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1. Introduction

Due to the intensive development of the global economy, many problems are constantly
emerging connected with the safety of ships’ motion in the context of increasing marine
traffic. These problems seem to be especially significant for the further development of
marine transportation services, with the need to considerably increase their efficiency and
reliability. One of the commonly used approaches to ensuring safety and efficiency is the
wide implementation of various automated systems for guidance and control, including
popular systems such as marine autopilots, dynamic positioning systems, speed control
systems, automatic routing installations, etc.

This Special Issue is focused on various problems related to the analysis, design,
modelling, and operation of the aforementioned systems. The Issue collected ten papers
that cover such areas as identification using neural networks, optimal weather routing,
sliding mode control, tracking control, logistics and cooperation between seaports and
carriers, control of multi-joint autonomous underwater vehicles, path-following control,
and collision avoidance systems.

A brief description of each paper is given in the following section.

2. Papers Details

Xu et al. [1] proposed using a physics-informed neural network (PINN) to identify
the dynamic models of the unmanned surface vehicle (USV). PINN has an advantage
of combining the data-driven machine learning and physical models. It is shown how
PINN can be adopted to embed the dynamic models of an USV into the loss function. The
special tests were carried out in the Qing Huai river to obtain the empirical data. The PINN
method was implemented and compared with a tradition neural network. The results of
the investigation indicate that the PINN has a better performance in predicting the USV
dynamics under a small number of training samples.

González-Prieto et al. [2] investigated the course keeping control problem for a USV
in the presence of unknown disturbances and system uncertainties. The authors developed
the adaptive integral non-linear controller based on the sliding mode surface with adaptive
gains. The mathematical background for the proposed control design approach is provided.
Various numerical simulations have been carried out with fixed and time-varying references
and different external disturbances. The obtained results show that the developed controller
allow to achieve the desired performance of the closed-loop system in course keeping
problem.

Lezhnina et al. [3] analyzed the effectiveness of cooperation between ports and carriers
in the logistics chain in order to increase profits and reduce costs. Special emphasis is
placed on the role of peripheral ports, which give ports an opportunity to increase the level
of loading and unloading services, and allows sea routes to receive a stable income from
the port’s operation. The presented study uses a game-theoretic approach and describes a
multi-port game scenario. A mathematical model is built and the algorithm for optimal
route search is proposed. Numerical experiments are shown that indicate the effectiveness
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of cooperation in reducing the effects of disruptions as well as reducing overall logistics
costs.

Zhao et al. [4] presented a multicriteria ship route planning method based on improved
particle swarm optimization–genetic algorithm. This algorithm aims to optimize the
meteorological risk, fuel consumption, and navigation time of a ship. The output of
the algorithm allows to obtain the minimum-navigation-time route, the minimum-fuel-
consumption route, the minimum-navigation-risk route, and the recommended route. The
simulation experiments for a container ship are provided. These experiments show the
feasibility and effectiveness of the proposed approach.

Yu et al. [5] discussed the problem of modeling and control of multi-joint autonomous
underwater vehicles (MJ-AUV). The considered MJ-AUV is a multi-input and multi-output
system, where the variation of two joint angles is the input and the pitch and yaw angles
of the body is the output. The 3D motion model of the MJ-AUV was established using
Newton’s second law and the principle of moment balance. In order to design feedback
control, the system was decoupled into pitch and yaw subsystems. The linear state observer
and LQR design approach was used to obtain optimal control law for each subsystem. The
numerical simulation was carried out to verify the obtained mathematical model and to
test the effectiveness of the control algorithm.

Volkova et al. [6] analyzed the possibility of using neural networks to predict the
coordinates of the vessel during river navigation. This problem is of practical importance,
in particular, for autonomously moving vessels. The proposed predicting system can serve
as a source of additional information for timely decision-making in case of AIS signal
distortion. The real experiment was conducted to collect data, which was used to train
neural networks with different activation functions and different structures. A number
of simulation experiments were carried out and discussed to assess the reliability of the
obtained results for various trajectories of the vessel.

Zhang et al. [7] proposed a new path-following control law. The main innovation is a
developed hyperbolic guidance law, which is used to control a marine ship on a straight-
line path. The authors have shown that this approach allow to improve the performance
characteristics of the closed-loop system in comparison with existing control algorithms.
Also, a problem of curved path-following is considered, where the curve is formed as
a transition between two adjacent straight-line paths. The modification of the reverse
stepping method is proposed to make the system globally asymptotically stable. The
simulation experiments are carried out for three different types of ships and the control
effect is evaluated and discussed.

Songtao et al. [8] studied the use of fin stabilizers to reduce the rolling and heeling
during ship turning. The authors have established the nonlinear mathematical model of
a vessel, taking into account forces and moments produced by fin stabilizers, rudders,
propellers, and waves. The resulting nonlinear control model has uncertainty due to
inaccuracy of parameters and external disturbances. For this reason, the L2-gain based
adaptive robust method is proposed to control the fin stabilizers. The controller design
process and the proof of the closed-loop system stability are presented in details. The
simulation experiments are carried out, where the comparison with the well-tuned PID
controller is given and discussed.

Veremey [9] investigated the design of stabilizing feedback control laws for marine
vessels moving along initially given trajectories. Unlike the traditional methods, it is pro-
posed to use an optimization approach and implement the optimal damping (OD) concept,
previously developed by V.I. Zubov. Essential attention is paid to the practical adaptation
of the optimal damping methods for marine control systems. A new method for tracking
controllers’ design, which ensures the desirable reference motion of the vessel along the
forward speed and heading angle is proposed. A new methodology for selecting the func-
tional to be damped is discussed. The choice of this functional influences the properties of
the closed-loop system, such as asymptotic stability and the quality of control processes.
The important feature is that the developed OD based approach can be implemented in
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real-time regime of a ship’s motion. The practical applicability and effectiveness of the
approach is illustrated by a numerical example of tracking control design.

Guan et al. [10] discussed issues related to the problem of preventing collisions of ships.
The main purpose of the research is to develop a decision-making system to assist sailors
and reduce the number of maritime accidents. The paper proposes a ship domain model,
which is based on the fuzzy logics and can combine many factors affecting ship collision
risk. These factors are determined by ship own parameters and external environmental
factors. The composition fuzzy inference is used to determine the range of the ship domain
and, as a consequence, to calculate the collision risk. The simulation experiments were
conducted to demonstrate the feasibility and effectiveness of the proposed method.
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Abstract: A three-degrees-of-freedom model, including surge, sway and yaw motion, with differ-
ential thrusters is proposed to describe unmanned surface vehicle (USV) dynamics in this study.
The experiment is carried out in the Qing Huai River and the data obtained from different zigzag
trajectories are filtered by a Gaussian filtering method. A physics-informed neural network (PINN) is
proposed to identify the dynamic models of the USV. PINNs combine the advantages of data-driven
machine learning and physical models. They can also embed the speed and steering models into
the loss function, which can significantly retain all types of information. Compared with traditional
neural networks, the results show that the PINN has better generalization ability in predicting the
surge and sway velocities and rotation speed with only limited training data.

Keywords: unmanned surface vehicle (USV); system identification; traditional neural network;
physics-informed neural network; zigzag test

1. Introduction

In recent years, the unmanned surface vehicle (USV) has attracted considerable atten-
tion. The most important advantages of USVs are that they can be employed in extremely
dangerous environments compared with traditional manned vehicles. In addition, USVs
play a significant role in both commercial and military fields, such as resource explo-
ration [1], shipping [2], mine countermeasures [3] and reconnaissance [4]. To guarantee
that USVs can operate with good performance in these fields, the utilization of robust and
effective maneuvering controllers is particularly important.

Numerous studies have focused on the control of USVs. System identification is the
most popular method for handling indescribable systems from the given input/output
data. Nagumo and Noda (1967) utilized continuous least square estimation based on
an error-correction training procedure for system identification [5]. Holzhuter (1989) adopted
recursive least square estimation in the identification of ship dynamics [6]. Kallstrom and
Astrom (1981) demonstrated recursive maximum likelihood estimation used in the ship
steering motion and showed a good prediction [7]. Yoon and Rhee (2003) proposed the
extended Kalman filter technique and the modified Bryson–Frazier formulation smoother
to predict motion variables, hydrodynamic force, vehicle speed and current direction [8].
Shin et al. (2017) utilized particle swarm optimization (PSO) with an adaptive control
algorithm to predict the trajectory of USVs [9]. In addition, Selvam (2005) presented a
frequency domain identification system for linear steering equations for ship maneuvering
in calm seas [10].

Owing to the wind, current and other random disturbances, the modelling of ship
dynamics is a strongly nonlinear problem. Khalid et al. (2020) proposed a non-singular
adaptive integral-type finite time tracking control (FTSMC) for nonlinear systems with
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external disturbances [11]. The obtained results showed that the FTSM control technique
guarantees that when the switching surface is reached, tracking errors converge to zero
at a fast convergence rate. Vu et al. (2020) utilized the robust station-keeping (SK) control
algorithm based on a sliding mode control (SMC) theory, designed to guarantee stability
and better performance of a hovering over-actuated autonomous underwater vehicle
(HAUV) despite the existence of model uncertainties and ocean current disturbance in the
horizontal plane (HP) [12]. Thanh et al. (2020) presented a lumped perturbation observer-
based robust control method using an extended multiple sliding surface for a system with
matched and unmatched uncertainties [13]. An artificial neural network (ANN) that is
capable of solving this nonlinear problem has been presented in recent years. Rajesh and
Bhattacharyya (2008) proposed an ANN method to deal with the system identification
of a large tanker. The Levenberg–Marquardt algorithm was utilized to train the net, and
different numbers of hidden neurons were compared to select the best choice for the
construction of the ANN [14]. Oskin et al. (2013) presented a recurrent neural network
to identify both the linear and nonlinear behavior of ship dynamics [15]. Pan et al. (2013)
utilized an efficient neural network approach to track the motion of autonomous surface
vehicles with unknown ship dynamics [16]. However, traditional neural networks have
some drawbacks and can be considered as “black box” models that cannot interpret the
inherent laws and are not able to guarantee the generalization ability. In addition, a large
number of training data are also required to obtain the optimized neural network.

In this study, a physics-informed neural network (PINN) is proposed to predict USV
dynamics. Under the condition of a small amount of training data, the model can automat-
ically meet the physical constraints and therefore has better generalization performance
while ensuring accuracy and can predict the important physical parameters of the model.
PINNs embed the dynamic models of an USV into the loss function rather than the pure
data. Furthermore, this is the first time a PINN with a large optimal method (Xavier method,
Adam method and Resnet block) has been used to identify USV models, which demon-
strates that this method is better than traditional neural networks. The hydrodynamic
coefficients can be calculated by limited training data directly. This boosts the application
of artificial intelligent (AI) in marine research.

The structure of this study is as follows. Section 2 introduces the basic information of the
studied USV and describes its dynamic models. In Section 3, the PINN and optimized method
are introduced. The experiments of the USV are carried out and used in Section 4 as training
and validation samples for system identifications of USV dynamic models and comparisons
between the PINN and traditional neural networks. Section 5 concludes this study.

2. USV Dynamics

2.1. Deepsea Warriors Uboat (DW-Uboat)

The DW-uBoat (see Figure 1) produced by the Institute of Marine Vehicle and Un-
derwater Technology of Hohai University, China, is designed as a streamline body due to
anti-resistance. The boat has large storage to carry various instruments and equipment,
as well as a large cover on the deck to disassemble and maintain the equipment. The
vehicle is installed with two electric propellers that replace the traditional rudder and
gimbaled thruster at the stern side of each hull. The steering motions are generated by
the rpm differences in the two main thrusters. The length of the DW-uBoat is 1.80 m, the
width is 0.70 m and the height is 0.48 m. The maximum speed of the vehicle is 2.5 knots.
Moreover, there is no rudder or gimbaled thruster equipped in this vehicle, the steering
motion can be generated by the operating RPM (revolution per minute) difference in the
two main thrusters, the sway force action on the vehicle is also produced by the difference
of the thrusters. Various sensors are equipped in the DW-uBoat as well. Two differential
GPSs are installed in the bow and stern, respectively, combined with an electronic compass
which can obtain the position, velocity and heading angle information. All of the above
information and data are transformed into the computer during the experiments.
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Figure 1. Profile of the DW-uBoat.

2.2. Assumption

In order to simply describe the motion of the USV, the three degrees of freedom (surge,
sway and yaw) in the horizontal planar motion are considered. The notation proposed
by Fossen (2002) was utilized and the description of the USV with its coordinate frame is
shown in Figure 2, where u, v and V denote the surge, sway and total velocities of the USV
in a body fixed frame, respectively, while xi and yi denote the north and east directions of
the USV in the inertial frame, respectively. In addition, ψ and β denote the heading angle
and course angle of the USV, respectively, while X represents the side slip angle. These
simplifications can be concluded as follows:

• The motion of the USV in roll, pitch, and heave directions was neglected.
• The USV had neutral buoyancy and the origin of the body-fixed coordinate was located

at the center of mass.
• The dynamic equations of the USV did not include the disturbance forces (waves,

wind, and ocean currents).

 
Figure 2. Schematic description of differential thrust of the USV.
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2.3. Dynamic Models

The equations of the kinematic model of the USV can be expressed as (Woo et al., 2018):

.
η = R(η) · v (1)

v = (u, v, r)T (2)

η = (xi, yi, ψ) (3)

R(η) =

⎡⎣ cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎤⎦ (4)

where v denotes the velocity vector,
.
η is the position vector and R(η) is the rotation matrix

that maps vectors from a body fixed frame to an inertial frame.
The planar dynamic model of the surface vehicle can be described as follows:

M
.
v + C(v)v + D(v)v = f (5)

where M denotes the mass matrix, which includes body and added masses, C is the Coriolis
and centripetal matrix, D is the matrix of the damping coefficients and f is the control force
and moment. Since the propulsion system of the DW-uBoat is a differential thruster type,
according to Sonnenburg et al. (2013), f can be described as follows:

f =

⎡⎣ τX
τY
τN

⎤⎦ =

⎡⎣ Tport + Tstbd
0(

Tport − Tstbd
)

B/2

⎤⎦ (6)

where Tport and Tstbd denote the thrust force of the port and starboard side thrusters,
respectively, and B is the beam of the DW-uBoat.

Therefore, the three-degrees-of-freedom nonlinear dynamic motion equation can be
shown as follows:

.
u =

X|u|u
m − X .

u
|u|u +

Xu

m − X .
u

u +
1

m − X .
u

τX (7)

.
v =

Iz−N.
r∇ ((−Yv − Y|v|v|v| − Y|r|v|r|)v + ((m − X .

u)u0 − Yr − Y|v|r|v|−
Y|r|r|r|)r + τY)− mxG−Y.

r∇ ((−(m − X .
u)u0 − Nv − N|v|v|v| − N|r|v|r|)v

+ (−Nr − N|v|r|v| − N|r|r|r|)r + τN)

(8)

.
r = N .

v−mxG
∇ ((−Yv − Y|v|v|v| − Y|r|v|r|)v + (m − X .

u)u0 − Yr − Y|v|r|v|
− Y|r|r|r|)r + τY) +

m−Y.
v∇ ((−(m − X .

u)u0 − Nv − N|v|v|v| − N|r|v|r|)v
+ (−Nr − N|v|r|v| − N|r|r|r|)r + τN)

(9)

where X(·), Y(·) and N(·) denote the constant hydrodynamic coefficients, which are the
partial derivatives of the surge, sway force and yaw moments, respectively. The detailed
hydrodynamic coefficients can be viewed as follow:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[
X|u|u, Xu, X .

u

]
[
Y .

v, Y.
r, Y|v|v, Yv, Y|r|v, Yr, Y|v|r, Y|r|r

]
[

N .
v, N.

r, Nv, N|v|v, N|r|v, Nr, N|v|r, N|r|r
] (10)
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3. PINNs

3.1. ANNs

ANNs have been a research hotspot in the field of AI since the 1980s. They abstract
the neural network of the human brain from the perspective of information processing to
establish simple models and forms of different networks according to different connection
modes. Mathematically, ANNs can be described as direct graphs composed of a group of
vertices representing neurons and a group of edges representing links. There are many
variants of neural networks, such as feedforward, conventional and recurrent neural
networks, that perform various increasingly complex tasks. In this study, the feedforward
neural network, which is also referred to as a multilayer perceptron, is adopted to solve
the problem.

The simplest structure of a multilayer perceptron contains a single input layer, single
hidden layer and single output layer and can be viewed in Figure 3. In this case, the
operating principle of the single cell body can be described in Figure 4 and the output in
the hidden layer is calculated as follows:

yj = f j

(
bj +

d

∑
i=1

wi,jxi

)
(11)

where wi,j denotes the weights from the input layer to the hidden layer, bj represents the
threshold values and fi is the nonlinear activation function. The activation function can
endow the neurons with the ability to solve nonlinear problems, which means that the neu-
ral network decodes any nonlinear function arbitrarily. The commonly adopted activation
functions include sigmoid, Tanh, ReLU and Leaky ReLU functions, as demonstrated in
Figure 5.

Figure 3. Structure of the deep neural network.

Figure 4. Operating principle of the single cell body.
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Figure 5. Commonly used activation functions.

In addition, it is also possible to incorporate additional hidden layers between the
input and output layers. Therefore, the output in another hidden layer can be expressed
as follows:

yk = fk

[
b(2)k +

m2

∑
i=1

w(2)
j,k · f j(b

(1)
j +

m1

∑
i=1

w(1)
i,j xj)

]
(12)

An extension of this process as a simple application of the chain rule can be described
as follows:

y(x) = fd(· · · f2( f1(x))) (13)

“Deep” neural networks mean that the structure of the neural network includes
many hidden layers between the input and output layers. The advantages of increasing
the amount of hidden layers can reduce the computing cost in some practices and can
solve more complex nonlinear problems with less data. However, Hagan et al. (1994)
proposed that the performance of a neural network is weakened with increasing hidden
layers [17]. He et al. (2016) also put forward that the process from input to output is almost
irreversible (information loss) due to the existence of the nonlinear activation function [18].
It is difficult to obtain the original input from the output. Therefore, it is significant that the
neural network needs to benefit from the identity mapping. The residual neural network
is proposed to ensure that the internal structure of the model has an identity mapping
capability in order to ensure that network will not degenerate in the stacking of additional
hidden layers.

3.2. PINN Method

Raissi et al. (2017) first proposed the PINN to solve the data-driven solution and
discovery of partial differential equations [19]. A PINN is a neural network that is trained
to solve supervised learning tasks while respecting any given law of physics described by
general nonlinear partial differential equations.

We assume a simple form of the parametrized and nonlinear partial differential
equation, as follows:

ut + N(u; λ) = 0, x ∈ Ω, t ∈ [0, T] (14)

where u(t, x) denotes the latent solution of the partial differential equation and N(u; λ) is
a nonlinear operator parametrized by λ. Equation (13) represents a wide range of problems
in mathematical physics, including conservation laws, diffusion processes, advection-
diffusion-reaction systems and kinetic equations.

The physical problem can then be cast into the form of Equation (14) and its solution
can be calculated by minimizing the loss function of a neural network. The target of the loss
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function is the mean squared error loss, as expressed in Equation (15), which contains two
parts. The loss MSEu denotes the loss function of the initial and boundary conditions, while
MSEf enforces the structure imposed by a target partial differential equation at a finite set
of collocation points.

f ≡ ut + N(u; λ) (15)

MSE = MSEu + MSEf (16)

MSEu =
1

Nu

Nu

∑
i=1

∣∣∣u(ti
u, xi

u

)
− ui

∣∣∣2 (17)

MSEf =
1

Nf

Nf

∑
i=1

∣∣∣ f(ti
f , xi

f

)∣∣∣2 (18)

where
{

ti
u, xi

u, ui}Nu
i=1 denotes the initial and boundary training data on solution of the

equation and
{

ti
f , xi

f

}Nf

i=1
are the collocation points for f (t, x).

3.3. PINN for Solving Dynamic Models of the USV

The process of PINN solving the dynamic models of the USV can be viewed in
Figure 6. The time t is selected as input, the velocities u, v and r are deemed as outputs
and the layers and neurons in each layer between input and output, which constitute the
fully connected-NN structure. The dynamic models of USV should be transformed as
Equation (14). For illustration purposes only, the structure of a network with three hidden
layers and five neurons per hidden layer is demonstrated in Figure 6. Actually, the structure
of the network includes 6 layers with 8 neurons in each layer. The dynamic models are
then embedded into the loss function. The automatic differentiation technique is adopted
to compute the physical-based loss function and the velocity u on the training data is
calculated by minimizing the loss function. In addition, I in the green box denotes the
identity operator, while the ∂t is the differential operator, which can be explained as an
activation operator. The speed and steering models are embedded into the loss function
and all the hydrodynamic coefficients are determined [20]. In order to reduce the error of
the loss function, the Adam optimizer is utilized to optimize the target function. The Adam
optimizer can constantly adjust the learning rates with the situation changes in the learning
process. The ‘Xavier’ method is designed to decide the initial weights and biases which
can ensure faster convergence of the neural network. A residual neural network is added
in the FCNN to avoid gradient explosion and/or gradient disappearance.

Figure 6. Structure of the PINN for solving dynamic models of the USV.
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4. Results

4.1. Data Preprocessing

The experiment was operated in the Qing Huai River in Nanjing, as shown in Figure 7,
with constant wind and current always present at this location. It is noted that the wind and
current is not strong and has a low influence on the performance of the USV. The DW-uBoat
voyages in the Qing Huai River can be seen in Figure 8. Two straight lines with varying
rpm of differential thrusters are used to estimate the speed model and two different zigzag
trajectories are designed for training and testing the steering model. The data collected by
the receiver per 0.25 s and the 1000 s’ data is adopted to train the dynamic model of the USV.
Furthermore, the normalization technique is used to guarantee the accurate forecast results
due to the large range among each dimension of input data. The min-max normalization is
selected and can be expressed as:

x′ = x − xmax

xmax − xmin
(19)

Figure 7. Qing Huai River in Google Maps.

 

Figure 8. DW-uBoat voyage on the Qing Huai River.

4.2. Identified Results

In this section, the number of training data is 4000 and the number of testing data is
4000. The results can be viewed in Figure 9. The training and testing data are obtained by
different straight-line and zigzag trajectories. The first picture represents the predicted and
true results of the straight-line motions while the last two pictures represent the predicted
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and true results of the zigzag trajectories. Left of the red line is the training set and right of
the red line is the testing set. The blue lines represent the experiment results and yellow
dotted lines represent the results predicted by the PINN. It is obvious that the PINN has
a strong ability for reconstructing the dynamics of the USV, since the mean square errors
of the surge and sway velocities and rotation speed are small. In addition, the PINN also
has a good generalization ability in the testing set, meaning that it can accurately predict
the unknown trajectory. It is noteworthy that the number of training data is not large,
which means we can obtain the dynamic model of the USV using a small dataset and high
convergence speed.

Figure 9. Observed and predicted surge, sway and rotation velocities in training and test sets.

4.3. PINN Versus Traditional Neural Network

In this section, the PINN method is compared with a tradition neural network. We
select the same structure of the neural network (fully-connected with four layers and ten
neurons in each layer) and training data. The mean square errors are utilized to test the
performance of the PINN and traditional neural network. Table 1 shows the identification
results of the hydrodynamic coefficients. A comparison between the PINN and traditional
neural network in the testing set under different numbers of samples is given in Table 2.
It is obvious that the PINN has a better generalization ability for predicting the dynamic
models of the USV. The PINN method is lower than the traditional neural network method
in order of magnitude. The PINN can also predict the dynamic models under low numbers
of training samples and a simple neural structure.

Table 1. The results of system identification.

u Value v Value r Value

X|u|u −0.002 Y .
v 0.00237 N .

v 0.000849
Xu 0.423 Y.

r 0.006043 N .
r −0.00517

X .
u 0.0992 Y|v|v −0.54 × 10−5 Nv 0.423456

Yv −0.00015 N|v|v −2.73 × 10−7

Y|r|v 0.001508 N|r|v 0.003286
Yr 0.00211 Nr 0.003142

Y|v|r −0.00038 N|v|r 0.000777
Y|r|r 0.00265 N|r|r 0.000105
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Table 2. Comparison between MSE of PINN and traditional NN in the testing set under different
numbers of training samples.

PINN Traditional NN

u v r u V r

1000 1.3 × 10−4 7.2 × 10−4 2.8 × 10−2 7.2 × 10−3 9.3 × 10−3 1.8 × 10−1

2000 0.4 × 10−4 4.4 × 10−4 3.3 × 10−3 6.6 × 10−3 6.9 × 10−3 0.9 × 10−1

3000 1.1 × 10−5 0.6 × 10−4 1.8 × 10−3 2.4 × 10−3 4.2 × 10−3 1.3 × 10−2

4000 1.3 × 10−5 1.1 × 10−5 1.2 × 10−3 9.1 × 10−4 0.7 × 10−4 0.4 × 10−2

5000 1.2 × 10−5 1.1 × 10−5 1.3 × 10−3 7.7 × 10−4 6.1 × 10−5 0.6 × 10−2

5. Conclusions

In this study, the PINN method was first proposed to identify the dynamic models of
a USV. Zigzag and straight-line tests were carried out in the Qing Huai river to obtain the
data. The physics-driven deep learning method, instead of the data-driven deep learning
method, was utilized to obtain the USV dynamics. The speed model and steering model
of the USV were embedded into the loss function which can guarantee the loss function,
including the physical information. The results show that the PINN has a better gen-
eralization ability in predicting the sway and surge velocities and rotation speed under
a small number of training samples and the simple structured neural network compared
with the traditional neural network. There is a reasonable prospect that the PINN method
can replace traditional deep learning for the identification of the dynamic models of un-
manned surface vehicles. In the future, the model of the USV with wind, waves and other
disturbances will be embedded into the PINN and identified.
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Abstract: This paper investigates the course keeping control problem for an unmanned surface vehicle
(USV) in the presence of unknown disturbances and system uncertainties. The simulation study
combines two different types of sliding mode surface based control approaches due to its precise
tracking and robustness against disturbances and uncertainty. Firstly, an adaptive linear sliding mode
surface algorithm is applied, to keep the yaw error within the desired boundaries and then an adaptive
integral non-linear sliding mode surface is explored to keep an account of the sliding mode condition.
Additionally, a method to reconfigure the input parameters in order to keep settling time, yaw rate
restriction and desired precision within boundary conditions is presented. The main strengths of
proposed approach is simplicity, robustness with respect to external disturbances and high adaptability
to static and dynamics reference courses without the need of parameter reconfiguration.

Keywords: unmanned surface vehicle; Guidance, Navigation and Control; course keeping; adaptive
sliding mode

1. Introduction

With the growing advancement in the sensor technology and navigation aids, USVs
are becoming a popular tool in maritime domain for several applications ranging from
environmental monitoring, military surveillance to scientific surveying, and data collection.
Mission oriented approach of USVs subject them to several types of maritime environment
comprising of wind, wave, and sea surface currents leading to requirement of designing
and developing several autonomy levels for successful operation. Henceforth, design
and development of approaches for Guidance, Navigation, and Control (GNC) of a USV
is an important research area for constructing operational and tactical approaches for
seven different operational autonomy level of USVs as described by International Maritime
Organisation (IMO).

Guidance and control of USV plays an important role in motion control system to
manipulate the forces to enable a USV to follow a desired path whilst maintaining the
stability. Three approaches, namely, waypoint control, path following control and trajectory
tracking are generally considered in the domain of marine robotics to enable a USV to
follow a designated path [1,2]:

• Waypoint control: In this strategy, Line of Sight (LOS) based approach is adopted to
follow a certain waypoints, generated heuristically, in the required maritime environ-
ment.

• Path following control: In this strategy, a path generated through path planning
algorithms is used as a reference, to be followed with no temporal constraints. Here,
USV should converge and follow the desired path without any time constraints and
simultaneously satisfies its assigned velocity profile.

• Trajectory tracking: In this strategy, temporal constraints are enforced upon the path
generated using path planners. This is predominantly used with fully actuated marine
vehicles reasoned with better maneuvering capabilities.
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Sailing conditions and unpredictability of environmental disturbances can have a
significant impact on the ship’s dynamics. It is therefore necessary to develop a nonlinear
controller that overcomes unknown disturbances and ensures robustness. As long as
parameter uncertainties and unknown bounded disturbances remain, the adaptive method
is likely to remain a superior approach. It is intended that vessel steering autopilots will
force the ship to follow a predetermined course with a fixed speed by controlling the rudder
angle, creating a course keeping problem that the current study is attempting to resolve.

1.1. State of the Art

The problem of course keeping control is highly non-linear in nature and has been
studied from a perspective of observed disturbance control using sliding mode control (SMC)
approach. The SMC problem for USVs, subjected to, higher order non linear operational distur-
bances, have been studied with varying control approaches like sliding mode [3–6]; fuzzy slid-
ing mode [7]; proportional derivative fuzzy [8]; backstepping [9–12]; backstepping with adap-
tive radial basis function neural network [13]; sine function-based non-linear feedback [14];
hyperbolic tangent based nonlinear control [15]; sigmoid based nonlinear control [16]; func-
tion adaptive neural path following control [17]; model predictive control [18,19]; event-
triggered control approach [20] and non-linear feedback power functions [21].

In order to make control robust to disturbances and uncertainties, several approaches
has been proposed in the SMC literature, see [22–32]. Some proposals of advanced sliding
manifolds include recursive nonlinear sliding manifolds [33–35], adaptive integral sliding
mode approach [36–38], non linear full order dynamics [39,40], sliding surfaces with
adaptive damping parameters [41–43] and, in the last years, a vast collection of homogeneity
based works, see [44] for instance. Applications of the properties of homogeneous systems
is an important field of study in the current development of analysis and design of nonlinear
controllers and observers. Homogeneity simplifies analysis and design of nonlinear control
systems since the homogeneous vector fields have many properties similar to linear one
and provides solutions with finite-time and fixed-time stability.

The dynamics generated by an homogeneous controller can be seen as a lineal dy-
namic system with an adaptive gain that grows to ∞ as |x(t)| → 0, generating the well
know singularity at the origin which is undesired for real applications. Nevertheless,
as commented in [45], the practical implementation of homogeneous dynamics system
designed in the continuous time domain prevents the use of explicit Euler discretization
scheme to achieve a mere copy of the continuous time approach due to its simplicity. This
type of discretization is considered inappropriate, especially when set-valued functions
has to be considering, causing numerical chattering and sensitivity to the gains. As a result,
without addressing the discretization issue, any comparison between homogeneous based
solutions and other types of proposals may potentially lead to unfair conclusions.

Based on the aforementioned results, in order to keep the discretization process simple,
an adaptive lineal sliding mode surface law, that includes a nested integral sliding surface
is introduced in this work. In this case, the dynamics flows with adaptive and finite damper
gain, avoiding the effects of the peaking transient response inherent to linear systems
and allowing fast responses at steady state, approximating the behaviour obtained with
homogeneous solutions.

1.2. Major Contributions

The paper makes following contributions to the current state of existing approaches to
SMC techniques for USVs:

• A number of simulation studies in the manuscript demonstrate that the proposed
adaptive control approach can be reconfigured for various input trajectories and
marine environmental disturbances, without requiring parametric adjustment.

• The cut-off frequency of the system response is an indication of the bound to be assigned
to the disturbance derivative in the algorithm. This relationship is based on low-pass
filtering properties associated with the second order adaptive linear dynamics generated
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at the sliding variable. As a result, frequencies over ωc do not affect the sliding variable
response. In practice, this feature offers some advantages when estimating the maximum
value of the disturbance derivative is a challenging task.

• The proposed adaptive profile generates low/high gains based on the absolute error.
As a result, the control input is not saturated when there is a large error (gain is small)
and the response at steady state becomes fast disturbance compensation (gain is large).

• Based on the adaptive placement of two poles relating to a second order dynamical
system with critical damping, we can generate an overdamped response that avoids
the occurrence of considerable overshoots.

• By avoiding the need of the derivative of the fractional power terms with respect to
time, the singularity problem associated with terminal sliding mode solutions can be
avoided. Thus, the high sensitive performance around the equilibrium point generated
by set value or fractional order functions can be reduced.

This paper has been structured as follows. First, in Section 2 we present the nonlinear
dynamic model of the course keeping problem, the desired objectives to be achieved and
a theoretical stability tool that is used in the posterior analysis of the control algorithm.
Then, Section 3 describes the proposed adaptive integral sliding mode (AISM) algorithm.
Results from numerical simulations are then presented and discussed in Section 4. Finally,
conclusions are drawn in Section 5.

2. Problem Statement

The motion of the USV is shown in Figure 1, where a six degrees of freedom (DOF)
model is presented. The earth fixed Oo is an inertial reference frame fixed to the earth’s
surface and the body fixed with origin O is a moving coordinate frame that it is fixed to
the craft as in given in [1]. It is assumed an homogeneous mass distributed and xz-plane
symmetrical, such that origin of the body fixed reference frame is chosen to be coincident
with the center of gravity.

x

z

y

oo
o

o

o

z

y

o

Pitch x

z

Roll

Yaw
Surge (u)

Heave

Sway (v)

Rudder angle ( )

Figure 1. 6 DOF motion representation with North-East-Down coordinate system (green) and body
fixed reference frame (black).

If we consider the course keeping problem the dynamics of heave, roll, and pitch can
be neglected, so that the reduced model dynamics are given as

m(u̇ − vr − xcr2) = X (1)

m(v̇ + ur + xcṙ) = Y (2)

Izṙ + mxc(v̇ + ur) = N (3)

where m is the mass, u is the surge velocity, v is the sway velocity, r is the yaw rate, Iz is
the rotational inertia with respect to z axis, xc is the x coordinate of the vehicle center in
the fixed body reference frame and X, Y and N are the external forces and moments with
respect to the surge, sway, and yaw, respectively.
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Assumption of constant forward speed and using the ship’s Norrbin nonlinear mathe-
matical model, see [46], implies that the steering equations of motion can be obtained as

ψ̇(t) = r(t)

ṙ(t) = f (r) + gδ(t) + d(t) (4)

where, ψ(t) is the yaw (orientation) angle, r(t) is the yaw rate, δ(t) is the rudder angle
(the control variable to be designed) and d(t) is an unknown term to be compensated that
includes parametric uncertainty and external disturbances (wind, waves, mobile loads).
The dynamics functions are given as

g = −K
T

f (r) = −K
T

H(r)

H(r) = a1r + a2r3 (5)

where (K, T) are hydrodynamic coefficients and (a1, a2) are Norrbin coefficients.
In the course keeping problem it is required that the yaw angle ψ follows a refer-

ence angle ψr by means of the design of the rudder control signal δ(t). The following
assumptions are taking account in this work.

Assumption 1. d(t) in (4) satisfies the following restriction

|d(t)| ≤ D

with D > 0 a positive unknown real number.

Assumption 2. d(t) in (4) satisfies the following restriction

|ḋ(t)| ≤ Δ

with Δ > 0 a positive known real number.

Assumption 3. Henceforth, it is assumed that a reference yaw establish the desired input to be
tracked, which can be obtained by means of path planning algorithms, that account for different
environment constraints as in [47–50]. A dynamic reference model is used, in this work, to generate
the desired course (ψr(t), ψ̇r(t), ψ̈r(t)).

The objective is to design a control law that creates overdamped responses with
minimal overshooting (undershooting) and robustness properties for response of the yaw
error, which is defined as

e(t) = ψ(t)− ψr(t) (6)

In order to check the control performance of the proposed controller for the course keep-
ing problem, we consider the following performance analysis indices mentioned in [10,12].

MAE =
1

t∞ − t0

∫ ∞

t0

|e(t)|dt (7)

MIA =
1

t∞ − t0

∫ ∞

t0

|δ(t)|dt (8)

MTV =
1

t∞ − t0

∫ ∞

t0

|δ(t)− δ(t − τ)|dt (9)

where τ is the sampling time used in the simulation.
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Furthermore, to check out the robustness properties of the solution, we compare the
results with the algorithms proposed in [10,12] applying the following conditions:

• As in [10,12], we test two problems that uses two different types of reference input
signals: step and sinusoidal.

• The tests includes results without disturbances (d(t) = 0) and with disturbances
(d(t) �= 0).

• The algorithm parameters are configured in the case of the step input reference without
disturbances, such that all solutions provide the same value of the MIA index at the
end of the test time.

• After that, the algorithms parameters are fixed and tested in the case of step with
disturbances and in the case of the sinusoidal input reference. In this way we check
the robustness of the solutions with respect to its capacity of adaptation to different
scenarios from a specific parameter configuration.

The following theorem is introduced in order to analyse the stability properties of the
AISM proposed solution.

Theorem 1. Consider the following cascade system

ż1 = f1(t, z1) + g1(t, z1, z2)z2 (10)

ż2 = f2(t, z2) (11)

where z1 ∈ Rn, z2 ∈ Rm, f1(t, z1) is continuously differentiable in (t, z1), and f2(t, z1) and
g1(t, z1, z2) are continuous and locally Lipschitz in z2 and (z1, z2), respectively.

The dynamics of (10) when z2 = 0 are

ż1 = f1(t, z1) (12)

If systems (12) and (11) are globally uniformly asymptotically stable (GUAS) and we know
a C1 Lyapunov function V(t, z1), two class-K∞ functions φ1 and φ2, a class-K φ3 function and a
positive semidefinite function W(z1) such that

φ1(||z1||) ≤ V(t, z1) ≤ φ2(||z1||) (13)
∂V
∂t

+
∂V
∂z1

f1(t, z1) ≤ −W(z1) (14)

|| ∂V
∂z1

|| ≤ φ3 (15)

Besides, for each fixed z2 there exists a continuous function ζ : R+ → R+ such that

lim
s→∞

ζ(s) = 0 (16)

|| ∂V
∂z1

g1(t, z1, z2)|| ≤ ζ(||z1||)W(z1) (17)

Then we can conclude that the cascade system (10) and (11) is GUAS.

Proof. See [51].

3. Adaptive Integral Sliding Mode Surface Control Design

Derivation of e(t) in (6) leads to

ė(t) = r(t)− ψ̇r(t) (18)

An adaptive sliding surface s(t) variable is defined as

s(t) = ė(t) + λ(e)e(t) (19)
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with λ(e) a real positive time varying parameter.
Consider the integral term s̄(t)

s̄(t) =
∫ t

0
s(t)dt (20)

Let us choose the control law as

δ(t) =
1
g
(− f (r) + ψ̈r(t)− λ(e)ė(t)− λ̇(e)e(t)− α(s, s̄)s(t)− γ(e)s̄(t)) (21)

with λ(e) defined as

λ(e) = max(λmin, λmax − (
λmax − λmin

|e(0)| )|e(t)|), (22)

the variable z(t), related a new sliding surface, defined as

z(t) = s(t) +
α

2
s̄(t) (23)

and the parameters α(s, s̄), γ(α) given as

α̇(s, s̄) =
{

κ|z|ζ sign(z) sign(s) if |z| > μ ∧ αmin < α < αmax
0 otherwise

(24)

γ(α) =
α2

4
(25)

with ζ(e) defined as

ζ(e) = (
ζmax − ζmin

|e(0)| )|e(t)|+ ζmin (26)

and μ

μ =
ζ+1

√
Δ
κ

(27)

Derivation of γ(α) and λ(e) are given as

γ̇(α) =
α

2
α̇ (28)

λ̇(e) =

{
−( λmax−λmin

|e(0)| )sign(e(t))ė(t) if λ > λmin

0 if λ ≤ λmin
(29)

The control algorithm is designed by an appropriate selection of the parameters αmax,
αmin, λmax, λmin, α(0), κ, ζmax and ζmin, as it will be introduced in the numerical simulations
section. Figure 2 show the control loop and the detail of the block diagram structure of the
course keeping algorithm.

Theorem 2. Consider the ship course dynamics described in (4) that complies with assumption 2.
The application of the control law (21) to dynamic system (4) implies that the closed compact set Ωe
defined as

Ωe = {(e(t), ė(t)) ∈ R2 : |e(t)| < μ

| cos(θ)|| sin(ϑ)| ∧ |ė(t)| < μ

| cos(θ)|| cos(ϑ)| } (30)
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is GUAS with μ, θ and ϑ given as

θ = atan(λ) (31)

ϑ = atan(
λ

2
) (32)

Proof. Application of control law (21) to dynamic system (4) creates the following cas-
cade system.

ė(t) = −λe(t) + s(t) (33)

ṡ(t) = −αs(t)− γs̄(t) + d(t) (34)

Heading 
Controller

Yaw
Dynamics+-

r r
.

r
..[ ] r[ ]

d(t)

Heading Controller Structure

r
..

e
e.

Adaptive 
Parameters

Sliding
Mode

.

.e
e.

1/ss
s
s-

Adaptive 
Parameters.

Control
Law

Figure 2. Course keeping control system and detail of heading control law block diagram.

