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Preface to ”Geo-Information Technology and Its

Applications”

This Special Issue (SI) aims to demonstrate the state of the art in development and application

of the geo-information technology in various fields. In particular, we focus on smart city and urban

planning, land resource investigation and management, geo-disaster risk assessment and the optimal

touristic flow management. This work was motivated by the high-quality presentations in the

International Conference of Geo-information Technology and its Applications (ICGITA 2019), and

we expect to present the updated outcomes to the international geo-informatic community. This

book will have utility as a reference for graduates and scientists in environmental science, urban

planning, geoscience and big data mining. The guest editors are grateful to the authors for their

contributions of high quality research, and, specifically, to the MDPI team for their effective assistance

and cooperation, without whom none of this would have been possible.

Weicheng Wu, Yalan Liu, and Mingxing Hu

Editors

ix





Citation: Wu, W.; Liu, Y.; Hu, M.

Editorial on Special Issue

“Geo-Information Technology and Its

Applications”. ISPRS Int. J. Geo-Inf.

2022, 11, 347. https://doi.org/

10.3390/ijgi11060347

Received: 1 June 2022

Accepted: 6 June 2022

Published: 13 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Editorial

Editorial on Special Issue “Geo-Information Technology and
Its Applications”

Weicheng Wu 1,*, Yalan Liu 2 and Mingxing Hu 3

1 Key Laboratory of Digital Land, Resources and Faculty of Earth Sciences,
East China University of Technology, Nanchang 330013, China

2 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China;
liuyl@aircas.ac.cn

3 School of Architecture, Southeast University, 2 Sipailou, Nanjing 210096, China; 101009930@seu.edu.cn
* Correspondence: wuwch@ecut.edu.cn

Abstract: Geo-information technology plays a critical role in urban planning and management,
land resource quantification, natural disaster risk and damage assessment, smart city development,
land cover change modeling and touristic flow management. In particular, the development of
big data mining and machine learning techniques (including deep learning) in recent years has
expanded the potential applications of geo-information technology and promoted innovation in
approaches to mining in different fields. In this context, the International Conference on Geo-
Information Technology and its Applications (ICGITA 2019) was held in Nanchang, Jiangxi, China,
11–13 October 2019, co-organized by the Key Laboratory of Digital Land and Resources, East China
University of Technology, the Institute of Remote Sensing and Digital Earth (RADI) of the Chinese
Academy of Sciences (CAS), which was renamed in 2017 the Aerospace Information Research Institute
(AIR), CAS, and the Institute of Space and Earth Information Science of the Chinese University of
Hong Kong. The outstanding papers presented at this event and some other original articles were
collected and published in this Special Issue “Geo-Information Technology and Its Applications”
in the International Journal of Geo-Information. This Special Issue consists of 14 high-quality and
innovative articles that explore and discuss the typical applications of geo-information technology in
the above-mentioned domains.

1. Urban Planning and Infrastructure Optimization

In the field of urban planning and optimal service management, applications of geo-
information technology are manifested in aiding analysis and decision-making, information
collection and database building, simulation, and forecasting to promote scientific planning.
Six articles on GIS-based spatiotemporal big data and related modeling to assist urban
infrastructure site selection, assess urban economic development and housing price, and
characterize green spaces are published in this section. The first one is the research by
Zheng et al. [1] on the boundary of the suitable area based on point of interest (POI) data to
obtain the location of parcel-pickup lockers (PPLs). Their research includes construction
of a bivariate logistic regression (LR) model to solve the suitability classification problem
and training the dataset to filter the critical factors affecting the site selection. Testing
results showed that the best LR model had excellent performance, and an optimal solution
was obtained for Guangzhou (GZ), China. The findings of the study can assist planning
managers in using the suitable areas as the site-selection ranges for PPLs, reducing the
difficulties and time costs of analysis.

Spatiotemporal big data can provide new technical methods and data sources for
the planning and layout of urban emergency service facilities. For emergency and fire
services, which exhibit random occurrence and extremely time-consuming requirements,
the theories and methods for studying the spatial and temporal characteristics of the
event occurrence and the scientific layout based on spatiotemporal big data have become
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emerging research fields in recent years. Taking Nanjing as an example, the second and
third articles by Han et al. [2,3] used multi-source big data, including ambulance-carried
GPS data, Amap-recorded traffic congestion data, and survey data of emergency rescue
facilities to study the layout of pre-hospital emergency points and fire stations. In the case
of siting emergency stations, the Location Set Covering model was chosen to integrate first
aid demands with traffic states, reducing the negative impacts of the random occurrence
of demand in space and traffic delays on the planning of pre-hospital emergency stations,
and also improving the accuracy of the emergency location model. Doing so also improves
the accuracy of the Emergency Medical Services (EMS) siting model, satisfying both the
planning conditions and the actual traffic constraints by randomly simulating how the EMS
demand can be reached within the target time. Various required factors are determined
based on modeling and analysis by processing and analyzing the current data, agreeing on
a target time. Calculation of the in-transit time from a large number of randomly distributed
EMS simulation points to a facility point may shed light on the model conditions and find
solutions for the locations. The frequent occurrence of fires has brought new challenges
to urban fire safety, and the spatial layout of fire stations is crucial to firefighting security.
In the siting of fire stations [3], multi-source big data, including the full data of the fire
outbreak history in the past five years, were collected for a comprehensive analysis. Based
on a set of preprocessing tasks—e.g., analyzing the regularity of fire occurrence, selecting
the factors related to fire risks, assigning weights to the indicators using the entropy
weighting approach, and assessing the risk sore for each single grid—the spatial distribution
probability at points in each cluster was calculated according to the clustering analysis, and
the random fire outbreak points were generated via Monte Carlo simulation. The travel
time from massive randomly distributed simulated fire points to the candidate facility was
calculated to obtain the site location. This type of approach incorporates a spatiotemporal
big data perspective and provides ideas for improving the siting model and efficiency of
emergency site planning.

The fourth paper, by Liu et al. (2020a) [4], took advantage of the OpenStreetMap (OSM)
data to evaluate the economic development of cities in China, and the authors found that
there is a significant correlation between the OSM road network density and the municipal
gross domestic product (GDP). Hence, OSM road network density can be used as a spatial
metric to evaluate and forecast the urban economic development in China and possibly
also in other countries.

The role of spatiotemporal big data in urban planning is also reflected in the provision
of information and services for policy decisions and the public. To assess the impact of
urban environmental elements on housing prices, Chen, L. et al. [5] obtained street-view
data and high-resolution remote sensing data of Shanghai and calculated the green view
index, sky view index, urban green coverage rate, etc. The study also extracted house price
data and used the Shapley Additive Explanation (SHAP) method to explain the impact of
housing prices. The results show significant differences in the effects of urban greenery
coverage and greenery view index on house prices as home buyers in Shanghai are only
willing to pay the premium for greenery view houses when the greenery view index or
urban greenery coverage is high. The sky visibility index has a negative effect on house
prices, probably due to the fact that high-density and high-rise residential areas tend to
have better amenities, and residents are more willing to pay the premium for houses in
neighborhoods with more water coverage. This study provides a modeling tool to reveal
the decisions by homebuyers and property developers and to provide policy support for
urban land sales, property development and urban environmental improvements [5].

To provide useful insights for configuring urban greenspace, the sixth paper, by
Zhao et al. [6], employed the geographic detector to investigate the spatial distribution
of urban forest biomass and the impacts of four potential geographical factors (GFs) on
the aboveground biomass distribution of urban forests in 1480 plots in Xi’an, China. The
results indicate that the aboveground biomass and four GFs show obvious heterogeneity
regarding their spatial distribution, and the interactions among these four GFs also tend to
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contribute to the distribution pattern of aboveground biomass. Their research reveals that
the approach of using geographical detector is a useful tool in the urban area and is able
to demonstrate the driving pattern of aboveground biomass and provide a reference for
urban planning and management.

2. Land Cover Change Analysis

The application of geo-information technology is able to effectively address the chal-
lenges of monitoring land use change dynamics on a large scale. Islands, as peripheral
and ultra-peripheral areas, are often highlighted as areas that are ecologically sensitive to
human activities as the latter may provoke biodiversity and habitat loss. Hence, under-
standing land use dynamics and trends in island areas and super-peripheries is essential
to maintaining the regional sustainability. Castanho et al. [7] analyzed the trends and
dynamics of land use change in the European Archipelagos of the Macaronesia Region
(EAR) from 1990 to 2018 based on CORINE data. The study found significant changes
in landscape and the need for measures to be taken to mitigate negative environmental
impacts. Another article by Wang et al. [8] in this special section, also based on remote
sensing data, observed the spatiotemporal variation in vegetation in the source region of
the Yellow River (SRYR) during the vegetation growing season. The paper investigates
the changes in SRYR using the normalized vegetation index (NDVI) and its response to
climate change during the growing seasons of 1998–2016 in combination with climate data
based on trend analysis, the Mann–Kendall trend test, and partial correlation analysis.
Finally, an NDVI–climate mathematical model was developed to project NDVI trends from
2020 to 2038, reflecting long-term vegetation trends through the past and future variations
in vegetation.

3. Poverty Assessment

The extraction of geographical features from remote sensing data is a novel break-
through in research focusing on social issues. As an objective social phenomenon, poverty
has always accompanied the changes in human society and is a long-term problem that
hinders the development of human civilization. Based on the Random Forest machine
learning method, Yin et al. [9] extracted 23 spatial features based on nighttime lights and
geographical data, and they conducted a poverty assessment for Guizhou Province, China,
for the period 2012–2019. The authors found that when poor counties are in close proximity
to non-poor countries, it makes it easier to eradicate their poverty. This conclusion provides
a reference for the identification of poor counties using remote sensing imagery and for
research on the potential management of poverty eradication.

4. Geohazard Prediction and Mapping

Geo-information technology is indispensable for georisk analysis and assessment of
natural hazards. Geodisaster risk prediction and early warning may serve for decision-
making on risk prevention and is the basis for urban safety and protection of human
well-being. The paper by Zhang et al. [10] took Guixi County in eastern Jiangxi Province as
an example and conducted a landslide risk prediction and zoning study. A comprehensive
dataset of 21 geo-information layers, including lithology, faults, rainfall, altitude, slope,
distances to faults, roads and rivers, and thickness of the weathering crust, was prepared
after assigning weights to the geo-environmental factors based on their landslide propensity.
Landslide locations and non-risk zones (mostly flat areas) were vectorized into polygons
and randomly divided into two groups to create a training set (70%) and a validation set
(30%). With this training set, landslide risk modeling and prediction assessment were
achieved using the Random Forest (RF) algorithm, and the validation showed a high
reliability of the risk prediction (91.23%).
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5. Unmanned Aerial Vehicle (UAV) Application

In the domain of environmental monitoring, the UAV market is expanding at an
extremely high rate, and various new UAV technologies are emerging. The gradual matura-
tion of geo-information technology and faster data acquisition will enable UAV applications
in environmental monitoring and mapping with higher timeliness. Chen, T. et al. [11] pro-
posed a low-cost UAV photogrammetry point cloud method that can effectively recognize
the signatures of revetment damage. In order to recover the finely detailed surface of
a revetment in a quick and accurate manner, an object-based dense matching approach
was used to generate pixel-by-pixel dense point clouds for characterizing the signatures
of revetment damage. Extraction of the damaged areas with different sizes in the slope
intensity image of the revetment was effectuated through damage identification using a
self-adaptive and multiscale gradient operator in the slope intensity image of the revet-
ment. A revetment with slope protection along urban rivers was selected to evaluate the
performance of damage recognition. The results demonstrated that the method could not
only restore the fine features of the embankment surface but also significantly improve the
accuracy of the damage recognition.

6. Algorithm Improvement

Studies have also explored algorithmic improvements such as the paper by Liu et al.
(2020b) [12], who addressed the problem that the Douglas–Peucker (D–P) algorithm is
prone to self-intersection and other errors when compressing more complex curves, and
this hinders its application in data compression. A new vector line simplification algorithm
based on the D–P algorithm, monotonic chains, and dichotomy was hence proposed. The
method first used the D–P algorithm to compress complex curves and divided these curves
into a number of monotonic chains; second, it applied the dichotomy approach to quickly
and precisely locate and process the intersecting monotonic chains so as to solve the self-
intersection problem. The improved D–P algorithm was experimentally verified, showing
better results in terms of algorithmic efficiency, compression rate, and algorithmic accuracy
when dealing with self-intersection problems in vector data compression. Guo et al. [13]
proposed a new convolutional neural network for speed segmentation, i.e., the multi-scale
water body extraction network (MWEN), and for the automatic extraction of water bodies
from the Gaofen-1 satellite images. Three convolutional neural networks, including the
fully convolutional network (FCN), Unet, and Deeplab V3+, for semantic segmentation
were used to compare the performance of MWEN for water body extraction and visual
comparison and five evaluation metrics were harnessed for this purpose. The results
illustrate that the improved algorithm produced better extraction than others and has great
potential for mapping different types of water bodies with reduced noise.

7. Touristic Management

Li et al. [14] presented a tourist flow forecasting method based on seasonal clustering.
The K-means algorithm and the particle swarm optimization least squares support vector
machine (PSO-LSSVM) algorithm, which took seasonal variations into account, were used
to forecast the tourist flow in the scenic area. The LSSVM was also applied to compare the
performance of the proposed model with that of the existing ones. Experiments based on a
dataset comprising the daily tourist data for the Huangshan Mountains during the period
between 2014 and 2017 were effectuated. Results showed that seasonal clustering is an
effective approach to improve tourist flow prediction and management.
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Abstract: Rapid economic and social development has been accompanied by the occurrence of many
major issues throughout the world. Specifically, there is an ever-increasing demand for emergent
medical services among the public. In order to ensure timely responses to emergency demands, it is
critical to reasonably configure the emergency stations. In general, emergency stations are mostly
distributed according to the distribution of emergency demands and response time, which, however,
fails to consider the negative impacts of randomly occurring emergency demands and traffic delays.
In this study, first aid demands are combined with traffic states based on the spatiotemporal big data
set covering model, which alleviates the negative impacts of randomly occurring first aid demands
and traffic delay time on the planning of pre-hospital first aid stations. Moreover, the accuracy of
the site selection model is improved, which meets the requirements that all randomly occurring
simulated first aid demands can be approached within the target time under planning conditions and
actual traffic constraints. Taking Nanjing City as an example, this study obtains multi-source big
data, such as ambulance-carried GPS data from June 2018 to June 2019, Gaode Map-recorded traffic
congestion data, and survey data of emergency rescue facilities. Basing on the processing and analysis
of these data, it shows that first aid demands in Nanjing City are highly region-specific with high
time delay. Various required factors are determined based on modeling and analysis, and the target
time is agreed to be 8 min. The average vehicle speed on each road is calculated, accompanied by the
establishment of an actual road network model. In this context, the transit time from the randomly
distributed first aid stations to the hospital can be calculated, which are set to satisfy the model
conditions so as to obtain the solution. Finally, such a solution is adjusted and verified according to
the land-use situation. The results of this study, based on spatiotemporal big data, are expected to
provide insights into improving the site selection model and enhancing efficiency while providing
new technical methods.

Keywords: pre-hospital emergency; spatiotemporal demand; GPS data

1. Introduction

With the advancement in the global economy and people’s living standards, conflicts between
resource exploitation and environmental protection have intensified. Emergencies such as natural
disasters, accidents, and infectious diseases continuously occur, causing huge economic losses and
serious life threats. Specifically, emergency-related economic loss has reached 6% of the total GDP in
China, which, together with the public’s growing demand for emergency facilities, reveal the prominent
importance and urgency of effective urban emergency management. The outbreak of COVID-19 not
only threatens the safety and properties of individuals but also disrupts the global economic order.
Moreover, anxiety has been spreading due to the economic slowdown and infrastructure imbalance.
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Although all countries have taken active countermeasures, there are still many exposed problems in
emergency management, especially when it comes to the emergency medical service system.

Pre-hospital care refers to medical activities prior to the arrival of patients at hospitals, including
on-site care and monitoring during transit. This should be performed by professional emergency
groups that are equipped with communication tools, transportation gears, and medical instruments.
The pre-hospital care system, the development of which is highly emphasized in countries all over
the world, is an integral part of both the urban public security emergency system and the public
health system. It does not only directly impact the actual demands of health protection and safety of
people, but also is an important representation of public service equalization. The response time to
an emergency call is a critical measure of the efficacy of the pre-hospital care system, and moreover,
a reasonable placement of emergency facilities is key to effectively reducing the response time to
emergency calls [1]. Construction of emergency facilities is guided and controlled during urban
planning, via allocation and configuration of city space and specifically the use of land resources [2].
It is necessary to study the reasonability of the emergency facility’s site selection to build a fair and
accessible pre-hospital emergency network, so that any patient can receive timely and effective help
when they need emergency treatment.

2. Literature Review

On the site selection of first aid stations and other emergency facilities, previous research on
planning methods was often based on the graph theory, in which each demand zone is represented by a
point in a network and the site selection problem is equivalent to the problem regarding the minimum
distance or overall coverage of multiple point sets to/on specific facilities. For the preliminary site
selection models represented by the coverage model, p-center model, and p-median model and its
modified model, the geographic/gravity center of each demand zone is used to replace the set of
demand points [3–7]. Correspondingly, site selection considers only the decreasing coverage level with
the increasing distance and ignores the effects of the specific spatial distribution of demands within a
certain zone upon site selection. Accordingly, a considerable part of demands is in fact ineffectively
covered, especially in the case of a large demand zone. Estimation of demand coverage suffers from
great errors, which leads to inappropriate station configuration in actual applications of many cities.

Over the recent years, the detailed spatial information provided by the expanded application
of the Geographic Information System (GIS) and big data offers people more accurate measurement
approaches, and researchers begin to realize the constraints of the previous data and technical
approaches. Under such circumstances, a more precise and accurate description of the temporal-spatial
variables of demands has gradually become a research hot spot. Some scholars attempt to integrate the
first aid demand temporal-spatial variable into the site selection model based on the minimum distance
solution, and thus overcome the failure of homogeneous distribution of demand zone points to capture
differentiation of emergency demands. For instance, Degal et al. [8] and Chen et al. [9], with the help
of GIS, make attempts on meshing the research area and statistically summarize the temporal-spatial
emergency demand by grids, which however fails to efficiently reduce the impacts of the random
spatial distribution of demands. This is because some grids may present no demands for several
months, and moreover grids in corners are also required to fulfill the constraint of coverage levels.
Then, Fan [10] applies the K-means clustering data mining to site selection of emergency response
centers, in which facilities are constructed at the centroids of the current data point clusters. Zhou [11]
and Dou [12] simplify zones with high medical emergency activity densities into demand points,
by mapping medical contacts of pre-hospital care, and these demand points are preferably placed
with first aid stations. Although one is able to simulate the complex demand distribution within a
certain area via methods such as kernel density estimation and artificial neural network, it is hard
to ensure that the obtained distribution can remain stable for a long period of time. Furthermore,
the occurrence of medical emergency activities is uncertain. Given this, some researchers further
incorporate randomness of first aid demands into their studies. Recently, to accurately describe
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the random spatial distribution of first aid demands for the site selection has become a key aim.
For example, Beraldi and Bruni [13] propose a probabilistic model to optimize the emergency service
vehicle location. Nonetheless, they describe the probable coverage of demands simply by introducing a
sole randomness parameter and do not probe deep into the specific effects of spatial randomness upon
demand distribution. Su [14] applies the Gaussian mixture model (using a soft clustering approach)
into the depiction of spatial randomness of demand. Based on the emergency service data of the
Songjiang District of Shanghai, China, in 2013, he manages to decompose the massive spatially random
first aid demands into the mixture of multiple Gaussian-distribution clusters, and constrain that each
cluster has only one primary station and one alternative station. In essence, the demand zone is
represented by a point as before, which roots in low guidance provided by this research upon practical
site selection.

Neglecting the spatiotemporal status of traffic can be fatal, in terms of ambulances that chase time.
The ever-intensifying traffic jam in cities may result in delayed delivery of medical emergency service
and elongated emergency response distance, which greatly threatens people’s lives. In previously
adopted models, the division of grids or the linear distance cannot represent the actual road route.
Fortunately, this has been noticed, and some scholars have presented the spatial distance calculation
method based on obstacles.

In the urban traffic system, the straight-line distance and the actual route distance between the
demand point and the facility location have huge gaps. With the deepening of research work, it is
found that demanders prefer to choose the least time-consuming route rather than the shortest-distance
route. Therefore, time consumption should be introduced into the location model of emergency
facilities as the transportation cost. However, since it is difficult to acquire the actual transit time
of specific roads, the design speed for various roads [15] or the running speed of vehicles [16–18]
are used to estimate the minimum travelling time in most research. Due to urban traffic congestion,
vehicles cannot run at the designed speed most of the time, and thus the actual transit time is mostly
longer than the designed counterpart. The development of wireless positioning technology and
telecommunication technology provides a more precise way to acquire traffic congestion conditions
and corresponding transit time. Recently, some studies have begun to use Gaode Map or Baidu Map
to calculate the travelling time [19–22], acquiring the least transit time to the emergency facility with
various traffic modes through the route-planning interface in API. This method sufficiently exploits
road data provided and updated by the map developers to estimate the travelling time using reliable
real-time vehicle speed data.

To conclude, much progress has been made in addressing the emergency site selection issue based
on models that consider temporal-spatial demands. However, there are two prominent shortcomings
in these models. The first one is the insufficient investigation into the randomly occurring first aid
demands. Specifically, existing site selection models mainly focus on the statistical significance of
the spatial distribution of first aid demands, which, however, is only a description of the historical
data. In this context, these site selection models are not guaranteed to always be valid within the
planning period. Although certain efforts have been made to incorporate the spatial randomness factor
into the site selection model, there is still a lack of a random simulation method for spatial demands.
Specifically, such a method is expected to not only accurately describe the demand distribution, but also
effectively optimize the model based on the description. In this context, the emergency site selection
issue can be better solved. The second shortcoming of existing models refers to unconsidered impacts
of travel temporal distance. Although there have been studies that obtain traffic data through API and
confirm the impact of traffic conditions on the accessibility of emergency facilities, the traffic factor has
not been quantitatively incorporated in the site selection methods.

This paper proposes a set covering model for site selection based on spatiotemporal big data.
The massive simulated emergency service demands that are spatially random and the traffic status are
integrated into the set covering model, which overcomes the difficulties in the description of emergency
service demands, due to their complicated distribution, and also eliminates errors induced by the
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idealization of the traffic status. With Nanjing City taken as an example, multi-source data, such as
the GPS data carried by the ambulances as well as the real-time traffic data and road network data
obtained through the OPEN API of Gaode Map, are integrated into a spatiotemporal database. Based
on this database, the annual first aid service data of the city in 2018-2019 are put into the clustering
analysis. The clustering analysis simulation results and the characteristic speed of municipal roads of
Nanjing City are input into the actual road network model, and substituted into the location-set model
constrained by the planned land use. The models are solved, which can provide guidance on other
similar emergency plans such as fire-fighting facilities and public security agencies while helping to
optimize the urban emergency site selection in the context of the big data era. This paper is organized
as below: The first part is the statement of the adopted model and method; the second is the basic
analysis of the temporal-spatial data; the third part presents testing results of data and validation;
and the last part states our research conclusion.

3. Introduction of the Model and Method

3.1. Set Covering Model

The set covering model is, in essence, a model for the solution of optimal location of discrete
points. Discrete points generally refer to points with known demands, and the goal of the model
is to find a solution fulfilling all known demand points. During the solving process, the quantity
and location of placed facilities as well as the economic benefit shall be considered comprehensively.
Depending on the solving method, the set covering model is divided into two types: the set covering
model, and the maximum covering model. The set covering model requires minimum costs of facilities
or construction, under the premise that all demand points are covered, while the maximum covering
model pursues a maximum quantity of demands that can be fulfilled by appropriately placing service
facilities, in the case of defined service station quantity and service range. The biggest difference
between the maximum covering model and the set covering model is whether or not the quantity of
facilities is considered. The former method emphasizes the fulfillment of demands, and yet the latter
pays more attention to lowering cost (Figure 1). Given that the first aid station planning in China aims
at achieving the full coverage of the medical emergency service network upon urban and suburban
areas of the whole city and actual conditions of the Nanjing City, the set covering model is used in
this paper.

Figure 1. Schematic diagrams of the set covering model and the maximum covering model.

The location coverage model is one of the most important site selection models for emergency
response stations [23]. Toregas et al. [4] apply, for the first time, the location set covering problem
(LSCP) model to determine the layout of fire stations, with the goal to cover all objects (points, lines,
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and planes) with emergency service demands while minimizing the emergency service facilities [24].
The basic model is shown below:

min
∑
j∈W

xj (1)

s.t :
∑
j∈Ni

xj ≥ 1,∀i ∈ V (2)

xj ∈ {0, 1},∀ j ∈W (3)

where V is the set of demand points, W is the set of facility service stations, i and j denote the different
demand points and service stations, Ni is the number of stations covering demand points i, and xj is a
bool variable to evaluate the necessity of the j-th station.

The objective function Equation (1) is to achieve a minimum amount of newly established stations.
According to constraint Equation (2), each demand point is covered by at least one station. Equation (3)
specifies that the variable xj is a bool type. Equations (1)–(3) are discrete models, requiring the input of
a series of spatial demand elements (points, lines, and planes) and potential location sets of facilities.
xj is a node, and j reflects whether or not this node is chosen to build a facility (for being chosen,
the value is 1; otherwise, 0). The facility planning with minimum quantities of planned facilities at
certain locations enables the LSCP model to cover any continuous space, which also requires the value
determination of the variables, namely the demand and candidate points, and solving xj. The detailed
site selection optimization procedure of the model is presented below.

3.2. Steps of the Algorithm

The framework of the method illustrating the steps of the algorithm is presented in Figure 2. Firstly,
ensure the variable values of the set covering model, candidate station sites are selected according to
land use planning, and written in the set M, clustering analysis is performed for first aid service data
and simulation of first aid demands is carried out as set V. Then build an optimization algorithm based
on the site covering model and solve the model. The final planning sites are collected and written in
the Set W, requiring that the ideal travelling time from the first aid station set M to the service demand
zone V, ti j is lower than the specified time tr

s for any simulated demand point in the context of the road
network model T. The steps are described in detail below.

Figure 2. The framework of the method.
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3.2.1. Determination of Variable Values (Demand Points and Candidate Points)

Identifying candidate station points according to the planning condition: Currently, there are 6 main
modes for pre-hospital care in China due to differences among cities in their economic development
and local medical emergency systems, including independent, hospital-built-in, government-operated,
affiliated, fire-fighting department-integrated, and coordinative modes. For each mode, candidate site
points are identified, according to the planned land use condition, and the set of candidate points is
defined as M. For the demand temporal-spatial point presenting first aid service demands in 2019,
the K-means clustering analysis is carried out. Subsequently, the Monte Carlo simulation of demand
points is conducted, based on the results of the data clustering and Gaussian distribution fitting,
which generates several random demand points for calculating the confidence level (under the premise
that it follows the Gaussian distribution).

As a common method based on the probability statistics theory, a Monte Carlo simulation,
also referred to as random sampling or the statistical test method, can be used to estimate the
probability of an event based on the probability of the event in a large number of experiments. It works
particularly well in estimating the dynamic nature of risk event systems such as first aid, and thus it is
able to solve uncertain and complex problems. Its assumed function is as follows:

Y = F(X1, X2, . . .Xn) (4)

where (X1, X2, . . .Xn) represents the probability of the spatial distribution of each group of demand
points in the known demand point clusters in 2019. It is generally difficult to use analytical methods to
solve the probability distribution of Y and its mathematical characteristics. The Monte Carlo method
uses a random number generator to directly or indirectly sample the value of each group of random
variables, and performs a large number of repeated independent random samplings of the random
variables to generate a probability distribution of the function Y (i.e., the simulated first aid demand)
that is close to the actual situation. The sampled values will then be substituted into the function in
step (2) group by group until the final result is obtained.

3.2.2. Building the Site Selection Model

Now the model can be solved for xj, and the set of the ultimately planned stations W can be
obtained by substituting the demand and candidate station points into the model. In terms of the
set of the existing stations H, the default practice is to directly merge it with Set W with no change.
Given the predictability of medical emergency service demands, the optimization algorithm of the
set covering site selection model is used to determine whether or not each station j of Set M shall be
included in Set W, and consequently, the minimized station quantity and distribution with maximized
first aid service efficiency are obtained. The algorithm is shown below:

min
∑
j∈W

xj (5)

s.t : Pr
(
tij ≤ tr

s

)
≥ α (6)

ti j ≤ tr
s,∀i ∈ V,∃ j ∈W (7)

xj ∈ {0, 1}, ·∀ j ∈W (8)

where i is the label of a random simulated demand point, j is the label for a candidate station, V is
the set of demand regions, M is the set of the new candidate sites, W is the set of planned emergency
stations, H is the set of existing stations, ti j is the travelling time from station j to demand region i,
according to the actual road network model T, and xj is a 0–1 variable, which equals 1 if an alternative
site j is enabled and 0 otherwise.
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Objective Function (5) requires that the quantity of constructed service facilities is minimized.
Moreover, Objective Function (6) is a global constraint condition, requiring that the ideal travelling
time from the first aid station to the service demand zone ti j is lower than the specified time tr

s for
any simulated demand point in the context of the road network model T incorporating traffic jam.
Calculation of the actual traveling time ti j from the first aid station j to a random simulated demand
point i within the research area needs the values of distance and vehicle speed. Here, first, we convert
the coordinates of the random demand points, and candidate and current first aid stations defined
in Section 3.1 into a unified coordinate system and then the temporal-spatial database. Meanwhile,
with the help of the route planning program based on the Dijkstra algorithm, the shortest route between
two element points in the weighted graph (namely the road network T) is calculated, which is divided
by the transportation characteristic speed of the corresponding road to yield the traveling time that
is converted into the time matrix ti j. It is required that more than 97% of the emergency services
meet the maximum travelling time criterion (considering errors, α is artificially specified as 97%).
This paper, taking the Nanjing City as an example, provides more accurate measurement methods for
each variable in model equations, since it is based on actual demand points of emergency service events
and road network data. Therefore, this study is able to more accurately capture the temporal-spatial
characteristics of first aid service events, and ultimately generates more optimal site selection decisions.
The next part describes the data sources obtained in Nanjing City.

4. Data Sources

4.1. Research Area

The present pre-hospital care mode in Nanjing city, the capital of Jiangsu Province, falls in the
category of the affiliated mode, which means first aid stations are supported by general hospitals and
community health services or township hospitals.

According to the analysis of a survey questionnaire, a total of 52 (i.e., the value of H) first aid
stations are available in Nanjing City by June 2019. The allocation of these operating stations exhibits
a general pattern with a higher density in the central urban area and a lower density in outer new
districts or towns. Specifically, the density is obviously higher in districts such as the Xuanwu, Gulou,
Qinhuai, Yuhuatai, Jianye, Qixia, and Pukou Districts (Figure 3). According to the Nanjing Regulation
of Pre-Hospital Medical Emergency Service, urbanized regions should be equipped with stations
within an ambulance action radius of 3~5 km, regions with dense population should be allocated
with at least one station per 200,000 citizens, and each designated town or sub-district should have
a station. It provides an estimation method for the coverage of emergency services in various areas.
The coverage rates are 32% and 49% for service radii of 3 and 5 km, respectively.

4.2. Data Sources and Processing

4.2.1. GPS Data of Ambulances

The ambulance is a critical transportation tool for medical groups and services in case of emergency,
and the installed GPS device on it records its moving trajectory and status within a certain period,
which provides information on positions of accidents and first aid stations. GPS data of ambulances in
Nanjing City during the period from 1 June 2018 to 1 June 2019 are obtained under the help from the
Nanjing Emergence Center. In total, 99,598 records are valid, including critical information such as
emergency call positions, responsive ambulance positions, and response time (Figure 3). The data
consist of 85,332 records of patient information, corresponding to a service rate of 85.7%. The total
number of station-based and empty-run responses is 67,802 accounting for 79.5%, and the rest is
for inter-hospital-transfer response and is beyond the scope of this study. The attribute data are
processed and spatialized using the PostGIS software, and the attribute fields after processing include
the ambulance plate number, departure time, site arrival time, site longitudes and latitudes, and name
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of the target place and its longitudes and latitudes (Table 1). It is seen that medical emergency service
demands in Nanjing City is highly heterogeneous, in terms of the spatial distribution, and characterized
by series delay, from a temporal point of view, which further validates the necessity of clustering
simulation of the demand zone and obtaining the transportation characteristic speed in our model.

Figure 3. Map of pre-hospital emergency stations in Nanjing.

Table 1. Example of GPS data for emergency service events.

Ambulance
Plate Number

Departure
Time

Arrival Time at
the Demand Site

Site Longitude
and Latitude

Arrival Time
at the Hospital

Destination
Hospital

SUXXXXXX 2 June 2016
08:25 08:37:48 118.7907;

32.0241 08:45:28 Chengnan
Sub-Station

SUXXXXXX 2 June 2016
14:18 14:35:20 118.7787;

32.01897 14:52:30 Brain Hospital
Sub-station

SUXXXXXX 2 June 2016
16:22 16:34:40 118.7687;

32.02224 16:38:10 Chengnan
Sub-Station

SUXXXXXX 2 June 2016
17:35 17:53:18 118.7959;

32.0029 18:02:38 Chengnan
Sub-Station

SUXXXXXX 2 June 2016
19:15 19:20:46 118.7722;

32.0146 19:27:24 Chengnan
Sub-Station

(1) According to the autocorrelation analysis of the whole area after spatial visualization, the global
Moran’s I coefficient has a value of 0.28, and z, a value of 3.60, suggesting the presence of high-demand
cluster regions, and prominent spatial positive correlation and concentration characteristics of first aid
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service demand distribution. Generally speaking, the heterogeneous demand distribution features the
central urban area, with intensively high demands and the circumferential newly emerging municipal
area with relatively low demands. Moreover, the visualization analysis of the OD (original-destination)
service distance from the first aid demand point to the first aid station in the ArcGIS software confirms
the regional differentiation of first aid service demands. The first aid stations in the central urban areas
are close to each other, resulting in highly overlapped service regions among neighboring stations and
a consequently short service radius for each station. It indicates that several stations are commonly
available for an individual position, without a clear boundary of the service area (Figure 4). The outer
suburban areas have a relatively low density of first aid stations, which thus have a large service region
per station. The emergency routes converge to single points, as shown in Figure 4. In the suburban
areas, emergency demands in Liuhe District mainly rely on Liuhe People’s Hospital, those in Gaochun
District on Gaochun People’s Hospital station, and those in Lishui District on Lishui People’s Hospital.
Similar rules are also true for Gaochun District Dongba Station, Pukou Central Hospital Linqiao Station,
and Meishan Hospital Sub-Station. Quantitative statistics show that the average response distance
for first aid services is 3.8 km, while the peak probability is located from 3 to 4 km. The cases with
response distances over 4 km account for 37.3%, which is a considerably large fraction (Figure 5).

Figure 4. Cont.
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Figure 4. Map of service range of each first aid station (the right figure represents first aid stations,
blue circles are service demands of this station, and green circles are those of other stations).

(2) According to the time difference between the ambulance departure time and the site arrival
time, the average ambulance travelling time is 14.6 min. Spatial statistics of seriously-delayed cases
with travelling time over 20 min show that the distribution of highly-delayed demand points generally
coincides with that of the overall service demand points, which therefore demonstrates that the
response delay is a city-wide systematic issue. Although the central urban area has a high first aid
station density, it suffers from response delays due to the low traffic efficiency. On the contrary,
the circumferential suburban area is prone to medical emergency service delay, owing to the low
density of first aid stations and thus long travelling distance. According to the average travelling time
per unit distance (Figure 6), the travelling time consumed by the same distance is highly differentiated,
and the response time of ambulances during rush hours is longer than that during non-rush hours.
These indicate that the travelling time of ambulances is tremendously restrained by traffic efficiency,
and thus obtaining the characteristic road speed of Nanjing City through the API of Gaode Map is
necessary for the estimation of ambulance response time.
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Figure 5. First aid response distance distribution.

Figure 6. Consumed time vs. response distance.

4.2.2. Obtaining Real-Time Traffic Data through the Gaode Map Open API

It is noted that a more accurate calculation for transportation costs would contribute to a more
accurate evaluation for medical service efficiency and capability, during the investigation on emergency
service accessibility. Thus, through the analysis of big data concerning transportation, road congestion
is introduced into the optimization of site selection in this study, for the sake of more rational planning.
Gaode Map offers travel data of both the floating car of the transportation industry and over 700 million
users of this app, and it is available in 40 cities of China including Nanjing. The traffic situation data
for roads of all levels within the research area are requested and obtained via the Gaode web-service
OpenAPI, specifically including the road name, road geographic coordinate geometry, road speed,
congestion status, and so on. The overall idea can be summarized as follows: To begin with, data for
model parameters are requested via the traffic situation API of Gaode. Since it is required that the
request zone shall be rectangular, the urban road network is first divided into several units when
obtaining the actual road network model T. Then, the traffic situation acquisition software runs, and the
original traffic information within the longitude and latitude range of each unit is extracted and
imported into the database. Finally, the units are merged into the actual regional road network, and the
original data are pre-processed and linked to the effective traffic information. Furthermore, it is set
that the traffic information database acquisition software runs automatically for 28 days in a row at
the interval of one hour (3600 s), which achieves the intelligent batch processing of streaming data
and thus automatic acquisition, pre-processing, spatialization, and saving (in the format of shapefile)
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of the city-wide traffic situation data and building the traffic situation temporal-spatial database.
After dimensionality reduction, the characteristic speed of each road is extracted and mapped. Statistics
of all traffic data of Nanjing City from May 28th to June 10th 2019, provided by Gaode Web API show
that the city-wide daily traffic congestion delay index of Nanjing is about 1.55, and the daily average
speed is around 28.29 km/h. During rush hours, the congestion delay index grows to 1.81, with the
average speed slowed down to 24.21 km/h. The region within ~5 km from the central urban area is
characterized by overall slow (jammed) traffic and local presence of unblocked traffic. Meanwhile,
in the region far away from the urban area, traffic in most roads is smooth, while some congested road
sections exist in the central areas of this region and cross-region main roads. Urban traffic congestion
of Nanjing has evolved into a malady and severely impacts emergency response and rescue.

5. Factor Analysis and Results

5.1. Determination of tr
s

tr
s refers to the target response time for first aid services in Nanjing City, and is typically

defined as the time consumption between the emergency call and the arrival of the ambulance at the
demand location, composed of the time for emergency call answering, staff response, and ambulance
travelling. Therefore, before determining the target time, one first needs to analyze the current temporal
characteristics of medical emergency service in Nanjing Cities, using the GPS data of ambulances.
According to the statistics of Nanjing Emergency Center, the current average emergency call answering
time is 1 min, and the average staff response time is 3 min. The analysis of ambulance GPS data reveals
an average travelling time of 14.6 min. Hence, the total average response time is 18.6 min, with a median
of 17.03 min, which is slightly longer than the Chinese national standard of 15 min [25–27]. This paper
highlights the planning and site selection of first aid stations constrained by the emergency response
time, so as to reduce the time consumed by the process to transfer patients to hospitals for medical
emergency services after answering the emergency call and sending out the ambulance. At present,
the average emergency call response time for developed countries is within 8–12 min [28–30], based on
which the target emergency response time is set as 12 min, also with consideration of illness and
megacity. Given the current pre-hospital care reality of Nanjing City (namely the average emergency
call answering time of 1 min and the average staff response time of 3 min), the ambulance travelling
time tr

s in this paper targets 8 min, and this time target is used for planning the first aid station network
of Nanjing City.

5.2. Generated Results after Substituting Data into the Model

5.2.1. Selecting Candidate Station Sites According to Land Use Planning and Writing the Selected Sites
in the Set M

The pre-hospital care mode in Nanjing City falls into the category of affiliated mode, i.e., hospitals
are involved in the co-building of their respective emergency stations. According to Nanjing Medical
Treatment and Public Health Facility Planning, a total of 2083 sites are selected as candidates from
three kinds of land usages, including general hospitals (A5), community public health service centers
(Aa), and community public health service stations (Rc) (Figure 7).
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Figure 7. Candidate site set M.

5.2.2. Clustering Analysis for First aid Service Data and Simulation of First aid Demands

The K-means clustering analysis is conducted for the first aid service demand spatiotemporal
points n in 2018-2019, with the cluster number of K. The averages of the lateral and vertical coordinates
of points of each cluster relative to the cluster center μ and the covariance COV are calculated and
satisfy the test function of the normal distribution. The Monte Carlo simulation of demand points,
based on the results of clustering and Gaussian distribution fitting of data for 2019, is performed
to generate several random demand points, in order to calculate the confidence level. It should be
noted that the K-means clustering requires the input of the cluster number K (in this paper, 200).
The clustering process mainly involves three steps: First, K random initial points are taken as the
centroids of clusters. Then, according to the distance to the centroid, data in the data set are allocated
to each cluster, and the average value of the data within each cluster is computed and taken as the new
centroid. At last, the previous step is repeated until all clusters remain un-changed. The analysis of the
clustering results in cases of different K values shows that K = 200 presents the optimal performance
in data grouping based on temporal-spatial characteristics, specifically with neither shadowing of
characteristics nor chaotic classification (Figure 8).
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Figure 8. K-means clustering results.

5.2.3. Building the Road Network Model and Calculating the Minimum Time Matrix ti j

The road network data set is constructed and used as the traffic network model, based on the
processed Shapefile-format road network file, after topological processing such as intersection breaking
and interface merging. The data set includes road sections and intersections. The road section is the line
element for the road network, and it is represented by the arc in ArcGIS. Each road section possesses
attributes such as the congestion vehicle speed (km/h), average vehicle speed (km/h), traveling time in
the case of the average vehicle speed (s) and length (km). Road intersections are represented by nodes
in ArcGIS and combined with the table of turning instruction at road intersections. Thus, they are
able to truly mimic the actual traffic scenarios such as waiting for the red light, no-straight-through,
no-left-turning, and driving through an overpass. In ArcGIS, the time required for each road section is
calculated, with respect to the actual road network and corresponding characteristic speed. In this
research, the characteristic speed refers to the actual average travelling time. Vehicle speed data between
two consecutive weeks within the research period are compared, and the covariance calculation results
show that the distribution curves for the average speeds at a certain o’clock sharp can be well fitted,
with a correlation coefficient of 0.973. Thus, it is safe to say that the data of the two weeks used in this
research are periodically representative.

5.2.4. Collecting Final Planning Sites and Writing Them in the Set W

The existing 52 sites of Set H are directly added to Set W. Via the algorithm presented in the first
part of this paper, the calculation is performed to determine whether or not each station j in Set M
should be included in Set W. The actual factors of Nanjing City are substituted into the global condition
constrain equation one after another. As stated above, tr

s is set as 8 min, and α is 0.97. For any random
simulated demand point j generated by clustering, it is required that the travelling time to the station i
in Set M (plus the OD time matrix t) should be less than 8 min. Accordingly, the least station quantity
xj and distribution of j, with the maximized emergency response efficiency, can be obtained.
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5.2.5. Iterative Computation in Matlab

Results show that at the 120th iteration the optimum solution is obtained (Figures 9 and 10).
The optimal quantity of constructed stations is 134. After mapping the results into space, the 52 existing
facilities can be simply identified, and 82 potential station sites can be selected among the other
candidate points.

Figure 9. Site selection results.

Figure 10. Iterative computation in Matlab.

5.2.6. Examining and Adjusting Simulated Results

First, the land usage corresponding to the location of the planned station site should be
clarified. Fine adjustment is conducted according to the following preference sequence, general
hospitals (A5) > community public health service centers (Aa) > community public health stations
(Rc), to facilitate the implementation of the planning.
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The eventual planning of the allocation is shown in Figure 11. The planning involves a total of
136 emergency stations, with 48 stations reserved, 88 newly established, and 8 adjusted. A total of
99 stations mainly serve the central urban regions while other 37 stations serve the suburban regions.
With the planning, the coverage rate of the 3-km service radius is increased from 32% to 63%, and that
of the 5-km service radius is increased from 49% to 95%. Each town in the suburban region has at least
one emergency station. The average response time is decreased from 18.6 min to 12 min.

Figure 11. The final layout of first aid stations.
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6. Discussion

(1) The optimization of emergency facility sites has been a classic research topic in the field of
geography. Compared with the traditional model, the optimized location set coverage model is
demonstrated to greatly improve the coverage and effectively shorten the emergency response
time. This confirms the presence of obvious shortcomings when it comes to the distribution of
pre-hospital emergency stations in Nanjing City. Specifically, current emergency facilities are
far from meeting emergency demands due to insufficient and unbalanced allocation of medical
resources in various districts. The overwhelmingly concentrated medical resources in Gulou and
Xuanwu Districts contradict the goal of Nanjing’s multi-center development plan of “one center
and three sub-cities”. Moreover, the unbalanced allocation of emergency resources is also present
within each district. For instance, emergency resources in the Xuanwu and Gulou Districts are
mainly concentrated on the south and east of Xuanwu Lake, respectively.

(2) The time target parameter in the proposed model is selected according to the existing data analysis
and the actual situation of Nanjing City with references to the requirements of other cities in China
and other countries. In the future, with the further improvement of the first aid legislation and
various supporting facilities, the government may be able to further shorten the target emergency
call response time. Moreover, the emergency response time and personnel response time may
be incrementally reduced with promoted standardized management. In addition, the traffic
cost based on the road network model may be changed as a result of road reconstruction and
expansion. Therefore, it is crucial to adjust and update the dynamic factors in the model in a
timely manner. Accordingly, traffic data over a longer period of time will be collected to observe
the changes in vehicle speeds during different seasons and months, which will help obtain more
accurate time cost factors that can be substituted into the model. Furthermore, the emergency
data in 2020 can be acquired and substituted into the proposed model for further comparison
and verification.

7. Conclusions

Digitalization in the new era has penetrated all aspects of urban life, transportation, and medical
care. The development of spatiotemporal big data provides new opportunities for optimizing the
emergency site selection. This study first introduces the basic model of emergency site selection based
on actual traffic conditions and the simulation method of random spatial demands. Subsequently,
it is proposed that these random spatial demands should be processed based on the actual data,
accompanied by the application of the K-means clustering method to quantitatively describe and
simulate the distribution characteristics of emergency demands. On this basis, an optimization
algorithm that integrates the actual speed of the road network into the set coverage model is
established, which contributes to a shorter time than the target counterpart from the simulated demand
point to the emergency station at the actual speed. In the practical analysis, the first aid data of Nanjing
City from 1 June 2018 to 1 June 2019 are first analyzed in terms of their spatiotemporal characteristics,
followed by the determination of various necessary factors based on the modeling analysis. Eventually,
the model is solved under the land-use constraints, with an agreed target time of 8 min. This paper
attempts to apply the location set covering model integrated with the temporal-spatial big data into
the urban planning, so as to provide a novel model for site selection of emergency service facilities that
incorporates the randomness of emergency service events and traffic situations that have previously
been neglected in research. The availability of emergency service and traffic spatiotemporal big data
provides a more accurate data basis for the model, which is vital for the site selection of pre-hospital
care facilities that requires high accuracy and timeliness. This research was commissioned to the
Nanjing emergency center, and the research result provided theoretical support to the “layout planning
of Nanjing first aid station” which is a legal planning implemented by the local government since 2019.
The methodology used in this research provides a digital perspective of urban inherent law and a new
branch of emergency facility renewal which could be learned and popularized. Moreover, this study
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also offers a digitalized perspective for probing into the intrinsic regularity of cities and modifying the
conventional layout planning method.
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Abstract: The rapid expansion of cities brings in new challenges for the urban firefighting security,
while the increasing fire frequency poses serious threats to the life, property, and safety of individuals
living in cities. Firefighting in cities is a challenging task, and the optimal spatial arrangement of
fire stations is critical to firefighting security. However, existing researches lack any consideration
of the negative effects of the spatial randomness of fire outbreaks and delayed response time due
to traffic jams upon the site selection. Based on the set cover location model integrated with the
spatiotemporal big data, this paper combines the fire outbreak point with the traffic situation. The
presented site selection strategy manages to ensure the arrival of the firefighting task force at random
simulated fire outbreak points within the required time, under the constraints of the actual city
planning and traffic situation. Taking Nanjing city as an example, this paper collects multi-source
big data for the comprehensive analysis, including the full data of the fire outbreak history from
June 2014 to June 2018, the traffic jam data based on the Amap, and the investigation data of the
firefighting facilities in Nanjing. The regularity behind fire outbreaks is analyzed, the factors related
to fire risks are identified, and the risk score is calculated. The previous fire outbreak points are
put through the clustering analysis, the spatial distribution probability at points in each cluster
is calculated according to the clustering score, and the random fire outbreak points are generated
via the Monte Carlo simulation. Meanwhile, the objective emergency response time is set as five
minutes. The average vehicle speed for each road in the urban area is calculated, and the actual traffic
network model is built to compute the travel time from massive randomly-distributed simulated fire
points. The problem is solved by making the travel time for all simulated demand points below five
minutes. At last, the site selection result based on our model is adjusted and validated, according to
the planned land use. The presented method incorporates the view of the spatiotemporal big data
and provides a new idea and technical method for the modification and efficiency improvement of
the fire station site selection model, contributing to a service cover ratio increase from 58% to 90%.

Keywords: fire station; spatiotemporal demand; fire risk evaluation

1. Introduction

Urban fires have been ever-increasingly frequent in recent years due to the deepened
conflicts between urban population, resources, and the environment. The number of
fire cases in China reached 252,000 in 2020, which is 65% higher than that in 2012. The
consequent direct property loss in 2020 was 4.0 billion yuan, which is 83% higher than that
in 2012. These fires seriously threaten the safety and property of individual lives, and they
severely influence normal economic activities. In this context, it is of great importance to
enhance urban firefighting efficiency. The fire risk of large cities is tremendously complex.
The rapid development of large cities has resulted in massive accumulated risks, while
the continued development brings in various new fire rescue risks. New-type disaster
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drivers interact with conventional ones; high-rise and large-volume buildings greatly
increase; new materials and new products are extensively applied; population movement
is ever diversified; and uncertainties and uncontrollable factors of outbreaks of fires grow
significantly. Thus, prevention and control difficulties and extreme requirements are
enhanced upon response time. Given this, the layout of fire stations is of utmost importance.
Rational layout of fire station is of great significance for improving firefighting security and
disaster prevention.

As is commissioned by the Nanjing Public Security Fire Bureau, this study aims to
apply the location set cover model that is integrated with spatio-temporal big data to urban
planning, based on the five-year fire data from June 2014 to June 2018. In this way, a novel
site selection model for emergency service facilities can be built. It can then be integrated
with random spatial demand simulation methods and real-time traffic networks to consider
the influences of event randomness and traffic conditions that are often ignored in previous
models. The availability of firefighting and traffic spatiotemporal big data lays an accurate
data foundation for the modeling, which is of crucial importance for the site selection of
fire station. The research findings provide sufficient theoretical support for “Nanjing fire
station layout planning” that has been implemented since 2020 by the local government.

In terms of the structure, this article consists of five parts: the first part is a literature
review; the second part is the research method and modeling; the third part introduces the
research scope and data sources; the forth part presents the detailed analysis process, test
results, and verification; and the fifth part is discussion and conclusions.

2. Literature Review

It has been a continuously important topic to investigate fire station arrangements in
cities. The U.S. and Europe have started studying the layout of fire stations and developing
relevant firefighting plans and regulations since the 1970s. Code for Planning Urban Fire
Control of China stipulates that, within the urban development land, the principle of the
ordinary fire station arrangement is to ensure the arrival of firefighting trucks within five
minutes. Moreover, taking the road and traffic conditions in the downtown and marginal
areas of cities into consideration, the layout of fire stations shall enable a firefighting
administration zone of 4–7 km2 in the downtown urban area with a marginal urban area
no bigger than 15 km2. The conventional fire station arrangement theory is mostly based
on the graph theory. The planning area is divided into the basic firefighting units, and the
center of each unit represents a node in the corresponding fire outbreak position network.
By doing so, the site selection problem is converted into the problem of coverage or the
minimum distance of facilities to multiple point sets. The early location models, represented
by the covering model, the P-center model, as well as the P-median model and its modified
models, use the geographic center or key points of each zone to replace the demand point
set. Consequently, the site selection process considers only the expansion of coverage with
the shortened distance [1–3]. It has been pinpointed that planning based on the travel
time or travel distance of firefighting trucks cannot keep pace with the city development
and that the fire station layout shall consider more factors [4]. Moreover, multi-objective
programming models are proposed to involve more factors such as the water supply for
firefighting and political interference [5]. Chen and Zhao [6] introduce the constraints such
as the weather and terrain into their case simulation and build the comprehensive objective
function of facility site selection via the analytic hierarchy process. Similarly, some scholars
apply the multi-objective model to the fire station selection in Samia, Canada. These models
attempt to introduce the factors that may trigger fires, and yet they still optimize the fire
station layout with respect to the average demand. This may lead to massive firefighting
activities in high-risk zones and, in the meantime, much fewer activities in the low-risk
zones. The firefighting response time also varies with fire risk levels as well as road and
traffic conditions in different zones. Therefore, the aforementioned fire station site selection
process would tend to result in high randomness in serve zone demarcation and sparse
distribution of fire stations.
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With progress in developing multi-objective models, random factors are gradually
incorporated in site selection for emergency responses [7,8]. Specifically, random factors
generally derive from the demand and traffic uncertainties induced by the spatiotemporal
environmental dynamic variation. Hence, how to simulate the actual demand to evaluate
the fire risk and how to overcome the traffic network restraint have become the key spots
of research. Efforts have been made to investigate the index system and methodology of
the fire risk evaluation [7,9], which is normally achieved from four aspects, namely the fire
hazard source, the firefighting facility construction status, the firefighting management
status, and the regional disaster relief capability [8,10–16]. The evaluation results are then
applied to optimize the site selection model of fire stations [17].

At present, the evaluation methodology mainly includes the expert scoring method,
fire-grade hierarchy method, risk matrix method, and the fire risk index method [18–21].
Among applications of such methods, the studies carried out by Wang et al. [22] and
Xu et al. [23] to perform risk grading by land uses via an analytical hierarchy process are
relatively representative. Recently, it has been common to identify the factors related to
fire risks from the historic fire data owing to the rapid development of GIS, data mining,
and visualization techniques. Xu et al. [24] applies the kernel density analysis to the city
fire risk ranking based on fire outbreaks in 2013–2016, which confirms the superiority of
the site selection results based on the evaluation index of fire risk level to those of the
conventional model. Zhang [25] and Lin et al. [26] demarcate the urban risk zones and
perform comprehensive evaluations of the city protection grade, using the fire data and
kernel density of the key objects for safety; the zone with a higher grade is given priority in
fire station site selection. Wang [27] established the classification of fire risk level based on
the nuclear density of POI facilities, and substituted the SAVEE model for site selection
planning. Fire station selection based on the evaluation results of fire risks greatly improves
the effectiveness and service rates of fire stations. Nonetheless, fire outbreaks as random
events are theoretically subjected to uncertainty. In other words, every space or building
has the possibility of being on fire and shall be regarded as the potential fire outbreak
point. Furthermore, fire outbreaks are attributed to numerous factors, and thus the hot-spot
zone of fire outbreaks cannot fully manifest the outbreak risks, though it is, to some extent,
representative. Moreover, the existing fire station selection models generally fail to consider
the effects of traffic jams. The traffic network is in most cases abstracted into the road
topological map, and the response time or service zone is calculated using the minimum
weighted distance model [28–30]. It should be noted that the urban firefighting access way
is the important premise for the rapid arrival of firefighting taskforces to the scene of the fire
and thus the reduction and relief of fire disasters. The urban traffic network construction
and traffic condition are important factors affecting the fire station arrangement and its
optimization. Although there are studies considering the traffic capacity of the city road
upon the travel speed of emergency rescue trucks, which is defined as the road design
speed or assuming speed in these studies [31,32], they ignore the delay that may be caused
by the ever-growing traffic jam in the city and the great threats to life and properties
derived from the extended travel distance of firefighting taskforces. Wang [33] collects the
data of the traffic performance index of Shenzhen over three years, and maps the daily
traffic jam. Mao [34] and Ming [35] collected traffic data for one hour in the morning of
June 2020 and one week in May 2020, respectively, to evaluate fire vehicle speeds based on
Amap API. Specifically, the data collected by Ming [35] only have three constant speeds for
three different traffic congestion states, and thus they are not representative.

To conclude, much progress has been made in addressing the fire station site selection
issue based on models that consider temporal–spatial demands. However, there are two
prominent shortcomings in these models. (1) The randomness of the spatial demand
distribution is not sufficiently discussed. For random events, such as a fire, the existing site
selection model mainly uses fire-related factors to divide the risk level. However, this is
only an analysis of historical data, and the obtained site selection plan cannot be ensured
to be valid during the whole planning period. Although certain efforts have been made
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to incorporate the spatial randomness factor into the site selection model, there is still a
lack of a random simulation method for spatial demands. Specifically, such a method
is expected to not only accurately describe the demand distribution but also effectively
optimize the model based on the description. In this context, the site selection issue can
be better solved. (2) Existing site selection models generally lack consideration of travel
time and distance. Some studies have demonstrated the impact of traffic conditions on
the accessibility of emergency stations by obtaining traffic data through APIs, and they
have also have tried to include short-term data into the models. However, there are still
no sufficiently efficient site selection methods that can stream long-term data and include
traffic factors quantitatively into the model.

3. Introduction of the Model and Method

3.1. Methodology

This study targets the urban area of Nanjing City and builds the spatiotemporal dataset
of multi-source data, including the fire history from June 2014 to June 2018 as well as the
real-time traffic data and traffic network data via the Amap OPEN API. Moreover, this study
investigates the regularity behind fire outbreaks and identifies and selectively incorporates
the risk factors into the fire risk evaluation system. Based on the entropy weight method,
the risk factors of the different fire types are normalized and the weight of each factor is
obtained. After meshing the urban area of Nanjing, the fire risk value distribution across the
grid cells is identified via superposition. Meanwhile, the fire data of Nanjing in 2014–2018
are put through the clustering analysis, and the probability distribution at each point of
the cluster is calculated using the average score. The Monte Carlo simulation is performed
to map the random fire outbreak points, and then these massive randomly distributed
simulated fire outbreak points are inputted into the actual traffic network model, which is
finally transferred into the location set cover model constrained by the land use plan to
solve the site selection problem (Figure 1). The presented method overcomes the difficulty
in mapping the fires caused by the complex fire distribution and meanwhile eliminates the
error induced by the idealization of the traffic situation. It is worth noting that this research
project is granted by the Nanjing Fire Department and the Nanjing Bureau of Planning and
Natural Resources. The research findings provide important guidance on the actual site
selection of fire stations of Nanjing, and the presented method, a novel method for urban
fire station site selection in the big data era, is practical to provide references for analogous
specialized planning of other cities. Fire station site selection based on fire risk evaluation
can greatly improve the effectiveness and service rate of fire stations.

3.2. The Improved LSCP Model

At present, the frequently used site selection models include the set cover model,
the P-median model, and the P-center model. The set cover model is in essence a model
dealing with the optimal site selection for discrete points, which are often the identified
distributed demand points. The site selection based on the set cover model needs to
comprehensively consider multiple factors such as the quantity and position of the facility
placement and the economic effectiveness. The set cover model can be divided into two
types by the corresponding objectives, namely the set cover model and the maximal
covering location model. The former is first proposed by Toregas et al. [36,37] and aims at
the minimum facility or construction costs under the premise that all demand points are
covered. Subsequently, Church and ReVelle [38] develop the maximal covering location
model, based on the location set cover model. The maximal covering location model targets
the facility layout that facilitates the maximum served demands under the premise of the
known service station quantity and service range. The most important difference between
the maximal covering location model and the set cover model is whether or not the facility
quantity is considered. In addition, the former highlights serving demands, while the latter
emphasizes the minimum cost. The P-median model, proposed by Hakimi [39], aims at
minimizing the total distance between each demand point and the corresponding facility,
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so as to realize the best overall service performance of fire stations. Then, Hakimi modifies
the P-median model and develops the P-center model [40]; the optimization objective of
which is to minimize the maximal distance for all demand points to the corresponding
facilities. The P-center model can result in a more distance-balanced layout of facilities.
Given the goal of the fire station planning in China to realize full coverage of the rescue
and disaster relief network across the urban and suburban areas and the reality, this paper
adopts the location set cover (problem) model (LSCP) as the basic model.

Figure 1. Workflow of our research methodology.

LSCP is one of the most important site selection models for locating emergency
facilities [41]. Toregas et al. [36] for the first time apply LSCP in locating fire stations, which
is shown below:

min ∑
j∈W

xj (1)

s.t. : ∑
j∈Ni

xj ≥ 1, ∀i ∈ V (2)

xj ∈ {0, 1}, ∀j ∈ W (3)

where V is the set of the demand zone; W is the set of facility points; i is the demand point
sequence number; j is the facility point sequence number; Ni is the set of the facilities that
can serve the demand point i; xj is a variable equal to one or zero, representing whether or
not to build the j-th facility.

The objective function Equation (1) requires a minimal quantity of the service facilities.
The constraint Equation (2) states that each demand point shall be served by at least
one facility. Equation (3) is constrained by the values of the variable. Equations (1)–(3)
constituent a discrete model, requiring the input of a series of spatial demand elements
(including points, lines, and planes) and the location set of potential facility sites. xj
represents the node, and j refers to being chosen to build a facility (xj = 1) or not (xj = 0).
The LSCP model realizes coverage of any continuous space by placing a minimal number
of facilities in some locations, which thus requires determining the variable value (namely
the demand point) and solving xj. However, the basic location set coverage model is not
fully applicable to the fire requirement characterization. The model is improved according
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to the characteristics of fire needs. (1) A random simulation point i is used to replace the
original event point. (2) The ideal travel time from the fire station to the demand area
(tij) should be shorter than the target time (tr

s) in the road network model (T) based on
traffic congestion corresponding to any simulated demand point. The specific steps of the
optimized location set cover model algorithm are as follows (Figure 2).

Figure 2. Technical workflow of data processing.

3.2.1. Generation of Random Demand Points

The overall methodology of this research is summarized below. First, the spatiotem-
poral features are analyzed using the historic fire outbreak data, the fire outbreak factors
are identified, and each index is weighted using the entropy weight method. The study
area is ten meshed into spatial grid cells, and the weights are assigned to each grid cell to
obtain the fire outbreak risk value of each grid cell. Second, the fire outbreak points are
put through the k-means clustering analysis, which generates several clusters, each with
a cluster center; the point coordinates in the cluster are checked for compliance with the
Gaussian distribution; the mean value and variance are calculated; the average score across
a cluster is computed; and the probability distribution at the point in the cluster (interval)
and the number of points generated by each cluster are calculated. Finally, random fire
outbreak points are generated via the Monte Carlo simulation based on the mean value
and variance to calculate the confidence level.

Further explanation is needed. (1) The meshing method. The study area needs to be
meshed to study the potential distribution of different fire risk factors in space. Traditional
gridding methods are normally based on regular quadrilateral units. In contrast, this
study meshes the study area into 2784 closely connected honeycomb units that are regular
hexagons with side lengths of 1000 m in ArcGIS10.6. Although the hexagonal shape is more
complicated, its advantages are also very prominent: (i) it can reduce the sample deviation
caused by the boundary effect of the grid shape; (ii) it is the most circular polygon and can
be inlaid to form a uniform grid; and (iii) its pattern can be accurately recognized.
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(2) The entropy method. In order to minimize and avoid subjective factors and some
objective limitations in the process of weight determination, this paper uses the entropy
method to assign weight to each index. Entropy is originally a thermodynamic concept
in physics, and it can reflect the degree of chaos in the system. In the information theory,
entropy is a measure of the degree of chaos in the system, while information is a measure of
the degree of order. Entropy and information have the same absolute values but different
signs. In the index data matrix X =

{
xij

}
n∗m that consists of n plans to be evaluated and m

evaluation indexes, a large degree of data dispersion corresponds to smaller information
entropy, which means a larger amount of information, thus higher importance to the
comprehensive evaluation, and consequently a larger weight. In this way, the index weight
can be scientifically assigned to solve the problem of information overlap among multiple
indexes. Practically, this study first evaluates the degree of dispersion of each sample data,
then uses information entropy to determine the index weights, and finally assesses the fire
risk factors in the urban space. The calculation steps are as follows:

(a) Standardizing the original positive index data: xij
′ =

(
xij − x

)
/sj where xij is the

original value of the i-th sample and the j-th index, xij
′ is the standardized index

value, x and sj are the average and standard deviation of the j-th index, respectively.
(b) Quantifying all indexes in the same way and calculating the weight of the i-th factor

in the j-th index (pij):

pij = Zij/∑n
i=1 Zij(i = 1, 2, . . . , n; j = 1, 2, . . . , m)

where n is the number of samples (indexes) and m is the number of indexes.
(c) Calculating the entropy value of the j-th index (ej): ej = −k∑n

i=1 pij ln(pij) where
k = 1/ ln(n) and ej ≥ 0.

(d) Calculating the difference coefficient (gj) of the j-th index: gj = 1 − ej

(e) Normalizing the difference coefficient and calculating the weight of the j-th index

(gj) : wj = gj/∑m
i=1 gj(j = 1, 2, . . . , m)

(3) The Monte Carlo simulation. This is a common computation method based on
probability statistics, also called the random sampling/statistical testing method. Its
principle is that the probability of an event can be estimated using the occurring probability
of this event in a large number of tests. There are several reasons for choosing this method:
(i) it is convenient to perform a large number of repeated sampling of all spatial data, and
it can simulate the dynamic relationship between variables randomly, thereby solving
uncertain and complex problems; (ii) it is of high applicability and is less constrained
by the problem conditions than other numerical methods; and (iii) when performing
numerical calculations, its convergence speed is not related to the problem dimension. The
assumption function is presented below:

Y = F(X1, X2, . . . Xn) (4)

where (X1, X2, . . . Xn) represents the known spatial distribution probability of fire outbreak
points in each cluster after performing the clustering analysis of fire outbreak points over
five years.

In most cases, it is very difficult to calculate the probability distribution and its
mathematical features of Y via an analytical process. The Monte Carlo method using a
random number generator can perform a great amount of repeated independent random
sampling for the random variable, by generating a set of values of the random variables
via direct or indirect sampling, and can produce the probability distribution of the function
Y (namely, the simulated fire outbreaks) that is close to the reality. At last, these sampled
values are substituted into Equation (6) in Step 3.2.3 one set after another until the ultimate
results are obtained.
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3.2.2. Traffic Model T Incorporating Traffic Jam

In site selection of firefighting facilities, precisely calculating the traffic cost can result
in increased accuracy of evaluation upon the firefighting service efficiency and capacity.
This paper, with the help of the big data analysis, incorporates the traffic jam factor into the
site selection process, and thus produces an optimized planned fire station layout. Both
data acquisition and processing are implemented using Python3.6. The obtained data
are from the real-time traffic speed and congestion status data of Nanjing’s road network
provided by Amap Maps from 28 May to 10 June 2018, with a data collection interval of 1 h
and thus 24 pieces of data per day. Amap Open Platform Web Service API function is used,
and the request parameters include user authority identification, key, query road level,
return data format type, callback function, and the longitude and latitude coordinate pairs
of the lower left and upper right vertices of the rectangular area to be queried. Among
these parameters, key refers to the authorization key that the user applies for on the official
website of Amap Maps; query road level, return data format type, and callback function are
all set as the default values. The innermost distance in the rectangular area to be queried is
required to be less than 10 km, and due to this limitation, the Nanjing city area is segmented
into 230 rectangular units (each 0.06◦ by 0.06◦). Then, the units are merged into the actual
regional traffic network, and the raw data are pre-processed to link the effective traffic
situation information. In the meantime, the traffic situation acquisition program is set
to auto-run at the interval of one hour (3600 s) for 28 days in a row, and the intelligent
batch processing of streaming data is achieved, thus allowing for automatic acquisition,
pre-processing, spatialization, and storage (readable in the shapefile format) of the traffic
data of the whole city. By doing so, the spatiotemporal dataset of the traffic situation is
built. At last, the characteristic speed of each road is extracted via dimensionality reduction
and mapped for visualization.

As the speed obtained by the Amap Map API is based on real-time road conditions, it
is vulnerable to influences of holidays, major traffic accidents, and traffic jams. However, it
is critical during the traffic feature extraction by highlighting the stable traffic connections
and travel time between facilities and demand points. Therefore, it is necessary to measure
the difference and stability of the transit time obtained by the Amap Map API at different
times. Accordingly, this study chooses to collect vehicle speed data for the two weeks from
May 28 to 10 June 2018, and average them to each hour. Then, the vehicle speed data of
these two weeks are compared with those of weekdays and weekends, respectively. The
covariance calculation shows that the average speed distribution curve during the studied
two weeks can be well fitted. Therefore, it can be inferred that the difference in the average
speed between weekdays and weekends does not affect the analysis of this study. The
all-day congestion delay index of Nanjing is calculated to be 1.55, and the average speed of
the whole day is about 28.29 km/h. In contrast, the congestion delay index during the rush
hour is up to 1.81, and the corresponding average speed is as low as 24.21 km/h. The urban
traffic congestion problem in Nanjing has become a serious issue to be solved. However, it
is not suitable to use the congestion speed for the site selection model, because that will
bring inefficient resource allocation. As a countermeasure, the characteristic speed in this
model is set as the two-week average speed of each road to represent the traffic difference
in different regions. Multiple small fire stations will be considered in congested areas in
our future research.

3.2.3. Site Selection Model Based on Random Simulated Demand Points and Traffic
Characteristic Speeds

The determined demand points and the traffic network model T are then substituted
into the location set cover model to compute xj and the set of the ultimate planned station
site set W. For the existing fire stations (corresponding to the set H), the default operation is
to directly merge them into the set W (in other words, no demolition or relocation). Owing
to the predictability of fire outbreaks, the optimized algorithm of the set cover location
model is used to determine whether or not to include the station candidate j in the set M to
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the set W one after another and ultimately produce the fire station distribution with the
minimal station quantity and maximal firefighting efficiency improvement. The mentioned
algorithm is presented below:

min ∑
j∈W

xj (5)

s.t. : Pr
(
tij ≤ tr

s
) ≥ α (6)

tij ≤ tr
s, ∀i ∈ V, ∃j ∈ W (7)

xj ∈ {0, 1}, ·∀j ∈ W (8)

where i is the sequence number of the simulated demand point; j is the sequence number
of the new site candidate; V is the set of the demand zone; M is the set of the new site
candidates; W is set of the facility sites planned to put into service; H is the set of the
existing stations; tij is the actual travel time from the fire station j to the random simulated
point i in the demand zone, derived from the traffic network model T based on the actual
traffic jam situation; xj is a variable equal to one or zero, representing whether or not the
site candidate j will be put into service (putting into service corresponds to xj = 1, and
otherwise xj = 0).

The objective function Equation (5) requires a minimal quantity of the constructed
service station. The objective function Equation (6) is a global constraint requiring that,
for any simulated demand point, the ideal travel time (tij) from the corresponding fire
station to its service zone shall be lower than a specified time (tr

s), according to the traffic
network model T considering the traffic jam. Calculating the actual travel time tij from the
fire station j to the random simulated point i in the demand zone needs to determine the
corresponding distance and travel speed. Here, we first change the random demand point
generated in Step 3.1 with the potential and existing fire station, convert their coordinates
into a unified system, and export them into the spatiotemporal dataset. Subsequently, the
single-source shortest path between two points in the weighted graph (namely the traffic
network model T) is calculated using the path solver based on the Dijkstra algorithm,
which is divided by the traffic characteristic speed of the corresponding road to yield the
travel time. The travel time results are converted into the time matrix tij. This constraint
requires the response probability above 90% over the service range (considering errors, α is
artificially set as 90%). This paper takes Nanjing city as an example, and accurately dissects
the spatiotemporal characteristic of firefighting events, based on the actual demand points
of firefighting events and the traffic network data. Thus, we manage to perform more
precise measurements of each variable in the equations and develop a more reasonable site
selection plan. The next chapter introduces the fire data of Nanjing and the data sources.

4. Data Sources

4.1. Study Area

Nanjing, the capital city of Jiangsu Province, has an urban area of 1364.85 km2. By
2020, there are a total of 57 fire stations that have been built and put into service in Nanjing
(including 2 special-duty fire stations, 54 normal fire stations, and 1 firefighting support
fire station). A total of 39 stations are located in the urban area, while 18 lie in the suburban
area. There are no underground fire stations. The current distribution of the effectively-
operated fire stations is generally characterized by the high density in the central urban
area and low density in the developing urban fringe area. Xuanwu, Gulou, Qinhuai,
Yuhuatai, Jianye, Qixia, and Pukou districts are found with more existing fire stations
(points), correspondingly associated with relatively concentrated distributions (Figure 3).
The Standard for Urban Fire Station Construction (MOHURD Standard 152-2017, a national
sector standard of China) stipulates that the service area of the normal fire station in cities
should be no larger than 7 km2, and that of the normal fire station in suburbs should be
no larger than 15 km2, which means there should be at least 114 fire stations in Nanjing.
The quantity of the existing fire stations is far less than the stipulated one. The service
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area of the fire stations is, in most cases, overwhelmingly large, and the five-minute arrival
required by the standard cannot be realized (at present, the average travel time to the fire
site is about 11.6 min). The service area of an individual fire station far exceeds the upper
limit of the service area. Moreover, the traffic jam of the city is intensified over recent years.
Thus, the optimal response time for rescue and disaster relief cannot be guaranteed. It
should also be noted that the land that can be used to build fire stations is in short in the
city, which leads to the uneven distribution of fire stations and considerable firefighting
dead zone. For example, the South New Town centered at the Nanjing South Railway
Station and the Maqun area in the eastern Purple Mountain are found with no placement
of fire stations.

Figure 3. The fire outbreak locations and current fire stations in Nanjing.

