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Preface to ”Land Surface Monitoring Based on

Satellite Imagery”

This book offers readers an overview of the different means of exploiting remote sensing to

monitor land surfaces, a phenomenon which plays a significant role in the study of climate change

and global warming. This overview highlights how novel approaches employ satellite measurements

to improve the detection of land surface changes at the level of global coverage by compensating the

in situ measurements lack in terms of spatial and temporal resolution. Land surface parameters from

remote sensing are incredibly attractive for applications in different environmental fields, such as

land use/change, monitoring of vegetation and soil water stress, and early warning and detection

of forest fires and drought. Typically, the practice of monitoring land cover changes is based on the

definition of vegetation indices, employing methods to exploit the surface information provided by

the channels in the visible and the infrared spectra.
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Abstract: The boreal hemisphere has been experiencing increasing extreme hot and dry conditions
over the past few decades, consistent with anthropogenic climate change. The continental extension
of this phenomenon calls for tools and techniques capable of monitoring the global to regional
scales. In this context, satellite data can satisfy the need for global coverage. The main objective we
have addressed in the present paper is the capability of infrared satellite observations to monitor
the vegetation stress due to increasing drought and heatwaves in summer. We have designed and
implemented a new water deficit index (wdi) that exploits satellite observations in the infrared to
retrieve humidity, air temperature, and surface temperature simultaneously. These three parameters
are combined to provide the water deficit index. The index has been developed based on the
Infrared Atmospheric Sounder Interferometer or IASI, which covers the infrared spectral range 645
to 2760 cm−1 with a sampling of 0.25 cm−1. The index has been used to study the 2017 heatwave,
which hit continental Europe from May to October. In particular, we have examined southern Italy,
where Mediterranean forests suffer from climate change. We have computed the index’s time series
and show that it can be used to indicate the atmospheric background conditions associated with
meteorological drought. We have also found a good agreement with soil moisture, which suggests
that the persistence of an anomalously high water deficit index was an essential driver of the rapid
development and evolution of the exceptionally severe 2017 droughts.

Keywords: climate change; drought; water deficit index; infrared observations; satellite; remote
sensing; surface temperature; air temperature; humidity; dew point temperature

1. Introduction

The ECMWF (European Centre for Medium-Range Weather Forecasts) has deter-
mined that the winter of 2020 was the hottest winter season ever recorded in Europe (e.g.,
see https://climate.copernicus.eu/boreal-winter-season-1920-was-far-warmest-winter-
season-ever-recorded-europe-0 (accessed on 15 August 2022)). This is an event that is now
repeated year after year [1,2], as evidenced by the Copernicus Climate Change Service
(C3S) dataset (e.g., see https://climate.copernicus.eu/esotc/2021/globe-in-2021 (accessed
on 15 August 2022)), which shows that the last seven years have been the warmest on
record, with 2021 varying from the fifth to the seventh warmest.

The present analysis is most relevant to temperate regions and the Mediterranean
vegetation. In this respect, ref. [3] discussed the risks of climate change altering sustainable
development in the Mediterranean area. Furthermore, in [4], it has been shown that long-
lasting droughts induce dieback phenomena in temperate and Mediterranean climate

Land 2022, 11, 1366. https://doi.org/10.3390/land11081366 https://www.mdpi.com/journal/land1
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regions, an issue that has also been addressed in [5], which analysed the effect of the 2017
summer heatwave in Europe.

The continental extension of the phenomenon calls for tools and techniques capable of
monitoring the global to regional scales. For this reason, we have set up a methodology
based on satellite data with the objective of using infrared satellite observations to monitor
early drying in summer because of drought and heatwaves.

Vegetation stress due to water deficit is widespread in many countries due to climate
change (e.g., see [4,5]). Drought is an extreme natural event typical of semi-arid areas and
much of the Mediterranean, especially regions located at middle latitudes. The lack of rain
for long periods increases the danger and risk of forest fires in lands rich in vegetation
and wooded areas [6]. Furthermore, the lack of rain in semi-arid regions causes water
stress (e.g., [7,8]). Therefore, the deficit of rainfall and/or water, in general, requires specific
actions to monitor and detect drought conditions aiming to mitigate its adverse impacts on
human health, wildlife, and plant communities.

Water deficit can be estimated using (1) meteorological data (e.g., [9–11]); and
(2) remote sensing (e.g., [12–15]).

The present study aims at a synergetic use of these two different methods to develop
new vegetation dryness indices based on the surface temperature, complemented with
atmospheric temperature and the water vapor mixing ratio or parameters depending on it,
such as dew point temperature.

In general, the problem has been studied through the use of indexes such as the
vegetation dryness index (or VDI), the temperature vegetation dryness index (TVDI), and
the improved TVDI (or iTVDI) (among many others, see [16–18]). These indices are based
on the NDVI (normalized differential vegetation index), the surface temperature, Ts, and
the air temperature close to the surface, or Ta. The problem with NDVI is that it is a
greenness index and cannot distinguish bare soil from senescent vegetation (e.g., see [19]).
In addition, neither Ts nor Ta are directly linked with soil moisture. It should be observed
that the use of Ts-NDVI relationships has been long investigated for application to drought
assessment, and it has been found to produce inconsistent results in some specific situations
(e.g., [20]).

Conversely, we propose to follow the strategy of using surface temperature (Ts),
and the dew point temperature (Td), which are more closely related to surface type and
coverage, and soil moisture. The water deficit index is then defined according to the linear
difference Ts − Td.

The water deficit index is meant for analysis at the regional scale; therefore, we need the
use of satellite data to ensure the correct spatial coverage and time sampling. Toward this
objective, we have used the hyper-spectral satellite infrared sounder (Infrared Atmospheric
Sounder Interfemoter or IASI, e.g., [21]) flying on board the European Meteorological
Platforms (MetOp). By adequately exploiting IASI observations, we can simultaneously
retrieve Ts and Td, which limit problems of time-space colocation. However, satellite data
are available at uneven grid points, making it challenging to check spatial patterns. In this
respect, our objective is two-fold: first, we want to define and compute a suitable water
deficit index based on direct satellite soundings; and second, we want to define a strategy
to resample the sparse satellite retrievals on a regular grid for the better understanding of
spatial patterns.

We acknowledge that water deficit indices are common in-field analyses related to
horticulture, e.g., irrigation management, evaluation of crop water stress, and so on (e.g.,
see [6] and references therein). However, in these cases, we are generally in the presence
of temporary water deficit anomalies. In contrast, our approach is meant to account for
the background atmospheric humidity and temperature related to drought onset and
development (e.g., see [22]). For satellite-based analysis, a similar approach has been
proposed in [23], using the concept of vapour pressure deficit (VPD), the difference between
the saturation and actual vapour pressure for a given time. In contrast, our approach uses

2



Land 2022, 11, 1366

Td, which is related to VPD, and Ts to build the difference Ts − Td, allowing us to better
separate the hot-dry from humid-warm weather conditions.

The paper is organized as follows. Section 2 deals with data and methods; in particular,
the section illustrates the IASI retrieval system we have developed and used for the present
analysis. Results are shown in Section 3 and discussed in Section 4. Finally, conclusions are
drawn in Section 5.

2. Materials and Methods

2.1. Material and Data

The retrieval from space observations of Ts and Td have been performed using the
Infrared Atmospheric Sounder Interferometer (or IASI) [21]. IASI has been developed
in France by CNES and is flying on board the Metop platforms, which are satellites of
the EUMETSAT European Polar System (EPS). IASI has been primarily designed as a
meteorological mission; hence, its main objective is to provide relevant information on
temperature and water vapour profiles. The spectral coverage of the instrument extends
from 645 to 2760 cm−1, and its sampling interval is Δσ = 0.25 cm−1; therefore, the instrument
provides 8461 channels, i.e., spectral observations for every spectrum.

IASI is a cross-track scanner with 30 adjacent fields of regard (FOR) per scan, spanning
an angular range of ±48.33◦ on either side of the nadir. The FOR viewing geometry consists
of a 2 × 2 matrix of instantaneous fields of views (IFOVs). In turn, the single IFOV has a
diameter of 0.8394◦, corresponding to a ground resolution of 12 km per nadir for a satellite
altitude of 819 km. The 2 × 2 IFOV matrix is centered on the viewing direction. At nadir,
a FOR of 4 IASI IFOVs (or pixels) covers the ground a square area of ≈50 × 50 km2. The
corresponding FORs (among the 30 views) are ±1.67◦ on each side from the nadir direction.
Further details about IASI and its mission objectives are referred to in [21].

Figure 1 shows the target area we have focused on in the paper. The site corresponds
to southern Italy, with the Apennine chains covered by forest, as exemplified by the
2018 CORINE land cover (https://land.copernicus.eu/pan-european/corine-land-cover
(accessed on 15 August 2022)). The black dots identify two dieback forest areas, where
forest monitoring, by ecophysiological and dendrochronological approaches, has been
running since 2013 [24].

The two locations circled in the maps of Figure 1 correspond to the forest stands of San
Paolo Albanese (40.02◦ N, 16.34◦ E, 950–1050 m.a.s.l.) and Gorgoglione (40.40◦ N, 16.14◦ E,
800–850 m.a.s.l.), which are suffering from long-lasting drought-induced tree mortality
(e.g., [4]). In the San Paolo Albanese site, the vegetation is formed by a pure high forest of
Quercus frainetto Ten. for a stand density of 348 trees ha−1. As far as the most affected stands
are concerned, recent studies observed that more than 50% of the mature specimens showed
symptoms of death, while about 15% died recently [25]. On the other hand, the Gorgoglione
woodland is a highly mixed forest, with an average density of about 600 stems ha−1. The
vegetation is dominated by Quercus cerris L. (71%), followed by Quercus pubescens L. (25%)
and, at a lower density (4%), other species of deciduous trees [25].

The two main studied tree species (i.e., Quercus cerris L. and Quercus pubescens L.) have
shown recent drought-induced decline symptoms since the early 2000s (shoot dieback,
summer leaf loss, withering, growth decline, and high mortality). According to local reports
about the study area, the yearly oak mortality affected ca. 450 ha. The incidence of the
decline syndrome raised mortality from 5 to 10%, from 2002 to 2004 [24].

IASI soundings have been acquired for the whole year of 2017 when an intense heat
wave hit Europe and the Mediterranean area in summer (e.g., see [5]). For comparison, we
have also acquired IASI data for 2020 and 2021.

For a proper comparison with our IASI Ts − Td index, for the same target area and
the year 2017, the Copernicus Global Land Service (https://land.copernicus.eu/global/
products (accessed on 15 August 2022)) was used to obtain data about the surface soil
moisture (ssm) and the leaf area index (LAI).

3
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Figure 1. Target region for which IASI data have been selected for the present analysis. The figure
also shows the CORINE land cover for 2018 to help identify forest regions, which are primarily of
interest for this study. The two upper panels help to determine the target area (magenta square) on
the globe and Italy.

The surface soil moisture was derived by observing the band C SAR onboard the
satellite Sentinel-1. Data were provided with a timeliness of one day at a spatial resolution
of ~1 km. For details about the ssm product, we refer the interested reader to [26].

The leaf area index was globally estimated at a spatial resolution of about 300 m
through a neural net approach. The input to the net was obtained from instantaneous
top-of-canopy reflectances from the OLCI (Ocean and Land Colour Imager) instrument
onboard the Sentinel-3 satellite, or daily top-of-aerosol reflectances from the PROBA-V
satellite. We refer the interested reader to [27] for further details about the LAI data.

Finally, data about the ecophysiological responses of trees for the forest stands of San
Paolo Albanese and Gorgoglione were measured and used in the present analysis during
two field campaigns performed from July–September in 2020 and 2021.

2.2. Methods

IASI will add unique capabilities to the present study because we were able to simul-
taneously retrieve Ts and Td (e.g., [28–32]) from this instrument. To this end, we developed
two retrieval prototypes: one for simultaneous inversion of infrared observations (level 2 or
L2 prototype), and the second for remapping L2 products on a regular grid (L3 prototype).

4
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The layout of the overall scheme we developed is sketched in Figure 2. The procedure
consists of three main steps identified in Figure 2 with grey boxes.

Figure 2. Schematic flow chart of the methodology developed in the present study to yield Level 3
monthly maps of the water deficit index [30,33,34].

The IASI Level 2 and 3 prototypes have been developed in previous studies. The most
up-to-date versions of both schemes can be found in [30,33] for the L2 package and [34] for
Level 3 Optimal Interpolation. The digital object identifier (doi) shown in Figure 2 allows
the interested reader to open online references where the two schemes are analytically
presented. For this reason, they are just summarized in the present paper. In contrast, the
Pre-OI scheme is described in more detail, as it implements the equations and formulas
needed for calculating the state vector and associated covariance matrix, which are passed
to the OI scheme to compute the maps of the water deficit index.

2.2.1. The L2 Retrieval System

The L2 prototype, which we also call δ-IASI, consists of an optimal estimation scheme
(e.g., [35]), which simultaneously inverts the full IASI spectrum to retrieve the state vector,
which is made up of the surface emissivity (ε), the surface temperature (Ts), the atmospheric
profiles of temperature (T), water vapour (Q), ozone (O), HDO (D), carbonyl sulfide or
OCS, and scalar scaling factors for the column amount of CO2, CO, N2O, CH4, SO2, HNO3,
NH3, and CF4. However, the parameters relevant to the present analysis are Ts, and the
atmospheric profiles for T and Q. Our L2 prototype for IASI has been variously validated
as far as the surface parameters and T and Q profiles are concerned. Validation for surface
parameters can be found, e.g., in [32,33], whereas for T and Q they can be found in [30,36].

2.2.2. The L2 Pre-OI and the Definition of the Water Deficit Index

Regarding Figure 2, the Pre-OI acts on the IASI Level 2 data to extract the geophysical
parameters close to the surface and compute the water deficit index and its variance to
input the final optimal interpolation scheme. From the profiles of T and Q, we considered
only the elements, which correspond to the lowermost atmospheric layer, say T1 (in units
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of K) and Q1 (in units of gr/Kg). The corresponding layer pressure was denoted with P1
(in units of hPa). From the L2 products, we also extracted the surface temperature, Ts. The
three parameters (Ts, T1, Q1) were piled up in a vector, x1 of size n = 3, whose covariance
matrix was denoted with S1, whose size was n × n. Both x1, S1 are outputs of the IASI
L2 system.

The computation of the dew point temperature, Td, involves the calculation of the
actual and saturation water vapour pressures. These are referred to as Pw and Pws , respec-
tively. From Q1, we can compute Pw according to:

Pw = 10−3P1Q1
Rw

Rair
= βP1Q1; β = 10−3 Rw

Rair
(1)

with Pw in hPa and where Rw = 461.5 J K−1 Kg−1 and Rair = 286.9 J K−1Kg−1 are the
specific gas constants of water vapour and air, respectively. According to [37], Pws is
computed with the formula:

Pws = 10−2
exp

(
a1 − a2

t1+a3

)
(t1 + a4)

a5
(2)

with t1 = T1 − 273.15 (temperature in degrees Celsius) and Pws in hPa. Equation (2)
is valid for t1 > 0 (vapor pressure of water), and where a1 = 34.494, a2 = 4924.99,
a3 = 237.1, a4 = 105, a5 = 1.57 are fit parameters that in case t1 are expressed in degrees
Celsius. From (1) and (2), we obtain the fractional relative humidity:

rh =
Pw

Pws
(3)

From (1) and (2), we can also compute the vapour pressure deficit or VPD = Pws − Pw.
Finally, the dew point temperature, Td can be calculated by using the well-known Magnus
formula (e.g., [38]):

td =
cx

b − x
, x = ln(rh) +

bt1

c + t1
(4)

where td is in degrees Celsius (we will use Td when referring to degrees Kelvin units), and
b = 17.62 (dimensionless), c = 243.12 C. Finally, the IASI-based water deficit index, wdi, is
defined according to:

wdi = Ts − Td = ts − td (5)

Equation (5) stresses that the index can be computed indifferently with both tempera-
tures in K or C degrees, although the computation of the dew point temperature has to be
performed in C, according to Equation (4), before converting it to K.

For the application of the optimal interpolation to the mapping of the water deficit
index, we also need the variance of the index, σ2

wdi. Considering the chain of equations
from (2) to (5), we can formally write wdi as a function wdi = f (Ts, T1, Q1), from which,
using the usual rule of variance propagation (see, e.g., [39]), we obtain:

σ2
wdi = gtS1g (6)

with the superscript t indicating the transpose operation, and

g =

(
∂ f
∂Ts

,
∂ f
∂T1

,
∂ f

∂Q1

)t
(7)
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We stress that the parameters defined by Equations (5) and (6) have to be computed for
the IASI retrievals and the ECMWF background, as shown in the diagram of Figure 2. For
the background, the covariance matrix is assumed to be diagonal, as we use background
derived from climatology (see [29]) for which we do not consider correlation among air
temperature, humidity, and surface temperature.

Considering that

f (Ts, T1, Q1) = Ts − Td = ts − td = ts − cx
b − x

(8)

we have
∂ f
∂Ts

= ∂ f
∂ts

= 1

∂ f
∂T1

= ∂ f
∂t1

= ∂ f
∂x

∂x
∂t1

= − cb
(b−x)2

(
− a2

(t1+a3)
2 +

a5
(t1+a4)

+ bc
(t1+c)2

)
∂ f

∂Q1
= ∂ f

∂x
∂x

∂Q1
= − cb

(b−x)2
1

Q1

(9)

The parameter wdi, when referring to a surface covered by vegetation or crops, can
help to understand the water stress or deficit during long-lasting droughts or heatwaves.
This is because vegetation releases water into the atmosphere through transpiration. The
process involves the vaporization of liquid water in plant tissues and the consequent
release of vapour into the atmosphere (for example, see [40])). Similar to direct evaporation,
transpiration depends on the amount of energy available: solar radiation, wind, and vapour
pressure gradient at the surface–atmosphere interface. Consequently, solar radiation, air
temperature and humidity, and wind velocity must be considered when evaluating and
assessing a satellite-based index to quantify water deficit.

In Equation (5), the role of energy supply is modelled with Ts. The sun’s radiation will
cause a rapid increase in the surface temperature of the land. On the other hand, Td will
take into account both air temperature and air humidity. The effect of wind is more difficult
to introduce. However, drought and heatwave conditions minimize the spatial gradient
and wind intensity. The air subsidence and low intense pressure gradients characterize
meteorological conditions that favour summer heatwaves.

It is also important to stress that evaporation and transpiration co-occur, and it is not
easy to distinguish between the two processes. For this reason, we mention evapotranspi-
ration when referring to the water exchange between vegetation and the air. In addition
to water availability in the topsoil, evaporation from the cultivated terrain depends, as
already mentioned, on the amount of impinging solar radiation. The solar energy at the
surface decreases during crop growth because its foliage or canopy shadows the area below
from the sun’s rays as the crop develops. Therefore, water is predominately lost by soil
evaporation when the crop is small, or when the leaves are not well developed. However,
transpiration becomes the main process once the crop and leaves are well developed and
completely cover the soil.

With this in mind, the parameter wdi can help to identify different regimes of water deficit:

1. wdi � 0; this regime characterizes very hot and dry conditions that favour evapo-
transpiration. Furthermore, in this regime, the evapotranspiration increases almost
linearly with the wind speed (e.g., [40]);

2. wdi ≥ 0; this regime characterizes warm and humid conditions when the air is
already close to saturation; therefore, less additional water can be stored, so the
evapotranspiration rate is even lower than for arid land;

3. wdi ≤ 0; this is the regime Ts < Td, and therefore the vapour condenses in liquid
water at the surface.
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2.2.3. The 2-D OI scheme

It is worth noting that when wdi is determined by L2 satellite observations, as in our
case, we obtain data that are sparse and not homogeneously covering a given spatial region.
Therefore, to better compare with other data sources and perform a correct collocation
with stations at the ground, we used a resampling tool, which can remap wdi data to a
regular grid. To this end, we used the tool developed in [34]. The technique is based on a
2-dimensional (2D) optimal interpolation (OI) scheme, and is derived from the broad class
of Kalman filter or Bayesian estimation theory. For further details, we refer the interested
reader to [34].

The steps involved in the mapping on a regular grid are exemplified in Figure 3 using
the IASI retrieval for wdi for July 2017. Figure 3a,c show the IASI data points for wdi,
and its square root of the variance (standard deviation) as estimated by the L2 retrieval
scheme and the Pre-OI step (see Figure 2). These values are accumulated considering
all the IASI overpasses for July 2017. As said before, the IASI scan pattern is made up
of footprints with circular diameters of about 12 km at nadir, and the scanning lines are
50 km apart along the flight direction of the satellite. The IASI scan pattern over the target
area for a single overpass is shown in Figure 4 for the benefit of the reader. Comparing
Figure 3 with Figure 3a,c, it can be seen that after one month, the IASI clear sky footprints
(we stress that we use only observations in a clear sky, which is diagnosed based on a
stand-alone algorithm for cloud detection, e.g., [41]) are densely distributed over the area
much more than the single IASI scan pattern overpass. The monthly ensemble of satellite
overpasses improves the sampling of spatial data, and therefore allows, for example, a
better comparison with in situ observations. We use the ensemble of multiple observations
to build a map with a better spatial sampling. Towards this objective, we use the 2-D OI
method, which remaps the data into a grid with a finer mesh than the original data.

Figure 3. July 2017. IASI L2 products for wdi (panel (a)) and its standard deviation (panel (c)) over the
target area. The figure also shows the ECMWF background field (both mean (panel (b) and standard
deviation (d)) at its native spatial resolution of 0.125◦ × 0.125◦.
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Figure 4. Target region showing the IASI footprint scan pattern (red ovals) for one single overpass.
The IASI morning overpass for May, the first of 2020 is shown in the figure.

The final mesh we use has a spatial sampling of 0.05◦ × 0.05◦. Another important
aspect of OI remapping is the use of background fields. These fields are built up by using
the time and space co-located ECMWF (European Centre for Medium-Range Weather
Forecasts) analysis. The ECMWF fields are available on a grid-mesh of 0.125◦ × 0.125◦, and,
for the case at hand, the values for wdi and its square root of the variance, i.e., standard
deviation, are exemplified in Figure 3b,d, respectively. Based on the coarse ECMWF
background, the un-gridded L2 IASI observations and the 2-D OI yields the results are
shown in Figure 5; that is, the maps of wdi (panel (a)) and its standard deviation (panel (b))
at a sampling of 0.05◦ × 0.05◦. In this process, we lose temporal resolution, but we obtain a
map with improved spatial sampling and precision, as shown by the standard deviation
map, which, apart from boundary effects, is one ◦C or less.

Figure 5. Level 3 map at a grid step of 0.05◦ for the index wdi obtained from the source data shown
in Figure 3 (panel (a)) and its standard deviation (panel (b)). The map is exemplified for July 2017.

3. Results

The rise and fall of the exceptionally hot and dry summer are well captured by the
monthly time series of wdi maps shown in Figure 6. Of particular interest for us is the
Apennine chain, which is covered by broad-leaved, deciduous forests. If we compare
Figure 5 to the land cover map shown in Figure 1, we see that the wdi closely follows the
forested area in the summer season. In July and August 2017, the index was above ~10 ◦C
in the regions covered by forests, which shows that the vegetation ecosystem was suffering
from a water deficit.
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Figure 6. Level 3 map at a grid step of 0.05 degrees for the index wdi for 2017.

To understand the index’s sensitivity to heat waves, we have compared the wdi
parameter over three consecutive years, 2017, 2020, and 2021, for July. We know that July
2020 has been relatively wetter than 2017 and 2021 (e.g., see https://climate.copernicus.
eu/esotc/2021 (accessed on 15 August 2022)). The comparison is shown in Figure 7, and
we see that wdi is able to indicate that the year 2020 was less warm than the other two.
This situation is reflected in the soil moisture maps shown for the same target area and
year and month. When we focus on the forested area, especially in the southern part of the
map, we see that the soil moisture follows the same spatial-time evolution as wdi and, in
particular, the soil moisture is lower in 2017 and 2021 than in 2020. This is a significant result
because it shows that the wdi is capable of capturing processes at the surface–atmosphere
interface. A large wdi means a high rate of evapotranspiration; that is, trees lose water in
the atmosphere. The fact that the soil moisture is getting lower means that the vegetation
can catch less water from the surface.

Figure 7. Exemplifying the wdi evolution through the years. From left to right: July 2017, 2020, and 2021.
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The anti-correlation between wdi and soil moisture proves that wdi is a good metric
for monitoring water deficit during intense heatwaves. The more significant values we
saw in summer are not merely a consequence of the hotter weather, but also reflects
the decrease in water vapour exchange between the surface and the atmosphere. We
stress that, unlike other indices, wdi considers the surface-air temperature and humidity
fields simultaneously.

A further comparison with other parameters sensitive to vegetation stress is shown in
Figures 8 and 9. Concerning the 2017 heatwave, Figure 8 compares the surface soil moisture
(ssm) against wdi for the period June to August. It is seen that while wdi tends to increase
with time, ssm does the opposite. The leaf area index (LAI) is another crucial parameter
to be monitored for investigating vegetation stress. Indeed, under the action of an intense
heat wave, trees tend to lose leaves to protect from the fierce evapotranspiration. Trees use
this mechanism, e.g., in winter, when the light is not enough to sustain the photosynthesis
activity. The comparison with LAI is shown in Figure 9, and we see that consistently with
the increasing wdi behaviour, LAI is decreasing from June to July. In normal situations, the
LAI. decrease is not expected in the summer when there is a more significant availability of
light to sustain photosynthesis.

Figure 8. Comparison of ssm vs. wdi for the period of June to August in 2017. Top to bottom, June
to August.
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Figure 9. Comparison of LAI (m2/m2) vs. wdi for the period of June to August in 2017. Top to
bottom, June to August.

We have checked that the good consistency among ssm, LAI, and wdi also persists at
the local scale. In fact, for the two stations of S. Paolo Albanese and Gorgoglione, shown
in Figure 1, we have computed the monthly time series of ssm and wdi for 2017. The time
series are shown in Figure 10, and we see that starting from May until September, wdi goes
up, whereas ssm has the opposite behaviour. Again, this is an important result because it
shows that the wdi is capturing a water deficit condition for the vegetation, especially in
the area where we know there are declining trees [6,24].

The most striking agreement is seen when comparing in situ observations for the
flux exchange of CO2 and H2O from trees to the wdi parameter. In the summers of
2020 and 2021, CO2 exchange measurements were performed at the leaf scale on declin-
ing and non-declining Q. frainetto trees growing at the S. Paolo Albanese study site. In
each tree, net photosynthesis rate (An, μmolCO2 m−2 s−1), stomatal conductance (gsw,
mmolH2O m−2 s−1), and intrinsic water use efficiency (WUEi, μmolCO2 mmol−1 H2O)
were measured by using a portable Photosynthesis System LiCOR 6400xt equipped with a
6400-40 Leaf Chamber Fluorometer.
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Figure 10. Monthly time series of ssm and wdi in 2017 for the two-tower stations of Gorgoglione (left)
and S. Paolo Albanese (right). Data points are the mean values from a circle of diameter 0.1◦ around
the stations. The error bars represent the variability (standard deviation) of the samples.

In the summers of 2020 and 2021, the ecophysiological response of Q. frainetto trees
exhibiting decline and non-decline symptoms is shown in Figure 11. In 2020, when no
heatwave occurred, Q. frainetto ecophysiological responses were similar for declining and
non-declining trees, suggesting that there was no evident sign of water stress in the summer
of 2020. From Figure 7, we see that wdi is in fact below 10 ◦C in July. In contrast, in 2021, not
only is the water vapour exchange more than doubled, showing that the evapotranspiration
has increased because of the larger difference Ts − Td, but also the declining trees behave
differently with respect to the non-declining vegetation, showing that the non-declining
trees are suffering from the water deficit much more than the healthy vegetation.

Figure 11. Ecophysiological responses of declining (D) and non-declining (ND) Q. frainetto trees
of the San Paolo Albanese forest stand site. Panels (a–d) present the net photosynthesis curve
(An, μmolCO2 m−2 s−1), while panels (e,f) show the average values of stomatal conductance (gsw,
mmolH2O m−2 s−1) and intrinsic water use efficiency (WUEi, μmolCO2 mmol−1 H2O) measured
in the summers of 2020 and 2021. PPFD represents the photosynthetic photon flux density (μmol
photons m−2 s−1). The black vertical bar represents the 1st deviation standard.

It is also interesting to note that CO2, flux exchange exhibited the opposite behaviour
to H2O. In the summer of 2020, when there were good climatic conditions, we observed an
exchange larger than in 2021. In 2021, the results showed that the vegetation had reduced
photosynthesis activity because of stress conditions.
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4. Discussion

In the summer of 2017, southern Europe and the Euro-Mediterranean were hit by an
exceptional heat wave [6,42]. After an outstandingly warm June in western Europe, the
heat returned to southern Italy in July. It contributed to more than 400 wildfires, which
destroyed approximately 800 km2 of forest and vegetated areas. The number of fires has
been unprecedented in the last 20 years. Furthermore, early August saw a particularly
intense heat wave described as the “worst heat wave since 2003”, with the air temperature
above 40 ◦C in many parts of Italy [42].

In the quest for possible satellite indices to assess and possibly mitigate the effect of
long-lasting drought on vegetation, we have devised an index, wdi, which takes advantage
of the IASI capability to retrieve surface data simultaneously with atmospheric parameters.
Other methods that use satellite data exploit the visible region of the electromagnetic
spectrum (e.g., NDVI, NDMI, and related indices) or the microwave band (e.g., ssm and
LAI). The normalized difference moisture index (NDMI) (e.g., [43]) is mainly intended
to detect humidity in vegetation using a combination of near-infrared (NIR) and short-
wave infrared (SWIR) spectral bands. The index NDMI and the original greenness index,
NDVI, with the same ssm, have also been used coupled to surface temperature and air
temperature (e.g., see [8,11–14,18]). Other tools have tried to couple surface temperature
and the humidity field, e.g., [6].

In contrast, our wdi exploits the thermal band of the Earth’s emission spectrum and
simultaneously uses the surface temperature, air temperature, and humidity. To our
knowledge, this combination is unique. In effect, the water deficit index we have defined
can monitor water deficit and assess vegetation stress, as the comparison with in situ
measurements has demonstrated. It can be used complementary to ssm, LAI, and the set of
NDVI-related indices to better understand the intensity and danger of heatwaves for the
vegetation. Sequences of increasing wdi can help to identify the onset of water deficit for
the vegetation, hence the increased risk of fire, especially in forests.

The wdi index is meant to identify regions where particular weather conditions can
produce water deficits. The index is not intended as an estimate or an estimator of evapo-
transpiration. This process is also affected by vegetation/crop characteristics, environmen-
tal conditions, and cultivation types. Therefore, there is too much variability, which cannot
be condensed into a single index. The wdi parameter is a bulk index, which can help to
monitor forest and wood regions suffering from long-lasting droughts because of adverse
weather conditions. It can be mapped on a regional and even global scale, allowing us
to monitor drought processes at a glance. The wdi maps could be important to monitor
and evaluate the risk of fires in the large forested area, which is otherwise inaccessible.
In addition, we have shown that in regions where the vegetal ecosystem has a particular
fragility to water deficit, the index can soon quantify the possible danger and require more
accurate in situ observations.

In this respect, wdi is most effective in the case of a heatwave. In the wintertime, for
example, large values of wdi could be linked to a dry atmosphere and low air temperature.
In effect, this is the case in January 2017 for the more southern area on the map of Figure 5,
which belongs to the high mountains of the Sila chain. Additionally, in summer, very
humid and warm conditions could lead to wdi ∼ 0. For example, this is the case for the
coastal regions in July–August 2017, as seen again in the map in Figure 5. For these cases, it
is better to look separately at the maps of Ts and Td. In this respect, we observe that the
dew point temperature has been individuated as a key parameter to compute sophisticated
indicators of health stress for human beings during heatwaves [44].

Some words of caution should also be said about the temporal sampling of wdi. The
occasional occurrence of a high wdi for one day should be of no concern. Drought is a
process that takes several days or months. The severity of the process depends on its time
continuity and persistence. Therefore, it is crucial to assess the persistence of the process,
which can be done by looking at the time series. Averaging over several days can help
to understand the persistence of the phenomenon. Another important point concerns the
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capability of the retrieval system to solve the daily cycle, which cannot be done with the
present polar satellite IASI instrument. During the night, the surface temperature could
go below the dew point temperature and cause water vapour to condense at the surface.
Therefore, it could be interesting to examine day and night separately. Hopefully, this
could be the case when the MTG-IRS (https://www.eumetsat.int/mtg-infrared-sounder
(accessed on 15 August 2022)) is put in orbit.

5. Conclusions

Exploiting the capability of the IASI instrument to perform simultaneous retrievals of
surface and thermodynamical parameters, we have developed an index called the water
deficit index, or wdi. The index is intended to be used in the case of evident droughts, as it
can assess the severe water deficit of vegetation, and in particular, forests.

The tool has been exemplified in a target area in the south of Italy, which suffered
from an intense drought and heatwave in 2017. When the heatwave is developing, we
have shown, with the help of correlative observations of surface soil moisture and the leaf
area index, that wdi can assess the severity of the water deficit. Of particular interest is the
anti-correlation with the surface soil moisture. The soil water content and the ability of
the soil to transport water to the roots govern the transpiration rate of vegetation. In cases
where the wdi becomes large, we have found that ssm gets smaller, which shows how wdi
is capable of capturing processes occurring at the surface–atmosphere interface.

The possible usage of wdi includes monitoring large forested areas for the increased
risks of wildfire and assessing mitigation measures for regions whose green ecosystems are
more fragile and in danger because of climate change.
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Abbreviations

LAI leaf area index (m2/m2)
NDMI normalized difference moisture index (dimensionless)
NDVI normalized difference vegetation index (dimensionless)
iTVDI improved temperature vegetation dryness index (dimensionless)
P pressure (hPa)
Pw water vapour pressure (hPa)
Pws saturation water vapour pressure (hPa)
Q water vapour mixing ratio profile (g/kg)
Q1 water vapour mixing ratio at the surface level (g/kg)
rh = Pw

Pws
relative humidity (dimensionless)

x1 = (Ts, T1, Q1) vector of size n = 3
S1 covariance matrix of x1 size (3 × 3)
ssm surface soil moisture (dimensionless)
T temperature profile (K)
T1 = Ta air temperature at the surface level (K)
t1 = ta air temperature at the surface level (C)
Td dew point temperature at the surface level (K)
td dew point temperature at the surface level (C)
Ts surface temperature at the surface level (K)
ts surface temperature at the surface level (C)
TVDI temperature vegetation dryness index (dimensionless)
VDI vegetation dryness index (dimensionless)
VPD vapour pressure deficit (hPa)
wdi = Ts − Td = ts − td water deficit index (difference temperature, in units of K or C)
σ2

wdi variance of wdi (K2 or C2)
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Abstract: Evapotranspiration (ET) represents one of the essential processes controlling the exchange
of energy by terrestrial vegetation, providing a strong connection between energy and water fluxes.
Different methodologies have been developed in order to measure it at different spatial scales, ranging
from individual plants to an entire watershed. In the last few years, several methods and approaches
based on remotely sensed data have been developed over different ecosystems for the estimation of
ET. In the present work, we outline the correlation between ET measured at four eddy covariance
(EC) sites in Italy (situated either in forest or in grassland ecosystems) and (1) the emissivity contrast
index (ECI) based on emissivity data from thermal infrared spectral channels of the MODIS and
ASTER satellite sensors (CAMEL data-set); (2) the water deficit index (WDI), defined as the difference
between the surface and dew point temperature modeled by the ECMWF (European Centre for
Medium-Range Weather Forecasts) data. The analysis covers a time-series of 1 to 7 years depending
on the site. The results showed that both the ECI and WDI correlate to the ET calculated through EC.
In the relationship WDI-ET, the coefficient of determination ranges, depending on the study area,
between 0.5 and 0.9, whereas it ranges between 0.5 and 0.7 when ET was correlated to the ECI. The
slope and the sign of the latter relationship is influenced by the vegetation habitat, the snow cover
(particularly in winter months) and the environmental heterogeneity of the area (calculated in this
study through the concept of the spectral variation hypothesis using Rao’s Q heterogeneity index).

Keywords: emissivity; evapotranspiration; heterogeneity; Rao’s Q index; spectral variation hypothesis;
thermal infrared

1. Introduction

Evapotranspiration (ET) is an important component of the forest hydrological budget,
and influences the flow of water to downstream users, including aquatic habitats and hu-
man populations. Furthermore, it represents a considerable water loss in the landscape [1,2].
As an example, ET has been reported to inject into the atmosphere approximately 70% of
annual precipitation in a loblolly pine (Pinus taeda) plantation in south-eastern USA [3],
more than 85% in a Canadian black spruce (Picea mariana) forest [4] and more than 85% in a
ponderosa pine (Pinus ponderosa) forest in Arizona [5]. Consequently, the magnitude and
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seasonality of forest ET are important regulators of water resources available to humans
and ecosystems. ET represents a crucial process within a broad range of systems, including
ecology, hydrology and meteorology. For this reason, different methodologies have been
developed in order to measure it at different spatial scales, ranging from individual plants
to entire watersheds [6]. Various techniques have been developed to measure ET [6], includ-
ing sap flow analysis [7], by weighing lysimeters [8], plant chambers, stable isotope [7,9],
soil water budgets [10], land surface models [10] and eddy covariance (EC) [7,11]. More
recently, remote sensing data, offering large area coverage, frequent updates and consistent
quality, have been used in different studies to collect a quantitative information of ET over
different ecosystems world-wide [12,13].

ET cannot be measured directly from remote sensing data. Indirect approaches [14],
such as the energy balance approach [15], the Priestley–Talor approach [16,17] and through
the use of spectral indices [18], are commonly applied. In general, process-based models
that couple remote sensing information and ET have been widely used in science in the
last several years, at both local and global scale. The models reproduce physical and
plant physiological mechanisms that regulate ET, such as stomata processes, radiation
absorption and water interception [14]. Different remote sensing approaches use land
surface characteristics such as the leaf area index (LAI) and the albedo to estimate ET via
surface energy balance or within-scene scaling [19,20]. Remote sensing thermal infrared
measurements have also been largely used for the retrieval of ET information [21,22]. As an
example, Hamberg et al.[23] illustrated the potential of thermal information derived from
the ECOSTRESS satellite sensor for inferring land surface temperature and ET in different
forest sites in Southern Ontario, Canada. Carlson et al. [24], again using the HCMM
satellite, introduced a method for inferring different variables, including the distribution
of evaporative fluxes and surface heat, in the cities of Los Angeles and St. Louis (USA).
We refer to the following articles for an exhaustive overview of the use of infrared thermal
radiation for ET retrievals [25–28]. For more general information about ET estimation
techniques based on remote sensing data, Zhang et al. [12] provided an exhaustive review.

The thermal infrared (TIR) spectral region is also susceptible to soil moisture, allowing
for the retrieval of the atmosphere’s thermodynamic state along with the hydrometeorologi-
cal conditions near the surface. The thermodynamic state close to the surface and the surface
itself can be related straightforwardly to surface ET. A recent study by Masiello et al. [29]
made use of the remote-sensed emissivity contrast index (ECI) based on TIR emissivity data
derived from infrared atmospheric sounding interferometer (IASI) measurements [30,31]
and demonstrated that it correlates with the water deficit index, or WDI, defined as the
difference between the surface and dew point temperature close to it [32]. In [29], both the
ECI and WDI have been obtained with a technique that enables the simultaneous retrieval
of spectral emissivity and the vertical distribution of temperature (T), water vapor (Q) and
other trace gases [33]. The WDI can be computed using in situ measurements or using
modeled information, such as that of the European Centre for Medium Range Weather
Forecasts (ECMWF) .

The ECI, firstly introduced by French et al. [34], in Masiello et al. [35] has been
computed as the difference between the CAMEL emissivity channels (derived from the
CAMEL database CAM5K30EM v002 [36–39]) at 8.6, 10.8 and 12.1 μm. The index was
developed with an NDVI synergy to better classify vegetation cover and to overcome
the limitations of the vegetation index, particularly in the discrimination of bare soil
and senescent vegetation. It showed promising results in the classification of changes in
land use when, for example, a vegetation regeneration follows the deforestation or forest
degradation events [35]. The CAMEL dataset, where the emissivity information is stored, is
produced by the combination of two distinct databases to take advantage of each product’s
characteristics. The first is the ASTER Global Emissivity (ASTER GEDv4), developed at the
Jet Propulsion Laboratory (JPL): it has a temporal resolution of 1 month, a spatial resolution
of 5 km and a spectral range from 8 to 12.0 μm. The MODIS baseline-t emissivity (MODBF)
represents the second database: it is provided by the University of Wisconsin-Madison
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and it has a spectral emissivity range from 3.6–12.0 μm. The resulting dataset is available
globally in mean monthly time-steps with a spatial resolution of 5 km, with several layers
providing information of emissivity (13 bands ranging from 3.6–14.3 μm), NDVI, snow
fraction and related quality flags. The CAMEL dataset has been produced to design a
uniform, long-term and calibrated emissivity database in order to advance the analysis of
different applications, such as atmospheric retrievals and radiative transfer simulations.
Within such a coarse spatial resolution, the environmental heterogeneity could be very high.
For this reason, there is need for a sub-pixel heterogeneity assessment. The concept behind
the spectral variation hypothesis (SVH) [40] could be used to assess the environmental
heterogeneity within each pixel. This concept hypothesizes that the spectral response of a
remotely sensed image could be used as a proxy to assess habitat heterogeneity and species
diversity. Areas with a high spectral heterogeneity (SH) in a remotely sensed image have
a high environmental heterogeneity with a higher number of available ecological niches.
This concept was established firstly by Palmer et al. [40] and later developed by other
authors [41]. The SVH has been tested in different ecosystems using various remote sensing
data through the use of different SH indices. In the last few years, Rao’s Q index (developed
by Rao [42] for ecological purposes) has been proposed as an original SH measure [43] and
has gained popularity due to the positive results obtained in various studies [44,45]. As
stated by Rocchini et al. [43], “given an image of N pixels, the Rao’s Q is related to the sum of all
the pixel values pairwise distances, each of which is multiplied by the relative abundance of each pair
of pixels in the analyzed image”. Hence, Rao’s Q index, in comparison to other heterogeneity
indices, has the advantages of considering both the values (through the distance/difference
between the pixel) and the abundance of the pixels in a considered image [46].

The main aim of this paper is to analyze the relationship between ET, derived from
ground-based eddy-covariance (EC) surface measurements at four different sites in Italy,
and both the ECI (based on emissivity data from the CAMEL database) and the WDI (based
on the difference in the surface and dew-point temperature modeled by ECMWF data).
In the first relationship, the effects of the snow cover, the different vegetations and the
environmental heterogeneity (calculated through the concept of the SVH using Rao’s Q
index) were analyzed. The paper is organized as follows. Section 2 deals with data and
methods. Results are shown in Section 3 and discussed in Section 4. Conclusions are drawn
in Section 5.

2. Materials and Method

2.1. Study Areas

Four EC sites were used to assess the relationship between both ECI and WDI with ET.
The Renon site [47–49] is located in the province of Bolzano/Bozen in the Alps, in the

municipality of Renon/Ritten at an elevation of 1740 m asl. The EC tower is located in a
Picea abies-dominated forest (around 85 %), but also including Pinus cembra L., (12%) and
Larix decidua Mill., (3%). The forest canopy is irregular, with maximal height of around 30 m.
The annual average temperature is around 4.6 °C, and the average annual precipitation is
approximately 900 mm.

The Monte Bondone site [50] is located on a mountain plateau (called “Viote del Monte
Bondone”) near the city of Trento at 1550 m asl. The mean annual air temperature is 5.5 °C
and the mean annual rainfall is 1190 mm. The site is managed as productivity-extensive
meadow, typical of the alpine regions, characterized by the presence of Festuca rubra (basal
cover of 25%), Nardus stricta (13%) and Trifolium sp. (14.5%).

The Lavarone EC tower [47] is situated near the town of Lavarone in the province of
Trento at an elevation of around 1350 m asl. The tower is located in uneven-aged mixed
forest dominated by Abies alba (around 70%), Fagus sylvatica (15%) and Picea abies (15%). The
forest canopy reaches an elevation of approximately 35 m. The average annual precipitation
is approximately 1290 mm and the mean annual temperature is around 7.8 °C.

Finally, the Bosco della Fontana site [51,52] is located near the city of Mantova (at
an elevation of 19 m asl.) in the middle of the Po valley, within a forest nature reserve of
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around 235 ha. The wood canopy is 26 m high and dominated by Carpinus betulus L. and
Quercus robur L. (57%), with a minor presence of Acer campestre L., Prunus avium L., Fraxinus
ornus L. and Ulmus minor Mill., with Alnus glutinosa L. along the little rivers. The average
annual precipitation is approximately 930 mm and the mean annual temperature is around
13.9 °C. The EC tower data are measured from a 42 m tall tower Figure 1.

Figure 1. Google Earth image with the location of the four study sites in Italy. (A) Renon (Fluxnet
code: IT-Ren); (B) Monte Bondone (Fluxnet code: IT-MBo); (C) Lavarone (Fluxnet code: IT-La2);
(D) Bosco della Fontana (ICOS code: IT-BFt). CRS map: WGS84 /UTM zone 32N.

2.2. Eddy Covariance Data

Renon, Lavarone and Monte Bondone eddy covariance sites are part of the FLUXNET
Network, where CO2 fluxes, water vapour and other ancillary meteorological variables are
measured at half-hourly intervals. Data are processed and quality controlled following the
Fluxnet methodology [53]. Within the Fluxnet network, the data availability for the Renon
site ranges from 1998 to 2013, for Lavarone, from 2003 to 2014 and, for Monte Bondone,
from 2003 to 2013.

Bosco della Fontana is part of the ICOS Ecosystem Network. The eddy covariance
tower measures half-hourly turbulent fluxes of CO2, water vapor and different meteorolog-
ical data following the ICOS protocols [54].

Despite the corrections applied in the calculation of EC fluxes, sensible and latent heat
fluxes are usually underestimated at most EC sites with respect to the available energy at the
surface [55], resulting in some uncertainty in the quantification of water lost by ecosystems
through ET. For this reason, in our analysis, we used the latent heat flux adjusted by a
correction factor based on the ratio between available energy and the sum of turbulent
energy fluxes for each half hour [53]. The half-hourly latent heat flux data from the eddy

22



Land 2022, 11, 1903

covariance sites obtained from the FLUXNET and ICOS datasets were converted to ET
using “LE.to.ET” function of the “bigleaf” R package, applying the correlation parameter
between depth units and energy of ET [56] (Formula (1)). The conversion was corrected
using the half-hourly air temperature.

ET = LE/λ (1)

where:

• ET is the evapotranspiration (kg m−2 s−1);
• LE is the latent heat flux (W m−2);
• λ is the latent heat of vaporization 2.45 MJ kg−1.

Successively, daily ET values were then accumulated and converted into monthly ET
in order to be correlated to the ECI and WDI that were assessed on a monthly basis.

2.3. Emissivity Data and ECI Estimation

The ECI (that ranges in the interval [0, 1]) has been developed to discriminate between
bare soil and vegetation [34] and to better classify vegetation cover [35]. For this present
study, the methods introduced by Masiello et al. [35] were used to calculate the ECI from
the CAMEL dataset. We used only the CAMEL pixels that had a “good” emissivity quality
flag (value 1) in order to have an adequate overall accuracy.

The ECI is based on the channels at 8.6, 10.8 and 12.1 μm for the CAMEL dataset.
According to different studies [34,35], these channels are indeed the most sensitive to bare,
green and senescent vegetation. As a consequence, ECI is calculated as:

ECI = 1 − δε (2)

where δε represents the difference between the maximum and the minimum value of
emissivity (ε) among the three CAMEL spectral channels.

For each study area, monthly ECI was successively correlated to the monthly ET by a
time series analysis and, successively, by linear regression. R2 and p values were used to
assess the strength and significance of the correlations. Due to the different temporal range
data availability of ET and ECI, the correlations were tested differently for each study area.
For the Renon study area, the time-series range from 2008 to 2013, for Lavarone, from 2008
to 2014, for Monte Bondone, from 2010 to 2013 and, for Bosco della Fontana, only the data
from 2013 were available.

Furthermore, snow cover information, derived from the “snow fraction” layer of
the CAMEL dataset, was included in the time-series correlation ET–ECI data. This layer
provides information of snow cover on the basis of the normalized difference snow index
(NDSI) [57], which ranges from 0 (no snow cover) to 100 (full snow cover). It is used to
identify possible anomalies in the ET-ECI index correlation, particularly in the mountain
sites (Renon, Lavarone and Monte Bondone), where snow remains on the ground for
several winter months.

2.4. Meteorological Data and WDI Calculation

Monthly modeled data of surface temperature (TsECMWF) and dew point temperature
(TdECMWF) derived from the ECMWF [58] were used to compute the water deficit index, or
WDI. ECMWF data were from the “Operational Analysis”, and were released over a regular
grid of 0.125◦ × 0.125◦. For each EC site, the closest point of the ECMWF grid was chosen.
Surface temperature (TsECMWF) and dew point temperature (TdECMWF) were, respectively,
the skin temperature and the 2 m dew point temperature from surface analyses.

WDI was then computed according to [32]:

WDI = TsECMWF − TdECMWF (3)
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For this reason, WDI values depend on surface and dew point temperatures. High WDI
values are expected in summer, especially in dry conditions, when the surface temperature
becomes significantly higher than the dew temperature near it, whereas lower values are
expected in winter.

Because of its definition and calculation, the WDI has a coarser spatial resolution
than the ECI. However, the temperature and humidity fields are expected to be more
homogeneous than the surface emissivity, which can have space scales of variability of a
few meters or less.

As for the correlation ECI-ET, for each study area, the monthly WDI was successively
correlated to the monthly ET by a time series analysis and, successively, by linear regression.
R2 and p values were used to assess the strength and significance of the correlations. Due
to the different temporal range data availability of WDI and ET, the correlations were tested
differently for each study area. In the Renon study area ,the correlation range was from
2010 to 2013, for Lavarone, from 2010 to 2014, for Monte Bondone, from 2010 to 2013 and,
for Bosco della Fontana, only for 2013.

2.5. Assessment of the Environmental Heterogeneity

In order to assess the effect of the environmental heterogeneity within the ECI pixel
(Figure 2), the SVH was assessed through Rao’s Q index (Formula (4)) using an NDVI
MODIS image (resolution of 500 m) captured on 8 June 2014. The choice of this date is
related to the work of Torresani et al. [59], where they stated that the NDVI at this time of the
year (summer), when it reaches the highest seasonal values, is more able to capture small
variations in reflectance of different vegetation and, thus, of different ecosystems. For this
purpose, the R-package function “Rao” of the R package rasterdiv [60] was implemented to
retrieve a Rao’s Q value for the single ECI pixel.