The dynamics of ė(t) when s(t) = 0 (dynamics of the yaw error at the sliding condi-
tion) are

ė(t) = −λe(t) (35)

with λ > 0. Therefore system (35) is GUAS, with exponential convergence.
Derivation of ṡ(t) leads to

s̈(t) + αṡ(t) + γs(t) + α̇s(t) + γ̇s̄(t) + ḋ(t) = 0

From (25), (28) and (23) it is obtained

s̈(t) + αṡ(t) +
α2

4
s(t) + α̇z(t) + ḋ(t) = 0

• Case 1: |z| ≤ μ ∧ α = αmin ∧ α = αmax
Assuming the worst case scenario, that is, when z > μ ∧ α = αmin, substitution of
α̇ = 0 implies that the second order dynamics related to s(t) are

s̈(t) + αminṡ(t) +
α2

min
4

s(t) + ḋ(t) = 0 (36)

Let’s define a sliding vector state η(t) as

η(t) =
[
s(t) ṡ(t)

]T (37)
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Dynamics of η(t) are given by

η̇(t) = Aη(t) + F(t) (38)

with

A =

(
0 1

−αmin − α2
min
4

)
(39)

and

F(t) =
(

0
ḋ(t)

)
(40)

Lets’ define

p1 =
αmin

8
+

2(αmin + 1)
α2

min
(41)

p2 =
0.5

αmin
(42)

p3 =
2(αmin + 1)

α3
min

(43)

and P a symmetric positive definite matrix

P =

(
p1 p2
p2 p3

)
(44)

with determinant

|P| = λ4 + 16λ2 + 32λ + 16
4λ5 > 0 (45)

It can be shown that

PA + AT P = −Q (46)

where Q is the identity matrix of size 2 × 2. Therefore, the selection of a Lyapunov
candidate function

V(η) =
1
2

ηT Pη (47)

leads to

V̇(η) = −ηTQη + FT Pη (48)

= −ηTQη − ḋ(t)(p2s(t) + p3 ṡ(t)) (49)

Let’s define

p∗ =
√

2 max(p2, p3) (50)

Therefore

|ḋ(t)(p2s(t) + p3 ṡ(t))| ≤ p∗Δ||η|| (51)

Applying (51) and assumption 2 it is obtained

V̇(η) < −γmin
Q ||η||2 + p∗Δ||η|| (52)
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Note that γmin
Q = 1, thus the closed set Ωη , which includes the origin, defined as

Ωη = {η(t) ∈ R2 : ||η|| ≤ p∗Δ} (53)

is GUAS with exponential convergence (see [52]). The values of p∗ and Δ determines
the size of the stable closed set, so that this condition limits how the algorithm may be
applied. Inside Ωη there are two possible cases

– sign(sṡ) < 0: implies that |s(t)| → 0, that is, the dynamics is stable an converges
to the origin, with a value of α adjusted to keep this condition.

– sign(sṡ) ≥ 0: implies that |s(t)| grows inside Ωη , that is, with an upper bound, or
its value is stationary. According to (23) and (1), there exist an instant where the
condition sign(z) sign(s) > 0 is met, which implies that α grows, that is, condition
α̇ �= 0 is achieved. Therefore, α grows only when it is needed to keep the sliding
mode condition at steady state, which is related to the performance given by the
value of λmax.

• Case 2: |z| > μ ∧ αmin < α < αmax
Substitution of α̇ �= 0 from (24) implies that the second order dynamics equation
related to s(t) is

s̈(t) + αṡ(t) +
α2

4
s(t) + κ|z|ζ+1 sign(s) + ḋ(t) = 0 (54)

Applying assumption 2 and condition |z| > μ implies that

κ|z|ζ+1 sign(s) + ḋ = ρz(t)s (55)

with ρz(t) > 0. Accordingly, because of assumption 2, the characteristic polynomial
of (54) is Hurwitz for all z(t) �∈ Ωz where

Ωz = {z(t) ∈ R : |z(t)| < μ} (56)

with μ defined in (27). This implies that (34) is GUAS with respect to the closed set
Ωz. Note that dynamics in (54) can be viewed as a second order linear dynamics with
adaptive critical damping (exponential convergence related to the fastest response
with no overshooting), being perturbed by the overestimation ρzs caused by the
compensation of the unknown term. The roots of the perturbed solution of (54) are
given by

s∗1,2 =
α

2
± j
√

ρz(t) (57)

A condition of the following form can be used to avoid chattering (high frequency
oscillations caused by a large imaginary value in the pole position as a result of
overestimation) at the steady-state response.

|κ|z|ζ+1 sign(s) + ḋ(t)| ≤ κ|z|ζ+1 + Δ < ρmax
z (58)

This provides an upper bound of the perturbation generated at the dynamics with
respect to the solution with κ = 0 and d(t) = 0. In order to estimate the correlation
between the sampling time τ and the natural frequency

√
ρmax

z (in rad
s ), we must verify

that the frequency given by the Nyquist-Shannon sampling theorem (the maximum
operating frequency for a system with sampling time τ) does not create a change in
sign in s(t) at the limit condition |z(t)| = μ, that is√

ρmax
z ≤ π

τ
μ (59)
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Applying condition (58) an upper bound for κ as a function of Δ, τ and the absolute
value of z(t) is obtained as

κ ≤ (πμ
τ )2 − Δ
|z|ζ+1 (60)

This constraint provides a limit on the application of the method that employs the
bound Δ of the disturbance derivative, the sampling time τ and, taking into consider-
ation relation (27), the required precision μ.
Inside Ωz we have that

|s(t) + α

2
s̄(t)| < μ

which geometrically entails:

|s̄(t)| < μ

| sin(ϑ)| (61)

|s(t)| < μ

| cos(ϑ)| (62)

with ϑ defined in (32). Inside Ωs we have that

|ė(t) + λe(t)| < μ

| cos(ϑ)|
Following the previous approach implies that:

|e(t)| < μ

| cos(ϑ)|| sin(θ)| (63)

|ė(t)| < μ

| cos(ϑ)|| cos(θ)| (64)

with θ defined in (31).

Applying Theorem 1 with

φ1(||e||) = k1e2

φ2(||e||) = k2e2

φ3(||e||) = k3|e|
W(e) = k4e2

V(e) =
1
2

e2

ζ(e) =
k5

k4|e|
where k1 < 0.5, k2 > 0.5, k3 > 1.0, k4 < λ and k5 > 1.0, entails that cascade system given
in (33) and (34) is GUAS with respect to the closed compact sets Ωe and Ωs, respectively.

4. Numerical Simulations

In this section we introduce numerical simulations of the course keeping problem
with parameters given in Table 1 and being executed under the following assumption.

Assumption 4. The numerical simulations are executed using the explicit Euler method with fixed
sampling time τ = 0.1 s.
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Table 1. Model parameters.

Parameter Value

K 0.21
T 107.76
a1 13.17
a2 16,323.46

4.1. Constant Yaw Reference

This test is presented in [12] with a required a change in the yaw orientation angle
from zero initial condition up to 50 degrees assuming that d(t) = 0. Table 2 show the
parameters used in [12].

Table 2. Nonlinear concise backstepping controller parameters.

Parameter Value

k1 0.0017
ω 0.6000

Based on this results the parameter a2 of the synergetic controller presented in [10] is
changed to achieve the same MIA at the end of the simulation. Table 3 show the parameters
used with this algorithm.

Table 3. Synergetic controller parameters.

Parameter Value

a1 0.090
a2 1.891
T1 28.000

The parameters of the AISM algorithm are obtained as follows

• Consider a settling time ts = 150s, a maximum desired yaw rate rmax = 0.70π
180 degrees

per second and a required precision μ = 1.0 × 10−6.
• The value of α(0) is obtained assuming an exponential convergence of the error from

initial condition e(0) to desired precision μ with a desired settling time ts

α(0) = −1.25
log( μ

|e(0)| )
ts

= 0.0756 (65)

The values of αmin and αmax are selected as

αmin = α(0) (66)

αmax = 5(αmin + Δ) (67)

• The value of λmin is related to the initial conditions of the problem and the maximum
desired yaw rate as

λmin =
rmax

|e(0)| = 0.014 (68)

and λmax is calculated as

λmax = 2.0λmin = 0.028 (69)
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• The value of κ must be higher than Δ in order to obtain a small value for μ. Due ti the
low-pass filtering properties of (54), the value of Δ can be further refined by estimating
the cut-off frequency ωc(t) of the second order system related to s(t)

ωc(t) =
α(t)

2
(70)

Therefore κ is calculated as an adaptive gain that takes account of ωc and the desired
precision

κ(t) =
α(t)

2μ
1

ζ+1
(71)

• Simulations are used to set the values of ζmin and ζmax such that the value of the per-
formance index MIA is equal to the value achieved with benchmark chosen controllers
at the conclusion of the test period.

ζmin = 0.800

ζmax = 1.685

This condition generates an adequate adaption of the value of ζ that allows to obtain
the desired power factor profile with respect to the absolute value of e(t).

Figure 3 shows the states and control effort, and it can be seen that all of the solutions
have a comparable setting time. The yaw error evolves similarly in all circumstances,
however AISM can achieve the same high accuracy in steady state than Synergetic control
with less control effort and a lower maximum yaw rate.

Figure 4 depicts the progression of performance indices over time, with a detailed
view of the MIA performance index at the end of the test and final numerical values in
Table 4. The evolution of the adaptive parameters employed in the proposed AISM method
is detailed in Figure 5. In the case of d(t) = 0, the value of the performance parameter λ
is adjusted to match the intended low/high gain profile, while the value of gain α grows
until it reaches the sliding condition, then falls to its lower bound.
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Figure 3. Constant yaw reference test with d(t) = 0. States and control. Cyan line: Reference; Red line:
Concise backstepping (Zhang et al.); Blue line: Synergetic (Muhammad et al.); Black line: Adaptive
sliding mode (González-Prieto et al.).
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Table 4. Constant yaw reference test with d(t) = 0. Performance indices.

Algorithm MAE MIA MTV

Concise Backstepping [12] 0.042227 0.011348 3.6396 × 10−5

Synergetic [10] 0.035641 0.011348 6.4436 × 10−5

AISM 0.038468 0.011348 4.0722 × 10−5
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Figure 4. Constant yaw reference test with d(t) = 0. Performance indices evolution. Cyan line:
Reference; Red line: Concise backstepping (Zhang et al.); Blue line: Synergetic (Muhammad et al.);
Black line: Adaptive sliding mode (González-Prieto et al.).

Next, in order to test the robustness of the algorithms, the following disturbance is
considered in (4)

d(t) = D[cos(ωdt) + 0.83 sin(3.29ωdt − 0.14)

+ 1.23 cos(8.12ωdt + 0.26)

+ 0.65 sin(1.37ωdt + 0.36)ecos(2.21ωdt+0.13)] (72)

with

D = 0.0025

ωd = 0.0703
rad

s

Figure 6 shows the states and control effort, and it is obvious that the suggested AISM
negates the influence of the external disturbance, maintaining the intended performance at
steady-state, and creating a rudder angle control that enables quick reaction attenuation
without causing overshooting. The evolution of the sliding variable s(t) and the external
disturbance d(t), introduced to evaluate the resilience qualities of the compared algorithms,
is depicted in Figure 7.
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Figure 5. Constant yaw reference test with d(t) = 0. Adaptive parameters evolution.
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Figure 6. Constant yaw reference test with d(t) �= 0. States and control. Cyan line: Reference; Red line:
Concise backstepping (Zhang et al.); Blue line: Synergetic (Muhammad et al.); Black line: Adaptive
sliding mode (González-Prieto et al.).

The evolution of the adaptive gains is seen in Figure 8. It is evident that the influence of
the unknown disturbance is passed to α and κ in order to maintain steady-state performance,
but it has no effect on lambda or the adaptive power factor delta. As a result, the reaction
achieves a quick response to external disturbances in order to maintain a constant target
performance related to the sliding condition s(t) ≈ 0.
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Figure 7. Constant yaw reference test with d(t) �= 0. Sliding mode variable s(t) and external distur-
bance d(t).
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Figure 8. Constant yaw reference test with d(t) �= 0. Adaptive parameters evolution.

4.2. Sinusoidal Yaw Reference

In this case, as in [12], the yaw reference to follow is a sinusoidal signal defined as

ωd =
50π

180.0
sin(

2π

600.0
) (73)

where the initial yaw angle is

ψ(0) =
10π

180.0
(74)

States and control effort are provided in Figure 9 where it is clear that AISM is capable
to follow the yaw reference with no appreciable delay keeping the desired settling time,
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and Figure 10 depicts the adaptive parameter’s change over time in the unperturbed case
with sinusoidal reference.

As in the previous test, results with sinusoidal reference are tested introducing distur-
bance (72). Figure 11 shows the states and control effort obtained in this case, where, as
in the constant reference test, the steady-state performance and the settling time obtained
with AISM are preserved despite the presence of the external unknown disturbance.
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Figure 9. Sinusoidal yaw reference test with d(t) = 0. States and control. Cyan line: Reference; Red
line: Concise backstepping (Zhang et al.); Blue line: Synergetic (Muhammad et al.); Black line: Adaptive
sliding mode (González-Prieto et al.).
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Figure 10. Sinusoidal yaw reference test with d(t) = 0. Adaptive parameters evolution.
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Figure 12 shows the evolution of the sliding variable and the external disturbance
input d(t). The time evolution of adaptive parameters in Figure 13 mirrors the behavior in
the case of constant yaw reference in case of d(t) = 0. This characteristic, like in constant
yaw reference scenario, generates quick reactions to external disturbances, maintaining a
desired fixed performance and avoiding a delayed response.
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Figure 11. Sinusoidal yaw reference test with d(t) �= 0. States and control. Cyan line: Reference;
Red line: Concise backstepping (Zhang et al.); Blue line: Synergetic (Muhammad et al.); Black line:
Adaptive sliding mode (González-Prieto et al.).
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Figure 12. Sinusoidal yaw reference test with d(t) �= 0. Sliding mode variable s(t) and external
disturbance d(t).
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Figure 13. Sinusoidal yaw reference test with d(t) �= 0. Adaptive parameters evolution.

5. Conclusions

We present an approach to developing an adaptive integral sliding mode procedure to
design a nonlinear controller for the course keeping of surface vehicles. A solution has been
proposed that is based on the application of adaptive gains that change the sliding surface’s
dumping properties, resulting in a low/high gain profile so that it can overcome the need
for large control inputs at initial conditions while achieving a higher gain at steady state.

Results obtained in numerical simulations demonstrate that the proposed AISM
algorithm achieves the desired performance with fixed and time-varying references that
cancel out external disturbances. A fixed parameter configuration is used to evaluate the
performance based on the settling time, maximum allowable yaw rate, and steady state
precision. Due to its robustness, the algorithm achieves the desired response without
requiring the development of a new parameter configuration for each type of test.

An advantage of the method is its robustness with respect to an overestimation of Δ: the
performance is not highly degraded if this bound is not accurately known. However, choosing
an overly large value might cause oscillations in the response of the estimation error.

In order to integrate an optimal point of view in the design of the adaptive parame-
ters, a deepest study of the function that can determine the adaptive values of λ(e) and
ζ(e) is an interesting open problem that can be discussed from the standpoint of model
predictive control.

The extension of this procedure with the assumption of partial state feedback will be
addressed in future researches by means of the application of an adaptive integral sliding
mode observers.
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Abbreviations

The following abbreviations are used in this manuscript:

USV Unmanned Surface Vehicle
IMO International Maritime Organisation
LOS Line of Sight
SMC Sliding Mode Control
AISM Adaptive Integral Sliding Mode
GUAS globally uniformly asymptotically stable
MAE Mean Absolute Error
MIA Mean Integral Absolute
MTV Mean Total Variation
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Abstract: In a modern economy, international trade is an important factor in the development
of various regions. Shipping is one of the most important elements of the global supply chain.
However, after the economic crisis of 2008, global shipping revenues plummeted. One way to
restore profitability is the consolidation of shipping routes and the globalization of shipping lines.
As container transport lines move to larger ships, the structure of the delivery route becomes a
structure with intermediate points. This trend put forward higher demands on the port infrastructure,
which aggravated the competition between regional ports, as well as ports that could degrade into
a large cargo consolidation port. The economic advantage is enhanced by cooperation between
shipping lines and ports. Thus, ports and shipping lines in the same supply chain can be mutually
beneficial partners. The study analyses the effectiveness of horizontal and vertical cooperation
between ports and carriers. As a source of information, a review of the literature on this issue,
expert opinions, and statistical data is taken. Next, a mathematical model is built on the basis of
cooperative game theory, and numerical analysis is carried out. The results show that the strategy
of cooperation of shipping lines strongly depends on the situation with the supply and demand of
vessels. A port that interacts with shipping lines will significantly reduce port charges, which creates
the advantage of receiving more port requests. However, cooperation may lead to losses for the port,
so a redistribution of profits is necessary to maintain the coalition.

Keywords: cooperative game theory; supply chain management; supply disruption

1. Introduction

With the development of the world economy, international trade has become an
important factor in the economic development of different regions. As a key element of the
global trade chain, the shipping industry covers more than 80 percent of the world trade.
However, after the global financial crisis of 2008, the shipping industry faced problems
of overcapacity. According to various data, by 2008 about 35–40% of container capacity
was already excessive [1–3]. To restore profitability, it has become common practice
to consolidate sea routes and globalize shipping lanes. For example, [3] discusses the
cooperation of European seaports: the advantages, limitations, and development prospects.
In [4], the activities of the largest alliances of sea carriers are analyzed, and the profitability
of creating such alliances is shown.

Shipping companies have taken steps to unite their fleet in a coalition. The coalition of
carriers can receive lower prices for the port service, and use the vessels more economically,
fully loading them, rather than using partially loaded ones. In [5], the game theory
approach is applied, showing the profitability of the sea carriers’ merger, the problems of
the stability of alliances, and the distribution of the total profit between the participants.
A significant advantage of cooperation between participants in the supply chain is the
ability to reduce losses in case of accidental interruptions in supplies, which can occur for
various reasons (e.g., a fully loaded port cannot accept cargo for processing, equipment
failure may occur, weather conditions are unfavorable, etc.). In [3], a theoretical model
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of the supply chain is proposed, and the role of the port as a participant in this chain is
discussed. In [6], the efficiency of supply chain management is discussed. In [7,8], models
are considered which show the importance of coordinating the work of all participants
in chain.

Consolidation of shipping lanes led to significant changes in the shipping industry.
Cooperation agreements between ports and carriers have led to changes in the role of the
ports. Larger ports stood out as hubs dealing with the largest ships. Smaller ports began
to serve hub ports, “collecting” cargo from land transport lines. In modern conditions,
peripheral ports lose in competition with hub ports. However, the cooperation of sea
routes and ports, uniting peripheral ports and hubs in a single coalition, gives ports an
opportunity to increase the level of loading and unloading services, and allows sea routes
to receive a stable income from the port’s operation. It also protects peripheral ports from
closure, saving jobs.

The goal of this study is to analyze the possibilities of various participant cooperation
in the logistics chain in order to increase profits and reduce costs. This article discusses
a logistic chain that includes a hub port, peripheral ports, and land carriers. It is shown
that the cooperative work of the participants in the chain brings significant savings in
logistics costs.

2. Theoretical Background

Global changes in the carrier market are of great interest. In [3], a theoretical model
of the supply chain is proposed and the role of the port as a participant in this chain is
discussed. Effective supply chain management methods are discussed in [6]. Paying close
attention to this topic helps to avoid the problems of shortages or surpluses of goods, as
well as mitigate problems in case of possible supply disruptions.

The complete shipping chain in the general case is as follows (Figure 1):

Figure 1. The scheme of shipping supply chain.

At each stage, horizontal cooperation of several participants is possible. One might
also consider vertical cooperation, which brings together participants from different parts
of the logistics chain.

2.1. Customer Cooperation at the Stage of Placing an Order

Cost reduction in this type of cooperation is achieved through the formation of bigger
quantities of goods, which allows the use of larger vessels and, as a result, reduces the cost
of delivery. Water shipment is more profitable than land transportation, provided that the
consignment of goods is large enough. Therefore, ports often act as cargo aggregators, col-
lecting several orders for a large vessel. In addition, at the stage of consignment formation,
one can use the optimization model of the delivery scheme. Individual customers cannot
always form batches that are optimal in terms of the economic order quantity (EOQ), as
they are bound by standard container sizes. Joint orders allow more flexibility to determine
the frequency and size of orders. In detail the task of forming the optimal size of the order
is considered in [9].
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2.2. Port Cooperation and Competition

Let us assume that the economical region under consideration has a main port that
handles large vessels. In addition, there are several peripheral ports. When creating an
order, a consumer may be guided by various reasons when choosing a port: contracts,
service convenience, special offers, etc. In addition, ports have different capabilities
for processing orders. Queues and delays are possible for this reason. The benefits of
combining are due to more coordinated cargo handling.

Such cooperation is a method used by market players in an attempt to reduce a
high level of competitiveness [10]. Horizontal integration between ports can lead to
lower freight rates and more efficient logistic control, thus increasing the demand for port
services. Some authors suggest that cooperation between ports can have a positive impact
on the overall competitiveness of ports in the region, leading to overall market growth in
the region.

Ports compete with one another for customers. In [10], the authors discuss the ad-
vantages of cooperation over competition. The main indicators of the port functioning are
the number of sites for unloading, the speed of cargo handling, and the cost of service.
Competition among the ports leads to the situation in which the main flow of goods in the
region goes through the “winning” port. To survive, small ports switch to peripheral ship-
ments. At the same time, it is beneficial to enter into a peripheral port–port hub coalition.
The coalition is beneficial to both parties, as both types of ports are loaded with work.

Port competition is more complex than it seems to be. Not all ports have the necessary
capacity to ensure the loading and unloading of modern large vessels. At the same time,
already allocated hubs that have intercepted the main flow of goods make competition
very difficult, leaving the rest of competitors few opportunities for development.

What are the options for alliances around the hub? The first option is a contract
between a peripheral port and a hub port. As a result, the hub receives the flow of goods,
while the peripheral port gains a possible reduction in tariffs for service and priority service.
However, if the port hub has limited capacity to handle cargo, holdups may occur, and
the competition between the ports will escalate. The cause of such congestion may be
an insufficient number of unloading sites, especially for large vessels, slow service, etc.
In this case, the ports compete with one another. Customers are attracted by higher levels
of service or lower prices. Price competition in this case is well described in terms of
Bertrand oligopoly.

The second type of possible cooperation between the ports is the creation of coalitions
of equal ports. This can lead to better integration in the supply chain, lower costs, and the
elimination of redundant links, as well as more flexible route planning conditions.

In addition to reducing costs, port cooperation helps reduce the impact of possible
supply disruptions. The recent increase in the number of natural disasters, as well as terror-
ist attacks, has drawn much attention to the vulnerability of supply chains. Having passed
through many links of the logistics chain that cover continents and organizations, the
reliability and timeliness of cargo delivery is becoming increasingly difficult to assess.
In particular, in seaports that are an indispensable hub in global supply chains and where
complex sea and land interfaces take effect, the role of ports in disrupting marine supply
chains needs to be explored. Loh, H. and Vinh, T. are examining the changing functions of
the ports and supply chain helps determine the consequences and develop strategies to
mitigate the effects of such disruptions [11].

The cooperation of carriers also helps in case of possible problems. The most fre-
quently discussed operational risks of the port are port accidents [12,13], port equipment
failures [13], improper handling of dangerous goods [14], port congestion [15], low quali-
fication of personnel [16], safety violations [13], and strikes. In addition, human factors
that impede communication (cultural differences, political problems, and conflicts between
staff) may increase the scope of problems [17].

One of the main ways to quickly respond to the resulting failure is to change the
logistics chain. Well-established schemes of vertical and horizontal cooperation of chain
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participants can help minimize the consequences: redirect goods to another node of the
chain (another port) or change the type of transport.

Of course, one of the main issues is the sustainability of such coalitions. It, in turn,
depends on the profitability of the participation of ports in the union. Here, the important
role is played by the principle on which the profit of the coalition members is distributed.

At the modern market of sea shipping, there are several port alliances [3]. Examples
include the following alliances:

1. Ports of Elba. In 2009, the ports of Cuxhaven, Brunsbüttel, Glückstadt, Stade, and
Hamburg merged. The seaports of the three different federal states of Germany
collaborate in the areas of marketing, customer analysis, and infrastructure planning
and management;

2. Ports of the Rhine. The cross-border cooperation “RheinPorts” between the inner
ports of the Rhine Basel in Switzerland, Mulhouse in France, and Weil am Rhein
in Germany, began in 2007. The main joint tasks of neighboring ports in the three
countries include service marketing and exchange of information, as well as handling
of goods, customs, and container repair services. Since 2016, a joint logistics flow
management system has been in use. The information system provides detailed
information on the arrival of ships and connects various port participants, such as
terminal operators, gateways, and transport companies;

3. Malmö–Copenhagen. In 2001, the ports of Malmö, Sweden and Copenhagen, Den-
mark agreed on the maximum possible form of cooperation—a joint venture responsi-
ble for cargo handling and storage. The ports are located in geographical proximity
and benefit from direct and joint navigational access to the Oresund region. A joint
venture called “Copenhagen Malmö Port CMP” is registered in Sweden. The com-
pany acts as a port and terminal operator in both cities. The objectives of cooperation
are to focus on the various transport segments and to manage traffic at close range.
The port of Copenhagen concentrates on imports and cruise shipments. The port of
Malmö mostly serves as a transit cargo center.

2.3. Cooperation of Shipping Lines and Ports

The shipping line and the port are two different elements of the logistics chain and
there is no direct competition between them. These conditions make the coalition easier and
more profitable. Vertical integration of the shipping line and the port can effectively satisfy
maritime logistics and increase the level of service. Shipping lines choose landing terminals
for their ships; therefore, it becomes increasingly important for the port to cooperate with
one or several shipping lines in order to ensure long-term prosperity. Shipping lines take a
series of measures to increase efficiency and reduce costs. Global strategic alliances of sea
carriers using large ships have appeared [18]. Cooperation with a large shipping line can
guarantee port loading for a considerably long period of time.

The advantage of creating these kind of coalitions can be obtained in various ways.
First, the shipping line may receive either a reduction in tariffs for cargo service, or a
dedicated site where the shipping company is to be serviced without delay. In turn,
shipping companies invest in the development of the port. In some cases, shipping
companies have a share in the port.

2.4. Coalition of Shipping Lines

There is a large amount of research examining coalition of maritime carriers.
For carriers, it is more advantageous to use large vessels. Therefore, they may combine to
ensure full loading. At present, the largest alliances of maritime carriers have been formed
in the world trade.

Various forms of cooperation help shipping lines expand their business, streamline
their services, and reduce their costs in varying degrees [19]. The most demonstrative
examples in history are price agreements between shipping lines [20]. There is also an
agreement on the fleet and route sharing [21].
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Currently, there are several major alliances of shipping companies: A.P. Molle–Maersk
Group, Mediterranean Shipping Company S. A., CMA CGM Group, China Ocean Shipping
Company (COSCO), Evergreen Marine, etc. Today, a more comprehensive and flexible
form of cooperation has emerged, namely the global strategic alliance [19]. Panayides and
Wiedmer in [22] explore the motivation to cooperate, naming among them the opportunity
to share risks, eliminate duplicate routes, and use super-large vessels.

Shipping lines cooperation can be divided into a strategic or global alliance, an agree-
ment on the ships sharing, and slot charters [22]. By sharing risks as well as improving
customer service, product quality and market accessibility, partners in a global alliance
gain a number of competitive advantages over others, thus increasing profitability [19].

2.5. Cooperation and Coopetition

Researchers also point out a new form of interaction between companies—coopetition.
This is both cooperation and competition at the same time. Agreeing to cooperate on
one issue, companies continue to compete in other areas. Dung-Ying Lin [23] offers a
theoretical framework for characterizing cooperation and competition in international
maritime shipping, and explores how carriers can manage their business models. In [24],
various forms of cooperation and competition in the field of linear transportation, industrial
and economic reasons for cooperation, and consequences for port competition in Europe
are considered.

3. Model Conceptualization

The goal of this study is to analyze the profitability of the ports and land carriers’
cooperation. Let us consider a large port hub (Seagate) and i peripheral ports, i = 1, . . . , n.
They serve the area with j customers, j = 1, . . . , m. In this case, upon receiving an order, its
delivery can be carried out in two ways. Cargo can be delivered by land immediately to
the port hub (Figure 2).

Figure 2. Ports network without cooperation.

It can also be delivered by land to the nearest peripheral port, and then by water to
the hub. Further, the following notation is introduced:

qj is the number of containers in the order from j. To simplify the model, tt is assumed
that the cargo consists of standard containers;

pi is the price assigned by port I for handling one container;
li
j is the overland distance between customer j and peripheral port i;

lh
i is the distance from a peripheral port i to the hub port;
ph

j is the overland distance from customer j to the hub;

c(qj, li
j) is the cost of shipping qj containers over a distance of li

j by land;

s(qj, lh
i ) is the cost of shipping qj containers over a distance of lh

i by water;
Vi is the capacity of the port i (in containers);
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V∗
i —currently available capacity of the i-th port;

mj—customer losses in case of container demurrage (per day) or additional time
of cargo handling in the peripheral port. In some cases, this value can be neglected.
For example, when shipping goods over long distances, one or two additional days do not
play a major role;

ti—for a fixed time moment under consideration, the amount of time remaining until
the peripheral port is ready to accept cargo for handling.

It is assumed that the hub port has a large capacity, and it is always available (waiting
time is less than one day). Shipping costs when using the peripheral port are as follows:

TSp
i = c(qj, li

j) + s(qj, lh
i ) + qj pi. (1)

Costs in case of shipping directly to the hub:

TSh = c(qj, ph
j ). (2)

Experience shows that in the process of delivery and handling of goods, disruptions
are possible, leading to delays in the delivery of goods. These can be short delays associated
with heavy traffic. Long delays are also possible, due to equipment breakdown, unfavorable
weather conditions, etc. The cost of the delay includes the cost of lost profits for the
transport company, the cost of waiting (idle time) at the peripheral port and the hub
port, the cost of re-forming the cargo handling queue in ports, the cost of the route delay.
The cost of delay per unit of time depends on many factors appropriate to a particular
situation. Its assessment requires the work of experts. The duration of the delay is also an
important factor. The probable duration of disruption is estimated on the basis of historical
data by experts. Estimating the cost of delay is beyond the scope of this study. It is also
necessary to take into account the additional time for handling cargo at the peripheral port.
If necessary, one can also consider the possibility of marine shipping taking longer than
overland delivery. This can be important, for example, in case of delivering perishable
goods. This time difference can be accounted for in the ti. variable.

Let us introduce the following notation:
tdis—possible duration of the disruption;
tex—possible duration of the cargo processing in the peripheral port i.
Then, Formula (1) for the shipping cost is estimated as follows:

TSp
i = c(qj, li

j) + s(qj, lh
i ) + qj pi + αitdismj + βitex

TSh = c(qj, ph
j ) + αhtdismj.

(3)

Variables αh, αi, and βi indicate whether there is a problem on path i or h:

αi =

{
1, i f there is a problem

0, i f there is no problem
(4)

αh =

{
1, i f there is a problem on the way to the hub

0, i f there is no problem

βi =

{
1, i f there is a problem on the way

0, i f there is no problem

(5)

Let us propose the following algorithm for finding the optimal delivery method
(optimal delivery route). The proposed algorithm takes into account, not only the distances
between customers and ports, but also the feasibility of using an intermediate peripheral
port, as in this case the goods go through additional processing, which requires additional
expenditures. The algorithm also takes into account the current situation on the roads and
in ports. If obstacles arise on a certain route, the feasibility of switching to another route is
assessed. To do this, the losses from waiting for the restoration of the original supply chain
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and the possible additional costs when changing the route (i.e., the cost of handling cargo
at an intermediate port or an increased distance) are compared.

The purpose of the algorithm is to find the optimal (minimum cost) cargo delivery
route. For this, the cost of delivery only by land transport directly to the hub is compared
with the cost of a route that includes sea transportation with the participation of one of the
intermediate ports. Of course, it is necessary to take into account the additional costs of
handling cargo at the intermediate port. However, shipping by sea is several times cheaper,
which will save on costs.

The following Algorithm 1 of decision making is proposed:

Algorithm 1 An optimal route search algorithm.

1. An order arrives from the customer j;
2. All sections of the route and ports are checked. If there is a disruption on some section of

the route or in the peripheral port, then for this section the cost of delivery is estimated
using Formulas (1).

3. For all i, the following values are calculated:
4. TSp

i , TSh

5. TSmin = min
i

(
TSp

i , TSh
)

6. If TSmin = TSh, then the cargo is shipped by land directly to the port hub.
7. If TSmin = TSp

i for some i, then it is checked that this port is currently available: qj < V∗
i .

8. If the condition qj < V∗
i is not satisfied, then for the obtained i the following value

is defined:
9. TSp

i = c(qj, li
j) + s(qj, lh

i ) + qj pi + mjti.

The algorithm runs again from the second step. The algorithm stop criterion is selected
by the algorithm running time or by the number of iterations.

Cooperative Game

With each order, a path is determined that minimizes the total costs of the coalition
of carriers and customers and, therefore, increases profits. The next problem is how to
divide the total profit between the members of the alliance. The costs of each individual
carrier are allocated according to the Shapley vector. The Shapley vector was chosen
based on its properties. As E. Moulin notes, Shapley’s vector is based on sequential
accounting of additional income from joining a fixed participant to each coalition [25].
This property is important, as the members of such a coalition are “unequal”, and a
large port hub contributes a significant part of the coalition’s profit. For example, let us
consider the alliance of three ports. Consider a cooperative game Γ(N, v) with three players.
Here, N = {1, 2, 3}, where {1} is a hub port, and {2} and {3} are peripheral ports. Grand
coalition is {1,2,3}. The characteristic function describing the profit of the grand coalition
is denoted by v({1, 2, 3}). Characteristic functions v({1, 2}), v({1, 3}) are also specified.
As the main goal is to deliver the cargo to the hub, coalitions without a hub have no profit:

v({2}) = v({3}) = v({2, 3}) = 0 (6)

The alliance members divide the received profit in accordance with the Shapley vector,
where ϕi is the profit (gain) of the i-th player.

For the game with three ports the following profits are obtained:

ϕ2 = 1
3 (v(1, 2, 3)− v(2, 3)) + 1

6 (v(1, 2)− v(2)) + 1
6 (v(1, 3)− v(3))

ϕ1 = 1
3 (v(1, 2, 3)− v(1, 3)) + 1

6 (v(1, 2)− v(1)) + 1
6 (v(2, 3)− v(3))

ϕ3 = 1
3 (v(1, 2, 3)− v(1, 2)) + 1

6 (v(1, 3)− v(1)) + 1
6 (v(2, 3)− v(2))

(7)
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4. Results and Discussion

Numerical experiments were carried out to demonstrate the performance of the algo-
rithm. As an example, the region with one main and three peripheral ports was considered
(see Figure 3). Ports receive delivery orders. Port #1 is the main port, and all shipments
go through it. Possible delivery options are either by land transport directly to port #1, or
through a peripheral port. In the latter case, a part of the way is provided by land transport
to the peripheral port, and then by water transport to port #1. The parameters of the
demand function were varied, and the equilibrium competition and cooperation levels
were estimated. For numerical simulation, the parameters were varied in the following in-
tervals: qj = [20, 150], ph

i = [20; 100], c = [1.5; 3], s = [0.3; 1], lh
i = [50; 500], pi = [150; 350],

ti = [1; 3], and mj = 500. The algorithm was implemented in MATLAB.

 

Figure 3. Ports network example.

Sample results of the numerical simulations are presented in Table 1.

Table 1. Sample results of the numerical simulations.

Port # That
Received the

Order

Port # That
Handled the

Order

Costs
without

Cooperation

Costs with
Cooperation

Disruption Savings%

1 1 11,624 11,624 no 0.00%
1 1 23,008 23,008 no 0.00%
1 4 12,000 11,548 yes 3.77%
3 4 17,968 16,843 yes 6.26%
1 2 9600 8800 no 8.33%
4 3 28,000 25,000 no 10.71%
2 2 13,654 13,654 no 0.00%
3 4 28,345 27,567 no 2.74%
4 3 23,780 22,445 yes 5.61%
3 1 21,658 19,567 no 9.65%
3 3 7846 7846 no 0.00%
2 1 6810 6654 yes 2.29%
3 1 22,365 20,248 no 9.47%
2 2 13,568 13,568 no 0.00%

The data in Table 1 contain information about the port that received the order, the port
to which the cargo was redirected after determining the optimal route, the initial cost of
delivery of the cargo, and the cost after determining the optimal route, taking into account
possible disruptions. The main idea in selected examples was to observe the percentage of
successful and unsuccessful coalitions. Numerical experiments showed that linking ports
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in order to reduce transport costs and losses in the event of network outages helped to
reduce costs by an average of 5%. This study does not take into account the situation where
different ports and land carriers belong to different alliances. Our goal is to demonstrate
the benefits of cooperation and highlight the value of peripheral ports, many of which are
on the verge of closure.

5. Conclusions

In response to strong competition in the container shipping markets, collaboration be-
came a major focus of this era. Consolidation of sea routes, globalization of shipping lines,
and cooperation of port operators emerged. The presented study uses a game-theoretic
approach to model port consolidation, and describes a multi-port game scenario. The pre-
sented model assumes horizontal cooperation of ports. Restrictions on alliances were
not introduced deliberately, and cooperation between alliances was considered. The co-
operation of terminal operators, located in close proximity to one another, improves the
quality of services for the main customers—liner carriers—and helps to reduce transport
costs. Among the expected positive effects of the considered cooperation are more efficient
use of existing port infrastructures through equipment sharing, and flexible workforce
distribution, as well as better rationalization of traffic peaks.

The study demonstrated the effectiveness of cooperation between ports and land
carriers in reducing the effects of disruptions as well as reducing overall logistics costs.
Numerical experiments have shown that the efficiency of such cooperation is 5% on average.
In some cases, the savings are more than 10%.

Cooperation of sea carriers, land carriers, and ports, uniting peripheral ports and hubs
in a single coalition, gives such alliances the opportunity to increase the level of loading
and unloading services, and allows sea routes to receive a stable income from the port
operation. It also protects peripheral ports from closure, saving jobs and financial revenues
to economic regions. Of course, such a tactic is not a panacea, and there are cases when the
savings from such cooperation cover the losses for unclaimed peripheral ports.

An important issue is the stability of such coalitions. The creation of such alliances
involves formal negotiations, signing agreements, and can be quite costly. The issue of
coalition stability may be a topic for future research.
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Abstract: With the continuous prosperity and development of the shipping industry, it is necessary
and meaningful to plan a safe, green, and efficient route for ships sailing far away. In this study, a
hybrid multicriteria ship route planning method based on improved particle swarm optimization–
genetic algorithm is presented, which aims to optimize the meteorological risk, fuel consumption, and
navigation time associated with a ship. The proposed algorithm not only has the fast convergence of
the particle swarm algorithm but also improves the diversity of solutions by applying the crossover
operation, selection operation, and multigroup elite selection operation of the genetic algorithm and
improving the Pareto optimal frontier distribution. Based on the Pareto optimal solution set obtained
by the algorithm, the minimum-navigation-time route, the minimum-fuel-consumption route, the
minimum-navigation-risk route, and the recommended route can be obtained. Herein, a simulation
experiment is conducted with respect to a container ship, and the optimization route is compared
and analyzed. Experimental results show that the proposed algorithm can plan a series of feasible
ship routes to ensure safety, greenness, and economy and that it provides route selection references
for captains and shipping companies.

Keywords: multicriteria route planning; genetic algorithm; particle swarm optimization; oceanic
meteorological routing

1. Introduction

With the progress of navigation technology, the safety and energy-saving problems
associated with maritime navigation have gradually become the focus of human attention.
Severe winds, waves, and other meteorological factors seriously affect the safety of ships
when sailing at sea. Currently, the weather forecasting technology has rapidly developed.
The weather forecast information can be used to plan routes for ships to avoid severe winds
and waves. Recently, the International Maritime Organization (IMO) and governments
have paid close attention to the air pollution and energy consumption of ships. In 2018,
the IMO adopted the “preliminary strategy for greenhouse gas emission reduction of IMO
ships,” thereby sending a strong signal to the international community that the shipping
industry is turning into a low-carbon industry [1]. The reduction of fuel consumption and
carbon emissions through reasonable route planning is an important measure in response
to the low-carbon strategy. To plan an efficient route, the captain must completely utilize
the weather forecast data according to the voyage mission and characteristics of the ship
and avoid selecting high-risk routes against winds and waves. The following elements
must be fully considered when planning multicriteria ship routes.

• The navigation time of the ship must be reduced.
• The fuel consumption of ships must be reduced.
• Areas with severe sea conditions must be avoided, ship rolling must be reduced, and

the safety of ships and cargo must be ensured.
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In the case of the first element, regardless of ship stalls and weather risks, the great
circle route is an ideal route because of the short voyage, thereby reducing the navigation
time [2]. The main method for realizing the second element is to select the economic route.
The main method for realizing the third element is to select safe routes that avoid areas
with high meteorological risks based on weather forecast data and ship characteristics. The
prosperity and development of shipping can be further promoted by finding an appropriate
methodology to comprehensively consider the three elements to design reasonable, safe,
and green alternative routes for ships.

Currently, with the rapid development of the optimization theory, some single-criteria
and multicriteria route planning algorithms for ships have been proposed. Initially, some
traditional mathematical methods were applied to solve the problem of ship route planning.

