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Editorial

Preface to the Special Issue on “Advances in Differential
Dynamical Systems with Applications to Economics
and Biology”

Eva Kaslik 1,2,*,†, Mihaela Neamţu 2,3,*,† and Anca Rădulescu 4,*,†
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3 Department of Economics and Business Administration, West University of Timişoara,

300223 Timişoara, Romania
4 Department of Mathematics, State University of New York at New Paltz, New Paltz, NY 12561, USA
* Correspondence: eva.kaslik@e-uvt.ro (E.K.); mihaela.neamtu@e-uvt.ro (M.N.); radulesa@newpaltz.edu (A.R.)
† These authors contributed equally to this work.

In recent research on natural processes, mathematical modeling has become a very
useful tool. It is often the case that in fields such as economics and biology, a temporal lag
between cause and effect must often be taken into consideration. In modeling, a natural
and practical implementation of this phenomenon is through the use of distributed delays.
This is because they illustrate the situation where temporal lags arise in certain ranges
of values for certain related probability distributions, taking into account the variables’
entire history of behavior. Another mathematical tool that allows for the memory and
inherited properties of systems to be encompassed in a model is the replacement of integer-
order derivatives with fractional derivatives. To address realistic conditions, stochastic
perturbation framed by a stochastic differential delay system can be used to explain the
ambiguity about the context in which the system operates.

This Special Issue comprises 16 scientific contributions and focuses on the dynami-
cal analysis of mathematical models arising from economy and biology and innovative
developments in mathematical techniques for their applications.

Musaev et al. [1] explored the evolutionary self-organization of control techniques
using the example of speculative trading in a non-stationary immersion market environ-
ment. Because of the extreme volatility and non-stationarity of the observation series, it
is particularly challenging to employ adaptive computational algorithms. The authors
suggest a strategy based on evolutionary modeling that provides a control model with
structural and parametric self-organization.

In a second paper [2], the same authors take into account the short-term forecasting
of a process that is an output signal of a nonlinear system seen against an additive noise
background. The authors show that it is fundamentally possible to make profit, even in
fields with complicated dynamics and sudden changes in the process under considera-
tion, suggesting updated channel strategies and outlining key methods for boosting their
efficiency.

In the paper by Najafi et al. [3], the dynamics of CD4+ T-cells under the influence
of HIV-1 infection are studied for the first time in the context of a generalized fractal-
fractional structure by using a new mathematical model. Analytical and numerical results
reveal stability properties and a lack of a discernible order in the early stages of the illness’
dynamics.

In a more theoretical study, Elshenhab et al. [4] studied the finite-time stability of
nonhomogeneous systems of second-order linear delay differential equations. The results
are applicable to all singular, non-singular and arbitrary matrices.

Using multidimensional statistical analysis, Musaev et al. [5] explored the problem
of evaluating the current value of financial instruments, examining various methods for

Mathematics 2022, 10, 3561. https://doi.org/10.3390/math10193561 https://www.mdpi.com/journal/mathematics1
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building computational schemes for regression. The chaotic nature of the observation
series, which is caused by the instability of the starting data’s probabilistic structure, is a
key aspect of this issue; hence, the primary approach for examining the effectiveness of
forecasting and analytical algorithms is numerical experimentation.

Paşca et al. [6] propose the least-squares homotopy perturbation as a straightforward
and accurate method for obtaining approximate analytical solutions for systems of ordinary
differential equations. The technique is used to resolve a problem involving the laminar
flow of a viscous fluid in a semi-porous channel, which may be used to simulate blood flow
through a blood vessel while taking the effects of a magnetic field into account.

In the paper by Popescu et al. [7], the Pontryagin Maximum Principle and Lie geo-
metric methods are employed to study two optimal control problems at the level of the Lie
algebroid. It is demonstrated that the cotangent bundle is not the best framework for find-
ing the best solutions to some driftless control affine systems with holonomic distributions.
In this context, a financial application is also presented.

Badralexi et al. [8] analyzed the processes of erythropoiesis and leukopoiesis in the
context of maintenance therapy for acute lymphoblastic leukemia by considering two
mathematical models expressed by delay differential equations. The stability of every
equilibrium point is examined either analytically or numerically. The mathematical results
are interpreted from a biological point of view.

Another study by Musaev and Grivoriev [9] examined the applicability of conventional
statistical management decision-making methods under stochastic chaos. Compositional
algorithm variations are proposed, aimed at adjusting statistical methods to the non-
deterministic circumstances brought on by the peculiarities of chaotic processes.

Alonso-Quesada et al. [10] investigate an SIRS epidemic model involving the immu-
nization of susceptible individuals and the treatment of contagious individuals, which are
both governed by a designed control system for which its inputs are the subpopulations of
the epidemic model. Additionally, newborn vaccinations are also taken into account and
control strategies are proposed to eradicate the infectious disease.

In the paper of Kaslik et al. [11], a five-dimensional mathematical model for analyzing
the labor market was proposed, with a particular emphasis on the number of open positions,
migration, fixed-term contractors, full-time employment and unemployment. The rate of
change of open positions, which depends on historical regular employment levels, takes
the distributed time delay into account.

By incorporating age structures and overall infection rates into a cholera model,
Jiang [12] examined the model’s global dynamics, the existence and point dissipativeness of
the orbit and asymptotical smoothness. Next, they focus on the existence and local stability
of equilibria and also discuss uniform persistence, followed by numerical simulations.