Qrs =
F−1

∑
i=1

F

∑
j=i+1

dij ∗ pi ∗ pj, (4)

where:

- Qrs is the Rao’s Q applied to remote sensing data;
- p is the relative abundance of a pixel value in a selected study area (F). In our case, it

is the CAMEL pixel;
- dij is the distance between the i-th and j-th pixel value (dij = dji and dii = 0);
- i and j identify two pixels within the area F.

The relative abundance p was calculated as the ratio between the considered pixel (pi
and pj) and the total number of pixels in F. The distance matrix dij can be built in different
dimensions, allowing for the consideration of more than one band or raster at a time. In
our case, the dij was calculated as a simple Euclidean distance based on the NDVI image.
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Figure 2. Google earth image with the location of the four eddy covariance towers (yellow points)
for each site. In red, the CAMEL pixel used to derive the ECI. Date picture: Lavarone and Monte
Bondone 6 December 2017; Renon 19 October 2017; Bosco delle Fontana 18 June 2013.

3. Results

3.1. Seasonal Evolution and Correlations

The temporal evolution of the ET and the monthly ECI with reference to the snow
cover information is shown in Figure 3. For the Renon, Lavarone and Monte Bondone study
area, both the ET and ECI seem to follow the same seasonal evolution, particularly in the
summer months, when both the curves reaches the peak. In several situations, generally in
the cold months, the ECI behaves differently, creating a “second peak” that does not follow
the normal ET trend. The snow cover information explains the “winter peak” of the ECI,
where the amplitude and the size of both the blue curve and black histogram are indeed
similar. On the other hand, in the Bosco della Fontana study area, ET and the ECI have an
opposite seasonal evolution. ET has a normal seasonal trend with the highest values in
summer, decreasing in winter, whereas the ECI has its low values in summer.
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Figure 3. Relationship between the ET (ET tower—blue line) and the monthly ECI (red line).

Figure 4 shows the linear regression between ET-ECI considering the months with low
snow cover (lower than 50%). This was carried out to assess the strength of the correlation
without the “anomalous peaks” created by the ECI in the cold months. In the Renon,
Lavarone and Monte Bondone study areas, the correlations are all positive, reaching an
R2 between 0.49 (Lavarone) to 0.68 (Renon). In the Bosco della Fontana study area, the
correlation is negative, reaching an R2 of 0.72.

The monthly time series of ET and the WDI are shown in Figure 5. In the four study
areas, both the curves show the same trend, with the peak in the summer months and a
lower value in winter.

Figure 6 shows the linear regression between ET and the WDI for the four considered
study areas. R2 ranges from 0.48 (Lavarone) to 0.89 (Bosco della Fontana). Unlike the
correlation ET-ECI, the slope remains positive for all of the considered areas.
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Figure 4. Linear regression between the ET (ET tower) and the monthly ECI when the snow cover is
lower than 50%. N is the number of data points.

Figure 5. Time series of ET (blue dashed line) and WDI (red line)
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Figure 6. Linear regression between ET and WDI for the four considered study areas.

3.2. Environmental Heterogeneity

In order to understand the impact of the environmental heterogeneity, especially
within the ECI pixel, the SH, as an indicator of habitat heterogeneity, was calculated
through Rao’s Q index over the four study areas. Table 1 summarizes Rao’s Q index values
for each site.

Table 1. Rao’s Q value over the four ECI pixels of each study area.

Area Rao’s Q Index

Monte Bondone 0.036
Renon 0.061

Lavarone 0.075
Bosco della Fontana 0.082

The highest Rao’s Q value is in the area of Bosco della Fonata (higher environmental
heterogeneity), whereas the lowest is in the area of Monte Bondone (lower heterogeneity).

Figure 7 shows both the above mentioned study areas with the exact position of the
eddy covariance tower (yellow dot) and the pixel size of the CAMEL database (red rectan-
gle). Also from a first view, it is possible to notice the difference in habitat heterogeneity
between the two sites. In the area of Monte Bondone (Figure 7A), the forested and grassland
area are predominant. In the area of Bosco della Fontana (Figure 7B), the environmental
heterogeneity is higher. Different habitats fall within the CAMEL pixel: the forested area (in
the upper right corner), grassland, farmland, uncultivated areas and the aquatic ecosystems
of the Mincio river and of the Mantova’s lakes.
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Figure 7. (A) shows the area of Monte Bondone and (B) shows the area of Bosco della Fontana; the
yellow dot shows the position of the eddy covariance tower. The red rectangle shows the size of the
CAMEL pixel.

4. Discussion

In this paper, we presented the correlation between the ECI (based on emissivity
data from infrared spectral channels of the CAMEL dataset) and the WDI (based on the
data from ECMWF analyses) against ET measured in four EC sites in Italy (Renon, Monte
Bondone, Lavarone and Bosco della Fontana). Furthermore, the behavior of the above
mentioned correlations in relation to the vegetation cover was discussed. Additionally,
the environmental heterogeneity was assessed (using NDVI MODIS images and analyzed
through the SH Rao’s Q index) in order to evaluate the performance, particularly of the
ECI in relation to the habitat fragmentation over the four study areas.

The results show that the correlation between ECI and ET is statistically significant for
the four study areas. In the areas of Renon, Lavarone and Monte Bondone, the relationships
are positive and they are influenced by the snow cover (estimated with the “snow fraction”
layer of the CAMEL dataset), which interferes with the emissivity values. In the winter
months, when the snow covers the earth surface, the ECI yields a second peak that does
not follow the ET trend. As described by Masiello et al. [29,35], the ECI is highly influenced
by the dryness and by the land cover. As an example, the ECI has a value of around 0.98
for water-covered surfaces (e.g., snow), whereas, for dry and senescent vegetation, the
index reaches lower values. The ECI was initially developed to build synergy with the
NDVI to overcome the drawback of the vegetation index that, in certain cases (as in the
case of Masiello et al. [35] over the Congo basin area for a temporal range of seventeen
years), is not able to discriminate senescent vegetation and bare soil; in particular, when
the vegetation regeneration start after a deforestation or degradation event [35]. On the
other hand, in the area of Bosco della Fonatana, the correlation ECI–ET was negative: in
the considered year, the curves indeed had an opposite trend. Several reasons can explain
this different trend: since the ECI is influenced by the dryness and by the land cover, its
values could be distorted by the humidity of the soil and by the presence of surface water,
which is very high in this area, located near the aquatic ecosystems of the Mincio river and
of the Mantova’s lakes. The other reason is related to the high habitat fragmentation within
the CAMEL pixel that alters the ECI value (as shown in in Figure 7) and summarized in
Table 1. The results of the table indeed show that the Rao’s Q index, used to estimate the
environmental heterogeneity (by the assessment of the SH), has the highest value in the
area of Bosco della Fontana.
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The concept of the SVH and the related environmental heterogeneity is therefore crucial
not only in the estimation of biodiversity and the assessment of species diversity [41,61,62],
but also in all studies where the ground information (e.g., energy fluxes) is correlated with
the remote sensing data. This aspect is particularly common when using remote sensing
information. An image, through the diversity of the various pixels, provides knowledge about
the remote sensing response caused by the physical interaction of the measured information
(emissivity in our case) with the Earth’s surface. Thus, the raster grid of pixels that build up
an image, represents just an average response of a real information. The question regarding
the size of the pixels, in order to describe a certain area or to characterize a real situation or an
event is, as previously stated, still debated in the research community [63,64]. Like in our case,
images with a coarse spatial resolution tend to integrate the information of various subjects
(e.g., vegetation, human artefacts, rivers.), homogenizing the signal and causing difficulties
toward clearly identifying boundaries between spatial entities (individuals, vegetation types,
ecosystem types) [65]. On the other hand, a fine spatial resolution may lead to a level of
details within spatial entities that may cause a strong heterogeneity, leading to strong noises
and uncertainties [66].

As far as the relationship of ET vs. WDI is concerned (Figures 5 and 6), we have
found that the correlation is less sensitive to the vegetation changes and environmental
heterogeneity. The slope of the linear regression remains positive, although we have
explored sites with a very large heterogeneity. The difference in temperature (TsECMWF—
TdECMWF) is correlated with the ET because the surface temperature is strongly dependent
on the impinging solar radiation, whereas the dew point temperature is dependent on both
the air temperature and the humidity field. The partial mismatch between the two variables
might be due to the lack of an additional meteorological parameter, such as the wind.
The detail of the regression still seems to be site-dependent; however, in this case, there
is no ambiguity that ET and the WDI are positive correlated. Since the WDI is based on
temperatures, it is less influenced by the habitat fragmentation and by the environmental
heterogeneity compared to the ECI, which is based on the emissivity of the surface. For
this reason, the correlation holds true also in the area of Bosco della Fontana, which, as
previously stated, showed an opposite result in the correlation ET-ECI.

Finally, we believe that the synergistic use of the ECI and WDI might increase the
accuracy of ET estimation because of their different sensitivities to different aspects of
the vegetation. The ECI is better suited to detecting changes in the vegetation state,
green to senescent or transition to bare soil. These states can influence ET, but in a way
that can be highly nonlinear. Conversely, the WDI is more linearly related to ET. The
synergistic use of the two could be, e.g., of some interest during an intense heatwave,
which has become common in temperate regions because of climate change (e.g., see
https://climate.copernicus.eu/esotc/2021/globe-in-2021 (accessed on 8 May 2012)). In the
event of heatwaves, we expect the WDI > 0 (e.g., see [32]), and a decreasing value of the ECI
could show an early decay of the foliage to the senescent state, and hence vegetation stress.

5. Conclusions and Outlook

In this study, the correlation between data of ET derived from four eddy covariance
sites in Italy (Renon in the Province of Bolzano, Monte Bondone and Lavarone in the
Province of Trento and Bosco della Fontana in the Province of Mantova) and two indices—
(1) the emissivity contrast index, or ECI; (2) the water stress index, or WDI—was assessed.
Both indices were shown to correlate with in situ observations, which is good from the
perspective of using remote-sensed data to monitor the state of vegetation from satellite.
The correlation ECI-ET is influenced by the habitat heterogeneity and by the presence of
snow/water in the surface. This could be critical, especially in areas covered by snow
(e.g., mountain regions in winter), with surface water or with high environmental hetero-
geneity. The WDI showed generally fewer uncertainties in detecting the correct evolution
of ET, in that the index is directly related to the thermodynamic parameters that govern ET
and to the intensity of solar radiation. Furthermore, we believe that the synergistic use of
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the ECI and WDI could lead to a more accurate ET estimation, bringing the benefits of both
indices. Improvements on this side would also be greatly beneficial for providing a more
accurate input to numerical weather and climate prediction models, for which, reliable
estimates of fluxes over snow-covered terrain are still a challenging situation [67,68].

Further refinements can also be obtained from a more precise evaluation of ET from
EC, taking into account timescales associated with different atmospheric conditions [69].
This is particularly applicable to the mountainous sites, where daily periodic flows, such
as thermally driven slope wind and valley winds, are well established, and documented
meteorological features of the mountain boundary layer [70–72]. This goal is among the
scopes of the ongoing international cooperation effort TEAMx (Multi-Scale Transport
and Exchange Processes in the Atmosphere over Mountains–Program and Experiment)
through intensive field campaigns performed at selected target areas in the Alps, combining
ground-based, airborne and remote sensing observations [73].
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Abstract: Carbon stocks in forest ecosystems, when released as a result of forest degradation, con-
tribute to greenhouse gas (GHG) emissions. To quantify and assess the rates of these changes, the
Intergovernmental Panel on Climate Change (IPCC) recommends that the REDD+ mechanism use a
combination of Earth observational data and field inventories. To this end, our study characterized
land-cover changes and forest-cover dynamics in Togo between 1985 and 2020, using the supervised
classification of Landsat 5, 7, and 8 images on the Google Earth Engine platform with the Random
Forest (RF) algorithm. Overall image classification accuracies for all target years ranged from 0.91
to 0.98, with Kappa coefficients ranging between 0.86 and 0.96. Analysis indicated that all land
cover classes, which were identified at the beginning of the study period, have undergone changes at
several levels, with a reduction in forest area from 49.9% of the national territory in 1985, to 23.8%
in 2020. These losses of forest cover have mainly been to agriculture, savannahs, and urbanization.
The annual change in forest cover was estimated at −2.11% per year, with annual deforestation at
422.15 km2 per year, which corresponds to a contraction in forest cover of 0.74% per year over the
35-year period being considered. Ecological Zone IV (mountainous, with dense semi-deciduous
forests) is the one region (of five) that has best conserved its forest area over this period. This study
contributes to the mission of forestry and territorial administration in Togo by providing methods
and historical data regarding land cover that would help to control the factors involved in forest area
reductions, reinforcing the system of measurement, notification, and verification within the REDD+
framework, and ensuring better, long-lasting management of forest ecosystems.

Keywords: land-cover change; REDD+; Google Earth Engine; random forest; landsat; Togo

1. Introduction

Forests contribute greatly to soil conservation and climate change mitigation and
represent one of the simplest and most effective means of establishing or maintaining
carbon sinks [1]. As one of the most important global carbon reservoirs, tropical forests
are home to between half and two-thirds of the Earth’s species [2]. Unfortunately, these
forest carbon stocks are not stable, given that conversion to other land cover is occurring at
an alarming rate despite the increased awareness of climate change [3,4]. Between 2000
and 2005, land-use and land-cover (LULC) changes resulted in forest cover reductions of
0.6% per annum worldwide [5]. Between 2015 and 2020, annual deforestation rates were
estimated at 10 million hectares globally [6]. Such land-cover changes occur mainly as a
result of anthropogenic disturbances, including deforestation, together with the expansion
of croplands and urban areas [7]. LULC changes, mostly caused by agriculture and defor-
estation, contribute to about one-third of global greenhouse gas (GHG) and worsen the
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adverse effects of climate change [8,9]. Faced with these increasingly significant effects of
climate change, ongoing demands for action are becoming more urgent to curb the extent
of deforestation and forest degradation, while enhancing carbon storage through better
accounting of carbon sources and sinks. To this end, the United Nations Framework Con-
vention on Climate Change (UNFCCC) has established the REDD+ (Reducing Emissions
from Deforestation and forest Degradation Plus) mechanism, which is seen as a global
system of centralized forest governance. Aimed primarily at developing nations, REDD+
provides financial compensation for these countries to preserve their forests to reduce
carbon emissions and, thus, mitigate the risks of climate change [10,11].

In order to qualify for financial offsets by implementing REDD+, these countries are
required to establish National Measurement, Reporting, and Verification (MRV) systems
within a national forest monitoring system (NFMS) that must provide national estimates
of changes in forest carbon stocks and emissions every two years. The Intergovernmen-
tal Panel on Climate Change (IPCC) recommends a combination of Earth observation
data and field inventories to estimate forest area, carbon stocks, and changes that follow
disturbance [12]. Regular analysis of forest dynamics and LULC changes using satellite
data could effectively establish the baseline for the MRV reporting requirement in this
context. However, many concerned developing countries are generally faced with a lack of
quantitative data on forest degradation-induced changes and limited technical capabilities
and material capacity to produce such data for GHG emissions monitoring [12].

The aforementioned challenges beset the West African nation of Togo (République
Togolaise), which is the subject of our study, in its quest to meet reporting requirement
needs within the framework of the REDD+ strategy, and to guide strategies for monitoring
the evolution of forest ecosystems and land cover. A few studies based on observational
data have made it possible to monitor changes in land cover in certain parts of the country,
but they generally have a starting and an ending year for a period that occasionally spans
several decades. The coarse temporal frequency of sampling does not make it possible
to detect changes that have been incurred within these periods or to discern which main
factors drive their behavior. Furthermore, the spatial extent of these studies is often very
limited (i.e., river basins, protected zones, and administrative jurisdictions, among others),
whereby changes are not perceived across an entire ecological region or on a national
scale. Land and vegetation cover have been studied, but these changes are mainly in
protected areas [13–16]. Other studies have focused on watersheds [17,18], while some
have been carried out at regional or prefectural scales [19,20]. To a much lesser extent, few
comprehensive studies have spanned several ecological zones [21]. These studies have
generally covered about 1 to 10% of the national territory, and there are regrettably very
few studies quantifying the LULC changes observed over time or analyzing the drivers of
these changes.

The spatial and temporal limitations of these previous studies in detecting land-cover
changes are related to the difficulties in finding sufficient cloud-free satellite images over
large areas. This problem could be overcome by using Synthetic Aperture Radar (SAR)
images which, even when acquired in all atmospheric and solar conditions, allow change
detection analyses [22], but SAR long historical data does not exist in our study area. These
limitations are also related to computational resource problems (large storage capacity and
access to high computing power), together with the labor-intensive nature of processing
these mega-data [23,24]. Furthermore, global-scale mapping projects often use satellite
data with a variable spatial resolution (1 km to 30 m), and generally do not involve local
experts; therefore, these approaches do not meet the standards of accuracy that are sought
at the national level [25]. With the availability of the new geospatial technology of the
Google Earth Engine (GEE), it is now possible to apply very advanced machine-learning
algorithms in an efficient manner [26]. The GEE is a cloud-computing platform with a
JavaScript code editor that integrates a long-time series of satellite imagery, thereby allowing
the classification of large volumes of data and the production of multi-date land-cover
changes. It should be further noted that relatively few studies in the scientific literature
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have focused on the use of these methods to advance operational forest monitoring in MRV
systems [27].

The major challenges to implementing Togo’s national REDD+ strategy are reversing
the process of forest degradation and savannization, while spatially containing agricultural
pressure and constraining urban expansion. These measures should eventually increase
carbon stocks and reduce greenhouse gas emissions [28]. Unfortunately, most studies that
have been conducted in Togo on progressive LULC changes are incomplete, and forest
inventories over the last three decades are very limited. The availability of historical LULC
data at a national scale is necessary to meet the challenge of better understanding the
LULC dynamics and forest developmental trends over time. This study aims to answer the
question of whether the use of multi-temporal images in the GEE would provide a picture
of land-cover changes, particularly forest cover, at the national scale. Its main objective is
to characterize vegetation dynamics over the entire national territory using a long-time
series of Landsat images from 1985 to 2020. More specifically, the study aims to quantify
the evolution of spatiotemporal changes and to analyze their effects on forest cover during
this period.

2. Study Area and Data Used

2.1. Study Area

The study area was Togo (Figure 1A). It is a coastal country in West Africa that is
bordered by Burkina Faso to the north, the Atlantic Ocean to the south, Benin to the east,
and Ghana to the west. It belongs to the Sudano-Guinean zone, which is a climatic zone
that is located south of the Sahara Desert in the continental and coastal areas, which extend
from West Africa to Central Africa. With an area of 56,600 km2, Togo has a population of
7,264,637 inhabitants unequally distributed in the administrative regions with proportions
of 42.16% in Maritime, 22.16% in Plateaux, 9.99% in Centrale, 12.44% in Kara and 13.26%
in Savanes [29]. It experiences a tropical Sudano-Guinean climate with rainfall ranging
from 900 to 1100 mm year−1 in the northern regions (distinct wet and dry seasons), and
from 1000 to 1600 mm year−1 in the southern regions (with four seasons), and an average
temperature of 27 ◦C [30].

 

Figure 1. (A) Geographical location of the study area; (B) ecological zones and elevations.

Due to its position in the Dahomey Gap (a remarkable interruption in the extent of
continuous tropical rainforest covering Central to West Africa), Togo has a low forest cover
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with a deforestation rate of 0.73% per year for the period from 1990 to 2000 [31]. To ensure
the protection of the country’s forest resources, 14.2% of its territory was classified between
1939 and 1957 as 83 protected areas (classified forests, national parks, and reserves). Yet,
human populations seeking arable land and wood for energy have encroached upon nearly
one-third of these areas [32]. Vegetation formations are composed of the Sudano-Guinean
forest that is located in the mountainous areas of the country, gallery forest along main
rivers, dry forest or dense tree savannah in the northern half, and tree savannah in the
south and center. The landscape variability of these ecosystems led [33] to subdivision of
the country into five ecological zones (Figure 1B).

Ecological zones correspond to distinct ecosystems that are characterized by various
plant formations and topographies. Following an update of their descriptions, these
ecological zones have been summarized in [34] as follows:

• Zone I (or Northern Plains Zone): This zone extends from the Dapaong peneplain to
the southern limit of the Volta Basin, approximately following the Bendjeli-Kpessidè
axis. This area is essentially dominated by agro-ecosystems; however, there are relic
mosaics of savannahs, dry forests, degraded riparian forests, and swamp vegeta-
tion adjacent to the hydrographic network. The main spontaneous ligneous species
found in this zone are Vitellaria paradoxa, Anogeisus leiocarpus, Borassus aethiopum,
Parkia biglobosa, Balanites aegyptiaca, Lannea microcarpa, and Detarium microcarpa. The
natural ecosystems of this area are highly degraded (80%), given the strong propensity
of the inhabitants to practice unsustainable cultivation (68%) and fuel wood exploita-
tion (28%). The zone is heavily disturbed by vegetation fires (40%), which have then
been followed by extensive grazing (28%) [34].

• Zone II (or Northern Mountains Zone): This zone encompasses the Northern Mountain
Range and extends between 8◦ and 10◦ N northeast under the influence of a Sudanian
mountain climate. This zone is dominated by agrosystems, yet dry forests, open
forests, and savannah mosaics can be found. Its main spontaneous ligneous species
are Parkia biglobosa, Vitellaria paradoxa, Nauclea latifolia, Daniellia oliveri, Elaeis guineensis,
Piliostigma thonningii, Terminalia laxiflora, and Isoberlinia doka. In this zone, natural
ecosystems are also degraded (58%) and heavily disturbed by extensive grazing (31%),
followed by vegetation fires (25%), floods (19%), and transhumance (seasonal livestock
relocation, 17%). Activities such as working crop fields (41%), logging (22%), and
grazing (20%) strongly contribute to ecosystem degradation [34].

• Zone III (or Central Plains Zone): This zone occupies the Benin-Togolese plain east
of the Atakora Mountain Chain; it is characterized by a Guinean Lowland climate
and is dominated by a diversity of agrosystems. This matrix of agroforestry parks
combines patches of mosaic savannah, semi-deciduous forest, and degraded ripar-
ian formations. This zone is characterized by the following main spontaneous lig-
neous species: Daniellia oliveri, Parkia biglobosa, Vitellaria paradoxa, Pterocarpus erinaceus,
Anogeissus leiocarpus, and Adansonia digitata. The natural ecosystems of this agro-ecological
zone are 96% degraded. This degradation of ecosystems is the consequence of the ex-
ploitation of wood energy (46%) and cultivation practices (41%) and is not very sus-
tainable. Ecosystems in this zone are strongly disturbed by vegetation fires (31%),
transhumance (31%), and erosion (24%) [34].

• Zone IV (or Southern Zone of the Togo Mountains): This zone corresponds to the southern
portion of the Togo Mountains. It has a sub-equatorial climate with a rainy season. Its
main spontaneous ligneous species are Cola gigantea, Millettia thoningii, Morinda lucida,
Sterculia tragacantha, Antiaris fricana, Holarrhena floribunda, and Margaritaria dioscoidea.
Today, it is the domain par excellence of agroforestry that is interspersed with semi-
deciduous forests and mosaics of Guinean savannah. The natural ecosystems of the
southern zone of the Togo Mountains are highly degraded (70%), given that they are
heavily disturbed by vegetation fires (55%), often followed by extensive grazing (15%),
and logging (10%). Activities such as working the crop fields (59%) and logging (18%)
contribute to the substantial degradation of ecosystems [34].
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• Zone V (or Southern Coastal Zone): This zone corresponds to the country’s coastline
with a sub-equatorial climate with two rainy seasons. The very degraded natural
environment is strongly dominated by agrosystems, with relic mosaics of savannahs,
halophytic or swampy grasslands, and mangroves. The main spontaneous ligneous
species found there are Lonchocarpus sericeus, Parkia biglobosa, Piliostigma thonningii,
Dialium guineense, Holarrhena floribunda, Bridelia ferruginea Millettia thonningii, and
Vitellaria paradoxa. These natural ecosystems are highly degraded (85%) due to cul-
tivation practices (59%) and the unsustainable exploitation of wood energy (18%)
and urbanization (10%). Lands in the Coastal Zone have been heavily disturbed
by vegetation fires (55%), which are often followed by extensive grazing (15%), and
transhumance, woodcutting, and flooding (5%) [34].

The aforementioned descriptions indicate the continuation of high-intensity land degra-
dation that has been observed across most of these zones since the 1990s [35]. Even in Zone IV,
which is known as being the most extensively forested of the ecological zones, deforestation
and forest degradation have been occurring in recent years due to the combined effect of the
advancing agricultural front with slash-and-burn agriculture, wildfires, and logging [36].

2.2. Data Used

Data used in this study included Landsat TM, ETM+ (Enhanced Thematic Mapper
Plus), OLI (Operational Land Imager) satellite imagery, land-cover reference data, and vec-
tor data. The satellite images are from Landsat 5, 7, and 8 sensors with a spatial resolution
of 30 m, which have been archived in the GEE (Table 1). Image selections were made for the
level-1 scenes, which are the best quality images in terms of radiometric consistency and
atmospheric correction [37]. These are surface reflectance data that were accompanied by
meta-data and per-pixel quality information, which was intercalibrated between different
Landsat sensors, and are considered suitable for time-series processing analysis [38].

Table 1. Information on Landsat images that were entered into composites from 1985 to 2020.

Sensors
Composite Target

Years
Composite Image

Acquisition Period
Admissible Cloud

Threshold
Number of Images

that Were Concerned

Landsat 5 1985 1983-01-01 to 1986-12-31 10% 57

Landsat 5 1990

1987-10-01 to 1988-03-31
1988-10-01 to 1989-03-31
1989-10-01 to 1990-03-31
1990-10-01 to 1991-03-31
1991-10-01 to 1992-03-31
1992-10-01 to 1992-12-31

10% 49

Landsat 7 2000 1999-04-16 to 2002-12-31 10% 95

Landsat 7 2005 2003-01-01 to 2007-12-31 20% 322

Landsat 8 2015 2013-01-01 to 2017-12-31 10% 265

Landsat 8 2020 2018-01-01 to 2020-12-31 10% 171

Land cover reference data consisted of data that were collected in the field, points that
were sampled on image composites, and high-resolution Google Earth images. During
the field campaign that was conducted from October 2020 to February 2021, we sampled
101 land occupancy points on the ICESat (Ice, Cloud, and land Elevation Satellite) data
footprints, 303 points on the ICESat-2 data footprints, and 114 points elsewhere. These
ICESat and ICESat-2 footprint data are dendrometric data that are intended for further
studies on estimating aboveground biomass. Given that the land occupancies of these sites
were known, they were used with other data as references for training and validation of
classifications that were made during this study. Vector data mainly concerned forest areas,
administrative regions, ecological zones, and jurisdictional boundaries in Togo. Large-scale
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international boundary data for Togo (i.e., the study area) that were also available in the
GEE were used for delineation during the selection of these images and the final mapping.

3. Methodology

The methodological approach of this study involved the acquisition and pre-processing
of satellite data, selection of training and validation data, supervised classification of the
images with the Random Forest (RF) algorithm, evaluation of classification accuracies, and
mapping and analysis of the results. The following flowchart (Figure 2) illustrates the
methodological approach which is summarized in three main points in the description.

 

Figure 2. Methodological flowchart of the study.

3.1. Selection and Pre-Processing of Satellite Images

Since cloud-free images providing complete coverage of the study area for the target
year were difficult to find, image composition was performed. This consisted of filtering
all images with admissible cloud cover set to a certain threshold (Table 1) to create a
mosaic of images around each target year. Referring to methods that are frequently used in
the literature, several authors had performed image composition based on the temporal
aggregation of data, applying the calculation of statistical parameters (mean, median, and
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maximum or minimum values) on the pixels of a pre-defined image time series [39,40].
Others simply used all available Landsat images in their study area to compose image time
series [41,42]. According to [24], the most popular strategy for selecting input images for
an annual cloud-free composite is using images that have been acquired over three years.
In this study, the annual data composite was targeted from the year 1985, with a five-year
step to better perceive disturbance lapse times. Unfortunately, there were problems of
poor quality and insufficiently filtered images below the set cloud thresholds, together
with gaps in the data covering the study area. Faced with these difficulties, only six image
composites were created, from all available data in the target years, or occasionally, one
or two years on either side of the target years (i.e., 1985, 1990, 2000, 2005, 2015, and 2020).
Image composites were formed by applying a cloud mask QA_PIXEL Bitmask (provided
with the data) to the image collections. Cloudy pixels were maintained (by removing the
mask) when no other non-cloudy pixels were available to replace them from the entire time
period around the target years. These were placed into the cloud class so that the entire
extent of the study area could be considered when facilitating later surface analyses. We
initially composited these images only from the best-available pixels derived from Landsat
data [43]. Nevertheless, given that some parts of the area remained without data under
the constraints of the filters, we calculated the median of all pixels that met these imposed
filters.

Several vegetation indices were also calculated and added as bands to the image
composites to see what improvements they could bring to the classification process. These
were NDVI, NDBI, NDWI, and BSI (Table 2).

Table 2. Formulas of the used vegetation indices.

Acronym Designation Equation References

NDVI Normalized Difference Vegetation
Index

ρNIR−ρR
ρNIR+ρR

[44,45]

NDBI Normalized Difference Built-up Index ρSWIR1−ρNIR
ρSWIR1+ρNIR

[46,47]

NDWI Normalized Difference Water Index ρG−ρNIR
ρG+ρNIR

[48,49]

BSI Bare Soil Index
[
(ρSWIR1+ρR)−(ρNIR+ρB)
(ρSWIR1+ρR)+(ρNIR+ρB)

]
[50,51]

Note: ρR, ρG , ρB, ρNIR, and ρSWIR1 represent the reflectance of red, green, blue, near-infrared, and short-wave
infrared bands, respectively.

Since the study area was characterized by major land-cover classes, including veg-
etation (dense dry forest, open forest, and savannah), crops and fallow land, buildings
and bare soil, and water bodies, we selected these vegetation indices to better characterize
them. NDVI has been widely used over many decades to monitor vegetation dynamics
in terrestrial ecosystems and remains the most popular index that is used for vegetation
assessment [52,53]. Using NIR and SWIR bands, NDWI is commonly and successfully used
in the detection and mapping of surface water bodies [54] and the improvement of terrain
illumination differences and atmospheric effects. Furthermore, the BSI has been proposed
as a more reliable estimator of vegetation status where vegetation covers less than half of
an area [51,55]. Ref. [56] has shown that combining NDVI, NDWI, and NDBI data could
refine several aspects of urban features and appearance while removing cloud-related
noise in image classifications. Based upon these findings, these indices were combined
with the classic bands of Landsat data, given that the former are expected to contribute
to the development of a more nuanced classification scheme [57]. Using the vector data,
the resulting image composites were then clipped with the study area to limit processing
within this area.

3.2. Selection of Training and Validation Data

For each target year, sample points were selected based on the land cover that was
detected through visual interpretation or by relying upon archival high-resolution Google
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Earth data from periods as close as possible to the target years. Reference data was collected
from various sources for the different target years. For the year 2020, we used data collected
in the field as explained in Section 2.2. Reference data based on high-resolution archive
images mainly concerned the years 2000, 2005, and 2015. For the years 1985 and 1990, when
high-resolution images were not available on Google Earth, we relied on samples of land
cover directly collected by visual interpretation on filtered Landsat images of these years.
In addition to these data, the pixel values of the added vegetation indices bands were used
to guide the selection of samples. Therefore, both visual interpretation and consultation of
the pixels that were provided by these additional vegetation indices bands were used to
make these selections.

In applying these sample selection methods to image composites of the target years
1985, 1990, 2000, 2005, 2015, and 2020, a total of 1007, 1102, 1219, 1278, 1372, and 1521 points
were sampled per composite, respectively, to serve as training points. Each group of points
represented the different land cover types. For the six target years, 7499 sample points
were thus collected, some to serve as training samples (70%) during the classification of the
composite images, and the remainder to validate the classification results (30%).

3.3. Image Classification and Evaluation of Accuracy

Following the identification and pre-processing of images, we proceeded to classify
the image composites with the classic Landsat bands, followed by a second classification
with these same bands to which were added the vegetation indices to determine their
effect on the quality of these classifications. As for the pre-processing, image classifications
were performed using JavaScript codes in the GEE. For the selection of the appropriate
classification method, several classification algorithms related to supervised machine
learning have been used in the literature. These include Support Vector Machines (SVM),
Classification and Regression Trees (CART), Stepwise Multiple Linear Regression (SML),
and Random Forests (RF). We determined that supervised machine learning classifiers,
such as Classification and Regression Trees (CART) and Random Forests (RF), were the
most frequently used for this purpose. Furthermore, the use of RF classifiers leads to
greater classification accuracy, even when applied to the analysis of data with higher noise
levels [58–60]. This is confirmed in studies by [61], who evaluated 179 relevant classifiers
from 17 families using 121 datasets. The authors concluded that RF provided the best
classifiers. Therefore, we selected the RF algorithm because it yields results with excellent
accuracies and can work efficiently on large datasets [62].

The different image composites that resulted from filtering according to the previously
mentioned parameters were then classified in the GEE using the RF algorithm. The number
of decision trees that were selected for this algorithm was made with reference to the
literature, which generally indicates that the greater the number of trees, the better the
results. According to [63], it is unclear whether the number of trees should simply be set to
the largest computationally manageable value or whether a smaller number of trees might
be sufficient or provide better results. [64] compared the performance of the RF model with
different numbers of trees on 29 datasets and noted that a forest with 512 trees performs
better than one with 1024 trees. They concluded that forest performance does not always
improve substantially as the number of trees increases beyond a certain level. While it
is commonly thought that tuning hyper-parameters can improve RF performance, [65]
acknowledged that improvements achieved by adding trees decreases as more and more
trees are added. Generally, RF works quite well with default values of hyper-parameters,
and, according to these authors, typical default values for the number of trees for RF are
500 and 1000. Therefore, we chose to use 500 trees in the RF classification algorithm that
was applied to the image composite classifications in this study as this number of trees has
been widely used in the literature in various fields and mainly in land cover classification
with very good results [60,66–70].

The image classifications for this study were based on seven main land cover classes
(Table 3). The definition of these classes was based on the Yangambi land classification
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system [34] appropriate to the West African context which was used during the 2016
National Forest Inventory (IFN) [71]. However, to take into account the limited capacity
of available images to discriminate between different land cover, some classes have been
aggregated into other larger classes.

Table 3. Description of LULC categories used in the classification.

LULC Categories Description

Dense dry forest Dense semi-deciduous forests, plantations, gallery forests, and
agroforests

Open forest Forests with open canopies and wooded savannahs

Savannahs Tree savannahs, shrubby savannahs, and grassy savannahs

Crop and fallow Areas with crops and abandoned agricultural land

Buildings and bare land Infrastructure related to human settlements and commercial
centers, roads, burnt or turned soil, and mining quarry

Water bodies Continental water surfaces (lake, lagoon, water, dam, and river)

Clouds Surface covered by clouds and their shadows

The original spectral bands B1, B2, B3, B4, B5, and B7 from Landsat 5 and 7, together
with B2, B3, B4, B5, B6, and B8 from Landsat 8, were used as inputs to the RF model for
the first classification. For the second classification, an ensemble combining these same
bands with the four aforementioned vegetation indices was used as input, but with the
same training and validation samples.

Based upon random selection in the model, 70% of the collected data were used
as training samples when classifying the composite images, while 30% were used as
validation data for the classification results. The accuracy of the classifications that were
performed on each image composite was then evaluated. For each image composite, we
calculated traditional metrics for evaluating the accuracy of image classification, which
are the producer accuracy (PA), the user accuracy (UA), the overall accuracy (OA), and
Cohen’s kappa coefficient (K) [72].

The different metrics are defined by the following equations [73]:

OA = (1/N)∑r
i=1 nii (1)

PA = nii/nicol (2)

UA = nii/nirow (3)

K = N ∑r
i=1 nii − ∑r

i=1(nicol nirow/N2)− ∑r
i=1 nicol nirow (4)

where nii is the number of correctly classified pixels in a category; N is the total number of
pixels in the confusion matrix; r is the number of classes; nicol is the column total (reference
data); and nirow is the row total (predicted classes).

Ref. [74] defines the main parameters of classification accuracies, such as OA, as the
ratio of the number of correctly classified pixels to the total number of pixels in the class,
and Kappa, which refers to the proportion of error reduction between the considered
classification and a completely random classification. According to [73], OA represents the
ground truth classes that are correctly classified by the analyst (error of omission), while UA
is the percentage of pixels that do not really belong to the reference class but are engaged
in other ground truth classes (error of commission).

Following these evaluations of the classification accuracies of the image composites,
the results were exported from the GEE for formatting in mapping software. The land-cover
maps were finalized in ArcMap 10.6.1, while land-cover conversion maps were produced
using the semi-automatic classification extension that was recently developed with python
code by [75], and which is usable in QGIS 3.6. The annual rate of forest cover change (r)
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and annual deforestation (R), which have been defined by [76], were also calculated for
the periods between the selected target years of this study and between 1985 and 2020 by
applying Equations (5) and (6), as follows:

r =
(

1
(t2 − t1)

)
∗ ln

(
A2

A1

)
∗ 100 (5)

R =
A2 − A1

t2 − t1
(6)

where t1 is year 1, t2 is year 2, A1 is forest area in year 1, and A2 is forest area in year 2.

4. Results

4.1. Assessing the Accuracy of Image Classifications

Seven land cover classes were generated in a supervised manner. Using the RF
algorithm in the GEE, the accuracy of the results was evaluated when vegetation indices
were not used (Table 4) and when indices were used (Table 5). Overall accuracies for image
composites with and without vegetation indices range from 0.91 to 0.98, while Kappa
ranges from 0.86 to 0.96.

Table 4. Accuracies obtained when classifications were made without vegetation indices (PA = Producer
accuracy, UA = user accuracy, OA = overall accuracy, and K = Kappa coefficient).

Image
Compos-

ite
Accuracy Clouds Water

Dense
Dry

Forest

Open
Forest

Crops +
Fallow

Savannah
Bldg. +

Soil
OA K

1985
UA 0.94 1.00 0.95 0.85 0.94 0.98 0.93

0.95 0.93
PA 0.99 1.00 0.95 0.75 0.97 0.97 0.89

1990
UA 1.00 0.99 0.94 0.95 0.92 0.93 0.99

0.96 0.95
PA 1.00 0.99 0.95 0.95 0.95 0.97 0.92

2000
UA 0.94 0.96 0.95 0.97 0.95 0.94 0.97

0.96 0.95
PA 0.97 1.00 0.95 0.94 0.96 0.96 0.92

2005
UA 0.78 0.99 0.50 0.81 0.83 0.97 0.84

0.91 0.86
PA 0.77 1.00 0.95 0.83 0.87 0.92 0.73

2015
UA 1.00 0.95 0.65 0.90 0.95 0.97

0.98 0.96
PA 1.00 0.98 0.83 0.93 0.90 0.95

2020
UA 1.00 0.96 0.29 0.89 0.90 0.98

0.93 0.91
PA 1.00 0.99 0.58 0.87 0.89 0.91
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Table 5. Accuracies obtained when classifications were made with vegetation indices (PA = Producer
accuracy, UA = user accuracy, OA = overall accuracy, and K = Kappa coefficient).

Image
Compos-

ite
Accuracy Clouds Water

Dense
Dry

Forest

Open
Forest

Crops +
Fallow

Savannah
Bldg. +

Soil
OA K

1985
UA 0.92 1.00 1.00 0.84 0.95 0.97 0.91

0.94 0.93
PA 0.99 1.00 0.97 0.76 0.96 0.96 0.89

1990
UA 0.99 0.99 0.95 0.95 0.92 0.93 0.98

0.96 0.95
PA 1.00 0.99 0.95 0.85 0.95 0.96 0.93

2000
UA 0.94 0.97 0.95 0.97 0.95 0.94 0.96

0.96 0.95
PA 0.96 1.00 0.97 0.95 0.95 0.96 0.92

2005
UA 0.78 0.99 0.52 0.82 0.83 0.97 0.84

0.91 0.86
PA 0.75 1.00 0.98 0.82 0.87 0.93 0,73

2015
UA 1.00 0.97 0.62 0.90 0.97 0.96

0.98 0.96
PA 1.00 0.98 0.79 0.92 0.90 0.96

2020
UA 1.00 0.95 0.25 0.90 0.91 0.98

0.93 0.91
PA 1.00 1.00 0.50 0.88 0,89 0.93

After extracting these precision parameters from the confusion matrices of the composite
classification of each target year, one of the target years (1985) without vegetation indices was
presented as an example (Table A1) in Appendix A. Overall accuracies and Kappa coefficients
for the classification of composite images with the original bands was very similar to those of
composites made with the original bands and vegetation indices. Nevertheless, under the null
hypothesis that their slopes do not differ from a 1:1 relationship, linear regressions between
the values of these two types of data yield p-values much less than 0.001 for the OAs and Ks.
This indicates that these values for the original band classifications of the image composites
are significantly different from those including the vegetation indices. In Appendix B, this
same finding of a significant difference was verified between the UA and PA accuracies for all
land cover classes in all image composites (Table A2).

4.2. Distribution of Land Cover

Classifications made on the basis of the different land-cover classes that were identified
made it possible to produce a land-cover map of the entire study area for each of the
composite images, i.e., 1985, 1990, 2000, 2005, 2015, and 2020. The results of classifications
without vegetation indices for the six targeted years were mapped (Figure 3). Regarding
the results of the classifications with vegetation indices, predictions of the water body class
and those of the built-up and bare land (building + soil) class were overestimated. With
regard to the visual interpretation of the image composites before classification and the
land cover contained in the field data, it was noted that these results of classifications with
vegetation indices were not improved compared to the others and reflected the field realities
less. Therefore, we decided to continue the other analyses with only those classifications
without vegetation indices, considering that further, more specific studies involving the
combination of other data could better elucidate the real impacts of these indices on the
image classifications.
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Figure 3. Land cover maps of the classifications of the six composites without vegetation indices.

Since the study area is located in tropical regions where the availability of optical
data is very often limited by cloud cover [77], we included this latter as a land-cover class
(but which is not presented in the following analyses). Apart from clouds, results of the
classifications indicate that in 1985, there were four main land-cover classes, viz., dense dry
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forest (10,722.53 km2), open forest (17,547.75 km2), crops and fallow land (11,940.55 km2),
and savannah (14,533.13 km2), which represented 18.92%, 30.97%, 21.07%, and 25.65%,
respectively, of the nation’s land surface. The lowest land-cover percentages were water
bodies (0.09%) and built-up and bare soil (0.50%) classes. A quantitative evaluation of these
land-cover changes and conversions between target years, as well as those between starting
and ending years, was provided (Table 6).

Table 6. Land-cover change and conversions between the target years 1985-2020.

Year LULC Clouds Water
Dense

Dry
Forest

Open
Forest

Crops +
Fallows

Savannah
Bldg. +

Soil
Total

1985
Sup. (km2) 1592.42 50.73 10,722.53 17,547.75 11,940.55 14,533.13 281.79 56,668.90

Sup. (%) 2.81 0.09 18.92 30.97 21.07 25.65 0.50 100.00

1990

Sup. (km2) 1029.65 163.44 9095.25 14,378.62 11,641.92 20,012.41 347.62 56,668.90

Sup. (%) 1.82 0.29 16.05 25.37 20.54 35.31 0,61 100.00

Conv. (km2) −562.77 112.70 −1627.27 −3169.13 −298.63 5479.28 65.83

Conv. (%) −35.30 222.10 -15.20 −18.10 −2.50 37.70 23.40

2000

Sup. (km2) 211.48 256.37 7704.97 10,515.96 14,179.42 23,379.66 421.06 56,668.90

Sup. (%) 0.37 0.45 13.60 18.56 25.02 41.26 0.74 100.00

Conv. (km2) −818.17 92.94 −1390.29 −3862.67 2537.50 3367.25 73.44

Conv. (%) −79.50 56.90 −15.30 −26.90 21.80 16.80 21.10

2005

Sup. (km2) 176.23 332.72 8505.64 10,439.68 19,577.14 16,956.20 681.29 56,668.90

Sup. (%) 0.31 0.59 15.01 18.42 34.55 29.92 1.20 100.00

Conv. (km2) −35.25 76.35 800.67 −76.27 5397.73 −6423.46 260.23

Conv. (%) −16.70 29.8 10.40 −0.70 38.10 −27.50 61.80

2015

Sup. (km2) 0.00 196.67 4186.70 8549.65 20,522.50 22,045.29 1168.10 56,668.90

Sup. (%) 0.00 0.35 7.39 15.09 36.21 38.90 2.06 100.00

Conv. (km2) −176.23 −136.05 −4318.94 −1890.04 945.36 5089.09 486.81

Conv. (%) −100.00 −40.90 −50.80 −18.10 4.80 30.00 71.50

2020

Sup. (km2) 0.00 192.02 3785.27 9709.70 21,677.56 20,146.17 1158.19 56,668.90

Sup. (%) 0.00 0.34 6.68 17.13 38.25 35.55 2.04 100.00

Conv. (km2) 0.00 −4.66 −401.43 1160.05 1155.06 −1899.12 −9.91

Conv. (%) 0.00 −2.37 −9.59 13.57 5.63 −8.61 −0.85

1985–2020

Sup. (km2) 0.00 192.02 3785.27 9709.70 21,677.56 20,146.17 1158.19 56,668.90

Sup. (%) 0.00 0.34 6.68 17.13 38.25 35.55 2.04 100.00

Conv. (km2) −1592.42 141.28 −6937.26 −7838.06 9737.01 5613.04 876.40

Conv. (%) −100.00 278.47 −64.70 −44.67 81.55 38.62 311.01

Note: LULC = Land Use and Land Cover; Conv. = Conversions; Sup. = Area (Superficie); Bldg. + soil = buildings
and bare land.

The area of each land cover has changed slightly for some and greatly for others in
different directions in all the target years during the period considered by this study (Figure 4).
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Figure 4. LULC changes as percentages of the study area.

4.3. Land-Cover Conversions

From the outset, areas of dense dry forest and open forest have decreased from
10,722.53 km2 and 17,547.75 km2 to 7704.97 km2 and 10,515.96 km2, respectively, between
1985 and 2000. During the same period, areas of crops/fallow and savannah have increased
from 11,940.55 km2 and 14,533.13 km2 to 14,179.42 km2 and 23,379.66 km2, respectively.
Thus, we note a 3017.56 km2 contraction for dry dense forests and 7031.80 km2 of open
forests, while crops/fallow lands expanded by 2238.86 km2 and savannahs by 8846.53 km2.
In 2020, these main classes occupied only 3785.27 km2 for dense dry forests and 9709.70 km2

for open forests, but 21,677.56 km2 for crops/fallows and 20,146.17 km2 for savannahs.
These classes represent 6.68%, 17.13%, 38.25%, and 35.55%, respectively, of Togo’s land
surface area.

These changes correspond to a reduction of 64.70% of dense dry forests and 44.67%
of open forests, versus an 81.55% increase in crops/fallows and 38.62% in savannahs
compared to their respective starting areas. The water body area increased considerably
between 1985 and 1990, through the construction of a large hydroelectric dam at Nangbeto
in the southeastern part of the country (1987), together with the creation of other small water
reservoirs. Built-up (buildings) and bare land (bare soil) class areas increased by +300%,
from 281.79 km2 in 1985 to 876.40 km2 in 2020. In short, all land cover has changed during
the period covered by the study, with a decrease in areas of dense dry forest and open
forest, accompanied by a sharp increase in the areas of crops/fallow lands and savannahs.
For illustrative purposes, the conversions from one land cover to another, as well as areas
that were retained and not changed during the 2015 to 2020 period, are shown in Figure 5.
The same types of charts for other time periods (1985 to 1990, 1990 to 2000, and 2000 to
2005) are provided (Figures A1–A3) in Appendix C.
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Figure 5. Land-cover conversions that occurred between 2015 and 2020.

Maps of the changes were then produced (Figure 6) by combining all classes that had
undergone conversions on one hand, and all those that had not undergone conversion
during the periods that were considered on the other. The change map between the 2005
and 2015 classifications was not produced because images of the first four target years have
one more land-cover class (i.e., clouds) than the last two. Therefore, the application of the
change detection algorithm between these two years (with a different number of land-cover
classes) generates several hybrid classes that do not reflect the situation on the ground.
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Figure 6. LULC change maps.

4.4. Evolution of Forest Cover

When considering only dense dry forest and open forest classes, their respective
starting areas were 10,722.53 km2 and 17,547.75 km2 in 1985, i.e., 18.92% and 30.97% of
the nation’s total territory. Under the effects of land-cover change, they have decreased to
16.05% and 25.37% in 1990, 13.60% and 18.56% in 2000, 15.01% and 18.42% in 2005, 7.39%
and 15.09% in 2015, and to 6.68% and 17.13% in 2020. With an area of 3785.27 km2 for dense
dry forests and 9709.70 km2 for open forests in 2020, forest areas have thus declined by
12.24% for the first category and 13.83% for the second, i.e., a total of 26.07% at the national
level during the 35 years covered by this study. Details on the quantification of these two
land covers in the different ecological zones and their changes over time are indicated in
Appendix D (Table A3).

To facilitate the subsequent quantitative analysis of forest cover change, we have
cumulated the two aforementioned occupancy classes to form the forest class. The trend
line (Figure 7) that summarizes the percentage change in forest area relative to that of the
country illustrates the degree of deforestation and forest degradation over the period that
was considered. Forest area distributions as a land-cover percentage by ecological zone
and by target year were estimated (Figure 8).

When we explored the data at the level of ecological zones to determine how these
forest areas have changed through time, we noted that the deforestation or degradation
of these forests has not proceeded at the same rate in these ecosystems. The evolutions of
forest areas in the different ecological zones were illustrated by the distribution maps of
forest cover of the target years from the period from 1985 to 2020 (Figure 9).

In ecological zones I, II, and III, these forested areas declined almost continuously
from 1985 with a cumulative loss until 2020 of 16.73%, 48.62%, and 28.66%, respectively,
compared to their starting size in these areas. We can, nevertheless, note a forest area
recovery in the 2015 to 2020 period in zone I and between 2000 and 2005 in zone II. Zone IV
(the smallest ecological zone) experienced a sharp decline in forest area (18.35%) between
1985 and 1990, followed by a smaller loss (7.41%) between 1990 and 2000, prior to its
recovery and then contraction (to 1.58%) from 2015 to 2020. Zone V is characterized by a
30.49% loss of forest area between 1985 and 1990, then a rapid increase in area (21.73%)
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for a decade (1990–2000). These areas continued to increase until 2005 and then declined
slightly from 2005 to 2015 before increasing again to 29.2% of the total area in 2020.

The finer-scale examination (zooming) of the maps produced from the results (Figure A4)
in Appendix E shows the development of two towns (Sokodé and Tchamba), as well as the
Abdoulaye Forest Reserve between 1985 and 2020. We noted the expansion over time of both
these towns and agriculture, as well as the appearance of small new settlements at the expense
of wooded areas. As a result of these two main factors, the average annual rate of change
of forest cover to other land cover is about −2.11% between 1985 and 2020, leading to the
disappearance of more than half of the forest areas during this period.