For example, James applied the isochron method to solve the problem of ship route
planning under meteorological conditions [3]. However, this method has the “isochron
loop” problem, making it unsuitable for computer-aided calculation. To solve this problem,
Hagiwara et al. proposed a modified isochron method [4], and Lin et al. proposed a three-
dimensional modified isochron method [5]. These two methods consider minimum fuel
consumption and minimum navigation time as optimization goals. The route is optimized,
but there is still a problem of complex calculations. Smierzchalski et al. used the isochron
method for generating the initial route and used the evolutionary algorithm to obtain
the optimal ship route [6]. Shao et al. proposed a forward, three-dimensional, dynamic
planning algorithm and planned the route intending to minimize fuel consumption [7].
Sen [8] used Dijkstra’s algorithm to solve the multicriteria route planning problem of ships,
focusing on the optimization goals of navigation time. Mannarini et al. [9] used a graph-
search method with time-dependent edge weights to optimize ship routes. The optimal
route may be longer in terms of miles sailed, and yet it is faster and safer than the geodetic
route between the same departure and arrival locations. With the continuous development
of intelligent optimization algorithms and big data, these technologies are gradually being
used to solve the problem of ship route planning. For example, Wang et al. used real-
coded genetic algorithms to plan ship routes with the goal of minimizing navigation
time and risk [10]. Chuang et al. applied the fuzzy genetic method by considering the
transportation and berthing time of container ships and planned ship routes [11]. Wang et al.
considered ship maneuverability and applied a double-loop genetic algorithm to achieve
dynamic path planning for ships [12]. Vlachos used a simulated annealing algorithm to
plan the optimal ship path based on predicted wind and wave data [13]. Tsou used the
ant colony algorithm and genetic algorithm to plan the route of ships with minimum
fuel consumption [14]. Zhang et al. proposed an improved multiobjective ant colony
algorithm by considering navigation time and navigation risk as the optimization goals
and performed ship route planning [15]. Vettor et al. applied a multiobjective evolutionary
algorithm to plan the best weather route for ships [16,17]. He et al. generated an optimized
route for the ship based on historical automatic identification system (AIS) data. Although
the length of the generated route is slightly smaller than the actual ship’s trajectory, in a
complicated environment, some routes may cross obstacles or be in shallow waters [18].
The combination of particle swarm optimization and genetic algorithm has a good effect
on solving the route optimization problems. Abd-El-Wahed et al. verified the superiority
of the combination of particle swarm optimization (PSO) and genetic algorithm (GA) in
solving nonlinear optimization problems [19]. Liu et al. proposed a method in which GA
and PSO were combined to solve route planning problems in restricted waters with a single
optimization goal [20].

Although various solution algorithms have been developed for route planning prob-
lems, majority of them are based on a single criterion or on two criteria without considering
more optimization goals and providing more routes for selection. To solve this problem,
this study proposes a multicriteria ship route planning method based on an improved
PSO–GA to provide more route options for captains and shipping companies. The research
content and structure of this paper are as follows.
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First, this study establishes the framework of multicriteria route planning based on
the elements of multicriteria route planning and ship navigation characteristics. Second, a
mathematical model related to shipping route design is established, including mathemati-
cal models of navigation time, fuel consumption, and navigation risk. Then, considering
the static constraints (coastlines, islands, and reefs) and dynamic constraints (severe wind
and wave areas) observed at sea, the multicriteria PSO–GA is proposed to solve the route
planning problem. Here, particle cooperative operations are used to improve the conver-
gence speed of the algorithm. Further, crossover, mutation operations, and multigroup elite
selection operations are used to enhance the diversity of the population. The improved
Pareto frontier solution selection strategy is used to avoid the algorithm from falling into
local optimality. Finally, the recommended route selection criteria are proposed based on
the Pareto optimal frontier and Pareto optimal solution set obtained using the algorithm. A
simulation experiment is designed for a container ship. Experimental results show that the
proposed algorithm can plan the route to ensure safety, economy, and time savings and
that it can provide a recommended route as well as a series of alternative routes.

2. Methods

2.1. Multicriteria Route Planning Framework

This study establishes a multicriteria route planning framework to introduce the
structure of this study more clearly. As shown in Figure 1, the framework consists of
six parts, i.e., optimization criteria, ship speed analysis, model construction, multicriteria
algorithm, route evaluation, and route selection.

Figure 1. Multicriteria route planning framework.

The optimization criteria include the navigation time, meteorological risk, and fuel
consumption. The navigation time can be obtained by adding the time associated with
each route segment. Further, meteorological risks are numerically processed according
to the potential risks caused by wind and waves to the ship. Fuel consumption is sim-
ulated by parameters such as rated power and ship speed. The speed loss of the ship
under wind and wave conditions is analyzed in the ship speed analysis part. The model
construction part includes construction of the route model and the population coding
method. The multicriteria algorithm includes particle cooperative operation, crossover
operation, mutation operation, multigroup elite selection, and improved Pareto solution set
distribution method. The main evaluation criteria of the route evaluation part include time
savings, safety, and economy. Route selection includes two parts. One part is to provide
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multiple route solution sets obtained via algorithm optimization, whereas the other part
aims to provide the recommended route that best meets the requirements based on custom
target values.

2.2. Optimization Criteria

It is necessary to establish guidelines for ship route optimization to reflect the quality
of ship routes. Further, different objective functions must be designed according to the
optimization criteria to evaluate the performance of the route. This study uses the following
three variables to measure the performance of routes: navigation time, meteorological risk,
and fuel consumption.

2.2.1. Navigation Time

As shown in Figure 2, the route planned in this study includes a series of waypoints.
Therefore, the total navigation time of the ship from the departure point to the target point
can be obtained by adding the time spent on each route, as shown in Equation (1).

Ttotal =
n−1

∑
i=0

ti; ti =
Li

Vi
a

(1)

Figure 2. Route diagram comprising multiple waypoints.

Here, Ttotal is the total navigation time of the ship, ti is the navigation time of the ship
on each route section, and Vi

a is the actual speed of the ship on the ith route segment. If
Earth is considered as an ellipsoid, the length of any two points on the Mercator projection
map can be calculated as follows [10]:

l2 − l1
tan ϕrh

= ln

[
tan
(

π

4
+

λ2

2

)(
1 − e sin λ2

1 + e sin λ2

) e
2
]
− ln

[
tan
(

π

4
+

λ1

2

)(
1 − e sin λ1

1 + e sin λ1

) e
2
]

, (2)

Lrh = (λ2 − λ1) · sec ϕrh, (3)

where λ1 and l1 are the latitude and longitude coordinates of the first point, respectively,
λ2 and l2 are the latitude and longitude coordinates of the second point, respectively, ϕrh is
the direction of the rhumb line, Lrh is the distance between two points (in radians), and e
is the eccentricity of Earth. The above formula can be applied to ships sailing along the
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non-isolatitude lines. However, in the case of isolatitude lines, i.e., when the ship’s heading
is 90◦ or 270◦, the following equation can be applied.

Lrh = (l2 − l1) · cos λ1. (4)

2.2.2. Meteorological Risk

It is necessary to understand the degree of threats to the safety of ship navigation
caused by weather and ocean conditions. The IMO has given out information on how
the captain should choose the route to avoid the navigation risk zone under severe sea
conditions [21], but it did not assess the overall risk status of the route. In this section, we
comprehensively consider wind, waves, and seakeeping to assess ship navigation risks and
propose a comprehensive risk calculation formula to adapt to route optimization under
good and severe sea conditions.

According to the “2008 International Intact Stability Regulations” [22], the stability
criterion K should satisfy Equation (5) to ensure that ships navigate safely in strong winds.

K =
Lq

L f
≥ 1, (5)

where Lq represents the minimum overturning moment arm, which can be obtained from
the dynamic stability curve and roll angle. L f represents the wind pressure roll arm, and
its value can be obtained using Equations (6) and (7).

L f =
P · A f · Z

1000 · g · Δ
, (6)

P =
Cp · ρ · u2

2
, (7)

where P represents the unit calculated wind pressure, A f represents the wind area of
the ship, Z represents the height from the center of the wind area to the water surface, g
represents the acceleration of gravity, Δ represents the ship displacement,Cp represents the
wind pressure coefficient, ρ represents the air density, and u represents the average wind
speed. Based on Equations (5)–(7), the crosswind speed that the ship can withstand 10 m
above the sea surface should satisfy Equation (8).

u10 ≤ u10max = 40 ·
(

10
Z

) 1
8 ·
√

10 · Δ · Lq

Cp · A f · Z
, (8)

According to the maximum crosswind that can be withstood by the ship, a numerical
expression of the risk of wind to the ship is established, as shown in Equation (9), where
ucross represents the lateral wind speed experienced by the ship. The risk is a gradual
process. We think that when the value is greater than 0.6, it is unacceptable. When it is less
than 0.6, a route with as low a risk value as possible should be chosen.

riskwind =

{ ucross
u10max

, i f the value is less than 1
1 , else

. (9)

Under severe weather conditions, rolling is an important factor that causes a ship to
capsize [23]. Therefore, in this study, the risk value caused by waves is described according
to the rolling of the ship. The encounter period between the ship and wave is shown in
Equation (10).

TE =
λ∣∣∣1.25 · √λ + V · cos μ

∣∣∣ , (10)
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where λ represents the wavelength, V represents the shipping speed, and μ represents the
angle between the ship’s motion direction and wave direction.

The natural rolling period, Tθ , of the ship can be calculated as follows:

Tθ =
2 · C · B√

GM
, (11)

where C represents the rolling period of the ship, B represents the width of the ship, and
GM represents the height of initial stability.

According to the resonance theory of a ship in waves, the ship is in the harmonic
rolling area when 0.70 < Tθ/TE < 1.3. In this area, a ship may have a large roll angle,
threatening its safety [23]. Therefore, we have established a numerical expression for the
risk of waves to ships as follows.

riskwave =

⎧⎪⎨⎪⎩
Tθ
TE

, i f 0 ≤ Tθ
TE

< 1
2 − Tθ

TE
, i f 1 ≤ Tθ

TE
< 2

0 , Tθ
TE

≥ 2
. (12)

According to Equation (12), there is an absolute risk when riskwave > 0.7, and when it
is less than 0.7, the risk gradually decreases.

To study the ship’s motion state in wind and waves, seakeeping is a factor that must
be considered. There are many factors that affect seakeeping, such as the ship’s roll, pitch,
heave, the probability of the green water on deck, the probability of slamming occurrence,
and bow vertical acceleration, etc. In this study, seakeeping is determined by the following
three factors: the amplitude of the pitch motion, the probability of slamming occurrence,
and the probability of green water on deck. The limit values of the pitch amplitude
are based on the NATO STANAG, Standardization Agreement, 4154 criteria, slamming
probability and green water on deck probability comply with the NORDFORSK 1987
criteria [24,25], as detailed in Table 1.

Table 1. General operability limiting criteria for ships.

Root mean square of pitch amplitude (RMSpl) 1.5 degrees

Slamming probability (Pspl) 0.03 (L ≤ 100 m) or 0.01 (L ≤ 330 m)

Green water on deck probability (Pwdl) 0.05

The ship’s risk obtained by considering seakeeping is determined according to Equa-
tion (13) [26]:

riskseakeeping = 1 − max

{
0;

(
1 − RMSp

RMSpl

)
·
(

1 − Psp

Pspl

)
·
(

1 − Pwd
Pwdl

)}
, (13)

where RMSp is the root mean square (RMS) of the pitch motion amplitude, Psp is the
probability of occurrence of slamming, Pwd is the probability of water on deck.

Based on the ship Response Amplitude Operator, the RMS of the pitch motion ampli-
tude is determined according to the following equation [27,28]:

RMSp =

√∫ ∞

0
|H5(ωe)|2 · Sς(ωe), (14)

where H5 is the speed-dependent pitch motion transfer function, Sς is the wave spectrum,
ωe = ω − ω2ψ is the encounter wave frequency that satisfies the Doppler shift equation,
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depending on the absolute wave frequency, ω, and the factor ψ = U · cos(μ/g), where the
vessel speed is denoted by U and μ denotes the heading angle [29].

Psp = e
−( vcr2

2C2
s ·m2,r

+ d2

2C2
s ·m0,r

)
, (15)

where vcr = 0.093
√

g · L is the threshold velocity, Cs is the swell up coefficient, and d is
the ship draught at the forward perpendicular. m0,r and m2,r denote the zero-order and
second-order spectral moments of the ship’s relative motion as regards the sea surface [29].

Pwd = e
− f 2

b
2C2

s ·m0,r , (16)

where fb is the freeboard at the ship forward perpendicular.
Based on the above analysis, we established the comprehensive risk of the ship being

disturbed by winds and waves in the ith route segment as follows:

riski = a1 · riski
wind + a2 · riski

wave + a3 · riski
seakeeping,

3

∑
j=1

aj = 1, (17)

Because the navigation risk is a gradual process, when ai = 1/3, we believe that when
the risk value is greater than 0.6, the route will be discarded. When the route value is less
than 0.6, although the route is acceptable, it is still better to keep the risk value is as small
as possible. The risk distribution of the entire route is

risk =
{

risk0, risk1, · · · , riskn−2, riskn−1
}

. (18)

Therefore, the total risk of a route is

RISK = max(risk). (19)

2.2.3. Fuel Consumption

The total fuel consumption associated with each ship route can be obtained by adding
the fuel consumption in multiple route sections. The total fuel consumption of a ship can
be given as follows:

f f uel =
m−1

∑
i=1

(Qti · ti). (20)

The fuel consumption of a ship during navigation is related to many factors such as
the main engine structure, ship type structure, loading capacity, sailing speed, fuel type,
and sea conditions. The best way to develop a reliable speed–consumption function is
by collecting real data about the speed and the corresponding consumption [30]. The
speed–consumption function is described as an exponential function, with vessel design as
a constant and speed as a variable in the exponent. In this paper, Euler’s number, e, was
taken as the basis to simplify later calculation. The ship’s fuel consumption per unit time
can be represented as follows:

Qti = a · eb·v, (21)

where a and b are parameters calculated for each vessel by exponential regression. The
total fuel consumption of the ship can be approximated by Equations (20) and (21).

2.3. Ship Speed Loss

When a ship is sailing, winds and waves will cause additional resistance. The actual
speed of the ship under winds and waves will be lower than the speed in still water when
keeping the ship’s propulsion power constant [31]. The speed loss of the ship will affect
the navigation time and fuel consumption and considerably affect the results of the ship’s

53



J. Mar. Sci. Eng. 2021, 9, 357

multicriteria route planning. Therefore, speed loss is a factor that must be considered
during route planning.

The following methods are mainly used to estimate the ship’s speed loss. The first
method is theoretical derivation calculation, based on which the actual speed of the ship can
be estimated from the perspective of system energy conservation. However, this method
is cumbersome and difficult to calculate. The second method is the test method, which
uses equipment, such as pools and wind tunnels, to simulate the ship for determining the
speed loss. However, the overall applicability of this method is poor. The third method is
an experimental method, wherein a large amount of actual observation data is used. After
statistical analysis, an empirical formula is obtained for estimating the stall. Because the
third method is conducive for the introduction of the algorithm presented in this study, the
calculation formula of ship speed loss proposed by Feng was used here [32].

Va = V0 −
(

1.08 · h − 0.126 · q · h + 2.77 · 10−3 · F · cos α
)
·
(

1 − 2.33 · 10−7 · D · V0

)
. (22)

where Va is the actual speed of the ship under winds and waves, V0 is the hydrostatic speed
of the ship, F is the wind speed, D is the actual displacement of the ship, h is the significant
wave height, q is the relative angle between the ship’s heading and wave direction, and α
is the relative angle between the ship’s heading and wind direction.

According to the above analysis, when the ship sails in rough weather, the ship will
have slamming occurrence and the green water on the deck. In order to ensure the safety
of navigation, the captain will take the initiative to reduce the speed of the ship. Therefore,
seakeeping must be considered to calculate the maximum speed allowed in wind and
waves. In this study, when the maximum speed is exceeded, the probability of the route
being selected decreases. The maximum allowable speed is determined as follows [10].

Vc = exp
[
0.13 · (μ(q)− h)1.6

]
+ r(q), (23)

where μ(q) = 12.0 + 1.4 · 10−4 · q2.3, r(q) = 7.0 + 4.0 · 10−4 · q2.3.

2.4. Population Model

The population of multicriteria PSO–GA comprises multiple individuals, and each
individual is represented by a series of latitude and longitude coordinates. In Equation (19),
a shipping route is represented, where Xi is a two-dimensional vector containing longitude
and latitude values.

X = [X0, X1, · · ·Xi · ··, Xn−1, Xn]. (24)

Each route can be generated in a limited search area based on the reference route. The
reference route is the high-frequency route of the ship in previous voyage missions. The
limited search area is the area expanded on both sides of the reference route based on the
historical route characteristics of the ship. As shown in Figure 3, S and E are the starting
and ending points, respectively, the reference route is the great circle route between these
two points, and the area enclosed by the dash-dotted line is the search area of the ship
waypoint. The upper boundary of the search area is UB, whereas the lower boundary is
LB, which are represented by Equations (25) and (26), respectively.

UB = {Up0 · · · Upi · · · Upn}, (25)

LB = {Low0 · · · Lowi · · · Lown}, (26)
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Figure 3. Expansion area. The great circle route is the reference route.

Here, Upi and Lowi represent the position coordinates of the upper boundary point
and the lower boundary point, respectively. Individuals are randomly generated according
to a uniform distribution to make the initial population evenly distributed in the entire
solution space and increase the diversity of the initial population according to Equation (27).
After multiple generations, the initial population is obtained.

X′ = rand · {UB − LB}+ LB. (27)

2.5. Particle Swarm Optimization and Genetic Algorithm

PSO and GA are intelligent optimization algorithms developed recently and are widely
used in path planning. The PSO algorithm is a random search algorithm based on group
cooperation [33]. In PSO, the particle updates itself by tracking two “extremums,” among
which the first is called the individual optimal solution and the second is called the global
optimal solution. PSO updates the position through Equations (28) and (29).

vk+1
id = ω · vk

id + c1 · rand ·
(

ppBest − xk
id

)
+ c2 · rand ·

(
pgBest − xk

id

)
, (28)

xk+1
id = xk

id + vk+1
id , i = 1, 2, . . . , m; d = 1, 2, . . . , D, (29)

where vk
id is the particle velocity of the dth dimension of the mth particle in the kth iteration

and xk
id is the particle position of the dth dimension of the mth particle in the kth iteration.

ω, c1, and c2 are the coefficients, and rand is a uniform random number in the range of
(0, 1).

GA is an optimization method developed based on Darwin’s theory of natural selec-
tion [34]. When implementing GA, each individual is given a fitness level, which is the
standard for measuring the quality of the individual. Then, the population is subjected to
the selection, crossover, and mutation operations for obtaining a new population. Iterations
are performed until the desired result is obtained.

2.6. Multicriteria Route Planning Algorithm

PSO and GA obtain good results when solving single-criteria problems but not when
solving multicriteria problems. Therefore, this study combines PSO with GA and proposes mul-
ticriteria PSO–GA to solve the problem of ship route planning. The proposed algorithm mainly
combines the particle cooperative operation associated with PSO, crossover operation, mutation
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operation, and multigroup elite selection operation in GA and improves the distribution of the
Pareto solution set [34]. The flow chart of the algorithm is shown in Figure 4.

Figure 4. Flow chart of the multicriteria route planning algorithm.

The algorithm flow will be analyzed in detail below to introduce the operation steps
in the algorithm more clearly.

2.6.1. Particle Cooperative Operation

The particles in the population constantly update their positions through information
exchange according to the individual and global optimal solutions. At the beginning
of the iteration, the ω in Equation (28) must be large to increase the diversity of the
population. As the number of iterations increases, the solution tends to become optimal.
ω is gradually reduced to improve the convergence speed of the algorithm. Therefore,
the speed update is determined according to Equation (30), whereas the position update
is determined according to Equation (29), where MaxGen is the maximum number of
iterations. The updated speed will be lower than MaxV. Further, the route through land
will be regenerated.

vk+1
id =

(
1 −

(
0.4

MaxGen

)
· i
)
· vk

id + c1 · rand ·
(

ppBest − xk
id

)
+ c2 · rand ·

(
pgBest − xk

id

)
. (30)

2.6.2. Crossover Operation

In this study, the arithmetic crossover method is used to generate two new individuals
from the linear combination of two individuals. By assuming that the two individuals are
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Xg
1 and Xg

2 , the calculation method of the new individual after the crossover operation is
as follows: {

Xg+1
1 = Xg

1 + α · (Xg
2 − Xg

1 )
′

Xg+1
2 = Xg

2 + α · (Xg
1 − Xg

2 )
′ , (31)

where α is a vector parameter with the same dimension as the individual and is a random
number in the (0, 1) interval. When the route after the crossover operation passes over
land, the crossover operation must be repeated until the required route is obtained or the
set number of repetitions is reached.

2.6.3. Mutation Operation

This study uses the reference route as the mean value to perform a single-point
Gaussian mutation to improve the local search capability of the algorithm and search for
the optimal route near the reference route. The Gaussian distribution can be determined
as follows:

f (x) =
1√
2πσ

e−
(x−μ)2

2σ2 , (32)

where μ is the coordinate value of the mutation position. The variable generated ac-
cording to the Gaussian distribution has a 99.73% probability of falling in the interval
(μ − 3σ, μ + 3σ). Therefore, σ can be determined as follows:

σ =
|UBi − Xi|

3
. (33)

2.6.4. Multigroup Elite Selection Operation

This study comprehensively processes the original population, the population after
particle coordination, and the population after crossover and mutation to improve the
quality of the global optimal solution. The three populations are merged to perform
nondominated sorting, and the individual in the front after sorting is considered to be the
new individual of the next generation. Domination and nondomination can be given as
follows [34]:

u = F
(

p′
)
= min

{
f1
(

p′
)
, f2
(

p′
)
, . . . , fn0

(
p′
)}

, (34)

u′ = F
(
q′
)
= min

{
f1
(
q′
)
, f2
(
q′
)
, . . . , fn0

(
q′
)}

, (35)

f f
[∀i ∈ {1, . . . , n0}, ui ≤ ui

′] ∧ [∃i ∈ {1, . . . , n0}, ui < ui
′], (36)

where p′ and q′ are the decision variable vectors and the position information of the two
particles is represented in the algorithm. u and u′ are the optimization target vectors of
the two particles p′ and q′, respectively. Because there are three optimization targets in
this study, n = 3. If the performance vectors u and u′ satisfy Equation (36), then particle p′
dominates q′. If a particle neither dominates nor is dominated by other particles, the particle
is called a nondominated solution. The set of all particles that satisfy the nondominated
solution is called a nondominated solution set.

The crowding distance between the particles at each domination level can be defined
as follows to further evaluate the performance of the particles in each domination level.

Crowd(m) =
n0

∑
j=1

f j(m + 1)− f j(m − 1)
f jMax − f jMin

, m = 2, 3, . . . , N′ − 1, (37)

where Crowd(m) is the crowded distance of the mth particle, f j is the jth objective function
value, f jMax and f jMin are the maximum and minimum values of the jth optimization
target, respectively, N′ is the number of particles at the same dominance level, and the
crowding distance for edge particles is set to infinity.

Finally, after completing the improvement of the Pareto solution set in Section 2.6.5, a
particle is randomly selected as the global optimal particle from among the particles with
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the highest dominating level and a degree of crowding not equal to infinity. Moreover,
in each iteration, the dominant status of individuals in the population will be calculated
according to Equation (36), and the population will be sorted according to the dominant
level and crowding degree. Individuals with higher dominance levels will be preferentially
selected to the next generation, the higher the dominance level of an individual, the closer
it will be to the Pareto optimal frontier. After many iterations, individuals in the population
will continue to move closer to the Pareto optimal frontier [34].

2.6.5. Improved Pareto Solution Set Distribution

In the Pareto optimal solution set obtained in Section 2.6.4, there may be cases in
which multiple solutions are clustered in adjacent areas. This study will use the following
steps to improve the Pareto solution distribution generated in Section 2.6.4 to make the
Pareto solution set more evenly distributed in the entire solution space and avoid local
convergence of the algorithm.

(1) Sort the individuals in the solution set with the highest dominance level according
to the navigation risk value from small to large.

(2) Calculate the Euclidean distance, disi, between the nondominated solution i and
the nondominated solution i + 1 in the target space. Here, fi(j) represents the jth objective
function value of the ith nondominated solution.

disi =

√√√√ n

∑
j=1

[ fi(j)− fi+1(j)]2, (38)

(3) Determine whether disi is less than the specified value dis_set, which is determined
according to Equation (39), where num represents the number of nondominated solutions.
If disi−1 < dis_set and disi < dis_set, delete the nondominated solution i and calculate
the Euclidean distance between the nondominated solution i − 1 and the nondominated
solution i + 1 and assign it to disi−1.

dis_set =

num−1
∑

i=1
disi

n − 1
, (39)

(4) Determine whether the number of nondominated solutions exceeds the set value
SetNum. If yes, move to step 5; otherwise, skip to step 6.

(5) Delete p = num− SetNum nondominated solutions in the crowded area to simplify
the nondominated solutions in the crowded area. The flowchart is shown in Figure 5.

dis = {dis1, dis2, · · · , disnum−2, disnum−1}. (40)

(6) Return an improved set of Pareto solutions.

2.6.6. Recommended Routes

According to the Pareto frontier and Pareto solution set obtained using the proposed
algorithm, the recommended route can be given as follows:

Z = min

⎛⎝( n

∑
j=1

aj ·
∣∣cij − yj

∣∣2) 1
2
⎞⎠,

n

∑
j=1

aj = 1, (i = 1, 2, . . . , M), (41)

where cij is the normalized value of the jth objective function of the ith particle, yj is
the normalized value of the expected objective function, which, respectively, indicate the
navigation time, fuel consumption, and acceptable navigation risk set by the shipping
company or captain before the start of the navigation mission. M is the number of particles
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in the Pareto solution set, and Z is the recommended route in which the conditions given
on the right side of the equation are satisfied.

Figure 5. Flow chart of step 5 for improved Pareto distribution.

3. Results

3.1. Algorithm Parameter Setting

The experimental ship in this study was an S-175 container ship. The ship parameters
are shown in Table 2.

Table 2. S-175 container ship parameters.

Parameter Length Breadth Depth Draught Displacement Metacentric Height

Value 175 m 25.4 m 15.4 m 9.5 m 23,740 m3 1.022 m

The sailing area expands in both the directions along the angle bisector of the reference
route. In experiment one and experiment two, the extension was 8 degrees in two directions,
respectively. Meteorological data comes from the public database of the European Center
for Mid-range Weather Forecast. Some ship speed and fuel consumption data used for
curve fitting are shown in Table 3. In Equation (21), a = 0.1255 (95% confidence interval:
(0.1171, 0.1339)), b = 0.2444 (95% confidence interval: (0.2395, 0.2493)). Root mean squared
error (RMSE): 0.02781. Coefficient of determination (R-square): 0.9995. The parameters of
the multicriteria algorithm are presented in Table 4.
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In this table, Gen represents the number of algorithm iterations, PoPu represents
the number of populations,c1 and c2 represent the parameters in PSO, Mu represents the
uniform mutation probability, Cr represents the crossover probability, SetNum represents
the specified maximum number of nondominated solutions, and MaxV represents the
maximum velocity of the particle swarm. For Equation (41), in the three experiments,
the weight coefficients aj of risk, fuel consumption, and time are set to 0.4, 0.3, and 0.3,
respectively. This study establishes a visual simulation interface for the convenience of
ship route optimization, as shown in Figure 6.

Table 3. Ship speed and fuel consumption data.

Velocity (kn) 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15

Fuel consumption (tons/hour) 1.40 1.62 1.86 2.11 2.38 2.68 2.30 3.36 3.85 4.34 4.91

Table 4. Algorithm parameter values.

Gen PoPu c1 c2 Mu Cr SetNum MaxV

100 50 2 2 0.2 0.7 40 0.8

Figure 6. Multicriteria route planning simulation interface.

3.2. Experimental Results and Analysis

The multicriteria ship route of the S-175 container ship was optimized according
to the algorithm parameters set in the previous subsection. This study included three
experiments. The first was to plan routes in sea under good weather conditions, the second
was to plan routes in sea under severe weather conditions, and the third was to plan routes
under complex offshore conditions. In Experiment one and Experiment two, the number
of route segments was set to 7, and the number of route segments in Experiment three was
set to 10.

3.2.1. Good Weather Conditions

The starting and ending ports of the ship are St. John’s (47 N, 52 W) and Porto (41 N,
9 W), respectively. According to the weather forecast, from 1 to 7 July 2019, the ships
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sailing along the great circle route will not encounter strong winds and waves. Under
this condition, the great circle route between the two ports is set as the reference route.
We conducted 20 repeated experiments for this sea state and got the average navigation
time of the recommended route to be 135.850 and the variance to be 0.942. The average
risk was 0.239, and the variance was 2.41 × 10−5. The average fuel consumption was
490.533, and the variance was 48.703. A group of experiments were then selected for a
detailed description.

After algorithm optimization, the Pareto optimal solution set of the multicriteria route
is shown in Figure 7a. The Pareto optimal frontier solution is shown in Figure 7b. According
to the route position information in Pareto solution collection, routes with the minimum
navigation time, risk, and fuel consumption were obtained. The expected navigation time
was set to 135 h, the navigation risk was set to 0.24, and the fuel consumption was set to
485 tons. According to the above-expected values and Equation (41), the recommended
route was obtained, which is a compromise route obtained by balancing the three objectives.
This route not only ensures that the navigation risk is within an acceptable range, but also
reduces the navigation time and fuel consumption as much as possible. The schematic of
the above four routes and the great circle route is shown in Figure 7c. The recommended
route is shown in Figure 7d.

Figure 7. Ship route optimization results under good sea conditions: (a) the Pareto optimal solution
set of the multicriteria route; (b) the Pareto optimal frontier solution; (c) great circle route and four
optimized routes; and (d) recommended routes.

According to Table 5 and Figure 7, the minimum-time route and the minimum-fuel-
consumption route basically coincide with the great circle route, and the voyage difference
was only 4.5 and 9.52 nmi respectively, indicating that the algorithm has better route
search performance. The minimum-time route, the safest route, and the minimum-fuel-
consumption route are calculated by the Pareto solution set according to a single criterion.
In the recommended route, these three factors are integrated to obtain a compromised and
improved ship route. Further, the captain can obtain another recommended route according
to the different expected objective function values. When sailing on the recommended
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route, the position of the ship at four different navigation times is shown in Figure 8. Under
good sea conditions, the ship can sail along the recommended route with low navigation
risk, fuel consumption, and navigation time.

Table 5. Objective function values of five routes in good sea conditions.

- Distance (nmi) Time (h) Risk Fuel (tons)

Minimum-time Route 1872.32 134.222 0.250 486.112
Safest Route 2166.99 154.289 0.209 572.946

Minimum-Fuel Route 1877.34 134.724 0.250 485.937
Great Circle Route 1867.82 133.919 0.259 484.787

Recommended Route 1867.85 133.919 0.256 484.785

Figure 8. Position of the ship under good sea conditions at four different navigation times. (a–d) show
the positions of the ship with respect to the wave height map at different times.

3.2.2. Severe Weather Conditions

A multicriteria ship route planning was performed for severe weather conditions in
the ship sailing area to prove the effectiveness of the algorithm presented in this study. The
starting and ending ports of the ship were St. John’s (47 N, 52 W) and Porto (41 N, 9 W),
respectively. According to weather forecasts, from 22 to 29 July 2019, if the ship sailed along
the rhumb line, it would encounter strong winds and waves. Under such sea conditions, the
rhumb line between the two ports is set as the reference route. We conducted 20 repeated
experiments for this sea state and got the average navigation time of the recommended
route to be 157.170 and the variance to be 0.421. The average risk was 0.416, and the
variance was 2.06 × 10−4. The average fuel consumption was 437.988, and the variance
was 33.739. A group of experiments were then selected for a detailed description.

After algorithm optimization, the Pareto optimal solution set of the weather route is
shown in Figure 9a. The Pareto optimal frontier solution is presented in Figure 9b. Ac-
cording to the route position information in the Pareto solution, routes with the minimum
navigation time, safety risk, and fuel consumption can be obtained. The expected naviga-
tion time was set to 152 h, the navigation risk was set to 0.42, and the fuel consumption was
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set to 430 tons. The five optimized routes are shown in Figure 9c. The recommended route
is shown in Figure 9d, and the specific data of the optimized route are presented in Table 6.

Figure 9. Ship route optimization results under severe conditions: (a) the Pareto optimal solution
set of the multicriteria route; (b) the Pareto optimal frontier solution; (c) great circle route and four
optimized routes; and (d) recommended routes.

Table 6. Objective function values of five routes in severe conditions.

- Distance (nmi) Time (h) Risk Fuel (tons)

Minimum-time Route 2027.22 156.785 0.469 437.612
Safest Route 2179.30 165.677 0.405 487.839

Minimum-fuel Route 2024.04 156.922 0.476 435.241
Great Circle Route 1867.85 155.732 0.562 366.094

Recommended Route 2075.98 158.815 0.442 458.005

According to Table 6 and Figure 9, when the ship sails along the great circle route, the
voyage was reduced by 159.37 and 208.13 nmi than the minimum navigation time route
and recommended route, respectively. However, the navigation time was only reduced by
1.118 and 3.083 h, respectively. Thus, when the ship is sailing along the great circle route,
large wind waves cause serious speed loss to the ship and the ship is exposed to great risks.
Therefore, sailing along the great circle route is not suitable. According to Equation (41)
and the above-mentioned expected objective function value, a compromise route with an
objective function value close to the expected value was selected in the Pareto solution
set. When sailing according to the recommended route, the position of the ship at four
different navigation times is shown in Figure 10. Under severe sea conditions, the ship
could sail along the recommended route with low navigation risk, fuel consumption, and
navigation time.
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Figure 10. Position of the ship in severe conditions at four different navigation times. (a–d) show the
position of the ship with respect to the wave height map at different times.

3.2.3. Complex Offshore Conditions

Multicriteria ship route planning was performed in the waters near the Cape of Good
Hope to verify the effectiveness of the algorithm for route planning near coastal waters.
The starting position of the ship was (23 S, 6 E), and the destination position was (26 S,
42 E). According to the weather forecast, from 1st to 7th March 2019, the ships sailing along
the reference route will encounter heavy winds and waves. We conducted 20 repeated
experiments for this sea state and got the average navigation time of the recommended
route to be 183.668 and the variance to be 2.725. The average risk was 0.404, and the
variance was 4.05 × 10−5. The average fuel consumption was 526.396, and the variance
was 29.624. A group of experiments were then selected for a detailed description.

In this sea state, the Pareto optimal solution set of the ship route after algorithm
optimization is shown in Figure 11a. The Pareto optimal frontier solution is shown in
Figure 11b. According to the route position information in the Pareto solution set, the
smallest-sailing-time route, the least-risk route, and the least-fuel-consumption route can
be separately calculated. The expected navigation time was set to 180 h, the navigation risk
was set to 0.4, and the fuel consumption was set to 510 tons for obtaining the recommended
route. The four routes are presented in Figure 11c. The recommended route is shown in
Figure 11d, and specific data related to the four optimized routes are shown in Table 7.

Table 7. Objective function values of five routes in complex offshore conditions.

- Distance (nmi) Time (h) Risk Fuel (tons)

Minimum-time Route 2334.73 182.562 0.412 526.436
Safest Route 2520.17 196.435 0.402 573.419

Minimum-fuel Route 2344.30 184.569 0.420 522.402
Recommended Route 2335.18 182.754 0.413 525.953

According to Table 7 and Figure 11, routes satisfying different criteria under comprehen-
sive offshore sea conditions can be obtained after algorithm optimization. The recommended
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route is based on the expected objective function value. According to Equation (41), a recom-
mended route close to the expected target value was selected in the Pareto optimal solution
set. Compared with the minimum-time route, the recommended route had 0.01 higher
navigation risk and 0.192 h longer navigation time, but it saved 0.483 tons of fuel. The
position of the ship when sailing on the recommended route at four different navigation
times is shown in Figure 12. Under complex sea conditions, it was possible to sail along the
recommended route with low navigation risk, fuel consumption, and navigation time.

Figure 11. Ship route optimization results under complex offshore conditions: (a) the Pareto optimal
solution set of the multicriteria route; (b) the Pareto optimal frontier solution; (c) great circle route
and four optimized routes; and (d) recommended routes.

Figure 12. Position of the ship under complex offshore conditions at four different navigation times.
(a–d) show the position of the ship with respect to the wave height map at different times.
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4. Discussion

According to the characteristics of ship navigation, this study establishes a multicri-
teria route planning framework for ships comprising optimization criteria, ship speed
analysis, model construction, multicriteria algorithms, route evaluation, and route selection.
There are three criteria for ship route optimization: minimum navigation time, minimum
navigation risk, and minimum fuel consumption. For navigation risk, this study proposes
a comprehensive route risk assessment model that considers wind, waves, and seakeeping.
Regarding fuel consumption, this study established a mathematical model of ship fuel
consumption through fitting methods. Based on this framework, this study proposes a ship
multicriteria route planning method using the improved PSO–GA. The proposed algorithm
not only has the fast convergence of the particle swarm algorithm but also improves the
diversity of solutions by applying the crossover operation, selection operation, and multi-
group elite selection operation of the genetic algorithm and improving the Pareto optimal
frontier distribution. By solving the route planning algorithm, the routes with the minimum
navigation time, fuel consumption, and navigation risk as well as the recommended route
can be obtained. In addition, the captain can customize the appropriate route according to
the route solution set to ensure that the ship can sail efficiently, safely, and economically.
We conduct experiments for three different situations to verify the performance of the
algorithm. According to the experimental results, the recommended route can be obtained
by integrating the three aforementioned indicators, based on which the area with severe
winds and waves can be avoided and minimum navigation time and fuel consumption can
be realized. Therefore, the ship multicriteria route planning algorithm proposed in this
study is feasible and effective.

Although this study has established a multicriteria route planning algorithm for ships,
there are still shortcomings, which must be improved and perfected, mainly as follows.

• Risk assessment module: In this study, only the impact of winds, waves, and seakeep-
ing on the ship is considered for risk assessment, whereas visibility and the impact
of other ships at sea on the ship are ignored. Future studies will consider more ship
risk factors.

• Recommended route strategy: In this study, the recommended route can be accu-
rately determined based on the three expected target values. However, it is difficult
to determine the target value under the unknown conditions associated with the
historical route.
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Abstract: To achieve rapid and flexible vertical profile exploration of deep-sea hybrid structures, a
multi-joint autonomous underwater vehicle (MJ-AUV) with orthogonal joints was designed. This
paper focuses on the 3-dimensional (3D) modeling and attitude control of the designed vehicle.
Considering the situation of gravity and buoyancy imbalance, a 3D model of the MJ-AUV was
established according to Newton’s second law and torque balance principle. And then the numerical
simulation was carried out to verify the credibility of the model. To solve the problems that the pitch
and yaw attitude of the MJ-AUV are coupled and the disturbance is unknown, a linear quadratic
regulator (LQR) decoupling control method based on a linear extended state observer (LESO) was
proposed. The system was decoupled into pitch and yaw subsystems, treated the internal forces and
external disturbances of each subsystem as total disturbances, and estimated the total disturbances
with LESO. The control law was divided into two parts. The first part was the total disturbance
compensator, while the second part was the linear state feedback controller. The simulation results
show that the overshoot of the controlled system in the dynamic process is nearly 0 rad, reaching the
design value very smoothly. Moreover, when the controlled system is in a stable state, the control
precision is within 0.005%.

Keywords: multi-joint autonomous underwater vehicle (MJ-AUV); 3-dimensional modeling; LQR; LESO

1. Introduction

Ocean exploration technology is one of the difficult problems in frontier science and
engineering in the ocean field. The deep-sea region hybrid is an important factor in
maintaining global energy balance and driving deep ocean circulation. Therefore, it is
of great strategic significance to use advanced technology to explore the deep-sea region
hybrid structures [1]. The complex structure of the seabed, as well as unknown extreme
fluid systems such as cold springs and hydrothermal fluids, make the work of exploration
more difficult.

Most of the existing deep-sea submersibles struggle to meet the capabilities necessary
to explore deep-sea hybrid structures rapidly. The glider [2,3] achieves pose control by
adjusting the remaining buoyancy and the position of the mass center, but its motion trajec-
tory is jagged and single, speed is slow, and maneuverability is poor. Most autonomous
underwater vehicles (AUVs) [4] are rigid single-body structures and use tail rudder and
attitude adjustment systems to control the movement direction. In order to further im-
prove the ability of flexible steering of the AUV to allow rapid observation of the deep-sea
3-dimensional (3D) environment, a multi-joint AUV (MJ-AUV) was designed. It consists
of three parts in series: diversion cabin, navigation/control cabin, and propulsion cabin,
each of which is connected by a pair of orthogonal joints. In addition, its tail is equipped
with a propeller. To adjust the yaw attitude and pitch attitude of the body, the MJ-AUV can
change the hydrodynamic appearance of the vehicle by rotating the joints.

J. Mar. Sci. Eng. 2021, 9, 307. https://doi.org/10.3390/jmse9030307 https://www.mdpi.com/journal/jmse69
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The MJ-AUV is a multi-rigid-body rootless system with high nonlinear and strong
coupling characteristics, the kinematic and dynamic modeling of which is the basis of
studying its motion behavior characteristics and control problems. Xia et al. [5] established
a horizontal dynamic model of a fish-like robot based on Kane’s method. Aiming at the
structure of the underwater gliding snake-like robot, Tang et al. [6] built a gliding and
serpentine swimming model based on the momentum theorem, moment of momentum
theorem, and recursive Newton–Euler method. Based on the principle of force and moment
balance, Kelasidi et al. [7–9] built a horizontal plane and slope dynamics model of the
underwater snake robot in the inertial system. In addition, the Euler–Lagrange method [10]
and the Schiehlen method [11] have also been used to deal with multi-rigid body modeling.

The controller design is the key technology to enable underwater vehicles to complete
a deep-sea exploration mission. Professor Pettersen’s team from the University of Norway
has made many contributions in the field of underwater multi-joint robot control, such
as planar path tracking in the presence of ocean currents [12] and integral line-of-sight
guidance for path following control [13]. Fischer et al. [14] propose an error controller
using continuous robust integration to compensate for the uncertainty of the AUV model
and have carried out experiments under controlled and open-water environments to verify
the effectiveness of the controller. Zhao et al. [15] propose an adaptive plus disturbance
observer (DOB) controller for depth and attitude control of the AUV. The controller consists
of DOB as an inner-loop compensator and a non-regressor based adaptive controller as
an outer-loop controller. In addition, the experiments verify that the controller has strong
robustness. Wu et al. [16], Wang et al. [17] and Kang et al. [18] make improvements on
the basis of the adaptive controller, which is verified in the field of motion control of
AUVs. Zhang et al. [19] present a sliding mode variable structure control algorithm, and
simulation results show that this algorithm has advantages of high control accuracy and
strong robustness. Rodriguez et al. [20] combine sliding mode control with adaptive control
and propose a sliding mode adaptive controller, which is compared with non-adaptive
control and PD control to verify the effectiveness of the controller. References [21–25]
have made improvements based on the active disturbance rejection controller, combining
sliding mode controller, self-searching optimal algorithm, or other methods, to improve the
accuracy and anti-interference performance of the AUV motion control. In addition to the
above methods, in recent years, scholars are also studying the application of reinforcement
learning [26,27] and artificial intelligence algorithms [28] in the field of AUV control.