4.2. Fire Outbreak Data
4.2.1. Basic Characteristics of Fire Outbreaks

Optimization of the fire station layout needs to consider the fire characteristics in
Nanjing. With the help of the Nanjing Fire Department, we collect the fire outbreak time,
fire location, fire site, and cause of fire recorded by the Emergency Call for Fires (119)
from 1 June 2014 to 1 June 2018, and identify a total of 9561 pieces of fire data (Table 1).
The location information of all fire events is translated into the latitudes and longitudes,
based on which the fire events are spatially positioned in the hexagonal grid cells with
radii of 500 m meshing the Nanjing urban area. A summary of kernel density analysis
on the fire outbreak quantity in each grid cell reveal that the hot-spot zones of fires are
mainly located in the core areas of the central urban area (including Gulou, Xuanwu,
Qinhuai, and Jianye districts), which is the intensive core of fire outbreaks. The global
spatial autocorrelation coefficient reaches 0.875, suggesting the extremely high spatial
aggregation of fire outbreaks. The major peak occurs at the Xinjiekou area, around which
the fire outbreaks gradually decline radially towards the opposite direction, and meanwhile,
another peak of fire outbreaks occurs at the outward Gaochun area (Figures 4 and 5).
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Table 1. Example of GPS data for emergency service events.

Administrative District Fire Time Fire Location Fire Site Cause of Fire

Yuhuatai District 31 December
2015 16:12:00 The fourth block of Langshilv Others Unknown

Jianye District 31 December
2015 14:50:00

The Eighth Bureau of Construction,
Youth Olympic Village, Jianye District Waste Other-residual fire

Yuhuatai District 31 December
2015 13:53:00 Jindi Free City reed marshes Others Unknown

Xuanwu District 31 December
2015 12:30:00 East of Jiming Temple, Xuanwu District Others Electrical fire-electrical

circuit failure-other

Yuhuatai District 31 December
2015 08:55:00

Old glass factory next to Oasis
Machinery Factory Others Unknown

Gulou District 31 December
2015 03:03:00

North Gate of Workers’ New Village,
Gulou District Others Electrical fire-electrical

circuit failure-other

Gulou District 30 December
2015 21:48:00

1st Floor, No.49 Yucai Apartment,
Gulou District Residence Electrical fire-electrical

circuit failure-other

Gulou District 30 December
2015 16:48:00

Room 101, Unit 7, Building 16, Xinyi
Village, Jinling Community,

Gulou District
Residence Electrical fire-electrical

circuit failure-other

 

Figure 4. Fire outbreak distribution (3D view).

 
Figure 5. Fire outbreaks by month.
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From a temporal point of view, the fire outbreaks are obviously periodic. Regarding
months, July and August are associated with periodic high fire outbreaks, resulting in
nearly 200 fire events over the last three years. However, July–August in 2014 presents
itself as a rare valley of fire outbreaks, which is attributed to the fire security circles (for
fire prevention and facility protection) set up by the Nanjing Municipal Government for
the Youth Olympic Games held at that time in Nanjing. Besides, January and February
in winter are the secondary periodic peak for fire outbreaks. April in 2014 is seen with
aperiodic ultra-high fire outbreaks (360 outbreaks).

4.2.2. Fire-Triggering Factors

The cause and site of fires are analyzed using the dominance index. The electrical fire is
the main cause of fires for all districts, accounting for 76.3%, followed by the careless living
fire activity (11.1%), the production operation fire (4.5%), and self-ignition fires (2.5%). The
electrical fire is mainly triggered by electrical circuit failure, electrical equipment failure,
and electrical heating devices, and often occurs in summer and winter. The high ambient
temperature (plus the self-heating of the running electrical equipment) and thunderstorms
in summer promote occurrences of electrical fires. In winter, the overhead electrical lines
are prone to contacting and connecting driven by intensive winds and discharging elec-
tricity to cause fires. Moreover, inappropriate applications of heating devices and burning
inflammable materials are also the characteristic causes of fire in winter. These analysis
results are consistent with the temporal characteristics of fire outbreaks mentioned above.
Weather, hazardous goods, gas pipe network distribution, and population distribution are
all main factors related to fire outbreaks.

Furthermore, the fire outbreak sites are divided into five types, namely the residence
land, industrial land, facility land, commercial land, and land for plazas and plants. The
uppermost outbreak site is the residence land, accounting for 71.2%, while the shares of
the other four types of lands are 4.5%, 12.7%, and 2.4%, respectively, and other types of fire
account for 9.2%. Residence fires are mainly caused by electrical failures, with a correlation
coefficient of 0.725. Their frequency distribution of daily outbreaks is found to conform
to the exponential law. In other words, for most days, the daily fire outbreaks are very
low, and yet for some specific dates, the fire outbreaks dramatically grow. The presented
analysis further reveals that fire outbreaks are highly dependent on the residential land
and population distribution, and present a certain regularity.

5. Optimization and Application of the Site Selection Model

5.1. Underlying Fire Risk Evaluation

The fire risk evaluation of the urban area involves various aspects, such as the oc-
currences, development, control, and firefighting and rescue in the urban area, and is
characterized by numerous and complex influential factors. The fire risk evaluation cal-
culates the fire outbreak probability, predicts the disaster consequence, and quantifies
the fire risk, by analyzing the factors affecting fires. It can provide scientific references
for developing the urban firefighting plan and direct the urban fire safety management
to improve the resistance of cities to fire disasters. By far, the previous urban fire risk
evaluation cases in China and other countries mostly focus on the evaluation index system
establishment, the evaluation model and its application, etc. The risk ranking of the U.S.
considers risk factors such as the application scenario of architectures, building density, and
fire separation, while the “urban ranking system” of Japan mainly considers the type and
structure condition of buildings, climate condition, and firefighting system [8,10]. Ding and
Wang [42] choose the population, firefighting infrastructure, firefighting capacity, public
security condition, and major hazardous source as the five primary factors. Zhang [11]
further refines the risk factors into the firefighting key area, population density, high-rise
building distribution, large crowded underground space, and firefighting taskforce to
build the fire risk evaluation framework, from the perspective of the urban space, and
identifies the high, medium, and low-risk areas. In general, when it comes to building
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the evaluation system, previous studies often focus on investigating and refining the fire
hazardous source, firefighting capacity development, firefighting management status, and
regional disaster-resistant capacity. The relevant studies are increasingly mature, and yet
with the ever-complicated development of large cities, the urban fire risk evaluation shall
highlight the spatial analysis of each underlying factor, quantify the risk fire evaluation into
the material space, and precisely rank the underlying fire risks of each urban land blocks, in
order to realize refined management of the urban firefighting security. Hence, based on the
previous studies, the features of this research, and the characteristics of the fire outbreaks in
Nanjing, the population density, high-rise building distribution, underground space distri-
bution, site distributions of gas facilities, and hazardous chemical substances, and historic
fire outbreak frequency are determined as the six major underlying factors for evaluation.
The weight and score of each factor and the comprehensive score distribution across the
urban area are calculated using the entropy weight method (Table 2, Figures 6 and 7). This
research simulates the underlying fire outbreaks and assumes that the firefighting capacity
is limited to putting out fires and rescue. Thus, the firefighting capacity is not included as
an evaluation factor.

Table 2. Fire risk ranking.

Underlying Fire Risk Ranking

Risk Factor Evaluation Factors Weight

Fire outbreak probability Historic fire outbreak frequency 0.14
Population density 0.15

Fire hazardous source
Gas pipe networks 0.24

Hazardous chemical substances 0.14

Regional disaster resistance Underground space distribution 0.12
High-rise building distribution 0.17

Figure 6. Evaluation factors for fire risks.
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Figure 7. Fire risk scoring.

5.2. Ranking of Demand Zones
5.2.1. Determining the Fire Station Site Candidates with the Urban Planning Taken
into Consideration

By comprehensively considering the urban land use plan and the current land use
and construction status and eliminating the positions that are unfavorable for building
fire stations (e.g., hills and lakes), the land blocks over 2000 m2 (according to Standard
for Urban Fire Station Construction, a national sector standard of China) are screened out.
There are a total of 4084 region blocks, which are defined as the site candidate set M.

5.2.2. Clustering and Simulation of Historic Firefighting Data

The three-dimensional K-means clustering analysis is carried out for the demand
spatiotemporal points of fire outbreaks from 2014–2018, and the cluster quantity is K. The
average horizontal and vertical coordinates μ of the relative cluster center for points of
each cluster are calculated, which is combined with the fire risk value of the corresponding
grid cell to form the 3D coordinates for clustering analysis. The clustering adopts the
mean-variance normalization, and the clustering and Gaussian distribution fitting results
of the data of 2014–2018 are used. It shall be noted that the K-means clustering requires
determining the cluster quantity K, which is set as seven in this research. The main
clustering process has three steps: first, K random starting points are chosen as the mass
centers; second, the data in the dataset are assigned to each cluster according to the distance
to the mass centers, and the averages of each cluster are calculated and set as the new
mass centers; and third, the second step is repeated until there is no change for all clusters
(Figures 8–10). According to the elbow method, K = 7 brings about the best classification
performance for spatiotemporal features, which means no concealing features and in the
meanwhile clear grouping. The data clustering and Gaussian fitting results are used for
the Monte Carlo simulation to generate several random demand (fire outbreak) points.
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5.2.3. Building the Traffic Network Model and Calculating the Minimal Time Matrix tij

Based on the processed traffic network shapefile-format files, the traffic network
dataset is constructed as the traffic network model, via topological operations, such as
road intersection breaking and interface merging. The model consists of the road intervals
and intersections. The road interval is the line element of the traffic network, which
is represented using the arc in ArcGIS. Each interval is assigned the attributes of the
jam vehicle speed (km/h), average vehicle speed (km/h), travel time at the average
speed (s), and length (km). The road intersection, represented by the node in ArcGIS, is
combined with the turning table for road intersections to vividly mimic the actual on-the-
road scenarios, such as waiting for the traffic light, no straight-through, no left turn, and
passing through the elevated road. The travel time for each road interval is calculated in
ArcGIS, according to the actual traffic network and corresponding characteristic speed,
which is defined as the average actual travel time. The vehicle speeds between two adjacent
weeks in the study period are compared and the covariance calculation results show that
the distribution of the average vehicle speed at exact hours during the two weeks can be
well fitted, with the correlation coefficient of 0.973. Thus, the data of every two weeks is of
periodic representativeness in our research.

Figure 8. Clustering results of the historic fire data (K = 7).

Figure 9. Elbow method.
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Figure 10. Random demand (fire outbreak) points.

5.2.4. Generating the Set of the Planned Sites W

It is determined that the set of the current 57 stations (the H set) is directly merged
with the set W, with no station demolition and relocation. Based on the algorithm presented
in Chapter 1, the calculation is made for each station site j to determine whether or not
to be included in the set W, and the actual factors of Nanjing are all input into the global
constraint equation. tr

s is set as five minutes, and α is set as 0.90, which means that, for the
clustering-based random simulated demand point j, the travel time to the station i included
in the set M (the travel time is added with the OD time matrix) is less than five minutes.
The problem is solved in Matlab R2021a using the genetic algorithm, and the minimal
station quantity and station distribution (xj and j) that can best improve the firefighting
efficiency are obtained.

5.2.5. Adjusting the Model-Produced Results and Reviewing the Planned Land Use for the
Fire Station Sites According to the Regulatory Plans of Each District to Ensure the
Feasibility of the Ultimate Planned Fire Station Layout

There are 274 ultimate planned fire stations (Figure 11), including 57 existing stations
and 217 to-be-built stations. It should be noted that 28 of the model-planned fire stations
are adjusted. Among these fire stations, 125 stations mainly serve the central urban area
and its surrounding, while 149 stations mainly serve the urban fringe area. The average
service range for each fire station is 4.3 km2, less than the specified upper limit of 7 km2.
Our calculation shows that in this plan, the service area that realizes the five-minute arrival
of the firefighting taskforce in the central urban area and concentrated construction area
accounts for 91% of the total construction land use, and 99% of the construction land use of
the central urban area. The locations of 217 fire stations have been fed back to the regulatory
plan development group for approval of their land uses. The fire stations are all placed
in the street-facing sections of the main and secondary main roads, more than 200 m far
away from the sites storing hazardous goods, such as gas and LNG stations, and 50 m from
crowded sites. The firefighting response time is decreased from the current 11.6 min to
5 min.
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Figure 11. The final layout of fire stations.

6. Discussion

(1) Optimization of the emergency facility site selection has always been a classic
research topic in geography. Given that the fire outbreak probabilities are different for
demand points of the varied fire risk zones, this research proposes a site selection method
that manages to realize the arrival of firefighting taskforces within the target time to
all random simulated fire outbreak points under the constraints of the administrative
regulatory plan and actual traffic situation. The solution workflow based on the set cover
model is designed, and a case study of Nanjing city is performed. Compared with the
conventional model, the optimized location set cover model greatly improves the covering
range and effectively reduces the firefighting response time. Our research also reveals
the considerable flaws of the layout of the fire stations in Nanjing. Specifically, due to the
insufficient and unbalanced distribution of firefighting resources in the districts, the current
firefighting facility is far from satisfying the emergency response demand. The overall
cover ratio of the fire station service is only 58%. The firefighting resources are excessively
concentrated in the Gulou and Xuanwu districts. Consequently, the firefighting service
has formed a large regional cover across the central urban area, while multiple firefighting
dead zones exist in other current urban built-up areas. A lack of fire stations is the main
reason for the large firefighting dead zone.

(2) Various fire risk factors have increasingly emerged due to the continuous concen-
tration of population and resources in large cities. Moreover, the accessibility and rescue
efficiency of the urban road network have been seriously affected by the overwhelming
large traffic flow and, thus, the unsmooth fire control passages in the central and new urban
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areas. Furthermore, fire control facilities in many large cities of China are not sufficient and
outdated. All these factors bring about severe challenges to fire safety management in large
cities. This study manages to accurately assess the distribution of urban fire risks, road
traffic conditions, and other situations by analyzing the spatial data. In this way, much
progress has been made in effectively suppressing the negative impacts of random fire
occurrences and traffic delays on site planning, thereby saving urban public resources. As
more and more cities are entering a digital era, our future research will consider and inte-
grate different tools into the ArcGIS toolbox, which will be more conducive for the relevant
department to optimizing fire station planning. These results will provide references for
similar cities in China and thus help enhance the fire control capacities of cities.

(3) The site selection of fire stations in this paper assumes that facilities all belong
to the same level. However, firefighting facilities are in fact subjected to differentiation
in types, levels, scales, and service ranges. Such an assumption to some extent results in
errors, which shall be corrected in further studies. In addition, the traffic cost based on the
traffic network model may change due to road modification and widening. Therefore, it is
critical to adjust and update the dynamic factors in this model in a timely manner. The next
step is to integrate different tools into the ArcGIS toolbox and visualize it, so as to facilitate
the timely correction of the road network and update the data. Given this, we plan to
collect the traffic data over a prolonged period of time and investigate the vehicle speed
variation with different seasons and months to more accurately calculate the time-cost
factors and substitute them into our model. We also plan to collect the fire outbreak data in
2019–2020 and import them into our model for further comparison and validation. The
firefighting response time is decreased from the current 11.6 min to 5 min.

7. Conclusions

Digitalization in the new era has penetrated into all aspects of urban life, transporta-
tion, and medical care. In this context, the emergence and development of spatio-temporal
big data provide new opportunities for the optimization of emergency site selection. This
study first introduces the basic model of emergency site selection based on actual traffic
conditions and the simulation method based on random demand in space. Then, this
study employs the K-means clustering method to quantitatively describe and simulate fire
demand based on actual data. Subsequently, an optimization algorithm is established that
integrates the actual speed of the road network into the location set cover model, which
contributes to the shortest travel time from the fire station to the simulated demand point
at the actual speed. In order to evaluate the validity of the proposed model, this study
analyzes the spatio-temporal characteristics of fire data from 1 June 2014 to 1 June 2018
in Nanjing City, identifies various necessary factors based on the modeling analysis, and
solves the model with a set target time of 5 min under the conditions of land-use con-
straints. Compared with traditional models, the optimized location set cover model greatly
improves the coverage area and effectively shortens the fire response time. This study is
commissioned by the Nanjing Public Security Fire Bureau, and the results of this study
provide important theoretical support for the statutory plan, i.e. the Nanjing Fire Station
Layout Plan, implemented by the local government in 2020. Nonetheless, congestion status
might change as the city develops, which will have an impact on the existing research
results. In future work, we will regularly monitor changes in the road network status and
adjust the fire station layout accordingly, including adding some small fire stations where
necessary.
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Abstract: The site-suitability analysis (SSA) of parcel-pickup lockers (PPLs) is becoming a critical
problem in last-mile logistics. Most studies have focused on the site-selection problem to identify the
best site from given potential sites in specific areas, while few have solved the site-search problem to
determine the boundary of the suitable area. A GIS-based bivariate logistic regression (LR) model
using the supervised machine-learning (ML) algorithm was developed for suitability classification in
this study. Eight crucial factors were selected from 27 candidate variables using stepwise methods
with a training dataset in the best LR model. The variable of the proximity to residential buildings was
more important than that to various commercial buildings, transport services, and roads. Among the
four types of residential buildings, the most crucial factor was the proximity to residential quarters.
A test dataset was employed for the validation process, showing that the best LR model had excellent
performance. The results identified the suitable areas for PPLs, accounting for 8% of the total area of
Guangzhou (GZ). A decision-maker can focus on these suitable areas as the site-selection ranges for
PPLs, which significantly reduces the difficulty of analysis and time costs. This method can quickly
decompose a large-scale area into several small-scale suitable areas, with relevance to the problem of
selecting sites from various candidate sites.

Keywords: parcel-pickup lockers; site-suitability analysis; GIS-based; bivariate logistic regression
model; suitability classification

1. Introduction

The rapid development of e-commerce has severely impacted parcel distribution,
and the last-mile delivery problem restricts logistics development. Many e-commerce
companies, logistics service providers, and other stakeholders considered effective systems
for last-mile delivery to be essential competitive advantages and attempted to tackle the
bottleneck by innovative methods, such as parcel-pickup points (PPPs, also called collection
and delivery points), drone delivery, and autonomous ground vehicle delivery [1–4]. PPP
is the most widely used novel solution that helps firms reduce costs through consolidated
shipments and provide customers with a flexible, convenient, and comfortable means of
receiving parcels.

PPPs have garnered significant interest in logistics research. Studies address the
advantages of PPPs such as economic efficiency, environmental friendliness, and high
service quality [5–8]. There are two types of PPPs: parcel-pickup shops (PPSs) and parcel-
pickup lockers (PPLs). PPLs rely on intelligent technology without human interaction,
whereas PPSs cooperate with commercial facilities. PPLs exhibit the advantages of long
opening hours, flexible collection times, and anonymity. Consumers are allowed to collect
their parcels without being bound to shop opening hours. In addition, parcels can be
retrieved anonymously because no human interaction is required [9,10]. Given that PPSs
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cooperate with existing facilities and PPLs are built-in uncertain locations, the location
planning problem for PPLs is more complex and challenging to solve. In the 13th Five-Year
Plan for the logistics development of China, the installation of PPLs was accelerated, and the
percentage of PPL delivery was projected to reach 10% by the end of 2020 [11]. However,
there are no clear guidelines on the location planning for PPLs from the government.
Furthermore, the coronavirus (COVID-19) pandemic impacts people’s lifestyles, and social
distancing limits face-to-face contact with others, resulting in more online shopping and
larger parcel volumes. PPLs play a specific role in the prevention and control of the
COVID-19 pandemic. Therefore, the need for PPLs is most urgent.

Site-suitability analysis (SSA) is conducted to identify the most appropriate spatial
locations or patterns for planning according to specific requirements, preferences, or
predictors of a certain activity [12–14]. There are two types of SSA: site-selection analysis
and site-search analysis. Site-selection analysis determines the best site from a given set of
potential sites, while site-search analysis identifies the area or location of the best site [15].
SSA is becoming a particularly critical topic for PPL planning. Most studies of PPL have
focused on the site-selection problem in SSA to identify the best sites by ranking or rating
candidates based on different indicators [16,17]. However, they present the limitation
of requiring specific areas with sets of predetermined candidates. For the planning of
large-scale areas, decision-makers rarely have specific lists of predetermined candidates.
First, they need to search for suitable areas and then further identify specific candidates
within these suitable areas to select the most appropriate points. Determining how to search
for suitable areas quickly is critical. It can help decision-makers to be significantly more
efficient at the beginning of planning. It can also serve to quickly break down a large-scale
area of study into several small-scale areas of study, with relevance to the site-selection
topics of most current studies on PPL planning.

Thus, the main aim of this study was to develop a GIS-based bivariate logistic regres-
sion (LR) model with supervised classification algorithms to search for areas suitable for
PPLs in a large-scale area. The selection criteria were chosen from many potential variables
and their weights were determined using a data-driven Machine Learning (ML) algorithm.
A decision-maker can focus on these suitable areas as site-selection ranges for PPLs, which
significantly reduces the difficulty of analysis and time costs.

2. Literature Review

The three core issues related to the location analysis for PPPs in previous studies
are (1) influencing factors, (2) spatial distribution patterns, and (3) site selection. For the
influencing factors, some studies state that the distribution of PPPs is strongly related to the
population density, land-use types, urban development, and spatial accessibility according
to their agglomeration pattern [18–21]. Some studies have found that residents’ behavior
also has a relationship with PPP layout, and thus developed methods for measuring cus-
tomers’ spatial access to PPPs, considering differentiated supply and demand [22]. For
spatial distribution patterns, the patterns of PPSs in several cities of China (Changsha,
Wuhan, and Xi’an) were investigated using point of interest (POI) data [21,23,24]. The
results showed that there are more PPSs in the central regions and fewer in the periph-
ery regions, and there are multi-core agglomerations in general. For the site selection,
research determined the best sites by ranking or rating candidates based on different
indicators [16,17]. In general, previous studies related to location analysis for PPPs only
analyzed the location characteristics and impact factors. Few studies addressed the site-
search problem in SSA to identify the boundaries of the suitable sites in a large-scale area,
such as a metropolis.

GIS-based SSA techniques are widely applied in urban, regional, and environmental
planning activities, such as labeling potential hazards, ecological resources, habitats, and
geological favorability, or locating advantageous sites for facilities, agricultural activities,
and urban development [15,25–29]. The challenging aspect of GIS-based SSA is deter-
mining the important factors and their weights. Three major groups of approaches to
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GIS-based SSA are computer-assisted overlay mapping, multi-criteria evaluation (MCE),
and ML algorithms [15]. However, a criticism of the computer-assisted overlap map ap-
proach is that it is often used without verifying independent assumptions regarding the
suitability criteria, nor is it standardized using appropriate methods [30]. In the MCE
approach, the weights of the suitability criteria are determined subjectively, which is impre-
cise and ambiguous. Different multi-criteria evaluation rules generate remarkably different
suitability patterns [15,31]. As a new data-driven technique, ML could overcome the limita-
tions of the aforementioned approaches and better address problems involving enormous
datasets. There are two types of models for the ML algorithm: white-box models are the
explainable-type modes that allow an interpretation of the model parameters; black-box
models, such as support vector machines or artificial neural networks, do not allow such an
interpretation and can only be verified externally [32]. The LR model is the most common
and useful white-box model for supervised classification algorithms due to its easy and
efficient operation. The data types of the variables can be continuous or categorical. The
result of the LR model is measured as a probability from 0 to 1, which can be considered
as the suitability index. Thus, the large-scale area in this study was subdivided into a
micro-scale raster to form the basic units of observation, and the classification of each raster
was conducted according to its suitability index.

3. Materials and Methods

3.1. Study Area and Data

China has the largest e-commerce market globally, with over 40% of global e-commerce
transactions originating from the country as of 2017. Guangzhou (GZ) is one of the four
most developed metropolises in China, where PPLs occupy the market in the early stage.
Furthermore, GZ has been ranked first for parcel receipts in China for seven consecutive
years, from 2014 to 2020 [33]. As shown in Figure 1, GZ (112◦57′E−114◦30′ E; 22◦26′ N–
23◦56′ N), located in the center of Guangdong Province in south China, had a population
of 15.3 million in 2019 and covered an area of 7434 km2. GZ is the third-largest metropolis
in China, containing 11 administrative districts.

In this study, the suitability modeling for PPLs was conducted using five types of
data: POI data, road-network data, population data with a resolution of 100 m, land-
price data, and a digital elevation model (DEM) with a resolution of 30 m, as shown in
Table 1. Given the large quantity and wide distribution of PPLs and the related facilities,
manual data acquisition was time-consuming and inaccurate, hindering the progress of PPL
research. POI data—a novel form of data incorporating information such as latitudinal and
longitudinal coordinates, specific locations, place names, and other attribute information—
played an essential role in the analysis of macro-scale spatial distribution characteristics.
POI data had the advantages of comprehensive coverage, high recognition accuracy, and
high accessibility. Thus, POI big data improved the quality of micro-scale studies on PPL
locations. In this study, POI data were obtained from Gaode Map, which was an everyday
navigation application popular in China. It used three-level classification codes to classify
objects of POI data. From the open application programming interface (API) of Gaode
Map, developers could extract data for a specific area, a specific category, or a keyword
for the name. According to the literature, PPL distributions were strongly related to traffic
convenience and residential and commercial areas. The influential factors from the POI data
were chosen from two major categories with several subcategories: transportation service
and commercial/house, as shown in Table 2. The locations of PPLs were searched for using
the keywords ‘parcel locker’ or ‘self-pickup locker’. A total of 679 PPLs were extracted from
Gaode Map in 2019. The road network data were collected from OpenStreetMap (OSM).
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Figure 1. The study area.

3.2. Methodology

Figure 2 shows the methodology used in this research. It mainly consisted of five
parts: (1) the conversion of multi-source data to the same scale, (2) the preparation of the
observation data, (3) the diagnosis of the assumptions of the LR model, (4) the determi-
nation of the best combination of explanatory variables, (5) the evaluation of the model’s
performance, and (6) the generation of the suitability map using the best model.

Variables X1 to X27 are explained in Table 3, and their distribution maps are shown in
Figure 3.
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Table 1. List of data used.

Layer Description Source Data Type

Road Network
OSM (2019)

https://www.openstreetmap.org/ (accessed on 20
December 2019)

Vector (line)

POI Gaode Maps (2019)
https://ditu.amap.com/ (accessed on 20 December 2019) Vector (point)

DEM DEM-GDEMV2 30 m ASTER GDEM Project (2019)
https://www.gscloud.cn/ (accessed on 20 December 2019) Raster

Population Resolution of 100 m
WorldPop Project (2019)

https://www.worldpop.org/geodata/summary?id=6275
(accessed on 11 September 2021)

Raster

Standard Land Price
(Housing) 12 Levels of Price Guangzhou Municipal Planning and Natural Resources

Bureau 2019
Vector

(polygon)

Table 2. List of POI data used.

Big Category Mid Category Subcategory Number

Commercial House

Building Business Office Building 5658
Commercial-residential Building 825

Residential Area

Villa 280
Residential Quarter 7619

Dormitory 2031
Community Center 353

Transportation Service
Subway Station Exit 808

Bus Station
Bus Station Related

(The bus stops for the airport bus or stopping operation were
not considered.)

6778

Parking Lot Parking Lot Related 9882

 

Figure 2. Methodological framework. Note: 1© conversion of multi-source data to the same scale; 2© preparation of the
observation data; 3© diagnosis of the assumptions of LR model; 4© determination of the best model; 5© evaluation of the
model performance; and 6© generation of the suitability map using the best model.
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Table 3. The abbreviations of the 27 candidate variables.

No. Potential Explanatory Variable Variable Code Type

X1 DEM DEM Topographic factors
X2 Slope Slope
X3 Population density POP

Social factorsX4 Standard land price SLPrice
X5 Euclidean distance to the nearest residential quarter Dist_Res_Qua

Accessibility factors:
Proximity to various types of

building

X6 Euclidean distance to the nearest residential
community center Dist_Res_CC

X7 Euclidean distance to the nearest residential villa Dist_Res_Vil

X8 Euclidean distance to the nearest residential
dormitory Dist_Res_Dor

X9 Euclidean distance to the nearest commercial and
residential building Dist_Com_ResB

X10 Euclidean distance to the nearest commercial office
building Dist_Com_OffB

X11 Euclidean distance to the nearest primary road Dist_Road_Pri

Accessibility factors:
Proximity to various types of

road

X12 Euclidean distance to the nearest secondary road Dist_Road_Sec
X13 Euclidean distance to the nearest tertiary road Dist_Road_Ter
X14 Euclidean distance to the nearest unclassified road Dist_Road_Unc
X15 Euclidean distance to the nearest residential road Dist_Road_Res
X16 Euclidean distance to the nearest special type of road Dist_Road_Spe
X17 Euclidean distance to the nearest path road Dist_Road_Path
X18 Euclidean distance to the nearest metro exit Dist_MetroExit Accessibility factors:

Proximity to various types of
transport

X19 Euclidean distance to the nearest bus stop Dist_BusStop
X20 Euclidean distance to the nearest parking lot Dist_ParkingLot
X21 Euclidean distance to the nearest water area Dist_WaterArea
X22 Kernel density of parking lot Dens_ParkingLot

Urban development factors:
Density of various types of

POI

X23 Kernel density of metro exit Dens_MetroExit
X24 Kernel density of bus stop Dens_BusStop
X25 Kernel density of commercial building Dens_ComB
X26 Kernel density of residential building Dens_ResB
X27 Kernel density of road Dens_Road
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Figure 3. The distribution maps of the 27 candidate variables used in the model.

3.2.1. Conversion of the Multi-Source Data to the Same Scale

The challenges associated with multi-source data were attributable to the different
types and scales of the data. The multi-source data should be unified to the same type
and unit in the preprocessing stage. This study used four different data types—vector-line,
vector-point, vector-polygon, and raster data—with different resolutions. As this study
aimed to identify suitable areas at the pixel level, all the data needed to be converted to
the same data type (raster) with the same resolution. The vector-line and point data were
converted using the Euclidean distance and kernel density method. The vector-polygon
data were directly converted to raster data. Higher-resolution raster data were converted
to a lower resolution using the resampling tool of the ArcGIS 10.6 software. A total of 27
conversion results with a resolution of 100 m were candidate variables in the modeling, as
shown in Table 3 and Figure 3.

3.2.2. Preparation of the Observation Data

An observation database was prepared for the LR model to learn the data features,
including suitable and unsuitable location points, with the values of their explanatory
variables. The location points of PPLs were collected from the POI data from Gaode
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Map. This study assumed that ranges of 500 m around the existing locations of PPLs
were suitable (approximate walking distance of 5 min) [17]. After erasing the water and
assumed suitable areas, the non-PPL points were randomly sampled in the remained area.
The classification by the LR model using ML algorithms should have avoided the class-
imbalance problem [34]. In order to make the sample sizes of the positive and negative
datasets similar, 690 non-PPL points were randomly selected. Figure 4 shows the locations
of all the observation points.

Figure 4. The locations of PPL and non-PPL points.

Next, the values of all the observation points were extracted from the raster layers
of 27 candidate variables to create the reference database. There were several points that
extracted the null values from the raster layers. These abnormal points were neglected to
reduce the model bias. Empirical studies showed that the best results were obtained by
training and testing data with a ratio of 70:30 or 80:20 [35]. In order to employ more data
to test the performance of the model, this study chose the ratio of 70:30. The data were
randomly split into a training dataset and a test dataset.
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3.2.3. Diagnosis of the Assumptions of LR Model

Before applying the LR model, it was necessary to examine the assumptions shown in
Table 4. The data for modeling satisfied the requirements for the first four assumptions
during the dataset design, but the last three had to be examined using other methods. Here,
the diagnosis was conducted using Version 25 of the IBM SPSS statistics software.

Table 4. Assumptions of the LR model.

No Assumptions Explanation Examination

1 Dependent variable is required to be a binary
variable.

1: PPL presence;
0: PPL absence. Y

2 Observations were required to be independent of
each other.

The observations come from different
measurements or matched data. Y

3
There is at least one dependent variable. The

independent variable can be a continuous variable
or a categorical variable.

There is one dependent variable and 27
independent variables. Y

4
A large size of the sample is required. In general, the
minimum sample quantity should be more than ten

times the number of the independent variables.

There are 1205 points of PPL data. The
sample quantity is more than 270. Y

5 The linearity of independent variables and log odds
is assumed. Box–Tidwell method ?

6 There is little or no multicollinearity among the
independent variables. Multicollinearity diagnosis ?

7 There are no obvious outliers. ?

Note: In the examination column, ‘Y’ indicates that the assumption met the requirement and ‘?’ indicates that the assumption needed to
be verified.

• Diagnosis of the linearity of independent variables and log-odds

The Box–Tidwell method was employed here. It incorporated the interaction term
between the continuous independent variable and its natural logarithmic value into the
regression equation [36]. First, the natural logarithms of all the continuous independent
variables were calculated using the compute variable function in SPSS. Then, the interaction
terms between the continuous independent variables and their logs were included in the
binary LR analysis using SPSS. The statistical significance of this predictor suggested a non-
linear logit. When the interaction term was statistically significant (p-value < 0.05), there
was no linear relationship between the corresponding continuous independent variable
and the logit conversion value of the dependent variable. It was recommended that all
the items in the analysis (including the intercept term) be corrected using the Bonferroni
method when testing the multiple significance of the linearity hypothesis [37]. In this study,
55 items were included in the model analysis: 27 continuous independent variables, 27
interaction terms with their independent variables and their natural logs, and the intercept
term (constant). A p-value less than the corrected value (i.e., 0.05 ÷ 55 = 0.000091) was
taken to indicate nonlinearity. There was no observed p-value less than the corrected value.
Hence, linear relationships existed between all the continuous independent variables and
the log-conversion value of the dependent variable.

• Diagnosis of multicollinearity

A good LR model exhibits low noise and is statistically robust. It means that the
explanatory variables are highly correlated with the dependent variable but minimally
correlated with each other [38]. Multicollinearity occurred when explanatory variables
exhibited strong correlations or associations with each other. When the degree of correla-
tion was extremely high, the standard errors of the coefficients increased, which caused
some variables to appear statistically insignificant in the results, even though they were
significant. Multicollinearity made the coefficients unstable [39] and reduced the precision
or interfered with the result when fitting the model [40]. This was mainly detected with
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the help of the tolerance (Tol) and reciprocal, called the variance inflation factor (VIF) [41].
The formulae are defined as follows:

Tol = 1 − R2 (1)

VIF =
1

Tol
(2)

where R2 is the coefficient of determination for the regression of the explanatory variable
on all the remaining independent variables.

VIF > 10 and Tol < 0.1 were common thresholds for assessing multicollinearity between
explanatory variables [38,42]. There were several ways to address the multicollinearity
problem. First, multiple variables with collinearity could be combined into a single variable.
Second, the sample size could be increased to decrease standard errors. Third, some
variables causing multicollinearity could be omitted from the model. Omitting some
variables was the most direct, simple, and effective way. In order to retain as many variables
as possible, the most correlated variable was neglected each time until the collinearity
problem was not severe. Table 5 shows the VIF values of all the variables after omitting the
variable with multicollinearity in the model.

Table 5. VIF values of all variables after omitting the variable with the multicollinearity problem.

Step0 Step1 Step2

No. Variable Tol VIF Tol VIF Tol VIF

X1 DEM 0.316 3.164 0.316 3.163 0.316 3.161
X2 Slope 0.594 1.685 0.594 1.683 0.595 1.681
X3 POP 0.682 1.466 0.692 1.445 0.692 1.444
X4 SLPrice 0.165 6.044 0.166 6.022 0.203 4.918
X5 Dist_Res_Qua 0.142 7.021 0.143 6.984 0.143 6.969
X6 Dist_Res_CC 0.292 3.419 0.293 3.419 0.296 3.376
X7 Dist_Res_Vil 0.533 1.878 0.533 1.877 0.557 1.797
X8 Dist_Res_Dor 0.183 5.475 0.183 5.458 0.183 5.454
X9 Dist_Com_ResB 0.151 6.637 0.151 6.626 0.154 6.49

X10 Dist_Com_OffB 0.14 7.142 0.14 7.13 0.14 7.128
X11 Dist_Road_Pri 0.452 2.212 0.458 2.182 0.458 2.181
X12 Dist_Road_Sec 0.305 3.282 0.307 3.256 0.309 3.241
X13 Dist_Road_Ter 0.375 2.664 0.377 2.65 0.378 2.643
X14 Dist_Road_Unc 0.559 1.788 0.56 1.786 0.56 1.785
X15 Dist_Road_Res 0.424 2.359 0.425 2.356 0.425 2.353
X16 Dist_Road_Spe 0.326 3.066 0.327 3.062 0.328 3.052
X17 Dist_Road_Path 0.32 3.123 0.324 3.091 0.325 3.079
X18 Dist_MetroExit 0.155 6.452 0.155 6.452 0.159 6.271
X19 Dist_BusStop 0.38 2.63 0.381 2.623 0.382 2.618
X20 Dist_ParkingLot 0.11 9.098 0.11 9.096 0.11 9.095
X21 Dist_WaterArea 0.693 1.444 0.695 1.438 0.698 1.433
X22 Dens_ParkingLot 0.139 7.196 0.173 5.769 0.175 5.704
X23 Dens_MetroExit 0.097 10.286 0.097 10.283 Omitted
X24 Dens_BusStop 0.098 10.235 0.108 9.241 0.114 8.756
X25 Dens_ComB 0.16 6.251 0.178 5.632 0.211 4.741
X26 Dens_ResB 0.086 11.685 Omitted
X27 Dens_Road 0.106 9.401 0.11 9.087 0.119 8.395

• Diagnosis of obvious outliers

An outlier is an exceptional value that is very different from the others in a dataset.
The LR model is sensitive to outliers. The usual approach to detecting outliers is based on
the values of standardized residuals. If its absolute value is larger than three, it is usually
considered an outlier [36]. After deleting the outliers, model fitting was conducted for the
training dataset of 961 samples.

58



ISPRS Int. J. Geo-Inf. 2021, 10, 648

3.2.4. Determination of the Best Model Using the Stepwise Methods

There were many candidate variables in the model. It was important to detect the
best variable combination for model fitting. A good model should adequately fit the data,
and the predictor variables should not be too complicated. It was challenging to select
the smallest number of candidate variables that could predict the dependent variable
sufficiently while considering sample size constraints [36]. The forward and backward
stepwise methods were frequently applied in previous studies of the LR model [43].

The forward stepwise selection method (FSSM) selected several significant predictors
for the final model. Model optimization was performed using the least-squares criteria.
It started with a blank model with no predictors. Variables were sequentially added one
at a time to an empty model to predict the best output variable. Subsequently, a second
variable that could best improve the model fitting was sought. The process was continued
until a stopping rule was satisfied. In FSSM, variables added early in the process could
be removed at a later stage because they became unimportant when other variables were
added to the model. FSSM used a systematic method for adding variables based on their
statistical significance in a regression. The process started with no explanatory variables in
the model and then compared the incremental explanatory power of larger models [44].
Using the FSSM technique, the variables could be ranked by importance according to the
priority of the added variables.

Unlike FSSM, the backward stepwise elimination method (BSEM) started with all the
predictors of the least-squares model and then eliminated the least effective predictors one
at a time. This method was continued until a stopping rule was satisfied. In the literature,
the recommended stopping rule was a p-value of ~0.15 [45,46]. In the SPSS software, the
default values for FSSM and BSEM were 0.05 and 0.1, respectively.

3.2.5. Evaluation of the Model’s Performance

The performance of the LR models was evaluated based on their discrimination and
calibration. Discrimination referred to the ability of the model to correctly distinguish be-
tween the two suitability classes based on prediction values. The capacity of discrimination
was often measured using a confusion matrix and by calculating indices of classification
performance [47]. The LR model used the logistic function to map the predictions to
probabilities between 0 and 1. The default threshold of 0.5 was commonly used. It assumed
that a PPL was present if the probability was above 0.5; otherwise, it was absent. The
classification accuracy was determined by comparing the predictions with the real values.
The classification table was divided into four types. True positives (TPs) and true negatives
(TNs) indicated the number of correctly predicted PPLs and non-PPLs; false positives (FPs)
and false negatives (FNs) denoted the numbers of incorrect predictions. Several further
indications were used to measure the performance of a model or predictors. The accuracy
was the total number of correct predictions divided by the total number of predictions made
for a dataset. However, even unskillful models could show high accuracy scores when
the class imbalance was severe. An alternative to using the classification accuracy was to
use precision and recall. Unfortunately, precision and recall may sometimes contradict
each other. The F-Measure (also known as the F-Score) was the most common method for
balancing both indications in a single score. The mathematical basis was the same as in
Equations (3)–(6). Here, the classification accuracy and F-Measure represented the index of
the discrimination.

Precision =
TP

(TP + FP)
(3)

Recall =
TP

(TP + FN)
(4)

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
(5)
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F − Measure =
2 × Presision × Recall
(Precision + Recall)

(6)

The discrimination only compared the predicted probability value with a certain
threshold of 0.5. However, it ignored how far the predicted value was from the true value.
Calibration resolved this shortcoming, and it described how close the predicted value was
to the actual value. The Brier score was an important calibration index that measured
the accuracy of probabilistic predictions. It was applicable to tasks in which predictions
assigned probabilities to a set of mutually exclusive discrete outcomes. The set of possible
outcomes could be either binary or categorical in nature, and the probabilities assigned to
this set of outcomes must have summed to 1, where each individual probability ranged
from 0 to 1 [48]. The lower the Brier score for a set of predictions, the better the predictions
were calibrated. In this study, the reduction ratio for the variables involved in modeling
(the model optimization rate) was added to evaluate the model’s performance:

B =
∑n

i=1 (x i−qi)
2

n
(7)

where x is the real dependent variable, and q is the predicted probability.
The receiver operating characteristic (ROC) curve was also a popular method for

testing a model’s accuracy and describing the quality of a probabilistic prediction sys-
tem [49]. The area under the ROC curve (AUC) was a common metric for the level of
discriminative ability; the larger the area, the better the performance of the model. The
following classification using the AUC was considered for accuracy: 0.90–1 (excellent),
0.80–0.90 (good), 0.70–0.80 (fair), 0.60–0.70 (poor), and 0.50–0.60 (fail) [50,51].

3.2.6. Generation of the Suitability Map

The coefficient of the selected optimum variables and the constant of the best LR model
was substituted into Equation (9). The suitability index of Equation (10) was applied in
each raster of the whole study area for prediction. According to the classification threshold
of the LR model, the suitability map for PPLs consisted of two categories. The raster with a
predicted value between 0.5 and 1 was reclassified as a suitable area, and the raster with a
value between 0 and 0.5 was reclassified as an unsuitable area.

Z =
n

∑
i=1

wixi+Constant (8)

y =
1

1 + e−(z)
(9)

4. Results

4.1. The Optimum Variable Combination for the Best Model

Table 6 shows the model’s performance with the combination of variables selected
by the FSSM and BSEM. The discrimination and calibration of the BSEM are also slightly
better than those of the FSSM. However, the optimization rate for the FSSM is 20% higher.
It indicates that the two methods for selecting the optimal variable combination show
a similar model accuracy and bias. In terms of the index of model optimization, the
FSSM performed better than the BSEM. Table 7 shows the coefficient of the best explanatory
variable combination as determined by the BSEM. The Wald value indicates the significance
of the variables. Eight significant variables were selected from the 25 variables without
multicollinearity. Among these eight variables, five were selected from the accessibility
factors, and one each was selected from the social factors, topographic factors, and urban
development factors. Among the five selected accessibility factors, three were from the
variables of proximity to various types of buildings. According to the Wald value, the
most crucial factor was Dist_Res_Qua, with a value of 45.5, followed by SLPrice (29),
Dist_BusStop (28.4), and Dens_ComBs (20.7). According to the signs of the coefficients, the

60



ISPRS Int. J. Geo-Inf. 2021, 10, 648

variables of Dist_Res_Quar, Dist_BusStop, Dist_Com_OffB, Dist_Road_Sec, Dist_Res_Vil,
and SLPrice were negatively correlated with the suitability for PPLs in the raster unit. The
DEM and Dens_ComB were positively correlated. Thus, a PPL site may be situated close
to residential quarters, commercial offices, and residential villas. The areas were near bus
stops or secondary roads with relatively low land prices, and in high-density zones of
commercial buildings.

Table 6. Performance of FSSM and BSEM with the training dataset.

Method
Discrimination Calibration Optimization

Accuracy F-Measure Brier Score Reduction Ratio

FSSM 88.20% 88.50% 0.088 68.00%
BSEM 88.40% 88.70% 0.085 48.00%

Table 7. Coefficient of the best explanatory variable combination in the standard LR model.

Variable Type Variable Code Selected Coefficient Wald

Topographic Factors DEM Y 0.019 10.5
Slope N - -

Social Factors
POP N - -

SLPrice Y −0.0001 29

Accessibility Factors:
Proximity to various types of

building

Dist_Res_Qua Y −0.0032 45.5
Dist_Res_CC N - -
Dist_Res_Vil Y −0.0002 6.7
Dist_Res_Dor N - -

Dist_Com_ResB N - -
Dist_Com_OffB Y −0.0013 18.6

Accessibility Factors:
Proximity to various types of

road

Dist_Road_Pri N - -
Dist_Road_Sec Y −0.0006 9.3
Dist_Road_Ter N - -
Dist_Road_Unc N - -
Dist_Road_Res N - -
Dist_Road_Spe N - -
Dist_Road_Path N - -

Accessibility Factors:
Proximity to various types of

transport

Dist_MetroExit N - -
Dist_BusStop Y −0.0039 28.4

Dist_ParkingLot N - -
Dist_WaterArea N - -

Urban development Factors:
Density of various types of

POI

Dens_ParkingLot N - -
Dens_BusStop N - -
Dens_ComB Y 0.090 20.7
Dens_Road N - -

4.2. Evaluation of the Classification Performance

The test dataset was used to conduct an unbiased evaluation of the final model’s fit on
the training dataset. The final LR model with the best variable combination and coefficients
was applied to the test dataset. The F-measure, Brier score, and AUC were the indicators
used to evaluate the model’s classification performance, as shown in Table 8. The larger
the F-measure index, the higher the discrimination accuracy of the model’s classification.
The F-Measure values for both the training and test data, were all greater than 89%. The
lower the Brier score, the smaller the deviation predicted and the higher the calibration
degree of the model. The Brier scores were less than 0.09. The value of the AUC for both
datasets was between 0.9 and 1, indicating excellent accuracy.
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Table 8. Predicted performance of the best model.

F-Measure Brier Score AUC

Training dataset 89.11% 0.088 0.954
Test dataset 91.69% 0.069 0.963

Overall, the predicted performance of the final LR model was effective. Additionally,
the performance with the test dataset was better than that with the training dataset.

4.3. The Boundaries of the Suitable Areas

Figure 5 demonstrates the suitability for PPLs simulated using the best LR model.
The suitability for PPLs is divided into two classes: the suitable area in orange and the
unsuitable area in blue. Most of the suitable areas are concentrated in the central districts
and dispersed in small areas in the outer districts. Figure 6 summarizes the sizes and
percentages of the suitable area by the district. Panyu district has the greatest suitable area,
while Liwan district has the smallest. Yuexiu district has the greatest proportion of suitable
area, more than 80%, while Conghua has the smallest, only 1%. Overall, the suitable area
is appropriately 614 sq. km, accounting for 8% of the total area of GZ. The site-selection
range for PPLs can focus on these suitable areas, which significantly reduces the difficulty
of analysis and time costs.

Figure 5. Suitability map for PPLs using the best LR model.
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Figure 6. Summary of the suitable areas for PPLs.

5. Discussion

Big data make location analysis in a macro-scale area possible. POI data, an innovative
data source with a low cost, can identify the existing locations of PPLs and other related
facilities. Some studies used POI data to analyze the PPL distribution patterns in specific
cities of China and found them to be strongly consistent with economic development levels,
population density, and traffic convenience [21,23,24]. This study further developed a GIS-
based LR classification model using an ML algorithm to identify suitable areas from bottom
to top with massive, detailed data, which was different from previous studies conducted
by the MCE approach. The optimum explanatory variables from the 27 candidates and
their coefficients for LR models were determined using a training dataset with stepwise
methods. The FSSM performed better than the BSEM in the optimization of variables. The
most crucial variable was Dist_Res_Qua. It was much more important than the variables
of the distance to various transport services/roads and the density of related points. This
result was consistent with the preferences of customers for PPLs being located near their
home addresses [52]. Furthermore, this study subdivided residential buildings into four
types as candidate variables to analyze the relationships with PPLs. The results showed
that the type of residential quarters was the most crucial variable; the types of dormitory
and community center (CC) were not determining variables for the locations of PPLs. A
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CC is a place providing recreational, cultural, and social activities for surrounding groups
of residential neighborhoods. Although a CC is usually near the residential building of the
community, it is difficult to combine the behavior of picking up parcels with entertainment
or social activities. The residential buildings of dormitories are mainly located in colleges,
factories, or institutions with closed management. The dormitory areas are usually far from
the entrance. It takes a long time to distribute parcels to PPLs near a dormitory building,
and the delivery vehicles have limited accessibility. Due to the safety of internal personnel
and the long delivery times, parcels for dormitories are generally signed for and stored by
guards or shops which offer parcel-pickup services. The population in the dormitory area
is dense, and the capacity of PPLs is limited. Due to the high machine cost, it is not possible
to set up several facilities of PPLs to meet the great demand there. Moreover, the nature of
PPLs is more inclined toward that of a public service facility, and their economic benefit is
limited. The dormitory management prefers to lease the land to commercial shops rather
than PPLs, to obtain more rent.

Another interesting finding was that the variable of population density was not
selected as the critical factor for determining the locations of PPLs in the study. It was
somewhat different from the previous studies that proposed that the density of PPPs had a
strong positive correlation with population density [20,21]. The reason for this may be that
the research scales used were different. The previous studies were based on the unit of the
administrative boundary. According to the characteristics of the existing locations of PPPs,
the relationship between the density of PPPs and the density of various factors in each
administrative unit of the study area was investigated using correlation analysis [21,23,24].
The analysis focused mainly on the quantitative relationship and ignored the relationship
with the location distances of various factors. For distance analysis, the statistical method
was widely used to determine the distance range between the location of most PPPs and the
surrounding features. Unlike previous studies, this work attempted to model the locations
using raster units. The locations of existing PPLs and random non-PPL points were used
as the training and testing datasets. The features of existing PPL locations were extracted
by the ML algorithm and generated the best model. Other unknown raster units were
classified into suitable and unsuitable sites by the model. This method considered both
the number and distance-related factors, and the model could further identify locations
suitable for PPLs rather than only analyzing the characteristics of existing points. The
model could distinguish variables that yielded locations suitable for PPLs from a large
number of candidate factors using Wald values (importance). Another reason was that
the raster population data were not highly accurate and only considered the nighttime
population. The population density data source used here was the population prediction
data in the WorldPop dataset developed by the WorldPop Project. Up-to-date raster data for
population density with a high resolution were hard to obtain. The predicted population in
the WorldPop dataset was simulated from the official census population data and nighttime
satellite images [53]. In the best model of this study, the most critical variables that yielded
suitable PPL locations included Dis_Res_Qua, Dist_Busstop, and Dist_Com_OffB. These
factors also had a strong relationship with the population.

There are several assumptions and limitations in this study due to the insufficient
data. First, the existing PPL locations are considered as locations suitable for PPL. These
locations of points serve as the sample for the ML algorithm, which learns their features.
However, they may not be consistent with the actual suitability. Only current POI data are
available, not historical POI data. It is impossible to analyze the relationship between the
historical PPL locations and the surrounding environment. In addition, because PPL usage
data are not available, it is not possible to determine whether the existing PPL locations are
realistically appropriate. Second, the competition of PPLs was not considered in this study.
In reality, PPLs are operated by different companies, and they may compete with each
other. Third, the 27 candidate factors in the model are social and location-related factors;
market and user-behavior preference factors are not included in this study.
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Moreover, a metropolis is a large city consisting of a densely populated urban core
and less-populated surrounding territories under the same administrative jurisdiction [54].
The PPL density is also unbalanced in different areas of a metropolis. Future research
could divide metropolitan areas into multiple zones according to population density for
modeling and further analyze the differences in the variables chosen by the model in the
various zones.

6. Conclusions

Previous studies of SSA for PPLs commonly addressed the site-selection problem
with given sites in a specific area [16,17]. Few studies have focused on the site-search
problem with quantitative models. GIS-based SSA techniques were widely applied in
urban planning activities with multiple factors. ML method was superior to the other
two approaches of GIS-based SSA and worked best for problems involving enormous
datasets. The LR model was the most common and explainable model of the data-driven
ML algorithms. This paper proposed a GIS-based bivariate LR model with supervised
classification algorithms for the SSA of PPLs and explicitly identified the boundaries of
suitable areas. The micro-scale raster provided the basic unit of observation, and the
suitability classification was conducted in each raster. The crucial factors and their weights
were determined using the training data. Of the data, 30% was used to test the model’s
accuracy and evaluate the performance of the best model. The two stepwise methods
(FSSM and BSEM) were employed to determine the optimum combination of variables
from a total of 27 candidate variables. The performance of the LR models was evaluated
based on their discrimination, calibration, and optimization rates. The results indicated that
the FSSM with fewer variables had an absolute advantage in model optimization. Although
the BSEM selected more variables than the FSSM, there was only a slight improvement in
other indicators.

From the 25 potential variables without multicollinearity, eight crucial variables were
chosen by the final LR model. Three variables were the distances to various types of build-
ings. The proximity to residential buildings was more important than that to commercial
buildings. The most crucial factor was the proximity to residential quarters, whose impor-
tance was twice that of land price and proximity to a bus stop. The result was consistent
with the preferences of customers for PPLs being located near their home addresses [52].
This study further supported the idea that the residential quarter was the most important
among the four types of residential buildings, while the dormitory and CC types were
relatively unimportant. The final model identified the boundaries of areas suitable for
PPLs, accounting for 8% of the total area of GZ. The site-selection ranges for PPLs could
be focused on these areas, which significantly reduced the difficulty of analysis and time
costs. There were several limitations in this study due to the insufficient data. Future
research should divide metropolitan areas into multiple zones for modeling and analyze
the differences in the variables chosen by the model in the various zones.
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Abstract: The evaluation of urban economies has been one key concern identified by scholars. In the
past, most research methods on urban development assessments have been based on statistical data,
and the analysis results have been presented in the form of statistical tables. Moreover, the development
of urban road networks reflects the status of urban development and spatial metrics, which are
obtained from the urban road network which can be used to evaluate the growth of the urban economy.
The OpenStreetMap (OSM) is collected through crowdsourcing, and the OSM road network has
the characteristics of a simplified and efficient approach to collect data, update data, free available
data, etc. Therefore, in this paper, the OSM road network density is used as a spatial metric which
is taken as the main study subject, to evaluate the economic development of Chinese cities. In our
experiment, results show that there is a significant regression correlation between the OSM road
network density and municipal gross domestic product (GDP). For the 85 selected Chinese cities,
a total of 71 cities with residuals between −0.1 and 0.1 account for 83.53%, and a total of 79 cities
with residuals between −0.2 and 0.2 account for 92.94%. Therefore, it is apparent that the OSM
road network density can be used as a spatial metric to evaluate the municipal GDP, and as a result,
can be used by local governments and scholars to estimate, evaluate, and forecast the urban economic
development of China.

Keywords: OpenStreetMap (OSM); road network density; urban economy; regression analysis;
spatial metric

1. Introduction

In recent years, the rapid development of remote sensing, volunteered geographic information
(VGI) and other technologies, spatial data acquisition have become easier to employ. As a result,
there is more and more research on land-cover, land-use, and urban development using spatial
metrics [1–8]. A few different approaches used to represent spatial concepts have resulted in the
development of various spatial metrics [1–4]. More commonly applied metrics used by scholars have
included patch size, dominance, number of patches, and density, edge length and density, nearest
neighbor distance, fractal dimension, contagion, etc. [4]. Herold et al. [5] used spatial metrics and
texture measures to describe the spatial characteristics of land-cover objects within each land-use
region as derived from interpreted aerial photographs. These spatial metrics include percentage of
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landscape, patch density, mean patch size, area standard deviation, edge density, largest patch index,
Euclidean mean nearest neighbor distance, Euclidean nearest neighbor distance standard deviation,
area weighted mean patch fractal dimension, fractal dimension standard deviation, etc. Herold et al. [6]
argued that remote sensing and spatial metrics lead to an improved understanding and representation
of urban dynamics while helping to develop alternative conceptions of urban spatial structure and
change. In order to cover as many metrics as possible, Reis et al. [7] presented an extended, updated,
and more thorough portfolio of spatial metrics to measure the urban growth and urban shrinkage
patterns. In their paper, spatial metrics were defined as the quantitative measures used to assess the
spatial characteristics of urban settlements. Reis et al. [8] assembled spatial metrics into three groups:
landscape metrics; geo-spatial metrics, and spatial statistics. They indicated that landscape metrics
such as fractal dimension, shape, mean perimeter-area ratio mean shape, etc., have been traditionally
used to quantify several aspects of landscape configuration and composition. Geospatial metrics
has mostly been used to measure urban spatial patterns. However, there are metrics that are similar
between geospatial metrics and landscape metrics. Moreover, an important difference between the
metrics from landscape metrics is that the latter include a set of metrics that evolved in a “top-down”
approach. Spatial statistics are metrics based on statistical tools, and these spatial metrics are often
used in combination with regression and spatial econometric models. In this paper, the main purpose
of this research is to discuss whether the OpenStreetMap (OSM) road network density can be used
to evaluate the level of urban economic development in cities. Firstly, using a regression model to
establish the relationship between the OSM road network density and municipal gross domestic
product (GDP) from 2014 to 2017. Then, the OSM road network density and municipal GDP in 2018
were used to verify the regression model, to discuss whether the OSM road network density can be
used as a spatial metric to evaluate the level of urban economic development in cities. Because the
OSM road network has the advantage to be an easier approach to collect data, in a more efficient way,
update data, and provide free available data, etc. If we can use the OSM road network density to
evaluate the level of urban economic development in cities, then this research can help policy makers
in China monitor and evaluate their cities towards more transparent and efficient cities. Moreover,
the OSM road network density is based on statistics and mainly uses a regression model, therefore,
we take the OSM road network density as a spatial metric to evaluate the level of urban development
and transparency in cites.

In general, there is a significant correlation between urbanization and the level of economic
development, and it seems that each country or region conforms to this rule to a certain degree [8–10],
and urbanization has been a defining global phenomenon and a key driving force for social and
economic development during the past century [11,12]. Despite China being the world’s largest
developed country, its urbanization has progressed at an unprecedented rate [13], as urbanization has
shifted due to the rise of industries and population in and around cities, facilitating the development of
economies of scale [14]. Cai et al. [15] indicated that the improvement of urban infrastructure attracted
corporate investments, created new jobs, and led to an influx of labor. Therefore, the proportion of
China’s population living in cities increased from 17.9% in 1978 to 58.5% in 2017 [16]. Heshmati et al. [17]
calculated a multi-dimensional composite index of urban infrastructure analyzing 31 provinces and six
regions in China during 2005 to 2014, and indicated that the economy, employment, human development,
utilities, and technology components of urban infrastructure had positive and significant effects on
China’s urbanization, and suggested that the government should guide investments to more efficient
transportation systems that improve the development of a city.

As described in the above literature, the efficient transportation systems have a positive impact on
urbanization, and the higher the urbanization level of a city, the greater the density of its road network,
the higher economic level of a city. In order to discuss the relationship between the road network density
and urban economic development, based on geospatial metrics and spatial statistics, many researchers
have studied the relationship between spatial metrics and urban economic development. Yu et al. [18]
explored the role of the motorway in the evolution of spatial economic agglomerations, they indicated
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that an improvement in the motorway network lead to a higher degree of geographic concentration of
economic activities. Jiao et al. [19] studied the relation between road accessibility and economic growth
in China from 1990 to 2010. They studied a total of 337 cities in China and explored the bivariate analysis
framework of accessibility, economic growth, and increased rates. The analysis showed that there is
a significant positive relationship between the accessibility and economic growth of a city, and that the
economic increased rates are largely influenced by the change of accessibility. Worku [20] studied the
trends, stock of achievements, and impact of the road network on the economic growth of Ethiopia,
Africa. He indicated that the impact of the road network was seen to be less strong on the agricultural
GDP growth, but had pronounced impact of the industrial and service sector of GDP. Ivanova and
Masarova [21] used the series and correlation method to analyze the effects of road infrastructure
development on the economic growth and competitiveness of Slovak’s economy, they indicated that
the road infrastructure was a prerequisite for economic growth. Beyzatlar et al. [22] investigated the
Granger causality relationship between income and transportation of EU-15 countries. They indicated
that there was an endogenous relationship between income and transportation. Gao et al. [23]
studied the relationship between the comprehensive transportation freight index and GDP in China.
They indicated that the volume of freight traffic and freight turnover in China are positively correlated
with GDP. Fan and Chan-Kang [24] studied the impact of road investment on the overall economic
growth, rural and urban growth, and rural and urban poverty reduction. They indicated that road
investments yielded the highest economic returns in the eastern and central regions of China, while the
contributions to poverty reduction were the greatest in western China. It can be seen from the above
research that the road network can be correlated with GDP, and most researchers have used regression
analysis to investigate the relationship between spatial metrics and urban economic development
in cities.

In the last decade, OSM has achieved tremendous development with the popularity and
development of the Internet. OSM is a user-generated street map, most of the data sources are
provided by the public or volunteers [25], and until now, there are more than six million registered
members in the world, and more than six billion nodes in the OSM database [26]. Today, the OSM has
become available to be applied in many ways, such as 3D city modeling, road updating, etc. [27–37].
For example, based on the free geographic data provided by the OSM project and the public domain
height information provided by the Shuttle Radar Topography Mission, Over et al. [27] studied the
prospects of using an interactive 3D city model in Germany and pointed out that the point of interest
(POI) in the OSM data provides new opportunities for 3D city modeling. Fonte et al. [28,29] used
the OSM data and GlobeLand30 image data to process, resulting in a more accurate and detailed
land use coverage map, and more details can be shown by this method than any other methods.
Mobasheri et al. [34] explored the feasibility of using the OSM data as geo-navigation data in several
German cities by using factors such as the number of features and integrity, and the results showed that
the sidewalk data in the OSM can be used to route navigation. Zhang et al. [37] explored the relationship
between road density and road type diversity based on data obtained from China’s OSM road network
in May 2014, taking 340 prefecture-level cities in China as its study area, it is concluded that the OSM
road diversity reflects the demand and value of road-related geographic information and it also reflects
the interests of users towards employing the OSM geographical information; Goetz [38] used the points
of interest data in the OSM to focus on the detailed display in 3D city modeling. Wang and Zipf [39]
used an algorithm to extract the building information in the OSM data for modeling, and the building
interior details can be displayed by using the proposed method. In the study of path navigation,
Bergman and Oksanen [40] took the OSM data and mobile sport tracking data as research objects,
the hidden Markov model (HMM) based as a research method, pointed out that the OSM data has
feasibility in bicycle path navigation. In terms of geographic mapping, Rosina et al. [41] took Slovenia
and Austria as research objects, and added the OSM data to the Copernicus imperviousness layer to
improve the population distribution map, drawing methods of the two countries. The experimental
result showed that the total error is reduced after adding the OSM data for auxiliary processing, and the
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addition of the OSM data has certain improvement effects; Zhao et al. [42] studied the evolution of the
OSM road network in Beijing from four aspects. Through the experimental analysis, they believed
that the development of the OSM road network in Beijing was significantly related to the number of
volunteers, and the growth of the OSM road network was very similar to the development process of
the real road network. Dingil et al. [43] used the OSM to estimate and analyze the passenger transport
energy per person per year of 57 cities, distributed over 33 countries, the results indicating that high
private car mode share is a main cause for the high transport energy usage of such cities.

From the above application research on OSM, it is apparent that using OSM data to do research
has become more widespread. In this paper, we aim to focus on developing an economic development
evaluation for 85 Chinese cities by using OSM spatial metric road network density. The main purpose
is to explore the application of the OSM to evaluate the urban economic development of Chinese cities,
and take the OSM road network density as a spatial metric to evaluate the level of urban economic
development which is measured by the municipal GDP. In our experiment, we selected 85 cities to
verify the proposed method, the results show that the correlation between the OSM road network
density and municipal GDP are significant. As a result, it is feasible to predict the level of urban
economic development by using the OSM road network density.

This paper is organized as follows: the data sources and basic methods are introduced in Sections 2
and 3, respectively. Experimental results and analysis are reported in Section 4. Conclusions are drawn
in Section 5.

2. Study Areas and Data Source

2.1. Study Areas

Since the reform and reopening in 1978, China’s urbanization level has continuously improved.
As the pioneer area of China’s economy development, coastal cities and provincial cities have a higher
urbanization rate, which has exceeded 60% in 2017 [43]. This is because eastern coastal and provincial
cities have comparative advantages in resource adsorption, innovation, transportation, and so on,
making them leaders in China’s overall economic and social development [43]. Since eastern coastal
and provincial cities are the pioneers of China’s economic and urbanization development, the open-up
policy, new technical innovation, and adjustment of input structure methods has improved the
urbanization efficiency of China [44,45].

In this paper, we selected a total of 85 cities in China. Among the 85 cities, there were a total of
62 eastern cities, 12 central cities, and 11 western cities. In addition, among the 85 cities, the study
included a total of 27 provincial cities and 4 municipalities.

2.2. Data Collection

There are three main types of data: OSM road network, municipal GDP, and urban area in each
selected city. More details about data sources and data formats are as follows.

2.2.1. OSM Road Network

Currently, OSM is one of the most successful and popular VGI projects, and has achieved
tremendous development. Until now, there are more than six million registered members in the world,
and more than six billion nodes in the OSM database [26], and a lot of research on OSM. Because OSM
data are collected through crowdsourcing, the quality of OSM has been often discussed, and usually
evaluated based on its quality with authority data. Haklay [46] was the first researcher who analyzed and
investigated the data quality of the OSM road network for England, UK. Since then, many researchers
have analyzed the data quality of OSM for Germany [47,48], France [49], and China [50]. Luo et al. [50]
selected three large, medium, and small cities in China, and compared the length integrity of the OSM
road network with the Baidu road network, and Google road network. They indicated that the length
integrity of the OSM road network is basically consistent with Baidu’s road network and the Google
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road network, and the length integrity of the OSM road network is better than Baidu’s road network,
and the Google road network in some regions. Hecht et al. [51] measured the completeness of the
OSM data on buildings by comparing them with official survey data. It is clear from their research
that the OSM building data in urban areas, particularly near the town center, achieve a much higher
level of completeness. Singh Sehra et al. [52] introduced a comprehensive review of the assessment
of OSM data. Some researchers indicated that OSM has a higher location accuracy, completeness,
etc., data quality characteristics in urban areas [48,53]. Because, most urban areas with a higher
population density inherit larger numbers of contributors, who influence the quantity and quality of
the collaboratively crowdsourced OSM objects [45–53]. Therefore, in this paper, we use the urban road
network of the OSM to calculate the road network density for 85 Chinese cities.

The OSM road network is downloaded from the OSM website (http://download.geofabrik.de/),
which is the ESRI Shapefile. In addition, the projected coordinate system used is the Universal
Transverse Mercator (UTM) coordinate system. In this paper, data were collected and downloaded
from 2014 to 2018. The OSM road network has about 20 road classes such as cycle way, footway,
motorway, residential, primary, and secondary, etc.

2.2.2. Municipal Gross Domestic Product

Over the past 40 years, China’s economic reform has been successful, becoming one of the most
important economic power engines around the world, and the second largest economy measured by
GDP. China’s rapid economic growth has largely depended on abundant use of natural resources,
low-cost investment, and labor with support of a high saving rate, and government policies have
also played an important role in promoting infrastructure construction [54]. In recent years, China’s
economic growth rate has fallen from the double-digit rate from 5% to 7%. China’s economy has
entered “The New Normal Economy”. There are three main characteristics of The New Normal of
China’s Economy: (a) a shift from high growth rates to medium-high growth rates; (b) an on-going
process of optimizing and upgrading the economic structure, and narrowing the urban-rural gap,
with higher personal income as a share of GDP, and an increasing number of people benefiting from
economic development; and (c) a transition from growth driven by input and investment to one driven
by innovation. These characteristics and measures can promote the steady growth of the Chinese
economy, enhance development potential, and further unleash market vitality [55]. No matter if
China’s economy is in the double-digit growth rate or the current “new normal economy” medium-high
growth rate, the GDP is an index used to describe the economic development level of a city, and the
efficient transportation system, population, technology, etc., have a positive impact on GDP. Among the
85 selected cities, a total of 5 first-grade cities, 31 second-grade cities, and 49 third-grade cities were
identified (https://www.yicai.com/news/5293378.html). Overall, the GDP and urbanization rate of the
first-grade cities are higher than the second-grade cities, and the GDP and urbanization rate of the
second-grade cities are higher than the third-grade cities.

In our research, municipal GDP data are collected from the National Bureau of Statistics (http:
//www.stats.gov.cn/), data on GDP are from 2014 to 2018, and municipal GDP unit is in trillion CNY.

2.2.3. Exploring the Urban Area of Each Selected City

The study scope analyzed a total of 85 main urban areas. The study applied the unit of area
square kilometers. Take Shanghai for example, the scope of the main urban area is extracted from the
Shanghai Bureau of Planning and Natural Resources Department (http://ghzyj.sh.gov.cn/). Figure 1
shows the location and the municipal GDP in 2018 of the selected 85 cities.
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Figure 1. Study research area and gross domestic product (GDP) in 2018.

3. Methodology

Regression analysis is one of the most commonly statistical analysis methods used to describe
the correlation between independent variables and dependent variables [56]. In our paper, we used
a regression model to study the correlation between the OSM road network density and the municipal
GDP, and employed the OSM road network density as a spatial metric to evaluate the level of urban
economic development of cities. In this section, we do not describe the details of the regression model,
but only introduce the calculation method of the OSM road network density.

Calculating the OSM Road Network Density of a City

The road network density is an important index for the evaluation of regional road traffic [57–59].
The OSM road network density comprises of geographical information that reflect a real-world road
network, and an index for assessing the quality of OSM geographic data. In this study, we calculated
the OSM road network density of 85 Chinese cities [60,61]:

Di = Li/Ai i ∈ [1, 2, 3, . . . , 85], (1)

where one main urban area is i, the OSM road network density in the main urban area i is Di, the OSM
road network length for the main urban area i is Li, and the area of the main urban area i is Ai.

Figure 2 shows the OSM road network in three different grades based on city. The blue polylines are
the OSM road network in 2018. The red polylines are the OSM road networks in 2014. Figure 1 shows
the cities of Beijing, Shanghai, and Guangzhou as first-grade cities. Compared to the cities of Nanjing,
Wuhan, and Chengdu with second-grade cities, and the cities of Guiyang, Haikou, and Lanzhou
with third-grade cities, these cities have different levels of economic development and OSM road
network density.
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Figure 2. The OpenStreetMap (OSM) road network with three different grades in Chinese cities.

4. Results and Analysis

4.1. Fit Analysis

In this paper, we used Equation (1) to calculate the OSM road network density from 2014 to
2018, then applied the OSM road network density data from 2014 to 2017 as the independent variable,
and the municipal GDP from 2014 to 2017 as the dependent variable. Moreover, the regression models
of the 85 Chinese cities were obtained using the unary linear regression model, and then applied the
OSM road network density and the municipal GDP data in 2018 to validate the regression model.

The OSM road network density, the municipal GDP, the regression models, and the coefficient of
determination (R2) of the 85 Chinese cities from 2014 to 2017 are shown in Table A1 (Appendix A),
the statistics of R2 are shown in Figure 3. Among all the cities, the maximum value of R2 is Guangzhou,
and its R2 is 0.999; the minimum value of R2 is Hohhot, and its R2 is 0.0005. The distribution of
coefficient of determination is shown in Figure 4.

In this paper, we also used the OSM road network density and population data from 2014 to
2017 as the independent variables, the municipal GDP from 2014 to 2017 as the dependent variable,
the regression models of 85 Chinese cities were obtained using a binary linear regression model,
and then used the OSM road network density and the municipal GDP data in 2018 to validate the
same regression model.

The statistics of R2 are shown in Figure 5, and the distribution of coefficient of determination is
shown in Figure 6. Among all the selected cities, the maximum value of R2 is Taizhou, its R2 is 0.9999.
The minimum value of R2 is Baotou, its R2 is 0.3353. In this regression model, the R2 of Guangzhou
is 0.9996, and the R2 of Hohhot is 0.4842. The distribution of coefficient of determination is shown
in Figure 6. In addition, we can see that the R2, which is calculated by the OSM road network density
and population, is higher than the R2, which is calculated by the OSM road network density and is
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consistent with reference [24,62]. Fan and Chan-Kang [24], Savaş [62] indicated that there is a high
correlation in cities with road investments, population, and economic growth.

 

Figure 3. Statistics of R2 calculated by the OSM road network density.

Figure 4. Distribution of R2 calculated by the OSM road network density.

 

Figure 5. Statistics of R2 calculated by the OSM road network density and population.
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Figure 6. Distribution of R2 which is calculated by the OSM road network density and population.

Figure 3 shows a total of 72 cities with significant correlation with coefficient of determination R2

above 0.7, accounting for 84.71%. These 72 cities experienced rapid economic development during the
four years from 2014 to 2017, and with their municipal GDP increasing steadily year by year; 5 cities
with coefficient of determination R2 below 0.5, they are Shenyang, Urumqi, Dalian, Baotou, and Hohhot,
respectively, and their R2 are 0.499, 0.483, 0.342, 0.303, and 0.0005, respectively. The municipal GDP
statistical data and the OSM road network density for these five cities are shown in Tables 1 and 2.
It can be seen that the municipal GDP for these five cities does not increase year by year, but the density
of the OSM road network increases year by year.

Table 1. The Chinese municipal GDP (trillion CNY) statistical results of five cities.

City GDP (2014) GDP (2015) GDP (2016) GDP (2017) GDP (2018)

Shenyang 0.709871 0.728000 0.546001 0.586497 0.62924
Urumqi 0.246147 0.263164 0.245898 0.274382 0.309962
Dalian 0.765558 0.773164 0.68102 0.73639 0.76685
Baotou 0.363631 0.378193 0.386763 0.275303 0.29518
Hohhot 0.289405 0.309052 0.317359 0.274372 0.29035

Table 2. The OSM road network density of the five cities.

City OSM RND (2014) OSM RND (2015) OSM RND (2016) OSM RND (2017) OSM RND (2018)

Shenyang 2.014 2.150 2.203 2.292 2.449
Urumqi 1.472 1.489 1.549 1.676 1.851
Dalian 1.750 1.838 1.917 1.981 2.441
Baotou 0.601 0.629 0.852 0.900 1.399
Hohhot 0.567 0.656 0.860 0.870 0.962

Note: OSM RND represents the OSM road network density.