The results of calculating the annual rate of change in forest cover and annual defor-
estation between individual target years, and from the beginning to the end of the study
period are shown (Table 7).

4.5. Land-Cover Changes at the Administrative Regions Scale

Following the analysis of land-cover conversions at the national level and the evolution
of forest cover in the ecological zones, the quantification of all changes that have occurred
at the level of the administrative regions was mapped (Figure 10).
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Figure 7. Countrywide forest percentage changes.
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Figure 8. Forest change by ecological zone.
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Figure 9. Forest evolution across ecological zones by target year.
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Table 7. Evolution of forested areas between 1985 and 2020.

Year
Area
(km2)

Forest Area
(% of Togo)

r
(% y−1)

R
(km2 y−1)

1985 28,270.28 49.89

1990 23,473.88 41.42 −3.72 959.28

2000 18,220.92 32.15 −2.53 525.30

2005 18,945.32 33.43 0.78 −144.88

2015 12,736.35 22.48 −3.97 620.90

2020 13,494.97 23.81 1.16 −151.72

1985–2020 −2.11 422.15

 

Figure 10. (A) Land-cover change gradient by region from 1985 to 2020; (B) area unchanged; (C) area
with one to two changes; and (D) area with three to four changes.

In all of these administrative regions, original land covers were retained in part during
the period covered by the study (Figure 10A). For those remaining parts where the land
cover was altered, they had undergone at least one, two, three, or four changes between

53



Land 2022, 11, 1889

1985 and 2020. Visual inspection reveals that parts where little or no change had been
experienced were mostly forested areas (e.g., from the northeast to southwest), urban areas
such as the national capital Lomé, and large bodies of water such as Lake Togo in the
extreme south of the country. The Plateaux administrative region retained the most area
(16.69%) of this land cover that had never changed (Figure 10B). This region is followed
by the Centrale (11.48%), Kara (9.09%), and Maritime (6.12%) regions, while the Savanes
region has the smallest proportion (2.84%) of its area not being affected by change over the
35-year period.

It can be observed that 65.75% of the Savanes region has undergone at least one to two
changes in land cover (Figure 10C). In the Kara, Centrale, and Plateaux regions, slightly
more than half of their respective areas have been similarly affected. In contrast to the
areas by region that have never undergone change, the Maritime region has the largest
percentage of the regional area (53.50%) that has undergone at least three to four land-cover
changes (Figure 10D). For the same locations, land-cover changes have occurred more
rapidly in the Maritime, followed by the Centrale (36.59%), Kara (34.98%), (31.44%), and
Savanes (31.41%) regions.

5. Discussion

5.1. Quality of Results from Composite Image Classifications

During this study, data from Landsat 5, 7, and 8 archives were used to form different
image composites, the supervised classifications of which (under the GEE platform) led
to the production of land cover maps of Togo. Despite difficulties that were encountered
in finding the best quality images, the results that were obtained indicate relatively high
overall accuracies of 91% to 98% for composites with the original bands and 86% to 96%
for those including the vegetation indices. However, the classification results including
vegetation indices tended to overestimate the built-up and bare land (buildings + soil) class
and the water body class. We believe that this is likely due to the simultaneous presence of
NDBI, which captures residential areas and bare soil, the BSI, which is a bare soil-specific
index, and NDWI, which would have difficulty distinguishing water bodies from shadows.
These results are consistent with those of [78] and [24], who found that the NDBI and
modified NDWI yielded image classification results with very low accuracies, despite being
two popular indices in the literature.

The results have shown that OA and Ks for the original composite band classifications
are significantly different from those with vegetation indices, but the latter did not improve
the image classification results as one would have expected. Nevertheless, the spontaneous
decrease in overall accuracy and Ks for the 2005 composite classification (Tables 4 and 5)
could be primarily related to deficiencies in the Landsat 7 data that are observed as fine
stripes on the 2005 map (Figure 9). It should be noted that this sensor suffered hardware
failure in its Scan Line Corrector (SLC) in 2003, resulting in the loss of about 22–25% of the
data in each scene [79]. Additional research could be done on the impact of these indices on
the quality of image classification results and also test new indices such as the Emissivity
Contrast Index (ECI), which have overcome the NDVI limitation concerning its capability
to distinguish bare soil from senescent vegetation [80]. Another thing that could be tested
in future research using RF in order to improve image classification accuracy is to tune
the hyper-parameters of this model to improve its performance [65], instead of using the
default number of trees.

5.2. Land-Cover Changes

The classifications indicate fairly rapid changes in land cover over the 35 years that
are covered by this study and the rapid deforestation or degradation of forest cover, the
area of which fell countrywide from 49.89% in 1985 to 23.81% in 2020. These changes have
favored crops and fallow lands, savannahs, urban areas, and bare soil. In considering the
evolution of forest areas in the different ecological zones, we found that zones II and IV,
which cover 32.55% of the national area, contained 55.10% of the national forest cover in
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2020. This could be explained by the fact that these two zones are mountainous with very
steep relief (Figure 1B), making it very difficult to access forest resources and land in these
zones. Zone IV, in particular, has retained most of its original forest area (72.77%), even
though it is the smallest of the five ecological zones. Furthermore, ecological zones I and III
are areas par excellence in terms of agriculture and housing, as can be seen in our mapped
results. Zone V is home to more than one-third of the country’s population; the relatively
broad extent of forest that was found in this zone would have more to do with poor image
quality than with the actual area.

In Table 7, we note that r is negative and R is positive when there is a contraction of
forested areas, while the opposite occurs when there is an expansion of forested areas. From
these two indicators of forest cover change, we further note that the study area experienced
a substantial loss of forest area between 1985 and 2000 and, again, between 2005 and 2015.
In contrast, only small increases in the area occurred until 2005 and, again, between 2015
and 2020. Current forest area declines are most likely related to agricultural expansion
and rapid human population growth in Togo (2.84% y−1), which exert strong pressures
on natural resources and land. The national REDD+ Togo study of 2018 on the causes and
consequences of deforestation and forest degradation across the nation has confirmed that
agricultural development, including associated management practices (notably, the use
of fire), is the main cause of forest disturbance, ahead of timber exploitation (timber and
energy) and urban expansion. Furthermore, the dynamics of urbanization, which underlies
the country’s population growth, are driving rapid changes in LULC and are contributing
to forest loss, both directly and indirectly [32,33].

Nevertheless, the increase in forest area in 2005 could be attributed simply to the
aforementioned poor quality of Landsat 7 data, which would influence the classifiers
during processing. The 2020 increase could be due to an overestimation by classifiers
of the open forest class at the expense of savannah, but this could also be due to the
results of conservation policies and programs that have been recently implemented by
the government (forest inventory and REDD + strategy). In order to achieve the state’s
objective of increasing forest cover to 30% of the territory by 2030, these factors of forest
degradation would have to be reconsidered in terms of governmental actions at the social,
environmental, and political levels. In addition, the rate of land-cover conservation and
the speed of change that has been quantified at the level of administrative regions indicate
that the Plateaux and Centrale regions are better conserved, while the Maritime region
records the highest frequency of change. The Savanes region is intermediate between
these two extremes; most land cover has only changed once or twice. Yet, it should be
noted that most of the plant formations of the Savanes region were very early transformed
into crops and remained in this class. This explains why this region has a relatively low
rate of land cover change for a given location despite its higher rate of degraded area.
The Maritime region has experienced the most land-cover changes over the period, i.e.,
three to four times. These conditions would thus need to be monitored when making
land-cover planning or development decisions. Given that forest management across
the study area is based more on administrative subdivisions, our results should enable
centralized administrative and forestry authorities to prioritize actions for a much more
balanced environmental governance.

5.3. Advantages and Limitations of the Method Used

For the selection, pre-processing, and classifications of satellite images during this
study, we used the RF algorithm, which can take into account even disparate data to make
a fairly accurate classification of heterogeneous land cover such as in forest-savannah
mosaics [60]. This algorithm has been used on the GEE platform containing a vast catalog
of Earth observational data. It is based upon millions of servers around the world that
allow for the rapid processing and analysis of satellite data over large areas, without the
need to download them [81]. The GEE has a user-friendly programming environment with
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high computational efficiency, which allows less time to be spent on usual satellite data
processing steps that are frequently quite time-consuming when using dedicated software.

A further advantage of this method is the possibility of making enormous savings
in both time and money when conducting regional or national forest inventories. For
example, when considering the results that were obtained for several land-cover classes
through methods requiring very few means that were applied in this study, we note that
they are more or less comparable to those that were obtained from the national forest
inventory (NFI), which had mobilized many more human and financial resources. For the
2015 results (the year closest to the NFI), we obtained 22.48% for the forest class, 38.90% for
the savannah class, and 38.27% for the grouping of agriculture and infrastructure classes
versus 24.24%, 34.86%, and 40.90, respectively, for the 2016 NFI [71]. With this method of
processing satellite data in the GEE, once the processing code is completed, it can be easily
optimized and applied for the long-term monitoring of LULC changes when incorporating
newly acquired images [62].

However, it must be noted that this processing power is not available on demand
for all types of operations, given that a quota is allocated to each user and, thus, the
GEE system sometimes limits or aborts certain code executions that are computationally
demanding [26]. Furthermore, despite having millions of images, some areas have long
periods when cloud-free data are absent, especially in tropical environments. This is a
particularly lamentable state of affairs, given that research in this region has calculated
the probability of acquiring Landsat MSS or Landsat TM images with <70% cloud cover
in a year to be only 26% [79]. In these cases, the GEE permits the selection of pixels from
multiple images exhibiting large temporal differences in acquisition dates to form the
composite, as was the case in our study. Unfortunately, such selections do not allow for
estimates of seasonal differences or phenologies, thereby introducing potential classification
errors. A further limitation is that during satellite data processing, code execution errors
that are encountered can be difficult to debug, given that scripts in the GEE run in the
Google Cloud. As confirmed by [62], errors also can occur in the JavaScript code, either on
the client side, which is manageable with some effort, or during server-side execution, a
situation that can be very difficult to manage.

6. Conclusions

The LULC changes that are attributable to anthropogenic disturbance are leading
to reductions in forest cover, contributing significantly to global carbon emissions. In
this study, we employed the median satellite image composition method with historical
Landsat sensor data in the GEE to quantify changes across the nation of Togo between
1985 and 2020 using the Random Forest algorithm. Our results indicate that all land-cover
classes identified from the 1985 composite image were affected to varying degrees by these
land-cover changes. Furthermore, forests lost about 52.28% of their original area from
1985 to 2020 through the expansion of crop and fallow lands, savannah, and urbanization.
Ecological zones I, III, and V cover more than two-thirds of the total area of the country
and contain less than half of the forest cover. The changes are mainly reflected by a strong
increase in agricultural activity, deforestation through timber exploitation, and the urban
expansion of a burgeoning human population. Easier accessibility of the areas and a
greater human presence favor all of these activities. In contrast, ecological zones II and
IV, which cover less than one-third of the total area of the country, contain more than 55%
of the national forest cover in 2020. These are very mountainous areas, the steep slopes
of which limit the adverse effects of human activities and, consequently, their effects on
natural resources.

The methods that were applied in this study and the results that were obtained
could help forestry and territorial administrators to better understand the factors that are
involved in land-cover change and forest area reduction. They could also help the national
coordination of REDD+ in Togo to better operate or to boost the measurement, reporting,
and verification system, as part of the nation’s forest monitoring system. For similar future
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studies in Togo, more reliable satellite data (Landsat 8 and 9) with lower cloud cover or
higher spatial resolution (Sentinel 2 and greater) could be used when sufficient time-series
images become available on the GEE platform over the study area, as well as other countries
in Sub-Saharan Africa.
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Appendix A

Table A1. Confusion matrix for the target year 1985 without vegetation indices. Perfectly predicted
values for each category are highlighted in bold along the diagonal.

Clouds Water
Dense Dry

Forest
Open Forest

Crops +
Fallows

Savannah Bldg. + Soil
Producer
Accuracy

Clouds 25,986 0 0 0 0 147 0 0.99

Water 0 8805 1 0 0 14 2 1.00

Dense dry forest 0 0 129,893 3690 249 138 0 0.97

Open forest 0 0 7144 26,071 1390 138 0 0.75

Crops + fallows 171 0 167 570 123,841 893 2649 0.97

Savannah 1053 0 30 174 1715 117,812 818 0.97

Bldg. + Soil 297 0 72 111 3974 1523 46,131 0.89

User Accuracy 0.94 1.00 0.95 0.85 0.94 0.98 0.93

Overall Accuracy 0.95

Kappa 0.93

Appendix B

Table A2. Comparison of accuracies by land-cover class; with vs. without vegetation indices.

Classes Accuracy p-Value

Water
UA 0.000

PA 0.001

Dense dry forest
UA 0.000

PA 0.001
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Table A2. Cont.

Classes Accuracy p-Value

Open forest
UA 0.000

PA 0.001

Crops + fallows
UA 0.000

PA 0.000

Savannah
UA 0.001

PA 0.000

Bldg. + soil
UA 0.000

PA 0.000

Appendix C

Conversion of Land-Cover Classes
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Figure A1. Land-cover conversions between 1985 and 1990.
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Figure A2. Land-cover conversions between 1990 and 2000.
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Figure A3. Land-cover conversions between 2000 and 2005.
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Appendix D

Table A3. Changes in forest-covered areas.

Years Classes Zone I Zone II Zone III Zone IV Zone V Total

1985

Dense dry forest 878.81 3977.56 1491.35 4192.75 182,06 10,722.53

Open forest 3039.83 5253.77 5634.57 1392.29 2227,29 17,547.75

Forest areas 3918.64 9231.32 7125.92 5585.04 2409.35 28,270.28

%/Country 6.91 16.29 12.57 9.86 4.25 49.89

%/Zone 26.47 76.60 44.17 87.37 33.07

1990

Dense dry forest 542.65 3054.40 1562.54 3752.49 183.18 9095.25

Open forest 3599.47 6522.88 3592.65 659.38 4.25 14,378.62

Forest areas 4142.12 9577.28 5155.19 4411.86 187.43 23,473.88

%/Country 7.31 16.90 9.10 7.79 0.33 41.42

%/Zone 27.98 79.47 31.95 69.02 2.57

2000

Dense dry forest 370.09 2463.65 1407.70 3316.65 146.87 7704.97

Open forest 1989.39 3313.71 2967.11 621.64 1624.10 10515.96

Forest areas 2359.48 5777.36 4374.81 3938.29 1770.98 18,220.92

%/Country 4.16 10.19 7.72 6.95 3.13 32.15

%/Zone 15.94 47.94 27.12 61.61 24.30

2005

Dense dry forest 392.21 3148.15 1577.43 3228.93 158.92 8505.64

Open forest 1714.80 3996.35 2206.50 770.48 1751.55 10,439.68

Forest areas 2107.01 7144.50 3783.93 3999.41 1910.47 18,945.32

%/Country 3.72 12.61 6.68 7.06 3.37 33.43

%/Zone 14.23 59.28 23.45 62.57 26.22

2015

Dense dry forest 145.76 1025.65 752.59 2136.58 126.13 4186.70

Open forest 463.68 2578.21 1957.75 2028.74 1521.27 8549.65

Forest areas 609.44 3603.86 2710.34 4165.31 1647.40 12,736.35

%/Country 1.08 6.36 4.78 7.35 2.91 22.48

%/Zone 4.12 29.90 16.80 65.16 22.61

2020

Dense dry forest 128.64 975.70 365.86 2076.96 238.12 3785.27

Open forest 1313.22 2395.81 2136.68 1987.47 1876.52 9709.70

Forest areas 1441.85 3371.51 2502.53 4064.43 2114.63 13,494.97

%/Country 2.54 5.95 4.42 7.17 3.73 23.81

%/Zone 9.74 27.98 15.51 63.59 29.02

Ecological Zone areas 14,805.30 12,051.40 16,133.60 6392.10 7286.50 56,668.90
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Appendix E

 

                           

                           

                           

                            

                          

                         

                    

                    

Figure A4. Enlarged (“zoomed”) insets in East-Central Togo for all target years.
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Abstract: The purpose of this study was to present a new strategy based on fusion at the decision
level for modeling the crop residue. To this end, a set of satellite imagery and field data, including the
Residue Cover Fraction (RCF) of corn, wheat and soybean was used. Firstly, the efficiency of Random
Forest Regression (RFR), Support Vector Regression (SVR), Artificial Neural Networks (ANN) and
Partial-Least-Squares Regression (PLSR) in RCF modeling was evaluated. Furthermore, to increase
the accuracy of RCF modeling, different algorithms results were combined based on their modeling
error, which is called the decision-based fusion strategy. The R2 (RMSE) between the actual and
modeled RCF based on ANN, RFR, SVR and PLSR algorithms for corn were 0.83 (3.89), 0.86 (3.25),
0.76 (4.56) and 0.75 (4.81%), respectively. These values were 0.81 (4.86), 0.85 (4.22), 0.78 (5.45) and
0.74 (6.20%) for wheat and 0.81 (3.96), 0.83 (3.38), 0.76 (5.01) and 0.72 (5.65%) for soybean, respectively.
The error of corn, wheat and soybean RCF estimating decision-based fusion strategy was reduced
by 0.90, 0.96 and 0.99%, respectively. The results showed that by implementing the decision-based
fusion strategy, the accuracy of the RCF modeling was significantly improved.

Keywords: crop residue; fusion; machine learning algorithm; reflective and radar bands

1. Introduction

Modern agricultural activities, such as plowing and using heavy machinery known
as tillage, can damage soil health [1,2]. In this case, the soil is more easily leaching by
rain and loses its top layer, which is crucial for crop growth. The leached soil will flow
downstream into the rivers and pollute the water due to elements such as phosphorus [3].
On the other hand, with decreasing soil quality, precipitated carbon is released [4]. The
release of carbon from the soil plays an important role in increasing the carbon dioxide
in the Earth’s atmosphere [5,6]. Gases are one of the parameters affecting climate change.
Therefore, maintaining soil quality in the agricultural process is very important [7,8].

One of the possible, cheap and feasible ways to reduce the damage caused by wind and
water erosion and increase water storage to soil productivity is to maintain the remaining
vegetation on the soil surface of agricultural lands at harvest time [9–11]. Crop residues
consist of various components of the crop, including leaves, seeds, stems, etc., after harvest
on agricultural land [12,13]. The presence of these residues on the soil surface can strengthen
soil organic matter, better the absorption of nutrients by the plant and increase the efficiency
of chemical fertilizers. Crop residues also have a large effect on soil, crop and environmental
factors, such as water permeability, evaporation, crop yield and erosion [7,14–16]. They can
improve the physical, chemical and biological condition of the soil and ultimately lead to a
healthier crop due to its desirable and nutritious composition. Preserving residues at the
soil surface by preventing the emission of gases, such as NH3, CO2 and SO2, can reduce air
pollution, while burning plant residues emits these gases [17,18].

Due to the importance of preserving crop residues on the soil surface, modeling and
mapping residues as an indicator of tillage intensity are of great importance in agricultural
management and achieving sustainable agricultural goals, including maintaining environ-
mental health [13,19]. Mapping crop residues for agricultural areas can be a criterion for
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evaluating the efficiency and quality of methods and tools used in harvesting. It is practi-
cally impossible to use traditional methods, such as field visits and sampling, to determine
the amount of residues on a large scale and in a short time [12,20]. Utilizing the capabilities
of remote sensing techniques and data can be useful in quantifying crop residues on a
large spatial and temporal scales and higher accuracy [18,21]. Previous studies have used
various satellite imagery to model the amount of residue cover fraction (RCF), including
reflective multispectral imagery, such as Landsat; Sentinel 2 [16,22,23]; radar imagery, such
as RADARSAT [13,24]; and reflective hyper Spectral imagery, such as Probe-1 [25]. Each of
these types of images has advantages and disadvantages [13].

In previous studies, several remote sensing-based indices, such as Normalized Dif-
ference Senescent Vegetation Index (NDSVI) [26], Normalized Difference Residue In-
dex (NDRI) [27], Normalized Difference Tillage Index (NDTI) [28], Shortwave Green
Normalized Difference Index (SGNDI) [29], Shortwave Infrared Normalized Difference
Residue Index (SINDRI) [30], Broadband spectral Angle Index (BAI) [8], Dead Fuel In-
dex (DFI) [31], Normalized Difference Index (NDI) [32], Normalized Difference Vegeta-
tion Index (NDVI) [8], Simulated crop residue cover (MCRC) [29], Simple tillage index
(STI) [28], Simulated cellulose absorption index (3BI1) [33], Simulated lignin Cellulose
Absorption Index (3BI2) [33], Simulated NDRI (3BI3) [33] and Short-wave near-infrared
Normalized Difference residue Index (SRNDI) [34], etc., have been proposed to identify
and quantify the RCF [14,34]. In some studies, the efficiency of different spectral indices
was compared [29,33]. The results showed that each of these indicators can have different
performances, some of them are suitable for dry areas and some for wet areas. A number of
indicators do not perform well in areas with high vegetation. Each of the developed indica-
tors has advantages and disadvantages. Yue, Tian, Dong, Xu and Zhou [29] showed that
single indices are not highly capable of modeling RCF in the complex surface conditions of
agricultural areas. Hence, in some studies, multivariate regression based methods, such
as Random Forest Regression (RFR), Support Vector Regression (SVR), Artificial Neural
Networks (ANN), etc., were proposed to model RCF [33]. The researchers used experi-
mental regression methods to examine the linear or nonlinear relationship between actual
RCF and remote sensing-based indices related to RCF [7,14,33], the spectral angle [8] or
spectral unmixing [35] used to estimate the amount of RCF. Raoufat, Dehghani, Abdolabbas,
Kazemeini and Nazemossadat [9] utilized Landsat 8 and drone data for RCF mapping and
found that Landsat 8 data was more accurate than drone data although the drone data
had its own advantages. Yue and Tian [36] used the spectral and laboratory data for RCF
mapping. They evaluated RS data and triangle technique using RFR method in their study.
They concluded that their proposed method was very effective in the accurate modeling of
RCF and decreased the negative effect of soil moisture on it. Wang et al. [37] used MODIS
and ground data to quantify some crop-related indices in a large-scale area using ground
data and building a linear regression relationship between them. They showed that their
used method was successful in monitoring soil conditions, including soil erosion.

Although the research in RCF modeling is limited, summarizing previous studies
show that several models have been developed over the years to estimate the RCF, each
with its own advantages and disadvantages. Selecting the appropriate model to estimate
the amount of RCF has a high impact on the modeling accuracy of this parameter. Therefore,
providing an integrated model based on using the capabilities of different models and
indicators in estimating RCF can be useful in improving the modeling accuracy of this
parameter. Sentinel 1 satellite imagery is one of the well-known and widely used radar data
in various agricultural applications. However, our knowledge shows that the capability
of this radar image’s bands in estimating the amount of RCF has not been evaluated.
Therefore, evaluating the performance of the satellites and combining the capabilities of
these bands with the indicators presented in previous studies to improve the accuracy of
modeling RCF can be useful and crucial.

The purpose of this study was to present a new strategy based on fusion at the
decision level for modeling the RCF. In this study, (1) the efficiency of spectral indices
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based on reflective multispectral images presented in previous studies in modeling RCF
were compared. (2) The importance of using Sentinel 1 radar satellite imagery bands
in improving the accuracy of RCF modeling was assessed. (3) The efficiency of RFR,
SVR, ANN and Partial-Least-Squares Regression (PLSR) algorithms in modeling RCF was
evaluated and compared. A new strategy was proposed to integrate the results obtained
from different algorithms at the decision level to improve the accuracy of modeling RCF.

2. Study Area

Ontario is one of Canada’s most important agricultural centers, with a wide variety of
agricultural products and orchards. Major agricultural products in Ontario include corn,
wheat and soybeans, barley, forage, oat, canola, etc. A region in southern of Ontario was
selected as the study area. This region is located at 82.5 degrees West and 42.5 degree North.
The agricultural products of this area include the three main crops of corn, wheat and
soybeans (Figure 1). The area of the study region is about 4324 km2 and the area under corn,
wheat and soybean cultivation in this area is 1218, 284 and 1087 km2, respectively. The
study area in terms of climatic division, has a warm summer humid continental based on
the Köppen climate classification. The average annual temperature and rainfall are 17.0 ◦C
and 424 mm, respectively. Therefore, due to the weather conditions and long winters in
this area, most agricultural products are harvested by September. Criteria for selecting
the study area were (1) high diversity of agricultural products, especially important crops
in Canada; (2) proximity of the harvest time of the three types of agricultural products
available in the region and the different farms available for each product; (3) access to the
suitable cloud-free satellite image corresponding to the harvest date of all three crops for
that area; and (4) easy access of the area in order to conduct field studies.

Figure 1. Maps of (a) the geographical location of the study area, (b) the land crop classes of the study
area and (c) the geographical location and spatial distribution of RCF samples of different land crops.

3. Data and Methods

3.1. Data

A set of satellite images and ground data were used to evaluate different models
and data in RCF modeling. Satellite imagery included the Landsat 8 Collection 2 Surface
Reflectance image for 13 October 2020 and the Sentinel 1 Ground Range Detected (GRD)
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image for 7 October 2020. The spatial resolution of the Landsat 8 and Sentinel 1 image
bands is 30 and 10 m, respectively. The Landsat 8 bands, including Blue, Green, Red,
NIR, SWIR 1 and SWIR 2, and Sentinel 1 bands, including VV and VH, were used in
this study. Some criteria were considered when selecting the date of the images: (1) a
lack of cloud cover in the area during the Landsat 8 overpass time, (2) the absence of
precipitation in the study area a few days before the satellite overpass time and (3) prox-
imity to the date of harvest of agricultural products. Landsat 8 image downloaded from
https://earthexplorer.usgs.gov/ (accessed on 13 February 2021) and sentinel 1 downloaded
from https://scihub.copernicus.eu/ (accessed on 16 February 2021). The land crop map
prepared by Agriculture and Agri-Food Canada (AAFC) in 2020 with the spatial resolution
of 30 m was used to mask various agricultural products. This data is produced annually
and can be downloaded from https://open.canada.ca/data/en/dataset?q (accessed on
2 March 2021) website.

Ground data collection includes determining the RCF in autumn from a number of
corn, soybean and wheat fields that were performed after harvest on the 9 October 2020,
10 October 2020 and 9 November 2020 dates. For this purpose, RCF values were determined
at 57 land points for wheat, 149 points for corn and 128 points for soybeans. The selection
of land areas was carried out in such a way that there was a suitable distribution in the
fields of these crops in the whole study area (Figure 1b). The minimum distance between
sampling points was 500 m. Additionally, based on the initial and complete field visit of
the study area, the suitable distribution of absolute values between the highest and lowest
actual values of RCF in the study area was also considered when selecting the sampling
points. Little to no rain (less than 0.25 cm) had fallen the week before the sampling, and
the soil moisture levels were constantly dry. When field sampling took place, the weather
was identical to the weather when taking images the day before. Ordinary camera images
were used for sampling. A Phantom 3 SE drone was used to produce images from each
selected sampling point. The flight height of the drone for imaging was 20 m, and a digital
orthophoto with a spatial resolution of 20 cm was prepared for each sampling point. Then,
for each image, the position of product residues was manually digitized. After processing
the images taken by the camera, the remaining coverage fraction was calculated for an area
of 900 m2 around each sampling point. Agisoft Metashape 1.8.3, developed by Agisoft LLC
(St. Petersburg, Russia) and ArcMap 10.6.1, developed by Esri (Environmental Systems
Research Institute), (Redlands, California, United States) software were used to determine
the RCF based on the images prepared with the drone (digital orthophoto preparation
and digitization).

3.2. Methods

Firstly, a map of common spectral indices in RCF modeling was prepared based on
the Landsat 8 and Sentinel 1 VV and VH spectral bands. Then, these maps were masked
to areas with NDVI < 0.3 to limit analysis to areas without significant green vegetative
ground cover [16] and was also masked to agricultural crop fields using the AAFC map.
Then, the efficiency of each of these indicators in modeling the RCF was evaluated for each
agricultural product. Secondly, the efficiency of different algorithms, including RFR, SVM,
ANN and PLSR in modeling RCF, was evaluated and they were compared with each other.
Furthermore, different algorithms’ results were combined based on the modeling error in
order to increase the accuracy of receipt modeling. This strategy used the fusion capability
at the decision level to improve the accuracy of RCF modeling.

3.2.1. Effective Variables

In previous studies, various spectral indices, including MCRC, SGNDI, DFI, STI,
NDSVI, NDTI, NDI5, NDI7, NDVI, 3BI1, 3BI2, 3BI3, BAI and SRNDI, have been developed
for RCF modeling [16,25,30,32–34]. Reflective band information was used to calculate these
indices. In this study, in addition to spectral indices based on reflective band information,
backscatter data obtained from VV and VH bands of Sentinel 1 were also used in RCF
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modeling. The details of spectral indices and radar bands used as independent and primary
variables in RCF modeling are shown in Table 1. To compare the efficiency of each of these
independent variables in RCF modeling, their correlation coefficient with the values of RCF
at the validation sampling points was calculated.

Table 1. Spectral indices and radar bands used as independent and primary variables in RCF modeling.

Type Spectral Indices Equation Reference

Reflective-based index

MCRC (OLI6 − OLI3)/(OLI6 + OLI3) [29]
SGNDI (OLI3 − OLI7)/(OLI3 + OLI7) [29]

DFI 100 × (1 − OLI7/OLI6) × (OLI4/OLI5) [31]
STI OLI6/OLI7 [28]

NDSVI (OLI6 − OLI4)/(OLI6 + OLI4) [26]
NDTI (OLI6 − OLI7)/(OLI6 + OLI7) [28]
NDI5 (OLI5 − OLI6)/(OLI5 + OLI6) [32]
NDI7 (OLI5 − OLI7)/(OLI5 + OLI7) [32]

SRNDI (OLI7 − OLI4)/(OLI7 + OLI4) [34]
NDVI (OLI5 − OLI4)/(OLI5 + OLI4) [33]
3BI1 100 × (0.5 × (OLI2 + OLI7) − OLI4) [33]
3BI2 (OLI2 − OLI4)/(OLI2 − OLI7) [33]
3BI3 (OLI7 − OLI4)/(OLI7 + OLI6) [33]
BAI - [8]

Backscatter bands
VV - -
VH - -

3.2.2. Machine Learning Methods

Multivariate modeling based on four common algorithms in agricultural and environ-
mental modeling, including RFR, SVM, ANN and PLSR, was used to model the RCF. In the
first scenario, all reflective band-based spectral indices were used as independent variables.
In the second scenario, in addition to spectral indices based on reflective bands, VV and
VH band information was also used in the modeling process. Each RFR, SVM, ANN and
PLSR algorithm was calibrated based on training data (96 samples for corn, 38 samples
for wheat and 84 samples for soybean). Then the efficiency of each of these algorithms in
estimating the RCF fraction using test data (53 samples for corn, 20 samples for wheat and
43 samples for soybean) was evaluated.

PLSR breaks down both dependent and independent variables into a number of major
components. PLSR is a two-line calibration algorithm that converts a large number of
correlated linear variables into several non-correlated variables based on data compression.
Hence, this algorithm can solve the challenges of high correlation between variables and
overfitting in the modeling process [38].

In recent years, artificial neural networks have been widely used to estimate various
environmental variables based on satellite data [39,40]. In this study, a back-propagation
ANN was used to model the residue. This algorithm consists of input, hidden and output
layers. Sigmoid and linear functions were used for activation in hidden and output nodes,
respectively. To calibrate synaptic coefficients, the Levenberg–Marquardt minimization
algorithm was used [41]. The number of nodes in the hidden layers varied between 4 to 8.
To optimize the structural parameters of the ANN algorithm for the network, we changed
the momentum coefficient and learning rate from 0.1 to 1.0 with a step of 0.05. The number
of nodes in the hidden layer varied from 3 to 7. Mean squared error was used as a measure
of the performance threshold and the determination of a network with optimal structure in
receipt fraction modeling. The optimal network was selected in terms of mean absolute
error between validation and predictions data.

The SVR model is a widely used algorithm for solving nonlinear problems [42]. In the
SVR method, n-dimensional input variables are transferred to the new feature space with
higher dimensions using the core functions and, as a result, optimal separator super planes
are developed [43]. In this study, different Gaussian, linear, nonlinear quadratic, cubic, etc.,
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kernels were evaluated, and finally the Gaussian kernel was selected and used as a function
in the receipt fraction estimation process. The optimal values of box constraint, kernel scale
and epsilon were set to 909, 857 and 0.04, respectively.

RFR is an ensemble-learning algorithm that combines a large set of decision trees
to improve the accuracy of estimating a variable [44]. RFR has several advantages in
modeling environmental variables, including (1) low sensitivity to noise and over-fitting,
and (2) the use of a large number of quantitative and qualitative variables in the modeling
process [45,46]. To implement this algorithm, two parameters, the number of trees and the
number of attributes, must be set. The number of trees varied from 30 to 300 with step size
30 and the number of trees 150 was selected as the optimal value.

The optimal model for each of these four algorithms was selected to estimate the RCF
and the mean absolute error between the validation data and the predictions.

3.2.3. Decision-Based Fusion Approach

To reduce the error of modeled RCF based on remote sensing data due to the weak-
nesses of different algorithms, in the proposed strategy, the results of four RFR, SVM, ANN
and PLSR algorithms were combined based on Equation (1).

RCFf =
n

∑
i=1

WiRCFmodel(i) (1)

In Equation (1), RCFf is the modeled RCF based on the remote sensing data by
combining the results of different algorithms, RCFmodel(i) is the fraction of the modeled
RCF based on the remote sensing data obtained from the ith algorithm, Wi is the degree of
importance of the ith algorithm and n is the number of used algorithms. Equation (2) is
used to calculate the significance of the ith algorithm.

Wi =
RMSEmodel(i)

∑n
i=1 RMSEmodel(i)

(2)

In Equation (2), RMSEmodel(i) is the mean squares root of the of the estimated fraction
and is based on the ith algorithm. The lower the RMSE of an algorithm in estimating the
RCF, the greater its impact and importance in the result of the RCF estimation. MATLAB
2019a software was used to implement various indices and algorithms for RCF modeling.

4. Results

The mean (sd) of the RCF for the calibration data of corn, wheat and soybean were
17.8 (9.6), 20.1 (11.2) and 19.2 (7.7)%, respectively (Figure 2). These values were 17.4 (9.4),
18.2 (10.3) and 18.6 (8.5)% for validation data, respectively. The RCF means and sd values
based on the calibration and validation datasets were close to each other. The highest
frequency of calibration data for corn, wheat and soybean crops was in the 10.9–18.3,
10.5–17.3 and 17.4–23.4% categories, respectively. For validation data, the highest frequency
for these products was in the 12.2–18.4, 11.1–16.6 and 18.8–25.0% categories, respectively.

The efficiency of spectral indices based on reflective bands in RCF modeling was
different. The efficiency of NDI5, NDI7, NDTI, NDVI, STI, DFI and BAI was higher than
other indices, such as 3BI1, 3BI2, MCRC, NDSVI, SGNDI, and SRNDI (Table 2). The R2
between BAI and corn, wheat and soybean residues were 0.63, 0.66 and 0.61, respectively,
which was higher than other spectral indices. The R2 between the VV (VH) bands and the
corn, wheat and soybean residues were 0.25 (0.29), 0.28 (0.36) and 0.20 (0.25), respectively.
The efficiency of radar bands in RCF modeling was less than the spectral indices.

In the first scenario (dataset including reflective band-based spectral indices), based
on calibration data, the R2 (RMSE) between the actual and modeled RCF using ANN,
RFR, SVR and PLSR algorithms for corn crop were 0.86 (3.13), 0.91 (2.63), 0.82 (3.92) and
0.79 (4.22%), respectively (Figure 3). These values were 0.84 (4.22), 0.88 (3.72), 0.81 (5.25) and
0.77 (5.85%) for wheat and 0.85 (3.14), 0.89 (2.73), 0.79 (3.81) and 0.75 (4.04%), respectively,
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for soybean. The efficiency of RCF modeling using different machine learning algorithms
based on spectral indices was different. The RFR and PLSR algorithms had the highest and
lowest accuracy in forming an optimal network for RCF modeling, respectively.
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Figure 2. Frequency distribution of RCF values of corn, wheat and soybean crops for calibration and
validation data in different classes.
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Table 2. The R2 between the effective variables and the residues for different crops.

Corn Wheat Soybean

3BI1 0.09 0.08 0.11
3BI2 0.15 0.10 0.33
3BI3 0.46 0.35 0.56
MCRC 0.13 0.38 0.13
NDI5 0.54 0.48 0.41
NDI7 0.60 0.51 0.45
NDSVI 0.07 0.11 0.11
NDTI 0.42 0.48 0.61
NDVI 0.43 0.51 0.22
SGNDI 0.20 0.08 0.22
SRNDI 0.24 0.15 0.21
STI 0.43 0.50 0.60
DFI 0.55 0.59 0.52
BAI 0.63 0.66 0.61
VV 0.25 0.28 0.20
VH 0.29 0.36 0.25
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Figure 3. R2 and RMSE between real and modeled RCF based on calibration data.

For the validation data, the R2 (RMSE) between the actual and modeled RCF based on
ANN, RFR, SVR and PLSR algorithms for corn were 0.83 (3.89), 0.86 (3.25), 0.76 (4.56) and
0.75 (4.81%) (Figure 4). These values were 0.81 (4.86), 0.85 (4.22), 0.78 (5.45) and 0.74 (6.20%)
for wheat and 0.81 (3.96), 0.83 (3.38), 0.76 (5.01) and 0.72 (5.65%), respectively, for soybean.
The results showed that the RFR algorithm had the highest accuracy in RCF modeling. The
efficiency of this algorithm in corn RCF modeling was higher than soybean and wheat.
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Figure 4. R2 and RMSE between actual and model RCF based on validation data.

The addition of radar bands to the spectral indices dataset in the corn RCF modeling,
caused an increase in the accuracy of RCF estimation using machine learning algorithms
(Table 3). Considering the radar bands, the RMSE of corn RCF modeling using ANN, RFR,
SVR and PLSR decreased by 0.44, 0.57, 0.54 and 0.30%, respectively. The reduction rates of
RMSE for wheat (soybean) were 0.71 (0.37), 0.61 (0.49), 0.55 (0.51) and 0.38 (0.64), respectively.

Table 3. R2 (RMSE) between the actual and modeled values of the RCF based on different machine
learning algorithms, considering spectral indices and radar bands as dependent variables.

Corn Wheat Soybean

ANN 0.85 (3.45) 0.84 (4.15) 0.85 (3.59)
RFR 0.89 (2.68) 0.87 (3.61) 0.89 (2.89)
SVR 0.80 (4.02) 0.80 (4.90) 0.80 (4.50)
PLSR 0.77 (4.51) 0.77 (5.58) 0.75 (5.01)

The R2 between the actual and modeled RCF based on the fusion strategy at the deci-
sion level for corn, wheat and soybean crops was 0.92, 0.89 and 0.88, respectively (Figure 5).
RMSE values were 1.78, 2.65 and 1.90%, respectively. The error of estimating the RCF of
corn, wheat and soybean products based on the proposed strategy was reduced by 0.90,
0.96 and 0.99%, respectively, compared to the results of the best machine learning algorithm.

The RCF map of corn, wheat and soybean crops prepared based on the fusion strategy
at the decision level showed that the spatial distribution of the residue varied across the
study area (Figure 6). The RCF of three crops varied between 0 and 62%. The RCF of corn
on farms located in the eastern parts of the study area was less than the western part. Corn
fields located in the northwestern parts of the study area had the highest values of residue.
The lowest values of soybean RCF were in farms located in the central parts of the study
area. The number of wheat fields in the study area was less than corn and soybean fields.
The number of wheat fields with low RCF was lower than wheat fields with high RCF.
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Corn Wheat Soybean 

Figure 5. R2 and RMSE between the actual and modeled RCF based on the fusion strategy at the
decision level for corn, wheat and soybean crops. ORCF: observed residual cover fraction; MRCF:
modeled residual cover fraction.

Figure 6. RCF maps for different land crop in the study area.

The mean RCF for corn, wheat and soybean crops in the study area were 18.2%, 19.39%
and 17.7%, respectively (Figure 7). RCF was higher in wheat fields than in corn and soybean
fields. The values of the standard deviation (Sd) of the RCF for corn, wheat and soybean
fields in the study area were 8.3%, 10.23% and 7.4%, respectively. The highest and lowest
variation of RCF in this study area was related to wheat and soybean crops. The range of
variation in the RCF amount for corn fields as greater than wheat and corn crops.
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Corn Wheat 

 
Soybean 

Figure 7. Frequency histogram and statistical parameters of the modeled RCF values of corn, wheat
and soybean crops in the study area based on the proposed strategy.

5. Discussion

An accurate RCF map is crucial in agricultural planning and management [19,22,33].
Unlike terrestrial methods, satellite images have high application and high efficiency
in preparing these maps due to their extensive spatiotemporal coverage and their low
cost [8,29,30,34]. However, the accuracy of different crops’ RCF mapping using satellite data
is dependent on various factors, including (1) dependent variables used in the modeling
process, (2) the quality of calibration and validation data and (3) the algorithms used to
construct the appropriate model between the effective variables and the RCF [8,29,33]. In
this study, the effect of dependent variables and algorithms used in the RCF modeling
process was investigated.

In previous studies, various spectral indices based on satellite images have been
provided to prepare this map [29,33]. In a number of these studies, the efficiencies of these
spectral indices in RCF modeling were evaluated and compared [8,33]. The results showed
a different performance of each of these indicators in different conditions. In this study,
it was also shown that the efficiency of a number of indices, such as NDI5, NDI7, NDTI,
NDVI, STI, DFI and BAI, was higher than other spectral indices when preparing the RCF
map. Even the efficiency of each spectral index in preparing a RCF map for different crops
is different. The results showed that for modeling the RCF of corn, wheat and soybean
crops, BAI efficiency was higher than other indicators. The BAI is designed to minimize the
effect of background soil moisture in the process of RCF estimating. Yue, Tian, Dong and
Xu [8] showed that BAI had a high efficiency in estimating the RCF of wheat and maize
products by reducing the effect of field soil moisture. In general, the spectral behavior of
different crops at different wavelengths and their differences with the background soil and
vegetation in the study area can affect the accuracy of the developed spectral indices. NDVI
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preparing the receipt map and agricultural products are highly sensitive to vegetation
in the study area. As a result, for areas with high vegetation cover, such as forests and
pastures, the RCF values are overestimated.

The focus of previous studies has been on the development of optimal indicators and
methods in RCF modeling and on the use of reflective bands of satellite images, including
Landsat, Sentinel 2, ASTER, etc. [16,30,33,34]. In a limited number of studies, the efficiency
of the information obtained from radar images, including RADARSAT, in RCF modeling
was evaluated [24]. However, in this study, for the first time, the efficiency of Sentinel
1 VV and VH bands in modeling this parameter was evaluated and compared with the
efficiency of spectral indices. The results showed that considering spectral indices and
VV and VH radar bands simultaneously as effective variables increases the accuracy of
RCF modeling based on machine learning algorithms. Due to the simple and free access
to Sentinel 1 images with a high frequency for different agricultural regions around the
world, the use of these images in RCF modeling can be of great practical importance. In
general, the accuracy of multivariate RCF modeling is higher than univariate modeling
using machine learning algorithms. The results of this study showed that the efficiencies of
machine learning algorithms in RCF modeling were different to one another. The efficiency
of RFR algorithm in modeling this parameter was higher than ANN, SVR and PLSR. Ding,
Zhang, Wang, Xie, Wang, Liu and Hall [33] also showed that RFR was highly efficient in
RCF mapping.

Each of these algorithms may have high or low performance under different conditions.
Therefore, providing an integrated model based on the results of these algorithms can be
useful. In various fields, such as land cover classification, improving the spatial resolution of
land surface temperature, etc., the strategy of combining the results of different algorithms
called fusion at the decision level has been used to improve the modeling accuracy of
target variable. In this study, the results of the RCF estimation obtained from different
machine learning algorithms were combined based on the degree of importance of each
algorithm to improve the modeling accuracy of this variable. The results showed that by
implementing the fusion strategy at the decision level, the accuracy of the RCF map was
significantly improved.

6. Conclusions

In this study, to improve the accuracy of RCF modeling and mapping, a new strategy
based on the fusion of different machine learning algorithms’ results at the decision level
was developed. The results showed that by considering both spectral indices based on
reflective bands and radar bands as dependent variables in machine learning algorithms, the
RCF modeling error is reduced by an average of 15%. Among the various machine learning
algorithms in RCF modeling, RF accuracy is higher than other algorithms, including
ANN, SVR and PLSR. The results of the proposed strategy showed that the integration
of the capabilities of different machine learning algorithms increases the accuracy of RCF
modeling. With the fusion of the results of different machine learning algorithms at the
decision level, the accuracy of RCF modeling for corn, wheat and soybean crops compared
to the most optimal algorithm has increased by more than 33, 25 and 34%, respectively. It is
suggested that in future studies, the efficiency of deep learning algorithms in RCF modeling
be evaluated. It could also be very useful to use the proposed algorithm to prepare a more
accurate RCF map in agricultural areas around the world and implement optimal programs
to improve the agricultural situation and conserve soil and environmental quality.
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Abstract: Land subsidence (LS) increases flood vulnerability in coastal areas, coastal plains, and
river deltas. The coastal plain of Tabasco (TCP) has been the scene of recurring floods, which caused
economic and social damage. Hydrocarbon extraction is the main economic activity in the TCP
and could be one of the causes of LS in this region. This study aimed to investigate the potential of
differential SAR interferometric techniques for LS detection in the TCP. For this purpose, Sentinel-1
SLC descending and ascending images from the 2018–2019 period were used. Conventional DInSAR,
together with the differential interferograms stacking (DIS) approach, was applied. The causes of
interferometric coherence degradation were analyzed. In addition, Sentinel-1 GRD images were used
for delimitation of areas recurrently affected by floods. Based on the results of the interferometric
processing, several subsiding zones were detected. The results indicate subsidence rates of up to
−6 cm/yr in the urban centers of Villahermosa, Paraíso, Comalcalco, and other localities. The
results indicate the possibility of an influence of LS on the flood vulnerability of the area south of
Villahermosa city. They also suggest a possible relationship between hydrocarbon extraction and
surface deformation.

Keywords: land subsidence; DInSAR; differential interferograms stacking; floods; coastal plain
of Tabasco

1. Introduction

Land subsidence (LS) is a major worldwide hazard, and it is defined as the down-
ward, mainly vertical, displacement of the Earth’s surface relative to a stable reference
level [1,2]. LS is caused by a wide variety of processes of natural and anthropogenic
origin. The natural-driven processes, such as glacial isostatic adjustment (GIA) [3,4], tec-
tonic movements (except co-seismic displacement) [5,6], and sediment compaction [7,8],
often cause a slow and steady motion (a few mm/yr). Human activities that cause subsi-
dence include withdrawal of groundwater [9–12], hydrocarbons [13–15], geothermal water,
and brine [16–18]; mining [19–21]; loading of engineered structures [22,23]; and wetland
drainage [24]. Generally, the observed rates of human-induced subsidence greatly exceed
the rates of natural subsidence, reaching centimeters per year, to even meters per year (e.g.,
mining activities [25]). LS damage to urban and civil infrastructure causes constant and
considerable economic losses. However, the most notable impact of LS is produced in
coastal areas, coastal plains, and river deltas, where LS increases flood vulnerability (flood
frequency, inundation depth, and duration of floods) [26–28]. Identifying LS-prone areas
and estimating their rate and spatial extension is essential in this phenomenon’s assessment
and management.

The use of satellite data and remote sensing (RS) techniques is a common practice in
Earth surface observations. The advantages of satellite RS techniques are their comprehen-
sive area coverage, non-invasiveness, and cost-effectiveness. In particular, the differential
interferometric synthetic aperture radar (DInSAR) technique has become an effective RS
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tool for monitoring and assessing the Earth surface displacements induced by a variety of
geophysical and geological processes, including earthquakes, volcanoes, landslides, LS, and
sinkholes, among others [29]. The DInSAR technique is based on acquiring complex SAR
images over the same area at different times using repeated passes. The standard DInSAR
approach (or conventional DInSAR) exploits the phase difference of the SAR image pairs,
providing a measurement of surface displacements occurring between the two acquisitions
with a sub-centimetric accuracy and a decametric spatial resolution (e.g., [30–32]).

The uncertainties in the measurement of conventional DInSAR, due to the contribution
of non-displacement signals, such as the digital elevation model (DEM) and orbitals errors,
and atmospheric delay, are the handicaps of this approach [33]. In addition, the temporal
and geometrical decorrelation limit its practical applications [34]. Advanced-DInSAR tech-
niques, based on large stacks composed of many SAR images, partly overcome DInSAR
limitations (e.g., [35–37]). Despite the considerable advances in DInSAR processing tech-
niques, applying DInSAR for displacement measurements in areas where the conditions of
the land surface change significantly, e.g., densely vegetated areas, remains challenging.

Tabasco is an oil-rich state located in the southeast of Mexico; its northern border
runs along the Gulf of Mexico. Much of the state is a wide alluvial coastal plain, the
so-called Tabasco Coastal Plain (TCP). Due to its climatic and hydro-geologic conditions,
Tabasco is one of the most flood-prone Mexican states [38,39]. The state’s high incidence
of floods has been exacerbated by sea-level rises and possibly LS, through natural or
anthropogenic effects. LS is not considered a high-risk phenomenon in the Tabasco state.
The LS phenomenon has been poorly investigated, and its effects on the increase of TCP
area’s vulnerability to flooding and coastal erosion is unknown. Hydrocarbon production
is the main economic activity in the region, with more than a thousand wells distributed in
106 oil fields, so the possibility of significant anthropogenic subsidence occurrence cannot
be discarded and must be investigated in detail.

DInSAR techniques have proven practical LS detection and monitoring tools in coastal
areas (e.g., [26,40–45]). However, to the authors’ knowledge, there are not formal papers
published or submitted to journals where DInSAR was applied to investigate LS in Tabasco.
Early DInSAR results for the Tabasco region were published only as a conference paper [46].
Therefore, this study evaluates DInSAR’s potential for land subsidence detection and
monitoring in the TCP. Conventional DInSAR and the interferograms stacking procedure
(A-DInSAR) were applied to identify the Earth’s surface displacement in TCP. Sentinel-1
data from January 2018 to January 2020 were used. The achieved results allowed the
identification of land sinking areas during the period covered by the study, which should
be the target of more detailed investigations.