MJ-AUV is a complex system with high nonlinear, strong coupling, large time delay,
and unknown disturbance, and establishing an accurate mathematical model for the MJ-
AUV is difficult. In the course of pitching and yaw attitude control, the MJ-AUV belongs
to a typical multi-input and multi-output system, with the variation of two joint angles as
the input and the pitch and yaw angles of the body as the output, making the controller
design more difficult. Hence, the main contributions of this paper are as follows:

(1) A novel AUV with orthogonal joints was proposed and designed for rapid and flexible
vertical profile exploration of deep-sea hybrid structures, and the 3D motion model
of the designed AUV was established according to Newton’s second law and the
principle of moment balance.

(2) To reduce the coupling degree of the controller and improve the accuracy of attitude
control, a linear quadratic regulation (LQR) decoupling control method based on a
linear extended state observer (LESO) [29] was proposed.

The remainder of this paper is organized as follows. Section 2 establishes the 3D
motion model of the MJ-AUV. The LQR decoupling control method based on LESO is
presented in Section 3. In Section 4, the pitch and yaw control of the MJ-AUV is simulated
on the MATLAB/SIMULINK platform, followed by the conclusion in Section 5.

2. Modelling

This section introduces the structure design, kinematics, and dynamics analysis of the
MJ-AUV and presents the 3D motion model.
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2.1. Structure of the MJ-AUV

As shown in Figure 1, from front to back, the MJ-AUV is mainly composed of the
diversion cabin, navigation/control cabin, and propulsion cabin, which are connected by
two orthogonal (pitch and yaw degrees of freedom) joints. A propeller and a fixed rudder
are installed at the tail to enhance the body stability. The sensors such as hydrophones and
thermohaline depth meter can be mounted according to specific task requirements.

Figure 1. Reference frames of the MJ-AUV.

The technical challenge of the MJ-AUV is the joint design. The rotation of the orthogo-
nal joint requires two motors to cooperate with each other to drive the bevel gears, so as to
realize the pitch and yaw motion of the joint. The specific working process is as follows.

(1) As shown in Figure 2, when the two motors rotate in the opposite direction, the gear
set is driven to rotate and the pitch motion of the joint can be realized.

Figure 2. Orthogonal joint pitching motion.
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(2) As shown in Figure 3, when the two motors rotate in the same direction, the yaw
motion of the joint can be realized.

Figure 3. Orthogonal joint yaw motion.

2.2. Assumptions

The MJ-AUV is a complex system with multi-rigid body configuration, high nonlin-
earity, and strong coupling, which brings great challenges to the modeling work. In order
to further reduce the modeling difficulty without losing the generality and accuracy of the
model, the following assumptions are proposed:

(1) The vehicle is an ideal multi-rigid body structure, all the forces acting on it can be
equivalent to a combined force.

(2) The influence of the rotation of the earth is ignored, that is, the inertial frame is not
affected by the force generated by the rotation of the earth.

(3) The attitude adjustment of the orthogonal joint is realized by two motors rotating
in the same direction or opposite direction. And the joint angle is a linear mapping
relationship with the motor rotation angle, so the joint angle can be directly used as
the input of the system.

(4) There is a nonlinear mapping relationship between thrust and speed. In practical
engineering, the thrust output of the thruster can be adjusted by the inner loop control.
It is assumed that the inner loop control effect is good, and the thrust is defined as the
direct input of the system.

(5) The vehicle works in the deep-sea environment, where the movement speed is rela-
tively slow and the joints do not swing frequently. Therefore, it is assumed that the
hydrodynamic coefficient of each cabin is only related to its own shape and size.

(6) The center of buoyancy in each cabin coincides with the centroid, and the center of
gravity is directly below the centroid.

(7) It is assumed that the density of seawater at different depths does not change much
and is approximately constant.

2.3. Coordinate System Definition

Figure 1 defines the inertial frame OEXEYEZE, body (navigation/control cabin) frame
OBXBYBZB, diversion cabin frame OB1XB1YB1ZB1, and propulsion cabin frame OB3XB3YB3ZB3.
The inertial frame is the north-east-and-up coordinate system [30]. OB is fixed at the centroid
position of the navigation/control cabin. OBXB runs along the axis of the cabin, OBZB is
perpendicular to OBXB and upwards, and the establishment of OBYB satisfies the right-hand
rule. The coordinate system of the diversion cabin and the propulsion cabin is similar to that
of the body frame.

2.4. Motion Parameters Definition

(1) Displacement

The displacement of the vehicle mainly includes three parts: surge, sway and heave,
which are explained as follows:
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Surge X is the projection of the origin position vector of the body frame on XE, and its
direction is the same as XE.

Sway Y is the projection of the origin position vector of the body frame on YE, and its
direction is the same as YE.

Heave Z is the projection of the origin position vector of the body frame on ZE, and
its direction is the same as ZE.

(2) Attitude

The attitude angles of the vehicle are determined by the relationship between the body
frame and the inertial frame.

Pitch θ is the included angle between XB and the sea level, when the body is descend-
ing, the direction is positive.

Roll ϕ is the included angle between ZB and the plumb plane passing through XB,
when the body rolls to the right, the direction is positive.

Yaw ψ is the included angle between the projection of XB at sea level and XE, when
the body yaws to the left, the direction is positive.

(3) Joint angles

The joint angles are determined by the relationship between the frame of the diversion
cabin or propulsion cabin and the body frame. Each orthogonal joint can be used for pitch
and yaw control.

The joint pitch angle θn is the included angle between XB1 or XB3 and the plane
XBOBYB, where n = 1, 2 represents the joint n, joint 1 is the joint between the diver-
sion cabin and the navigation/control cabin, and joint 2 is the joint between the naviga-
tion/control cabin and the propulsion cabin. When the joint is deflected clockwise, the
direction of θn is specified as positive.

The joint yaw angle ψn is the included angle between the projection of XB1 or XB3 onto
the plane XBOBYB and XB. When the joint is deflected counterclockwise, the direction of
ψn is specified as positive.

For modeling convenience, the rotation order of orthogonal joints is defined here.
First, it rotates around the Z-axis, then it rotates around the Y-axis of the changed frame.

(4) The linear velocity and angular velocity components of the body coordinate system

u, v, and w are the linear velocities along each axis of the body frame, where u, v, and
w are in the same direction as XB, YB, and ZB, respectively. And p, q, and r represent the
component of the attitude angular velocities around each axis of the body frame, which are
roll velocity, pitch velocity, and yaw velocity, respectively.

2.5. Kinematic Analysis

The position of the body under the inertial frame is EPB =
[

X Y Z
]T, and the

posture is EΩB =
[

ϕ θ ψ
]T. The upper left corner of EPB and EΩB is the reference

frame, which can be omitted when the reference frame is itself, and AT is the transpose
of A.

The position of the origin of each cabin BPi is expressed as⎧⎪⎨⎪⎩
PB =

[
0 0 0

]T

BPB1 =
[

lB 0 0
]T

+ BRB1
[

lB1 0 0
]T

BPB3 =
[ −lB 0 0

]T
+ BRB3

[− lB3 0 0
]T

, (1)

where li is half the length of each cabin, i = B1, B, B3; and BRB1 and BRB3 are the con-
version matrices of the diversion cabin frame and the propellant cabin frame to the body
frame, respectively, as follows:

BRB1 = Rot(z, ψ1)Rot(y, θ1)
BRB3 = B3RB

−1 = (Rot(z, ψ2)Rot(y, θ2))
−1 (2)
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Rot(z, ψn) =

⎡⎣ cos(ψn) − sin(ψn) 0
sin(ψn) cos(ψn) 0

0 0 1

⎤⎦
Rot(y, θn) =

⎡⎣ cos(θn) 0 sin(θn)
0 1 0

− sin(θn) 0 cos(θn)

⎤⎦ (n= 1, 2), (3)

where R−1 is the inverse of R. Since R is an orthogonal matrix,

BRB3
−1 = BRB3

T = Rot(y, θ2)
TRot(z, ψ2)

T. (4)

The angular velocity Bωi (i = B1, B, B3) and linear velocity Bvi (i = B1, B, B3) are⎧⎪⎪⎪⎨⎪⎪⎪⎩
ωB =

[
p q r

]T

BωB1 = ωB +
[

0 0
.
ψ1

]T
+ Rot(z, ψ1)

[
0

.
θ1 0

]T

BωB3 = ωB −
[

0
.
θ2 0

]T − Rot(y, θ2)
T
[

0 0
.
ψ2

]T
, (5)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

vB =
[

u v w
]T

BvB1 = vB + dBPB1
dt + ωB × BPB1

BvB3 = vB + dBPB3
dt + ωB × BPB3

, (6)

where
.
θn and

.
ψn are the pitch and yaw velocities of the joints n (n = 1, 2), respectively. The

velocity of the body is expressed in the inertial frame as{
E

.
PB = ERBvB

E
.

ΩB = EGBωB
, (7)

where E
.
PB and E

.
ΩB are the velocities of the body frame relative to the inertial frame, and

ERB and EGB are the transformation matrices of the linear velocity and angular velocity
from the body frame to the inertial frame, respectively. Tait-Bryan angles (Z-Y-X) rotation
transformation is adopted to determine the two matrices as follows.

ERB = Rot(z, ψ)Rot(y, θ)Rot(x, ϕ)

=

⎡⎣ cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ

⎤⎦ , (8)

EGB =

⎡⎣ 1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ

⎤⎦ (9)

for any j = ϕ, θ, ψ, sj = sin j, cj = cos j, tj = tan j; Rot(z, ψ) and Rot(y, θ) are similar to
Equation (3), and

Rot(x, ϕ) =

⎡⎣ 1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

⎤⎦, (10)

Equation (9) can be obtained by solving⎡⎣ p
q
r

⎤⎦ =

⎡⎣ .
φ
0
0

⎤⎦+ Rot(x, φ)T

⎡⎢⎣ 0
.
θ
0

⎤⎥⎦+ Rot(x, φ)T Rot(y, θ)T

⎡⎣ 0
0
.
ψ

⎤⎦. (11)
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Subject to the mechanical limit, the pitching angle will not reach ±90◦, so EGB will not be
in a singular state.

The angular acceleration Bαi (i = B1, B, B3) and linear acceleration Bai (i = B1, B, B3)
are expressed as follows: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

αB =
[ .

p
.
q

.
r
]T

BαB1 = dBωB1
dt + ωB × BωB1

BαB3 = dBωB3
dt + ωB × BωB3

, (12)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

aB = dvB
dt + ωB × vB

BaB1 = dBvB1
dt + ωB × BvB1

BaB3 = dBvB3
dt + ωB × BvB3

, (13)

where
.
p,

.
q, and

.
r are the angular accelerations of the roll, pitch, and yaw of the body,

respectively.

2.6. Dynamic Analysis

In the process of moving, the MJ-AUV is mainly subject to the fluid drag, the inertial
hydrodynamic force caused by additional mass, buoyancy, gravity, thrust, and interaction
forces between joints.

2.6.1. Hydrodynamic Analysis

Figure 1 shows the structure of the MJ-AUV equipped with multiple sensors. Notably,
it is not a regular cylinder. Considering the influence of the pressure drag and the trailing
vortex shedding effect, the drag suffered by each cabin is expressed as follows:

BFdi =
BRi

(
−C2

Disgn(vi)vi
2 − C1

Divi

)
, (i = B1, B, B3) (14)

with

C2
Di =

⎡⎣ c2
Dix 0 0
0 c2

Diy 0
0 0 c2

Diz

⎤⎦, (i = B1, B, B3)

C1
Di =

⎡⎣ c1
Dix 0 0
0 c1

Diy 0
0 0 c1

Diz

⎤⎦, (i = B1, B, B3)

sgn(s) =

⎧⎨⎩
1, s > 0
0, s = 0
−1, s < 0

,

vi =
BRi

TBvi, (i = B1, B, B3)

where c2
Dix, c2

Diy, and c2
Diz, and c1

Dix, c1
Diy, and c1

Diz are the quadratic and the first-order
coefficients of drag on 3D linear velocity, respectively.

When the MJ-AUV travels with variable speed motion, it forms a relative accelera-
tion motion with the surrounding water bodies, causing the additional mass effect and
producing the effect opposite to the direction of acceleration, which can be expressed by

BFai = −BRi(λmiai), Mai = −λJiαi, (i = B1, B, B3), (15)
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with

λi =

[
λmi 03×3
03×3 λJi

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

λi11 0 0 0 0 0
0 λi22 0 0 0 0
0 0 λi33 0 0 0
0 0 0 λi44 0 0
0 0 0 0 λi55 0
0 0 0 0 0 λi66

⎤⎥⎥⎥⎥⎥⎥⎦, (i = B1, B, B3)

ai =
BRi

TBai, (i = B1, B, B3)

and λi is the added mass matrix of each cabin.
The buoyancy of each cabin of the MJ-AUV is equal to the gravity of the water

discharged from the cabin. Here, assuming that the density of seawater is almost constant
at different depths. Thus, when the MJ-AUV is fully immersed in seawater, the buoyancy
of each cabin is

BFbi =
ERB

T[ 0 0 EFbi
]T, (i = B1, B, B3)

EFbi = ρliquidVig, (i = B1, B, B3 )

(16)

where ρliquid is the density of seawater, Vi is the volume of each cabin, and g is the gravita-
tional acceleration. The buoyancy of each cabin acts at the center, so the moment of which
is 0.

2.6.2. Gravity and Gravitational Moment

In the air, the gravity on each cabin is expressed in the body frame as:

BGi =
ERB

TEGi, (i = B1, B, B3 )

EGi =
[

0 0 mig
]T, (i = B1, B, B3)

(17)

where mi is the mass of each cabin.
The center of gravity is directly below the centroid, so each cabin is affected by the

gravitational moment as:

Mgi =
[

0 0 −lc
]T ×

(
BRi

TBGi

)
, (i = B1, B, B3) (18)

where lc represents the distance between the center of gravity and the centroid of each cabin.

2.6.3. Thrust Analysis

The propeller is installed at the rear of the propulsion cabin of the MJ-AUV and is a
one-way force. The direction is forward along the axial direction of the propulsion cabin.
Therefore, the thrust does not produce a torque effect on the propulsion cabin. The thrust
is expressed in the body frame as:

BFth = BRB3Fth, (19)

with Fth =
[

Ft 0 0
]� and Ft is the thrust from the propeller.

2.6.4. Dynamical Equation

According to Newton’s second law, the force analysis is shown in the following
formula.
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

BFbB1 +
BFdB1 +

BFaB1 − BGB1 +
BFB→B1 = mB1IBaB1

FbB + FdB + FaB − GB − BFB→B1 +
BFB3→B = mBIaB

BFbB3 +
BFdB3 +

BFaB3 − BGB3 − BFB3→B + BFth = mB3IBaB3

, (20)

where BFB→B1 represents the force of the navigation/control cabin on the diversion cabin
in the body frame, BFB3→B stands for the force of the propulsion cabin on the naviga-
tion/control cabin in the body frame, and I is a 3 × 3 identity matrix. By adding the three
expressions in Equation (20), the interaction force between joints can be eliminated, i.e.

BFbB1 +
BFdB1 +

BFaB1 − BGB1 + FbB + FdB + FaB − GB + BFbB3+

BFdB3 +
BFaB3 − BGB3 +

BFth − mB1IBaB1 − mBIaB − mB3IBaB3 = 0
(21)

According to the torque balance principle, the torque analysis is shown in the following
formula. ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

MaB1 +
B1M1 − MgB1 +

B1MB→B1 = JB1αB1

MaB + BM2 − BM1 − MgB − BMB→B1 +
BMB3→B = JBαB

MaB3 − B3M2 − MgB3 − B3MB3→B = JB3αB3

, (22)

with
B1MB→B1 =

[ −lB1 0 0
]T × (BRB1

TBFB→B1
)
,

BMB→B1 =
[

lB1 0 0
]T × BFB→B1,

BMB3→B =
[ −lB 0 0

]T × BFB3→B,

B3MB3→B =
[

lB3 0 0
]T × (BRB3

TBFB3→B
)
,

Ji =

⎡⎣ Jixx 0 0
0 Jiyy 0
0 0 Jizz

⎤⎦, (i = B1, B, B3)

αi =
BRi

TBαi, (i = B1, B, B3)

where B1MB→B1 is the torque generated by the navigation/control cabin on the diversion
cabin expressed in the diversion cabin frame; the definitions of BMB→B1, BMB3→B, and
B3MB3→B are similar to B1MB→B1; Ji is the matrix of the moment of inertia of each cabin;
and BFB→B1 and BFB3→B can be obtained from Equation (20).

All the variables in Equation (22) are expressed in the body frame,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

BRB1
(
MaB1 − MgB1 +

B1MB→B1
)
+ BM1 = BRB1JB1αB1

MaB + BM2 − BM1 − MgB − BMB→B1 +
BMB3→B = JBαB

BRB3
(
MaB3 − MgB3 − B3MB3→B

)− BM2 = BRB3JB3αB3

. (23)

The attitude of the MJ-AUV is controlled by changing the joint angle. By adding the
three equations in (23), the following equation can be obtained:

BRB1
(
MaB1 − MgB1 +

B1MB→B1 − JB1αB1
)
+ MaB − MgB − BMB→B1+

BMB3→B − JBαB + BRB3
(
MaB3 − MgB3 − B3MB3→B − JB3αB3

)
= 0

(24)
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The dynamic models of the MJ-AUV, i.e., Equation (7), Equation (21), and Equation (24),
can be expressed as the state space equation as follows:

M .
X = η(X, U),

M =

[
I6×6 06×6
06×6 M22

]
,

M22 =

⎡⎢⎢⎣
∂Ftotal

∂
.
u

∂Ftotal
∂

.
v

∂Ftotal
∂

.
w

∂Ftotal
∂

.
p

∂Ftotal
∂

.
q

∂Ftotal
∂

.
r

∂Mtotal
∂

.
u

∂Mtotal
∂

.
v

∂Mtotal
∂

.
w

∂Mtotal
∂

.
p

∂Mtotal
∂

.
q

∂Mtotal
∂

.
r

⎤⎥⎥⎦,

(25)

where M is a 12 × 12 inertial matrix, X =
[

X Y Z ϕ θ ψ u v w p q r
]T,

U =
[

θ1 θ2 ψ1 ψ2 Ft
]T, and η(X, U) represents the function about X and U.

Equation (25) can be rewritten as

.
X = M−1η(X, U). (26)

The dynamic model is an analytical model that can be used to study the motion
characteristics of the MJ-AUV and design a modern controller based on this model.

3. Attitude Controller Design

By adjusting the pitch and yaw angles of joints 1 and 2, the relative attitude of each
cabin is adjusted, the hydrodynamic appearance of the MJ-AUV is changed, and then the
attitude angle of the body is adjusted. Because of the mechanical structure characteristics,
joints can only change with one degree of freedom at the same time. To realize pitch
and yaw control of the body at the same time, stipulating that joint 1 is used for the
yaw attitude adjustment, and joint 2 is used for the pitch attitude adjustment, namely,
U =

[
0 θ2 ψ1 0

]T. The MJ-AUV is a complex system with high nonlinear and strong
coupling. To reduce the coupling degree and operation cost of the control system and
improve the anti-disturbance performance, internal forces, coupling factors, and external
disturbance are regarded as total disturbance and establish the subsystem model of the
pitch and yaw as follows: ⎧⎪⎨⎪⎩

..
θ = fθ + b11ψ1 + b12θ2

..
ψ = fψ + b21ψ1 + b22θ2

, (27)

where
..
θ is the pitch acceleration of the body,

..
ψ is the yaw acceleration, bij(i, j = 1, 2) is the

control coefficient of joints 1 and 2 in pitch and yaw motion equations, and fθ and fψ are
nonlinear total perturbation functions associated with X and the input coupling terms.

The pitch and yaw attitude control of the MJ-AUV mainly includes the total dis-
turbance observation compensation and LQR control of each subsystem. The designed
controller structure is shown in Figure 4.

3.1. Linear Extended State Observer Design

The LESO is used to estimate the states and disturbances of the system that cannot be
measured directly. Taking the pitch attitude subsystem as an example, the process of LESO
design is as follows.

Let x1 = θ, x2 =
.
θ, x3 = fθ , u1 = ψ1, and u2 = θ2; then, the pitch attitude subsystem

can be rewritten as: .
x = Ax + Bu + Eh
y = Cx + Du

, (28)
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where A =

⎡⎣ 0 1 0
0 0 1
0 0 0

⎤⎦, B =

⎡⎣ 0 0
b11 b12
0 0

⎤⎦, C =
[

1 0 0
]
, D =

[
0 0

]
, E =

⎡⎣ 0
0
1

⎤⎦,

x = [ x1 x2 x3 ]
T, u = [ u1 u2 ]

T, and h =
.
f θ is unknown but bounded.

Define
^
x = [ x̂1 x̂2 x̂3 ]

T and ŷ as the observed values of x and y. Consequently,
the LESO can be constructed as

.
^
x = A

^
x + Bu + L(y − ŷ)

ŷ = C
^
x + Du

, (29)

where L = [ β1 β2 β3 ]
T is the observer gain vector.

Define
~
x = x − ^

x is the state estimation error. By combining (28) and (29), can be
obtained .

^
x = A

^
x + Bu + L(y − ŷ)

ŷ = C
^
x + Du

,

~
A = A − LC =

⎡⎣ −β1 1 0
−β2 0 1
−β3 0 0

⎤⎦.

(30)

According to [29], through the pole assignment method, all poles are placed at −ω0,
then β1 = 3ω0, β2 = 3ω0

2, and β3 = ω0
3. ω0(ω0 > 0) is the bandwidth of the state

observer. The estimated state of the observer can be adjusted by adjusting ω0, especially
the estimated value f̂θ = x̂3 of the total disturbance fθ . The design of the LESO for the yaw
subsystem is similar to that for the pitch subsystem.

Figure 4. The structure of the LQR decoupling control method based on LESO.

3.2. Control Law Design

To reduce the input coupling degree of the system, the virtual control quantity
�
u =[

b11 b12
b21 b22

]
u is introduced.

θd and ψd are defined as the designed pitch and yaw angles, respectively. Then, the
feedback errors are eθ = θd − θ, eψ = ψd − ψ. Let z1 = eθ , z2 =

.
θ, z3 = eψ, and z4 =

.
ψ;

then, the state equation of the pitch and yaw attitude control of the MJ-AUV is

.

=
�
A +

�
B
�
u +

^
f, (31)

where

�
A =

⎡⎢⎢⎣
0 −1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

⎤⎥⎥⎦,
�
B =

⎡⎢⎢⎣
0 0
0 1
0 0
1 0

⎤⎥⎥⎦,
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= [ z1 z2 z3 z4 ]
T,

^
f = [ 0 f̂θ 0 f̂ψ ]

T, f̂θ and f̂ψ respectively repre-
sent the total disturbance of the pitch and yaw subsystems estimated by LESO.

The control law mainly includes disturbance compensation
�
u f and linear state feed-

back
�
u 0, and

�
u =

�
u f +

�
u 0.

The disturbance compensation control law is

�
u f = −�

B
T^

f. (32)

Substituting Equation (32) into Equation (31) obtains the following:

.

=
�
A +

�
B
�
u 0. (33)

Now, the problem is to design the controller
�
u 0, and the linear state feedback control

law can be designed as
�
u 0 = −K , (34)

with K =

[
K11 K12 K13 K14
K21 K22 K23 K24

]
as the linear feedback gain matrix.

The feedback gain matrix has eight parameters. In this paper, LQR can be optimized
by LQR to reduce the difficulty of parameter adjustment and obtain the optimal control law
suitable for the control target by minimizing the performance index. The LQR performance
index function is selected as

J =
∫ ∞

0

(
T

Q +
�
u 0

TR
�
u 0

)
dt, (35)

where Q is the positive semidefinite matrix and R is the positive definite matrix. The
former is the penalty function of the system state error, and the latter is the penalty function
of the system input state. The Riccati equation corresponding to the performance index
function is

�
A

T
P + P

�
A + Q − P

�
BR−1�B

T
P = 0, (36)

where P is the solution of the Riccati equation.
In the case of the Riccati equation, the linear feedback gain matrix is

K = R−1BTP. (37)

In this case, K is related to Q and R.

3.3. Stability Analysis

In this part, the stability of the LESO and the closed-loop system are studied according
to the idea of reference [31].

A state space equation is defined in the form shown in Equation (38).

.
c = Hc + o, (38)

where c ∈ �n represents state variable, H ∈ �n×n, o ∈ �n.

Theorem 1. Assuming that o is bounded, if H is the Hurwitz matrix, then the state variable c is
bounded stable.

The proof of Theorem 1 is given in Appendix A.

According to Theorem 1, in Equation (30), h is bounded,
~
A is Hurwitz, and

~
x is

bounded stable, that is, LESO is bounded stable.
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The system model of the MJ-AUV is

.

=
�
A +

�
B
�
u + f, (39)

with f = [ 0 fθ 0 fψ ]
T. Because

�
u =

�
u f +

�
u 0. Because, Equation (39) can be

expressed as:
.

=
�
A +

�
B
(
�
u f +

�
u 0

)
+ f. (40)

By substituting Equations (32) and (34) into Equation (40), we can obtain

.

=

(
�
A −�

BK
)

+
~
f, (41)

with
~
f = f −

^
f. In addition, substituting Equation (37) into Equation (41) obtains

.

=

(
�
A −�

BR−1BTP
)

+
~
f. (42)

~
f is bounded according to LESO stability analysis, and

�
A − �

BR−1BTP is Hurwitz.
According to Theorem 1, is bounded stable.

4. Simulation and Results

In this part, the dynamic model of the MJ-AUV was built on the SIMULINK platform,
and the fourth-order Runge–Kuta algorithm was used to solve the second-order differential
dynamics equation. Then, the various motions of the model were simulated and analyzed,
and the attitude control algorithm of MJ-AUV was simulated and verified. Table A1 shows
the model parameters of the MJ-AUV.

4.1. Model Simulation

Figure 5 shows the simulation results of MJ-AUV’s pitching motion, and the pitching
angle of joint 1 is set to θ1 = 0◦, the yaw angle of joint 1 is set to ψ1 = 0◦, the pitch angle of
joint 2 rotates in a sinusoidal manner with an amplitude of 20◦ and a period of 50 s, that
θ2 = 20◦ sin(πt

25 ), the yaw angle of joint 2 is set to ψ2 = 0◦, and the thrust of the propeller
is set to T = 60 N. The simulation duration is 100 s. It can be seen from Figure 5a,e that
the vehicle has a tendency to move upwards, which is caused by the buoyancy force of the
vehicle being greater than its gravity. During the pitching motion, the results in Figure 5a,c
show that the vehicle has no change in displacement and velocity in the Y direction, while
the results in Figure 5b,d show that the attitudes and angular velocities of the vehicle have
no changes in the yaw and roll directions. Therefore, if the vehicle is only controlled in
pitching motion, the relative state quantity of the three degrees of freedom can be zero,
thus simplifying the complexity of the model.

Figure 6 shows the simulation results of the sinuous motion of the MJ-AUV. The
pitching angle of joint 1 is set to θ1 = 0◦, the yaw angle of joint 1 rotates in a sinusoidal
manner with an amplitude of 10◦ and a period of 50 s, i.e., ψ1 = 10◦ sin(πt

25 ), the pitch
and yaw angle of joint 2 is set to 0◦, and the thrust of the propeller is set to T = 60 N.
The simulation duration is 100 s. In the process of this movement, it can be seen from
Figure 6b,d that the MJ-AUV is in roll motion. This is because when the yaw angle of the
joint changes, the metacenter of the diversion cabin is not in the same vertical plane as
the metacenter of the other cabins, so the roll moment is generated, and then the rolling
phenomenon occurs.

Figure 7 shows the result of the spiral diving motion of the MJ-AUV. The pitching
angle of joint 1 is set to θ1 = 0◦, the yaw angle of joint 1 is set to ψ1 = 5◦, the pitch angle of
joint 2 is set to θ2 = 10◦, the pitch angle of joint 2 is set to, the yaw angle of joint 2 is set to
ψ2 = 0◦, and the thrust of the propeller is set to T = 60 N. The simulation duration is 1000 s.
Unfortunately, it can be found from the results in Figure 7b,d that the rolling attitude of
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the vehicle is unstable, which is the same as that of the vehicle in the sinuous motion in
Figure 7. It is all caused by the rolling moment that the metacenter of the diversion cabin
is not in the same vertical plane as the metacenter of the other cabins. This brings a big
problem for the multi-degree of freedom control.

 
(a) (b) 

 

(c) (d) 

 
(e) 

Figure 5. Pitching motion of MJ-AUV: (a) Position changes over time; (b) Attitude changes over time; (c) Linear velocity
changes over time; (d) Angular velocity changes over time; (e) 3D motion.

82



J. Mar. Sci. Eng. 2021, 9, 307

Figure 6. Yaw motion of the MJ-AUV: (a) Position changes over time; (b) Attitude changes over time; (c) Linear velocity
changes over time; (d) Angular velocity changes over time; (e) 3D motion.
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Figure 7. Spiral dive motion of the MJ-AUV: (a) Position changes over time; (b) Attitude changes over time; (c) Linear
velocity changes over time; (d) Angular velocity changes over time; (e) 3D motion.
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The above simulation results are consistent with the common physical phenomena,
and to a certain extent, it can be considered that the established MJ-AUV 3D dynamic model
is reasonable, without loss of generality and reliability. According to the simulation results,
compared with the single rigid body AUV, the MJ-AUV has stronger flexible maneuvering
characteristics and can perform more complex movements, such as large angle pitching
movement, small radius steering movement, spiral ascending and diving movement, and
so on, which satisfies the design intention.

4.2. Model and Control Parameters

The initial states of the MJ-AUV are θ = 0 rad,
.
θ = 0 rad, θ2 = 0 rad, ψ = 0 rad,

.
ψ = 0 rad, and ψ1 = 0 rad. In addition, the controller parameters are ω0 = 30, b11 = 0,
b12 = 0.1, b21 = 0.1, b22 = 0, Q = diag(500, 600, 500, 600), R = diag(0.1, 0.1), and diag
represents the diagonal matrix. The control gain after LQR optimization is

K =

[
0 0 −70.7107 78.3672

−70.7107 78.3672 0 0

]
.

4.3. Control Simulation

Figures 8–12 show the simulation results of the pitch and yaw attitude control of the
MJ-AUV, that is, when the pitch attitude is kept as 0 rad, the yaw attitude is adjusted
according to the design signal. Figure 8 shows the pitch control results. The reason why
the initial pitch attitude is not 0 rad is that the rest buoyancy of each cabin of MJ-AUV is
positive, and the resultant moment of the body is not 0 rad. In other words, when the joint
angle is 0 rad, the pitch attitude of the body is not 0 rad, so it is necessary to adjust the body
attitude to 0 rad by adjusting the joint angle, which can also be seen from the performance
of joint 2 in Figure 11. Figure 9 and the performance of joint 1 in Figure 11 show that, the
yaw subsystem can be adjusted quickly after encountering multiple step signals, and the
overshoot quantity is nearly 0 rad, with a very smooth transition process. Figure 10 shows
that the maximum control error is within 0.005%, verifying that the designed controller
has a high control accuracy. Figure 12 shows the observer’s estimation results for the
total disturbance of the pitching and yaw subsystem. The results show that the estimated
value of the total disturbance can follow the real value in real time and accurately, further
proving the effectiveness of LESO and making a great contribution to the control of the
disturbance compensation.

Figure 8. The pitching attitude of the MJ-AUV.
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Figure 9. The yaw attitude of the MJ-AUV.

Figure 10. The feedback error of the MJ-AUV.

Figure 11. The input of the MJ-AUV.
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Figure 12. The estimation of the total disturbances of the MJ-AUV.

5. Conclusions

The main contributions of this paper are as follows:

(1) A new type of MJ-AUV with orthogonal joints structure is proposed that can be used
for the rapid exploration of the vertical profile of deep sea.

(2) Considering the imbalance of gravity and buoyancy, a 3D analytical model of the MJ-
AUV is established according to Newton’s second law and torque balance principle,
which provides a theoretical basis for the study of the MJ-AUV’s 3D motion and
model-based controller design.

(3) The LQR decoupling control method based on LESO is proposed. The system is
decoupled into pitch and yaw subsystems, and uses linear state observer to estimate
and compensate for the total disturbance of each subsystem. LQR is used to achieve
the optimal linear feedback control gain according to the expected input and output
effects. It solves the problem of strong system coupling and makes the parameter
tuning work more efficient.

(4) The simulation results show that the improved control algorithm has the advantages
of low overshot and high control precision, and the controller has the advantages of
small computation, independence of the precise model of the system, and has a good
prospect of engineering application.

Author Contributions: Conceptualization, Q.M. and H.Z.; methodology, L.Y.; software, L.Y.; valida-
tion, L.Y.; formal analysis, L.Y.; writing—original draft preparation, L.Y.; writing—review and editing,
Q.M., H.Z. and L.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by National Key R&D Program of China under Grant No.
2017YFC0306200.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: The authors would like to express their appreciation to Liu Kexian for providing
the hydrodynamic coefficient of the vehicle and assisting to complete the modeling work. At the
same time, the authors are very grateful to Wang Runzhi for help in the controller design process.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Proof of Theorem 1. The Lyapunov function is defined as

V = cTPc, (A1)
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where, P is the unique solution of the Lyapunov equation HTP + PH = −Q, H is the
Hurwitz matrix, and Q is the positive definite matrix, then the derivative of Equation (A1)
is obtained as follows:

.
V = −cTQc + 2oTPc

=
(

cTQ
1
2 − oTPQ− 1

2

)(
cTQ

1
2 − oTPQ− 1
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The choice of P depends on Q. In order to make the calculation simple, Q = I is
selected as the identity matrix to meet the requirements of positive definite matrix. Then
Equation (A4) is:

‖c‖2 > 2‖Po‖2. (A5)

Because o is bounded, when c satisfies Equation (A5),
.
V is negative definite, and because V

is positive definite, c is bounded stable. �

Appendix B

Table A1. The Parameters of the MJ-AUV Model.

Diversion Cabin Navigation/Control Cabin Propulsion Cabin

li/m 0.5625 0.775 0.6625
mi/kg 46.5 113.6 46
Vi/m3 0.0471 0.1152 0.0467

Jxx/kg·m 1.129 1.938 1.314
Jyy/kg·m 7.623 29.281 8.877
Jzz/kg·m 7.645 29.447 8.999

c2
Dx 10.05 0 22.73

c2
Dy 75.53 126.5 177.5

c2
Dz 75.53 126.5 159.8

c1
Dx 0.3404 0 0.5009

c1
Dy 6.272 12.61 4.192

c1
Dz 6.272 12.61 7.351

λ11 12.44 17.30 13.40
λ22 57.71 109.13 82.42
λ33 57.71 109.13 87.97
λ44 0 0 0.47
λ55 2.6 16.37 7.85
λ66 2.6 16.37 7.44

Other Parameters lc = 0.01 m, ρliquid = 1000 kg/m3, g = 9.8 N/kg, Ft = 60 N,
−15◦ ≤ ψ1 ≤ 15◦, −20◦ < θ2 < 20◦.
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Abstract: To create an autonomously moving vessel, it is necessary to know exactly how to determine
the current coordinates of the vessel in the selected coordinate system, determine the actual trajectory
of the vessel, estimate the motion trend to predict the current coordinates, and calculate the course
correction to return to the line of the specified path. The navigational and hydrographic conditions of
navigation on each section of the route determine the requirements for the accuracy of observations
and the time spent on locating the vessel. The problem of predicting the trajectory of the vessel’s
motion in automatic mode is especially important for river vessels or river-sea vessels, predicting
the trajectory of the route sections during the maneuvering of the vessel. At the moment, one of the
most accurate ways of determining the coordinates of the vessel is by reading the satellite signal.
However, when a vessel is near hydraulic structures, problems may arise connected with obtaining
a satellite signal due to interference and, therefore, the error in measuring the coordinates of the
vessel increases. The likelihood of collisions and various kinds of incidents increases. In such cases,
it is possible to correct the trajectory of the movement using an autonomous navigation system. In
this work, opportunities of the possible application of artificial neural networks to create such a
corrective system using only the coordinates of the ship’s position are discussed. It was found that
this is possible on sections of the route where the ship does not maneuver.

Keywords: AIS Data; trajectory prediction; waterway transportation; neural networks; autonomous
navigation

1. Introduction

Nowadays, to build the trajectory of the vessel and determine its position, it is a
common approach to use data from satellite navigation systems and automatic identifica-
tion systems (AIS), which allow obtaining coordinates with high accuracy and secondly,
discreteness. However, despite the advances in the development of satellite navigation
technologies in recent decades, their methods have a significant drawback: non-autonomy,
which does not allow the use of a satellite system when a number of known circumstances
occur. The main ones are the loss of communication or, under the conditions of maneuver-
ing, too long processing the received data, which prevent it from making a decision in time.
In this regard, the issues of studying autonomous methods for determining a ship’s position
are of great practical interest. The prediction of the trajectory of the vessel’s movement is of
practical importance for the development and creation of unmanned autonomous vessels.

Taking into account the inertia of the vessel, in order to react in time to possible obsta-
cles, it is necessary to predict in advance the estimated nearest coordinates of the vessel.
In this regard, it is necessary to take into account the capabilities of the ship’s technical
means, so that the time required for the autopilot to make a decision is sufficient enough
to implement it. In this sense, predicting the trajectory of a vessel’s movement based on
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historical data, that is, using data received from other vessels, can only be used very ap-
proximately, since the trajectory of a vessel’s movement depends quite strongly on specific
external conditions. Therefore, the goal of this work was to analyze the application of
neural network technologies that use knowledge of the previous coordinates of the vessel’s
trajectory to predict the estimated next coordinates of the vessel during river navigation.

Related Works

Various studies have examined different aspects of predicting vessel trajectories using
AIS data, including behavior anomaly detection [1], waypoint detection [2], and the actual
forecast of the vessel’s trajectory [3–5]. Since artificial neural networks gained wide popu-
larity, a number of studies have appeared that focused on the use of artificial intelligence
in solving problems related to navigation. For example, there is a significant difference
between the different patterns of vessel traffic, namely static navigation, normal navigation,
and maneuvering. As the data that are collected during maneuvering are of the greatest
interest, a separate issue is the task of separating them from the general data. In this regard,
there are a number of studies that use artificial neural networks to classify AIS data types
in relation to ship traffic [6].

Neural networks are often used to study the trajectories of various types of ships in the
oceans [7–9]. They allow one to study the possible routes of a ship’s motion, and identify
the most frequently used ones. There are various probabilistic approaches for solving this
kind of problem as well [10]. There are studies that, while solving this problem, also touch
upon the problem of using neural technologies to predict possible ship collisions [11]. It
is believed that the identification and construction of optimal routes will allow the use of
unmanned vessels, which will follow the given trajectories [12–14]. When using neural
networks to predict the motion of the vessel and build the trajectory of its motion, neural
networks are used either as a function for identifying the model of the vessel movement,
or for the trajectory prediction, and the correction of their free parameters is performed in
real time as the vessel is moving [15–17].

A detailed review of various approaches to predicting the trajectory of vessel move-
ment or location is given in [18]. Both classical models, such as Constant Velocity Model
(CVM), and modern approaches based on machine learning and statistical analysis are
analyzed. Models for predicting the trajectory of a specific vessel based on neural networks
using course of ground (COG) and speed over ground (SOG), attached with a correspond-
ing future timestamp as input, are discussed in [19], and based on the obtained data the
coordinates of the ship are restored.

2. Materials and Methods

Unlike the movement of sea vessels, which are faced with maneuvering in confined
spaces mainly when passing straits and moving in port waters, river vessels are forced to
constantly maneuver in confined spaces (e.g., the presence of a large number of possible
obstacles, limited fairway, frequent course changes, a large number of oncoming and
passing vessels). Moreover, the performance of satellite navigation systems is greatly
influenced by the presence of possible sources of industrial interference, as well as a large
number of hydraulic structures, located on the riverbanks. Therefore, AIS data are not error-
free. Different sources of error that render a portion of these data noisy and inadequate for
monitoring are discussed in detail in [20].

Since the aim of the research was to determine the possibility of predicting the position
of the vessel at the next moment in time using only the previous coordinates of the vessel’s
movement for training the neural network, only these data were collected during the
experiment. The real experiment was carried out specifically for collecting data in the
conditions of river navigation, as the data in existing open databases often consist of
information collected during sea navigation.

It was assumed that the problem of predicting the vessel trajectory could be solved on
the basis of a focused time lagged feedforward network. For training the neural network
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model, the data obtained during the experiment were used. The experiment was carried
out on a ship with characteristics presented in Table 1:

Table 1. Vessel characteristics.

Feature Value Units

Maximum length 35.65 meters
Maximum width 5.80 meters

Side height 2.60 meters
Draft 1.51 meters

Displacement 157 tons
Main engine power 2 × 200 kW

Crew 10 man
Freeboard 1.096 meters
Endurance 6 days

There were two antennas placed on the roof of the ship’s cabin at a distance of 90 cm
along the center plane of the ship and 66 centimeters between the antennas. The data from
the second antenna underwent a post-processing and were subsequently received as a
reference. All vessel position data were recorded using the NMEA-0183 protocol.