Hohhot shows the minimum coefficient of determination, and the coefficient of determination is
0.0005. We found that the GDP of Hohhot decreased from 317.359 billion CNY in 2016 to 274.372 billion
CNY in 2017. However, the density of the OSM road network in the main urban area gradually
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increased from 2014 to 2017. More specifically, in 2016, with an increase of 0.204 compared with 2015,
which is much higher than other years. Baotou and Hohhot, which are located in the Inner Mongolia
Autonomous Region of China, have similar patterns. In 2017, the GDP of Baotou was 275.303 billion
CNY, a decrease of 111.46 billion CNY from 386.763 billion CNY in 2016. The density of the OSM
road network in the main urban area increased from 0.629 in 2015 to 0.852 in 2016, an increase of 0.22,
which is much higher than changes in other years.

4.2. Validation of the Model

In order to validate the regression model obtained by the OSM road network density in the
above section, we used the real municipal GDP of 85 Chinese cities in 2018 to validate the regression
model. The statistical results of the absolute residuals and relative residuals when using the OSM
road network density are shown in Table A2, Figure 7, and Figure 8, respectively. The distribution of
absolute residual and relative residual results when using the OSM road network density is shown
in Figures 9 and 10, respectively.

The calculation method of absolute residual (Rabsolute) and relative residual (Rrelative) is as follows:

Rabsolute = Predictivei −Reali i ∈ [1, 2, 3, . . . , 85], (2)

Rrelative =
(Predictivei −Reali)

Reali
× 100 i ∈ [1, 2, 3, . . . , 85], (3)

where one main urban area is i, the predictive GDP of the main urban area i in 2018 is Predictivei,
the real GDP of the main urban area i in 2018 is Reali.

At the same time, we validated the regression model obtained by using the OSM road network
density and population, we also used the real municipal GDP of 85 cities in 2018 to validate the
regression model, and the statistical results of the absolute residuals are shown in Figures 11 and 12,
respectively. The distribution of residual results is shown in Figures 13 and 14, respectively.

We calculated the difference between the residual, which is obtained by using the OSM road
network density, and population. The statistical results of the differences are shown in Figure 15,
and the distribution of the differences are shown in Figure 16. The results show 69 cities with residual
differences between −0.1 and 0.1, accounting for 81.18%; a total of 76 cities with residual differences
between −0.2 and 0.2, accounting for 89.41%. Overall, the forecasting results by using the OSM road
network density are found to have similar characteristics in the forecasting results when using the
OSM road network density and population. This shows that the OSM road network density can be
used as a spatial metric to evaluate the level of urban economic development in cities.

Considering that the main purpose of this paper is to study whether the OSM road network density
can be used as a spatial metric to evaluate the level of urban economic development, the following
discussion will focus on forecasting results obtained by using the OSM road network density.

As shown in Figure 7 and Table A2, there are a total of 50 Chinese cities that have negative
absolute residuals, and 35 cities with positive absolute residuals. The largest positive absolute residual
is Chongqing, with a value of the absolute residual of 0.444; the smallest negative absolute residual
is Shenzhen, with a value of the absolute residual of −0.2817. The absolute residuals of 44 cities are
between −0.1 and 0.0, accounting for 51.76%, and the absolute residuals of 27 cities are between 0.0 and
0.1, accounting for 31.76%. The absolute residuals of 71 cities are between −0.1 and 0.1, accounting for
85.53%. The absolute residuals of 4 cities are between −0.2 and −0.1, accounting for 4.71%. The absolute
residuals of 4 cities are between 0.1 and 0.2, accounting for 4.71%. The absolute residuals of 79 cities
are between −0.2 and 0.2, accounting for 92.94%.
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Figure 7. The statistical result of the absolute residuals by using the OSM road network density.

 

Figure 8. The statistical result of the relative residuals by using the OSM road network density.

 

Figure 9. Distribution of the absolute residuals of 85 Chinese cities by using OSM road network density.
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Figure 10. Distribution of the relative residuals of 85 Chinese cities by using OSM road network density.

As shown in Figure 8 and Table A2, there are a total of 50 Chinese cities that have negative relative
residuals, and 35 cities with positive relative residuals. The smallest negative relative residual is
Anshan, with a relative residual of −34.6088, and the largest positive relative residual is Shijiazhuang,
with a value of the relative residual of 47.8711. The relative residuals of 41 cities are between −10 and
0.0, accounting for 48.24%, and the relative residuals of 20 cities are between 0.0 and 10, accounting
for 23.53%. The relative residuals of 61 cities are between −10.0 and 10.0, accounting for 71.76%.
The relative residuals of 77 cities are between −20.0 and 20.0, accounting for 90.59%.

 

Figure 11. The statistical result of the absolute residuals by using OSM road network density
and population.

Results indicate that the regression models obtained from the above section have a high prediction
accuracy, and the OSM road network density can be used as a spatial metric to forecast the municipal
GDP. In order to directly discuss the difference between the predicted GDP in 2018 and GDP in 2018,
the following discussion is based on the absolute residuals in Figure 7 and Table A2.
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Figure 12. The statistical result of the relative residuals by using OSM road network density
and population.

The largest positive value of residual is Chongqing, the value of residual is 0.444. Chongqing is
located in the southwest of China, and is the only municipality in the southwest of China, its total area
is 82,400 square kilometers, and its main urban area is 7220 square kilometers. The municipal GDP
and OSM road network density from 2014 to 2018 are shown in Tables A1 and A2. From 2014 to 2017,
the municipal GDP of Chongqing increased year by year, the average annual municipal GDP growth
of Chongqing is 172.084 billion CNY. However, the municipal GDP growth in 2018 is 93.824 billion
CNY, far lower than the average annual municipal GDP growth in the previous 3 years. The OSM
road network density growth in 2018 is 0.38, and the average OSM road network density growth is
0.13, different from the municipal GDP growth change in 2018, the OSM road network density growth
in 2018 is much higher than the average OSM road network density growth during the previous 3 years,
and the inconsistent trends in municipal GDP growth and OSM road network growth have resulted
in excessive forecast residual.

 

Figure 13. Distribution of 85 Chinese cities’ absolute residuals using OSM road network density
and population.
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Figure 14. Distribution of 85 Chinese cities’ relative residuals using OSM road network density
and population.

 

Figure 15. Statistical result of the difference between two residuals.

Tianjin has the second largest residual, the value of the residual is 0.3149. Tianjin is a municipality
located in the north of China, total area is 11,900 square kilometers, and the main urban area is
1007 square kilometers. From 2014 to 2018, the total municipal GDP of Tianjin increased year by year,
but the municipal GDP growth varied greatly. The municipal GDP growth in 2018 is 260.45 billion
CNY, compared to the average GDP growth of 94.075 billion CNY. As a result, the municipal GDP
growth in 2018 is much lower than the average GDP growth from the previous three years. However,
the OSM road network density of Tianjin is increasing quickly, more specifically in 2018, the OSM road
network density growth is 0.89, and the average OSM road network density growth is 0.26, the OSM
road network density growth in 2018 is much higher than the average OSM road network density
growth during the previous 3 years, and these factors finally caused the excessive forecast residuals.
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Figure 16. Distribution of absolute residual differences.

On the contrary, Shenzhen has the smallest negative residual, the value of the residual is −0.2817.
Shenzhen is an important special economic development zone in the south of China, its total area
is 1997 square kilometers, and the main urban area is 927 square kilometers. Shenzhen’s economy
is developed with a steady growth from 1.600182 billion CNY in 2014 to 2.4222 billion CNY in 2018.
However, during 2014 to 2017, the annual growth of road density in Shenzhen showed a downward
trend, but an annual growth in 2018. Thus, the difference between the variation tendency of the
municipal GDP and the variation tendency of the OSM road network density makes the forecast value
of the municipal GDP smaller than the real data, which leads to Shenzhen’s residual to have the
smallest negative residual.

Overall, between the 85 cities, a total of 8 cities were found with absolute residual larger than
0.1, and 6 cities with absolute residual lower than −0.1, these 14 cities include Beijing, Shanghai,
Shenzhen, Tianjin, Chongqing, Hangzhou, Dalian, Ningbo, Ji’nan, Suzhou, Shenyang, Wuxi, Foshan,
and Shijiazhuang. These 14 cities all have characteristic of developed cities. In recent years, the pace of
urban construction of these developed cities has increased at a rapid pace, having large populations,
which can contribute a lot to the municipal GDP growth. From 2014 to 2018, the changes of municipal
GDP are not consistent with the OSM road network density. More specifically, the municipal GDP
annual growth for the above 14 cities in 2018 is much lower than that in 2017, but at the same time,
the OSM road network density is increasing, which caused a big absolute residual value.

However, when considering the other 71 cities, the absolute residuals are found to be between
−0.1 and 0.1. From 2014 to 2018, the municipal GDP growth of these cities did not change
drastically, the change trend of the municipal GDP and OSM road network density has similarities,
resulting in a smaller absolute residual. Among these 71 cities, most cities are second and third grade
cities, these cities were found to have smaller populations. Therefore, to some extent, the analysis
of the absolute residual in the paper also confirms that the current economic development strategy
of China with a high-speed economic stage to a medium-high-speed economic stage has a relatively
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predicted impact in developed cities, when compared to the second and third grade cities, where the
impact is not significant.

5. Conclusions

This study focused on using the urban OSM road network density as a spatial metric to evaluate
the urban economic development of 85 Chinese cities. The following conclusions are identified
in this paper:

(1) The OSM road network density can be used as a spatial metric to estimate and predict the
level of urban economic development of cities which is commonly measured by the municipal GDP.

(2) It is feasible to analyze the level of urban economic development of cities by using the OSM
road network density. There is a significant correlation between the OSM road network density
and the municipal GDP. Results demonstrated a total of 71 Chinese cities with absolute residuals
between −0.1 and 0.1, accounting for 83.53%; and 79 cities with absolute residuals between −0.2 and
0.2, accounting for 92.94%. There are 61 cities with relative residuals between −10 and 10, accounting
for 71.76%; and there are 77 cities with relative residuals between −20 and 20, accounting for 90.59%.

(3) In our experiment, the R2 is calculated with the OSM road network density and population
is higher than the R2. which is calculated by the OSM road network density, but for the residuals,
the absolute and relative residuals by using the OSM road network density are found to have similar
characteristics as the absolute and relative residuals by using the OSM road network density and
population. Among the 85 cities, there are 73 cities with absolute residuals between −0.1 and 0.1,
accounting for 85.88%; and 78 cities with absolute residuals between −0.2 and 0.2, accounting for
91.76%.There are a total of 64 cities with relative residuals between −10 and 10, accounting for 75.29%;
and there are 77 cities with relative residuals between −20 and 20, accounting for 90.59%.

(4) The development strategy of the Chinese economy is changing from high-speed development
to medium-high speed development, these findings are more apparent in economically developed
cities, compared to ordinary cities. Moreover, economically developed cities pay more attention to the
influence of high technology.

The research in this paper has identified the imperfections found in the method when using
the OSM road network density to evaluate and predict the level of urban economic development
in Chinese cities. It is evident that the OSM road network density can be used as a spatial metric for
predictive analysis and policy making to gain transparency. In the future, we will use the proposed
spatial metric to do some related research.
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Abstract: Diverse urban environmental elements provide health and amenity value for residents.
People are willing to pay a premium for a better environment. Thus, it is essential to assess the benefits
and values of these environmental elements. However, limited by the interpretability of the machine
learning model, existing studies cannot fully excavate the complex nonlinear relationships between
housing prices and environmental elements, as well as the spatial variations of impacts of urban
environmental elements on housing prices. This study explored the impacts of urban environmental
elements on residential housing prices based on multisource data in Shanghai. A SHapley Additive
exPlanations (SHAP) method was introduced to explain the impacts of urban environmental elements
on housing prices. By combining the ensemble learning model and SHAP, the contributions of
environmental characteristics derived from street view data and remote sensing data were computed
and mapped. The experimental results show that all the urban environmental characteristics account
for 16 percent of housing prices in Shanghai. The relationships between housing prices and two green
characteristics (green view index from street view data and urban green coverage rate from remote
sensing) are both nonlinear. Shanghai’s homebuyers are willing to pay a premium for green only
when the green view index or urban green coverage rate are of higher value. However, there are
significant differences between the impacts of the green view index and urban green coverage rate on
housing prices. The sky view index has a negative influence on housing prices, which is probably
because the high-density and high-rise residential area often has better living facilities. Residents in
Shanghai are willing to pay a premium for high urban water coverage. The case of Shanghai shows
that the proposed framework is practical and efficient. This framework is believed to provide a tool
to inform the decisions of housing buyers, property developers and policies concerning land-selling
and buying, property development and urban environment improvement.

Keywords: street view; remote sensing; urban environmental elements; ensemble learning; green
view; sky view; building view; SHAP
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1. Introduction

Urban green spaces, sky and other urban environmental elements can significantly affect the
quality of urban life [1,2]. Various studies have shown that urban environmental elements have a
significant influence on people’s physical and mental health. For instance, urban green spaces have
multiple ecological benefits, including air purification [3,4], climate regulation [5], carbon storage [6]
and noise reduction [7]. In addition, green spaces provide plenty of spaces for pressure releasing and,
consequently, positively affect mental health [8–10]. Higher levels of sky view visibility were associated
with lower psychological distress [11]. Contrary to green and sky, high-rise buildings make people feel
stressed [12]. With rapid urbanization and improvement of living standards, increasing concern about
the quality and quantity of urban environmental elements has grown all over the world. Many people
display a marked preference for natural over built environmental elements [13]. This preference is
often shown by the housing choices of consumers in the residential housing market. People are willing
to pay extra for a home with more natural environmental elements [14].

The explanatory variables of housing prices have been widely discussed in the housing literature.
Bangura, Lee and Al-Masum discussed the ability of market fundamentals in explaining housing prices
from the macroeconomic perspective [15–17], while Trojanek and Yamagata examined the importance
of housing attributes in explaining housing prices from the microeconomic perspective [18,19]. In recent
years, a great deal of research has studied the impacts of environmental elements on housing price.
For instance, a house with a water view could attract a premium of 8%–10% in the Netherlands [20].
In Guangzhou, the view of green spaces and proximity to water bodies can lead to a considerable
increase in house price, contributing at 7.1% and 13.2%, respectively [1]. An additional street tree
increases a house’s monthly rental price by $21.00 in Portland, Oregon, USA [21]. In Singapore,
vegetation had positive effects on housing prices, accounting for 3% of a property’s value [22]. On the
contrary, both street and building views would depress housing price, with the influence of street view
more significant than building view in Hong Kong [23]. However, most of the existing studies analyze
the impacts of urban environmental elements on housing prices by using field survey data [1,24] and
satellite remote sensing data [25,26]. Field survey data is time-consuming and hard to be applied
in large-scale studies. Satellite remote sensing data is limited by an overhead view perspective and
spatiotemporal resolution. Street view images bring a new opportunity to obtain urban environmental
elements. This type of data has the advantages of easy obtaining, wide coverage and high spatial
resolution. More importantly, street view images represent a horizontal view perspective, which is
closer to the general population’s perception of urban environmental elements. The rapid development
of computer vision provides an efficient method for the information extraction of street view images.
In this context, a great number of studies have been conducted to measure street-level green [27],
estimate the spatiotemporal patterns of urban mobility [28], examine the relationship between street
view and perceived safety [29] and assess the visual quality of urban environment [30] Therefore, in
this study, street view data is used to evaluate the relationship between urban environmental elements
and housing prices.

Most of the existing studies conducted on the impacts of urban environmental elements on
housing prices used the hedonic pricing model (HPM) as the research method. This method assumes
that real estate is heterogeneous and three types of characteristics have significant impacts on housing
price, namely structure, neighborhood and location characteristics [31,32]. In empirical research,
HPM mainly has three forms, including linear models [24,30], semi-log models [1] and double-log
models [33]. However, most studies combine linear regression with HPM to interpret the impact of
different independent variables [34,35]. No matter which form HPM is, only the log transformation of
independent variables or dependent variables is performed for reducing the heteroscedasticity of the
model. Therefore, the hedonic model is limited to revealing the complicated nonlinear relationships
between housing prices and a variety of potential determinants [36]. In addition, the combination of
linear regression and HPM explains the impact of a housing characteristic on housing prices by the
value of this characteristic and the same corresponding regression coefficients of the regression equation.
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Thus, this method could not reveal the spatial variations of the contribution of each characteristic.
To address these problems, we propose an analytical framework which combines ensemble learning
and SHapley Additive exPlanations (SHAP). By combing the individual machine learning methods
to form a new classifier, ensemble learning algorithms such as Random Forest Regression (RFR)
and XGBoost Regression (XGBoost) achieve better performance than any of the individual ones [37].
Compared to traditional methods, these ensemble learning algorithms show obvious advantages in
three aspects: (1) capability to capture nonlinear relationships, (2) high prediction accuracy and (3)
capability to capture high-order interactions between inputs. Recent urban housing prices studies
have shown the advantage of ensemble learning algorithms over traditional methods [28,38]. Hu
compared the performance of six machine learning algorithms in monitoring housing rental prices
and found that ExtraTrees and RFR get better results [39]. However, because the nature of ensemble
learning models are not interpretable models, almost all of these studies only range the importance
when measuring the impacts of a housing characteristic on housing prices. It is hard to analyze the
contribution of each characteristic to the housing price. SHAP, which is based on the game theoretically
optimal Shapley values, falls into this specific scope and provides a new opportunity for solving this
problem. Unlike methods that provide a specific global predictor, the SHAP framework provides an
explanation of the model overall behavior in the form of particular feature contributions. Thus, this
method can be used to explain the spatial variations of the contribution of each characteristic and the
complex nonlinear relationships between each characteristic and housing prices. SHAP is becoming
an increasingly popular tool to interpret natural and social phenomena [40,41].

In brief, the main contributions of this study are as follows. (1) Considering the perception of the
urban environment from the horizontal view perspective, which could be easier for ordinary people
to understand, street view data is used to calculate the environmental characteristics. (2) Tree-based
ensemble learning regression algorithms are employed to model the housing prices and a method
for explanting these ensemble learning models—SHAP is introduced to interpret the relationships
between urban environmental elements and housing prices. By combining tree-based ensemble
learning regression algorithms and the SHAP model, the complex and nonlinear relationships between
most of the environmental elements and housing prices are revealed, which is more elaborate than
the results of previous studies. (3) SHAP models are employed for the geospatial analysis of housing
prices. The spatial distribution of SHAP for five environmental characteristics were mapped to
improve the understanding of the spatial variations of each urban environmental characteristic’s
contribution. (4) The impacts of the green view index from street view data and green coverage
rate from remote sensing data are compared in this study. The difference impacts of the same urban
environmental elements from different observation perspectives provide new insights into urban
environment research.

The remainder of this paper is organized as follows. Section 2 introduces the study area, data and
methods used in this study. Section 3 presents the research results and discusses the reasons behind
these results and suggestions for future work. Section 4 provides a conclusion of our study.

2. Data and Methods

2.1. Study Area

Shanghai, one of the financial, trade, economic and shipping hubs in the world, is located on
China’s east coast. Since the implementation of housing reforms that transformed the housing system
from an administrative allocation model to a market mechanisms model in 1980, housing prices
in Shanghai have ballooned over the years [42]. At present, Shanghai has become one of the most
expensive housing markets, with a large number of housing transactions. The area within the outer
ring road, which has a population density of 17,070 per square kilometer, is regarded as the central city
of Shanghai [43]. With such a high-density population, a large number of housing transactions occur
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in this area. Therefore, an empirical analysis in the area within the outer ring road can supply essential
references for relevant studies. The study areas in this paper are shown in Figure 1a.

Figure 1. Location map of the study area: the area within the outer ring road of Shanghai (a) and the
distribution of communities (b).

2.2. Overall Methodological Framework

Figure 2 presents the overall methodological framework, which follows three major steps to
complete the analysis. First, multisource data were gathered and cleaned to extract the housing prices
and corresponding characteristics at the community level. Second, we used these housing prices
and characteristics to select the most appropriate machine learning model. Finally, by inputting the
selected machine learning model and the characteristics of the communities into the SHapley Additive
exPlanations model (SHAP), the SHAP value of these characteristics were computed to analyze the
global importance of the characteristics and the contribution of urban environmental characteristics.

2.3. Characteristics Extraction

In China, taking the form of a gated residential area, a community is regarded as a basic
management unit of urban planning [44]. In addition, houses located in the same community share a
similar urban environment. Therefore, we chose communities as the basic analytical units in this paper.
By crawling Baidu Maps, we obtained 7043 community boundaries in the study area (Figure 1b). All
the housing characteristics involved in this study were transformed to the same community units for
further study.

2.3.1. Housing Price

In this study, based on a web crawler, we collected the historical transactional data of preowned
houses from Lianjia.com in 2018. There were four steps in the processing of preowned houses
transaction data. First, a web crawler was used to download the historical transaction data of preowned
houses, which occurred in 2018 from Lianjia.com. The transaction data recorded a number of housing
attributes, including address, community name, total price, total area, price per square meter, elevator
and construction time of building. Then, the collected data were cleared for (1) records whose spatial
position are outside the area within the outer ring road; (2) records with missing important attributes,
such as “elevator” and “construction time of building” and (3) repeated records. Finally, the price per
square meter was averaged for each community. As a result of housing transactional data processing,
we obtained 2547 study units with observed historical transactional data. Figure 3 presents the spatial
distribution of the community-level housing prices.
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Figure 2. The overall methodological framework.

Figure 3. Spatial distribution of community-level housing prices.
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2.3.2. Urban Environmental Characteristics from Street View Data

Street view data represents the urban environmental elements from a horizontal view perspective,
which is closer to the general population’s perception and could be easier for ordinary people to
understand. Therefore, street view data was employed to measure the impacts of urban environmental
elements on housing prices in this study.

The process for computing urban environmental characteristics from street view data involves
three steps: street view data crawling, environmental elements extraction and characteristic calculation.

First, we selected main roads within the area of the outer ring road based on Shanghai’s
OpenStreetMap dataset. After that, the centerlines of these main roads were extracted, and then, we
got street view sample sites along the centerlines at 50-m intervals. Each sample site was represented
by a panoramic street view image. Finally, by inputting the spatial coordinate of sample sites into a
Baidu static picture API, we crawled 84,520 panoramic street view images, which were acquired on
August and September, 2017. Each of them has a size of 1024 by 290 pixels.

In this study, we mainly focused on three horizontal view environmental elements, including
green, sky and building. Each of the elements was defined as the ratio of pixels associated with
the specific element to the total pixels in a street view image. Specifically, the values of the green
view index (GVI), the sky view index (SVI) and the building view index (BVI) were calculate by
following equations:

GVI =
Pixelsgreen

Pixelstotal
(1)

SVI =
Pixelssky

Pixelstotal
(2)

BVI =
Pixelsbuilding

Pixelstotal
(3)

The rapid development of computer vision, especially the deep convolutional neural network
(DCNN), provides a new method for the information extraction of images. The state-of-the-art DCNNs
such as SegNet [45], PSPNet [46] and DeepLabv3 [47] were employed for image semantic segmentation
and exhibited an outstanding performance in image interpretation [27]. In this study, DeepLabv3,
one of the most popular image semantic segmentation models, was applied to extract street-level
environmental elements at the pixel level. Figure 4 shows the flow charts of the street view images’
semantic segmentation. DeepLabv3 was first pretrained using the Cityscapes dataset and was then
used to segment the street view data for extracting green space, sky and building. DeepLabv3 combines
an atrous convolution with upsampled filters to solve the problem of segmenting objects at multiple
scales. The performance of this model outperformed the state-of-the-art models on the PASCAL VOC
2012 semantic image segmentation benchmark [47]. The Cityscapes dataset was employed to pretrain
the DeepLabv3 model. Cityscapes is a large-scale dataset containing a variety of stereo video sequences
at street level from 50 different cities. Five-thousand of these images have high-quality pixel-level
labeling [48]. DeepLabv3 achieved 81.3% accuracy on the Cityscapes dataset. The configuration of
the hardware devices used in this study were an Intel i7-8700k CPU, a NVIDIA 1080ti graphics card
with 12GB video memory and 32 GB physical memory. The operation system of the computer is 64-bit
Windows 10 Professional.
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Figure 4. The flow chart of the street view images’ semantic segmentation.

For the characteristics calculations, the GVI, SVI and BVI for each community with a 400 m radius
buffer were averaged to obtain environmental characteristics at the community level. The reason why
we chose 400 m is that the square root of the average area of Shanghai’s communities is about 400 m,
and the scope of citizens’ public lives has been well-covered by this buffer. The willingness to buy a
house are influenced not only by the view from their apartment but also by the view from their public
life. After the calculation, there were 115 sample sites per community.

2.3.3. Urban Environmental Characteristics from Remote Sensing Data

To compare the urban environmental characteristics derived from street view data with remotely
sensed characteristics, GaoFen-1 data were used to calculate the urban green coverage rate (UG) and
urban water coverage rate (UW). Four GaoFen-1 images used in this paper were acquired on April
and May, 2015, all of which consisted of four multispectral bands at an 8 m spatial resolution and
one panchromatic band at a 2 m spatial resolution. The supervised classification was conducted
to extract green and water by the support vector machine (SVM) tool in ENVI 5.3. Specifically, 80
green water samples and 80 water samples were randomly selected by visual interpretation. For each
type of land cover, 50 samples were chosen for the training classification model and 30 samples for
testing. The classification performance was assessed by a confusion matrix of test samples. The total
precision was 96.75%, and the Kappa coefficient was 0.9578. The classification results are shown in
Figure 5. For the characteristics calculations, the UG and UW for each community with a 400 m radius
buffer were averaged to obtain the environmental characteristics from remote sensing data at the
community level.
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Figure 5. The classification results of green and water within the study area based on GaoFen-1 images.

2.3.4. Other Characteristics

In light of the attributes of preowned house transaction data and the spatial scale of study units,
the year of construction (YEAR), average construction area of the apartment (AREA), plot ratio (PR)
and whether the elevator is available (EL) were selected as structure characteristics. The variable
of AREA should be introduced, because that area significantly affects the housing prices in Chinese
megacities. Specifically, small houses often have a higher price per square meter because of lower total
prices. Big houses (AREA > 200 m2) also have a higher price per square meter due to better facilities
and management. EL in original transaction data is a dummy variable. If the elevator is available in
the apartment building, the value is 1; otherwise, the value is 0. For PR, the plot ratio of a community
was obtained by dividing the gross floor area of the building by the area of the total community area
on which the building was erected. In this study, this variable was calculated by the building footprint
and Baidu community data.

For location characteristics, the distance to the city center (C_DIS), the city employment center
(EC_DIS), river (R_DIS) and the Huangpu River (HPR_DIS) were chosen. In detail, the Bund was
selected as the city center of Shanghai, and the employment center identified by Sun was used in this
study [49]. The reason why the HPR_DIS was chosen is that the distance from each neighborhood
centroid to the Huangpu River notably affects residential housing prices. The housing prices decrease
with the increase of the distance [30].

For neighborhood characteristics, the variables which measured the accessibility to bus stations,
subway stations, primary schools and first-class hospitals at grade 3 (hospitals with high-quality
facilities and services) were included in our study. Using the points of interest (POI) data collected from
the Baidu Map, the distance from each community to its nearest facility and the number of facilities
within a specified distance were calculated. Specifically, 500 m and 1000 m were selected as the distance
threshold in the density calculation, considering the 15-min community life circle proposed by the
Chinese government.

General descriptive statistics of the selected housing characteristics are shown in Table 1.
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Table 1. General descriptive statistics of the housing characteristics.

Variables Description Mean
Standard
Deviation

Range

Dependent
variable

PRICE Transaction price (10,000 RMB/m2) 6.347 1.678 2.413–14.894

Location
characteristics

C_DIS Distance to the city center (10 km) 0.792 0.331 0.046–1.650

EC_DIS Distance to the city employment centers
(10 km) 0.295 0.188 0–1.092

R_DIS Distance to the river (10 km) 0.278 0.198 0.02–1.138
HPR_DIS Distance to the Huangpu River (10 km) 0.420 0.283 0.003–1.311

Structure
characteristics

YEAR 2019 minus the construction time of
building 21.622 9.121 2–106

AREA Average construction area in the
apartment (m2) 78.788 38.743 22–346

PR Plot ratio 2.600 1.234 0–13.703
EL Dummy variable, 1 if elevator is available. 0.398 0.470 0–1

Neighborhood
characteristics

BUS_NEAR Distance to the nearest bus station (km) 0.083 0.091 0–0.996
BUS_500M Number of bus stations within 500 m 9.894 3.862 0–25
BUS_1000M Number of bus stations within 1000 m 30.740 8.887 4–73

SUB_NEAR Distance to the nearest subway station
(km) 0.704 0.548 0–4.167

SUB_500M Number of subway stations within 500 m 0.577 0.641 0–3

SUB_1000M Number of subway stations within
1000 m 1.940 1.297 0–7

PRI_NEAR Distance to the nearest primary school
(km) 0.365 0.298 0–2.259

PRI_500M Number of primary schools within 500 m 1.611 1.280 0–7

PRI_1000M Number of primary schools within
1000 m 4.847 2.769 0–18

FH3_NEAR Distance to the nearest first-class hospital
at grade 3 (km) 2.221 1.641 0.026–7.614

FH3_500M Number of first-class hospitals at grade 3
within 500 m 0.154 0.435 0–3

FH3_1000M Number of first-class hospitals at grade 3
within 1000 m 0.547 0.976 0–6

Urban
Environmental
characteristics

GVI Mean green view index within 400 m
distance 0.315 0.123 0–0.828

SVI Mean sky view index within 400 m
distance 0.470 0.124 0–0.798

BVI Mean building view index within 400 m
distance 0.117 0.071 0–0.403

UG Urban green coverage rate 0.381 0.154 0.020–0.755
UW Urban water coverage rate 0.025 0.032 0–0.380

2.4. Ensemble Learning Algorithms

The relationships between housing prices and housing characteristics is complex and nonlinear.
By combing a bunch of individual models and averaging the individual result, ensemble learning
algorithms are more flexible and less data-sensitive. Thus, ensemble learning algorithms are suitable
for modeling housing prices. The most commonly used ensemble learning methods are bagging
and boosting. The difference between these two methods is that bagging methods train a number of
individual models by a random subset of train data in a parallel way while boosting methods train
models in a sequential way for learning mistakes made by the previous model. In this study, three
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tree-based ensemble learning algorithms and linear regressions were employed to model housing prices
for selecting the algorithm. Random forest regression (RFR) uses bagging as the ensemble method
and decision tree as the individual model. Since RFR trains each tree independently and uses random
subsets from the training set, this method is less likely to overfit [50]. Gradient boosting regression
(GBR), a boosting model, builds trees one at a time, where each new tree aims to correct errors in
the predictions made by all previous trees [51]. Achieving high accuracy in a wide range of practical
applications, XGBoost is an optimized distributed gradient boosting method based on ensembles of
classification and regression trees (CARTs) [52]. This method provides a parallel tree-boosting to solve
problems in a fast and accurate way.

Different algorithms have their own strengths and weaknesses. Therefore, to choose the optimal
ensemble learning algorithms, we compared their performances in the explanation of housing prices.
In detail, the regression performances of the four algorithms were measured by five common metrics,
including explained variance score, mean absolute error (MAE), mean squared error (MSE), median
absolute error (MedAE) and the coefficient of determination (R2):

explained variance(y, ŷ) = 1− Var
{
y− ŷ

}
Var
{
y
} (4)

MAE(y, ŷ) =
1
n

n−1∑
i=0

|yi − ŷi| (5)

MSE(y, ŷ) =
1
n

n−1∑
i=0

(yi − ŷi)
2 (6)

MedAE(y, ŷ) = median(|y1 − ŷ1|, . . . , |yn − ŷn|) (7)

R2(y, ŷ) = 1−
∑n

i=1 (yi − ŷ)2∑n
i=1 (yi − y)2 (8)

where y and ŷ are the true housing price and the estimated housing price, Var is Variance, n denotes
the total number of communities, yi and ŷi represent the predicted housing price of the i-th community
and the corresponding true value, ŷn means the predicted housing price of the n-th community and y
is the mean true housing price.

All the experiments in this study were performed by using a scikit-learn and XGBoost
Python package. For the hyperparameter tuning and the accuracy evaluation, we chose a 10-fold
cross-validation, which is a common method for performance validation.

2.5. Shapley Additive Explanations

Proposed by Lundberg and Lee, SHapley Additive exPlanations (SHAP) is a method to explain
the prediction of a specific instance by calculating the contribution of each feature to the prediction [53].
The SHAP method computes Shapley values from coalitional game theory. The Shapley value of a
feature value is its contribution to the output value, weighted and summed over all possible feature
value combinations. The value of the j-th feature contributed φj was calculated as follow:

φj(val) =
∑

S⊆{x1,...,xp}�{xj}

|S|!(p− |S| − 1)!
p!

(val(S∪ {x j}) − val(S)) (9)

where p is the number of features, S represents a subset of the features used in the model, x denotes
the vector of feature values of an instance to be explained and val(S) means the prediction for feature
values in set S.
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The advantages of SHAP include: (1) global interpretability—the collective SHAP value is
able to identify the positive or negative relationship for each variable with the target and (2) local
interpretability—each feature of an instance gets its own corresponding SHAP values. Traditional
variable importance algorithms are limited to obtain the results across the entire population but not on
each individual instance. Meanwhile, we can also measure the global importance of characteristics by
computing the absolute Shapley values per characteristic:

Ij =
n∑

i=1

|φ(i)
j | (10)

where φ
(i)
j represents the SHAP value of the j-th feature for instance i.

In this paper, we employed SHAP feature attributions, SHAP explanation force plots, SHAP
summary plots and SHAP partial dependence plots and interaction plots to explore the relationships
between housing prices and urban environmental elements. The XGBoost and shap Python packages
were used for implementing SHAP.

3. Results and Discussion

3.1. Spatial Dstribution of Urban Environmental Characteristics

To enhance the understanding of the environmental elements of study area, we plotted the spatial
distribution of five urban environmental characteristics in Figure 6. Each characteristic was mapped
using seven value intervals by the natural breaks method. The average value of the green view index
(GVI), sky view index (SVI), building view index (BVI), urban green coverage rate (UG) and urban
water coverage rate (UW) at the community level were 0.315, 0.473, 0.117, 0.381 and 0.025, respectively.
Figure 6a shows that the communities with high GVI were mainly located in the Yangpu District,
Hongku District, Changning District, the northeast of Putuo District and the south of Baoshan District.
Figure 6b indicates the value of SVI were the lowest in the central area and increase to the outskirts
gradually, while the BVI values show the opposite pattern in Figure 6c. Figure 6d demonstrates that
the UG values also increased from the central area to the outskirts gradually. From Figure 6e, we can
find that the communities with high UW were mainly concentrated along the Huangpu River and the
Suzhou Creek.

3.2. Model Selection

The multicollinearity between variables, which were measured by the variance inflation factor
(VIF), and the results of the hedonic model, which was built by the linear regression model, are
shown in Table 2. The VIFs of all the characteristics were lower than four, which indicated that these
characteristics did not have serious multicollinearity. The performances of the ensemble learning
regression algorithms and linear regression algorithms are compared in Table 3. Table 3 shows that the
explained variance score ranged from 0.5023 to 0.6820, the MAE ranged from 0.6554 to 0.8509, the MSE
ranged from 0.8556 to 1.3784, the MedAE ranged from 0.4848 to 0.6549 and the R2 ranged from 0.4847
to 0.7045. The performances of the three ensemble methods were much better than linear regression.
Among the three ensemble methods, XGBoost regression presented the best performance and was
selected to be trained for interpreting the impact of urban environmental elements on housing prices.
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Figure 6. The spatial distributions of urban environmental characteristics: (a) green view index (GVI),
(b) sky view index (SVI), (c) building view index (BVI), (d) urban green coverage (UG) and (e) urban
water coverage (UW).
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Table 2. The unstandardized coefficients, standard error and variance inflation factor (VIF) values
of variables.

Variables Unstandardized Coefficients Standard Error VIF

Constant 8.342 0.368

Location characteristics

C_DIS −1.196 *** 0.123 3.191
EC_DIS −1.771 *** 0.168 1.932
R_DIS 0.021 0.154 1.781

HPR_DIS −0.236 ** 0.102 1.602

Structure characteristics

YEAR −0.042 *** 0.004 2.343
AREA 0.003 *** 0.001 1.987

PR −0.161 *** 0.022 1.453
EL 0.467 *** 0.073 2.277

Neighborhood
characteristics

BUS_NEAR −0.075 0.282 1.255
BUS_500M −9.972 × 10−5 0.009 2.577
BUS_1000M 0.002 0.004 2.788
SUB_NEAR −0.094 ** 0.060 2.115
SUB_500M 0.122 0.048 1.856
SUB_1000M 0.156 *** 0.025 2.100
PRI_NEAR 0.356 *** 0.098 1.634
PRI_500M 0.069 *** 0.026 2.061
PRI_1000M 0.025 * 0.013 2.497
FH3_NEAR −0.077 *** 0.023 2.824
FH3_500M −0.005 0.067 1.658
FH3_1000M 0.180 *** 0.034 2.153

Urban Environmental
characteristics

GVI 0.710 ** 0.329 3.143
SVI −1.235 *** 0.317 2.964
BVI 0.088 0.539 2.838
UG −0.053 0.191 1.652
UW 6.494 *** 0.856 1.475

* Indicates significance at the 10% level, ** indicates significance at the 5% level and *** indicates significance at the
1% level.

Table 3. Performance of linear regression algorithms and three ensemble learning regression algorithms.
MAE: mean absolute error, MSE: mean squared error, MedAE: median absolute error and R2: coefficient
of determination.

Linear Regression
XGBoost

Regression
Random Forest

Regression
Gradient Boosting

Regression

Explained variance
score 0.5023 0.6820 0.6398 0.5887

MAE 0.8509 0.6554 0.6918 0.7697
MSE 1.3784 0.8556 0.9703 1.1340

MedAE 0.6549 0.4848 0.4891 0.5876
R2 0.4847 0.7045 0.6306 0.5747

In order to investigate whether urban environmental characteristics from the horizontal view
and from the overhead view will affect the housing prices, we estimated the R2 of four additional
models: model 1 only with location, structure and neighborhood characteristics; three horizontal view
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urban environmental characteristics (GVI, SVI and BVI) were added to model 2 based on model 1; two
overhead view urban environmental characteristics (UG and UW) were added to model 3 based on
model 1 and model 4 included all the characteristics. As shown in Table 4, adding either horizontal
view urban environmental characteristics or overhead view ones led to a significant improvement of R2.
Specifically, horizontal view urban environmental characteristics increased R2 by 0.0249 and overhead
view ones increased R2 by 0.0265. Adding all the urban environmental characteristics resulted in the
highest R2 of 0.7045. These results suggested that both urban environmental characteristics from the
horizontal view and from the overhead view can affect housing prices. The following section further
analyzed the impacts of urban environmental elements on housing prices based on model 4.

Table 4. Model performance with difference characteristics.

Model 1
Model 2

(Model 1 +
GVI + SVI + BVI)

Model 3
(Model 1 +
UG + UW)

Model 4
(Model 1 + GVI + SVI
+ BVI + UG + UW)

R2 0.6722 0.6971 0.6987 0.7045

3.3. Global Importance of Characteristics

In this section, we compared the global importance of all characteristics by calculating the SHAP
feature importance. We run SHAP for communities based on the trained XGBoost models and got a
matrix of Shapley values.

To facilitate the understanding, we took Aijian mansion as an example. Figure 7 shows
characteristics each contributing to push the model output from the base value (the baseline for
Shapley values is the average of all outputs) to the model output. Characteristics pushing the prices
higher were shown in red; those pushing the prices lower were in blue. The baseline—the average
predicted housing prices, was 6.373. The predicted price of Aijian mansion was 5.90. EC_DIS increased
the price by 0.04922, while HPR_DIS decreased the price by 0.6428.

 

Figure 7. SHapley Additive exPlanations (SHAP) explanation force plots for Aijian mansion.

Based on the matrix of Shapley values, the absolute Shapley values per characteristic across
the data were computed for measuring the global importance of characteristics by Formula (10).
We sorted the characteristics by decreasing importance and plotted them in Figure 8. The top
characteristics contributed more to the model than the bottom ones, and thus, had a greater impact
on the housing prices. Overall, the four categories of the characteristics’ SHAP importance could be
ranked as follows: location characteristics (0.8491) > neighborhood characteristics (0.7055) > structure
characteristics (0.6939) > urban environmental characteristics (0.4266). This result indicated that the
location characteristics were the dominant determinants of housing prices in Shanghai. The importance
of neighborhood characteristics and structure characteristics were roughly equivalent. Although
urban environmental characteristics had relatively minimal impacts on housing prices, we cannot
neglect the impacts of urban environmental characteristics, which accounted for 16 percent of the
total importance. Specifically, the top five characteristics were YEAR (0.4259), EC_DIS (0.3720), C_DIS
(0.2494), FH3_NEAR (0.1759) and HPR_DIS (0.1306). For five urban environmental characteristics, the
SHAP importance was ranked as follows: UG (0.1145) > UW (0.1043) > SVI (0.0908) > GVI (0.0601)
> BVI (0.0570). The SHAP importance of the overhead view environmental characteristics (0.2187)
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was slightly higher than those from the horizontal view (0.2079). The horizontal view environmental
characteristics could account for 8 percent of total housing prices.

Figure 8. SHAP features importance for the determinants of housing prices.

Given that SHAP features importance only contains the absolute value of feature contributions, a
density scatter plot of SHAP values for each characteristic was used to further analyze the relationships
of the determinants with the housing prices. Characteristics were sorted by the values of SHAP
importance. As shown in Figure 9, each point on the summary plot was the Shapley value for a
characteristic of a community. The position on the x-axis was determined by the Shapley value, and the
color denoted the value from low (blue) to high (red). The dispersion in the y-axis direction represented
the number of points, which demonstrated the distribution of the Shapley values per characteristic. If
the SHAP value of a characteristic increases with the increase of the corresponding feature value, this
characteristic has a positive impact on housing prices, and vice versa. Figure 9 indicates that the four
location characteristics all had strong negative relationships with housing prices. YEAR, FH3_NEAR
and SUB_NEAR had apparent negative influences on housing prices. EL, SUB_1000M and PRI_1000M
showed positive influences on housing prices. In terms of urban environmental characteristics, UW
had a strong positive correlation with housing prices. The relationship between SVI and housing
prices had a negative correlation. For UG and GVI, although the communities with high SHAP values
had relatively high feature values, the SHAP values were not always increased with the increase of
the feature values. This result showed that the relationships between these two characteristics and
housing prices were complicated and nonlinear. In addition, it was difficult to identify the impacts of
BVI on housing prices because of no obvious pattern.
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Figure 9. SHAP summary plots of housing prices.

3.4. Contribution of Urban Environmental Characteristics

Due to that SHAP summary plots couldn’t fully reveal the complex and nonlinear relationships
between most of the urban environmental characteristics and housing prices, we delved into the
specific contributions of characteristics on housing prices by using the SHAP feature dependence
plot. The SHAP feature dependence plot for five urban environmental characteristics were drawn in
Figure 10 to describe their impacts on housing prices. The spatial distribution of SHAP for the five
environmental characteristics were also mapped in Figure 11 to improve the understanding of the
contribution of each urban environmental characteristic.
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Figure 10. SHAP feature dependence plots for the five urban environmental characteristics:
(a) GVI_SHAP, (b) SVI_SHAP, (c) BVI_SHAP, (d) UG_SHAP and (e) UW_SHAP.

3.4.1. Contribution of Green View Index (GVI) and Urban Green Coverage (UG)

The SHAP values of the GVI showed a decreasing, stable and increasing tendency, and the two
inflection points were approximately 0.2 and 0.5 (Figure 10a). Most of the GVI SHAP values were
positive when GVI was less than 0.2 or greater than 0.5. When the GVI exceeded 0.5, the GVI SHAP
value increased as the GVI increased. The result of the traditional hedonic model, which was built by
the linear regression model, showed that the GVI had a significant positive effect on housing prices
(Table 2). Every one percent increase in the GVI can increase housing prices by 71 RMB/m2. Our
method indicated that the relationship between the GVI and housing prices was complex and nonlinear
rather than linear positive. Shanghai’s homebuyers were willing to pay a premium for a green view
only when the GVI was of higher value, which was more elaborate than the results of previous studies.
A study in the Netherlands showed that a green view can attract an extra price increase of 8% [20].
Another study in Hong Kong also suggested green space views have notably enhanced residential
housing prices [23]. To better interpret the results, the spatial distribution of the GVI (Figure 6a) and
GVI SHAP (Figure 11a) played an important role. From the distribution of the communities whose
GVI and GVI SHAP were both high, we could find that most of these communities were near large
parks, such as Changshou Park in the Putuo District, Xujiahui Park in the Xuhui District and Huashan
Green Park in the Changning District. These parks could serve as recreational venues and provide
pleasant views to residents [54]. The reason why the communities with low GVI values had positive
effects on housing prices might be that most of these communities have been built for many years.
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Although these older residential communities are lacking a horizontal green view, most of them have
diverse public service facilities due to long-term developments.

Compared with the GVI SHAP, a similar trend was observed for the UG SHAP. Figure 10d showed
that the SHAP value of the UG was positive when the UG was less than 0.23 and then fluctuated
around zero. When the UG was greater than 0.5, the UG SHAP value presented a significant increase.
The positive influence of the UG on housing prices when the UG was less than 0.23 or greater than 0.5
indicated that homebuyers were willing to pay more for higher UGs. The reasons for these results
were also similar to those reasons for the GVI. Table 2 showed that the GVI was not significant in the
traditional hedonic model, which was not consistent with our method. To investigate whether the
impacts of the GVI and UG on housing prices show the same pattern, we carried out a comparison
between the GVI and UG. The coefficient of determination for the GVI and UG was 0.0799. The spatial
distribution of the GVI and UG were quite different. These results suggested that there were no
obvious correlations between the GVI and UG. For the SHAP value of the GVI and UG, the coefficient
of determination for them was 0.0098. The spatial distribution of the GVI SHAP and UG SHAP were
also quite different. Thus, there were no obvious correlations between the GVI SHAP and UG SHAP.
All of these results indicated that, although both higher GVI and higher UG had positive impacts on
housing prices, there were significant differences between the patterns of their impacts on housing
prices. These finding demonstrate that the impacts of the same urban environmental elements from
different observation perspectives (horizontal view and overhead view) are different.

In general, the relationships between housing prices and two green characteristics (green view
index from street view data and urban green coverage rate from remote sensing) are both nonlinear.
Shanghai’s homebuyers are willing to pay extra for green only when the green view index or urban
green coverage rate are of higher value.

3.4.2. Contribution of Sky View Index (SVI)

The SVI of a community could reflect the amount of open spaces, as well as the height and density
of buildings in and around this community. In this study, when the SVI value was less than 0.35,
the SHAP value of most communities was positive and decreased from 0.8 to zero. For every one
percent increase in the SVI, the housing prices decreased by 320 RMB/m2. When the SVI value was
greater than 0.35, the SVI SHAP value maintained stable at around zero. The result of the traditional
hedonic model showed that the SVI had a significant negative effect on housing prices in Table 2.
Every one percent increase in the SVI can decrease housing prices by 123.5 RMB/m2. The findings of
our method indicated that the relationship between the SVI and housing prices was also nonlinear
rather than linear. By comparing Figures 6b and 11b, we could find the values of the SVI SHAP were
the highest in the central area and decreased to the outskirts gradually, which was opposite to the
distribution of the SVI. Contrary to expectation, these results mean that the SVI has a strong and
negative impact on housing prices in Shanghai when its value is less than 0.35. This finding contrasted
with a previous study indicating both street and building views suppressed housing price in Hong
Kong [23]. The opposite result in Shanghai could be explained as follows. The high housing prices in
Shanghai has resulted in a vertical and compact city, with most residents living in high-density and
high-rise residential buildings. The high-rise buildings mean enjoyment of wider views and less noise
and air pollution in the higher floors, resulting in a better environmental quality.
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Figure 11. Spatial distribution of SHAP for the five urban environmental characteristics: (a) GVI_SHAP,
(b) SVI_SHAP, (c) BVI_SHAP, (d) UG_SHAP and (e) UW_SHAP.

3.4.3. Contribution of Building View Index (BVI)

With regards to the BVI, the BVI SHAP value always fluctuated around zero, with a small variance
between 0.2 and -0.2. This result demonstrated that the influence of the BVI on housing prices was
not obvious. Table 2 showed that the BVI was not significant in the traditional hedonic model, which
was consistent with our method. The reason for this result might be that many buildings are blocked
by trees and cars in street view images. This leads to how the BVI couldn’t depict the distribution
of buildings accurately. In most cases, the SVI is the better choice than the BVI for the description of
buildings from a horizontal view.

3.4.4. Contribution of Urban Water Coverage (UW)

The UW SHAP value increased sharply when the UW was lesser than 0.08, and a one percent
increase in the UW SHAP could increase housing prices by 800 RMB/m2. When the UW was greater
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than 0.08, the UW SHAP value maintained stable. This result indicated that Shanghai’s homebuyers
would be willing to pay a premium for houses in communities with a higher UW, which was consistent
with studies in Hangzhou [55] and Hong Kong [23]. Table 2 showed that the UW was significant and
positive in the traditional hedonic model, which is consistent with our method. In spatial distribution,
Figures 6e and 11e show that the UW SHAP and the UW presented similar patterns. Communities
with a high UW SHAP value were mainly concentrated along the Huangpu River and Suzhou Creek.
These two main rivers provide a large amount of water coverage for the communities along them. In a
compact city, water bodies have the effect of adjusting air temperature and humidity, which improves
human comfort. The water also provides residents with precious spaces where air circulation and solar
access are less impeded.

4. Conclusions

In this study, we proposed a new framework for measuring the impacts of urban environmental
elements on housing prices in the area within Shanghai’s outer ring. The green view index (GVI),
the sky view index (SVI) and the building view index (BVI) were extracted as horizontal-view urban
environmental characteristics based on the Baidu street view images using a deep convolutional neural
network. The overhead view environmental characteristics were computed by remote sensing data.
Comparing the results of three tree-based ensemble learning models and linear regression models,
the XGBoost model showed the best performance. Thereafter, a SHapley Additive exPlanations
(SHAP) method, which has the ability to explain the model’s overall behavior in the form of particular
feature contributions, was introduced to uncover the complex and nonlinear relationships between
urban environmental characteristics and housing prices. The spatial distribution of SHAP for the five
environmental characteristics were mapped to improve the understanding of the contribution of each
urban environmental characteristic. In addition, the impacts of horizontal-view and overhead-view
green characteristics on housing prices were compared to analyze the differences of the same
urban environmental elements’ impacts on housing prices from different observation perspectives.
The experimental results are demonstrated as follows. Compared with location, neighborhood and
structure characteristics, urban environmental characteristics have relatively minimal impacts that
account for 16 percent of housing prices. The relationship between the GVI and housing prices is
nonlinear rather than linear positive or linear negative. Similar to the GVI, the urban green coverage
rate (UG) also has a nonlinear relation with housing prices. These findings indicated that Shanghai’s
homebuyers are willing to pay a premium for green only when the GVI or UG are of higher values.
Although both a higher GVI and higher UG have positive impacts on housing prices, there are
significant differences between their impacts on housing prices. Contrary to previous studies, when
the SVI value is less than 0.35, every one percent increase in the SVI, decreases the housing prices by
320 RMB/m2. The potential reason is that high-density and high-rise residential areas often have better
living facilities. Compared with the GVI and SVI, the influence of the BVI on housing prices is not
obvious. A one percent increase in the urban water coverage rate (UW) can increase housing prices by
800 RMB/m2, which indicates residents in Shanghai are willing to pay a premium for water coverage.
In summary, the case of Shanghai shows that the proposed framework is practical and efficient.

This study was limited in several ways. First, the applicability of the proposed framework
was tested in Shanghai. Considering the geographical heterogeneity, the relationships between the
urban environmental elements and housing prices may be different in a different city. Using this
framework to quantify the differences among cities is expected to achieve a promising result. Second,
the housing transaction data used in this study were only obtained in 2018. Thus, further studies could
be conducted to integrate multi-year data to analyze the temporal dynamics of the impacts of the urban
environmental elements on housing prices. Third, our housing model does not consider some housing
characteristics, such as floor level and urban village, because these characteristics cannot be captured
at present. It is worth discussing these characteristics of the Chinese housing market in future research.
Last, the acquisition time of the data for extracting urban environmental characteristics was different.
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The Baidu street view data were obtained in 2017, while the remote sensing data were obtained in 2015.
Due to the rapid development of Shanghai and seasonal differences of nature environmental elements,
differences in data acquisition time could have adverse effects on research findings. Therefore, street
view data and remote sensing data with similar acquisition times could be used in future research to
improve the results.
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Abstract: Investigating the spatial distribution of urban forest biomass and its potential influencing
factors would provide useful insights for configuring urban greenspace. Although China is
experiencing an unprecedented scale of urbanization, the spatial pattern of the urban forest
biomass distribution as a critical component in the urban landscape has not been fully examined.
Using the geographic detector method, this research examines the impacts of four geographical factors
(GFs)—dominant tree species, forest categories, land types, and age groups—on the aboveground
biomass distribution of urban forests in 1480 plots in Xi’an, China. The results indicate that
(1) the aboveground biomass and four GFs show obvious heterogeneity regarding their spatial
distribution in Xi’an; (2) the dominant tree species and age group which impacts the patterns of
aboveground biomass are the primary GFs, with the independent q value (a statistic metric used
to quantify the impacts of GFs in this study) reaching 0.595 and 0.202, respectively, while the forest
category and land type were weakly linked to the spatial variation of aboveground biomass, with a
q value of 0.087 and 0.076, respectively; and (3) the interactions among these four GFs also tend
to contribute to the distribution pattern of aboveground biomass. The interactions between GFs
achieved a larger impact than the sum of impacts that were independently obtained from the factors.
Our results showed that the method of using a geographical detector is a useful tool in the urban area,
and can reveal the driver pattern of aboveground biomass and provide a reference for city planning
and management.

Keywords: urban forest; forest biomass; biomass distribution; geographic detector

1. Introduction

Due to the rapid urbanization process, the global urban population exceeded the rural population
for the first time in 2017 [1], indicating that we had entered a new urban era. There is a universal
relationship between development and urbanization—the urbanization pace peaking at the per capita
income level of approximately $3000–5000 [2]. The urbanization speed is currently at the highest
level in East Asia and has progressed in South Asia and Africa, after the main urbanization growth
shifted away from Europe, North America, and Japan [3]. As the largest developing country in the
world, China contributes a major portion (837 million) of the global urban population. In the period
of 1978–2017, the urbanization level of China increased from 17.92% to 58.52% [1,4], and researchers
believe that the urban population proportion of China is projected to increase to over 70% by 2030 and
80% by the middle of this century [5]. Therefore, it is believed that the urbanization of China might
play an important role in the world’s rapidly urbanizing process [6].
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Improving urban ecosystem services, in terms of supply, regulation, habitats, culture, and amenity
services, is an important component of measurements that can be used to improve the urbanization
quality [7]. Trees in urban areas can provide a carbon sequestration function, as well as a product
providing function [8–10]. Close relationships have been reported between the net long-term CO2

source/sink dynamics and urban forest biomass [11–15]. A higher forest biomass indicates a larger
amount of carbon dioxide sequestration in urban forest ecosystems [16–18]. Therefore, a reasonable
pattern and community structure of an urban forest offer ecological benefits for urban residents,
and could help them to understand that the dynamics and drivers of urban forests are critical for
city management.

Spatial heterogeneity refers to uneven distributions of traits, events, or their relationship across a
region [19]. This phenomenon can be analyzed and quantified by using the geographical statistical
method of employing a geographic detector [20]. The core idea of geographic detectors is based on
the hypothesis that the dependent variables should be spatially highly related to the independent
variables if the independent variables have major effects on the dependent variables. Therefore,
compared to conventional analysis of variance (ANOVA), this method can quantify the impacts of
spatial factors on the spatial distribution of a given independent variable [21] and explore spatial (global)
stratified heterogeneity within the stratified attribute by the q-statistic. Additionally, this method can
detect potential variables that impact the spatial distribution of independent variables, and reveal
interactive effects among those variables. It has two significant advantages: Linear assumptions
between dependent and independent variables are not required, and it can detect the interactive
influence of two independent variables on the dependent variables [22].

In an urban forest, the global spatial heterogeneity of biomass displays an uneven distribution
within the whole study area. The driving forces of this phenomenon have been widely studied [9,23–27].
Conventional ANOVA is normally used to explain this relationship [28,29], which only provides
a field of view about whether there are significant differences among the subtypes of a certain
driving factor (for example, the age group, diameter at breast height (DBH), etc.). The quantitative
relations between driving factors and biomass are difficult to directly compare. On the other hand,
empirical models, including stepwise regression [14,28], Random Forest regression [30,31], and Artificial
Neural Networks [32,33] are normally used to derive quantitative relations between urban forest
biomass and driving factors. However, the variation of spatial factors and the impact of interactions
between spatial factors on the biomass distribution are generally ignored in such studies, even though
these issues are of great interest to urban forest managers.

Overall, the primary objective of this study is to explore the spatial heterogeneity and its driving
factors of aboveground forest biomass, in order to estimate and detect potential driving factors based
on field inventory data in Xi’an, China. Therefore, this study conducted a statistical analysis with
a geographic detector regarding the spatial distribution of urban forests’ aboveground biomass to
quantitatively evaluate the impacts of factors influencing the distribution. Furthermore, due to Xi’an
being a representative Chinese city that has undergone rapid urbanization in recent years and that
exhibits significant urban forest changes, it was chosen as the focus in this study. This study addresses
two main questions: (1) What are the main driving factors strongly influencing the aboveground forest
biomass in Xi’an city? (2) How do the interactions between multiple environmental factors influence the
aboveground forest biomass in Xi’an city? These results may help government administrators formulate
urban greening strategies in the selection of tree species and spatial configuration of urban forests.

2. Materials and Methods

2.1. Study Area

Xi’an is located between 107◦40′–109◦49′ E and 33◦39′–34◦45′ N (Figure 1). The south and
southeast sides are bounded by the main ridge of the Qinling Mountains, which serve as a natural
boundary between the North and South part of China. The western, northwestern, and eastern sides
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of Xi’an are bounded by the Taibai Mountains, the Weihe River, and the Weihe Mountain, respectively.
Xi’an is located in a river valley far from the sea, which makes the summer heat intense, and the cold
air often stagnates on the ground in the winter. Xi’an has a continental climate with four distinct
seasons—it is warm in spring, hot and humid in summer, cool in fall, and cold and dry in winter. In the
urban green spaces, trees are mainly composed of Sophora japonica, Populus sp., Firmiana platanifolia,
Cypress sp., and Pinus sp. The shrubs consist of Ligustrum quihoui, Buxus bodinieri, Berberis thunbergii
var. atropurpurea, Buxus megistophylla, Photinia serrulata, and Pittosporum tobira, accounting for more
than 80% of the total number of shrubs. The grasses include Poa annua, Festuca elata, Trifolium repens,
Lolium perenne, and Ophiopogon japonicus. The population density of Xi’an city is 1185 per km2 and the
impervious coverage percentage is 31.22% [34].

Figure 1. Location of the study area.

2.2. Data Source and Preprocessing

The data used in this study were obtained the Xi’an Urban Forest Resource Survey in 2006, while the
field survey was conducted in 2017. In total, there were 1480 plots, covering four administrative
districts (Baqiao, Weiyang, Xincheng, and Yanta) in the urban area (Figure 2). Each plot had 20 attributes
surveyed in field work, including the forest class, land type, forestland ownership, forest ownership,
forest category, authority, protection level, landform, slope, slope position, aspect, origin, dominant tree
species, age group, accumulation per hectare, small class accumulation, and area. Of the 20 attributes,
five were selected, including the dominant tree species, forest category, land types, age groups,
and timber volume, due to these factors being the most relevant to the forest aboveground biomass.
The first four attributes were used as potential factors affecting the biomass distribution, and the last
one was used in the biomass calculation, which is explained in the following section.

121



ISPRS Int. J. Geo-Inf. 2020, 9, 744

Figure 2. Distribution of biomass grades of 1480 plots.

2.3. Calculation of Aboveground Biomass for Urban Forests

The amount of forest stock comprehensively reflects the site conditions, climatic conditions,
forest age, and other forest growth factors. Previous studies have found that the volume can be
converted to biomass through a linear regression [35–37] (Equation (1)):

B = aV + b, (1)

where a and b are model parameter, depending on different tree types, and represent the slope and
intercept in the linear regression function, respectively; B is the aboveground biomass, while V is the
stock volume. Table 1 summarizes the a and b values for different tree species.

Table 1. Conversion model parameters between the aboveground biomass and stock volume for
different tree species [35].

Serial Number Tree Species a b R2 Tree Type

1 Chinese pine 0.7554 5.0928 0.980 Coniferous tree
2 Other pine trees 0.5168 33.2378 0.970 Coniferous tree
3 Metasequoia glyptostroboides 0.4158 41.3318 0.980 Coniferous tree
4 Cypress class 0.6129 26.1451 0.980 Coniferous tree
5 Hard broad-leaved 0.9644 0.8485 0.980 Deciduous tree
6 Robinia pseudoacacia 0.7564 8.3103 0.986 Deciduous tree
7 Poplar class 0.4754 30.6034 0.930 Deciduous tree
8 Soft broad-leaved 0.4754 30.6034 0.930 Deciduous tree
9 Ginkgo biloba 0.4158 41.3318 0.980 Deciduous tree

2.4. Spatial Analysis with the Geographical Detector

Geographical detectors (GDs) [38]—selected to study the forest biomass in our research—are
widely used to examine geographical phenomena [21,38–43]. This approach can not only evaluate
how certain geographical factors impact the spatial variable’s distribution, but also reveal the impacts
of the interactions between the geographic factors on the spatial variables’ distribution.
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The basic idea of a GD is to split the study area into subregions according to different categories
of geographical factors (GFs). The variances of the dependent variable in each subregion and across
the whole study area are compared to derive the impact of geographical factors on the dependent
geographical variable’s spatial distribution. According to the principle of GD, the forest aboveground
biomass, which is calculated by the stock volume, is used as the dependent variable. Moreover,
four classes of multiple-level GFs (dominant tree species, forest categories, forestland class, and age
groups at the plot level) are used as independent variables, and referred to as geographical factors.
Each plot can be categorized into different numbers of subtypes according to different GFs (Table 2).
In this study, the analysis focuses on four parts regarding the impacts of GFs on the spatial distribution
of aboveground biomass: (a) Investigating whether there is spatial differentiation of biomass in the
study area and how much each GF influences biomass; (b) examining the impacts of interactions
between GFs; (c) comparing the impacts of different subcategories for each GF; and (d) comparing the
impacts between different GFs.

Table 2. Four geographical factors (GFs) and their categories.

GFs Categories Number of Categories

Dominant tree species

Chinese pine, Other pine trees,
Metasequoia glyptostroboides, Parker class,

Hard broad-leaved, Robinia pseudoacacia, Poplar class,
Soft broad-leaved, and Ginkgo biloba

9

Forest categories

Water conservation forests, Forest for soil and water
conservation, Shelter forest for farmland,

Protective belt, Shelter belts,
Environmental protection forests, Scenic forests,

and Historical site forests

8

Forestland types Coniferous forestland, Broad leaved forestland,
Mixed forestland 3

Age groups
Young forest, Half-matured forest,

Near-matured forest, Matured forest,
Overmatured forest

5

2.4.1. Individual Impacts of GFs on the Spatial Distribution of Aboveground Biomass

To determine the extent of GFs’ impacts on the spatial differentiation of aboveground biomass in
urban forests, Equation (2) [44] was adopted to calculate q for each GF:

qX= 1−
∑LX

h=1 Nh,Xσ
2
h,X

Nσ2
total

, (2)

where h ∈ (1, 2, 3 . . . , LX) represents the category index for GF X. The forest categories denote the type
of geographical factor. LX is the number of total categories for GF X (in Table 2), Nh, X is the number of
plots in category h for geographical factor X, σ2

h,X is the variance of biomass for plots in category h of
geographical factor X, N is the total number of plots (i.e., 1480 in this study), and σ2

total is the variance
of biomass for all plots.

The range of qX is [0,1]. A larger qX value indicates that the variance of the aboveground biomass
for plots within a subtype is more diverse between subtypes that are defined by categories of the GF
X and vice versa. In extreme cases, a qX value of 1 indicates that the GF (X) completely controls the
spatial distribution of aboveground biomass (Y), and a qX value of 0 indicates that the GF (X) has no
relationship with the aboveground biomass (Y) of the urban trees.

123



ISPRS Int. J. Geo-Inf. 2020, 9, 744

2.4.2. Interaction Impacts of Geographical Factors on the Spatial Distribution of Aboveground Biomass

This study also investigates how the interaction between different GFs influences the spatial
distribution of urban trees’ aboveground biomass. In other words, we want to reveal whether a given
pair of GFs—X1 and X2—interact to influence the explanatory power of the aboveground biomass (Y)
distribution, or whether the influence of the GFs X1 and X2 on aboveground biomass (Y) of the forest
are independent.

In this study, the interaction of a given combination of the GFs X1 and X2, was written as X1 ∩X2.
Additionally, qX1∩X2

was calculated using Equation (2). The interaction could be classified as one of
five groups by comparing qX1∩X2

with the minimum, maximum, and sum of qX1
and qX2

[22].

2.4.3. Comparing the Impacts of Different Categories for Each GF

Given a GF X with two of its subtypes h1 and h2, we applied Tukey’s Honestly Significant
Differences (Tukey’s HSD) test to examine whether the average plot’s aboveground biomass in
subtypes h1 was significantly different from it in h2 using Equations (3) and (4):

HSD(h1,h2)
0.05 = q0.05(2, n− 2)

√
1
2

MSe

(
1
r1

+
1
r2

)
, (3)

HSDh1,h2 =
∣∣∣Yh1 −Yh2

∣∣∣, (4)

where n is the total number of plots (i.e., 1480 in this study); q0.05(2, n− 2) is the quantile of the
Studentized range distribution MSe stands for the mean sum of squares of deviation within groups
in ANOVA; r1 and r2 represent the number of plots of subtypes h1 and h2, respectively; Yh1and Yh2

represent the average aboveground biomass of subtypes h1 and h2, respectively. The null hypothesis
H0 for the test is Yh1 = Yh2. A rejection of H0 means that there is a significant difference between the

average plot aboveground biomass within subregions h1 and h2. If HSDh1,h2 ≤ HSD(h1,h2)
0.05 , H0 can

be accepted, and it is believed that there is no significant difference between the average plot’s
aboveground biomass within subregions h1 and h2.

2.5. Comparing the Impacts for Different GFs

To investigate whether a combination of the two GFs X1 and X2 exhibits significant differences
in terms of the spatial distribution of aboveground biomass (Y) in urban forests, a F-statistic was
calculated using Equations (5)–(7):

F =
NX1(NX2 − 1)SSWX1

NX2(NX1 − 1)SSWX2
, (5)

SSWX1 =
L1∑

h=1

Nhσ
2
h, (6)

SSWX2 =
L2∑

h=1

Nhσ
2
h, (7)

where NX1 and NX2 represent the sample sizes of X1 and X2, respectively; SSWX1 and SSWX2 represent
the sum of the intralayer variances of the layers formed by X1 and X2, respectively; and L1 and L2
represent the number of layers defined by X1 and X2, respectively. The null hypothesis of the F-test
is H0: SSWX1 = SSWX2. If H0 is rejected at the level of significance of α, it indicates that X1 and
X2 display significant differences in relation to the spatial distribution of aboveground biomass (Y)
in urban forests.
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3. Results

3.1. The Distributions of Urban Forest Biomass and Its Influencing Factors

The biomass of 1480 plots shows significant spatial differences (Figure 2). The biomass distribution
of plots reflects that the urban forests are mainly distributed in the northwestern, southeastern and
the eastern part of Xi’an. The biomass in the northwestern part (Weiyang), with 611 plots and 44.77%
of the total forest biomass, primarily consists of the urban garden and protected area. The biomass
in the southeast and east exhibits a highly positive relationship with rivers. The highest biomass
can be observed in the central area of Xi’an (Xincheng) city, with 83 plots and 6.89% of the total
forest biomass, and with the average biomass reaching to 59.25 Mg/h. The biomass in the southern
part of Xi’an (Yanta), with 143 plots and 6.64% of the total forest biomass, is the lowest (lower than
22.63 Mg/h). This is because Yanta is a newly developing urban area, and the trees there are almost
young forest trees. The northwestern part of Xi’an has medium level of biomass. The eastern part of
Xi’an (Baqiao), with 643 plots and 41.7% of the total forest biomass, exhibits a relatively lower biomass
than southern Xi’an.

Four influencing factors, including the dominant tree species, forest categories, forestland types,
and age groups, present spatial heterogeneity (Figure 3). The dominant tree species which are
distributed with a patch pattern are mostly located along the road and in the urban garden (Figure 3a).
Pinus and hardwood forests are mainly distributed in Yanta District. Populus is distributed in Weiyang
and Baqiao District. Platycladus orientalis is distributed in the south of Baqiao District for the most part.
Most of the hardwood trees are found in the west of Yanta District. Robinia pseudoacacia is commonly
found in eastern Baqiao District. The softwood trees display a significant positive relationship with
rivers. Ginkgo biloba is mainly distributed in the middle of the south of Yanta District, in a small area.

Figure 3. The whole study area was split into different subtypes according to GFs: (a) Dominant tree
species; (b) forest categories; (c) forestland types; and (d) age groups.
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Figure 3b shows the distribution of forest categories. Forests for water conservation are mainly
distributed in the south of Baqiao District. Forests for soil conservation are mainly found in the south
and east of Baqiao District. Forests for protecting farms are mainly located in the south of Weiyang and
Baqiao Districts, with a small area. Forests for shore protection are distributed on both sides of most
rivers. Forests for protecting the environment are situated in Weiyang District, while the landscape
forests are mainly distributed in Yanta District. Other types of forests exhibit a sporadic distribution,
with a small area.

Figure 3c shows the distribution of land types. The needleleaf forestland is mainly distributed
in the south of Weiyang and Baqiao Districts. The broadleaf forestland has the largest area and is
found everywhere in the study area. The mingled forestland is mainly located in the south and east of
Baqiao District. Figure 3d shows the age distribution. Most forests are young in age, while mature and
overmatured forests are scarce in the four districts of Xi’an.

3.2. Detecting the Contribution of the Four Influencing Factors

The independent q values of the four influencing factors ranged from 8% to 59% (Table 3).
The results of Equation (2) showed that the contribution of each impact factor towards the differentiation
of the spatial distribution of aboveground biomass is ordered as follows: Dominant tree species,
age group, forest category, and land type. The first two factors (with q value > 0.20) are considered to
be the major impact factors.

Table 3. The independent q values of the four GFs.

Dominant Tree Species Age Group Forest Category Land Type

0.595 0.202 0.087 0.076

Ecological detectors can reflect significant differences among the four GFs regarding their impacts
on the biomass of forests. As shown in Table 4 (generated by the F-test with Equation (5)), the forest
age is significantly different from the other factors. The forestland types only differ from the dominant
species, and show no difference from the forest types. The forest type displays a significant difference
when compared to the dominant tree species, but shows no significant difference with the forest tree
species. The forest tree species is significantly different from the dominant tree species.

Table 4. Significant differences in reflecting forest aboveground biomass among influencing factors.

Dominant Tree Species Forest Category Forestland Type Age Group

Dominant tree species - Y Y Y
Forest category Y - N Y
Forestland type Y N - Y

Age group Y Y Y -

Note: Y means the null hypothesis is rejected at a significance level of 0.05, while N means no significant difference
between the average plot’s biomass.

3.3. Detecting the Contribution of Interactions between the Four Influencing Factors

In the forest environment, the forest aboveground biomass is the result of a combination of
multiple factors, and is also influenced by interactions between these factors. The spatial distribution of
aboveground biomass in urban forests is always affected by various factors, as well as their interactions
with each other, but not by single factors. According to Table 5, our results (Table 6) show that
the interaction between GFs mainly involves nonlinear enhancement, indicating that the interaction
between GFs’ impact is larger than the simple combination of individual factors.
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Table 5. Interaction derivation [9].

Comparison Type Interaction

qX1∩X2
< min(q X1

, qX2

)
Weaken, nonlinear

min(q X1
, qX2

) < qX1∩X2
< max(q X1

, qX2

)
Weaken, single factor nonlinear

qX1∩X2
> max(q X1

, qX2

)
Enhance, bilinear

qX1∩X2
= qX1

+qX2
Independent

qX1∩X2
> qX1

+qX2
Enhance, nonlinear

Table 6. Comparison of interactions between factors pairs.

Factor Interaction
(A)

Factor Combination
(B+C)

Comparative
Result

Ratio
(Interaction/Combination)

Explanation

dominant tree
species ∩ forest
category = 0.784

dominant tree species
(0.595) + forest
category (0.087)

A > B+C 1.15 Non-Linear
Enhancement

dominant tree
species ∩ land
types = 0.604

dominant tree species
(0.595), land
types (0.076)

A >max (B, C) 1.02 Bilinear,
Enhancement

dominant tree
species ∩ age

groups = 0.847

dominant tree species
(0.595) + age

groups (0.202)
A > B+C 1.06 Non-Linear

Enhancement

forest category ∩
land types = 0.269

forest category (0.087)
+ land types (0.076) A > B+C 1.65 Non-Linear

Enhancement
forest category ∩ age

groups = 0.445
forest category (0.087)
+ age groups (0.202) A > B+C 1.54 Non-Linear

Enhancement
land types ∩ age
groups = 0.348

forest category (0.076)
+ age groups (0.202) A > B+C 1.25 Non-Linear

Enhancement

To quantify the synergistic effects, we combined the ratios of interactions and the combined
effect was calculated. A larger ratio value means that stronger synergistic effects exist between GFs.
Among all the pairs of GFs, the synergistic effects between the forest category and land types are
greater than the rest of the pairs, and show the highest ratio value (1.65). Furthermore, the ratio of the
dominant tree species and land type exhibits the weakest synergistic effects.

3.4. Comparing the Difference of the Contribution among Subtypes

The pairwise comparison results, using Tukey’s Honestly Significant Differences test for the
forestland type (Table 7), show that the average plot’s biomass in coniferous forestland was significantly
higher than that in broad-leaved forestland and mixed forestland. Furthermore, there was no significant
difference between mixed forestland and broad-leaved forestland regarding the average plot’s biomass.