Aletti et al. [13] present an epidemiological SEIR population-based model with many
groups, which may represent a geographically limited population or a social subpopulation
with similar tendencies while also taking into account the heterogeneity in the weighting
of contacts between two groups. In order to minimize the sum of the economic and social
costs, they suggest a straightforward control algorithm in which connection weights are
optimized.

The aim of the paper of Mousa et al. [14] was to examine the dynamics of a fractional-
order susceptible-infectious-recovered (SIR) model that simulates epidemiological diseases.
An efficient numerical method based on the Grunwald–Letnikov fractional derivative was
proposed and a qualitatively stability analysis was also carried out.

Abia et al. [15] investigate the dynamics of a particular consumer-resource model for
Daphnia magna from a numerical perspective. Malthusian, chemostatic, and Gompertz
growth laws are taken into account in this study for the evolution of the resource population,
and the ensuing global dynamics of the model are contrasted as various model parameters
vary. The numerical simulations demonstrate that the biological effect of resource scarcity
is a real reduction in the size of the consumer population’s members.
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The paper of Lǎzureanu [16] considers systems of three autonomous first-order dif-
ferential equations such that the sum of the three variables is constant in time. Hamilton–
Poisson formulations and integrable deformations are presented, and the case of Kol-
mogorov systems is also analyzed. As an application, the author examines the three-
dimensional Lotka–Volterra system with constant populations from the perspective of
Poisson geometry.

As Guest Editors, we are grateful to all authors who contributed to the success of this
Special Issue, and to all reviewers for their constructive comments that helped improve
initial submissions.

This Special Issue’s objective was to draw original contributions in the area of “Ad-
vances in Differential Dynamical Systems with Applications to Economics and Biology”.
We expect that the international scientific community will find this collection of research
papers influential and that they will spur additional investigations on diverse applications
with respect to dynamical systems in all scientific areas.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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11. Kaslik, E.; Neamţu, M.; Vesa, L.F. Global Stability Analysis of a Five-Dimensional Unemployment Model with Distributed Delay.
Mathematics 2021, 9, 3037. [CrossRef]

12. Jiang, X. Global Dynamics for an Age-Structured Cholera Infection Model with General Infection Rates. Mathematics 2021, 9, 2993.
[CrossRef]

13. Aletti, G.; Benfenati, A.; Naldi, G. Graph, spectra, control and epidemics: An example with a SEIR model. Mathematics 2021,
9, 2987. [CrossRef]

14. Mousa, M.M.; Alsharari, F. A Comparative Numerical Study and Stability Analysis for a Fractional-Order SIR Model of Childhood
Diseases. Mathematics 2021, 9, 2847. [CrossRef]

15. Abia, L.M.; Angulo, Ó.; López-Marcos, J.C.; López-Marcos, M.Á. Computational Study on the Dynamics of a Consumer-Resource
Model: The Influence of the Growth Law in the Resource. Mathematics 2021, 9, 2746. [CrossRef]
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Evolutionary Optimization of Control Strategies for
Non-Stationary Immersion Environments
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Abstract: We consider the problem of evolutionary self-organization of control strategies using the
example of speculative trading in a non-stationary immersion market environment. The main issue
that obstructs obtaining real profit is the extremely high instability of the system component of
observation series which implement stochastic chaos. In these conditions, traditional techniques
for increasing the stability of control strategies are ineffective. In particular, the use of adaptive
computational schemes is difficult due to the high volatility and non-stationarity of observation
series. That leads to significant statistical errors of both kinds in the generated control decisions. An
alternative approach based on the use of dynamic robustification technologies significantly reduces
the effectiveness of the decisions. In the current work, we propose a method based on evolutionary
modeling, which supplies structural and parametric self-organization of the control model.

Keywords: chaotic processes; control strategies; non-stationary environment; channel strategies;
observation series; numerical studies; dynamic stability

MSC: 37M20; 37M10; 90C90

1. Introduction

The problem of effective control in non-stationary immersion environments appears
in a large number of applications. They are meteorology, the control of turbulent hydrody-
namic flows, the stabilization of the state of non-stationary technological processes, asset
management in capital markets, etc. The intricacy here is due to the unstable nature of
the observed processes described by models of nonlinear chaotic dynamics [1–10]. Non-
stationarity means that different observations have means, variances, and covariances that
change over time. The non-stationary behavior can be a trend, a cycle, a random walk,
or a combination of these. Non-stationary data is generally unpredictable and cannot be
modeled or forecasted. Results obtained using non-stationary time series can be misleading
because they may indicate a relationship between two variables when in fact there is none.
For a better introduction to the subject, see the following Investopedia article [10].

High volatility and low predictability of chaotic processes significantly complicate the
effective use of well-known control stabilization techniques based on traditional methods
of adaptation and robustification. In particular, adaptive technologies turn out to be too
inertial to close the feedback loop in time. Increasing the sensitivity of feedback leads to a
high level of statistical errors of type II (“false alarms”). Robust control methods [11–15]
focused on solutions with reduced sensitivity to statistical and dynamic variations of

Mathematics 2022, 10, 1797. https://doi.org/10.3390/math10111797 https://www.mdpi.com/journal/mathematics5
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the observed process in the conditions of a basic model significantly lose effectiveness
compared to optimal a posteriori versions.

