4e−k2x (14)

∂T(0, t)
∂x

= 0,
∂T(L, t)
∂x

= 0 (15)

where 


f1 =
(
1 + sαταo

Γ(α+1) ) (s + Rb)

f2 = 1
s (RbTb + Rm)

f3 = RrC1
s (1− e−sτp)

f4 = −RrC2
s (1− e−sτp)




(16)

The exact solution of Equation (14) is written as

T(x, s) =
f2
f1
+ A1e

√
f1x + A2e−

√
f1x +

f3
f1 − k2

1

e−k1x +
f4

f1 − k2
1

e−k2x (17)

To obtain the complete solution of (14), boundary conditions represented by Equation (11) are
used to get the constants A1 and A2, which are written as

A1 =
e−L(k1+k2)(eLk2 (eLk1−eL

√
β1 )k1(k2

2−β1)β3+eLk1 (eLk2−eL
√
β1 )k2

1k2β4−eLk1 (eLk2−eL
√
β1 )k2β1β4)

(e2L
√
β1−1)

√
β1(β1−k2

1)(β1−k2
2),

A2 = eL
√
β1

(e2L
√
β1−1)

√
β1

(
e−Lk1 (eL(k1+

√
β1)−1)k1β3

k2
1−β1

+
e−Lk2 (eL(k2+

√
β1)−1)k2β4

k2
2−β1

)
.

(18)

Finally, for the solutions of the temperature increment, a numerically reversal approach was
adopted depending on Stehfest [27]. In this approach, the inverse M(x, t) of the Laplace transforms
M(x, s) can be approximated as

M(x, t) =
ln2

t

M∑

j=1

V jM(x, j
ln2

t
), (19)

where V j is given by the following equation:

V j = (−1)
n
2 +1

min(i, n
2 )∑

k= i+1
2

k
n
2 +1(2k)!

( n
2 − k)!k!(i− k)!(2k− 1)!

(20)

The evaluations of burns are one of the most remarkable attributes in the bio-engineering science in
a living tissue. To quantify thermal damage, the technique expanded by Henriques and Moritz [28,29]
can be used.

Ω =

∫ t

0
Be−

Ea
RT dt (21)

where R = 8.313 J/mol·K is the universal gas constant, B = 3.1 × 1098 s−1 is the factor of frequency,
and Ea = 6.28× 105 J/mol is the activation energy.

3. Results and Discussions

Several simulations were conducted to test the performance of the proposed linear thermal model
based on the bio-heat transfer model. For numerical computations, the values of thermal properties for
living tissue were written [30].

ρb = 1060(kg)(m−3), cb = 3860 (J)(kg−1)(k−1), ωb = 1.87× 10−3(s−1), Tb = 37 ◦C,
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c = 4187 (J)(kg−1)(k−1),ρ = 1000(kg)(m−3), k = 0.628 (W)(m−1)(k−1), τo = 5(s),

τp = 10(s), Qm = 1.19× 103(W)(m−3), L = 0.03(m), Io = 122× 103(W)(m−2), g = 0.9,

µs = 12000 (m−1),µa = 40(m−1), To = 37 ◦C.

Using MATLAB (R2017a) software, the computations are done and the results are presented
graphically. The outer thermal source impact on the surface of the skin was integrated. These
mathematical models, which are based on hyperbolic bio-heat transfer, were found with the interface
and appropriate boundary conditions. The perfusions, metabolic, and conducting heat source terms
were utilized in the formulations. A slab of tissue is 3 cm thick and the reference temperature is equal
to its normal temperature, that is, Tb = To = 37 ◦C. In order to study the effect of fractional parameter
α, the laser exposure time τp and the thermal relaxation time τo on the temperature and the thermal
damages, the numerical results were presented using the graphs as in Figures 1–9. Figure 1 displays the
temperature variation along the distance x at t = 80 s when the laser exposure and thermal relaxation
times remine to constants τp = 10s, τo = 5s. It is observed that the temperature begins from the utmost
values, and then decreases constantly to Tb = 37 ◦C. The time history of surface temperature through
four values of the fractional order parameter α is exhibited in Figure 2. It notices that the temperature
begins from Tb and increases with the time till most values, after which decreases again to Tb. Figure 3
show the resulting thermal damage through time t. Clearly, the time history of the thermal damages
obtained from the different values of the fractional order parameter α is very different. As expect, the
fractional order parameter α has major effects on the distributions of the variables. Figures 4–6 display
the influences of the laser exposure time τp with the fractional bioheat model (α = 0.5) on the resulting
thermal damage and the temperature distributions. As expected, the laser exposure time τp has a great
effect on the resulting thermal damages and the distribution of temperature. As expected, the increase
of laser exposure times increases the temperature, exceptionally at the peak temperature where the
difference between the diagrams. On the basis of the fractional order bioheat model (α = 0.5), the
comparison of temperature response among four types of thermal relaxation time τo along x is shown
in Figure 7. In these cases, it was observed that the thermal relaxation time decreases the temperature
of the skin surface. Gradually, the temperature decreases continuously to the normal temperature.
The time history of surface temperature through four values of the thermal relaxation time is shown
in Figure 8. Moreover, Figure 9 displays the variations of thermal damages with time for various
values of thermal relaxation time τo. Figures 3, 6 and 9 show the variations of thermal damage at the
point x = 0 under various values of the fractional parameter, the laser exposure time, and the thermal
relaxation time, respectively. As observed in the figures, the thermal damages are reduced with the
fractional model and hyperbolic bioheat model.
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4. Conclusions

On the basis of the fractional order bio-heat model in a living tissue, the generalized bio-heat
equation was proposed, through the substitution of the rate of change term by a fractional time derivative.
The fractional-order bio-heat transfer model is derived and its effect is given in thermotherapy
application. The thermal damages are reduced with the fractional model and hyperbolic bioheat model.
We believe that the analysis of the present study will be useful to understand the basic features of this
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1. Introduction

In 2020, Hamiaz and Abuelela [1] have studied the following discrete inequalities:

Theorem 1. Suppose q, p > 1, α > β > 1
2 and (bm)m ≥ 0 (an)n ≥ 0 are sequences of real numbers. Define

An = ∑n
s=1 as, Bm = ∑m

t=1 bt. Then

k

∑
n=1

r

∑
m=1

A2p
n B2q

m
h(n) + h∗(m)

6 C∗1 (p, q)
( k

∑
n=1

(k− n + 1)(an Ap−1
n )2

)

×
( r

∑
m=1

(r−m + 1)(bmBq−1
m )2

)

and

k

∑
n=1

r

∑
m=1

Ap
nBq

m(
|h(n)|

1
2β + |h∗(m)|

1
2β

)α 6
k

∑
n=1

r

∑
m=1

Ap
nBq

m√
h(n) + h∗(m)

6 C∗2 (p, q, k, r)
( k

∑
n=1

(k− n + 1)(an Ap−1
n )2

) 1
2

×
( r

∑
m=1

(r−m + 1)(bmBq−1
m )2

) 1
2
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unless (an) or (bm) is null, where

C∗1 (p, q) = (pq)2 and C∗2 (p, q, r, k) = pq
√

kr.

Hilger [2] suggested time scales theory to unify discrete and continuous analysis. More
Hilbert-type inequalities and other types can be seen in [1,3–36], see also [37–53]. For more details on
time scales calculus see [54].

We will need the following important relations between calculus on time scales T and either
continuous calculus on R or discrete calculus on Z. Note that:

(i) If T = R, then

σ(t) = t, µ(t) = 0, f ∆(t) = f ′(t),
∫ b

a
f (t)∆t =

∫ b

a
f (t)dt. (1)

(ii) If T = Z, then

σ(t) = t + 1, µ(t) = 1, f ∆(t) = f (t + 1)− f (t),
∫ b

a
f (t)∆t =

b−1

∑
t=a

f (t). (2)

Next is Hölder’s and Jensen’s inequality:

Lemma 1 ([19]). Let a, b ∈ T and f , g ∈ Crd([a, b]T, [0, ∞)). If p, q > 1 with 1
p + 1

q = 1, then

∫ b

a
f (t)g(t)∆t ≤

[ ∫ b

a
f p(t)∆t

] 1
p
[ ∫ b

a
gq(t)∆t

] 1
q

.

Lemma 2 ( [19]). Let a, b ∈ T and c̆, d̆ ∈ R. Assume that g ∈ Crd
(
[a, b]T, [c̆, d̆]

)
and r ∈ Crd

(
[a, b]T,R

)
are

nonnegative with
∫ b

a r(t)∆t > 0. If Φ̆ ∈ Crd
(
(c̆, d̆),R

)
be a convex function, then

Φ̆
(∫ b

a g(t)r(t)∆t
∫ b

a r(t)∆t

)
6
∫ b

a r(t)Φ̆(g(t))∆t
∫ b

a r(t)∆t
.

Now, we present the Fenchel-Legendre transform and refer, for example, to [11–13], for
more details.

Definition 1. Assuming h : Rn −→ R ∪ {+∞} is a function: h 6= +∞ i.e., Dom(h) = {x ∈ Rn, |h(x) <
∞} 6= ∅. Then the Fenchel-Legendre transform is defined as:

h∗ : Rn −→ R∪ {+∞}, y −→ h∗(y) = sup{< y, x > −h(x), x ∈ Dom(h)} (3)

where < ., . > is the scalar product on Rn. The mapping h −→ h∗ is often be called the conjugate operation.

The domain of h∗ is the set of slopes of all the affine functions minorizing the function h over Rn.
An equivalent formula for (3) is introduced as follows:

Corollary 1. Assuming h : Rn −→ R is differentiable, strictly convex and 1-coercive function. Then

h∗(y) =< y, (∇h)−1(y) > −h((∇h)−1(y)), (4)

∀ y ∈ Dom(h∗), where < ., . > denotes the scalar product on Rn.
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Lemma 3 ( [13]). Let h be a function and h∗ its Fenchel-Legendre transform. Then

< x, y >6 h(x) + h∗(y), (5)

for all x ∈ Dom(h), and y ∈ Dom(h∗).

In addition, we will use the following definition and lemma as we will see in the proof of
our results:

Definition 2. The function Φ̆ is said to be a submultiplicative on [0, ∞) if

Φ̆(xy) 6 Φ̆(x)Φ̆(y), for all x, y > 0. (6)

Lemma 4 ([20]). Assuming T is a time scale with x, a ∈ T such that x > a. If f > 0 and α̃ > 1, then

( ∫ σ(x)

a
f (τ̌)∆τ̌

)α̃

6 α̃
∫ σ(x)

a
f (η)

( ∫ σ(η)

a
f (τ̌)∆τ̌

)α̃−1

∆η. (7)

Next, we write Fubini’s theorem on time scales.

Lemma 5 (Fubini’s Theorem, see [55]). Assume that (X, Σ1, µ∆) and (Y, Σ2, ν∆) are two finite-dimensional
time scales measure spaces. Moreover, suppose that f : X × Y → R is a delta integrable function and define
the functions

π̂1(y) =
∫

X
f (x, y)dµ∆(x), y ∈ Y,

and
π̂2(x) =

∫

X
f (x, y)dν∆(y), x ∈ X.

Then π̂1 is delta integrable on Y and π̂2 is delta integrable on X and
∫

X
dµ∆(x)

∫

Y
f (x, y)dν∆(y) =

∫

Y
dν∆(y)

∫

X
f (x, y)dµ∆(x).

In this manuscript, by using Fubini’s theorem and the Fenchel-Legendre transform, which is used
in various problems involving symmetry, we extend the discrete results proved in [1] on time scales.
We start from the inequalities treated in the Theorem 1. Our results can be applied to give more general
forms of some previously proved inequalities through substituting h and h∗ by suitable functions as
we will see in the following two sections.

The following section contains our main results.

2. Main Results

We start by establishing the following useful inequality:

Lemma 6. Assume x and y ∈ R such that x + y > 1, then for γ > 0, and α > β > 1
2 , we get

(x + y)
1
γ 6

(
|x|

1
2β + |y|

1
2β

) 2α
γ

. (8)

Proof. For x + y > 1 and α
β > 1, we have

(x + y)
1
2 6

[
(x + y)

1
2

] α
β

=

[
(x + y)

1
2β

]α

6
[
(|x|+ |y|)

1
2β

]α

. (9)
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From
(
|x|+ |y|

) 1
n

6 |x| 1n + |y| 1n , for all n > 1. Thus, from (9), and since 2β > 1, we obtain:

(x + y)
1
2 6

[
(|x|+ |y|)

1
2β

]α

6
[
|x|

1
2β + |y|

1
2β

]α

. (10)

Now, since γ > 0, by taking the power 1/γ for both sides of (10), we get:

(x + y)
1
γ 6

(
|x|

1
2β + |y|

1
2β

) 2α
γ

.

This proves our claim.

In the next theorems, we will let p > 1, q > 1 and 1
q +

1
p = 1.