NMEA is a format for transmitting data between ship instruments. It includes a mes-
sage system for information exchange between GPS navigation receivers and navigation
information consumers. All commands and messages are transmitted in ASCII text form.
The last field of the message may contain the checksum of the current message, starting
with the * separator. This is followed by an 8-bit checksum (exclusive OR) of all characters
in the message, including spaces between the $ and * separators, not including the last one.
The hexadecimal result is translated into two ASCII characters (0–9, A–F).

The GGA-GPS data, which were obtained during the experiment and used to train
neural networks and verify the results, contained the following values:

• Greenwich Mean Time at the moment of determining the location.
• Latitude.
• North/South (N/S).
• Longitude.
• West/East (E/W).
• GPS signal quality indicator:

0 = Positioning is not possible or is not correct;
1 = GPS mode, normal accuracy, location possible;
2 = Differential GPS mode, normal accuracy, location possible;
3 = GPS precision mode, location possible.

• The number of satellites used (0–12, may differ from the number of visible ones).
• Horizontal Dilution of Precision (HDOP).
• Receiver antenna height above/below sea level.
• Unit of antenna’s location height, meters.
• Geoid difference, i.e., the difference between the WGS-84 ellipsoid and the sea level

(geoid), “-” = sea level is below the ellipsoid.
• Units of measurement, meters.
• GPS Differential Data Age—Time in seconds since the last SC104 type 1 or 9 update,

filled with zeroes if the differential mode is not used.
• ID of the station transmitting differential corrections, ID, 0000-1023.
• Checksum.

An example of the received data is presented in Figure 1.
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Figure 1. Sample data received from the first antenna.

To obtain images correlated with geographic maps, the algorithm for transferring
data from the NMEA protocol to the WGS84 system (World Geodetic System 1984) was
used [21]:

flTemp = Value (NMEA 0183)

nTemp = flTemp/100.0;

nTemp = nTemp − (nTemp% 1);

flMin = flTemp − 100.0 * nTemp;

Lo = nTemp + flMin/60.0;

where /—division, %—remainder of division, *—multiplication, Lo—value in WGS84.

3. Results and Discussion

The experiment was conducted on a segment of inland waterways of the Neva-Ladoga
region. The resulting vessel path is shown in Figure 2. It should be noted that the results of
all antennas are very close to each other.

Figure 2. Total path of the ship (a), the part of the path near and under the bridge (b).

During the experiment, the case of a ship passing under a bridge was considered
separately. Since the passage of the vessel under the bridge is quite difficult due to the
small distance between the bridge supports, the flow of the river, etc., in order to reduce
the risk of a dangerous situation, it is necessary to have alternative methods of determining
the exact location of the vessel.

One can see (Figures 3–5) how the received signals behave while passing the bridge. It
is clear that the signal is either interrupted, or does not reflect in any way the real trajectory
of the vessel. This fact is most evident for the processed signal when the system is trying to
restore the trajectory.

In this regard, the task was set to assess the possibilities of using neural networks to
solve such problems, in particular, to determine whether it is possible to build a neural
network that will restore the trajectory of a ship using the previous AIS data. Neural
networks with various activation functions were studied.
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Figure 3. Vessel trajectory, obtained from the first antenna (a), vessel trajectory under the bridge, obtained from the first
antenna (b).

Figure 4. Vessel trajectory, obtained from the second antenna (a), vessel trajectory under the bridge, obtained from the
second antenna (b).

Figure 5. Vessel trajectory (a); trajectory under the bridge, the result of post-processing the signal (b).

To train the neural network, an array of 1000 lines containing latitude and longitude
was taken (see Table 2 for data sample).

Table 2. Input data sample.

Latitude Longitude

59.9466765683333 31.0296530033333
59.9466765750000 31.0296530366667
59.9466765833333 31.0296530600000
59.9466765916667 31.0296530766667
59.9466765900000 31.0296531200000
59.9466765883333 31.0296531333333
59.9466765733333 31.0296531333333

There was 10% of the initial set left for the validation process. Of the remaining 90%,
70% was taken as a training set, and 20% was left for testing.
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The constructed neural network consisted of two layers, the first one contained neu-
rons with sigmoidal activation functions, and the other one had one neuron with identical
activation functions. The network, taking the vector of the delayed values of the ship’s
coordinates in the geographic system as an input, predicts its value one step ahead. The
network is trained in real time based on a sample containing a certain number of previous
trajectory points.

The Levenberg-Marquardt algorithm, which implements the idea of gradient descent,
was used as a training algorithm. The mean square of the course error was chosen as a
measure of the training accuracy. This algorithm most adequately reproduces the dynamics
of the vessel’s movement. Its advantages, in comparison with other methods of conjugate
gradients, are high speed calculations and ensuring convergence.

The first of the constructed networks included 200 input neurons. The hyperbolic
tangent was used as a neuron activation function (1).

a =
2

(1 + exp(−2 · n))
− 1 (1)

The network with 200 neurons in the hidden layer was trained in 50 iterations, and the
validation showed the difference in latitude by 10−6, which is an insignificant discrepancy
from the true data, since the numbers after 6 decimal places are not significant (Table 3). Re-
sulting average error on the straight sections of the vessel path was 0.02◦ An increase in the
number of neurons did not lead to a decrease in errors, but increased the calculation time.

Table 3. Results of the first neural network.

Input Data Output Data Reference Data

Latitude 59.8665262166667 59.866514809161487 59.8665157383333
Longitude 30.970706225 30.969370218195859 30.9706893433333

The results of the first neural network performance are presented in Figures 6 and 7.

Figure 6. Comparison of the trajectory predicted by the neural network with the reference trajectory
on the straight section of the path.

The second of the options for building and training a neural network was a network
with the following structure: the first layer was the input data for the neural network and
it did not participate in the calculation; the second layer was a hidden layer; and the third
one processed the data received from the second layer and returned the desired value. For
the convenience of working with the neural network, the input data were transformed as
follows: the GPS coordinate values were divided by 100 to bring them to the interval (0; 1).
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Subsequently, the data were returned to their original state. To train the neural network,
24,000 datasets were used with 10,000 iterations for each dataset.

Figure 7. Comparison of the trajectory predicted by the neural network with the reference trajectory
along the path with data loss and distortion.

Function (2) was used as an activation function.

σ(x) =
1

(1 + exp(−tx))
(2)

In this case, t is the weight of the neuron, which is automatically selected during
training of the neural network. The peculiarity of neurons with such a transfer characteristic
is that they amplify strong signals much less than weak ones, since the areas of strong
signals correspond to the flat areas of the activation function.

It should be noted that functions (1) and (2) differ only in the range of values, however,
this difference significantly changes the possible input and output values of the neuron,
which subsequently affects the learning rate and accuracy of the neural network.

For the input data, 10 pairs of latitude and longitude values were used, from which
the values of the next coordinate were obtained. Data in Table 4 show that the accuracy
of the data produced by the neural network differs for the worse, since in this case the
difference in latitude from the true data is 10−5.

Table 4. Results of the second neural network.

Input Data Output Data

59.8902644083333 30.9812980466667

59.8903520000000 30.9813470000000

59.8902644083333 30.9812980466667
59.8902644083333 30.9812980466667
59.8903000583333 30.9812980466667
59.8903000583333 30.9813171183333
59.8903000583333 30.9813171183333
59.8903000583333 30.9813171183333
59.8903000583333 30.9813171183333
59.8903360133333 30.9813171183333
59.8903060000000 30.9813420000000

The results of the second neural network are presented in Figures 8 and 9.
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Figure 8. Comparison of the trajectory predicted by the neural network with the reference trajectory
on the straight section of the path.

Figure 9. Comparison of the trajectory predicted by the neural network with the reference trajectory
along the path with data loss and distortion.

While assessing the performance of the second neural network, the following pecu-
liarities appear:

• the considered neural network can predict the trajectory of a vessel’s motion on
straight sections; however, due to the accuracy of such a prediction, it is impossible to
guarantee the safety of the vessel’s motion (Figure 8);

• in areas with GPS data loss or distortion, the first few iterations of the neural network
show a good result, which can be seen in Figure 9;

• the developed neural network is not suitable for long-term use due to the lack of stable
prediction quality.

Figures 10 and 11 show the comparison of the results of the neural networks’ perfor-
mance with respect to each other and the trajectory obtained from the reference coordinates.

Despite the fact that the second network obviously gives a better result than the first
one, it is still far from the true trajectory of the ship. In the case when the ship begins to
make any maneuvers (e.g., turn), or enters the interference zone, the available AIS data
are insufficient to train neural networks that predict the position or trajectory of the vessel.
Therefore, additional research is needed to adapt neural network technologies in relation
to the physical characteristics of each specific vessel, as well as swimming conditions,
characterized by a change in the density of water and air, the influence of shallow water,
and other similar effects.
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Figure 10. Comparison of the trajectories predicted by the considered neural networks with the reference trajectory on the
straight section of the path.

Figure 11. Comparison of the trajectories predicted by considered neural networks with the reference trajectory along the
path with data loss and distortion.

4. Conclusions

The problem of determining the position of the vessel in real time is very important
for various kinds of applications, in particular, for the autopilot system development. The
use of existing algorithms based on AIS data does not allow assessing the position of the
vessel in the presence of interference that affects the receipt of AIS signal. One of the
ways to solve this issue is the development of an autonomous system that predicts the
trajectory of the vessel’s movement, which will be a source of additional information for
timely decision-making in case of AIS signal distortion. In this paper, the possibility of
using neural network technologies is being considered as one of the options for predicting
the trajectory of a ship. Neural networks with different activation functions and different
structures were built and trained, using experimental data of the real movement of the
vessel in the fairway of the Neva River. The goal was to assess whether it was possible to
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obtain reliable results using only the coordinates of the ship’s movement obtained from
AIS for neural network training.

Simulation modeling has shown that when the vessel moves along a straight trajectory,
the use of neural networks gives quite satisfactory results. The main problems appear when
the ship starts to maneuver. With this type of movement, the results shown by trained
neural networks are not satisfactory, since the discrepancy between the results of their
work and real data is very large. In fact, it is possible to predict the trajectory only one
coordinate ahead, which in the conditions of ship maneuvering does not permit using this
technology to create autopilots.

Thus, additional research is required to identify which parameters should be added to
train neural networks to predict the trajectory during ship maneuvering more accurately.
Further research will be devoted to these issues.
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Abstract: A new type of path-following method has been developed to steer marine surface vehicles
along desired paths. Path-following is achieved by a new hyperbolic guidance law for straight-line
paths and a backstepping control law for curved paths. An optimal controller has been improved for
heading control, based on linear quadratic regulator (LQR) theory with nonlinear feedback control
techniques. The control algorithm performance is validated by simulation and comparison against
the requirements of International Standard IEC62065. Deviations are within the allowable range
of the standard. In addition, the experimental results show that the proposed method has higher
control accuracy.

Keywords: ship motion control; path-following; guidance algorithm; nonlinear feedback

1. Introduction

Autopilot is the main equipment for ship motion control; it controls the ship’s course
without the participation of the helmsman [1]. On autopilot, the ship follows the target
route automatically, which can effectively reduce ship operating costs [2]. This paper
presents a new method for ship track control. The goal of the control system is to follow
a preset route with good anti-interference ability [3]. Path-following control systems for
marine vehicles are usually constructed as three independent blocks: guidance, navigation
and control [4]. Guidance is the action or the system that continuously computes the refer-
ence position, velocity and acceleration of the vehicle to be used by the control system [5].
Navigation is the action or the system that directs the vehicle, by which the position, course
and traveled distance is determined. The control system determines the necessary forces
and moments to achieve a certain objective.

Line of sight (LOS) is the most commonly used guidance algorithm. This algorithm
was first applied to track control of surface ships by Mcgookin and Fossen and has been
widely studied [6–9]. The advantage of the LOS guidance algorithm is that it controls
the ship’s motion by imitating the behavior of the helmsman to eliminate track deviation
from the planned route. However, there are some defects in the LOS guidance algorithm.
When the distance between the next target waypoint on the target route and the current
position of the ship is large, a large track deviation will be produced when the ship tracks
the planned route through the guidance algorithm, in addition, the convergence speed of
the algorithm is also very slow. In response to this problem, an integral LOS (ILOS) has
been proposed and extensively analyzed. Fossen and Lekkas [10] proposed an ILOS based
on adaptive control theory that can compensate for drift forces effectively.

Stability analysis is an important topic for navigation and control systems used in
autonomous marine vehicles. Proportional-integral-derivative (PID) controllers or propor-
tional derivative controllers are usually used in ship autopilot design [11,12]. In recent
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years, improved PID control algorithms have emerged. For example, steering parameters
for normal adaptable PID autopilots have been developed during the last decade [13,14].
Dlabac et al. [15] presented a particle swarm optimization (PSO)-based PID controller for
ship course-keeping. Recently, nonlinear controllers for autopilot motion control of marine
vessels have been reported. Oh and Sun [16] presented a model predictive control for path
following of underactuated surface vessels. Guerrero et al. [17] employed an adaptive
high- order sliding mode controller for trajectory tracking of autonomous underwater
vehicles. Designs based on neural networks [18,19], pole placement technique (PPT) [20],
fuzzy logic [21], extended state observer technique (ESO) [22] and some other methods are
also used. Wang et al. [23] presented a heading control algorithm based on an H-infinite
optimization algorithm to counteract the influence of waves and ensure that ships can turn
steadily in rough seas. Sun et al. [24] proposed a feedback linearization optimal heading
control algorithm to effectively control a ship’s course. Veremey et al. [25] proposed a new
approach for the compensative transformation of reference dynamic output controllers.
Du et al. [26,27] used adaptive robust nonlinear control to adjust a ship’s course and track.
Xiang et al. [28] improved the fuzzy logic method and tested it on underwater ships and
marine surface vehicles. Xu et al. [29] proposed a vector field guidance law to follow the
ship’s trajectory. Although most of these methods have good results, there is no stan-
dard to verify the control effect of their experiments and the ship model they use is no
comprehensive consideration for each type of ship, which cannot effectively verify the re-
sults. Liu et al. [30] proposed a nonlinear robust control algorithm based on Backstepping
method to control ship straight-path tracking. However, there is no curve path tracking
method in this study. Zhao et al. [31] based on Serret-Frenet frame transformation develop
a tracking error model and the backstepping controller compensates the nonlinearity of
the container ship. Xu et al. [32] proposed an adaptive backstepping controller for path-
following control of an underactuated ship based on a nonlinear steering model, which can
achieve the effect of path control. But the shortcoming in both two is, they present pretty
few control scenarios of the researches to verify the reliability of the algorithm, moreover,
the scene of track control is too simple.

This paper presents a new path-following control law. The main innovation of this
paper is to propose hyperbolic guidance law and apply it to straight-line path-following
control. This design improves the convergence of the straight-line path-following control.
For curved path-following in the transition between two adjacent straight-line paths, this
paper improved a reverse stepping method to calculate heading rate commands to make the
system globally asymptotically stable. Compared with the previous research, the extended
state observer (ESO) for the controller model is established to estimate and compensate the
state in this paper, which can improve the anti-interference ability of the ship in the path
following. In the presence of sea current interference, also gives a correction formula. In
this paper, linear quadratic regulator (LQR) and nonlinear feedback control are combined
to improve the traditional LQR heading controller to improve the control accuracy of
heading and yaw rate of the ship. Finally, the track control effect of three different types of
ships is verified in simulations and the control effect is evaluated according to International
Standard IEC62065 [33].

Section 2 establishes a mathematical model, including ship motion simulation and
control and identifies controller parameters. Section 3 describes the design of the heading
controller. Section 4 introduces the new guidance algorithm. Section 5 presents analysis of
simulation results. Finally, Section 6 contains the conclusions.

2. Mathematical Model of Ship Motion

2.1. Process Plant Model

We describe the ship motion model in five basic compositions, with three degrees of
freedom, shown in Figure 1. The model is derived from Newton’s laws of motion using
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linear equations to relate hydrodynamic forces to the respective motions in the horizontal
plane. The equations are as follows [4]:

m
[ .
u − vr − xgr2 − yg

.
r
]
= X, (1)

m
[ .
v + ur − ygr2 + xg

.
r
]
= Y, (2)

Iz
.
r + m

[
xg
( .
v + ur

)− yg
( .
u − vr

)]
= N, (3)

where X, Y and N denote external forces and moment, while
(

xg, yg, zg
)

describe the
location of the center of gravity. u,v and r denote surge velocity, sway velocity and yaw
angular velocity, respectively,

.
u,

.
v and

.
r are their derivatives. Iz is the yaw moment of

inertia, m is the total mass of ship. It is common to let the body frame coordinate origin
coincide with the center of gravity; thus, the equations can be rewritten as:

m
( .
u − vr

)
= X, (4)

m
( .
v + ur

)
= Y, (5)

Iz
.
r = N. (6)

Figure 1. Ship motion mathematical model.

The hydrodynamic force X is linearized and is assumed to be proportional to the
ship linear velocity, u in surge. Let Ru denote the linear coefficient of hydrodynamic
resistance to forward motion and Xthrust denote the thrust provided by the propeller. Thus
Equation (4) becomes:

m
( .
u − vr

)
= Xthrust − Ruu. (7)

Let τu denote the time constant of the linear surge response model, Ku denote the coef-
ficient of thrust, umax denote maximum forward speed, and Xmax denote maximum thrust:

τu = m/Ru,
umax = Xmax/Ru,

Ku = umax/τu.
(8)

Substituting Equation (8) into Equation (7) yields:

.
u = KuX′ + vr − u/τu. (9)

In the same way, for sway response model let τv = m/Rv denote the linear coefficient
of hydrodynamic resistance to sway motion, then Equation (5) becomes:

.
v = −ur − v/τv. (10)
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For the yaw response model, Equation (6) becomes:

Iz
.
r = Kr

(
δaKuX′τu/L + W

)
+ γLRv(v − γLr)− Rrr, (11)

where Kr is a constant of proportionality, γ is the yaw stability factor, L is the length
of the ship, δa is the real rudder deflection, Rv is the linear coefficient of hydrodynamic
resistance to lateral motion, Rr is the linear coefficient of hydrodynamic resistance to yaw
and τr = Iz/Rr denotes the time constant of the yaw response model. Simplifying by
relating the moment of inertia to the mass and length as a uniformly dense rod to its
mass and length, then the moment of inertia can be obtained as Iz = mL2/12. KrW is the
turning moment imparted by wave disturbance, K′

r is the normalized coefficient of rudder
moment, which can be expressed as K′

r = Krδmax/Iz.
The wave interference model established in this paper consists of a series of square

half wave waves. The duration T and height H of each half wave are random numbers
related to the Bretschneider wave spectrum [34]. Finally, a square wave interference signal
is generated by the wave model, in which the calculation methods of the duration T and
the wave height H are as follows:{

T = 0.5T0(ss)× (1 + 0.5Randb)
H = H0(ss)× (1 + Hr × Randb)× Aa

, (12)

where Randb denotes a random number among [−1, 1]. A value of 0.5 for Hr is recom-
mended, while Aa has alternating sign (i.e., ±1) to describe wave direction, ss means the
sea state level, T0(ss) and H0(ss) are the natural period and significant wave height under
sea state ss, respectively. The range of values is shown in Table 1.

Table 1. The value of natural period and meaningful wave height under different sea conditions.

Sea State (ss) T0 (ss) H0 (ss)

1 2.2 0.1
2 5 0.5
3 7.8 1.25
4 11 2.5
5 14 4
6 17.2 6
7 21.1 9
8 26.3 14

Referring to the modeling method of wave interference in IEC62065, this paper ignores
the influence of wave interference on ship surge motion and sway motion, only adds the
wave interference torque of ship’s yaw motion to the mathematical model of ship’s motion.
Rewrite ship yaw Equation (11) as:

.
r = K′

r
KuX′τu

L
· δa

′ + 12γ(v − γLr)τr

Lτv
− r

τr
+ 0.01K′

rS f H, (13)

where δa
′ is the normalized rudder position obtained by δ′a = δa/δamax, S f is a Scaling

Factor. A value of 20 for the Scaling Factor is recommended.

2.2. Control Plant Model

We simplify the process plant model described in the previous section to design
the autopilot control algorithm. The simplified model contains only the main physical
properties of the process. Notomo [35] proposed a linearized model for ship steering
equations, which is given by a simple transfer function between r and δ.

r
δ
(s) =

K
(1 + Ts)

, (14)
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where T and K are the time constant and gain constant, respectively. Neglecting the roll
and pitch modes (φ = θ = 0), such that:

.
ψ = r (15)

finally yields:
ψ

δ
(s) =

K
s(1 + Ts)

, (16)

where ψ is the heading angle.
The time domain form of Equation (16) is:

T
..
ψ +

.
ψ = Kδ. (17)

Notomo’s first order model is usually written as:

T
.
r + r = Kδ. (18)

When the straight motion of the ship is unstable or critical stable, nonlinear maneu-
vering models should be used. A nonlinear term can be added in Equation (18); thus,
Notomo’s nonlinear first order model can be obtained as:

T
.
r + r = K(δ + Kvv). (19)

This is the commonly used control plant model for the design of the steering autopilot,
in which Kv is the coefficient of the nonlinear term.

2.3. Controller Parameter Identification

In the above-mentioned control model, some parameters cannot be obtained directly
but need to be obtained by system parameter identification. In control applications, the
controller performance is bound to the assumptions and approximations of the model. To
obtain the corresponding controller parameters more accurately, we apply the forgetting
factor least square algorithm to Notomo’s nonlinear first order model to identify the ship
motion model.

The Recursive Least Square (RLS) algorithm with exponential forgetting is given
as follows [36]:

θ̂(k) = θ̂(k − 1) + Q(k)
[
y(k)− ΦT(k)θ̂(k − 1)

]
, (20)

Q(k) = P(k − 1)Φ(k)
[
λI + ΦT(k)P(k − 1)Φ(k)

]−1
, (21)

P(k) =
1
λ

[
I − Q(k)ΦT(k)

]
P(k − 1), (22)

where the forgetting factor value of λ is 0.98 < λ < 0.995, Φ(k) is the data vector and θ̂(k)
is the estimated value of the parameter vector. Q(k) and P(k) are the intermediate variable
help us get θ̂(k) we want.

Next, referring to the ship motion simulation model, substituting control Equation (19)
into ship motion Equation (13), the values of T, K and Kv are obtained as follows:⎧⎪⎨⎪⎩

T = τvτr
τv+12τrγ2 ,

K = TKr
′umaxX′

Lδmax

Kv = 12γT
KLτv

.
, (23)

To facilitate the identification calculation, Equations (11) and (13) are rewritten in the
following form: {

Y0 = θ0X0 + θ1X1
Y1 = θ2X2

(24)
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where {
Y0 =

.
r − 12γ

Lτv
vw + 12γ2

τv
r

Y1 =
.
vg + ugr

, (25)

⎧⎨⎩
X0 = U

L δ′a
X1 = r

X2 = vw

, (26)

⎧⎪⎨⎪⎩
θ0 = KL

TU

θ1 = − 1
T + 12γ2

τv
θ2 = − 1

τv

. (27)

According to the recursive formula of the forgetting factor least squares identification
algorithm in Equations (20)–(22), the corresponding identification results θ0, θ1 and θ2 can
be obtained. Through θ0, θ1 and θ2, the three controller parameters T̂, K̂ and K̂v of the
nonlinear first-order Notomo model can be solved:⎧⎪⎪⎪⎨⎪⎪⎪⎩

T̂ = 1
−θ̂1+

12γ2
τv

,

K̂ = θ̂0T̂U
L ,

K̂v = 12γT̂
LK̂τv

.

(28)

3. Optimal Heading Controller

This section describes the design of the optimal heading controller. The main goal is
to calculate the controller parameters in terms of the Notomo constants obtained by the
identification algorithm in the previous section and introduce them in the LQR controller
law. Then, nonlinear feedback is added to improve LQR controller to achieve nonlinear
control and better control accuracy. In addition, to filter out the influence of sea wave
interference on the acquisition of ship heading signal, an extended state observer (ESO) is
added to this design to obtain the estimated value of the low-frequency heading signal.
Thus, the controller can obtain accurate and fast course control.

3.1. LQR Controller

Assume that the heading signal ψ can be obtained by a compass and the yaw rate
r can be obtained by a rate gyro or by a state observer. Notomo’s first order model in
Equation (18) can be written as the state space form:

.
X = AX + Buc, (29)

where X = (r, ψ, δ)T is the state vector and uc is the controller input, which denotes the
desired rudder rate. A and B are the coefficient matrixes with:

A =

⎛⎝ −1/T 0 K/T
1 0 0
0 0 0

⎞⎠, (30)

B =
(

0 0 1
)T , (31)

Xd = (rd, ψd, δ)T denotes the objective state vector. The goal of the controller design is to
converge the state X to the objective Xd:

lim
t→∞

X = Xd, (32)

X̃ denotes the error vector:
X̃ = X − Xd =

(
r̃ ψ̃ δ

)T , (33)
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where r̃ = r − rd, ψ̃ = ψ − ψd. The control performance specification can be measured in
terms of:

J =
∫ ∞

0

(
X̃TQX + uc

T Ruc

)
dt, (34)

where Q is a 3-dimensional diagonal matrix, in which diagonal elements are the weighting
factors. R is the weighting factor of the input. The LQR problem is to find the optimal
control uc(t) such that J in Equation (34) is minimized,

uc = −R−1BT PX̃, (35)

where P is the positive defined solution of the Riccati Equation [37]:

AT P + PA − PBR−1BT P + Q = 0 (36)

Let
(k1, k2, k3)

T = −R−1BT P, (37)

where k1, k2 and k3 are the controller gains obtained by the LQR law. Thus, the representa-
tion of the controller can be written as:

δLQR =
∫ t

0

(
k1r̃ + k2ψ̃ + k3δ

)
dτ. (38)

3.2. Feedback Nonlinearization Compensation

In the controller design here, a nonlinear feedback term is added in the control law
for compensating the nonlinear maneuvering of the ship. Notomo’s nonlinear first order
model can be rewritten as:

T
.
r + r = K(δ + Kvv). (39)

Comparing with the linear controller law obtained in the previous section, the follow-
ing equation can be obtained:

δLQR = δcom + Kvv, (40)

where δcom is the command rudder angle, Kvv can be treated as the feedback term, such that:

δcom = δLQR − δFL, (41)

with δFL = Kvv and the value of Kv is obtained from the identification algorithm in the
previous section.

3.3. Extended State Observer

Both surface ships and underwater vehicles need state observers to process signal
data from sensors and navigation equipment. The observer in this paper is designed in
terms of the nonlinear ship model and the wave disturbance model. The nonlinear ship
model and the wave disturbance model are as follows:{

T
.
r + r = K(δ − δn + Kvv) + ωr..
ψω + 2ςω0

.
ψω + ω2

0ψω = ωω
(42)

where δn is the rudder offset, ωr and ωω are the zero-mean Gaussian measurement white
noise; ψω represents the first-order wave-induced motion, and ς is the relative damping
ratio, conventionally assigned a value of 0.075. ω0 is the wave frequency.

Based on Equation (42), the state space equation of the extended state observer is:

.
X̂ = AX̂ + BΓ + G(Y − CX̂), (43)
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where X̂ denotes the estimation of the state, X̂ =
(
δ̂n, r̂, ψ, ξ̂ω, ψ̂ω

)T
and

.
ξ̂ω = ψ̂ω. Γ is the

input of the model and Γ = δ + Kvv; G is the gain matrix; δ̂n is the estimation of the rudder
offset; Y is the heading signal obtained by the compass with Y = ψ + ψω.A, B and C are
the coefficient matrixes with:

A =

⎛⎜⎜⎝
0 0 0 0 0

−K
T − 1

T 0 0 0
0 1 0 0 0
0 0 0 −ω2

0 −2ςω0

⎞⎟⎟⎠, (44)

B =

⎛⎜⎜⎜⎜⎝
0
K
T
0
0
0

⎞⎟⎟⎟⎟⎠, (45)

C =

⎛⎜⎜⎜⎜⎝
0
0
1
0
1

⎞⎟⎟⎟⎟⎠. (46)

The error of the state vector can be denoted as E = X̂ − X, of which the differential
equation is:

.
E = (A − GC)E. (47)

To keep the asymptotic stability of the error vector, the solution of Equation (47) should
be E(t) = E0e−kt, where E0 is the initial error value and k is a scale factor. Thus, all of the
eigenvalues of the matrix (A − GC) have negative real parts. The gain matrix G can be
found by pole placement in terms of the eigenvalues. In this case, the eigenvector of the ma-
trix (A − GC) is chosen as: P = (P0, P1, P2, P3, P4) = (1.5/T, 1.5/T, 1.5/T, 15ςω0, 15ςω0)
and the gain matrix can be obtained by using the MATLAB function.

4. Guidance Law

Systems for guidance consist of a waypoint generator with human interface. A new
hyperbolic guidance method for straight-line path-following control is presented in this
paper. A Lyapunov function analysis [38] is used to prove the stability of this method.
For curve guidance, based on the Lyapunov stability function, this paper presents a
reverse stepping method to calculate heading rate command and make the system globally
asymptotically stable, with a correction formula for current interference.

4.1. Error Coordinates

Consider a straight-line path implicitly defined by two waypoints pk = (xk, yk)
T ∈ R2

and pk+1 = (xk+1, yk+1)
T ∈ R2, respectively. Also, consider the position of the ship

denoted by the point pt = (xt, yt)
T ∈ R2. Then the direction of the path can be defined as:

αk := atan2(xk+1 − xk, yk+1 − yk). (48)

Fossen [4] gives the formula to calculate the cross-track error:

P̃(t) = −[xt − xk] cos(αk) + [yt − yk]sin(αk). (49)

The calculation of the cross-track error in the transition curved path between two
adjacent straight-line paths is complicated. Figure 2 shows two adjacent straight-line paths
described by the waypoints pk,pk+1 and pk+2. Rk+1 is the radius of the transition curve
and the cross-track error of the transition curved path can be obtained by:
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Figure 2. The transition curved path.

First, determine the direction of the curved path (clockwise or counterclockwise).
Based on Equation (48), the direction αk of the straight-line path pk pk+1 and the direction
αk+1 of the straight-line path pk+1 pk+2 can be calculated. Then the direction of the curved
path is:

Fk+1 = sign(sin(αk+1 − αk)); (50)

here, Fk+1 denotes the direction of the curved path, a positive sign means clockwise and a
negative sign means counterclockwise.

Second, determine the center point of the curved path. The angle between the two
adjacent straight-line paths can be obtained in terms of the direction αk, αk+1 and Fk+1.

γk+1 = π − Fk+1(αk+1 − αk). (51)

Then the distance between the center point and the waypoint pk+1 can be determined
in terms of the angle γk+1 and the radius Rk+1.

Dk+1 = Rk+1/sin
(γk+1

2

)
. (52)

The angle between the vector from the center point Ok+1 to the waypoint pk+1 and
North can be obtained in terms of the angle γk+1, the direction Fk+1 and αk.

αOk+1 = αk − Fk+1γk+1. (53)

Based on the waypoint pk+1, the direction αOk+1 and the distance Dk+1 from the center

point Ok+1 to the waypoint pk+1, the coordinate POk+1 =
(

xOk+1 , yOk+1

)
of the center point

Ok+1 can be determined:

pOk+1
= pk+1 − Rk+1

(
sin αOk+1

cos αOk+1

)
. (54)

Finally, the cross-track error can be calculated by:

P̃(t) = Fk+1‖pt − pOk+1
‖ − Rk+1. (55)

The course angle command is the direction of the vector tangential to the point on the
path that is closest to the vehicle. The course angle command can be calculated by:

χ̃(t) = χ(t)− atan2
(

x(t)− xOk+1 , y(t)− yOk+1

)
+

π

2
Fk+1; (56)
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here, χ(t) is the current course.

4.2. Straight-Line Path Guidance

The main goal of straight-line path-following control is to eliminate cross-track and
heading errors. Hyperbolic guidance will achieve a more rapid convergence of path-
following maneuvering because of its smoothing and transition properties. Thus, a hyper-
bolic guidance methodology is adopted with a hyperbolic tangent function. As shown in
Figure 3, the curve OC denotes a hyperbola, of which the asymptote is the straight-line
path. The hyperbola equation is:

y = Rc
ekcx − e−kcx

ekcx + e−kcx , (57)

where Rc denotes the distance between the origin O and the straight-line and P̃(t) is the
distance from the ship to the planned route at time t with Rc > P̃(t).

C

Figure 3. The hyperbolic guidance law.

Then, the position of the ship pt can be denoted by
(

x0, Rc − P̃(t)
)

and the angle ζ

shown in Figure 3 can be calculated by:

ζ(t) = sign
(

P̃(t)
)

arctan

[
kc

(
2
∣∣∣P̃(t)∣∣∣− P̃(t)2

Rc

)]
, (58)

where kc is a constant coefficient with kc > 0, denoting the rate of approach to the straight-
line path.

Then the course command can be obtained by:

χc = αk + ζ(t) = αk + sign
(

P̃(t)
)

arctan

[
kc

(
2
∣∣∣P̃(t)∣∣∣− P̃(t)2

Rc

)]
, (59)

where χc is the command course and αk is initial heading angle.

4.3. Curved Path Guidance

For curved path following, a kinematic controller generates the desired states for
motion control. The control method can be designed using a dynamic model of the ship by
specifying a reference frame that moves along the path. A Serret-Frenet reference frame [39]
is usually chosen. Figure 4 shows an inertia reference frame {i} = (xi, yi, zi), a body-fixed
reference frame {s} = (xs, ys, zs) and a Serret-Frenet frame {m} = (xm, ym, zm). The origin
Om of {m} is attached to the point on the path that is closest to the vehicle. R denotes the
radius of the curved path.
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Figure 4. Path-following: reference frame.

The notation Hc
a/b is adopted in this paper, where {a}, {b} and {c} denote the three

different frames and H denotes the coordinate of {a} in frame {b} relative to {c}. Such that:

ri
m/i + ri

s/m = ri
s/i, (60)

where r denotes the distance vector.
Time differentiation of Equation (60) yields:

vi
m/i +

d
dt

ri
s/m = vi

s/i, (61)

where v denotes the speed vector. And d
dt ri

s/m can be obtained by:

d
dt

ri
s/m = Ri

mωi
m/i × rm

s/m + Ri
mvm

s/m, (62)

where Ri
m denotes the transformation matrix from {m} to {i} and ωi

m/i =
(
0, 0,− .

α
)T

denotes the rotation vector between the {m} and {i} frames.
Substituting Equation (62) into Equation (61) and multiplying by Ri

m on both sides of
the equation, yields:

vm
m/i + ωi

m/i × rm
s/m + vm

s/m = Rm
s vs

s/i. (63)

Then the kinematic equations can be obtained:⎧⎨⎩
.
P̃ = −u sin χ̃

.
α = u cos χ̃

R+FP̃

, (64)

where P̃ is the position deviation, χ̃ is the course deviation, α is the planned course and
F indicates the direction of the transition curve. F = 1 means turning clockwise, F = −1
means turning counterclockwise.

Thus, goal of the curved path-following controller is to calculate the yaw rate com-
mands, forcing the ship to approach the curved path. This paper presents a reverse stepping
calculation method based on the Lyapunov function to obtain the yaw rate commands.

First, calculate the course commands. Consider the Lyapunov function candidate
as follows:

V1 =
1
2

P̃2. (65)

Time differentiation of Equation (65) yields:

.
V1 = −P̃u sin(χ − α). (66)
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To satisfy global asymptotic stability (GAS), it is necessary to guarantee that V1 < 0 as
P̃ �= 0 and

.
V1 = 0 as P̃ = 0. Thus, the following equation is adopted:

.
V1 = −k1P̃2 ≤ 0, (67)

where k1 is the scaling factor, with k1 > 0.
Based on Equation (65) and Equation (66), the course commands can be calculated by:

χc = α + arcsin

(
k1P̃
u

)
. (68)

Equation (68) suggests that the course command χc will approach the path direction α
to eliminate the course error χ̃, as the cross-track error is decreasing. However, the path
direction α is varying with ship motion during the curved path-following control. Thus, it is
necessary to calculate the yaw rate commands. Consider the Lyapunov function candidate:

V2 =
1
2

χ̃2, (69)

with χ̃ = χ − χc. Time differentiation of Equation (69) yields:

.
V2 = (χ − χc)

⎛⎝ .
χ − .

α −
.
P̃√

(u/k1)
2 − P̃2

⎞⎠. (70)

To satisfy GAS, it is necessary to guarantee that
.

V2 < 0 as χ = χc and
.

V2 = 0 as
χ = χc. Thus, the following equation is adopted:

.
V2 = −k2χ̃2, (71)

where k2 is the scaling factor, with k2 > 0.
Based on Equations (64), (68), (70) and (71), the course commands can be calculated by:

.
χc =

u cos χ̃

R + FP̃
− −u sin χ̃√

(u/k1)
2 − P̃2

− k2χ̃, (72)

where
.
χc is the derivative of χc, indicating the command track angular rate. We neglect

the varying of the drift angle β, thus the varying rate course command can be treated as
the yaw rate command, approximately. However, this does not fit in the presence of wave
disturbance. In the presence of sea current interference, the yaw rate commands need to be
adjusted as:

rc =
.
χc

ug

ug − u f cos(ϕg − ϕ f )
, (73)

where rc denotes the yaw rate command, ug denotes the ship speed over the ground, with
direction ϕg and u f is the current speed through water, with direction ϕ f .

Figure 5 is the three-layer control structure of ship track control proposed in this paper.
The track control module calculates the current planned navigation section of the

ship according to the current ship position information and environmental interference
information and calculates the track deviation and heading deviation, then modifies the
planned heading angle according to the deviation information, calculates the command
heading angle and sends it to the heading control module. According to the current
compass signal, rudder angle signal and yaw speed signal, the course control module
calculates the course deviation after comparing with the command heading and calculates
the command rudder angle through the course control algorithm.
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Figure 5. Basic composition of track control system.

Finally, the rudder angle control layer drives the rudder to make the actual rudder
angle consistent with the command rudder angle, so as to realize the track control of
the ship.

Figure 6 shows the path-following control overall flow chart:
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Figure 6. Path-following control flow chart.
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5. Simulation Results

International Standard IEC62065 is used to test the performance of the path-following
control algorithm presented in this paper. Based on the standard, three classes of ship are
adopted: class A fast ferry, class B container and class C tanker. See Table 2 for details.

Table 2. Parameters for three ships.

Parameter Notation
Ship A

Fast Ferry
Ship B

Container
Ship C
Tanker

Ship length (m) L 60 250 350
Thrust lever ramp time (s) Tp 20 30 30

Rudder ramp time (s) Tδ 12 30 30
Rudder follow-up offset (%) δn 0 0 0

Maximum speed (kn) umax 30 25 10
Rudder moment coefficient (deg/s/%) K′

r 0.025 0.01 0.005
Surge response time constant (s) τu 150 600 800
Sway response time constant (s) τv 2 4 36
Yaw response time constant (s) τr 4 23 46

Stability coefficient γ −0.05 0 0

The heading controller parameters are given in Table 3:

Table 3. Heading controller parameters.

K̂ T̂ K̂v Q R k1 k2 k3

Ship A 0.0798 11.1343 1.9899 diag(100, 0.5, 1) 5 3.0261 0.1414 0.2083
Ship B 0.0794 10.8759 1.9863 diag(100, 0.5, 1) 5 2.9936 0.1414 0.2090
Ship C 0.0794 10.8966 1.9913 diag(100, 0.5, 1) 5 2.9964 0.1414 0.2090

The ships’ initial states for the three test scenarios are as follows:
Ship A:(u0, v0, r0, ψ0) = (15.4 m/s, 0 m/s, 0 rad/s, 0 deg);
Ship B:(u0, v0, r0, ψ0) = (12.9 m/s, 0 m/s, 0 rad/s, 0 deg);
Ship C:(u0, v0, r0, ψ0) = (5.1 m/s, 0 m/s, 0 rad/s, 65 deg);
In control applications, it is important to validate the controller experimentally, this

paper takes ship class B as the simulation object and the ship parameters are shown in
Table 2. The step steering signal is selected as the input signal and the rotation experiment
is used as the experimental method of controller parameter identification. The trajectory is
shown in Figure 7 and the simulation data is shown in Table 4.

Table 4. Simulation data of class B ship rotation experiment.

Data Name Experimental Data Actual Data Error

Rotation diameter (nm) 0.337 0.336 0.001
Fixed length rotation speed

(deg/min) 71 71 0

Steady surge speed (kn) 12.9 12.9 0
Steady sway speed (kn) −1.03 −1.03 0

Tactical cycle diameter (nm) 0.640 0.640 0
Advance (nm) 0.555 0.551 0.004

Departure (nm) 0.325 0.323 0.002

It can be seen from the experimental results that the control model established in this
paper meets the ship’s turning characteristics and the established model is reliable.

Secondly, the course control algorithms of the three types of ships in Table 2 are
verified. For ship class A, the initial speed of the ship is 15.4m/s, the command thrust is
0.67, under sea state 3 and the command heading angle is 30 degrees. As for ship class B,
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the initial speed is 12.9 m/s, the command thrust is 0.8, under sea state 3 and the command
heading angle is 30 degrees. For ship class C, the initial speed of the ship is 5.1m/s, the
command thrust is 1, under sea state 3 and the command heading angle is 30 degrees.
Figures 8–10 shows that the improved LQR control algorithm in this paper is compared
with the traditional LQR algorithm and the simulation experimental chart of course control
is obtained. The simulation data is shown in Table 5.

 
Figure 7. Testing results for ship class B in rotation experiment.

 
(a) (b) 

Figure 8. Comparative experiment of course control for ship class A: (a) The course angle changes with time; (b) The actual
rudder angle changes with time.
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(a) (b) 

Figure 9. Comparative experiment of course control for ship class B: (a) The course angle changes with time; (b) The actual
rudder angle changes with time.