2. Materials and Methods

2.1. Study Area

This study’s area of interest (AOI) belongs to the TCP, a tropical lowland on the Gulf
of Mexico, in Tabasco State, southeastern Mexico (Figure 1). It is part of the Mexican
physiographic province called the Southern Coastal Plain of the Gulf of Mexico [47]. It was
formed by alluvial sediments brought by rivers from the mountains of Chiapas (Mexico)
and Guatemala; the rivers cross the state to flow into the Gulf of Mexico. The land is largely
covered with lakes, lagoons, and wetlands (floodable areas), one of the most important in
Mexico. About 80% of the TCP surface is composed of marsh, alluvial, coastal, and lake
deposits from the Quaternary period; corresponding with the development of the current
environments, from the Pliocene to today, and about 20% is made up of sedimentary rock
from the Tertiary period [48–50]. The soils of the TCP are predominantly of alluvial and
organic origin, such as Gleysols, Histosols, and Fluvisols [50,51], and are characterized by
a poor drainage capacity.
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Figure 1. Central region of Tabasco (AOI) and its main urban areas, hydrography, and topography.
The background image is a shaded relief based on the INEGI elevation model (www.inegi.org.mx,
accessed on 11 July 2022).

The TCP region has a tropical rainforest climate, designated as Af under the Köppen-
Geiger climate classification system. This region’s average annual air temperature is 26 ◦C,
with average monthly temperatures ranging between 22.7 ◦C (January) and 28.9 ◦C (May).
The TCP receives 1500–2000 mm of annual precipitation, mainly in the rainy season between
June and November [52]. Furthermore, the region is regularly subjected to tropical storms
and hurricanes from the Gulf of Mexico and the Pacific Ocean. The monthly average
precipitation in the analyzed period (2018–2019) is presented in Figure 2.

Due to TCP’s climatic and hydro-geologic conditions, its territory is exposed to floods
annually [39]. Some floods have been catastrophic, such as those of 1980, 1995, 2007 [53],
and 2020 [54]. The extensive flooding that occurred in 2020, at the end of October and early
November, affected over 62% of the Tabasco state and more than 1.2 million people [54].

 

Figure 2. Monthly average precipitation (data available at [55]).
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The AOI covers 596,573 ha, of which 69.76% are dedicated to economic activities, and
22.01% are covered by natural vegetation. The natural vegetation in TCP is represented
by tropical rainforest and various wetland communities, including mangroves. The most
important economic activities for the state of Tabasco are oil and gas production, agriculture,
and livestock. Tabasco is a mainly rural state; agricultural fields and pastures cover
approximately 69% of the area used for economic activities, and only 3.48% is urban
(Figure 3a).

Since large-scale exploitation of hydrocarbon resources began at the end of the 1950s,
oil and gas production has become Tabasco’s economic mainstay. At present, Tabasco
is a leader in hydrocarbon reserves and is one of Mexico’s primary oil-producer states.
Figure 3a shows the hydrocarbon extraction wells distribution over the AOI. Most wells
have a depth ranging from 1500 to 3500 m. However, some wells reach up to 7615 m.

The study area is part of the Salina de Istmo, Pilar Reforma-Akal, and Macuspana
basins (Figure 3b). The Salina de Istmo basin is Miocene-Pliocene and associated with a
system of normal faults, including the Comalcalco sub-basin, associated with sediment
loading and salt evacuation. The Macuspana basin is from the early Miocene-Pliocene.
Sedimentary facies vary from fluviodeltaic to marine and are characterized by turbidite
deposition. The Pilar Reforma-Akal Basin is the most representative of the study area where
hydrocarbons are stored in limestone from the Upper Cretaceous and Upper Jurassic [56,57].
The hydrocarbon system’s distribution corresponds to the Mesozoic oil fields and, to a
lesser extent, to the Tertiary (Figure 3b) [57].

High volume extraction of hydrocarbons can cause LS around the producing wells.
Land surface sinking due to oil and gas production depends on the geometrical shape and
thickness of the reservoir, the compaction coefficient, the pressure drops in the reservoir,
and the geomechanical behavior of the overburden [58]. The documented rates of LS
caused by hydrocarbon extraction range from a few mm/yr [59] to up to 0.75 m/yr [60].
Even a small subsidence in plain areas could significantly increase flood vulnerability.

 

Figure 3. Physical-geographical characteristics of AOI; (a) land cover (INEGI [61] and distribution
of hydrocarbon wells (IICNIH [62]). The area with the highest well density is located west of
Villahermosa, with wells depth ranging between 1500 and 3500 m; (b) Lithology, geological provinces,
distribution of the oil system, and its geological era [57,62].
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2.2. Data

In this study, Sentinel-1 level-1 images provided in the Single Look Complex (SLC) for-
mat [63] by the Alaska Satellite Facility (https://asf.alaska.edu, accessed on 2 December 2019)
were used in DInSAR processing. The Copernicus Sentinel-1 mission, developed by the
European Space Agency (ESA), is based on a constellation of two satellites: Sentinel-1A,
launched in April 2014, and Sentinel-1B, launched in April 2016. The Sentinel-1 constel-
lation operates at the C-Band frequency (5.405 GHz, 5.5 cm wavelength), with a 12-day
repeated acquisition for a single mission, and 6-days in the case of a two-satellite combina-
tion. Sentinel-1 imagery was selected in this study, thanks to its free accessibility with a
regularly repeated acquisition at a 6-day interval.

A total of 115 (Sentinel-1A/1B) images were acquired on ascending Path 34, Frame 54/55,
in Interferometric Wide (IW) swath mode, with dual (VV + VH) polarization between
2 January 2018 and 29 December 2019. Moreover, 108 images were acquired on descending
Path 99, Frame 530/532, in IW swath mode [64–66], with dual polarization between
6 January 2018 and 27 December 2019. Only Sentinel-1 VV polarization bands were
used, since co-polarized bands provide higher coherence than VH polarization. The main
characteristics of the Sentinel-1 SLC data used in this study for DInSAR processing are
listed in Table 1.

Table 1. Characteristics of the Sentinel-1 SLC data used in this study in DInSAR processing. The
nominal spatial resolution is specified for single-look data. N is the number of used SAR images, and
I is the number of interferograms for each dataset calculated and analyzed in this study.

Dataset 1 2

Orbit Descending Ascending

Mode IW IW

Sub-Swath IW3 IW2 + IW3

Track 99 34

Frame 530/532 54/55

Wavelength (cm) 5.5 (C-band) 5.5 (C-band)

Polarization VV VV

Nominal ground resolution
(Ground Range × Azimuth, m) 5 × 20 5 × 20

Time span 2 January 2018–29 December 2019 6 January 2018–27 December 2019

Number of images (N) 115 108

Number of Interferometric Pairs (I) 321 290

The external datasets used for the SAR SLC data interferometric processing include the
Shuttle Radar Topographic Mission (SRTM) 1-arc-second (30 m) DEM [67] and Copernicus
Sentinel-1A and Sentinel-1B precise orbital files (AUX_POEORB products), obtained from
the Copernicus Open Access Hub.

Satellite data available for mapping and monitoring flood coverage were obtained by
passive (e.g., onboard Landsat, Aqua, Sentinel-2, Resourcesat-2) and active (e.g., Sentinel-1,
RADARSAT, ENVISAT) sensors [68,69]. Sentinel-1 level-1 ground range detected (GRD)
images were obtained from the Alaska Satellite Facility and used to identify flooded areas.
Sentinel-1 level-1 (GRD) products consist of focused SAR data that has been detected,
analyzed, and projected to the ground range using a ground ellipsoid model. The pixel
values of the Sentinel-1 level-1 (GRD) image represent the detected amplitude of the
backscattered signal, without phase information. Two pairs of GRD images with dual-
polarization from descending orbital pass were acquired, covering the flood events in 2018
and 2019. Only VV polarization bands were used because, for flooded area detection, the
co-polarization comparison gives better results than the cross-polarization one, while the
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use of VV polarization is recommended over the use of VH data [70]. The characteristics of
the Sentinel-1 GRD products used in this study are presented in Table 2.

Table 2. Characteristics of the Sentinel-1 GRD data used to identify flooded areas.

Image Date Format-Mode Polarization Land Surface Condition

1 6 January 2018 GRD-IW VV Dry
2 5 February 2018 GRD-IW VV Wet
3 16 October 2019 GRD-IW VV Dry
4 21 November 2019 GRD-IW VV Wet

2.3. SAR Differential Interferometry Background

The fundamentals of the conventional DInSAR technique have been presented in
many publications [29,31,70]. Therefore, only some aspects relevant to this study are
briefly described.

In principle, SAR interferometry exploits the information in the interferometric phase,
calculated as the phase difference between two coregistered SAR images acquired from
slightly different orbit positions (spatial baseline) and different times (temporal baseline).
The interferometric phase (φint) is the sum of contributions from several factors, and the
following equation can express this:

φint = φdispl + φtopo + φE + φatm + φnoise (1)

where φdispl represents the phase due to surface displacement, φtopo refers to the phase
caused by local topography (or topographic phase), φE is the phase produced by a surface
of constant elevation on a spherical Earth (curved Earth), also known as the orbital phase,
φatm denotes the phase components due to the variation of atmospheric conditions between
the image acquisitions (the so-called atmospheric phase screen (APS)), and φnoise includes
all the phase noise contributions that corrupt the interferometric SAR signal.

All other contributors to the interferometric phase must be removed or diminished,
to obtain the Earth surface displacement measurement. Using external DEM and precise
orbital information, phase contributions caused by topography and the curved Earth
can be estimated and removed from the interferometric phase. This is the basic concept
of the Differential SAR Interferometry (DInSAR) approach. However, the differential
interferometric phase can still contain some “unwanted” phase components. APS is one of
the main sources of errors that influence the differential interferometric phase, and it can
degrade the accuracy of surface displacement estimates using DInSAR. Topographic and
orbital errors can also contribute to the differential interferometric phase.

The accuracy of surface displacement measurements from DInSAR greatly depends
on the quality of the differential interferometric phase. The established criterion to measure
the quality of the differential interferometric phase is the value of the complex correlation
coefficient, the so-called coherence. The coherence (γ̂) is a measure of phase correlation (or
phase reliability) between two complex SAR images, M (master image) and S (slave image),
and is defined as [71]:

γ̂ =
∑N

i=1 Mi Si
∗√

∑N
i=1

∣∣∣Mi

∣∣∣2
√

∑N
i=1

∣∣∣Si

∣∣∣2
(2)

where S∗ is the complex conjugate of the complex slave image (S), |M| and |S| are the
amplitude of complex SAR master and slave image, respectively, and N indicates the
spatial set of samples employed in the coherence estimation. The coherence values lie in
the range 0 ≤ γ̂ ≤ 1; a value of zero indicates complete incoherence and a differential
interferometric phase value with no useful information, whereas a value of one indicates
complete coherence and a differential interferometric phase value with no noise. DInSAR is
effectively applied only in areas where the differential interferometric phase is characterized
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by high coherence. The main factors that affect the coherence are temporal and spatial
decorrelation and low accuracy of image coregistration.

The temporal decorrelation phenomenon is caused by changes in the physical and
geometric properties of the scatterers on the Earth’s surface [72]. Some of the main sources
of temporal decorrelation are erosion, vegetation growth, cultivation, snow, and near-
surface moisture changes.

Spatial or geometric decorrelation may result from high variations in imaging geometry.
Thus, images with a short spatial baseline must be selected for interferometric processing.

A practical way to overcome the conventional DInSAR limitations mentioned above
is combining the information from multiple short-interval differential interferograms, to
extract common information. The most basic procedure is to compute integer linear combi-
nations of unwrapped differential interferograms [33] or perform their temporal averaging,
the so-called differential interferograms stacking (DIS) approach. The main assumption
of this method is that the deformation phase is highly correlated, and the error/noise
terms (e.g., APS, signal noise, orbital errors, and nonlinear ground displacements) are
uncorrelated between independent pairs. The application of this method increases the
signal-to-noise ratio (SNR) and improves the reliability of the Earth surface displacement
measurements [73].

2.4. DInSAR Processing

The GAMMA software package developed by GAMMA Remote Sensing and Con-
sulting AG, Bern, Switzerland [74] was used for S1 Level-1 SLC product processing. The
processing chain was divided into three stages: pre-processing, conventional repeat-pass
DInSAR, and stacking. Pre-processing and conventional repeat-pass DInSAR were per-
formed following the standard workflow used for processing S1 TOPS mode image pairs.
This workflow is comprehensively explained in [75].

The pre-processing stage consisted of importing SLC data; updating of image metadata
with precise orbital state vectors; S1 TOPS splitting, which included polarization selection;
selection of sub-swaths and bursts covering the AOI; and selection of suitable S1 SLC image
pairs and coregistration. Here, suitable S1 SLC image pairs were selected within the thresh-
olds of the perpendicular and temporal baselines, which were set to 200 m and 18 days,
respectively. The connection graph for ascending and descending datasets generated using
these thresholds is presented in Figure 4a,b, respectively. A total of 321 ascending and
290 descending interferograms were generated and used in the stacking procedure. How-
ever, for coherence analysis, one additional interferogram from a descending orbital pass
with a temporal baseline of 24 days was generated.

The conventional repeat-pass DInSAR stage included the formation of interferograms,
multi-looking, simulation of topographic phases, differential interferogram generation,
coherence calculation, phase filtering, phase unwrapping, orbital error correction, atmo-
spheric correction, phase to displacement conversion, and interferometric product (i.e.,
coherence, differential interferograms, displacements map) geocoding (Latitude/Longitude
WGS84 coordinate system).

Topographic phases were simulated using the precise orbits and an external DEM.
Differential interferograms were formed at a default 2 looks in azimuth and 10 looks in
range, to obtain a pixel size of ~40 × 40 m2. To improve the quality of differential interfero-
grams and optimize the phase unwrapping procedure, the differential interferograms were
filtered using an adaptive Goldstein filter [76], with an optimal filter strength of 0.7 being
employed in this study, after a number of trials. After phase filtering, a minimum-cost
flow (MCF) algorithm [77,78] was used for phase unwrapping. Areas with a coherence
smaller than 0.2 were masked out before unwrapping. The linear trend was estimated and
subtracted from the unwrapped differential interferograms, to correct the residual linear
ramp caused by orbital errors. Differential atmospheric delay in the interferometric phase,
which is correlated with the topography, was reduced using the empirical phase-based
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method, for which the linear correlation between the unwrapped phase and the elevation
of DEM was calculated [79,80].

 

Figure 4. Temporal and spatial (perpendicular) baseline connection diagram of the Sentinel-1 SLC
image pairs from (a) ascending and (b) descending orbital pass used in the DIS approach.

During the stacking stage, the unwrapped differential interferograms of each set
were summed and divided by the total (cumulative) time interval of all interferograms
of the set in years, to obtain an average annual LOS displacement rate. Before stacking,
the interferograms were referenced to a common (32 × 32 pixels) area and were shifted
accordingly, to set the reference phase to zero. The common reference area was in the center
of Villahermosa.

After stacking, phase to displacement conversion was performed, and the resulting
LOS displacement rate maps were geocoded.

2.5. Identification of Flooded Areas

Sentinel-1 GRD images were pre-processed by implementing radiometric calibration,
spot filtering, and geometric correction of the data, to identify flooded areas. Radiometric
calibration was initially applied, as it is an essential step in SAR GRD image pre-processing.
The pixel values of the images could directly represent the radar backscatter [81], achieving
results in dB. Image pixels representing bodies of water have a lower radar backscatter
coefficient than other features [82], such as land or vegetation. The effects of thermal noises
were also removed, and a precise orbit file was applied to the images. Lee Sigma filtering
was applied to reduce the speckle noise caused by random effects of multiple backscattering
within each resolution cell, which is best suited for this processing [81], leading to better
results, with a filter size of 7 × 7. Finally, atmospheric correction was performed, to
compensate for topography variations caused by the satellite sensor’s viewing angle [81,82].

To obtain the flooded areas, the thresholding method was used, which is the simplest
method of image segmentation [83]. Here, the areas affected by flooding were identified
for two flood events: February 2018 and November 2019. The binary images (water/non-
water) were created using thresholds estimated from intensity (in dB) histograms of pre-
processed Sentinel-1 GRD images. The used threshold values varied for the analyzed
images between −12 and −10 dB; the water areas being those with an intensity below the
applied threshold’s value. To separate the permanent water bodies from the areas affected
by floods, the permanent water bodies were identified using pre-flood event images (dry
conditions) and then masked out in co-flood event binary images, so that, as a result, binary
images of areas affected/non-affected by floods were obtained.

A permanent water bodies mask was also used to exclude water bodies from interfer-
ometric coherence analysis, as water bodies generally have a low coherence (near zero).
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SNAP software (Sentinel Application Platform) [84] was used for pre-processing,
whereas GIS software was used to obtain the flooded areas from the pre-processed images.

3. Results

3.1. Coherence Analysis

As mentioned above, DInSAR can only be effectively applied in areas where the
differential interferometric phase is characterized by high coherence. For a short spatial
baseline interferometric pair, where two images are coregistered with high accuracy, the
temporal decorrelation is the main factor of the coherence degradation.

To investigate the impact of the temporal baseline on the quality of interferometric
results in the AOI, differential interferograms with a temporal baseline of 6, 12, 18, and
24 days and the common master image (12 February 2019) were processed, and their
coherences were estimated (Figures 5 and 6). All image pairs had a short perpendicular
baseline, to avoid the influence of spatial decorrelation on coherence degradation. All
four analyzed image pairs covered relatively dry periods, without important or extreme
precipitation (Figure 2) or floods. The parameters of interferometric pairs are presented in
Table 3.

 

Figure 5. (a) Coherence and (b) wrapped differential interferograms for selected Sentinel-1 SLC
image pairs (Table 3).

As it can be seen in Figure 5, the AOI is characterized by low coherence values, even for
minimal possible temporal separation between images (6 days). The vegetation dominated
areas, as for AOI, are especially likely to lose their coherence within a very short period.
Moreover, an important loss of coherence is observed with a temporal baseline increase.

Figure 6 shows the coherence histograms for selected interferometric pairs (Figure 5;
Table 3). As the temporal baseline increases, the frequency of pixels with low coherence
also increases, whereas the mean coherence decreases from 0.13 (6 days) to 0.08 (24 days).
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Figure 6. Coherence histograms for selected Sentinel-1 SLC image pairs (Table 3). Arrows indicate
the mean coherence value.

Table 3. Parameters of image pairs selected for interferometric coherence analysis. Bp is the perpen-
dicular baseline; Bt is the temporal baseline.

Interferometric Pair Orbital Pass Bp (m) Bt (Days) Mean Coherence

12 February 2019–18 February 2019 Descending 93 6 0.13

12 February 2019–24 February 2019 Descending 70 12 0.11

12 February 2019–02 March 2019 Descending 76 18 0.09

12 February 2019–08 March 2019 Descending 80 24 0.08

Figure 7 shows the average images for the ascending and descending orbital pass and
associated coherence histograms. For each orbital direction, the average coherence image
was obtained by averaging the coherence of all image pairs processed. These interferometric
pairs correspond to the 2018–2019 period and meet the established baseline thresholds. The
histograms (Figure 7c) show that the study area is dominated by low coherence (≤0.2),
due to the land cover type (different types of vegetation). The highest values of average
coherence (>0.3) correspond to urban areas and bare soil, reaching up to 0.99.

The average coherence values for different land cover classes are presented in Figure 8.
In this case, the average coherence per class (ACC) value was calculated for each processed
image pair.

As can be seen in Figure 8, the point cloud of ACC values is separated into two groups.
The group with the highest ACC values corresponds to urban areas and bare soil, reaching
a value of 0.5. The rest of the land cover classes belong to a group with lower ACC values,
ranging from 0.05 to 0.2. The grassland, agriculture, and tule vegetation classes have the
largest ACC values of this group (up to 0.2), whereas the lowest ACC values (≤0.05) were
obtained for the mangrove class.
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Figure 7. Average coherence estimated for the 2018–2019 period using image pairs from the (a) as-
cending and (b) descending pass; (c) coherence histograms for each average coherence. Arrows
indicate the mean coherence value.

 
Figure 8. Average coherence for different land cover classes, estimated for image pairs obtained from
the descending orbital pass during the 2018–2019 period.
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3.2. Flooded Areas and Interferometric Coherence

As the AOI is recurrently affected by floods, their influence on coherence degradation
was also investigated. The coherence of the two temporary closed short-baselines interfero-
metric pairs (Table 4) is compared in Figure 9. The 14 November 2018–20 November 2018
interferometric pair spans the flood events caused by strong precipitations (Figure 2),
whereas the 14 December 2018–20 December 2018 interferometric pair spans the period
with relatively dry climatic conditions. Figure 9 shows the important coherence loss due to
flood occurrence. Coherence degradation was observed even for urban (e.g., Villahermosa)
and bare soil areas. The mean coherence for the image spanning the flood event was 0.08,
while the image pair with relatively dry conditions has a mean coherence of 0.12.

Table 4. Parameters of interferometric pairs selected for the flood impact on the coherence degradation
analysis. Bp is the perpendicular baseline; Bt is the temporal baseline.

Interferometric Pair Orbital Pass Bp (m) Bt (Days) Mean Coherence Conditions

14 November 2018–20 November 2018 Descending −85 6 0.08 Wet (flood)

14 December 2018–20 December 2018 Descending 82 6 0.12 Dry

As shown above, the floods had a significant negative impact on the interferometric
product quality, degrading considerably the coherence, even in short temporal baseline
pairs (Figure 9). Floods are recurrent in the AOI, so the areas repeatedly affected by floods
are very challenging for DInSAR applications. To identify the recurrently flooded areas,
analysis of Sentinel-1 GRD images was performed.

Figure 10 shows the intensity data (dB) from Sentinel-1 GRD images acquired before
(Figure 10a,c) and during flood events (Figure 10b,d). Dark areas (low negative intensity)
correspond to the areas covered by water.

Recurrently flooded areas obtained using the Sentinel-1 GRD images and the method-
ology described in Section 2.5 are shown in Figure 11. The recurrently flooded areas are
located south-southeast of the city of Villahermosa, in the towns of Gaviota del Sur, Parrilla,
and Huapinol. These regions have recently been reported as vulnerable to flooding. Large
recurrently flooded areas are also observed northwest of Comalcalco and north of Paraíso,
where the Dos Bocas refinery is located. The analyzed flood events of February 2018 and
November 2019 had an affected area of 6.92 ha and 11.37 ha in 2018 and 2019, respectively.

3.3. DInSAR Results Analysis

As seen from the coherence analysis, temporal decorrelation is the major challenge for
conventional DInSAR applications in the AOI. A considerable coherence loss was observed,
even in short-temporal baseline interferometric pairs. Concerning the interferometric pairs
where sufficient coherence remains (Bt ≤ 18 days, no-flood period), the main source of
error that influences their differential interferometric phase and degrades the accuracy of
LOS displacement estimates is the APS effect.

According to [85–87], a phase error of π
2 is considered relatively strong atmospheric

distortion. At C-band, a phase error of π
2 results in an error of 0.7 cm in the LOS displace-

ment estimate. To obtain reliable displacement values with DInSAR the displacement
signal should dominate over the error terms. In this study, the DIS approach was applied,
to improve the ratio between the displacement signal and the APS error.
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Figure 9. Wrapped differential interferograms: (a) 14 December 2018–20 December 2018 and
(b) 14 November 2018–20 November 2018; their respective coherence images (c,d), and histograms (e).
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Figure 10. Sentinel-1 GRD intensity (in dB) of (a) 6 January 2018, (b) 5 February 2018, (c) 16 October 2019,
and (d) 21 November 2019. (a,c) Correspond to the images before the flood event, and (b,d) to the
images during the floods.

The DIS approach allowed obtaining the average LOS displacement rate estimation
for the 2018–2019 period (2 years). The average LOS displacement rates obtained us-
ing Sentinel-1 SLC images from ascending and descending orbital pass are presented in
Figures 12 and 13, respectively. In the average LOS displacement maps from both orbital
passes, four zones with a higher average LOS displacement rate (magnitude) can be identi-
fied. These zones (b–e) are framed in Figures 12 and 13; the close-up to these zones is also
presented. The LOS displacement obtained for these zones indicates the deformation of
the Earth’s surface away from the satellite in the ascending and descending pass results;
this similarity suggests that the observed LOS displacements may be interpreted as mostly
reflecting land subsidence. In zone b, the maximum average LOS displacement rates
(−6 cm/yr) were obtained in the town of Paraíso, especially north of this urban center,
where the Dos Bocas oil refinery is located. In Comalcalco and the surrounding areas,
maximum average LOS displacement rates of −3 cm/yr were obtained.
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Figure 11. Areas affected by the flood events of (a) 5 February 2018 and (b) 21 November 2019.
Permanent water bodies are shown. A digital globe image is used as a background, the background
image was taken from QGIS XYZ Tiles (https://mt1.google.com/vt/, accessed on 8 August 2022).

 

Figure 12. Map of average LOS displacement rates (cm/yr) obtained through the DIS approach, using
the Sentinel-1 SLC images of ascending orbital pass acquired in the 2018–2019 period. Negative values
indicate a movement away the satellite, (a) full AOI map. Blue rectangles enclose the zones with a
higher average LOS displacement rate. Close-ups of the (b) Paraíso and Comalcalco; (c) Villahermosa;
(d) Batería Samaria and (e) Batería Cactus zones are presented. The location of hydrocarbon wells is
also shown.
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Figure 13. Map of the average LOS displacement rate (cm/yr) obtained through the DIS approach
using the Sentinel-1 SLC images of the descending orbital pass acquired in 2018–2019 period. Negative
values indicate a movement away the satellite. (a) Full AOI map. Blue rectangles enclose the
zones with a higher average LOS displacement rate. Close-ups of the (b) Paraíso and Comalcalco,
(c) Villahermosa, (d) Batería Samaria and (e) Batería Cactus zones are presented. The location of
hydrocarbon wells is also shown.

In zone c, average LOS displacement rates of up to −4 cm/yr were obtained in the
south limits of the Villahermosa urban area, with up to −6 cm/yr in Pomaca and Saloya
2nd located to the north of Villahermosa. In the west limits of the Villahermosa urban area,
average LOS displacement rates of up to −3 cm/yr were obtained. This region is the closest
urban area to oil-producing wells (Figures 12c and 13c). The center of Villahermosa city
could be considered stable (±0.5 cm/yr).

In localities between Comalcalco and Villahermosa (such as Nacajuca, Soyateco, and
Jalpa de Méndez), average LOS displacement rates of up to −2 cm/yr were obtained. The
city of Cárdenas, one of the main urban centers of the area, did not present a displacement
signal, except for a small region southwest of this town, with an average LOS displacement
up to −1 cm/yr.

In zones d and e, the obtained average LOS displacement rates reached −3 cm/yr.
There is a large number of hydrocarbon-producing wells, i.e., the Batería Samaría II and
Batería Captus extraction zones, close to zones d and e, respectively, suggesting a relation-
ship between the hydrocarbon extraction and surface deformation.
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4. Discussion

In this work, a differential interferometric analysis using Sentinel-1 SLC images ac-
quired between January 2018 and January 2020 was conducted, to map the LS in TCP,
as well as to investigate the potential and limitations of DInSAR for detecting and mon-
itoring the LS in this region. The detailed interferometric coherence analysis revealed
that temporal decorrelation is the major challenge for DInSAR application. The AOI is
dominantly covered by different types of vegetation, which is a land surface cover with
constantly and rapidly changing scattering properties. Moreover, the recurrent floods are
an additional source of coherence degradation in TCP. On the other hand, for the short
baseline interferometric pairs, where sufficient coherence remains, the APS effect degraded
the accuracy of LOS displacement estimates. Therefore, the conventional DInSAR is not an
appropriate approach for LS detection and monitoring in the AOI. However, the successful
application of advanced multi-temporal DInSAR approaches is still possible. Here, the
simplest of the advanced DInSAR approaches, the DIS approach, was applied.

The DIS results revealed that several zones within the AOI are subsiding. The maxi-
mum average LOS displacement rate detected in this study (−6 cm/yr) corresponded to
the area located north of Villahermosa (Pomaca and Saloya 2nd) and the town of Paraíso.
Subsiding zones at the west and south limits of the Villahermosa urban area, the major
urban area of the AOI, were detected; whereas Villahermosa city center remained stable
during the analyzed period. The zone located at the southern limits of the Villahermosa
urban area presented an average LOS displacement rate of up to −4 cm/yr. This zone is
also characterized by a location close to areas recurrently affected by floods (see Section 3.2).
Thus, LS increases the flood vulnerability of this zone. It is estimated that the Villahermosa
urban area will increase to about 15 km2 by 2050, and one of the possible urban expansion
scenarios assumes an expansion to south-southeast [88], which will further increase the
flood vulnerability of the zone. LS in the Comalcalco urban area was also detected, as well
as in localities between Comalcalco and Villahermosa.

Three subsiding zones were identified near hydrocarbon extraction zones: at the
western limits of the Villahermosa urban area, and two zones to the west-southwest of
Villahermosa, close to the Batería Samaria II and Batería Cactus hydrocarbons extraction
zones, suggesting a possible relationship between the hydrocarbon extraction and surface
deformation. However, the possible subsidence caused in the rest of the identified subsi-
dence zones is unclear. LS can be the result of natural processes and anthropic activities.
Natural causes such as tectonics (except co-seismic displacement) and soil compaction can
cause subsidence of a few mm/yr [40,89]. However, the natural characteristics of TCP are
not significant triggers of subsidence: the AOI is located far from any active tectonic plate
boundaries (e.g., the Pacific margin), and the compaction of fluvial sediments is maintained
only in active alluvial plain areas that have not been subjected to direct anthropic modifica-
tion (mainly the eastern–southeastern part of the AOI). In these areas, floodable geoforms
prevail that accumulate sediments in the rainy season and are characterized by the overflow
of rivers [90]. The central and west parts of the AOI belong to an inactive fluvio-deltaic
plain, which currently does not receive alluvial sediments, due to the dam system in the
middle basin of the Grijalva River, protection boards, and drainage systems [89] that control
the river and rain water flows. On the other hand, hydrocarbon production is expected
to be the main cause of anthropogenic subsidence in the AOI, as it is the main economic
activity. The anthropogenic subsidence caused by gas and oil extraction can reach up to
tens of cm/yr [44]. Therefore, anthropic activities could be responsible for the detected LOS
displacement rates in the AOI. However, for the zones where there is not a direct spatial
correlation between the subsiding zones and hydrocarbon extraction zones, it is impossible
to draw conclusions about the origin of subsidence, and more investigations are required.

5. Conclusions

The present study evaluated the potential of DInSAR techniques for detecting LS in the
TCP. Coherence degradation, due to temporal decorrelation caused by vegetation, which is
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the dominant land cover in the AOI, and due to recurrent floods, as well the degradation
of the precision of DInSAR measurements due to APS effects, affected the effectiveness
of conventional DInSAR application. However, advanced differential SAR interferometry,
e.g., the DIS approach tested in this study, could be efficiently used to investigate the LS
in the AOI. Using the DIS approach, average LOS displacement rates were obtained for
the 2018–2019 period and several subsiding zones were identified. The subsiding zones
are located in Paraíso and Comalcalco, at the limits of the Villahermosa urban area and its
outskirts, such as Pomaca and Saloya 2nd, as well as in other localities, such as Nacajuca,
Soyateco, and Jalpa de Méndez. The subsiding zone at the south limits of the Villahermosa
urban area has a spatial correlation with the area recurrently affected by floods, indicating
the possible influence of LS on the flood vulnerability of this zone. Three of the detected
subsiding areas have a spatial correlation with hydrocarbon extraction areas, suggesting a
possible relationship between the hydrocarbon extraction and surface deformation. How-
ever, more detailed investigations are required for more precise determination of the origin
of subsidence in these, and the other subsiding zones identified in this study. This work
represents the first effort to address the topic of subsidence in the TCP and could be used
as a reference in future investigations.
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Abstract: Accurate identification of cacti, whether seen as an indicator of ecosystem health or an
invasive menace, is important. Technological improvements in hyperspectral remote sensing systems
with high spatial resolutions make it possible to now monitor cacti around the world. Cacti produce a
unique spectral signature because of their morphological and anatomical characteristics. We demon-
strate in this paper that we can leverage a reflectance dip around 972 nm, due to cacti’s morphological
structure, to distinguish cacti vegetation from non-cacti vegetation in a desert landscape. We also
show the ability to calculate two normalized vegetation indices that highlight cacti. Furthermore, we
explore the impacts of spatial resolution by presenting spectral signatures from cacti samples taken
with a handheld field spectroradiometer, drone-based hyperspectral sensor, and aerial hyperspectral
sensor. These cacti indices will help measure baseline levels of cacti around the world and examine
changes due to climate, disturbance, and management influences.

Keywords: hyperspectral; cacti; drone

1. Introduction

The Cactaceae (cacti) family is one of the most threatened plant families on the planet,
while being some of the most important flora in arid regions of the North American
continent [1,2]. A variety of mammals, birds, and insects rely on cacti for shelter and as a
source of nutrients and hydration during the hot summer season [3–10]. People also use
various cacti for ornamental horticulture, food, and medicinal purposes [2]. Facing pressure
from land conversion for agriculture, horticulture collection, and urban development,
nearly a third of cacti worldwide fall into the threatened category [2]. Cacti also face threats
from climate change as arid regions become more arid [11,12]. Although cacti are adapted
to survive in areas with limited precipitation, extended periods of drought and increases
in summer temperatures harm the establishment of seedlings that require moist soils to
flourish [11,13].

In other regions of the world, cacti are an invasive species that threatens native plants.
In Kenya, degraded rangelands overrun with prickly pear impact forage for both wildlife
and livestock [14,15]. Ranchers in the Edwards Plateau region of Texas work to determine
the best strategy to control prickly pear encroachment on fire-disturbed rangelands [16].
Research shows clusters of invasive cacti in South Africa, Australia, and Spain due to ideal
climates for cacti. Climate change trends also indicate that parts of China, eastern Asia, and
central Africa are suitable for future cacti invasions [17].

Despite the recognized need to monitor cacti occurrence and density, information on
cacti population trends are relatively unknown over large areas [2]. The limited geographic
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extent of field surveys (e.g., transects and plots) makes remote sensing a useful approach for
mapping cacti. Other studies have demonstrated cacti mapping with the use of convolution
neural networks from drone imagery [18] and random forest supervised classification with
Sentinel 2 satellite imagery [15]. These methods may be challenging in the southwestern
United States, where individual cacti plants are often much smaller than satellite imagery
spatial resolution. Additionally, multispectral satellite imagery will have a difficult time
separating cacti from other spectrally similar plant species.

A potential key to distinguishing cacti from non-cacti plants lies in their morphological
differences and how they perform photosynthesis. Cacti contain cells designed to store
water long term and exhibit a form of photosynthesis allowing their stomata to open at
night to limit water loss through transpiration. Most cacti do not have leaves and perform
photosynthesis with the tissue layer of their stems [19–21]. These structural differences
influence the fate of solar radiation in nuanced ways, best observed with hyperspectral
imaging sensors [22–25]. Previous research has shown that saguaro cacti (Carnegiea gigantea)
exhibit a strong dip in near-infrared reflectance values around the 970 nm due to water
absorption [24]. Other research showed the utility of using measurements at 970 nm to
estimate plant water concentration [26].

This paper had two main objectives:

1. Using hyperspectral field spectroradiometer measurements to examine the spectral
signatures of cacti and non-cacti desert adapted plants to find distinguishing charac-
teristics that would allow for the development of a spectral ‘cacti index’.

2. Examine the efficacy of cacti signatures and the index to identify cacti from a drone-
mounted hyperspectral sensor (3 cm resolution) and an airplane-mounted hyperspec-
tral sensor (1 m resolution).

Accurate identification of cacti will allow us to monitor extent baselines and changes
due to climate variability, climate change, disturbance events, and other human-related
modifications of the environment.

2. Materials and Methods

2.1. Study Area

Our study used data collected in the Santa Rita Experimental Range (SRER) located
about 30 km south of Tucson, AZ (Figure 1). SRER, founded in 1903, is the longest contin-
uously active rangeland research facility in the United States [27]. The National Science
Foundation (NSF) National Ecological Observation Network (NEON) has designated SRER
as a terrestrial core site [28].

SRER is located in a semi-arid ecosystem with a bimodal precipitation distribution.
The area receives 28 to 50 cm of rain annually with the majority of events occurring in the
winter and summer. The average annual temperature is 20 ◦C. Cacti are common in the
area due to a lack of extended freezing temperatures during the winter months [27].

Elevation levels range from 900 m in the northwest to 1400 m in the southeast. The veg-
etation composition consists of creosote (Larrea tridentata), prickly pear (Opuntia engelmannii),
cholla (Cylindropuntia fulgida), barrel cactus (Ferocactus wislizeni), mesquite (Prosopis velutina),
palo verde (genus Parkinsonia), whitethorn acacia (Acacia constricta), yucca (Yucca rostrata),
lotebush (Ziziphus obtusifolia), and various grasses [27].

The airplane-mounted hyperspectral AVIRIS (Airborne Visible-Infrared Imaging Spec-
trometer) exploration occurred in the northwest part of SRER, an ideal environment for
cacti observed through a high occurrence of prickly pear and cholla cacti (Figure 1). The
drone-based hyperspectral analysis occurred closer to the center of the SRER at an elevation
of 1130 m. This area had plentiful prickly pear and barrel cacti. Due to the higher elevation
and monsoon rains (collected in August 2021), the area had a substantial herbaceous cover
of grasses and forbs.
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Figure 1. We conducted this study at the Santa Rita Experimental Range (SRER), located about 30 km
south of Tucson, Arizona. We identified cacti samples for the NEON AVIRIS imagery analysis using
photos acquired with a DJI Mavic Pro multirotor in the northwest portion of the study area (black
stars), an area with a high density of cacti. We collected drone-mounted hyperspectral imagery in the
center of the SRER, where prickly pear and barrel cacti are plentiful (black circle).

2.2. Data and Methods
2.2.1. Field Spectroradiometer

We acquired outdoor clear-sky hyperspectral nadir measurements with a full-range
(350–2500 nm) spectroradiometer, FieldSpec®3 by Analytical Spectral Devices Inc. (ASD)
Boulder, CO, USA, with a 15-degree field of view during the summer of 2017. We used a
calibrated Spectralon panel to compute component/surface reflectance data [24]. We took
measurements from 5 chollas, 11 prickly pear cacti, 9 barrel cacti, 32 mesquite, 9 creosote,
26 patches of bare soil, and 28 plots of grass. We averaged the measurements for each type
of sample.

From the field spectroradiometer data, we identified the same reflectance dip at 972 nm
first reported by van Leeuwen. This reflectance dip is due to water absorption in succulent
cacti and can serve as a distinguishing characteristic from non-cacti vegetation [24].

We measured the magnitude of the dip with a normalized difference approach between
the reflectance values at the bottom of the dip and reflectance values immediately outside
of the dip. This is similar to the concept of the normalized difference vegetation index
(NDVI) [29].

A priori, it was unknown which specific bands outside of the dip would provide
a robust index capable of distinguishing cacti from non-cacti vegetation. We tested two
different spectral indices.

Cacti Index 1 (CI1) uses reflectance at 862 nm, which occurs immediately before the
dip at 972 nm:

Cacti Index 1 =
862 nm − 972 nm
862 nm + 972 nm

The second equation, Cacti Index 2 (CI2), uses reflectance at 1072 nm, which occurs
immediately after the dip at 972 nm:

Cacti Index 2 =
1072 nm − 972 nm
1072 nm + 972 nm
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2.2.2. Taking the Cacti Index Airborne

Using the cacti index with aerial and drone-acquired imagery would greatly improve
its utility for mapping and monitoring cacti populations across large tracts of land. We also
wanted to examine the impact of spatial resolution on the uniqueness and clarity of the
cacti signature. We tested the efficacy of the cacti index using both drone- (3 cm spatial
resolution) and airplane-mounted (1 m spatial resolution) hyperspectral sensors.

To investigate the utility of the cacti index with drone scale imagery, we used a
Nano Hyperspectral (https://www.headwallphotonics.com/products/vnir-400-1000nm
(accessed on 23 May 2022)) Visual & Near Infrared (VNIR) sensor by Headwall Photonics
gimbal mounted on a DJI Matrice 600 Pro 6 rotor copter, which is a push broom slit sensor
with 640 linear array detectors. The data contain 270 bands ranging from 400 nm (blue)
to 1000 nm (near infrared) at ~2.2 nm slices. In August 2021, we collected imagery over
a 2 ha plot in SRER known to have a mix of cacti and non-cacti vegetation. We flew the
drone ~65 m above ground level, yielding a spatial resolution of ~3 cm. Using Headwall
software, we converted the raw imagery digital numbers to radiance and then to reflectance
using a tarp with known reflectance values. Individual frames were then orthorectified and
mosaicked into a stacked imagery product. On the stacked orthomosaic, we identified and
extracted spectral signatures from 11 prickly pear, 7 mesquite, 10 barrel cacti, 10 patches of
bare ground, and 10 samples of grasses. Due to known sensor noise in the near-infrared
region of the spectrum, we employed a three-band moving average to smooth the spectral
signatures. We calculated CI1 using bands 212 (864 nm) and 260 (970 nm) and extracted
these values from the same vegetation samples. The sensor is not sensitive to radiation
beyond 1000 nm, so we were unable to calculate CI2.

To investigate the utility of the Cacti Indices at an airplane imagery scale, we used
NEON Airborne Observation Platform hyperspectral data collected across the SRER be-
tween August 24 and 29 of 2018. The sensor was a next-gen version of the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS-NG) (https://avirisng.jpl.nasa.gov/aviris-
ng.html (accessed on 23 May 2022)). The data contain 426 bands ranging from 380 nm (blue)
to 2500 nm (near infrared) at ~5.5 nm slices. The aircraft flew ~1000 m above ground level
with a nominal spatial resolution of 1 m. NEON used ATCOR4r [30] to atmospherically
correct the data and serve it as unitless surface reflectance values scaled by 10,000.

To facilitate the identification of individual cacti and non-cacti vegetation samples,
we collected 35 ha of high-resolution (1.6 cm) RGB drone imagery using a DJI Mavic Pro
multirotor. We found this method to be more efficient than locating samples on foot. We co-
registered orthomosaics created from the drone imagery with the NEON AVIRIS imagery
using ArcGIS Pro. We identified and extracted the spectral signature from many samples of
cholla (N = 418), prickly pear (N = 325), mesquite (N = 105), palo verde (N = 100), creosote
(N = 100), and bare ground (N = 300). We calculated CI1 and CI2 using AVIRIS bands 97
(862 nm), 119 (972 nm), and 139 (1072 nm).

3. Results

3.1. Spectral Signatures from Ground-, Drone-, and Airplane-Based Sensors

Spectral signatures for all three sensors showed similar characteristics but nuanced
differences. The prickly pear, cholla, and barrel cactus spectral signatures, as measured
from the ASD spectroradiometer, all exhibit a dip in reflectance centered at 972 nm and a
peak around 1072 nm (Figure 2). The non-cacti classes do not have this dip. The prickly
pear and cholla signatures show a similar dip at 972 nm and a peak at 1072 nm when
extracted from the NEON AVIRIS data. However, the absolute reflectance values are lower
and the dip is shallower. From the drone-mounted Nano Hyperspectral sensor, the same
water absorption dip at 972 nm is present in the barrel and prickly pear cacti signatures,
but the absolute reflectance values are also lower than the ASD.
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Figure 2. Average spectral signatures of mesquite (orange line), creosote (grey line), bare ground
(brown line), herbaceous (pink line), barrel cactus (purple line), cholla (blue line), and prickly pear
(red line), as measured from by the ASD spectroradiometer (A), drone-mounted Nano Hyperspectral
sensor (B), and airplane-mounted NEON AVIRIS (C). The three dark grey lines represent the three
portions of the electromagnetic spectrum used to calculate the two cacti indices.

107



Land 2022, 11, 786

3.2. Range of Cacti Indices by Plant Type

Using the field spectroradiometer, we sampled bare ground (N = 26), barrel cactus
(N = 9), cholla (N = 5), creosote (N = 9), herbaceous (N = 28), mesquite (N = 32), and prickly
pear (N = 11). CI1 values calculated from the field spectroradiometer show a separation of
the cacti from non-cacti vegetation and bare ground (Figure 3). The majority of CI1 values
for the cholla samples range from 0.173 to 0.186, with a mean value of 0.133. The majority
of CI1 values for prickly pear samples range from 0.095 to 0.177, with a mean value of 0.103.
The majority of CI1 values for the barrel cactus samples range from 0.101 to 0.257 with a
mean value of 0.125.

Figure 3. This graph shows the range of Cacti Index 1 (862 and 972 nm) values for cacti, non-cacti
vegetation, and bare ground computed from the Field Spectrometer (A), Nano Hyperspectral (B), and
NEON AVIRIS (C) collections. The red hatched boxes represent prickly pear, the blue hatched boxes
represent cholla, and the purple hatched boxes represent barrel cactus. The square in the middle of
each box is the mean for that series of samples. The whiskers represent the minimum and maximum
values within the interquartile range. Any triangles outside the whiskers are outlier values.
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We identified bare ground (N = 10), barrel cactus (N = 10), herbaceous (N = 10),
mesquite (N = 7), and prickly pear (N = 11) using the drone-mounted Nano hyperspectral
sensor. CI1 values calculated using the Nano hyperspectral data for the selected samples
show a separation of the barrel cactus and prickly pear (cacti) from non-cacti vegetation
and bare ground. The majority of values for the barrel cactus samples range from 0.205 to
0.390, while the majority of values for the prickly pear samples range from 0.264 to 0.482.
The mean value for the barrel cactus samples is 0.289 and the mean value for the prickly
pear samples is 0.385 (Figure 3).

The greater coverage of the NEON AVIRIS data made it possible for us to recognize
bare ground (N = 300), creosote (N = 418), herbaceous (N = 100), mesquite (N = 105), palo
verde (N = 100), and prickly pear (N = 325). CI1 values calculated using the NEON AVIRIS
data for the selected pixels show a separation of the cholla and prickly pear (cacti) from
non-cacti vegetation and bare ground. The majority of values for the cholla samples range
from 0.056 to 0.109, while the majority of values for the prickly pear samples range from
0.039 to 0.083 on the CI1. The mean value for the cholla samples is 0.083 and the mean
value for the prickly pear samples is 0.062. The only other series of samples that overlaps
the two cacti boxes are those for palo verde with a range from 0.032 to 0.045 and a mean of
0.040 (Figure 3).

We used the same bare ground (N = 26), barrel cactus (N = 9), cholla (N = 5), creosote
(N = 9), herbaceous (N = 28), mesquite (N = 32), and prickly pear (N = 11) samples pulled
from the field spectroradiometer to investigate CI2. The CI2 values show a separation of
cacti from the other land cover types (Figure 4). The mean value for the cholla samples is
0.083 with the majority of values falling between 0.173 and 0.186. The mean value for the
prickly pear samples is 0.143 with the majority of values falling between 0.948 and 0.177.
The majority of barrel cactus samples have values between 0.101 and 0.257, with a mean
value of 0.134.

Figure 4. This graph shows the range of Cacti Index 2 (972 and 1072 nm) values for cacti, non-
cacti vegetation, and bare ground computed from the Field Spectrometer (A) and NEON AVIRIS
(B) collections. The red hatched boxes represent prickly pear, the blue hatched boxes represent cholla,
and the purple hatched boxes represent barrel cactus. The square in the middle of each box is the
mean for that series of samples. The whiskers represent the minimum and maximum values within
the interquartile range. Any triangles outside the whiskers are outlier values.
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Using the same examples of bare ground (N = 300), creosote (N = 418), herbaceous
(N = 100), mesquite (N = 105), palo verde (N = 100), and prickly pear (N = 325) extracted
from the NEON AVIRIS data we computed CI2. The calculated CI2 values for the selected
pixels show a separation of the cholla and prickly pear (cacti) from non-cacti vegetation
and bare ground. The majority of values for the cholla samples range from 0.078 to 0.106,
while the majority of values for the prickly pear samples range from 0.074 to 0.097. The
mean value for the cholla samples is 0.092 and the mean value for the prickly pear samples
is 0.086 (Figure 4).

4. Discussion

The spectral signatures created from the direct measurements performed with the
hand-held spectroradiometer demonstrate the unique features of cacti. It is clear that a
water absorption dip occurs around 972 nm and reflectance peaks occur around 862 nm
and 1072 nm for barrel, cholla, and prickly pear cacti. The dip is also present in the data
of drone-mounted and airplane-mounted hyperspectral sensors. Nuanced differences
between the aerial spectra and the hand-held spectra could be caused by a variety of factors,
including 1. spatial resolution, 2. radiometric sensitivity, 3. The reflectance calculation
method, and 4. atmospheric water absorption of spectra around 972 nm [31].

We observed diminished sensitivity of the Cacti Indices within the NEON AVIRIS
data. This was probably a function of the coarser spatial resolution of that imagery. Within
1 m pixels, instead of being pure cacti reflectance, the features are often a mix of vegetation,
bare ground, and shadow. Prickly pear samples were especially prone to mixed signals due
to their spreading structural form (Figure 5). However, prickly pears tended to be large,
2–4 m in diameter, making up for shadowing created by their structural composition. Barrel
cactus and cholla usually had less mixed signals due to their more compact morphology
with diameters as small as 50 cm. Despite reduced sensitivity from AVIRIS NEON data,
the cacti indices still demonstrated the ability to separate cacti from non-cacti vegetation.
Though both CI1 and CI2 show separability between cacti and non-cacti vegetation, CI1
shows a broader separation, making it the preferred index in our study area.

Figure 5. On the left: Example of a prickly pear cactus and a cholla cactus as captured by the DJI
Mavic Pro Quadcopter. The nominal spatial resolution of the image is 1.6 cm. The difference in
structure between the cholla and prickly pear is clear as seen by the influence of shadowing on
the prickly pear cactus. On the right: The Cacti Index 1 visualized using the 1 m NEON AVIRIS
reflectance data. It can be seen that cholla and prickly pear have higher cacti index values.

The Nano Hyperspectral sensor has diminished radiometric sensitivity near the edges
of its range (near 400 nm and 1000 nm), which leads to a lower signal to noise ratio than
other spectral bands in the sensor. This hardware limitation impacts CI1 produced from the
Nano Hyperspectral sensor because 972 nm is near the edge of the silicon-based sensitivity.

110



Land 2022, 11, 786

The implication is that in addition to identifying cacti, the index produces many false
high values for low light shadowed areas (Figure 6). Mitigation strategies could include
identifying and removing low radiance pixels found in shadowed areas, or collecting
imagery with longer exposure time. Ideally, drone-based mapping of cacti should use a
hyperspectral sensor with a wider range (i.e., >1000 nm) than the Nano Hyperspectral
sensor provides.

Figure 6. Drone-mounted Nano hyperspectral imagery shown as true color (left panel) and Cacti
Index 1 (right panel). Cacti were easily identifiable with the index; however, sensitivity problems
near the edge of the sensor range created false high index values in low light shadowed areas of the
study area.

The spectral slices captured by the AVIRIS NEON sensor (5.5 nm) and Nano Hyper-
spectral sensor (2.4 nm) played a role in cacti detection. The smaller the slices the better
the sensor is at capturing the difference between the peak at 862 nm and the dip at 972 nm.
This led to a smaller dynamic range in the CI1 values calculated with the AVIRIS NEON
data compared to the CI1 values calculated with the Nano Hyperspectral data.