Table 7. Tukey’s Honestly Significant Differences (Tukey’s HSD) test for comparing average plot’s
biomass for forestland types.

Coniferous Forestland Broadleaved Forestland Mixed Forestland Average Plot Biomass (Mg/h)

Coniferous forestland - Y Y 46.5
Broad leaved forestland Y - N 38.0

Mixed forestland Y N - 38.2
Average plot biomass 46.5 38.0 38.2 -

Note: Y means the null hypothesis is rejected at a significance level of 0.05, while N means no significant difference
between the average plot’s biomass.

The Tukey’s HSD test, comparing the average plot’s biomass for different tree species shows
that the plot dominated by Ginkgo biloba had a significantly higher average plot’s biomass than other
species, expect for the Poplar class and Parker class (Appendix A Table A1). These species are the major
greening tree species in green spaces in Xi’an city [45]. They exhibit a considerable tolerance for gaseous
air pollutants, but are susceptible to damage from acid rain [46–48]. Due to the “Coal to Gas Project”
implemented in 1997 [49], the emergence rate of acid rain has obviously decreased [50], providing
favorable growth conditions for these species, rather than Pinus tabuliformis and Robinia pseudoacacia.
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A comparison of the average plot’s biomass among the eight subtypes defined by forest
functionalities showed that the difference between these types is generally not as significant as
those between subtypes defined by dominant tree species (Appendix A Table A2). Among the eight
subtypes, even though historical site forests retain the largest average plot’s biomass, they only
displayed significant differences from forest for soil and water conservation and scenic forests. With the
lowest mean value of the plot’s biomass, scenic forest displayed a significant difference from all other
forests, except for the water conservation forest and forest for soil and water conservation.

The investigation of the age group factors shows that all subtypes split by forest age group
are significantly different from each other, regarding the average plot’s biomass in the subtypes
(Appendix A Table A3). If GD is used as a tool to detect the overall picture of impacts for all the GFs,
then Tukey’s HSD test can be thought of as a magnifier, showing details of how the elements within
each GF exerting impacts.

4. Discussion

4.1. The Significance of Studying the Spatial Heterogeneity of Urban Forest Biomass

In this study, we analyzed the spatial heterogeneity of urban forest’s aboveground biomass and
can conclude that the dominant tree species and age group are the main factors impacting the biomass
distribution. These results are consistent with previous studies [51,52]. Detecting the drivers of
urban forest biomass is important for the urban forest management. Among the four main drivers,
we found that the tree species is the most critical factor affecting the urban forests’ aboveground
biomass. This result agrees with Shuaifeng Li. et al. [53], who reported that the species richness had a
positive impact on aboveground biomass across all forest vegetation layers. This result means that the
choice of planted tree species could determine the pattern of urban forest. Therefore, trees with fast
growth rates should be considered first. This study also indicates that the interaction effect of two
factors is greater than that of a single one, which is also reflected in the nonlinear relation model in
urban forest modeling [54]. The results of interactions mean that we should not only focus on the
independent role of single driving factors, but also pay more attention to their interaction, which may
greatly improve the productivity of urban forests.

Investigating how different GFs drive the distribution of urban forests’ aboveground biomass
could provide important implications for better urban planning, which responds to urban atmosphere
changes and the development of sustainable urbanization. As an important carrier of the urban
ecosystem, urban forests offer ecological, economic, and social benefits for human beings. They can
not only improve the urban microclimate, alleviate the effects of urban heat islands, increase surface
runoff, and play an important role in maintaining the urban carbon and oxygen balance, but also
improve the quality of life of residents and provide good places of leisure and entertainment for urban
residents [55,56]. Urban forest biomass is an important indicator that can be used to measure the carbon
storage, carbon sequestration capacity, and ecological benefits of an urban ecosystem [57]. The accurate
and rapid monitoring of urban forest biomass and its spatial pattern are the basis for urban carbon
cycle and energy flow research, while they are also the basis for measuring the ecological regulation
and environmental protection capacity of urban forests [58]. Analyzing the spatial differentiation of
urban forest biomass can provide data for the urban green space planning department, and has great
significance for urban ecological space planning and management.

4.2. Challenges and Future Directions

Forest biomass is affected by several variables, including human activities, as well as environmental
and biological factors [59]. It shows a certain randomness and distribution with structural differences.
The spatial heterogeneity of forest biomass reflects the energy flows and material cycles of forest
ecosystems [60,61]. The study area is a plain, and its internal environmental factors (such as its
topography and climate) can be considered to be uniform. Based on these conditions, forest resource
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survey data of the study area were employed, while four qualitative factors (land type, forest category,
age group, and dominant tree species) were selected to study the spatial heterogeneity and the
influencing factors of urban forest biomass by using the geographic detector method. This approach
obtains a quantitative description of qualitative influencing factors and solves the problem of collinearity
that has often been ignored in past related research. However, the following aspects should be
considered in future related research: (1) In addition to the four factors mentioned above, there are
many factors, (i.e., average tree species, average DBH, and human activities) that required further
comprehensive analysis in the future; (2) in this study, the spatial heterogeneity of aboveground
forest biomass is mainly discussed. However, the biomass of shrubs, herbs, and underground parts
of the forest was not considered; and (3) in this study, calculation of the biomass of forestland was
obtained from forest resource investigation data. In future related research, using remote sensing
technology to retrieve biomass directly is recommended. Therefore, we could quickly analyze the
spatial heterogeneity of forest biomass [62].

5. Conclusions

In this study, we conducted spatial statistical analysis by the GD method to systematically study
the differentiation of the urban forest biomass distribution of Xi’an. Additionally, we examined
how dominant tree species, age groups, forest categories, and forestland types individually and
interactively impacted the urban forest biomass distribution. We concluded that: (1) among the four
GFs, including dominant tree species, forest species, land types, and age groups, the spatial distribution
of aboveground forest biomass in Xi’an is primarily influenced by dominant tree species and forest age.
Their combined effects account for 80% of the total impacts; (2) there is no significant difference between
forestland and forest categories regarding their impacts on the spatial distribution of aboveground
biomass; and (3) all of the pairs of the four GFs have nonlinear enhancement effects, except for the
bilinear enhancement effect between dominant tree species and the land type. Among all pairs of
GFs, the synergistic effect is most obvious for the interaction between the forest category and land
type. Overall, the results of urban forest biomass’ spatial heterogeneity among these GFs can help
researchers’ understanding of urban forest biomass change, which may be applied in future precise
forest prediction models on a larger scale and allow for more effective forest management strategies to
be developed.
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Appendix A

Table A1. Tukey’s Honestly Significant Differences (Tukey’s HSD) test for the dominant tree species
factor (Y means the testing is significant at the 0.05 level, and N represents an insignificant difference).

Chinese
Pine

Other Pine
Trees

Metasequoia
Glyptostroboides

Parker
Class

Hard Broad-
Leaved

Robinia
Pseudoacacia

Poplar
Class

Soft Broad-
Leaved

Ginkgo
Biloba

Chinese pine - Y - Y N Y Y Y Y 18.4
Other pine trees Y - - Y Y Y Y Y N 49.9

Metasequoia
glyptostroboides - - - - - - - - - 58.6

Parker class Y Y - - Y Y Y Y Y 44.0
Hard broad-leaved N Y - Y - Y Y Y Y 19.6

Robinia pseudoacacia Y Y - Y Y - Y Y Y 32.9
Poplar class Y Y - Y Y Y - Y N 47.3

Soft broad-leaved Y Y - Y Y Y Y - Y 38.6
Ginkgo biloba Y N - Y Y Y N Y - 56.3

18.4 49.9 58.6 44.0 19.6 32.9 47.3 38.6 56.3
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Table A2. Tukey’s HSD test for the forest category factor (Y means the testing is significant at the
0.05 level, and N represents an insignificant difference).

Water
Conservation

Forest

Forest for
Soil and

Water
Conservation

Shelter
Forest for
Farmland

Protective
Belt

Shelter
Belt

Environmental
Protection

Forests

Scenic
Forest

Historical
Sites

Forests

Water
conservation

forest
- N N N N N N N 38.6

Forest for soil
and water

conservation
N - Y Y N Y N Y 36.3

Shelter forest
for farmland N Y - N N N Y N 43.9

Protective
belt N Y N - N N Y N 41.5

Shelter belt N N N N - N N N 41.5
Environmental

protection
forests

N Y N N N - Y N 43.3

Scenic forest N N Y Y N Y - Y 35.7
Historical

sites Forests N Y N N N N Y - 64.4

38.6 36.3 43.9 41.5 41.5 43.3 35.7 64.4

Table A3. Tukey’s HSD test for age group factor (Y means the testing is significant at the 0.05 level,
and N represents an insignificant difference).

Young
Forest

Half-Mature
Forest

Near-Mature
Forest

Mature
Forest

Overmature
Forest

Young forest - Y Y Y - 37.5
Half-mature forest Y - Y Y - 43.1
Near-mature forest Y Y - Y - 54.2

Mature forest Y Y Y - - 78.6
Overmature forest - - - - - 55.7

37.5 43.1 54.2 78.6 55.7
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Abstract: Islands as peripheral and ultra-peripheral are typically highlighted as ecologically sensitive
areas to human activities due to the tremendous biological diversity of beings and the future possibil-
ity of habitat loss. In this regard, the comprehension of the land occupation dynamics and trends in
the ultra-peripheral territories is crucial to attempt long-lasting regional sustainability, as is the island
region’s case. Therefore, the present article aims to analyze the trends and dynamics of the land-use
changes on the European Archipelagos of the Macaronesia Region over the last three decades, using
the CORINE (Coordination of Information on the Environment) data. Some of the obtained results
show that about 3.4% of the Azores’ surface is characterized mainly by discontinuous urban fabric,
representing 67% of the total urban fabric of the Azores over the last thirty years. Additionally, in
Madeira Archipelago, the land is mainly occupied by forest and semi-natural areas, representing
almost three-thirds of the territory. A similar scenario is verified in the Canary Islands, where forests
and semi-natural areas represent approximately three-quarters of the territory. Once more, this study
shows the relevance of the island areas’ unique character, which should be preserved and protected.
Therefore, the priorities must be defined and established management strategies that are significant
for the well-being of these highly valued areas. Moreover, the study showed that notable changes had
occurred in the period 1990–2018 in this landscape. Hence there is a need for appropriate measures
to mitigate these negative impacts on the environment.

Keywords: geographic information systems; land cover; land dynamics; regional studies; sustainable
planning; ultra-peripheral territories

1. Introduction

Nowadays, our societies face several challenges. Among these obstacles and require-
ments, we have regional planning, which is an essential requirement for the so-desired
sustainable development [1–9]. In fact, such challenges are even more evident in ultra-
peripheral territories [10–13]. Accordingly, the comprehension of the land occupation
dynamics and trends in the ultraperipheral territories is crucial to attempt long-lasting
regional sustainability, as is the island region’s case.

In this regard, the European Archipelagos of the Macaronesia Region (the Azores,
Canary Islands, and Madeira) were selected as case studies. Consequently, the land-use
changes over the last three decades were analyzed. The Azores and Madeira belong to
Portugal, whereas the Canaries belong to Spain.
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Changes in land-use can be associated with economic growth and investors’ search
for profitable locations for the implementation of their projects, supported by local au-
thorities to improve the economic status of local self-government [4]. This is especially
harmful to areas of high environmental quality. Exceptionally high ecological values
characterize these islands, so it is necessary and vital to explore the fragmentation of the
landscape as monitoring the increase of anthropic pressure, especially in the vicinity of
highly urbanized areas.

Fragmentation in landscape patterns can compromise its functional integrity by dis-
rupting critical ecological processes to maintain biodiversity and ecosystem health [14].
Many anthropogenic activities (e.g., development, logging) can disrupt the structural
integrity of the landscape and can sometimes facilitate ecological flows (e.g., animal move-
ment) across the landscape [15]. Space fragmentation is a phenomenon studied by the sci-
entific community, particularly environmentalists and urban planners (see [16–19]). There
are numerous works available that refer to the problem of landscape fragmentation [20–22].
With increased awareness of environmental sustainability issues and intensifying land
development, the importance of the CORINE database and assessment of LULC changes
(Land-Use Land Change) are examined [23–25].

The Macaronesian region has long been overlooked in comparative LULC research
for two reasons. First, compared to other mainland regions more prevalent in academic
literature, the small size, and population of the islands denote spatial dynamics of lower
magnitude, which may diminish interest in their study. Second, there is a chronic shortage
of comparable and uniform geospatial data for this region. Temme and Verburg [26]
recognize a “(...) lack of homogeneous modeling, monitoring, and mapping strategies
throughout the EU”.

Up-to-date advances in geographic information technologies (GIS), where applicable
FRAGSTATS as a spatial sample analysis program for categorical maps, can present the
landscape through a mosaic model of landscape structure. Such a designated landscape is
user-defined and can reproduce any spatial phenomenon. FRAGSTATS quantifies spatial
heterogeneity and gives the user the ability to form the basis for defining and scaling
landscapes in thematic content and resolution.

Contextually, this investigation is based on research techniques. These techniques and
methods allow us to identify the dynamics of land-use changes in these territories. The cho-
sen approach relies on proposing new geographical representations and modeling methods
that emphasize the importance of geographical visualization of landscape fragmentation
for spatial planning in this environmentally critical area. The research provides a greater
understanding of the actors and decision-makers involved in how these ultra-peripheral
territories have developed and how new territorial plans should be designed.

This work provides novel techniques in evaluating and managing the landscape of
the study areas while considering that they could be applied in other research. Besides, the
research results can contribute to the sustainable development of the islands.

Therefore, this paper begins with this initial chapter, followed by a brief overview of
the literature related to the protection of ecosystem services: a Geographic Information
Systems (GIS) and methodology based on CORINE land cover classes (CLC) and FRAG
STATS, a methodological framework regarding the techniques used in the empirical part of
the research, followed by the results, as well as their subsequent discussion and conclusions,
with the final section on the limitations of the study and future research lines.

2. CORINE Land Cover and Landscape Fragmentation Analysis

The CLC database is a tool for performing complex spatial analyses based on diverse
land-use kinds. CORINE land cover classes (CLC) have three levels in their hierarchical
organization. The first covers five main types of land-use and land cover: artificial areas,
agricultural areas, forest and semi-natural areas, wetlands, and water bodies. The next
level has 15 departments. The third level includes 44 departments that note that the
methodological scope of the three individual-level three classes is strictly defined [27–29].
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The CLC records changes in land cover that are happening gradually and is very
useful for research needed at the regional level. The main number of new researches has
conducted territorial studies based on GIS Tools and CORINE data methodical approaches
to landscape fragmentation. Especially in environmental studies as well as on research
about changes in land degradation—i.e., in areas with different types of land cover coun-
tries, regions, islands, or cities [30–33], including urban growth monitoring and urban
sprawl comparations’ land-use forecasts, modeling of road travel speeds or fragmentation
of property rights [34].

Islands as peripheral and ultra-peripheral are usually highlighted as ecologically sensitive
areas to human activities due to the tremendous biological diversity of beings and the future
probability of habitat loss [35]. Many researchers also analyzed the application of land reclama-
tion, as an intensive change of land-use can often cause devastating impacts on the processes
of the existing ecosystem and subsequently affect the surrounding environment [36].

CLC is the unique LULC database covering the Macaronesian islands of Portugal
and Spain. CLC data sets were used as primary data sources in the study. CLCs are a
map of the European landscape based on remote sensing. These public domain data sets
provide a list of land cover classes organized hierarchically in three levels as a comparable
cartographic product (minimum mapping unit 25 ha). CLC level 1 corresponds to the main
categories (i.e., artificial areas, agricultural areas, forests and semi-natural areas, wetlands,
water bodies). CLC level 2 covers whole areas with a higher level of detail (15 classes).
Finally, level 3 CLC consists of 44 land cover classes (Table 1). Thus, the aggregate level of
CLC 1 characterizes land-use, while CLC 2 further characterizes land cover. This research
uses CLC level 1 and CLC level 2—which level is used depends on the research question.
Table 1 hierarchically organizes the CLC nomenclature according to three levels: CLC
level 1 (land-use) and CLC level 2, and CLC level 3 (land cover).

Table 1. Evolution of CORINE Land Cover. (Source: [27]).

CLC1990 CLC2000 CLC2006 CLC2012 CLC2018

Satellite data

Landsat-5 MSS/TM Landsat-7 ETM SPOT-4/5 and IRS P6 LISS III
Sentinel-2 and
Landsat-8 for

gap filling
single date single date IRS P6 LISS III and RapidEye

dual date dual date

Time consistency 1986–1998 2000+/−1 year 2006+/−1 year 2011–2012 2017–2018

Geometric accuracy,
satellite data ≤50 m ≤25 m ≤25 m ≤25 m ≤10 m (Sentinel-2)

Min. mapping
unit/width 25 ha/100 m 25 ha/100 m 25 ha/100 m 25 ha/100 m 25 ha/100 m

Geometric accuracy,
CLC 100 m better than 100 m better than 100 m better than 100 m better than 100 m

Thematic accuracy,
CLC

≥85% (probably
not achieved)

≥85% ≥85%
≥85% ≥85%

(achieved) [13] (probably achieved)

Change mapping
(CHA) not implemented

boundary
displacement min.

100 m

boundary
displacement min.

100 m

boundary
displacement min.

100 m

boundary
displacement min.

100 m

change area for existing
polygons ≥5 ha; for

isolated changes ≥25 ha

all changes ≥5 ha
are to be mapped

all changes ≥5 ha
are to be mapped

all changes ≥5 ha
are to be mapped

Thematic accuracy,
CHA

– not checked
≥85% ≥85% ≥85%

(achieved)

Production time 10 years 4 years 3 years 2 years 1.5 years

Documentation incomplete metadata standard metadata standard metadata standard metadata standard metadata

Access to the data
(CLC, CHA)

unclear
dissemination policy

dissemination policy
agreed from the start

free access for
all users

free access for
all users

free access for
all users

Number of
countries involved

26 30
38 39 39(27 with late

implementation)
(35 with late

implementation)
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Landscape metrics depicting different aspects of the spatial pattern were calculated
at class and landscape levels using the software FRAGSTATS [37–40]. Landscape met-
rics are a unique feature that allows a quantitative assessment of the landscape and its
level of fragmentation [19], and an understanding of landscape structure, function, and
change. Landscape metrics mainly focus on three characteristics of the landscape [38,39]:
(1) Structure: spatial relationships between recognizable ecosystems or elements that are
present—more precisely, the distribution of energy, materials, and species concerning the
sizes, shapes, numbers, species, and configurations of ecosystems; (2) Function: interac-
tions between spatial elements, i.e., the flow of energy, materials, and species between
ecosystem components; and (3) Change: change in the ‘Ecological Mosaic’ structure and
function over time [40].

Landscape metrics quantify landscape patterns and interactions between patch density,
several patches, total area, and extensive patch index in a landscape mosaic. In fact,
those metrics allow us to see patterns and changes in interaction over time. Landscape
composition can be quantified by patch number, patch density, landscape percentage, and
highest patch index [38–40].

3. Materials and Methods

The CORINE, Coordination of Information Environment Programme, develops the
CLC project, whose main objective is to obtain a European land occupation database for
territorial analysis and European policy management. This geographical database, which
is the first layer used in the present research, supplies land-uses in the European Union
using polygon graphic features.

As for the spatial component, the reference scale is 1:100,000, the Geodesic Reference
System is European Reference Terrestrial System 1989 (ETRS89), and the Mapping System
is Universal Transverse Mercator (UTM). Additionally, the minimum width recorded
for linear phenomena is 100 m. For polygon phenomena, the Minimum Cartographic
Unit (MCU) is 25 hectares represented by a square of 5 × 5 mm or a circle with 2.8 mm.
Regarding the thematic component, it offers three hierarchical levels of information.

In this regard, the development of ETRS89 is related to the global International Terres-
trial Reference System and Frame (ITRS), which describes procedures for creating reference
frames suitable for use with measurements on or near the Earth’s surface. Indeed, the con-
tinental drift representation in ETRS89 is balanced since continental plates’ total apparent
angular momentum is about 0.

Besides, the data is in vector format, using polygons that evoke the various land-
uses organized into three hierarchical levels using 44 classes, according to the European
Environmental Agency (Table 1).

The second layer of information used also consists of polygonal graphical features that
evoke administrative divisions at their different levels of the three archipelagoes studied:
Autonomous Region of the Azores, Autonomous Region of Madeira, and the Autonomous
Region of the Canary Islands.

In the Canary Islands, the information was obtained from the Download Center of
the National Center for Geographical Information, belonging to the Ministry of Transport,
Mobility, and Urban Agenda of Spain’s Government. Specifically, the National Topographic
Base was obtained at a 1:100,000 scale [41].

As for the Portuguese archipelagos corresponding to Azores and Madeira, the infor-
mation was obtained from the National Geographic Information System, obtaining the
Official Administrative Charter of Portugal in 2020 [42]. The scale is also 1:100,000.

The geodesic reference systems in the archipelago are different. In the Canary Islands,
the projection is UTM and zone 27 and 28, being its EPSG (European Petroleum Survey
Group) codes 4082 and 4083. So, for the Azores archipelago that also uses UTM projection,
the EPSG code is 5015 in zone 26. In the case of the Madeira Archipelago, the EPSG code
corresponds to 5016 in zone 28.
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In this regard, EuroGeographics, where the Cartographic and Cadastral Agencies
of the various European countries are represented, and the Joint Research Centre of the
European Commission (EC), decided in December 2000 to entrust CERCO’s No.8 working
groups (Commission European des Responsible for Cartographie Officielle (French)) and
EUREF (European Reference Frame) transformations with complete development of the
technical details of the conventional Coordinate Reference System for Europe, to be adopted
by the EC. Accordingly, recommendations to the European Commission [43] turned out
to be: (1) Adopt ETRS89 as a geodetic datum and (2) Host, for statistical analysis and
presentations, the ETRS89-Azimuth Equiarea coordinate system of Lambert-2001 (ETRS-
LAEA) [44]. The ETRS-LAEA is based on the projection of equivalent areas in the territory.
In this way, it serves as a reference for homogeneous units for all European countries. As a
result, this coordinate system is used for the representation of analytical and statistical data.

In fact, this work intends to compare the area obtained from the uses of CLC in 1990,
2000, 2006, 2012, and 2018 in the archipelagoes of the Canary Islands, Azores, and Madeira.
As a result, from Feature Manipulation Engine 2020.2 (FME) software developed by the
company SAFE software, all layers of information were transformed to ETRS89-LAEA.

Subsequently, all layers were managed using ArcGIS 10.5 software. Initially, in the
administrative divisions’ representative layers, the islands corresponding to the archipela-
goes to be studied were selected. Three layers of information were obtained, one layer for
each archipelago. These layers were then merged into a single layer. This was possible
because all layers used the same graphical rendering features, that is, polygons. Thus, a
single layer was obtained with the delimitation of the work area. Then, geoprocessing
the previous layer corresponding to the islands’ administrative delimitations and the CLC
layer corresponding to 1990 were related, using the clip tool. In this case, two layers are
related to polygonal graphic features. Moreover, a resulting layer with polygons containing
the land-use CLC in 1990 included in the various administrative divisions of the islands,
including the islands and municipalities was obtained. The associated alpha-numeric
information has three fundamental fields: (1) the CLC code of each polygon, (2) the island
on which the CLC land-use representative polygon is located, and (3) the municipality
where each registered land-use is located. However, there was no field corresponding to the
surface occupied by each of the polygons representative of the CLC land-uses within each
administrative division. Thus, a geometric measurement on the ETRS89-LAEA projection
in hectares of each of the various polygons representing land-uses within each municipality
analyzed was carried out. To this aim, a new field of information was generated, and with
this, the area was geometrically calculated in hectares.

This procedure linking the islands’ administrative divisions and land-uses for 1990
was also repeated for 2000, 2006, 2012, and 2018. In this way, a table of information was
obtained for each of the years analyzed. The alphanumeric information obtained for each
previous year was then exported and integrated into a Microsoft Access-managed database
belonging to the Microsoft Office 365 package.

Moreover, a query was made using a structured query language (SQL) to select land-
uses for each of the islands in 1990. Then, the previous query was queried by CLC codes of
the registered hectares, also using SQL. So, a table was obtained with the CLC land-uses
and the corresponding hectares on each of the islands for 1990, 2000, 2006, 2012, and 2018.
Then, to compare the area obtained on each of the islands and archipelagos, it was necessary
to normalize the data. Thus, the percentage occupied by each of the land-uses classified
according to the CLC code was calculated relative to the total area of the corresponding
archipelago for the first and third CLC level.

The calculation of landscape fragmentation analysis was then performed. For this
purpose, CLC land-uses were used for the archipelagoes studied in 1990 and 2018. First, for
each of the three archipelagoes considered, ArcGIS 10.5 software transformed the polygon
vector layer representative of CLC land-uses to a raster file in TIF format with 30 m of
cell size, using the CLC level 3 naming value for the output raster file. Subsequently, the
TIFF file (.tif) was exported to an ERDAS Imagine grid (.img) file. Then, reviewing the
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alphanumeric information associated with the latter raster file, a text file was generated
with the class descriptors.

Once all this information was prepared, the FRAGSTATS 4.2 software was used to
perform patch metrics, class metrics, and landscape metrics using the eight-cell neighbor-
hood rule.

In this regard, the calculations are applied to each fragment individually, to each
polygon representing a land-use according to level 3 of the CLC. In this way, indexes
obtained with these metrics can be interpreted as fragmentation indexes because they
measure the configuration of a particular patch type.

In our case, aggregation measures such as Euclidean Nearest-Neighbor Distance (ENN)
equals the distance (m) to the nearest-neighboring patch of the same type. ENN = hij, where
hij. is the distance (m) from patch to nearest-neighboring patch of the same type (class), based
on patch edge-to-edge distance, computed from cell center to cell center.

In addition to the standard patch metrics, FRAGSTATS 4.2 computes several deviation
statistics for each patch that measures how much it deviates from the class or landscape
norm. For this reason, through the before metric which was obtained by the standard
deviations from the landscape mean (LSD): the value of the metric (x) for the focal patch (ij)
minus the mean of the metric across all patches in the landscape divided by the landscape
standard deviation:

LSD =
xij − x

s
(1)

where:

xij = value of a patch metric for patch ij.
x = mean value of the corresponding patch metric across all patches in the landscape.
s = standard deviation of the corresponding patch metric for all patches in the landscape.

Specifically, the distance between the different patches can be valuable information,
based on the basis that greater isolation implies a reduction in the chances of harboring or
maintaining a greater degree of biological diversity [44–46]. On the one hand, it provides
information about the feasibility for species to survive and travel between the different
elements to preserve their ecological value. On the contrary, it can also help eradicate
species that have generated a pest. For this reason, corridors that allow the connection
between patches play a fundamental role and reduce the distance effect that determines
the presence of fewer species in isolated fragments [47].

As for class metrics, the calculations apply to each set of fragments of the same class,
that is, those with the same value or that represent the same type of land-use, in our case.
It is the appropriate level for calculating which area occupies a specific soil cover, such as
forests, or the average extent occupied by forest fragments.

In this case, shape metrics were performed as the arithmetic mean of the shape index
equals patch perimeter (given in the number of cell surfaces) divided by the minimum
perimeter (given in the number of cell surfaces) possible for a maximally compact patch (in
a square raster format) of the corresponding patch area.

SHAPE =
pij

min pij
(2)

where:

pij = perimeter of patch ij in terms of a number of cell surfaces.
min pij = minimum perimeter of patch ij in terms of number of cell surfaces.

If aij is the area of patch ij (in terms of number of cells) and n is the side of a largest
integer square smaller than aij, and m = aij − n2, then the minimum perimeter of patch ij,
min-pii will take one of the three forms [48,49]:

min − pii = 4n when m = 0, or
min − pii = 4n + 2 when n2 < aij ≤ n(1 + n), or
min − pii = 4n + 4 when aij ≥ n(1 + n).
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In addition, the calculation of the arithmetic mean of the fractal dimension index was
executed that calculates the degree of complexity of each fragment from the relationship
between area and perimeter:

FRAC =
2 ln

(
25 pij

)
ln aij

(3)

where:

pij = perimeter (m) of patch ij.
aij = area (m2) of patch ij.

The shape of fragments is of paramount importance and is sometimes even considered
more relevant than dimension. The form is conditioned by human activity and natural
conditions such as topography. Thus, the mastery of natural conditions favors curvilin-
ear and irregular forms. On the contrary, the mastery of human activity promotes the
diversification of forms. Intense human activity implies a simplification of variability [50].

Finally, the number of patches was calculated—the number of total fragments and the
number of fragments of each class since the number of tiles is the most straightforward
metric that can explain the extent to which land-use is divided or fragmented.

Concerning land metrics, calculations apply to the landscape as a whole, that is, to
all fragments and classes at once. The result informs us of the degree of heterogeneity
or homogeneity of the whole area quantified. In our case, two diversity measures were
carried out. Firstly, the Shannon’s Diversity Index (SHDI) values landscape diversity, i.e.,
heterogeneity, based on fragment diversity. Its absolute value is not very significant, but it
helps to compare different landscapes or the same landscape at different events of time:

SHDI = −
m

∑
i=1

(PilnPi)

where Pi = proportion of the landscape occupied by patch type (class) i.
SHDI equals, minus the sum, across all patch types, of the proportional abundance of

each patch type multiplied by that proportion. Note, Pi is based on total landscape area (A)
excluding any internal background present.

Secondly, the Shannon’s Everness Index (SHEI) was calculated which is a reverse
index of the previous one, both at the calculation and interpretation level, based on land-
scape homogeneity:

SHEI =
−∑m

i=1(PilnPi)

lnm
(4)

where:

Pi = proportion of the landscape occupied by patch type (class) i.
m = number of patch types (classes) present in the landscape, excluding the landscape
border if present.

In this case, the SHEI will be applied to assess uniformity in land-uses in each of the
archipelagoes.

3.1. The Macaronesia Region

The three archipelagos (Figures 1–3) share regional features: a volcanic origin, a con-
trasting landscape, and a gentle climate. These features have created an ideal environment
for vibrant biodiversity [51]. The name Macaronesia is derived from the Greek words
meaning "islands of the fortunate." Ancient Greek geographers first used the name to refer
to any islands west of the Strait of Gibraltar. Macaronesia is a collection of four volcanic
archipelagos in the North Atlantic Ocean, off Europe and Africa. Each archipelago is made
up of several Atlantic oceanic islands formed by seamounts on the ocean floor and have
peaks above the ocean’s surface.
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Figure 1. Macaronesia Region: The Canarias.

Figure 2. Macaronesia Region: The Azores.

Figure 3. Macaronesia Region: Madeira.

Some of the Macaronesian islands belong to Portugal, some belong to Spain, and the
rest belong to Cape Verde. Geologically, Macaronesia is part of the African tectonic plate.
Some of its islands—the Azores—are situated along the edge of that plate when it abuts
the Eurasian and North American plates. According to the European Environment Agency,
the three European archipelagos constitute a unique biogeographic realm known as the
Macaronesian Region (Figure 4). Entirely volcanic, the Macaronesian islands share a gentle
climate and offer a wide variety of landscapes. The large calderas, jagged mountains and
cliffs, broad valleys, and sheltered bays are home to various species and habitats. The
islands may represent a mere 0.3% of the EU territory, but they host 19% of the habitat
types and 28% of all the plants listed in the Habitats Directive [51].
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Figure 4. Macaronesia Region location map (adapted from [52]).

Macaronesian islands are volcanic in origin and are thought to be the product of
several geologic hotspots. The Macaronesian islands represent a wide range of climates.
The annual average maximum temperatures in the Canary Islands range from 24 ◦C in
coastal areas to values below 10 ◦C in the Pico de Teide. The annual average maximum
air temperature in the Azores and Madeira is between 12 ◦C and 14 ◦C in higher altitudes
and below 8 ◦C in Ponta do Pico on Pico Island in the Azores. The highest maximum air
temperature values in the Azores, above 20 ◦C, occur in some coastal areas of São Miguel,
Santa Maria, Terceira, Graciosa, and Pico. In Madeira, the highest average maximum air
temperature values are also above 20 ◦C in coastal regions of Madeira and in almost the
entire island of Porto Santo, where values are even higher than 22 ◦C in the southern and
north-western coastal strip of the island of Madeira [53–58].

There are maritime temperate, the Mediterranean, and subtropical climates in the
Azores and Madeira; the Mediterranean and subtropical climates in some of the Canary
Islands; arid climates in certain geologically older islands of the Canaries (notably Lanzarote
and Fuerteventura) and some of the islands of the Madeira Archipelago (Selvagens and
Porto Santo) and Cape Verde (Sal, Boa Vista, and Maio); and a tropical climate in the
younger islands of both of the southernmost archipelagos (Santo Antão, Santiago, and
Fogo in Cape Verde). In some locations, there are variations in climate due to the rain
shadow effect. Macaronesia’s laurisilva forests are a type of mountain cloud forest [51] with
relict plant species of a vegetation type that originally covered much of the Mediterranean
Basin when the climate of that region was more humid. Many of these plant species
are endemic and have evolved to adapt to the islands’ variable climatic conditions. For
example, the Laurisilva of Madeira is the largest surviving relict of a virtually extinct laurel
forest type, once widespread in Europe. It is still 90% primary forest and is a center of
plant diversity, containing a unique suite of rare and relict plants and animals, especially
endemic bryophytes, ferns, vascular plants, and animals, the Madeiran long-toed pigeon,
and a vibrant invertebrate fauna [59,60].

Much of the original native vegetation has been displaced because of human activity,
including felling forests for timber and firewood, clearing vegetation for grazing and
agriculture, and introducing foreign plants and animals into the islands. The laurisilva
habitat has been reduced to small disconnected pockets. As a result, many of the endemic
biotas of the islands are now seriously endangered or extinct.

Since 2001, the European Union’s conservation efforts, mandated by its Natura 2000
regulations [51], have protected large stretches of land and sea in the Azores, Madeira, and
the Canary Islands, totaling 5000 km2.
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All archipelagos are outermost regions that are far from the countries or continent
to which they belong, which requires special treatment to achieve the connection and
development of these territories’ economies.

The European Archipelagos of Macaronesia Region

Azores
The Azores are an archipelago formed by nine islands, which constitute an au-

tonomous region of Portugal. Its official language is Portuguese, and it has approximately
250,000 inhabitants in its 2.333 square kilometers of land. The largest island is São Miguel,
where more than half of the Azores archipelago population is gathered, whose main city is
Ponta Delgada.

The Azorean climate, relief, and rich soils are particularly suitable for agriculture, and
the islands are now heavily deforested: only 2% of the original laurel forests remain [40].
The endemic Azores bullfinch (Pyrrhula murina) was once a common feature of the native
forests and saw its population plummet to 120 pairs. However, it is now on the road to
recovery thanks to an EU LIFE project that has now caused the population to treble [51].

Madeira
It is an archipelago that is part of Portugal, formed by only two inhabited islands,

Madeira and Porto Santo, with more than 260,000 inhabitants in an extension of 828 square
kilometers. Three smaller islands that are not inhabited are also part of the archipelago.

Agriculture is the mainstay of Madeira’s economy but has remained mainly small-scale
due to the rugged landscape. Tourism is becoming increasingly important, generating 10%
of the island’s GDP and employing a significant proportion of the 250,000 islanders [51].

Canary Islands
The Canary Islands are formed by seven islands, subdivided into two provinces, being

one of Spain’s autonomous communities. On the archipelago’s whole lives approximately
2,200,000 people in an extension of 7500 square kilometers, the most populated island being
that of Gran Canaria, followed by Tenerife.

Tourism is the most important economic activity. Mixed and terraced farming is still
practiced inland but has rapidly disappeared, replaced by the tropical and forced crops
for the export market, accounting for 75% of the agricultural end production; 18,000 ha of
highly fragmented laurel forest remain. Only 6000 ha correspond to mature forest [51].

4. Results

Bearing in mind the land occupation analyzed categories, it was possible to group the
results. In the first phase, the number of land-uses has been defined in each of the studied
years for each of the European Archipelagos of Macaronesia Region (Sections 4.1–4.3). After, in
Section 4.4, it is conceivable to comprehend how the archipelagos’ land-use change dynamics
could be associated among them.

4.1. The Azores Archipelago

This section presents the analysis of the most relevant and specific land-uses in the
Azores archipelago (Tables 2 and 3, and Figures 5–8).

Table 2. Percentage of land-uses according to level 1 of CLC nomenclature in the Autonomous
Region of the Azores.

CODE 1990 2000 2006 2012 2018

1. Artificial surfaces 2.90% 3.41% 4.98% 5.13% 5.22%

2. Agricultural areas 57.17% 56.34% 54.43% 54.22% 54.62%

3. Forests and semi-natural areas 36.04% 36.38% 36.72% 36.78% 36.55%

4. Wetlands 2.36% 2.33% 2.33% 2.33% 2.08%

5. Water bodies 1.54% 1.54% 1.54% 1.54% 1.53%

The highest values found are in bold.
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Table 3. Percentage of land-uses according to level 3 of CLC nomenclature in the Autonomous
Region of the Azores.

CODE 1990 2000 2006 2012 2018 2018–1990

111 0.05% 0.05% 0.05% 0.05% 0.05% 0.00%

112 1.86% 2.16% 3.63% 3.71% 3.77% 1.91%

121 0.24% 0.35% 0.37% 0.44% 0.45% 0.21%

122 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

123 0.04% 0.04% 0.03% 0.04% 0.04% 0.00%

124 0.44% 0.44% 0.45% 0.46% 0.47% 0.03%

131 0.07% 0.11% 0.15% 0.16% 0.18% 0.11%

132 0.01% 0.07% 0.04% 0.04% 0.03% 0.02%

133 0.01% 0.03% 0.05% 0.01% 0.01% 0.00%

141 0.07% 0.07% 0.07% 0.07% 0.07% 0.00%

142 0.10% 0.10% 0.13% 0.15% 0.14% 0.04%

211 3.87% 3.83% 4.03% 4.11% 4.98% 1.11%

212 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

213 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

221 0.59% 0.35% 0.35% 0.35% 0.63% 0.04%

222 0.01% 0.01% 0.01% 0.01% 0.01% 0.00%

231 24.83% 24.56% 24.96% 24.74% 24.73% −0.10%

241 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

242 7.25% 6.92% 6.12% 6.13% 5.80% −1.45%

243 20.62% 20.67% 18.96% 18.89% 18.47% −2.15%

244 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

311 9.36% 9.57% 9.40% 9.38% 9.88% 0.52%

312 3.63% 4.10% 4.35% 4.45% 4.11% 0.48%

313 0.89% 0.95% 1.02% 1.02% 1.01% 0.12%

321 8.02% 7.97% 7.87% 7.76% 7.38% −0.64%

322 8.65% 8.63% 8.42% 8.42% 9.10% 0.45%

323 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

324 4.41% 4.08% 4.62% 4.72% 4.10% −0.31%

331 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

332 0.25% 0.25% 0.25% 0.25% 0.25% 0.00%

333 0.82% 0.82% 0.79% 0.78% 0.72% −0.10%

334 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

411 0.02% 0.02% 0.02% 0.02% 0.02% 0.00%

412 2.34% 2.32% 2.32% 2.31% 2.06% −0.28%

422 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

512 0.40% 0.40% 0.40% 0.40% 0.40% 0.00%

521 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

523 1.13% 1.13% 1.13% 1.13% 1.13% 0.01%

The highest values found are in bold.
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Figure 5. Percentage of land-uses according to level 1 of CLC nomenclature in the Autonomous
Region of the Azores.

Figure 6. Percentage of land-uses according to CLC nomenclature in the Autonomous Region of
the Azores.
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Figure 7. Thematic cartography regarding the land-use changes in the Azores Archipelago Eastern
group in the year 1990.

Figure 8. Thematic cartography regarding the land-use changes in the Azores Archipelago Eastern
group in the year 2018.

By analyzing Table 2 and Figure 5, it is possible to verify the significant increase in
the artificial surfaces (Code 1) in the Azores Region between 1990 and 2018. In fact, the
variation of this land occupation around 2.30%. Additionally, the decrease in agricultural
areas in the period 1990–2018 is evident—with a variation of 2.55%. A slight increase was
noticed in forests and semi-natural areas—a reduction of 0.23% if we consider the highest
value in 2012 to the present. A decreased tendency is also found in the land occupation
related to wetlands—with a decrease of 0.28%, between 1990 to 2018. Furthermore, an
insignificant decrease was identified regarding the water bodies from 1990 to 2018—a
variation of 0.01%.

In Table 3 and Figure 6, it is possible to analyze in detail the land-use changes in
the Azores Autonomous Region. In this regard, if we consider the period between 1990
and 2018, the most significant difference occurs in CLC-243 (Land principally occupied by
agriculture, with significant natural vegetation areas) with a reduction of 2.15%. The second
significant difference occurs in CLC-112 (Discontinuous urban fabric), with an increase of
1.91%. The third significant difference corresponds to CLC-242 (Complex cultivation) with a
reduction of 1.45%. Finally, the fourth significant difference falls on CLC-211 (Non-irrigated
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arable land), increasing 1.11%. Besides these, we have CLC-121 (Industrial or commercial
units), CLC-124 (Airports), CLC-131 (Mineral extraction sites), CLC-211 (Non-irrigated
arable land)—with variations of 1.91%, 0.21%, 0.03%, 0.11%, and 1.11%, respectively. On
the other hand, it is also possible to identify other important reductions in the land-use
over the years in the Azores Archipelago, as is the case of CLC-133 (Construction sites) and
CLC-312 (Coniferous forest)—with decreases of 0.04%, 2.20%, and 0.34%.

For a more accurate analysis of the results, thematic cartography was created for the
three regions within the Azorean Archipelago (Western, Central, and Eastern), for the
initial period (1990) and the last period (2018) (Appendix A). The following shows the
thematic cartography for the Eastern Group of Azores Archipelago, once it is where the
Capital Island (São Miguel) is located (Figures 7 and 8).

4.2. The Madeira Archipelago

This section presents the analysis of the most relevant and specific land-uses in the
Madeira Archipelago (Tables 4 and 5, Figures 9–12, and Appendix B).

Throughout the analysis of Table 4 and Figure 9, it is possible to find an increase of
4.85% in the artificial surfaces (between 1990 and 2018) in the Madeira Region; however, the
highest results were identified in 2012 with more than 0.25% of the surface in comparison
with the current period. Additionally, another increase is noticed in forests and semi-
natural areas—showing a variation of 1.35%, if we consider the initial period (1990) and
the final period (2018). Moreover, the results show a significant reduction of 5.58% in the
agricultural surfaces (from 1990 to 2018). Another decrease was found in the land cover
classified as water bodies, with a reduction of 0.61% (between 1990 and 2018).

Table 5 and Figure 10 show with greater detail the land-use changes in the Madeira
Autonomous Region. Contextually, if we consider the period between 1990 and 2018, the
most significant differences in land-use are CLC-322 (Moors and heathland) and CLC-112
(Discontinuous urban fabric) 5.62% and 3.73%, respectively. On the contrary, the most
significant decreases are for land-uses of CLC-313 (Mixed forest) and CLC-311 (Broad-
leaved forest), with 3.46% and 1.78%, respectively. Besides, the obtained results evidence
considerable increases in the surfaces of land occupations in CLC-111 (Continuous urban
fabric), CLC-121 (Industrial or commercial units), CLC-131 (Mineral extraction sites), CLC-
142 (Sport and leisure facilities), CLC-324 (Transitional woodland shrub), and CLC-332
(Bare rock)—with variations of 0.11%, 0.34%, 0.15%, 0.36%, 5.62%, 1.33%, and 1.55%,
respectively. Contrarily, if we focus on the period between 1990 and 2018, it is also possible
to find concerning reductions in the land-use over the years in the Madeira Region, as is the
case of CLC-222 (Fruit trees and berry plantations), CLC-231 (Pastures), CLC-241 (Annual
crops associated with permanent crops), CLC-242 (Complex cultivation), CLC-243 (Land
occupied by agriculture), CLC-312 (Coniferous forest), and CLC-523 (Sea and ocean)—with
decreases of 0.43%, 0.44%, 0.94%, 1.80%, 1.47%, 1.67%, 3.46%, and 0.61%. Additionally,
other reductions should be highlighted as is the case of the CLC-211 and CLC-212 and
CLC-333 (from 2000 to 2018); and CLC-334 (from 2012 to 2018).

Additionally, with the results, thematic cartography was created for the Madeira Island
for the initial period (1990) and the last period (2018) (Appendix B and Figures 11 and 12).

Table 4. Percentage of land-uses according to level 1 of CLC nomenclature in the Autonomous
Region of Madeira.

CODE 1990 2000 2006 2012 2018

1. Artificial surfaces 10.11% 14.30% 15.20% 15.21% 14.96%

2. Agricultural areas 19.41% 16.25% 14.26% 14.29% 13.83%

3. Forests and semi-natural areas 69.45% 68.45% 70.12% 70.08% 70.80%

4. Wetlands 0.00% 0.00% 0.00% 0.00% 0.00%

5. Water bodies 1.02% 1.00% 0.42% 0.42% 0.41%

The highest values found are in bold.
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Table 5. Percentage of land-uses according to CLC nomenclature in the Autonomous Region
of Madeira.

CODE 1990 2000 2006 2012 2018 2018–1990

111 0.21% 0.21% 0.30% 0.30% 0.32% 0.11%

112 9.43% 13.05% 13.44% 13.48% 13.16% 3.73%

121 0.09% 0.22% 0.35% 0.40% 0.43% 0.34%

122 0.00% 0.04% 0.04% 0.04% 0.04% 0.04%

123 0.02% 0.03% 0.03% 0.03% 0.04% 0.02%

124 0.25% 0.30% 0.30% 0.30% 0.30% 0.05%

131 0.00% 0.00% 0.15% 0.15% 0.15% 0.15%

132 0.00% 0.04% 0.08% 0.06% 0.06% 0.06%

133 0.07% 0.15% 0.13% 0.06% 0.06% -0.01%

141 0.04% 0.04% 0.04% 0.04% 0.04% 0.00%

142 0.00% 0.21% 0.32% 0.35% 0.36% 0.36%

211 0.15% 0.15% 0.04% 0.04% 0.04% −0.11%

212 0.48% 0.48% 0.04% 0.04% 0.04% −0.44%

213 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

221 0.17% 0.17% 0.18% 0.21% 0.19% 0.02%

222 0.74% 0.45% 0.31% 0.31% 0.31% −0.43%

231 0.95% 0.92% 0.34% 0.34% 0.51% −0.44%

241 0.94% 0.92% 0.25% 0.25% 0.00% −0.94%

242 4.94% 3.14% 2.83% 2.80% 3.42% −1.52%

243 10.80% 9.56% 10.28% 10.32% 9.33% −1.47%

244 0.24% 0.45% 0.00% 0.00% 0.00% −0.24%

311 20.42% 20.21% 20.43% 18.92% 18.64% −1.78%

312 5.79% 5.64% 5.20% 4.65% 4.12% −1.67%

313 14.06% 13.81% 13.00% 11.86% 10.60% −3.46%

321 9.03% 8.88% 9.79% 9.42% 9.78% 0.75%

322 10.78% 10.70% 11.01% 9.33% 16.40% 5.62%

323 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

324 6.52% 6.30% 6.22% 5.56% 7.85% 1.33%

331 0.12% 0.12% 0.12% 0.12% 0.06% −0.06%

332 0.30% 0.30% 1.85% 1.85% 1.85% 1.55%

333 2.42% 2.42% 2.27% 2.27% 1.47% −0.95%

334 0.00% 0.06% 0.23% 6.09% 0.04% 0.04%

411 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

412 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

422 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

512 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

521 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

523 1.02% 1.00% 0.42% 0.42% 0.41% −0.61%

The highest values found are in bold.
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Figure 9. Percentage of land-uses according to level 1 of CLC nomenclature in the Autonomous
Region of Madeira.

Figure 10. Percentage of land-uses according to CLC nomenclature in the Autonomous Region
of Madeira.
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Figure 11. Thematic cartography regarding the land-use changes in the Madeira Archipelago in the
year 1990.

Figure 12. Thematic cartography regarding the land-use changes in the Madeira Archipelago in the
year 2018.

4.3. The Canary Archipelago

The current section shows the obtained outcomes of the most relevant and specific
land-uses in the Canary Archipelago (Tables 6 and 7, Figures 13–16, and Appendix C).

Table 6. Percentage of land-uses according to level 1 of CLC nomenclature in the Autonomous
Community of the Canary Islands.

CODE 1990 2000 2006 2012 2018

1. Artificial surfaces 4.14% 4.50% 6.05% 6.11% 6.23%

2. Agricultural areas 22.63% 22.59% 16.52% 16.51% 19.99%

3. Forests and semi-natural areas 72.12% 71.79% 76.35% 76.29% 72.69%

4. Wetlands 0.00% 0.00% 0.00% 0.00% 0.00%

5. Water bodies 1.10% 1.10% 1.07% 1.07% 1.08%

The highest values found are in bold.
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Table 7. Percentage of land-uses according to CLC nomenclature in the Autonomous Community of
the Canary Islands.

CODE 1990 2000 2006 2012 2018 2018–1990

111 2.20% 2.45% 1.40% 1.42% 1.39% −0.81%

112 0.85% 0.89% 2.57% 2.63% 3.01% 2.16%

121 0.24% 0.36% 0.57% 0.61% 0.70% 0.46%

122 0.00% 0.01% 0.00% 0.00% 0.05% 0.05%

123 0.06% 0.07% 0.09% 0.09% 0.09% 0.03%

124 0.17% 0.18% 0.23% 0.23% 0.22% 0.05%

131 0.15% 0.16% 0.25% 0.25% 0.29% 0.14%

132 0.01% 0.01% 0.02% 0.01% 0.02% 0.01%

133 0.36% 0.28% 0.60% 0.51% 0.11% −0.25%

141 0.02% 0.02% 0.03% 0.03% 0.03% 0.01%

142 0.07% 0.09% 0.29% 0.32% 0.34% 0.27%

211 13.44% 13.37% 3.19% 3.18% 3.14% −10.30%

212 1.14% 1.20% 2.40% 2.40% 1.77% 0.63%

213 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

221 2.15% 2.16% 1.33% 1.33% 1.34% −0.81%

222 1.75% 1.71% 2.07% 2.07% 1.85% 0.10%

231 3.25% 3.24% 2.07% 2.05% 1.97% −1.28%

241 0.00% 0.00% 0.12% 0.12% 0.11% 0.11%

242 0.00% 0.00% 1.20% 1.20% 2.45% 2.45%

243 0.91% 0.91% 4.15% 4.15% 7.35% 6.44%

244 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

311 1.36% 1.36% 2.49% 2.49% 2.46% 1.10%

312 10.48% 10.46% 11.21% 11.08% 11.03% 0.55%

313 0.00% 0.00% 0.47% 0.47% 0.59% 0.59%

321 0.00% 0.00% 2.01% 2.01% 2.63% 2.63%

322 2.99% 2.99% 0.38% 0.38% 1.07% −1.92%

323 44.95% 44.69% 15.75% 15.72% 7.26% −37.69%

324 0.00% 0.00% 0.81% 0.90% 1.41% 1.41%

331 1.68% 1.68% 1.75% 1.75% 1.63% −0.05%

332 4.87% 4.87% 10.57% 10.57% 10.51% 5.64%

333 5.78% 5.75% 30.78% 30.76% 33.92% 28.14%

334 0.00% 0.00% 0.12% 0.18% 0.18% 0.18%

411 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

412 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

422 0.01% 0.01% 0.01% 0.01% 0.01% 0.00%

512 0.01% 0.01% 0.02% 0.02% 0.02% 0.01%

521 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

523 1.09% 1.09% 1.05% 1.05% 1.05% −0.04%

The highest values found are in bold.
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Figure 13. Percentage of land-uses according to level 1 of CLC nomenclature in the Autonomous
Community of the Canary Islands.

Figure 14. Percentage of land-uses according to CLC nomenclature in the Autonomous Community
of the Canary Islands.
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Figure 15. Thematic cartography regarding the land-use changes in the Canary Archipelago in the
year 1990.

Figure 16. Thematic cartography regarding the land-use changes in the Canary Archipelago in the
year 2018.

Table 6 and Figure 13 show the highest increase (2.09%) in the artificial surfaces
(between 1990 and 2018) in the Canary Islands. Moreover, in forests and semi-natural areas,
another increase was verified—with a variation of 0.57% (in the period 1990–2018). If we
focus on reducing land occupation in the same periods, the most significant decrease was
identified in agricultural areas (reducing 2.64%). In this sense, there was also a reduction of
0.02% in water bodies from 1990 to 2018.

Contextually, through the analysis of Table 7 and Figure 14, we can perceive the land-
use changes in the Canary Archipelago with greater detail. Regarding the period between
1990 and 2018, the most significant differences are produced by a considerable reduction
of 37.69% in CLC-323 (Sclerophyllous vegetation) and 10.30% in CLC-211 (Non-irrigated
arable land). However, a considerable increase of 28.14% corresponds to CLC-333 (Sparsely
vegetated areas) followed by a 6.44% increase equivalent to CLC-243 (Land principally
occupied by agriculture). Besides, the collected results show substantial increases in the
surfaces of land occupations CLC-112 (Discontinuous urban fabric), in CLC-121 (Industrial
or commercial units), CLC-131 (Mineral extraction sites), CLC-142 (Sport and leisure
facilities), CLC-242 (Complex cultivation), CLC-313 (Mixed forest), CLC-321 (Natural
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grassland), CLC-324 (Transitional woodland shrub), and CLC-334 (Burnt areas)—with
variations of 2.16%, 0.46%, 0.14%, 0.27%, 2.45%, 6.44%, 0.59%, 2.63%, 1.41%, 28.1%, and
0.18%, respectively. Contrarily, suppose we focus on the land-use cover reductions between
1990 and 2018 on this archipelago. In that case, it is possible to highlight the following
CLC-231 (decrease of 1.28%). In this sense, if we consider the period between 2000–2018,
some decreases in the land covers should be noticed, as CLC-111 (reduction of 1.06%),
CLC-221 (reduction of 0.82%), and CLC-322 (reduction of 1.92%). Moreover, the reduction
of 0.49% in CLC-133 (Dump sites) is evident between 2006 and 2018. Finally, between 2012
and 2018 there was also two other reductions in CLC-212 and CLC-222.

Furthermore, based on the results, thematic cartography was created for the Canary
Islands for the initial period (1990) and the last period (2018) (Appendix C). Contextually,
the thematic cartography for the most populated island of the Canary Archipelago, Tenerife,
is shown (Figures 15 and 16).

4.4. Land-Use Change Associations

The present section was created to further comprehend how the archipelagos’ land-use
change dynamics could be associated.

Therefore, the correlation in the land-uses in each of the archipelagos was performed
using the percentage land-use varies according to the CLC code by using R software.

Subsequently, considering a confidence level of 95% and n < 30, the normality of the
data was verified using the Shapiro–Wilk test. The values obtained are less than 0.05; as a
consequence, normality is discarded. Therefore, a non-parametric test was performed, with
ordinal data, considering the covariation hypothesis to determine the Spearman correlation
matrix—both for land-uses at level 1.

Based on the previous tables, the strength of negative or positive association between
the variables corresponding to the percentage of surface intended for certain level 1 land-
uses can be analyzed according to CLC between 1990 and 2018. Initially, it can be observed
that the strength of the association is always equal to or greater than moderate (0.40–0.59);
there are even strong correlation values (0.60–0.79), and very strong (0.80–1.00), whether
we consider strong or very strong partnerships. Firstly, land-use in agricultural areas
declined between 1990 and 2012, at 2.95%, equivalent to 6913.45 hectares, as land-uses
identified as artificial surfaces and forest and semi-natural areas increased to 2.23% and
0.74%, equivalent to 5231.58 and 1746.21 hectares, respectively. Additionally, artificial
surfaces increased slightly between 2012 and 2018, 0.09% equivalent to 214.73 hectares
when water bodies were reduced—0.001%, 3.82 hectares. Secondly, artificial surfaces
gradually increased throughout the period analyzed—2.32%, 5454.38 hectares, when forest
and semi-natural areas decreased between 2012 and 2018—0.51%, 1200.46 hectares, and
previously due to the loss of other land-uses. Thirdly, forest and semi-natural areas
increased between 1990 and 2012—0.74%, 1746.21 hectares, when the extent of Artificial
surfaces land-use increased—2,23%, 5239.65 hectares, over the same period. Fourthly, the
surface of the water bodies remains virtually unchanged. Although, it descends slightly
between 2012 and 2018—0.002% 4.01 hectares, due to the increase of artificial surfaces.
Finally, wetlands have declined— 0.28%, 664.89 hectares, along those analyzed by the
increase in artificial surfaces (Table 8 and Appendix D).

Table 8. Spearman’s rank correlation coefficient in the Azores Archipelago.

Agr Art For Wat Wet Acronym CORINE Land Cover
Nomenclature

Agr 1.0 −0.7 −1.0 0.7 0.5 Agr Agricultural areas

Art −0.7 1.0 0.7 −1.0 −0.9 Art Artificial surfaces

For −1.0 0.7 1.0 −0.7 −0.5 For Forests and semi-natural areas

Wat 0.7 −1.0 −0.7 1.0 0.9 Wat Water bodies

Wet 0.5 −0.9 −0.5 0.9 1.0 Wet Wetlands
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Regarding the Madeira Archipelago (Table 9 and Appendix E), we have consid-
ered strong, and very strong relationships between variables, where the interpretation of
Tables 5 and 10 was performed. Firstly, agricultural areas have declined over the years
analyzed—5.12%, 4099.94 hectares, when artificial surfaces have increased between 2000
and 2012—0.91%, 726.81 hectares, and forest and semi-natural areas between 2000 and
2006—1.67%, 1338.65 hectares, and between 2012 and 2018—0.72%, 578.45 hectares. Sec-
ondly, artificial surfaces would have been dwarfed between 2012 and 2018, and throughout
the period analyzed, if the area of agricultural areas and water bodies had increased. How-
ever, these last two land-uses have been declining over the years analyzed—5.59% and
0.61%, 4477.59 and 488.12 hectares, respectively. Thirdly, forest and semi-natural areas have
increased, as it would have decreased if agricultural areas and water bodies had increased.
However, these land-uses have declined—5.59% and 0.61%, 4474.59 and 488.12 hectares,
respectively. Finally, water bodies declined over the years and were analyzed mainly due
to the increase in artificial surfaces—4.85%, 3882.34 hectares, and forest and semi-natural
areas—1.35%, 1080.37 hectares.

Table 9. Spearman’s rank correlation coefficient in the Madeira Archipelago.

Agr Art For Wat Acronym CORINE Land Cover
Nomenclature

Agr 1.0 −0.9 −0.6 0.9 Agr Agricultural areas

Art −0.9 1.0 0.3 −0.7 Art Artificial surfaces

For −0.6 0.3 1.0 −0.8 For Forests and semi-natural areas

Wat 0.9 −0.7 −0.8 1.0 Wat Water bodies

Table 10. Spearman’s rank correlation coefficient in the Canary Archipelago.

Agr Art For Wat Wet Acronym CORINE Land Cover
Nomenclature

Agr 1.0 −0.7 −0.8 1.0 −0.9 Agr Agricultural areas

Art −0.7 1.0 0.5 −0.7 0.9 Art Artificial surfaces

For −0.8 0.5 1.0 −0.8 0.6 For Forests and semi-natural areas

Wat 1.0 −0.7 −0.8 1.0 −0.9 Wat Water bodies

Wet −0.9 0.9 0.6 −0.9 1.0 Wet Wetlands

Concerning the Canary Archipelago (Table 10 and Appendix F), firstly, agricultural
areas declined in all the years analyzed—2.64%, 19,805.77 hectares, due to the increase in
artificial surfaces—2.09%, 15,687.92 hectares, by increasing forest and semi-natural areas—
4.55% 34,097.38 hectares, and wetlands—0.001%, 7.49 hectares, between 2000 and 2006.
Although, the latter land-use was slightly increased and is not appreciable in Table 7 by
using two decimal places. Secondly, artificial surfaces increased in all the years analyzed—
2.09%, 15,687.92 hectares. Thirdly, forest and semi-natural areas increased between 2000 and
2006—4.22%, 31,646.37 hectares, and decreased between 2012 and 2018—3.60%, 26,984.02
hectares. Fourthly, water bodies were reduced between 2000 and 2018—0.02%, 182.96
hectares, as artificial surfaces increased—1.73%, 12,929.45 hectares, when forest and semi-
natural areas increased between 2000 and 2006—4.55% 34,097 hectares, and between 2012
and 2018—0.12%, 867.34 hectares. Finally, wetlands remain virtually unchanged.

4.5. Results of Landscape Fragmentation Analysis

Regarding the results obtained from landscape fragmentation analysis (FRAGSTATS),
it should be noted for the patch analysis level that Euclidean nearest-neighbor distance is
perhaps the most straightforward patch context being used extensively to quantify patch
isolation. Here, the nearest-neighbor distance is defined using simple Euclidean geometry
as the shortest straight-line distance between the focal patch and its nearest-neighbor of the
same class. ENN approaches 0 as the distance to the nearest- neighbor decreases. This index
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provides more information about the structure of the set and some of the vital importance
in its dynamics and function. A decrease in its values can result in new fragments in the
case of very isolated soil-uses. On the contrary, their increase can mean the aggregation of
multiple fragments that were nearby.

The minimum ENN is constrained by the cell size and is equal to twice the cell size
when the 8-neighbor patch rule is used. ENN is undefined and reported as “N/A” in the
“basename”.patch file if the patch has no neighbors.

In the case of the Autonomous Region of Azores (Appendix G and Table 11), in 1990,
only four patches had no neighbors; these corresponded to land-uses 222 (permanent
crops), 333 (sparsely vegetated areas), and 221 (vineyards). In addition, the patch that had
the highest value of ENN and LSD, with values of 338,183.7288 and 243,076, respectively,
corresponded to a patch with land-use CLC 512 (water bodies). Therefore, it is this
land-use that has the greatest insulation. In contrast, there are several patches whose
ENN value is equal to 60 and their standard deviation is −0.1388, corresponding to 322
(Moors and heathland), 324 (Transitional woodland/shrub), 321 (Natural grassland), 112
(Discontinuous urban fabric), 211 (Non-irrigated arable land), 412 (Peat bogs), and 133
(construction sites)—these soils are the least isolated.

Table 11. Class metrics for the Autonomous Region of Azores.

1990 2018

TYPE NP SHAPE_MN FRAC_MN TYPE NP SHAPE_MN FRAC_MN

111 2 1.9487 1.1032 111 2 1.9487 1.1032

112 155 2.0913 1.0951 112 112 2.324 1.1202

121 3 1.2476 1.0356 121 21 1.6568 1.0774

123 11 1.7607 1.0875 123 14 1.8397 1.0893

124 7 1.9395 1.0986 124 8 1.9887 1.1026

131 67 1.7617 1.0796 131 10 1.4863 1.0624

132 6 1.4548 1.0594 132 2 1.2541 1.0373

133 17 1.87 1.0911 133 1 1.5556 1.0716

141 98 1.7825 1.0829 141 3 1.2415 1.0352

142 7 1.5219 1.0607 142 7 1.4744 1.0591

211 226 1.9385 1.0906 211 121 1.6826 1.0753

221 1 1.8824 1.1049 221 23 1.8637 1.0919

222 1 1.2059 1.0321 222 1 1.8824 1.1049

231 21 1.9689 1.0934 231 179 2.0588 1.0945

242 110 1.621 1.0704 242 183 1.8611 1.0894

243 108 2.0105 1.094 243 244 1.925 1.0903

311 202 1.9902 1.0989 311 128 2.059 1.0987

312 10 1.9605 1.088 312 83 1.7925 1.0816

313 4 1.4511 1.0569 313 27 2.013 1.0968

321 45 2.1118 1.1019 321 42 2.1045 1.0987

322 145 2.0762 1.1007 322 150 2.0874 1.1016

324 801 1.6223 1.085 324 105 1.7656 1.0818

332 11 2.4216 1.1279 332 5 2.3809 1.1143

333 1 1.6944 1.0857 333 6 2.5457 1.131

411 1 1.2857 1.0422 411 1 1.2857 1.0422

412 75 2.1509 1.1113 412 16 1.7019 1.0722

512 5 2.3809 1.1143 512 7 1.5219 1.0607

523 14 1.8039 1.0877 523 799 1.6235 1.0852

TYPE = land-use according to CLC nomenclature at level 3; NP = number of patches present in the landscape;
SHAPE_MN = arithmetic mean of the Shape Index; FRAC_MN = arithmetic mean of the Fractal Dimension Index.
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In 2018, there were only two patches without neighbors corresponding to land-uses
133 (Construction sites) and 222 (Fruit trees and berry plantations). In addition, the patch
with the highest ENN and LSD corresponded to the use of Soil 148, whose values were
85,939.4863 and 18.1421, respectively. On the contrary, and as in 1990, there were several
land-uses whose ENN values are the lowest and equal. The value is as before—60 for ENN
and LSD equal to −0.142, and land-uses are 322 (Moros and heathland), 523 (Sea and ocean),
321 (Natural grassland), 231 (Pastures), 243 (Land principally occupied by agriculture, with
significant areas of natural vegetation), and 112 (Discontinuous urban fabric).

About the Autonomous Region of Madeira (Appendix H and Table 12), in 1990, only
three patches had no neighbors; these corresponded to land-uses 133 (Construction sites),
141 (Green urban areas), and 111 (Continuous urban fabric). In addition, the patch that had
the highest value of ENN and LSD, with values of 66,992.1227 and 15.6451, respectively,
corresponded to a patch with land-use CLC 241 (Annual crops associated with permanent
crops), presenting the greatest insulation. In contrast, there are several patches whose ENN
value is equal to 60, and their standard deviation is −0.1691, corresponding to 321 (Natural
grassland), 322 (Moors and heathland), and 523 (Sea and ocean); these are the less isolated
soils. In 2018, there were seven patches without neighbors corresponding to land-uses 122
(Road and rail networks and associated land), 132 (Dump sites), 133 (Construction sites),
141 (Green urban areas), 211 (Non-irrigated arable land), 212 (Permanently irrigated land),
and 334 (Burnt areas). In addition, the patch with the highest ENN and LSD corresponded
to the use of Soil 231, whose values were 85,939.4863 and 18.1421, respectively. On the
contrary, and as in 1990, there are several land-uses whose ENN values are the lowest
and equal. The value is as before 60 for ENN and LSD equal to −0.1515 and land-uses
are 112 (discontinuous urban fabric), 123 (Port areas), 243 (Land principally occupied
by agriculture, with significant areas of natural vegetation), 321 (Natural grassland), 322
(Moors and heathland), and 523 (sea and ocean).

Finally, in the case of the Autonomous Community of the Canary Islands (Appendix I
and Table 13), in 1990, only four patches had no neighbors; these corresponded to land-uses
132 (Dump sites), 243 (Land principally occupied by agriculture, with significant areas of
natural vegetation), 422 (Salines) and 521 (Coastal lagoons). In addition, the patch that had
the highest value of ENN and LSD, with values of 242,710.3533 and 26.9532, respectively,
corresponded to a patch with land-use CLC 512 (Water bodies), presenting the greatest
insulation. In contrast, there are several patches whose ENN value is equal to 60 and
their standard deviation is −0.1205, corresponding to 111 (Continuous urban fabric), 112
(Discontinuous urban fabric), 123 (Port areas), and 523 (Sea and ocean)—these floors being
the least isolated. In 2018, there was only one patch without neighbors corresponding
to land-use 521 (Coastal lagoons). In addition, the patch with the highest ENN and LSD
corresponded to the use of soil 512 (Water bodies), whose values were 238,421.3833 and
28.576, respectively. On the contrary, and as in 1990, there were several land-uses whose
ENN values are the lowest and equal. The value is as before—60 for ENN and LSD
equal to −0.1466, and land-uses 111 (Continuous urban fabric), 112 (Discontinuous urban
fabric), 123 (Port areas), 211 (Non-irrigated arable land), 212 (Permanently irrigated land),
221 (Vineyards), 222 (Fruit trees and berry plantations), 242 (Complex cultivation), 243
(Land principally occupied by agriculture with significant areas of natural vegetation),
312 (Coniferous forest), 322 (Moors and heathland), 323 (Sclerophyllous vegetation), 324
(Transitional woodland/shrub), 331 (Beaches, dunes, and sand plains), 332 (Bare rock), 333
(Sparsely vegetated areas), and 523 (Sea and ocean).

Each of the soil-uses previously classified according to the CLC nomenclature for
level 3 are quantified in class metrics. In the case of the shape index, the arithmetic mean
was determined. The range of values in this index can be greater than 1 and no limit.
Additionally, if the value is equal to 1, then the patch is maximally compact and increases
without limit as the patch shape becomes more unpredictable.
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Table 12. Class metrics for the Autonomous Region of Madeira.

1990 2018

TYPE NP SHAPE_MN FRAC_MN TYPE NP SHAPE_MN FRAC_MN

111 1 2.8721 1.1489 111 3 2.0427 1.096

112 65 2.4168 1.1224 112 64 2.5642 1.1259

121 2 1.9167 1.1027 121 7 2.0104 1.1064

123 7 1.6142 1.0748 122 1 2.3684 1.1397

- - - 1.1059 123 22 1.3203 1.0537

133 1 1.5833 1.0701 124 2 2.3378 1.1216

141 1 1.3846 1.0516 131 4 1.8503 1.0992

211 1 2.3649 1.1246 132 1 1.766 1.088

212 7 1.9693 1.0972 133 1 1.8261 1.0955

221 4 2.1828 1.1239 141 1 2.3243 1.1346

222 7 2.1932 1.1139 142 4 2.1027 1.111

231 10 2.002 1.1013 211 1 1.5135 1.07

241 16 2.0334 1.1069 212 1 1.8108 1.0963

242 53 2.0648 1.1047 221 3 1.8528 1.0909

243 89 2.3001 1.1179 222 5 2.5269 1.1397

244 1 2.9783 1.1513 231 5 1.9274 1.094

311 36 2.4974 1.1204 242 61 1.9635 1.1012

312 38 2.0665 1.1014 243 111 2.2117 1.1165

313 66 2.4705 1.1227 311 49 2.1474 1.104

321 36 2.1283 1.1019 312 31 2.071 1.1014

322 54 2.2327 1.1103 313 64 2.4338 1.1234

324 66 1.9424 1.0962 321 34 2.216 1.1077

331 2 4.0851 1.1935 322 45 2.432 1.1195

332 5 2.4709 1.1368 324 51 2.0125 1.0958

333 20 2.436 1.1252 331 2 3.5745 1.1396

523 588 1.2611 1.0499 332 6 2.6791 1.1389

333 15 2.4625 1.1217

334 1 1.3333 1.0481

523 695 1.258 1.05

TYPE = land-use according to CLC nomenclature at level 3; NP = number of patches present in the landscape;
SHAPE_MN = arithmetic mean of the Shape Index; FRAC_MN = arithmetic mean of the Fractal Dimension Index.

Moreover, the fractal index dimension reflects the complexity of the shape; in this case,
the arithmetic mean was also determined. This index can yield values between 1 and 2.
In this way, when the obtained value is close to 1, it indicates that the patches have very
simple perimeters, such as squares. However, if the value is close to 2, then the shapes are
highly convoluted.

In addition, the number of patches for each of the CLC land-uses was determined for
both indexes.

In the case of Azores (Table 11), firstly, we can see that the number of classes remains
unchanged in the two years analyzed. Therefore, there has been no increase or decrease
in the diversity of land-uses. Likewise, SHAPE_MN values in 1990 are between 1.0321 as
the most compact form, corresponding to land-use 222 (Fruit trees and berry plantations)
and 2.4216 corresponding to 332 (Sparsely vegetated areas) as the least compact form.
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Additionally, the values in 2018 for FRAC_MN range from 1.0321 to 1.1279 for land-uses
222 and 332, again. It can then be said that these are relatively compact forms.

Table 13. Class metrics for the Autonomous Community of the Canary Islands.

1990 2018

TYPE NP SHAPE_MN FRAC_MN TYPE NP SHAPE_MN FRAC_MN

111 183 2.0936 1.1051 111 145 2.5214 1.1253

112 86 2.6815 1.1411 112 389 2.7045 1.1389

121 17 1.8542 1.0894 121 82 2.3258 1.1202

123 44 1.6309 1.0658 122 8 3.2236 1.1733

124 8 1.9131 1.0928 123 21 2.4724 1.1349

131 24 1.7422 1.0829 124 10 2.0101 1.0953

132 1 2 1.1022 131 44 1.8618 1.0916

133 18 1.7222 1.078 132 3 1.6195 1.0749

141 2 2.2718 1.1263 133 21 1.8954 1.0936

142 7 1.6707 1.0772 141 7 2.108 1.1153

211 446 2.5147 1.1222 142 39 1.9945 1.1033

212 84 2.1102 1.106 211 213 2.6764 1.1368

221 55 2.6381 1.1255 212 121 2.5278 1.1298

222 97 2.2752 1.1131 221 57 2.6044 1.1278

231 61 2.4163 1.1143 222 107 2.5701 1.1309

243 1 9.098 1.245 231 109 2.3129 1.1161

311 28 2.3986 1.1153 241 5 2.8412 1.1395

312 61 2.4341 1.11 242 148 2.8061 1.1418

322 39 2.9538 1.1399 243 383 2.7984 1.1413

323 175 3.0574 1.1303 311 70 3.0191 1.1537

331 40 2.8667 1.147 312 100 2.6721 1.1209

332 64 2.7405 1.1272 313 7 3.1368 1.1485

333 141 2.1837 1.1022 321 106 2.5026 1.1249

422 1 1.8936 1.0995 322 31 2.8597 1.1429

512 2 1.5015 1.0626 323 216 2.8621 1.1349

521 1 1.3784 1.0546 324 59 2.4474 1.1208

523 2276 1.7549 1.0962 331 54 2.3242 1.1253

332 141 2.6453 1.1266

333 209 2.71 1.1218

334 11 2.1419 1.1046

422 2 1.8473 1.0939

512 5 2.2716 1.1262

521 1 1.5 1.0657

523 2354 1.7242 1.0946

TYPE = land-use according to CLC nomenclature at level 3; NP = number of patches present in the landscape;
SHAPE_MN = arithmetic mean of the Shape Index; FRAC_MN = arithmetic mean of the Fractal Dimension Index.