 
(a) (b) 

Figure 10. Comparative experiment of course control for ship class C: (a) The course angle changes with time; (b) The actual
rudder angle changes with time.

Table 5. The results of the heading control test.

Types of Ships Control Method Overshoot (◦)
Steady State Mean

Deviation (◦)
Steady State Maximum

Deviation (◦)
Response
Time(s)

Ship class A
Fast ferry

Traditional LQR 1.700 0.625 0.500 253.3

Improved LQR 2.600 0.365 0.200 142.5

Ship class B
Container

Traditional LQR 4.600 0.395 0.600 215.1

Improved LQR 0.100 0.075 0.100 125.7

Ship class C
Tanker

Traditional LQR 0.900 0.450 0.900 190.5

Improved LQR 0.300 0.275 0.100 459.6

Based on the above experimental results, the following conclusions can be drawn: the
improved algorithm combining LQR with feedback nonlinearization control can achieve
the function of ship course control, the overshoot, control accuracy and corresponding time
are better than the traditional LQR control method. In addition, by adding a state observer
can ensure that the ship can sail according to the expected instructions under sea state 3
without frequent steering.

There are three test scenarios used to evaluate performance of the path-following
controller. Details of the scenarios are given in Tables 6–8.
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Table 6. The parameters of the track for ship class A.

Waypoint No. Latitude Longitude
Track
[deg]

Distance
[NM]

Radius
[NM]

Estimated ROT
[deg/min]

001 00◦01.000′ S 000◦01.000′ W 000.0 2.00 0.25 80
002 00◦01.000′ N 000◦01.000′ W 090.0 2.00 0.25 80
003 00◦01.000′ N 000◦01.000′ E 315.0 1.41 0.10 200
004 00◦02.000′ N 000◦00.000′ E 225.0 1.41 0.20 100
005 00◦01.000′ N 000◦01.000′ W 135.0 2.83 0.60 33
006 00◦01.000′ S 000◦01.000′ E 270.0 2.00 0.20 100
007 00◦01.000′ S 000◦01.000′ W 045.0 2.83 0.25 80
008 00◦01.000′ N 000◦01.000′ E 180.0 2.00 0.40 50
009 00◦01.000′ S 000◦01.000′ E

Table 7. Parameters of the track for ship class B.

Waypoint No. Latitude Longitude
Track
[deg]

Distance
[NM]

Radius
[NM]

Estimated ROT
[deg/min]

001 65◦00.000′ N 000◦20.000′ W 040.2 6.54 0.50 40
002 65◦05.000′ N 000◦10.000′ W 139.8 13.09 1.0 20
003 64◦55.000′ N 000◦10.000′ E 040.2 6.55 2.0 10
004 65◦00.000′ N 000◦20.000′ E

Table 8. Parameters of the track for ship class C.

Waypoint No. Latitude Longitude
Track
[deg]

Distance
[NM]

Radius
[NM]

Estimated ROT
[deg/min]

001 00◦03.000′ S 179◦57.000′ W 000.0 6.00 1.00 10
002 00◦03.000′ N 179◦57.000′ W 270.0 6.00 1.00 10
003 00◦03.000′ N 179◦57.000′ E 045.0 4.24 0.50 20
004 00◦06.000′ N 180◦00.000′ W 135.0 4.24 1.00 10
005 00◦03.000′ N 179◦57.000′ W 225.0 8.49 1.50 7
006 00◦03.000′ S 179◦57.000′ E 090.0 6.00 1.00 10
007 00◦03.000′ S 179◦57.000′ W 315.0 8.49 0.75 13
008 00◦03.000′ N 179◦57.000′ E 180.0 6.00 1.25 8
009 00◦03.000′ S 179◦57.000′ E

Results of testing the three classes of ship are shown in Figures 11–13. WPTs in the
figure are waypoints.

 

(a) (b) 

Figure 11. Testing results for ship class A: (a) Ship trajectory; (b) Observation index: rudder angle, track deviation and
heading deviation.
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(a) (b) 

Figure 12. Testing results for ship class B: (a) Ship trajectory; (b) Observation index: rudder angle, track deviation and
heading deviation.

 

(a) (b) 

Figure 13. Testing results for ship class C: (a) Ship trajectory; (b) Observation index: rudder angle, track deviation and
heading deviation.

From Figure 11, we can see that ship class A has a maximum cross-track error of 24.8 m
and the maximum course error 11.3◦, which satisfies the requirements set by IEC62065
of setting the course deviation limit to 25◦ and the cross-track deviation to 100 m. The
experimental results show that this algorithm has the advantage of less steering time.

Results for ship class B are shown in Figure 12, with a maximum cross-track error of
22 m and maximum course error of 1.6◦, which satisfies the requirements of setting the
course deviation limit to 15◦ and the cross-track deviation to 60 m.

Results for ship class C are shown in Figure 13, where the experimental environment
is under rough sea state 5, with maximum cross-track error of 27.24 m and maximum
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course error of 3.9◦, which satisfies the requirements of setting the course deviation limit to
15◦ and the cross-track deviation to 100 m.

Tests of ship class B in the presence of wave disturbance and a simulated current of
5 kn are also performed. The results are shown in Figure 14.

Figure 14. Testing results for ship class B in the presence of disturbance: rudder angle, track deviation and heading deviation.

As shown in Figure 14, in the presence of sea state 3 and a simulated current of 5 kn,
30◦N and the other requirements for test are the same as those for ship class B listed earlier,
the results for ship class B satisfy the IEC62065 requirements with maximum cross-track
error of 30.1 m and maximum course error of 3.96◦. The experimental result shows that the
proposed algorithm has demonstrated good robustness.

To further verify the control effect of the proposed algorithm, additional comparative
experiments have been done. For ship class B, the traditional and adaptive PID control
algorithms were used for track control, as shown in Figure 15. The experimental results are
also compared with traditional LQR controller and the improved LQR control algorithm
with nonlinear feedback term proposed in this paper and the track deviations are shown
in Figure 16. Specific data are in Table 9. It can be seen from the experimental results that
the traditional LQR control method has better tracking effect in the tracking task of direct
sail or low speed tracking simple curve. However, it is difficult to guarantee the tracking
accuracy in tracking complex task path. The maximum deviation under traditional PID
controller, adaptive PID controller, traditional LQR controller and improved LQR controller
are as follows: 176.9 m, 48.51 m, 23.32m and 22 m. In terms of stability, the traditional LQR
controller performs poorly. And for the improved LQR controller, the deviation is around
0 for more than 3000 s. The performance of the control method proposed in this paper is
significantly better than that of the other three control methods.
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(a) (b) 

Figure 15. Navigation route for ship class B under different control methods: (a) traditional proportional-integral-derivative
(PID) control law; (b) adaptive PID control law.

Figure 16. Testing results for ship class B under different control methods.

Table 9. Experimental result for comparison of different control algorithms.

Parameters Overshoot (m) Peak Time (s) Rising Time (s) Setting Time (s)

Traditional PID 176.9 532, 1305 243 1650
Adaptive PID 48.51 527 135 1080

Traditional LQR 23.32 1406 162 1097
Improved LQR 22 1024 94 690

6. Conclusions

A new practical guidance and control algorithm for marine vehicles is introduced
in this paper. The main innovation is the hyperbolic guidance law used in straight-line
path-following control. For curved path-following in the transition between two adjacent
straight-line paths, this paper improves the reverse stepping method for the controller to
calculate heading rate command to make the system globally asymptotically stable, with a
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correction formula for sea current interference. Traditional LQR and feedback nonlinear
control are combined to improve the accuracy of course control. Different types of ships
are verified in this paper, simulation results based on the International Standard IEC62065
are included to demonstrate system performance. The algorithms satisfy the IEC62065
testing requirements. Three additional experiments verified that the control method has
good robustness and good control effect.

Author Contributions: Conceptualization, Z.Z. and H.W.; methodology, Z.Z.; software, Z.Z.; valida-
tion, Z.Z., H.W., Y.Z. (Yuhan Zhao) and G.Z.; formal analysis, Z.Z.; investigation, Z.Z.; resources, Z.Z.;
data curation, Y.Z. (Yuhan Zhao) and G.Z.; writing—original draft preparation, Z.Z.; writing—review
and editing, Z.Z.; visualization, Z.Z.; supervision, H.W. and Y.Z. (Yi Zhao); project administration,
H.W. and Y.Z. (Yi Zhao); funding acquisition, H.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This study was funded by the Russian Foundation for Basic Research (RFBR) (No. 20-07-00531).

Institutional Review Board Statement: “Not applicable” for studies not involving humans or animals.

Informed Consent Statement: “Not applicable” for studies not involving humans.

Data Availability Statement: Data sharing not applicable. No new data were created or analyzed in
this study. Data sharing is not applicable to this article.

Acknowledgments: The authors are grateful to the anonymous reviewers for their valuable com-
ments and suggestions that helped improve the quality of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Breivik, M.; Fossen, T.I. Path following for marine surface vessels in Oceans. In Proceedings of the MTS/IEEE Techno-Ocean
conference, Kobe, Japan, 9–12 November 2004; pp. 2282–2289.

2. Dong, Z.P.; Wan, L.; Li, Y.M.; Zhang, G.C. Trajectory tracking control of underactuated USV based on modified backstepping
approach. Int. J. Nav. Archit. Ocean Eng. 2015, 7, 817–832. [CrossRef]

3. Filipe, M.B.; Lucas, B.M. Robust path-following control for articulated heavy-duty vehicles. Control Eng. Pract. 2019, 85, 246–256.
4. Fossen, T.I. Guidance and Control of Ocean Vehicles, 1st ed.; Wiley: New York, NY, USA, 1994; pp. 55–122.
5. Breivik, M.; Fossen, T.I. Applying missile guidance concepts to motion control of marine craft. IFAC Proc. Vol. 2007, 40, 349–354.

[CrossRef]
6. Fossen, T.I.; Pettersen, K.Y.; Galeazzi, R. Line-of-sight path following for dubins paths with adaptive sideslip compensation of

drift forces. Control Syst. Technol. IEEE 2015, 23, 820–827. [CrossRef]
7. Kelasidi, E.; Liljeback, P.; Pettersen, K.Y.; Gravdahl, J.T. Integral line-of-sight guidance for path following control of underwater

snake robots: Theory and experiments. IEEE Trans. Robot. 2017, 33, 610–628. [CrossRef]
8. Moe, S.; Pettersen, K.Y. Set-Based line-of-sight (LOS) path following with collision avoidance for underactuated unmanned

surface vessels under the influence of ocean currents. In Proceedings of the IEEE Conference on Control Technology and
Applications (CCTA), Mauna Lani, HI, USA, 27–30 August 2017; pp. 241–248.

9. Moe, S.; Pettersen, K.Y.; Fossen, T.I.; Gravdahl, J.T. Line-of-sight curved path following for underactuated USVs and AUVs in the
horizontal plane under the influence of ocean currents. In Proceedings of the 24th Mediterranean Conference on Control and
Automation (MED), Athens, Greece, 21–24 June 2016; pp. 38–45.

10. Fossen, T.I.; Lekkas, A.M. Direct and indirect adaptive integral line-of-sight path following controllers for marine craft exposed to
ocean currents. Int. J. Adapt. Control Signal Process. 2017, 31, 445–463. [CrossRef]

11. Korkmaz, F.C.; Su, M.E.; Alarcin, F. Control of a ship shaft torsional vibration via modified PID controller. Brodogradnja 2014,
65, 17–27.

12. Samanta, B.; Nataraj, C. Design of intelligent ship autopilots using particle swarm optimization. In Proceedings of the IEEE
Swarm Intelligence Symposium, St. Louis, MO, USA, 21–23 September 2008; pp. 1–7.

13. Johansen, T.A.; Fuglseth, T.P.; Tondel, P.; Fossen, T.I. Optimal constrained control allocation in marine surface vessels with
rudders. Control Eng. Pract. 2008, 16, 457–464. [CrossRef]

14. Lee, S.D.; Tzeng, C.Y.; Huang, W.W. Ship streeing autopilot based on ANFIS framework and conditional turing scheme. Mar. Eng.
Front. 2013, 1, 53–62.

15. Dlabac, T.; Calasan, M.; Krcum, M.; Marvucic, N. PSO-Based PID controller design for ship course-keeping autopilot. Brodograd-
nja/Shipbuilding 2019, 70, 1–15. [CrossRef]

16. Oh, S.R.; Sun, J. Path following of underactuated marine surface vessels using line-of-sight based model predictive control. Ocean
Eng. 2010, 37, 289–295. [CrossRef]

123



J. Mar. Sci. Eng. 2021, 9, 166

17. Guerrero, J.; Torres, J.; Creuze, A. Trajectory tracking for autonomous underwater vehicle: An adaptive approach. Ocean Eng.
2019, 172, 511–522. [CrossRef]

18. Burns, R.S. The use of artificial neural networks for the intelligent optimal control of surface ships. Ocean Eng. 1995, 20, 65–72.
[CrossRef]

19. Dai, S.; Wang, C.; Luo, F. Identification and learning control of ocean surface ship using neural networks. IEEE Trans. Ind. Inform.
2012, 8, 801–810. [CrossRef]

20. Nicolau, V. On PID controller design by combining pole placement technique with symmetrical optimum criterion. Math. Probl.
Eng. 2013, 2013, 1024–1231. [CrossRef]

21. Rigatos, G.; Tzafestas, S. Adaptive fuzzy control for the ship steering problem. Mechatronics 2006, 16, 479–489. [CrossRef]
22. Godbole, A.A.; Libin, T.R.; Talole, S.E. Extended state observer based robust pitch autopilot design for tactical missiles. Mech. Eng.

Part G J. Aerosp. Eng. 2011, 226, 1482–1501. [CrossRef]
23. Wang, H.B.; Veremey, E.I.; Xue, Y. A method of the guaranteeing of optimization for the dynamics of ship moving in wave. Vestn.

Sankt-Peterburgskogo Univ. Ser. 10 Prikl. Mat. Inform. Protsessy Upravieniya 2017, 13, 354–364. [CrossRef]
24. Sun, Z.P.; Wu, Q.; Li, X.G.; Wang, H.B. A design of based on the feedback linearization optimal heading control algorithm. Inf.

Technol. Res. 2019, 12, 133–148. [CrossRef]
25. Veremey, E.I.; Pogozhev, S.V.; Sotnikova, M.V. Marine autopilots’ multipurpose control laws synthesis for actuators time delay. J.

Mar. Sci. Eng. 2020, 8, 477. [CrossRef]
26. Du, J.L.; Hu, X.; Sun, Y.Q. Adaptive robust nonlinear control design for course tracking of ships subject to external disturbances

and input saturation. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 193–202. [CrossRef]
27. Wu, R.; Du, J.L. Adaptive robust course-tracking control of time-varying uncertain ships with disturbances. Int. J. Control Autom.

Syst. 2019, 17, 1847–1855. [CrossRef]
28. Xiang, X.B.; Yu, C.Y.; Lionel, L.; Zhang, J.L. Survey on fuzzy-logic-based guidance and control of marine surface vehicles and

underwater vehicles. Int. J. Fuzzy Syst. 2018, 20, 572–586. [CrossRef]
29. Xu, H.T.; Fossen, T.I.; Soares, C.G. Uniformly semiglobally exponential stability of vector field guidance law and autopilot for

path-following. Eur. J. Control 2020, 53, 88–97. [CrossRef]
30. Liu, Y.; Bu, R.X.; Xu, H.J. Straight-path tracking control of underactuated ship based on backstepping method. In Proceedings of

the 2015 Ninth International Conference on Frontier of Computer Science and Technology FCST, Dalian, China, 26–28 August
2015; pp. 223–227.

31. Zhao, Y.; Dong, L.L. Robust path-following control of a container ship based on Serret-Frenet frame transformation. J. Mar. Sci.
Technol. 2020, 25, 69–80. [CrossRef]

32. Xu, H.T.; Oliveira, P.; Guedes, S.C. L1 adaptive backstepping control for path-following of underactuated marine surface ships.
Eur. J. Control 2020. [CrossRef]

33. International Electrotechnical Commission. Maritime Navigation and Radiocommunication Equipment and Systems—Track Control
Systems—Operational and Performance Requirements, Methods of Testing and Required Test Results, 2nd ed.; 62065:2014; IEC: Geneva,
Switzerland, 2014; pp. 1–212.

34. Ramos, R.L. Linear quadratic optimal control of a spar-type floating offshore wind turbine in the presence of turbulent wind and
different sea states. J. Mar. Sci. Eng. 2018, 6, 151. [CrossRef]

35. Das, S.; Talole, S.E. Robust steering autopilot design for marine surface vessels. IEEE J. Ocean. Eng. 2016, 41, 913–922. [CrossRef]
36. Hiadsi, S.; Bouafia, H.; Sahli, B.; Abidri, B.; Bouaza, A.; Akriche, A. Ship course identification model based on recursive least

squares algorithm with dynamic forgetting factor. J. Comput. Appl. 2018, 38, 900–904.
37. Aoki, M. Control of large-scale dynamic systems by aggregation. IEEE Trans. Autom. Control 1986, 13, 246–253. [CrossRef]
38. Abedi, F.; Leong, W.J.; Abedi, M. Lyapunov characterization for the stability of stochastic control systems. Math. Probl. Eng. 2015,

2015, 1–7. [CrossRef]
39. Wang, X.F.; Zou, Z.J.; Li, T.S.; Luo, W.L. Adaptive path following controller of underactuated ships using serret-frenet frame. J.

Shanghai Jiaotong Univ. 2010, 15, 334–339. [CrossRef]

124



Journal of

Marine Science 
and Engineering

Article

L2-Gain Based Adaptive Robust Heel/Roll Reduction Control
Using Fin Stabilizer during Ship Turns

Zhang Songtao 1,* and Zhao Peng 2,*

Citation: Songtao, Z.; Peng, Z.

L2-Gain Based Adaptive Robust

Heel/Roll Reduction Control Using

Fin Stabilizer during Ship Turns. J.

Mar. Sci. Eng. 2021, 9, 89. https://

doi.org/10.3390/jmse9010089

Received: 19 December 2020

Accepted: 12 January 2021

Published: 15 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Intelligent System Science and Engineering, Harbin Engineering University, Harbin 150001, China
2 Department of Transportation and Vehicle Engineering, Tangshan University, Tangshan 063000, China
* Correspondence: hrbzst@126.com (Z.S.); tyjtxzp@163.com (Z.P.); Tel.: +86-13946032279 (Z.S.);

+86-18733340204 (Z.P.)

Abstract: The rolling and heeling experienced by a ship during turning will be more severe under
the interference of winds and waves, which will seriously affect the navigation safety of the ship.
The fin stabilizer is currently the best active anti-rolling device, which is usually used to reduce
the roll of the ship during straight-line sailing. The purpose of this work is to study the use of
fin stabilizers to reduce the rolling and heeling during ship turning, considering the non-linearity
and uncertainty during the rotation. The 4 degrees of freedom (4-DOF) nonlinear motion model of
a multi-purpose naval vessel is established. The forces and moments produced by fin stabilizers,
rudders, propellers, and waves are also considered. The nonlinear control model of rotation and roll
is derived and established. Given the non-linearity and uncertainty in the ship turning process, an
L2-gain based robust adaptive control is proposed to control the fin stabilizers to reduce the turning
heel and roll motion. The proof of the stability and the detailed design process of the controller are
also given. Simulations are carried out to verify the effectiveness of the proposed control strategy.
For comparison purposes, the simulation results under a well-tuned PID controller are also given.
The simulation results show that the developed control strategy can effectively reduce the heel and
roll during ship turns, and it has good robustness against uncertainty and internal and external
interference.

Keywords: fin stabilizer; ship turning; heel/roll reduction; L2-gain; uncertainty; non-linearity

1. Introduction

When a ship is sailing at sea, it will experience movement in six degrees of freedom
under the influence of winds, waves, and currents [1]. The roll motion, mainly caused by
waves, has the largest impact on ship navigation safety [2]. Researchers and engineers have
designed and manufactured a variety of passive or active anti-rolling devices to reduce ship
rolling, such as bilge keel [1], anti-rolling tanks [3], moving weights [4], Magnus rotating
roll stabilizers [5], and fin stabilizers [1,6,7]. The rudder can also be used to reduce the roll
of the ship while maintaining or changing the course [8–10]. Among them, the fin stabilizer
is currently the most effective active roll reduction device in the world [11].

In the traditional sense, the design and optimization of fin stabilizers are all aimed at
minimizing the rolling motion of the ship caused by disturbances, such as sea waves during
regular straight-line navigation, to ensure that the ship can sail smoothly and safely [6,12].
However, in some cases, ships also need to be steered for turning. The ship will also
undergo a certain amount of rolling and heeling motions during turning in calm water [10].
For military ships, in order to avoid dangers, such as incoming torpedoes, emergency
maneuvers with large rudder angles are required at high speeds [12]. At this time, the
rolling and heeling motions experienced by the ship will be quite large. If there are certain
disturbances, such as waves during the turning process, the rolling motion of the ship
will be more severe, which will seriously affect the navigation safety of the ship. At the
same time, the large-angle heeling will also affect the normal use of shipboard radar and
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weapons, and affect the normal work of ship personnel. This paper mainly studies the
influence of fin stabilizers on the turning performance of ships and discusses the use of
fin stabilizers to reduce the ship’s heeling and rolling during high-speed and large rudder
angle turning.

Therefore, it is of more practical significance to use existing anti-rolling devices such
as fin stabilizers to reduce roll and heel during ship turning. The French Charles de Gaulle
aircraft carrier installed the Cogite system under the flight deck to reduce the heel during
emergency turning to ensure a stable take-off and landing environment for the carrier
aircraft [13]. Martin proposed a three-step control strategy to control the fin stabilizer to
achieve the purpose of controlling heel and turning circle [12]. Wang designed a neuron
adaptive PID controller to control the fin stabilizer to realize the roll reduction control
during ship turns [14]. Zhang studied the influence of passive anti-rolling tanks on ship
turning characteristics [15]. Liang et al. studied the influence of rudder type parameters on
ship turning [16]. Liu proposed PID control based on particle swarm optimization to reduce
the rolling motion during ship turning [17]. Liang et al. Developed an improved PID
controller based on multi-island genetic algorithm to reduce the roll during ship turns [18].
The fin stabilizers of most ships are controlled by a PID controller developed using classical
control theory [2,19]. The control parameters are usually designed and obtained using
a simplified model for a limited number of environment conditions [19,20]. Uncertain
parameters and environmental disturbances will decrease the control effect. Perez and
Blanke pointed out that one of the key issues in roll reduction control is the adaptation to
the changes in the environmental conditions [6]. Compared with the straight-line heading
state, the nonlinearities and uncertainties of the ship in the turning process are more
significant. For such a nonlinear system with uncertainty, it is difficult for conventional
linear methods to achieve ideal control results.

So far, the control research on uncertain nonlinear systems can be divided into three
categories: one is to use adaptive control methods to solve the uncertainty of non-matching
conditions of nonlinear systems; the other is to use robust control methods to ensure the
internal stability and disturbance attenuation of the closed-loop system; the third is a
combination of the first two methods, that is, the adaptive robust control method. All
of them can enhance the robustness of nonlinear systems to uncertainties, so they have
attracted the attention of experts and scholars in the field of ship motion control with
extensive uncertainty and non-linearity. Zhang et al. discussed the application of L2-gain
robust adaptive control in force control fin stabilizer system [21]. Wang and Zhang designed
the rudder-fin joint nonlinear robust controller based on backstepping and closed-loop
gain shaping method and achieved good results through simulation [22]. Li et al. designed
a robust adaptive control strategy for underwater remote-controlled submersibles with
speed constraints [23]. Kahveci and Ioannou proposed an adaptive steering control method
including linear quadratic controller and anti-saturation compensator based on Riccati
for uncertain ship dynamics affected by input constraints [24]. Zhang et al. proposed
a control scheme based on a simplified adaptive neural network to solve the problem
of adaptive path following control of under-driven ships with model uncertainty and
non-zero mean time-varying disturbances [25]. Considering the modeling error and the
uncertainty of environmental interference, Hinostroza et al. proposed a robust fin controller
based on L2-gain to reduce the rolling motion of surface ships [19]. Demirel and Alarcin
designed H2 and H∞ state feedback controllers based on linear matrix inequalities for
fin stabilization for the effects of roll nonlinearity and uncertainty [26]. Zwierzewice uses
a robust adaptive feedback linearization method to complete the design of the ship’s
automatic steering instrument controller [27]. Sun et al. proposed a nonlinear robust
adaptive scheme based on PI sliding mode control and interference upper limit estimation
to improve the robustness of the under-driven surface ship motion control system with
model uncertainty and environmental disturbance [28]. Aiming at the uncertainty and
environmental disturbance, in this paper, an adaptive robust control method based on
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L2-gain is adopted to design the fin controller to reduce the heeling and rolling during ship
turns.

The structure of the paper is as follows. Section 2 establishes the mathematical models
of the ship motion and the forces and moments acting on the hull. Section 3 discusses the
effect of fin stabilizers on ship turning motion. Section 4 obtains the control model and
designs the L2-gain adaptive robust controller. Section 5 gives the simulation results and
discussion. Finally, the conclusion is given.

2. Ship Motion Model

2.1. 4-DOF Motion Model

In order to accurately describe the motion of the ship with six degrees of freedom, the
inertial coordinate system and the body-fixed coordinate system are established, as shown
in Figure 1.

Figure 1. Coordinate system for ship modeling.

Regarding the ship as a rigid body, the 6-DOF nonlinear equations of ship motion can
be obtained by Newton’s law [29]. Since this paper mainly studies the use of fin stabilizer
to reduce the heeling and rolling motion caused by ship turning and environmental
disturbance, the pitch and heave attitudes, and their influence on the other four degrees of
freedom can be neglected [30]. Therefore, the 4-DOF ship motion model in the surge, sway,
roll and yaw can be obtained by Equation (1):

m
( .
u − vr − xGr2 + zG pr

)
= X

m
( .
v + ur − zG

.
p + xG

.
r
)
= Y

Ix
.
p − mzG

( .
v + ur

)
= K

Iz
.
r + mxG

( .
v + ur

)
= N

(1)

where m is the ship mass, xG and zG are the coordinates of the center of gravity (CG) in x
and z axes, respectively, Ix and Iz are the moments of inertia about the x and z axes, u and v
are the surge and sway velocity, respectively, p and r are the roll and yaw angular velocity,
X and Y are the forces acting on the hull in x and y axes direction, respectively, K and N are
the moments acting on the hull about x and z axes, respectively.
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2.2. Hydrodynamic Forces and Moments

The hydrodynamic forces and moments can be expressed in the form of nonlinear
functions of the ship’s position, velocity and acceleration, and are influenced by the
shipping state and fluid characteristics [29]. In this paper, the nonlinear hydrodynamic
expression is adopted as [1]:
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(2)

where ρ is the fluid density, g is the gravity acceleration, ∇ is the ship displacement, ϕ is the
roll angle, GZ(ϕ) is the righting arm curve, and the multipliers are the ship’s hydrodynamic
coefficients.

2.3. Wave Disturbance Forces and Moments

Disturbances experienced by ships sailing at sea are mainly caused by sea winds,
waves, and currents. Among them, sea waves are the main cause of ship rolling. Consider-
ing the research content of this paper, the disturbance forces and moments produced by
sea waves are considered, and the wave forces and moments model is adopted as [31]:

Xwave = −ρg cos χ
NN
∑

n=1
En

ω2
n

g [An cos(ωet + εn)− Bn sin(ωet + εn)]

Ywave = ρg sin χ
NN
∑

n=1
En

ω2
n

g [An cos(ωet + εn)− Bn sin(ωet + εn)]

Kwave = −ρg sin χ
NN
∑

n=1
En

ω2
n

g [Cn cos(ωet + εn)− Dn sin(ωet + εn)]

Nwave = ρg sin χ
NN
∑

n=1
En

ω2
n

g [Gn cos(ωet + εn)− Hn sin(ωet + εn)]

(3)
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where An, Bn, Cn, Dn, Gn and Hn are the corresponding coefficients of the first-order wave
disturbance forces and moments. A(x), B(x), d(x) and zB(x) are the cross-section area of
water immersion, beam, draft and the z coordinate of the center of the cross-section area
of water immersion at the ship’s longitudinal coordinate of x, respectively. ωn and ωe
are the wave frequency and encounter frequency, respectively. χ is the encounter angle.
εn and Sζ(ωn) are the random phase and wave-height spectrum of the nth regular wave,
respectively. NN is the number of regular waves.
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2.4. Fin Forces and Moments

Fin stabilizers are installed in pairs on both sides of the bilge of the ship to have a
large roll arm and anti-rolling moment. According to [1], the fin forces and moments can
be approximated as:

X f in ≈ −2Tf

Yf in ≈ 2Nf · sin
(

β f in

)
K f in ≈ −2r f · Nf

Nf in ≈ −2FCG · Nf · sin
(

β f in

) (4)

where rf and FCG are the fin’s roll and yaw arms, respectively, βfin is the fin’s tilt angle, Tf
and Nf are the fin-induced tangential and normal forces, respectively, and can be calculated
by Equation (5):

Nf = Df sin α f + L f cos α f
Tf = Df cos α f − L f sin α f

(5)

where Lf and Df are the lift and drag forces generated on the fin, respectively, αf is the
effective fin angle of attack.

2.5. Rudder Forces and Moments

The vast majority of ships rely on one or more vertical installed rudders to accomplish
all the maneuvers [12]. Rudders are usually installed after the propeller below the stern
line of the ship. According to [14], the rudder-induced forces and moments can be obtained,
as shown in Equation (6)

Xrud = −Dr · δ
Yrud = Lr · δ
Krud = −rr · Lr · δ
Nrud = −LCG · Lr · δ

(6)

where rr and LCG are the rudder’s roll and yaw arms, respectively, δ is the fin tilt angle, Lr
and Dr are the lift and drag forces generated on the fin, respectively.

2.6. Propeller Forces and Moments

Most ships rely on propellers under the waterline of the stern to provide forward
power. Under normal conditions, it can be considered that the propellers only produce a
longitudinal force that drives the ship forward or backwards. When the ship sails straight
at a constant speed, it can be considered that the effective thrust Te generated by the
propeller is equal to the ship resistance XR. Perez suggested that the ship resistance can be
considered to be approximately equal to X|u|uU2, where U is the ship sailing speed [1].
Martin pointed out through simulation that for ship turning at a fixed speed, the thrust
generated by the propellers during the turning process can be approximately equal to the
force before the turning and remains unchanged to simplify the study [12]. Therefore,
according to [12], the forces and moments can be obtained, as shown in Equation (7):

Xprop = −X|u|uU2
0

Yprop = 0
Kprop = 0
Nprop = 0

(7)

where X|u|u is the hydrodynamic coefficient related to the surge velocity, and U0 is the
initial speed before turning.

3. Ship Heel/Roll Control Using Fin

A multipurpose naval vessel with fin stabilizers and rudders is selected as the research
object, the parameters of the vessel, fin and rudder are shown in Tables 1 and 2, respectively.
The fin angle that rolls the ship to port is defined as the positive fin angle. The rudder angle
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that turns the ship left is defined as the positive rudder angle. The seawater density is
1025 kg/m3. The hydrodynamic coefficients presented in Section 2.2 are shown in Table 3,
where m is the mass of the ship and Δ is the buoyancy of the ship.

Table 1. Parameters of the vessel.

Description Value Unit

Length between perpendiculars 51.5 m
Beam overall 8.6 m

Draft 2.3 m
Displacement 357 m3

Transverse metacentric height 1.1 m
Roll inertia 2.38 × 106 kg·m2

Yaw inertia 4.79 × 107 kg·m2

Coordinates of center of gravity (−3.38, 0, −1.06) m

Table 2. Parameters of the fin and rudder.

Description Fin Rudder Unit

Area 1.6 × 2 1.5 × 2 m2

Aspect ratio 1 1.5 –
Max. angle of attack 25 35 ◦

Max. turning rate 15 10 ◦/s
Roll arm 4.22 3.3 m
Yaw arm −2 20.4 m

Lift coefficient 0.042 0.044 /◦
Tilt angle 34 90 ◦

Table 3. Hydrodynamic coefficients (from [1]).

Subscript X Y K N
.
u −1.74 × 104 0 0 0
.
v 0 −1.90 × 106 2.96 × 105 5.38 × 105
.
p 0 −2.96 × 105 −6.74 × 105 0
.
r 0 −1.40 × 106 0 −4.40 × 107

u|u| −1.96 × 103 0 0 0
|u|v 0 −1.18 × 104 9.26 × 103 −9.20 × 104

|u|r 0 1.31 × 105 −1.02 × 105 −4.71 × 106

v|v| 0 −3.70 × 103 2.93 × 104 0
|r|r 0 0 0 −2.02 × 108

|v|r 0.33 × m −7.94 × 105 6.21 × 105 0
r|v| 0 −1.82 × 105 1.42 × 105 −1.56 × 107

ϕ|uv| 0 −1.08 × 104 −8.40 × 103 −2.14 × 105

ϕ|ur| 0 −2.51 × 105 −1.96 × 105 −4.98 × 106

ϕuu 0 −7.40 × 101 −1.18 × 103 −8.00 × 103

|u|p 0 0 −1.55 × 104 0
|p|p 0 0 −4.16 × 105 0

p 0 0 −5.00 × 105 0
ϕϕϕ 0 0 −0.325Δ 0

The correctness and applicability of the established model have been verified in our
previous work [10]. Figure 2 shows the simulation results of ship turning motion under
different sea states. The simulation parameters are as follows: the initial ship speed is
15 m/s, the fin angle is 0◦, the rudder angle is 30◦, the rudder rate is 10◦/s, the initial
encounter angle is 90◦.
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Figure 2. Simulation results of ship turning motion under different sea states. (a) Trajectory; (b) ship speed; (c) roll angle;
(d) roll rate.

It can be seen from Figure 2 that the turning trajectory of the ship under the interference
of sea waves has a slight deviation compared to that in calm water, and the turning diameter
is basically unchanged. The outward heel and ship speed in the steady turning phase also
changed irregularly on the basis of the steady outward heel angle and the steady sailing
speed of the turning in clam water, respectively. As the level of sea conditions increases,
the changes in the state of motion, especially the turning heel, are also intensified. Under
the interference of the waves with a significant wave height of 3 m, the turning outward
heel angle reaches a maximum of 20◦, which seriously affects the navigation safety and
comfort of the ship. Therefore, the ship should try to avoid turning manoeuvres in higher
sea conditions. The sea state level of the subsequent heel/roll reduction control simulations
in this paper is limited to sea state 3 with a significant wave height of 1.25 m.

3.1. Ship Turning Motion with Fin Stabilizer

To investigate the effect of fin stabilizer on ship turning motion, the simulation of the
ship turning in calm water with different fin angles of attack is conducted. The initial ship
speed is 15 m/s, the rudder angle of attack is 30◦ and the rudder turning rate is 10◦/s. The
simulation results with fin angle of −20◦, −10◦, 0◦, 10◦, and 20◦ are shown in Figure 3. The
main results data are given in Table 4. It should be noted that the total simulation time is
100 s, and the simulation results of the first 50 s of the roll angular velocity are given to
clearly show the changes in the transition process.
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Figure 3. Simulation results of ship turning motion under different fin angles. (a) Trajectory; (b) ship speed; (c) roll angle;
(d) roll rate.

Table 4. Simulation results of turning circle parameters under different fin angles.

Fin Angle
(◦)

Advance
(m)

Steady
Turning

Diameter
(m)

Max. In-
ward/Outward
Heel Angle

(◦)

Steady
Outward

Heel Angle
(◦)

Steady
Sailing

Speed (m/s)

−20 198.63 276.29 0/20.14 17.86 12.41
−10 208.98 290.68 0/15.67 13.96 12.50

0 218.92 304.53 −6.79/11.29 10.22 12.60
10 229.45 318.57 −15.29/7.01 6.30 12.69
20 241.05 334.41 −23.36/2.30 1.91 12.80

It can be seen from Figure 3 and Table 4 that the positive and negative fin angles
have opposite effects on the ship’s turning performance, and the strength of the influence
increases as the fin angle increases. Under the action of a positive fin angle, the advance,
turning radius and initial inward heel are increased compared to when the rudders act
alone, while the maximum and steady outward heel angles are reduced. When the negative
fin angle is acting, the opposite is true. In addition to the relatively small impact of the fin
stabilizer on the speed reduction of turning, it also has a greater impact on other parameters
such as the advance, turning diameter and turning heel. Therefore, the fin stabilizer can be
used to assist the rudder to change the ship’s turning characteristics. In addition, it can be
seen from the simulation results that the influence of the fin stabilizer on the steady turning
diameter and steady outward heel is exactly the opposite. If one is reduced, the other is
bound to increase. It is necessary to adjust the corresponding weight coefficients according
to different control objectives to achieve relatively optimal control effects.
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3.2. Fin Angle Speed Adjustment

It can be seen from the simulation results in Section 3.1 that fin stabilizers can be used
to reduce the heel and roll motion during ship turns. It should be noted that to explore
the law, the fin angle speed adjustment is not considered when setting the fin angle in the
simulation of the front section. In the actual navigation of the ship, to protect the fin shaft
from damage at high speeds, the speed adjustment problem must be considered when
using fin stabilizers to reduce roll, which is, adjusting the maximum angle of attack of
the fin according to the speed. In order to make the simulation results closer to the real
situation, in this paper, the following fin angle speed adjustment law is adopted [32]:

α∗max =

⎧⎪⎨⎪⎩
0 U < UL1, U < UL2
αmax UL1 ≤ U ≤ Udesign, UL2 ≤ U ≤ Udesign(

Udesign/U
)2

αmax U > Udesign

(8)

where α*max is the real-time maximum fin angle, αmax is the maximum fin angle corre-
sponding to the design speed, Udesign is the design speed. In this paper, Udesign and αmax
are set to 18 kn and 25◦, respectively.

4. Heel/Roll Reduction Control Using Fin Stabilizers

Based on the above discussion, the diagram of the heel/roll reduction control system
using fin stabilizers during ship turns, as shown in Figure 4, can be obtained.

Figure 4. Diagram of heel/roll reduction control using fin stabilizers during ship turns.

4.1. Control Model Analysis

As mentioned earlier, when using fin stabilizers to reduce the heel during the turning
process, it will inevitably increase the turning diameter of the ship. Therefore, in order
to simplify the analysis, only one degree of freedom of roll is considered. From the
mathematical model of ship motion established in Section 2, the ship’s roll model is given
by Equation (9):

Ix
.
p − mzG

( .
v + ur

)
= K .

v
.
v + K .

p
.
p + K|u|v|u|v + Kurur + K|v|v|v|v + K|v|r|v|r+

Kφ|uv|φ|uv|+ Kφ|ur|φ|ur|+ Kφuuφuu + K|u|p|u|p + K|p|p|p|p+
Kp p + Kφφφφφφ − ρg∇GMt sin(φ) + Krud + K f in + Kw

(9)

Liang et al. pointed out that the sway acceleration term has little effect on the roll, and
can be neglected [18]. In addition, when ϕ < 28◦, sin(ϕ) can be approximately regarded
as equal to ϕ. Therefore, ignoring the sway acceleration term and rewriting Kfin as Kfαf,
Equation (9) can be rewritten as:(

Ix − K .
p

) .
p =

(
K|u|p|u|+ Kp

)
p + K|p|p|p|p+(

Kφ|uv||uv|+ Kφ|ur||ur|+ Kφuuuu − ρg∇GMt
)

φ + Kφφφφφφ+

K|u|v|u|v + Kurur + K|v|v|v|v + K|v|r|v|r + K|r|v|r|v + mzGur + Krud + K f α f + Kw

(10)
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where Kf = ρAfu2CLrf, CL is the lift coefficient of the fin and Af is the fin area.
Define υ = αf, and Equation (10) can be further simplified as:

.
p = θ1 p + θ2|p|p + θ3φ + θ4φ3 + bυ + fw (11)

where
θ1 =

(
K|u|p|u|+ Kp

)
/
(

Ix − K .
p

)
, θ2 = K|p|p/

(
Ix − K .

p

)
θ3 =

(
Kφ|uv||uv|+ Kφ|ur||ur|+ Kφuuuu − ρg∇GMt

)
/
(

Ix − K .
p

)
b = K f /

(
Ix − K .

p

)
fw =

(
K|u|v|u|v + Kurur + K|v|v|v|v + K|v|r|v|r + mzGur + Krud + Kw

)
/
(

Ix − K .
p

)
It can be seen that the equation describing the roll motion in the turning process is

strongly nonlinear, and the parameters of the equation still have greater uncertainty due to
the speed reduction of turning and the influence of external interference. In this paper, the
L2-gain based adaptive robust control method is adopted to design the fin controller to
reduce the turning heel and roll motion.

4.2. Controller Design
4.2.1. L2-Gain Adaptive Robust Control

For the disturbed uncertain nonlinear system described in Equation (12), suppose
it satisfies the following assumptions in a certain neighborhood of the origin of the state
space [33]. ⎧⎨⎩

.
xi = xi+1 + γT

i (x1, x2, · · · , xi), 1 ≤ i ≤ n − 1
.
xn = γ0(x) + γT

n (x)θ +
(

β0(x)− βT(x)θ
)
υ + η(x, t)

y = x1

(12)

where x∈Rn, υ∈R, y∈R, and η∈R are the state vector, input, output and bounded distur-
bance of the system, respectively, γi(x) and β(x) are smooth vector fields with 0 ≤ i ≤ n, θ =
(θ1,θ2, . . . ,θp)T∈L2(0,∞) is the uncertain disturbance.