The water absorption dip (972 nm) observed in the drone-based and airplane-based
imagery demonstrate that the Cacti Indices can be used for the identification and mapping
of cacti species across larger extents. Depending on the application, the Cacti Indices
could be combined with other sensor data (e.g., LiDAR height information), used within a
supervised classification framework, or implemented with a user-defined threshold.

The Cacti Indices should be effective in identifying succulent cacti in other regions of
the world if the plant species store water in their tissue similar to barrel, cholla, and prickly
pear cacti. However, localized research should investigate the extent to which non-target
species might exhibit high index values and confuse cacti identification. In our study area
for example, we discovered that Palo Verde, with their photosynthesizing stems, exhibited
CI1 values nearly as high as prickly pear samples.

Using the Cacti Indices with satellite imagery may be possible but will be challeng-
ing. Our methods require narrow spectral bands and high spatial resolution to identify
individual cacti. Additionally, the spectral area of interest near 972 nm is greatly impacted
by water vapor in the atmosphere [31]. As a result, many satellite sensors do not have
bands sensitive to this spectral region, and if they do, the signal will be quite weak. The
Earth Observing-1 (EO-1) Hyperion (2000–2017) and a few other orbital hyperspectral
reflectance sensors (HISUI-Hyperspectral Imager Suite-onboard the International Space
Station; EnMAP-Environmental Mapping and Analysis Program; PRISMA-Hyperspectral
Precursor and Application Mission) could possibly leverage the Cacti Indices [32]. These
hyperspectral sensors all have moderate spatial resolutions (e.g., 30 m) that are unable to
detect individual cacti, but could be used to estimate percent cover of cacti per pixel. More
research on these sensors and platforms is needed.
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5. Conclusions

In this paper, we demonstrated the ability to create an index from hyperspectral data
to accurately identify cacti. We used a hand-held spectroradiometer and two imaging
spectrometers to collect spectral information from cholla, barrel, and prickly pear cacti
plants and other prevalent landscape features. Based on those collections, we identified
three unique aspects in the spectral reflectance signatures for cacti at 862 nm, 972 nm, and
1072 nm bands of the electromagnetic spectrum. Using those three portions of the cacti
spectral signatures, we calculated two normalized difference indices: Cacti 1 (862 nm and
972 nm) and Cacti 2 (972 nm and 1072 nm). We then used hyperspectral data captured
by drone and airplane to show the applicability of the Cacti indices at various spatial
resolutions. Cacti samples showed spectral uniqueness in both the 3 cm drone hyperspectral
imagery and the 1 m aerial hyperspectral imagery using the cacti indices.

Whether for conservation or control applications, the cacti indices derived from aerial
platforms can help identify cacti across larger landscapes than is possible with field-based
measurements. Hyperspectral data provide more precise spectral observations of plant
characteristics than multi-spectral imagery sources. Though hyperspectral imagery avail-
ability is currently limited, interest in the technology is strong across land management,
agriculture, and mining industries. Availability of hyperspectral imagery at multiple
airborne and spaceborne scales is likely to proliferate in the near future.
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Abstract: Urban planning is a challenge, especially when it comes to limiting land take. In former
industrial regions such as Wallonia, the presence of a large number of brownfields, here called
“redevelopment sites”, opens up new opportunities for sustainable urban planning through their
revalorization. The Walloon authorities are currently managing an inventory of more than 2200 sites,
which requires a significant amount of time and resources to update. In this context, the Sentinel
satellites and the Terrascope platform, the Sentinel Collaborative Ground Segment for Belgium,
enabled us to deploy SARSAR, an Earth observation service used for the automated monitoring of
redevelopment sites that generates regular and automatic change reports that are directly usable by
the Walloon authorities. In this paper, we present the methodological aspects and implementation
details of the service, which combines two well-known and robust methods: the Pruned Exact
Linear Time method for change point detection and threshold-based classification, which assigns the
detected changes to three different classes (vegetation, building and soil). The overall accuracy of the
system is in the range of 70–90%, depending on the different methods and classes considered. Some
remarks on the advantages and possible drawbacks of this approach are also provided.

Keywords: automatic monitoring; time series; change detection; Sentinel-1; Sentinel-2; urban planning

1. Introduction

In former industrialized regions characterized by a large number of brownfields and a
high population density, such as Wallonia (the southern region of Belgium), offering new
living spaces while limiting land take has become a challenge. The management of vacant
lands is then a key to urban planning, as monitoring abandoned sites can support policy
and decision-making [1]. In Wallonia, many industrial sites were developed during three
distinct periods between the end of the 18th century and the middle of the 20th century.
However, since the middle of the 20th century, industrial sites have been increasingly
abandoned, first due to the closure of coal mines, then of manufacturing and metallurgical
industries. Moreover, a phenomenon of relentless de-urbanization has increasingly emptied
the urban centers. This has led to the development of industrial and urban wastelands,
which, depending on their origin, can vary in size from a few dozen square meters to a
few dozen hectares (e.g., coal mines or blast furnaces), with 75% of them being less than
one hectare. As the vast majority of these sites are located in urban areas, they negatively
impact the urban fabric but also represent an opportunity for sustainable urban planning as
they can be revalorized, with their reuse being a fundamental asset in land management [2].
Therefore, the Walloon authorities have proposed a detailed definition for those sites
and have catalogued them into an exhaustive inventory [3,4]. The redevelopment sites
(RDSs) are thus defined as “property or group of properties that have been or are intended
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to be used for an activity, excluding housing, and whose current state is against land
management best practices, or constitutes a deconstruction of the urban fabric” [5]. The
RDS inventory, which enables potential investors and public authorities to find out about
vacant land and its condition, currently contains more than 2200 sites and is available
online [6]. Updating it is essential to keep a record of all the sites that have already been
enhanced and provide reliable information to the actors consulting the database. Currently,
this update is performed, on the one hand, by the visual analysis of orthophotos annually
provided, as open data, over the entire Walloon territory and, on the other hand, by
systematic field visits. These methodologies are time-consuming and costly. Indeed, the
first solution requires several months of work for the analysis of all the RDSs included in
the inventory; moreover, the results can only be provided once a year, and there is also
a delay between the moment of data acquisition and their availability. As for the second
solution, the systematic field visits, the analysis is spread over several years. However, the
Walloon authorities estimate that less than 10% of the RDSs are likely to be redeveloped
from one year to the other and show major changes (the three classes of interest for the
administration are buildings, vegetation and soil). It is, therefore, necessary to find a way
to reduce the time spent on the inventory update by providing operators with a list of
sites presenting indications of significant changes that would enable them to concentrate
their efforts on these sites. The problem of how to efficiently monitor redevelopment
areas (usually called brownfield sites or more generally, vacant lands, although with a
slightly different meaning than ours) has been examined in many studies that mostly focus
on either their potential for policy-makers by using GIS data [7] or the detection of new
vacant lands. In particular, remote sensing data have been used in several studies for the
detection of new brownfields: Ref. [8] investigated the potential of IKONOS data in the
object-oriented classification approach and Ref. [9] investigated IKONOS, QuickBird and
hyperspectral data. In a recent study [10], the fusion of remote sensing images thermal data,
GIS layers and citizen science data is proposed for the identification of urban vacant land.
Remote sensing is also used, at a fine scale, for the detection and monitoring of hazardous
substances and materials, as shown in [11].

Change detection is one of the major applications of satellite-based remote sensing
data [12], and many different satellite-based change detection methods have been devel-
oped and used in recent decades. Among the most commonly used methods are algebra
methods (e.g., Image Differencing, Ratioing or Change Vector Analysis), transformation-
based methods (e.g., Principal Component Analysis), classification-based methods [13]
and time series analysis. In [14], the authors provide a review of the different techniques,
a guide to compare them by placing a clear separation of variables between the analysis
unit and classification method and report that pixel and post-classification change methods
remain the most popular choices. The review also presents some advantages and limita-
tions of the different techniques. These limitations and how to overcome them have been
widely studied and have led to more refined methodologies, e.g., super-resolution mapping
and the analysis of mixed pixels for the improvement of land-cover class maps [15]. In
addition, many other methods have recently been developed, notably based on artificial in-
telligence [16,17]. However, in [16], it was highlighted that supervised AI methods require
massive training samples to obtain a robust model and that processing remote sensing big
data requires a large amount of computational resources, which limits the implementation
of the AI model. It is, therefore, crucial to choose the methodologies based, on the one hand,
on needs such as the scale of the application and the thematic objectives and, on the other
hand, on aspects such as the resolution of the available images and their ability to provide
the required comparison features [14]. In the framework of this project, we opted for a time
series analysis approach as, depending on the method, it offers a number of advantages,
e.g., being able to detect abrupt and gradual changes (BFAST) or to capture subtle but
consistent trends (LandTrendR), Continuous Change Detection and Classification (CCDC)
being able to detect a variety of LULC changes continuously with high spatial and temporal
accuracies [18]. However, in [18], the limitations of these methods are also presented,
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e.g., time-consuming, requiring many resources, unsuitable for irregular observations, and
some are unable to identify types of changes. It is, therefore, crucial that the choice of time
series analysis method takes into account the objective of the research, and considers the
need to find the change points as soon as possible in real-world applications and that there
is a detection delay for many existing approaches [19,20].

Within this context, the European Copernicus program has opened, with the launch
of Sentinel-1 and Sentinel-2 satellites, new opportunities thanks to their high spatial and
temporal resolution. The Sentinel-1 mission consists of a constellation of two polar-orbiting
satellites mounting a C-band synthetic aperture radar (SAR) imaging system. They offer a
repeat cycle of six days and all-weather and day-and-night monitoring capabilities [21]. The
two Sentinel-2 satellites A and B are characterized by a sun-synchronous orbit, phased at
180 to each other, and a repeat cycle of 5 days [22]. The temporal resolution of the Sentinel
satellites ensures enough data to create time series [23–25], and their spatial resolution
allows for the identification of landscape features [26] and monitoring urban areas [27],
whereas the Sentinel-2 spectral resolution facilitates the thematic identification of land
cover [28–30].

In addition to the use of SAR and optical data separately, the combination of SAR
and optical data has been highlighted in domains such as vegetation monitoring [31] and
urban mapping [32,33]. Combining the two types of data has the advantage of coupling
features and thus overcoming some limitations, such as clouds, shadows and snow cover
for the optical data. Regarding the Sentinel images, the combination has been investigated
in various domains, such as forest disturbance [34], soil tillage [35] and urban mapping [36].
In [37], the use of Sentinel-1 data alone, Sentinel-2 data alone and their combined use for
forest–agriculture mapping are compared.

The demand for automated operational services providing near-real time information
for environmental monitoring has increased substantially in recent years, and several
studies have investigated their feasibility and proposed possible implementations, mainly
for natural events monitoring. In [20], the Thresholding Rewards and Penances TRP concept
was applied for a near-real time forest disturbance alert system based on PlanetScope
imagery, producing new forest change maps when a new image is made available. They
proposed a robust statistical method to estimate forest clear-cuts, but the use of PlanetScope
images makes the service costly as they need to acquire raw imagery. In [38], a near-real
time automatic avalanche monitoring system based on Sentinel-1 data was presented, and
an age tracking algorithm was developed, while, in [39], the focus was on burned forest
areas using Sentinel-2 data. For mapping burned areas, the latter used a selection of spectral
indices to compare the pre-fire and post-fire values. In [40], an automatic and repeatable
plot-based change detection method, based on pre and post event Sentinel-1 and Sentinel-2
data, was designed and tested to map extreme storm-related damages. Most of the services
are in the test or pre-operational phase and focus on localizing one type of change, with
hindsight of events and/or using one type of remote sensing data being sometimes costly.

The goal of this paper is to present the methodological aspects and implementation
details of SARSAR, a new Earth observation service for the monitoring of redevelopment
sites in southern Belgium. For its deployment, a number of requirements made by the
Walloon administration had to be met, namely: (i) the implementation of a straightforward
automatic operational tool providing results on a regular basis (once every two months);
(ii) the ability to detect changes in vegetation, buildings and soil, on a set of sites spread
throughout the region’s territory; (iii) the use of open-source data.

Differently from other methodologies and services mentioned above, the focus is,
therefore, on providing a response to the administration need of monitoring RDSs on
a regional scale and identifying the time and type of change at the site level using free
and open-source technology. In brief, by exploiting Sentinel-1 and Sentinel-2 data, the
service automatically detects and characterizes changes in user-defined sites of interest and
provides a final change list that can be directly used by the Walloon authorities to prioritize
their daily work and reduce the time needed for the inventory update.
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To fulfil the free and open-source technology requirement, we exploited Terrascope,
the Belgian contribution to the Sentinel Collaborative Ground Segment (CollGS), which
provides access to pre-processed Sentinel data [41] and computer capacity for the execution
of the process and its automation. The Sentinel Collaborative Ground Segments were
created by ESA and its Member States to facilitate the access to the Sentinel data and the
data exploitation. CollGS can be used for various applications, as shown by Ref. [42], who
used Terrascope for geohazard monitoring.

To be able to provide a list of the RDSs that are likely to change, several steps were
implemented. Considering the number of sites to be processed and the fact that aggregate
information is needed for each RDS, we opted for an object-based approach. Moreover,
since the number of training samples required to implement a solution based on AI would
have been prohibitive, our final choice was a combination of unsupervised methodologies.

After data preparation, where the extraction of temporal features from the Sentinel
time series was performed, two processes were run: first, the change point detection
analysis based on the Pruned Exact Linear Time (PELT) [43], whose goal is to flag each site
as changed/unchanged and to provide an estimate of the change date(s) [44] and then a
rule-based classification based on threshold selection to characterize the types of changes.

Changepoint analysis is largely employed for the study of time series in many applica-
tion domains, yet it is still underexploited within the remote sensing community, due to the
fact that high resolution images were not easily accessible until a few years ago. In regard
to our service, changepoint detection was chosen because it serves a twofold purpose: it
directly provides an estimate of the date of change, which alone constitutes valuable infor-
mation for the administration, and allows us to restrict the time window within which the
change classification should be performed. As regards threshold selection, it is a common
procedure in algebra-based change detection [45]. The selection of the best threshold could
be associated with a priori knowledge or derived from the histogram of the image [12].
The advantage of thresholding is that it can guarantee a robust near real-time approach
based on fast and automated processing [34]. To the best of our knowledge, there have
not been other attempts to use changepoint detection in combination with threshold-based
classification for the characterization of changes in urban areas.

The paper is organized into five sections: The Materials section presents the study
area, the Sentinel data used for this study via the Terrascope platform and the ground truth
used for validation. The Methods section is divided into three parts: the first part explains
the feature extraction and the creation of temporal profiles, the second part investigates the
change detection method chosen and the third part presents the methodologies used for
the classification of the changes. The last three sections are the presentation of the results,
the discussion and the conclusions.

2. Materials and Methods

2.1. Materials
2.1.1. Study Area

The study was performed in Wallonia, the southern part of Belgium that covers an
area of about 17,000 km2. The industrial development in this region took place mainly
along the Haine–Sambre–Meuse–Vesdre river axis. In total, slightly over 2200 sites are
distributed mainly along this particular path, for a total area of 3800 hectares (Figure 1).
However, a certain number of sites are spread over the whole territory of Wallonia. As
mentioned in the Introduction, the size of the RDSs themselves, depending on their original
use, can vary greatly. Figure 2 shows a former industrial area presenting a large number of
RDSs of different sizes.

118



Land 2022, 11, 360

Figure 1. Study area (green mark), with the spatial distribution of the RDSs in Wallonia (red marks)
and the Pléiades ground truth areas (black marks).

 

Figure 2. Close-up, illustrated with an orthophoto, of a former industrial area presenting several
RDSs of different sizes.

2.1.2. Sentinel Data and Computing Environment

Sentinel-1 and Sentinel-2 data have been available since 2014 and 2015, respectively.
Both missions consist of two satellites (A and B). Sentinel-1 mounts an SAR instrument that
operates at a center frequency of 5.405 GHz and supports operation in dual polarization.
For Belgium, the typical acquisition mode is Interferometric Wide (IW) in dual polarization
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(VV+VH), which provides a resolution of around 5 × 20 m for Single Look Complex
(SLC) products and around 20 × 20 m for Ground Range Detected (GRD) products [21].
Sentinel-2 carries an on-board Multi Spectral Instrument (MSI) measuring the reflected
solar spectral radiances with 13 spectral bands ranging from visible to shortwave infrared
(SWIR) bands [22]. The spatial resolution is 10 m, 20 m or 60 m depending on the spectral
band. As regards the temporal resolution, Sentinel-1 and Sentinel-2 have a repeat cycle of 6
and 5 days, respectively, making them suitable for the creation of time series.

All the processing was carried out using the Terrascope platform [41], the Sentinel
Collaborative Ground Segment for Belgium. Terrascope was chosen because it offers, in
open access, up-to-date pre-processed Sentinel data, a computing environment, long-term
maintenance and technical support. Concerning the Sentinel-2 data, the platform makes
available atmospherically corrected images Level 2A Top-of-Canopy (TOC), downloaded
from the ESA hubs. As regards Sentinel-1, along with the original SLC and GRD products,
Terrascope also conveniently offers the corresponding calibrated and orthorectified images,
which we ultimately used to avoid unnecessary pre-processing. Their spatial resolution is
20 × 20 m resampled at 10 m. The SARSAR service was run on a dedicated machine with a
6-core hyperthreading enabled CPU, 24 GB RAM, a boot volume of 2 TB and a data volume
of 8 TB. Data storage was ensured by a PostgreSQL (11.11) server. The data processing was
performed via a combination of Python (3.6) scripts, PostgreSQL stored procedures and
PostGIS (3.1) functions. The whole processing chain was launched automatically and at
predefined intervals thanks to CRON. Ultimately, the final users received notifications and
reports by e-mail.

2.1.3. Ground Truth

For validation purposes, two ground truth datasets were created by visual analysis.
The first ground truth is based on the orthophotos (25 cm resolution) taken in summer
2016 and 2018, and focuses on the RDSs, spread throughout the region, for which there are
changes that can be observed from Sentinel data. This dataset was developed to account
for major changes and for which we do not have information about the exact dates of
change. The second ground truth is based on Pléiades images (50 cm resolution) acquired
monthly between January 2019 and December 2020 on two specific areas (Figure 1) with a
high concentration of RDSs. This provides complementary information compared to the
orthophotos’ ground truth. In fact, while the orthophotos’ ground truth focuses on RDSs
with significant changes, this dataset was created to take into account in a more balanced
way the different types of change. Although, due to meteorological conditions, only 14 and
16 images, respectively, are available for each area, an estimation of the change dates was
extracted taking into consideration that several dates can occur per site. In addition to the
change dates for the whole period, information on the changes occurring between summer
2019 and summer 2020 was also extracted in order to provide a dataset that complements
the one based on orthophotos.

In total, 141 and 161 sites are present in the orthophotos and Pléiades ground truth,
respectively. For each of the 302 RDSs, changes were manually recorded for vegetation,
buildings and soil. Overall, 152 of the sites presented at least one change and 150 remained
unaltered. The breakdown of the changes into the three possible types is shown in Table 1,
and Figure 3 provides two examples of changes.

Table 1. Number of changes per ground truth and breakdown into change types.

Ground Truth Building Vegetation Soil Total Changes Total RDSs

Orthophotos 60 97 125 282 141
Pléiades 8 13 15 36 161

Total 68 110 140 318 302
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Figure 3. Close-ups, illustrated with orthophotos, of two RDSs showing (a) vegetation decrease and
soil change (“Scierie Renard”); (b) building increase and soil change (“Immobilière Bouchoms”).

2.2. Methods

Several methodologies for change detection and classification can be applied, and select-
ing the appropriate technique is related to the objective of the study [46]. Techniques such
as single image differing or ratioing provide binary information (change/no-change), and
if detailed information is required, such as the change direction, classification techniques
are preferable. Another technique providing information on change type and direction is
index differencing. These are mathematical transformations in multispectral mode and are
produced separately; then, other change detection techniques (e.g., differencing or ratioing)
can be applied [46]. Concerning the unit of analysis, on the one hand, in [46], it is explained
that pixel-based change detection methods have been used traditionally, the main advantages
of this unit of analysis being its suitability for large pixels; it does not generalize the data; and
it is an effective methodology, especially when the relationship between pixel intensity and
the land cover changes under investigation is strong [14]. On the other hand, the object-based
approach allows the exploitation of the spatial context, reduces the noisy outputs of isolated
changed pixels and allows direct object change detection (DOCD) by comparing spectral
information [46]. One of the object-based units of analysis is the vector polygon, which is
extracted from existing geodatabases; they group together pixels that are suitable for statistical
analysis, the result of which may indicate changes within the corresponding polygons. On
one hand, vector polygons provide a cartographically ‘clean’ basis for analysis [14], allow the
exploitation of additional thematic information about the objects to obtain better results and
enhance the interpretation of the image [47]. They also provide important information on the
location of the objects to investigate for change detection. In [47], this type of object-based
approach, combined with spectral indices, was used for the automatic change detection of
buildings in an urban environment as it can handle the complexity of urban environments. On
the other hand, vector polygons generalize the data, and the size and shape of objects cannot
be compared [14]. As regards the current study, we opted for this latter methodology, where a
set of features (multi-spectral indices and radar backscattering) are used to create what we
could define as the temporal signatures of the RDSs. The methodology responds to the need to
monitor the RDS polygons at a regional scale, and to have generalized information of changes
detected for the three types of classes (vegetation, building and soil), thereby reducing the
manual work [14].
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The proposed overall methodology, whose main goal is to provide a shortlist of the
sites that are likely to have changed and for which an on-field visit would be required,
is shown in Figure 4. The first main block is the feature extraction, where the Sentinel-1
and Sentinel-2 images available in Terrascope and described in the previous section are
processed to obtain the above-mentioned temporal profiles of the RDSs (each RDS has
multiple temporal profiles—one per feature). The second main block is devoted to the
characterization of the changes, which is carried out in two steps: (i) the change detection,
which flags a site as changed (or not) and provides an estimate of the change date(s)—this
is carried out once every two months; (ii) the change classification, which is divided into
two separated processes. First, when a change date is detected, a rule-based classification
is performed in order to provide additional information on the type of change: vegetation,
building or soil. Second, the same methodology is applied once per year, considering
summer average features in order to detect gradual changes.

Figure 4. Workflow of the automatic change detection and classification of the RDSs.
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The final output of the service is a csv file that is automatically delivered to the operator.
For each RDS, this report includes: (1) information on whether a change has occurred or
not, (2) the type of change and (3) the estimated date of the change (if available).

2.2.1. Features Extraction and Temporal Profiles

For each Sentinel-1 acquisition (more specifically, the VH band, which was found to be
the most suitable for our scope) that contained the site of interest within the desired time
frame, the average backscatter (sigma0) for that site was computed and used to populate
the corresponding temporal profile. Since a site can be typically seen from 3 to 4 different
viewing angles (considering both ascending and descending orbits), separate profiles were
created for each satellite pass and then averaged to obtain a unique “sigma0VH” feature.

Regarding Sentinel-2 data, all the L2A tiles over the area were analyzed. Only the tiles
presenting less than 25% of clouds were selected, which greatly reduced the number of
undetected cloud pixels. Then, each image was clipped based on the RDS vector polygons
file. Image co-registration was ensured during this process. Then, the Scene Classifica-
tion layer, a classification map generated via the Sen2Cor ESA processor that accompa-
nies every L2A image and is directly available in Terrascope, was used to remove every
single pixel classified as “No_Data”, “Cloud_Shadows”, “Cloud_Medium_Probability”,
“Cloud_High_Probability”, “Thin_Cirrus” and “Snow”. This allowed us to remove, site
per site, the dates for which no data, shadows, clouds, or snow pixels were present.

In the feature extraction step, six widely used spectral indices were calculated that were
to be used in the next processes: (1) the Built-Up Areas Index (BAI) [47], (2) the Brightness
Index (BI) [48], (3) the Second Brightness Index (BI2) [48], (4) the Normalized Vegetation
Index (NDVI) [49], (5) the second Normalized Difference Water Index (NDWI2) [50] and
(6) the soil brightness index (SBI) [47]. The selection of the spectral indices was motivated
by their widespread application in the literature and by considering that most built-up
indices require SWIR bands, which are available only in a coarse resolution for Sentinel-2.
The BI2 index has been tested for built-up detection after applying NDVI and NDWI2 to
mask vegetation and water [51]. BAI has proven to be useful to detect asphalt and concrete
surfaces [47], and SBI has been successfully investigated by [47] and [52]. For each index,
each RDS and each available image since 2015, the average per RDS was calculated and
used to generate the Sentinel-2 time series:

BAI = ((B02 − B08))/((B02 + B08)) (1)

BI =
√

(((B04*B04) + (B03*B03))/2) (2)

BI2 =
√

(((B04*B04) + (B03*B03) + (B08*B08))/3) (3)

NDVI = ((B08 − B04))/((B08 + B04)) (4)

NDWI2 = ((B03 − B08))/((B03 + B08)) (5)

SBI =
√

((B04*B04) + (B08*B08)) (6)

where B0n corresponds to the n-th Sentinel-2 band used for the calculation, here B02, B03,
B04 and B08, all with a 10 m resolution.

To create the final temporal profiles (each RDS has multiple profiles, one per feature),
a linear interpolation to fill in the gaps (1 data point per day) in the data and a smoothing
using a Gaussian kernel with a standard deviation of 61 were performed.

2.2.2. Change Detection

The second processing block is the change detection, where some of the features
extracted from the Sentinel images are jointly analyzed using the Pruned Exact Linear Time
(PELT) [43]. The method is a well-known changepoint detection method that provides an
exact segmentation of the time series with a linear time complexity.

123



Land 2022, 11, 360

Given a time series s = (s1, . . . , sk), the number n and time position t1:n = (t1, . . . , tn) of
the changepoints are obtained by solving the following penalized minimization problem:

Qn(s1:k, p) = min
n,t1:n

{
n+1

∑
i=1

[
C
(

s(ti−1+1):ti

)]
+ p

}
(7)

where C is the segment-specific cost function

C(sa:b) =
b

∑
i=a+1

‖si − sa:b‖2
2 (8)

and p = log(k) a penalty term to control overfitting.
In a preliminary study that we carried out on 22 test sites [44], we showed that the

combined use of the Sentinel-1 sigma0VH and Sentinel-2 NDVI returns more accurate
change detection results than those of the single features. Figure 5 shows an example of the
changepoints detected on an RDS where a building was demolished between summer 2017
and summer 2018, and some vegetation grew between summer 2018 and summer 2019. As
can be seen, the combined use of Sentinel-1 and Sentinel-2 detection successfully returned
the two dates. After the optimization phase of the change detection process, during which
we performed several tests on an extended dataset using different combinations of features,
the NDVI feature was replaced by NDWI2.

Figure 5. Changepoint analysis for the RDS “Service voirie d’Angleur” in Liège showing (a) Sentinel-1
image (left: July 2017; center: July 2018; right: July 2019); (b) Sentinel-2 images (left: July 2017; center:
July 2018; right: July 2019); (c) orthophotos ground truth (left: summer 2017; center: summer 2018;
right: summer 2019); (d) bi-dimensional time series sigma0VH (Sentinel-1); (e) bi-dimensional time
series NDVI (Sentinel-2).
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The overall process returns either a list of changepoints dates (one or multiple) or no
changepoints. When one or multiple changepoints are detected, these become the input
of the next block—the change classification. When no changepoints are detected, this
information is reported directly in the final report, “Results per RDS”.

2.2.3. Change Classification

Determining the type of changes is essential in providing information about the
changes to the local authorities. The Sentinel-1 sigma0VH and Sentinel-2 indices temporal
profiles were analyzed to determine suitable threshold boundaries that would represent a
change for each land cover type (vegetation, building or soil), and the data from the ground
truth datasets were used to validate the method. Thresholding-specific indices have been
proposed and successfully applied in many studies [47,51], e.g., thresholding NDVI has
been used to qualify land-cover change [53] and detect forest cuts [25]. The use of Sentinel-1
data, which is radar sensitive to variations in height and shape, allowed us to complement
the information provided by the Sentinel-2 indices and improve the characterization of the
changes to buildings.

For each site, two separate processes were considered that allow, on the one hand, to
provide information on the type of change for progressive changes and, on the other hand,
to classify the changes associated with the detected changepoints.

The first one is solely based on Sentinel-2 data. It focuses on the summer months
(tsummer), from May to August, as these are more appropriate for vegetation change. It
also offers the best illumination conditions for the multi-spectral images considering the
variation of the Sun–Zenith Angles due to the sensing time being the same throughout the
year. This process, hereafter referred to as “summer classification”, offers the opportunity
to detect changes that occur gradually over a one-year period. The second process, the
“changepoint classification”, is based on both Sentinel-1 and Sentinel-2 features, and it is
performed when one or multiple change dates are available from the previous block. It
takes into account the average of the data available after the change date (tmonths), namely,
2 months for Sentinel-2 data and 1 month for Sentinel-1 data. A calculation of the distance
between the average features of the time period from the year of the change (tsummer and
tmonths) to the same time period the previous year (respectively, tsummer-1 and tmonths-1) was
performed. This distance was then compared to the thresholds of the different Sentinel-2
index and Sentinel-1 VH features in order to determine the chances of representing a
type of change (Table 2). As described for the “summer classification”, the one-year time
step for the “changepoint classification” was chosen in order to limit the influence of the
illumination for Sentinel-2 and the seasonality effect. In addition, while the “summer
classification” considered the average features from May to August, the “changepoint
classification” takes into account 2 months for the Sentinel-2 indices and 1 month for the
Sentinel-1 VH feature. This discrepancy in the number of months used is based on the
fact that valid Sentinel-2 data are typically fewer due to cloud cover. On top of the change
classification, NDVI and sigma0VH helped us to determine the direction of the change
(Table 2). Although the use of the VH band allowed this identification, the combination of
the three indices, BI, BI2 and SBI, showed better results for the “summer classification”,
which is why these indices were selected. The detailed workflow for the evaluation of the
type of changes is shown in Figure 4.

Table 2. Rule-based classifier for the determination of the types of changes.

Change Classification tsummer–tsummer-1 tmonths–tmonths-1

Vegetation increase NDVI ≥ 0.1 NDVI ≥ 0.1
Vegetation decrease NDVI ≤ 0.1 NDVI ≥ −0.1

Building change BI ≥ 150 or BI2 ≥ 150 or SBI ≥ 250 -
Building increase - VH ≥ 0.135
Building decrease - VH ≥ −0.135

Soil change BAI ≥ 0.05 BAI ≥ 0.05
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3. Results

3.1. Change Detection

The performance was assessed in terms of true positive rate (TPR) and false positive
rate (FPR). The overall problem can be in fact seen as a binary classification where either a
“change” (1) or a “no change” (0) has to be detected. In order to compare the results with the
ground truth, the latter was coded so that any change in any of the three classes (building,
vegetation and soil) was assigned the value 1; in the case of no change for all three classes,
the ground truth was given the value 0. A confusion matrix was then generated so that
the number of true positives (TPs), true negatives (TNs), false positives (FPs) and false
negatives (FNs) could be used to compute the TPR and FPR. To provide a unique measure
that takes into account both detection and miss rates, the F1-score was also calculated. For
the sake of completeness, the overall accuracy (OA) is also reported.

It is worth mentioning that, due to the specific way in which the ground truth is
constructed, in order to generate the confusion matrix, we made the arbitrary assumption
that only one change per site occurred in the considered period of time. This is a simplifica-
tion that helped us to compare the results in a more straightforward way, but might not
fully reflect the real situation, especially for the sites belonging to the orthophotos ground
truth, as for a certain number of them it is more likely that multiple changes occurred at
different times.

The change detection was performed using the sigma0VH and NDWI features, which
amongst the other features ultimately provided the highest accuracy. The use of both
Sentinel-1 and Sentinel-2 data, which provide complementary information (the VH band
mostly about buildings and the NDWI index mostly about vegetation and soil), allowed a
more effective identification and classification of changes. The results for the entire dataset
are shown in the first row of Table 3. The number of sites for which we had an estimated
change is 108, 91 of which were correctly classified. Among the unchanged sites, we missed
46 of them, resulting in an OA of 79%. In terms of correct and miss detection rates, we,
therefore, obtained a TPR of 66% and an FPR of 10%, with an F1-score of 0.74.

Table 3. Changepoint analysis: confusion matrix and performance metrics.

TP FP FN TN TPR FPR F1-Score OA

Full dataset 91 17 46 148 66% 10% 0.74 79%
Pléiades 15 9 12 125 55% 7% 0.59 87%

In order to better understand the results of the following block, the change classifica-
tion, it was helpful to separate the Pléiades detections from the full dataset. The results
are provided in the second row of Table 1. For this dataset, the number of sites that were
flagged as changed was 26, with nine FPs, whereas the correct detections of the unchanged
sites were 125. As a result, the TPR and FPR decreased to 55% and 7%, respectively, and,
consequently, the F1-score dropped to 0.59. The OA, instead, increased to 87%, mainly due
to the fact that the dataset was rather unbalanced.

3.2. Change Classification
3.2.1. Summer Classification

The “summer classification”, as we discussed in the previous section, takes into
account, for each of the 302 sites, the summer comparison between 2016 and 2018 for
the orthophotos dataset and between 2019 and 2020 for the Pléiades dataset. Again, the
performance was assessed by combining the two datasets and computing the TPR, FPR
and the F1-score for each class, along with the overall accuracy (see Table 4). The overall
performance of the yearly classification based on summer values is satisfactory. The best
results were obtained for the “vegetation” class, for which the OA was 90% and the TPR
and FPR were 87% and 9%, respectively. The resulting F1-score was 0.80. The performance
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for the “building” and “soil” classes were slightly lower, with an OA of 76% and 79%,
respectively, yet still good, with an F1-score above 0.7.

Table 4. “Summer classification” (full dataset): confusion matrix and performance metrics.

TP FP FN TN TPR FPR F1-Score OA

Vegetation 59 21 9 213 87% 9% 0.80 90%
Building 87 49 23 143 79% 26% 0.71 76%

Soil 103 26 37 136 74% 16% 0.77 79%

To look deeper into the “vegetation” class, Table 5 also shows the results disaggregated
by “increase”, “decrease” and “no change” types, with the corresponding overall accuracy
and omission/commission errors. As can be seen, for both the increase and decrease
in vegetation, around 1 in 4 detections was a false alarm, whereas the percentage of
missed changes were 20% and 12%, respectively. It is worth noting that there was no
confusion between the two classes, as all the errors fell into the “no change” class. For
this class, instead, the commission and omission errors were much lower, namely, 4% and
9%, respectively.

Table 5. “Summer classification” (full dataset): detailed confusion matrix for the “vegetation” class.

Increase Decrease No Change Total Commission Errors

Increase 8 0 3 11 27%
Decrease 0 51 18 69 26%

no change 2 7 213 222 4%

Total 10 58 234 302

Omission Errors 20% 12% 9% OA = 90%

3.2.2. Changepoint Classification

The “changepoint classification” takes into consideration only the RDSs for which at
least one changepoint date has been estimated within the change detection process. As
multiple changes can occur in the same site during the considered time period, a yearly
comparison was required for each estimated change date. This was only possible using
the Pléiades dataset, as only for this ground truth are the exact change dates available.
A performance assessment (Tables 6 and 7) was carried out for all the changepoint dates
knowing that the overall accuracy of the changepoint dates themselves was shown in a
previous section.

Table 6. “Changepoint classification” (Pléiades dataset): confusion matrix and performance metrics.

TP FP FN TN TPR FPR F1-Score OA

Vegetation 6 1 3 16 67% 6% 0.75 84%
Building 7 1 3 15 70% 6% 0.78 85%

Soil 11 4 4 7 73% 36% 0.73 69%
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Table 7. “Changepoint classification” (Pléiades dataset): detailed confusion matrix for the “vegeta-
tion” and “building” classes.

Vegetation

Increase Decrease No Change Total Commission Errors

Increase 0 0 0 0 -
Decrease 0 6 1 7 14%

No change 0 3 16 19 16%

Total 0 9 17 26

Omission Errors - 33% 6% OA = 85%

Building

Increase Decrease No Change Total Commission Errors

Increase 2 0 0 2 0%

Decrease 0 5 1 6 17%

No change 2 1 15 18 17%

Total 4 6 16 26

Omission Errors 50% 17% 6% OA = 85%

Although some dates were during winter months, the results for the vegetation
changes remained good, with an OA of 84% and a F1-score of 0.75. With respect to the
“summer classification”, the main difference here was in the TPR, which was lower by
20 percentage points (87% for “summer classification” and 67% for Pléiades dataset). As
regards the “building” class, there was the opposite trend for the Pléiades dataset, with both
a higher OA and F1-score than those obtained for the “summer classification”. Although
the TPR was slightly lower, the significant drop in the FPR improved the performance.
Finally, for the “soil” class, all the metrics showed a drop in the performance, especially as
far as the FPR is concerned.

To complete the analysis, the detailed confusion matrices for the classes “vegetation”
and “building” are provided in Table 7. Once again, the results are disaggregated by
“increase”, “decrease” and “no change” types. For the “vegetation” class, no increase was
reported within any site of the ground truth; therefore, no metric was calculated. Instead,
out of nine “decrease” changes, six were correctly identified, resulting in a commission
error of 14% and an omission error of 33%. If we look at the “no change” class, we had
a similar false alarm rate, but a much lower miss rate. For the “building” class, half of
the “increase” changes in buildings were missed (50% omission error). However, all the
changes that were flagged as an increase were correct (0% commission error). Instead,
the classification of a decrease was more accurate, with only one false alarm and one
missed detection. Finally, the “no change” classification was the one providing the best
performance, with a commission error of 17% and an omission error of 6%.

4. Discussion

The results described in the prior section provide answers to the several challenges
that can be encountered when detecting changes on specific sites. Indeed, besides detecting
the changes with their dates, there is a need to classify the type of changes and to detect
gradual changes. Four main observations may be drawn from this research.

First, the proposed method provided satisfactory results for the change detection and
the change classification for both ground truth datasets. As far as the change detection
is concerned, thanks to the complementary information provided by the sigma0VH and
NDWI features (the former mainly for buildings, and the latter mainly for vegetation/soil),
we were able to achieve an overall accuracy for the full dataset of 79%. As far as the change
classification is concerned, the OA ranged from 79% to 90%, depending on the type of
change that was considered (vegetation, building and soil). The OA of 90% and the F1-score
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of 0.80, obtained for the vegetation “summer classification”, illustrate the well-known
robustness of the selection of the NDVI as a vegetation indicator [25,49,53], especially in
summer conditions. As previously shown in [47], the BAI was proven to be useful for
soil detection. Regarding the classification of buildings, the results revealed the suitability
of combining the BI, BI2 and SBI indices, as an OA of 76% and an F1-score of 0.71 were
obtained for the “summer classification”. As mentioned in the Methods section, these
indices were not used for the building classification rules of the “changepoint classification”
and were replaced by the sigma0VH feature. This is due to the fact that the probability
of finding cloud-free images in other periods than the summer is lower and the radar
backscatter helps improving building discrimination thanks to its sensitivity to variations
in height and shape. For this reason, it will be useful to carry out additional tests to
investigate whether the use of the sigma0VH feature could be used also for the “summer
classification”. Moreover, further research could be conducted in regard to the number of
Sentinel-2 images used for the “changepoint classification”. Although data gaps were filled
in through linear interpolation and the time series were smoothed using a Gaussian kernel,
the cloud cover limits the number of usable images, especially during winter months. By
only selecting the dates for which a certain number of S2 images are available, it is likely
that the performance of the change classification would be improved.

Second, the “summer classification” is better suited for the detection of gradual
changes. Figure 6 illustrates an ongoing vegetation growth leading to a soil decrease. This
was not captured by the changepoint detection method but was classified as a vegetation
increase and soil change thanks to the summer 2016–2018 comparison. The “summer
classification” also provided better vegetation classification for change dates that occurred
during winter, as seasonality strongly impacts the performance, as most vegetation is
dormant during the winter. However, when comparing the “summer classification” and
the “changepoint classification” results, it should be taken into account that the size of the
two datasets is very different (302 vs. 26), and this had an impact on the results both in
terms of representativeness and numerical accuracy.

Third, the use of vector polygons originating from the RDSs vector file to group the
image pixels in the change analysis constitutes, at the same time, an advantage and a
limitation. The fact that we averaged the information over the whole sites, on the one
hand, helped reduce the noise (especially as far as Sentinel-1 is concerned) and filter out
unnecessary details, but on the other hand, it may have led to the non-detection and/or
non-classification of either small changes or bigger changes occurring on large sites, as the
scales of the changes do not always match the scales of the vector polygons [14]. To partially
overcome these issues, the polygon size could be reduced, for example, by segmenting
each site either based on a fixed grid or external sources, such as WALlonie Occupation et
Utilisation du Sol (WALOUS) [54,55]. However, this can lead to other problems, such as
a significant increase in the computing power and and/or the creation of a large number
of objects that would be too small compared to the Sentinel spatial resolution. Moreover,
although external sources could, in principle, provide additional information on the type
of change, this leads to the challenge of keeping these data up to date.

Fourth, the use of Sentinel data also has its limitations. First, as mentioned above,
the spatial resolution reduces the number of RDSs for which the results can be reliable.
For example, in total, 90.4% of the RDSs were larger than 400 square meters (roughly
one Sentinel-1 pixel and four Sentinel-2 pixels). Moreover, although most of the sites
are former industrial facilities with extensive infrastructure, changes may occur on only
minor parts of the site, as illustrated in Figure 7. However, Sentinel images offer major
advantages compared to orthophotos, which are open access but provided once a year, or
Pléiades images, which can be obtained on demand and are costly. In fact, not only can they
guarantee a much higher temporal coverage (especially if we consider the Sentinel-1 all-
weather capabilities), but they are also completely free, which means that the operational
costs of the tool are significantly reduced. Moreover, thanks to the Terrascope platform
and its cloud computing environment, the method is automated and provides, every
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two months, results that are directly usable by regional authorities. Although the use of
Sentinel data limits the number of RDSs that can be analyzed and the size of the changes
detected, thanks to the results that we have shown, the regional authorities will be able to
update the RDS inventory in a more efficient and less expensive way. Indeed, the SARSAR
service enables the prioritization of the orthophotos analysis work and drastically limits
field efforts. Table 8 shows a sample of bimestrial final change lists, and Figure 8 presents
four RDSs, three for which a change date was detected and one with no change.

 
Figure 6. Close-ups of an RDS showing gradual vegetation increase (“Ets Biernaux”), between 2016
and 2018, illustrated at the top with Sentinel-1 images, in the middle with Sentinel-2 images and at
the bottom with orthophotos.
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Figure 7. Close-ups of an RDS showing a building increase, between 2019 and 2020, too small for the
Sentinel spatial resolution (“S.A.N.I. Carrelages”), illustrated at the top with Sentinel-1 images, in the
middle with Sentinel-2 images and at the bottom with orthophotos.

Table 8. Example of bimestrial final change list for a sample of RDSs.

CODECARTO RDS Name
Change

Date
Estimated

Change Date
Vegetation

Change
Building
Change

Soil
Change

52011-ISA-0040-01 Cordial Bowling Yes 20 April 2020 Yes, decrease No Yes
52011-ISA-0110-01 Carsid—Agglomération Yes 12 March 2019 No Yes, decrease Yes

62063-ISA-0073-01 Patience et Beaujonc—site
secondaire Yes 31 March 2020 Yes, decrease Yes, decrease Yes

52011-ISA-0003-01 Technopôle de la Villette No NA No No No
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Figure 8. Examples of detected and classified changes, on Sentinel-1 images (left) and Sentinel-2
images (right). Details of the changes are explained in Table 8.

5. Conclusions

Managing former industrial lands is essential for urban planning and limiting the
urbanization of new lands. In this article, we presented SARSAR, a new Earth observation
service that has been developed to support the Walloon authorities’ daily work by helping
them update the RDS inventory in a more responsive, efficient and cost-effective manner.

The SARSAR service exploits Sentinel-1 and Sentinel-2 images, with their high spatial
and temporal resolution and open data policy, and the cloud computing environment
offered by Terrascope to generate and deliver a change report every two months directly to
the Walloon authorities, who can integrate it into their management system. This saves
time and effort compared to the current methods of updating the inventory (visual analysis
of orthophotos and systematic field visits), enabling personnel to prioritize their work
and focus on the RDSs showing evidence of significant changes. This service, which first
performs a set of routines to extract and prepare the input data, is composed of two main
processes: one for the flagging of the sites that are likely to have changed and one in charge
of the classification of the changes.

The performance assessment provided satisfactory results, with an overall accuracy of
around 80% for the change detection and in the range 70–90% for the change classification
(depending on the class considered). The results highlight the relevance of using Sentinel-1
data, as well as a selection of Sentinel-2 indices, especially the NDVI for vegetation moni-
toring, and show the complementarity of the two processes in identifying both abrupt and
gradual changes.

The results presented in this paper highlight opportunities not only for brownfield
monitoring in other regions but also for multiple application domains and a larger user
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community, from land management and planning strategies, to agricultural and forestry
areas monitoring, through disaster response mapping.
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Abstract: The landscape of the Port-au-Prince agglomeration in the Republic of Haiti has undergone
profound changes linked to (peri-)urban expansion supported by rapid demographic growth. We
quantify the land cover dynamics along the urban–rural gradient of the Port-au-Prince agglomeration
using Landsat images from 1986, 1998, 1999, 2010, and 2021 coupled with geographic information
systems and landscape ecology analysis tools. The results show that over 35 years the acreage of the
urban zone increased seven-fold while that of the peri-urban area increased five-fold, to the detriment
of the rural zone, which was reduced by 14%. The dynamics of the landscape composition along the
urban–rural gradient are characterized by a rapid progression of built-up and bare land in urban
and peri-urban zones and by fields in the rural zone, in contrast to the more accentuated regression
of vegetation in the peri-urban zone. The landscape of the study area has undergone significant
changes due to the high demand for housing resulting from rapid population growth, in the context
of a lack of territorial development planning by public authorities. This impacts the sustainability of
socio-economic and ecological processes in an area where populations are highly dependent on plant
resources. Our results underline the necessity to orient territorial development planning in urban,
peri-urban and rural zones through an integrated and participatory approach.

Keywords: remote sensing/GIS; spatial dynamics; landscape metrics; urban–rural gradient; urbanization

1. Introduction

Human impact on the natural landscape has been increasing since the advent of
sedentarization coupled with the emergence of agriculture [1,2]. The creation and extension
of cities resulting from rural exodus and natural demographic growth are among the
phenomena that have amplified the human impact on natural environments in recent
decades [3–6]. Indeed, in 1850 the proportion of the world’s population living in urban
areas was 6% [7] compared to 55% in 2020; that proportion is projected to reach 70% by
2050 [8].
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In addition to the densification of existing built-up areas, many cities are experienc-
ing reverse migration leading to low-density sprawl on land reserves at the urban–rural
interface, an area known as the “peri-urban” zone [5,9–11]. In developing countries, the
dynamics of peri-urban zones are characterized by spontaneous and/or anarchic urbaniza-
tion [12], which constitutes a challenge for urban and landscape planners [6,12]. Thus, many
countries in Latin America and the Caribbean have recorded a rapid spatial expansion of
urban areas, for example, an urbanization rate of 76.2% in Trinidad has been noted [13].
Mexico City, in Mexico, experienced an annual spatial growth of 0.9% between 2000 and
2010 [14,15]. The Port-au-Prince agglomeration in the Republic of Haiti is no exception to
this rule [16].

The uncontrolled peri-urbanization of the Port-au-Prince agglomeration (the capi-
tal of Haiti) is the result of changing lifestyles and ineffective land governance, all of
which is prompted by galloping and uncontrolled urban population growth. Indeed,
from 1982 to 2018, the area’s population increased five-fold from approximately 720,000 to
4,000,000 inhabitants [17,18], and is forecasted to house more than five million inhabitants
by 2030 [19]. The resulting spatial urban expansion leads to an intensified consumption of
agricultural land and pressure on woody vegetation, especially for charcoal production
and for the extraction of building materials, etc. [16,20]. Consequently, the green spaces
in the Port-au-Prince agglomeration are rapidly disappearing. This, despite their perfor-
mance as a valuable ecosystem service, which includes moderation of the urban heat island
effect, cleansing of air and water, conservation of biodiversity, provision of recreational
opportunities, and improvement of physical and psychological well-being for citizens.

However, due to a deficit of over 2.4 million quality housing units in the urban zone
of Port-au-Prince [18], about 65% of its population has been relegated to precarious and
informal neighborhoods in the peri-urban zone, where access to basic services remains
insufficient [16,21]. It should be noted that this situation is also visible in several cities in
Latin America and the Caribbean where economic restructuring induced by the process
of peri-urbanization has led to significant disparities in development between different
neighborhoods [15]. In addition, the growth of the Haitian capital “Port-au-Prince” is also to
the detriment of the capital cities, departments, and districts at the country level. Indeed, the
centralization of public expenditure and the concentration of the majority of the country’s
employment in Port-au-Prince favors a steadily increasing rural exodus. Consequently, the
population seeks to ensure its housing in a difficult economic context and the absence of
territorial development planning, with little concern for the sustainability of resources [16].
This situation is often exacerbated by natural disasters (earthquakes, cyclones, etc.) which
lead to changes in the landscape followed by massive displacement of the population
towards the capital Haiti. The population allows itself to create new unplanned urban
spots wherever space is available [15,16]. This is notably the case regarding the informal
district of Canaan, which was created after the 2010 earthquake to house the affected
population [16,22].

If the trend continues at the current rate, in which each year more than 10,000 house-
holds spontaneously settle in peri-urban zones [16,18], the prosperity of the population
could be compromised for many decades to come. It should be noted that most of the
spontaneous growth of the peri-urban zones in Port-au-Prince reflects the overall poverty
of Haitian society, where 80% of residents subsist on less than USD 1.50 per day [16]. In
addition, urban governance in Port-au-Prince is challenged by the growing need for infras-
tructure provision and land management [21] in an urban core where land for building is
becoming increasingly scarce and expensive [18].

Despite this alarming situation, research into quantifying the urban and peri-urban
expansion of the Port-au-Prince agglomeration and assessments of the associated ecological
consequences still remain limited, including in other Caribbean cities [20]. However,
numerous studies establish the importance of understanding the local influence of urban
expansion and the various associated anthropogenic activities on landscape dynamics [23]
to assess the nature and basis of these changes from the perspective of rational natural
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resource management. Given that the urban–rural opposition is completed by accounting
for an intermediate zone between both namely, the peri-urban zone [24], it was appropriate
for the present study to separately assess the land cover dynamics in the urban, peri-urban,
and rural zones of the Port-au-Prince agglomeration. For this reason, the urban–rural
gradient approach [6,11,23] was employed.