As for the number of patches in 1990, the values range from 1 for land-uses 222 (Fruit
trees and berry plantations), 411 (Inland marshes), 333 (Sparsely vegetated areas), and 221
(Vineyards), and 801 patches for land-use 324 (Transitional woodland shrub), and in 2018,
values range from 1 for land-uses 222 to 411 again and 133 (Construction sites) with 1 patch
to 799 patches for land-use 523 (be they and ocean-zone seaward of the lowest tide limit).
While in 2018, 1 patch is registered for land-uses 133 (construction sites) and again for
land-uses 222 and 411. In contrast, the maximum number of patches with 799 is collected
for soil-uses 523 also again; in 2018 with 1 patch, again for land-uses 133, 222, and 411, and
even for the maximum number of 799 patches corresponding to land-use 523.
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In addition, if we look at Table 14, we can see a high variation in the number of
patches for certain land-uses, highlighting the most significant decrease for 324 (Transitional
woodland/shrub) and the most significant increase for 523. Additionally, considering the
total patches in 1990 were 2154, in 2018, it increased to 2300. Therefore, there has been an
increase in land-uses.

Table 14. Shannon’s Diversity Index and Shannon’s Everness Index values for the archipelagos.

Archipelago Year SHDI SHEI

Azores 1990 0.0972 0.0289

Azores 2018 0.0979 0.0291

Madeira 1990 1.7607 0.5342

Madeira 2018 1.6776 0.4932

Canarias 1990 0.571 0.1714

Canarias 2018 0.5998 0.1687

In the case of Madeira (Table 12), if there has been a slight variation in the number
of classes, in 1990 there were 26 and in 2018, 29 classes. Therefore, there has been a slight
increase in the diversification of land-uses. While it is true that soil-uses 241 (Annual crops
associated with permanent crops) and 244 (Agroforestry areas) disappear in 2018, soil-uses
122 (road and rail networks and associated land), 131 (Mineral extraction sites), 132 (Dump
sites) and 334 (Burnt areas). In addition, SHAPE_MN values in 1990 are between 1.2611 as
the most compact form, corresponding to the use of soil 523 (sea and ocean) and 4.0851
corresponding to 331 (Beaches, dunes, and plains) as the least compact form. Similarly,
values in 2018 for FRAC_MN range from 1.0499 to 1.1935 for misused land-uses. So, it can
be said that there are relatively compact shapes in general, but also un-compact shapes if we
look at Table 14. Additionally, if we compare these results with those obtained for Azores
(Table 11), we can say that there are fewer compact soils in Madeira than in the Azores.
As for the number of patches in 1990, the values range from 1 for land-use 141 (Green
urban areas), 133 (construction sites), 211 (Non-irrigated arable land), 111 (Continuous
urban fabric), and 244 A areas), and with the maximum number of patches, that is, 588
for soil-use 523 (Sea and ocean) which would be the most fragmented. While in 2018,
with 1 patch are land-uses 122 (Road and rail networks and associated land), 132 (Dump
sites), 133 (Construction sites), 141 (Green urban areas), 211 (Non-irrigated arable land),
212 (Permanently irrigated land), and 334 (Burnt areas), and the maximum number of
patches with 695 correspondings to land-use 523 (Sea and ocean).

In addition, if we look at Table 14, we can see a high variation in the number of patches
for certain land-uses; additionally, considering the total patches in 1990 is 1178, while in
2018, it increased to 1290. Therefore, there has been an increase in soil fragmentation.

In the case of the Canary Islands (Table 13), there has also been an increase in the
number of land-uses. As a result, there has also been greater diversification in land-uses.
Land-uses did not disappear in 2018, and soil-uses 122 (Road and rail networks associated
land), 241 (Annual crops associated with permanent crops), 242 (Complex cultivation), 313
(Mixed forest), 321 (Natural grassland), and 334 (Burnt areas) appear in 2018. Likewise,
SHAPE_MN values in 1990 are between 1.3784 as the most compact form, corresponding to
land-use 521 (Coastal lagoons) and 9.098 corresponding to 243 (Land principally occupied
by agriculture, with significant areas of natural vegetation) as the least compact form.
Additionally, the values in 2018 for FRAC_MN range from 1.0546 to 1.245 for the same
land-uses. So, it can be said that there are relatively compact shapes in general. Moreover,
if we compare these results with those obtained for Azores and Madeira (Tables 11 and 12),
we can say that there are fewer compact soils in the Canary Islands than in Madeira and
Azores. As for the number of patches in 1990, the values range from 1 for use 521 (Coastal
lagoons), 422 (Salines), 132 (Dump sites), 243 (Land principally occupied by agriculture,
with significant areas of natural vegetation) being the least fragmented land-uses, and with
2276 patches for 523 (Sea and ocean); and in 2018 with 1 patch for 521 (Coastal lagoons)
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and a maximum of 2354 patches for 523 again. In addition, if we look at Table 14, we
can see that there is the most significant variation in the number of patches of all the
archipelagoes analyzed, in 1990 from 3962 to 5278 in 2018. Therefore, in the Autonomous
Community of the Canary Islands, it is where there has been the greatest fragmentation in
land-uses. Finally, each of the archipelagoes’ whole of the geographic space was analyzed
using metrics landscape. Precisely, the SHDI was calculated, which is a popular measure
of diversity in community ecology, which applies to landscapes. In addition, this index
is somewhat more sensitive to rare patch types than Simpson’s diversity index. Thus it
is possible to display values greater than or equal to zero to infinity. However, when the
value is 0, then the geographic space studied contains only a single patch, and there is no
diversity. However, as the number of different types of patches increases, the diversity
is greater, and/or the proportional distribution of the area between patch types becomes
more equitable. The last calculated index was the SHEI, whose values range from 0 to 1.
So, when it is equal to 0, the landscape also contains a single patch, and just as before, there
is also no diversity. Additionally, as the area’s distribution between the different types
of polygons representative of land-uses approaches 0, it becomes increasingly unequal.
On the contrary, when the index value is 1, the distribution of the area between the
types of polygons representative of the land-uses is perfectly uniform. Thus, a uniform
distribution of the area between patch types results in maximum uniformity. The whole of
the geographic space determined by each of the archipelagoes was analyzed using metrics
landscape. Specifically, the SHDI was calculated which is a popular measure of diversity in
community ecology, which applies to landscapes. In addition, this index is somewhat more
sensitive to rare patch types than Simpson’s diversity index. You can display values greater
than or equal to zero to infinity. However, when the value is 0 then the geographic space
studied contains only a single patch and there is no diversity. However, as the number
of different types of patches increases, the diversity is greater, and/or the proportional
distribution of the area between patch types becomes more equitable. The last calculated
index was the SHEI whose values range from 0 to 1. So when it is equal to 0, the landscape
also contains a single patch and just as before, there is also no diversity. Moreover, as the
area’s distribution between the different types of polygons representative of land-uses
approaches 0, it becomes increasingly unequal. On the contrary, when the index value is 1,
the distribution of the area between the types of polygons representative of the land-uses
is perfectly uniform. Thus, a uniform distribution of the area between patch types results
in maximum uniformity.

The values obtained for each of the archipelagoes in the years analyzed (Table 14)
allows us to observe that the greatest diversity occurs in Madeira, and on the contrary,
the lowest in the Canary Islands. Furthermore, if we look at the temporal evolution, it is
possible to verify how in the Azores and Canary Islands, there is a tendency to greater
diversity. On the contrary, in Madeira, there is a reduction. In addition, the distribution of
the area between the polygons representative of land-uses is more irregular in the Azores,
followed by the Canary Islands and finally, Madeira. This inequality also decreases in the
years analyzed in the Azores but increases in Madeira and the Canary Islands.

5. Discussion and Conclusions

Considering the study’s complexity and, consequently, the large amount of data and
results obtained regarding the three archipelagos under analysis, this section was divided
into Subsections (Sections 5.1–5.5).

5.1. Azores Archipelago

Land-use shows similar patterns in all the Azores’ islands, emphasizing the installation
of urban areas next to coastal regions. In fact, some of the obtained results could be
explained by the specific geomorphology of each island.
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Nevertheless, the predominance of areas related to agricultural and pasture activities, and
forests and natural environments between these areas and the islands’ interior is evident.

The territorial areas in which the forest and natural vegetation have greater repre-
sentativeness are those where there is a protection status, attributed under the Regional
Network of Protected Areas or the Natura 2000 Network, contributing to the conservation
of biodiversity, strengthening the claim of Azores as a nature destination. Here, the Western
Group islands assume a considerable weight, and São Jorge and Pico, with the surface’s
occupations by agricultural areas as natural pastures and landscapes, and the forest and
natural vegetation of around 60%. The lagoons, usually constituting points of relevant
interest for tourist activity, are only represented on three islands: Corvo, São Miguel, and
Flores. However, except Graciosa alone, all other islands have inland water bodies of
appreciable beauty.

There is a significant increase in urban areas in evolutionary terms, reflecting the
urban growth that has been witnessed in recent years. The agricultural and pasture areas
have decreased in recent years, considering that in the 1990s, they represented more than
50% of the Azores area. On the other hand, there was an increase in forest areas and
natural environments, when in the middle of the 1990s, they represented nearly 30% of the
Azores’ territory.

Regarding the artificial occupation of the territory—the urban occupation—about
3.4% of the surface of the territory of the Azores is characterized mainly by discontinu-
ous urban fabric, representing 67% of the total urban fabric of the Azores. Only in the
largest island—São Miguel—the continuous urban fabric is predominant, with around 59%.
Industry, commerce, general equipment, and infrastructure only represent 0.44% of the
Azores’ surface total occupation. The islands with the greatest relative implantation of this
economic activity are São Miguel and Terceira—the Azorean economy engines.

5.2. Madeira Archipelago

Identifying the different land-uses in the years analyzed in the Madeira archipelago
allows for differentiating these land-uses according to their extension, determining which
are the most extensive land-uses, and therefore, more hegemonic. Under this criterion,
the forest and semi-natural areas constitute the predominant land-use, since it occupies,
in all the years analyzed, approximately 70% of the surface of the archipelago, increasing
progressively even in all the last years analyzed.

The second most predominant land-use alternates throughout the analyzed years.
Between 1990 and 2000 corresponds to agricultural areas. However, between 2006 and 2018,
artificial surfaces were the second most predominant land-use, always with percentages of
approximately 15%.

In this regard, both agricultural and artificial surfaces between 2012 and 2018 show a
downward trend. Likewise, these land-uses are directly related to human activity. There-
fore, it could be said that the incidence of humans in the archipelago is becoming less and
less impactful in terms of land-uses.

The presence in the archipelago of the remaining land-uses is practically non-existent.
Regarding the water bodies, they occupy an area consistently below 1.5%. Besides, they
tend to shrink as the years go by. As for the latest use of wetlands, soil practically does not
exist. However, both water bodies and wetlands, due to their importance, predominantly
environmental, must be monitored in order not to reduce their presence, and thus disappear
in years to come.

Regarding the location of the different land-uses on the islands that make up the
archipelago, Desert Islands always have the same land-uses; as the name suggests, they
are deserted, and the lack of human activity makes the variation in land-use virtually
non-existent. The same is not valid on the other islands where other patterns are observed.
Thus, on the island of Porto Santo, the artificial surfaces are concentrated in the central
region. Besides, these land-uses are usually surrounded by agricultural areas, and forest
and semi-natural areas. In this regard, the accumulation of artificial surfaces in the same
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region could indicate that they are under tourist pressure. As for Madeira’s island, the
pattern of location of land-uses is reversed, as artificial surfaces are grouped into outlying
coastal areas, mainly in the south and also in the north but to a lesser extent. Additionally,
the central part is dominated by land-uses unrelated to human activity. Therefore, this area
registers less anthropic pressure.

5.3. Canary Archipelago

The predominant land-use corresponds to forests and semi-natural areas, as it occupies
approximately three-quarters of the territory. Therefore, this land-use should be used
to conserve existing ecosystems in the archipelago. However, over the last three years
analyzed (2006, 2012, and 2016), a slight downward trend could continue over the years.
However, there is little chance that it will lose its hegemony in the territory analyzed. The
second predominant land-use corresponds to agricultural areas, occupying approximately
one-fifth of the territory. The third majority use refers to artificial surfaces, occupying
approximately 6% of the area analyzed. These last two land-uses are directly related to
human activity on the territory, taking into account that their surface area increases slightly
over the years analyzed; so, it can be said that the most impactful activity of the human
being on the territory analyzed is also increasing slightly. As a result, all activities related
to these two land-uses should be monitored. Moreover, water bodies’ existence is residual,
and curiously, there are no significant records for wetlands.

As for the location of the various land-uses, more significant variation is observed in
areas located on some islands’ peripheries, where there is an increase of artificial surfaces.
Among all the islands stand out Tenerife and Gran Canaria, as they are the most populated
areas and there is a more intense tourist activity. There is also less anthropic pressure in the
internal regions. Therefore, these regions are less exploited by both population pressure and the
tourism industry. In fact, in these areas, the use of forests and semi-natural areas predominate,
and are spaces that should serve to preserve the eco-systems of the archipelago.

If we analyze this territory more closely and from different perspectives, it is possible
to understand the considerable impact of tourism over all the regional economy. In 2017,
economic activity represented 85.7% in services (related to tourism), 7.6% in industry and
energy, 5.4% in construction, 3.7% in the manufacturing industry, and 1.3% in agriculture
and animal breeding and fishing. In the Canary Archipelago, tourism activity obtains a
meaningful relevance in numerous contexts due to its economic potential.

In the Canary Archipelago, tourism is a cultural event in which people move freely for
a certain period for various reasons, i.e., recreation, rest, culture, or health [53]. According
to Santana [54]: “(...) tourism is a complex and dynamic activity in close relationship with
society and its nuances—behavior, motivations, values, history, traditions, and beliefs.”
In fact, the Canary territory is a tourist destination in the reorientation phase [55]. Con-
textually, the Canary Islands’ Government is committed to “the renewal, innovation and
regeneration” of the tourist area, always having northern tourism of higher quality [56].
Additionally, tourism planning inevitably includes planning both in terms of tourism and
spatial planning [37]. Therefore, it is common to have land-use policies, namely legislation
on the territory’s division into fields varying from environmental protection categories to
control tourism development spaces [57]. Nonetheless, spatial planning usually results in
the “post” when several destinations are previously openly overloaded or threatened [58].

5.4. General Conclusions

The remote islands face many challenges today as land-use changed from 1990 to
2018, along with the increase in the number of visitors, when the demand for living space
increased and the resource capacities were limited. As we have seen, it has not been
possible to maintain the islands’ situation as it was before, and change will continue to
be made. What is essential is that the living environment and the island areas’ unique
character should be preserved and protected; the priorities must be defined, and man-
agement strategies established which are significant for the well-being of these highly
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valued areas. Forestry, as the traditional land-use and predominant land-use in island
areas, especially in Madeira Archipelago and Canary Islands (over the last three years
analyzed (2006, 2012, and 2016), a slight downward trend) should support sustainable
forestry as an appropriate form of land-use. With responsible management, the natural
resources of island areas can be used for a long time [61–65]. Degradation of water quantity
and quality cannot be overlooked, particularly on some small islands where groundwater
conditions have completely changed. It is possible to identify a notable increase in the
artificial surfaces (Code 1) in the Azores and Canary islands during the study period. In
addition to recognizing that agricultural land is traditional, and agriculture is a valuable
activity, it is necessary to encourage agricultural management practices that are compatible
with the sustainable development of islands area [65–68]. As examples of these practices, it
is possible to name some as: use of renewable energy sources; integrated pest management;
hydroponics and aquaponics; crop rotation; polyculture farming; permaculture; avoiding
soil erosion; crop diversity; among several others. According to ESPON Program for the
Develpment of the Islands [68]: “Due to the relatively small land masses and isolation,
islands are typically land-resource constrained. This limits living space, space for infras-
tructure, waste disposal, agricultural production, industrial development, water resource
availability, among several others. Additionally, it results in very vulnerable ecosystems
with high endemism.” Thus, pressures resulting from anthropogenic factors can have more
critical consequences on insular environments, invaliding their capability to supply goods
and services, and sustain life.

Detailed analysis metrics have been presented throughout this work as a helpful instru-
ment in the analysis, monitoring, and monitoring of changes in land-uses, through different
levels of analysis until their application as a comparison tool in different temporal situations.

In this sense, patch analysis shows that there is greater fragmentation in each of the
regions analyzed. In addition, the class analysis makes it possible to establish that there has
been no increase in land-uses in the Azores Autonomous Region. On the contrary, in the
Autonomous Region of Madeira and the Autonomous Community of the Canary Islands,
diversity in land-uses was increased. It could therefore be said that in the latter two regions,
anthropic activity has been greater. More compact shapes are generally observed in the
latter two regions. In addition, landscape metrics make it possible to state that the Madeira
Autonomous Region, despite being the smallest in the extension of the areas analyzed,
is the one with the greatest diversity, although in decline in the years analyzed. On the
contrary, there is less diversity in the Autonomous Community of the Canary Islands
despite being the most extensively analyzed region.

5.5. Study Limitations and Prospective Research Lines

The limitations of this study are directly related to the technical limitations of CLC. In
this regard, if we consider the three analysis components that we can deal with a GIS, it is
possible to describe each of them.

As for the spatial component, the geometric accuracy has been going down over the
years, analyzed from 50 m to be below 10 m. While it has improved considerably, this could
have been slightly better in the years leading up to 2018, and it would be optimal for it to
be improved over the years to come. Moreover, while it is true that the minimum mapping
unit and minimum mapping width have always been the same over the years, 25 hectares
and 100 m respectively, it would have been optimal to have lower minimum mapping
units. However, the minimum mapping unit is considered appropriate for the extent of
the analyzed terrain and the scale of data processing geometric accuracy. Regarding the
thematic component, the accuracy in identifying the various land-uses has always been
equal to or greater than 85%. Therefore, although there is a slight range of improvement,
this accuracy has always been high.

Concerning the landscape metrics recorded, a more specific analysis focused on more
specific objectives would be desirable to determine the evolution of some of the land-
uses analyzed.
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Finally, concerning the temporary component, the last update to land-uses occurred
in 2018. It would therefore be optimal if there were more up-to-date land-use data. Besides,
note that the products offered by CLC are of high quality and rigorous. Furthermore, these
products are open and cover a large area of territory.
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Appendix A

Thematic cartography regarding the land-use changes in the Azores Archipelago in
the years 1990 and 2018.

Figure A1. Thematic cartography regarding the land-use changes in the Western Group of Azores
Archipelago in the year 1990.
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Figure A2. Thematic cartography regarding the land-use changes in the Western Group of Azores
Archipelago in the year 2018.

Figure A3. Thematic cartography regarding the land-use changes in the Central Group of Azores
Archipelago in the year 1990.

Figure A4. Thematic cartography regarding the land-use changes in the Central Group of Azores
Archipelago in the year 2018.
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Figure A5. Thematic cartography regarding the land-use changes in the Eastern Group of Azores
Archipelago in the year 1990.

Figure A6. Thematic cartography regarding the land-use changes in the Eastern Group of Azores
Archipelago in the year 2018.

Appendix B

Thematic cartography regarding the land-use changes in the Madeira Archipelago in
the years 1990 and 2018.

Figure A7. Thematic cartography regarding the land-use changes in the Madeira Archipelago in the
year 1990.
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Figure A8. Thematic cartography regarding the land-use changes in the Madeira Archipelago in the
year 2018.

Appendix C

Thematic cartography regarding the land-use changes in the Canary Archipelago in
the years 1990 and 2018.

Figure A9. Thematic cartography regarding the land-use changes in the North of Canary Archipelago
in the year 1990.

Figure A10. Thematic cartography regarding the land-use changes in the North of Canary
Archipelago in the year 2018.
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Figure A11. Thematic cartography regarding the land-use changes in the South of Canary
Archipelago in the year 1990.

Figure A12. Thematic cartography regarding the land-use changes in the South of Canary
Archipelago in the year 2018.

170



ISPRS Int. J. Geo-Inf. 2021, 10, 342

A
p

p
e

n
d

ix
D

T
a

b
le

A
1

.
Sp

ea
rm

an
’s

ra
nk

co
rr

el
at

io
n

co
ef

fic
ie

nt
va

lu
es

in
th

e
A

zo
re

s
ar

ch
ip

el
ag

o
fo

r
la

nd
-u

se
s

at
le

ve
l3

ac
co

rd
in

g
to

th
e

C
LC

no
m

en
cl

at
ur

e
be

tw
ee

n
19

90
an

d
20

18
.

c1
1

1
c1

1
2

c1
2

1
c1

2
3

c1
2

4
c1

3
1

c1
3

2
c1

3
3

c1
4

1
c1

4
2

c2
1

1
c2

2
1

c2
2

2
c2

3
1

c2
4

2
c2

4
3

c3
1

1
c3

1
2

c3
1

3
c3

2
1

c3
2

2
c3

2
4

c3
3

2
c3

3
3

c4
1

1
c4

1
2

c5
1

2
c5

2
3

c1
11

1.
0

−0
.1

−0
.1

0.
3

0.
3

−0
.1

−0
.7

−0
.8

0.
3

0.
0

0.
3

0.
7

0.
3

0.
4

0.
3

−0
.3

−0
.7

−0
.1

−0
.1

0.
1

0.
1

0.
5

−0
.6

−0
.3

0.
7

0.
2

0.
1

0.
1

c1
12

−0
.1

1.
0

1.
0

−0
.6

0.
9

1.
0

0.
1

0.
1

−0
.1

0.
9

0.
9

0.
4

−0
.6

−0
.2

−0
.9

−0
.9

0.
6

0.
7

0.
7

−1
.0

0.
0

0.
2

0.
3

−0
.9

−0
.5

−0
.9

−1
.0

−1
.0

c1
21

−0
.1

1.
0

1.
0

−0
.6

0.
9

1.
0

0.
1

0.
1

−0
.1

0.
9

0.
9

0.
4

−0
.6

−0
.2

−0
.9

−0
.9

0.
6

0.
7

0.
7

−1
.0

0.
0

0.
2

0.
3

−0
.9

−0
.5

−0
.9

−1
.0

−1
.0

c1
23

0.
3

−0
.6

−0
.6

1.
0

−0
.5

−0
.6

−0
.3

−0
.7

−0
.5

−0
.7

−0
.5

0.
2

1.
0

−0
.4

0.
7

0.
5

−0
.2

−0
.9

−0
.9

0.
6

0.
6

−0
.6

−0
.1

0.
5

0.
7

0.
3

0.
6

0.
6

c1
24

0.
3

0.
9

0.
9

−0
.5

1.
0

0.
9

−0
.3

−0
.2

0.
0

0.
8

1.
0

0.
7

−0
.5

0.
1

−0
.8

−1
.0

0.
3

0.
6

0.
6

−0
.9

0.
1

0.
4

−0
.1

−1
.0

−0
.3

−0
.7

−0
.9

−0
.9

c1
31

−0
.1

1.
0

1.
0

−0
.6

0.
9

1.
0

0.
1

0.
1

−0
.1

0.
9

0.
9

0.
4

−0
.6

−0
.2

−0
.9

−0
.9

0.
6

0.
7

0.
7

−1
.0

0.
0

0.
2

0.
3

−0
.9

−0
.5

−0
.9

−1
.0

−1
.0

c1
32

−0
.7

0.
1

0.
1

−0
.3

−0
.3

0.
1

1.
0

0.
7

0.
2

0.
3

−0
.3

−0
.8

−0
.3

−0
.5

0.
0

0.
3

0.
3

0.
4

0.
4

−0
.1

−0
.6

−0
.1

0.
9

0.
3

−0
.2

−0
.3

−0
.1

−0
.1

c1
33

−0
.8

0.
1

0.
1

−0
.7

−0
.2

0.
1

0.
7

1.
0

0.
3

0.
2

−0
.2

−0
.8

−0
.7

0.
1

−0
.3

0.
2

0.
3

0.
5

0.
5

−0
.1

−0
.6

0.
1

0.
4

0.
2

−0
.7

0.
0

−0
.1

−0
.1

c1
41

0.
3

−0
.1

−0
.1

−0
.5

0.
0

−0
.1

0.
2

0.
3

1.
0

0.
3

0.
0

−0
.3

−0
.5

0.
6

0.
2

0.
0

−0
.7

0.
6

0.
6

0.
1

−0
.9

0.
9

−0
.1

0.
0

0.
2

0.
3

0.
1

0.
1

c1
42

0.
0

0.
9

0.
9

−0
.7

0.
8

0.
9

0.
3

0.
2

0.
3

1.
0

0.
8

0.
2

−0
.7

−0
.1

−0
.7

−0
.8

0.
3

0.
9

0.
9

−0
.9

−0
.4

0.
5

0.
4

−0
.8

−0
.3

−0
.8

−0
.9

−0
.9

c2
11

0.
3

0.
9

0.
9

−0
.5

1.
0

0.
9

−0
.3

−0
.2

0.
0

0.
8

1.
0

0.
7

−0
.5

0.
1

−0
.8

−1
.0

0.
3

0.
6

0.
6

−0
.9

0.
1

0.
4

−0
.1

−1
.0

−0
.3

−0
.7

−0
.9

−0
.9

c2
21

0.
7

0.
4

0.
4

0.
2

0.
7

0.
4

−0
.8

−0
.8

−0
.3

0.
2

0.
7

1.
0

0.
2

0.
1

−0
.3

−0
.7

0.
0

−0
.1

−0
.1

−0
.4

0.
6

0.
1

−0
.5

−0
.7

0.
2

−0
.3

−0
.4

−0
.4

c2
22

0.
3

−0
.6

−0
.6

1.
0

−0
.5

−0
.6

−0
.3

−0
.7

−0
.5

−0
.7

−0
.5

0.
2

1.
0

−0
.4

0.
7

0.
5

−0
.2

−0
.9

−0
.9

0.
6

0.
6

−0
.6

−0
.1

0.
5

0.
7

0.
3

0.
6

0.
6

c2
31

0.
4

−0
.2

−0
.2

−0
.4

0.
1

−0
.2

−0
.5

0.
1

0.
6

−0
.1

0.
1

0.
1

−0
.4

1.
0

0.
0

−0
.1

−0
.6

0.
2

0.
2

0.
2

−0
.3

0.
7

−0
.8

−0
.1

−0
.1

0.
6

0.
2

0.
2

c2
42

0.
3

−0
.9

−0
.9

0.
7

−0
.8

−0
.9

0.
0

−0
.3

0.
2

−0
.7

−0
.8

−0
.3

0.
7

0.
0

1.
0

0.
8

−0
.7

−0
.6

−0
.6

0.
9

−0
.1

−0
.1

−0
.1

0.
8

0.
8

0.
7

0.
9

0.
9

c2
43

−0
.3

−0
.9

−0
.9

0.
5

−1
.0

−0
.9

0.
3

0.
2

0.
0

−0
.8

−1
.0

−0
.7

0.
5

−0
.1

0.
8

1.
0

−0
.3

−0
.6

−0
.6

0.
9

−0
.1

−0
.4

0.
1

1.
0

0.
3

0.
7

0.
9

0.
9

c3
11

−0
.7

0.
6

0.
6

−0
.2

0.
3

0.
6

0.
3

0.
3

−0
.7

0.
3

0.
3

0.
0

−0
.2

−0
.6

−0
.7

−0
.3

1.
0

0.
1

0.
1

−0
.6

0.
4

−0
.6

0.
5

−0
.3

−0
.7

−0
.7

−0
.6

−0
.6

c3
12

−0
.1

0.
7

0.
7

−0
.9

0.
6

0.
7

0.
4

0.
5

0.
6

0.
9

0.
6

−0
.1

−0
.9

0.
2

−0
.6

−0
.6

0.
1

1.
0

1.
0

−0
.7

−0
.7

0.
7

0.
3

−0
.6

−0
.4

−0
.5

−0
.7

−0
.7

c3
13

−0
.1

0.
7

0.
7

−0
.9

0.
6

0.
7

0.
4

0.
5

0.
6

0.
9

0.
6

−0
.1

−0
.9

0.
2

−0
.6

−0
.6

0.
1

1.
0

1.
0

−0
.7

−0
.7

0.
7

0.
3

−0
.6

−0
.4

−0
.5

−0
.7

−0
.7

c3
21

0.
1

−1
.0

−1
.0

0.
6

−0
.9

−1
.0

−0
.1

−0
.1

0.
1

−0
.9

−0
.9

−0
.4

0.
6

0.
2

0.
9

0.
9

−0
.6

−0
.7

−0
.7

1.
0

0.
0

−0
.2

−0
.3

0.
9

0.
5

0.
9

1.
0

1.
0

c3
22

0.
1

0.
0

0.
0

0.
6

0.
1

0.
0

−0
.6

−0
.6

−0
.9

−0
.4

0.
1

0.
6

0.
6

−0
.3

−0
.1

−0
.1

0.
4

−0
.7

−0
.7

0.
0

1.
0

−0
.7

−0
.3

−0
.1

0.
0

−0
.1

0.
0

0.
0

c3
24

0.
5

0.
2

0.
2

−0
.6

0.
4

0.
2

−0
.1

0.
1

0.
9

0.
5

0.
4

0.
1

−0
.6

0.
7

−0
.1

−0
.4

−0
.6

0.
7

0.
7

−0
.2

−0
.7

1.
0

−0
.3

−0
.4

0.
1

0.
1

−0
.2

−0
.2

c3
32

−0
.6

0.
3

0.
3

−0
.1

−0
.1

0.
3

0.
9

0.
4

−0
.1

0.
4

−0
.1

−0
.5

−0
.1

−0
.8

−0
.1

0.
1

0.
5

0.
3

0.
3

−0
.3

−0
.3

−0
.3

1.
0

0.
1

−0
.1

−0
.6

−0
.3

−0
.3

c3
33

−0
.3

−0
.9

−0
.9

0.
5

−1
.0

−0
.9

0.
3

0.
2

0.
0

−0
.8

−1
.0

−0
.7

0.
5

−0
.1

0.
8

1.
0

−0
.3

−0
.6

−0
.6

0.
9

−0
.1

−0
.4

0.
1

1.
0

0.
3

0.
7

0.
9

0.
9

c4
11

0.
7

−0
.5

−0
.5

0.
7

−0
.3

−0
.5

−0
.2

−0
.7

0.
2

−0
.3

−0
.3

0.
2

0.
7

−0
.1

0.
8

0.
3

−0
.7

−0
.4

−0
.4

0.
5

0.
0

0.
1

−0
.1

0.
3

1.
0

0.
3

0.
5

0.
5

c4
12

0.
2

−0
.9

−0
.9

0.
3

−0
.7

−0
.9

−0
.3

0.
0

0.
3

−0
.8

−0
.7

−0
.3

0.
3

0.
6

0.
7

0.
7

−0
.7

−0
.5

−0
.5

0.
9

−0
.1

0.
1

−0
.6

0.
7

0.
3

1.
0

0.
9

0.
9

c5
12

0.
1

−1
.0

−1
.0

0.
6

−0
.9

−1
.0

−0
.1

−0
.1

0.
1

−0
.9

−0
.9

−0
.4

0.
6

0.
2

0.
9

0.
9

−0
.6

−0
.7

−0
.7

1.
0

0.
0

−0
.2

−0
.3

0.
9

0.
5

0.
9

1.
0

1.
0

c5
23

0.
1

−1
.0

−1
.0

0.
6

−0
.9

−1
.0

−0
.1

−0
.1

0.
1

−0
.9

−0
.9

−0
.4

0.
6

0.
2

0.
9

0.
9

−0
.6

−0
.7

−0
.7

1.
0

0.
0

−0
.2

−0
.3

0.
9

0.
5

0.
9

1.
0

1.
0

Th
e

Sp
ea

rm
an

’s
ra

nk
co

rr
el

at
io

n
co

ef
fic

ie
nt

va
lu

e
1.

0
is

hi
gh

lig
ht

ed
w

he
n

th
e

va
lu

es
co

rr
es

po
nd

to
th

e
sa

m
e

va
ri

ab
le

.

171



ISPRS Int. J. Geo-Inf. 2021, 10, 342

A
p

p
e

n
d

ix
E

T
a

b
le

A
2

.
Sp

ea
rm

an
’s

ra
nk

co
rr

el
at

io
n

co
ef

fic
ie

nt
va

lu
es

in
th

e
M

ad
ei

ra
ar

ch
ip

el
ag

o
fo

r
la

nd
-u

se
s

at
le

ve
l3

ac
co

rd
in

g
to

th
e

C
L

C
no

m
en

cl
at

ur
e

be
tw

ee
n

19
90

an
d

20
18

.

c1
1
1

c1
1
2

c1
2
1

c1
2
2

c1
2
3

c1
2
4

c1
3
1

c1
3
2

c1
3
3

c1
4
1

c1
4
2

c2
1
1

c2
1
2

c2
2
1

c2
2
2

c2
3
1

c2
4
1

c2
4
2

c2
4
3

c2
4
4

c3
1
1

c3
1
2

c3
1
3

c3
2
1

c3
2
2

c3
2
4

c3
3
1

c3
3
2

c3
3
3

c3
3
4

c5
2
3

c1
11

1.
0

0.
7

1.
0

0.
6

0.
7

0.
7

1.
0

0.
8

−0
.3

−1
.0

0.
9

−1
.0

−1
.0

0.
7

−0
.8

−0
.9

−1
.0

−0
.6

−0
.3

−0
.9

−0
.7

−0
.9

−0
.9

0.
9

0.
4

0.
2

−0
.6

1.
0

−0
.7

0.
4

−1
.0

c1
12

0.
7

1.
0

0.
8

1.
0

1.
0

1.
0

0.
7

0.
9

0.
3

−0
.7

0.
9

−0
.7

−0
.7

0.
5

−1
.0

−0
.7

−0
.6

−1
.0

−0
.6

−0
.4

−0
.4

−0
.6

−0
.5

0.
5

0.
1

−0
.1

−0
.2

0.
7

−0
.3

0.
3

−0
.7

c1
21

1.
0

0.
8

1.
0

0.
8

0.
8

0.
8

0.
9

0.
9

−0
.2

−0
.9

1.
0

−0
.9

−0
.9

0.
7

−0
.9

−0
.9

−0
.9

−0
.8

−0
.5

−0
.7

−0
.7

−0
.9

−0
.9

0.
8

0.
4

0.
2

−0
.5

0.
9

−0
.7

0.
4

−0
.9

c1
22

0.
6

1.
0

0.
8

1.
0

1.
0

1.
0

0.
6

0.
9

0.
3

−0
.6

0.
9

−0
.6

−0
.6

0.
4

−0
.9

−0
.6

−0
.6

−1
.0

−0
.7

−0
.3

−0
.4

−0
.6

−0
.5

0.
5

0.
2

0.
0

−0
.3

0.
6

−0
.3

0.
3

−0
.6

c1
23

0.
7

1.
0

0.
8

1.
0

1.
0

1.
0

0.
6

0.
9

0.
3

−0
.6

0.
9

−0
.6

−0
.6

0.
4

−0
.9

−0
.6

−0
.6

−0
.9

−0
.8

−0
.3

−0
.5

−0
.6

−0
.6

0.
5

0.
3

0.
1

−0
.4

0.
6

−0
.5

0.
2

−0
.6

c1
24

0.
7

1.
0

0.
8

1.
0

1.
0

1.
0

0.
6

0.
9

0.
3

−0
.6

0.
9

−0
.6

−0
.6

0.
4

−0
.9

−0
.6

−0
.6

−0
.9

−0
.7

−0
.3

−0
.5

−0
.6

−0
.6

0.
5

0.
2

0.
0

−0
.3

0.
6

−0
.4

0.
2

−0
.6

c1
31

1.
0

0.
7

0.
9

0.
6

0.
6

0.
6

1.
0

0.
8

−0
.3

−1
.0

0.
9

−1
.0

−1
.0

0.
7

−0
.8

−1
.0

−1
.0

−0
.6

−0
.2

−0
.9

−0
.6

−0
.8

−0
.8

0.
9

0.
3

0.
1

−0
.4

1.
0

−0
.6

0.
4

−1
.0

c1
32

0.
8

0.
9

0.
9

0.
9

0.
9

0.
9

0.
8

1.
0

0.
2

−0
.8

0.
9

−0
.8

−0
.8

0.
5

−1
.0

−0
.9

−0
.8

−0
.9

−0
.4

−0
.6

−0
.4

−0
.6

−0
.6

0.
8

0.
2

0.
0

−0
.3

0.
8

−0
.4

0.
3

−0
.9

c1
33

−0
.3

0.
3

−0
.2

0.
3

0.
3

0.
3

−0
.3

0.
2

1.
0

0.
3

0.
0

0.
3

0.
3

−0
.6

−0
.1

0.
2

0.
3

−0
.4

−0
.2

0.
5

0.
7

0.
5

0.
5

−0
.2

−0
.3

−0
.3

0.
4

−0
.3

0.
5

−0
.4

0.
3

c1
41

−1
.0

−0
.7

−0
.9

−0
.6

−0
.6

−0
.6

−1
.0

−0
.8

0.
3

1.
0

−0
.9

1.
0

1.
0

−0
.7

0.
8

1.
0

1.
0

0.
6

0.
2

0.
9

0.
6

0.
8

0.
8

−0
.9

−0
.3

−0
.1

0.
4

−1
.0

0.
6

−0
.4

1.
0

c1
42

0.
9

0.
9

1.
0

0.
9

0.
9

0.
9

0.
9

0.
9

0.
0

−0
.9

1.
0

−0
.9

−0
.9

0.
7

−1
.0

−0
.8

−0
.9

−0
.9

−0
.6

−0
.6

−0
.7

−0
.8

−0
.8

0.
7

0.
3

0.
1

−0
.4

0.
9

−0
.5

0.
4

−0
.9

c2
11

−1
.0

−0
.7

−0
.9

−0
.6

−0
.6

−0
.6

−1
.0

−0
.8

0.
3

1.
0

−0
.9

1.
0

1.
0

−0
.7

0.
8

1.
0

1.
0

0.
6

0.
2

0.
9

0.
6

0.
8

0.
8

−0
.9

−0
.3

−0
.1

0.
4

−1
.0

0.
6

−0
.4

1.
0

c2
12

−1
.0

−0
.7

−0
.9

−0
.6

−0
.6

−0
.6

−1
.0

−0
.8

0.
3

1.
0

−0
.9

1.
0

1.
0

−0
.7

0.
8

1.
0

1.
0

0.
6

0.
2

0.
9

0.
6

0.
8

0.
8

−0
.9

−0
.3

−0
.1

0.
4

−1
.0

0.
6

−0
.4

1.
0

c2
21

0.
7

0.
5

0.
7

0.
4

0.
4

0.
4

0.
7

0.
5

−0
.6

−0
.7

0.
7

−0
.7

−0
.7

1.
0

−0
.6

−0
.7

−0
.6

−0
.5

0.
0

−0
.7

−0
.8

−0
.7

−0
.7

0.
4

−0
.1

−0
.3

−0
.1

0.
7

−0
.3

0.
9

−0
.7

c2
22

−0
.8

−1
.0

−0
.9

−0
.9

−0
.9

−0
.9

−0
.8

−1
.0

−0
.1

0.
8

−1
.0

0.
8

0.
8

−0
.6

1.
0

0.
8

0.
8

0.
9

0.
6

0.
6

0.
6

0.
7

0.
7

−0
.7

−0
.2

0.
0

0.
4

−0
.8

0.
5

−0
.4

0.
8

c2
31

−0
.9

−0
.7

−0
.9

−0
.6

−0
.6

−0
.6

−1
.0

−0
.9

0.
2

1.
0

−0
.8

1.
0

1.
0

−0
.7

0.
8

1.
0

0.
9

0.
7

0.
1

0.
9

0.
5

0.
7

0.
7

−0
.9

−0
.1

0.
1

0.
2

−1
.0

0.
4

−0
.5

1.
0

c2
41

−1
.0

−0
.6

−0
.9

−0
.6

−0
.6

−0
.6

−1
.0

−0
.8

0.
3

1.
0

−0
.9

1.
0

1.
0

−0
.6

0.
8

0.
9

1.
0

0.
6

0.
3

0.
9

0.
7

0.
9

0.
9

−0
.9

−0
.5

−0
.3

0.
6

−1
.0

0.
7

−0
.3

1.
0

c2
42

−0
.6

−1
.0

−0
.8

−1
.0

−0
.9

−0
.9

−0
.6

−0
.9

−0
.4

0.
6

−0
.9

0.
6

0.
6

−0
.5

0.
9

0.
7

0.
6

1.
0

0.
5

0.
3

0.
3

0.
5

0.
4

−0
.4

0.
1

0.
3

0.
0

−0
.6

0.
1

−0
.4

0.
6

c2
43

−0
.3

−0
.6

−0
.5

−0
.7

−0
.8

−0
.7

−0
.2

−0
.4

−0
.2

0.
2

−0
.6

0.
2

0.
2

0.
0

0.
6

0.
1

0.
3

0.
5

1.
0

−0
.1

0.
5

0.
5

0.
5

−0
.2

−0
.7

−0
.6

0.
7

−0
.2

0.
6

0.
2

0.
2

c2
44

−0
.9

−0
.4

−0
.7

−0
.3

−0
.3

−0
.3

−0
.9

−0
.6

0.
5

0.
9

−0
.6

0.
9

0.
9

−0
.7

0.
6

0.
9

0.
9

0.
3

−0
.1

1.
0

0.
5

0.
7

0.
7

−0
.9

−0
.3

−0
.1

0.
4

−0
.9

0.
5

−0
.4

0.
9

c3
11

−0
.7

−0
.4

−0
.7

−0
.4

−0
.5

−0
.5

−0
.6

−0
.4

0.
7

0.
6

−0
.7

0.
6

0.
6

−0
.8

0.
6

0.
5

0.
7

0.
3

0.
5

0.
5

1.
0

0.
9

0.
9

−0
.5

−0
.5

−0
.3

0.
7

−0
.6

0.
8

−0
.5

0.
6

c3
12

−0
.9

−0
.6

−0
.9

−0
.6

−0
.6

−0
.6

−0
.8

−0
.6

0.
5

0.
8

−0
.8

0.
8

0.
8

−0
.7

0.
7

0.
7

0.
9

0.
5

0.
5

0.
7

0.
9

1.
0

1.
0

−0
.8

−0
.6

−0
.4

0.
8

−0
.8

0.
9

−0
.3

0.
8

c3
13

−0
.9

−0
.5

−0
.9

−0
.5

−0
.6

−0
.6

−0
.8

−0
.6

0.
5

0.
8

−0
.8

0.
8

0.
8

−0
.7

0.
7

0.
7

0.
9

0.
4

0.
5

0.
7

0.
9

1.
0

1.
0

−0
.7

−0
.7

−0
.5

0.
8

−0
.8

0.
9

−0
.3

0.
8

c3
21

0.
9

0.
5

0.
8

0.
5

0.
5

0.
5

0.
9

0.
8

−0
.2

−0
.9

0.
7

−0
.9

−0
.9

0.
4

−0
.7

−0
.9

−0
.9

−0
.4

−0
.2

−0
.9

−0
.5

−0
.8

−0
.7

1.
0

0.
5

0.
3

−0
.6

0.
9

−0
.7

0.
1

−0
.9

c3
22

0.
4

0.
1

0.
4

0.
2

0.
3

0.
2

0.
3

0.
2

−0
.3

−0
.3

0.
3

−0
.3

−0
.3

−0
.1

−0
.2

−0
.1

−0
.5

0.
1

−0
.7

−0
.3

−0
.5

−0
.6

−0
.7

0.
5

1.
0

1.
0

−1
.0

0.
3

−0
.9

−0
.5

−0
.3

c3
24

0.
2

−0
.1

0.
2

0.
0

0.
1

0.
0

0.
1

0.
0

−0
.3

−0
.1

0.
1

−0
.1

−0
.1

−0
.3

0.
0

0.
1

−0
.3

0.
3

−0
.6

−0
.1

−0
.3

−0
.4

−0
.5

0.
3

1.
0

1.
0

−0
.9

0.
1

−0
.8

−0
.6

−0
.1

c3
31

−0
.6

−0
.2

−0
.5

−0
.3

−0
.4

−0
.3

−0
.4

−0
.3

0.
4

0.
4

−0
.4

0.
4

0.
4

−0
.1

0.
4

0.
2

0.
6

0.
0

0.
7

0.
4

0.
7

0.
8

0.
8

−0
.6

−1
.0

−0
.9

1.
0

−0
.4

1.
0

0.
2

0.
4

c3
32

1.
0

0.
7

0.
9

0.
6

0.
6

0.
6

1.
0

0.
8

−0
.3

−1
.0

0.
9

−1
.0

−1
.0

0.
7

−0
.8

−1
.0

−1
.0

−0
.6

−0
.2

−0
.9

−0
.6

−0
.8

−0
.8

0.
9

0.
3

0.
1

−0
.4

1.
0

−0
.6

0.
4

−1
.0

c3
33

−0
.7

−0
.3

−0
.7

−0
.3

−0
.5

−0
.4

−0
.6

−0
.4

0.
5

0.
6

−0
.5

0.
6

0.
6

−0
.3

0.
5

0.
4

0.
7

0.
1

0.
6

0.
5

0.
8

0.
9

0.
9

−0
.7

−0
.9

−0
.8

1.
0

−0
.6

1.
0

0.
1

0.
6

c3
34

0.
4

0.
3

0.
4

0.
3

0.
2

0.
2

0.
4

0.
3

−0
.4

−0
.4

0.
4

−0
.4

−0
.4

0.
9

−0
.4

−0
.5

−0
.3

−0
.4

0.
2

−0
.4

−0
.5

−0
.3

−0
.3

0.
1

−0
.5

−0
.6

0.
2

0.
4

0.
1

1.
0

−0
.4

c5
23

−1
.0

−0
.7

−0
.9

−0
.6

−0
.6

−0
.6

−1
.0

−0
.9

0.
3

1.
0

−0
.9

1.
0

1.
0

−0
.7

0.
8

1.
0

1.
0

0.
6

0.
2

0.
9

0.
6

0.
8

0.
8

−0
.9

−0
.3

−0
.1

0.
4

−1
.0

0.
6

−0
.4

1.
0

Th
e

Sp
ea

rm
an

’s
ra

nk
co

rr
el

at
io

n
co

ef
fic

ie
nt

va
lu

e
1.

0
is

hi
gh

lig
ht

ed
w

he
n

th
e

va
lu

es
co

rr
es

po
nd

to
th

e
sa

m
e

va
ri

ab
le

.

172



ISPRS Int. J. Geo-Inf. 2021, 10, 342

A
p

p
e

n
d

ix
F

T
a

b
le

A
3

.
Sp

ea
rm

an
’s

ra
nk

co
rr

el
at

io
n

co
ef

fic
ie

nt
va

lu
es

in
th

e
C

an
ar

y
Is

la
nd

s
ar

ch
ip

el
ag

o
fo

r
la

nd
-u

se
s

at
le

ve
l3

ac
co

rd
in

g
to

th
e

C
LC

no
m

en
cl

at
ur

e
be

tw
ee

n
19

90
an

d
20

18
.

c1
1

1
c1

1
2

c1
2

1
c1

2
2

c1
2

3
c1

2
4

c1
3

1
c1

3
2

c1
3

3
c1

4
1

c1
4

2
c2

1
1

c2
1

2
c2

1
3

c2
2

1
c2

2
2

c2
3

1
c2

4
1

c2
4

2
c2

4
3

c3
1

1
c3

1
2

c3
1

3
c3

2
1

c3
2

2
c3

2
3

c3
2

4
c3

3
1

c3
3

2
c3

3
3

c3
3

4
c4

2
2

c5
1

2
cC

5
2

3

c1
11

1.
0

−0
.8

−0
.8

−0
.2

−0
.8

−0
.5

−0
.8

−1
.0

0.
0

−0
.7

−0
.8

0.
8

−0
.5

−0
.2

0.
7

−0
.7

0.
8

−0
.7

−1
.0

−0
.8

−0
.6

−0
.7

−0
.9

−1
.0

0.
6

0.
8

−0
.9

0.
1

−0
.6

−1
.0

−0
.9

−0
.6

−0
.8

0.
8

c1
12

−0
.8

1.
0

1.
0

0.
6

1.
0

0.
7

1.
0

0.
8

−0
.2

0.
5

1.
0

−1
.0

0.
7

0.
3

−0
.5

0.
5

−1
.0

0.
6

0.
9

1.
0

0.
6

0.
5

1.
0

0.
9

−0
.6

−1
.0

1.
0

−0
.1

0.
6

0.
8

1.
0

0.
9

1.
0

−1
.0

c1
21

−0
.8

1.
0

1.
0

0.
6

1.
0

0.
7

1.
0

0.
8

−0
.2

0.
5

1.
0

−1
.0

0.
7

0.
3

−0
.5

0.
5

−1
.0

0.
6

0.
9

1.
0

0.
6

0.
5

1.
0

0.
9

−0
.6

−1
.0

1.
0

−0
.1

0.
6

0.
8

1.
0

0.
9

1.
0

−1
.0

c1
22

−0
.2

0.
6

0.
6

1.
0

0.
6

0.
1

0.
6

0.
2

−0
.8

−0
.4

0.
6

−0
.6

0.
1

−0
.3

0.
4

−0
.4

−0
.6

−0
.2

0.
3

0.
6

−0
.1

−0
.4

0.
5

0.
3

0.
1

−0
.6

0.
5

−0
.7

−0
.1

0.
2

0.
5

0.
4

0.
6

−0
.6

c1
23

−0
.8

1.
0

1.
0

0.
6

1.
0

0.
7

1.
0

0.
8

−0
.2

0.
5

1.
0

−1
.0

0.
7

0.
3

−0
.5

0.
5

−1
.0

0.
6

0.
9

1.
0

0.
6

0.
5

1.
0

0.
9

−0
.6

−1
.0

1.
0

−0
.1

0.
6

0.
8

1.
0

0.
9

1.
0

−1
.0

c1
24

−0
.5

0.
7

0.
7

0.
1

0.
7

1.
0

0.
7

0.
5

0.
5

0.
8

0.
7

−0
.7

1.
0

0.
9

−0
.8

0.
8

−0
.7

0.
9

0.
6

0.
7

0.
9

0.
8

0.
7

0.
6

−0
.9

−0
.7

0.
7

0.
6

0.
9

0.
5

0.
7

0.
9

0.
7

−0
.7

c1
31

−0
.8

1.
0

1.
0

0.
6

1.
0

0.
7

1.
0

0.
8

−0
.2

0.
5

1.
0

−1
.0

0.
7

0.
3

−0
.5

0.
5

−1
.0

0.
6

0.
9

1.
0

0.
6

0.
5

1.
0

0.
9

−0
.6

−1
.0

1.
0

−0
.1

0.
6

0.
8

1.
0

0.
9

1.
0

−1
.0

c1
32

−1
.0

0.
8

0.
8

0.
2

0.
8

0.
5

0.
8

1.
0

0.
0

0.
7

0.
8

−0
.8

0.
5

0.
2

−0
.7

0.
7

−0
.8

0.
7

1.
0

0.
8

0.
6

0.
7

0.
9

1.
0

−0
.6

−0
.8

0.
9

−0
.1

0.
6

1.
0

0.
9

0.
6

0.
8

−0
.8

c1
33

0.
0

−0
.2

−0
.2

−0
.8

−0
.2

0.
5

−0
.2

0.
0

1.
0

0.
7

−0
.2

0.
2

0.
5

0.
8

−0
.7

0.
7

0.
2

0.
7

−0
.1

−0
.2

0.
6

0.
7

−0
.2

−0
.1

−0
.6

0.
2

−0
.2

0.
9

0.
6

0.
0

−0
.2

0.
1

−0
.2

0.
2

c1
41

−0
.7

0.
5

0.
5

−0
.4

0.
5

0.
8

0.
5

0.
7

0.
7

1.
0

0.
5

−0
.5

0.
8

0.
8

−1
.0

1.
0

−0
.5

1.
0

0.
7

0.
5

0.
9

1.
0

0.
6

0.
7

−0
.9

−0
.5

0.
6

0.
6

0.
9

0.
7

0.
6

0.
6

0.
5

−0
.5

c1
42

−0
.8

1.
0

1.
0

0.
6

1.
0

0.
7

1.
0

0.
8

−0
.2

0.
5

1.
0

−1
.0

0.
7

0.
3

−0
.5

0.
5

−1
.0

0.
6

0.
9

1.
0

0.
6

0.
5

1.
0

0.
9

−0
.6

−1
.0

1.
0

−0
.1

0.
6

0.
8

1.
0

0.
9

1.
0

−1
.0

c2
11

0.
8

−1
.0

−1
.0

−0
.6

−1
.0

−0
.7

−1
.0

−0
.8

0.
2

−0
.5

−1
.0

1.
0

−0
.7

−0
.3

0.
5

−0
.5

1.
0

−0
.6

−0
.9

−1
.0

−0
.6

−0
.5

−1
.0

−0
.9

0.
6

1.
0

−1
.0

0.
1

−0
.6

−0
.8

−1
.0

−0
.9

−1
.0

1.
0

c2
12

−0
.5

0.
7

0.
7

0.
1

0.
7

1.
0

0.
7

0.
5

0.
5

0.
8

0.
7

−0
.7

1.
0

0.
9

−0
.8

0.
8

−0
.7

0.
9

0.
6

0.
7

0.
9

0.
8

0.
7

0.
6

−0
.9

−0
.7

0.
7

0.
6

0.
9

0.
5

0.
7

0.
9

0.
7

−0
.7

c2
13

−0
.2

0.
3

0.
3

−0
.3

0.
3

0.
9

0.
3

0.
2

0.
8

0.
8

0.
3

−0
.3

0.
9

1.
0

−0
.8

0.
8

−0
.3

0.
8

0.
2

0.
3

0.
8

0.
8

0.
3

0.
2

−0
.8

−0
.3

0.
3

0.
9

0.
8

0.
2

0.
3

0.
7

0.
3

−0
.3

c2
21

0.
7

−0
.5

−0
.5

0.
4

−0
.5

−0
.8

−0
.5

−0
.7

−0
.7

−1
.0

−0
.5

0.
5

−0
.8

−0
.8

1.
0

−1
.0

0.
5

−1
.0

−0
.7

−0
.5

−0
.9

−1
.0

−0
.6

−0
.7

0.
9

0.
5

−0
.6

−0
.6

−0
.9

−0
.7

−0
.6

−0
.6

−0
.5

0.
5

c2
22

−0
.7

0.
5

0.
5

−0
.4

0.
5

0.
8

0.
5

0.
7

0.
7

1.
0

0.
5

−0
.5

0.
8

0.
8

−1
.0

1.
0

−0
.5

1.
0

0.
7

0.
5

0.
9

1.
0

0.
6

0.
7

−0
.9

−0
.5

0.
6

0.
6

0.
9

0.
7

0.
6

0.
6

0.
5

−0
.5

c2
31

0.
8

−1
.0

−1
.0

−0
.6

−1
.0

−0
.7

−1
.0

−0
.8

0.
2

−0
.5

−1
.0

1.
0

−0
.7

−0
.3

0.
5

−0
.5

1.
0

−0
.6

−0
.9

−1
.0

−0
.6

−0
.5

−1
.0

−0
.9

0.
6

1.
0

−1
.0

0.
1

−0
.6

−0
.8

−1
.0

−0
.9

−1
.0

1.
0

c2
41

−0
.7

0.
6

0.
6

−0
.2

0.
6

0.
9

0.
6

0.
7

0.
7

1.
0

0.
6

−0
.6

0.
9

0.
8

−1
.0

1.
0

−0
.6

1.
0

0.
7

0.
6

1.
0

1.
0

0.
6

0.
7

−1
.0

−0
.6

0.
6

0.
6

1.
0

0.
7

0.
6

0.
7

0.
6

−0
.6

c2
42

−1
.0

0.
9

0.
9

0.
3

0.
9

0.
6

0.
9

1.
0

−0
.1

0.
7

0.
9

−0
.9

0.
6

0.
2

−0
.7

0.
7

−0
.9

0.
7

1.
0

0.
9

0.
7

0.
7

0.
9

1.
0

−0
.7

−0
.9

0.
9

−0
.2

0.
7

1.
0

0.
9

0.
7

0.
9

−0
.9

c2
43

−0
.8

1.
0

1.
0

0.
6

1.
0

0.
7

1.
0

0.
8

−0
.2

0.
5

1.
0

−1
.0

0.
7

0.
3

−0
.5

0.
5

−1
.0

0.
6

0.
9

1.
0

0.
6

0.
5

1.
0

0.
9

−0
.6

−1
.0

1.
0

−0
.1

0.
6

0.
8

1.
0

0.
9

1.
0

−1
.0

c3
11

−0
.6

0.
6

0.
6

−0
.1

0.
6

0.
9

0.
6

0.
6

0.
6

0.
9

0.
6

−0
.6

0.
9

0.
8

−0
.9

0.
9

−0
.6

1.
0

0.
7

0.
6

1.
0

0.
9

0.
6

0.
7

−1
.0

−0
.6

0.
6

0.
5

1.
0

0.
6

0.
6

0.
7

0.
6

−0
.6

c3
12

−0
.7

0.
5

0.
5

−0
.4

0.
5

0.
8

0.
5

0.
7

0.
7

1.
0

0.
5

−0
.5

0.
8

0.
8

−1
.0

1.
0

−0
.5

1.
0

0.
7

0.
5

0.
9

1.
0

0.
6

0.
7

−0
.9

−0
.5

0.
6

0.
6

0.
9

0.
7

0.
6

0.
6

0.
5

−0
.5

c3
13

−0
.9

1.
0

1.
0

0.
5

1.
0

0.
7

1.
0

0.
9

−0
.2

0.
6

1.
0

−1
.0

0.
7

0.
3

−0
.6

0.
6

−1
.0

0.
6

0.
9

1.
0

0.
6

0.
6

1.
0

0.
9

−0
.6

−1
.0

1.
0

−0
.1

0.
6

0.
9

1.
0

0.
9

1.
0

−1
.0

c3
21

−1
.0

0.
9

0.
9

0.
3

0.
9

0.
6

0.
9

1.
0

−0
.1

0.
7

0.
9

−0
.9

0.
6

0.
2

−0
.7

0.
7

−0
.9

0.
7

1.
0

0.
9

0.
7

0.
7

0.
9

1.
0

−0
.7

−0
.9

0.
9

−0
.2

0.
7

1.
0

0.
9

0.
7

0.
9

−0
.9

c3
22

0.
6

−0
.6

−0
.6

0.
1

−0
.6

−0
.9

−0
.6

−0
.6

−0
.6

−0
.9

−0
.6

0.
6

−0
.9

−0
.8

0.
9

−0
.9

0.
6

−1
.0

−0
.7

−0
.6

−1
.0

−0
.9

−0
.6

−0
.7

1.
0

0.
6

−0
.6

−0
.5

−1
.0

−0
.6

−0
.6

−0
.7

−0
.6

0.
6

c3
23

0.
8

−1
.0

−1
.0

−0
.6

−1
.0

−0
.7

−1
.0

−0
.8

0.
2

−0
.5

−1
.0

1.
0

−0
.7

−0
.3

0.
5

−0
.5

1.
0

−0
.6

−0
.9

−1
.0

−0
.6

−0
.5

−1
.0

−0
.9

0.
6

1.
0

−1
.0

0.
1

−0
.6

−0
.8

−1
.0

−0
.9

−1
.0

1.
0

c3
24

−0
.9

1.
0

1.
0

0.
5

1.
0

0.
7

1.
0

0.
9

−0
.2

0.
6

1.
0

−1
.0

0.
7

0.
3

−0
.6

0.
6

−1
.0

0.
6

0.
9

1.
0

0.
6

0.
6

1.
0

0.
9

−0
.6

−1
.0

1.
0

−0
.1

0.
6

0.
9

1.
0

0.
9

1.
0

−1
.0

c3
31

0.
1

−0
.1

−0
.1

−0
.7

−0
.1

0.
6

−0
.1

−0
.1

0.
9

0.
6

−0
.1

0.
1

0.
6

0.
9

−0
.6

0.
6

0.
1

0.
6

−0
.2

−0
.1

0.
5

0.
6

−0
.1

−0
.2

−0
.5

0.
1

−0
.1

1.
0

0.
5

−0
.1

−0
.1

0.
3

−0
.1

0.
1

c3
32

−0
.6

0.
6

0.
6

−0
.1

0.
6

0.
9

0.
6

0.
6

0.
6

0.
9

0.
6

−0
.6

0.
9

0.
8

−0
.9

0.
9

−0
.6

1.
0

0.
7

0.
6

1.
0

0.
9

0.
6

0.
7

−1
.0

−0
.6

0.
6

0.
5

1.
0

0.
6

0.
6

0.
7

0.
6

−0
.6

c3
33

−1
.0

0.
8

0.
8

0.
2

0.
8

0.
5

0.
8

1.
0

0.
0

0.
7

0.
8

−0
.8

0.
5

0.
2

−0
.7

0.
7

−0
.8

0.
7

1.
0

0.
8

0.
6

0.
7

0.
9

1.
0

−0
.6

−0
.8

0.
9

−0
.1

0.
6

1.
0

0.
9

0.
6

0.
8

−0
.8

c3
34

−0
.9

1.
0

1.
0

0.
5

1.
0

0.
7

1.
0

0.
9

−0
.2

0.
6

1.
0

−1
.0

0.
7

0.
3

−0
.6

0.
6

−1
.0

0.
6

0.
9

1.
0

0.
6

0.
6

1.
0

0.
9

−0
.6

−1
.0

1.
0

−0
.1

0.
6

0.
9

1.
0

0.
9

1.
0

−1
.0

c4
22

−0
.6

0.
9

0.
9

0.
4

0.
9

0.
9

0.
9

0.
6

0.
1

0.
6

0.
9

−0
.9

0.
9

0.
7

−0
.6

0.
6

−0
.9

0.
7

0.
7

0.
9

0.
7

0.
6

0.
9

0.
7

−0
.7

−0
.9

0.
9

0.
3

0.
7

0.
6

0.
9

1.
0

0.
9

−0
.9

c5
12

−0
.8

1.
0

1.
0

0.
6

1.
0

0.
7

1.
0

0.
8

−0
.2

0.
5

1.
0

−1
.0

0.
7

0.
3

−0
.5

0.
5

−1
.0

0.
6

0.
9

1.
0

0.
6

0.
5

1.
0

0.
9

−0
.6

−1
.0

1.
0

−0
.1

0.
6

0.
8

1.
0

0.
9

1.
0

−1
.0

c5
23

0.
8

−1
.0

−1
.0

−0
.6

−1
.0

−0
.7

−1
.0

−0
.8

0.
2

−0
.5

−1
.0

1.
0

−0
.7

−0
.3

0.
5

−0
.5

1.
0

−0
.6

−0
.9

−1
.0

−0
.6

−0
.5

−1
.0

−0
.9

0.
6

1.
0

−1
.0

0.
1

−0
.6

−0
.8

−1
.0

−0
.9

−1
.0

1.
0

Th
e

Sp
ea

rm
an

’s
ra

nk
co

rr
el

at
io

n
co

ef
fic

ie
nt

va
lu

e
1.

0
is

hi
gh

lig
ht

ed
w

he
n

th
e

va
lu

es
co

rr
es

po
nd

to
th

e
sa

m
e

va
ri

ab
le

.

173



ISPRS Int. J. Geo-Inf. 2021, 10, 342

G

Patch metrics for the Autonomous Region of Azores. Due to the size of this Appendix,
the link below is provided for download: https://www.dropbox.com/s/lbwd1q688ngk2ug/
APPENDIX%20G%2C%20H%2C%20and%20I.docx.zip?dl=0, accessed on 3 January 2021.

H

Patch metrics for the Autonomous Region of Madeira. Due to the size of this Appendix,
the link below is provided for download: https://www.dropbox.com/s/lbwd1q688ngk2ug/
APPENDIX%20G%2C%20H%2C%20and%20I.docx.zip?dl=0, accessed on 3 January 2021.

I

Patch metrics for the Autonomous Region of Canary Islands. Due to the size of this
Appendix, the link below is provided for download: https://www.dropbox.com/s/lbwd1
q688ngk2ug/APPENDIX%20G%2C%20H%2C%20and%20I.docx.zip?dl=0, accessed on
3 January 2021.
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Abstract: Research on vegetation variation is an important aspect of global warming studies.
The quantification of the relationship between vegetation change and climate change has become a
central topic and challenge in current global change studies. The source region of the Yellow River
(SRYR) is an appropriate area to study global change because of its unique natural conditions and
vulnerable terrestrial ecosystem. Therefore, we chose the SRYR for a case study to determine the
driving forces behind vegetation variation under global warming. Using the Normalized Difference
Vegetation Index (NDVI) and climate data, we investigated the NDVI variation in the growing
season in the region from 1998 to 2016 and its response to climate change based on trend analysis,
the Mann–Kendall trend test and partial correlation analysis. Finally, an NDVI–climate mathematical
model was built to predict the NDVI trends from 2020 to 2038. The results indicated the following:
(1) over the past 19 years, the NDVI showed an increasing trend, with a growth rate of 0.00204/a. There
was an upward trend in NDVI over 71.40% of the region. (2) Both the precipitation and temperature in
the growing season showed upward trends over the last 19 years. NDVI was positively correlated with
precipitation and temperature. The areas with significant relationships with precipitation covered
31.01% of the region, while those with significant relationships with temperature covered 56.40%.
The sensitivity of the NDVI to temperature was higher than that to precipitation. Over half (56.58%)
of the areas were found to exhibit negative impacts of human activities on the NDVI. (3) According
to the simulation, the NDVI will increase slightly over the next 19 years, with a linear tendency
of 0.00096/a. From the perspective of spatiotemporal changes, we combined the past and future
variations in vegetation, which could adequately reflect the long-term vegetation trends. The results
provide a theoretical basis and reference for the sustainable development of the natural environment
and a response to vegetation change under the background of climate change in the study area.

Keywords: vegetation; partial correlation analysis; trend prediction; the source region of the
Yellow River

1. Introduction

Global environmental change, which is marked by “global warming”, has possible serious impacts
on ecosystems and has attracted great attention from scientists around the world [1,2]. Vegetation
cover is an important component of the environment, and is also the best indicator of the regional
ecological environment [3]. The variation in vegetation cover is the direct result of environmental
change [4]. As the main component of terrestrial ecosystems, vegetation is a sensitive indicator of
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climate change. Therefore, in the context of global climate change, it is of great significance to identify
the spatiotemporal characteristics of vegetation cover to regulate ecological processes and ensure
ecological security.

The Normalized Difference Vegetation Index (NDVI) can be used to measure the improvement and
degradation of vegetation cover. NDVI is a good satellite-based indicator of vegetation at the landscape
scale [5,6]. The NDVI time series intuitively reflects the vegetation growth and coverage status.
The NDVI is widely used in global and regional vegetation change research. Kawabata et al. found
that vegetation activities increased remarkably in the northern middle-high latitudes [7]. Relevant
research has shown that the vegetation in China has exhibited the same trend. Liu et al. analysed the
vegetation changes in China from 1982 to 2012. The results showed that the NDVI exhibited a slowly
increasing trend with obvious regional characteristics. The increasing trend slowed after 1997 [8].
Piao and Fang used global inventory modeling and mapping studies (GIMMS) NDVI data to analyse
the vegetation cover in China from 1982 to 1999, and showed that 86.2% of China’s area exhibited an
increasing trend in vegetation. The changes in NDVI were significantly affected by climate fluctuations
and had obvious regional differences [9]. Xu et al. analysed the vegetation coverage from 2000 to
2015 and showed that the area with increased vegetation coverage accounted for 83.34% of the area
in China [10]. Other scholars have performed extensive research on vegetation cover changes in the
Huang-Huai-Hai River basin [11], in the Yangtze River basin [12], on the Qinghai–Tibet Plateau [13],
and in the southwestern karst region [14]. The above research showed that the vegetation increased
in regional areas or throughout whole countries. The Qinghai–Tibet Plateau was shown to be more
sensitive to the effects of climate warming than other regions.

The source region of the Yellow River (SRYR) is located on the sensitive margin of the northeastern
Qinghai–Tibet Plateau [15]. Most of this region are located between 4200 and 5000 m above sea level,
and the percentage of the area above 5000 m is less than 1% [16]. The main vegetation is grassland,
including alpine grassland and alpine meadow, which cover 74.55% of this region. The region is an
important part of the terrestrial ecosystem of the Qinghai–Tibet Plateau. The SRYR is also a water
conservation area and a key protected area in the Yellow River basin [17]. With the rise of ecological
protection in the Yellow River basin as a major national strategy [18], it is of great significance to
dynamically monitor the spatiotemporal evolution of surface vegetation cover. Over the past decades,
the region has experienced severe climate change. Many studies have indicated that the temperature
and precipitation in the study area have increased [19,20], and the vegetation coverage has exhibited a
tendency of restoration because the climate has become gradually warm and wet [21]. Some researchers
have studied the relationships between vegetation coverage and environmental variation [22]. Guo et al.
found that vegetation cover changes in the SRYR showed very impressive correlations with climatic
factors [23]. Liang et al. reported that local hydrological conditions directly influenced vegetation
variations, and overgrazing can be a leading cause of localized vegetation degradation [24]. Most of
the studies on the vegetation coverage in the study area have focused on current interannual changes,
while few studies have focused on different regions and the future.

Land-use types represent the ongoing challenges of environmental variation and the impacts of
human activities [25]. Therefore, based on the NDVI data and climate data from 1998 to 2016, this
study analysed the spatiotemporal changes in the NDVI and the response mechanisms of different
land-use types in the growing season and predicted them for the next 20 years. This study provides a
scientific basis for the development of countermeasures to protect vegetation in the SRYR under the
background of global warming.

2. Data and Methods

2.1. Study Area

The SRYR (32◦09–36◦34 N, 95◦54–103◦24 E) is located on the northeastern Qinghai–Tibet Plateau
and covers an area of 131,400 km2, accounting for 16.2% of the Yellow River basin area. The study
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areas in this paper are shown in Figure 1. The administrative area mainly includes 17 counties
in the three provinces of Qinghai, Gansu and Sichuan. The elevation in the SRYR decreases from
west to east with a maximum altitude of 6253 m and a minimum of 2410 m. The lowest elevation
of the study area exists in Longyangxia Reservoir, and the highest elevation is in the Anyemaqen
Mountains. The region has a continental plateau climate, which is obviously affected by the southwest
monsoon. The temperature and precipitation decrease from the southeast to the northwest. The annual
average rainfall is approximately 530 mm yr−1 [26]. From the southeast to the northwest, the annual
average daily temperature varies between 2 ◦C and −4 ◦C [27]. There are many glaciers and extensive
permafrost as well as a large number of lakes and rivers, which feed a large number of marsh wetlands;
these areas provide more than 40% of the runoff in the Yellow River basin [28]. The SRYR is an
important water conservation area and is also known as a “plateau water tower”.

Figure 1. The source region of the Yellow River (SRYR): (a) geolocation location; (b) digital elevation
model (DEM) map.

2.2. Data

The NDVI data used in this paper were provided by the Resources and Environment Science
Data Center of the Chinese Academy of Sciences (http://www.resdc.cn). The data were based on
NDVI time series data obtained from satellite remote-sensing images by SPOT/VEGETATION and
moderate-resolution imaging spectroradiometer (MODIS). The data can reflect the distribution and
change of vegetation cover in various regions of China on the spatiotemporal scales effectively, which
is of great reference significance to the monitoring of vegetation variation, the rational utilization of
vegetation resources and other researches on ecological environment [29]. The data were processed
with atmospheric, radiation, and geometric corrections. The data were synthesized by using maximum
value composites (MVC) with a spatial resolution of 1 km and a temporal resolution of one month.
After verification, the accuracy was found to meet the requirements. The data have been used in
research on monitoring vegetation dynamic changes. The average monthly NDVI values from May
to September were used to obtain the annual NDVI values during the growing season from 1998
to 2016. The daily meteorological grid data were provided by the National Climate Center [30],
including the CN05.1 data from 1998–2016 and the regional climate model version 4 (RegCM4) data
from 2020–2038, which had spatial resolutions of 0.25◦ and 0.0625◦, respectively. The climate elements
included precipitation (Pre) and temperature (Tm). The daily values of the two climate elements were
statistically estimated from May to September, and these data were resampled to a spatial resolution
of 1 km to be consistent with the spatial resolution of the NDVI dataset. The data have been heavily
cited in scientific papers [31]. The land-use types in 2015 were obtained from the Resources and
Environment Science Data Center of the Chinese Academy of Sciences (http://www.resdc.cn), with a
spatial resolution of 100 m. The land-use types were integrated into six categories: cropland, woodland,
grassland, water bodies, built-up land and unused land.
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2.3. Methods

The linear trend method [32] was used to analyse the NDVI trends. A positive slope indicated that
the vegetation tended to improve with increasing NDVI. A negative slope indicated that the vegetation
tended to deteriorate with decreasing NDVI. The statistic eslope was calculated as in Equation (1)
as follows:

eslope =
n×∑n

i=1 i×NDVIi −∑n
i=1 i×∑n

i=1 NDVIi

n×∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where eslope represents the slope of the NDVI trend, i represents the year serial number, and n represents
the time series length.

The Mann–Kendall abrupt test [33] was used to determine the year of the NDVI change.
The statistics were defined under the assumption that the time series were random and independent.
The UFk statistic was calculated with the following equations:

UFk =
dk − E(dk)√

Var(dk)
(2)

where

dk =
k∑

i=1

mi, (2 ≤ k ≤ n) (3)

mi =

{
1, NDVIi > NDVIj

0, else
, (1 ≤ j ≤ i) (4)

E(dk) =
k(k− 1)

4
(5)

Var(dk) =
k(k− 1)(2k + 5)

72
(6)

where UF1 is equal to 0. The dk statistic is reduced to that given in Equations (3) and (4), which
indicates that the value at time i was greater than the value at time j. Equation (5) calculates the
mean of the UFk statistic, and Equation (6) calculates the variance. Then, the order of column dk is
calculate as the reverse time series. The UBk value was calculated according to the above equation.
Given the significance level α = 0.05, the critical value of the UBk statistic was |1.96|. A sequence was
constructed for 19 samples and the UFk and UBk curves and significant horizontal lines were drawn.
If UFk was greater than 0, it meant that the sequence showed an increasing trend, and a value of
less than 0 indicated a decline. When the threshold exceeded |1.96|, it indicated that the trend was
significant. If the UFk and UBk curves had intersection points within the confidence interval, the time
corresponding to the intersection point was the possible change point.