Theorem 2. Let T be a time scale with L > 1, K > 1 and s, t, t0, x, y ∈ T. Assume a(τ̌) ≥ 0 and b(τ̌) ≥ 0
are right-dense continuous functions on the time scales intervals [t0, x]T and [t0, y]T respectively and define

A(s) :=
∫ s

t0

a(τ̌)∆τ̌, and B(t) :=
∫ t

t0

b(τ̌)∆τ̌,

then for σ(s) ∈ [t0, x]T and σ(t) ∈ [t0, y]T, we have that

∫ x

t0

∫ y

t0

AqK(σ(s))BqL(σ(t))
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2qα
p

∆s∆t

6 C1(L, K, q)
( ∫ x

t0

(σ(x)− σ(s))
(
a(s)AK−1(σ(s)

)q∆s
)

×
( ∫ y

t0

(σ(y)− σ(t))
(
b(t)BL−1(σ(t)

)q∆t
)

(11)

and
∫ x

t0

∫ y

t0

AK(σ(s))BL(σ(t))
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

6 C2(L, K, p)
( ∫ x

t0

(σ(x)− σ(s))
(

AK−1(σ(s))a(s)
)q

∆s
) 1

q

×
( ∫ y

t0

(σ(y)− σ(t))
(

BL−1(σ(t))b(t)
)q

∆t
) 1

q

(12)

where C1(L, K, q) = (KL)q and C2(L, K, p) = KL(x− t0)
1
p (y− t0)

1
p .

Proof. By using the inequality (7), we obtain

AK(σ(s)) 6 K
∫ σ(s)

t0

a(η)AK−1(σ(η)∆η, (13)

BL(σ(t)) 6 L
∫ σ(t)

t0

b(η)BL−1(σ(η))∆η. (14)
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We use Lemma 1. Then from (13), we get

AK(σ(s)) 6 K(σ(s)− t0)
1
p

( ∫ σ(s)

t0

(
a(η)AK−1(σ(η)

)q∆η

) 1
q

. (15)

We use Lemma 1. Then from (14), we also have

BL(σ(t)) 6 L(σ(t)− t0)
1
p

( ∫ σ(t)

t0

(
b(η)BL−1(σ(η)

)q∆η

) 1
q

. (16)

From (15) and (16), we get

AK(σ(s))BL(σ(t)) 6 KL(σ(s)− t0)
1
p (σ(t)− t0)

1
p

×
( ∫ σ(s)

t0

(
a(η)AK−1(σ(η)

)q∆η

) 1
q

×
( ∫ σ(t)

t0

(
b(η)BL−1(σ(η)

)q∆η

) 1
q

. (17)

From inequality (17), we have

AqK(σ(s))BqL(σ(t)) 6 (KL)q(σ(s)− t0)
q
p (σ(t)− t0)

q
p

×
( ∫ σ(s)

t0

(
a(η)AK−1(σ(η)

)q∆η

)

×
( ∫ σ(t)

t0

(
b(η)BL−1(σ(η)

)q∆η

)
. (18)

Using Lemma 3 in (17) and (18) gives

AK(σ(s))BL(σ(t)) 6 KL
(

h(σ(s)− t0) + h∗(σ(t)− t0)

) 1
p

×
( ∫ σ(s)

t0

(
a(η)AK−1(σ(η)

)q∆η

) 1
q

×
( ∫ σ(t)

t0

(
b(η)BL−1(σ(η)

)q∆η

) 1
q

, (19)

AqK(σ(s))BqL(σ(t)) 6 (KL)q
(

h(σ(s)− t0) + h∗(σ(t)− t0)

) q
p

×
( ∫ σ(s)

t0

(
a(η)AK−1(σ(η)

)q∆η

)

×
( ∫ σ(t)

t0

(
b(η)BL−1(σ(η)

)q∆η

)
. (20)
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Using Lemma 6 in (19) and (20) gives

AK(σ(s))BL(σ(t)) 6 KL
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

×
( ∫ σ(s)

t0

(
a(η)AK−1(σ(η)

)q∆η

) 1
q

×
( ∫ σ(t)

t0

(
b(η)BL−1(σ(η)

)q∆η

) 1
q

, (21)

AqK(σ(s))BqL(σ(t)) 6 (KL)q
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2qα
p

×
( ∫ σ(s)

t0

(
a(η)AK−1(σ(η)

)q∆η

)

×
( ∫ σ(t)

t0

(
b(η)BL−1(σ(η)

)q∆η

)
. (22)

Dividing both sides of (21) and (22) by
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

and
(
|h(σ(s)− t0)|

1
2β +

|h∗(σ(t)− t0)|
1

2β

) 2qα
p

respectively, we get that

AK(σ(s))BL(σ(t))
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p
6 KL

( ∫ σ(s)

t0

(
a(η)AK−1(σ(η)

)q∆η

) 1
q

×
( ∫ σ(t)

t0

(
b(η)BL−1(σ(η)

)q∆η

) 1
q

, (23)

AqK(σ(s))BqL(σ(t))
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2qα
p

6 (KL)q
( ∫ σ(s)

t0

(
a(η)AK−1(σ(η)

)q∆η

)

×
( ∫ σ(t)

t0

(
b(η)BL−1(σ(η)

)q∆η

)
. (24)

From (23) by using Lemma 1 we obtain

∫ x

t0

∫ y

t0

AK(σ(s))BL(σ(t))
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

6 KL(x− t0)
1
p (y− t0)

1
p

∫ x

t0

( ∫ σ(s)

t0

(
a(η)AK−1(σ(η)

)q∆η

)
∆s
) 1

q

×
∫ y

t0

( ∫ σ(t)

t0

(
b(η)BL−1(σ(η)

)q∆η

)
∆t
) 1

q

. (25)
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From (24), we get

∫ x

t0

∫ y

t0

AqK(σ(s))BqL(σ(t))
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2qα
p

∆s∆t

6 (KL)q
∫ x

t0

( ∫ σ(s)

t0

(
a(η)AK−1(σ(η)

)q∆η

)
∆s
)

×
∫ y

t0

( ∫ σ(t)

t0

(
b(η)BL−1(σ(η)

)q∆η

)
∆t
)

. (26)

Applying Fubini’s Theorem on (25) and (26) gives

∫ x

t0

∫ y

t0

AK(σ(s))BL(σ(t))
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

6 KL(x− t0)
1
p (y− t0)

1
p

( ∫ x

t0

(x− σ(s))
(
a(s)AK−1(σ(s)

)q∆s
) 1

q

×
( ∫ y

t0

(y− σ(t))
(
b(t)BL−1(σ(t)

)q∆t
) 1

q

,

∫ x

t0

∫ y

t0

AqK(σ(s))BqL(σ(t))
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2qα
p

∆s∆t

6 (KL)q
( ∫ x

t0

(x− σ(s))
(
a(s)AK−1(σ(s)

)q
)

∆t
)

×
( ∫ y

t0

(y− σ(t))
(
b(t)BL−1(σ(t)

)q∆t
)

.

Using the facts σ(x) > x, σ(y) > y yields

∫ x

t0

∫ y

t0

AK(σ(s))BL(σ(t))
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

6 C2(L, K, p)
( ∫ x

t0

(σ(x)− σ(s))
(
a(s)AK−1(σ(s)

)q∆s
) 1

q

×
( ∫ y

t0

(σ(y)− σ(t))
(
b(t)BL−1(σ(t)

)q∆t
) 1

q

,

∫ x

t0

∫ y

t0

AqK(σ(s))BqL(σ(t))
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2qα
p

∆s∆t

6 C1(L, K, q)
( ∫ x

t0

(σ(x)− σ(s))
(
a(s)AK−1(σ(s)

)2∆s
)

×
( ∫ y

t0

(σ(y)− σ(t))
(
b(t)BL−1(σ(t)

)q∆t
)

.
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This completes the proof.

Theorem 3. Let a(τ̌), b(η), A(s) and B(t) be defined as in Theorem 2, thus

∫ x

t0

∫ y

t0

Aq(σ(s))Bq(σ(t))
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2qα
p

∆s∆t

6
( ∫ x

t0

(σ(x)− σ(s))aq(s)∆s
)( ∫ y

t0

(σ(y)− σ(t))bq(t)∆t
)

and
∫ x

t0

∫ y

t0

A(σ(s))B(σ(t))
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

6 (x− t0)
1
p (y− t0)

1
p

( ∫ x

t0

(σ(x)− σ(s))aq(s)∆s
) 1

q
( ∫ y

t0

(σ(y)− σ(t))bq(t)∆t
) 1

q

.

Proof. Put K = L = 1 in (11) and (12). This completes the proof.

In Theorem 2, if we choose T = R, then we have relation (1) and the next results:

Corollary 2. If a(s) ≥ 0, b(t) ≥ 0. Define A(s) :=
∫ s

0 a(η)dη and B(t) :=
∫ t

0 b(η)dη, then

∫ x

0

∫ y

0

AqK(s)BqL(t)
(
|h(s)|

1
2β + |h∗(t)|

1
2β

) 2qα
p

dsdt

6 C1(L, K, q)
( ∫ x

0
(x− s)

(
a(s)AK−1(s)

)qds
)

×
( ∫ y

0
(y− t)

(
b(t)BL−1(t)

)qdt
)

.

and
∫ x

0

∫ y

0

AK(s)BL(t)
(
|h(s)|

1
2β + |h∗(t)|

1
2β

) 2α
p

dsdt

6 C3(L, K, p)
( ∫ x

0
(x− s)

(
AK−1(s)a(s)

)q

ds
) 1

q

×
( ∫ y

0
(y− t)

(
BL−1(t)b(t)

)q

dt
) 1

q

where
C3(L, K, p) = KL(xy)

1
p .

In Theorem 2, if we chose T = Z, then we get (2), and the next result:

Corollary 3. If a(n) ≥ and b(m) ≥ 0. Define

A(n) =
n

∑
s=0

a(s), B(m) =
m

∑
k=0

b(k).
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Then

N

∑
n=1

M

∑
m=1

AqL(n)BqK(m)
(
|h(n + 1)|

1
2β + |h∗(m + 1)|

1
2β

) 2qα
p

6 C1(K, L, q)
( N

∑
n=1

(N + 1− (n + 1))(a(n)AL−1(n))q
)

×
( M

∑
m=1

(M + 1− (m + 1))(b(m)BL−1(m))q
)

and

N

∑
n=1

M

∑
m=1

AL(n)BK(m)
(
|h(n + 1)|

1
2β + |h∗(m + 1)|

1
2β

) 2α
p
6 C4(K, L, p)

( N

∑
n=1

(N + 1− (n + 1))(a(n)AL−1(n))q
) 1

q

×
( M

∑
m=1

(M + 1− (m + 1))(b(m)BL−1(m))q
) 1

q

where
C4(K, L, p) = KL(NM)

1
p .

Remark 1. Taking p = q = 2 in Corollary 3 gives the result due to Hamiaz and Abuelela ([1], Theorem 3).

Corollary 4. With the hypotheses of Theorem 2 we have:

∫ x

t0

∫ y

t0

AqK(σ(s))BqL(σ(t))
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2qα
p

∆s∆t

6 C1(L, K, q)
{

h
( ∫ x

t0

(σ(x)− σ(s))
(
a(s)AK−1(σ(s)

)q∆s
)

+h∗
( ∫ y

t0

(σ(y)− σ(t))
(
b(t)BL−1(σ(t)

)q∆t
)}

and
∫ x

t0

∫ y

t0

AK(σ(s))BL(σ(t))
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

6 C2(L, K, p)
{

h
( ∫ x

t0

(σ(x)− σ(s))
(

AK−1(σ(s))a(s)
)q

∆s
)

+h∗
( ∫ y

t0

(σ(y)− σ(t))
(

BL−1(σ(t))b(t)
)q

∆t
)} 1

q

.

Proof. Using the Fenchel-Young inequality (5) in (11) and (12). This proves the claim.

Theorem 4. Assuming the time scale T with s, t, t0, x, y ∈ T, A(s) and B(t) are defined as in Theorem 2.
Suppose f (τ̌) ≥ 0 and g(η) ≥ 0 are right-dense continuous functions on [t0, x]T and [t0, y]T respectively.
Suppose that Φ̆ ≥ 0 and Ψ̆ ≥ 0 are convex, and submultiplicative functions on [0, ∞). Furthermore assume that

F(s) :=
∫ s

t0

f (τ̌)∆τ̌, and G(t) :=
∫ t

t0

g(η)∆η, (27)
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then for σ(s) ∈ [t0, x]T and σ(t) ∈ [t0, y]T, we have that

∫ x

t0

∫ y

t0

Φ̆(Aσ(s))Ψ̆(Bσ(t))
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

6 M1(p)
( ∫ x

t0

(σ(x)− σ(s))
(

f (s)Φ̆
(

a(s)
f (s)

))q

∆s
) 1

q

×
( ∫ y

t0

(σ(y)− σ(t))
(

g(t)Ψ̆
(

b(t)
g(t)

))q

∆t
) 1

q

(28)

where

M1(p) =
{ ∫ x

t0

(
Φ̆(Fσ(s))

Fσ(s)

)p

∆s
} 1

p
{ ∫ y

t0

(
Ψ̆(Gσ(t))

Gσ(t)

)p

∆t
} 1

p

.