Accordingly, we characterize the land cover dynamics along the urban–rural gradient
of the Port-au-Prince agglomeration in the Republic of Haiti. We hypothesized that the
rapid and uncontrolled spatial expansion of the built-up area in urban and peri-urban
zones, coupled with the development of shifting agriculture in the rural zone, has led to
a landscape dynamic. This dynamic has been marked by the fragmentation and spatial
isolation of woody vegetation patches, the extent of which increases in the peri-urban zone
of the Port-au-Prince agglomeration

2. Materials and Methods

2.1. Presentation of the Port-au-Prince Agglomeration

The study area represents a group of municipalities that constitute the Port-au-Prince
district, namely Port-au-Prince, Delmas, Cité Soleil, Tabarre, Pétion-Ville, Carrefour, Ken-
scoff, and Gressier, and the municipalities attached to Port-au-Prince district (Croix des
Bouquets and Léogane). The 10 municipalities examined by this study form the “Port-au-
Prince agglomeration” and cover an acreage of 1755.63 km2 in the western department of
the Republic of Haiti, located between 18◦20′–18◦50′ north latitude and 72◦0′–72◦50′ west
longitude (Table 1, Figure 1). The relief presents an altitudinal gradient that shifts from low-
lying plains to a succession of mountains with peaks exceeding 2000 m [25,26]. According
to Köppen’s classification, the climate of the study area ranges from tropical savannah in the
lowland areas (Aw) to tropical subhumid in the mountainous areas (Cwa), characterized
by a total annual rainfall between 1047 mm and 2000 mm and mean annual temperatures
between 20 and 26 ◦C [27]. The natural vegetation largely comprises mangrove forests,
shrub savannahs, and stands of pine and hardwood [28]. The economic fabric in the urban
zone of the Port-au-Prince agglomeration is dominated by the informal sector (small- and
medium-sized enterprises), which accounts for more than two-thirds of GDP and almost
80% of employment [29]. In the surrounding rural zones, the main economic activities
are agriculture, livestock, and wood exploitation [30]. The Port-au-Prince agglomeration
concentrates the bulk of the country’s economic potential, thus attracting large numbers
of people from around the country in search of remunerative activities [8,21]. Due to the
unprecedented pressure on space of this poorly educated population (the literacy rate in
Haiti is 61%), the city limits were extended to the entire southern fringe of the Cul-de-Sac
Plain and the foothills of Morne l’Hôpital [16,22]. As a result, there are many threats to
the environment in the Port-au-Prince agglomeration, including destruction of vegetation,
gully erosion, flooding, and pollution [20,29]

Table 1. Population, area and geographic coordinates of the municipalities in the Port-au-Prince
agglomeration [30].

Municipalities Population Area (Km2) Geographical Coordinates

Port-au-Prince 987,310 36.04 18◦32′24′′ N–72◦20′24′′ W
Delmas 395,260 27.74 18◦33′00′′ N–72◦18′00′′ W

Cité Soleil 265,072 21.81 18◦35′00′′ N–72◦20′06′′ W
Tabarre 130,283 24.47 18◦35′00′′ N–72◦16′00′′ W

Croix des Bouquets 249,628 634.62 18◦35′00′′ N–72◦14′00′′ W
Pétion-ville 376,834 165.49 18◦31′00′′ N–72◦17′00′′ W

Léogane 199,813 385.23 18◦30′39′′ N–72◦38′02′′ W
Gressier 36,453 92.31 18◦27′00′′ N–72◦17′00′′ W
Kenscoff 57,434 202.76 18◦27′00′′ N–72◦17′00′′ W
Carrefour 511,345 165.16 18◦32′00′′ N–72◦24′00′′ W

Total 3,209,432 1755.63

139



Land 2022, 11, 355

Figure 1. Geographical location of the municipalities of the Port-au-Prince district and attached
municipalities in the western department of Haiti.

2.2. Methodology
2.2.1. Choice of Data and Materials Used

Landsat images downloaded from the site “https://earthexplorer.usgs.gov/” accessed
on 27 March 2021 via the Multispectral Scanner System (acquired on 6 December 1986/
13 December 1986), the Thematic Mapper (acquired on 14 December 1998/1 January 1999
and 22 January 2010/29 January 2010), and the Operational Land Imager (acquired on
4 January 2021/27 January 2021), with a spatial resolution of 30 m, were used to create
the mosaics (two images per mosaic) from which the study area was extracted (Table 2).
These images were chosen since they are free of charge and recommended for large-scale
studies [31,32]. Moreover, they are particularly interesting for data-poor regions lacking
recent and reliable spatial information [33]. For these reasons, the images meet the objectives
of the study, despite their coarse resolution. All images were acquired during the winter
dry season to minimize the effect of haze and clouds and thus facilitating the observation
of larger spectral differences among landscape features [34,35]. Furthermore, the dates of
acquisition of the Landsat images coincide with key periods marking the sociopolitical
and economic life of the country and Port-au-Prince district in particular: (i) the fall of the
Duvalier regime in 1986, the overthrow of President Aristide in 1991, and the subsequent
embargo; (ii) the socioeconomic instability following the 2000 elections, the 2004–2008
hurricanes, and the 2010 earthquake; and (iii) the post-earthquake period (2010–2021).
Additional data such as shapefiles illustrating the boundaries of the municipalities of the
Port-au-Prince agglomeration from the Centre Nationale de l’Information Géographique et
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de Statistique (CNIGS) were used. ENVI 5.3 and ArcGiS 10.5.1 software was selected for
the pre-processing and spatial analysis of the acquired satellite images.

Table 2. Satellite images characteristics.

Sensor Dates Path-Row Spatial Resolution (m)

Landsat MSS
6 December 1986 008-047 30 m
13 December 1986 009-047 30 m

Landsat TM

14 December 1998 009-047 30 m
1 January 1999 008-047 30 m
22 January 2010 008-047 30 m
29 January 2010 009-047 30 m

Landsat OLI
4 January 2021 008-047 30 m
27 January 2021 009-047 30 m

2.2.2. Landsat Image Processing and Classification
Pre-Processing

This work involved the development of a mosaic since the extent of the study area
exceeded the scope of a remote sensing image [36]. However, a mosaic refers to the assembly
of parts of images or contiguous images, preprocessed to be connectable geometrically and
radiometrically [37,38]. Thus, the Landsat images used in this study were georeferenced in
the UTM (Universal Transverse Mercator)/Zone 18 N, covering the study area, following
the WGS 84 (World Geodesic System) reference ellipsoid. The 1986, 1988/1999, and 2010
images were geometrically corrected using 70 ground control points on the 2021 image,
which was obtained as a reference. To ensure the efficiency of the change analysis, the
geometric accuracy of the registration between the control points and the different Landsat
images used was less than one pixel [39].

False Composite Color

A false composite color was created by combining the green, red, and near infrared
channels, the last being understood as the most suitable for discriminating vegetation
cover [40]. The composite color of the images provides the ability to select the training
areas necessary to perform supervised classifications based on visual interpretation of the
images supported by GPS data [41,42].

Determination of the Urban, Peri-Urban, and Rural Zones of the Port-au-Prince Agglomeration

To characterize the spatiotemporal dynamics of the different zones of the urban–rural
gradient, the land cover was defined in urban, peri-urban, and rural zones according to the
decision tree of the definitions of the zones present in the urban–rural gradient [11]. This
decision tree, based on morphological characteristics, was preferred owing to its rapidity
of execution, simplicity, and closeness to the ground reality, where there is a heterogeneous
mix of land cover [6,43]. It should be noted that the urban zone is characterized by the
dominance and continuity of the built-up area, which is otherwise dense. The peri-urban
zone is characterized by the dominance of a discontinuous and less dense built-up area,
while the dominance of vegetation indicates a rural zone [6,11].

The aforementioned decision tree was applied to map the different land cover (urban,
peri-urban and rural) on each of the composite Landsat images by a supervised classification
employing the maximum likelihood algorithm. This algorithm uses training sites to
calculate the probability of each pixel belonging to one of the classes [44]. It should be
noted that the urban zone is characterized by the dominance and continuity of the built-up
area, which is otherwise dense. The peri-urban zone is characterized by the dominance of
discontinuous and less dense built-up area, while the dominance of vegetation indicates a
rural zone [6,11]. Thus, the training samples used for this classification were delineated
through 219 fixed points acquired with a Garmin 66s GPS (accuracy 3 m) during November
and December 2020. The classification accuracy was assessed using the Kappa coefficient
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and the overall accuracy, based on the confusion matrix generated with 387 validation
points. The Kappa coefficient provides a more accurate estimate (which takes into account
well-classified pixels) of the quality of the classification. The overall classification accuracy
represents the average of the percentages of correctly classified pixels. The percentage
of landscape, which indicates the relative abundance of each urban–rural gradient zone,
was calculated.

Qualification of the Port-au-Prince Agglomeration’s Municipalities in Urban, Peri-Urban,
and Rural Zones

Subsequently, the morphological status of the municipalities along the urban–rural
gradient of the Port-au-Prince agglomeration was defined according to the proportions of
the different zones (urban, peri-urban, and rural) resulting from the supervised classifica-
tion of the urban–rural gradient zones from the Landsat image of 2021. If the proportion of
the built-up area dominates the landscape, a distinction is drawn between the urban and
the peri-urban: if the urban dominates, the area is urban and if the peri-urban dominates,
the area is peri-urban. If the co-dominance of urban and peri-urban is less than rural, the
area is recognized as rural. Finally, if the co-dominance of urban and peri-urban is higher
than rural, the area is considered peri-urban [43].

Classification and Assessment of Land Cover Changes along the Urban–Rural Gradient Zones

Based on knowledge of morphological status, the municipalities of the Port-au-Prince
agglomeration were grouped into urban, peri-urban, and rural zones. In each group of
municipalities, the land cover dynamics from 1986 to 2021 were assessed based on a second
supervised classification. For this reason, the following land cover types were defined: built-
up and bare soil (built-up area, bare ground, road), field (mono- or multi-crop agricultural
areas, agroforestry systems), woody vegetation (wooded savannah, forest, mangrove) and
grassy vegetation (grass, young fallow land, pastures). A total of 206 fixed points and
plots obtained from these different land cover types were used in the definition of training
samples for supervised classification, based on the maximum likelihood algorithm [45].
Finally, a confusion matrix generated from 497 ground points was employed to verify
the classification accuracy, based on the Kappa coefficient and the overall accuracy—two
appropriate indices for verifying the reliability of a supervised classification [46].

To assess the impact of peri-urbanization on land cover changes along the urban–rural
gradient, the proportion of land cover types in each type of municipality (urban, peri-urban,
and rural) was calculated based on the patch area. This index often indicates human impact
on landscape morphology [47]. It may provide information on the fragmentation of a land
cover type between two periods, particularly through its decrease (Equation (1)).

Rate of land cover change (Rc):

(Rc) =
(UAi+n − UAi)

UAi
(1)

where UAi is the extent occupied by a class in the initial year of a period, n is the interval
between two evaluated years, and UAi+n is the extent occupied by the same class in year
i + n [48].

3. Results

3.1. Accuracy of Supervised Classifications

The overall accuracy values obtained were above 90% (Table 3), and the Kappa coeffi-
cient indicated values between 92 and 99%, thus suggesting a better distinction between
land cover types.
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Table 3. Overall accuracy and Kappa coefficient values from supervised classifications of Landsat
image mosaics of the Port-au-Prince agglomeration from 1986, 1998–1999, 2010 and 2021 based on
the maximum likelihood algorithm.

Classification 1 Classification 2

Image Mosaics Classified Overall Accuracy (%) Kappa (%) Overall Accuracy(%) Kappa (%)

1986 94.08 97.04 95.36 98.78
1998–1999 98.11 94.08 98.44 97.66

2010 94.52 96.38 96.46 97.36
2021 95.09 92.52 94.35 92.43

Classification 1 refers to the segmentation and qualification of the urban–rural gradient zones, and classification 2
to the land cover types classifications within the urban, peri-urban and rural zones.

3.2. Mapping and Quantification of the Spatial Changes in the Urban, Peri-Urban, and Rural
Zones in the Port-au-Prince Agglomeration

A total of four land cover maps were produced following the supervised classification
of Landsat images, illustrating the dynamics of the urban, peri-urban, and rural zones of
the Port-au-Prince agglomeration in 1986, 1998–1999, 2010, and 2021 (Figure 2). The visual
analysis of the spatial dynamics shows that the urban and peri-urban zones are in constant
spatial progression between 1986 and 2021 in the north and east of the study area on a rural
matrix that has registered a regressive dynamic (Figure 2).

Figure 2. Land cover maps of the Port-au-Prince agglomeration obtained from supervised classifi-
cation of Landsat images from 1986, 1998–1999, 2010 and 2021 based on the maximum likelihood
algorithm. The black lines correspond to the boundaries of the municipalities.

The urban zone experienced a net increase of 612.33% in the landscape between 1986
and 2021, with its area increasing from 8.19 km2 to 58.34 km2. However, it should be
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noted that the most dramatic spatial increase in the urban zone occurred between 2010 and
2021, with a net increase of 229.42%. The peri-urban zone also increased in acreage from
45.57 km2 in 1986 to 242.93 km2 in 2021, with a rate of change of 433.09%. In contrast to
the urban and peri-urban zones, the rural zone experienced a regression in acreage from
1697.47 km2 in 1986 to 1449.82 km2 in 2021, a net loss of 14.59% compared to 1986 (Table 4).

Table 4. Net area increase between 1986–1998/1999, 1998/1999–2010, 2010–2021 and 1986–2021 of
the different zones (urban, peri-urban, rural) corresponding to the agglomeration of Port-au-Prince.

Area 1986–1998/1999
(km2)

Area 1998/1999 (km2) Net Increase/Decrease(%)

Urban zone 8.19 12.37 51.04
Peri-urban zone 45.57 102.52 124.97

Rural zone 1701.87 1640.74 −3.59

Area 1998/1999 (km2) Area 2010 (km2) Net Increase/Decrease (%)

Urban zone 12.37 17.71 43.17
Peri-urban zone 102.52 165.1 61.04

Rural zone 1640.74 1572.82 −4.14

Area 2010 (km2) Area 2021 (km2) Net Increase/Decrease (%)

Urban zone 17.71 58.34 229.42
Peri-urban zone 165.1 242.93 47.14

Rural zone 1572.82 1454.36 −7.53

Area 1986 (km2) Area 2021 (km2) Net Increase/Decrease (%)

Urban zone 8.19 58.34 612.33
Peri-urban zone 45.57 242.93 433.09

Rural zone 1701.87 1454.36 −14.54

3.3. Mapping and Quantification of Land Use Dynamics along the Urban–Rural Gradient of the
Port-au-Prince Agglomeration

Table 5 displays the morphological urbanization status of the 10 municipalities within
the Port-au-Prince agglomeration and the land cover change that occurred within each
morphological type of municipality. First, four municipalities exhibit a dominance of built-
up area, notably Port-au-Prince and Delmas, which bear an urban zone status, as opposed to
Cité Soleil and Tabarre, which have a peri-urban status. In the municipalities with an urban
zone status, the “built-up and bare soil” class increased to become the landscape matrix
(dominant land cover type) in 2021, while the proportion of fields (the dominant land
cover type in 1986), woody vegetation, and grassy vegetation decreased (Figures 3 and 4).
This seems to suggest the replacement of vegetation under the influence of expansion and
built-up densification. Regarding the municipalities with peri-urban morphological status,
the evolution of land cover shows a transition marked by the replacement of fields, which
constituted the landscape matrix in 1986, 1998–1999, and 2010, by the built-up area and bare
soil that became the dominant land cover type of the peri-urban zone in 2021. During the
same period, the proportion of woody and grassy vegetation decreased in the peri-urban
zone between 1986 and 2021 (Figures 3 and 4).

In contrast, the municipalities of Croix des Bouquets, Pétion-Ville, Léogane, Gressier,
Kenscoff and Carrefour are characteristic of rural zones (Table 5). Within these munici-
palities, a degradation of woody vegetation (the dominant land cover type in 1986) and
grassy vegetation was noted, marked by their replacement with fields, which increased in
proportion to become the new landscape matrix in 1998–1999, 2010, and 2021. In these mu-
nicipalities with a rural morphological status, the area of “built-up and bare soil” increased
three-fold in the landscape over the entire study period, with a more marked evolution
between 1998–1999 and 2021 (Figures 3 and 4).
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Table 5. Morphological status of the municipalities along the urban–rural gradient of the Port-au-
Prince agglomeration according to [43] typology. These results are derived from the supervised
classification of the Landsat image mosaics of 2021 based on the maximum likelihood algorithm.

Municipalities
Urban Area in

km2 (%)
Peri-Urban

Areain km2 (%)
Rural Area in

km2 (%)
Zone Status

Port-au-Prince 12.7 (35.2) 7.94 (22.0) 15.4 (39.9) Urban
Delmas 14.2 (51.9) 11.7 (42.9) 2.37 (8.5) Urban

Cité Soleil 5.8 (26.6) 11.1 (51.3) 4.8 (22.) peri-urban
Tabarre 2.8 (11.4) 17.1 (69.9) 4.6 (18.8) peri-urban

Croix des Bouquets 13.9 (2.2) 115.9 (18.3) 504.8 (79.5) Rural
Pétion-ville 5.5 (3.3) 36.9 (22.4) 123.5 (74.6) Rural

Léogane 0.9 (0.2) 17.8 (4.6) 366.5 (95.1) Rural
Gressier 0.4 (0.5) 12.9 (13.2) 78.3 (86.3) Rural
Kenscoff 0.2 (0.1) 2.0 (1.0) 200.0 (98.6) Rural
Carrefour 6.0 (3.7) 16.3 (10.0) 142.2 (86.4) Rural

Figure 3. Land cover maps of the Port-au-Prince agglomeration from supervised classification of
Landsat image mosaics from 1986, 1998–1999, 2010 and 2021 based on the maximum likelihood
algorithm. The black lines correspond to the boundaries of the municipalities.
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Figure 4. Evolution of the percentage of landscape of different land cover types in municipalities
with urban (A), peri-urban (B) and rural (C) zones morphological status. These results were obtained
on the basis of supervised classification of Landsat image mosaics from 1986, 1998–1999, 2010 and
2021 based on the maximum likelihood algorithm. The vertical bars represent the standard deviation.

4. Discussion

4.1. Dynamics of the Urban-Rural Gradient Zones of the Port-au-Prince Agglomeration

Since 1986, the various sociopolitical crises that have occurred in Haiti have led to
a massive influx of rural populations into the Port-au-Prince agglomeration. In addition,
the rapid population growth of the Port-au-Prince agglomeration is largely dependent
on unplanned and informal urbanization to meet its housing needs [16]. As a result, the
Port-au-Prince agglomeration has experienced rapid spatial urban expansion, particularly
towards the north-east, and densification of preexisting built-up areas. The significant
spatial expansion of the urban zone in the Port-au-Prince agglomeration seems to indicate
a spatial densification of the built-up area in the urban core. These findings should be
viewed within the context of an increase in built-up density closer in proximity to the
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otherwise more densely populated urban core [16]. This exacerbates the vulnerability of
this disadvantaged population due to the mixing of highly densified marginal and risky
urban and peri-urban spaces [22,28].

Furthermore, to meet the additional need for housing, the Port-au-Prince agglomer-
ation tends to connect with peripheral municipalities [16], thus justifying the regressive
dynamics of the rural zone to the benefit of the peri-urban zone. The rapid spatial urban ex-
pansion of Port-au-Prince city towards peripheral areas leads to the discontinuity of urban
patches, further suggesting that the geographical space represents a limited resource [6].

The current pattern of urban expansion seems to be influenced by a more favorable
topography (the Cul-de-Sac Plain). It has been recognized that topography could influence
the expansion of urban areas [31,49]. However, in recent years, urbanization continues to
progress, particularly in the south of the study area, in the foothills of the Massif de la Selle,
especially on Morne l’Hôpital, despite its status as a reserved area [28]. Indeed, within a
context of buildable land becoming scarce and relatively expensive and where the cost of
living does not allow for the rental of flats in the urban zone, poor populations settle in
risky areas, which lack urban planning infrastructure, and construct houses with salvaged
materials [18]. These observations are similar to those of [50] in Cap-Haitian (the second
largest city in Haiti), which shows the settlement of the poor population in risky areas
such as mangrove forests and mountainsides. Moreover, urban growth is linked to the
occurrence of natural disasters in the country (hurricanes and earthquakes), which have
led the population to relocate to spaces reserved for agricultural use, mostly unsuitable for
building, etc. [51]. Thus, it was revealed that the decade of 2010–2021 was characterized
by a stronger urban expansion than other periods studied. Indeed, the urban dynamic
during this period seems to have been determined by the 2010 earthquake, which pushed
residents without housing and those coming from rural zones to occupy vacant spaces
without basic infrastructure [18]. Indeed, new townships, including Canaan with nearly
250,000 inhabitants, emerged after the 2010 earthquake in the municipality of Croix des
Bouquets, which bears a rural morphological status [16,18].

4.2. Landscape Dynamics of the Urban Core towards the Rural Areas Adjacent to the
Port-au-Prince Agglomeration

The rapid evolution of the peri-urbanization process in the Port-au-Prince agglomera-
tion between 1986 and 2021 is manifested by the anarchic expansion of built-up land to the
detriment of the fields. Indeed, in recent decades, agricultural areas have been increasingly
transformed into housing and roads [51]. This trend is similar to the findings of [50] on the
city of Cap-Haitian (Haiti) and [52] in the French Antilles (Guadeloupe and Martinique),
according to which agricultural land in peri-urban areas is constantly being invaded by
anarchic buildings. However, agricultural activity is essential to boost the economy of the
city and the peri-urban area, to regreen it, and to protect against food insecurity [53].

Moreover, the process of peri-urbanization contributes to the regression of woody
vegetation, which is becoming scarcer in both lowland and mountain areas due to their
accessibility [28]. This situation risks creating an imbalance between rainwater infiltration
and groundwater exploitation in the Cul de Sac Plain, given that the quantity of water
drawn from the aquifer is estimated between 63 and 86% of the annual recharge for a
growing population [54]. It should be noted that, with an increasingly low poverty line,
the population of the Port-au-Prince agglomeration is exploiting and destroying vegetation
in favor of subsistent farming activities.

The landscape dynamics of the municipalities located in the rural zone of the Port-
au-Prince agglomeration are marked by a decrease in woody vegetation in favor of fields.
Indeed, the socioeconomic situation of the rural population, characterized by increasing
poverty, has pushed a large proportion of the population into agriculture, particularly
slash-and-burn agriculture. Despite the low average productivity of the agricultural sector
and the low economic surplus generated, it remains the refuge sector par excellence for the
population in the rural zone [55]. In addition, due to the increasing demand for charcoal by
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the urban and peri-urban population [56], pressure on vegetation in the rural zone is inten-
sifying, especially since charcoal accounts for more than 70% of the country’s energy needs.
The degradation of vegetation in the Port-au-Prince agglomeration leads to a reduction in
its resilience and could thus lead to an increase in flooding in the (peri-)urban zone and
an increase in the risk of landslides and rockfalls [28]. In addition, this anthropization of
the Port-au-Prince landscape could also lead to runoff and silting of the drainage networks
during each rainfall event in the urban sectors located downstream of the mountain, thus
obstructing the city’s drainage infrastructure, which causes recurrent damage in the lowest
areas [20,28].

4.3. Proposals and Perspectives
4.3.1. For the Government and Planners

The current spatial challenge of peri-urbanization in Port-au-Prince consists of adapt-
ing or readapting human settlements in such a way as to respond sustainably to the
socio-spatial needs of city dwellers and thus to reduce environmental degradation as much
as possible. It thus requires efficient planning and settlement policies coupled with a
better understanding of the spatial and temporal evolution of the (peri-)urban areas of
the Port-au-Prince agglomeration provided by this study. Our results deliver a basis for
promoting better planning and efficient spatial organization of the (peri-)urban areas of
the Port-au-Prince agglomeration aiming at sustainable development. Moreover, it would
be important to anticipate peri-urbanization in currently rural areas that are destined to
become potential peri-urban areas within the framework of a territorial development plan,
in order to ensure the food security of the population. Indeed, agricultural land continues
to be invaded by housing, according to our results. Conversely, for the preexisting urban-
ized spaces, there is an urgent need to reverse the current socio-spatial imbalance from
the perspective of establishing dynamic balances of the mid-place, especially concerning
vegetation [57]. Finally, it would be necessary to address the land issue, corruption and
also the establishment and enforcement of legal frameworks appropriate to urbanization
and the implementation of peri-urban agriculture in the design of a development plan.

It is necessary to delay the growth rate of the Port-au-Prince agglomeration and
to reduce the demographic and economic gap between it and other chief towns of the
departments and districts of Haiti. This implies the elaboration and application of a true
spatially-balanced growth strategy and to work towards decentralization, economic and
political deconcentration through the development of different departmental cities.

4.3.2. For Scientific Research Institutions

This study has rendered it possible to characterize (peri-)urban growth in the Port-au-
Prince agglomeration and to evaluate its consequences along the urbanization gradient.
However, there remain many aspects to be investigated in order to identify a sustainable
solution that will enable reconciliation of the conservation of biodiversity and the satisfac-
tion of the spatial needs of an ever-growing population. In this sense, it is up to scientific
research institutions to contribute, among other things, to the evaluation of the impact of
the degree of urbanization on the ecosystem services mainly provided by green spaces
in the Port-au-Prince agglomeration; to develop indicators for monitoring the health of
(semi-)natural ecosystems; to integrate the notion of ecosystem services in the planning
of territorial development; and to provide scientific assistance to the conservation and
development of green spaces.

4.3.3. For the Public

An integrated and sustainable management of the landscape is therefore a very impor-
tant issue. To achieve this, the populations will have to become involved in the conservation
of (semi-)natural ecosystems in the urban and peri-urban landscape of the Port-au-Prince
agglomeration, as vegetation directly influences the urban soil and climate while providing
beneficial ecosystem services to city dwellers [9,42]. It is important to diversify energy
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sources and to adopt new techniques and practices to reduce the collection of wood for
energy production, as wood resources tend to decrease along the urban–rural gradient of
Port-au-Prince. The scarcity of wood resources bears socioeconomic consequences: the
lack of wood energy limits the amount of food cooked and therefore has consequences
for nutrition and health, loss of jobs, and income for charcoal producers. It should be
noted that the rapid development of the charcoal network is a popular reaction to the lack
of alternative energy sources, particularly electricity, in Haitian cities [58]. Participatory
land use mapping is urgently needed and the population should be made aware of the
preservation of agricultural and (semi-)natural areas in view of the various socio-ecological
benefits they provide. Urban fragmentation through building densification should be
controlled in urban areas, as it could pose a threat to the preservation of vegetation in
the plots.

5. Conclusions

This study sought to highlight the spatial dynamics of land use that prevails along the
urban–rural gradient of the Port-au-Prince agglomeration. Our results confirm a change in
the spatial pattern along the urban–rural gradient, characterized over 35 years by a rapid
progression of built-up and bare soil in urban and peri-urban zones, and of fields in the
rural zone. The expansion of these anthropogenic land cover types leads to a regression
in the patch area of woody and grassy vegetation among the landscape. This represents
an indication of the anthropogenic impact on landscape dynamics along the urban–rural
gradient of the Port-au-Prince agglomeration, the extent of which has intensified over
the years in the peri-urban zone. This study provides basic information that should
lead to an improved understanding of the spatial urban and peri-urban growth of the
Port-au-Prince agglomeration and its impact on the different land cover types along the
urban–rural gradient. This information remains crucial for the implementation of territorial
development planning measures through an integrated and participatory approach.
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Abstract: Public domain synthetic-aperture radar (SAR) imagery, particularly from Sentinel-1, has
widened the scope of day and night vegetation monitoring, even when cloud cover limits optical
Earth observation. Yet, it is challenging to combine SAR images acquired at different incidence angles
and from ascending and descending orbits because of the backscatter dependence on the incidence
angle. This study demonstrates two transformations that facilitate collective use of Sentinel-1 imagery,
regardless of the acquisition geometry, for agricultural monitoring of several crops in Israel (wheat,
processing tomatoes, and cotton). First, the radar backscattering coefficient (σ0) was multiplied by
the local incidence angle (θ) of every pixel. This transformation improved the empirical prediction
of the crop coefficient (Kc), leaf area index (LAI), and crop height in all three crops. The second
method, which is based on the radar brightness coefficient (β0), proved useful for estimating Kc, LAI,
and crop height in processing tomatoes and cotton. Following the suggested transformations, R2

increased by 0.0172 to 0.668, and RMSE improved by 5 to 52%. Additionally, the models based on the
suggested transformations were found to be superior to the models based on the dual-polarization
radar vegetation index (RVI). Consequently, vegetation monitoring using SAR imagery acquired at
different viewing geometries became more effective.

Keywords: Sentinel-1; SAR; RVI; incidence angle; crop coefficient; leaf area index

1. Introduction

Spaceborne monitoring of agricultural landscapes is predominantly performed using
optical sensors and synthetic-aperture radar (SAR). The use of passive optical remote
sensing in the visual, near-infrared, shortwave infrared, and thermal spectral regions for
the estimation of agricultural variables is well established [1–10]. However, optical sensors
are limited by cloud cover. To overcome this problem, previous studies have suggested
combining observations acquired at different times by several optical sensors [11–15], but
even this approach does not always produce enough cloud-free observations to monitor
cloudy regions effectively. Moreover, leaf area index (LAI) estimation from optical imagery
suffers from a saturation effect when the LAI is greater than 3 [16–20]. Overcoming this
limitation is desirable since LAI is commonly used as a measure of crop growth, nitrogen,
and fertilization status estimation [21]. The LAI is also a good proxy for vegetation
vigor [22,23], and a good yield predictor [24–27].
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This study proposes complementing optical remote sensing with SAR to overcome
these obstacles in monitoring vegetation properties and to facilitate better agricultural prac-
tices [28]. SAR penetration of the canopy can mitigate saturation in LAI estimation [29–31].
Moreover, since SAR can penetrate clouds, it produces high-quality imagery even in ad-
verse weather conditions [32]. In addition to the LAI, remote sensing can be used to
estimate other variables such as the crop coefficient (Kc) and height. Kc-based estimation
of crop water consumption is one of the most commonly used irrigation management
methods [33,34]. Crop height is a good predictor of the aboveground biomass [35] and
is commonly used by growers as a proxy for crop development. Therefore, deriving re-
liable SAR-based LAI, Kc, and height estimation models can facilitate better agricultural
monitoring, especially in cloudy regions.

Several studies have employed spaceborne SAR for agricultural purposes [36–40] and
demonstrated that quad-polarization SAR (e.g., RADARSAT-2, TerraSAR-X/TanDEM-X)
could be used for crop monitoring. However, quad-polarization SAR images currently
come at a high cost that limits their use in routine monitoring of crops and in research.
Since 2014, the Sentinel-1 mission, consisting of two polar-orbiting satellites, provides a
dual-polarization alternative at no cost to the user. These satellites have a revisit time of six
days at 30◦ latitude at the same viewing geometry and a 10 × 10 m pixel size, thus having
significant potential for agricultural applications.

One of the most critical challenges in creating time series of SAR imagery is the
dependence of radar backscatter on the incidence angle [41]. The incidence angle is defined
by the incident radar beam and the vertical (normal) to the surface. More specifically,
the local incidence angle (θ) takes into account the local relief. The backscatter is weaker
in images acquired at shallow incidence angles compared to images acquired at steeper
incidence angles; therefore, the same object has different and uncomparable backscatter
values in images acquired with different incidence angles. Given the dependence of the
backscatter’s intensity on the incidence angle, previous studies have underlined the need
to correct this effect [42,43]. Until now, many studies using C-band SAR imagery from
Sentinel-1, RADARSAT-2, and RISAT-1 for agricultural monitoring only used a subset of the
available imagery acquired from either ascending or descending orbits with a limited range
of incidence angles. Accordingly, these studies discarded imagery acquired at incidence
angles that fell outside certain margins (Table 1). This practice might exclude more than half
of the available images from the time series. Moreover, empirical models developed based
on these limited datasets are likely applicable only for the same range of incidence angles.
Therefore, the practice of excluding images from the time series reduces the applicability of
SAR-based models.

Table 1. Summary of the incidence angle range considered in past studies.

Study Incidence Angle (◦) Satellite Crop Application

Van Tricht et al. (2018) [44] 32–42 Sentinel-1 Many crops Crop classification

Inoue et al. (2014) [45] 25–35 RADARSAT-2 Paddy rice Various biophysical
variables

Veloso et al. (2017) [46] 38–41 Sentinel-1 Wheat, rapeseed, maize,
soybean, sunflower Temporal behavior

Bousbih et al. (2017) [47] 39–40 Sentinel-1 Cereals Crop height and LAI

Nasirzadehdizaji et al. (2019) [48] 39–40 Sentinel-1 Maize, sunflower, wheat Crop height and
canopy coverage

Navarro et al. (2016) [49] 38.87–39.26 Sentinel-1 Maize, soybean,
bean, pasture

Crop water
requirements

Inglada et al. (2016) [50] 38.89–39.05 Sentinel-1 Wheat, rapeseed, barley,
corn, sunflower Crop classification

Hosseini et al. (2018) [51] 20.63–28.16 RADARSAT-2 Corn Biomass
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Table 1. Cont.

Study Incidence Angle (◦) Satellite Crop Application

Phan et al. (2021) [52] 42–44 Sentinel-1 Rice Various biophysical
variables

Molijn et al. (2019) [53] 36.0–36.6 Sentinel-1 Sugarcane Productivity mapping

Demarez et al. (2019) [54] 30 Sentinel-1 Maize Crop mapping

Srivastava et al. (2019) [55] 31 RISAT-1 Wheat Crop height

Srivastava et al. (2018) [56] 32 RISAT-1 Paddy LAI

Benabdelouahab et al. (2018) [57] 23.3 ERS-1 Wheat Irrigation supply
detection

Han et al. (2019) [58] 42.5 Sentinel-1 Wheat Crop water content

Yadav et al. (2019) [59] 40 Sentinel-1 Wheat LAI

Chauhan et al. (2018) [60] 38 RISAT-1 Wheat Various biophysical
variables

Harfenmeister et al. (2019) [61] Constant.
Undisclosed. Sentinel-1 Wheat, barley Various biophysical

variables

Song and Wang (2019) [62] Constant.
Undisclosed. Sentinel-1 Wheat Crop classification and

phenology monitoring

Nihar et al. (2019) [63] Constant.
Undisclosed. Sentinel-1 Cotton, maize Crop classification

Vreugdenhil et al. (2018) [64] Constant.
Undisclosed. Sentinel-1 Corn, cereals,

oilseed rape
Various biophysical
variables

Several different incidence angle normalization procedures were carried out in previ-
ous studies. For example, [44] normalized their selected subset of imagery (incidence angles
between 32◦ and 42◦) to 37◦ using a simplified correction method based on Lambert’s law of
optics. However, this method is insufficiently effective because it is relatively reliable only
at the center of the image [41,65]. Two new effective methods for incidence angle normaliza-
tion were proposed by [65], but environmental conditions limited the applicability of these
methods, and they have been used mostly for ocean monitoring. Other methods for inci-
dence angle normalization, such as simplified normalization [43], radiative transfer-based
models, and statistical methods, can be applied only under specific ground conditions [66].
Therefore, despite past attempts to deal with the heterogeneity of the incidence angle in
the SAR time series, the challenge of incidence angle normalization remains.

Therefore, the main goal of this study was to propose methods to reduce the backscat-
ter dependence on the local incidence angle to permit the use of all available Sentinel-1
images in a single dataset without defining a range of allowed incidence angles and omit-
ting images that extend beyond it. The second goal of this study was to use the proposed
methods to accurately estimate vegetation properties (Kc, LAI, and crop height) based on
incidence angle-normalized Sentinel-1 imagery.

2. Materials and Methods

2.1. Test Sites and Field Measurements

The field measurements used in this study were carried out during two seasons of
winter wheat, three seasons of processing tomatoes, and two seasons of cotton in different
locations in Israel (Table 2, Figure 1). LAI was measured by a SunScan Canopy Analysis
System—SS1 developed by Delta-T Company (Cambridge, United Kingdom) during two
wheat seasons and two processing tomato seasons. The SunScan is an accurate, nondestruc-
tive LAI measurement system successfully employed in many previous studies [25,67].
Each LAI value is an average of at least 30 consecutive field measurements taken at 20-cm
intervals along a transect perpendicular to the row direction. Vegetation height was mea-
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sured at a precision of 1 cm using a tape measure and represented by an average of at
least 30 plants per measurement date. LAI and vegetation height in wheat and processing
tomatoes were measured throughout the growing seasons; therefore, they represent the
full range of these variables. Cotton height was measured during the middle and late
stages of one growing season. The backscattering coefficient (σ0) and the radar brightness
coefficient (β0) were used in linear scale. Sentinel-1 backscatter values were averaged
for a polygon that represented the eddy covariance measurement footprint calculated
based on a two-dimensional footprint model [68]. All the empirical regression models in
this study utilized the average values of either σ0 or β0, and the local incidence angle (θ)
within the areas of interest and same-date field measurements. In cases of gaps in the time
series, linearly interpolated values of field measurements from adjacent dates (crop height
and LAI) were used. The number of SAR images used for the derivation of the various
models was not uniform because each model was based on the period for which field
measurements were available, resulting in different numbers of corresponding satellite
images. For example, LAI could not be measured using the SunScan system when the
plants were very small, while vegetation height was easily measured at any time using a
ruler. Accordingly, the LAI models were based on shorter time spans and fewer images
than were plant height models. In-field paths and their surrounding area were masked
out from analysis polygons of the processing tomato experiments which took place in
2019 to remove bare soil areas and avoid border effects. These excluded areas consisted
of approximately 20% of the overall areas of interest. Therefore, the Gadash 2019 area of
interest consisted of four vegetated regions separated by paths, and the Gadot 2019 area of
interest consisted of two regions.

Table 2. Summary of seven field experiments conducted at six locations in Israel.

Experiment
Area

Crop Period *
# Crop
Height Mea-
surements

# LAI Mea-
surements

Area Size (#
Sentinel-1
Pixels)

Nearest Mete-
orological
Station ET0
Data

Distance and
Bearing to the
Meteorological
Station

Saad Wheat 1-Jan-2018
9-Apr-2018 8 6 260 Dorot 9.5 km NE

Yavne Wheat 18-Dec-2018
10-Apr-2019 7 7 550 - -

Tel Nof Cotton 6-Jun-2016
17-Sep-2016 7 - 1300 Revadim 5 km S

Negba Cotton 25-Jul-2017
11-Sep-2017 - - 460 Negba 2.5 km SW

Gadash Processing
tomatoes

9-May-2018
30-Jul-2018 8 - 250 - -

Gadash Processing
tomatoes

3-May-2019
24-Jul-2019 7 6 500 Gadash 250 m SE

Gadot Processing
tomatoes

25-Apr-2019
14-Aug-2019 11 11 300 Gadot 1.5 km SW

Note: * Period indicates the starting and ending dates.

2.2. Agro-Meteorological Measurements

Agro-meteorological measurements of the reference evapotranspiration (ET0) and
actual evapotranspiration (ETc) were performed to derive the crop coefficient (Kc) as
Kc = ETc/ET0. Kc is an important variable used to determine the irrigation dose [69]. Daily
ETc was derived from water vapor flux measurements by eddy covariance systems [6,70].
The daily ET0 was calculated according to the Penman–Monteith method [33] based on
meteorological measurements of air temperature, relative humidity, wind speed, and
solar irradiance at the meteorological station closest to the field or at the flux tower itself
(Table 2). Meteorological station data are publicly available at http://www.meteo.co.il/
(accessed on 24 June 2021) and http://www.mop-zafon.net/ (accessed on 24 June 2021).
The Kc data used for developing the processing tomato models were smoothed in Python
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with the SciPy library using the cubic and the second-order splines. Smoothing spline
is a non-parametric regression technique, which was previously used in various remote
sensing applications [15,71–73]. ETc was measured throughout the growing seasons of
wheat and processing tomatoes and from the middle of the cotton growing seasons. ETc
data collected during the Gadash processing tomato experiment in 2018 and the Yavne
2019 wheat experiment were not used for the Kc model development because more than
half the data were lost due to technical difficulties that emerged during the experiments.

 
Figure 1. Locations of analysis polygons in the experiments conducted in Israel in 2016–2019.

2.3. Satellite Imagery

Sentinel-1 is part of the European Copernicus program for Earth observation. The
payload of the two Sentinel-1 satellites includes a dual-polarization (VV and VH) C-band
SAR instrument that is an active phased array antenna working at 5.405 GHz frequency
(corresponding wavelength 5.55 cm). The resolution of the Level-1 Ground Range Detected
(GRD) Interferometric Wide (IW) mode that was used in this study is 20 × 22 m, with a
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pixel size of 10 × 10 m, swath width of 250 km, and a revisit time of six days for images
with the same geometry. Sentinel-1A and Sentinel-1B were launched on 3 April 2014 and
on 25 April 2016, respectively. The Sentinel-1 incidence angle in the IW mode ranges
approximately between 29◦ and 46◦. Figure 2 shows the graphical representation of the
local incidence angle. In this study, some sites were close to the edge of the images,
resulting in an incidence angle range from 30.8◦ to 45.8◦, and in local incidence angle
values from 30.3◦ to 47.7◦ (Figure 3). Therefore, this study was based on a wide range
of incidence angles. The areas within SAR imagery used in the present study are not
affected by adverse geometrical effects, such as radar shadow, foreshortening, and layover.
The SAR imagery used in this study was downloaded from the ESA Copernicus site
(https://scihub.copernicus.eu/dhus/#/home, accessed on 23 June 2021). Overall, 38 SAR
images were used to derive models for wheat (Table S1), 19 for cotton (Table S2), and 94 for
processing tomatoes (Table S3), Figure 3).

Figure 2. Local incidence angle (θ). The local incidence angle (θ) is defined as the angle between
the incidence radar beam and a line that is normal to the surface, considering local relief, typically
derived from a DEM.

Figure 3. The number of SAR images acquired at different local incidence angles used in the modeling
of different crops.
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2.4. Image Processing

All images were pre-processed in the Sentinel Application Platform (SNAP versions
6.0 and 7.0, European Space Agency). The sequential pre-processing of the Sentinel-1
imagery was as follows: subsetting a region around the target area, applying the latest
orbit file to correct for the satellite path, thermal noise removal, calibration to β0 and σ0 in a
natural scale, range Doppler terrain correction using the Shuttle Radar Topography Mission
(SRTM, [74]) digital elevation model (DEM) with 30 m resolution. These pre-processing
steps were performed in the same sequence as in Song et al. [62], with the addition of the
thermal noise removal step that was also performed by Van Tricht et al. [44]. The speckle
filtering operation was avoided; therefore, the spatial resolution was retained [75–77].

2.5. Dual-Polarized RVI Algorithm

One of the conventional approaches for agricultural monitoring from quad-polarization
SAR data is the calculation of the radar vegetation index (RVI) [40]. An adaptation for
Sentinel-1 data assumes that σ0

VV ≈ σ0
HH [78–80], such that

RVI =
4∗σ0

VH
σ0

VH + σ0
VV

(1)

The radar backscatter coefficient, σ0, also known as the radar cross-section (RCS) per
unit area, is the conventional measure of the intensity of the signal reflected by the surface.
It is a normalized dimensionless number that varies significantly with the incidence angle,
wavelength, and polarization, as well as with properties of the scattering surface itself [81].

Each RVI model in the present study was based only on one dataset with the maximum
number of images acquired at an ascending orbit with the same incidence angle. These are
considered to be the most favorable conditions for determining the RVI without incidence
angle normalization. An RVI-based Kc model for cotton was not produced because of the
lack of imagery acquired at the same incidence angle over the specific fields where the
agro-meteorological measurements were performed. The models based on the suggested
methods for local incidence angle normalization methods described in Sections 2.6 and 2.7
were compared to the models based on the RVI.

2.6. σ0-Based Local Incidence Angle Normalization

The radar backscatter intensity depends on the incidence angle, with σ0 decreasing
proportionally to the incidence angle increase in the intermediate range of incidence angles
typical for Sentinel-1 and the majority of spaceborne SAR missions [43,82–84]. Based on
this understanding, σ0 was normalized by multiplying it with the local incidence angle (θ)
in the decimal degree scale:

σ0
Norm = σ0∗θ (2)

The normalization of σ0 is achieved by multiplying lower σ0 values obtained under
shallower local incidence angles by higher θ values than the higher σ0 values acquired
under steeper local incidence angles. In this study, different VV and VH polarization
combinations of normalized σ0 values were used to model Kc, LAI, and crop height. The
models described below (Equations (3)–(5)) were produced using polarization combinations
that showed the best R2 and RMSE values. The following polarization combination was
used to model Kc and LAI in wheat, and LAI in processing tomatoes:

V = σ0
Norm, VH + σ0

Norm, VV (3)

where, and afterward, V is a vegetation variable being estimated.
The following polarization combination was used to model wheat and cotton height:

V = σ0
Norm, VH − σ0

Norm, VV (4)
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Processing tomato and cotton Kc estimation models were based on

V = σ0
Norm, VV (5)

The descending winter wheat imagery showed a very low correlation with wheat
variables and, therefore, was not used for the development of wheat models.

2.7. β0-Based Local Incidence Angle Normalization Method for Tomato and Cotton Height, LAI,
and Kc Estimation

A radar beam transmitted at a shallow angle travels longer distances through the
vegetation canopy than a beam transmitted under a steep angle; thus, the attenuation
of the former is typically higher than that of the latter. Apart from the beam two-way
travel distance through the vegetation, the radar backscatter is affected by soil roughness,
dielectric properties, and a combination of different types of scatterers that exist in each
pixel [85,86]. The wheat fields in this study are flat, and the vegetation growth is uniform.
Hence, scattering from the soil surface is mostly specular in the early part of the season,
and the volume scattering component increases as the vegetation develops [87,88]. Unlike
the wheat fields, the structure of processing tomatoes and cotton fields is more complex,
with mounds and furrows. The distance between planted mound centers in all three
processing tomato fields is two meters, and it is one meter in cotton. The difference
between the elevation of the mounds is up to 15 cm in processing tomatoes and 12 cm in
cotton. Consequently, the standard deviation of the surface height is up to 7.5 cm and 6
cm in processing tomatoes and cotton, respectively. According to the Peake and Oliver
roughness criterion [89], the surface is considered rough if

hrms >
λ

4∗ cos δ
(6)

where hrms is the standard deviation of the surface height variation; λ is the wavelength;
and δ is the incidence angle. The incidence angle is slightly different from the local
incident angle for slopeless surfaces, but this difference does not affect the calculation of the
roughness criterion. Accordingly, in C-band SAR with an incidence angle range of 30◦–45◦,
the roughness threshold is hrms > 1.5 cm for an incidence angle of 30◦, and hrms > 1.8 cm
for an incidence angle of 45◦. Therefore, the processing tomato and cotton fields are rough,
decreasing backscatter dependence on the incidence angles [85], and modifying the rate of
backscatter change as the incidence angle increases [90]. Unlike the smooth wheat fields,
every pixel in processing tomato and cotton fields contains multiple types of scattering:
specular (plant-free furrows), double bounce (corners between furrows and mounds), and
volume scattering in the canopy. Moreover, at some incidence angles, Bragg scattering
caused by the row frequency might occur [91,92].

Owing to the complex surface structure in cotton and processing tomato fields, an-
other transformation method specific to these fields was derived empirically in addition
to the σ0 normalization method. This new method is based on the polynomial regres-
sion between plant variables multiplied by the newly derived attenuation coefficient
sin(Radians(90 − θ)3) and radar brightness (β0):

V∗ sin(Radians(90 − θ)3) = A∗
(
β0

)2
+ B∗

(
β0

)
+ C (7)

where V is the plant variable (such as height, LAI, or Kc); θ is the local incidence angle
in degrees; A, B, and C are the specific model coefficients; and β0 is the radar brightness
coefficient [41] at either VV (processing tomatoes) or the sum of VV and VH polarizations
(cotton). β0 is a dimensionless coefficient that corresponds to the reflectivity per unit area
in the slant range. β0 is used because the radiometric correction of σ0 is based on a sea-level
ellipsoid [41,93] and, therefore, less suitable for monitoring of rough surfaces and areas with
a rugged topography [94]. Previous studies found β0 to be the best unencumbered estimate
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SAR measurement [41,95,96]. Using radar brightness is an established practice for research
in space [97,98] and common practice in the analysis of RADARSAT-1 imagery [85,99], but
not of Sentinel-1 data.

The attenuation coefficient sin(Radians(90 − θ)3) is used to account for the depen-
dence of beam attenuation on the local incidence angle. The SAR beam interaction with
objects on the ground can be described as a triangle in which the radar beam is the hy-
potenuse, and the local incidence angle θ is the angle between the hypotenuse and vertical
cathetus normal to the surface (Figure 2). β0 values are reconstructed to a normalized
value by applying a sine function to a cubed value of the (90 − θ) value in radians. The
attenuation coefficient is linearly and inversely proportional to the local incidence angle, as
shown in Figure 4. Therefore, by applying the suggested normalization, higher β0 values
obtained under steeper (closer to vertical) local incidence angles are divided by higher
coefficient values compared to β0 values acquired under shallower local incidence angles.
The main difference between the σ0 and β0 methods is that the former applies a steeper
increase to the radar backscatter (σ0) as the local incidence angle increases than the latter
(β0). This difference in the behavior of the methods was created to take into account that
as the incidence angle increases, the radar backscatter decreases more slowly for rough
surfaces than for smooth surfaces [90,100].

Figure 4. The attenuation coefficient (sin(Radians(90 − θ)3)), as a function of θ (in degrees), and the
local incidence angle. This attenuation coefficient was used to correct for the dependence of radar
brightness β0 values on the local incidence angle.

Therefore, the normalized β0 value can be written as

β0
Norm =

β0

sin(Radians(90 − θ)3)
(8)

where β0
Norm is the normalized radar brightness in VV or VH polarization, β0 is the radar

brightness in VV or VH polarization, and sin(Radians(90− θ)3) is the attenuation coefficient.
The processing tomato LAI model utilizes the sum of normalized β0 in both polarizations:

LAI =
β0

VH

sin(Radians(90 − θ)3)
+

β0
VV

sin(Radians(90 − θ)3)
(9)
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2.8. Calibration and Validation of Empirical Vegetation Variable Estimation Models

The field-measured vegetation variables were used in regression models against the
uncorrected radar backscatter parameters. Further, the proposed local incidence angle
normalization methods were applied to the SAR images, and new empirical regression
models were derived. Finally, the models based on the data prior to normalization and post-
normalization and on the dual-polarized RVI were compared to assess the performance of
the normalization process (Figure 5).

Figure 5. Derivation of the dual-polarized normalized (with σ0 or β0 normalization), non-normalized,
and RVI models.