A control strategy based on sequential dynamic optimization of the control model
in chaotic dynamics, as will be shown in this paper, also faces a number of well-known
problems. Here we have, for example, bruteforcing control parameter values with a
given step that determines the accuracy of the solution, exponential increasing amounts of
calculations with an increase in the number of model parameters. Taking into account the
high variability and unsteadiness of the observed process, the number of parameters of the
optimized control model should not exceed five or six even for modern techniques. Hence,
there is a need to study new techniques of sequential dynamic optimization of the control
model based on suboptimal computational schemes.

In this paper, we use an observation series of currency pairs in the Forex market as a
testing ground for studying the effectiveness and stability of control algorithms in chaotic
immersion environment. Dynamic chaos in an observation series violates the fundamental
premise of the repeatability of experiments under identical conditions. In particular, two
geometrically similar observation segments in conditions of chaos may have completely
different aftereffects [16,17]. As a result, traditional statistical data analysis technologies
and control algorithms based on them are ineffective. In our studies, the choice of channel
control strategies is determined primarily by their accessibility and interpretability.

This article considers the possibility of applying sequential optimization based on the
method of evolutionary modeling in conditions of stochastic market chaos [18–21] etc. The
method is based on the Darwinian concept of evolutionary self-organization and the theory
of random search.

2. Methods

2.1. Observation Model and Problem Statement

A significant difference between the presented work and traditional studies in the
field of asset management is their focus on the Wald’s additive observation model [22–24]

yk = xk + vk, k = 1, . . . , n (1)

where xk, k = 1, . . . , n is the system component used in the process of making management
decisions (i.e., open, close or retain current position), and vk, k = 1, . . . , n is the noise.

Currently, the prevailing point of view is that in market situations, the system compo-
nent xk in (1) is modeled as an output signal of a nonlinear system observed in the condi-
tions of non-stationary and non-Gaussian interference vk (dynamic chaos model) [5–13].
Lyapunov functions [25] and identification methods based on higher-order spectra [26] are
used in order to substantiate such problem statements. There is a large area of research on
the direct reconstruction of stochastic differential equations [27,28] for the model (1). Other
points of view are based on nonlinear transformations of the yk process, and, for example,
on investigating fractal properties of the process trajectory [29–31].

Sequential filtering of the initial observation series yk, k = 1, . . . , n is usually used to
isolate the system component xk, k = 1, . . . , n from (1) in real time. For this purpose, we
utilize an exponential filter [32]:

xk = αyk + (1 − α)y(k−1) = x(k−1) + α(yk − x(k−1)), k = 2, . . . , n (2)

with a discounting coefficient α ∈ [0.01, 0.3]. This range is our empirical finding for the
Forex market. Simultaneously, it is possible to select α adaptively so it better corresponds to
features of considered data. This filtering technique is not the best one, because an increase
in the smoothing effect with a decrease of α leads to a significant bias of the generated
estimates. However, it produces a satisfactory result for the considered examples, while
also providing simplicity of interpretation of the extracted system component.

Note that the conventional statistical observation model is based on the assumption
that its system component is an unknown deterministic process, and its noise component is

6



Mathematics 2022, 10, 1797

a stationary random process with independent increments [33]. Such a model was used in
a wide class of trend analysis-based management strategies [34–37], though all of them are
not resistant to possible dynamic variations in the process of changing quotes. One of the
reasons for the unfeasible effectiveness of these trend indicators is the intrinsic inadequacy
of the statistical approach for a chaotic observation series.

The main difference of the proposed model (1) is that its system component xk,
k = 1, . . . , n is modeled as an oscillatory non-periodic process with a large number of
local trends. This description indicates the possibility of interpreting this process as an im-
plementation of the dynamic chaos model [5–13]. Its second distinctive feature is the noise
component vk, k = 1, . . . , n being interpreted as a non-stationary random process described
by an approximate Gaussian model with fluctuating parameters. In particular, correlations
and spectral characteristics of this process change significantly over time [23,24].

The indicated features of observation series described by (1) violate the conditions
of applicability of traditional statistical methods. In this case, numerical studies are the
only approach to analyze the effectiveness of the developed management strategies. The
statement of the asset management problem essentially coincides with the traditional
formalization of the task to maximize the gain in the process of trading or investing capital.

Let yk = xk + vk, k = 1, . . . , n be a sequence of observations corresponding to a given
time interval of asset management T = nΔt, where Δt is the selected interval between time
counts. During the specified time, M operations are carried out in the trading process, each
being determined by their start and finish (kopen, kclose)j, j = 1, . . . , M.

The trading problem can be thus formulated as follows: select a management strategy
S and construct a sequence of actions uj, j = 1, . . . , M to obtain maximum profit G(S):

G(S) =
M

∑
j=1

uj(kclose)− uj
(
kopen

)
= max (3)

In the simplest case, each management strategy is defined by the rules that determine
the time of opening and closing a position (kopen, kclose)j, j = 1, . . . , M, and, in some cases,
the lot size. The sum of the operation results at the k-th step Gk(S) becoming smaller than
the trader’s available deposit G0 means the management process resulted in complete loss.

The approach to determining the start time of an operation (the so-called “position
opening”) is the defining characteristic of a management strategy. The operation can be
finished (a “position” can be “closed”) when a specified profit level (TP, “take profit”) or
loss level (SL, “stop loss”) is reached, or according to some different rules that could be
more flexible.