In addition, this study used partial correlation analysis [20] to analyse the relationship between the
climatic factors and the NDVI. The partial correlation coefficient is an index that measures the degree
of linear correlation between the two variables by controlling the effects of multiple other variables.
Moreover, this study used the residual analysis method [34,35] to analyse the impacts of human
activities on the NDVI. Based on the NDVI, precipitation and temperature values from 1998 to 2016,
the residual method was used to simulate the relationship between the NDVI and the climate elements
for each pixel. The changes in the residuals in the NDVI predictions and observations reflected the
contributions of human impacts to the actual changes in NDVI. Positive residuals indicated that the
human impacts on vegetation were positive, and negative residuals indicated that the human impacts
on vegetation were negative.

180



ISPRS Int. J. Geo-Inf. 2020, 9, 282

3. Results and Analysis

3.1. Spatiotemporal Variation in Normalized Difference Vegetation Index (NDVI)

Table 1 shows the basic situation of the main counties, which shows that water bodies and built-up
land accounted for a small proportion, so vegetation variations in these land-use types will not be
subsequently analysed. Among the different land-use types, the proportion of grassland in the region
was the highest. Among the different counties, NDVI in Zoigê had the highest values.

Table 1. Normalized Difference Vegetation Index (NDVI) value and proportion of land-use types in
different counties.

Countie

Mean
NDVI
Value

Land-Use Types/%

Crop-
Land

Wood-
Land

Grass-
Land

Water
Body

Built-Up
Land

Unused
Land

The source region of
the Yellow River

(SRYR)
0.486 0.94 6.77 74.45 2.27 0.13 15.44

Zoigê 0.674 0.03 0.75 70.44 1.07 0.27 27.44
Hongyuan 0.674 0.03 7.26 79.62 0.03 0.23 12.83

Aba 0.666 / 8.37 85.57 0.09 / 5.98
Henan 0.655 / 15.75 78.45 0.80 0.12 4.87
Maqu 0.640 / 8.10 73.75 1.72 0.09 16.34
Jigzhi 0.602 / 10.18 86.04 0.71 0.03 3.03
Zêkog 0.593 1.49 2.90 78.88 0.44 0.05 16.24
Gadê 0.558 / 12.72 82.55 0.62 0.03 4.08

Tongde 0.540 7.91 22.89 58.34 1.08 0.17 9.61
Maqên 0.485 0.02 16.29 68.29 1.88 0.12 13.40
Darlag 0.476 / 2.23 88.94 0.95 0.01 7.88
Xinghai 0.424 0.50 10.98 67.47 0.87 0.08 20.11
Guinan 0.410 11.14 2.43 65.73 3.00 0.21 17.49
Chindu 0.396 / / 84.65 1.44 / 13.91
Madoi 0.324 / 0.20 74.21 7.22 0.01 18.36

Qumarleb 0.290 / / 62.51 1.50 0.01 35.98
Gonghe 0.257 3.70 1.20 63.47 7.57 2.50 21.56

The spatial distribution of the NDVI in the growing season in the SRYR from 1998 to 2016 exhibited
obvious regional differences. The spatial variability analysis showed an increasing gradient of NDVI
from northwest to southeast in Figure 2a. The maximum NDVI value was 0.76, which was located in
the Zoigê wetland. By referring to related studies [36], the NDVI values were classified into 5 levels.
The NDVI distribution was analysed in combination with the land-use types (Figure 2c). The multiyear
average NDVI in the growing season was 0.486, of which the area where NDVI was <0.1 covered
1.17% of the total area, mainly including water bodies represented by Eling Lake, Zaling Lake, and
Longyangxia Reservoir and permanent glacial snow on the Anyemaqen Mountains. The area with
NDVI values between 0.1 and 0.3 covered 15.12% of the area, mainly including unused land that
was dominated by sand; the Gobi Desert; the marshlands in northern Qumarlêb, northern Madoi,
and western Xinghai around Longyangxia Reservoir; and the sandy area in Huangshatou. The area
where the NDVI was between 0.3 and 0.6 covered 50.77% of the area and was mainly distributed in
Qumarleb, Madoi, Chindu, Maqên, Xinghai and Guinan, with medium- and low-coverage grassland.
In addition, this area also included cultivated land in parts of Guinan. The NDVI values between 0.6
and 0.7 covered 27.90% of the total area. These areas were mainly located in the central counties of the
region, which are dominated by medium- and low-coverage grasslands. The areas where NDVI was
>0.7 covered 5.04% of the total area, mainly including Aba, Maqu, Zoigê, and Hongyuan, which have
high-coverage grasslands and some medium-coverage grasslands.

The spatial distribution of the mean NDVI values can represent the overall trend of the vegetation,
but there were opposite changes in different regions, and they can offset each other. Therefore, based
on the unitary regression model, the trend of NDVI over the 19 years was analysed at the pixel scale.
According to Figure 2b, the NDVI in the SRYR increased in most areas and decreased in some local areas.

181



ISPRS Int. J. Geo-Inf. 2020, 9, 282

According to the statistics, from 1998 to 2016, the area where the NDVI increased covered 71.40% of the
total area. Among the areas with NDVI increases, the rapidly increasing area covered 33.12% of the
total area and was mainly distributed in the southeast. The NDVI values did not change significantly in
19.41% of the areas. These areas were mainly distributed in Madoi, Gadê and Huangshatou in Guinan.
As a typical aeolian sand control area, the trend of NDVI remained basically unchanged, which reflected
the long-term and arduous nature of sandy land management. The reduced NDVI area covered 9.19%
and was mainly distributed in Qumarleb (grasslands with medium and low coverage, unused land
with bare rock), Maqên, and an urban area of Gonghe. The above studies indicated that while the state
of vegetation in the SRYR had improved, some areas experienced vegetation degradation.

 
Figure 2. Spatial distribution in the SRYR from 1998 to 2016: (a) mean NDVI value; (b) NDVI change
trend; (c) land-use types in 2015. In Figure 2b, rapid decrease represents a slope <–0.003; slow decrease
represents –0.003 < slope < –0.001; basically unchanged represents –0.001 < slope < 0.001; slow increase
represents 0.001 < slope < 0.003; rapid increase represents a slope <0.003.

As we can see in Figure 3, the NDVI in the SRYR increased slowly over the past 19 years, with
a slope of 0.00204/a. Before 2005, the NDVI was lower than the multiyear average values, and then
it fluctuated around the average, indicating that the vegetation coverage had improved since 2005.
The State Council approved and launched the “master plan for ecological protection and construction
of the Three-River-Source Nature Reserve in Qinghai” in 2005 and implemented a series of engineering
measures. The results of this article showed that the implementation of these projects had a certain
effect on vegetation restoration and protection. From the different land-use types, the trend of the
grassland NDVI was the most consistent with that of the whole region. The NDVI values for different
land-use types in the region showed an upward trend. The increasing trend of cropland NDVI was
the most obvious, with a linear tendency of 0.00559/a, an average NDVI value of 0.46, and a change
point that occurred in approximately 2004. Both the woodland NDVI and grassland NDVI showed
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slow trends, with linear tendencies of 0.00248/a and 0.00214/a, respectively. The average woodland
NDVI value was 0.60, and the change point was between 2009 and 2011. The average grassland NDVI
value was 0.50, and the change point was approximately 2006. The unused land NDVI showed slight
increasing trends, with linear tendencies of 0.00147/a, an average NDVI value of 0.40, and the abrupt
point occurred in approximately 2003. In the study area, the unused land in the west mainly included
sandy land and the Gobi with low NDVI values; the eastern part, namely, the Zoigê wetland, was
dominated by marshland with high NDVI values. In summary, the distribution of the NDVI values in
the different land-use types was woodland > grassland > cropland >> unused land. In terms of trends,
the grassland NDVI contributed significantly to the annual NDVI in the study area.

Figure 3. Temporal change of NDVI in different land-use types: (a) the SRYR; (b) cropland; (c) woodland;
(d) grassland; (e) unused land.

The increasing trends in NDVI were obvious in many regions in China; however, the NDVI
changes in the SRYR were relatively small, even though many protective measures were adopted by the
government in the region at the same time, and increasing trends of climate change were faster than the
average in China. Therefore, we discussed the main factors affecting NDVI in the subsequent analysis.

3.2. Impact of Meteorological Elements on the NDVI

Many studies have shown a clear response of NDVI to climate change. The impact of climate
change on vegetation is mainly reflected in the hydrothermal conditions. Evapotranspiration data for
long-term continuous observations are difficult to obtain. Therefore, climate change can be attributed as
a cause of changes in precipitation and temperature. Temperature and precipitation are the most direct
and important factors for plant growth [37,38]. Figure 4 shows that the precipitation in the growing
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season showed an upward trend, with a linear trend of 7.17/a and an average value of 449.52 mm.
The average temperature linearly increased at 0.04/a, with an average value of 6.42 ◦C. The precipitation
and temperature were mainly below average before 2005. The precipitation had the lowest value in
2001. After 2005, the climate elements fluctuated around the mean value. The consistency between
NDVI and temperature was better than the consistency between NDVI and precipitation.

Figure 4. Temporal change in the climate elements from 1998 to 2016: (a) precipitation; (b) temperature.

Correlation coefficients between climate elements and NDVI in different land-use types are shown
in Table 2. The partial correlation coefficient between the NDVI and precipitation was 0.221 (P = 0.289),
and the coefficient between the NDVI and temperature was 0.467 (P = 0.131). Among the NDVI values
for the different land-use types, precipitation exhibited the best correlation with cropland, and passed
the 5% significance level test. Cropland mainly located in the central of Guinan and north of Tongde.
The driving force of precipitation on cropland was stronger than temperature. Temperature had the
best correlation with grassland, followed by woodland.

Table 2. Partial correlation coefficient.

Climate Elements SRYR Cropland Woodland Grassland Unused Land

Pre 0.221 0.669 * 0.276 0.216 0.230
Tm 0.467 0.363 0.471 0.490 0.411

* indicates significance at the 5% level.

Table 3 shows the partial correlation between climate elements and NDVI in different counties.
The correlation coefficient between precipitation and NDVI was positive in all counties. Among the
different counties, at the significance level of 0.05, Guinan exhibited the highest significant correlation
proportion that covered 71.08% of the total area, followed by Zêkog and Gonghe. The significant
correlation proportion in these counties were all above 50%. The counties where the significant
correlation proportion were between 25% and 50% were mainly distributed in Xinghai, Tongde, Madoi,
Zoigê, Henan and Qumarleb. The counties where the significant correlation proportion were <25%
mainly included Maqên, Hongyuan, Darlag, Maqu, Aba, Jigzhi, Gadê and Chindu.

184



ISPRS Int. J. Geo-Inf. 2020, 9, 282

Table 3. Climate elements and correlation coefficients in different counties.

Counties

Pre Tm

Mean
Value/mm

Correlation
Coefficients

Significant
Correlation
Proportion/%

Mean
Value/◦C

Correlation
Coefficients

Significant
Correlation
Proportion/%

SRYR 449.52 0.221 31.01 6.42 0.467 56.40
Zoigê 547.11 0.285 30.79 8.75 0.499 64.41

Hongyuan 623.22 0.257 24.30 7.96 0.556 75.39
Aba 609.28 0.206 19.24 8.27 0.588 * 83.15

Henan 512.34 0.332 28.92 7.19 0.524 72.32
Maqu 567.74 0.181 19.97 7.49 0.510 66.48
Jigzhi 633.57 0.066 17.13 6.00 0.541 74.71
Zêkog 459.47 0.519 62.79 7.50 0.550 * 81.04
Gadê 522.78 0.060 16.72 5.20 0.459 52.45

Tongde 447.81 0.443 45.50 7.95 0.442 47.50
Maqên 450.46 0.137 24.35 5.07 0.417 44.27
Darlag 494.39 0.084 24.02 5.14 0.535 70.44
Xinghai 376.10 0.372 46.62 6.76 0.292 16.94
Guinan 392.23 0.553 71.08 10.09 0.366 34.68
Chindu 350.83 0.036 11.72 4.29 0.560 72.07
Madoi 319.84 0.144 31.09 5.05 0.474 58.37

Qumarleb 267.72 0.228 27.97 4.87 0.456 53.48
Gonghe 379.30 0.439 54.92 11.00 0.252 10.80

* Indicates significance at the 5% level.

The counties where the significant correlation proportion between NDVI and temperature
were above 75% mainly included Aba, Zêkog and Hongyuan. Aba exhibited the highest significant
correlation proportion that covered 83.15% of the total area. Both Aba and Zêkog correlation coefficients
passed the 5% significance level test. That is, the driving force of temperature on vegetation was
stronger than precipitation in these areas. The counties where the significant correlation proportion
were between 50% and 75% were mainly distributed in Jigzhi, Henan, Chindu, Darlag, Maqu, Zoigê,
Madoi, Qumarleb and Gadê. The counties where the significant correlation proportion were between
25% and 50% were mainly included Tongde, Maqên and Guinan. The counties where the significant
correlation proportion were <25% mainly included Xinghai and Gonghe. The contents of correlation
coefficients are shown in Figure 5.

Figure 5 shows the relationship between NDVI, climatic elements and partial correlation coefficient
in different counties. Precipitation and temperature were positively correlated with NDVI. That is,
in different counties, the NDVI increased gradually with increasing precipitation and temperature.
The higher the NDVI is, the weaker the correlation between precipitation and NDVI. The higher the
NDVI is, the stronger the correlation between temperature and NDVI. Figure 5c,d show the partial
correlation coefficient between climatic elements and NDVI. As shown in the figure, precipitation,
temperature and the correlation coefficient were negatively correlated; that is, with the increase in
precipitation and temperature, the correlation between NDVI and climatic factors weakened. In general,
the lower the precipitation and temperature of the county were, the stronger the correlation between
climate factors and NDVI. Generally, the effects on vegetation were more obvious under unfavourable
climate conditions than under suitable ones.
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Figure 5. Correlation analysis in different counties for: (a) NDVI, precipitation, and correlation
coefficient; (b) NDVI, temperature, and correlation coefficient; (c) precipitation and correlation
coefficient; (d) temperature and correlation coefficient.

The spatial distribution of the partial correlation coefficient between the NDVI and climate elements
in the growing seasons is shown in Figure 6. At the pixel scale, the partial correlation coefficient
between the NDVI and precipitation showed a significant positive correlation with precipitation that
covered 27.08% of the total area in Figure 6a. This correlation was mainly distributed in Guinan, which
mainly includes grassland and sandy land, most of this region is located between 2559 and 4759 m
above sea level, and the annual average precipitation is below 400 mm; significant positive correlations
were also observed in Zêkog, Gonghe, Tongde, Xinghai, and northwestern Madoi. A total of 68.99% of
the area was not significantly related. The areas with significant negative correlations covered 3.93% of
the total area, and points were distributed in Darlag and Madoi. This region is located between 3787
and 5236 m above sea level, and the annual average temperature is below 5.5◦C. There was an increase
in precipitation and widespread melting of glaciers and snows, which fed glacial lakes and wetlands,
reducing the vegetation coverage in glacial snow regions to a certain extent.

The area where there was a significantly positive correlation between NDVI and temperature
covered 56.34% of the total area in Figure 6b, and was mainly distributed in Zêkog, the southern Madoi,
Chindu, Darlag, and the southeastern SRYR. The area that was not significantly related covered 43.60%,
and was mainly distributed in Gonghe, Xinghai, northern Guinan, Maqên and Gadê.

Overall, the NDVI exhibited a positive correlation with precipitation and temperature in the SRYR,
and the correlation with temperature was higher than that with total precipitation. This result showed
that the sensitivity of the NDVI to temperature was higher than that of precipitation, which showed
that temperature had a greater impact on vegetation.
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Figure 6. Spatial distribution of the correlation analysis for the NDVI and climate elements:
(a) precipitation; (b) temperature. In the figure, Sig Neg_Cor represents a significant negative
correlation; InS Neg_Cor represents a nonsignificant negative correlation; InS Pos_Cor represents a
nonsignificant positive correlation; and Sig Pos_Cor represents a significant positive correlation.

3.3. Impact of Human Activities on NDVI

Numerous studies have shown that alpine vegetation, which is highly sensitive to global
changes [39,40], has been severely affected by global climate change and human activities. The impact
of human activities on vegetation changes mainly includes the promotion of increased vegetation
cover (ecological engineering, etc.) and the destructive effect of reduced vegetation cover (grazing,
urban expansion, etc.). Spatial distribution of the residual analysis for NDVI are shown in Figure 7.
Eight typical areas were selected in the figure, and human activities information in these areas were
collected to verify the residual results.

Figure 7. Spatial distribution of the residual analysis for NDVI.

Figure 7 shows that 53.58% of the residual values were negative, which mainly included the central
and western regions in the SRYR, and Maqên accounted for the highest proportion. Human activities
in these areas play a negative role in vegetation. The values in Maqên within the territory of the
Anyemaqen Mountains, were sensitive and exhibited risk of change [41]. These areas are high-altitude
regions with the following basic characteristics: poor water-heat conditions and strong solar radiation,
which are not conducive to the implementation of ecological construction projects. The ecological
environment continues to deteriorate. Second, at the border of Gadê and Darlag, human activity
had a negative effect on vegetation. Over the last 19 years, the desertification and environmental
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degradation of this region have mainly been attributed to human activities such as overgrazing,
under the background of regional climate changes. Liu reported that grassland degradation was
the most important land-cover change in the SRYR [42]. Furthermore, in the central part of Gonghe,
land-use changes were caused by the rapid expansion of built-up land and had a negative effect on
local vegetation.

In addition, 46.42% of the area exhibited positive residuals, mainly in the Zoigê wetland and
nature reserves. Human activities in these areas play a positive role in vegetation. The Zoigê
wetland mainly includes Hongyuan, Aba, Zoigê, and Maqu. The residuals in core areas of nature
reserves [43] were positive, which mainly including Yoigilangleb, Eling Lake–Zaling Lake, and
Zhongtie-Jungong. The NDVI values in these areas showed an increasing trend, indicating that
decreasing trends of vegetation and expanding desertification were restrained, and wetland expansion
and increasing vegetation cover were obvious. To a certain extent, the effects of the establishment of the
Three-River-Source Nature Reserve (2000) were confirmed, and the ecological protection construction
project (2005) has already achieved initial results. The establishment of the Three-River-Source National
Park in 2020 indicated that the ecological protection of the Yellow River source area had reached a
new level.

3.4. Trend Prediction

Multivariate linear regression equations were used to obtain the regression coefficients of the
observed NDVI values and the observed climate elements (precipitation and temperature) from 1998
to 2016. The regression coefficients were fitted based on the climate forecast data from RegCM4 during
the same period to simulate the pixel-based change trend of the NDVI. The comparison in Figure 8b
shows that the simulated NDVI tendency value with linear tendencies of 0.00207/a, was the same as
the observed NDVI tendency value with linear tendencies of 0.00204/a. This result shows that the
credibility of the simulated NDVI trend was high. For the simulated future time period, we chose
2020–2038, which was similar to the past time length and close to the present time. Based on the grid,
using the established pixel-scale NDVI-climate model, NDVI change trend distribution from 2020 to
2038 was analysed at the pixel scale with MATLAB. The statistics were calculated with the equation:

NDVI (2020–2038) = Precipitation regression coefficient (1998–2016) * precipitation (2020–2038) +
Temperature regression coefficient (1998–2016) * temperature (2020–2038).

Figure 8. Prediction of the NDVI trend from 2020 to 2038: (a) spatial distribution; (b) temporal series.
In the Figure 8a, rapid decrease represents a slope <–0.003; slow decrease represents –0.003 < slope <
–0.001; basically unchanged represents –0.001 < slope < 0.001; slow increase represents 0.001 < slope <
0.003; rapid increase represents a slope <0.003.
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According to Figure 8, the NDVI will show a slight upward trend over the next 19 years, with a
slope of 0.00096/a. From 2020 to 2038, the areas where the NDVI will basically remain unchanged and
slowly increase cover 54% and 42.43% of the total area, respectively. Among these areas, the basically
unchanged areas are mainly distributed in Chindu and Qumarleb, the proportions of which are 91.16%
and 86.15% in each county. The slowly increasing areas are mainly concentrated in Zêkog and Tongde,
covering 70.76% and 69.83% of the county, respectively. In addition, NDVI has been increasing rapidly
in the areas of Guinan, Zêkog and Tongde, where there is currently a large amount of cropland
and a small amount of sandy land, following a similar trend over the past 19 years. The increasing
NDVI trend in Guinan is the most obvious, with a rapid growth rate of 0.00267/a, covering 83.34% of
the county.

The inputs to the prediction model are mainly precipitation and temperature, so the increase in
NDVI is related to global warming. Rising temperatures, melting glaciers and increasing precipitation
provide a good environment for vegetation cover. New studies have found that shrubs and grasses are
springing up around Mount Everest [44], and the temperature in Antarctica exceeded 20 ◦C for the
first time. These results suggest that Himalayan ecosystems are highly vulnerable to climate-induced
shifts in vegetation, and the effects of global warming are spreading. Climate change affects vegetation
growth, and vegetation change reflects climate variation. The SRYR is a sensitive area to climate, and
the past and future trends of NDVI both demonstrate the warming and wetting trends of climate,
which should arouse attention.

The climate simulation model was different from the weather forecast model and the short-term
climate prediction model. The dates in the model were not equal to actual calendar dates. Therefore,
the results of this study were only for the simulation of future NDVI trends and do not represent
current NDVI values.

4. Discussion

The SRYR is an important water conservation and recharge area in the Yellow River basin due to
its unique climatic characteristics and rich wetland system. We found that the NDVI increased over
more than 70% of the study area, and the rate of increase ranged from 0 to 0.00559/a. Compared with
that in 1998, the NDVI increased in the majority of the area in 2016. However, in considerable parts
of Qumarleb and Maqên, the NDVI decreased, indicating that the natural ecological environment
needs to be protected. He reported that grazing exclusion was an effective restoration approach to
rehabilitate degraded alpine meadows in Maqin [45]. The annual precipitation in the study area
increased from 1998 to 2016, with significant changes in different stages. The results were consistent
with those of Li [46]. The temperature increased with a linear tendency of 0.0355/a. The annual
average temperature increase over the past several years was mainly caused by the increase in the
average annual minimum temperature [47]. Related studies have also confirmed that the climate
in the SRYR is warming [26,47,48]. The temperature changes in the region over the past 19 years
were consistent with those throughout China [49], and all regions showed increasing temperatures.
However, the temperature increase was larger in the SRYR than the overall increases in China, which
also confirmed the sensitivity of the alpine region to global changes [50]. This study showed that the
temperature and precipitation of the SRYR have been increasing over the past 19 years. The climate
of the region will enter a warmer and wetter period, which will be conducive to the restoration and
establishment of vegetation. In addition, the NDVI was found to be more sensitive to temperature
than precipitation.

In addition, the variations in grassland vegetation responded not only to long- and short-term
changes in climate but also to the impact of human activities and their associated perturbations.
State-approved ecological protection construction efforts involve major projects such as returning
pastures to grasslands and ecological immigration. The implementation of continuous ecological
restoration and ecological protection projects has increased the vegetation coverage to a certain extent,
but the vegetation degradation caused by intensified human activities in local areas cannot be ignored.

189



ISPRS Int. J. Geo-Inf. 2020, 9, 282

The region has been overused and overgrazed for a long time throughout history. Overgrazing is the
main factor causing the degradation of grassland ecosystems [41]. The residual results showed that
human activities had a higher negative residual on the vegetation in the study area, indicating that
the degradation of the alpine vegetation had not been effectively contained, which was consistent
with the results of related research. The grassland NDVI was closely related to climate. Our research
showed that the trend of the NDVI was most consistent with the grassland NDVI trend, and the partial
correlation between the grassland NDVI and temperature was the best. Yang [49] selected the period
from 1998–2007 to analyse the vegetation trends in the SRYR. The results showed that vegetation was
improving [51], which is consistent with the results of this article. Ongoing climate change and human
interference have greatly affected vegetation. Therefore, the wetting tendency of the climate and
vegetation restoration projects might be the main reasons for vegetation improvements in the SRYR.

The prediction of the NDVI in the SRYR showed that it may increase over the next 19 years, which
was consistent with the trends from 1998 to 2016. In addition to climate elements and human activities,
NDVI is also affected by air pollution, soil degradation, slope and other factors. The quantification of
the relationships between vegetation change and these factors has become difficult. The choice of data
image resolution and time series and factors affecting NDVI will be the direction of our future research.
Currently, the frequency of remote-sensing images has shifted from an annual scale to finer scales, such
as monthly, ten-day, and daily periods. Methods for improving the spatial and temporal resolution
quality of NDVI data through scientific data fusion methods by using high-resolution MODIS NDVI,
high-resolution SPOT NDVI, and long time-series GIMMS NDVI data are worth exploring.

5. Conclusions

Based on the NDVI and climate data in the growing season from 1998 to 2016, this study analysed
the spatial and temporal characteristics and impact mechanisms of the NDVI in the SRYR and predicted
future NDVI trends. The results showed the following:

(1) The average NDVI in the growing season was 0.486, which decreased from northwest to southeast
and showed obvious regional differences. The NDVI values were concentrated between 0.3 and
0.6 over 50.77% of the total area. The NDVI showed a trend of “increasing overall and decreasing
locally”, and 71.40% of the area showed an increasing trend. Among the different land-use types,
woodland had the highest NDVI value, and the grassland NDVI trend coincided best with the
overall NDVI trend.

(2) From 1998 to 2016, both precipitation and temperature showed an increasing trend. These
conditions may be the main reason for the warm and humid climate in the SRYR in recent years.
This trend was conducive to the improvement of vegetation. The sensitivity of vegetation and
temperature was higher than that of precipitation. Among the different counties, the effects on
vegetation were more obvious under unfavourable climate conditions than under suitable ones.
The results of the residual analysis indicated that human activities had a positive impact on
46.42% of the SRYR. However, 53.58% of the area was still negatively affected by human activities,
which proves that the trend of grassland degradation had not been effectively contained.

(3) The trend simulation results suggested that the NDVI showed a slight upward trend from 2020 to
2038. The NDVI has been increasing rapidly in the areas of Guinan, Zêkog and Tongde. The past
and future NDVI trends in the SRYR both demonstrate climate warming and wetting trends,
which should arouse attention.

Due to the limitations in data coverage for earlier years, this article analysed the spatiotemporal
changes in the source area over only the last 19 years and simulated the trends for the next 19 years.
Studies on long time-series data are the next research direction.
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Abstract: As an objective social phenomenon, poverty has accompanied the vicissitudes of human
society, which is a chronic dilemma hindering human civilization. Remote sensing data, such as
nighttime lights imagery, provides abundant poverty-related information that can be related to
poverty. However, it may be insufficient to rely merely on nighttime lights data, because poverty is a
comprehensive problem, and poverty identification may be affected by topography, especially in
some developing countries or regions where agriculture accounts for a large proportion. Therefore,
some geographical features may be necessary for supplements. With the support of the random forest
machine learning method, we extracted 23 spatial features base on remote sensing including nighttime
lights data and geographical data, and carried out the poverty identification in Guizhou Province,
China, since 2012. Compared with the identifications using support vector machines and the artificial
neural network, random forest showed a better accuracy. The results supported that nighttime lights
and geographical features are better than those only by nighttime lights features. From 2012 to
2019, the identified poor counties in Guizhou Province showed obvious dynamic spatiotemporal
characteristics. The number of poor counties has decreased consistently and contiguous poverty-
stricken areas have fragmented; the number of poor counties in the northeast and southwest regions
decreased faster than other areas. The reduction in poverty probability exhibited a pattern of
spreading from the central and northern regions to the periphery parts. The poverty reduction was
relatively slow in areas with large slope and large topographic relief. When poor counties are adjacent
to more non-poor counties, they can get rid of poverty easier. This study provides a method for
feature selection and recognition of poor counties by remote sensing images and offers new insights
into poverty identification and regional sustainable development for other developing countries
and areas.

Keywords: poverty probability; random forest; nighttime lights; spatiotemporal characteristics

1. Introduction

As an objective social phenomenon, poverty has accompanied the vicissitudes of
human society, which is a chronic dilemma hindering human civilization [1]. China, the
world’s largest developing country, has been undergoing rapid economic development [2].
In the past years, China has taken a large number of comprehensive poverty-alleviation
work and has achieved remarkable success in poverty reduction since the beginning of the
economic reforms [3]. China was therefore the first country in the world to successfully
achieve the target of Millennium Development Goals of having extreme poverty in 2012,
which was ahead of schedule [4]. However, there are still a large number of poor people,
and, at the same time, new aspects of poverty have emerged in China. Poverty remains
a serious issue for China’s modernization [5]. In Southwest China, the high altitude
and mountainous terrain lead to the low efficiency of land use and the underdeveloped
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transportation, which are the important causes of poverty [6]. Guizhou, a relatively poor
province in Southwest China, has more mountainous areas, less flat land, and backward
economic development [7]. Coordinating regional development, reducing poverty, and
preventing the reoccurrence of poverty are the major challenges of its social and economic
development [8].

Being able to accurately identify poor areas is the underlying premise of poverty
reduction [8]. The spatiotemporal analysis of poverty is conducive to the formulation of
regional policies for the purpose of poverty-alleviation [9]. Traditionally, the data sources
for poverty assessment are the census or household surveys collected by local governments
or national organizations [10,11]. Although the quality and quantity of economic data for
developing countries have improved recently, a lack of data remains a major obstacle for
relevant assessment [12]. In particular, the data related to poverty are usually scarce and
inadequate in coverage. As the poverty research involves multi-dimensional assessment
currently, more accurate indicators are needed to support poverty identification [13]. The
substantial monetary cost, time and effort required to perform a census or survey means
that developing countries can only conduct them periodically [14]. Moreover, different
calibers of data sources make it extremely difficult to have a dynamic spatiotemporal
analysis of poverty [9]. In addition, not all countries or organizations conduct periodical
in-depth surveys [6]. The limitations of traditional data sources have posed great challenges
to the identification of regional poverty in developing countries and areas [9].

Compared to traditional data, remote sensing data are unique, objective, consistent,
and valuable resources that can provide spatial information for a variety of research pur-
poses [16]. However, remote sensing cannot completely replace the traditional poverty
identification. For example, the survey of household income and subjective feelings of
poverty cannot be obtained by remote sensing. However, remote sensing technology has
certain advantages in the spatial identification of poverty, which can reduce the workload
of surveys and statistics [11]. Many scholars have demonstrated that poverty can be inves-
tigated using remote sensing [9,11,13,17–24]. The research areas mainly include regional
poverty identification [8,9], slum mapping [17–22], and the link of the morphological
structure to social poverty [23–25]. The first one is mainly used to solve the problem of
identifying contiguous poverty areas at a large scale [9]. The latter two have advantages in
solving slums investigation and urban problems [16,19,21], mostly based on high-resolution
remote sensing data [23,24]. Rural poverty is the main form of poverty in China [26]. Ac-
cording to the government survey, by the end of 2018, there were 16.60 million rural poor
people in China, most of whom lived in mountainous areas [27,28]. The poor counties are
usually obviously contiguous in space, while the farmers’ houses are scattered in vast rural
areas [29]. The high-spatial-resolution recognition of poor residential areas is affected by
the complexity of underlying surface [17]. Using morphological structure recognition or
slum mapping to study this kind of regional poverty problem has certain challenges.

Nighttime light imagery, which is a common remote sensing data source, has been
successfully used to explore changes in human activities. As one of the few reproducible
and objective observation sources on a global scale, it has been used for research on
regional issues including ecological civilization, social economy, urbanization, and energy-
related issues, with a great reduction of statistical costs [30–32]. Recently, there have
been promising signs that nighttime light imagery can provide accurate and up-to-date
indications of regional poverty [11,13,15,33–35]. However, mostly studies used imagery in
combination with statistical data [36]; thus, they were restricted by the statistical data. The
advantages of remote sensing data including high efficiency and low cost have not been
given full play. Therefore, there is a need to explore a more achievable approach to evaluate
poverty using night-time light imagery. With the help of machine learning, slum mapping
can be achieved with high precision based on remote sensing data [2,19–21]. Inspired by
this, some scholars have tried to study regional poverty based on nighttime light imagery
and machine learning. Jean et al. [11] combined survey data and satellite imagery to
predict poverty using a machine learning approach. Li et al. [9,36] employed several
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typical machine learning approaches to identify high-poor counties based on nighttime
light imagery. However, without consideration of geographical indicators, it may result
in a certain degree of uncertainty in poverty identification in special topography areas [9].
Guizhou is one of the provinces with the largest proportion of rural poverty in China [37],
whose special geographical environment has a great potential impact on the occurrence of
poverty [26–29]. Therefore, it is necessary to consider the geographical indicators when
identifying poverty.

Against this backdrop, we integrate remote sensing data of nighttime lights and
geographical environment, use machine learning algorithms to identify the poor counties,
and investigate the spatiotemporal dynamics of regional poverty in Guizhou from 2012 to
2019. The second part of the study introduces the materials and methods. The third part
describes the dynamic spatiotemporal characteristics of poor counties in Guizhou. The
fourth part provides a discussion and the conclusion.

2. Materials and Methods

2.1. Data and Area

The county is the most basic administrative unit in China. The economic development
level and spatial distribution pattern of this unit are the visual performances of the status
quo of the regional economic development in China [27]. Therefore, we take the county
as the basic unit to identify regional poverty. Figure 1 provides a map of administrative
division at the county-level in Guizhou and shows its fifty national-level poor counties
released by the state council leading group office of poverty-alleviation and development
(http://www.cpad.gov.cn) in 2012. The data of administrative boundaries are from Na-
tional Geomatics Center of China (http://www.resdc.cn). Guizhou Province is located in
Southwest China, the eastern part of Yungui Plateau. Mountain and hilly areas account
for 90% of the total area, of which 70% are karst landforms. The topography impacts the
regional poverty significantly [27]. The poverty line set by the Chinese government is
based on the constant price of RMB 2300 per capita in 2011. According to the minimum
annual income standard, the incidence of poverty in Guizhou Province reached 26.80% in
2012. Guizhou is faced with an arduous task of poverty reduction.

Figure 1. Distribution of the national-level poor counties of Guizhou in 2012.

The study conducts an analysis of poverty identification on a yearly basis starting
from 2012. The nighttime light imagery data were provided by the Visible Infrared Imaging
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Radiometer Suite (VIIRS). VIIRS is one of five instruments onboard the Suomi National
Polar-orbiting Partnership (SNPP) satellite platform (https://www.ngdc.noaa.gov/eog/
viirs). The spatial resolution and the illumination resolution of VIIRS are 6 times and 250
times those of Defense Meteorological Satellite Program/Operational Linescan System
(DMSP/OLS) detector, respectively, and VIIRS has solved the problem of overflow due to
over-saturation of the brightness value, giving the captured night images higher resolution
and a greater value for a broader scale of research.

Natural topography has been regarded as one of the most important factors that
controls the economic development of a county in China [38]. The studies [26,27,38,39]
showed that the complex conditions of the geographical environment have a positive
driving effect on the spatial distribution of the poverty-stricken counties in China. There-
fore, the Digital Elevation Model (DEM) by Shuttle Radar Topography Mission (SRTM) (
http://gdex.cr.usgs.gov/gdex), land use coverage, street data were also used. Vegetation
fraction, water coverage, and building coverage were selected for land-use dynamic analy-
sis. The vegetation fraction was obtained based on normalized difference vegetation in-
dex [40] that was obtained in the Moderate Resolution Imaging Spectroradiometer (MODIS)
band analysis (https://modis.gsfc.nasa.gov/data/dataprod/mod13.php). Water coverage
and building coverage were extracted based on the albedo of near infrared and visible light
bands of Landsat Image (http://earthexplorer.usgs.gov/). The street network information
was collected from Open Street Map (OSM) platform (https://www.openstreetmap.org).

2.2. Methodology
2.2.1. SNPP-VIIR Data Processing

In 2012, the Day-Night Band (DNB) of VIIRS sensor mounted on the SNPP satellite
began to provide nighttime lights data with higher spatial resolution and better data quality.
Compared with the DMSP/OLS data, it represents great improvements in many aspects
and is unprecedentedly powerful in nocturnal observation. The drawback of VIIRS is that
some of the noise is not filtered. The SNPP-VIIRS sensor has 22 bands in total, and DNB
is one of its bands with the wavelengths from 500 nm to 900 nm and a spatial resolution
of about 750 m. DNB features high accuracy in radiation measurement and provides
on-board calibration to ensure the accuracy and stability of the data. NOAA provides two
forms of SNPP-VIIRS DNB data: daily data and synthetic data. Since only the synthetic
data in 2015 is available, extra work needs to be done to get the data of other years. The
2015 annual average data has been officially processed, it can be used as masking data to
eliminate light anomalies and background noise. We reduced the noise by a combination
of median filtering and low threshold denoising [41]. We corrected the geometric errors in
the nighttime light imagery [42] and used the maximum threshold method [43] to remove
the abnormal values caused by transient light. Finally, we synthesized the processed data
into the annual average data.

2.2.2. Identification Features Selection

Given the applications of nighttime lights data and the identification features used in
related fields [9,36,44–47], we adopted 12 statistical and spatial features to extract mean-
ingful information from nighttime light imagery and identify poor counties. The selected
features reveal the differences in the quantity, complexity, diversity, and variability of
nighttime lights intensities between counties. Three aspects of statistical features were
selected to describe the characteristics of the nighttime light distribution in each county:
central tendency, degree of dispersion, and distribution features. The central tendency
reflects the general data patterns. The dispersion degree reflects the representation of the
minority data. The general distribution characteristics of night-time lights in each county
can be used to demonstrate the statistical discrepancies between different counties. We
also used the identification features that reflect the geographical environment. Topography
is an important factor restricting the development of rural economics in China. Seventy
percent of the poor counties in China are characterized by poor topographic condition [27].
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By contrast, non-poor counties are mainly located in areas with good topographic con-
ditions [38]. Natural topography determines land availability and regional accessibility
and further influences the objective environment of wealth creation [27]. Therefore, the
topography and reachability were considered as the features. In addition, China is a coun-
try undergoing rapid urbanization. The process of urbanization also reflects the regional
development [39]. The land use change can describe the process of urbanization. So, we
also chose the land use coverage as the identification features. So, the geographical features
include the following easily remote-sensed spatial variables: topography, surface coverage,
and reachability based on the SRTM DEM, resource satellite remote sensing image, and
OSM data. Table 1 summarizes a total of 23 features for poverty identification and their
extraction methods.

Table 1. Description of feature variables.

Feature Types Aspects Descriptions and Statistical Methods Data Sources

Nighttime lights

Central tendency
Average of all pixels of the nighttime lights within the county’s boundary

SNPP-VIIRS

Median value of all pixels within the county’s boundary
Average light index of all pixels within the county’s boundary

Dispersion degree
Variance of all pixels within the county’s boundary

Standard deviation of all pixels within the county’s boundary
Sum of squares of deviation of all pixels within the county’s boundary

Distribution characteristics

Total value of all pixels within the county’s boundary
Number of pixels within the county’s boundary

Number of pixels greater than zero within the county’s boundary
Largest value of all pixels within the county’s boundary
Smallest value of all pixels within the county’s boundary

Range between the largest and smallest value of all pixels within the
county’s boundary

Topography

Elevation
Standard deviation of all pixels of the elevation within the

county’s boundary

SRTM DEM
Average of all pixels of the elevation within the county’s boundary

Slope
Average of all pixels of the slope data within the county’s boundary

Percentage of pixels with slope greater than 20 degree within the
county’s boundary

Surface coverage
Vegetation coverage Average of all pixels of vegetation fraction within the county’s boundary

MODIS/
Landsat

water coverage Percentage of water coverage within the county’s boundary
Building coverage Percentage of building coverage within the county’s boundary

Reachability

Total length of road Total length of OSM primary and secondary roads within the
county’s boundary

OSMRoad network density The ratio of the total length of all roads to the total area within the
county’s boundary

Distance to county capital Average distance of all pixels to the nearest county capital within the
county’s boundary

2.2.3. Machine Learning Method

Classification is an important direction of research on data mining. At present, many
machine-learning methods, including mainly single classification algorithms and ensemble
learning algorithms, can be used for classification [11]. As an ensemble learning algorithm,
Random Forest (RF) has better performance in classification than some other classification
algorithms such as Support Vector Machines (SVM), Artificial Neural Network (ANN),
and K-Nearest Neighbors (KNN) [48–51]. RF deals very well with the problems of missing
data, non-equilibrium and multi-collinearity in the data set [52]. Currently, it is one of the
algorithms with better results in classification and prediction of multi-variate data [53].
This paper used the RF to predict the poverty probability at the county level in Guizhou
from 2012 to 2019 based on the 23 classification features. The classification approaches
were conducted using the caret and random forest packages in R statistical software.
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A RF model is constructed based on randomly generated training sets and multiple
decision trees. The classification results of the test sample set are selected based on votes.
The specific steps are described as follows:

1. The 23 identification features were calculated in each county.
2. The bootstrap sampling method [54] was used to randomly sample with replacement

from the collected data of poor counties to construct a poverty training sample set
with the same number of samples as the original data set. The unselected samples
formed a poverty test sample set to measure the recognition error of the decision tree
formed by the poverty training set. Two thirds of the samples were used to build the
model, while the remaining one third are used as the test set. The sample sets were
based on the national-level poor counties of Guizhou in 2012.

3. The multiple poverty features were selected as the basis for construction of the deci-
sion tree, and the multiple decision trees were built based on multiple training sample
sets constructed. According to the principle of the Classification and Regression Trees
(CART) algorithm [55], the classification feature with the smallest Gini coefficient
was selected from the m features as the branch node, and the optimal cut-point was
determined based on the Gini coefficient after the classification feature was split to
complete the construction of the CART tree.

4. Starting from the root node, following the procedures in Step (3), the greedy algo-
rithm [56] was employed to select the classification features from top to bottom, until
the node cannot be split any further. Thus, the decision tree was constructed. The
stopping condition was that the remaining sample number of new leaf node was less
than 3.

5. The above steps were repeated many times to construct multiple decision trees to
form a RF.

6. When there was a need to classify the sample in the poverty test set, multiple recogni-
tion results of the sample were obtained through RF, the conditional probability of
recognition result of the sample was calculated, and the Boyer–Moore majority vote
algorithm [55] was used to determine the result with the highest probability as the
poverty identification result of the sample.

In the RF, the number of decision tree split attributes (mtry) and the number of
decision trees (ntree) are two important attributes, which have an important impact on
the performance of poverty identification. It is very important for the construction of the
model to determine the appropriate values for ntree and mtry. Therefore, the results of the
algorithms with different ntree and mtry were compared and analyzed. When mtry was 4,
the accurate poverty identification model showed the lowest error rate. When ntree was
greater than 300, the increase in the number of decision trees cannot reduce the error rate
significantly but would instead reduce the operating efficiency of the model. Based on the
above analysis, mtry and ntree are set to 4 and 300, respectively.

The choice of training sets is the key to the accuracy of classification. This paper
selected poor counties from the national-level poor counties identified by the Chinese gov-
ernment in 2012, and non-poor counties from other counties identified by the government
as non-poverty-stricken counties. During the adjustment and optimization of training sets,
the training sets were subjected to 10-fold cross-validation, and the training sets with high
accuracy were selected.

The classification result was denoted by the median value of probability, which can
reveal the poverty level of each county and reflect the characteristics of relative poverty.
Specifically, the closer the probability value is to 1, the greater the probability of the county
to be a poor county. To a certain extent, the choice of threshold will have a significant impact
on the accuracy and the prediction error of the model. We set the counties with poverty
probability over 0.8 as poor counties. Accuracy is assessed by calculating the coincidence
rate in space between the identification results and the 2012 government designation. On
the premise that better identification results can be obtained for 2012, we used the RF model
derived for 2012 to predict poverty probability at the county level of all the nighttime light
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imagery from 2012 to 2019 and to investigate the relative spatiotemporal patterns of poor
counties in Guizhou.

2.2.4. Spatial and Temporal Analysis of Poverty Probability

In the study, Global Moran’s I and Local Indicators of Spatial Association (LISA) are
employed to investigate the spatiotemporal dynamics of poor counties. The Global Moran’s
Index is calculated by Equation (1), and its values ranges from -1 to 1 [57,58]. The closer
it is to 1, the stronger the positive correlation is, while the closer it is to -1, the stronger
the negative correlation; if it is close to 0, the correlation is not significant. LISA analysis
uses five attributes (high-high, low-low, high-low, low-high, no significant) to describe the
correlation of spatial units [59].

Moran′s I =
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where n is the number of calculation units (such as the number of counties), xi is the poverty
probability of the ith county, the upper horizontal line represents the mean value, and wij is
the spatial symmetric weight.

Spatial clustering of poverty probability at county level is calculated with the Getis-
Ord Gi* statistic [60]. The Getis-Ord Gi* statistic is used to identify significant spatial
clusters of high (hot spots) and low values (cold spots). High values surrounded by high
values are considered as hot spots, and low values surrounded by low values are considered
as cold spots. The Gi* is calculated by Equation (2), where the variables represented by
letters were the same as those in Equation (1).
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3. Results

3.1. Performance of the Poverty Identification

In order to make a comparison between the RF and other machine learning models,
we used two typical classification algorithms of SVM and ANN to identify the poverty
probability in 2012, and adopted four evaluation indicators, namely, accuracy, precision,
recall, and F-value to evaluate the effects of these three models in poverty identification.
Table 2 shows the accuracy, precision, recall and F-value of the SVM, ANN, and RF in
poverty identification. It also shows the identification results using only nighttime lights
features as a comparison. Compared with ANN and SVM, the RF model reaches higher
values in its accuracy, precision, recall and F-value, indicating the RF-based identification
had a better performance in poverty identification. The performance of the above three
methods based on comprehensive features are all higher than that using only nighttime
lights features. Figure 2 shows the Receiver Operating Characteristic (ROC) curves of the
identification by the four methods. The Area Under Curve (AUC) values from large to
small are RF, SVM, ANN, and RF using only nighttime lights features. Therefore, RF is the
most reliable among the several schemes tested. The identification results of the above four
patterns were shown in Figures 3–6.
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Table 2. Evaluation indicators in poverty identification by the typical algorithms.

Algorithm
Evaluation Indicator

Accuracy Precision Recall F-Value

RF 0.9432 0.9592 0.9400 0.9495
ANN 0.8636 0.8958 0.8600 0.8776
SVM 0.8750 0.8980 0.9167 0.9072

RF only nighttime lights features 0.7614 0.8085 0.7917 0.8000

Figure 2. The Receiver Operating Characteristic (ROC) curves of poor counties identification in 2012.
(a) ROC curves of poor counties identification by RF, (b) ROC curves of poor counties identification
by ANN, (c) ROC curves of poor counties identifi-cation by SVM, (d) ROC curves of poor counties
identifi-cation by RF_only nighttime lights fea-tures.
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Figure 3. Distribution of poverty probability at the county level by Support Vector Machines (SVM)
in 2012.

Figure 4. Distribution of poverty probability at the county level by the Artificial Neural Network
(ANN) in 2012.
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Figure 5. Distribution of poverty probability at the county level by Random Forest (RF) only based
on nighttime lights features in 2012.

The poverty probability at the county level in 2012 is obtained and compared with
the 50 national-level poor counties designated by the Chinese government. Using the
RF model, there are 47 counties with a poverty probability greater than 0.8, which is in
good agreement with the national-level poor counties. Figure 6 shows the spatiotemporal
pattern of poverty probability at the county level in Guizhou from 2012 to 2019. As shown
in the figure, there are evident characteristics and dynamics in the spatial distribution of
poor counties over time. The poor counties are mainly distributed in the eastern, southern
and high-altitude regions of Guizhou. It is obvious that the poor counties of Guizhou are
contiguous in distribution. With the support of the poverty-alleviation work, the poor
counties have been decreasing. The number of poor counties in the northeast and southwest
of Guizhou has declined faster than the number of poor counties in other areas. In terms of
the spatial distribution of the poor counties becoming non-poor counties, poor counties
that are adjacent to non-poor counties are more easily transformed into non-poor counties.
The poverty probability of each county in Guizhou Province changed in fluctuations. The
poverty probability of its western region fluctuated greatly, and its eastern and southern
regions were consistently recognized as areas with higher poverty probability.

The distribution of poor counties in Guizhou is contiguous, and the spatiotempo-
ral characteristics of contiguous poverty-stricken areas from 2012 to 2019 are evident in
Guizhou. The changes in the boundaries of impoverished areas indicate that the spatial
distribution of impoverished areas has become more complex, showing obvious regional
characteristics. We extracted the spatial distribution characteristics of the topography at the
county level (Figures 7 and 8). It is found that the boundary change in the poverty-stricken
areas is highly related to the terrain features, and that poverty-alleviation is easier to
implement in areas with a high proportion of plains. The plain area in central Guizhou
has the lowest incidence of poverty. The area with high altitude and high topographic
relief usually has a high incidence of poverty. In addition, the internal fragmentation of the
contiguous poverty-stricken areas is intensifying.
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Figure 6. Distribution of poverty probability at the county level by RF from 2012 to 2019, (a) poverty
probability at the county level by RF in 2012, (b) poverty probability at the county level by RF in 2013,
(c) poverty probability at the county level by RF in 2014, (d) poverty probability at the county level
by RF in 2015, (e) poverty probability at the county level by RF in 2016, (f) poverty probability at
the county level by RF in 2017, (g) poverty probability at the county level by RF in 2018, (h) poverty
probability at the county level by RF in 2019.
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Figure 7. Distribution of elevation standard deviation at the county level.

Figure 8. Distribution of average slope at the county level.

3.2. Spatiotemporal Dynamics of Poverty Probability

Figure 9 shows the Global Moran’s I of poverty probability at the county level from
2012 to 2019. The results reveal that the estimates of the 8 years are all above 0, indi-
cating that the poverty probability at the county level in Guizhou has a positive spatial
autocorrelation. The values are greater than 0.7 from 2012 to 2015, indicating that this
spatial autocorrelation is relatively strong during the years. The Global Moran’s I has
relatively small fluctuations and a decreasing trend, indicating that the poverty probability
at the county level in Guizhou has been relatively stable since 2012 but with a trend of
spatial dispersion.
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Figure 9. Global Moran’s I of poverty probability from 2012 to 2019 in Guizhou Province.

Figure 10 shows the local autocorrelation of poverty probability at the county level in
2012. As shown in the figure, the high-high clusters are primarily located in the eastern
and southwestern regions of Guizhou. The central part is identified as having low-low
clusters. These results indicate that relatively poor and non-poor counties have obvious
regional distribution features. The high-low distribution is mainly found around the low-
low clusters, which is related to the rapid poverty-alleviation in this area. The low-high
areas were scattered, which were the areas with high possibility of returning to poverty
and were also the key areas of poverty-alleviation.

Figure 10. Local Indicators of Spatial Association (LISA) map of poverty probability at the county
level for 2012.

Figure 11 shows the results of the hot spot analysis of poverty in Guizhou. As shown
in the figure, the hot spots are mainly distributed in the southeast, southwest, and northeast
of Guizhou, while the cold spots are mainly distributed in the central region. After 2016,
the poverty hot spots in northeast of Guizhou disappear, indicating that there are no
obvious contiguous poverty-stricken areas in the region. Within the whole province, the
number of hot spots is decreasing, indicating that the contiguous poverty-stricken areas are
gradually shrinking. However, there are still hot spots in southeast and south of Guizhou
characterized with spatial agglomeration in 2019. The cold spots gather in the central. It
indicates that the southeastern and southwestern parts of Guizhou are the areas with high
poverty probability, while the central part of Guizhou has a low poverty probability.
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Figure 11. Hot-cold spot map of poverty probability at the county level; (a) hot-cold spot analysis
map of poverty probability at the county level in 2012, (b) hot-cold spot analysis map of poverty
probability at the county level in 2013, (c) hot-cold spot analysis map of poverty probability at the
county level in 2014, (d) hot-cold spot analysis map of poverty probability at the county level in 2015,
(e) hot-cold spot analysis map of poverty probability at the county level in 2016, (f) hot-cold spot
analysis map of poverty probability at the county level in 2017, (g) hot-cold spot analysis map of
poverty probability at the county level in 2018, (h) hot-cold spot analysis map of poverty probability
at the county level in 2019.
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There are three national contiguous poverty-stricken areas (Figure 12) that located
in Guizhou partly. They are Wuling Mountain Area (WLMA), Wumeng Mountain Area
(WMMA), and Rocky Desertification Area in Yunnan, Guizhou, and Guangxi (RDAYGG).
Figure 13 shows the average poverty probability of counties at various regional scales since
2012. The average value of national-level poor counties in Guizhou is greater than that of
the WLMA, WMMA, RDAYGG, and the whole province; the average poverty probability
of national-level poor counties has approximated that of the whole province; the average
value of national-level poor counties is falling faster than that of the whole province. The
average value of RDAYGG is far greater than that of the whole province. Since 2016, the
average poverty probability of the WLMA has been less than that of the whole province. It
indicates the effect of poverty reduction has been remarkable in the region.

Figure 12. Distribution of national contiguous poverty-stricken areas of Guizhou Province.

Figure 13. Average poverty probability from 2012 to 2019 at different spatial scales.
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4. Discussion and Conclusions

4.1. Poverty Measurement

Poverty is a complex issue that has inextricable relationship with society, economy,
environment and so on. It is a global problem and the primary obstacle for the realization
of sustainable development. Most of the existing research works rely on statistics data
from the government or other organizations, to a certain extent, which has limited the
authenticity, validity, and timeliness of poverty-related research, making it difficult to
accurately recognize regional poverty and study its dynamic spatiotemporal characteris-
tics. Nighttime light imagery data provides abundant poverty-related information that
improves the efficiency of poverty identification. However, it is also insufficient to rely
merely on nighttime lights remote sensing data. Poverty is a comprehensive problem, and
poverty identification may be affected by indicators such as topography and environment.
Considering that the geographical conditions of Guizhou are the important reason for
poverty, this paper extracted 23 spatial features including nighttime light imagery data
and geographical data and carried out the poverty identification at the county level in
Guizhou since 2012. Compared with the results of the study using only nighttime lights
remote sensing data, the accuracy has been improved. Therefore, it is necessary to intro-
duce geographical data into poverty identification. Our results provide an approximate
description of the variation of poor counties in Guizhou from 2012 to 2019 and identify
the regions that were impoverished in these years. As an exploratory study, our research
represents the attempt to estimate poverty only using remote-sensed data. We hope that
our research can serve as a reference for future researchers and facilitate more accurately
targeted antipoverty strategies.

4.2. Spatiotemporal Dynamics of Poverty

Poor counties present obvious spatiotemporal dynamics in Guizhou from 2012 to 2019.
The number of poor counties fluctuates but overall decreases over time. The non-poor
counties are mainly distributed in the central part of Guizhou, while the poor counties
are mainly distributed in the southwestern, southeastern and northwestern regions. Ge-
ographical barriers hinder or limit regional development and are an important cause of
poverty. The reduction of poor counties started from the central and northern regions in
Guizhou and spread to the periphery. Affected by the topography, poverty reduction is
relatively slow in areas with large slope and large topographic relief. When poor counties
are adjacent to more non poor counties, it is easier for them to get rid of poverty. The
results are consistent with the law of regional development and practical conditions.

In order to study the dynamic changes in the poverty-alleviation phases of Guizhou
and the impact of the phased policies on the distribution of poor counties, we further
analyzed the poor counties at some important phases. In the year of 2016, China over
fulfilled the goal of reducing rural poverty by 10 million with the support of national
policies, which was a milestone in the history of poverty alleviation in China. Figure 6
shows the number of counties with a poverty probability greater than 80% decrease signifi-
cantly in 2016, reflecting the poverty-alleviation achievements. The Chinese government
pointed out that 2019 was a crucial year to win the fight against poverty. As shown in
Figure 6, the poverty probability in Guizhou is greatly reduced in 2019, and there are only
three counties with a poverty probability greater than 80%. These findings reveal that the
regional economic development and national policy implementation are highly related
to the spatiotemporal dynamics of poverty, and the key to achieving regional poverty
reduction is the development of the regional economy and the implementation of national
macrolevel policies. Therefore, the results of the spatiotemporal dynamic of poverty can
be used to make targeted policies for poverty reduction in impoverished areas, to achieve
more sustainable and effective poverty-alleviation.
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4.3. Applications and Implications

Compared with research that relies on census and commercial data sets, machine
learning method based on remote sensing data can effectively improve the efficiency of
poverty identification while allowing for real-time monitoring. As nighttime light imagery
data and other remote sensing data are accessible at any time for free, the cost of poverty
identification can be greatly reduced. This method can cope with the problems of lack of
statistical information and high statistical costs and can serve as a reference for poverty
surveys and targeted poverty alleviation in regional and even global underdeveloped areas.

The county is the most basic administrative unit in China and around the world. The
economic development and spatial distribution pattern of this unit are the visual perfor-
mances of the status quo of the regional economic development in China [27]. Therefore, the
poverty analysis at the county level could support the regional coordinated development
and the national macrolevel formulation of policies.

4.4. Limitations and Prospects

Nighttime light imagery data is a kind of comprehensive information. In the future,
the exploration could be made to build a correlation model between geographical charac-
teristics and nighttime lights data, and analyze whether certain features of nighttime lights
data can replace the geographical data. In addition, limited by the available verification
data, this study only verified the results in 2012. The RF with higher accuracy than ANN
and SVM was used to identify the poverty probability after 2012. It needs to consider
that the best RF for poverty probability identification may change over time. Therefore,
the results may not be the most accurate identification by using the RF of 2012 in the
next few years. Finally, this study only qualitatively discusses the correlation between
geographical factors and poverty. Future research will focus on geostatistical analysis to
examine multiple factors affecting poverty identification quantitatively.
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Abstract: Landslide hazards affect the security of human life and property. Mapping the spatial
distribution of landslide hazard risk is critical for decision-makers to implement disaster prevention
measures. This study aimed to predict and zone landslide hazard risk, using Guixi County in
eastern Jiangxi, China, as an example. An integrated dataset composed of 21 geo-information layers,
including lithology, rainfall, altitude, slope, distances to faults, roads and rivers, and thickness of
the weathering crust, was used to achieve the aim. Non-digital layers were digitized and assigned
weights based on their landslide propensity. Landslide locations and non-risk zones (flat areas) were
both vectorized as polygons and randomly divided into two groups to create a training set (70%) and
a validation set (30%). Using this training set, the Random Forests (RF) algorithm, which is known
for its accurate prediction, was applied to the integrated dataset for risk modeling. The results were
assessed against the validation set. Overall accuracy of 91.23% and Kappa Coefficient of 0.82 were
obtained. The calculated probability for each pixel was consequently graded into different zones for
risk mapping. Hence, we conclude that landslide risk zoning using the RF algorithm can serve as a
pertinent reference for local government in their disaster prevention and early warning measures.

Keywords: Random Forest; landslide hazard risk; integrated multisource dataset; field sample
rasterization; weight assignment

1. Introduction

Landslides are a major natural hazard and can be defined as phenomena in which a rock and soil
body on a slope slides down a certain interface under the action of gravity, rainfall, and groundwater.
Landslides are one of the most frequent geological disasters in China. In 2019, 6181 geohazards
were recorded in China, including 4220 landslides, accounting for 68.27% of the total hazards. These
geohazards resulted in 211 deaths, 13 missing persons, and 75 injuries, and a direct economic loss
of 2.77 billion yuan (China Geological Survey, 2020) [1]. According to the nationwide distribution
of landslides in 2019, Jiangxi province ranks number two. The Ministry of Natural Resources of the
People’s Republic of China announced that 1747 geological hazards occurred in the first half of 2020,
with a direct economic loss of 1.01 billion yuan. It was predicted that the situation will remain severe
in the second half of the year (http://www.mnr.gov.cn/).
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Due to complex natural conditions, spatiotemporal differences, and uncertainties of the landslide
mechanism, it is difficult to accurately predict the occurrence time, scale, and impact range of landslides.
However, based on the existing geohazard research and available technologies, it is possible to conduct
effective landslide risk prediction and mapping. This will assist local authorities to take preventative
and early warning measures to reduce damage and loss of life and property.

Recently, machine learning approaches have been applied in risk prediction and mapping.
The advantage of the machine learning methods lies in its capacity to deal with a large amount of
geospatial data within multi-dimensional and even hyper-dimensional space, and in its ability to
achieve accurate prediction and classification (Wu et al. 2016, and 2018) [2,3]. These learning algorithms
may provide the probability of the spatial occurrence of a landslide and identify the importance of
different geo-environmental causal factors that play a potential role in these landslide events [4]. Several
machine learning approaches have been utilized for landslide assessment in the past decade, such as
Support Vector Machines (SVMs) [5,6], Artificial Neural Networks (ANNs) [7,8], Deep Learning Neural
Networks (DLNNs) [9,10], Convolutional Neural Networks (CNNs) [11], Boosted Regression Trees
(BRTs) [12,13], and Random Forests (RFs) [13]. A number of case studies show that these algorithms
have a good prediction performance [14,15]; in particular, the RF has gained a high reputation for
its outperformance in both classification and prediction compared to other approaches. Therefore,
we adopted this algorithm for landslide risk mapping in our study.

Preprocessing of different geo-environmental causal factors is essential to geohazard risk prediction
and assessment. At present, no standard exists to address this issue. Some methods use each causal
factor as a categorical variable, e.g., a range of values from the same variable. However, prediction is
not based on the accurate value of each pixel, which may affect the prediction efficiency of the model.
When dealing with linear factors such as faults, roads, and rivers, these factors are not processed in
a hierarchical manner, but in buffer zones with a different order of propensity weight in terms of
proximity. Furthermore, the range of the buffer zones can be too large to be efficient for accurate
prediction in space. Rainfall is a fundamental factor triggering landslides [16,17]; nevertheless, few
studies included seasonal rainfall in landslide risk assessment.

For the reasons outlined above, the objectives of this research were to identify a relevant digitization
approach to quantify the causal factors for landslide risk prediction and zoning using the RF algorithm
for Guixi, Jiangxi Province, and to produce a risk map of landslides, and thus provide support and
advice for local governments and decision-makers to implement landslide hazard prevention and early
warning measures.

2. Materials and Methods

2.1. Study Area

Guixi is located in the northeast of Jiangxi Province, China, in the middle reaches of the Xinjiang
River, and is bordered by the Wuyishan Mountains (Mts) on the south. The study area lies between
27◦50′53” N and 28◦37′33” N in latitude and between 116◦57′43” E and 117◦28′06” E in longitude,
covering an area of about 2292 km2. Topographically, Guixi is generally characterized by high
mountains in the south and low hills in the north, cut by the Xinjiang River running west in the central
region. The elevation of the study area varies from 20 to 1504 m above sea level (Figure 1). About
65.3% of the study area has a slope gradient <15◦, whereas areas with gradients of 15–25◦, 25–35◦,
35–45◦ and >45◦ account for 19.8%, 10.6%, 3.7%, and 0.7%, respectively.

As a part of the subtropical monsoon climatic zone, Guixi receives an annual rainfall of 1789.3 mm
with 163 annual rainfall days on average during the period 1958–2017. The rainy season occurs in
March to July, with a mean accumulated rainfall of 1227.1 mm, or 68.6% of the annual rainfall (Figure 2).
The annual mean temperature is 18.2 ◦C. Guixi is one of the major forest resource counties in Jiangxi,
with a forest cover rate of 56%. The Guixi National Forest Park, situated in the south of the county,
is covered with 2929.93 ha of forests, occupying 98.2% of its total area.
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Figure 1. Location of the study area and distribution of the landslides.

Geologically, the formations in the study area include the strata from the Mesoproterozoic to
the Cenozoic, with a stratigraphic sequence of Qingbaikou-Cambrian, Carboniferous-Permian, and
Triassic-Quaternary. Magmatic rocks are well exposed and mainly distributed in the south, comprising
the northern region of the Wuyishan Mts with multiple lithologies, such as basic, acidic, and neutral
rocks. In terms of formation time, magmatic activities occurred partly in the Caledonian (around
508–408 ma) and predominantly in the Yanshanian periods (208–65 ma) [18].

According to the historical records, eight earthquakes in total had occurred in Guixi since AD 445,
all with a magnitude below 5, and hence, this factor was not considered in our study.

Field investigation revealed that a total of 428 houses, 568 m of highway, 50 m of water channel
and 5.1 ha of farmland have been destroyed by landslides in the last ten years in the study area. The
damages to social properties were estimated about 3.54 million yuan. However, few efforts have been
taken to predict the occurrence of these landslides for disaster reduction purpose.
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Figure 2. Diagram showing the averaged monthly rainfall in the study area.

2.2. Data and Preparation

2.2.1. Field Data, Training and Validation Sets

The first landslide inventory was conducted in the period September 2014–December 2015 and
compiled into the Geological Hazard Survey Report (1:50,000) of Guixi by the 264 Geological Team of
Jiangxi Nuclear Industry. The second survey was undertaken by ourselves in July and October 2019,
and August 2020.

In this study, a total of 273 landslides that had taken places in the past ten years were identified.
They are all small in volume, in which the smallest one is about 5 m3, and the largest one around
20,000 m3 with an average of about 533 m3. As more than 88% of the landslides are less than 900 m3,
the landslide sites (points) have been repalced with polygons of 30 m × 30 m in size to facilitate the
successive analysis. This field landslide dataset was divided randomly into two groups: training set
and validation set, which took up respectively 70% and 30% of the total samples. Against the landslide
events, 380 no-risk stable points (defined in the same size of polygons) in lowlands, croplands and
urban where slope is < 3◦ were selected. These no-risk polygons were also separated stochastically
into two groups, 70% and 30%, and then incorporated respectively into the training set (191 landslides
and 266 non-landslides) and validation set (82 landslides and 114 non-landslides).

As the successive landslide risk mapping was based on a binary classification using RF algorithm,
these two classes of samples in both training and validation sets were assigned with a probability value
of 1.0 for the occurred landslides, and 0.0 for no-risk samples. And then, these two sets were converted
into raster of 30 m size according to the approach proposed by Wu et al. (2018) [3].

2.2.2. Landslide Causal Factors and Integrated Hyper-Dimensional Dataset

Identification, selection and preprocessing of landslide causal factors is a key procedure for risk
modeling and zoning. Previous studies have utilized various factors and attempted to reveal their
potential roles in landslide events [13]. Based on this and our field knowledge, 21 landslide-related
factors such as geological formations, elevation, slope, aspect, plan curvature, profile curvature,
thickness of the weathering crust, soil type and texture (clay, sand and silt contents), land use, the
normalized difference vegetation index (NDVI), average annual rainfall, March−July rainfall, May−July
rainfall, distance to the geological boundaries, distance to faults, distance to roads, and distance to
rivers were identified (Table 1). These factors were processed in GIS and all converted to raster with a
cell size of 30 m after weight assignment for the non-digital ones.
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Table 1. Geo-information layers used as landslide causal factors.

No Causal Factors Resolution Sources

1 Elevation

30 m

GDEMV 3
NASA (https://earthdata.nasa.gov/)

2 Slope

DEM-derived3 Aspect

4 Plan curvature

5 Profile curvature

6 Depth of the weathering
crust (soil thickness) Kriging interpolation

7 Soil type
1 km

Data Center for Resources and Environmental Sciences,
Chinese Academy of Sciences (RESDC)

(http://www.resdc.cn/)8 Soil texture (sand
content)

9 Land use

30 m

Landsat 5 TM

10 NDVI Landsat 5 TM

11 Average annual rainfall

264 Geological Team of Jiangxi Nuclear Industry
12 March-June rainfall

13 March-July rainfall

14 May-July rainfall

15 June-July rainfall

16 June-August rainfall

17 Lithology
1:50,000 264 Geological Team of Jiangxi Nuclear Industry

18 Distance to geological
boundaries

19 Distance to faults

20 Distance to roads
1:5000 Google Earth

21 Distance to rivers

Quantification and Weight Assignment

1. Topographic features are critical for landslide hazard risk assessments [19]. A digital elevation
model (DEM), ASTER GDEM V003 product of 30 m in resolution, was obtained from the NASA
(https://earthdata.nasa.gov/) for the study area. This DEM was further used to derive elevation
(Figure 1), slope (Figure 3a), aspect, plan curvature and profile curvature.
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Figure 3. Landslide causal factors used in the study taking the following factors as an example: (a)
slope, (b) soil type, (c) land use, (d) NDVI, (e) average annual rainfall, (f) lithology, (g) geological
boundaries, (h) faults, (i) roads.

2. The weathering crust provides materials and sites for landslides and is the hoster of the latter, and
can be considered as an important controlling factor of landslide event [20–22]. The interaction
between this crust and rainfall causes the occurrence of landslides. The survey on the thickness of
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the weathering crust in Guixi lacks detailed data except for some landslide profiles. We extracted
the ridge and valley lines based on the DEM data and assumed that the lowland plain and valleys
had a thick crust of about 10 m, and it decreased as the slope and altitude increased, and at
the ridge, it was about 0.5 m. A Kriging interpolation approach was employed to produce the
thickness map of the weathering crust.

3. Edaphic factor is also necessary for risk modeling and prediction as it influences the occurrence of
landslides [23,24]. Soil type and texture data of the study area were obtained from the Data Center
for Resources and Environmental Sciences, CAS (RESDC: http://www.resdc.cn/) (Figure 3b).
No matter which type of soil, the important feature is the soil texture, i.e., percentage of sands,
which influences greatly the soil property. For example, the higher percentage of sands, the
higher porosity for rainwater permeation, leading to a higher risk of landslide where clay on the
interface may play a role as lubricant. Thus, soil with sand percentage of > 40%, 20−40%, 10−20%
and 0−10% were respectively assigned a propensity value of 10, 7, 4, and 1. Then soil map was
resampled to pixels with size of 30 m to match the other data.

4. Land use (Figure 3c) is an indicator of human activity that illustrates the relationship between
man and environment. The exploitation of land resources has been regarded as an unignorable
factor that may affect negatively our environment and the occurrence of landslides [25,26]. The
land use map of the study area was produced by using Landsat 5 TM images acquired on May 31
and November 07, 2010, obtained from the Geospatial Data Cloud (http://www.gscloud.cn), using
the approaches proposed by Wu et al. (2016) [2,27]. With a mapping accuracy of 91.44%, six land
use classes were identified, namely artificial area (urban, rural village and infrastructure), farm
land, forests, shrubs, bare land, and water bodies, and were assigned respectively a proneness
weight of 0, 0, 1, 4, 10 and 0. Here low slope urban and farmland have lowest proneness, and
forest cover has also low propensity while bare land without vegetation protection is the most
vulnerable category given the same natural conditions.

5. Vegetation condition and abundance, which can be represented by vegetation index, e.g., the
normalized difference vegetation index (NDVI), have been reported of a high correlation with the
occurrence of landslides [12]. As a complement to land cover, NDVI (Figure 3d) was selected
and included in the analysis of this study. We obtained the late autumn (October 24−November
07, when herbaceous vegetation became withered and most crops were harvested) Landsat 5
TM images of the period 2005–2010, from the same data server as mentioned above. The TM
images were atmospherically corrected using the COST model (Chavez 1996; Wu 2003; Wu et al.
2013) [28–30] in which both additive scattering and multiplicative path transmission effects were
minimized. NDVI was calculated using the formula (NIR-R)/(NIR+R) [31] from each scene and
then averaged to get the multiyear mean NDVI.

6. Rainfall is often considered as a triggering factor of landslide events [32,33]. In this study,
the average annual rainfall (Figure 3e), March−June, March−July, May−July, June−July and
June−August rainfall were taken into account as hazard-causative factors. Our purpose was to
investigate which months’ rainfall or combined accumulation is the most important for assessing
the landslide risk. The daily rainfall data of the period 2008−2017 from 104 ground stations were
acquired and used to create different accumulative monthly rainfall combinations, which were
further gridded into raster layers using Inverse Distance Weighted (IDW) interpolation approach.

7. Geological strata, especially, their lithologies (Figure 3f) and bedding, can play different roles
in the occurrence of landslides because of their different resistance to weathering and bedding
structure, in particular, together with joints and fractures, which may serve as rainfall permeation
pathways and slippery interface. The lithological data of the study area were digitized from
the Geological Map on a scale of 1/50,000 [18]. The hazard-causative propensity weight of each
formation lithology was assigned in terms of its resistance to landslide, e.g., higher resistance
formation was assigned with lower weight value or vice versa. More concretely, granitic and
volcanic rocks were assigned a weight value of 1, metamorphic rocks 5, sandstone 7, limestone
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and other carbonatite 8, and mudstone and shale 10. The higher value assigned, the higher
proneness of the factor tends to contribute to landslides [34].

8. Geological boundaries (Figure 3g) are the connection belts of inhomogeneous geological formations
and usually fragile zones that are susceptible to weathering and fracturing. It is thus considered a
potential factor influencing the slope stability. Actually, the closer to the boundary the higher risk
may exist [9]. The geological boundaries were extracted from the above-mentioned geological
map and buffered into different zones as 0−30 m, 30−60 m, 60−90 m and 90−120 m, which were
assigned a weight value of 5, 3, 2 and 1, respectively.

9. Linear features: Faults (Figure 3h) often play an active role in landslide events as they are
fractures and subject to water permeation and extensive weathering. This tends to increase the
vulnerability of geological bodies and slope instability. Road construction (Figure 3i) is a direct
human action on the slope resulting in an instability of the latter. The change in landform and the
loss of support from the underlying massif lead to the increase of tension on the upper slope that
promotes the development of cracks [4]. Rivers are usually an active factor in modification of
landscape by cutting the different geological formations and making their adjacent massif fragile
through liquidization. A number of studies revealed that not only rivers but also reservoirs
influence the stability of slope [35,36].

In this study, faults, roads and rivers were buffered in line with their scales. For example, small
faults, roads and rivers were buffered with distance intervals of 0−30, 30−60, 60−90 and 90−120 m;
large-scale faults, main river and reservoirs were buffered with distances of 0−60, 60−120, 120−180
and 180−240 m from the borders. Each buffer zone was assigned a weight in terms of its potential
proneness to landslide, e.g., zones 0−30, 30−60, 60−90 and 90−120 m were assigned respectively 10, 7, 4,
and 1, and zones 0−60, 60−120, 120−180 and 180−240 m respectively 20, 15, 10, and 5. This assignment
was based on the rule that the closer to the linear features, the higher propensity of landslide. These
buffers of different linear factors were converted into raster layers of 30 m in cell size.