In every case, the same type of regression model (either linear or polynomial) and the
same polarization combination were used in the comparison. Coefficients of determination
in models based on non-normalized data were symbolized as R2

0, and their root-mean-
square error was symbolized as RMSE0. The differences in the R2 and RMSE following the
normalization procedures were calculated. In addition, the Steiger variation [101] of the
two-tailed Fisher Z-score tests [102] was performed to determine whether the difference
in the models’ R2 is significant (α ≤ 0.05). The significance of the RMSE difference was
calculated using the two-tailed Wilcoxon signed-rank test [103] to determine whether the
difference in the models’ RMSE was significant (α ≤ 0.05). According to the goals set in
this study and due to a finite amount of available SAR imagery and ground truth data,
all the available data were used to calibrate the empirical models to achieve the models’
maximum reliability and estimation accuracy [104]. In order to additionally validate the
models’ estimation performance, the RMSE values of normalized models applied separately
to each dataset (experiment) were also calculated and are presented in Tables S4–S8.

162



Land 2021, 10, 680

3. Results

3.1. Wheat, Processing Tomato, and Cotton Height, LAI, and Kc Models Based on the σ0

Normalization Method

The effect of the proposed normalization (Equation (2)) on the SAR backscatter from
two incidence angles is illustrated in Figure 6. Following the normalization process, the
difference is greatly reduced, and a considerable improvement in the R2 and RMSE of all
the σ0-based models is observed. In wheat, processing tomatoes, and cotton, the height,
LAI, and Kc models’ R2 improved in the range of 0.0172–0.367, and the RMSE improved in
the range of 5–52%. Table 3, Tables S4–S6, and Figure 7 show the performance of σ0-based
height, LAI, and Kc models in wheat, processing tomatoes, and cotton.

 

Figure 6. A time series of VV polarization values recorded by Sentinel-1 on its ascending overpasses with local in-
cidence angles of 36.5◦ and 47.7◦ during the wheat experiment in Saad: (A) prior to applying the σ0 normalization;
(B) post-normalization.

Table 3. R2 and RMSE improvements following the local incidence angle normalization procedure. Significance is marked
by *. The percentage values in the brackets show improvement in RMSE after normalization (i.e., the reduction in
prediction error).

Model # Images R2 RMSE R2 Improvement RMSE Improvement (%)

Wheat height 38 0.8566 6 cm 0.0738 * 2 cm, (25%)

Wheat LAI 34 0.7194 0.6 0.1639 * 0.2, (25%)

Wheat Kc 11 0.6722 0.073 0.1601 0.016, (18%)

Tomato Kc σ
0-based 59 0.8549 0.0871 0.0172 0.005, (5%) *

Tomato LAI σ0-based 50 0.7881 1.0 0.1001 1.1, (52%) *

Tomato height σ0-based 94 0.4201 11 cm 0.0446 1 cm, (8%)

Tomato Kc β
0-based 59 0.871 0.0821 0.1143 * 0.0307, (27%)

Tomato LAI β0-based 50 0.8341 0.9 0.352 * 0.7, (44%)

Tomato height β0-based 94 0.8107 9 cm 0.3442 * 2 cm, (18%)

Cotton height σ0-based 11 0.8721 5 cm 0.367 * 5 cm, (50%)

Cotton Kc σ
0-based 12 0.3742 0.0511 0.3543 * 0.0128, (21%) *

Cotton height β0-based 11 0.9467 8 cm 0.668 * 5 cm, (38%)

Cotton Kc β
0-based 12 0.707 0.1293 0.6353 0.0379, (23%) *
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Figure 7. Models based on field measurements and the σ0 normalization method: (A) wheat height; (B) wheat LAI;
(C) wheat Kc; (D) processing tomato height; (E) processing tomato LAI; (F) processing tomato Kc; (G) cotton height;
(H) cotton Kc.

3.2. Processing Tomato and Cotton Height, LAI, and Kc Models Based on the β0

Normalization Method

The effect of the β0-based normalization (Equation (8)) that reduces the difference in
β0 images acquired at different angles is shown in Figure 8.
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Figure 8. A time series of VV polarization values recorded by Sentinel-1 on its descending overpasses with local incidence
angles in the ranges of 30.8◦–31.2◦ and 42.2◦–43.6◦ during the processing tomato experiment in Gadash, 2018: (A) prior to
applying the β0 normalization; (B) post-normalization.

The β0-based normalization method permitted achieving the improvement in the R2

and RMSE of all the β0-based models. For the processing tomato and cotton height, LAI,
and Kc models, the R2 improved in the range of 0.1143–0.668, and the RMSE improved
in the range of 18–44%. Table 3, Tables S7 and S8, and Figure 9 show the performance of
processing tomato and cotton β0-based height, LAI, and Kc models. Table 3 shows the
performance of all the σ0-based and β0-based normalized models developed in this study
and their R2 and RMSE improvements over the non-normalized models.

 

Figure 9. Models based on field measurements and the β0 normalization method: (A) processing tomato height; (B) pro-
cessing tomato LAI; (C) processing tomato Kc; (D) cotton height; (E) cotton Kc.
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3.3. Performance of the Dual-Polarized RVI

The dual-polarized RVI-based wheat, processing tomato, and cotton models are
shown in Table 4. The wheat and cotton RVI models were compared against the σ0-based
models, while the processing tomato RVI models were compared to the β0-based processing
tomato models.

Table 4. RVI models for wheat, processing tomato, and cotton height, LAI, and Kc. The differences
in R2 and RMSE indicate the difference in performance compared to models based on either the σ0

(wheat and cotton models) or β0 (processing tomatoes) local incidence angle normalization methods
in Table 3. Negative values represent lower R2 and higher RMSE of the RVI models.

Height LAI Kc

Wheat

Overpass Asc Asc Asc

# SAR images used 26 25 6

Local incidence angle (◦) 35.3–36.6 35.3–36.6 47.7

R2 0.4248 0.1389 0.2912

R2 difference −0.2626 −0.5805 −0.381

RMSE 13 cm 1.6 0.102

RMSE difference −4 cm −1.0 −0.029

(%) (−44) (−167) (−40)

Processing tomatoes

Overpass Asc Asc Asc

# SAR images used 25 31 27

Local incidence angle (◦) 42.0–43.1 42.0–43.1 42.0–43.1

R2 0.1584 0.3425 0.5635

R2 difference −0.6523 −0.4916 −0.3075

RMSE 14 cm 1.9 0.2488

RMSE difference −5 cm −1.0 −0.1667

(%) (−56) (−111) (−203)

Cotton

Overpass Asc

# SAR images used 5

Local incidence angle (◦) 35.9

R2 0.3297

R2 difference −0.5424

RMSE 12 cm

RMSE difference −7 cm

(%) (−140)

4. Discussion

In contrast with previous studies that mostly used images acquired under fixed or
within narrow ranges of incidence angles, the correction derived in this study facilitates
the use of imagery acquired under all typical geometrical conditions. By applying simple
transformations to Sentinel-1 imagery acquired under a wide range of incidence angles,
the dependency of σ0 and β0 on the local incidence angle decreased, and the empirical
modeling of several crop properties was improved. This achievement is remarkable because
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monitoring crops using the full temporal resolution of SAR imagery is much more useful
than using imagery acquired at a narrow range of angles. Moreover, vegetation variable
estimation models calibrated in one region using the proposed methods can be applied to
other areas.

The improvement in the R2 and RMSE of the models following the local incidence
angle normalization procedure was found to be significant in many of the models: wheat
height and LAI models; β0-based processing tomato LAI, height, and Kc models; σ0-based
cotton Kc and height models; and β0-based cotton height model. Since the statistical signif-
icance of the difference between correlations is dependent on the number of images used
for model development, some of the models yielded a difference that was not significant
(wheat Kc model, processing tomato σ0-based LAI, height, and Kc models, and cotton Kc
β0-based model). However, the trend of improvement following the proposed normal-
ization procedures is clear, and the practical usefulness of the proposed methods can be
better represented by the RMSE improvements because RMSE represents the vegetation
variable estimation accuracy. The RMSE improvement was found to be significant in the
following models: processing tomato σ0-based LAI and Kc models; and cotton Kc σ

0 and
β0-based models. The RMSE improvement was not significant in the following models:
wheat, processing tomato σ0-based LAI, and processing tomato β0-based models, and
cotton height σ0- and β0-based models. The R2 and RMSE of all the models calibrated
in the present study improved following incidence angle normalization. The range of
RMSE improvements varied from model to model (Table 3), from 5 to 52%. Moreover, the
performance of the newly developed β0-based local incidence angle normalization method
shows potential for overcoming the limitations of σ0-based modeling for agricultural pur-
poses. The use of β0 to improve vegetation variable estimation is particularly useful in
fields with a rough soil surface geometry. Using β0 is not common for Sentinel-1 imagery,
and the users’ community could benefit from adopting this approach.

The models presented here for wheat and processing tomatoes were calibrated based
on measurements taken throughout the entire duration of growing seasons and can, there-
fore, be applied at any time during crop development without restrictions. Nevertheless,
the RMSE of LAI and height estimations was slightly higher at the peak of the season
compared to the rest of the season. The relatively high accuracy of the models calibrated
in this study and their independence from the incidence angle following the new nor-
malization methods are advantageous compared to previous studies [47,55,60,61,64], in
which the images used were limited to a narrow range of incidence angles. In addition, in
contrast to [48] that presented models that can only be reliably applied to certain vegetation
heights, the wheat and processing tomato models presented here are applicable to any
height within the range measured in our experiments: 34–95 cm (wheat) and 24–77 cm
(processing tomatoes). A comparison between several studies that used C-band SAR to
estimate vegetation height and LAI is shown in Tables 5 and 6.

The models for LAI estimation show a better performance than previous studies.
Previous estimation based on imagery acquired under a narrow range of incidence angles
and dual-polarization [47] only achieved R2 = 0.25. Moreover, the models in this study
performed similarly to quad-polarization RADARSAT-2-based models for corn and soy-
bean LAI estimation that utilized imagery acquired under a narrow range of incidence
angles [39] and achieved R2 = 0.66 and RMSE = 0.75 and R2 = 0.64 and RMSE = 0.63,
respectively. Another study [60] presented a wheat LAI estimation model, which has better
prediction performance than the models obtained in the present study (RMSE = 0.4), but as
in other previous models, it was based on images acquired under only one incidence angle.
Unlike the LAI estimation based on optical imagery, the wheat and processing tomato LAI
models developed in this study were not saturated even at the peak of vegetation develop-
ment (wheat LAImax = 7.7, processing tomato LAImax = 9.1). Therefore, the LAI models in
this paper might be applied throughout the whole season duration, which is useful because
the LAI is a proxy for many vegetation variables [23], including crop productivity [105].
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Table 5. Comparison of vegetation height estimation models based on Sentinel-1 and RISAT-1 C-band SAR.

Model Satellite Crop Incidence Angle (◦) R2 Accuracy (RMSE)

Wheat (this study) Sentinel-1 Wheat 34.6–45.8 0.8566 6 cm

Processing tomatoes σ0-based
(this study)

Sentinel-1 Tomato 30.8–43.1 0.4201 11 cm

Processing tomatoes
β0-based (this study) Sentinel-1 Tomato 30.8–43.1 0.8107 9 cm

Bousbih et al. (2017) [47] Sentinel-1 Cereals 39–40 0.54 Not given

Nasirzadehdizaji et al. (2019) [48] Sentinel-1 Wheat 39–40 0.67 (<53 cm)
0.07 (≥53 cm) Not given

Srivastava (2019) [55] RISAT-1 Wheat 31 0.37 18 cm

Vreugdenhil et al. (2018) [64] Sentinel-1 Cereals Constant 0.68 Not given

Harfenmeister et al. (2019) [61] Sentinel-1 Wheat Constant 0.41 Not given

Table 6. Comparison of vegetation LAI estimation models based on Sentinel-1 and RISAT-1 C-band SAR.

Model Satellite Crop Incidence Angle (◦) R2 Accuracy (RMSE)

Wheat (this study) Sentinel-1 Wheat 34.6–45.8 0.7225 0.6

Processing tomatoes σ0-based
(this study)

Sentinel-1 Tomato 30.8–43.0 0.7881 1.0

Processing tomatoes β0-based
(this study)

Sentinel-1 Tomato 30.8–43.0 0.8341 0.9

Chauhan et al. (2018) [60] RISAT-1 Wheat 38 0.76 0.4

Bousbih et al. (2017) [47] Sentinel-1 Cereals 39–40 0.25 Not given

Vreugdenhil et al. (2018) [64] Sentinel-1 Cereals Constant 0.30 Not given

Harfenmeister et al. (2019) [61] Sentinel-1 Wheat Constant 0.48 Not given

The use of SAR for agricultural purposes has also been significantly enhanced by
this study. While several previous studies used SAR to estimate the wheat LAI and crop
height, processing tomatoes were not studied enough. Moreover, estimating Kc of wheat,
processing tomatoes, and cotton by SAR, to the best of our knowledge, was not previously
conducted. Previously, the crop water requirement estimation of maize, soybean, pasture,
and bean using SAR imagery acquired under a narrow range of incidence angles was
conducted [49]. Another study showed a non-crop-specific region-wise correlation between
only one Sentinel-1 image and the crop water stress index derived through the LANDSAT-8
image [106]. Finally, [107] used smoothed time series of Sentinel-1 backscatter values in
different polarization combinations to estimate Kc in vineyards. Therefore, the wheat and
processing tomato Kc estimation models derived in this study pave the way to accurate
Kc estimation using all available SAR imagery. This study stands out by overcoming the
limits imposed by the range of incidence angles typical for SAR imagery. As a result, the
newly developed normalized wheat and processing tomato Kc estimation models can be
used with confidence during the entire duration of a growing season.

Although the cotton models calibrated in this study showed good performance, they
are based on the data recorded from the middle to late stages of growing seasons. Therefore,
future studies should improve upon this by including the early stages of the growing
seasons. In addition, we did not calibrate an LAI model for cotton in this paper, but this
should be feasible given good field measurements. Therefore, additional field experiments
should be carried out to calibrate models for crop variables throughout the growing season.
Even though the cotton models developed in this study might have only limited use, all
four cotton models showed a sizeable improvement in the R2 and RMSE over the non-
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normalized models. This result confirms the effectiveness of the novel angle normalization
approach suggested in the present study.

The performance of models based on the new transformation was favorable com-
pared to models based on the dual-polarized RVI. Although the RVI-based models in the
present study were calibrated under the most favorable conditions possible, using only
ascending overpass imagery acquired under only one incidence angle, the new models
based on local incidence angle normalization methods outperformed them: the RMSE of
RVI-based models was 40–203% higher. It should be noted that the assumption σ0

VV ≈ σ0
HH

underlying the dual-polarized RVI is in contradiction to previous findings that show a
typical difference of 5 dB between σ0

VV and σ0
HH in the intermediate range of incidence

angles in the C band [91,108,109]. Therefore, we conclude that the dual-polarized RVI is not
recommended where the assumption of the equality of backscatter in the two polarizations
cannot be made.

Unlike previous studies that used only fields with rows perpendicular to the SAR
beam [110], in this study, all the fields were used in model calibration. While this row
geometry is less noticeable in wheat fields, particularly in the middle and later stages of
the season, it should be noted that cotton and processing tomatoes are planted in rows
of earth mounds with furrows between them. In addition, the spatial orientation of the
rows in the fields in this study was not uniform between the locations. For example, in
the processing tomato fields in Gadash, the rows were oriented from west to east, while
in Gadot, the orientation was from west-southwest to east-northeast. This difference in
the spatial orientation of rows affects the backscatter because the target’s radar cross-
section depends on its angle relative to the satellite [111], and even minimal changes in the
target aspect significantly affect the RCS [112,113]. Nevertheless, the processing tomato
models were not sensitive to the crop row orientation because they showed a similar RMSE
(Tables S5 and S7) when they were applied to different fields. Therefore, the proposed
models seem to be insensitive to the row orientation and could likely be used in other
fields with different row orientations relative to the satellite orbit. However, this should be
further tested in future studies.

Despite the overall reliable performance of the newly developed models, it should be
pointed out that winter images in descending orbits have much weaker correlations with the
vegetation height, LAI, and Kc compared to images from ascending orbits. Consequently,
SAR images acquired in descending orbits could not be used for the development of
the wheat model. In the summer crops tested in this study, this phenomenon did not
occur, rendering the imagery acquired from descending orbits usable for the modeling of
crop variables.

A likely explanation for the weaker performance of wheat models based on imagery
from descending orbits might be related to the higher relative humidity in the early morning
(descending images were acquired around 03:40 GMT) compared to the relative humidity
in the evening (ascending images were acquired around 15:40 GMT). This observation is
confirmed by our meteorological measurements in Saad and Kvutsat Yavne, which showed
a regular diurnal pattern of a decrease in relative humidity following sunrise: from up to
100% in early morning hours to 40–60% in the afternoons. At night and in the early morning,
the relative humidity is very high, and the formation of fog and dew, along with increased
topsoil moisture, causes increased scattering and attenuation of the SAR beam [114,115].
Additionally, the SAR beam can be affected by common atmospheric inhomogeneities in
the morning hours over Israel that create radar echoes [116] and increase the atmospheric
reflectance and attenuation of the transmitted energy [117]. In previous studies, datasets
affected by these effects were binned. For example, [61] omitted a dataset that was affected
by dew. The issue of the relatively lower performance of descending orbit-based models
is an interesting direction that can be studied by analyzing data from other regions and
coupling them with the complementary ground and atmospheric measurements.

Although the newly proposed local incidence angle normalization methods were
tested on the typical incidence angle range of Sentinel-1 and most other spaceborne SAR
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missions, they are not expected to be effective for very steep incidence angles near to the
“nadir hole” region [118] or for very shallow angles because of the non-linear dependence
of the radar backscatter on the incidence angle in these ranges [90,91].

The proposed σ0 local incidence angle normalization method can be used not only
for agricultural purposes but also for other SAR applications. Additional studies need to
be carried out to determine if this method is ideal for general use. The β0 local incidence
angle normalization method might be used for the vegetation variable estimation of crops
other than processing tomatoes and cotton grown on rough soil surfaces. Future studies
should pursue this.

5. Conclusions

The proposed σ0 and β0 local incidence angle normalization methods facilitate the
use of all the images acquired by the Sentinel-1 constellation under the full range of typical
incidence angles. This is supported by an improvement in the correlations between the
SAR measurements and crop variables such as LAI, crop height, and Kc following these
normalization procedures in three crops: cotton, tomatoes, and wheat. Models based
on the suggested normalization of the incidence angle show considerable R2 and RMSE
improvements over the models that were not based on these transformations. This increase
in performance is the most notable for the wheat height and LAI models, processing tomato
σ0-based LAI and β0-based height models, and the cotton models. Most Kc, LAI, and
height models worked well with imagery acquired from ascending and descending orbits,
but winter imagery performed better with ascending orbits. This approach to estimate
vegetation variables is useful for routine vegetation and agricultural monitoring, having
a higher temporal resolution and accuracy than the previous approaches. Despite these
results, we wish to stress that the most important achievement is not only the improvement
in the models’ performance but also the enablement of the conjoint use of images acquired
under different incidence angles and even different orbits.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
45X/10/7/680/s1; Table S1: Sentinel-1 image inventory used in the development of models for
wheat. Each line represents a dataset with specific geometrical parameters; Table S2: Sentinel-1 image
inventory used in the development of models for cotton. Each line represents a dataset with specific
geometrical parameters; Table S3: Sentinel-1 image inventory used in the development of models for
processing tomatoes. Each line represents a dataset with specific geometrical parameters; Table S4:
Wheat height, LAI, and Kc models; Table S5: Processing tomato height, LAI, and Kc models based on
the σ0 normalization method; Table S6: Cotton height and Kc models based on the σ0 normalization
method; Table S7: Processing tomato height, LAI, and Kc models based on the β0 normalization
methods; Table S8: Cotton height and Kc models based on the β0 normalization method.
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Abstract: Satellite remote sensing is a useful tool for estimating crop variables, particularly Leaf Area
Index (LAI), which plays a pivotal role in monitoring crop development. The goal of this study was
to identify the optimal Sentinel-2 bands for LAI estimation and to derive Vegetation Indices (VI) that
are well correlated with LAI. Linear regression models between time series of Sentinel-2 imagery and
field-measured LAI showed that Sentinel-2 Band-8A—Narrow Near InfraRed (NIR) is more accurate
for LAI estimation than the traditionally used Band-8 (NIR). Band-5 (Red edge-1) showed the lowest
performance out of all red edge bands in tomato and cotton. A novel finding was that Band 9 (Water
vapor) showed a very high correlation with LAI. Bands 1, 2, 3, 4, 5, 11, and 12 were saturated at
LAI ≈ 3 in cotton and tomato. Bands 6, 7, 8, 8A, and 9 were not saturated at high LAI values in cotton
and tomato. The tomato, cotton, and wheat LAI estimation performance of ReNDVI (R2 = 0.79, 0.98,
0.83, respectively) and two new VIs (WEVI (Water vapor red Edge Vegetation Index) (R2 = 0.81, 0.96,
0.71, respectively) and WNEVI (Water vapor narrow NIR red Edge Vegetation index) (R2 = 0.79, 0.98,
0.79, respectively)) were higher than the LAI estimation performance of the commonly used NDVI
(R2 = 0.66, 0.83, 0.05, respectively) and other common VIs tested in this study. Consequently, reNDVI,
WEVI, and WNEVI can facilitate more accurate agricultural monitoring than traditional VIs.

Keywords: Sentinel-2; spectral bands; LAI; vegetation indices

1. Introduction

Monitoring crop growth and performance during developmental stages is an essential
aspect of agricultural management. Leaf Area Index (LAI) is a good proxy of the vegetation
state [1–3] and a good yield predictor [4–6]. LAI is a dimensionless quantity that character-
izes plant canopies. It is defined as the one-sided green leaf area per unit ground surface
area. The LAI is an important parameter in plant ecology and a measure of the photosyn-
thetic active area, and at the same time of the area subjected to transpiration. It is also the
area that comes in contact with air pollutants. LAI is often a key biophysical variable used
in biogeochemical, hydrological, and ecological models. LAI is also commonly used as
a measure of crop growth and productivity at spatial scales ranging from the plot to the
globe. Moreover, activities such as herbicide and fertiliser management, leaf chlorophyll
content estimation, detection of crop disease, and yield prediction can be based on LAI
monitoring [7].

LAI can be estimated from VIs [8–11] produced from imagery acquired by optical
satellites, but this approach suffers from a low correlation between LAI and some bands
that the VIs are based on. Many studies showed that LAI estimation from optical imagery
suffers from saturation when LAI is greater than 3 (i.e., the LAI changes at a faster rate
than the reflectance) [11–14]. Since the LAI of many crops typically exceeds this level
by a large margin, optical sensors have limited use for LAI estimation. Most previous
studies that defined this saturation effect were based on older sensors (e.g., Landsat, Modis,
SPOT) [15–17], and accordingly, Vegetation Indices (VIs) intended for those sensors. In 2015
the first Sentinel-2 became operational, which marked the arrival of the new generation
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of satellites. The Multi-Spectral Instrument (MSI) onboard Sentinel-2 observes the earth
at 13 spectral bands with a spatial resolution from 10 to 60 m (depending on the band)
and a five-day revisit time. MSI is a spaceborne multispectral instrument that thoroughly
covers the red edge spectral range, which is highly sensitive to the chlorophyll reflectance
in plants [18]. The red-edge spectral range covers the wavelengths of 680–750 nm, where
the change of leaf reflectance is sharp [19,20]. In order to estimate LAI from Sentinel-2,
there is a need to evaluate which bands suffer from the saturation that was observed in
previous generations of spaceborne sensors and explore ways to overcome this limitation.

In addition to LAI modelling based on VIs, several machine learning algorithms for LAI
estimation based on Sentinel-2 bands were studied and showed mixed results [11,21–23].
Previous studies on different wavebands [24], including simulated Sentinel-2 bands,
concluded that the red edge is the best spectral region for LAI estimation in several
crops [2,3,25–27]. Therefore, careful selection of the bands used to derive VIs and machine
learning algorithms can improve the performance and generality of the LAI estimation
models based on Sentinel-2 imagery. Nevertheless, while several studies investigated the
performance of MSI-based VIs and machine learning algorithms for LAI estimation of
tomato, wheat, and cotton [11,28–30], very few studies investigated the performance of the
real MSI bands (as opposed to synthetic data) in the LAI estimation of these crops [31].

Therefore, this study’s first goal was to model LAI using real Sentinel-2 imagery and
field-measured LAI to quantify the performance of individual bands and their saturation
levels in cotton, tomato and wheat. The second goal of the study was to suggest well-
performing VIs that employ bands not commonly used for VI derivation and facilitate
better agricultural monitoring.

2. Materials and Methods

2.1. Test Sites and Field Measurements

The field data used in this study were collected during one cotton, two wheat, and
three processing tomatoes experiments conducted in five locations in Israel (Figure 1).

 

Figure 1. Locations and analysis polygons of the experiments conducted in Israel in 2018–2020.
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The Sentinel-2 image inventory used for this study is presented in Table 1. Over-
all, 56 Sentinel-2 images were used in the study (14—wheat, 33—processing tomatoes,
9—cotton). During these experiments, LAI was measured by a SunScan Canopy Analysis
System—SS1 developed by Delta-T Company (Cambridge, United Kingdom). The SunScan
is a widely used, accurate, nondestructive LAI measurement system successfully employed
in many previous studies [5,30,32]. The SunScan system measures LAI by calculating
the difference in solar radiance received by the dome sensor installed under unobscured
Sun view and the hand-held probe placed below vegetation canopy on the ground level
(Figure 2).

Table 1. The Sentinel-2 bands used in the present study.

Band Sentinel-2A Sentinel-2B

Central
Wavelength (nm)

Bandwidth
(nm)

Central
Wavelength (nm)

Bandwidth
(nm)

Spatial
Resolution (m)

Band 1—Coastal aerosol 442.7 21 442.2 21 60
Band 2—Blue 492.4 66 492.1 66 10

Band 3—Green 559.8 36 559.0 36 10
Band 4—Red 664.6 31 664.9 31 10

Band 5—Vegetation red edge 1 704.1 15 703.8 16 20
Band 6—Vegetation red edge 1 740.5 15 739.1 15 20
Band 7—Vegetation red edge 3 782.8 20 779.7 20 20

Band 8—NIR 832.8 106 832.9 106 10
Band 8A—Narrow NIR 864.7 21 864.0 22 20
Band 9—Water vapour 945.1 20 943.2 21 60

Band 11—SWIR 1613.7 91 1610.4 94 20
Band 12—SWIR 2202.4 175 2185.7 185 20

 

Figure 2. Main components of the SunScan system: (A) Dome sensor; (B) Probe; (C) Field computer.

Each LAI value used for model calibration was an average value of at least 30 field
measurements. LAI was measured in the center of the fields and was correlated to average
values of Sentinel-2 bands and VIs of homogenous areas in the fields’ centers. In the Megido
2020 experiment, LAI was measured in two areas of the field (in the center of the field
(six LAI measurements) and on the northwest corner (four LAI measurements)) where
the crop developed at different rates and, thus, LAI was different. Accordingly, both time
series of the field measurements were correlated with the average values of bands and
VIs within defined polygons. In-field paths and their surrounding area were masked out
from analysis polygons of the tomato experiments to remove bare soil areas and avoid
border effects. These excluded areas consisted of approximately 20% of the overall polygon
areas in the tomato fields. Therefore, each tomato polygon consisted of either two or four
vegetated regions separated by the paths.

Overall, 11 averaged LAI values taken during two growing seasons were used for
deriving the wheat models, nine for cotton (one season), and 23 for tomato (three seasons).
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The linear regression models in this study utilised the average values derived from satel-
lite imagery within the analysis polygons and same-date field measurements or linearly
interpolated LAI values of field measurements from adjacent dates.

2.2. Satellite Imagery

Sentinel-2 is an Earth observation mission and part of the European Space Agency
(ESA) Copernicus program. It includes two satellites with a payload of MSI, namely
Sentinel-2A (launched 23 June 2015) and Sentinel-2B (launched 7 March 2017). Table 1
lists the spectral bands of Sentinel-2 that were used in this study. The inventory of the
atmospherically and topographically corrected Level-2A Sentinel-2 images used in this
study alongside the information on the LAI measurements can be found in Tables 2 and A1.
Level-2A and Level-1C imagery were downloaded from the ESA Copernicus site (https:
//scihub.copernicus.eu/dhus/#/home, accessed on 6 April 2021) (# means “Number”).
Level-1C images were processed to Level-2A using Sen2Cor algorithm [33].

Table 2. Sentinel-2 imagery and LAI measurements used in the study.

Area Crop Period * # of Images
Polygon Size

(Sentinel-2 Pixels)
# LAI

Measurements
Range of

Measured LAI

Saad Wheat 02-March-2019
06-April-2019 6 260 4 4.8–7.1

Yavne Wheat 11-January-2019
11-April-2019 8 550 7 3.8–7.0

Gadash Tomato 3-May-2019
24-July-2019 8–9 ** 425 6 1.4–4.7

Gadot Tomato 25-April-2019
14-August-2019 12–13 ** 249 11 0.7–9.1

Gadot Tomato 7-May-2020
3-August-2020 11 332 6 0.9–8.6

Megido Cotton 30-May-2020
29-July-2020

9
4

268 (Centre)
17 (NW Corner)

6
3

0.6–9.6
0.8–1.9

* Indicates the dates of the first and last images. ** A defective red edge band in a Sentinel-2 image acquired on 10 June 2019 prevented the
derivation of red edge-based models for that date.

2.3. Model Calibration and Validation

Linear regression models were derived to estimate LAI for specific crops based on
field measurements and Sentinel-2 bands. Similarly, regression models between LAI and
VIs were derived, including NDVI [34] and NDVI based on the Narrow NIR Band-8A
instead of NIR Band-8. Additionally to NDVI, models were also derived for reNDVI [35],
MTCI [36], WDVI [37], EVI [38], SAVI [39], MSAVI [40], DVI [34], and two new indices:
WEVI (Water vapor red Edge Vegetation Index) and WNEVI (Water vapor narrow NIR red
Edge Vegetation index). For every model, the R2 and root mean square error (RMSE) values
were calculated using the Microsoft Excel software. WEVI and WNEVI were developed
based on combinations of the best performing bands for LAI estimation. The following
equations and Sentinel-2 bands were used for deriving the aforementioned VIs:

NDVI = (B8 − B4)/(B8 + B4) (1)

NDVI8A = (B8A − B4)/(B8A + B4) (2)

MTCI = (B6 − B5)/(B5 − B4) (3)

WDVI = B8 − 0.5 × B4 (4)

EVI = (2.5 × (B8 − B4))/(B8 + 6 × B4 − 7.5 × B2 + 1) (5)

SAVI = ((B8 − B4))/ (B8 + B4 + 0.5)) × 1.5 (6)

MSAVI = ((B8 − B4) × (1 + L))/(B8 + B4 + L) (7)
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where: L = 1 − 2 × s × NDVI × WDVI and s is the soil line slope = 0.5

DVI = B8 − B4 (8)

reNDVI = (B8A − B6)/(B8A + B6) (9)

WEVI = B9 − B6 (10)

WNEVI = (B8A − B6)/(B9 + B6) (11)

3. Results

Table 3 shows the performance of the separate Sentinel-2 bands and VIs for LAI
estimation of cotton, tomato, and wheat. Overall, the bands that modelled LAI best were
Band-7 (Red edge-3), Band-9 (Water vapor), and two NIR bands (8 and 8A). Notably, Band-
8A (Narrow NIR) showed a higher correlation with LAI and lower RMSE in LAI estimation
than Band-8 (NIR) in all three crops. Consequently, NDVI8A performed better than NDVI.
Importantly, Band-4 (Red) showed average performance, and Band-5 (Red edge-1) showed
weak performance relative to other bands in tomato and cotton. Therefore VIs based on
the better performing bands might be beneficial for LAI estimation. One such VI, namely
reNDVI, showed a very high estimation performance. Finally, the high performance in LAI
prediction by the Water vapor Band-9 suggests that this band might be useful for creating
VIs with good correlation to LAI. This result was confirmed by low RMSE and high R2

values of the new WEVI and WNEVI that are based on Band-9. The two new VIs proposed
in the study (WEVI and WNEVI) alongside reNDVI showed superior performance in LAI
predictions compared to NDVI and NDVI8A in all three crops, with the largest difference
in wheat.

Table 3. Performance of Sentinel-2 bands and VIs used in the present study. The performance of best
performing bands and VIs for each crop are in bold.

Tomato Cotton Wheat

Band/VI R2 RMSE R2 RMSE R2 RMSE

Band 1—Coastal aerosol 0.08 2.4 0.58 2.4 0.17 1.1
Band 2—Blue 0.13 2.3 0.52 2.5 0.02 1.2

Band 3—Green 0.00 2.5 0.57 2.4 0.06 1.2
Band 4—Red 0.65 1.5 0.81 1.6 0.02 1.2

Band 5—Vegetation red edge 0.00 2.5 0.75 1.8 0.22 1.1
Band 6—Vegetation red edge 0.79 1.1 0.93 1.0 0.01 1.2
Band 7—Vegetation red edge 0.78 1.2 0.96 0.7 0.26 1.0

Band 8—NIR 0.78 1.2 0.96 0.7 0.23 1.1
Band 8A—Narrow NIR 0.82 1.1 0.97 0.7 0.34 1.0
Band 9—Water vapour 0.80 1.1 0.97 0.7 0.29 1.0

Band 11—SWIR 0.01 2.5 0.12 3.4 0.00 1.2
Band 12—SWIR 0.61 1.6 0.82 1.5 0.00 1.2

NDVI 0.66 1.4 0.83 1.5 0.05 1.2
NDVI8A 0.71 1.3 0.87 1.3 0.05 1.2
reNDVI 0.79 1.1 0.98 0.6 0.83 0.5
MTCI 0.16 2.3 0.95 0.8 0.53 0.8
WDVI 0.76 1.2 0.94 0.9 0.29 1.0

EVI 0.78 1.2 0.95 0.8 0.26 1.0
SAVI 0.73 1.3 0.92 1.0 0.14 1.1

MSAVI 0.75 1.2 0.93 1.0 0.15 1.5
DVI 0.77 1.2 0.94 0.9 0.19 1.1

WEVI 0.81 1.1 0.96 0.7 0.71 0.6
WNEVI 0.79 1.1 0.98 0.6 0.79 0.5

Figure 3 shows the reflectance in each band and the corresponding LAI measurements
in this study’s experiments. The reflectance in bands 1, 2, 3, 4, 5, 11, 12 in cotton and
processing tomatoes start saturating from LAI ≈ 3 and almost no longer changing at
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LAI ≈ 6. This result is especially important because bands 4 and 5 are used in many VIs.
On the other hand, bands 6, 7, 8, 8A, 9 were not saturated. Insufficient satellite imagery
and field measurements of LAI were acquired during the wheat experiments and hindered
estimating the saturation levels of this crop.

 

 

 

 
Figure 3. Band reflectance and LAI measurements in the following experiments: (A) Wheat Saad, (B)
Wheat Yavne, (C) Cotton Megido (centre of field), (D) Tomato Gadash 2019, (E) Tomato Gadot 2019,
(F) Tomato Gadot 2020.

Figure 4 shows the RMSE of Sentinel-2 bands LAI estimation for wheat, cotton, and
tomato. While the RMSE of Sentinel-2 bands most commonly used in VIs formulae (bands
2-8A) in wheat LAI estimation is closer to each other, Band-4 and Band-5 have notably high
RMSE in cotton and tomato LAI estimation, and this is especially pronounced for Band-5
in tomato.
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Figure 4. RMSE of Sentinel-2 bands in tomato, cotton, and wheat LAI estimation.

Figure 5 shows reNDVI, WEVI, WNEVI, NDVI, and MTCI linear regression models
for tomato, cotton, and wheat.

Figure 6 shows the LAI measurements and LAI estimation based on the VIs used
in this study using the models described in Table 3. While several VIs showed similar
behavior in LAI estimation, MTCI, MSAVI, reNDVI, WEVI, and WNEVI were notably
different. MTCI, affected by the low performance of the Band-5, did not perform well in
tomato LAI estimation in Gadot 2019 and 2020. MSAVI notably underestimated wheat LAI
values. Conversely, reNDVI, WEVI, and WNEVI show closer resemblance to measured LAI
than all other VIs. In the present study, no difference in the spectral response of Sentinel-2A
and -B satellites was observed owing to an excellent radiometric cross-calibration of the
MSI on both satellites.

Figure 5. Cont.
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Figure 5. Tomato, cotton, and wheat LAI-VI linear regression models: (A) Tomato reNDVI; (B) Tomato
WEVI; (C) Tomato WNEVI; (D) Tomato NDVI; (E) Tomato MTCI; (F) Cotton reNDVI; (G) Cotton
WEVI; (H) Cotton WNEVI; (I) Cotton NDVI; (J) Cotton MTCI; (K) Wheat reNDVI; (L) Wheat WEVI;
(M) Wheat WNEVI; (N) Wheat NDVI; (O) Wheat MTCI. The data used to derive the models is
presented in Table 2, the RMSE values of the models are given in Table 3.
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Figure 6. LAI measurements and LAI estimation based on the VIs used in the present study in the
following experiments: (A) Wheat Saad, (B) Wheat Yavne, (C) Cotton Megido (centre of the field),
(D) Tomato Gadash 2019, (E) Tomato Gadot 2019, (F) Tomato Gadot 2020.

4. Discussion

This study investigated the performance of the individual Sentinel-2 bands and VIs in
estimating LAI of tomato, cotton, and wheat. This study’s most important finding is that
bands 6, 7, 8, 8A, 9 performed well in LAI estimation and did not saturate at high LAI in
cotton and processing tomatoes. At the same time, the wheat data was insufficient to make
this determination. Therefore, these bands can be used to create VIs for LAI monitoring.
VIs such as reNDVI and two new VIs introduced in this study for the first time, WEVI and
WNEVI, which are based on these bands, performed well in LAI estimation, better than
the commonly used NDVI as well as all the other VIs used in the study.

Band-8A (Narrow NIR) showed better performance in LAI estimation compared to
Band-8 (NIR). Therefore, NDVI derived based on Band-8A performed better than NDVI
based on Band-8. Band-4 (Red) was found to have an average performance. Therefore, sub-
stituting Band-8 with Band-8A and possibly substituting Band-4 with a better-performing
band (such as Band-6 used in reNDVI) is likely to improve the correlation of VIs with LAI,
and facilitate more accurate agricultural monitoring. The high performance of the reNDVI
achieved in the study supported this hypothesis. Unlike red edge and NIR bands, Band-9
(Water vapor) is not commonly used as a VI formulae but can be used in VIs such as WEVI
and WNEVI developed in this study. The analysis of Band-9 performance, which is not
commonly used for agricultural monitoring, and developing VIs based on this band that
perform well in LAI estimation of the three crops, is the unique feature of the present study.

Unlike red edge bands 6 and 7 that showed high performance, Band-5 (Red edge-1), at
the tail of the chlorophyll absorption peak [41], showed the lowest overall performance out
of all the red edge bands. This might be explained by the negative effect of the chlorophyll
content present in the leaves [10,14,42–44], which reaches maximum absorbance at about
690 nm [45]. Moreover, chlorophyll content may vary independently from LAI [46]. In
this study, MTCI, based on Band-5, showed low performance in tomato LAI estimation.
MTCI was previously found to have low correlation with tomato crop coefficient (Kc) and
height [11]. Nevertheless, MTCI was highly correlated with LAI of cotton and wheat in the
present study. MTCI was also previously found to have very high correlation with cotton
Kc [47,48] as well as a very good correlation with leaf chlorophyll concentration [25,49]
and LAI of many crops [3,23,50]. Consequently, despite its effective use for crop variable
estimation in many cases, Band-5 and VIs based on this band (e.g., MTCI) should be used
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with caution to model tomato variables. Similarly, careful selection of Sentinel-2 bands
might improve the performance of various machine learning algorithms, for example, the
SNAP Biophysical processor [51].

The results and approach demonstrated in this study can be useful in many agricul-
tural applications based on remote sensing data, for example Zaeen et al., [52] who developed
in-season potato yield prediction models based on several VIs, and Kganyago el al., [22] that
studied the performance of SNAP Biophysical processor machine learning algorithm in
LAI estimation of several crops. These applications might benefit from further investigation
of the correlations between Sentinel-2 bands and various vegetation variables.

In the present study, all the Sentinel-2 bands and the majority of VIs (except reNDVI,
WEVI, and WNEVI) showed low performance in LAI estimation of wheat. Therefore,
despite the achievements in estimating LAI using Sentinel-2 bands in tomato, cotton,
and wheat, additional measurements of wheat are needed to estimate Sentinel-2 bands
saturation levels in that crop. Moreover, owing to the spectral resemblance of the Sentinel-2
MSI and the VENμS sensors [2,11,53], a combination with VENμS might facilitate better
agricultural monitoring, considering its high two-day temporal resolution.

Overall, the study quantified the performance of the individual Sentinel-2 bands
and several VIs (including two newly developed VIs) in the LAI estimation of tomato,
cotton, and wheat. Such a result facilitates deriving efficient algorithms and methods for
agricultural monitoring via optical satellite imagery.

5. Conclusions

This study is a step towards improving agricultural practices such as variable rate irri-
gation, fertilizer and herbicide application, yield prediction, disease monitoring, and many
others. This achievement is made possible because of the newly-derived VIs and models
that can estimate LAI throughout the season without saturation. As a result, agricultural
practices informed through remote sensing can potentially improve agricultural production.

This study found that Sentinel-2 Band-8A (Narrow NIR) is more accurate for LAI
estimation than Band-8 (NIR). A very important achievement of the study is that the
Band-5 (Red edge-1) showed a low correlation with LAI. Band 9 (Water vapour) showed
a very high correlation with LAI alongside the red-edge bands 6 and 7 and NIR bands.
Band-9 was demonstrated to be effective for LAI estimation when incorporated into new
VIs suggested here for the first time, WEVI and WNEVI. Importantly, Bands 1, 2, 3, 4, 5,
11, 12 were saturated at LAI ≈ 3 and were practically not responsive to a further increase
in LAI around LAI ≈ 6. Bands 6, 7, 8, 8A, 9 did not saturate at high LAI. ReNDVI, WEVI,
and WNEVI were found to be the best performing VIs for LAI estimation of all three crops
tested in this study.
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Abstract: Many novel research algorithms have been developed to analyze urban heat island (UHI)
and UHI regional impacts (UHIRIP) with remotely sensed thermal data tables. We present a com-
prehensive review of some important aspects of UHI and UHIRIP studies that use remotely sensed
thermal data, including concepts, datasets, methodologies, and applications. We focus on reviewing
progress on multi-sensor image selection, preprocessing, computing, gap filling, image fusion, deep
learning, and developing new metrics. This literature review shows that new satellite sensors and
valuable methods have been developed for calculating land surface temperature (LST) and UHI
intensity, and for assessing UHIRIP. Additionally, some of the limitations of using remotely sensed
data to analyze the LST, UHI, and UHI intensity are discussed. Finally, we review a variety of
applications in UHI and UHIRIP analyses. The assimilation of time-series remotely sensed data
with the application of data fusion, gap filling models, and deep learning using the Google Cloud
platform and Google Earth Engine platform also has the potential to improve the estimation accuracy
of change patterns of UHI and UHIRIP over long time periods.

Keywords: urban heat island; UHI regional impacts; non-urban areas; remote sensing; thermal band;
UHI intensity

1. Introduction

Urbanization is known to have substantial impacts on landscapes and ecosystems [1–4],
and urban inhabitants are expected to reach 70% of the world population by 2050 [5]. More-
over, the nature of urban development has been changing from a single city model to a
group of cities (urban agglomeration) worldwide. Urban heat island (UHI), urbanization,
and climate change are increasingly interconnected, resulting in several environmental
consequences (such as heat stress, biodiversity loss, fire risk, warming water due to run
off, and diminished air quality) at both local and regional levels [2,6–9]. Such UHI related
impacts are also called UHI regional impacts (UHIRIP). Generally, UHI research includes
data from two major sources: air temperature data that are observed by weather or climate
stations and remotely sensed data to observe UHI through land surface temperature. Be-
fore the availability of remotely sensed data, UHI was widely observed in the field, with
the first scientific observation of UHI in 1833 [10]. Field observations of UHI continue
to be a critical source of training and validation data [11,12]. These observations, along
with modeling studies, continue to help unravel the factors that are responsible for UHI
development, and are providing a basis for the development and application of sustainable
adaptation strategies. Communicating scientific knowledge quickly and effectively of UHI
and UHIRIP to architects, engineers, scientists, and planners could help inform urban
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design and decision making. Remotely sensed data have been used to observe UHI and
UHIRIP on environments, ecosystems, human health, and economics in urban and non-
urban areas for decades. Remote sensing offers the benefits of long data archives, repeated
observations, efficiency, and multiple temporal and spatial resolutions. UHI studies using
remotely sensed data have been published for hundreds of cities worldwide [6,7,13–19].
Remotely sensed data provide highly efficient, long-term, and broad-scale information
for assessing UHIRIP. However, studies integrating high spatial resolution imagery (e.g.,
Landsat at 30 × 30 m and ECOSTRESS at 70 × 70 m) from multiple sensors to evaluate UHI
and UHIRIP across a time series have been uncommon. Challenges to such studies include
image frequency and calibration, cloud contamination, and the need for large storage
and high-performance computing capabilities [20,21]. Early generations of broad-scale
UHI assessment using remote sensing often poorly represented the spatial and tempo-
ral variance in UHI, especially at the urban and non-urban interface. As the resolution
of algorithms and satellite imagery improved and interest in UHIRIP grew, researchers
sought better representations of UHI. Initially, this took the form of modifications based
on surface physical characteristics such as roughness length, albedo, thermal conductivity,
and thermal diffusivity [22,23]. Many studies have been conducted to understand the
urban thermal climate or the potential for heat island mitigation using this framework of
simplified algorithms [24–26]. In more recent efforts, researchers have incorporated more
sophisticated parameterization schemes that have included distributions of demography,
policies, and behavior of government; ecological variables and ecosystem services; land
use and land cover change (LULCC) patterns; and social and economic factors to represent
the complicated impacts of UHI [27–36].

Historically, the study of UHI using remote sensing data, often Landsat data, was
mainly based on comparing images at two different times using the bitemporal ap-
proach [37–39]. Although the bitemporal approach is mathematically simple and does
not need large amounts of data, it is less useful than a time series approach that is able
to provide a more comprehensive understanding of the complexity of UHI. Most early
research [17,40–42] in UHI focused on cities or urban areas, and often ignored the urban
and non-urban interface at regional scales. In recent decades, the cost of data storage has
dramatically decreased, and we have witnessed an overwhelming increase in computing
power and open source software that provide the foundations for time series analysis using
higher resolution thermal data from satellite archives. Some studies used Landsat time
series to detect historical changes [20,43–46], but few have focused on UHI and its interac-
tion with land use and land cover (LULC) dynamics. A research team at the USGS Earth
Resources Observation and Science (EROS) Center recently developed the Land Change
Monitoring, Assessment, and Projection (LCMAP) project [47], which is produced with
Landsat Analysis Ready Data (ARD) [48] and land surface temperature (LST) data. LCMAP
data provide the potential to use Landsat LST data to analyze UHI in urban agglomerations,
as well as the urban and non-urban interface at local, regional, and global scales.

This paper reviews remote sensing thermal data sources and the most up-to-date
methods used for UHI and UHIRIP investigations. We start by defining UHI, UHII (UHI
intensity), regional impacts, urban and non-urban interface, and remotely sensed data
sources for LST. We then describe the major distinct approaches that have been used to
estimate the magnitude, spatial distribution, intensity, and change pattern of UHIRIP in
urban agglomerations and at different urban and non-urban interfaces. Our primary goals
in this review are to describe (1) a brief historical summary in the research of UHI and
UHIRIP, (2) major thermal data sources and methods used in UHI and UHIRIP research,
(3) algorithms used in UHI and UHIRIP analysis, and (4) future research perspective and
potential direction. Following the introduction, we discuss the development of UHI and
UHIRIP in Section 2; in Section 3, we focus on the application of the remotely sensed
thermal datasets in UHI and UHIRIP; we review the algorithms for UHI and UHIRIP
in urban and non-urban interface studies based on remotely sensed data in Section 4; in
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Section 5, we summarize UHI and UHIRIP based on remotely sensed data; and in Section 6,
future research directions are discussed.

2. Development of UHI and UHIRIP Analysis

Most satellite-based investigations of UHIs can be summarized into five main objec-
tives: (1) to examine the spatial features of urban thermal patterns and change dynamics
and their relations to urban surface characteristics; (2) to study urban surface energy bal-
ances through coupling with urban climate models, including simulation and projection;
(3) to study the relations between atmospheric heat islands and surface UHIs through
combining coincident remote and ground-based observations; (4) to develop approaches
to reduce the magnitude of the UHI and its regional impacts; and (5) to study the UHI
effects on ecosystem security at a regional level. Several important reviews, bibliographies,
and summaries on UHIRIP using remotely sensed data have been published (see list and
descriptions in Table 1). These reviews have concentrated mostly on the various world-
wide perspectives of UHI, including the definition of fundamental concepts, summary
of methods, applications, exploration of output characteristics, outlines of key research
findings, and potential future directions (Tables 2 and 3). The focus of this paper is on
the algorithms and methods used in studies employing remote sensing thermal data for
UHI and UHIRIP investigation, and future directions in this realm. We summarize (1) the
disadvantages of using limited time remotely sensed data for UHI and UHIRIP analysis;
(2) the limitations of data shortages due to cloud cover and satellite revisit intervals; (3) the
applications of gap filling, data fusion, and deep learning; and (4) the trade-offs between
high temporal frequency data (MODIS) and high spatial resolution (Landsat) time series.

Table 1. Example of main reviews, bibliographies, and summaries on UHI and UHIRIP using remotely sensed data.

Reference Topics Sensors Measurements

Hall et al. [11]
Satellite remote sensing of surface energy
balance success, failures, and unresolved

issues in field experiment (FIFE)
Landsat, SPOT Thermal

Gallo et al. [13] Assessment of urban heat islands: A
satellite perspective

AVHRR,
Landsat MSS Thermal

Voogt and Oke [6] Thermal remote sensing of urban climates Multiple, review Thermal

Weng and Larson [49] Satellite remote sensing of urban heat islands:
current practice and prospects Multiple, review Thermal

Jiang et al. [50]
Land surface emissivity retrieval from

combined mid-infrared and thermal infrared
data of MSG-SEVIRI

Meteosat Second
Generation (MSG)

Spinning Enhanced Visible
and Infrared

Imager (SEVIRI)

Kalma et al. [51]
Estimating land surface evaporation: A

review of methods using remotely sensed
surface temperature data

Multiple, review Thermal

Racoviteanu et al. [52]
Optical remote sensing of glacier

characteristics: a review focusing on
the Himalaya

ASTER Indices

Rizwan et al. [53] A review on the generation, determination,
and mitigation of urban heat island Review Determination of UHI

Weng [7]
Thermal infrared remote sensing for urban

climate and environmental studies: Methods,
applications, and trends

Multiple, review Thermal

Bowler et al. [31] Urban greening to cool towns and cities: A
systematic review of the empirical evidence Review Synthesis analysis

Sailor [54]
A review of methods for estimating

anthropogenic heat and moisture emissions
in the urban environment

Review Bibliometric profile

Li et al. [55] Satellite-derived land surface temperature:
current status and perspectives Multiple, review Thermal
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Table 1. Cont.