Proof. From the properties of Φ̆ and using (2), we obtain

Φ̆(Aσ(s)) = Φ̆
( F(σ(s))

∫ σ(s)
t0

f (τ̌) a(τ̌)
f (τ̌)∆τ̌

∫ σ(s)
t0

f (τ̌)∆τ̌

)

6 Φ̆(F(σ(s))Φ̆
(∫ σ(s)

t0
f (τ̌) a(τ̌)

f (τ̌)∆τ̌
∫ σ(s)

t0
f (τ̌)∆τ̌

)

6 Φ̆(F(σ(s))
F(σ(s))

∫ σ(s)

t0

f (τ̌)Φ̆
(

a(τ̌)
f (τ̌)

)
∆τ̌. (29)

Using (1) in (29), we see that

Φ̆(Aσ(s)) 6 Φ̆(Fσ(s))
Fσ(s)

(σ(s)− t0)
1
p

( ∫ σ(s)

t0

(
f (τ̌)Φ̆

[
a(τ̌)
f (τ̌)

])q

∆τ̌

) 1
q

. (30)

In addition, from the convexity and submultiplicative property of Ψ̆, we get by using (2) and (1):

Ψ̆(Bσ(t)) 6 Ψ̆(Gσ(t))
Gσ(t)

(σ(t)− t0)
1
p

( ∫ σ(t)

t0

(
g(η)Ψ̆

[
b(η)
g(η)

])q

∆η

) 1
q

. (31)

From (30) and (31), we have

Φ̆(Aσ(s))Ψ̆(Bσ(t)) 6 (σ(s)− t0)
1
p (σ(t)− t0)

1
p

(
Φ̆(Fσ(s))

Fσ(s)

( ∫ σ(s)

t0

(
f (τ̌)Φ̆

[
a(τ̌)
f (τ̌)

])q

∆τ̌

) 1
q

×
(

Ψ̆(Gσ(t))
Gσ(t)

( ∫ σ(t)

t0

(
g(η)Ψ̆

[
b(η)
g(η)

])q

∆η

) 1
q

(32)

Using (5) on (σ(s)− t0)
1
p (σ(t)− t0)

1
p gives:

Φ̆(Aσ(s))Ψ̆(Bσ(t)) 6
(

h(σ(s)− t0) + h∗(σ(t)− t0)

) 1
p
(

Φ̆(Fσ(s))
Fσ(s)

( ∫ σ(s)

t0

(
f (τ̌)Φ̆

[
a(τ̌)
f (τ̌)

])q

∆τ̌

) 1
q

×
(

Ψ̆(Gσ(t))
Gσ(t)

( ∫ σ(t)

t0

(
g(η)Ψ̆

[
b(η)
g(η)

])q

∆η

) 1
q

. (33)

232



Symmetry 2020, 12, 582

Applying Lemma 6 on the right hand side of (33), we see that

Φ̆(Aσ(s))Ψ̆(Bσ(t)) 6
(
|h(σ(s)− t0|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

×
(

Φ̆(Fσ(s))
Fσ(s)

( ∫ σ(s)

t0

(
f (τ̌)Φ̆

[
a(τ̌)
f (τ̌)

])q

∆τ̌

) 1
q

×
(

Ψ̆(Gσ(t))
Gσ(t)

( ∫ σ(t)

t0

(
g(η)Ψ̆

[
b(η)
g(η)

])q

∆η

) 1
q

. (34)

From (34), we have

Φ̆(Aσ(s))Ψ̆(Bσ(t))
(
|h(σ(s)− t0|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p
6
(

Φ̆(Fσ(s))
Fσ(s)

( ∫ σ(s)

t0

(
f (τ̌)Φ̆

[
a(τ̌)
f (τ̌)

])q

∆τ̌

) 1
q

×
(

Ψ̆(Gσ(t))
Gσ(t)

( ∫ σ(t)

t0

(
g(η)Ψ̆

[
b(η)
g(η)

])q

∆η

) 1
q

. (35)

From (35), we obtain

∫ x

t0

∫ y

t0

Φ̆(Aσ(s))Ψ̆(Bσ(t))
(
|h(σ(s)− t0|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

6
∫ x

t0

(
Φ̆(Fσ(s))

Fσ(s)

( ∫ σ(s)

t0

(
f (τ̌)Φ̆

[
a(τ̌)
f (τ̌)

])q

∆τ̌

) 1
q

∆s

×
∫ y

t0

(
Ψ̆(Gσ(t))

Gσ(t)

( ∫ σ(t)

t0

(
g(η)Ψ̆

[
b(η)
g(η)

])q

∆η

) 1
q

∆t. (36)

From (36), by using (1), we have

∫ x

t0

∫ y

t0

Φ̆(Aσ(s))Ψ̆(Bσ(t))
(
|h(σ(s)− t0|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

6
{ ∫ x

t0

(
Φ̆(Fσ(s))

Fσ(s)

)p

∆s
} 1

p
( ∫ x

t0

∫ σ(s)

t0

(
f (τ̌)Φ̆

[
a(τ̌)
f (τ̌)

])q

∆τ̌∆s
) 1

q

×
{ ∫ y

t0

(
Ψ̆(Gσ(t))

Gσ(t)

)p

∆t
} 1

p
( ∫ y

t0

∫ σ(t)

t0

(
g(η)Ψ̆

[
b(η)
g(η)

])q

∆η∆t
) 1

q

. (37)

From (37), by using (5), we obtain

∫ x

t0

∫ y

t0

Φ̆(Aσ(s))Ψ̆(Bσ(t))
(
|h(σ(s)− t0|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

6 M1(p)
( ∫ x

t0

(x− σ(s))
(

f (s)Φ̆
[

a(s)
f (s)

])q

∆s
) 1

q

×
( ∫ y

t0

(y− σ(t))
(

g(t)Ψ̆
[

b(t)
g(t)

])q

∆t
) 1

q

.
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By using the facts σ(x) > x and σ(y) > y, we obtain

∫ x

t0

∫ y

t0

Φ̆(Aσ(s))Ψ̆(Bσ(t))
(
|h(σ(s)− t0|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

6 M1(p)
( ∫ x

t0

(σ(x)− σ(s))
(

f (s)Φ̆
[

a(s)
f (s)

])q

∆s
) 1

q

×
( ∫ y

t0

(σ(y)− σ(t))
(

g(t)Ψ̆
[

b(t)
g(t)

])q

∆t
) 1

q

where

M1(p) =
{ ∫ x

t0

(
Φ̆(Fσ(s))

Fσ(s)

)p

∆s
} 1

p
{ ∫ y

t0

(
Ψ̆(Gσ(t))

Gσ(t)

)p

∆t
} 1

p

.

This completes the proof.

In Theorem 4, taking T = R, we have (1) and the result:

Corollary 5. Assume that a(s) ≥ 0, b(t) ≥ 0, f (τ̌) ≥ 0 and g(η) ≥ 0, we define

A(s) :=
∫ s

0
a(η)dη, B(t) :=

∫ t

0
b(η)dη, F(s) :=

∫ s

0
f (τ̌)dτ̌, and G(t) :=

∫ t

0
g(η)dη.

Then

∫ x

0

∫ y

0

Φ̆(A(s)Ψ̆(B(t))
(
|h(s)|

1
2β + |h∗(t)|

1
2β

) 2α
p

dsdt 6 M2(p)
( ∫ x

0
(x− s)

(
f (s)Φ̆

(
a(s)
f (s)

))q

ds
) 1

q

×
( ∫ y

0
(y− t)

(
g(t)Ψ̆

(
b(t)
g(t)

))q

dt
) 1

q

where

M2(p) =
{ ∫ x

0

(
Φ̆(F(s))

F(s)

)p

ds
} 1

p
{ ∫ y

0

(
Ψ̆(G(t))

G(t)

)p

dt
} 1

p

.

In Theorem 4, taking T = Z, gives (2) and the result:

Corollary 6. Assume that a(n) ≥ 0, b(m) ≥ 0, f (n) ≥ 0, g(m) ≥ 0 are sequences of real numbers. Define

A(n) =
n

∑
s=0

a(s), B(m) =
m

∑
k=0

b(k), F(n) =
n

∑
s=0

f (s) and G(m) =
m

∑
k=0

g(k).

Then

N

∑
n=1

M

∑
m=1

Φ̆(A(n))Ψ̆(B(m))
(
|h(n + 1)|

1
2β + |h∗(m + 1)|

1
2β

) 2α
p
6 M3(p)

{ N

∑
n=1

(N + 1− (n + 1))
(

f (n)Φ̆
[

a(n)
f (n)

])q} 1
q

×
{ M

∑
m=1

(M + 1− (m + 1))
(

g(m)Ψ̆
[

b(m)

g(m)

])q} 1
q
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where

M3(p) =
{ N

∑
n=1

(
Φ̆(F(n)

F(n)

)p} 1
p
{ M

∑
m=1

(
Ψ̆(G(m)

G(m)

)p} 1
p

Remark 2. In Corollary 6, if p = q = 2 we get the result due to Hamiaz and Abuelela ([1], Theorem 5).

Corollary 7. Under the hypotheses of Theorem 4 the following inequality hold:

∫ x

t0

∫ y

t0

Φ̆(Aσ(s))Ψ̆(Bσ(t))
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

6 M1(p)
[

h
( ∫ x

t0

(σ(x)− σ(s))
(

f (s)Φ̆
(

a(s)
f (s)

))q

∆s
)

+h∗
( ∫ y

t0

(σ(y)− σ(t))
(

g(t)Ψ̆
(

b(t)
g(t)

))q

∆t
)] 1

q

.

Proof. Using (5) in (28). This proves our claim.

Lemma 7. With hypotheses of Theorem 4, we get:

∫ x

t0

∫ y

t0

Φ̆(Aσ(s))2Ψ̆(Bσ(t))2
(

h(σ(s)− t0) + h∗(σ(t)− t0)

)∆s∆t

6 M4

{ ∫ x

t0

(σ(x)− σ(s))
(

f (s)Φ̆
[

a(s)
f (s)

])4

∆s
} 1

2
{ ∫ y

t0

(σ(t)− σ(t))
(

g(t)Ψ̆
[

b(t)
g(t)

])4

∆t
} 1

2

(38)

where

M4 =

{ ∫ x

t0

(
Φ̆(Fσ(s))4

(Fσ(s))4

)
(σ(s)− t0)∆s

} 1
2
{ ∫ y

t0

(
Ψ̆(Gσ(t))4

(Gσ(t))4

)
(σ(t)− t0)∆t

} 1
2

. (39)

Proof. From (30) and (31) and by using Fenchel-Young inequality with p = q = 2 we have

Φ̆(Aσ(s))2Ψ̆(Bσ(t))2

6
(

h(σ(s)− t0) + h∗(σ(t)− t0)

)(
Φ̆(Fσ(s))2

(Fσ(s))2

( ∫ σ(s)

t0

(
f (τ̌)Φ̆

[
a(τ̌)
f (τ̌)

])2

∆τ̌

)

×
(

Ψ̆(Gσ(t))2

(Gσ(t))2

( ∫ σ(t)

t0

(
g(η)Ψ̆

[
b(η)
g(η)

])2

∆η

)
. (40)
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From (40), by using (1) with p = q = 2, we obtain

∫ x

t0

∫ y

t0

Φ̆(Aσ(s))2Ψ̆(Bσ(t))2
(

h(σ(s)− t0) + h∗(σ(t)− t0)

)∆s∆t

6
∫ x

t0

(
Φ̆(Fσ(s))2

(Fσ(s))2

( ∫ σ(s)

t0

(
f (τ̌)Φ̆

[
a(τ̌)
f (τ̌)

])2

∆τ̌

)
∆s

×
∫ y

t0

Ψ̆(Gσ(t))2

(Gσ(t))2

( ∫ σ(t)

t0

(
g(η)Ψ̆

[
b(η)
g(η)

])2

∆η

)
∆t

6
∫ x

t0

(
Φ̆(Fσ(s))2

(Fσ(s))2

)
(σ(s)− t0)

1
2

( ∫ σ(s)

t0

(
f (τ̌)Φ̆

[
a(τ̌)
f (τ̌)

])4

∆τ̌

) 1
2
)

∆s

×
∫ y

t0

Ψ̆(Gσ(t))2

(Gσ(t))2 (σ(t)− t0)
1
2

( ∫ σ(t)

t0

(
g(η)Ψ̆

[
b(η)
g(η)

])4

∆η

) 1
2

∆t

6
{ ∫ x

t0

(
Φ̆(Fσ(s))4

(Fσ(s))4

)
(σ(s)− t0)∆s

} 1
2
{ ∫ x

t0

( ∫ σ(s)

t0

(
f (τ̌)Φ̆

[
a(τ̌)
f (τ̌)

])4

∆τ̌

)
∆s
} 1

2

×
{ ∫ y

t0

(
Ψ̆(Gσ(t))4

(Gσ(t))4

)
(σ(t)− t0)∆t

} 1
2
{ ∫ y

t0

( ∫ σ(t)

t0

(
g(η)Ψ̆

[
b(η)
g(η)

])4

∆η

)
∆t
} 1

2

. (41)

Applying (5) on (41), we obtain

∫ x

t0

∫ y

t0

Φ̆(Aσ(s))2Ψ̆(Bσ(t))2
(

h(σ(s)− t0) + h∗(σ(t)− t0)

)∆s∆t

6
{ ∫ x

t0

(
Φ̆(Fσ(s))4

(Fσ(s))4

)
(σ(s)− t0)∆s

} 1
2
{ ∫ x

t0

(x− σ(s))
(

f (s)Φ̆
[

a(s)
f (s)

])4

∆s
} 1

2

×
{ ∫ y

t0

(
Ψ̆(Gσ(t))4

(Gσ(t))4

)
(σ(t)− t0)∆t

} 1
2
{ ∫ y

t0

(t− σ(t))
(

g(t)Ψ̆
[

b(t)
g(t)

])4

∆t
} 1

2

= M4

{ ∫ x

t0

(x− σ(s))
(

f (s)Φ̆
[

a(s)
f (s)

])4

∆s
} 1

2
{ ∫ y

t0

(t− σ(t))
(

g(t)Ψ̆
[

b(t)
g(t)

])4

∆t
} 1

2

.