Hypothesis 1: (assumption of bounded interference) there is a constant d greater than
zero, satisfying|η(x,t)| ≤ d;

Hypothesis 2: (achievable condition hypothesis) let θ̂ be the estimate of θ, for any
θ̂∈Bθ and x∈Bx, it needs to satisfy |β0(x) + βT(x)θ̂| > 0, where Bθ and Bx are the open balls
that contain θ̂ and x respectively in the parameter space. Compared with the control period,
θ∈L2(0,∞) is usually regarded as a slowly changing quantity, so it can be approximately
equal to zero.

Then, introduce the following theorem as [34].

Theorem 1. For any positive real constant γ > 0, if the perturbed nonlinear system described in
Equation (12), for any T ≥ 0 and θ∈L2(0,T), satisfy.

∫ T

0
‖y(t)‖

2

dt ≤ γ2
∫ T

0
‖θ‖

2

dt + N (13)

where N ≥ 0 is a finite constant, then the disturbing uncertain nonlinear system Equation (12) has
L2-gain ≤ γ.

The design steps of L2-gain adaptive robust controller based on the backstepping
method are briefly given below. For succinct description, let γi(x1, x2, . . . , xi) be γi, then
when i = 1, we can get from Equation (12):

.
x1 = x2 + γT

1 θ (14)
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Assume x2* is the control input of the subsystem (14), and defined by Equation (15)

x∗2 = −c1x1 − 1
4

kx1

(
1 + γT

1 γ1

)
(15)

where c1 > 0 and k > 0 are undetermined coefficients.
Define the error term e2 = x2 − x2*, then

x2 = e2 + x∗2 = e2 − c1x1 − 1
4

kx1

(
1 + γT

1 γ1

)
(16)

Define the Lyapunov function V1 as

V1 =
1
2

x2
1 (17)

Then we have Equation (18)

.
V1 = x1

.
x1 = x1

(
x2 + γT

1 θ
)

(18)

Substitute Equation (16) into (18), we can get Equation (19)

.
V1 = x1e2 − c1x2

1 −
1
4

kx2
1

(
1 + γT

1 γ1

)
+ x1γT

1 θ (19)

The last two terms on the right side of Equation (19) can be rewritten as

− 1
4 kx2

1
(
1 + γT

1 γ1
)
+ x1γT

1 θ = −k
(

1
2 x1

√
1 + γT

1 γ1 − γT
1 θ

k
√

1+γT
1 γ1

)2
+

(γT
1 θ)

2

k(1+γT
1 γ1)

≤ 1
k‖θ‖2 (20)

Let e1 = x1, then we have Equation (21)

.
V1 ≤ −c1x2

1 +
1
k
‖θ‖2 + e1e2 (21)

For i = 2, define the Lyapunov function V2 as

V2 = V1 +
1
2

e2
2 (22)

Then we have Equation (23)

.
V2 =

.
V1 + e2

.
e2 ≤ −c1e2

1 +
1
k
‖θ‖2 + e2e1 + e2

.
e2 (23)

From the definition of the previous error term e2, we can get Equation (24)

.
e2 =

.
x2 − .

x∗2 = x3 − ∂x∗2
∂x1

x2 +

(
γ2 − ∂x∗2

∂x1
γ1

)T
θ (24)

Substitute Equation (24) into (23), we have

.
V2 ≤ −c1e2

1 +
1
k
‖θ‖2 + e2e1 + e2

(
x3 − ∂x∗2

∂x1
x2 +

(
γ2 − ∂x∗2

∂x1
γ1

)T
θ

)
(25)

If α21 and α22 are

α21 = e1 − ∂x∗2
∂x1

x2, α22 = γ2 − ∂x∗2
∂x1

γ1 (26)
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Then Equation (25) can be further written as

.
V2 ≤ −c1e2

1 +
1
k
‖θ‖2 + e2

(
x3 + α21 + αT

22θ
)

(27)

Let x∗3 be the control input of the second subsystem, and define

x∗3 = −c2e2 − α21 − 1
4

ke2

(
1 − αT

22α22

)
(28)

Moreover, define the error term e3 between x3 and x∗3 as

e3 = x3 − x∗3 = x3 + c2e2 + α21 +
1
4

ke2

(
1 − αT

22α22

)
(29)

Substituting Equation (29) into (27), and performing a calculation similar to
.

V1, we
can get

.
V2 ≤ −c1e2

1 +
1
k
‖θ‖2 + e2

(
e3 + x∗3 + α21 + αT

22θ
)
≤ −

2

∑
i=1

cie2
i +

2
k
‖θ‖2 + e2e3 (30)

Similarly, for 2 < i < n−1, define the Lyapunov function Vi as

Vi = Vi−1 +
1
2

e2
i (31)

If αi1, αi2 and the error term ei+1 between xi+1 and the control input of the ith subsystem
x∗i+1 are defined as

αi1 = ei−1 −
i−1

∑
j=1

∂x∗i
∂xj

xj+1, αi2 = γi −
i−1

∑
j=1

∂x∗i
∂xj

γj (32)

x∗i+1 = −ciei − αi1 − 1
4

kei

(
1 + αT

i2αi2

)
, ei+1 = xi+1 − x∗i+1 (33)

Similarly, we can get

.
Vi ≤ −

i

∑
j=1

cje2
j +

i
k
‖θ‖2 + eiei+1 (34)

For the nth subsystem, define the error term en as

en = xn − x∗n (35)

Then we can have

.
en =

.
xn − .

x∗n = γ0 −
n−1

∑
j=1

∂x∗n
∂xj

xj+1 +

(
γn −

n−1

∑
j=1

∂x∗n
∂xj

γj

)T

θ +
(

β0 + βTθ
)

u + η (36)

Similarly, define αn1 and αn2 as

αn1 = γ0 −
n−1

∑
j=1

∂x∗n
∂xj

xj+1, αn2 = γn −
n−1

∑
j=1

∂x∗n
∂xj

γj (37)

Then Equation (36) can be further written as

.
en = αn1 + αT

n2θ +
(

β0 + βTθ
)

u + η (38)
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Define the Lyapunov function Vn as

Vn = Vn−1 +
1
2

e2
n +

1
2
(
θ − θ̂

)T(
θ − θ̂

)
(39)

Then we have

.
Vn ≤ −n−1

∑
i=1

cie2
i +

n−1
k ‖θ‖2 + enen−1 + en

(
αn1 + αT

n2θ +
(

β0 + βTθ
)
u + η

)− (θ − θ̂
) .
θ̂ (40)

Define the adaptive control law as

υ =
1

β0 + βTθ

(
−αn1 − cnen − αT

n2θ̂ − η
)

(41)

.
θ̂ =

−(αn1 + cnen + θ̂Tαn2 + d · sgn(en)
)

β +
(

β0 + βT θ̂
)
αn2

β0 + βT θ̂
en (42)

Substituting the above adaptive control law into Equation (40), we can get

.
Vn ≤ −n−2

∑
i=1

cie2
i +

n−1
k ‖θ‖2 + enen−1 = −n−2

∑
i=1

cie2
i −

(
cn−1e2

n−1 + cne2
n − enen−1

)
+ n−1

k ‖θ‖2 (43)

Equation can be further written as follows if we choose ci ≥ 1, 1 ≤ i ≤ n

.
Vn ≤ −c1e2

1 +
n − 1

k
‖θ‖2 (44)

Moreover, because y = x1 = e1, integrating both ends of Equation (44), we can get

∫ T

0
‖y‖2dt ≤ γ2

∫ T

0
‖θ‖2dt + N (45)

where N > 0 is the initial value of Vn, γ2 = (n−1)/k.
It can be seen that, under the effect of the designed adaptive control law, the disturbed

uncertain nonlinear system has L2-gain ≤ γ.

4.2.2. Design of Turning Heel/Roll Reduction Controller

For the disturbed and uncertain nonlinear turning heel/roll reduction system de-
scribed in Equation (11), Let x1 = ϕ, x2 = p, then Equation (11) can be rewritten as:

.
x1 = x2.
x2 = θ1x2 + θ2|x2|x2 + θ3x1 + θ4x3

1 + bυ + fw
(46)

Comparing the disturbed uncertain nonlinear system (46) and (12), it can be seen that
the order of the turning hell/roll reduction system n is 2, and we can get

γ1(x1) = 0, γ0 = 0, γ2 =
[

x2 |x2|x2 x1 x3
1
]T (47)

β0 = b, β2 = 0, η = fw (48)

According to the design steps of the L2-gain adaptive robust law described in
Section 4.2.1, we can get

x∗2 = −
(

c1 +
1
4

k
)

x1 (49)

α21 =

(
c1 +

1
4

k
)

x2 (50)

α22 =
[

x2 |x2|x2 x1 x3
1
]T (51)
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e2 = x2 +

(
c1 +

1
4

k
)

x1 (52)

The hyperbolic tangent function tanh(·) is used instead of the sign function sgn(·) to
eliminate the chattering of the control signal caused by the hard handoff. The adaptive
control law can be expressed as:

υ =
1
b

[
−
(

c1 + c2 +
1
4

k
)

x2 − c2

(
c1 +

1
4

k
)

x1 − αT
22θ̂ − d · tanh(e2)

]
(53)

.
θ̂ = α22e2 (54)

where c1 ≥ 1, c2 ≥ 1 and k > 0 are undetermined control parameters.

5. Result and Discussion

In this section, the simulation of the ship turning under wave disturbance are per-
formed to verify the effectiveness of the designed L2-gain based adaptive robust controller.
The simulation parameters are as follows: the significant wave height is 1.25 m, the initial
encounter angle is 135◦, the initial sailing speed is 15 m/s, the turning rudder angle is 30◦.
The other parameters can be found in Tables 1 and 2. It can be seen from the simulation
results in Section 3.1, the surge velocity during the turning process gradually decreases
from the initial sailing speed of 15 m/s to about 12.6 m/s, and changes slightly on this
basis. Considering the short duration of the steering phase and the transition phase during
the turning process, the parameters of the steady-state turning is used to calculate the
parameters of the disturbed and uncertain nonlinear turning heel/roll reduction system.
Based on the above analysis, we can get b = 0.0146 and d = 0.2786. Design c1 = c2 = k = 4,
then the adaptive control law can be obtained from Equations (52)–(54):

u =
1
b

(
−20x1 − 9x2 − αT

22θ̂ + 0.2786sign(e2)
)

(55)

e2 = 5x1 + x2 (56)

The simulation results of turning heel/roll reduction control using fin stabilizers based
on the design L2-gain based adaptive robust controller are shown in Figures 5 and 6. For
comparison purposes, the simulation results a well-tuned PID controller are also given.
NC, PID and L2ARC stand for “No control”, “PID control” and “L2-gain based adaptive
robust control” respectively.
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Figure 5. Simulation results of L2-gain adaptive robust control under wave disturbance. (a) Ship speed; (b) roll angle; (c)
roll rate; (d) fin angle.

Figure 6. Trajectory of L2-gain adaptive robust control under wave disturbance.

It can be seen from Figure 5 that both the designed L2-gain based adaptive robust
controller (L2ARC) and a well-tuned PID controller can effectively reduce the heel and
roll motion during ship turns. It can be seen from Figure 5a that the sailing speed of the
ship under the action of the controller is slightly increased than that without control, from
12.6 m/s to 12.8 m/s. From Figure 5b,c, it can be seen that the roll and heel reduction
control effect of the designed L2ARC is slightly better than a well-tuned PID controller,
which shows the superiority of the proposed control strategy. The steady outward heel
angle with L2ARC is reduced from 10.19◦ to 3.01◦, and the heel reduction effect can be
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easily calculated to be about 70.5%. The mean square value of the roll angle during the
steady turning phase is reduced from 1.26◦ to 0.52◦, and the roll reduction effect can
be easily calculated to be 58.7%. As the encounter angle changes continuously with the
progress of the turning, so that the amplitude of the roll motion of the ship also changes
periodically. The ship roll is more severe when the encounter angle is 90◦ or 270◦, while
other angles are gentler. The control effect of the two controllers is almost the same when
the roll is small, but the control effect of L2ARC is better than that of the PID when the roll
is large, which is more obvious in Figure 5c. It can be seen from Figure 5d that the fin angle
under the action of L2ARC is significant smaller than that under the action of PID. The
movement of the fins in the steady turning phase is reduced by approximately 10%, which
means the reduction of energy consumption and the effectiveness of the designed L2ARC.
The overall effect of the designed L2-gain based adaptive controller is slightly better than
well-tuned PID control. In addition, due to the opposite effect of the fin stabilizer on the
steady outward heel and turning diameter, the steady turning diameter increases by about
15 m compared with the situation without control, as shown in Figure 6. The simulation
results show that the designed controller has good robustness against uncertainties caused
by a speed reduction of turning and internal and external disturbance.

6. Conclusions

In this paper, the use of fin stabilizers to reduce the heel and roll during ship turns
under wave disturbance is investigated. The 4-DOF nonlinear mathematical model of a
multipurpose naval vessel with forces and moments caused by hydrodynamics, waves,
fin stabilizers, rudders and propellers is established. Based on the analysis of ship turning
motion with different fin angles in calm water, it is found that the fin stabilizer can be used
to reduce the heel and roll motion during ship turns, and it has the opposite effect on the
steady outward heel and steady turning diameter. Through the analysis, the model of the
turning heel/roll reduction system, which is convenient for controller design is obtained.
For this disturbed uncertain nonlinear system, the L2-gain based adaptive robust controller
is adopted to realize the control of fin stabilizers to reduce the heel and roll during ship
turns. Considering the influence of ship speed on the maximum fin angle, fin angle speed
adjustment is added in the simulation to get close to the real situation. The simulation
results show that both the design L2-based adaptive robust controller and the well-tuned
PID controller can effectively reduce the heel and roll motion during ship turns, and the
overall effect of the designed controller is slightly better than the well-tuned PID controller.

In the future, we will make further research on the current basis. If possible, we
will conduct ship model and even real ship experiments to verify the effectiveness of our
proposed method.
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Abstract: This work presents the results of studies related to the design of stabilizing feedback
connections for marine vessels moving along initially given trajectories. As is known, in mathematical
formalization, this question leads to a problem of tracking control synthesis for nonlinear and non-
autonomous plants. To provide desirable stability and performance features of the closed-loop
systems to be synthesized, it is appropriate to use an optimization approach. Unlike the known
synthesis methods, which are usually used within the framework of this approach, it is proposed to
implement the optimal damping concept first developed by V.I. Zubov in the early 60s of the last
century. Modern interpretation of this concept allows constructing numerically effective procedures
of control law synthesis taking into account its applicability in a real-time regime. Central attention
is focused on the questions connected with practical adaptation of the optimal damping methods for
marine control systems. The operability and effectiveness of the proposed approach are illustrated
by a practical example of tracking control design.

Keywords: marine vessel; tracking controller; stability; functional; optimal damping

1. Introduction

The nonlinear tracking control of modern marine vessels is one of the most practically
significant and theoretically considerable problems in the area of automatic control analysis
and design. In particular, tracking control systems are widely used in different branches
such as hydrography, inspection of marine constructions, wreck investigation, underwater
cable laying, and so on [1,2]. Central theoretical and practical background of tracking
control for various moving plants is presented in [3–5] and other fundamental works.

Various issues associated with the design of tracking controllers for marine surface
vessels have already been extensively researched and presented in numerous publications
(for example, [1,2,6–16]). To evaluate the state of the art in marine tracking control, let us
address some modern works presenting this direction of research.

Currently, it is possible to use various ideas to design nonlinear tracking control laws
that are reflected in numerous publications, for example, [7,8,13–16]. However, let us note
that the mentioned works are not directly oriented to the application of the optimization
technique. This makes it difficult to provide the desired dynamic features of the closed-
loop connections. Now, it seems to be quite evident that the most effective analytical
and numerical tool for feedback connections design is the optimization approach. Several
aspects of nonlinear tracking control optimization technique are presented in multitudinous
scientific publications, including such popular monographs as [4,5,17–21]. As for the
simplest stabilization problem, the autopilots with multipurpose structures of optimized
control laws are discussed in detail in [22–26].

The sliding mode control technique for marine control applications is discussed
in [1,2,6,8]. This direction seems to be quite constructive, but poorly applicable, since it
leads to intensive wear of the actuators.
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As for the model predictive control (MPC) approach [9], its most significant disadvan-
tage is the large dimension of the minimization problem that is solved at each step of the
control process.

Notably, the complexity of this problem is vast because of the many dynamic require-
ments, restrictions, and conditions that must be satisfied by the chosen control actions.

It should be noted that many scientific works devoted to the tracking control for
marine vessels use linear time invariant models of their motion. However, such models are
not quite adequate for the problems of deep maneuvering control in angle and positional
dynamic variables. Respectively, one of the most important practical difficulties requiring
consideration in the design process is the account of nonlinearity and non-autonomy of the
control plant model. In most cases, this problem is a source of dynamic instability and poor
performance for various systems that were designed based only on linear approximations.

As for the aforementioned optimization approach, its advantages are determined
by the flexibility and convenience of modern optimization methods with respect to the
relevant practical demands for control design implementation. Certain analytical and
numerical methods are used now to compute the optimal controllers for nonlinear and
non-autonomous systems subject to various given performance indices. Nevertheless, there
is no saying that the optimization approach is recognized overall as a universal instrument
to be put into practice for marine tracking controllers design. This can be explained by the
presence of some disadvantages connected with computational troubles. Therefore, there
exists a vital necessity to develop persistently analytical and numerical methods of control
laws design based on optimization ideology adapting to the specific problems for various
marine applications.

At present time, numerous approaches are used for a practical solution of these
problems [1–12,17,18]. Usually, they are based on Pontryagin’s maximum principle, on
Bellman’s dynamic programming principle, on finite-dimensional approximation in the
range of model predictive control (MPC) technique, etc. Unfortunately, all these approaches
are connected with the huge extent of calculations that essentially impedes their implemen-
tation both for laboratory design activity and real-time regimes of control.

The existence of numerical difficulties motivates us to use other approaches that allow
avoiding the aforementioned shortcomings. This work focuses on a different concept that
can be applied to design tracking controllers using the theory of optimal damping (OD).
This theory, which was first proposed and developed by V.I. Zubov in his works [19–21],
provides effective analytical and numerical methods for control calculations with essentially
reduced computational consumptions with respect to classical techniques. We believe that
this theory was ahead of its time and was undeservedly underutilized for practical control
problem solving. This work is one of the attempts to overcome this omission, taking into
account the impressive development of modern computer technologies.

In this article, special attention is paid to the control of marine vessels in terms of the
forward speed and heading angle. We are considering the regime of the acceleration in or-
der to achieve the specified forward speed with one-time turn along the heading. To achieve
desirable stability and performance features of the reference motion, the correspondent
tracking controllers were designed based on the OD technique.

The main contribution of this paper is determined by the following statements. First,
we propose to use the OD concept to design tracking controllers for marine vessel speed
and heading. This has not been the case before. Second, we discuss a new methodology
for selecting the functional to be damped, taking into account the desirable features of
the closed-loop system in the range of the optimization technique. Hereby, the choice of
this functional as the basis is argued by the guarantee asymptotic stability and the desired
quality of control processes. Third, we point to the possibility of applying the OD approach
to a wide class of nonlinearities in the mathematical model of the vessel. It is noted that
this approach can be implemented in real-time regime of a ship’s motion. The practical
applicability and effectiveness of the proposed technique is illustrated by a controller
design for a transport marine ship.
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The novelty of the proposed approach with respect to other works lies in the univer-
sality and flexibility of proposed nonlinear non-autonomous control laws based on OD
computational procedure, which can be implemented in a real-time regime of functioning
for marine control plants.

In general, the present study is an extension of the multipurpose approach proposed
in [22–27] and developed in [28] with respect to the marine autopilot control laws with the
novel structure, taking into account actuators’ time delays.

This article is organized as follows. In Section 2, the optimal damping concept for con-
trol law synthesis for nonlinear non-autonomous systems is discussed, taking into account
certain specific stability and performance requirements for marine control applications.
The known background is presented, and the novel ways are proposed to provide tracing
controllers synthesis. Section 3.1 is devoted to the OD synthesis problem statement for the
forward speed tracking controller and for the tracking autopilot. Central attention is paid
to the presentation of mathematical models of the control plant and dynamic requirements
for the quality of the closed-loop connection. Section 3.2 presents an exhaustive novel
solution for the mentioned synthesis problem based on the optimal damping concept. In
Section 3.3, a practical example of tracking controller synthesis is presented to illustrate the
applicability and effectiveness of the proposed approach. Finally, Section 4 concludes the
article by discussing the overall results of the investigation and indicates how these results
can be further developed.

2. Materials and Methods

As mentioned above, the essence of this paper involves developing an optimal damp-
ing technique of tracking control law synthesis for marine vessels with nonlinear and
non-autonomous models. In this section, let us first consider the background and some
essential features of the OD approach that define the methodological basis of the study.

First of all, let us introduce a commonly used nonlinear robot-like model of the control
plant, which represents marine vessel motion for various regimes of its operation [1,2,6]:

M
.
ν+ C(ν)ν+ D(ν)ν+ g(η) = Guτ+ d,

.
η = J(η)ν,

(1)

where vector ν ∈ Rn presents velocities defined in a plant-fixed frame and vector η ∈ Rn

contains position dynamical parameters (displacements and angles) in an Earth-fixed
frame. External disturbances and controls are presented by the vectors d ∈ Rn and τ ∈ Rm,
respectively. Let us accept that the inertia matrix is positive definite: M = MT > 0,
the matrix of Coriolis-centripetal terms is skew-symmetrical: C(ν) = −CT(ν), and the
damping matrix D(ν) > 0 is positive definite but non-symmetrical. Vector g(η) represents
gravitational and buoyancy forces and moments, J(η) is the matrix of rotations, and the
matrix Gu with the constant components reflects controls allocation.

Let us provide a transformation of the body-fixed frame representation (1) to the
Earth-fixed one with respect to the vector η. Following [1], this can be done using the
following notations:

Mη(η) := J−T(η)MJ−1(η),
Cη(ν,η) := J−T(η)

[
C(ν)− MJ−1(η)

.
J(η)

]
J−1(η),

Dη(ν,η) := J−T(η)D(ν)J−1(η), gη(η) := J−T(η)g(η),
τη := J−T(η)Guτ, dη = J−T(η)d.

(2)

In accordance with (2), initial model (1) of the plant takes the form:

..
η = −M−1

η (η)
(
(Cη(ν,η) + Dη(ν,η))

.
η+ gη(η) − τη − dη

)
, ν = J−1(η)

.
η . (3)
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The essence of the tracking control problem is to provide given desirable motion
η = ηd(t) of the vessel, using the following state feedback

τ = τ(η,ν,ηd(t)), (4)

which is a nonlinear non-autonomous tracking controller.
Within mathematical formalization, controller (4) must be implemented to provide the

zero equilibrium with respect to the tracking error e(t) := η(t)− ηd(t) for the closed-loop
system (3), (4), where d(t) ≡ 0. Naturally, this equilibrium point must be asymptotically
stable to guarantee that e(t) → 0 as t → ∞ . Let us especially note that the mentioned
closed-loop system is nonautonomous, if we have no constant reference motion ηd(t).
This gives reasons for us to require the uniform asymptotic stability in global (UGAS) or
local (UAS) form. An additional requirement is that the controller (4) provides the desired
dynamical features for the closed-loop system (3), (4) under the action of an admissible
control τ ∈ Tu.

To set the perform of the controller (4) synthesis, we assume that the vector functions
ηd(t), ν(t) := J−1(ηd(t))

.
ηd(t), and the corresponding τd(t) are given. These functions

satisfy Equations (1) or (3), i.e., we have:

M
.
νd(t) + C(νd(t))νd(t) + D(νd(t))νd(t) + g(ηd(t)) ≡ Guτd(t),.

ηd(t) ≡ J(ηd(t))νd(t).
(5)

Let introduce the following additional notations:

~
x :=

(~
x1
~
x2

)
=

(
ν

η

)
, f(

~
x) :=

(−M−1[C(ν) + D(ν)]ν− M−1g(η)
J(η)ν

)
, B :=

(
M−1Gu

0

)
which allows us to present Equations (1) and (5) as

.
~
x = f(

~
x) + Bτ,

.
xd ≡ f(xd) + Bτd, (6)

supposing that d(t) ≡ 0.
Let us also consider deflections

x :=
~
x − xd =

(
x1
x2

)
:=
(

eν
e

)
:=
(
ν− νd
η− ηd

)
, u := τ− τd (7)

of the vessel dynamical parameters from the desirable motion.
Then, we can present equations of the vessel in the deflections from the desirable

motion. Using notations (7) on the base of (6), we obtain

.
x = α(t, x) + Bu, (8)

where

α(t, x) = α(t, e, eν) :=
(−M−1[C(eν + νd(t)) + D(eν + νd(t))](eν + νd(t))− M−1g(e + ηd(t))

J(e + ηd(t))(eν + νd(t))

)
−(−M−1[C(νd(t)) + D(νd(t))]νd(t)− M−1g(ηd(t))

J(ηd(t))νd(t)

)
.

(9)

It is a matter of simple calculations to check that equation (6) has zero equilibrium
position, which must be stabilized by the choice of the controller u = u(t, x). If this
controller is found, then the tracking feedback (4) can be presented as

τ = τ(t,ν,η) = τ(η,ν,ηd) = u(t, x) + τd(t), x :=
(
ν− νd(t)
η− ηd(t)

)
. (10)
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As for the desirable dynamic features of the closed-loop connection, the most widely
used formalized approach is based on minimizing the following integral functional:

J = J(t, x, u) =

∞∫
t0

f (τ, x, u) dτ,

that determines the quality of control processes for a closed-loop system. Here, subintegral
function f is positive definite, i.e., f (t, x, u) ≥ 0 ∀t ≥ t0, ∀x, ∀u, f = 0 ⇔ x = 0, u = 0.
However, as is well known, there are certain difficulties in directly implementing this
approach, which are determined by the huge extent of calculations that essentially impedes
their practical implementation.

We propose to overcome the mentioned obstacles using a novel technique based on
the OD concept, connected to the OD problem for the synthesis of the control u. To state
this problem, firstly, let us introduce the functional to be damped as follows:

L = L(t, x, u) = V(t, x) +

t∫
t0

f0(τ, x, u) dτ, (11)

where V = V(t, x) is a Lyapunov function candidate, and f0 is a positively defined function.
Let us additionally accept that the function V satisfies the following conditions:

α1(‖x‖) ≤ V(t, x) ≤ α2(‖x‖)∀x ∈ Br ⊂ En, ∀t ≥ t0, (12)

where α1,α2 ∈ K are comparison functions [4].
The essence of the OD approach consists of the control generation as a function from

the current values of variables t, x in the form

u0 = u0(t, x) = argmin
u∈U

W(t, x, u) (13)

where U ⊂ Em is the metric compact set, and W is a rate of the functional L change along
the motions of the plant (8):

W(t, x, u) :=
dL
dt

∣∣∣∣
(8)

=
dV
dt

∣∣∣∣
(8)

+ f0(t, x, u) =
∂V
∂t

(t, x) +
∂V
∂x

(t, x)α(t, x) +
∂V
∂x

(t, x)Bu + f0(t, x, u).

In other words, it is necessary to find OD controller (13), using an admissible set
U ⊂ Em such that ∀u ∈ U : τd(t) + u(t, x) ∈ Tu, ∀t ≥ 0.

We can specify three possible ways to solve this optimization problem:

(a) The first way is based on the direct numerical calculation of the vectors u = u0(t, x)
providing the pointwise minimization of the function W by the choice of u for current
points (t, x). Let us especially notice that this variant is universal in nature and can be
applied to generate a control signal for real-time regime of motion.

(b) The second way involves the possibility of an analytical solution to the problem (13).
Naturally, this is the most preferred way, but such a situation is quite rare, although
an example of its practical application will be given below.

(c) The third way reduces the problem (13) to a numerical solution of a nonlinear system
of finite equations. In fact, if we have u0(t, x) ∈ intU ∀t ≥ 0, ∀x ∈ Br, then with
necessity we obtain

dW
du

∣∣∣∣
u=u0(t,x)

= 0 ⇒
[

∂V
∂x

(t, x)B +
∂F
∂u

(t, x, u)

]
u=u0(t,x)

= 0. (14)

Using the necessary condition (14), one can solve the following nonlinear system

a(t, x, u) = b(t, x)
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for any point (t, x) with respect to the vector u, where a(t, x, u) = col[ai(t, x)], b(t, x) =
col[bi(t, x)],

ai(t, x, u) :=
[

∂F
∂u

(t, x, u)

]
i
, bi(t, x) := −

[
∂V
∂x

(t, x)B

]
i
, i = 1, n.

Based on [4,5], it can be shown that if the function V = V(t, x) is such that W(t, x, u0(t, x))
≤ −α3(‖x‖) ∀x ∈ Br, ∀t ≥ t0, where α3 ∈ K, then the function V is control Lyapunov
function (CLF) for the plant (8), and the zero equilibrium for the closed-loop system (8),
(13) is UAS.

3. Results

This section is devoted to a practical implementation of the proposed OD approach to
nonlinear tracking controllers design for marine vessels. Particular attention is given to the
forward speed tracking control law with initially given reference signal.

3.1. Tracking Control Problem for Marine Vessels

To consider the problems of tracking control for marine applications, let us accept the
following widely used [1,2] nonlinear dynamical model of a marine vessel:

dVx
dt = Tv(Vx,ξ, u1) + Th(Vx,ξ),

dVy
dt = h2(Vx,ξ), dω

dt = h3(Vx,ξ),
dϕ
dt = ω, dδ

dt = u2.

(15)

Here, the following notations are used: Vx, Vy, and ω are the projections of the veloc-

ity vectors on the axes of a vessel-fixed frame Oxyz (Figure 1); ξ :=
(

Vy ω ϕ δ
)T is

the auxiliary vector of dynamical parameters; ϕ is the heading angle, and δ is the vertical
rudder deflection. The functions Tv and Th represent hydrodynamical forces, which are
produced by the ship’s engine and the water resistance correspondingly.

x 

xe                                                           

Oe 

ye        
ze                                                                 y               

z 

O x y

Figure 1. Earth-fixed and vessel-fixed coordinate frames.

The control signals u1 and u2 must be composed by the automatic control system to
be designed. The first of them determines a reference surge speed of the vessel, and the
second one presents a reference speed of the rudders’ deflections.

Assuming that the number of the screw rotations is proportional to a reference surge
speed, the function Tv(Vx,ξ, u1) determining a trust force of the screw can be presented in
the form

Tv(Vx,ξ, u1) ≡ αu2
1 + β(Vx,ξ)u1 + γ̃(Vx,ξ), (16)

We accept here that α ≡ const, and that the variables β and γ̃ are treated as known
functions of the dynamical parameters Vx,ξ.
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Let us introduce new vector variables h(Vx,ξ) :=
(

h2(Vx,ξ) h1(Vx,ξ) ξ3 0
)T ,

b =
(

0 0 0 1
)T , and, taking into account (16), we can rewrite nonlinear model (1) of

the vessel dynamic as follows:

dVx
dt = αu2

1 + β(Vx,ξ)u1 + γ(Vx,ξ),
dξ
dt = h(Vx,ξ) + bu2.

(17)

Now we specify a certain reference motion Vxρ(t), ξρ(t), u1ρ(t), and u2ρ(t) of the
plant (17), satisfying the identities

dVxρ
dt ≡ αu2

1ρ + β(Vxρ,ξρ)u1ρ + γ(Vxρ,ξρ),
dξρ
dt ≡ h(Vxρ,ξρ) + bu2ρ.

(18)

Using systems (17) and (18), we can present equations of vessel dynamic in deflections
from the desirable reference motion of the form

dVx
dt +

dVxρ
dt = α

(
u1 + u1ρ

)2
+ β(Vx + Vxρ,ξ+ ξρ)

(
u1 + u1ρ

)
+

+γ(Vx + Vxρ,ξ+ ξρ),
dξ
dt +

dξρ
dt = h(Vx + Vxρ,ξ+ ξρ) + b(u2 + u2ρ) ,

(19)

where

Vx := Vx − Vxρ, ξ :=
¯
ξ − ξρ, u1 := u1 − u1ρ, u2 := u2 − u2ρ. (20)

One can see that Vxρ = Vxρ(t), ξρ = ξρ(t), u1ρ = u1ρ(t), and u2ρ = u2ρ(t) are
known functions of t: using new correspondent notations β1, γ1, h1, we can rewrite (19)
as follows:

dVx
dt = αu2

1 + β1(t, Vx,ξ)u1 + γ1(t, Vx,ξ),
dξ
dt = h1(t, Vx,ξ) + bu2

(21)

stating that the resulting system (21) has a zero-equilibrium position.
Let us especially note that, unlike (17), this system is not only nonlinear, but also

non-autonomous. This is due to the explicit introduction of the time-dependent reference
signals into the vessel dynamics equations.

The purpose of the control design procedure is to construct the following stabilizing
feedback controllers in deviations:

u1 = u1(t, Vx,ξ), u2 = u2(t, Vx,ξ), (22)

such that the zero equilibrium of the closed-loop connection (21), (22) is asymptotically
stable. This means that if the motion of the initial plant (15) takes place under the action of
tracking controllers of the form

u1 = u1ρ(t) + u1(t, Vx,ξ), u2 = u2ρ(t) + u2(t, Vx,ξ), (23)

starting in some neighborhood of the point {Vxρ(0), ξρ(0)}, then this motion tends to the
reference one as t becomes infinite.

As for the performance of control processes, they are usually formalized mathemati-
cally using certain functionals, which are given on the motions of the closed-loop system
(21), (22). Currently, the commonly used approach to design stabilizing controllers (22) is
setting and solving the following optimization problem

J = J(u1, u2) → min
{u1,u2}∈Ũ

(24)
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based on the integral functional

J = J(u1, u2) =

∞∫
t0

f ∗(t, Vx(t),ξ(t), u1(t), u2(t)) dt, (25)

where Ũ is the set of admissible pairs {u1, u2} and subintegral function f ∗ is positive
definite for all its arguments.

In contrast to the problems (24), (25) with traditional methods of its solving, as
mentioned above, we propose to use novel approach based on the OD concept.

Let us especially note that both the solution of the problem (24) and the solution of the
OD problem significantly depend on the initially given mathematical model (21) of a marine
vessel. Naturally, this is evidence that this model cannot be formed accurately, which raises
very important questions about the robust features of the closed-loop system to be designed.
This problem is quite solvable for various types of marine vessels: the paper [29] is an
example. However, the study of the robust features of tracking OD controllers presents an
independent problem to be addressed in future studies.

3.2. Forward Speed OD Tracking Controller Design

In general, the synthesis of the two stabilizing controllers (22) using OD technique
can be carried out simultaneously. Nevertheless, one can also apply a combined approach
to the feedback design for the considered plant (21) with two control channels. In the
range of this approach, the first control is formed based on the OD problem, and the
second one can be designed in any other way, providing desirable performance features.
However, a joint closed-loop system must have zero equilibrium, and this motion must be
asymptotically stable.

Realizing this idea, let us accept the dynamic controller for rudders (marine autopilot)
in the following form:

dz
dt = γz(t, z, Vx,ξ),
u2 = gz(t, z, Vx,ξ),

(26)

where z ∈ Eν is the state vector of this controller.
In particular, the feedback (26) may have a multipurpose structure, which is presented

in detail in [22,27] for linear time-invariant case. Its implementation taking into account
control time-delay is investigated in the paper [28].

The equations of the control plant now take the form

dVx
dt = αu2

1 + β1(t, Vx,ξ)u1 + γ1(t, Vx,ξ),
dξ
dt = h1(t, Vx,ξ) + bgz(t, z, Vx,ξ),
dz
dt = γz(t, z, Vx,ξ).

(27)

In order to synthesize a feedback for the first control channel, i.e., design the OD
forward speed stabilizing controller, let us introduce the functional to be damped as

L = L(t, Vx,ξ, z, u1) = V(Vx,ξ, z) +

t∫
t0

λ2
1u2

1 dτ. (28)

Let us take as a Lyapunov function candidate the following sum of quadratic forms:

V = V(Vx,ξ, z) = λ2V2
x + ξTQξ+ zTQ1z, Q > 0, Q1 > 0. (29)

Based on (28), (29), we can state the correspondent OD problem of the form

W(t, Vx,ξ, z, u1) → min
u1∈U1

(30)
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where the rate W of the functional L change is determined as follows:
W = W(t, Vx,ξ, z, u1) := dL

dt

∣∣∣
(27)

= dV
dt

∣∣∣
(27)

+ λ2
1u2

1 = ∂V
∂Vx

dVx
dt + ∂V

∂ξ
dξ
dt + ∂V

∂z
dz
dt + λ2

1u2
1

= 2λ2Vx
[
αu2

1 + β1(t, Vx,ξ)u1 + γ1(t, Vx,ξ)
]
+ 2ξTQ dξ

dt + 2zTQ1
dz
dt + λ2

1u2
1.

(31)

Let us solve the problem (30), taking into account (31) and assuming that the extreme
is achieved at the inner point of the set U1: with necessity we obtain

dW
du1

= 2λ2Vx(2αu1 + β1(t, Vx,ξ)) + 2λ2
1u1 = 0

that determines the following controller

u1 = u10(t, Vx,ξ) = −λ2Vxβ1(t, Vx,ξ)
2λ2Vxα+ λ2

1
. (32)

Since, according to formulae (15)–(21), we have

β1 = β1(t, Vx,ξ) := 2αu1ρ(t) + β(Vx + Vxρ(t),ξ+ ξρ(t)) ,

β(Vx + Vxρ(t),ξ+ ξρ(t)) = β0

√
(Vx + Vxρ(t))

2 +
(
Vy + Vyρ(t)

)2, β0 = const ,

we arrive from (32) at the following OD controller:

u10(t, Vx,ξ) = −
λ2Vx

(
2αu1ρ(t) + β0

√
(Vx + Vxρ(t))

2 +
(
Vy + Vyρ(t)

)2
)

2λ2Vxα+ λ2
1

, (33)

where Vy =
(

1 0 0 0
)
ξ, Vyρ(t) =

(
1 0 0 0

)
ξρ(t).

It is necessary to note that if the value u10(t, Vx,ξ) is out of an inner part of the
admissible set U1, we must use the control signal u1 = 0.01Pρu1ρ(t) · sign(u10(t, Vx,ξ))
instead of (33).

It is necessary to note that practical problems involve situations where the right part
of the equation for forward speed has a more complex structure than for the system (17).
In general, this equation can be presented as

dVx

dt
= Fx(Vx,

¯
ξ, u1).

which results in the correspondent equation for the system (21) in deflections:

dVx

dt
= Gx(t, Vx,ξ, u1),

where Gx(t, Vx,ξ, u1) := Fx
(
Vx + Vxρ(t),ξ+ ξρ(t), u1 + u1ρ(t)

)− Fx
(
Vxρ(t),ξρ(t), u1ρ(t)

)
.

In this case, instead of (31) we have

W(t, Vx,ξ, z, u1) = 2λ2VxGx(t, Vx,ξ, u1) + 2ξTQ
dξ
dt

+ 2zTQ1
dz

dt
+ λ2

1u2
1.

and the analytical search for stationary points of the function W becomes problematic.
Nevertheless, it is always possible to consider a question about the numerical solution of
OD problem (30) for each aggregate of fixed parameters t, Vx,ξ. Moreover, it is always
possible to pose a finite dimensional minimization problem

u1 = un
10(t, Vx,ξ) = arg min

u1∈U1n

(
g1(t, Vx,ξ, u1) + λ2

1u2
1

)
, (34)

on the finite net U1n ⊂ U1 for any compact set U1. This problem should be solved at the
time t for the fixed parameters t, Vx(t),ξ(t). Obviously, with a sufficiently large number
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of points for the set U1n, the solution of the problem (34) tends to solution for the same
problem on the set U1.

Finally, in accordance with formula (23), we can compose the tracking controller of
the form

u1 = u01(t, Vx,ξ) := u1ρ(t) + u10(t, Vx,ξ),

where the stabilizing part u10(t, Vx,ξ) is determined by equality (33). One can see that the
resulting representation for OD forward speed tracking controller is as follows:

u1 = u01(t, Vx, Vy) =
λ2

1u1ρ(t)− λ2(Vx − Vxρ(t)
)
β0

√
Vx2 + Vy2

2λ2α
(
Vx − Vxρ(t)

)
+ λ2

1
. (35)

The current values of the dynamic parameters Vx(t), Vy(t) must be measured to
implement the controller (35).

3.3. Numerical Example of OD Tracking Controller Synthesis

To illustrate a practical implementation of the proposed OD approach, let us consider
a practical example of forward speed tracking controller design for the transport ship with
a displacement of 3500 tons, a length of 110 m, a width of 14 m, and an immersion of 5 m.
As a mathematical model of the plant, let us accept equations (17), which are presented
in [1,2] with the given functions β(Vx,ξ), γ(Vx,ξ), h(Vx,ξ) and parameter α.

First, we define the reference motion of the ship as a partial solution of system (17)
with the initial conditions Vx(0) = 2 m/s, ξ(0) = 0. Let us accept the reference forward
speed control as follows:

u1ρ(t) =
{

2 + 0.08t, i f 0 ≤ t ≤ 100s,
10, i f t ≥ 100s.

(36)

To determine the reference control for the rudders, let us initially construct a model
feedback as a controller

um = k1xm1 + k2xm2 + k3(xm3 −ϕz) + k4xm4 := kmxm − k3ϕz, (37)

fulfilling the command-heading signal ϕz. The basis item kmxm in (37) stabilizes Linear
Time Invariant (LTI) plant

dxm

dt
= Amxm + bmum (38)

which is a result of the plant (17) linearization in the neighborhood of the origin for a fixed
forward speed Vx. Let us especially notice that the linear model (38) is used only for the
synthesis of controller (37) but is not used for simulation and for performance indices
computation: controller (37) closes full initial model (17) of the vessel.