Reference Topics Sensors Measurements

Ngie et al. [56] Assessment of urban heat island using
satellite remotely sensed imagery: A review Multiple, review Thermal

Rasul et al. [16] A review of remote sensing of urban heat
and cool islands Multiple, review Thermal

Huang and Lu [57] Urban heat island research from 1991 to 2015:
A bibliometric analysis Review Bibliometric profile

Zhang et al. [58]
A bibliometric profile of the remote sensing

open access journal published by MDPI
between 2009 and 2018

Multiple, review Bibliometric profile

Deilami et al. [59]
Urban heat island effect: A systematic review

of spatio-temporal factors, data, methods,
and mitigation measures

Multiple, review Thermal

Zhou et al. [60]
Satellite remote sensing of surface urban heat

islands: Progress, challenges,
and perspectives

Multiple, review Thermal

Becker and Zhao-Liang [61]
Surface temperature and emissivity at

various scales: definition, measurement, and
related problems

Multiple, review
Thermal (surface

temperature
and emissivity)

Dash et al. [62]
Land surface temperature and emissivity

estimation from passive sensor data: theory
and practice current trends

Multiple, review
Thermal (surface

temperature
and emissivity)

Table 2. Examples of research publications investigating UHI and UHIRIP using remotely sensed data.

UHI Applications Example of Research

Classification with LST,
index, albedo

Miles and Esau [63], Trlica et al. [64], Bonafoni [65], Wong and Nichol [66], Jin [67], Wu et al. [68],
and Hu and Brunsell [69]

Regression models,
geostatistical analysis

Zhang and Du [70], Wicki and Parlow [71], Dai et al. [72], Song et al. [73], Sellers et al. [74],
Du et al. [75], Shahraiyni et al. [76], Chun and Guldmann [77], Ho et al. [78], and Lai et al. [79]

Multiple sensors,
data fusion

Huang and Wang [80], Li et al. [81], Berger et al. [82], Liu et al. [83], Fu and Weng [84], Liang and
Weng [85], and Dousset and Gourmelon [86]

Machine learning,
decision support

information system

Chakraborty and Lee [87], Mpakairia and Muvengwi [88], Zhang et al. [89], Tran et al. [90],
Shahraiyni et al. [76], Weng and Fu [91], Mallick et al. [92], Connors et al. [93], Wentz et al. [94],

Xian and Crane [95], Wilson et al. [96], and Xian et al. [97]

Table 3. The temporal frequency and spatial resolution of the main remotely sensed thermal data.

Sensor Temporal Frequency (day) Spatial Resolution (m)

Landsat 5 TM 16 120 (resampled to 30)
Landsat 7 ETM+ 16 60 (resampled to 30)
Landsat 8 TIRS 16 100 (resampled to 30)
Terra ASTER 15 90
Terra MODIS 1 1000
Aqua MODIS 1 1000

NOAA-AVHRR 1 1000
VIIRS 1 750

ECOSTRESS Various (randomly, 0.5) 70

2.1. Urban Heat Island

UHI studies have been conducted for over 200 years, since the first conceptualization
by Luke Howard in 1818 [98]. Generally, an urban heat island (UHI) is an urban area or
metropolitan area that is significantly warmer than its surrounding rural areas because of
human activities. The temperature difference is usually greater at night than during the day
and is most apparent when winds are weak. Some research [99,100] shows that the annual
mean air temperature of a city with 1 million people or more can be 1–3 ◦C warmer than its
surroundings. In the evening, the difference can be as high as 12 ◦C. Heat islands can affect
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communities by increasing the summertime peak energy demand (such as air conditioning
costs), air pollution and greenhouse gas emissions, heat-related illness, and mortality, and
decreasing water quality and ecosystem security. Higher temperature “domes” are created
over an urban or industrial areas by hot air layers forming at building-top or chimney-top
level. This dome is about 5 ◦C to 7 ◦C warmer than the air above it and the ground level
temperature, and can trap all polluting emissions within its confines (see also temperature
inversion [53,57]).

The large amount of heat generated from urban structures and pavements, as they
absorb and re-radiate solar radiation, as well as the heat from other anthropogenic sources,
are the main causes of UHI. These heat sources increase the temperatures of an urban area
compared with its surroundings, which is known as UHI intensity (UHII). Traditionally,
regardless of the methodology employed, whether it refers to (1) differences between
two fixed observatories, one urban and another peripheral or non-urban; (2) mobile urban
transects; or (3) remote sensing analysis, UHII provides a value of thermal differences
between contrasted points, sectors, or areas, one urban and another that could be termed
non-urban. Thus, the intensity of the UHI is seen in the temperature difference expressed
at a given time between the hottest sector (areas) of the city and the surrounding non-urban
space. The intensity of the heat island is the simplest and most quantitative indicator of the
thermal modification imposed by the city upon the territory in which it is situated and of
its relative warming in relation to the surrounding rural environment. The intensity could
be defined for various time scales and geographical locations [101,102].

2.2. The Study of the Spatial Structure of Urban Thermal Patterns, Change Dynamics, and Their
Relation to Urban Surface Characteristics

Based on the fractional theory of ecology [103,104], the spatial structure of urban
thermal patterns and temporal change dynamics can be studied in two and three dimen-
sions. Figure 1 shows an example of the UHI and UHIRIP profile in Sioux Falls, South
Dakota, USA, and the surrounding area, derived from Landsat ARD LST over different
land cover classes [97]. The study of temporal change in UHI can include multiple scales
of change, including daily, day and night, monthly, seasonal, yearly, and long-term time
series. The physical mechanisms driving UHI are well documented [28]. UHIRIP may
be described in multiple ways with various methodological approaches to investigate
each type; specifically, it can impact the ground, the surface, and various heights in the
air [105,106] at a regional scale. Different pictures arise for each type of UHI when mea-
sured by different methods. Tam et al. [107] suggested that the magnitude of total change
in day to day temperature variability can be used to decide a suitable urban/rural pair
for any urbanization impact study. Generally, the UHI at a regional scale is best measured
using remotely sensed data with one or multiple thermal bands. When explaining the
character of remotely sensed UHI, Roth et al. [108] assert, “satellite-derived surface heat
islands are in a separate class and it is not clear that they will match others measured by
more conventional means in the urban canopy layer or the urban boundary layer”. Their
precautionary statement relates in part to the surface “seen” by remote sensing platforms
that depend on altitude and the camera or sensor angle. Imagery collected at nadir and/or
high altitude primarily consists of rooftops, streets, crop fields, and vegetation canopies.
Observations from lower heights at oblique angles consist of items seen from a bird’s-eye
perspective plus varying degrees of vertical features in the landscape, such as the walls of
buildings. As a result, angle can have a large influence on the urban surface temperatures
recorded by airborne and spaceborne thermal infrared sensors [109]. Another concern
regards mixed pixels (i.e., individual pixels containing surfaces having different physical
properties, depending on the spatial resolution of the data), which can complicate im-
age analysis. This is especially true for thermal sensors aboard satellites, because most
have a spatial resolution that is coarser than the other spectral bands on the satellite. The
typical variation of urban surface properties also complicates thermal sensors. A final
consideration when using remotely sensed imagery involves correcting for atmospheric
attenuation. For many applications, these issues are far outweighed by remote sensing’s
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benefits. With high spatial resolution thermal data, these issues can typically be resolved.
Additionally, from a macro research perspective, remotely sensed thermal data have the
major advantage of investigating UHI and UHIRIP at a broad scale, permitting focus on
environmental issues in urban agglomerations and surrounding areas, and at urban and
non-urban interfaces.

Figure 1. An example of UHI and UHIRIP in the urban and the urban and non-urban interface for part of the Sioux Falls,
SD area.

2.3. Simulation and Projection of UHI and UHIRIP

Applying theories of landscape ecology [104], UHI studies focus on moving from
static spatial structures of urban thermal patterns to the change dynamic of spatial patterns
and processes of urban thermal characteristics. The spatial structure of UHI patterns
determines the processes of UHI impacts. Li et al. [110] simulated the urban climate of
various generated cities under the same weather conditions. By studying various city
shapes, they generalized and proposed a reduced form to estimate UHI intensities based
only on the structure of urban sites, as well as their relative distances. They concluded that
in addition to the size, the UHI intensity of a city is directly related to the density and the
amplifying effect that urban sites have on each other. Their approach can serve as a UHI
rule of thumb for the comparison of urban development scenarios. Ramírez-Aguilar and
Lucas Souza [111] present a study based on the relationship between UHI and population
size (p) by considering the population density (PD) and the urban form parameters of
different neighborhoods in the city of Bogotá, Colombia. They concluded that urban form,
expressed by land cover and urban morphology changes caused by population density, has
a great effect on temperature differences within a city. Advances in computing technology
have fostered the development of new and powerful deep learning techniques that have
demonstrated promising results in a wide range of applications. In particular, deep learning
methods have been successfully used to classify remotely sensed data collected by Earth
observation instruments [112]. Deep learning algorithms, which learn the representative
and discriminative features in a hierarchical manner from the data, have recently become
a hotspot in the machine-learning area, and have been introduced into the geoscience
and remote sensing community for remotely sensed big data analysis [113]. With climate
change, the simulation and projection of UHI and its regional impact by using computer
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technology (deep learning) and remotely sensed data are becoming more important for
urban planning and policy makers.

2.4. Challenges for Land Surface Temperature and Emissivity Retrieval (Separation)

Land surface temperature and emissivity are two important surface parameters that
can be derived from remotely sensed data after atmospheric correction [114–116]. Besides
radiometric calibration and cloud detection, two main problems need to be resolved in
order to obtain land surface temperature and emissivity values from various satellite
sensors. These problems are often referred to as land surface temperature and emissivity
separation (TES) from radiance at ground level, and as atmospheric corrections in the
literature [117,118]. Reliable retrieval of urban and intra-urban thermal characteristics
using satellite thermal data depends on accurate removal of the effects of atmospheric
attenuations, as well as angular and land surface emissivity. In the thermal infrared
of remotely sensed data, the emission of the targets is dominant when compared with
the reflection, and this radiation is a function of two unknowns—the emissivity and the
temperature of the target [119]. The temperature and emissivity separation is complex
because of the existing non-linear relationship between temperature and radiance. The
complex dynamics of these relationships within the target (atomic level) propagates in
a cascade effect, reflecting variations in determining emissivity. Mohamed et al. [117]
reviewed details of LST and land surface emissivity (LSE) retrieval methods and their
potential for adoption in medium spatial resolution, including ASTER and Landsat. The
review further comments on spatial and temporal prospects of effective intra-urban surface
thermal mapping. They also suggested future development of land surface temperature
and emissivity estimation for UHI assessment. Li et al. [120] described the theoretical basis
of LSE measurements and reviewed the published methods. They also categorized these
methods into (1) (semi-) empirical or theoretical methods, (2) multi-channel temperature
emissivity separation (TES) methods, and (3) physically based methods (PBMs). Then,
they discussed the validation methods that are important for verifying the uncertainty
and accuracy of retrieved emissivity. Finally, the prospects for further developments are
given. These studies provided a forum for assessing what had been achieved by the UHI
community over four decades, and what needs to be done in the near future. It is clear that
the observation, experiments, and algorithm development efforts, although completely
worthwhile for scientists, need to deliver various datasets, especially from remotely sensed
data to modelers working in the areas of UHI and UHIRIP at local, regional, and global
levels. A lot of basic theoretical research and scientific verification work has been done on
scale issues, as well as scaling issues including emissivity and temperature measurements
related to remote sensing standards [121]. All of the methods described in Rolim et al. [119]
represent the largest and main part of the existing methods of temperature and emissivity
separation developed in the last four decades, but further research is necessary for more
precise methods that are less susceptible to errors during the separation of these variables.

2.5. The Relationship between Atmospheric Heat Islands and Surface UHI through Combining
Coincident Remote Sensing and Ground-Based Observations

Generally, UHI data are obtained from one of two sources—weather stations and
remote sensing. Remotely sensed data have been used to observe how UHI impacts climate
change in urban and non-urban areas for decades because of the multiple temporal and
spatial resolutions of remotely sensed datasets. Hundreds of published studies explore
UHI and its impacts by using these two data sources, but the relationship between air tem-
perature obtained from field stations and surface temperature derived from remote sensing
remains unclear. Wang et al. [122] investigated the relationship of canopy UHI (CUHI)
and surface UHI (SUHI) using four observations per day, without temporal averaging, in
four different cities in two different global regions, with 201 of 2232 CUHI–SUHI pairs
exhibiting significant UHI differences in their spatial distributions and intensities. The
results indicate that 81.09% of the UHI differences occurred during the daytime and were
caused by local air advection related to wind speed ≥2 m/s and land surface conditions
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in the study areas. They concluded that a joint analysis of CUHIs and SUHIs should be
conducted to characterize urban thermal environments, and that current urban planning
procedures should integrate these UHI differences to develop effective mitigation strategies
and adaptation measures. The combination of both types of UHI sub-components provides
added value for quantifying urban thermal environments, which can assist in developing
effective mitigation strategies and adaptation measures. A growing trend is to combine the
two methods, both with their own advantages [59].

2.6. Develop Controlling Approaches for UHI and UHIRIP

UHIs occur when cities replace other land covers with dense concentrations of pave-
ment, buildings, and other surfaces that absorb and retain heat. This effect increases energy
costs (e.g., for air conditioning), air pollution levels, and heat-related illness and mortality.
UHI results from increases in built-up surfaces in urban areas, whereas increasing vege-
tation cover and water surfaces within cities or urban agglomerations could improve the
urban ecological function and thereby improve urban environments for humans [123]. The
importance of optimizing urban LULC planning and the development of UHI mitigation
methods is increasing. Progress has been made to this end [67,124,125], with the devel-
opment of UHI mitigating technologies [126]. Ulpiani et al. [127] reviewed an infrared
emissivity dynamic switch against overcooling, which is aimed at collecting state-of-the-
art technologies and techniques to dynamically control the heat transfer to and from the
radiative emitter and to ultimately modulate its cooling capacity using spacecraft thermal
control, thermal camouflage, and electronics. This work discussed prominent pathways
toward technically and economically effective integration in the built environment for UHI
and UHIRIP.

2.7. UHI and UHIRIP on Socioeconomics and the Urban Ecosystem
2.7.1. Impacts on Human Health

Climate change, increasing urbanization, and an aging population in much of the
world are likely to increase the risks to health from UHI, particularly from heat expo-
sure. Additionally, increased urbanization has resulted in a more extensive UHI effects,
causing more frequent and intense heat waves in urban regions compared with rural
locales [67,128,129]. In urban and surrounding areas, heat waves will be exacerbated by
the UHI effect and will have the potential to negatively influence the health and wel-
fare of residents. Heaviside et al. [130] suggest that UHI contributed around 50% of the
total heat-related mortality during the 2003 heat wave in the West Midlands of the UK.
Moon [131] concluded that the mortality and morbidity risks of diabetic patients under the
heat wave were mildly increased by about 18% for mortality and 10% for overall morbidity.
Li et al. [132] found that high temperature significantly increases the risk of mortality
in the population of Jinan, China. Most research in this topic uses both weather station
and in situ measurements in order to investigate the health effects of UHI [129]. Some
results [133] show that different sites (city center or surroundings) have experienced dif-
ferent degrees of warming as a result of increasing urbanization [131]. Johnson et al. [134]
suggest that thermal remote sensing data can be utilized to improve the understanding
of intra-urban variations of risk from extreme heat. The refinement of the current risk
assessment systems could increase the likelihood of survival during extreme heat events
and assist emergency personnel in the delivery of vital resources during such disasters.
The conclusion is that UHI is directly linked to adverse health effects from exposure to
extreme thermal conditions.

2.7.2. UHI and UHIRIP on LULC Differences and Change

UHI is a result of continued urbanization, urban agglomeration, and associated
increases in paved areas and buildings. Mitigation strategies have been developed to
increase vegetation and water surface areas within urban areas to reduce the magnitude of
the temperature. One measure of UHI’s ecological footprint is estimated by calculating the
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increase of the cooling demand caused by the heat island over the urban area, and then
translating the increased energy use to environmental cost [123,125,135]. Some research
shows that the UHI effect has become more prominent in areas of rapid urbanization and in
urban agglomerations [136,137]. The spatial distribution of UHI has changed from a mixed
pattern, where bare land, semi-bare land, and land under development were warmer than
other LULC types, to extensive UHI, as contiguous urbanized blocks grew larger [38,138].
Some analyses showed that the higher temperature in the UHI had a scattered pattern
and was related to certain LULC types [97]. In order to analyze the relationship between
UHI and LULC changes, some studies attempted to employ a quantitative approach for
exploring the relationship between surface temperature and several indices, including
the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index
(NDWI), Normalized Difference Bareness Index (NDBaI), and Normalized Difference
Build-up Index (NDBI). It was found that correlations between NDVI, NDWI, NDBI, and
temperature are negative when NDVI and NDWI are limited in range, but there is a positive
correlation between NDBI and temperature [139–142].

2.7.3. Impacts on Regional Economics

Because UHI is related to a significant increase in surface temperature and changes in
precipitation patterns, it can potentially affect local economies and the social systems of
cities [143]. Some studies [144,145] show that the critical sectors of services, agriculture, and
tourism may be strongly affected by future UHIs. To counterbalance the consequences of
the increased urban surface temperatures, important research has been carried out resulting
in the development of efficient mitigation technologies. In particular, some studies [102,146]
have documented the development of highly reflective materials, cool and green roofs,
cool pavements, urban greens, water surface, and other mitigation technologies. UHIRIP
includes economic impacts, such as increases of energy consumption for cooling purposes,
as well as an increase in the peak electricity load, which is a factor for planning maximum
power source capacities [147]. Scientists from Australia reported that the total economic
cost to the community due to hot weather is estimated to be approximately $1.8 billion
in present value terms. Approximately one-third of these impacts are due to heat waves.
Of the total heat impact, the UHI effect contributes approximately $300 million (AUD) in
present value terms for the city of Melbourne, Australia [9]. Estrada, Botzen and Tol [144]
provided a quantitative assessment of the economic costs of the joint impacts of local and
global climate change for all main cities around the world. They estimated the UHI effect
for the 1692 largest cities in the world for the period 1950–2015, and predicted that the
percentage of city gross domestic product (GDP) that would be lost for the median city in
2050 due to global climate change alone would be relatively small: 0.9% and 0.7% for the
RCP8.5 and RCP4.5 emission scenarios, respectively [144]. At the end of the century, these
impacts will increase to 3.9% and 1.2%, respectively. Cost–benefit analyses are presented of
urban heat island mitigation options, including green and cool roofs and cool pavements. It
has been shown that local actions can be climate risk-reduction instruments. Furthermore,
limiting the urban heat island through city adaptation plans can substantially amplify the
benefits of international mitigation efforts.

2.7.4. Impact on Biodiversity

Besides UHI, urban development causes wildlife habitat loss and fragmentation,
threatens wildlife populations, increases fire risk, and reduces biodiversity [2,148]. These
problems are of particular concern in the wildland urban interface (WUI), where homes and
associated structures are built among forests, shrublands, or grasslands [1,148,149]. The
WUI has received considerable attention because of recent increases in both the number of
structures destroyed and the area burned annually by wildland fire. Čeplová et al. [150]
studied three habitats with different disturbance regimes in 45 central European settlements
of three different sizes. Their results highlight the importance of urban size as a factor
shaping the biodiversity of native and alien plant communities in individual urban habitats,
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and the important role of habitat mosaic for maintaining high species richness in city floras.
The study of Coluzzi et al. [151] represented a first step to improve the description of
relevant processes to protect natural habitats and quality agriculture, therefore combating
land degradation and detrimental climate change effects. Kaiser et al. [152] monitored
temperature and relative air humidity in wooded sites characterized by different levels of
urbanization in the surroundings, and investigated the effect of urbanization at the local
and landscape scale on two key traits of biological fitness in two closely related butterfly
species that differ in thermal sensitivity.

3. Remotely Sensed Thermal Datasets

Remote sensing derived LST is effective for UHI and UHIRIP studies. Satellites can
quickly obtain continuous information over a large geographic area that can be maintained
in long-term archives. LST for large geographic areas can be derived from surface radiation
of heat measured by satellite sensors. This is particularly attractive when investigating
the surface UHI in multiple cities or urban agglomerations at various spatial extents.
Along with the extensive spatial coverage, many satellites record multiple wavelengths of
electromagnetic energy that can be used to decipher a wealth of information, in addition
to thermal information (Figure 2). Consequently, multispectral imagery allows for a
comparative analysis between LST and other variables, such as land cover and vegetation
indexes [50,153], specifically the interaction between UHI and LULCC [154]. Remote
sensing can also be used to track the patterns of change in UHI over time through various
time periods from a day, to years, and even a time series of decades [38,155–158]. Because
information is desired at a high spatial resolution and dense temporal frequency, data from
multiple sensors can make more accurate and reliable quantitative assessments of UHIRIP
studies [60]. Table 3 includes a list of the main remotely sensed datasets that have been
recently used to derive LST and analyze UHI and UHIRIP.

Figure 2. Schematic diagram for using remotely sensed data to evaluate UHI and UHIRIP. Bold outlines indicate high
importance. USH—US historical weather data; USC—US climate data; UHI—urban heat island; UHII—UHI intensity;
UHIE—UHI effects; IR—infrared band.
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The rapid development of remote sensing technology offers more potential for accurate
and reliable quantitative assessments of UHI (Table 3 and Figure 3). Many researchers
(Table 2) have used remotely sensed LST to assess UHI over various geographic areas.
However, for all of these studies, the 1 × 1 km spatial resolution of coarse datasets was
found to be suitable only for broad-scale urban temperature mapping (Table 4). The higher
resolution of Landsat time series is suitable for UHIRIP at various scales (Table 4).

Figure 3. Timeline of satellite data availability. Data availability to 2020 indicates ongoing availability.

Table 4. Proportion of reviewed UHI, UHII, and UHIE studies using various remotely sensed data.

Sensor % Examples

Airborne <1% Liu et al. [159], and Ben-Dor and Saaroni [160]
AVHRR 4% Stathopoulou and Cartalis [161], and Gallo and Owen [162]

MODIS 24% French and Inamdar [115], Zhi Qiao et al. [163], and
Keramitsoglou et al. [164]

ASTER 6% Gillespie et al. [118], Ye et al. [165], Kato and Yamaguchi [166], and Lu
and Weng [167]

VIIRS <1% Sun et al. [168], Quan et al. [169], and Gawuc and Struzewska [170]

Landsat Series 52% Aniello et al. [171], Weng [172], Stathopoulou and Cartalis [173], and
Sagris and Sepp [174]

ECOSTRESS <1% Hulley et al. [175] and Schultz et al. [176]
Multiple sensors 8% Dousset and Gourmelon [86], and Elmes et al. [177]

Others <1% Huang and Wang [80]

Voogt and Oke [6], and others [156,178] pointed out that improved spatial and spec-
tral resolution of sensors and advances in digital image processing techniques increase
the usefulness of remote sensing for UHI and UHIRIP studies. Forster [179] also stated
that satellite, radar, and airborne sensors can provide spatially continuous information
pertaining to numerous variables in urban environments that complement field observa-
tions. An increasing number of studies directly relate remotely sensed data to in situ field
data [180,181], and applications of remote sensing technology will expand UHI studies to
various geographic extents. An exciting recent trend in UHI and UHIRIP research involves
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coupling remotely sensed data with ancillary and social economic datasets from multiple
sources (Table 2). The typical examples include (1) fractional vegetation cover derived from
satellite data to improve model simulations of UHI [182], (2) incorporation of remotely
sensed data into a model that partitioned various fluxes in the surface energy balance [183],
(3) integrating high-resolution multispectral data with property tax records to investigate
the contribution of residential land use to UHI formation [184], (4) studying the potential
application of change in urban green space as an indicator of urban environmental quality
change [185], (5) using parameters from thermal satellite data and three-dimensional virtual
reality models to better understand the factors controlling urban environmental quality
(UEQ) [186], (6) further advancing the use of remotely sensed imagery to evaluate UEQ
by estimating ground-level particulate matter (PM) concentrations using satellite-based
data [187], and (7) estimating the value of U.S. urban tree cover for reducing heat-related
health impacts and electricity consumption [188]. In addition, NASA’s Ecosystem Space-
borne Thermal Radiometer Experiment on the International Space Station (ECOSTRESS)
was launched in June 2018, and is able to image fine-scale temperatures in cities at a
70 × 70 m resolution throughout different times of the day, every 3–5 days on average, over
most of the globe [146]. With new algorithm development, ECOSTRESS can accurately
monitor UHI trends over time in vulnerable areas such as the urban and non-urban inter-
face. With more available remotely sensed data (Figure 3), innovative studies like these
hint at the potential for remote sensing to play an even more prominent role in research
of urban climate, urban environment, urban ecological service, and urban planning in
the future.

4. Algorithms for UHI and UHIRIP in Urban and Non-Urban Interface Studies Based
on Remotely Sensed Data

Generally, the methods for evaluating UHI and UHIRIP can be summarized into four
basic types: (1) historical weather station data, (2) field observation, (3) computer simula-
tion, and (4) remote sensing technology. The limitations of the first three methods have
been well documented [53,57,105,180]. In this paper, we only focus on the methods that use
remote sensing technology. A number of algorithms (or methods) have been developed to
estimate UHI and UHIRIP from remotely sensed data (Table 5), including simple empirical
approaches to complex methods based on remotely sensed data assimilation using various
models. The structure of the UHIRIP pattern centroid in three dimensions indicates the
overall variation of the intensity and distribution of the UHI in space and time. The sim-
plified relationship of thermal data and UHI has been applied from a local spatial scale
using airborne very high-resolution images to a broad scale with AVHRR, MODIS, ASTER,
and Landsat data at regional and continental levels. Assimilation procedures of UHI often
require remotely sensed data over different spectral domains to retrieve input parameters
that characterize surface properties such as thermal properties, albedo, NDVI, and other
indices. A brief review of these approaches is presented in Table 5, with a discussion about
the main physical bases and assumptions of various models.

Detailed knowledge of UHI and UHIRIP, especially latent and sensible heat flux com-
ponents, is important for monitoring the climate change of the land surface. The main
methods classically used to measure UHI are appropriate to field observations [24–26,189],
but do not allow for an estimation of UHI at large spatial scales. For operational applica-
tions to ecological conservation and city planning, managers and engineers need accurate
estimates of land surface temperature and UHI at broad spatial scales. New algorithms
based on remotely sensed data have been developed to use the imagery of various spatial
resolutions and temporal frequency to evaluate UHI [190–192]. It is often difficult to classify
these methods because their complexity depends on the balance between the empirical-
and physical-based modules used. Nevertheless, we summarize some algorithm (model)
categories in the following subsection.
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Table 5. Methods used to measure UHI and UHIRIP using remotely sensed data.

Method Sensor Period Example

Calculate LST All thermal bands 1970s–current Avdan and Jovanovska [193],
and Peng et al. [194]

Determine the UHIE Landsat 2009 Tang et al. [195]
Determine the UHII MODIS 2001, 2003 Tran et. al. [156]

Compare multi-temporal
LST images

The normalization of the temperature based
on the mean and standard deviation in high

and low temperature areas.
Streutker [39]

Common normalization of temperture based
on min and max LST of the same image in
the same way as for NDVI. A normalized

ratio scale technique.

Chen et al. [38]

Statistical analyses of UHI

The relationship between LST, NDVI, ground
vegetation (GV), and impervious surface area

(ISA). Multiple linear regression.
Geographically weighted regression.

Weng et al. [153], Tran et al.
[156], Schwarz et al. [196],
Szymanowski and Kryza
[197], and Firozjaei et al. [198]

A support vector machine regression (SVR)
mode. LST 2012 (daily) Lai et al. [79]

Data fusion Landsat, MODIS 1988–2013,
Shen et al. [192], Wengand Fu
[17], and
Schmitt and Zhu [199]

Gap filling Landsat 2020
Yan and Roy [178], Zhou et al.
[60], Fu et al. [190], and
Zhou et al. [200]

Time-series analysis Landsat 1984–2015
Huang et al. [201],
Peres et al. [202], Fu and Weng
[203], and Xian et al. [97]

Uncertainty and
accuracy assessment MODIS, Landsat

Shen et al. [192], Lee et al.
[204], Yuan and Bauer [205],
and Chen et al. [206]

4.1. LST and UHI Intensity Calculation

LST calculation, including empirical direct methods where remotely sensed data are
introduced directly in semi-empirical models to estimate LST, is the simplified relationship
between thermal infrared remotely sensed and meteorological data [14]. This method
allows for the characterization of UHI intensity both at the local scale, using ground
measurements, and over large areas, using satellite data, by calculating a cumulative
temperature difference [55,92]. Most current operational models [60] use remote sensing
directly to estimate the input parameters and LST.

Seasonal information captures the annual profile of LST and its trend over long
time periods, and is essential to the study of UHI [207]. Therefore, remote sensing has
been used to accurately monitor and compare the LST difference in the same season
in different years and trends over long time periods. In the last 10–15 years, thermal
sensor technology has been rapidly developing (Figure 3). Three types of methods have
been developed to estimate LST with remotely sensed data: the single infrared channel
method; the split window method; and a new day–night MODIS LST method, which
is designed to take advantage of the unique capability of the MODIS instrument [55].
Recently, Peng et al. [194] proposed a wavelet coherence approach to exploring spatial
heterogeneity and the scale-dependence of the relationship between LST and multiple
influencing factors. The advantages, disadvantages, and applicability of these three types
of algorithms are summarized in Table 6.
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Table 6. Advantages, disadvantages, and applicability of commonly used algorithms for calculating LST.

Type Algorithm Advantages Disadvantages Example

Single
window

Atmosphere correction LST for oasis in arid lands Complicated, errors, only use
for one band thermal

Landsat TM/ETM+,
CBERS/IRMSS

Qin Sing window Accurate and applicable
Need three atmosphere

parameters, only use for one
band thermal

Universal single channel
Do not need atmosphere

parameters, applicable for
multiple sensors

The result impacted by
standard atmosphere

Split
window

NOAA-AVHRR

Most used, accurate,
applicable for most sensors,

less requirement of
parameters, simple models

Not accurate LST in
mixed pixels

NOAA/AVHRR3
TERRA/MODIS
Landsat 8/TIRS

TERRA-MODIS

Landsat-TIRS
Results not stable, lower
accuracy, TIRS band 11

not stable

Other Day and night Accurate in MODIS Limitations,
low applicability TERRA/MODIS

TERRA/ASTER
VIIRS

Separate temperature Accurate in ASTER Not stable, limitations,
low applicability

Gray matters Good for grey matters Sensitive in noise

4.2. Comparing the Difference between Core Urban and Non-Urban Area

Many studies have documented the use of LST data to observe meso-scale temperature
differences between urban and rural areas in cities worldwide [156,208,209]. The land
surface temperature (LST) of core urban areas is generally higher than the surrounding
rural areas, and has a strong correlation with land cover [153]. UHII analysis is the most
common method to compute the magnitude and extent of UHI by evaluating the LST
difference between urban and surrounding non-urban areas [162]. These analyses are often
supported with auxiliary land surface information, such as land cover and impervious
surface area (ISA). Deterministic models generally are generally based on more complex
models that compute the intensity of UHIRIP in space and time. Remotely sensed data
are used at different modeling levels, either as the input parameters to characterize the
different surface covers, or in assimilation procedures, which aim to retrieve adequate
parameters for the LST computation. Some examples of these studies are shown in Table 5.
UHI intensity was typically quantified in two steps in these studies [60]. First, urban and
non-urban areas were defined and delineated from land cover or ISA maps. Urban areas
are usually defined as land with a relatively higher proportion of ISA [38,95], whereas non-
urban areas have various definitions in different studies, but generally include non-urban
land cover classes. Different sized rural and suburban zones have been used as reference
areas. Other land covers, such as water bodies, cropland, forest, and low-intensity ISA,
have also been used as references in the studies [101]. Second, the area-weighted mean
urban-reference LST differences were calculated to reflect the UHI intensity [69,210] or
magnitude. Some studies identified “hotspots” based on positive UHI intensity in certain
time periods [211,212]. A positive value of UHI intensity indicated an urban heating effect,
while a negative value represented a cooling effect. A few studies also quantified the UHI
intensity using small numbers of representative pixels in urban and reference areas instead
of the area-weighted mean value for the purpose of surface-air UHI comparison [122–124]
or UHI attribution analysis [125,126]. The urban-reference difference method facilitates a
comparative analysis of UHIs among cities and urban agglomerations, regions, and across
the globe, but the validity of such comparisons can be limited by the large uncertainties
associated with urban and reference definitions [68]. Recent research [97] performed a
comprehensive and consistent analysis of surface UHI and UHIRIP using Landsat LST
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ARD time series and dynamic land cover datasets in the Sioux Falls, SD, area. It shows
that the use of time series of LST and land change dynamic data provided a consistent
and quantitative analysis for the distribution and change of UHI intensity and UHIRIP
(Figure 4). We further discuss limitations in Section 5.

Figure 4. A general workflow chart of the use of time series of LST and land change dynamic data
that provides a consistent and quantitative analysis for the distribution and change of UHI intensity
and UHIRIP in Sioux Falls, SD.

4.3. UHI and UHIRIP Analysis by Using Urban Ecological Indices

Many studies have compared UHIRIP to ecological indices [103,149,213–215], vegeta-
tion fraction, and percent ISA, finding strong correlations with mean LST. Landscape met-
rics indicate that urban landscape configuration also influences the surface UHIRIP [216].
The latest vegetation index methods and inference methods use remote sensing to compute
a reduction factor (such as Kc or Priestley Taylor-alpha parameters) for the estimation of
the actual UHI [203]. Different papers deal with these approaches in the various journals,
and these approaches use land cover [217,218], LST pattern [219,220], and a combination
of land cover and LST pattern [221–223] as monitoring indicators of UHI.

Urban ecological status is closely related to the quality of human life and the devel-
opment of urban economies. A timely and objective understanding of urban ecological
status, particularly in urban and non-urban interface areas [224], has become an increasing
important. Scientists have been developing a remote sensing-based ecological index for
the measure of urban ecological status under UHI [213,225]. This urban ecological status
index (UESI) aims to integrate four important ecological indicators that are frequently
used in evaluating urban ecology. The four indicators include greenness, wetness, dryness,
and heat, and can be represented by four remote sensing indices or components: NDVI,
normalized difference built-up and soil index (NDBSI), wetness component of the tasseled
cap transformation (Wet), and LST, respectively. Instead of a simple or weighted addition
of the four indicators, a principal component analysis (PCA) can be utilized to compress
the four indicators into one index in order to assess the overall urban ecological status
under UHI. The calculation of the UESI can be fully automated, avoiding the need to assign
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threshold values or weights during the computing procedure. Therefore, the UESI can
be used to easily and objectively assess urban ecological status. Combined with change
detection, UESI can also be used to monitor the change of the ecological status of the core
urban and surrounding non-urban areas between different years. In practice, the index
was successfully applied in a multitemporal ecological status assessment [34]. Pan [221]
used the G index spatial aggregation analysis to calculate the urban heat island ratio index,
and the landscape metrics to quantify the changes of the spatial pattern of the UHI from
the aspects of quantity, shape, and structure. Pan found that the heat island strength had
a negative linear correlation with urban vegetation coverage, and a positive logarithmic
correlation with urban impervious surface coverage. Bala et al. [226] developed the Urban
Heat Intensity Ratio Index (UHIRI) to quantify urban heat intensity. This work analyzed
the variation in LST with land cover changes in Varanasi, India, from 1989 to 2018, using
Landsat images, and concluded that the replacement of vegetation with urban land cover
has a severe impact on increasing UHI intensity.

4.4. Various Statistical Models

Statistical models and machine learning have also been proposed to measure UHI [227].
Among these studies, a Gaussian surface model has been utilized the most because it can
provide not only the intensity, but also the spatial extent and the central location of the
UHI. The kernel convolution method has also been proposed to study UHI effects because
of its high efficiency in characterizing the temperature values over space in a continuous
surface [227]. Chun and Guldmann [77] explored the urban determinants of UHI using
two-dimensional (2D) and three-dimensional (3D) urban information as the input for
spatial statistical models. The results show that solar radiations, open spaces, vegetation,
building roof-top areas, and water strongly impact surface temperatures, and that spatial
regressions are necessary in order to capture the neighboring effects. Recently, Li et al. [81]
estimated UHI intensity by linear regression functions between LST and regionalized ISA.
These statistical models could avoid the bias caused by the definitions of urban−rural
areas or the choice of the representative pixels, and thus facilitate the comparison of
UHI among cities. Szymanowski and Kryza [228] addressed the issue of the potential
usefulness of remotely sensed data and their derivatives for UHI modeling. Statistically
significant models explained 71% to 85% of the air temperature variance. It has been
stressed that remotely sensed data are important sources to model urban air temperature
heat islands. However, in all of these studies, such models worked less effectively in cities
frequently covered by clouds, in arid landscapes, and in urban agglomerations, so they
have only been applied in a few UHI studies to date. Recently, Lai et al. [79] published
the statistical estimation of next-day nighttime surface urban heat islands of selected
cities. Most previous studies modelled the SUHI variations for the past period, but rarely
investigated the estimation for future UHIs, especially at the daily (i.e., day-to-day) scale.
To address this issue, this study incorporated both meteorological and surface controls
to estimate next-day nighttime UHIs using a support vector machine regression (SVR)
model. Some uncertainties exist in terms of the Gaussian modelling and UHI estimators,
which may limit estimation accuracy. Nevertheless, by providing a feasible yet simple
approach for estimating next-day nighttime UHIs, this study fills a knowledge gap in
the UHI estimation and is helpful for supporting adaptation to and mitigation of UHI
and UHIRIP.

4.5. Spatial−Temporal Time-Series Algorithm

Advances in computing technology have fostered the development of new and pow-
erful data fusion, gap filling, machine learning, and deep learning techniques that have
demonstrated promising results in a wide range of applications [229]. Models to fuse data
from multiple sensors and fill gaps can improve UHI monitoring using an ensemble of
dense time series of thermal data with a high spatial resolution [199,230]. Zhou et al. [200]
presented a new algorithm that focuses on data gap filling using clear observations from
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orbit overlap regions to obtain Landsat LST data. Multiple linear regression models were
established for each pixel time series to estimate the stable predictions and uncertainties.
Liu et al. [83] comprehensively quantified the spatial–temporal patterns of surface urban
heat island by investigating the relationship between LST and the land cover types, and the
associated landscape components. Such approaches have been used to generate temporally
dense and high-resolution LST over long time periods by integrating the observations
of Landsat, MODIS, AVHRR, VIIRS, and ECOSTRESS [191,231]. These datasets facilitate
subtle analyses of monthly, seasonal, and yearly trends in UHI intensity at regional levels.
Machine learning (ML) has become popular in UHI and UHIRIP, but its use has remained
restricted to predicting, rather than understanding, the natural world. ML techniques
may not be the solution to all the problems remotely sensed data might have. However,
these techniques provide a powerful set of tools that deserve serious attention to deal with
some relevant UHI and UHIRIP remotely sensed data problems [232]. Lucas [233] points
out that ML differs from the broader field of statistics in two respects: (1) the estimation
of parameters that relate to the real world is less emphasized, and (2) the driver of the
predictions is expected to be the data rather than expert opinion and careful selection of
plausible mechanistic models. The Google Earth engine (GEE) is a cloud-based platform for
planetary-scale geospatial analysis that brings Google’s massive computational capabilities
to bear on a variety of high-impact societal and environmental issues [234]. GEE has many
functions that could be used to analyze UHI and UHIRIP at local, regional, and global
levels (Figure 5). Some research has generated consistent large-scale UHI and UHIRIP
analysis based on optimal data and ML algorithm selection using GEE [235,236]. The
advanced GEE cloud-based platform and the large number of geosciences and remote
sensing datasets archived in GEE were used to analyze land the cover dynamics (236), and
the results showed the advantages of using GEE to analyze the spatiotemporal dynamics
of the LULCC, vegetation cover, LST, and climate for a long time series, and highlighted
the importance of environmental protection. The power here lies in the way a scientist
defines their questions and uses machine learning alongside other methods. Techniques
for data analysis and interpretation that fully incorporate the temporal dimension remain
an area of intense research and represent an important challenge for operational UHI and
UHIRIP monitoring.

Figure 5. Simplified system diagram using the Google Cloud platform and Google Earth engine for monitoring UHI
and UHIRIP.
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5. Summary of UHI and UHIRIP Based on Remotely Sensed Data

This review provides an overview of research on UHI and UHIRIP based on remote
sensing techniques, sensors, and algorithms, as listed in Tables 3–6, respectively. Much
work has been completed on UHIRIP in the last four decades, and we have endeavored
to keep updated with new methods and results. A significant research limitation still
exists: the quantification of UHI and its regional impacts using high-resolution time-
series remotely sensed thermal data in the urban and non-urban interface. Some of the
algorithms listed in Table 5 may be the most practical approaches to assess UHI in core
urban areas of cities and surrounding areas, but characterization of UHI across broad areas
is necessary in order to inform monitoring, reporting, science, and policy. Being able to
relate LST to UHI is especially important when such datasets are being used to inform
policy decisions or to communicate outside of the scientific community. The increasing
availability of remotely sensed data across a range of spatial resolutions and temporal
frequencies, and technological improvements in image processing capacity and storage,
have led to advances in the methods used to monitor UHI more frequently and accurately.

Assessing the uncertainty and accuracy of UHI data is important. A sensitivity
analysis not only provides a framework for assessing the potential for bias and the extent
of uncertainty in UHI estimates, but also reveals significant factors that determine the
extent of UHIRIP in the urban and non-urban interface. Oleson et al. [237] developed
an approach to evaluate the robustness of models used to simulate urban heat islands in
different environments. The findings indicated that heat storage and sensible heat flux
are most sensitive to uncertainties in the input parameters within the atmospheric and
surface conditions considered. Sensitivity studies indicate that it is important to not only
to accurately characterizing the structure of the urban area, but also to ensuring that the
input data reflect the thermal admittance properties of each of the city surfaces.

Currently, a wide variety of methods are employed to characterize UHI for major cities
worldwide (Table 5), although most of the applications cited were limited to small areas
because of data availability and constraints of storage and computing resources. With the
development of gap filling and data fusion models [238], advances in high-performance
computing (HPC), and cheaper storage, applications based on high-resolution time series
at larger or even regional scales will become the mainstream in the near future [199,231].
While much of the methodological variation described here will persist, future methods
will evolve and adapt to greater data volumes and processing capabilities [239]. Legacy
change mapping methods that rely on analyst interactions with individual scenes should
decline over time given the improved ability to process and characterize time series of rich
high-resolution thermal data. However, such spatial−temporal methods that are based
on gap filling and data fusion should match the institutional requirements for accuracy.
Near-term research objectives will require robust validation datasets in establishing which
data-intensive methods are the most appropriate for quantifying UHI over large areas.
Techniques for LST data analysis and interpretation that fully incorporate the temporal di-
mension still require intense research and represent an important challenge for operational
UHI research in order to meet management needs.

Technological advances that include machining leaning and artificial intelligence in
UHI and UHIRIP using remotely sensed data have led to an explosion of UHI and UHIRIP
profiling data from large numbers of multiple data sources [233,240]. This rapid increase
in the remotely sensed data dimension and acquisition rate is challenging conventional
analysis strategies. Modern machine learning methods, such as deep learning, promise to
leverage very large datasets for finding a hidden structure within them, and for making
accurate predictions [232]. Deep learning methods are a powerful complement to classical
machine learning tools and other analysis strategies, and have been used in a number of
applications in UHII and remotely sensed image analyses [241]. The explainable artificial
intelligence in UHII and UHIRIP modeling has become more and more important [242].
Interpretable machine learning methods either target a direct understanding of the model
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architecture (i.e., model-based interpretability) or interpret the model by analyzing the
model behavior (post hoc interpretability) [242].

Currently, most of the time-series algorithms used to map UHIRIP include data from
the temporal domain of AVHRR and MODIS, and the spatial domain of the data is almost
entirely neglected. Although these datasets with a lower spatial resolution and higher
temporal frequency can detect a change of UHI in real time, they often lack pertinent spatial
detail. Even though many UHI analysis algorithms have been developed [60], most of
the UHI monitoring data derived from the Landsat archive are provided in a time frame
that is not near enough to real time to be relevant for specific management needs. With
the advances in HPC and cheaper storage, applications based on Landsat time series at
continental or even global scales will be the mainstream in the next few years.

To date, information from Landsat time-series thermal data has taken the form of
statistical metrics, change metrics, pattern distribution, or trend components used in UHI
impact applications [243]. Improvement of existing approaches, as well as the inclusion
of novel techniques, often imported and adapted from other disciplines, are important
to fully capitalize on the thermal data in order to produce monthly, seasonal, and annual
LST results that meet a wide range of UHI and UHIRIP research needs. Landsat-9, which
will be launched in September 2021, will continue collecting images of the Earth’s surface
in visible, near-infrared, and shortwave-infrared bands, as well as the thermal infrared
radiation, or heat, of the Earth’s surface from two thermal bands. The future European
Space Agency’s LSTM (Land Surface Temperature Monitoring) or Sentinel 8 mission will
carry a high spatial−temporal resolution thermal infrared sensor to provide records of
land-surface temperature. Land-surface temperature measurements are key variables to
understand and respond to climate variability and natural hazards, such as urban heat
island issues. The main objective of LSTM is to deliver global high spatial−temporal day-
and night-time land surface temperature measurements. LSTM will operate from a low-
Earth, polar orbit, to map both land-surface temperature and rates of evapotranspiration.
It will be able to identify the temperatures of individual fields and image the Earth every
three days at a 50 m resolution. Another future thermal sensor is Thermal infraRed Imaging
Satellite for High-resolution Natural resource Assessment (TRISHNA), which is a future
high-resolution space-time mission in the thermal infrared (TIR) led jointly by the French
(CNES) and Indian (ISRO) space agencies. One of scientific objectives guiding the definition
of the mission is the monitoring of the urban environment. TRISHNA will be positioned on
a polar orbit and provide a revisit of three passages over 8 days with global coverage. The
time of passage around 13:00 p.m. LST allows thermal data to be collected in the middle of
the day, but also in the middle of the night. The instrument will offer four thermal channels
(8.6 μm, 9.1 μm, 10.4 μm, and 11.6 μm) and six optical channels (485 nm, 555 nm, 650 nm,
860 nm, 1380 nm, and 1650 nm) with a spatial resolution between 50 m and 60 m for all
channels. All of these observations acquired from thermal remote sensing will provide
more valuable information for natural resource management, hazard monitoring, and
scientific research and applications.

6. Future Research Directions

Remote sensing technology has been widely applied in the research of UHI and
UHIRIP. The most important advantage of using remote sensing thermal data is the wall-
to-wall coverage of UHI patterns that can meet the needs of spatial and temporal analyses.
Remotely sensed data can be used to investigate the surface temperatures of cities and
urban agglomerations for various ecosystems with different climate conditions, for example
tropical and sub-tropical, temperate and cold temperate, coastal and inland, and arid and
semi-arid land at regional scales. These studies are needed to describe surface temperature
characteristics in these specific environments and how climate change may be modulating
UHI patterns. UHIRIP produces an aggregate impact on weather conditions, land use,
human health, biodiversity, ecosystem security, economics, and urban planning [16,244].
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Land surface temperature and emissivity retrieval (separation) has always been chal-
lenging. Generally, the LSE values needed to apply the method have been estimated from
a procedure that uses the visible and near-infrared bands. The algorithm was created
using the brightness temperature of the thermal and emissivity of different land cover
types, derived from visible and near-infrared bands of various sensors. Compared with
field-based observation, remote sensing offers the advantages of a harmonized, long-term,
and spatially extensive record to observe LST change. The retrieved LSTs are verified
using the near surface temperature of weather station datasets, which will help to improve
the accuracy of LST derived from thermal bands. The difference between retrieved LST
and Automatic Weather Station (AWS) data indicates that the technique works by giving
an error of ±3 ◦C [245]. These differences can be because of the difference between the
resolutions of thermal and visible bands, and a comparison was made between the point
measurement (AWS data) 2 m above the surface and surface temperature (retrieved LST).
Communicating the results of time-series LST studies that are based on both field weather
station observations and remote-sensing time-series data to urban planners, policymakers,
and the general public could help inform urban design and decision making.

Using temporally dense time series of remotely sensed data at a high spatial resolution
is a growing trend in UHI and UHIRIP research, facilitated by increasing computer capa-
bilities to handle big datasets, machine leaning, deep learning, and Google Earth Engine
applications. Landsat ARD, in particular, has great potential to derive LST. Models used to
fuse data from across multiple sensors will be developed to increase data temporal density
and spatial resolution. Moreover, future sensor improvement on Landsat and aircraft
thermal data are possible options. On the other hand, in order to determine the temporal
variation of LST using satellite data with restricted overpass times, it appears necessary to
use long-time weather station observations to investigate diurnal UHI in various ecosys-
tems, although some new sensors (e.g., ECOSTRESS) can provide this information. Future
research is anticipated to improve on methods to simultaneously derive LST and land sur-
face emission (LSE) from hyperspectral TIR, multi spectral-temporal, and TIR-microwave
data; additionally, future methods will consider aerosol and cirrus effects [18]. Another
viable angle of potential future studies is urban development strategies for mitigating UHI,
such as increasing vegetation and water surfaces in urban development.

Climate models are the only tools that account for the complex set of processes that
will determine future climate change at both a global and regional level, and assessing
regional impacts of climate change begins with the development of climate projections
at relevant temporal and spatial scales [246]. The most current existing climate change
modeling covers large geographic areas at regional and global levels with relatively low
spatial resolutions (>10 km). In the future, LST that is derived from remotely sensed data
will support climate change modeling (regional climate models and statistical downscaling
models) in UHI and UHIRIP analyses in urban and surrounding areas.

Our analysis indicated that determination is still a central topic of UHI research.
Modeling will continue to provide vital and useful results on the spatiotemporal assessment
of UHI, especially when models more effectively combine thermal data from multiple
sensors. ML (DL) and AI are continuing to grow in popularity in UHI and UHIRIP research.
For time series analyses with remote sensing data, a cloud computing platform such as
GEE could bring about a substantial change in UHI and UHIRIP analyses, as they have the
capability to process big remote sensing datasets and assess the spatiotemporal dynamics
of the area quickly. A better integration of remote sensing and station measurements into
models is expected. This study also suggests that direct and indirect UHIRIP, especially
human health issues, heat wave impacts, air pollution, and ecological security, will receive
increasing scientific attention in the future. Research on controlling and adapting to UHI
impacts may warrant special attention. The interaction of UHI and UHIRIP, and their
changes to LULC based on urban planning, are actively being studied.
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