This paper examines the technique of sequential evolutionary self-organization of the
management strategy in the conditions of market chaos. Due to this, the simplest control
schemes are used as basic control strategies, which makes it easy to visualize and interpret
the obtained results. In particular, we used the so-called channel strategies [4,34–37]. Let
us consider the simplest approaches to constructing such a strategy.

2.2. Channel Asset Management Strategies

We have a series of the trading asset’s quote observations being modeled by (1).
Let us define a “channel” as a range of observation values constrained by yk = xk ± B,
k = 1, . . . , n [33]. Variations inside the channel |yk − xk| = |δyk| ≤ B, k = 1, . . . , n, are
fluctuations that do not contain an obvious trend, in which case, the process can be referred
to as a sideways trend or a flat. Channel width B can be selected depending on various
considerations. It usually lies in the range from sy to 3sy, where sy is the estimate of the
standard deviation (SD) δyk, k = 1, . . . , n. In general, the choice of channel width depends
on the nature of the data and the specificity of the selected management strategy. In some
cases, the channel width may be some variable value Bk = Bk(yk), k = 1, . . . , n.

The observation series value yk, k = 1, . . . , n that breaks out of the channel is inter-
preted as the emergence of a trend in some management strategies. In the case of managing
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assets according to the trend direction, such events give rise to a recommendation to open
a position in accordance with the sign of the channel boundary. Due to strong variability,
a trend is often considered to be present when the system component xk, k = 1, . . . , n
formed by the exponential filter (2) with a given level of smoothing quits the channel.
The values of the model parameters α, B, TP, SL are optional. Their selection depends
on the knowledge and intuition of the trader, and they fully determine the management
effectiveness. But it is often the case that intuition and other abilities of a human person
appear to be ineffective in trading. Therefore, there is a need for strictly formalized and
mathematically sound solutions.

We named the strategy of moving corresponding to the trend CSF (channel strategy
forward). The idea behind it is simple: open a position up or down when the process
breaks through the upper or lower bound of the channel respectively. The management
algorithm contains two rules: Open Up position at yk > xk + B or Open Dn at yk < xk − B.
Otherwise, a position will be opened at each step outside the channel. In this regard, the
more often used rules are based on determining the time of crossing the channel boundary
(yk−1 ≤ xk−1 + B) & (yk > xk + B) or (yk−1 ≥ xk−1 − B) & (yk < xk − B), k = 1, . . . , n.

In the simplest case, a position is closed either when the yclose > yopen + TP or = yclose
< yopen − SL levels are reached (at Open Up) or when yclose < yopen − TP or yclose > yopen +
SL (at Open Dn).

A more flexible control scheme allows for the obtaining of a model in which the
upper and lower bounds of the channel are evaluated separately. An example of the
implementation of the CSF management strategy for the Euro/Japanese Yen (EURJPY)
currency pair on an observation interval of 1440 min counts (one day) is shown in Figure 1.
In this case, the control model was defined by the parameters α = 0.04, B1 = 15, B2 = 15,
TP = 15, SL = 15. Blue diamonds indicate opening a position up, red diamonds denote
opening a position down, and circles are positions being closed.

 
Figure 1. Example implementation of CSF on an observation interval of 1440 min counts.

Figure 2 presents management (3) effectiveness fluctuations in utilizing the channel
strategy for the selected example. For the parameters that were used for the control model,
the result turned out to be close to zero, and most of time during which trading was being
carried out, it was negative. Note that in most cases of direct use of the CSF strategy, the
result was negative.
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Figure 2. Performance of the CSF strategy for example in Figure 1.

Is it possible to achieve profit if there is a reliable forecast of the development of
the process? To answer this question, we use bruteforce posterior optimization of the
parameters of the management model M = {α, B1, B2, TP, SL}.

For each of the parameters, 15 iterations were carried out, starting from the val-
ues of M0 = {0.01, 10, 10, 10, 10}. The values of the iteration step, respectively, were
Step = {0.01, 1, 1, 1, 1}.

An example of the implementation of the CSF strategy with optimized parameter
values α* = 0.05, B1* = 10, B2* = 12, TP* = 18, SL* = 18 at the same observation interval is
presented in Figure 3. Note that this is the same EURJPY price history as in Figure 1, but the
opening and closing moments are different. Figure 4 presents the change in performance
during the use of CSF with optimized parameters. The management result for the day was
G = 248 p.

Figure 3. Example implementation of CSF with optimized parameters.
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Figure 4. Performance of the CSF strategy with optimized parameters.

It is not difficult to see that this result is unstable. The results of applying the CSF
strategy with the optimal parameters found for the next 10 days of management is shown
in Figure 5. The obtained values completely confirm the instability of the found solution.
None of the following nine days of observation produced a profitable result.

Figure 5. Performance of applying the CSF strategy with parameters optimal for the first day to the
next nine days of management.

Comparing the results presented in Figure 6 with the dynamics of quotations of a
financial instrument at the same observation interval, we can draw another conclusion. The
structure of dynamics is more important than the degree of variability of the process. The
minimum loss corresponds to the eighth day of observation, the most similar in structure
to the first day for which the parameters of the control model were optimized. The worst
result corresponds to the last, 10th day, with its strongly pronounced trend.
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Figure 6. Dynamics of quotations during the indicated 10 days, corresponding to the performance of
the CSF strategy in Figure 5.