Integrated Hyper-dimensional Geo-information Set

The above rasterized 21 hazard-causative factors including elevation, slope, aspect, plan curvature,
profile curvature, thickness of the weathering crust, soil texture (especially, sand %), land use, NDVI,
average annual rainfall, March−July rainfall, May−July rainfall, lithology, distance to faults, distance to
roads, and distance to rivers, etc., were stacked together to compose a 21-layer geo-information dataset.
Specifically, this is an integrated dataset with 21 dimensions, a realistic hyper-dimensional data space.

2.3. Risk Prediction and Modeling

2.3.1. RF Algorithm

As one of the machine learning approaches, the RF algorithm achieves learning and prediction
using an ensemble of growing decision-trees, or rather, of classification and regression trees (CARTs)
and their majority voting (Breiman 2001) [37]. One critical technique of this algorithm lies in its
bootstrap sampling from the training set to build trees followed with a randomized selection of the
input variables to determine the best split for each node. In the meantime, the out-of-bag (OOB)
estimates are applied within the RF algorithm to determine the generalization error and the importance
of each predictive variable (Breiman, 2001) [37]. Moreover, there shall not be the overfit problem with
RF if the number of decision trees (NT) is large enough. In other words, the RF algorithm makes use of
the strong law of large numbers, i.e., the more features employed, the less error generated (Breiman
2001; Wu et al. 2018) [3,37]. Thus, NT should be large enough so as to minimize the OOB error of
classification or regression to a stable level during the training procedure. Another advantage of the
RF algorithm is its capacity to deal with hyper-dimensional data using limited training samples but
achieving results of high accuracy. Instead of classification of land cover types, we employed this RF
algorithm here to classify the probability of risk and no-risk for each pixel in the whole study area.
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2.3.2. Risk Prediction and Modeling

RF modeling was conducted within EnMap-Box, an image processing package developed by DLR
(German Aerospace Center) [38]. Using the RF Classification (RFC) function, the integrated 21-layer
geo-information dataset was input as predictive variables with the training set for training.

Before risk modeling, a set of parameters have to be set up, for example, NT, the number of
randomly selected features at each node, and the stop criteria (for node splitting). How to set up these
parameters can be referred to Wu et al. (2018) [3].

Risk modeling was actually a parameterization procedure versus the training set with an internal
validation. The generated RF risk model was applied back to the integrated dataset to perform a binary
classification of risk probability to derive the probability map.

2.3.3. Verification and Reliability Analysis

To assess the performance of landslide risk modeling, the predicted results were verified against
the independent validation set [2,3,39] rather than the training set. Two metrics were used, i.e., overall
accuracy (OA) and Kappa Coefficient (KC), which were calculated based on the confusion matrix of
the trained landslide risk models versus the validation set. Here KC is a direct indicator of reliability of
the risk modeling and prediction [2,3,39,40]. For a value of 0, it indicates a poor consistency between
the prediction and the observation, whereas, a value of 1 implies a perfect agreement between the two.
The KC-based agreement levels proposed by Landis and Koch [40] were followed: poor (0–0.2), fair
(0.21–0.40), moderate (0.41–0.60), substantial (0.61–0.80) and almost perfect (0.81–1.0).

2.3.4. Assessment of the Importance of Landslide Causal Factors

It is necessary to understand that the role of each hazard-causative factor may differ from one place
to another, depending on the assessment model and landslide mechanism in different geo-environments.
This implies that a geo-environmental factor may take an active part in landslide prediction in one
model in one place but play a tiny role in another elsewhere. Therefore, the contribution of a causative
factor is conditional and various. The importance of each factor for the landslide events in this study
was evaluated using the OOB ranking procedure of the RF classifier.

3. Results

3.1. NT within the RF Algorithm

The NT affected the predication results when the RF risk modeling was conducted (Table 2).
In spite of its capacity to deliver rather accurate prediction when NT was set to 100, the prediction
was more robust with higher OA and KC when it was set to 300 and 500. As a confirmation to other
authors [2], OA and KC declined slightly when NT was 1000 (Table 2). Hence, 300-500, especially, 300
would be advised to use for NT when tackling landslide risk prediction and zoning.

Table 2. Performance of the RF algorithm with different Number of Trees (NT).

Number of Trees Overall Accuracy Kappa Coefficient

100 90.75 81.08
300 91.23 82.02
500 91.07 81.70

1000 90.75 81.04

3.2. Landslide Hazard Risk Map

As shown above, the RF algorithm performed best when NT was set to 300, and thus the modeling
results of this case were selected for landslide hazard risk mapping. The computed risk probability,
ranging from 0 to 1.0 in each pixel, was classified into five levels, i.e., No risk (0–0.2), Low risk (0.2–0.4),
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Median risk (0.4–0.6), High risk (0.6–0.8), and Extremely high risk (0.8–1.0). Thence, the landslide risk
zonation map was produced and presented in Figure 4.

 

Figure 4. Landslide risk map.

This map shows that the landslide-prone areas are mainly distributed along the roads and in the
high slope hilly and mountainous areas in the north and south of Guixi where the predicted High
risk and Extremely high risk zones are distributed. There are also Median and High risk zones in the
southwest where there is abundant rainfall. Nevertheless, the risk is relatively low in the central part,
a plain with gentle topographic relief in Guixi.

It is seen in Figure 4 that two types of landslide risks were predicted, i.e., one is man-made
landslides distributed along the roads or cut slopes as a consequence of road construction and housing
development, and the other is natural ones distributed in the mountainous slopes in the south and
southeast of the study area (Figure 4).

For the modeling result obtained when NT was 300, the OA of this risk map is 91.23%, and KC
0.82 versus the validation set, reaching the “almost perfect (0.81–1.0)” level. As statistics revealed, the
number of the observed landslides falling in the zones No risk, Low, Medium, High and Extremely
high risk, accounted for, respectively, 0.73%, 1.10%, 2.93%, 2.57% and 92.67% of the total.
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3.3. Importance of the Hazard-Causative Factors

As seen in Figure 5, all 21 hazard-causative factors have contributed to the landslide events but
the first five, i.e., distance to road, slope, May−July rainfall, average annual rainfall and elevation,
comprise 65.45% of the total contribution to the occurrence of landslide disasters. That is to say, they
have played a more important role in landslide events than other factors. The contribution of soil type
and faults is relatively low.

 

Figure 5. Importance of hazard-causative factors.

Field survey revealed that these landslides were neither triggered by earthquake nor by active
tectonic movements but by human activity, e.g., road construction and housing development, and
rainfall. Actually, anthropogenic landslides accounted for 98.9%, where the slope ranges from 8◦ to 25◦,
much lower than the threshold, 28−35◦, of the natural landslides as proposed by Fan et al. (2016) [23].
In addition, 209 landslides, 76.3% of the total, occurred in the talus accumulation with a thickness of
about 0.5−10 m. The occurrence time of landslides is mainly in March−July, in particular, in June−July.
The number of landslides of these two months accounts for more than 50% of the total.

4. Discussion

4.1. Algorithm for Landslide Risk Assessment

As previously mentioned, a number of data-driven approaches have been applied for landslide risk
prediction. Xiong et al. (2020) [13] noted that among the machine learning algorithms, BRTs performed
best in debris flow susceptibility assessment in Sichuan Province whereas Chen et al. [15] concluded that
RF achieved the best prediction in Chongren, Jiangxi. Actually, one of our parallel research (Zhou et al.
under review [34]) conducted in Ruijin, Jiangxi and that of Sun et al. (2020) [19] in Fengjie, Chongqing,
both pointed out that RF is capable for providing accurate landslide risk prediction. This study, using
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the RF algorithm to fulfill the task with a high satisfactory level, “almost perfect”, confirmed their
conclusion. However, care has to be taken while employing different geo-environmental data for
RF-based modeling as the landslides used as training samples were mostly small in scale, i.e., less than
one Landsat pixel in surface area. It is hence necessary to use high resolution data to highlight such
disaster risk while modeling and mapping are conducted, and data with resolution of coarser than
30 m will not be recommended.

4.2. The Different Importance of the Causal Factors

As revealed in Figure 5, distance to roads, slope, rainfall and elevation are the most important
factors in landslide events in Guixi. The order of importance of the geo-environmental factors may
be different from one site to another, e.g., slope, rock type, distance to river and NDVI [5], slope and
distance to roads [6], lithological formation, distance from roads, and NDVI [12], and elevation and
annual rainfall [19]. But all these studies point at a fact, that is, slope, distance to road, elevation and
rainfall are the commonly important factors causing landslide hazards, and that is what we have
uncovered in this study.

Since the road construction constitutes the most active human factor leading to such geohazard,
it shall be necessary to design the road system by avoiding the most risky area and taking the geological
strata bedding and slope stability into account.

It is worth mentioning that the importance ranking of all factors related to rainfall accounts for
45.45%, which shows a clear relationship of rainfall with the landslide events, especially, the accumulated
rainfall of May−July (Figure 5). However, this importance weight seems still underestimated.
Theoretically, rainfall is the triggering factor of the most landslides and should have more importance.
The exploration on this topic seems not possible until we have grasped the exact occurrence time of
these landslides. Only with such information, can we decide how to combine more reasonably the
daily or monthly rainfall for risk modeling.

Some factors, such as faults, edaphic features and geological boundaries, used to be considered as
necessary. Nevertheless, the factor importance analysis revealed that they were not as significant as
expected in this study. Hence, it is possible to optimize the selection of the causal factors in landslide
risk modeling and mapping in the similar geo-environment, in particular, when computing capacity
is low.

4.3. Landslide Types

In terms of our field survey, the majority of landslides observed is small in volume, provoked by
concentrated rainfall superimposed on the road construction and slope cutting for housing development.
Rainfall is able to infiltrate into subsurface along the fractures to reach and liquidize the sliding interface,
causing landslides.

There exist relatively big and deep landslides with a volume of about 20,000 m3 but driven by
different occurrence mechanisms: (1) landslide occurs after the action of the accumulated rainfall,
especially, when Quaternary sediment (talus) has a clear interface with the underlying rocks in which
the unconformity serves as slide surface after infiltration of rainfall; (2) multicycle landslides at the
same place, they begin with small volumes of slide after rainfall but little by little extending out and
deepening after the repeated rainfall events, and finally these slides become a big one; (3) big landslide
within downhill strata bedding, which does not take place in the talus or weathered crust but inside
the geological strata after the bedding surface has been lubricated by the penetrated rainfall when
there are faults and joints. The rapidity of the big landslide relies on the dip of the strata bedding.
For high dip bedding, rocky landslide may happen quickly as long as rock mass gravity exceeds the
resistant friction of the underlying formation. For low dip bedding, the overlying strata and weathered
crust do not constitute a rapid slide but a creep moving downward gradually. When there is a slope
cutting, the downward movement becomes faster. This was also clearly observed in Ruijin, another
city in southern Jiangxi, constituting a threat to the newly established Longzhu Temple and the No 6
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Middle School of Ruijin [37]. It is hence essential to take measure to prevent the huge loss and damage
before such big hazard happens.

5. Conclusions

This study made use of the RF algorithm for landslide risk modeling, prediction and mapping
in Guixi with an integrated 21 geo-environmental factors and field data. During the modeling,
we employed machine learning technique to determine which hazard-prone factors are the most
important in provoking landslides. We also demonstrated the procedure on how to digitize non-digital
geo-environmental factors and assign a weight value in terms of their proximity or propensity so that
quantitative analysis and modeling were made possible. This study provides not only key information
on how to research landslide mechanism but also operational approach on how to investigate hazard
risk to prevent our society from further damage. In particular, our risk zone map with high reliability
may serve as a reference for the local governments and decision-makers of Guixi to implement landslide
prevention and early warning measures in the landslide-prone areas.

One key finding of this research is the surprising importance of road construction and housing
development in landslide events. This reveals the role of human activity in provoking such geo-disaster,
and suggests that when designing road systems, more comprehensive slope protection measures
and more profound geological investigation on downhill strata bedding should be necessary so that
man-made landslides can be minimized.
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Abstract: The all-embracing inspection of geometry structures of revetments along urban rivers
using the conventional field visual inspection is technically complex and time-consuming. In this
study, an approach using dense point clouds derived from low-cost unmanned aerial vehicle (UAV)
photogrammetry is proposed to automatically and efficiently recognize the signatures of revetment
damage. To quickly and accurately recover the finely detailed surface of a revetment, an object
space-based dense matching approach, that is, region growing coupled with semi-global matching,
is exploited to generate pixel-by-pixel dense point clouds for characterizing the signatures of revetment
damage. Then, damage recognition is conducted using a proposed operator, that is, a self-adaptive
and multiscale gradient operator, which is designed to extract the damaged regions with different sizes
in the slope intensity image of the revetment. A revetment with slope protection along urban rivers
is selected to evaluate the performance of damage recognition. Results indicate that the proposed
approach can be considered an effective alternative to field visual inspection for revetment damage
recognition along urban rivers because our method not only recovers the finely detailed surface of
the revetment but also remarkably improves the accuracy of revetment damage recognition.

Keywords: revetment; damage signature; dense point clouds; unmanned aerial vehicle (UAV);
gradient operator

1. Introduction

Revetment systems in urban rivers are constructed to protect riverbanks, infrastructures,
and people, in an effort to control floods. Revetments are usually designed as slope protection
and covered in concrete [1]. Floods can trigger revetment erosion to weaken revetments continuously
and cause damage. In addition, revetments are damaged by complex factors, such as land subsidence,
ground collapse, erosion, vegetation presence, riverbed degradation, and human interference [2,3].
Therefore, monitoring the condition of revetments is an essential task in the management of flood
defense infrastructure and important in providing evidence for maintenance or improvements [4].

At present, some studies have been done to conduct an assessment of the condition of revetments
by the use of remotely sensed data in countries such as England [4] and France [5], but these methods
are not applicable to urban revetment monitoring, and the assessment of the condition of revetments is
visually inspected by the Municipal Engineering Management Agency in China. However, field visual
inspection is time-consuming and technically complex in obtaining complete information on revetments.
Additionally, the assessment of the subsurface condition of revetments is difficult because visual
inspection is preferred in investigating important signs, such as surface collapse. Notably, early damage
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recognition is highly beneficial in enabling maintenance and improvements in advance before further
deterioration occurs [4].

Apart from field visual inspection, remote sensing technologies, such as unmanned aerial
vehicle (UAV)-based photogrammetry, have been useful techniques for the creation of digital surface
models (DSMs) and also widely used in obtaining revetment information due to their advantages
in high-precision three-dimensional (3D) geometry reconstruction [6–8]. Terrestrial laser scanning
is usually used to monitor revetment damage caused by revetment erosion in small areas rather in
large-scale areas [9–11]. This method requires frequent measurements that usually involve expensive
sensors and field logistics when monitoring large areas. For instance, airborne laser scanning was used
to estimate the volume change in river valley walls caused by revetment erosion [12], and point clouds
were used to analyze the protection of a revetment rock beach [13]. Pye et al. [14] assessed beach
and dune erosion and accretion for coastal management. Ternate et al. [15] modeled water-related
structures to assist the design of revetments. Although sensors enable the generation of dense 3D
points for good reconstruction of the geometry structure for revetment monitoring, point clouds cannot
directly provide the color texture of the revetment and are less intuitive in the damage interpretation
of revetments. As a result, the noise in point clouds is difficult to remove. A portion of the revetment
surface may typically be covered with vegetation (e.g., grass), which appears as 3D points in the
fluctuating height values within dense point clouds. Other platforms have been used for revetment
monitoring [16], but these platforms are unsuitable in certain areas with shallow water, such as urban
rivers. Meanwhile, 3D point clouds derived from these sensors may be much more expensive than their
image-derived counterpart, such as low-cost consumer-grade UAV-based photogrammetry [17–19].
In addition, image-derived 3D point clouds from UAV photogrammetry can capture the spatially
detailed structure of the ground surface and offer more competitive accuracy compared with laser
scanning-based products [20]. Compared with laser scanning, ground control points (GCPs) are needed
in aerial photogrammetry and GCP measurement is a time-consuming task. Fortunately, several GCPs
can be marked and measured once in advance, that is, multiple measurements are not required to
collect GCPs for absolute orientation. Therefore, although laser scanning can produce high-resolution
and dense 3D point clouds, this technology requires more complex operations and has a higher cost
when collecting revetment information on urban rivers than the low-cost UAV-based mapping. In this
study, a low-cost UAV platform equipped with a consumer-grade onboard camera (e.g., DJI Phantom
quadcopters) is used to prove that it is suitable for recognizing the damage signatures with respect to
finely detailed revetment surfaces.

In recent years, research on UAV has focused on understanding and modeling revetments,
and high-resolution 3D data derived from low-cost UAV mapping has been widely used in the
efficient and accurate monitoring of revetments for the implementation of relevant maintenance
management strategies [19,21–25]. Hallermann et al. [21] and Kubota et al. [22] used the dense point
clouds derived from low-cost UAV photogrammetry to visualize the deformation of revetments in
the assessment of structural stability. Pitman et al. [19] obtained high-resolution and competitive
accuracy of DSM of revetments derived from UAV-based mapping and compared the results with those
derived from real-time kinematic global positioning systems (RTK GPS) and offered new possibilities
(i.e., using UAVs) for measuring, monitoring, and understanding the deformation of revetments
against the approaches of traditional geomorphology observation. This method achieves high-accuracy
DSM, which are approximately equal to those obtained via airborne laser scanning. Although their
research can reconstruct a good 3D geometry structure of a revetment using UAV-based mapping for
monitoring, they ignored the automatic damage recognition from the image-derived point clouds.
Moreover, photogrammetric surveying using UAV has been often used to monitor the changes in
revetments for river management. Pires et al. [26] combined mapping and photogrammetric surveying
in the revetment model to investigate coastal dynamics and shoreline evolution and contributed to
coastal management. Jayson et al. [25] used UAV photogrammetry to reconstruct the delta revetment
topography to analyze changes in beach sediments. Although many applications are effective in
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revetment monitoring using low-cost UAV photogrammetry, studies on the use of UAV-based mapping
for revetment damage recognition along urban rivers have been rarely reported. Most importantly,
the effectiveness and efficiency of UAV-based damage recognition are two indicators that determine
whether this approach can be applied. Furthermore, the quality and efficiency of point cloud generation
are critical to accurately characterize the surface of a revetment, and the reliability of damage signature
generation from the derived point clouds is also equally important to damage recognition in revetments.

Revetments along urban rivers are usually designed as a relatively flat slope or curved surface,
that is, the revetment surface is generally a simple irregular surface that can be modeled using a
mathematical function. On this basis, this study proposes a dense point cloud-based approach derived
from low-cost photogrammetry to extract the signatures of revetment damage from a slope intensity
image instead of the prerequisite multitemporal data. For revetment damage recognition along
urban rivers, information on damaged and nondamaged revetment surfaces is generally needed for
comparison and analysis. In many cases, prior information on nondamaged surfaces is not typically
obtained or finely reconstructed in municipal engineering management. Failure to accumulate
historical data related to the surface of a revetment may result in poor revetment management due
to unclear understanding of damage signatures. As an alternative to applications dependent on
multitemporal data [20,25], we exploit an approach for revetment damage recognition that does not
require nondamaged surface reconstruction or prior information. On the basis of the assumption that
the surface of the revetment has roughly the same slope, dense point clouds are first transformed
into a slope intensity image, in which feature extraction is then performed to generate the features of
revetment damage. A self-adaptive and multiscale gradient operator (SMGO) is proposed for collecting
damage information by using the omnidirectional (horizontal, vertical, and diagonal) operation,
especially in feature extraction. SMGO is used to ensure that damage of different scales can be
accurately extracted.

This study aims to exploit the workflow of revetment damage recognition along urban rivers
through the dense point clouds derived from low-cost UAV photogrammetry, and the proposed
point cloud and damage signature generation are both introduced to address damage recognition
using UAV-based mapping. The main contribution of this study is the proposed approach based
on photogrammetric point clouds, which offers new possibilities in revetment damage recognition.
In our approach, pixel-by-pixel dense matching is simultaneously used with the combination of
region growing and semi-global matching (SGM), which can reconstruct a finely detailed surface of a
revetment by considering the contributions of adjacent 3D object points. In particular, feature image
generation based on the proposed SMGO is suitable for recognizing the damage signatures on the
surface of a revetment designed with slope protection under the assumption that the majority of the
3D points on the revetment surface remain unchanged and prior information is unnecessary.

2. Study Area and Materials

2.1. Test Site

Nanchang City (28◦42’29”N, 115◦48’58”E) in Jiangxi Province, China (Figure 1a,b), is the study
area of this work. This study used a low-cost quadcopter UAV (i.e., DJI Mavic Air; DJI; Shenzhen,
China) to investigate the revetments along urban rivers, and two parts (with lengths of 450 and
570 m, respectively) of the concrete revetment located in the west of Nanchang City were selected
to test (Figure 1c) for the following reasons: different types of riverbank defense structures have
been constructed along the different portions of the bank to manage the impact of lateral fluvial
erosion, among such structures, the revetment is typically designed with a slope angle to protect
the riverbanks and infrastructures in urban rivers [25]. The waterway is often covered with silt
and gravel materials, and then a large number of sediments may mobilize and cause erosion to the
revetment along with intense rainfall events. In addition to the presence of mass movements, complex
external factors, such as groundwater penetration, also remarkably contribute to revetment erosion
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and damage. Revetments are characterized morphologically by using a slope approximately equal to
40◦. The waterway basement geologically comprised unconsolidated sediments of clay, loose sand,
and gravel deposits. Revetments are usually covered with weeds and continuously affected by lateral
fluvial erosion, ground collapse, and riverbed degradation.

Figure 1. (a) Nanchang City located in Jiangxi Province in southeast China, (b) location of the study
area in Nanchang City, and (c,d) landscape of the study area.

2.2. Acquisition of UAV Remote-Sensed Images and Measurement of Ground Control Points (GCPs)

Given its low-cost and flexible operation, a consumer-grade quadcopter DJI Mavic Air (DJI;
Shenzhen, China) [27,28] (Figure 2a) was selected to capture high-resolution true-color remote sensing
images in August 2019. In addition, the DJI Mavic Air is easily carried with its 430 g weight and folding
design, it does not require a professional take-off and landing site, and the aircraft is simple to operate,
allowing flexible flight plans for a variety of missions. The operator can safely monitor the revetment
even under ultralow-altitude photogrammetry in urban areas through signature DJI technologies,
such as obstacle avoidance and intelligent flight modes [27]. The DJI platform is inexpensive, efficient,
and requires minimal expertise. Several user-friendly applications provided by DJI, including Ground
Station Pro and a mission planning software package, were used to conduct autonomous flights with
waypoints and nadir orientation of the consumer-grade camera during the acquisition of UAV-based
images of stereo remote sensing [28]. Figure 2b (Part 1) shows an example of the extent of the
survey and some survey parameters in the graphical user interface of this UAV survey application.
Parameters, such as flight altitude, flight speed, and image overlap, can be obtained on the basis of
the survey mission. To acquire high-resolution and non-blurry remote sensing images, a low-altitude
flight with an above-ground level of 30 m and 2.8 m/s flight speed was conducted to reduce the
atmospheric and environmental limitations. Thus, the ground sample distance was approximately
equal to 2.0 cm/pix. To ensure the reliability of image matching with large overlaps, the front and
side image overlaps were set to 80% and 60%, respectively. Once the flight parameters were set,
the UAV was largely automated with the operator acquiring remote sensing images under a wind
speed <10 m/s and non-rainy conditions. The total surveying flight time of the UAV in the two parts
(450 and 570 m) of the concrete revetment along the urban rivers was around 10 and 14 min (less
than the maximum flight time of 21 min) and was achievable in one battery charge. The UAV took
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approximately 232 and 287 images for the two parts to cover the study area, which also includes
a buffer extent of approximately 15 m near the revetment. Moreover, to improve the performance
of image matching, the system errors and interior orientation of the consumer-grade camera were
eliminated by using the methods in a previous study [28].

Figure 2. Unmanned aerial vehicle (UAV) data acquisition and ground control point measurement.
(a) DJI Mavic Air, (b) DJI graphical user interface for mission planning, (c) ground control point (GCP)
marked by a white cross with a pink center, and (d) field measurement of GCPs.

Additionally, 40 GCPs were evenly distributed on the revetment. The GCPs were placed across the
study area and measured to validate the accuracy of the image-based DSM using RTK GPS. The GCPs
were marked on the site, as shown in Figure 2c. Pixel-by-pixel dense point clouds were georeferenced
with 5 and 7 GCPs for Parts 1 and 2, respectively. The other 28 GCPs (13 and 15 GCPs for Parts 1 and 2,
respectively) were selected as check points (CPs), which were used to evaluate the accuracy of the
surface reconstruction of the revetment.

3. Method

This study aims to exploit the workflow of revetment damage recognition along urban rivers
through dense point clouds derived from low-cost UAV photogrammetry, and the proposed point cloud
and damage signature generation are both introduced to address damage recognition using UAV-based
mapping. The proposed approach demonstrated in Figure 3 mainly includes the following stages:

(1) Photogrammetric technologies are used to generate high-precision pixel-by-pixel dense point
clouds for surface reconstruction of the revetment through a series of steps, that is, feature extraction
and matching, incremental structure-from-motion (SfM), bundle adjustment, and region growing
coupled with SGM.

(2) The slope intensity map of revetment is calculated and generated in terms of the height of the
dense point clouds. The areas of revetment on both sides along the urban river are then extracted by
segmenting and merging the superpixels, which are generated on the slope intensity map by using a
simple linear iterative clustering (SLIC)-based algorithm.

(3) The signature of revetment damage is generated from the slope intensity image through
vegetation removal, omnidirectional gradient operation and nonmaximum suppression, and denoising.

(4) Accuracy assessment is performed to validate the accuracy of the dense point clouds derived
from the algorithm (i.e., region growing coupled with SGM) and evaluate the performance of revetment
damage recognition along the urban rivers with quantitative analysis (e.g., indicators such as Precision,
Recall, and F1_score) and visual assessment (i.e., ground field observation).
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Figure 3. Workflow of the revetment damage recognition along urban rivers through dense point
clouds derived from low-cost UAV photogrammetry.

3.1. Surface Reconstruction of Revetment

The camera mounted on the low-cost UAVs (e.g., consumer-grade DJI Phantom quadcopters)
has large perspective distortions and poor camera geometry [28,29], which may cause systematic
errors that need to be eliminated by using distortion correction for each UAV remote sensing image.
Similar to previous studies [18], the digital camera should be calibrated strictly before the operation
of aerial photography. Distortion correction is then performed by using the camera parameters and
two radial and two tangential distortion coefficients, which are calculated from several views of a
two-dimensional (2D) calibration pattern. These parameters will be further optimized by the following
self-calibrating bundle adjustment.

Similar to previous studies, feature extraction and matching are performed using a sub-Harris
operator coupled with the scale-invariant feature transform algorithm, which can find evenly distributed
corresponding points even in the overlapping areas of remote sensing images with illumination change
and weak texture [30]. In traditional aerial photogrammetry, the poses of the airborne camera, that is,
positions and orientations, must be known to provide the parameters of initial exterior orientation for
performing aerial triangulation. However, low-altitude platforms, such as low-cost consumer-grade
UAVs, are usually not mounted on high-precision equipment when obtaining the information of
positions and orientations of cameras. Hence, traditional aerial triangulation relying on the parameters
of initial exterior orientation may be unavailable for UAV-based aerial triangulation. UAV-based SfM
algorithms have been applied to bank retreats at streams, and this study can generate DSM with smaller
errors compared with the use of terrestrial laser scanning [31]. Therefore, SfM is used to estimate
the poses of the airborne camera and reconstruct a sparse 3D geometry for the overlapping images
without the help of initial exterior orientation parameters [18]. Notably, incremental SfM [32,33] is
employed in this study to reconstruct the sparse 3D model increasingly and iteratively because it
allows 3D reconstruction in an incremental process for repeated self-calibrating bundle adjustments
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(i.e., sparse bundle adjustment software [34]) to optimize the 3D model and interior and exterior
orientation parameters.

Unlike DSM generation via interpolation of point-based elevation data [35], a novel method of
region growing coupled with SGM for dense matching illustrated in Figure 4 is exploited to generate
the pixel-by-pixel dense point clouds and reconstruct the finely detailed surface of the revetment.
The SGM algorithm is a popular technique to minimize the image matching cost along several
one-dimensional path directions through the images for image-based 3D reconstruction, and it may
significantly increase the computational expense for most mapping applications which mainly deal
with sets of overlapping images. Damage recognition of revetments along urban rivers requires high
implementation efficiency, which is also highly valuable in enabling maintenance and improvements in
advance before further deterioration occurs. SGM-based matching is one of the most time-consuming
steps in photogrammetric point cloud generation, and thus it is of great significance to improve the
efficiency of this step.

In this paper, to reduce the computational expense of redundant point clouds, an object space-based
dense matching approach is exploited to satisfy the need of rapid 3D reconstruction for revetments.
Unlike in photogrammetry software, such as Agisoft Metashape and Pix4Dmapper, the height of each
grid in the revetment is utilized to calculate the pixel-by-pixel dense matching while considering
the impact of adjacent 3D object points and obtaining the finely detailed surface of revetments.
Different from many computer vision applications, our study on the surface of the revetment is focused
on 3D construction (i.e., height value) of the top surface of the ground. This approach is not to generate
normalized image stereo pairs, but to perform dense matching in the voxel object space. On this
basis, there is no need to derive the matching cost of image space. Instead, all images can be used to
represent the matching cost directly on each voxel, which is more suitable for UAV-based mapping
applications. That is, semi-global optimization can be performed in voxel space, and image-based
dense point clouds can be obtained directly. Unlike most SGM-based image matching [36,37], the sparse
point clouds obtained from bundle adjustment can be used to simplify the image-based point cloud
generation procedure. To be specific, by using prior knowledge of reconstructed objects, the search
scope of the corresponding points can be narrowed in the voxel space, which contributes to improving
the accuracy and efficiency of reconstruction. In this regard, the height values on the vertical sides
are not essential. The object space-based approach can only compute the height values on the
top surface and helps to reduce the computational expense of redundant point clouds. That is,
the object space-based dense matching approach used in this paper is suitable for accurate, rapid,
and cost-effective revetment damage recognition. The proposed region growing coupled with SGM
mainly includes: (a) a triangulated irregular network (TIN) in 3D space is generated to initialize the
3D object surface; (b) inverse distance weighted interpolation is used to obtain initial height values;
and (c) a region growing strategy is explored to gradually generate the pixel-by-pixel dense point
clouds for surface reconstruction of revetment considering accuracy and efficiency.

Figure 4. Object space-based surface reconstruction of revetment.
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The innovation of our method is that we assume that the set of 3D sparse points objsparse
set is derived

from SfM, and then we denote it by using the Pi
obj(X, Y, Z) cell in the set objsparse

set in the ith 3D point at
the object position (X, Y, Z) with i ∈ {1, . . . , N}. As shown in Figure 5a, an object point obtained from
the sparse 3D model is relevant to n 2D UAV remote sensing images, where n could be ≥2. We then
denote pi→ j

img(x, y) position in the jth UAV remote sensing images at the image position (x, y). In this
study, the corresponding points in the UAV remote sensing images reprojected from the 3D sparse
points are considered salient correspondence and seeds, which are extended through region growing
in the four neighborhoods illustrated in Figure 5b. Then, the pixel-by-pixel dense point clouds are
iteratively determined by using the cost function and SGM algorithm with a known epipolar geometry,
shown in Figure 5c.

Figure 5. Region growing coupled with semi-global matching (SGM). (a) Object point backprojected
onto multiple views. (b) Region growing in the four neighborhoods. (c) Process of candidate matches
determined by using the cost function under the constraint of epipolar lines in two views.

Specifically, a set objdense
set of dense point clouds is initially assigned by using the set objsparse

set .

Assuming that all 3D points Pi
obj(X, Y, Z)

∣∣∣∣i ∈ {1, . . . , N} in the objdense
set are seeds and backprojected

onto the relevant images, the pi→ j
img(x, y) position in the first relevant image is considered the seed

and extended with region growing in the four neighborhoods R4. For example, the query point
px is fixed in Image1, and the correspondences in other relevant images are determined by using
the SGM algorithm with a known epipolar geometry. On the basis of the SGM algorithm [36,38],
the 3D points in the direction of region growing are determined and saved in set objdense

set . We repeat
these dense matching steps until no 3D point can be added into the set objdense

set . Although the SGM
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algorithm can appropriately generate dense point clouds, some local areas with weak texture are likely
reconstructed poorly.

In this study, we introduce a novel approach of 3D scene patching to generate the 3D points in
these local areas. A triangulated irregular network (TIN) is established by using the set objdense

set of
dense point clouds. Subsequently, the coordinates of 3D points within the TIN can be calculated by
using the weighted interpolation of inverse distance, which is expressed as

Z =
1
m

m∑
i=1

wiZi,
(
wi =

1
di

)
, (1)

where Z is the height value of an unknown 3D point, m is the number of surrounding 3D points of the
unknown 3D point, Zi is the height value of the ith surrounding 3D point, wi is the weight corresponding
to Zi, and di is the distance between the unknown 3D point and the ith known surrounding 3D point.
The algorithm of the proposed dense matching method is expressed below.

Algorithm 1: Region growing coupled with SGM

Input: 3D sparse points objsparse
set , exterior orientation parameters EOP, and UAV remote sensing images.

Parameters: 3D dense points objdense
set , four neighborhoods R4, query point px, relevant images pi→ j

img(x, y),

disparity d, minimum cost path Lr(px, d), new 3D point Pnew
obj (X, Y, Z), and unknown 3D points

objdense,unknown
set .

Initialize objdense
set ← objsparse

set .
repeat

for each 3D point Pi
obj(X, Y, Z)

∣∣∣∣i ∈ {1, . . . , N} in set objdense
set do

Assign Pi
obj(X, Y, Z) as a seed.

Reproject Pi
obj(X, Y, Z) onto pi→ j

img(x, y).

Compute epipolar geometry based on EOP.
for k = 1 to R4 do

Calculate Lr(px, d) corresponding to px in pi→ j
img(x, y) with known epipolar geometry.

end for

Compute the coordinate of Pnew
obj (X, Y, Z) using SGM and aerial triangulation.

Update objdense
set by adding the new 3D point.

end for

until no 3D point need to be added.
Find objdense,unknown

set in the local areas that have not been reconstructed well.
Establish TIN.
for each 3D point in objdense,unknown

set do

Compute the coordinate of the 3D point by inverse distance weighted interpolation.
Update objdense

set by adding the 3D point.
end for

3.2. Damage Signature Generation

Dense point clouds derived from UAV photogrammetry can generate a finely detailed geometry
structure of the revetment and be regarded as an alternative to the visual inspection method.
The categories of revetment damage are mainly collapse and crack. On flat ground, the place
of collapse is usually characterized by an uneven region below the surface height of the ground with
an irregular boundary, and a crack is typically shown as a linear object.

Unlike flat ground, revetments along urban rivers are built in a sloping pattern.
Therefore, we attempt to transform the dense point clouds into a slope intensity image for damage
recognition in this study on the basis of the assumption that the revetment is constructed with a
fixed slope angle. Ideally, the values of the slope intensity image located in the revetment regions
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are approximately equal in this case. Then, a slope intensity image is generated via slope calculation,
which is performed to identify the slope in each cell of the rasterized surface of the dense point
clouds using the slope module of the ArcGIS software. A portion of the revetment surface may
likely be covered with vegetation (e.g., grass), which appears as the 3D points of the fluctuating
height values within the dense point clouds. UAV photogrammetry clearly has limitations in
surveying the surface of the revetment in the presence of vegetation, thus possibly affecting the
accuracy of revetment damage recognition. To eliminate the influence of vegetation in the slope
intensity image, vegetation removal is preliminarily conducted with a gamma-transform green leaf
index [39]. Subsequently, damage recognition is performed using a proposed operator called SMGO,
which is designed to extract the abnormal regions with different sizes in the slope intensity image.
Specifically, omnidirectional (horizontal, vertical, and diagonal) gradient operation is conducted using
a self-adaptive operator with degraded weights. Hence, a variable gradient operator is used in each
cell to determine whether it belongs to the damaged or nondamaged region. A multiscale architecture
is introduced into this operator for the recognition of damaged regions with different sizes.

The main goal of this study is to identify the damaged areas of the revetment. Thus, automatic
revetment recognition is an essential task in determining the dense point clouds. In this study,
we extract the area of interest (AOI) or the area covered by the revetment from the slope intensity image.
On the basis of the assumption that the AOIs of the revetment have approximately equal slope angles,
previous studies [39] using SLIC and superpixel merging are jointly used to extract the revetment
regions from the intensity map, as shown in Figure 6. First, the slope intensity image is segmented into
a set of superpixels in terms of similar slope values. Second, the superpixels are merged into a series
of regions on the basis of the approximately equal slope values. Third, the AOI of the revetment is
determined by using the average slope value of the slope intensity image. The following are the main
steps of revetment region extraction.

Figure 6. Area of interest (AOI) extraction.

Step 1: The dense point clouds derived from low-cost UAV photogrammetry are rasterized using
the grid size Δd× Δd, where Δd is the resolution of the UAV remote sensing images.

Step 2: The slope of the rasterized image is computed, and the intensity image Islope(x, y) of the
slope is generated using ArcGIS software.

Step 3: The intensity image Islope(x, y) is segmented into superpixels with the SLIC algorithm,
and the superpixels are merged into a series of regions on the basis of the approximately equal
slope values.

Step 4: The AOI of the revetment is determined by using the slope value of the region within
[slope_value−10◦, slope_value+10◦], where slope_value is the average slope of multiple samples in
this study.

Then, the feature image Idamage(x, y) of damage is generated from the intensity Islope(x, y) via the
proposed operator SMGO. Mathematically, the gradients grad(x, y) in each cell (x, y) are computed as

grad(x, y) =
∂Islope

∂x
i +
∂Islope

∂y
j +
∂Islope

∂diagL
k +
∂Islope

∂diagR
l, (2)

where
∂Islope
∂x ,

∂Islope
∂y , and

∂Islope
∂diag are the gradients in the horizontal, vertical, and diagonal directions,

respectively. The multiscale architecture in SMGO is illustrated in Figure 7, and two scales are shown.
The adjacent areas surrounding the cell p ∈ Islope(x, y) are defined on the basis of the following equation:

r = INT(k · σ+ 0.5), (3)
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where r is the radius of the area surrounding the cell p, INT(.) is the integer operation, and σ is the initial
scale factor of the SMGO, set to 1.6 in this study. k ∈ {1, 2, 3, . . . s|s ≥ 2 } is the set of multiple factors,
which are key values in determining the scope of the area surrounding the cell p. Gradient calculation
is performed on each scale on the basis of suboperators, which are illustrated in Figure 7c–f (Scale 1)
and Figure 7h–k (Scale 2). The gradient of each suboperator is mathematically calculated using the
following convolutional operation:

grad(x, y) = G(x, y, kσ) ∗ Islope(x, y), (4)

where G(.) denotes the matrices of weights in the gradient operator and is defined by the nonlinear
inverse distance as

G(x, y, kσ)⇐ 8√
πk2σ2

e−
(Δx2+Δy2)

2k2σ2 , (5)

where (Δx, Δy) is the shift between the adjacent cell and the center (x, y). Then, the matrices
of the suboperators can be determined. For example, Figure 7c–f are represented by the

matrices

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1.91 −2.32 −1.91

0 0 0
1.91 2.32 1.91

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1.91 0 1.91
−2.32 0 2.32
−1.91 0 1.91

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1.29 0 0
0 −1.91 0 0 0
−1.29 0 0 0 1.29

0 0 0 1.91 0
0 0 1.29 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1.29 0 0
0 0 0 −1.91 0

1.29 0 0 0 1.29
0 1.91 0 0 0
0 0 1.29 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, respectively. Similar to the output of the neural network, a

max activation function is utilized to determine the gradient of cell p by using the maximum value of
all the suboperators. The mathematical expression of the max activation function is

max grad(x, y) = max
{∣∣∣∣∣∣∂Islope

∂x

∣∣∣∣∣∣,
∣∣∣∣∣∣∂Islope

∂y

∣∣∣∣∣∣,
∣∣∣∣∣∣ ∂Islope

∂diagL

∣∣∣∣∣∣,
∣∣∣∣∣∣ ∂Islope

∂diagR

∣∣∣∣∣∣
}

. (6)

Notably, the number of scales is not fixed but adaptive. If the gradient G is less than the given
value tgradient, then the value k is not increased. In this study, at least two scales of SMGO are needed
to establish the multiscale architecture. The algorithm of the proposed SMGO is given as Algorithm 2.

Algorithm 2: Gradient calculation using SMGO

Input: intensity image Islope(x, y) with width W and height H, constant value σ, and gradient threshold
tgradient.
Parameters: multiple factor k and radius r of the area surrounding the cell p.
for col = 1 to W do

for row = 1 to H do

repeat

r← INT(k · σ+ 0.5)

suboperators⇐ 8√
πk2σ2

e−
(Δx2+Δy2)

2k2σ2

Compute the gradients grad(x, y) using suboperators.

Gradient G located in (x, y)← max
{∣∣∣∣ ∂Islope

∂x

∣∣∣∣, ∣∣∣∣ ∂Islope

∂y

∣∣∣∣, ∣∣∣∣ ∂Islope

∂diagL

∣∣∣∣, ∣∣∣∣ ∂Islope

∂diagR

∣∣∣∣} .

k← k + 1 .
until gradient G < tgradient and k > 2.

end for

end for
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Figure 7. Multiscale architecture of the proposed self-adaptive and multiscale gradient operator
(SMGO) and damage signature generation. Scope of the area surrounding a cell in (a) Scales 1 and 2 for
gradient computation and (b) Scale 1. (c–f) Kernels of the gradient computation in Scale 1. (g) Scope of
the area surrounding a cell in Scale 2. (h–k) kernels of the gradient computation in Scale 2. The white
and nonwhite grids denote the null and nonzero values, respectively.

After the damage signature generation, the damaged regions Rdamage are determined by a binary
operation based on a given condition, which can be defined as[

gradR(x, y) −mean
(
gradimg

)]
> 3.0 · std

(
gradimg

)
, (x, y) ∈ Rdamage, (7)

where mean(·) and std(·) denote the calculation of mean and standard deviation in the damage
signature map. If the gradR(x, y) satisfies this condition, it is considered to be within a damage
region. Then, the collapse and crack are separated from the damaged regions via two criteria,
i.e., if Area

(
Rdamage

)
> 0.25 m2 and Perimeter

(
Rdamage

)
/Area

(
Rdamage

)
< 1.5, then the damaged region

Rdamage is defined as a collapse; otherwise, the Rdamage is considered to be a crack, where Area(·) and
Perimeter(·) denote the calculation of area and perimeter that can be conducted using ArcGIS software.

4. Results

In the experiments, dense point clouds are generated by using the proposed method and
implemented through C++ programming and an open-source library (i.e., OpenCV). Our software
mainly includes distortion correction, sparse matching, dense matching, absolute orientation,
image stitching, DSM generation, and orthophoto generation. The sparse matching module includes
two ways, i.e., match all images without any supporting information and GPS/IMU supported trajectory
matching, and the dense matching module is run based on the sparse matching results. The performance
of low-cost UAV-based (i.e., DJI Mavic Air) mapping is critical in the accurate reconstruction of the
revetment surface for damage recognition. Take Part 1 as an example, the distribution of the GCPs
and CPs (i.e., check points) are laid out widely and evenly in the survey areas, as shown in Figure 8.
The residual error and root mean square error (RMSE) were calculated on the basis of 13 and 15 CPs for
Parts 1 and 2, respectively, and measured on RTK GPS. Their corresponding 3D points were determined
from the dense point clouds. The X, Y, and Y RMSE values are calculated using Equation (8), and the
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error statistics of the CPs are summarized in Figure 9 and Table 1. Additionally, the re-projection
errors RMSEimg of the check points (CPs) are calculated using Equation (9), and the error statistics
are summarized in Table 2. Figure 10 (Part 1) illustrates the pixel-by-pixel dense point clouds
textured with colors from the UAV remote sensing images. The revetment consists of 1.96× 107 points,
which correspond to the density of approximately 963 points/m2 and the grid size of 3.2 cm × 3.2 cm.
The use of the proposed dense matching method reconstructs the fine details of the revetment
surface. The results show that the X and Y RMSE values obtained via the proposed dense matching
method were less than 4 cm, which is a relatively small horizontal error. Moreover, the vertical
RMSE value or the Z RMSE value was less than 6 cm and the re-projection errors are less than one
pixel. Therefore, these RMSE values seemed fairly satisfactory for high-precision reconstruction of the
revetment surface. The accuracy was deemed sufficient for recognizing damage signatures on the
surface of the revetments along urban rivers.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
RMSEX =

√∑
(Xdense−XGCP)

2

n

RMSEY =

√∑
(Ydense−YGCP)

2

n

RMSEZ =

√∑
(Zdense−ZGCP)

2

n

, (8)

RMSEimg =

√√√ n∑
i=1

m∑
j=1

ρi j

∥∥∥∥P(Xi, Cj
)
− xij

∥∥∥∥2/
n∑

i=1

m∑
j=1

ρi j, (9)

where Xi and Cj denote a 3D point and a camera, correspondingly; P
(
Xi, Cj

)
is the predicted projection

of point Xi on camera Cj; xij is the observed image point; ‖·‖ denotes the operation of L2-norm; ρi j is an
indicator function with ρi j = 1 if point Xi is visible in camera Cj; otherwise, ρi j = 0.

Figure 8. Placements of ground control points and check points.

Table 1. Comparison of the obtained RMSE values of CPs via Pix4Dmapper 4.4, Agisoft Metashape
Professional 1.5.3, and the object space-based approach.

Area Method RMSE X (cm) RMSE Y (cm) RMSE Z (cm) Total RMSE (cm)

Part 1
Pix4Dmapper 3.85 3.84 5.70 4.56

Agisoft Metashape 5.08 4.53 6.59 5.47
object space-based 3.76 3.72 5.67 4.48

Part 2
Pix4Dmapper 3.83 4.27 5.07 4.42

Agisoft Metashape 4.89 4.63 6.43 5.38
object space-based 3.49 3.30 5.31 4.13
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Figure 9. Residuals of 28 check points (CPs) for Part 1 and Part 2 measured on real-time kinematic
(RTK) GPS and their corresponding 3D points determined from the dense point clouds. Residuals X, Y,
and Z are shown in (a–c) respectively.

Table 2. Comparison of the re-projection errors RMSEimg of CPs via Pix4Dmapper 4.4, Agisoft
Metashape Professional 1.5.3, and the object space-based approach.

Area Method RMSE (Pixel)

Part 1
Pix4Dmapper 0.611

Agisoft Metashape 0.679
object space-based 0.597

Part 2
Pix4Dmapper 0.752

Agisoft Metashape 0.783
object space-based 0.730
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Figure 10. Dense point clouds derived from UAV photogrammetry. (a) Top view of the dense point
clouds. (b) Oblique view of the dense point clouds. The viewpoints of the camera are marked by
blue dots.

We also compared the performance of surface reconstruction with that of the commercial
software such as Agisoft Metashape Professional 1.5.3 (www.agisoft.com) and Pix4Dmapper 4.4
(www.pix4d.com), which are widely used photogrammetric software for 3D surface reconstruction
and revetment monitoring [19,23]. In order to balance accuracy and efficiency, medium precision is set
to perform sparse and dense matching in Agisoft Metashape Professional 1.5.3, and the default settings
are used in Pix4Dmapper 4.4. To evaluate the effects of the multiscale architecture in the proposed
SMGO, the non-multiscale gradient operator (NMGO) is compared with our method. The gradient
intensity images with the values normalized from 0 to 1 shown in Figure 11h,i are correspondingly
generated by the non- and multiscale gradient operators, respectively.
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Figure 11. Cont.

246



ISPRS Int. J. Geo-Inf. 2020, 9, 283

Figure 11. Revetment damage recognition along an urban river. The dense point clouds, depth map,
and slope intensity image of the subarea in Figure 10a are shown in (a,b,e), respectively. (c) Cross-section
without damage. (d) Cross-section with a collapse. (f) Superpixels marked by the cyan boundaries
that are generated via the simple linear iterative clustering (SLIC)-based algorithm. The true color
(RGB) point cloud of the revetment is exhibited in (g), and the enlarged three damaged regions of I,
II, and III from the ground field observation are also shown in (g). In addition, the gradient intensity
images generated using the non-multiscale gradient operator (NMGO) and SMGO are shown in
(h,i), respectively.

The indicators Precision, Recall and F1_score are used to evaluate the proposed method in our
experiments as follows:

Precision =
TP

TP + FP
, (10)

Recall =
TP

TP + FN
, (11)

F1_score = 2 · Precision · recall
Precision + recall

, (12)

where TP is the number of damaged regions that are correctly identified, FP is the number of damage
regions that are incorrectly identified, and FN is the number of unrecognized damaged regions.
Table 3 lists the statistical results of Precision, Recall and F1_score for collapse and crack recognition.
Furthermore, the field visual inspection, NMGO-based damage recognition, and the proposed method
are compared in Table 3. It should be noted that the true value of the collapse and crack is obtained
through manual inspection. To be specific, the experimental areas are divided into grids on the map,
and then the professionals check in detail whether there is any collapse or crack in each grid. If there is,
the coordinates are marked using a GPS measuring instrument. For a fair comparison, field visual
inspection is conducted according to the commonly used process by three different surveyors, and the
average values of TP, FP, and FN are calculated.

Table 3. Comparison of the three indicators obtained through field visual inspection, NMGO-based
method, and our method.

Site Category Number Indicator (%)

Method

Field Visual
Inspection

NMGO-Based Our Method

Part 1

Collapse 14
Precision 86.67 73.33 92.85

Recall 92.85 78.57 92.85
F1_score 89.66 75.86 92.85

Crack 36
Precision 91.18 79.41 89.18

Recall 86.11 75.00 91.67
F1_score 88.57 77.14 90.41
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Table 3. Cont.

Site Category Number Indicator (%)

Method

Field Visual
Inspection

NMGO-Based Our Method

Part 2

Collapse 18
Precision 84.21 73.68 89.47

Recall 88.89 77.78 94.44
F1_score 86.49 75.67 91.89

Crack 54
Precision 88.46 82.97 90.91

Recall 85.18 72.22 92.59
F1_score 86.79 77.23 91.74

5. Discussion

In this study, the proposed dense matching method performs better at surface reconstruction
than Pix4Dmapper and Agisoft Metashape in terms of the RMSE values shown in Tables 1 and 2.
Notably, the time consumption of the proposed method is only 87% of Pix4Dmapper and Agisoft
Metashape in the same operating environment. These results can be attributed to the dense matching
achieved by the object space-based approach, which only computes the height values on the top
surface of the ground and reduces the computational expense of redundant point clouds. To offer
a detailed description, as shown in Figure 10a, the extracted subarea illustrates the details of the
geometry structure, and Figure 11a,b present the corresponding results of the subarea. Two examples
of cross-sections of dense point clouds derived from UAV mapping are demonstrated in Figure 11c,d
with (marked by a red line) and without damage (marked by a yellow line), respectively. Subsequently,
Figure 11e,f show the slope intensity image generated via the slope calculation and the superpixels
segmented with the SLIC-based algorithm [39], respectively. Figure 11g exhibits the revetment regions
obtained through superpixel merging on the basis of similar gradients and adjacency, and the enlarged
three damaged regions of I, II, and III from the ground field observation (i.e., RGB ground photos) are
also shown.

In terms of visual assessment, the profile in Figure 11d is the geometry structure corresponding
to region I. In Figure 11h,i, it can be seen that the region detected by the SMGO algorithm is more
consistent with the geometric structure than that detected by the NMGO. The NMGO has difficulty
identifying all the damaged regions and ignores the spatial continuity of cracks or can even cause edges
in over-recognition. By comparison, the proposed SMGO can extract the damaged regions within
accurate boundaries and improve the accuracy of the revetment damage recognition by highlighting
the gap between the damaged and nondamaged areas. Therefore, the proposed SMGO enables collapse
and crack with a height drop relative to the surrounding areas to be detected. This finding is attributed
to the revetment damage recognition using the proposed SMGO, which can achieve feature extraction
in all the orientations with the multiscale operator in the horizontal, vertical, and diagonal directions.
Notably, the strip regions with vertical drop (e.g., region III shown in Figure 11h) close to the river are
also detected but not considered damaged regions in this study. In addition, the proposed method
achieves better performance than the two other methods in terms of Precision, Recall and F1_score,
especially in crack recognition. For field visual inspection, the inconspicuous cracks may easily be
ignored and manual recognition is easily affected in this case, that is, crack damage often exists in other
types of damage (e.g., collapse). As mentioned above, the NMGO-based method ignores the feature of
damage and performs poorly.

6. Conclusions

This study aims to achieve revetment damage recognition along urban rivers through dense point
clouds derived from low-cost UAV photogrammetry. In this study, two improvements of the proposed
approach confirm that our method can be used as an effective alternative to field visual inspection for
revetment (with slope protection) damage recognition along urban rivers. (1) Region growing coupled
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with SGM is proposed to generate the pixel-by-pixel dense point clouds from UAV remote sensing
images and reconstruct the fine details of the high-precision revetment surface. This reconstruction is
considered satisfactory in terms of the horizontal error <4 cm and vertical error <6 cm relative to GCPs.
(2) On the basis of the in situ visual assessment and quantitative analysis (e.g., at least 90% of the
Precision, Recall, and F1_score values), the accuracy of revetment damage recognition is confirmed after
comparing the results of the field visual inspection and the NMGO-based method. Notably, UAV-based
mapping can offer a new possibility in fully measuring, monitoring, and understanding revetment
damage with low-cost operation. UAV-based mapping presents a technology that has the potential
to transform how revetment damage recognition is observed and investigated. Furthermore, it could
help the government and local authorities develop revetment management plans and provide evidence
for maintenance or improvements.

This study is suitable for recognizing the damage signatures in revetments designed with slope
protection. The use of the proposed method on revetments with steep slopes still needs further
investigation because the nadir orientation of a camera for photogrammetry has difficulty achieving
high-precision surface reconstruction of steep revetments. In future studies, we will optimize the
proposed approach by using oblique photogrammetry and deep learning to achieve satisfactory
damage recognition of steep revetments.
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Abstract: When using the traditional Douglas–Peucker (D–P) algorithm to simplify linear objects, it is
easy to generate results containing self-intersecting errors, thus affecting the application of the D–P
algorithm. To solve the problem of self-intersection, a new vector line simplification algorithm based
on the D–P algorithm, monotonic chains and dichotomy, is proposed in this paper. First, the traditional
D–P algorithm is used to simplify the original lines, and then the simplified lines are divided into
several monotonic chains. Second, the dichotomy is used to search the intersection positions of
monotonic chains effectively, and intersecting monotonic chains are processed, thus solving the
self-intersection problems. Two groups of experimental data are selected based on large data sets.
Results demonstrate that the proposed experimental method has advantages in algorithmic efficiency
and accuracy when compared to the D–P algorithm and the Star-shaped algorithm.

Keywords: Line Simplification; Douglas-Peucker Algorithm; Monotonic Chain; Dichotomy

1. Introduction

With the development of remote-sensing technology, sensor technology, and Web 2.0, the large
amounts of obtained spatial vector data produce great challenges in data storage, processing,
and transmission. To enhance the processing capability for massive spatial vector data, new vector
data simplification algorithms with high efficiency and robustness are urgently needed.

There are many classical methods used to simplify vector data, including the Douglas–Peucker
algorithm (D–P algorithm) [1], Ramer algorithm [2], and other algorithms [3–9]. The D–P algorithm [1]
and Ramer algorithm [2] use a given distance tolerance to determine which vertices on a line are to be
eliminated or retained. Lang [3] used a perpendicular distance tolerance to filter data, but the method
was too time consuming [1]. Based on a sequential set of five procedures, McMaster [4] presented
a conceptual model to process linear digital data. This employed method used the perpendicular
distance tolerance proposed by Lang [4] to simplify the lines and used smoothing techniques to
produce the most aesthetically acceptable results. Based on selecting local minima and maxima,
an algorithm for compressing digital contour data has been developed by Li [5]. The new algorithm
was more efficient than the D–P algorithm, but the result remained the same as the D–P algorithm.
Visvalingam and Whyatt [6] used the “effective area” to simplify the line features and discussed the
influence of rounding errors on a version of the Ramer–Douglas–Peucker algorithm [1,2] for line
simplification. To show how to make robust, precise, and reproducible geographic information systems
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(GIS) algorithms, Ratschek et al. [7] proposed a robust version of the R-D–P algorithm. Based on
recognizing line shapes and filtering them against cartographic rules, Wang and Muller [8] proposed a
Bend Simplify algorithm. The bend simplify algorithm attempts to simulate manual line simplification
by using cartographic rules, and it is typically used to simplify naturally occurring features such as
lakes and stream channels [10]. Based on the Li–Openshaw algorithm [11], the D–P algorithm, and
the orthogonal simplification method, Samsonov and Yakimova [12] proposed a methodology and
generalization model for the geometric simplification of heterogeneous line datasets.

The line simplification results processed by the above algorithms consisted of a set of original
polyline vertices with no “Steiner” points. Other researchers have applied the “Steiner points” [13]
to simplify the linear features [14,15]. The concept of Steiner points originates from the discipline
of computational geometry and is referred to as a point or a set of points that are introduced when
solving a geometric optimization problem to improve upon solutions based only on the original set of
points [13,16]. On the basis of the traditional D–P algorithm [1], Cromley [14] used “Steiner points” to
simplify a line; the experimental results showed that the proposed method is computationally faster
than the traditional D–P algorithm [1]. Based on the method proposed by Li and Openshaw [11],
Raposo [15] presented a scale-specific cartographic line simplification algorithm by using a hexagonal
tessellation instead of a square grid. The hexagonal quantization algorithm draws from sampling and
map-resolution theory as well as the concept of vertex clustering from computer graphics to yield a
method which is simple and effective.

The experimental results addressed in the line simplification algorithms above show that good
results have been achieved for each method and have been successfully applied to the corresponding
fields. This has to be due to all the advantages concerning the D–P algorithm—it is highly effective at
preserving the shape of the line, unique in vector curve compression at the presence of the threshold
values and, above all, precise in a higher position, which is thereby often used to simplify lines [16,17].
However, the D–P algorithm is found to be flawed in that a large area deviation might be caused [18].
In addition, the method only addresses the curves themselves rather than the topological relations of
the curves, thus leading to self-intersection problems [19]. Therefore, many scholars have improved the
D–P algorithm in order to solve these self-intersection problems. A hierarchical representation scheme
for planar curves was proposed by Ho and Kim [20], which used natural approximation and efficient
localization. It was effective in removing self-intersections in all possible approximations for a curve
using the cross-link technique, reducing computation time remarkably. Mantler and Snoeyink [21]
introduced a new algorithm. They defined a notion of safe sets, which are fragments of linear features
that can be simplified without introducing intersections or topology changes. This algorithm can also
help to identify a collection of safe sets using the Voronoi diagram of points, but it is required to
produce a Voronoi diagram, the efficiency of the algorithm is limited. To solve the self-intersection
problems, Avelar and Müller [22] proposed an algorithm to compute the topological relations when
compressing the polyline features. In this algorithm, simple geometric operations are used and
tested step-by-step to check whether the topological relations have changed after compression. If the
topological relations are not changed, the algorithm will terminate; otherwise, the topological relations
will be maintained. Wu and Marquez [23] proposed a star-shaped algorithm (ST algorithm) to simplify
the curves. The original curves are first scanned first and then divided into “Star” areas. Finally,
the D–P algorithm is applied to compress the “Star” areas. The star-shaped algorithm solves the
self-intersection problems, but it has the worst case O(nm) time complexity, where n is the number
of input vertices and m depends on the number of star-shaped regions, the time consumption and
efficiency of this method is relatively high.

Most of the above improved D–P algorithms solved the self-intersection problems to simplify the
linear objects; however, the algorithms used have the disadvantages of low efficiency and complex
steps. To solve the self-intersection problems when using the D–P algorithm to simplify the linear
objects and improve the efficiency of the algorithm, a new vector line simplification algorithm that
combines the D–P algorithm, monotonic chains and dichotomy is proposed in this paper. There are
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four main stages: first, the D–P algorithm is used to process the original lines; second, the monotonic
chain method is used to divide the simplified lines into monotonic chains if the simplified lines
have self-intersection problems; third, the dichotomy is used to quickly and accurately locate the
self-intersection position of the simplified lines, process the self-intersection problems, and obtain the
final result; finally, the experimental results are presented in this part, and the results of the experiments
show that our proposed method demonstrates a more effective and higher performance.

The remainder of this paper is organized as follows. The basic theories, methods and steps of the
new algorithm are introduced in Section 2. Experimental results and analysis are reported in Section 3.
Conclusions are drawn in Section 4.

2. Methodology

In this section, we will first introduce the basic theories of the D–P algorithm, monotonic chains
and the dichotomy method; then, the basic steps of the improved algorithm are introduced in further
detail. A flow chart of the proposed research method is shown in Figure 1.

Figure 1. The flowchart of the proposed method.

2.1. Basic Theory of the Douglas–Peucker (D–P) Algorithm

The D–P algorithm is a classic algorithm used for curve compression. The algorithm is used to
simplify polylines by deleting non-feature vertices and retaining the feature vertices. The basic theory
and computational steps of the D–P algorithm are as follows [1,24]:

Step 1: For a curve L, which is composed of N coordinate vertices, the coordinate vertices set
V is written as V = {v1, v2, . . . , vi, . . . , vN}, (i = 1, 2, . . . , N). First, connect the first vertex v1 and the
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last vertex vN, to obtain a new straight line Lv1vN . Second, calculate the shortest distances between
the remaining vertices {v2, . . . , vN−1} and the new straight line Lv1vN and obtain the shortest distance
sets D = {D2, . . .Dk, . . . , DN−1} (Dk is the shortest distance between vertex vk and the new straight
line Lv1vN );

Step 2: Select the maximum distance (Dmax) with shortest distance D, Dmax = Dk (Dk is the
shortest distance between vertex vk and the new straight line Lv1vN ). Given a distance ε as the distance
threshold, if Dmax < ε, then the remaining vertices {v2, . . . , vN−1} from vertices set V = {v1, v2, . . . , vN}
are deleted, the given curve L is compressed into a straight line Lv1vN and the D–P algorithm is finished.
If Dmax ≥ ε, then the vertices set V = {v1, v2, . . . , vN} is divided into two subsets Vt and Vs, that is,
V = Vt + Vs (Vt = {v1, v2, . . . , vk}, Vs =

{
vk, vk+1, . . . , vN

}
);

Step 3: For the subsets Vt and Vs, repeat step 1 and 2, respectively. If all of the calculated shortest
distances are less than the giving distance threshold (ε), then end the D–P algorithm.

2.2. Monotonic Chains and Dichotomy

The theory of the monotonic chain is mainly derived from computational geometry [12,25]. For the
curve L, the monotonic chain is defined as follows:

Monotonic chain: For a curve L, which is composed of M coordinate vertices, the coordinate
vertices set V is expressed as V = {v1, v2, . . . , vi, . . . , vM}, (i = 1, 2, . . . , M); xi is the X-axis coordinate
of vertex vi, and yi is the Y-axis coordinate of vertex vi. In the direction of the X-axis, for the
coordinate vertices set X = {x1, x2, . . . , xi, . . . , xM}, (i = 1, 2, . . . , M), if xi ≤ xi+1 (i = 1, 2, . . . , M) or
xi > xi+1 (i = 1, 2, . . . , M), the curve L will be called a monotonic increasing (or decreasing)
chain of the X-axis. Similarly, in the direction of the Y-axis, for the coordinate vertices set
Y =

{
y1, y2, . . . , yi, . . . , yM

}
, (i = 1, 2, . . . , M) (i = 1, 2, . . . , M), if yi ≤ yi+1 (i = 1, 2, . . . , M) or yi > yi+1

(i = 1, 2, . . . , M), the curve L will be called a monotonic increasing (or decreasing) chain of the Y-axis.
Dichotomy: Dichotomy is one of the most commonly used search algorithms for ordinal

sequences and has a high search efficiency [12,13]. Given the target element t and the ordered sequence
K = {k1, k2, . . . , ki, . . . , kU}, (i = 1, 2, . . . , U), (t ∈ K), to search for the target element t from K, the basic
theory of dichotomy is as follows:

Step 1: For the target element t, compare t with the intermediate element k U
2

from the sequence K.

If t � k U
2

, then K will be divided into two parts: K1 and K2, K = K1 ∪ K2, K1 =
{
k1, k2, . . . , ki, . . . , k U

2

}
(i = 1, 2, . . . , U), K2 =

{
k U

2
, k U

2 +1, . . . , kj, . . . , kU

} (
j = U

2 , U
2 + 1, . . . , U

)
.

Step 2: For the target element t, if t ≥ k U
2

, then execute step 1 in the K2 until the target element t is
found from the ordered K2; if t < k U

2
, then execute step 1 in the K1 until the target element t is found

from the ordered K1.
In vector spatial data structure, it is well known that a simple curve is composed of a number of line

segments. For a curve L, there are N coordinate vertices: P =
{
p1, p2, . . . , pi, . . . , pN

}
, (i = 1, 2, . . . , N),

and the curve L is composed of some line segments, such as: L = L′1,2 + L′2,3 + . . .+ L′i, j + . . .+ L′N−1,N
(N is the number of the coordinate vertices). Figure 2, shows that curve L is composed of 26 coordinate
vertices (0, 1, 2, . . . , 25). In the Gauss-Krueger plane rectangular coordinate system, the horizontal axis
was the Y-axis, and the vertical axis was the X-axis. Along the Y-axis, L could be divided into two
monotonic chains L′i (i = 0, 1, 2, . . . , 13) and L′ ji ( j = 13, 14, . . . , 25). For L′i, along the Y-axis, vertex p0

is the smallest, and the vertex p13 is the biggest, and L′i is a monotonic increasing chain; For L′ j, along
the Y-axis, vertex p13 is the biggest, and the vertex p25 is the smallest, and L′ j is a monotonic decreasing
chain. When using the D–P algorithm to process the curve L, it should be noted that if the final result
has self-intersection problems, it has been caused by the corresponding monotonic chains L′i and L′ j.
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Figure 2. A schematic chart of the monotonic chain.

2.3. The New Vector Line Simplification Algorithm based on the D–P Algorithm, Monotonic Chains
and Dichotomy

This paper used the monotonic chains and dichotomy to solve the self-intersection problem in
spatial line simplification when processed by the D–P algorithm. In our proposed method, we firstly use
the D–P algorithm to simplify the original polyline M, and obtain the simplified polyline T; Secondly,
we check the self-intersection problems of T. If T does not have self-intersection problems, then we
end this proposed method, otherwise, we use monotonic chain technology to quickly divide the T into
several sequential monotonic chains; Thirdly, the dichotomy, MER (minimum-area enclosing rectangle,
which refers to the rectangle with the smallest area that encloses the polyline) and geometric calculation
method are used to process the sequential monotonic chains, in order to quickly locate the positions
of the self-intersection problems of the sequential monotonic chains and solve the self-intersection
problems, to obtain the final results.

This strategy of the proposed method does not only take the curve characteristics of a polyline
into account, but also improves the time consumption of the proposed method. The main steps of the
proposed method are described below.

Step 1: Use the D–P algorithm to process one curve M (There aren’t self-intersection errors of M)
and obtain a new curve T.

Step 2: Check the self-intersection problems of the T; if there are self-intersection errors,
then perform step 3; otherwise, T is the final result of line simplification.

Step 3: For T, after step 2 of processing, if there are self-intersection errors, according to the
sequence of the coordinate vertices, use the monotonic chain technology (as described in Section 2.2) to
divide T into several sequential monotonic chains T1

′, T2
′, . . . , Ti

′, . . . , Tj
′, . . . , Tn

′ (i, j ∈ [1, n]).
Step 4: For monotonic chains Ti

′ and Tj
′, which include and coordinate vertices, respectively,

if n ≥ m, then use the dichotomy to quickly divide Ti
′ into two monotonic chains: L′1,t and L′t,n (t = n

2 ,
when n was even; or t = n

2 + 1, when n was odd, n is an integer, and n > 1), L′1,t and L′t,n are also two
monotonic chains. Similarly, if n < m, then divide Tj

′ into two monotonic chains S′1,t and S′t,m (t = m
2 ,

when m was even; or t = m
2 + 1, when m was odd, m is an integer, and m > 1), S′1,t and S′t,m are also

two monotonic chains.
Step 5: If n ≥ m, calculate the MER of L′1,t, L′t,n and T′ j, respectively, as RL1,t , RLt,n and RTj .

Similarly, if n < m, calculate the MER of S′1,t, S′t,m and T′i, respectively, as RS1,t , RSt,n and RTi .
Step 6: For RL1,t , RLt,n and RTj , if RL1,t ∩ RTj = RLt,n ∩ RTj = φ, then there is a non-intersection

between Ti
′ and Tj

′; If RL1,t ∩RTj � φ, and RLt,n ∩RTj = φ, then there may be an intersection problem
between the monotonic chain L′1,t and Tj

′, and there is a non-intersection between L′t,n and Tj
′;

If RL1,t ∩ RTj = φ, and RLt,n ∩ RTj � φ, there may be an intersection problem between the monotonic
chain L′t,n and Tj

′, and there is a non-intersection between L′1,t and Tj
′; If RL1,t ∩RTj � φ, and RLt,n ∩RTj

� φ, then there may be an intersection problem between the monotonic chain L′1,t and Tj
′, and there

may be an intersection problem between the monotonic chain L′t,n and Tj
′. Using the same method,

we can calculate whether there are intersection problems between RS1,t , RSt,n , and RTi .
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Step 7: Process all of the sequential monotonic chains T1
′, T2

′, . . . , Ti
′, . . . , Tj

′, . . . , Tn
′ (i, j ∈ [1, n])

using step 4, step 5, and step 6, until all the intersection problems of the monotonic chains are found.
Step 8: After processing by step 1 to step 7, all the intersection problems of the monotonic chains

are found. In this step, we take an example to show how the proposed method deals with these
intersection problems.

For one curve T, which is processed by the D–P algorithm as shown in Figure 3a, T includes 25
coordinate vertices. Using step 2 and step 3, we can obtain three monotonic chains T1

′, T2
′ and T3

′
(as shown in Figure 3b); T1

′ contains six coordinate vertices (P1, . . . , P6), and P1 and P6 are the end
vertices of T1

′; T2
′ contains nine coordinate vertices (P6, . . . , P14), and P6 and P14 are the end vertices

of T2
′; T3

′ contains 12 coordinate vertices (P14, . . . , P25), and P14 and P25 are the end vertices of T3
′.

After using step 4, step 5, step 6 and step 7, there is one intersection problem between T1
′ and T3

′,
and there is another intersection problem between T2

′ and T3
′.

T ′
T

T ′

T ′

(a)                                             (b) 

T ′

(c)                                                (d) 

Figure 3. (a) The curve T which processed by D–P algorithm; (b) three monotonic chains T1
′, T2

′ and
T3
′ processed by the monotonic chain technology; (c) minimum-area enclosing rectangle (MER) of T1

′
and T3

′; (d) the final result T′.

Using Figure 3c as an example, after processing by step 6, assuming that there is one
intersection problem between T1

′ and T3
′, to obtain the intersection line segment K5,6 and K17,18

by the geometric calculation method [12,25] and obtain the coordinate vertices P5, P6, and P17, P18.
If there are coordinate vertices

(
vp, vp+1, . . . vi, . . . , vq, i ∈ [p, q]

)
(p, q are two integers) between P17 and

P18 that belong to the original curve M, then calculate the shortest distance between the vertices(
vp, vp+1, . . . vi, . . . , vq, i ∈ [p, q]

)
and the line segment K17,18 and find the maximum value (Dmax) of the

shortest distance and the corresponding coordinated point Pi.
Connect P17Pi, and PiP18 and obtain two new monotonic chains T17i

′ and Ti18
′. Calculate whether

there are intersection problems between the two new monotonic chains T17i
′, Ti18

′ and the monotonic
chain T1

′. If there are no intersection problems, then conclude this algorithm; the monotonic chain T3
′

will be divided into two new monotonic chains T17i
′ and Ti18

′. If there are other intersection errors,
then re-execute step 8 and step 9 until there is no intersection error between T1

′ and T3
′.

Similarly, if there are coordinate vertices between P5 and P6 that belong to the original curve M,
re-execute steps 8 and 9 until there is no intersection error between T1

′ and T3
′.
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Execute steps 4 to 8 until there are no intersection errors between all the monotonic chains, and
then obtain the final result T′. Figure 3d shows the final result, ki and kj are two coordinate vertices
from the original curve M.

Step 9: After processed by step 1 to step 8, all of the intersection problems have been processed,
then end the proposed method, and obtain the final results.

3. Experiments and Analysis

We select two groups of experimental data to verify the validity of the proposed algorithm.
The first group of data is the road line of Jiangxi Province in China. Its total length is approximately
1.56 × 105 km, and the data volume is approximately 92,000 bytes, including approximately 5.13 × 106

vertices. The second group of data is the land use line of Dingnan County in Jiangxi Province in China.
Its total length is approximately 1.41 × 104 km, and the data volume is approximately 26,000 bytes,
including approximately 1.24 × 106 vertices.

3.1. Assessment

In this study, we adopted a number of different methods to simplify the two groups of data
and compare the performance of the proposed method. This is due to the ST algorithm [23],
which is also based on the D–P algorithm, which could solve the self-intersection problems, in this
paper, we compared the performance of the proposed method with the ST algorithm and the D–P
algorithm.The scale of the experimental data is 1:10,000, and the results in target proportions of the
original vertices are 60% and 70%, respectively. As a result, the two groups of the data are displayed as
large volumes. Thus it is difficult to show case further details, in the same experimental environment.
Moreover, we chose six self-intersection problems from the two groups of data instead. The simplified
results of the six self-intersection problems are shown in Figure 4.

(a) 

Figure 4. Cont.

259



ISPRS Int. J. Geo-Inf. 2020, 9, 251

(b) 

Figure 4. The six simplified results of the three applied methods from the two groups of data. (a) The
three self-intersection problems identified from the first group of data; (b) the three self-intersection
problems identified from the second group of data. Notes: DP algorithm is the Douglas–Peucker
algorithm proposed by Douglas and Peucker [1]; ST algorithm is the star-shaped algorithm proposed
by Wu and Marquez [23].