Since σ(x) > x and σ(y) > y, from the last inequality above, we have

∫ x

t0

∫ y

t0

Φ̆(Aσ(s))2Ψ̆(Bσ(t))2
(

h(σ(s)− t0) + h∗(σ(t)− t0)

)∆s∆t

6 M4

{ ∫ x

t0

(σ(x)− σ(s))
(

f (s)Φ̆
[

a(s)
f (s)

])4

∆s
} 1

2
{ ∫ y

t0

(σ(t)− σ(t))
(

g(t)Ψ̆
[

b(t)
g(t)

])4

∆t
} 1

2

where M4 defined as in (39). This proves our claim.

Theorem 5. Assume the time scale T with t, s, x0, t0, y ∈ T. Suppose that b(τ̌) ≥ 0 and a(τ̌) ≥ 0 are
right-dense continuous functions on [t0, y]T and [t0, x]T. Let G, F, g, f , Ψ̆ and Φ̆ be as assumed in Theorem 4.
Furthermore assume that

A(s) :=
1

F(s)

∫ s

t0

a(τ̌) f (τ̌)∆τ̌, and B(t) :=
1

G(t)

∫ t

t0

b(η)g(η)∆η, (42)
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then for σ(s) ∈ [t0, x]T and σ(t) ∈ [t0, y]T, we have that

∫ x

t0

∫ y

t0

Φ̆(Aσ(s))Ψ̆(Bσ(t))Fσ(s)Gσ(t)
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

6 M5(p)
( ∫ x

t0

(σ(x)− σ(s))
(

f (s)Φ̆
(

a(s)
))q

∆s
) 1

q

×
( ∫ y

t0

(σ(y)− σ(t))
(

g(t)Ψ̆
(

b(t)
))q

∆t
) 1

q

(43)

where
M5(p) = (x− t0)

1
p (y− t0)

1
p . (44)

Proof. From (42), we see that

Φ̆(Aσ(s)) = Φ̆
(

1
Fσ(s)

∫ σ(s)

t0

f (τ̌)a(τ̌)∆τ̌

)
. (45)

Applying (1) on (45), we obtain

Φ̆(Aσ(s)) 6 (σ(s)− t0)
1
p

Fσ(s)

( ∫ σ(s)

t0

(
f (τ̌)Φ̆[a(τ̌)]

)q

∆τ̌

) 1
q

. (46)

From (46), we get

Φ̆(Aσ(s))Fσ(s) 6 (σ(s)− t0)
1
p

( ∫ σ(s)

t0

(
f (τ̌)Φ̆[a(τ̌)]

)q

∆τ̌

) 1
q

. (47)

Similarly, we obtain

Ψ̆(Bσ(t))Gσ(t) 6 (σ(t)− t0)
1
p

( ∫ σ(t)

t0

(
g(η)Ψ̆[b(η)]

)q

∆η

) 1
q

. (48)

From (47) and (48), we observe that

Φ̆(Aσ(s))Ψ̆(Bσ(t))Gσ(t)Fσ(s) 6 (σ(s)− t0)
1
p (σ(t)− t0)

1
p

×
( ∫ σ(s)

t0

(
f (τ̌)Φ̆[a(τ̌)]

)q

∆τ̌

) 1
q
( ∫ σ(t)

t0

(
g(η)Ψ̆[b(η)]

)q

∆η

) 1
q

. (49)

Applying the Lemma 3 on the term (σ(s)− t0)
1
p (σ(t)− t0)

1
p , gives:

Φ̆(Aσ(s))Ψ̆(Bσ(t))Gσ(t)Fσ(s) 6
(

h(σ(s)− t0) + h∗(σ(t)− t0)

) 1
p
( ∫ σ(s)

t0

(
f (τ̌)Φ̆[a(τ̌)]

)q

∆τ̌

) 1
q

×
( ∫ σ(t)

t0

(
g(η)Ψ̆[b(η)]

)q

∆η

) 1
q

. (50)
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From 6 and (50), we obtain

Φ̆(Aσ(s))Ψ̆(Bσ(t))Gσ(t)Fσ(s) 6
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

×
( ∫ σ(s)

t0

(
f (τ̌)Φ̆[a(τ̌)]

)q

∆τ̌

) 1
q
( ∫ σ(t)

t0

(
g(η)Ψ̆[b(η)]

)q

∆η

) 1
q

. (51)

Dividing both sides of (51) by
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

, we get

Φ̆(Aσ(s))Ψ̆(Bσ(t))Gσ(t)Fσ(s)
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

6
( ∫ σ(s)

t0

(
f (τ̌)Φ̆[a(τ̌)]

)q

∆τ̌

) 1
q

×
( ∫ σ(t)

t0

(
g(η)Ψ̆[b(η)]

)q

∆η

) 1
q

. (52)

Taking delta-integral for (52), yields:

∫ x

t0

∫ y

t0

Φ̆(Aσ(s))Ψ̆(Bσ(t))Gσ(t)Fσ(s)
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

6
( ∫ x

t0

( ∫ σ(s)

t0

(
f (τ̌)Φ̆[a(τ̌)]

)q

∆τ̌

) 1
q

∆s
)( ∫ y

t0

( ∫ σ(t)

t0

(
g(η)Ψ̆[b(η)]

)q

∆η

) 1
q

∆t
)

. (53)

Using (1) in (53), yield:

∫ x

t0

∫ y

t0

Φ̆(Aσ(s))Ψ̆(Bσ(t))Gσ(t)Fσ(s)
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

6 (x− t0)
1
p (y− t0)

1
p

( ∫ x

t0

( ∫ σ(s)

t0

(
f (τ̌)Φ̆[a(τ̌)]

)q

∆τ̌

)
∆s
) 1

q

×
( ∫ y

t0

( ∫ σ(t)

t0

(
g(η)Ψ̆[b(η)]

)q

∆η

)
∆t
) 1

q

= M5(p)
( ∫ x

t0

( ∫ σ(s)

t0

(
f (τ̌)Φ̆[a(τ̌)]

)q

∆τ̌

)
∆s
) 1

q

×
( ∫ y

t0

( ∫ σ(t)

t0

(
g(η)Ψ̆[b(η)]

)q

∆η

)
∆t
) 1

q

, (54)
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where M5 defined as in (44). From (5) and (54), we get:

∫ x

t0

∫ y

t0

Φ̆(Aσ(s))Ψ̆(Bσ(t))Gσ(t)Fσ(s)
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

= M5(p)
( ∫ x

t0

(x− σ(s))
(

f (s)Φ̆[a(s)]
)q

∆s
) 1

q

×
( ∫ y

t0

(y− σ(t))
(

g(t)Ψ̆[b(t)]
)q

∆t
) 1

q

.

By using the fact σ(x) > x and σ(y) > y, we obtain

∫ x

t0

∫ y

t0

Φ̆(Aσ(s))Ψ̆(Bσ(t))Gσ(t)Fσ(s)
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

= M5(p)
( ∫ x

t0

(σ(x)− σ(s))
(

f (s)Φ̆[a(s)]
)q

∆s
) 1

q

×
( ∫ y

t0

(σ(y)− σ(t))
(

g(t)Ψ̆[b(t)]
)q

∆t
) 1

q

.

This completes the proof.

Taking T = R in Theorem 5 with relation (1), we have:

Corollary 8. Assume g(t) ≥ 0, b(t) ≥ 0, f (s) ≥ 0, a(s) ≥ 0. Define

A(s) :=
1

F(s)

∫ s

0
f (τ̌)a(τ̌)dτ̌ and B(t) :=

1
G(t)

∫ t

0
g(τ̌)b(τ̌)dτ̌,

F(s) :=
∫ s

0
f (τ̌)dτ̌ and G(t) :=

∫ t

0
g(τ̌)dτ̌.

Then

∫ x

0

∫ y

0

Φ̆(A(s))Ψ̆(B(t))F(s)G(t)
(
|h(s)|

1
2β + |h∗(t)|

1
2β

) 2α
p

dsdt 6 M6(p)
( ∫ x

0
(x− s)

(
f (s)Φ̆

(
a(s)

))q

ds
) 1

q

.

×
( ∫ y

0
(y− t)

(
g(t)Ψ̆

(
b(t)

))q

dt
) 1

q

where
M6(p) = (x)

1
p (y)

1
p

Taking T = Z in Theorem 5 with relation (2), gives:

Corollary 9. Assume g(n) ≥ 0, b(n) ≥ 0, f (n) ≥ 0, a(n) ≥ 0. Define

A(n) :=
1

F(n)

n

∑
s=0

f (s)a(s) and B(m) :=
1

G(m)

m

∑
k=0

g(k)b(k).
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F(n) :=
n

∑
s=0

f (s) and G(m) :=
m

∑
k=0

g(k).

Then

N

∑
n=1

M

∑
m=1

Φ̆(A(n))Ψ̆(B(m))F(n)G(m)
(
|h(n + 1)|

1
2β + |h∗(m + 1)|

1
2β

) 2α
p

6 M7(p)
( N

∑
n=1

(N + 1− (n + 1))
(

f (n)Φ̆
(

a(n)
))q) 1

q

.

×
( M

∑
m=1

(M + 1− (m + 1))
(

g(m)Ψ̆
(

b(m)

))q) 1
q

where
M7(p) = (NM)

1
p .

Remark 3. In Corollary 9, if p = q = 2 we get the result due to Hamiaz and Abuelela ([1], Theorem 7).

Corollary 10. With the hypotheses of Theorem 5, we get:

∫ x

t0

∫ y

t0

Φ̆(Aσ(s))Ψ̆(Bσ(t))Fσ(s)Gσ(t)
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

6 M5(p)
{

h
( ∫ x

t0

(σ(x)− σ(s))
(

f (s)Φ̆
(

a(s)
))q

∆s
)

+h∗
( ∫ y

t0

(σ(y)− σ(t))
(

g(t)Ψ̆
(

b(t)
))q

∆t
)} 1

q

.

where M5 defined as in (44).

Proof. We apply the Fenchel-Young inequality (5) in (43). This completes the proof.

3. Some Applications

We can apply our inequalities to obtain different formulas of Hilbert-type inequalities by
suggesting h∗(y) and h(x) by some functions:

In (12), as a special case, if we take h(x) =
x2

2
, we have h∗(x) =

x2

2
see [12], we get

∫ x

t0

∫ y

t0

AK(σ(s))BL(σ(t))
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

=
∫ x

t0

∫ y

t0

AK(σ(s))BL(σ(t))
(
(σ(s)− t0))

1
β + (σ(t)− t0)

1
β

) 2α
p

∆s∆t

6
(

1
2

) α
pβ

C2(L, K, p)
( ∫ x

t0

(σ(x)− σ(s))
(

AK−1(σ(s))a(s)
)q

∆s
) 1

q

×
( ∫ y

t0

(σ(y)− σ(t))
(

BL−1(σ(t))b(t)
)q

∆t
) 1

q

, (55)
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where C2(L, K, p) defined as in Theorem 2. Consequently, for α = β = 1, inequality (55) produces

∫ x

t0

∫ y

t0

AK(σ(s))BL(σ(t))
(
(σ(s)− t0)) + (σ(t)− t0)

) 2
p

∆s∆t

6
(

1
2

) 1
p

C2(L, K, p)
( ∫ x

t0

(σ(x)− σ(s))
(

AK−1(σ(s))a(s)
)q

∆s
) 1

q

×
( ∫ y

t0

(σ(y)− σ(t))
(

BL−1(σ(t))b(t)
)q

∆t
) 1

q

. (56)

On the other hand if we take h(n) = nr

r , r > 1, then h∗(m) = mk

k where 1
r +

1
k = 1 and n, m R+,

then (12) gives

∫ x

t0

∫ y

t0

AK(σ(s))BL(σ(t))
(
|h(σ(s)− t0)|

1
2β + |h∗(σ(t)− t0)|

1
2β

) 2α
p

∆s∆t

=
∫ x

t0

∫ y

t0

AK(σ(s))BL(σ(t))
(
(k(σ(s)− t0)r)

1
2β + (r(σ(t)− t0)k)

1
2β

) 2α
p

∆s∆t

6
(

1
rk

) α
pβ

C2(L, K, p)
( ∫ x

t0

(σ(x)− σ(s))
(

AK−1(σ(s))a(s)
)q

∆s
) 1

q

×
( ∫ y

t0

(σ(y)− σ(t))
(

BL−1(σ(t))b(t)
)q

∆t
) 1

q

. (57)

Clearly, when β = 1
2α , the inequality (57) becomes

∫ x

t0

∫ y

t0

AK(σ(s))BL(σ(t))
(
(k(σ(s)− t0)r)α + (r(σ(t)− t0)k)

α
) 2α

p
∆s∆t

6
(

1
rk

) 2α2
p

C2(L, K, p)
( ∫ x

t0

(σ(x)− σ(s))
(

AK−1(σ(s))a(s)
)q

∆s
) 1

q

×
( ∫ y

t0

(σ(y)− σ(t))
(

BL−1(σ(t))b(t)
)q

∆t
) 1

q

. (58)

If β = α = 1. From (57), we get

∫ x

t0

∫ y

t0

AK(σ(s))BL(σ(t))
(
(k(σ(s)− t0)r)

1
2 + (r(σ(t)− t0)k)

1
2

) 2
p

∆s∆t

6
(

1
rk

) 1
p

C2(L, K, p)
( ∫ x

t0

(σ(x)− σ(s))
(

AK−1(σ(s))a(s)
)q

∆s
) 1

q

×
( ∫ y

t0

(σ(y)− σ(t))
(

BL−1(σ(t))b(t)
)q

∆t
) 1

q

.
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4. Conclusions

In this paper, with the help of a Fenchel-Legendre transform, which is used in various problems
involving symmetry, we generalized a number of Hilbert-type inequalities to a general time scale.
Besides that, in order to obtain some new inequalities as special cases, we also extended our inequalities
to discrete and continuous calculus. In the future, we can generalize these inequalities in a different
way by using other mathematical tools.
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Abstract: When analyzing the dynamic behavior of multi-body elastic systems, a commonly used
method is the finite element method conjunctively with Lagrange’s equations. The central problem
when approaching such a system is determining the equations of motion for a single finite element.
The paper presents an alternative method of calculation theses using the Gibbs–Appell (GA)
formulation, which requires a smaller number of calculations and, as a result, is easier to apply in
practice. For this purpose, the energy of the accelerations for one single finite element is calculated,
which will be used then in the GA equations. This method can have advantages in applying to the
study of multi-body systems with elastic elements and in the case of robots and manipulators that
have in their composition some elastic elements. The number of differentiation required when using
the Gibbs–Appell method is smaller than if the Lagrange method is used which leads to a smaller
number of operations to obtain the equations of motion.