Thus, in order to preserve, even if not the best, but at least positive result, it is nec-
essary to significantly reduce the size of the time shift at which the optimal parameters
are reassessed. This requirement significantly reduces the feasibility of using optimization
based on bruteforcing optional parameters. The problem is that the number of calcula-
tions shows an exponential increase along with an increase in the number of optimized
parameters. It takes about 15 min on a 2.5 GHz 6-core INTEL Core i5 to optimize the model
with five parameters by bruteforce on an observation interval of one day. A model with six
parameters will take about 1.5 h.

Hence, there is a need to switch to suboptimal computational schemes for sequential
optimization, which significantly reduces the calculation time to a level that makes possible
real-time sequential data processing.

2.3. Features of Evolutionary Optimization for Chaotic Immersion Environments

In this paper, an algorithm based on the method of evolutionary modeling is proposed
as a suboptimal computational scheme for optimizing the management strategy [38]. Mod-
ern computing techniques and applications based on this method can be found in [39–46].
Unlike evolutionary modeling, evolutionary optimization of management strategies is not
interested in the degree of similarity of the mathematical model to the real data obtained
via monitoring the managed object and the parameters of the immersion environment.
Its task is to choose a management model that produces the best solution according to
(3). Genetic algorithms decrease the volume of computations by about 40% according to
estimates given in a number of referenced works.

At the same time, the control strategy itself, as a set of decision rules, can also be
modified. The implementation of nonparametric mutations of the management strategy
consists in choosing the structure of the model and management rules from the a priori
knowledge bank. As a set of decision rules is selected, the list of parameters to be changed,
their critical values and ranges of changes are modified. The advantage of this approach is
its feasibility. However, at the same time, the arbitrariness of machine choice is limited, and
there is no possibility of obtaining radically new strategies that are not provided by the
programmer. Any regularization and any set of restrictions can block access to unexpected
original solutions.
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Moreover, the complete removal of restrictions in the process of random modifications
of the structure of strategies leads to a huge number of meaningless decision rules. Wait-
ing for any reasonable solution to appear will take time comparable with real biological
evolution. At the same time, the question of artificial generation of management strategies
remains open.

Evolutionary technology, like the entire probabilistic-statistical paradigm, is implic-
itly oriented towards a comfortable hypothesis about the repeatability of experiments in
unchanging or slowly changing conditions. The transition to non-stationary, and even
chaotic processes, inevitably destroys the optimality of statistical solutions, including those
constructed via evolutionary modeling. However, chaos, in general, contains regularizing
effects that reduce the degree of total uncertainty. If evolutionary technology can identify,
at least not explicitly, and use such hidden patterns, then the task of constructing a win-
ning strategy may be feasible. In addition, using an evolutionary computational scheme
will help us answer the question of the fundamental admissibility of particular classes of
management strategies.

The paper uses the basic evolutionary modeling algorithm described in [31]. The return
to the original version of this concept is due to the fact that it does not introduce additional
restrictions on the mechanism of variability and leaves a wide range of opportunities
for its formation. For example, genetic algorithms are focused on the model of bisexual
reproduction, which is very important in the implementation of variability in biology.
However, for the models under consideration, there is no need to limit the process of
variability to the mechanisms of gene exchange. The same can be said about the method of
differential evolution. The formation of a new genome, as a mutant vector formed from
other parental genomes, also introduces unnecessary restrictions for this case.

In econometric models, one can make any modifications to the structure of genes if
they do not contradict common sense and the laws of the market. Therefore, it is reasonable
to use the computational scheme of evolutionary optimization, which corresponds to
the traditional concept of evolutionary modeling. At the same time, the mechanism of
variability is based on the well-known mechanism for extracting a random variable from
the range of permissible variations in genome parameters.

2.4. Algorithm of Evolutionary Optimization of the Management Model

Consider a set of ancestor strategies SA = {SA1, . . . , SANa} with Na elements, each of
which is defined by its structure R (the decision-making rule) and a set of corresponding
numerical parameters a, i.e., S = {R, a}. The effectiveness of a strategy Eff(s) is assessed via
applying it to the time series of observations Y(t), which together form an experimental
retrospective dataset. We introduce two nonlinear operators.

1. The operator of variability and multiplication of strategies:

Var(SA) : SA =
{

SA1 , . . . , SANa

}
⇒

{
SD1 , . . . , SDND

}
: ND = kbNA, kb > 1

Here
{

SD1 , . . . , SDND

}
is a set of descendant strategies, each of which is created by

modifying one of the ancestor strategies, ND is the number of descendant strategies in one
generation, and kb > 1 is the multiplication coefficient of strategies. The union of ancestor
strategies and descendant strategies is a generation of size Ng = Na + Nd = Na (1 + kb):

SG =
{

SG1 , . . . , SGNg

}
=

{
SA1 , . . . , SANa

}
∪

{
SD1 , . . . , SDND

}
2. A selection operator that selects the “surviving” strategies from the generation SG ={

SG1 , . . . , SGNg

}
that become the ancestors of the next generation:

Sel
(

S1, . . . , SNg

)
=

{
S1, . . . , SNg

}
⇒

{
S〈1〉, . . . , S〈Na〉 : E f f

(
S〈1〉

)
≥ . . . ≥ E f f

(
S〈Na〉

)
≥ E f f

(
Sj
)
, ∀j > Na

}
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Let S0 = {K0, p0, a0} be a particular management strategy with the specified parame-
ters, adopted as the basic “parent strategy”. Then evolutionary optimization is reduced to
a cyclic execution of an operator sequence:

S0 ⇒ Var(S0) = SA =
{

S1, . . . , SNA

}
⇒ Var(SA) = SD =

{
S1, . . . , SND

}
⇑

Sel
(

S1, . . . , SNg

)
=

{
S1, . . . , SNg

}
⇐ SG = (SA) ∪ (SD)

(4)

where arrows denote the sequential order of operators. Since selection is carried out by
superiority, the optimality of the final solution is not guaranteed. However, it will be the
best of the whole set created during the implementation of evolutionary modeling.