As is shown in Figure 4, the simplified results brought up from each group of data, the D–P
algorithm produced self-intersection problems, but the proposed method could process self-intersection
problems as well as the ST algorithm. To compare the performance of the different methods, four metrics
are selected, including time consumption, mean vector displacement [3,26], Hausdorff distance
(HD) [27], and standardized measure of displacement (SMD) [28].

Time consumption indicates how much time the algorithm takes.
Mean vector displacement is computed as the average displacement of the vector between the

original vertices and the simplified version of the same vertices.
The Hausdorff distance (HD) between the two geometric objects is the largest minimum distance

between points on one object to the other [27].
Standardized measure of displacement (SMD) is defined by Joao [28], and the calculation formula

is demonstrated as follows:
SMD(%) = (1− (W −O)/W) × 100 (1)

W is the distance from the coordinate vertices which has the maximum displacement between the
original polyline and the simplified polyline to the straight line. This is obtained by connecting the
first and last nodes of the polyline, and O is the actual displacement of the coordinate vertices between
the original polyline and the simplified polyline.
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3.2. Results

The simplification assessment metrics of the data processed data by method are shown as follows:
the resulting statistics are computed using the two groups of experimental datasets.

(1) Time consumption: the time consumption results of the three line simplification methods are
shown in Figure 5, and the time consumption is measured in milliseconds (ms).
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Figure 5. Time-consumption results. (a) Time consumption of the first group of data; (b) time
consumption of the second group of data.

(2) Mean vector displacement: the mean vector displacement results of the three line simplification
methods are shown in Figure 6. The mean vector displacement is measured in meters (m).
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Figure 6. The mean vector displacement results (m).

(3) Hausdorff distance (HD): the Hausdorff distance (HD) results of the three line simplification
methods are shown in Figure 7. The HD is measured in meters (m).

 

Figure 7. The Hausdorff distance results (m).

(4) Standardized measure of displacement (SMD): the standardized measure of displacement
(SMD) results of the three line simplification methods are shown in Figure 8.
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Figure 8. The standardized measure of displacement results (%).

3.3. Analysis

From Figure 5 to Figure 8, we observe the following:
(1) The proposed method can be used effectively for vector line simplification. We used two

groups of data to verify the proposed method. It can be shown from the experimental results that the
proposed method can not only solve the problem of self-intersection caused by the D–P algorithm but
also has a high execution efficiency. Figure 4 shows the six results of simplifying the two groups of data
using the three methods. In the six self-intersection problems as shown in the Figure 4, the polylines of
six regions demonstrate complex curves with a number of hierarchical bends. As shown in Figure 4,
the D–P algorithm produces self-intersection problems, but the proposed method and ST algorithm
avoid these problems. This is due to the ST algorithm also being based on the D–P algorithm. As a
result, the three methods identified the same experimental results in some cases.

(2) The D–P algorithm was found to have O(nm) the worse case time and O(n log n) expected time,
where n was the number of input vertices and m was the number of simplified polyline segments [23];
The ST algorithm was composed of mainly three steps; the worst case O(nm) time complexity, where
n was the number of input vertices and m depended on the number of star-shaped regions [23].
The proposed method in this paper involved two key steps: first, we first used the D–P algorithm to
simplify the original curves and checked the self-intersection problems; then, we used the monotonic
chain and dichotomy methods to address the self-intersection values. In the first step, our algorithm
had the same execution time as the D–P algorithm. In the second step, our algorithm was carried out
in O(m log m) time, while m was the number of self-intersection segments of simplified polylines.

The time consumption results of the three methods for processing the two groups of data are
shown in Figure 5. For the first group of data, the time consumption results of the D–P algorithm,
the proposed method and ST algorithm are 5,523,375 ms, 6,954,155 ms, and 10,283,326 ms, respectively.
For the second group of data, the time consumption results of the D–P algorithm, the proposed method
and ST algorithm are 75,325 ms, 93,256 ms, and 310,201 ms, respectively. It can be seen from the
experimental results of each group of data that the time consumption of the proposed method is
slightly higher than the D–P algorithm with the proposed method and, after the procession of the
D–P algorithm, we use monotonic chains and dichotomy to modify the self-intersection problems.
It is obvious that the time consumption of the proposed method is much lower than the ST algorithm.
This is because the monotonic chains and dichotomy have high search efficiency and can quickly find
and solve the self-intersection problems that are processed by the D–P algorithm.

(3) We use mean vector displacement to measure the location accuracy. As shown in Figure 6,
the first group of data, the mean vector displacement results of the D–P algorithm, the proposed
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method and ST algorithm are 6.79 m, 6.57 m, and 7.83 m, respectively, The second group of data showed
that the mean vector displacement results of the D–P algorithm, the proposed method and ST algorithm
are 4.92 m, 4.63 m, and 5.81 m, respectively. For each group of data, the mean vector displacement of
the proposed method is similar to the D–P algorithm but much lower than the ST algorithm.

(4) Figure 7 shows the Hausdorff distance of the three methods for processing the two groups
of data. For the first group of data, the Hausdorff distances of the D–P algorithm, the proposed
method and ST algorithm are 6.25 m, 6.08 m, and 6.85, respectively. The second group of data showed,
the Hausdorff distances of the D–P algorithm, the proposed method and ST algorithm are 4.75 m,
4.68 m, and 5.23 m, respectively. For each group of the data, the Hausdorff distance of the proposed
method is similar to the D–P algorithm and the ST algorithm.

(5) We also used a standardized measure of displacement (SMD) to measure the location accuracy.
As shown in Figure 8, the first group of data, the SMDs of the D–P algorithm, the proposed method,
and ST algorithm are 3.46%, 3.58%, and 4.25%, respectively, The second group of data showed that
the SMDs of the D–P algorithm, the proposed method and ST algorithm are 1.83%, 1.79%, and 2.81%,
respectively. For each group of data, the mean vector displacement of the proposed method is similar
to the D–P algorithm but much lower than the ST algorithm.

4. Conclusions

Vector line simplification is widely used in computer graphics, GIS, and others. The D–P algorithm
is one of the most widely used methods for vector line simplification. When professionals use the
D–P algorithm to address complex curves, we find it is easy to produce self-intersection problems.
To further expand the application of the D–P algorithm, in this paper a new line simplification algorithm
that combines the D–P algorithm, monotonic chains, and dichotomy is proposed. In the end, two
experiments are designed to compare the results of our proposed method with the D–P algorithm and
ST algorithm. From the result analysis, it is clear that the proposed algorithm has several advantages:
(1) compared with the D–P algorithm, the proposed algorithm has the same execution efficiency but
without self-intersection problems; (2) compared with the ST algorithm, the proposed method has
the same ability to solve self-intersection problems but has better execution efficiency. At the same
time, the proposed algorithm also has shortcomings to be further studied: (1) the proposed method
focuses on the removal of self-intersection problems, however, the area preservation problems after the
polyline simplification are not considered; (2) similar to the D–P algorithm, this proposed method does
not consider the bending characteristics of the curves. In conclusion, these two thematic shortcomings
will be the focus of our future research.
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Abstract: Automatic water body extraction method is important for monitoring floods, droughts,
and water resources. In this study, a new semantic segmentation convolutional neural network named
the multi-scale water extraction convolutional neural network (MWEN) is proposed to automatically
extract water bodies from GaoFen-1 (GF-1) remote sensing images. Three convolutional neural
networks for semantic segmentation (fully convolutional network (FCN), Unet, and Deeplab V3+) are
employed to compare with the water bodies extraction performance of MWEN. Visual comparison
and five evaluation metrics are used to evaluate the performance of these convolutional neural
networks (CNNs). The results show the following. (1) The results of water body extraction in
multiple scenes using the MWEN are better than those of the other comparison methods based on the
indicators. (2) The MWEN method has the capability to accurately extract various types of water
bodies, such as urban water bodies, open ponds, and plateau lakes. (3) By fusing features extracted at
different scales, the MWEN has the capability to extract water bodies with different sizes and suppress
noise, such as building shadows and highways. Therefore, MWEN is a robust water extraction
algorithm for GaoFen-1 satellite images and has the potential to conduct water body mapping with
multisource high-resolution satellite remote sensing data.

Keywords: convolutional neural network; water body extraction; GaoFen-1; multiple scales;
deep learning

1. Introduction

Water is the basic substance for human society’s production and development [1]. Surface water
bodies play important roles in Earth’s material and energy cycles [2,3]. Since satellite remote sensing
data can capture large-scale surface information in little time and with low costs, the data have
been used in water body surveys [4]. Multiple remote sensing data, including optical data [5] and
radar data [6], have been used for water body information extraction. The current water information
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extraction methods include the threshold method [7], machine learning [8,9], and deep learning [10,11],
etc. The threshold method is a conventional method for water body extraction. The threshold method
selects an appropriate threshold to distinguish water bodies and other objects in one or more bands [7].
Because the spectral characteristics of water in the near-infrared (NIR) band are significantly different
from those of other objects, the NIR band is very popular in threshold segmentation [12]. To further
highlight the difference between water bodies and surrounding features, water indexes have been
developed [13]. However, the water index method has some problems. One is that objects with similar
spectral characteristics, such as mountain shadows, cloud shadows, and highways, can be easily
confused with water bodies, which makes it difficult to select thresholds. In addition, the threshold
selected in large-scale water extraction may not be applicable to local areas [14]. With the development
of machine learning, traditional machine learning algorithms, such as decision tree (DT) [15], support
vector machine (SVM) [6], and random forest (RF) [9], have been widely used in water body extraction.
These algorithms perform classification by using artificially designed features, including spectral and
textural features. However, artificially designed features require considerable professional domain
knowledge and artificially designed features are usually based on a specific scale of images. A standard
way to extract artificially designed features from images at multiple scales is resampling the images
to different scales and extract features based on the images with different scales. Thus, the process
requires intensive computation with time consuming. In addition, different feature vectors are needed
for different images and the feature vectors have great impacts on the final classification results. These
issues make applying machine learning to water extraction challenging.

Deep learning is a popular method in image processing during the past several years [16,17].
Convolutional neural networks (CNNs) have been used in scene classification [18], semantic
segmentation [19], and object detection [20,21]. The advantage of CNNs is to capture the features
from raw images directly by multiple convolutional layers [22], which can avoid the complex feature
processing. CNNs for semantic segmentation are capable of performing image classification at pixel
level, which is important for information extraction from remote sensing images. In CNNs, the shallow
convolutional layers are able to capture the pixel position information and the deep convolutional
layers are used to label the pixels [22]. The fully convolutional network (FCN) is the first end-to-end
CNN designed for semantic segmentation [19]. FCN extracts abstract features from the input image
and labels each pixel in the feature maps extracted by the last convolutional layer. However, FCN
loses information contained in low-level features extracted by shallow convolutional layers. In recent
years, many models, such as Unet [23] and Deeplab V3+ [24], have been developed to improve the
performance of CNNs for semantic segmentation in the field of computer vision. CNNs are gradually
being applied to water information extraction with remote sensing images. In [10], CNN was firstly
used for water body extraction in Landsat ETM+ images. The structure of the CNN contained only
two convolutional layers and a fully connected layer. The shallow structure allows it to capture only
low-level features which results in poor robustness in complex scenes. In addition, the input tile (19
× 19) is small in the CNN model. Thus, it cannot be used to extract features at large scales. With
the improvement of the spatial resolution of satellite images [25], various methods based on deep
learning have been proposed for water body extraction in high-resolution images. A CNN method
that combines the super pixel was proposed by Chen, Y, et al. [11]. The core idea is to combine artificial
designed features and CNN extraction features. However, the process reduces the fluidity of the
water extraction and misses some useful information during forward propagation. In recent years,
end-to-end CNNs, such as fully convolutional network (FCN) [26] and DeepWaterMap [27] have
been applied to water body extraction. These end-to-end CNNs greatly improved the accuracy and
efficiency of water body extraction. There are still challenges in the application of CNNs in water
body extraction: (1) In the process of forward propagation, the resolution of feature maps is reduced
due to the repeated max-pooling layers, which leads to the loss of detailed water body information.
(2) The receptive fields of pixels are different in the feature maps extracted by the convolutional layers at
different depths, which allows these feature maps to contain feature information at different scales [22].
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The combination of the features extracted at multiple scales in water body extraction still needs to
be explored.

This paper aims to propose an improved convolutional neural network (CNN), named multi-scale
water extraction convolutional neural network (MWEN), for water body extraction for GaoFen-1
images. For the first challenge, the encoder-decoder structure is used in the MWEN inspired by the
Unet [23]. The encoder extracts the features from the input images and obtains feature maps with low
resolution. The role of the decoder is to map the feature maps to the input resolution feature maps.
For the second challenge, a structure, named the multi-scale feature extractor (MTFE), is proposed
to capture features at multiple scales. Objects exist at various scales in remote sensing images and
geological correlations may exist between adjacent objects. Features extracted by CNNs at different
scales contain various information [28]. In the MTFE, four dilated convolutional layers with different
dilation rates are used to learn features from images with different receptive fields.

The structure of the remainder of this article is as follows. First, GaoFen-1 high-resolution remote
sensing satellite images in Beijing-Tianjin-Hebei region, Zhejiang province, and Tibet province in China
are collected for the dataset and preprocessed. Then, four CNNs are employed to extract water body
information. Finally, the accuracies of these algorithms are compared based on five accuracy metrics
and a visual comparison.

2. Materials and Methods

2.1. Data

In this study, 24 GaoFen-1 images (17 for training and 7 for testing) located in Beijing-Tianjin-Hebei
region, Zhejiang province, and Tibet province in China were collected as the experiment dataset
and these images are showed in Figure 1. Four multispectral bands with a spatial resolution of
8 m and panchromatic band with a spatial resolution of 2 m are included in GaoFen-1 images.
The radiation resolution of both the panchromatic band and multispectral bands is 16 bits. The spectral
and textural characteristics of the water bodies in different regions are quite different, and the
environments surrounding the water bodies are complex. To test the universality of these CNNs for
water body extraction, environment characteristics, such as spectral, textural, season, water environment
characteristics and confusing areas, such as shadows, highways, and ice are considered in the dataset.
The detail information of the dataset is shown in Table 1.

Table 1. Detailed information of dataset.

Images Location Acquisition Times Water Types
Major Confusing

Objects

a1-a8 Tibet province July, 2014 and
August, 2016

Plateau lake, Plateau river,
Saline lake

Cloud shadows,
Saline land

b1-b7 Beijing-Tianjin-Hebei
region

January, September
and October, 2019

Agricultural water, town
water, city water

Building shadows,
sports field,
highways.

c1-c9 Zhejiang province April, 2017 and
October, 2019

Agricultural water, town
water, woodland water,

city water

Mountain shadows,
wetland, roads
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Figure 1. The GaoFen-1 (GF-1) dataset (a1, a3, a5, a6, a7, a8, b1, b2, b5, b6, b7, c1, c2, c3, c4, c5, and c6
are used for training images. a2, a4, b1, b3, b4, c7, and c8 are used for test images.).

2.2. Methods

The methods can be divided into four parts: image preprocessing, sample generation,
water information extraction, and accuracy assessment. In the image preprocessing part, the Rational
Polynomial Coefficient (RPC) model is used to geometrically correct these images [29]. Then,
the multispectral and panchromatic images fusion was conducted using PANSHARP method [30].
The image preprocessing part was conducted based on the PCI Geo Imaging Accelerator software.
The geometric errors of the images after preprocessing were within 1 pixel. In the second part, the water
bodies in the fused images are labeled. These images and labels are clipped to 512 × 512 pixels and
divided into a training dataset and a validation dataset. In the third step, MWEN (multi-scale water
extraction convolutional neural network), MWEN “without MTFE”, FCN, Unet, and Deeplab V3+
are employed to extract the water bodies. Finally, the accuracy comparison for different methods
are conducted using visual comparison and quantitative evaluation metrics. The flowchart is shown
in Figure 2.

2.2.1. Sample Generation

The labels in the dataset are from the fusion images and cover all water types mentioned in
Section 2.1. The labels consist of water areas and background areas. All the labels in the dataset
are binary images, where 1 represents water body and 0 represents background. All of the images
were labeled via visual interpretation. These images were divided into training images and test
images (17 for training and 7 for test). Both the training images and test images contain all water
types mentioned in Table 1. These training images and training labels were clipped to samples with
512 × 512 pixels. A training sample library containing 13,509 samples from training images was
obtained. The samples in the training sample library contains all water pixels in training images.
Some areas without surface water bodies are also contained in these samples. The training sample
library was divided into two parts. Ninety percent of the training samples were used as the training
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dataset and the remaining small part was used for the validation dataset. The role of the validation
dataset is to reflect the generalization ability of the model parameters and indicate whether the model
is overfitting during training process. Both the validation dataset and training dataset were from the
training images, which reduced the generalized representation of the validation dataset. To get a more
generalized training model, the samples from the images other than the training image are needed for
the validation dataset. In this study, a random part of each image in the test images was selected and
clipped to 512 × 512 pixels to enrich the validation dataset. The final validation dataset consisted of
1651 samples from test images and 1350 samples from the training images.

 
Figure 2. Flowchart of this study.

2.2.2. Multi-Scale Feature Extractor

Dilated convolution was originally used for the wavelet transform [31] and has been used in
convolutional neural networks for semantic segmentation [32]. The convolution kernel with holes
(or gaps) is used in the dilated convolution. The number of gaps inserted in the kernel depends on
the dilation rate r. The dilation rate is prerequisite when a convolution kernel is defined. The dilated
convolution with filter dilation rates of 0, 1, and 2 are shown in Figure 3. The kernel with a dilation rate
of 0 is the same as the standard convolution kernel. The convolution kernels with different dilation
rates have different receptive fields. The combination of dilated convolutions with different dilation
rate kernels can capture the features at different scales.

Figure 3. Dilated convolution kernels with different rates. (a), (b), (c) are dilated convolution kernels
with dilation rate 0, 1, 2, respectively.

In remote sensing images, the sizes of water bodies are diverse and there are many confusing
objects in high-resolution images, such as building shadows, mountain shadows, and sports fields,
whose spectral characteristics are similar to those of water body. The combination of features extracted
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at multiple scales is important in dealing with these issues. In this study, a structure, named multi-scale
feature extractor (MTFE) is proposed. Dilated convolutions with various rates are used in the MTFE to
extract the features at multiple scales. The structure of the MTFE is given in Figure 5. An example of
feature extraction at multiple scales by dilated convolution with different rates is shown in Figure 4.
As we can see in Figure 4b, the standard convolution (dilated convolution with a rate of 0) can only
get the information of the surrounding 9 pixels, all of which lie in building shadows. It is difficult to
identify the pixel at the center of the convolution kernel because shadows and water bodies have similar
spectral characteristics. In the dilated convolutions with rates of 2, 4, and 8, the features are extracted
at different scales and the information of the buildings and woods is captured. The combination of
extracted features at these different scales is important for the distinction of building shadows.

Figure 4. Examples of dilated convolution with different rates. (a) is the sample image; (b–e) are
examples of dilated convolution with dilation rate 0, 2, 4, 8, respectively.

2.2.3. Convolutional Neural Networks (CNNs) for Water Extraction

A multi-scale water extraction convolutional neural network (MWEN) for surface water
information extraction is proposed. The structure of the MWEN is shown in Figure 5. The MWEN
can be divided into three parts: encoder, multi-scale feature extractor (MTFE), and decoder. In the
first part, the input data are encoded by the encoder and feature maps with an output stride of 16 are
obtained. In the multi-scale feature extractor (MTFE) part, the feature maps from the encoder are fed
to four dilated convolutions with different rates. These dilated convolutions with different rates can
learn features at different scales. Then, the feature maps generated by these dilated convolutions are
concatenated and integrated by three convolutional layers. In the decoding part, the feature maps are
decoded by the decoder to obtain the water segmented images.

Figure 5. The structure of the multi-scale water extraction convolutional neural network (MWEN).
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To examine the importance of MTFE to the segmentation results, both of the MWEN structure
“with MTFE” and “without MTFE” were trained for water body extraction. The other three kinds
of convolutional neural networks (CNNs) used for semantic segmentation, the FCN [33], Unet [23],
and DeepLab V3+ [24], were also selected in this study for comparison. The water body extraction
process using CNNs contains three steps: data augmentation, forward propagation, and model training.

• Data augmentation: Date augmentation is performed before training. In this step, the input
samples are randomly processed in three ways, including flipping, zooming, and panning.
All samples in the training dataset are randomly processed before every training epoch, and the
number of training samples for every training epoch does not change. The data augmentation
results for the three samples are shown in Figure 6.

Figure 6. Data augmentation of the three samples. a(2) and a(3) are the results of flipping a(1), b(2) and
b(3) are the results of panning b(1), and c(2) and c(3) are the results of zooming c(1).

Then, the data are normalized. The fused GF-1 data have a radiation resolution of 16 bits, with
DN values ranging from 0 to 65535. To improve the accuracy and training efficiency of convolutional
neural networks (CNNs), the input images are normalized. The normalization converses each input
image into a feature map with a mean of 0 and a variance of 1. The formulas are as follows:

μ =
1

w× h× c

w∑
i=1

h∑
j=1

c∑
z=1

DNi, j,z (1)

σ2 =
1

w× h× c

w∑
m=1

h∑
n=1

c∑
z=1

(DNm,n,z − μ)2 (2)

DNm,n,z =
DNm,n,z − μ√

σ2
(3)

where μ is the average of the input image array, and w, h, and c are the width, height, and the number
of channels of the input image, respectively. DNm,n,z is the DN value of the pixel in row n, column m,
and channel z. σ2 is the variance of the input image. DNm,n,z is the DN value of the pixel in row n,
column m, and channel z after normalization.
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• Forward propagation: The normalized sample is fed into the CNN and a feature map is obtained
after forward propagation. The output of the CNN is a feature map with a size of 512 × 512 ×
channels (where the channels are the number of classes). In this study, the number of channels is 2
(water bodies and backgrounds). Then, the feature map is activated by an activation function.
The log softmax function is used as the activation function and the argmax function [34] is used to
get the final water maps in this study. The formula of the activation function for each pixel in the
feature maps is as follows:

P(m) = log(
em

c∑
n=1

en
) (4)

where P(m) is the data value of the pixel in channel m. c is the number of classes (2 in this study to
reflect the water and background).

• Model training: The cross-entropy loss function [35] and the back propagation algorithm [36] are
used when training the CNNs. The mean cross-entropy and the sparse categorical accuracy [37]
are calculated between the labels and the predicted maps by the CNN forward propagation. To
minimize the cross entropy, the Adam optimizer [38] is applied to identify the weights and biases
in the back-propagation process. In this study, the weights of the CNNs model are trained on
training dataset and weights with the highest parse categorical accuracies on the validation dataset
are selected as the training results.

2.2.4. Accuracy Assessment

The performances of these convolutional neural networks (CNNs) are thoroughly evaluated
via visual comparison and five evaluation metrics. The visual comparisons contain the comparison
between MWEN “with MTFE” and “without MTFE” and the comparison between MWEN, FCN,
Unet, and Deeplab V3+ on regions with different types of surface water bodies and confusing objects.
Regarding the evaluation metrics, five evaluation metrics are used to evaluate the accuracy in this study,
including the Overall Accuracy (OA) [30], the True Water Rate (TWR), the False Water Rate(FWR),
the Water Intersection over Union (WIoU) [30], and the Mean Intersection over Union (MIoU) [39].
The definitions and formulas of these indicators are listed in Table 2.

Table 2. Five evaluation metrics for the accuracy assessment.

Evaluation Index Definition Formula

OA The ratio of the correctly classified number of
pixels and the total number of pixels OA = TP+TN

TP+TN+FP+FN × 100%

TWR
The ratio of the number of properly classified

water pixels and the number of labeled
water pixels

TWR = TP
TP+FP × 100%

FWR The ratio of the number of misclassified water
pixels and the number of labeled water pixels FWR = FP

FP+TP × 100%

WIoU
The ratio of the intersection and the union of

the ground truth water and the predicted
water area.

WIoU = TP
FN+TP+FP

MIoU The average IoU for all classes (water
and background) MIoU = 1

k+1

k∑
i=0

TP
FN+TP+FP

where TP, TN, FN, and FP represent the numbers of pixels of true water, true background, false background,
and false water, respectively.
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3. Results

3.1. Model Training

The training processes were conducted using Python3.6, Keras, and TensorFlow on a NVIDIA
Titan GPU with cuDNN 10.0 acceleration. The categorical accuracies on the training dataset and
validation dataset are calculated at the end of each training epoch. The weights with the highest
categorical accuracies are used for water extraction in next steps. The highest validation accuracies of
these models are shown in Table 3. The training accuracy and validation accuracy curves are shown in
Figure 7. The training and validation accuracy curves of these models grow slowly after the 15th epoch
and some even show downward trends after the 25th epoch. There is a large gap between the training
accuracy curve and the validation accuracy curve of the Deeplab V3+. The Deeplab V3+ appeared to
overfit when it is directly used in water body extraction from remote sensing images. The efficiency of
training models is affected by many factors. The efficiency of the CNNs are simply compared via the
number of trainable parameters and training time in this study. The efficiency comparison of these
CNNs are shown in Table 4. The FCN has the most parameters but less training time. The Deeplab
V3+ has the longest train time due to its complex and deep model structure. The MWEN and Unet
have fewer parameters and less training time.

Table 3. The highest validation accuracy of CNN models in training process.

CNN MWEN MWEN without MTFE FCN Unet Deeplab V3+

Highest validation accuracy 0.987 0.981 0.978 0.983 0.957

Figure 7. The training and validation accuracy curves of the convolutional neural networks (CNN)
models. (a), (b), (c), (d), and (e) represent training and validation accuracy curves of the MWEN,
MWEN “without multi-scale feature extractor (MTFE)”, fully convolutional network (FCN), Unet,
and Deeplab V3+, respectively.

Table 4. The efficiency comparison of the various methods.

CNN Number of Trainable Parameters (Million) Training Time (s/epoch)

MWEN 3.72 1343
MWEN without MTFE 1.57 1161

FCN 5.71 1345
Unet 3.11 1366

Deeplab V3+ 4.11 2161
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3.2. Water Extraction Results on the Test Dataset

The results of the water body extraction using these CNNs on the test images are shown in Figure 8.
As can be seen from the figure, the water body prediction results of these CNNs are different. For
Regions a and g, more confusing objects are contained in these two regions than the others, which makes
the CNNs more prone to make mistakes. The roads and the building shadows are misclassified using
Unet and Deeplab V3+ in these two regions. For Regions e and f, there are some detailed water bodies
that are missed by the FCN and MWEN “without MTFE”. Although performances of these CNNs are
similar in Regions b, c, and d across these images, there are still differences in details. Some details are
derived from these results and shown in Section 3.3. Figure 8 shows that MWEN has the capability to
capture detailed water and suppresses noise better than the others.

Figure 8. The results classified by the four CNNs on the test dataset. (a1–g1) are the original images,
(a2-g2), (a3-g3), (a4–g4), (a5–g5), (a6–g6), (a7–g7) are the water body information extracted by artificial
interpretation, MWEN, MWEN “without MTFE”, FCN, Unet, Deeplab V3+, respectively. The areas in
yellow circles are the areas water bodies greatly differ. Blue parts of the pictures represent the extracted
water bodies and black parts of the pictures represent the background.
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3.3. Accuracy Analysis

To analyze the universality of the MWEN method, different water types are analyzed. The accuracy
comparisons via the evaluation metrics are shown in Section 3.3.1, the comparisons between MWEN
“with MTFE” and “without MTFE” are shown in Section 3.3.2, and the accuracy comparisons via the
visual comparison between MWEN, FCN, Unet, and Deeplab V3+ are shown in Sections 3.3.3 and 3.3.4.

3.3.1. Accuracy Comparisons via the Evaluation Metrics

To quantitatively analyze the water body extraction accuracy, the metrics mentioned in 2.2.3
were calculated based on the water maps predicted by the CNNs and the ground truth. Results are
summarized in Table 5. As can be seen from the table, the MWEN outperforms the others in the OA,
FWR, WIoU, and MIoU [30]. Deeplab V3+ is one of the best CNNs for semantic segmentation. In this
study, Deeplab V3+ performs poorly in the OA, FWR, WIoU, and MIoU, but it performs the best in the
TWR. Deeplab V3+may be suitable for datasets with complex scenes, but it appears to be overfitting
when training for water extraction.

Table 5. Water body extraction accuracies of the various methods.

CNN OA (%) TWR (%) FWR (%) WIoU MIoU

MWEN 98.62 92.34 0.61 0.880 0.932
MWEN without MTFE 98.35 91.58 0.86 0.863 0.916

FCN 98.52 91.40 0.62 0.870 0.927
Unet 98.18 92.82 1.16 0.849 0.914

Deeplab V3+ 91.82 96.92 8.81 0.566 0.737

3.3.2. Performance Comparison for MWEN and MWEN “Without Multi-Scale Feature
Extractor (MTFE)”

Feature maps extracted by CNN at different scales contain various information. In this study,
the multi-scale feature extractor (MTFE) is proposed to capture the features at multiple scales. In order
to examine the importance of features extracted by MTFE for water extraction, results containing
ponds and rivers with different sizes, and building shadows are derived from the result water maps
mentioned in Section 3.2. The comparisons between the MWEN “with MTFE” and “without MTFE”
are shown in Figure 9.

For the pools with different sizes in Figure 9a, both of the MWEN “with MTFE” and “without
MTFE” can identify larger ponds, but the latter has obvious disadvantages for addressing the smaller
pool information in Figure 9(a4). Moreover, tiny rivers cannot be identified by the MWEN “without
MTFE” in Figure 9(b4,c4). Regarding confusing objects, the highway and some building shadows
are mixed by the MWEN “without MTFE” in Figure 9(d4,e4). This may result from the relevance
information between objects, such as the relationship between buildings and shadows, being ignored
by MWEN “without MTFE”. The relevance information may be contained in the features extracted by
the convolution kernel with a large expansion rate. Figure 9 shows that MTFE plays an important role
in extracting water bodies with various sizes and suppressing noise.

3.3.3. Performance Comparison for Different Water Types

Different surface water bodies, including open ponds, plateau rivers and lakes, city waters and
agricultural water bodies, are taken from the results to assess the universality of the MWEN algorithm.
The performances of the MWEN are compared with those of the FCN, Unet, and Deeplab V3+ based
on the visual inspection. The performance comparison is shown in Figure 10.

For the open pools in Figure 10a, the comparison shows that all four CNNs are able to extract the
large open pools. The smaller open pools are missed when using the FCN in Figure 10(a4). The results
for agricultural waters show that detailed boundary information is missing by the FCN and Deeplab
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V3+ in Figure 10(b4,c4,c6). Rough boundaries and mixing between water and wetlands appear when
using the Unet in Figure 10(c5). Regarding plateau rivers and lakes, it can clearly be seen that the parts
of rivers and lakes are missing by the FCN and Deeplab V3+ in Figure 10(d4,d6,e4,e6). The results for
small puddle and tiny rivers in city demonstrate that the small puddle and tiny rivers are missed by
the FCN and Unet in Figure 10(f4,g4,g5). Affected by urban buildings and other objects, the results
extracted by the Unet and Deeplab V3+ contain more noises in Figure 10(f5,f6,g6).

Figure 9. Results comparison between MWEN “with MTFE” and “without MTFE”. (a1–e1) are the
images, (a2–e2) are the ground truth, (a3–e3) are the water maps extracted by the MWEN “with MTFE”,
(a4–e4) are the water maps extracted by the MWEN “without MTFE”.
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Figure 10. Typical surface water classification results. a(1) is the original image with open pools,
and a(2–6) represent the water body information extracted from a(1) by artificial interpretation, MWEN,
FCN, Unet, DeepLab V3+, respectively. Additionally, b, c, d, e, f, g give the experimental results of
water body extraction from different images with agricultural water, plateau river, plateau lakes, small
water bodies, and tiny rivers, respectively. Blue parts of the pictures are the extracted water bodies and
black parts of the pictures are the backgrounds.

From Figure 10, it can be seen that MWEN performs better than the other algorithms. The FCN
loses much detailed information for surface water body, which leads to blurred boundaries and the
absence of small water bodies. Unet and Deeplab V3+ can better extract detail information of the water
body compared with FCN but may be confused with objects with spectral characteristics to similar
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water. Figure 10 shows that the MWEN has the ability to extract different types of water bodies and
the universal performance is better than other.

3.3.4. Performance Comparison for Confusing Areas

In high-resolution remote sensing images, some objects have spectral features or texture features
similar to those of water bodies. It is a challenge to distinguish water bodies from these objects. To
examine the reliability of these CNNs in distinguishing water bodies from confusing areas, the water
body extraction results for confusing areas, such as building shadows, sports fields, and highways, are
shown in Figure 11.

Figure 11. The results of the four methods for confusing regions. a(1) is the original image with building
shadows, and a(2–6) represent the water body information extracted from a(1) by artificial interpretation,
MWEN, FCN, Unet, DeepLab V3+, respectively. Additionally, b, c, d, e give the experimental results of
water body extraction from different images with playgrounds, shade net, highways and mountain
shadows, respectively. Blue parts of the pictures are the water bodies and black parts of the pictures are
the backgrounds.

For the building shadows shown in Figure 11a, the MWEN, FCN, and Unet can better suppress
noise, while Deeplab V3+ does not remove the building shadows, which may be caused by overfitting
during training. Figure 11b demonstrates that all of these CNNs cannot clearly remove the noises from
the sports field, but the MWEN and FCN perform better than the others. For the areas in Figure 11c,d,
the Unet and Deeplab V3+ obviously mix the surface water body and other objects. For the mountain
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shadow area in Figure 11e, all four CNNs can clearly remove the noise. The performance comparison
in confusing areas shows that the noises from the sports field, shade net and highway still exist in
the results based on Unet and Deeplab V3+. The MWEN and FCN achieve better performances in
suppressing the noise than the others.

4. Discussion

With the improvement in the temporal and spatial resolution of remote sensing data [25],
many meaningful works have been conducted on water body information extraction with
high-resolution remote sensing data [40,41]. Deep learning has been a hot topic in recent years [42],
and it shows great promise in water body extraction with high-resolution remote sensing data. In this
study, a new CNN named MWEN is proposed for water body extraction for GaoFen-1 images.
The extraction accuracy of water bodies on the test dataset is evaluated by five evaluation metrics and
visual comparison. The results show that MWEN has the ability to extract water bodies with different
sizes and can accurately capture the boundaries of water bodies. In addition, MWEN can suppress
noise better than Unet and Deeplab V3+.

The different performance in water body extraction may relate to the structures of these CNNs. FCN
has been applied to water body extraction in previous research [26]. The FCN based methods extract
features by several convolutional layers from the image and then perform water body segmentation
based only on the low-resolution feature maps extracted by the last convolutional layer. The water
maps are mapped to the original image resolution by upsampling. However, the upsampling process
is not sensitive to the details in the image, which leads to small water bodies to be ignored and
the boundaries of water bodies are smoothed. The Unet combines the structure of the encoder and
decoder, and features at multiple scales are fused through skip connection between the encoder and
decoder [23]. This is good for extracting the accurate boundaries of water bodies and capturing
detailed information in the image. However, the Unet fuses too many low-level features extracted by
the shallow convolutional layers. These low-level feature maps may be related to mistakes for noises
that have similar spectral characteristics with water bodies. Deeplab V3+ is one of the state-of-the-art
CNNs in the field of computer vision [24]. Deeplab V3+ uses ASPP pyramids to extract features at
multiple scales and uses a decoder to restore the resolution of the feature maps. The Deeplab V3+ does
not perform well in this study, which may be related to its complex structure. It may be suitable for
pixel-level segmentation in complex scenes. It is prone to overfit in water body extraction. Motivated
by the Unet [23] and Deeplab V3+ [24], the MWEN is proposed in this study. In the MWEN, the MEFT
structure is proposed for capturing features at multiple scales and the encoder-decoder structure is
used to restore the resolution. Compared with Deeplab V3+, the MWEN contains fewer convolutional
layers and fewer trainable parameters, which effectively suppresses overfitting. The structure of
MWEN makes it perform better in water body extraction for high-resolution images. Although MWEN
obtains good accuracy on the test images, there are factors that affect the classification accuracy.

One is that new challenges appear in high-resolution image water extraction compared to
mid-resolution images. The noise in water extraction based on medium resolution images, such as
mountain shadows [42], can be easily distinguished in high-resolution images. Small water bodies may
be difficult to extract in medium-resolution images, but they can be easily identified in high-resolution
images. However, building shadows, highways, dark lawns, and dark roofs may result in new errors.
In this study, the MWEN performs better in suppressing noise compared to the Unet and Deeplab V3+,
but it does not completely remove the noise, such as noise from sports fields. In addition, very detailed
water information is contained in high-resolution images, which brings new challenges for more
accurate water body extraction.

The other is the dataset. The CNN with trained weights can perform well on images similar to the
samples in the sample library. Its applicability to images that are quite different from the samples in
the sample library needs further study. A dataset based on high-resolution remote sensing images
containing multiple types of water bodies and easily confused areas, such as shadows, is needed.
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Although the dataset proposed in this article contains common water bodies and easily confused areas,
which can meet some data requirements in certain areas, the sample library needs to be enriched in
the future.

5. Conclusions

Convolutional neural networks have been shown to have strong image classification and semantic
segmentation abilities for remote sensing images. A new convolutional neural network named the
MWEN for water body extraction for GF-1 high-resolution satellite images is proposed in this study.
Three CNNs that conduct semantic segmentation in computer vision field are employed for comparison.
The performances of the water body extraction results are evaluated based on five evaluation metrics
and visual comparisons. The conclusions are as following:

(1) The performance of the MWEN is better than that of the FCN, Unet, and DeepLab V3+ when
extracting surface water according to the visual comparison. The quantitative metrics show that results
of the MWEN on the OA, TWR, FWR, WIoU, and MIoU are better than those of the others.

(2) The comparison between MWEN “with MTFE” and “without MTFE” demonstrates that the
combination of features extracted at multiple scales is important to water extraction. The MTFE is
helpful for dealing with confusing areas and water bodies with different sizes.

(3) Compared with the FCN and Unet, the results of the MWEN show that it can accurately
extract water bodies in different scenes, such as the details of city water and plateau lakes. In addition,
the MWEN has the ability to suppress noises, such as mountain shadows, highways, vegetation
shadows, and dark lawns.

With the further enrichment of dataset, the MWEN has the application potential in large scale
surface water mapping with high resolution satellite images, which can provide data support for
surface water resource survey.
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Abstract: The accurate prediction of tourist flow is essential to appropriately prepare tourist attractions
and inform the decisions of tourism companies. However, tourist flow in scenic spots is a dynamic
trend with daily changes, and specialized methods are necessary to measure it accurately. For this
purpose, a tourist flow forecasting method is proposed in this research based on seasonal clustering.
The experiment employs the K-means algorithm considering seasonal variations and the particle
swarm optimization-least squares support vector machine (PSO-LSSVM) algorithm to forecast the
tourist flow in scenic spots. The LSSVM is also used to compare the performance of the proposed
model with that of the existing ones. Experiments based on a dataset comprising the daily tourist
data for Mountain Huangshan during the period between 2014 and 2017 are conducted. Our results
show that seasonal clustering is an effective method to improve tourist flow prediction, besides,
the accuracy of daily tourist flow prediction is significantly improved by nearly 3 percent based on
the hybrid optimized model combining seasonal clustering. Compared with other algorithms which
provide predictions at monthly intervals, the method proposed in this research can provide more
timely analysis and guide professionals in the tourism industry towards better daily management.

Keywords: seasonal clustering; short-term forecast; tourism flow forecast; optimization algorithm

1. Introduction

In recent years, owing to steady improvements in the standards of living, tourism has become an
important part of leisure and lifestyle for people worldwide. According to data released by the World
Travel Tourism Council, tourism was the third largest industry in the world in terms of the growth rate
of Gross Domestic Product (GDP) in 2019. The growth rate of tourism was reportedly 3.5%, which was
significantly greater than the global economic GDP growth rate of 2.5% [1]. In particular, the tourism
industry created nearly 80 million jobs in China, accounting for 10.3% of the country’s total labor
force. At the same time, its output value was estimated to be 10.9 trillion Yuan, accounting for 11.3%
of China’s economy [1]. The rapid development of the world’s tourism industry has promoted the
vigorous development of China’s own tourism industry. China’s tourism industry has entered the
stage of ‘mass tourism’, with people’s willingness to travel constantly rising [2]. It is expected that the
domestic tourism market will continue to thrive even in the post-epidemic era [3].

With the promotion of the economic improvement of the country and the region, the rapid
development of tourism has also ushered in multiple problems pertaining to daily management
services at tourist destinations, particularly at mountainous scenic spots, which play a pivotal role
in Chinese tourism [4]. Their unique topography and landforms, extensive spatial range, poor
natural conditions, and severe seasonal conditions make them inaccessible to personnel. In particular,
the delivery of materials and resources, scheduling of arrangements for transportation, etc., pose
particular challenges to management services in mountainous environments [5]. The effects of these
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challenges are primarily reflected in delays in passenger flow. All tourist destinations experience
heavy tourist seasons and off-seasons, resulting in a serious seasonal imbalance in the tourist flow [6].
During the tourism season, spots are often overcrowded. This causes traffic congestion, overextends
hotel, catering, and personnel supplies, leads to the overutilization of tourism resources and the
environment, and degrades the quality of service for tourists, reducing overall tourist satisfaction.
On the other hand, the oversaturation of tourists in specific spots also poses a threat to their own
personal safety [6]. For example, on 4 October 2014, due to a surge in the number of tourists during
the Golden Week, the passenger capacity at the Three Gorges scenic spot in Yichang, Hubei, was
insufficient, resulting in hundreds of tourists being stranded at the terminal. On 2 October 2013, several
tourists were stuck at the entrance of Jiuzhaigou Valley because of overcrowding. On 26 October 2014,
the traffic was almost paralyzed at the Beijing Xiangshan area, leading to thousands of people being
stranded at the bus station. Furthermore, the Golden Week of Tourism has been witness to a series of
security incidents which have resulted in a poor travel experience for tourists [7]. However, during the
off-season, the number of tourists at destinations are considerably low, resulting in idle hotels and
wasted resources, materials, personnel, etc. These considerations corroborate the significance of the
accurate forecast of tourist flow in the tourism industry.

Tourist flow forecasting can be divided into two categories: long-term forecasting and short-term
forecasting. Both have important implications, and the determination of an accurate trend can aid
professionals in the tourism industry [8,9], particularly with respect to problems such as optimal
allocation of resources and managerial staff [10].

The forecasting of tourist flow in tourist destinations is affected by several factors, including
weather [11], climate [12], and temperature [13]. Tourism is inherently seasonal [14] as the constraints
of time and climate create inevitably unbalanced tourist flows [15]. Both natural seasons and artificial
seasons defined by holidays and other institutional factors play a part in the determination of tourist
flow [16]. Thus, both factors must be considered during prediction attempts. To the best of our
knowledge, scant attention has been paid to seasonality in previous works on this topic. For instance,
Huang and Min established a seasonal autoregressive average model combined with a difference
method to eliminate seasonal effects on tourist flow forecasting, and experimentally verified its
effectiveness [17]. However, these studies have focused solely on the elimination of seasonal influences
on the prediction of tourist flow by proposing seasonal index adjustments or by establishing a seasonal
model. Few studies have considered the influence of the alternatives of natural seasons in the forecast
of tourist flow.

Tourist flows exhibit complicated non-linear variations. This makes it difficult to identify a
relationship between the tourist flow later and the current influencing variables based on simple
mathematical models. In recent years, with the development of machine learning, nonlinear models
have been widely used in short-term time series forecasting. For instance, artificial neural network
(ANN)-based methods and support vector machines (SVM) have already been used in the forecasting
of tourist flow [18,19]. However, neural network-based models lack a systematic procedure for
model construction because of their flexibility. This necessitates multiple trials to identify the optimal
parameters required to obtain a reliable neural model [20]. Compared with ANN, SVM is more capable
of avoiding problems such as data overfitting and local minima while maintaining positive features
such as robustness. Moreover, SVM is less complicated than ANN in terms of parameter selection [21].
The LSSVM is an upgraded version of SVM that was developed to improve the accuracy of the standard
SVM [22]. Compared to SVM, it is capable of using equality constraints instead inequalities, enabling
it to solve sets of linear equations instead of being restricting to quadratic programming [23]. However,
the prediction accuracy of the LSSVM algorithm is significantly dependent on the selection of two
specific parameters [24]. To address this drawback, certain optimization algorithms, including the
genetic algorithm (GA) and the fruit fly optimization algorithm, are used to identify the optimal values
of the LSSVM parameters to enhance its prediction accuracy [25,26]. Among those intelligence-based
optimization algorithms, PSO, proposed by Kennedy and Eberhart [27], has been widely used in
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optimization processes, model classification, machine learning, and neural network training [28] owing
to its ease of implementation and its high coherence and coordination [29].

In addition to the development of such optimization algorithms, some studies have attempted to
curate relevant information by analyzing comments on online forums. Certain researchers have used
search engine data to forecast hotel demands [30,31] by designing a composite search index to forecast
tourist flow [32]. Furthermore, Google Trends has been widely used to improve the performances of
traditional models [10,33,34]. Related works have pointed out that combining different data sources
and techniques can lead to higher accuracy [35]. Even price levels and web traffic have been as used as
variables in certain studies [36]. User interactions on online forums have also been used to forecast
tourist flows [37]. However, most of the methods are more suitable for long-term forecasting, rather
than short-term forecasting.

As few research studies have been conducted to investigate short-term forecasting methods and
substitutes to natural seasons in the forecasting process of tourist flows, we propose a seasonal
clustering-based method, which can classify seasons based on their characteristics to address
this shortcoming. We combine seasonal re-clustering and the PSO-LSSVM model and apply the
combination for short-term daily tourist flow forecasting. The crucial hypothesis in this research is
that seasonal clustering could improve tourist flow forecasting. Our results confirm the validity of the
hybrid optimized model combining seasonal clustering and provide practically useful implications
for management.

The remainder of this research is organized as follows. Section 2 presents the methods, including
principles underlying the least squares support vector machine (LSSVM) and the particle swarm
optimization (PSO) algorithms, and an illustration of the PSO-LSSVM procedure that considers seasonal
clustering, and the experiments. Section 3 details their results. Section 4 is the discussion. Finally,
Section 5 presents the conclusions, as well as the limitations and implications of this research.

2. Methods

2.1. Least Squares Support Vector Machine

The essential characteristic of LSSVM is that it is designed to utilize equality constraints and
transform quadratic programming problems to problems of direct solution of quadratic equations.
Consider a dataset (xi, yi), xi ∈ Rn, y ∈ R, where xi denotes the ith input item in an n-dimensional space
and yi denotes the output value corresponding to xi, l is the total number of data points, i = 1, 2, · · · · · · l,
and n is the number of dimensions of input variables. As a non-linear prediction model, the LSSVM
model can be expressed as follows:

f (x) = wTφ(x) + b, (1)

where w denotes the weight vector, b is the offset, and φ(x) represents a nonlinear transformation that
maps the input data (xi) into a high-dimensional feature space. According to the structure minimization
principle, the optimization objective function of the LSSVM can be expressed as follows:

min
1
2
||w ||2 + 1

2
C

l∑
i=1

e2
i , (2)

s.t.wTφ(Xi) + b + ei = yi, i = 1, 2, · · · · ··,
where ei denotes the error and C represents a positive penalty coefficient. A Lagrange multiplier, λi,
is introduced to solve the optimization problem. Hence, Equation (2) can be transformed into the
following form:

287



ISPRS Int. J. Geo-Inf. 2020, 9, 676

L(w,λi, b, ei) =
1
2
||w ||2 + 1

2
C

l∑
i=1

e2
i −

l∑
i=1

λi
(
wTφ(xi) + b + ei − yi

)
, (3)

Next, the partial derivatives corresponding to each variable of Equation (3) are calculated:

∂L
∂w

= w−
l∑

i=1

λiφ(xi) = 0⇒ w =
l∑

i=1

λiφ(xi), (4)

∂L
∂λi

= −
l∑

i=1

(
wTφ(xi) + b + ei − yi

)
= 0⇒ yi = wTφ(xi) + b + ei, (5)

∂L
∂b

=
l∑

i=1

λi = 0, (6)

∂L
∂ei

=
1
2
× 2C

l∑
i=1

ei −
l∑

i=1

λi = 0⇒ λi = Cei, (7)

The variables, w and ei, are then eliminated. This yields the following linear equation:

[
0
Y

]
=

[
0

AT
AT

B + C−1I

][
b
λ

]
, (8)

where Y = (y1, y2, ......, yl), A = (1, 1, ......, 1)T, Bij = φ(xi)
Tφ
(
xj
)
, λ = (λ1,λ2, ......λl), and I denotes the

unit matrix. Hence, the LSSVM can be expressed as follows:

y =
l∑

i=1

λiK(x, xi) + b, (9)

where K(x, xi) denotes the kernel function of a feature space.

2.2. Particle Swarm Optimization

A PSO algorithm begins by initializing a random group of particles and obtains the optimal
solution after performing several iterative searches. During each iteration, the particles update their
positions and velocities based on individual and global extrema. Let us assume that there is a total of N
particles that are initialized and scattered in a D-dimensional space. Further, assume that the position
of the ith particle is Xi = (xi1, xi2, · · · · ··, xiD), and that the current best position for the ith particle is
local_xi = (local_xi1, local_xi2, · · · · ··, local_xiD), whereas the best position found by the entire swarm is
global_xi = (global_xi1, global_xi2, · · · · ··, global_xiD). In such a scenario, the new position of a particle
after t time-instants is obtained by adding the velocity vector Vi = (vi1, vi2, · · · · ··, viD) to its current
position. This can be expressed as follows:

x(t+1)
iD = xt

iD + wP× vt+1
iD , (10)

The velocity of any particle is updated using the following formula:

Vt+1
iD = wV ×Vt

iD + c1 × rand×
(
localxt

id
− xt

id

)
+ c2 × rand×

(
globalxt

iD
− xt

iD

)
, (11)

where c1, c2 denote the acceleration coefficients, wV, wP represent the elasticity coefficients with initial
values equal to 1, rand denote two random numbers with uniform distributions in the range [0,1],
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local_xt
id is the best position identified by each individual particle, and global_xt

iD is the best position
identified by the global swarm.

2.3. Seasonal Clustering Approach

Several algorithms are used for clustering analysis, and they can be roughly divided into four
categories [38]: (1) those based on cluster formation methodology, such as top-down, bottom-up, and
analytical optimization techniques [39]; (2) those dependent on the cluster model obtained, such as
stratification, centroids (e.g., K-means), distribution subspaces, and graph-based models; (3) those
obtained via a membership function, which may be further subdivided into hard or soft clustering [40];
and (4) those that use groups to define the distinction between overlapping clusters and are less
sensitive to noise because it becomes equally distributed among them [41].

The K-means clustering algorithm is a typical representative classification clustering algorithm
due to its simplicity and effectiveness. It is particularly suitable for a simple clustering of big data.
Considering that the primary characteristic of natural seasons is the change in weather [42], we attempt
to analyze the correlation between climate-related factors and variations in daily tourist flow. The details
of seasonal clustering are as follows.

Step 1: Analysis of the factors related to seasonal clustering.
Step 2: Input of the variables into the K-means algorithm to obtain the results of seasonal clustering.

2.4. Procedure of PSO-LSSVM Considering Seasonal Clustering

The present research primarily aims to prove that the use of seasonal clustering during the
pre-processing of data is beneficial to the accurate prediction of daily tourist flow. Combined with
historical tourist information, the PSO-LSSVM model is proposed to illustrate the positive impact of
seasonal clustering on the prediction of tourist flow in tourist destinations. In the PSO-LSSVM model,
the PSO algorithm is used as an optimization algorithm to optimize the regularization parameter (γ)
and the kernel parameter (σ) of LSSVM. The considerations of seasonal clustering in PSO-LSSVM can
summarized in the following steps.

Step 1. The natural seasons are clustered. The new natural season of the tourist destination
combined with the spot’s historical tourist data comprises a dataset. The original dataset is normalized
and divided into training and test datasets.

Step 2. The parameters of the PSO algorithm, including population sizes, evolution times, and
learning factors, are initialized.

Step 3. The swarm of particles is initialized with random individual velocities and positions.
Step 4. The various initialized parameters are fed into LSSVM, and then the fitness value of each

particle is evaluated. In this research, the root mean squared error (RMSE) defined in the test dataset is
used as the fitness function, as follows:

f itness = RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)
2, (12)

where n denotes the number data points in the dataset, and yi and ŷi represent the actual value
and the estimated value, respectively. The local and global optima are then calculated following the
fitness function.

Step 5. The velocity and position of each particle is updated using Equations (10) and (11).
Step 6. Steps 4 and 5 are repeated until the termination criterion is satisfied and the optimal values

of the LSSVM parameters are obtained. The flow chart of the procedure of PSO-LSSVM is shown in
Figure 1.
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Figure 1. Flow chart of the procedure of the particle swarm optimization-least squares support vector
machine (PSO-LSSVM).

In this research, to evaluate the forecasting accuracy, the mean absolute percentage error (MAPE)
and RMSE are used as the evaluation criteria. It is evident that the values of MAPE or RMSE are
inversely proportional to forecasting accuracy:

MAPE =
1
n

n∑
i=1

∣∣∣∣∣∣∣ yi − ŷi

yi

∣∣∣∣∣∣∣×100%, (13)

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)
2, (14)

where yi, ŷi denote the actual and evaluated data, respectively, and n denotes the total number of
data points in the test dataset. It should be noted that the RMSE indicator only considers the annual
average in the last row of the table as a supporting indicator. Consequently, the MAPE indicator is
more suitable for prediction of daily trends.
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2.5. Data Preprocessing

To improve the accuracy of prediction, it is necessary to normalize the original sequence of input
variables. The following normalized formula is adopted in this research:

u =
(umax − umin) × (xi − xmin)

xmax − xmin
+ umin (15)

where u denotes the normalized value with uniform distribution in the range [0,1]; and umax and
umin are the upper and lower limits, respectively. In this research, it is assumed that umax and umin.
xi denotes the tourist flow on the ith day in the original one-year data series, and xmin and xmax denote
the minimum and maximum values of the original sequence, respectively.

2.6. Data Collection and Correlation Analysis

To verify the feasibility of the proposed algorithm, the dataset of the daily tourist flow at Mountain
Huangshan during the period of 2014 to 2017 is accessed, the tourist flow data comes from our
cooperation project with Huangshan Management Committee. Besides, we investigated the spot’s
historical temperature and weather for this research; the temperature is measured in degrees Celsius
and the weather is measured in different categories such as sunny, cloudy, heavy snow, moderate
snow, and so on. The tourist flow dataset contains both original regular daily tourist flow data and
original tourist flow data on holidays. Four types of data are included in the data set: X1, the daily
tourist flow on a particular day; X2, the tourist flow volume on the same day in the previous week;
X3, the tourist flow volume on the same day of the previous year; and Y, the daily tourist flow on
the subsequent day. Each type contains 1461 data points. The relationship between the historical
tourist flow, which includes X1, X2, X3, and the daily tourist flow of the subsequent day is primarily
determined by the respective correlation coefficients—the correlation coefficients between pairs of data
items are proportional to the suitability of the selected factors as inputs to the model.

Table 1 presents the correlation coefficients between X1, X2, X3, and Y. As expected, X1 is
observed to be superior to the other factors. Consequently, X1 is selected as the input variable in the
proposed model.

Table 1. Correlation coefficients between the daily tourist flow of tomorrow and each element of the
historical tourist flow.

X1 X2 X3

Y 0.726 0.468 0.347

In addition, the severity of weather, weekday, and official holiday are also added to the model

as dummy variables X4, X5 and X6. X4 =

{
1
0

, where 1 represents severe weather, such as blizzard,

heavy snow, moderate snow, heavy rain, thunderstorms, and showers, which would significantly
affect people’s willingness to travel, and 0 represents non-severe weather, such as sunny, cloudy, and

drizzle. X5 represents a matrix which represents the day of the week. X6 =

{
1
0

, where 1 represents

an official holiday; 0 represents an ordinary day. The use of dummy variables is another difference
between our research and previous ones. The incorporation of such factors allowed us to approach the
problem of prediction from a more microscopic perspective.

2.7. Parameter Initialization and the Addition of Seasonal Factors

The initial parameters are set as follows, the size of the swarm is taken to be 30, maximum
number of iterations is set as 300, and acceleration coefficients c1 and c2 are 2 and 2, respectively.
To verify whether the ambient natural season affects the accuracy of prediction of the tourist flow on
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the subsequent day, a binary virtual variable-based approach is introduced to represent the different

seasons; si =

{
1
0

(1 represents the ith natural season i =1, 2, 3, 4).

3. Results

The results of the experiments above are shown in this section.

3.1. Analysis of Influence of Original Natural Season

This research aims to investigate the effect of seasonal changes on tourist flow on the subsequent
day. The daily tourist flow at scenic destinations varies dramatically over the different seasons,
primarily because of the differences in temperature. In this part, the year is assumed to be divided
into four seasons following the meteorological department’s scheme: spring (March, April, and May),
summer (June, July, and August), autumn (September, October, and November), and winter (December,
January, and February) [15]. Figure 2 illustrates the distribution of the daily tourist flow on the
subsequent day at Mountain Huangshan over the period of 2014 to 2017.

Figure 2. Daily tourist flow at Mountain Huangshan during 2014–2017.

It is clear from Figure 2 that due to the daily fluctuations in tourist flow, the distribution is complex
and non-linear. Further, the daily tourist volume at Mountain Huangshan during the period from
March to November is observed to remain high every year, whereas during December to January it
appears to be consistently low. Further analysis of the data depicted in Figure 2 is presented in Tables 2
and 3.

Table 2. Total number of tourists during each season.

Spring Summer Autumn Winter

March 2014–February 2015 799,838 976,109 827,444 385,479
March 2015–February 2016 815,947 1,062,968 896,006 529,186
March 2016–February 2017 761,308 869,248 717,781 661,204
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Table 3. Average number of tourists during each season.

Spring Summer Autumn Winter

March 2014–February 2015 8694 10,610 9093 4283
March 2015–February 2016 8869 11,554 9846 5815
March 2016–February 2017 8275 9448 7887 7346

Tables 2 and 3 reveal that the total tourist flow and the average tourist flow remain high during
spring, summer, and autumn each year. It is further confirmed that the tourist flow is maximum during
the summer and that it is the second highest during spring and autumn. The tourist volume in winter
is significantly less than that during the other three seasons. Thus, it can be concluded that the tourist
flows in different seasons are significantly different.

3.2. Predictions by the Models and Their Comparison before Seasonal Clustering

In this experiment, to satisfy the requirements of the model, the dataset is divided into a training
dataset (2014–2016) and a test dataset (2017). To enhance the prediction accuracy, all the data are
normalized using Equation (15) with a range of [0,1]:

y =
x− xmin

xmax − xmin
, (16)

where y denotes the normalized data, x denotes the original input data, and xmax, xmin are the maximum
and minimum values in the dataset, respectively.

Following that, the vectors (X1, X4, X5, X6, S1, S2, S3, S4), including the natural seasons, are used as
input variables in the predictive models, and the vectors (X1, X4, X5, X6), without considering seasonal
factors, are used as input variables to the predictive models on a separate iteration for comparison
purposes. Both the PSO-LSSVM algorithm and the LSSVM algorithm are adopted as predictive models
for each of the two sets of input vectors. Table 4 presents the results of this experiment.

Table 4. Prediction results of PSO-LSSVM and LSSVM with different sets of parameters.

(X1, X4, X5, X6) (X1, X4, X5, X6, S1, S2, S3, S4)

LSSVM PSO-LSSVM LSSVM PSO-LSSVM

January 42.52% 41.67% 38.65% 39.01%
February 40.00% 38.84% 34.82% 34.04%

March 29.88% 30.60% 36.81% 32.17%
April 34.04% 33.06% 31.38% 25.76%
May 42.74% 42.46% 43.06% 40.09%
June 28.44% 29.74% 30.14% 31.58%
July 10.07% 9.44% 9.10% 10.28%

August 13.44% 12.92% 13.93% 12.41%
September 26.73% 26.28% 27.05% 25.50%

October 20.72% 21.49% 22.07% 20.19%
November 24.85% 26.11% 28.18% 28.98%
December 34.28% 31.07% 24.47% 24.90%

Average MAPE 28.86% 28.53% 28.23% 27.08%
Average RMSE 4201 4214 4091 4030

(1) Table 4 reveals that the mean absolute percentage error corresponding to each month is not
always better for the models that consider the seasonal factors than those of the models that do not.
However, the average MAPE/RMSE scores of the two models are observed to be lower when they
incorporate the seasonal factor within themselves. This establishes the fact that the ambient natural
season is a factor that affects the accuracy of prediction.
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(2) The annual mean absolute percentage error of the PSO-LSSVM model is observed to be better
than that of the LSSVM model, which indicates that the PSO algorithm is an effective method to solve
the optimization problem for the parameters in the LSSVM algorithm.

The prediction accuracies of PSO-LSSVM also demonstrate that the prediction errors corresponding
to January, February, and May are relatively high when seasonal factors are not considered, and that
the maximum prediction error is 42.46%. When the ambient natural season is considered, the high
mean absolute percentage errors are, in particular, are observed to reduce by nearly 2.5%, even though
the maximum prediction error remains high at 40.09%. This may be attributed to the fact that the daily
tourist flow varies with the alternating seasons. Obtaining accurate forecasts simply based on the
ambient natural seasonal factor is unrealistic. Hence, the pre-treatment of seasonal variation factor
is necessary.

Therefore, PSO-LSSVM is verified to be an effective method for the accurate forecasting of daily
tourist flow at tourist destinations. Further, the predictions verify that consideration of the ambient
natural season reduces the prediction error by nearly 2%. However, given the differences in time and
temperature, a simple incorporation of the seasonal factor cannot be expected to satisfactorily enhance
the accuracy of forecasting. Hence, the pre-treatment of the seasonal variation factor is necessary.

3.3. Adjustment of Natural Seasons Based on K-Means

During the practical application of the predictive model, the climate changes from cold to warm
or from warm to cold with the variation of seasons. In other words, the change of temperature within
the same season might alter the trend of daily tourist flow at a destination, whereas the daily flow
may be identical during successive months despite a season change between them if the difference
in temperature is not palpable to tourists. Therefore, if the forecasting model considers the natural
seasons directly, the accuracy of its predictions will be adversely affected. This leads to the necessity of
pre-treating the seasonal variation factor.

Corresponding to each season, the daily tourist flow varies with the change of time and temperature.
As is evident from the daily tourist data (from the cooperation project with Huangshan Management
Committee) during the period from March, 2014 to February 2015 at Mountain Huangshan, the daily
tourist volume varied in accordance with the maximum and minimum daily temperatures. Figure 3
illustrates the tourist flow over different seasons.

Figure 3. Daily tourist flow, along with the maximum and minimum daily temperatures, during March
2014 to February 2015.
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As observed in the figure, the distribution of tourist flow over the four seasons exhibits an
almost identical trend to that of daily temperatures, except for the sharp changes on four statutory
holidays. Further conclusions can also be drawn from the data. During spring, the temperature in
mountainous environments remains relatively low in early March, thereby lessening the daily tourist
flow during that time. The data confirms that the daily number of tourists during this period is 2000
on average. With time, the temperature gradually rises as the climate becomes more comfortable.
The climate becomes more suitable for travelling; thereby increasing the daily tourist flow at the
mountain. Although summer is the hottest period of the year, the temperature at Mountain Huangshan
stays consistent at 25 ◦C. Lu corroborated that Huangshan exhibits monsoon climate between June and
August, which is quite conducive to travelling [14]. Moreover, the summer holidays are scheduled
between July and August, during which people prefer to travel. Due to these factors, the daily tourist
flow remains high during this period. In autumn, the overall temperature in mountainous destinations
remains very comfortable during September and October, and the tourist flow remains high. However,
the temperature starts to decrease in November, the number of people willing to visit the mountains
lessens. Overall, in winter, the daily tourist flow at Mountain Huangshan remains low because of the
low temperature. However, the tourist flow may exhibit increasing trends even in winter owing to
the temporary rise in temperature, whereas during the majority of the season, the daily tourist flow
exhibits the same distribution as the ambient temperature and humidity. Therefore, clustering the
seasons at scenic tourist destinations according to the distribution of daily tourist flow is necessary.

Based on the analysis, the daily highest and lowest temperatures, the tourist flow of a particular
day, and the time are selected as input variables. The K-means algorithm is adopted to adjust the
natural season at the destination of Mountain Huangshan. Taking the data pertaining to 2014 as an
example, the clustering results are shown in Figure 4.

Figure 4. Results of seasonal clustering for the data pertaining to 2014.

In the figure, we use the number 1 to represent cluster 0, number 2 for cluster 1, number 3 for
cluster 2 and so on. As is evident, when the year is divided into three seasons, some sample points
are clustered into very few clusters. When it is divided into five classes, some objects belong to more
than one category. However, when it is divided into six classes, only a few objects belong to each class,
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which is insufficient to form a category. Tables 5 and 6 present the specific clustering results for the
cases of three and four classes.

Table 5. Clustering results for three classes.

One Two Three

Month January, February, March April, May, June, July, August, September, October November, December

Table 6. Clustering results for four classes.

One Two Three Four

Month January, February
1 March–14 March

15 March–31 March,
April, May

June, July, August,
September, October

November,
December

To facilitate the presentation of the clustering results, Figure 5 is designed, from which it can be
concluded that when the year is divided into three categories, April, May, June, July, August, September,
and October are clustered into a single category. However, during April to October, the temperature
initially increases and then decreases, affecting the daily tourist flow accordingly. After repeated trials,
the results confirm that a stable state is reached when the year is divided into four seasonal classes.
The final result is also presented in Figure 5, in which January, February, and 1–14 March is taken to
constitute one class. During this time, the temperature is relatively low, and the daily tourist flow
remains almost identical throughout the period. However, in late March, the temperature begins
to gradually increase, and the climate becomes more comfortable. Thus, the daily tourist flow at
mountainous destinations during this time is similar to that of April and May. Therefore, early March
is classified in the same category as January and February, whereas late March is now classified
in the same category as April and May. Similarly, in June, July, and August, although the surface
temperature is relatively high, the temperature in mountainous spots remains relatively low; and so,
they are grouped together with September and October into a single class. Meanwhile, November and
December define their own category.

Figure 5. Clustering results of different quantity categories.

3.4. Predictions by Various Models and Their Comparison after Seasonal Clustering

To verify the effectiveness and feasibility of seasonal clustering, we use the vectors

(X1, X4, X5, X6, Si) as input variables in the models, where si′ =

{
1
0

(1 represents the ith natural season

i = 1, 2, 3, 4) denotes the new natural seasons. In a separate experiment, we use the vectors representing
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the originally defined natural seasons for comparison purposes. As before, both PSO-LSSVM and
LSSVM are tested with respect to both sets of vectors. Tables 7 and 8 present the results of the predictions.

Table 7. Results of the predictions by PSO-LSSVM and LSSVM using three and four seasonal classes.

(X1, X4, X5, X6, S1, S2, S3, S4)

Three Four

LSSVM PSO-LSSVM LSSVM PSO-LSSVM

January 39.59% 37.92% 36.31% 35.39%
February 33.07% 31.37% 34.17% 33.38%

March 31.26% 26.50% 30.90% 26.35%
April 35.31% 32.20% 31.47% 26.52%
May 48.07% 42.57% 44.44% 42.32%
June 28.78% 29.24% 30.12% 30.95%
July 8.80% 9.26% 9.15% 8.98%

August 15.20% 13.17% 14.67% 12.98%
September 29.09% 27.33% 29.23% 27.22%

October 21.72% 21.03% 22.11% 20.03%
November 25.01% 22.24% 24.89% 22.51%
December 26.70% 31.93% 27.29% 25.29%

Average MAPE 28.49% 27.00% 27.82% 25.91%
Average RMSE 4051 3977 3967 3798

Table 8. Results of the predictions by PSO-LSSVM and LSSVM under different definitions of seasons.

Original New

LSSVM PSO-LSSVM LSSVM PSO-LSSVM

January 38.65% 39.01% 36.31% 35.39%
February 34.82% 34.04% 34.17% 33.38%

March 36.81% 32.17% 30.90% 26.35%
April 31.38% 25.76% 31.47% 26.52%
May 43.06% 40.09% 44.44% 42.32%
June 30.14% 31.58% 30.12% 30.95%
July 9.10% 10.28% 9.15% 8.98%

August 13.93% 12.41% 14.67% 12.98%
September 27.05% 25.50% 29.23% 27.22%

October 22.07% 20.19% 22.11% 20.03%
November 28.18% 28.98% 24.89% 22.51%
December 24.47% 24.90% 27.29% 25.29%

Average MAPE 28.23% 27.08% 27.82% 25.91%
Average RMSE 4091 4030 3967 3798

Table 7 illustrates that when the year is divided into four seasonal classes, the MAPE/RMSE scores
of both models are better corresponding to each month than those when the year is divided into three
seasonal classes. Further, the reasoning behind dividing the year into four seasonal categories has
already been provided. Moreover, when the year is divided into four seasonal classes, the prediction
accuracy of PSO-LSSVM is observed to be better than that of LSSVM, which establishes the feasibility
of the proposed model.

Table 8 shows the results of the predictions by PSO-LSSVM and LSSVM under different definitions
of seasons.

(1) As is evident from Table 8, although the adoption of seasonal clustering does not reduce the
monthly mean absolute percentage error, it does reduce the annual mean absolute percentage error by
nearly 1.5%. Additionally, the RMSE indicator also corroborates our conclusion. This establishes that
seasonal clustering is effective in enhancing the prediction accuracy.
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(2) The annual MAPE/RMSE score of the PSO-LSSVM model is observed to be better than that of
LSSVM overall, as can be seen from Table 8, PSO-LSSVM model has a better performance than LSSVM
in most of the months, the error was reduced by an average of nearly 1.5%. This corroborates our
conclusion that the PSO-LSSVM model is an effective method to forecast daily tourist flow at scenic
tourist destinations.

(3) The seasonal clustering that produces the best results classifies January, February, and
1–14 March into one group, November and December into another group, and April and May into yet
another group.

By comparing the predictions by PSO-LSSVM, we corroborate that the mean absolute percentage
error corresponding to March decreases significantly after the seasonal adjustment. Although the
MAPE scores corresponding to April and May are a little higher than those before clustering, the MAPE
scores of November, December, and March are lower than those before clustering, and the value of
MAPE is observed to decrease throughout the year. Therefore, the method proposed in this research is
effective, moreover, the RMSE indicator also corroborates the validity of the proposed method.

4. Discussion

The prediction of daily tourist flow at scenic destinations is essential to the tourism industry, and
the accuracy of forecasting is highly significant for the optimal distribution of tourism resources [8,37,43].
Mountain Huangshan is a famous scenic spot in China, and its daily tourist volume is known to exhibit
complex nonlinear characteristics and the historical tourist data exhibits various trends of fluctuation
during different seasons [44]. This research considers the tourist flow data at Mountain Huangshan
between 2014 and 2017 as a dataset and analyzes the variation of daily tourist volumes with respect
to different seasons. On the one hand, particle swarm optimization is used to optimize the least
squares support vector machine; on the other hand, we focus on rearranging the seasons by clustering
algorithm. In response to results in our research, it can be pointed out that the prediction performance
can be improved from two aspects: the predictor itself and the input of the algorithm. The experimental
results above verify the correctness of our research that the effect of classical forecasting model can be
optimized by seasonal adjustment and it has an inspiration and practical value for short-term daily
tourist flow forecasting.

In summary, compared with the previous research, the differences and advantages of this research
are as follows:

(1) Instead of forecasting tourists flow at monthly or yearly intervals, this research is conducted at
a daily time interval, and this improvement can significantly increase the efficiency of prediction.

(2) The prediction performance of the hybrid model in this research is significantly improved via
the proposed optimization algorithm, which can be seen from the Section 4.

(3) Seasonal adjustment and division were included into the forecasting model as factors in our
research, and it proves to be an effective method to improve the predictive performance of the model.
Meanwhile, previous research works rarely considered the question, as mentioned in Section 2.

The results of this research are helpful to tourism management, and the following practical
implications can be provided in management:

(1) According to the results of seasonal clustering, managers can always adopt a different hybrid
model instead of using the same model. Namely, it can improve the specificity of actual management.

(2) The accurate short-term daily tourist flow forecasting can help reduce the number of crowding
incidents to improve the quality of tourists’ experience.

(3) In terms of resource allocation management of scenic spots, the accurate tourist flow forecasting
method presented in this research can reduce the waste of resources.

In general, this research has an inspiration for tourist flow forecasting. It fills the gap of tourist
flow forecasting by introducing the idea of seasonal clustering, which proved to be effective. The results
of this research can also provide some practical implications.
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5. Conclusions

In this research, the ambient natural season is taken to be an essential factor in the prediction
of the daily tourist flow on the subsequent day, and a hybrid optimized model is proposed. The
experimental results corroborate that: (1) season is a factor that profoundly affects the accuracy of
prediction of the daily tourist flow, which can be supported by evidence from Table 4; (2) seasonal
adjustments improve the prediction accuracy effectively by nearly 3%. In particular, it is suitable for
months that exhibit significant temperature variations, e.g., March. Evidence from Tables 7 and 8 can
support it; (3) the superiority of PSO-LSSVM over LSSVM is also verified and it can be supported by
evidence from Tables 4, 7, and 8. This is attributed to the role of the PSO method in the determination
of optimal values of LSSVM parameters based on its excellent coherence coordination. Further, the
effective adjustment of natural seasons based on the K-means algorithm is another important reason
behind the superiority of PSO-LSSVM. Thus, based on the idea of seasonal adjustment, PSO-LSSVM
combined with the K-means algorithm was established to be a convenient and feasible method for
daily tourist volume forecasting. The experimental results in this research support this conclusion.

However, the proposed method still suffers from certain limitations which could be improved in
future works. First, this research was conducted with a focus on the practical utility of the method,
and the underlying theory merits further research. Second, certain factors such as weather could be
considered in greater complexity than was considered in this research to further improve the prediction
accuracy. In addition, the method of seasonal adjustment deserves further research.

In general, this research proves the reliability of improving the prediction effect based on seasonal
adjustment, and the accuracy of short-term prediction of the daily tourist flow achieved by the proposed
hybrid model is beneficial to professionals in the tourism industry, enabling them to reasonably allocate
appropriate resources in advance. This research also contributes to the research on short-term
forecasting, which is significant as most existing studies have focused on monthly or annual prediction.
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