Keywords: Gibbs–Appell; energy of accelerations; finite element; nonlinear system; elastic elements;
analytical dynamics; robotics

1. Introduction

The common method to obtain the equations of motion for a finite element belonging to an elastic
element of a multibody system is represented by Lagrange equations. In this way, the most important
step in the analysis of the multi-body systems with elastic elements is solved, the rest of the procedures
being the classical ones currently used in the finite element method FEA and verified by practice.
So, it is possible to determine the dynamic response of a single finite element. Using the known
assembly methods and introducing loads and proper boundary conditions, the set of differential
equations describing the behavior of the entire elastic system is obtained.

In this process, the type of finite element chosen will determine the shape functions that will be
used and which will give the final form of the coefficients of the matrix appearing in the equations
of motion. In such an analysis, it is considered that the deformations are small enough to not have
influence on the general, rigid motion of the multibody system. Thus, a large class of systems has been
studied, having in their structure elastic elements modeled with one-dimensional, two-dimensional
or three-dimensional finite elements. One-dimensional finite elements were among the first studied.
We can mention here [1–7]. The method was then extended naturally to bi- and three-dimensional
elements [8–10].
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The basic hypothesis used was that the rigid motion of the multibody system is known and, as a
consequence, the velocity and acceleration field of each solid of every element of the system. It is also
considered that this rigid motion does not influence the elastic behavior of each element.

Customary Lagrange’s equations were used to determine the dynamic response of a single element.
For this, it is necessary to determine, as the first step, the Lagrangian composed by kinetic energy,
internal energy and the mechanical work of the external loads. The studied elements were considered
linear elastic. Thus, the evolution equations of a finite element are obtained. The use of Lagrange’s
equations proved to be a useful and practical method and was, generally, the only method used to solve
this type of problem. Recent works in the field use Lagrange’s equations for the study of multi-body
systems with elastic elements [11–17]. Theoretically, however, other methods of solving these dynamic
systems can be applied, which will ultimately lead to the same equations of motion. In this paper,
we will deal with the use of Gibbs–Appell (GA) equations, which have advantages in terms of the
number of operations required to obtain the final results and thus prove more economical.

One problem which led to the GA equations was to deduce the differential equations of motion,
which are easier to apply in the case of non-holonomic systems but which can also be applied to the
holonomic systems. This method was discovered by Gibbs in 1879 [18] and, independently, by Appell
in 1899 [19]. The function of Lagrange or Hamilton is replaced, in this formalism, by the energy of
accelerations and represents an application of the well-known Gauss principle of least constraint being
equivalent to the other formulations currently used in classical mechanics.

The modern mechanical systems are characterized by ultra-fast movements and velocities and
include serial structures of robots as well. The fast movements are generally characterized by a
time variation law for accelerations and lead to the occurrence of accelerations of higher orders.
The last decades are characterized by a sustained development of the use of robots in the industry.
This involves studies that allow good control of such systems, especially when working with high
speeds and forces. In the case of such systems, which give very high working speeds and especially
important speed variations, accelerations become significant. In these cases, the GA method becomes
interesting. This type of formalism is useful for a wide class of engineering problems. For example,
it can be used to analyze rigid dynamical systems, considering quasi-velocities [20]. The equations of
motion can be easily obtained, both for holonomic systems and for non-holonomic systems. It is thus
possible to eliminate at this step Lagrange’s multipliers and thus reduce the number of unknowns with
which they work. The method can be applied both to linear and nonlinear problems. An example is
presented in [21] where are obtained the motion equations for an N-link robot, with flexible elements.
Experimental procedures validate the result obtained using the GA formalism. In the last period, this
formalism tends to become a usual procedure. There are many papers presenting this kind of approach,
like [22], where an application consists of an N-flexible-link manipulator used in the cooperative
flexible mobile manipulator. The main advantage of recursive GA formulation is used to determine
the motion equations without classical use of Lagrange multipliers. Some new methods to study the
dynamic behavior of the multibody system have, as the central piece in approach, this formalism.
As an example, in [23], such a system is defined using a classic set of coupled differential equations and
a set of algebraic equations for expressing the liaisons (constraints). The use of Lagrange formalism
asks a large number of derivatives in the governing equations. In these cases, the use of the recursive
GA formalism becomes easier to apply. In this mode, it is possible to obtain the equations of motion
automatically. In [24], the main advantage of this formulation used in applications is that it is not
necessary to eliminate Lagrange’s multipliers and, as a consequence, the computational complexity
decrease. Identically the formalism is also used in [25]. Dynamical response and motion equations can
be obtained via recursive GA formulation and represent the way used to reduce the computational
effort, significant for this application. The main advantage is fewer mathematical calculations compared
to other formulations. There are a lot of papers using this formalism in the study of the dynamical
system [26]. Interesting results are presented in [27–29]. The present paper only aims at obtaining the
equations of motion for a three-dimensional finite element with a general motion.
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The problems regarding the accuracy of the results and the accuracy of the models used in the
case of the mechanisms, which have significant displacements and deformations, were not developed
in the paper. These very interesting and current study domains themselves represent a distinct field of
research. In this paper, we only dealt with the presentation of an alternative method, which presents
advantages of calculation, of determining the equations of motion for a single element. The other
operations used then in the method of finite elements were considered the ones currently used
in practice.

2. Gibbs–Appell Formalism

In the case of scleronomic liaisons, the acceleration of a point i of a system of material points
having n degree of freedom has, generally, the expression:

ai =
n∑

k=1

n∑

j=1

∂2ri
∂qk∂q j

.
qk

.
q j +

n∑

k=1

∂ri
∂qk

..
qk (1)

where ri is the position vector of the point and q j, j = 1, n represent the independent coordinates. In the
following, the dot placed above a scalar, vector or matrix size means the derivative of the respective
size with respect to time. The notion energy of accelerations for a system of material points is defined
as [27]:

S =
1
2

N∑

i=1

mia2
i (2)

The form of this expression is similar to the expression of kinetic energy but the mechanical
significance is different. In the case of a solid body, the definition can be extended to the whole domain
of the body as:

S =
1
2

∫

V

ρa2dV (3)

where the acceleration of a certain point of the solid is similar to Equation (1):

a =
n∑

k=1

n∑

j=1

∂2r
∂qk∂q j

.
qk

.
q j +

n∑

k=1

∂r
∂qk

..
qk (3a)

Introducing Equation (3a) in Equation (3) we get:

S = 1
2

∫

V
ρa2dV = 1

2

∫

V
ρ




n∑
k=1

n∑
j=1

∂2r
∂qk∂q j

.
qk

.
q j +

n∑
k=1

∂r
∂qk

..
qk




2

dV =

= 1
2

∫

V
ρ




n∑
k=1

n∑
j=1

∂2r
∂qk∂q j

.
qk

.
q j +

n∑
k=1

∂r
∂qk

..
qk




2

dV =

= 1
2

∫

V
ρ







n∑
k=1

n∑
j=1

∂2r
∂qk∂q j

.
qk

.
q j




2

+ 2




n∑
k=1

n∑
j=1

∂2r
∂qk∂q j

.
qk

.
q j



(

n∑
k=1

∂r
∂qk

..
qk

)
+

(
n∑

k=1

∂r
∂qk

..
qk

)2



2

dV =

= 1
2

∫

V
ρ




n∑
k=1

n∑
j=1

n∑
l=1

n∑
m=1

∂2r
∂qk∂q j

∂2r
∂ql∂qm

.
qk

.
q j

.
ql

.
qm +

n∑
k=1

n∑
j=1
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l=1

∂2r
∂qk∂q j

∂r
∂ql

.
qk

.
q j

..
ql +
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k=1

n∑
j=1

∂r
∂qk

∂r
∂q j

..
qk

..
q j


dV =

= 1
2
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V
ρ
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k=1

n∑
j=1

n∑
l=1
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∂qk∂q j
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∂ql∂qm

.
qk
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q j
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ql
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+ 1
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ρ
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k=1

n∑
j=1
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l=1

∂2r
∂qk∂q j

∂r
∂ql

.
qk

.
q j

..
ql


dV + 1

2

∫

V
ρ




n∑
k=1

n∑
j=1

∂r
∂qk

∂r
∂q j

..
qk

..
q j


dV =
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V
ρ
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k=1
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j=1
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l=1
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∂qk∂q j

∂2r
∂ql∂qm

dV


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.
qk

.
q j

.
ql

.
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1
2
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ρ
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∂ql

dV
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.
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.
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

∫

V
ρ

n∑
k=1

n∑
j=1

∂r
∂qk

∂r
∂q j

dV




..
qk

..
q j = Eao(

.
q) + Ea1(

.
q,

..
q) + Ea2(

..
q)

(4)
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where:

Eao(
.
q) =

1
2




∫

V

ρ
n∑

k=1

n∑

j=1

n∑

l=1

n∑

m=1

∂2r
∂qk∂q j

∂2r
∂ql∂qm

dV




.
qk

.
q j

.
ql

.
qm (5)

contains terms that have no accelerations,

Ea1(
.
q,

..
q) =

1
2




∫

V

ρ
n∑

k=1

n∑

j=1

n∑

l=1

∂2r
∂qk∂q j

∂r
∂ql

dV




.
qk

.
q j

..
ql (6)

represents the terms in which the accelerations intervene linearly and:

Ea2(
..
q) =

1
2




∫

V

ρ
n∑

k=1

n∑

j=1

∂r
∂qk

∂r
∂q j

dV




..
qk

..
q j (7)

represents the quadratic terms in accelerations.
GA equations are given by relations:

∂S
∂

..
q j

= Q j j = 1, n (8)

where Q j it represents the generalized force corresponding to the generalized coordinate qj.

3. Basic Hypothesis

Now consider a finite element modeling a domain of an elastic element from the structure of
a multibody system. The aim of the paper is to determine the motion equations of this element.
The generalized coordinates will be the displacements of the nodes. The displacements of an arbitrary
point of the continuous domain modeled by the finite element shall be expressed using a finite
number of nodal coordinates. The finite element shall be related to the mobile reference frame, which
participates in the general rigid motion (Figure 1). With vo(

.
Xo,

.
Yo,

.
Zo), we shall note the velocity,

and with ao(
..
Xo,

..
Yo,

..
Zo), the acceleration of the origin of the local reference frame relative to the global

reference frame OXYZ. We shall note with ω(ωx,ωy,ωz) the angular velocity and with ε(εx, εy, εz)

the angular acceleration. Generally, a multibody system consists of several solids. Every solid is
characterized by these two vectors, and the number of pairs of such vectors is equal to the number of
distinct bodies. The relations between the components of a vector in the local coordinate system {t}L
and the components of the same vector in a global coordinate system {t}G are obtained using a matrix
of rotation [R]:

{t}G = [R]{t}L (9)
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Figure 1. Three-dimensional finite element.