The process of evolutionary optimization is obviously converging to more effective
strategies by virtue of its very construction. This is due to the fact that the new generation
always includes ancestor strategies in its composition. Consequently, the most effective
strategies in principle cannot be discarded by the accepted selection and selection procedure.
However, a high convergence rate cannot be expected due to the randomness of the
modification process. The convergence rate will be close to the convergence rate of a
random search, and depends on the size Ng of the generation being formed. It can be
assumed that the convergence rate will be higher if the multiplication coefficient kb is made
variable so that the number of descendant strategies Nd depends on the effectiveness of
parent strategies, i.e., Nd = k(Eff(Sa)), k > 1. In other words, a more effective ancestor can
produce more offspring. However, this statement requires additional verification.

Other regularization methods aimed at increasing the convergence rate of evolutionary
optimization are also possible.

2.5. Computational Aspects of the Evolutionary Optimization Algorithm

The functional structure of the algorithm of evolutionary optimization of management
strategies is shown in Figure 7. The sequence of evolution is represented by a diagram of a
process developing from the bottom up.

Let us consider the presented algorithm. At the preliminary stage, some basic strategy
(prototype) is formed. Its structure is chosen either randomly or based on existing a priori
experience in asset management. With the help of the variability mechanism, the basic
prototype strategy is modified, giving rise to parent strategies.

Then, in accordance with (4), the program loops for the number of successive genera-
tions, which are usually called epochs.

At the first step of this loop, the first generation of descendant strategies is formed us-
ing the variability generator, which, combined with their parents, form the first generation
of strategies SG. Furthermore, each of the first-generation strategies undergoes a testing by
being applied to a set of retrospective observations {Y(t), Y(t − Y)}, where T is the size of
the validation dataset. The created strategies are ranked by their effectiveness Eff (Si), i = 0,
. . . , Ng and a specified number Na of “surviving” strategies that are allowed for further
“reproduction” (modification) are selected. The selected strategies are the parents of a new
set of modified descendant strategies and together with them form the second generation.

Furthermore, the cycle is repeated until either a specified number of generations is
reached, or, according to some other criterion, for example, when the effectiveness of
management does not improve during a given number of epochs.

The variability mechanism used in the program randomly selects changes made to the
strategy from the following set of options:
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Figure 7. General functional structure of the evolutionary optimization algorithm.

1. Small single changes. In the strategy undergoing modification, relatively small
changes are made to only one parameter (gene) selected by a random draw. The
size of the change range depends on the parameter. This one-time change does not
usually exceed 10% of the original value. The choice of the parameter is carried out
by a random draw, similar to how it happens in the Monte Carlo method.

2. Small group changes. They are carried out similarly to the previous case, but are
made to several gene parameters at once instead. Their amount and their numbers
are selected via a random draw.

3. Strong single mutation or parametric mutation. The gene number is selected via a
random draw. Usually, the number of mutations in a generation is small, and the
probability of their occurrence does not exceed 2–3%. The size of the change field
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also depends on the parameter, usually a single mutation can reach 30–50% of the
original value.

4. Strong group changes are similar to the previous case, but are made immediately in
several parameters, as in case 2.

5. Structural (nonparametric) mutations. The parent strategy with some relatively small
probability (usually less than 0.01) may undergo nonparametric mutation. In this case,
the number of genes in the original genome may change, or, in a more radical case,
the management strategy itself may be completely modified. The most rational way
in this case consists of randomly choosing a management strategy from an a priori
created knowledge base.

It should be expected that such mutations will be quite constructive, since the strategies
included in the data bank, to one degree or another, have already been pre-selected by at
least the common sense of their developer. For example, there is a transition from a channel
strategy to management based on trend analysis, etc. However, this approach limits the
evolution to the level of the programmer’s constructive imagination.

A more radical approach consists in stochastic synthesis of new strategies using
artificial intelligence technologies. In this case, the evolution program gets out of the
strict control of the developer not only at the parametric, but also at the structural level.
This approach, in theory, enables the generation of completely new, unexpected solutions.
However, in most cases, such mutations will generate ineffective strategies that will be
immediately eliminated by the selection mechanism, without generating variants of man-
agement strategies in the next generation. In this regard, it may make sense to deliberately
preserve such mutations for a given number of epochs and allow them to generate variants
of descendants in a mutant zoo.

The selection mechanism, as already noted, ranks a set of strategies according to their
effectiveness, and selects among them the best strategies that become the parents of the next
generation. It is important to note the principle of incomplete or open solutions, meaning
that at each cycle of selection, not the only best option is selected, but a group of strategies
is as well. This approach allows us to come to the best solution along a chain consisting of
intermediate options other than optimal, which is especially important when searching for
effective management strategies in chaotic immersion environments.