Accepting Vx = 10 m/s , we obtain

Am =

⎛⎜⎜⎝
a11 a12 0 b1
a21 a22 0 b2
0 1 0 0
0 0 0 0

⎞⎟⎟⎠, bm =

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠ a, 11 = −0.0936, a12 = −6.34, b1 = −0.190,
a21 = −0.00480, a22 = −0.717, b2 = 0.0160.

We design the basis control um = kmxm for plant (38) with aforementioned parameters
as the Linear Quadratic Regulator (LQR) optimal controller with respect to the functional

Jm = J(um) =

∞∫
0

(
xT

mQmxm + λmu2
m

)
dt, (39)

where Qm = diag
(

0 1.975 0.0250 0
)
, λm = 60. Let us especially remark that the

choice of the presented parameters for the functional (39) is determined by the initially
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given requirements to a dynamic quality of the control processes for the nonlinear time
varying system. These requirements provide desirable settling time and overshoot for the
closed-loop connection.

As a result of computations, we get the constant vector km =
(

k1 k2 k3 k4
)
,

where
k1 = 0.00234, k2 = −0.0495, k3 = −0.0204, k4 = −0.0497.

Let us substitute the reference heading control u1ρ(t) and the rudders feedback control

u2 = k1ξ1 + k2ξ2 + k3(ξ3 −ϕz) + k4ξ4, ϕz = 90◦, (40)

into Equation (17). After integration, we obtain the functions u2ρ = u2ρ(t), Vxρ = Vxρ(t),
and ξρ = ξρ(t) =

(
Vyρ(t) ωρ(t) ϕρ(t) δρ(t)

)T , which determine given reference motion
of the vessel. The graphs of aforementioned functions are presented in Figures 2 and 3.

δ

δ

Figure 2. Graphs of the reference functions u1ρ(t), u2ρ(t), Vxρ(t), and δρ(t).

ω

Figure 3. Graphs of the reference functions ϕρ(t), Vyρ(t), and ωρ(t).

To provide simulation process, instead of (23), (26), we accept the following simple
feedback control law for a marine autopilot:

u2 = k1Vy + k2ω+ k3(ϕ−ϕz) + k4δ, (41)

where ϕz is the command-heading signal. This controller, corresponding to (40), can be
directly used for actuators of the vertical rudders.

Thus, one can see that, as a result, initial control plant (17) is closed by the tracking
controllers (35) and (41). The current values of the dynamic parameters Vx(t), Vy(t), ω(t),
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ϕ(t), and δ(t) must be measured by the corresponding sensors for the actual implementa-
tion of these controllers.

For simulation of the closed-loop system dynamics, the following parameters values
are accepted: λ2 = 100, λ2

1 = 1, α = 0.00462, β0 = −0.00322. In addition, let us take into
account the restrictions

∣∣δ(t)∣∣ ≤ dm = 35◦ and |u2(t)| ≤ um = 3 ◦/c.
To illustrate the practical applicability of the proposed approach, let us simulate

the control processes for the closed-loop connection. The aim is to make the proposed
approach comparable to other methods. This determined the choice of design parameters
and regimes of vessel’s motion. These regimes represent the most popular options for
movement on quiet water and under the action of sea waves.

The results of simulation are presented in Figures 4–6 as the graphs of corresponding
functions, which reflect control signals and the vessel’s state variables for the transient
process. This process is determined by the aforementioned reference motion, which is
realized with the help of the designed tracking controllers. Initial conditions for all variables
are zero with the exception of forward speed and heading angle. By these variables, the
initial conditions Vx(0) = 4 m/s and ϕ(0) = −10◦ are accepted to distinguish them from
the reference motion.

Figure 4. First control signals u1 = u1b(t), u1ρ(t), and u1(t) = u1(t)− u1ρ(t).

Figure 5. Forward speed Vx = Vxb(t), Vxρ(t), and Vx(t) = Vx(t)− Vxρ(t).
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δ

δ

δ

δ

δ

Figure 6. Rudders deflections δ = δb(t), δρ(t), and δ(t) = δ(t)− δρ(t).

Let us note that the dynamical quality of the presented transient process seems to be
quite satisfactory. In addition, it is suitable to illustrate the dynamics of the closed-loop
connection under the action of sea wave external disturbance. Figure 7 shows the same
control process for the forward speed Vx, taking into account presence the approximate
representation of sea waves with an intensity of 5 on the Beaufort scale.

Figure 7. Forward speed Vx = Vxb(t), Vxρ(t), and Vx(t) = Vx(t)− Vxρ(t) under sea waves action.

Finally, let us analyze the stability of the closed-loop system (17), (35), (41) with
synthesized tracking controllers. One can easily see that in order to provide aforementioned
analysis, it is sufficient to consider the zero-equilibrium stability for the closed-loop system
(27), (33) presented in deflections from the reference motion.

It is obvious that systems (27), (33) have zero equilibrium, and to investigate its
stability features, let us introduces the following Lyapunov function candidate:

V = V(x) = λ2V2
x + ξTSξ = xTS1x, S1 =

(
λ2 0
0 S

)
, x :=

(
Vx
ξ

)
. (42)

Here, the symmetrical matrix S > 0 is a solution of the algebraic Riccati equation,
which is used in the range of LQR controller (37) synthesis:

S =

⎛⎜⎜⎝
0.0107 −0.243 −0.102 −0.141
−0.243 7.04 2.59 2.97
−0.102 2.59 1.27 1.22
−0.141 2.97 1.22 2.98

⎞⎟⎟⎠.

155



J. Mar. Sci. Eng. 2021, 9, 45

Let us notice that the introduced function V(x) satisfy the relationships

α1(‖x‖) ≤ V(x) ≤ α2(‖x‖), ∀x ∈ E5, (43)

with the following K-class functions:

α1(‖x‖) = σmin(S1) · ‖x‖2, α2(‖x‖) = σmax(S1) · ‖x‖2,

where σmin = 0.00115 and σmax = 100 are the minimum and maximum eigenvalues of the
matrix S1, respectively.

Using the additional function α3(‖x‖) ≡ ‖x‖ ∈ K, one can check if the following
inequality is valid

W(t, x) =
dV
dt

∣∣∣∣
(27), (33)

≤ −α3(‖x‖), ∀t ≥ 0, ∀x ∈ Bx, (44)

where Bx is a box, determined by the relationships:

Bx(t) =
{

x ∈ E5 : |xi| ≤ xim(t), i = 1, 5
}

,

x1m(t) = 0.01Pρ|Vxρ(t)|, x2m(t) = 0.01Pρ
∣∣Vyρ(t)

∣∣,x3m(t) = 0.01Pρ|ωρ(t)|, x4m(t) = 0.01Pρ|ϕρ(t)|,

x5m(t) = 0.01Pρ|δρ(t)| .

Here, the variable Pρ determines the relative width of the box Bx compared to the
current values of the reference signals. This variable was increased to such a value that the
condition (44) was met. The obtained value Pρ = 25% seems to be still admissible in the
range of (43), (44) [4,5], determining the region of the local uniform asymptotic stability for
the reference motion, which is realized by tracking controllers (35), (41).

4. Discussion

The main goal of this work was to propose constructive methods for marine tracking
controllers’ design taking into account the real conditions of a vessel’s motions. We focused
our main attention on a situation where the rudders’ deflections and the forward speed are
presented by initially given reference signals to be realized using tracking feedback controls.

This problem can be solved using different popular optimization approaches (Bell-
man’s theory, MPC technique, sliding mode control, etc.). Nevertheless, we propose a
new specific method for tracking controllers’ design, which ensures the desirable reference
motion of the vessel along the forward speed and heading angle.

This method is based on the optimal damping concept, which has certain advantages
related to the practical requirements for the dynamic features of a closed-loop connection.
The main advantage of the aforementioned approach is that the numerical solution of the
optimization problems is essentially simplified. In contrast to well-known approaches [1–4],
we applied OD tracking feedback as a control law with special features that allow it to be
adjusted and implemented in real-time regime of motion.

The main result of this study is the development of the optimal damping concept to
ensure its practical applicability and effectiveness that is illustrated by a controller design
for a transport ship.

The investigations presented above could be further developed to consider the robust
features of the tracking control laws, information about the measurement noise, and the
presence of transport delays [24]. The results of the executed research could also be
implemented to provide desirable reference motion of the dynamic positioning systems
for marine vessels [26,27]. Certain attention may be given to the multipurpose control
laws applications [22–25]. As for direct development of this study, it is possible to also use
OD controller for the vertical rudders. The extension of the proposed approach to various
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robotic systems is also of considerable interest. The scope of the proposed approach may
additionally include remotely operated vehicles [11] and offshore structures [12].
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Abstract: Ship collision avoidance measures are important for reducing marine accidents caused
by human factors and various natural environmental factors and can also prevent property loss
and casualties. In recent years, various methods have been used to study collision avoidance,
including ship domain models. This paper proposes a ship domain model based on fuzzy logic
aimed at providing early warning of ship collision risk and a reasonable reference that can be
used in combination with the International Regulation for Preventing Collisions at Sea (COLREGs).
The composition fuzzy inference combining more than one fuzzy inference process is first used to
introduce as many factors as possible related to ship collision risk for calculating the ship domain.
In this way, the calculation of the ship domain size is more accurate, and a more accurate reference can
be provided to sailors, which could save both time and labor by reducing errors. A fuzzy inference
system based on if-then fuzzy rules was established in MATLAB and simulation experiments were
conducted. The simulation results suggest that the proposed method is feasible and can help sailors
make subjective decisions to effectively avoid the occurrence of collision accidents.

Keywords: collision avoidance; ship domain; fuzzy inference; collision risk; early warning system

1. Introduction

In recent years, with advances in science and technology, maritime traffic has increased and
brought many conveniences to human life. However, the increasing complexity of maritime traffic has
gradually led to more safety problems. Frequent ship collisions cause serious economic losses and
threaten the safety of passengers and crew members. Furthermore, worsening environmental pollution
caused by ship collisions cannot be neglected. Despite a large body of research and methods devoted
to reducing collisions at sea, ship collision accidents are inevitable. Thus, ship collision avoidance has
become a research hotspot.

To minimize ship collisions, thereby increasing the safety of ships sailing at sea and reducing the
associated losses, researchers in various countries have explored a range of methods for ship collision
avoidance. According to the European Maritime Safety Agency’s review [1] of maritime casualties in
2017, EU member states reported 3145 maritime accidents in 2016. More than half of these accidents
were caused by ship collisions, and more than 60% of the collisions were caused by human error. Thus,
reducing human errors during navigation at sea has become an important focus of research, with an
emphasis on improving the navigator decision-making processes.

Algorithms such as the genetic algorithm, neural network, and distributed algorithm have been
applied to ship collision avoidance problems. In addition, automatic radar plotting aid (ARPA) and
automatic identification system (AIS) have been used to help make collision avoidance decisions.
ARPA offers accurate information about the bearing and distance of nearby obstacles, while AIS
provides important information about the ship’s course, speed, and position. These data provide
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a powerful basis for effective ship collision avoidance. By far, many researchers have studied the
ship domain in different waters with the help of AIS data. For example, Xiang et al. [2] proposed a
calculation method for ships in restricted waters based on AIS data. Hansen M.G. et al. [3] used AIS
data to study the ship domain in the bridge area and crossing waters and Zhang et al. [4] develop an
effective big AIS data-driven approach to determine the probabilistic ship domain. Ding et al. [5] used
AIS data to make statistics on the ship domain of different types of ships and ships of different sizes in
open waters. Although research using AIS is now common, these systems can only be used as assistant
tools to identify obstacles and offer additional navigation information. While these tools provide
accurate and reliable information for navigators as the basis for decision-making, sailors cannot use
this information to make navigation decisions.

Some algorithms have been used to aid ship navigation decision-making systems. For example,
Li et al. [6] used an improved multiobjective algorithm to plan the collision avoidance trajectory of
ships and to suggest safe navigation routes. In addition, Li et al. [7] studied ship collision avoidance
using distributed algorithms for preventing multi-ship collisions at sea. Tsou and Hsueh [8] combined
the ant colony algorithm with onboard AIS and geographic information system (GIS) systems for safe
and economical collision avoidance route planning. The algorithms mentioned above, and others,
can be used to plan the general ship collision avoidance route for multiple ships in the same water
area, but the management of temporary accidents has not been well studied.

Previously, there have been researchers who used fuzzy logic to study navigation issues.
Lee et al. [9] proposed a fuzzy logic ship autonomous navigation algorithm based on COLREGs
criterion. The VFF (Virtual Force Field) method is improved and applied to the autonomous navigation
of ships. However, the fuzzy inference system is mainly based on COLREGs, which lacks sufficient
consideration of the interference caused by various factors in navigation. Grinyak et al. [10] proposed
a fuzzy decision-making system about the motion’s danger level that combines Mamdani and Sugeno
fuzzy inference systems, but it mainly considered a model of the relative motion of two vessels and
neglected the environmental factors. Namgung [11] proposed a fuzzy inference system that expressed
appropriate collision risk index corresponding to level. It can measure the fuzzy risk index, but it
cannot play a direct role in the sailor’s decision warning. In this paper, composition fuzzy inference is
carried out by comprehensively considering the ship’s own factors and environmental factors when the
ship is sailing at sea, giving the ship early collision warning and reminding the sailor to take measures
to avoid collision.

When malfunction occurs or the ship fails to sail along an expected path or at an expected speed,
the sailor’s timely response is crucial. In the past, sailors’ decisions were based on experience but
with further research on the behavior of the navigating ships and intelligence science and technology,
collision risk warnings can be achieved by other means. For instance, the ship domain model can be
used to evaluate collision risk. Ship domains represent a defined area around the ship that other ships
should not enter to ensure that the ship navigates safely through waters. Thus, the ship domain can be
used as a standard safety measure and a reference parameter for evaluating collision risk, and it is also
the basis for taking actions in ship collision avoidance.

The concept of ship domains was first proposed by Japanese scholar Fujii [12] as an elliptical
domain proportional to the length of the ship. Goodwin [13], Davis [14], Coldwell [15], and others were
inspired to establish other ship domain models’ statistical observations. Vander Tak et al. [16] used the
ship domain model to calculate the frequency of ship encounters for assessing maritime traffic hazards.
Later, the ship domain concept was further extended. Pietrzykowski and Uriasz [17–19] introduced the
notion of the fuzzy ship domain and defined ship domains in both open waters and restricted waters.
Qu et al. [20] proposed three ship collision risk indicators based on the ship domain to quantitatively
evaluate ship collision risk in a strait. Wang et al. [21] proposed a fuzzy quaternion ship domain model
(FQSD) and used analytic expressions to describe models. Zhou et al. [22] introduced the dynamic
fuzzy ship domain and established a ship domain model to determine collision risk between ships.
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In this paper, the ship domain is used as the criterion for assessing collision risk. When other ships
enter the ship domain, the situation becomes urgent and the ship must take action to avoid an imminent
collision. Therefore, it is necessary to study the range and size of the ship domain. This paper proposes
a fuzzy logic approach. The size of the ship domain is regarded as a fuzzy value that varies with the
external environmental factors. A fuzzy control method is adopted to obtain a reasonable value of
the ship domain by considering the dangerous inviolable area of each ship. Through fuzzification,
fuzzy reasoning, and defuzzification, a reference for collision avoidance between ships is provided to
effectively assist navigational decision-making.

In view of the fact that there are many factors that affect the ship domain, a single fuzzy inference
may not be able to consider as many influencing factors as possible, which limits the number of factors.
So, the factors considered in the study of ship collision warning were always limited in the past.
Moreover, environmental factors such as navigation density and fairway visibility are always ignored.
However, removing too many factors from the model can lead to excessive errors. The proposed
composition fuzzy inference method combines the results of multiple fuzzy inferences and then
performs fuzzy inference, retaining as many relevant factors as possible, which solves the problem
of oversize errors caused by too many factors that need to be deleted in the past, thereby providing
a more accurate estimate of the ship domain size, which can be used for more accurate and timely
warning of collision danger to reduce the occurrence of collisions.

In addition, the previous research can only obtain the relationships between the ship domain and
certain single factors. Here, the fuzzy logic method was used to not only obtain the changes in the ship
domain with certain factors but also to simulate the influence of multiple factors on the size of the
ship domain, which enables a more accurate description of the ship domain size. The proposed ship
domain model could save both time and labor and enable the ship domain concept to be better applied
in navigation systems.

The rest of the paper is organized as follows. Section 2 describes the ship domain and its influencing
factors, various factors are selected to determine the shape of the ship domain, and less significant
factors are removed. In Section 3, a fuzzy inference model of the ship domain is established considering
five influencing factors including both own ship factors and environmental factors. In Section 4,
the simulation platform and inference system are introduced and the simulation experiments and results
compared with the traditional methods are presented. In Section 5, we summarize the advantages of
the proposed method and the importance of early warning systems for preventing ship collisions.

2. Ship Domain Model and Influencing Factors

2.1. Ship Domain

Fujii [12] defined ship domain as “The area around the previous ship most of the following ship’s
sailors avoid entering.” The dimensions of the ship domain are related to factors such as ship speed,
density, and tidal current. The first established ship domain model was oval shaped, as shown in
Figure 1. Fujii assigned a specific numerical value to the ship domain size based on observations
of maritime traffic, making it no longer an abstract concept, and demonstrated that the range of
ship domain varies with the navigation conditions and waters. Later, other scholars introduced ship
domains, which were mainly elliptical [2–5]. Therefore, in the present, an elliptical ship domain
was selected.

161



J. Mar. Sci. Eng. 2020, 8, 1002

 
Figure 1. Fujii’s ship domain model.

2.2. Factors Affecting the Ship Domain

The ship domain depends on the sailor’s maneuvering, however, the sailor’s response is based
on objective facts and also influenced by various factors. Therefore, the ship domain is affected by
many subjective and objective uncertainties, including human, ship, environment, and management
factors, and changes dynamically. The ship domain may also vary with its factors for different research
purposes and different types of waters under different environmental conditions. The main factors are
as follows:

(1) Weather and hydrological effects. Generally, reduced visibility increases the size of the ship domain.
(2) Ship size. The larger the ship, the larger the ship domain.
(3) Vessel speed. The larger the ship speed, the larger the ship domain.
(4) Surrounding waters around which the ship is sailing affect the size of the ship domain. The ship

domain is large in open waters and small in restricted water.
(5) Maritime navigation density. Higher navigation density in the vessel’s sailing area results in a

smaller ship domain.
(6) Route conditions. For example, when the vessel is navigating a curved channel or jet zone,

the domain is large.
(7) Maneuverability of the vessel. Improved maneuverability decreases the ship domain.
(8) Skill of the sailor.
(9) Encounter angle between two encountering vessels.
(10) Types of vessels.

The influence of various uncertain factors on the ship domain is complex, which makes it difficult
to determine the relationships between ship domain and each factor. The influencing factors in the
ship domain must, therefore, be analyzed and factors that have an obvious influence on the size of
the ship domain should be selected, which can significantly reduce the complexity of studies of the
ship domain.

At present, research on the ship domain is mostly aimed at open waters or restricted waters,
and ship domains in diverse waters are suitable for different situations. In this study, we consider
open waters. Management factors are not considered since they are not highly relevant in opens
waters. Zhou’s work [22] shows that the type of ship has little effect on the size of the ship domain,
and its impact is mainly reflected in the speed of the vessel. Thus, the impact of ship type will not be
considered in this study to simplify the ship domain model.

According to previous analyses with multiple sample data, among the many factors affecting the
size of the ship domain, there is a clear trend in size, speed, and encounter angle of the ship. The size
of the ship domain is also affected by navigation density and fairway visibility, whereas the sailor
class and ship type have little effect on the size of the ship domain and no obvious rules have been
defined. This paper considers three own ship factors, including ship length, ship speed, and encounter
angle between two ships, and two environmental factors, including maritime navigation density and
fairway visibility.
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3. Composition Fuzzy Inference Based on Ship Domain

Herein, the influence of various factors on the size of the ship domain are determined. The shape
of the ship domain is not discussed. The ship domain was assumed to be an ellipse. Since the position
of the ship inside the domain is different in every study, only the size of the ship domain is assessed.
The lengths of the major and the minor axes of the ellipse can determine its area. The situation is
similar when these lengths are used for fuzzy control. However, the major axis length could better
predict collision risk and was therefore selected as the output variable, indicating the impact of each
factor on the size of the ship domain.

In this paper, five factors influencing the ship domain are considered: ship length, ship speed,
encounter angle between the two ships, navigation density, and fairway visibility. The excessive
number of factors make single fuzzy reasoning impossible because the formulation of excessive fuzzy
rules is extremely complicated and may produce large errors. Therefore, the composition fuzzy
reasoning method is adopted. First, the influence of the ship’s own factors on the size of the ship
domain is simulated through fuzzy inference to form ship domain model D1. Then, the environmental
factors are simulated to form ship domain model D2. Finally, models D1 and D2 are combined.
After fuzzy inference, ship domain model D can be defined as the ship domain model simultaneously
affected by the ship’s own factors and environmental factors, as shown in Figure 2.

 
Figure 2. Composition fuzzy inference model.

3.1. Fuzzy Ship Domain Affected by Ship’s Own Factors

3.1.1. Fuzzy Control

Fuzzy control is the process that performs fuzzy inference on input variables to transform the
fuzzy output values into crisp output values using the following steps:

(1) Select the input and output variables that reflect the working mechanism of the system and
determine the range of input and output variables and the fuzzy set of linguistic variables;

(2) Create the membership function (FMF) for each set of inputs and outputs;
(3) Formulate the if-then fuzzy rules to construct the relationship between the output fuzzy set and

the input fuzzy sets, and select the fuzzy reasoning model;
(4) Perform fuzzy reasoning on the fuzzy input variables combined with the fuzzy rules and

defuzzification of the output. Fuzzification converts the precise input value into a fuzzy value
and defuzzification converts the fuzzy value after fuzzy inference into a crisp value using the
following formulas, respectively:

x = f z(x0) (1)

z0 = d f (z), (2)
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where x0 is the crisp input value, x is the fuzzy set, f z represents the fuzzification operator; z is the
fuzzy value of the control output, z0 is the clarity value of the control output, and d f represents the
defuzzification operator.

To consider the influence of different factors on the ship domain model, three critical factors are
selected as the input linguistic variables, i.e., the ship’s own size, the ship speed, and the encounter
angle between the two ships. The major axis length of the elliptical ship domain is the output variable.
Fuzzy control is performed to obtain a crisp output quantity of the size of the ship domain. A block
diagram of the fuzzy control process of the ship domain model is shown in Figure 3.

 
Figure 3. Block diagram of fuzzy control process for ship domain model influenced by ship’s own factors.

3.1.2. Fuzzy Linguistic Variables and Fuzzy Sets

Fuzzy linguistic variables are fuzzy sets expressed in fuzzy language, simply referred to as
linguistic variables, and can be divided into input linguistic variables and output linguistic variables.
Each fuzzy linguistic variable has multiple fuzzy linguistic terms whose names usually have certain
meanings, such as very small (VS), small (S), medium small (MS), medium (M), medium big (MB),
big (B), very big (VB), etc.

The ship’s own size, ship speed, and encounter angle between the two ships are selected as the
input linguistic variables. The size of the ship domain is the quantity of fuzzy control selected as the
output linguistic variable.

Each linguistic variable is composed of a set of fuzzy linguistic values, which constitutes a fuzzy
set. For each linguistic variable, each fuzzy set of values has the same range.

The size of the ship itself can be represented by the length and breadth of the vessel. In this paper,
“ship length” (L) is regarded as an input linguistic variable, which is divided into three fuzzy linguistic
terms: small (S), medium (M), and big (B). That is to say, the values of the fuzzy set of the input
linguistic variable “ship length” are {S, M, B}. By referring to the relevant data of ship size, the range of
ship length is [30,400] and the unit of ship length is in meters (m). Similarly, after investigating typical
ship speeds, the range of input linguistic variable “ship speed” (V) is [0,30] in kn. The values of the
fuzzy set “ship speed” are also {S, M, B}, again representing small (S), medium (M), and big (B).

For the “encounter angle between the two ships” (E), the influence of the encounter angle on
the size of the ship domain is more complex, therefore, more fuzzy linguistic terms must be selected,
but it is also more precise. The input linguistic variable “encounter angle” is divided into seven fuzzy
linguistic terms: very small (VS), small (S), medium small (MS), medium (M), medium big (MB),
big (B), and very big (VB). That is, the values of the fuzzy set “encounter angle” are {VS, S, MS, M, MB,
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B, VB}. The encounter angle is symmetrical to the ship, the bow direction is 0◦, and the stern is 180◦,
which is determined as [0,180].

The output linguistic variable is the length of the long axis of the ship domain, represented as
D1 here. The range of the output variable can be roughly determined by reviewing existing data on
ship domain sizes. The range of output linguistic variable “ship domain size affected by ship’s own
factors” D1 is [150,3500] and the values of the fuzzy set are {S, MS, M, MB, B}, corresponding to five
fuzzy linguistic terms: small (S), medium small (MS), medium (M), medium big (MB), and big (B).

3.1.3. Fuzzy Membership Functions

A linguistic variable has multiple linguistic terms and each linguistic term corresponds to a
membership function. In the MATLAB Fuzzy Logic Toolbox, there are Gaussian, triangular, trapezoidal,
bell-shaped, sigmoidal, л-type, and Z-type membership functions. Here, the triangular and trapezoidal
membership functions are selected to describe the linguistic variables, with a, b, c, and d as the
parameters, and the formulas are as follows, respectively:

f (x, a, b, c) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, x ≤ a
x−a
b−a , a ≤ x ≤ b
c−x
c−b , b ≤ x ≤ c
0, x ≥ c

(3)

g(x, a, b, c, d) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ a
x−a
b−a , a ≤ x ≤ b
1, b ≤ x ≤ c
d−x
d−c , c ≤ x ≤ d
0, x ≥ d

. (4)

The parameters in the formulas are affected by the range of each linguistic value of the
linguistic variable.

Figure 4 shows the membership functions of three input linguistic variables and one output
linguistic variable. The input linguistic variable “ship speed” (V) selects only the triangular membership
function, while the input linguistic variables “ship length” (L) “encounter angle between the two
ships” (E), and the output linguistic variable “ship domain size” (D1) not only selects the triangular
membership function but also uses the trapezoidal membership function. The Fuzzy Logic Toolbox
in MATLAB was used to draw the membership functions, which not only reflects the membership
function of the input and output linguistic variables but also clearly shows the linguistic term and
range of input and output linguistic variables, as well as the relationship among each linguistic term of
each linguistic variable.
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(a) (b) 

(c) (d) 

Figure 4. Fuzzy membership functions: (a) ship length (L), (b) ship speed (V), (c) encounter angle (E),
and (d) ship domain size affected by ship’s own factors (D1).

3.1.4. Fuzzy Inference

The fuzzy inference system applies fuzzy logic to map a given input to the output. In fuzzy
inference systems, fuzzy rules can describe human experience and knowledge in the form of fuzzy
language. A set of fuzzy logic inference systems is composed of many fuzzy inference rules. The number
of fuzzy rules is the Cartesian product of the fuzzy linguistic variables and membership sets.

In the present study, there are three input linguistic variables. The input linguistic variable “ship
length” has three membership sets, S, M, and B, “ship speed” also has three membership sets, S, M,
and B, and “encounter angle” has seven membership sets, VS, S, MS, M, MB, B, and VB. Therefore,
the number of fuzzy rules is 63. The fuzzy rules are presented in Table 1. The Mamdani model is the
most commonly used fuzzy inference method and is adopted in the present study.

Table 1. Fuzzy rules for ship domain size (D1).

Ship Domain Size (D1) Encounter Angle (E)

Ship Length (L) Ship Speed (V) VS S MS M MB B VB

S
S MB M M MS MS MS S

M MB MB M M MS MS S

B B MB MB M M MS MS

M
S B MB M M MS MS S

M B B MB M M MS MS

B B B MB MB M M MS

B
S B MB MB M M MS MS

M B B MB MB M M MS

B B B B MB MB M MS

After the input and output linguistic variables are selected, their ranges and fuzzy sets are
determined. The membership functions of the input and output linguistic variables are also selected
as well as the fuzzy reasoning model. The MATLAB Fuzzy Logic Toolbox was used to establish the
fuzzy inference system, taking the ship length (L), ship speed (V), and encounter angle (E) as the input
variables and the ship domain size (D1) as the output variable.
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3.2. Influence of Environmental Factors on Fuzzy Ship Domain

3.2.1. Fuzzy Control Process

The influence of environmental factors on the fuzzy ship domain affected are also considered.
Two factors, navigation density and fairway visibility, are selected as input linguistic variables and the
long axis length of the elliptical ship domain is taken as an output linguistic variable. Fuzzy reasoning
can be performed to obtain the ship domain size. A block diagram of the fuzzy control process for the
ship domain model is shown in Figure 5.

 
Figure 5. Block diagram of fuzzy control process for ship domain model affected by environmental factors.

3.2.2. Fuzzy Linguistic Variables and Fuzzy Sets

In this paper, “navigation density” N is divided into five fuzzy linguistic terms: small (S),
medium small (MS), medium (M), medium big (MB), and big (B). Therefore, the values of the fuzzy set
of the input linguistic variable “navigation density” N are {S, MS, M, MB, B}. After consulting relevant
data on navigation density, the range of navigation density is determined as [0,600], referring to the
number of ships passing per unit time. Generally, 24 h is taken as the unit time.

Similarly, after investigating the visibility in a certain area, the range of the input linguistic variable
“fairway visibility” K is [0,25] in km. The values of the fuzzy set “fairway visibility” are {S, MS, M,
MB, B}, which represent the five fuzzy linguistic terms of fairway visibility, respectively, small (S),
medium small (MS), medium (M), medium big (MB), and big (B). For the output linguistic variable,
“ship domain size affected by environmental factors” D2 is selected to distinguish from the ship domain
size D1 influenced by the ship’s own factors. The range of the ship domain size (D2) is consistent with
that of the ship domain size affected by ship’s own factors (D1), which is [150,3500], and the values of
the fuzzy set are {S, MS, M, MB, B}.

3.2.3. Fuzzy Membership Functions

The triangular membership function and trapezoidal membership function are again selected to
describe the linguistic variables, as shown in Figure 6.

  
(a) (b) 

Figure 6. Cont.
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(c) 

Figure 6. Fuzzy membership functions: (a) navigable density (N), (b) fairway visibility (K), and (c) ship
domain size by environmental factors (D2).

3.2.4. Fuzzy Inference

The fuzzy rules of navigation density, fairway visibility and ship domain size are shown in Table 2,
and the Mamdani fuzzy reasoning method is adopted.

Table 2. Fuzzy rules for ship domain size (D2).

Ship Domain Size (D2) Navigation Density (N)

Fairway visibility (K) S MS M MB B

S B B B MB MB

MS B MB MB M MS

M MB M M M MS

MB MB M MS MS S

B MS MS S S S

3.3. Ship Domain of Composition Fuzzy Inference

3.3.1. Fuzzy Control Process

The fuzzy ship domain is affected by both the ship’s own factors and environmental factors.
Using the composition inference method, ship domain size affected by the ship’s own factors (D1) and
ship domain size affected by environmental factors (D2) can be obtained and are taken as the input
linguistic variables. The long axis size of the oval ship domain is taken as the output linguistic variable,
expressed as D. In other words, under composition fuzzy inference, the size of ship domain is affected
by both ship’s own factors and environmental factors. A block diagram of the fuzzy control process for
the ship domain model is presented in Figure 7.

 
Figure 7. Block diagram of fuzzy control process for ship domain model.
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3.3.2. Fuzzy Linguistic Variables and Fuzzy Sets

Both the input linguistic variable and the output linguistic variable are the ship domain size;
“ship domain size affected by the ship’s own factors” D1 and “ship domain size affected by environmental
factors” D2 are the input linguistic variables; and “the ship domain size affected by comprehensive
factors” D, which is influenced simultaneously by both the ship’s own factors and environmental
factors, is the output linguistic variable.

Since the input and output linguistic variables both represent values of the ship domain long axis
size, their range and fuzzy linguistic terms are the same and can be divided into five fuzzy linguistic
terms: small (S), medium small (MS), medium (M), medium big (MB), and big (B). The values of the
fuzzy set are {S, MS, M, MB, B}. The range is [150,3500].

3.3.3. Fuzzy Membership Functions

The membership function is shown in Figure 8.

  

 

(a) (b) 

(c) 

Figure 8. Fuzzy membership functions: (a) ship domain size affected by ship’s own factors (D1),
(b) ship domain size by environmental factors (D2), and (c) ship domain size affected by comprehensive
factors (D).

3.3.4. Fuzzy Inference

The fuzzy rules are presented in Table 3. The Mamdani fuzzy reasoning method is adopted.

Table 3. Fuzzy rules (D).

Ship Domain Size Affected by
Comprehensive Factors (D)

Ship Domain Size Affected by Environmental Factors (D2)

Ship domain size affected by the
ship’s own factors (D1) S MS M MB B

S S S S MS M

MS S MS MS MS M

M MS M M M MB

MB M MB MB MB B

B M MB B B B
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4. Results

The MATLAB Fuzzy Logic Toolbox was used to construct and then simulate the fuzzy inference
system, then the relationships between the size of the ship domain and influencing factors, including ship
length (L), ship speed (V), encounter angle (E), navigation density (N), and fairway visibility (K) were
obtained, as shown in Figure 9.

   

  

(c) (b) (a) 

(d) (e) 

Figure 9. Variation of ship domain size with influencing factors: (a) ship length (L), (b) ship speed (V),
(c) encounter angle (E), (d) navigation density (N), and (e) fairway visibility (K).

The ship domain shows a trend of gradually increasing with the increase in size and speed of the
ship, but gradually decreases with increasing encounter angle. Simultaneously, the size of the ship
domain gradually decreases with increasing navigation density and fairway visibility, i.e., the smaller
the navigation density, the lower the visibility and the larger the ship domain size. However, the ship
domain does not have a linear relationship with these single factors. Thus, it can be seen, the influence
result of each factor on ship domain obtained by fuzzy inference is similar to other studies [22].

The comprehensive influence of various two-factor combinations on the size of the ship domain
were also simulated, as shown in Figure 10. The surface diagrams illustrate the trends of each set of
influencing factors on the size of the ship domain as well as the specific size of the ship domain when
concrete values of the two factors are input into the MATLAB simulation platform.
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(a) (b) 

(c) (d) 

Figure 10. Comprehensive influence of various two-factor combinations on the size of the ship domain:
(a) ship length (L) and ship speed (V), (b) ship length (L) and encounter angle (E), (c) ship speed (V)
and encounter angle (E), and (d) navigation density (N) and fairway visibility (K).

The MATLAB Fuzzy Logic Toolbox was used for simulations and the specific size of the ship
domain was obtained by determining the input. The results of the fuzzy simulations are shown in
Figure 11. When specific values are assigned as inputs, i.e., the values of ship length (L), ship speed
(V), encounter angle (E), navigation density (N), and fairway visibility (K) are determined, the size of
the ship domain can be obtained. This article makes the simulation when two ships are in the head-on
situation as an example, when the “ship length” L = 215 m, the “ship speed” V = 15 kn, the “encounter
angle” E = 5, “navigation density” N = 420, and “fairway visibility” K = 10 km, and “the major axis
length of the elliptical ship domain” D = 2990 m. If the ship does not encounter any other ships at
this time, appropriate actions should be taken according to the length of the semimajor axis and the
International Regulation for Preventing Collisions at Sea (COLREGs).

  
(a) (b) 

Figure 11. Cont.
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(c) 

Figure 11. Fuzzy simulation results: (a) ship domain size affected by ship’s own factors (D1), (b)
ship domain size by environmental factors (D2), and (c) ship domain size affected by comprehensive
factors (D).

Figure 12 shows the ship domain of the own vessel and the encounter situation between the own
vessel and a target vessel sailing in one direction. Taking the major axis of the ellipse as the diameter
and the center of the ship as the center of the ship domain, a circle tangent to the ellipse was drawn.
From Figure 12, it can be easily observed that when the “encounter angle” E = 5, the two ships are
in the head-on situation, the own vessel receives a collision risk warning when the target vessel is
1495 m away and collision avoidance actions according to COLREGs should be taken to avoid an
urgent situation.

 

Figure 12. Ship encounter situation.

In other encounter situations, it is also possible to simulate the value of a ship domain, when other
ships reach this distance and receive a collision risk warning, the sailor must consider whether or not
to take action immediately. There is also a collision risk between the two ships at this time, therefore,
the sailor should be on the lookout and be prepared to take measures at any time to avoid a collision.
Thus, the length of the major axis of the ship domain can determine the collision risk, which can
provide an early warning to help sailors in the subjective decision-making process to avoid collisions.

In the past, most ship domain models have been too complex since many factors affect the
ship domain. Researchers have previously chosen to ignore certain factors while retaining more
important factors based on experiential knowledge. For most situations, own ship factors such as ship
length, ship speed, and encounter angle have an important influence on the size of the ship domain
owing to the limitations of the single simulation method. Environmental factors are often viewed as
less important and abandoned due to limitations on the number of factors required. Nevertheless,
environmental factors have some influence on the ship domain. Although wind and wave have little
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influence, factors such as fairway visibility and navigation density have a greater impact on the size
of the ship domain. Therefore, the influence of certain environmental factors on the ship domain
cannot be ignored. Taking these factors into account undoubtedly reduces experimental errors in
determining the size of the ship domain, which makes the ship domain a more valuable warning signal.
For example, when only the ship’s own factors were considered in the present study, the ship domain
size was D1 = 3190 m. In this case, the ship would receive the danger warning at 1595 m, instead of
1495 m, and take unnecessary measures to avoid collision. Premature preventive measures waste
time, manpower, and material resources. Fuzzy reasoning can be used to synthesize various factors
and produce more accurate simulation results, leading to fewer errors, which can save both time and
unnecessary labor.

The traditional early warning methods of ship collision mainly rely on the ship’s Collision Risk
Index (CRI) to complete. It refers to the possibility of collisions between ships. Generally, when CRI = 0,
it means that the ship is far away from the target ship and there is no danger of collision; when CRI = 1,
it means that no matter what collision avoidance actions are taken, a collision will occur between
the two ships. Most studies took CRI = 0.5 as the basis of whether to take action when establishing
a ship collision avoidance decision model. If CRI > 0.5, then collision avoidance action is required.
If CRI < 0.5, there is no danger of collision, just lookout.

The calculation of CRI usually depends on the distance of closest point approach (DCPA) and the
time of closest point approach (TCPA). Many researchers have adopted different methods to calculate
CRI by input DCPA and TCPA. Some of them adopted fuzzy inference methods [23] and some adopted
fuzzy comprehensive evaluation [24]. The calculation of TCPA and DCPA is the first thing to do.
The calculation process is shown as follows. Figure 13 is a diagram of ship relative motion parameters.

DCPA = Rt · sin(ϕτ − at −π) (5)

TCPA = Rt · sin(ϕτ − at −π)/vτ, (6)

where vτ is the relative speed of the target ship, ϕτ is the angle of the relative speed of the target
ship, Rt is distance between two ships, αt is the true position of the target ship relative to own ship.
The calculation formulas are as follows.

( )o oOS X Y

( )t tTS X Yov

tv

tϕ

τϕ

oϕ
tθ

tα

vτ

DCPA tR

Figure 13. Diagram of ship relative motion parameters.

The specific solution process will not be introduced in detail, but the calculation of the relative
speed and the relative course between the two ships requires the speed and course of the own ship and
the target ship. This means that adopting this method to judge the collision risk index should obtain
not only the speed and course of the own ship, but also that of the target ship.

As can be seen from the article and the simulation results, when the composition fuzzy inference
based on the ship domain is adopted, only the ship’s and environmental information at a certain
moment need to be obtained, and there is no need to judge the status of the target ships, even static
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obstacles. As long as there are obstacles within the danger warning range during sailing, it will receive
the collision warning and need to take avoidance actions. This makes the judgment of collision risk
simpler and faster, and can also solve the limitation of judging only dynamic obstacles when judging
the collision risk based on the CRI.

When judging the collision risk adopting the traditional method, the result obtained is the CRI
of the target ship relative to own ship at a certain moment and position, and it can only be known
whether it is necessary to take action at this time. However, the collision risk distance of the ship
at a certain moment is obtained by the composition fuzzy inference. The method is more intuitive,
more applicable, and has a certain predictability, which can give the sailor more reaction time.

At the same time, the data provided by the AIS system required by the traditional method does
not contain environmental factors, and to a certain extent the impact of environmental factors on ship
collisions is ignored. The composition fuzzy inference method has smaller errors.

The comparison table between composition fuzzy inference and traditional methods is shown in
Table 4.

Table 4. The comparison table between composition fuzzy inference and traditional methods.

Early Warning Method of
Ship Collision Output Input

Factors Considered

Own Ship’s
Factors

Target
Ship’s
Factors

Environmental
Factors

Composition fuzzy inference
Danger

warning
distance

Ship length
ship speed

encounter angle
navigation density
fairway visibility

√ × √

Method for
judging

collision risk
index

Fuzzy
inference

CRI DCPA
TCPA

√ √ ×
Fuzzy

comprehensive
evaluation

√ √ ×

5. Conclusions

In this paper, the ship domain was regarded as the safe domain for avoiding collisions between
vessels. To establish the model, the ship domain was represented as a fixed ellipse and certain factors
affecting the ship domain were considered. Not only the ship’s own factors that have a greater
impact on the ship domain are selected but also the environmental factors that have relatively small
impact on the ship domain are added. Then, composition fuzzy inference of the selected factors was
used to determine collision risk according to the range of the ship domain. The simulation results
provide a reference for implementing collision avoidance actions in different ship encounter situations,
which can improve the subjective decision-making of sailors and reduce the probability of collision.
Compared with traditional methods of studying ship collision danger warning, the research process
of collision danger of composition fuzzy inference is simpler and faster, the result is more intuitive,
more applicable, and with fewer errors and has a certain predictability, which can remind the sailor to
make preparations in advance.
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