If an arbitrary point M of the finite element has a displacement
{
f
}
L changing into M’, we may write:

{rM′ }G = {rO}G + [R]
(
{r}L +

{
f
}
L

)
(10)

where {rM′ }G is the position vector of point M’ with components expressed in the global coordinate
system. The continuous displacement field noted

{
f
}
L is approximated, using the finite element method,

by relation: {
f
}
L = [N(x, y, z)]{δ}L (11)

where the matrix elements [N(x, y, z)], the shape functions, will depend on the type of the finite element
chosen and {δ}L are the independent nodal coordinates. The velocity of point M’ will be:

{vM′ }G =
{ .
rM′

}
G
=

{ .
rO

}
G
+

[ .
R
]
{r}L +

[ .
R
]
[N]{δ}L + [R][N]

{ .
δ
}
L

(12)

and the acceleration will be:

{aM′ }G =
{..
rO

}
G
+

[ ..
R
]
{r}L +

[ ..
R
]{

f
}
L + 2

[ .
R
]{ .

f
}

L
+ [R]

{ ..
f
}

L
=

{..
rO

}
G
+

[ ..
R
]
{r}L +

[ ..
R
]
[N]{δ}L + 2

[ .
R
]
[N]

{ .
δ
}
L
+ [R][N]

{ ..
δ
}
L

(13)

These expressions will be used to determine the energy of accelerations. In the future, the index
G mark the vector with the components expresses in the global reference system, the index L mark
the vector with the components expresses in the local reference frame and the non-indexed vectors
are considered to be written in the local coordinate system. The derivatives of the positional matrix
[R] occur in the previous relations. These derivatives will define angular velocities and angular
accelerations. From the orthogonality conditions written for the positional matrix we have:

[R][R]T = [R]T[R] = [E] =




1 0 0
0 1 0
0 0 1




(14)

where [E] is the unit matrix, the following relation can be obtained:

[ω]G =
[ .
R
]
[R]T =




0 −ωzG ωyG
ωzG 0 −ωxG
−ωyG ωxG 0




(15)
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which is a skew symmetric matrix angular velocity, with components in global coordinate system,
corresponding to the angular velocity:

{ω}G =



ωxG
ωyG
ωzG


(16)

Obviously, we have, too:

[ω]L = [R]T
[ .
R
]
=




0 −ωzL ωyL

ωzL 0 −ωxL

−ωyL ωxL 0




and {ω}L =



ωxL

ωyL

ωzL


(17)

The angular acceleration operator is defined by:

[ε]G =
[ .
ω
]
G
=




0 −εzG εyG
εzG 0 −εxG
−εyG εxG 0



=




0 − .
ωzG

.
ωyG

.
ωzG 0 − .

ωxG
− .
ωyG

.
ωxG 0



=

[ ..
R
]
[R]T +

[ .
R
][ .

R
]T

(18)

and:

[ε]L =
[ .
ω
]
L
=




0 −εzL εyL

εzL 0 −εxL

−εyL εxL 0



=




0 − .
ωzL

.
ωyL

.
ωzL 0 − .

ωxL

− .
ωyL

.
ωxL 0



=

[ .
R
]T[ .

R
]
+ [R]T

[ ..
R
]

(19)

It will result after some elementary calculus:

[ ..
R
]
[R]T = [ε]G −

[ .
R
][ .

R
]T

= [ε]G −
[ .
R
]
[R]T

([ .
R
]
[R]T

)T
= [ε]G + [ω]G[ω]G (20)

whereas:
[ω]G = −[ω]TG (21)

We have, too:

[R]T
[ ..
R
]
= [ε]L −

[ .
R
]T
[R][R]T

[ .
R
]
= [ε]G −

(
[R]T

[ .
R
])T

[R]T
[ .
R
]
= [ε]L + [ω]L[ω]L (22)

These relations will be useful in the following considerations.

4. Motion Equations

In the following, the equations of motion for a finite element will be established using the GA
formalism. For this, it is necessary to first determine the energy of the accelerations of a finite element.
If we use Expression (13) determined previously for the acceleration of a point, the energy of the
accelerations for the considered finite element is given by the expression [30]:

Ea =
1
2

∫
V ρa2

M′dV = 1
2

∫
V ρ{aM′ }T{aM′ }dV =

= 1
2

∫
V ρ

({..
rO

}T

G
+ {r}TL

[ ..
R
]T

+ {δ}TL [N]T
[ ..
R
]T

+ 2
{ .
δ
}T

L
[N]T

[ .
R
]T

+
{ ..
δ
}T

L
[N]T [R]T

)
x

({..
rO

}
G
+

[ ..
R
]
{r}L +

[ ..
R
]
[N]{δ}L + 2

[ .
R
]
[N]

{ .
δ
}
L
+ [R][N]

{ ..
δ
}
L

)
dV =

1
2

∫
V ρ

({..
rO

}T

G

{..
rO

}
G
+ 2{r}TL

[ ..
R
]T{..

rO
}
G
+ 2{δ}TL [N]T

[ ..
R
]T{..

rO
}
G
+ 4

{ .
δ
}T

L
[N]T

[ .
R
]T{..

rO
}
G
+ 2

{ ..
δ
}T

L
[N]T [R]T

{..
rO

}
G

)
+

1
2

∫
V ρ

(
{r}TL

[ ..
R
]T[ ..

R
]
{r}L + 2{δ}TL [N]T

[ ..
R
]T[ ..

R
]
{r}L + 4

{ .
δ
}T

L
[N]T

[ .
R
]T[ ..

R
]
{r}L + 2

{ ..
δ
}T

L
[N]T [R]T

[ ..
R
]
{r}L

)
x

1
2

∫
V ρ

(
{δ}TL [N]T

[ ..
R
]T[ ..

R
]
[N]{δ}L + 4

{ .
δ
}T

L
[N]T

[ .
R
]T[ ..

R
]
[N]{δ}L + 2

{ ..
δ
}T

L
[N]T [R]T

[ ..
R
]
[N]{δ}L

)
+

1
2

∫
V ρ

(
4
{ .
δ
}T

L
[N]T

[ .
R
]T[ .

R
]
[N]

{ .
δ
}
L
+ 4

{ ..
δ
}T

L
[N]T [R]T

[ .
R
]
[N]

{ .
δ
}
L
+

{ ..
δ
}T

L
[N]T [R]T [R][N]

{ ..
δ
}
L

)

(23)
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The quadratic terms can be easily identified in the accelerations of the independent coordinates{ ..
δ
}
L
, noted with Ea2:

Ea2 =
1
2

∫

V
ρ
({ ..
δ
}T

L
[N]T [R]T [R][N]

{ ..
δ
}
L

)
dV =

1
2

{ ..
δ
}T

L

(∫

V
ρ[N]T [N] dV

){ ..
δ
}
L

(24)

the terms in which these accelerations appear linear Ea1:

Ea1 =
∫

V ρ
({ ..
δ
}T

L
[N]T [R]T

{..
rO

}
G
+

{ ..
δ
}T

L
[N]T [R]T

[ ..
R
]
{r}L +

{ ..
δ
}T

L
[N]T [R]T

[ ..
R
]
[N]{δ}L + 2

{ ..
δ
}T

L
[N]T [R]T

[ .
R
]
[N]

{ .
δ
}
L

)
dV =

{ ..
δ
}T

L

∫
V ρ

(
[N]T

{..
rO

}
L
+ [N]T ([ε]L + [ω]L[ω]L){r}L + [N]T ([ε]L + [ω]L[ω]L)[N]{δ}L + 2[N]T [ω]L[N]

{ .
δ
}
L

)
dV

(25)

and the terms that do not contain at all accelerations and which do not have importance in GA
equations, Ea0:

Ea0 = 1
2

∫
V ρ

({..
rO

}T

G

{..
rO

}
G
+ 2{r}TL

[ ..
R
]T{..

rO
}
G
+ 2{δ}TL [N]T

[ ..
R
]T{..

rO
}
G
+ 4

{ .
δ
}T

L
[N]T

[ .
R
]T{..

rO
}
G

)
+

1
2

∫
V ρ

(
{r}TL

[ ..
R
]T[ ..

R
]
{r}L + 2{δ}TL [N]T

[ ..
R
]T[ ..

R
]
{r}L + 4

{ .
δ
}T

L
[N]T

[ .
R
]T[ ..

R
]
{r}L

)
dV+

1
2

∫
V ρ

({ .
δ
}T

L
[N]T

[ ..
R
]T[ ..

R
]
[N]{δ}L + 4{δ}TL [N]T

[ .
R
]T[ ..

R
]
[N]{δ}L + 4

{ .
δ
}T

L
[N]T

[ .
R
]T[ .

R
]
[N]

{ .
δ
}
L

)
dV

(26)

The potential energy (internal work) has a classical form:

Ep =
1
2

∫

V
{σ}T{ε}dV (27)

where {σ} is the stress tensor and {ε} the strains tensor:

{σ} =



σxx

σyy

σzz

τxy

τyz

τzx



; {ε} =



εxx

εyy

εzz

2εxy

2εyz

2εzx



(28)

Writing the Hooke law as follows:
{σ} = [D]{ε} (29)

and of the differential relations between strains and finite deformations:

{ε} = [a]
{
f
}
= [a][N]{δ} (30)

where [a] represents the differentiation operator [31] and, using Equations (13), (15) and (16), the internal
work becomes [31]:

Ep =
1
2

∫

V
{δ}TL [N]T[a]T[D]T[a][N]{δ}dV =

1
2
{δ}TL

(∫

V
[N]T[a]T[D]T[a][N]dV

)
{δ}L (31)

where [k] is the classical stiffness matrix:

[k] =
∫

V

[N]T[a]T[D]T[a][N]dV (32)
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If noted with
{
p
}
=

{
p(x, y, z)

}
, the vector of body forces per unit volume, then the external work

of these is:

W =

∫

V

{
p(x, y, z)

}T
L
{
f
}
LdV =




∫

V

{
p(x, y, z)

}T
L [N]dV


{δ}L =

{
q∗

}T
L {δ}L (33)

The concentrated forces
{
q
}
L in the nodes of the element will give an external work:

Wc =
{
q
}T
L {δ}L (34)

The equations of motion are obtained by applying the GA equations previously presented:

{
∂Ea

∂
..
δ

}

L
− {Q}L = 0 (35)

By
{
∂E
∂δe

}
, we understand:

{
∂E
∂X

}
=



∂E
∂x1
∂E
∂x2
...
∂E
∂xn



where : {X} =



x1

x2
...

xn



(36)

In our case:
Ea = Ea0(

.
q) + Ea1(

.
q,

..
q) + Ea2(

..
q) (37)

and:
{Q}L = [k]{δ}L +

{
q
}
L +

{
q∗

}
L (38)

After a series of elementary calculations and rearranging of terms, we get the equations of motion
for the finite element considered:

∂Ea2

∂
{ ..
δ
}
L

=

(∫

V
ρ[N]T [N] dV

){ ..
δ
}
L
= [m]

{ ..
δ
}
L

(39)

We shall note with
[
N(1)

]
, the row i of matrix [N] and with:

[m] =
∫

V ρ[N]T [N] dV =
∫

V ρ
[

NT
(1)

NT
(2)

NT
(3)

]



N(1)
N(2)
N(3)




dV =

=
∫

V ρ
(
NT
(1)

N(1) + NT
(2)

N(2) + NT
(3)

N(3)

)
dV =∫

V ρNT
(1)

N(1) dV +
∫

V ρNT
(2)

N(2) dV +
∫

V ρNT
(3)

N(3) dV = [m11] + [m22] + [m33]

(40)

where: [
mi j

]
=

∫

V
ρNT

(i)N( j) dV (41)

therefore:

[m11] =

∫

V
ρNT

(1)N(1) dV, [m22] =

∫

V
ρNT

(2)N(2) dV, [m33] =

∫

V
ρNT

(3)N(3) dV (42)
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∂Ea1

∂
{..
δ
}
L

=
(∫

V ρ[N]TdV
) {..

rO
}
L
+

(∫
V ρ[N]T ([ε]L + [ω]L[ω]L){r}LdV

)
+

(∫
V ρ[N]T ([ε]L + [ω]L[ω]L)[N]dV

)
{δ}L + 2

(∫
V ρ[N]T [ω]L[N]dV

){ .
δ
}
L
=[

mi
O

] {..
rO

}
L
+

{
qi(ω)

}
L
+

{
qi(ε)

}
L
+ ([k(ω)] + [k(ε)]){δ}L + [c]

{ .
δ
}
L

(43)

where it is denoted:
[
mi

O

]
=

∫
V ρ[N]TdV;

{
qi(ε)

}
L
=

∫
V ρ[N]T[ε]L{r}LdV;{

qi(ω)
}
L
=

∫
V ρ[N]T[ω]L[ω]L{r}LdV;[k(ε)] =

∫
V ρ[N]T [ε][N]dV;

[k(ε)] =
∫

V ρ[N]T [ω]L[ω]L[N]dV;[c] =
∫

V ρ[N]T [ω]L[N]dV;

{mix} =
∫

V ρ
[
N(i)

]T
xdV ;

{
miy

}
=

∫
V ρ

[
N(i)

]T
ydV ; {miz} =

∫
V ρ

[
N(i)

]T
zdV

(44)

The term Ea0 does not contain
{ ..
δ
}
L

and, consequently:

∂Ea0

∂
{ ..
δ
}
L

= 0 (45)

Finally, the motion equations can be written in the condensed form:

[m]
{ ..
δ
}
L
+ [c]

{ .
δ
}
L
+ ([k] + [k(ε)] + [k(ω)]){δ}L =

{
q
}
L +

{
q∗

}
L −

{
qi(ε)

}
L
−

{
qi(ω)

}
L
−

[
mi

O

]{..
rO

}
L

(46)

These equations are related to the local system of coordinates. Similar formulas can be obtained,
and we consider the global reference frame. The matrix coefficients can be calculated after choosing
the shape functions and the independent nodal coordinates for expressing the displacement of a point.