3. Results

As an example of the implementation of the evolutionary optimization method, con-
sider the asset management task based on the CSF management strategy. In order to be able
to compare with the best solution found by bruteforce, we will consider the same one-day
observation interval as in the examples shown in Figures 1–4. As optimization parameters
(the genome) we will use M = {α, B1, B2, TP, SL}. From the above optimization example
(Figures 3 and 4) it follows that the best parameters of the control model are α* = 0.05,
B1* = 10, B2* = 12, TP* = 18, SL* = 18.

Figure 8 shows an example of CSF implementation with evolutionary optimization of
the management model for 10 epochs. The best result was 177 points with the parameters
of the model being α* = 0.05, B1* = 12, B2* = 12, TP* = 15.5, SL* = 14.8. The convergence to
the found result is shown in Figure 9.

The dependence of the effectiveness of the CSF strategy during the epoch is shown in
Figure 10.

The plots show that the obtained result, as expected, is inferior to the gain obtained
by bruteforce. However, this search only took 0.26 s with the same CPU and with the
observation interval the same as in the example with bruteforce optimization, and half of
this time was spent on the implementation and output of graphics.

The question arises of how much the quality of management can be improved by
increasing the number of epochs. Figures 11 and 12 show changes in the effectiveness of the
best versions of the management model obtained during, 50 and 200 iterations, respectively.
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The gain in the above examples reached, 197 p. and 203 p., respectively, did not
achieve the effectiveness of bruteforce (248 p). However, the time spent was 0.203 s in the
first case, and 0.541 s in the second. A further search for the best option was quite slow,
and this can be seen from the section of the horizontal line in Figure 12, starting from about
70 epochs. Increasing the number of epochs to 500 increased the profit to only 209 p., and
spending to 1.17 s.

Figure 8. An example implementation of the CSF strategy with parameters obtained via evolutionary
optimization.

Figure 9. Effectiveness of the CSF strategy with evolutionary optimization.
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Figure 10. Effectiveness of the CSF strategy with evolutionary optimization for 10 epochs.

Figure 11. Effectiveness of evolutionary optimized CSF strategy, 50 epochs.

 
Figure 12. Effectiveness of evolutionary optimized CSF strategy, 200 epochs.

Note that in the considered examples, a simplified version of the variability operator
was used. For example, structural mutation was not used at all. However, even in the
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proposed case, it becomes possible to conclude that this algorithm is suitable for sequential
optimization with new data arriving every 0.5–1 s.

4. Discussion

The chaotic dynamics of quotations, characteristic for electronic capital markets, ob-
struct the effective use of traditional methods of increasing the stability of management
strategies. As shown in the examples in Figures 5 and 6, the parameters that are optimal
for a given day of observing the dynamics of quotations on the very next day lead to an
unpredictable loss. In this regard, the management model should be dynamically corrected
as new results of monitoring the market situation become available.

At the same time, the most powerful optimization tool based on bruteforce incurs
significant time costs even for modern high-performance processors. This is due to the
fact that the time complexity here is described by a power function with an increase in
the number of iteration steps, and by an exponential function with an increase in the
number of model parameters. As a result, even with a relatively simple model with five to
six parameters, the required computational resources exceed the capabilities of modern
processors. At the same time, increasing the time interval between successive calculations of
the best parameters is unacceptable, given that the dynamics of market assets is absolutely
non-inertial and can be discontinuous even within one minute of observation. Due to this,
we proposed an optimization of the management model based on evolutionary modeling.

We analyzed the effectiveness of this approach using the example of real data obtained
by monitoring the currency exchange market. The results of numerical studies have
shown that maximum gain decreased by about 15–20% compared to the result obtained by
bruteforcing parameter values. At the same time, the number of operations decreased to
such a level that model parameters can be optimized even with a one-second interval of
monitoring results.

It is important to note that the potential of evolutionary optimization is by no means
exhausted by the version of its implementation considered in the paper. First of all,
the above example did not use structural mutations. In essence, we are talking about
utilizing qualitatively different strategies, which can give a result that significantly exceeds
the mechanistic optimization based on bruteforcing parameter values. Moreover, new
opportunities arise, such as artificial intelligence technologies: the computer independently
generates management strategies that are not contained in the a priori knowledge base.

The second point related to the advantage of using evolutionary optimization is due
to the fact that the drawing of parameter values is carried out on a scale of counts close
to continuous. The discreteness is essentially determined only by the mantissa of the bit
grid. This means that the conducted adjustment is finer than that obtained with a fixed
iteration step. The advantage of fine-tuning is due to the extremely high sensitivity of the
management result to variations in the values of the model parameters, which is generally
characteristic of a chaotic series of observations.

It should be noted that we used a very simple channel strategy as a demonstration
example in this work. This was done in order to ensure the clarity and interpretability of
the results. However, in practice, such strategies are not used as is, because in most cases
they only lead to loss.

In [33] it was shown that for almost any variations of the observed dynamic process,
profitable solutions exist for this class of strategies. However, their implementation requires
fine-tuning, minor deviations from which, as follows from the theory of dynamic chaos,
lead to loss. Nevertheless, with a small time shift of observation series relative to the
optimization tuning interval, the positive gain on average is preserved. This means that
it is fundamentally possible to build a dynamic self-adjusting asset management system.
One of the variants of such a solution is considered in this paper.

Other formulations of asset management tasks that also use genetic algorithms for
optimization can be seen, for example, in [47,48]. At the same time, various algorithms
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based on random search in some cases lead to completely unexpected and, often, anti-
intuitive results [49,50].