5. Conclusions and Discussions

In the classical Lagrangian formalism, to determine the equations of motion for a three-dimensional
finite element, the main step of the calculation is the Lagrangian, based essentially on the kinetic energy
of the deformable finite element. The Lagrangian is:

L = Ec − Ep + W + Wc (47)

where Ep, W, Wc are given, respectively, by the Relations (31), (33) and (34) and the kinetic energy has
the expression:

Ec =
1
2

∫
V ρv2

M′dV = 1
2

∫
V ρ{vM′ }T{vM′ }dV =

= 1
2

∫
V ρ

({ .
rO

}T

G
+ {r}TL

[ .
R
]T

+ {δ}TL [N]T
[ .
R
]T

+
{ .
δ
}T

L
[N]T[R]T

)
x

({ .
rO

}
G
+

[ .
R
]
{r}L +

[ .
R
]
[N]{δ}L + [R][N]

{ .
δ
}
L

)
dV =

1
2

∫
V ρ

({ .
rO

}T

G

{ .
rO

}
G
+ 2

{ .
rO

}T

G

[ .
R
]
{r}L + 2

{ .
rO

}T

G

[ .
R
]
[N]{δ}L + 2

{ .
rO

}T

G
[R][N]

{ .
δ
}
L

)
d V+

1
2

∫
V ρ

(
{r}TL

[ .
R
]T[ .

R
]
{r}L + 2{r}TL

[ .
R
]T[ .

R
]
[N]{δ}L + 2{r}TL

[ .
R
]T

[R][N]
{ .
δ
}
L

)
dV +

1
2

∫
V ρ

(
{δ}TL [N]T

[ .
R
]T[ .

R
]
[N]{δ}L + 2{δ}TL [N]T

[ .
R
]T

[R][N]
{ .
δ
}
L
+

{ .
δ
}T

L
[N]T[R]T [R][N]

{ .
δ
}
L

)
dV

(48)

Lagrange’s equations are:

d
dt


∂L

∂
.
δe

−
{
∂L
∂δe

}
= 0 (49)

Leaving aside the other derivatives, which have a low weight in the computing economy, the term
most significant in this formulation is the term kinetic energy. In this expression, there are four terms
containing the vector

{ .
δ
}
L

and four terms containing the vector {δ}L. If we look at the expression of
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Lagrange’s equations, it follows that we will have four differentiation operations for
{
∂L/∂

.
δe

}
, another

four for {∂L/∂δe} and then the derivatives with respect to the time of the terms
{
∂L/∂

.
δe

}
.

Using the Gibbs–Appell equations that have the form of Equation (31), we have to differentiate the
energy of the accelerations given by the Relations (24)–(26) and (37). The role of kinetic energy is play
in these equations by the energy of accelerations

{ ..
δ
}
L
. Note that of the three terms of kinetic energy,

only two contain the vector of accelerations. The size Ea2 has a single term that contains this vector
and Ea1 has four terms that contain the vector

{ ..
δ
}
L

and which are differentiated. The total number of
differentiation to be made in this case is five.

The conclusion from these two approaches is that the number of operations to be performed
when using the Gibbs–Appell equations is lower than when Lagrange’s method is applied. The use of
this method has the advantage that we are familiar with the calculation of kinetic energy of a solid
and to determine the energy of the accelerations it is sufficient to replace the speeds, in the kinetic
energy formula, with the accelerations. The use of these equations will result in an economy in the
computational effort we make to determine the equations of motion for a single finite element.

An application was made for a rod within a wind pumping mechanism (Figure 2). The mechanism
proposed for the study is a mechanism with two degrees of freedom of type “kinematic chain closed
by inertia” [32].
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Number of Finite Elements Lagrange Gibbs–Appell 
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25 1248 520 

Figure 2. (a) Experimental test stand and (b) sketch of the mechanism with the positioning of the
markers (dimensions are in mm). 1—engine; 2—rotating disk; 3—invertor; 4—pumps; 5—valves;
6—rod; 7—pendulum rod; 8—weight.

Table 1 presents a comparison between the number of differentiation required when using Lagrange’s
method and the number of differentiation required if the Gibbs–Appell method is applied. It is noted that
the number of these operations is reduced to less than half. For a large number of finite elements used,
in the case of complex structures, the reduction can be significant and can reduce the computational effort.
We mention that after obtaining the matrix coefficients of the system of differential equations, the next
procedures in the two methods become identical, so also the necessary computer times.

Another problem that arises is the accuracy of the results. In the case of finite element analysis of
a mechanism that can have large displacements, specific problems arise, very delicate, related to the
accuracy of the results obtained and the correctness of the models used. During the present paper,
we did not deal with these aspects, especially interesting and exciting. By themselves, these aspects
define a field of research. The purpose of the paper was to provide an alternative way of writing the
equations of motion, which would have the advantage of a smaller number of operations to perform.

The test mechanism on which the considerations were made, presented in Figure 2, can be
considered, at this level as regards the accuracy of the results, accessible through the classical methods.
In Figures 3 and 4, we presented the space of the possible positions that can be occupied by the elements
of this mechanism, to justify our hypothesis.
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Table 1. Comparison between the Lagrange and Gibbs–Appell methods. Number of differentiations.

Number of Finite Elements Lagrange Gibbs–Appell

5 288 120

10 528 220

15 768 320

20 1008 420

25 1248 520

30 1488 620

40 1968 820
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Abstract: This paper studies a simple skewness measure to detect symmetry and asymmetry in
samples. The statistic can be obviously applied with only three short central tendencies; i.e., the first
and ninth deciles, and the median. The strength of the statistic to find symmetry and asymmetry is
studied by employing numerous Monte Carlo simulations and is compared with some alternative
measures by applying some simulation studies. The results show that the performance of this statistic
is generally good in the simulation.
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1. Introduction

In scientific studies, the researchers can summarize a given dataset using descriptive statistics.
The descriptive statistics contain three known tendencies: central tendencies, dispersion tendencies
and shape tendencies [1]. The central and dispersion tendencies, such as mean, median, standard
deviation and variance deal with the convenience of the dataset [1–5]. The shape tendencies, such as
skewness and kurtosis, are related to the distribution of dataset [6–8]. These measures which may
be utilized in divergent disciplines consist of the tests of normality and of the lustiness for normal
theoretical procedures. Skewness is often utilized to reference to symmetry. Nevertheless, symmetry is
not often perspicuously defined, and it is thought that everybody knows it. There are some definitions
about symmetry relying on the disciplines that it is utilized in. In literature, any statement related
to the symmetry of a structure has to be done with reference to some rules of symmetry—a score,
a line or an axis [9]. In the statistical inference, the meaningful score or axis is taken as the center of a
distribution. There are several measures employed to quantify the degree of skewness of a distribution.
Assume that µ, m, M, σ, µ3, Q1 and Q3, are the mean; median; mode; standard deviation; third centered
moment; and the first and the third quartiles, respectively. The statistics introduced for measuring the
skewness are Pearson’s coefficient of skewness:

SKP =
µ−M
σ

(1)
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Pearson’s second coefficient of skewness:

SKP2 =
3(µ−m)

σ
(2)

Yule’s coefficient of skewness:

SKY =
(µ−m)

σ
(3)

the standardized third central moment:
γ1 =

µ3

σ3 (4)

Bowley’s coefficient of skewness:

SKB =
Q3 + Q1 − 2m

Q3 −Q1
(5)

and three Galip’s coefficients of skewness:

SKG1 =
XMax + Xmin − 2M

XMax −Xmin
(6)

SKG2 =
XMax + Xmin − 2m

XMax −Xmin
(7)

SKG3 =
XMax + Xmin − 2µ

XMax −Xmin
(8)

[9–17].
Although there are numerous different measures, and practical elongations of the above coefficients

were proposed afterward, the original measures are still employed to this day, especially γ1(or its
variants). It is largely utilized in statistical calculation software.

When we face a dataset containing outliers, we need a measure that can carefully consider these
outliers. Therefore, probably, the measures that are based on the extreme values (max and min) such as
three Galip’s coefficients of skewness; are based on the first and the last quartiles (Q1 and Q3) such as
Bowley’s coefficient of skewness; or are based on the first and the last deciles (D1 and D9), should be
more effective than other methods. The previous studies indicated that the three Galip’s coefficients of
skewness had the most power to detect symmetry and asymmetry. But the Bowley’s coefficient of
skewness acted not so well. There is no deep study about the definition of skewness based on deciles
and the comparison between them and other alternatives.

In this work, at first, we consider the definition of skewness based on deciles and then study its
asymptotic properties, similar to the approach that was applied in [18–23]. Finally, the power of the
considered statistic to detect symmetry and asymmetry is compared with the powers of other measures
of skewness.

2. Decile-Based Skewness

Let X1, . . . , Xn be a sample from a distribution F on the real line, and we suppose that F is
continuous so that all observations are distinct with probability one. We may then arrange the
observations in increasing order without ties, X(1) < . . . < X(n). These variables are called the order
statistics, where X(k) is the kth order statistic. For 0 < p < 1, the pth quantile of F is defined as xp = F−1(p)
and the corresponding sample quantile is defined as X(k) where k =

⌈
np

⌉
, the ceiling of (the smallest

integer greater than or equal to np). Let D1 and D9 be the first and nine sample deciles (0.1 and 0.9
quantiles), respectively. We consider our statistic for measuring the skewness by

SK =
(D9 −m) − (m−D1)

D9 −D1
(9)
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In the following, the asymptotic distribution of the proposed statistic is explored.

Lemma 1. LetU1, . . . , Un be independent, identically distributed (iid in short) random variables from U(0, 1)
and U(1) < . . . < U(n), which are order statistics of U1, . . . , Un. If n→∞ , then

√
n




Udnp1e − p1

Udnp2e − p2

Udnp3e − p3




D→ N(0, Σ) (10)

where 0 < p1 < p2 < p3 < 1, and

Σ =




p1(1− p1) p1(1− p2) p1(1− p3)

p1(1− p2) p2(1− p2) p2(1− p3)

p1(1− p3) p2(1− p3) p3(1− p3)




(11)

Proof. Assume that Y1, Y2, . . . are iid exponential variables with mean 1 and Sj =
j∑

i=1
Yi.

Additionally, assume that
√

n
( k1

n − p1
)
→ 0,

√
n
( k2

n − p2
)
→ 0 and

√
n
( k3

n − p3
)
→ 0 as k1, k2, k3, and

n→∞ . Then by the extension of the results given in [24],

√
n + 1




1
n+1 Sk1 − p1

1
n+1

(
Sk2 − Sk1

)
− (p2 − p1)

1
n+1

(
Sk3 − Sk2

)
− (p3 − p2)

1
n+1

(
Sn+1 − Sk3

)
− (1− p3)




D→ N(0, Σ1),

such that

Σ1 =




p1 0
0 p2 − p1

0 0
0 0

0 0
0 0

p3 − p2 0
0 1− p3




Take g(x1, x2, x3, x4) =
1

x1+x2+x3+x4
[x1, x1 + x2, x1 + x2 + x3]

′; then, by Cramer’s theorem [24],

√
n




Sk1
Sn+1
− p1

Sk2
Sn+1
− p2

Sk3
Sn+1
− p3




D→ N(0, Σ)

Finally, the proof is completed with the reality that the distribution of
(

Sk1
Sn+1

,
Sk2

Sn+1
,

Sk3
Sn+1

)′
given

Sn+1 is the same as the distribution of
(
U(k1), U(k2), U(k3)

)′
. �

Corollary 1. LetX1, . . . , Xn be iid random variables with density and distribution functions f and F, respectively.
Additionally, assume that f (x) is continuous and positive in a neighborhood of the quantiles xp1 , xp2 and xp3

with p1 < p2 < p3; then,

√
n




Xdnp1e − xp1

Xdnp2e − xp2

Xdnp3e − xp3




D→ N(0, Σ∗) (12)
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where

Σ∗ =




p1(1−p1)

f 2(xp1)
p1(1−p2)

f(xp1) f(xp2)
p1(1−p3)

f(xp1) f(xp3)
p1(1−p2)

f(xp1) f(xp2)
p2(1−p2)

f 2(xp2)
p2(1−p3)

f(xp2) f(xp3)
p1(1−p3)

f(xp1) f(xp3)
p2(1−p3)

f(xp2) f(xp3)
p3(1−p3)

f 2(xp3)




(13)

Proof. By applying the transformation g(y1, y2, y3) =
(
F−1(y1), F−1(y2), F−1(y3)

)
′ to the variables(

Udnp1e − p1, Udnp2e − p2, Udnp3e − p3
)

in Lemma 1, the proof will be completed. Be careful that the
derivation of g is

.
g(y1, y2, y3) =




1
f (F−1(y1))

0 0

0 1
f (F−1(y2))

0

0 0 1
f (F−1(y3))



.

�

The asymptotic distribution of SK is provided in the following theorem. This is our major
contribution. It is also necessary to infer the skewness of population.

Theorem 1. LetX1, . . . , Xn be iid random variables with density function f. Additionally, assume that f (x) is
continuous and positive in a neighborhood of the quantiles x0.1, x0.5 and x0.9. Then, the asymptotic distribution
of the proposed statistic can be illustrated by

Tn =
√

n
(
SK − x0.9 + x0.1 − 2x0.5

x0.9 − x0.1

)
D→ N

(
0, σ2

)

where
σ2 = 1

(x0.9−x0.1)
4

[
0.36(x0.9−x0.5)

2

f 2(x0.1)
+

(x0.9−x0.1)
2

f 2(x0.5)
+

0.36(x0.5−x0.1)
2

f 2(x0.9)

− 0.4(x0.9−x0.1)(x0.9−x0.5)
f (x0.1) f (x0.5)

+
0.08(x0.5−x0.1)(x0.9−x0.5)

f (x0.1) f (x0.9)

− 0.4(x0.9−x0.1)(x0.5−x0.1)
f (x0.5) f (x0.9)

] (14)

Proof. The proof is simply achieved using Cramer’s theorem [24] and taking g(x1, x2, x3) =
x1−2x2+x3

x3−x1
.

�

Corollary 2. LetX1, . . . , Xn be iid random variables from U(0, 1); then, the asymptotic distribution of the
proposed statistic is given by √

n(SK − 0) D→ N(0, 1.25) (15)

These results can be employed to build an asymptotical confidence interval and to check
the hypothesis.

2.1. Asymptotic Confidence Interval

Now, Tn can be utilized as a pivotal quantity to build a confidence interval asymptotic to a
population’s skewness, (

SK − σ̂√
n

Zα/2, SK +
σ̂√
n

Zα/2

)
(16)
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where
σ̂2 = 1

(D9−D1)
4

[
0.36(D9−m)2

f 2(D1)
+

(D9−D1)
2

f 2(m)
+

0.36(m−D1)
2

f 2(D9)

− 0.4(D9−D1)(D9−m)
f (D1) f (m)

+
0.08(m−D1)(D9−m)

f (D1) f (D9)

− 0.4(D9−D1)(m−D1)
f (m) f (D9)

] (17)

2.2. Hypothesis Testing

Hypothesis testing related to skewness is a crucial issue in practical application. For instance,
the assumption Skewness = 0 is tantamount to the symmetry. Generally, to test H0 : Skewness = γ0,
the test statistic can be

T0 =
√

n
(

SK − γ0

σ̂

)
(18)

Similar to the methodology provided in Theorem 1, it can prove that with the null hypothesis,
T0 has, asymptotically, standard normal distribution.

3. Asymptotic Properties of the Proposed Statistic

In this part, many data sets are drawn to analyze the performance of the proposed approach,
for distinct symmetric distributions and divergent sample sizes. Firstly, we checked that the given CI
and test statistic are truly the asymptotic CI and test statistic. For every parameter, the experiential
coverage probability (percentage of runs for which the given CI contains zero (true skewness)) was
calculated by relying on 10,000 repetitions using statistical R 3.6.2 and SPSS 25 software. In addition,
for each repetition, the value of the given test statistic is presented and normal Q–Q plots of the given
test statistic are provided. The Shapiro-Wilk’s normality test is used to confirm the normality of the
given test statistic. The experiential coverage probabilities for divergent parameters are illustrated as
in Table 1.

Table 1. The experiential coverage probability of the proposed confidence interval.

Distribution
n

50 75 100 200 500 1000

Normal (1,5) 0.9732 0.9734 0.9743 0.9744 0.975 0.9761

t(10) 0.9916 0.9928 0.9934 0.9939 0.9942 0.9947

U(0,1) 0.9485 0.949 0.9491 0.9502 0.9521 0.9569

The results show that the experiential coverage probability of proposed approach is more than
nominal level (0.95), especially when the sample sizes grow. In the other hand, we can admit the
given CI as the asymptotic CI for the skewness of population. Figure 1 and Table 2 show the Q–Q
plots for the standard normal distribution and the results of Shapiro-Wilk’s normality test in the test
statistic, respectively.

Table 2. Shapiro-Wilk’s normality test p-value for the given test statistic.

Distribution
n

50 75 100 200 500 1000

Normal (1,5) 0.7131 0.7174 0.7899 0.8436 0.9077 0.9213

t(10) 0.433 0.6515 0.781 0.8317 0.9603 0.9945

U(0,1) 0.3144 0.5566 0.6034 0.6219 0.8249 0.9488
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Figure 1. The Q–Q plots versus standard normal distribution. Normal distribution: n = 50 (a),
n = 1000 (b). t distribution: n = 50 (c), n = 1000 (d). Uniform distribution: n = 50 (e), n = 1000 (f).

It can be then seen that the asymptotic properties are relatively satisfied in all situations (p-value
is greater than 5%). Thereafter, it can be seen that our approach is a good choice to build a CI and
execute hypothesis testing for the skewness of a population.

4. Comparison with Alternative Measures

To check the performances of the considered statistic, its power to detect asymmetry is compared with
the conventional measures of skewness by employing a Monte Carlo simulation. As in Section 3, numerous
data sets were drawn to check the performances of the measures, for different asymmetric distributions
and different sample sizes using R software. For this purpose, we generated 10,000 samples of size
n = 10, 20, 50, from a chi-square distribution with m degrees of freedom,

(
χ2(m)

)
. We considered three

cases: extremely skewed (m = 1), moderately skewed (m = 5) and slightly skewed (m = 40). The powers
(at 5% significant level) of different measures to detect asymmetry are summarized in Table 3.
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Table 3. The powers of different measures to detect skewness.

Distribution Measure
n

10 20 50

Extremely Skewed

SK 0.798 0.989 1.000

γ1 0.687 0.942 1.000

SKG3 0.817 0.991 1.000

SKG2 0.834 0.992 1.000

SKG1 0.461 0.831 0.997

SKP 0.200 0.151 0.130

SKY 0.616 0.869 0.999

SKP2 0.616 0.869 0.999

SKB 0.260 0.403 0.711

Moderately
Skewed

SK 0.318 0.597 0.945

γ1 0.297 0.530 0.889

SKG3 0.321 0.564 0.911

SKG2 0.318 0.623 0.941

SKG1 0.145 0.397 0.814

SKP 0.132 0.108 0.100

SKY 0.207 0.344 0.651

SKP2 0.207 0.344 0.651

SKB 0.123 0.156 0.224

Slightly Skewed

SK 0.144 0.163 0.289

γ1 0.129 0.165 0.288

SKG3 0.135 0.175 0.284

SKG2 0.143 0.153 0.282

SKG1 0.116 0.136 0.252

SKP 0.106 0.103 0.119

SKY 0.120 0.116 0.180

SKP2 0.120 0.116 0.180

SKB 0.117 0.116 0.135

As preliminary results, based on the maximum power, it can be observed that the performances
of SK, γ1 , SKG1, SKG2 and SKG3 are approximately similar and are more powerful than other methods
for all simulated datasets, and are therefore are very promising. The performances of SKP, SKP2 and
SKY are approximately similar and have the next best ranks, while SKB has the worst performance in
all situations. In general, the measures that are based on the extreme values (maximum and minimum),
such as three Galip’s coefficients of skewness, and those based on the first and the last deciles (D1 and
D9), are more effective than other methods, because of their better performances and easy calculations.

5. Discussion

In this work, at first, we considered the definition of skewness based on deciles, and then studied
its asymptotic properties. The results showed that the experiential coverage probability of this measure
was more than nominal level (0.95), especially when the sample size was increased. The Q–Q plots
versus the standard normal distribution and the results of Shapiro-Wilk’s normality test verified the
theoretical asymptotic properties. Finally, the power of the considered statistic to detect symmetry
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and asymmetry was compared with the powers of other measures of skewness. The power study
indicated that the performances of decile-based measure and three Galip’s coefficients of skewness
were approximately similar, and were more powerful than other methods for all simulated datasets,
and are therefore are promising for application in practice.

6. Conclusions

We presented a simple measure to find skewness in patterns. The new measure relies on a
new definition of skewness that contains many outstanding advantages. The proposed coefficient of
skewness could be obviously calculated with only three short statistics; i.e., the first and nine deacons
and the median. The strength of the proposed statistic to find symmetry and asymmetry was studied
by employing numerous Monte Carlo simulations. The results show that the performance of new
statistic is generally very good in the simulation. There are many definitions to describe symmetry and
asymmetry. To investigate the skewness in datasets including outliers, we should use the measures
that consider the effects of outliers. Therefore, probably, the measures that are based on the extreme
values (maximum and minimum), such as three Galip’s coefficients of skewness; those based on the
first and the last quartiles (Q1 and Q3), such as Bowley’s coefficient of skewness; and those based on
the first and the last deciles (D1 and D9), are candidates for application. Other studies showed that
Galip’s coefficients of skewness are more powerful for detecting symmetry and asymmetry. There is
no deep study about the definition of skewness based on deciles and a comparison between them and
other alternatives. In this work, at first, we considered the definition of skewness based on deciles and
then studied its asymptotic properties. Finally, the power of the considered statistic to detect symmetry
and asymmetry was compared with the powers of other measures of skewness. For future works,
we suggest readers to use a definition of skewness based on combinations of more deciles, not only
the first and the ninth deciles. We think this combination will improve the detection of symmetry
and asymmetry.

Author Contributions: Conceptualization, M.R.M., R.N., D.B. and K.-H.P.; data curation, M.R.M.; formal analysis,
M.R.M., R.N. and K.-H.P.; investigation, M.R.M., R.N. and D.B.; methodology, M.R.M. and K.-H.P.; project
administration, D.B.; supervision, M.R.M.; validation, M.R.M.; visualization, M.R.M.; writing—original draft,
M.R.M. and R.N.; writing—review and editing, D.B. and K.-H.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sprinthall, R.C.; Fisk, S.T. Basic Statistical Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1990.
2. Manikandan, S. Measures of central tendency: Median and mode. J. Pharmacol. Pharm. 2011, 2, 214.

[CrossRef]
3. Weisberg, H.; Weisberg, H.F. Central Tendency and Variability; Sage: Thousand Oaks, CA, USA, 1992.
4. Deshpande, S.; Gogtay, N.J.; Thatte, U.M. Measures of central tendency and dispersion. J. Assoc. Physicians

India 2016, 64, 64–66.
5. Manikandan, S. Measures of dispersion. J. Pharmacol. Pharm. 2011, 2, 315. [CrossRef]
6. Kim, T.H.; White, H. On more robust estimation of skewness and kurtosis. Financ. Res. Lett. 2004, 1, 56–73.

[CrossRef]
7. Oja, H. On location, scale, skewness and kurtosis of univariate distributions. Scand J. Stat. 1981, 1, 154–168.
8. Wilkins, J.E. A note on skewness and kurtosis. Ann. Math Stat. 1944, 15, 333–335. [CrossRef]
9. Murphy, E.A. Skewness and asymmetry of distributions. Metamedicine 1982, 3, 87–99. [CrossRef]
10. Arnold, B.C.; Groeneveld, R.A. Skewness and kurtosis orderings: An introduction. Lect. Notes Monogr. Ser.

1992, 22, 17–24.
11. Arnold, B.C.; Groeneveld, R.A. Measuring skewness with respect to the mode. Am. Stat. 1995, 49, 34–38.
12. Doane, D.P.; Seward, L.E. Measuring Skewness: A Forgotten Statistic? J. Stat. Educ. 2011, 19, 1–18. [CrossRef]

266



Symmetry 2020, 12, 296

13. García, V.J.; Martel, M.; Vázquez-Polo, F.J. Complementary information for skewness measures. Stat. Neerl
2015, 69, 442–459. [CrossRef]

14. Groeneveld, R.A.; Meeden, G. Measuring skewness and kurtosis. Statistician 1984, 33, 391–399. [CrossRef]
15. Mahmoudi, M.R.; Nasirzadeh, R.; Mohammadi, M. On the Ratio of Two Independent Skewnesses. Commun.

Stat. Theory Methods 2019, 48, 1721–1727. [CrossRef]
16. Tabor, J. Investigating the investigative task: Testing for skewness–An investigation of different test statistics

and their power to detect skewness. J. Stat. Educ. 2010, 18, 1–13. [CrossRef]
17. Tajuddin, I.H. A simple measure of skewness. Stat. Neerl 1996, 50, 362–366. [CrossRef]
18. Haghbin, H.; Mahmoudi, M.R.; Shishebor, Z. Large Sample Inference on the Ratio of Two Independent.

Binomial Proportions. J. Math. Ext. 2011, 5, 87–95.
19. Mahmoudi, M.R.; Mahmoodi, M. Inferrence on the Ratio of Variances of Two Independent Populations.

J. Math. Ext. 2014, 7, 83–91.
20. Mahmoudi, M.R.; Mahmoodi, M. Inferrence on the Ratio of Correlations of Two Independent Populations.

J. Math. Ext. 2014, 7, 71–82.
21. Mahmouudi, M.R.; Maleki, M.; Pak, A. Testing the Difference between Two Independent Time Series Models.

Iran. J. Sci. Technol. Trans. A Sci. 2017, 41, 665–669. [CrossRef]
22. Mahmoudi, M.R.; Mahmoudi, M.; Nahavandi, E. Testing the Difference between Two Independent Regression

Models. Commun. Stat. Theory Methods 2016, 45, 6284–6289. [CrossRef]
23. Mahmoudi, M.R.; Behboodian, J.; Maleki, M. Large Sample Inference about the Ratio of Means in Two

Independent Populations. J. Stat. Theory Appl. 2017, 16, 366–374. [CrossRef]
24. Ferguson, T.S. A Course in Large Sample Theory; Chapman & Hall: London, UK, 1996.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

267





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Symmetry Editorial Office
E-mail: symmetry@mdpi.com

www.mdpi.com/journal/symmetry





ISBN 978-3-0365-5257-6 

MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34

www.mdpi.com


	Multibody Systems with Flexible Elements web-f.pdf
	Book.pdf
	Multibody Systems with Flexible Elements web-b.pdf