A development of these studies being focused on constructing a dynamic self-adjusting
asset management system with an increased level of resistance to variations in the dynamic
and statistical characteristics of observation series implies considering the following points:

• the study of potential characteristics of self-adjusting asset management systems for
various sets of dynamic properties of observation intervals of chaotic processes;

• the development of a knowledge base of management strategies and its application
for implementing structural mutations of the management model in the mechanism of
variability of the evolutionary optimization algorithm;

• the development of randomized synthesis of management strategies using multi-
expert data analysis [51];

• the use of composite algorithms combining the capabilities of robustification and
adaptation in management decision-making.

• the effectiveness of the application of evolutionary optimization in markets and peri-
ods that differ in the degree of market efficiency within the Efficient Market Hypothesis
(EMH) [52]. It is supposed that the greatest profit can be made in a highly inefficient
market. At the same time various exchange markets all have multifractal structural
properties with different levels in the sample and sub-samples that cause inefficiency
with different levels in these foreign exchange markets [30]. Another work reveals
that the efficiency of the cryptocurrency markets varies over time, which is consistent
with adaptive market hypothesis (AMH) [53]. The question about the level of current
market inefficiency which is acceptable for self-adjusting asset management systems
needs to be investigated.

• the use of external add-ons that carry information exogenous to technical analysis on
expected trends of the considered financial instrument and market mood in general.

• The outlined issues constitute the subject of our further research.
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Abstract: This article considers a short-term forecasting of a process that is an output signal of a
nonlinear system observed on the background of additive noise. Forecasting is made possible thanks
to the technique of nonparametric estimation of local trends. The main problem in this case is the
instability of the time of the existence of these local trends. The average duration of relatively stable
intervals can be estimated from earlier observation history. Such approaches are called channel
strategies. The task of constructing such strategies for EURUSD asset management in the conditions
of market chaos is considered, as well as the potential capabilities of these management strategies
via computational experiments. We demonstrated the fundamental possibility of achieving profit
even for areas with complex dynamics with abrupt changes in the considered process. We propose
improved channel strategies and also denote the main directions of increasing their effectiveness.
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1. Introduction

Today, financial markets are the object of increased interest from scientists, since the
growth of the national economy and the well-being of individuals depend on their stability
and effective functioning. Followers of the efficient-market hypothesis (EMH) [1] prefer the
“buy and hold” trading strategy, counting on the long-term growth of the selected asset.
Within this theory, it is believed that it is impossible to beat stock indexes for a long time.
However, a number of fundamental investors, e.g., Warren Buffet, who invest in accordance
with the company’s current financial performance [2], demonstrate their advantage over
the dynamics of the stock index. In contrast to passive investment, active investment
involves the purchase and sale of a security according to some condition that develops in
the fundamental indicators of the company (fundamental analysis), or according to the
current dynamics of quotations (technical analysis).

Fundamental analysis (FA) uses available news and other information to evaluate
the direction of price movement in accordance with general economic, political and other
considerations [3]. Results of expert FA are regularly published on the websites of brokers
and traders in the form of analytical reports and forecasts.

Technical analysis (TA) is associated with a formalized study of the dynamics of
quotations and uses the entire arsenal of modern computer mathematics [4]. In practice,
traders usually use a combination of both types of analysis.
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Thus, at the moment there is no algorithmic approach to making a trading decision that
would have a clear advantage over others. Under these conditions, stock analysts prefer
to justify their recommendations using channel strategies that are identified on simple
calculating rules, insider information, market psychology, and visual interpretation [5].

Various strategies of this type are described in well-known monographs on the man-
agement of market assets in investing and trading [5–10]. The main idea of channel
strategies is to detect local trends in the development of the observed process. Such trends
are assessed based on the localization of the current value of the asset in a certain range
of its changes (i.e., a “channel”). Most often, channels are understood as areas of price
changes of a priori selected width, parallel to the smoothed quotation average.

The simplicity and visual expressiveness of such strategies makes them extremely
attractive, but their effectiveness, in general, is quite low. The main reason for this fact
is the chaotic nature of the change in the values of quotations, described, for example,
in [11,12]. The presence of dynamic chaos in the series of observations violates the basis
of the entire probabilistic-statistical paradigm, i.e., the repeatability of experiments under
identical conditions. In essence, the price series are formed by a flow of bifurcation points,
for which arbitrarily small perturbations lead to an unpredictable development of the
dynamics of the process.

It is difficult to assess the last statement analytically due to the fact that the right-
hand sides of the corresponding systems of differential equations are random functions
with constantly changing structures. Observations of financial markets demonstrate this:
a newly found trend is very likely to reverse in the next moment. Therefore, back-test
effective strategies could be effective later on by pure chance. The inability of trends to go
on can be explained by the composition of the trading participants being an equilibrium
balance. Trend-following traders (momentum traders) impact is compensated by market
makers and mean reversion traders [13]. At the same time, according to the inaction inertia
theory [14], individual investors who missed the opportunity to buy in at a good price
withhold from a trade at a less favorable price, thus halting trend development. However,
all of this becomes irrelevant when the fundamental valuation of the asset changes. If the
majority of traders shares this opinion, a continuous trend may arise [15,16].

The only available approaches to effectiveness analysis of channel strategies and to
investigating the chaotic nature of the observation series of market assets are numerical and
statistical big data methods. In the work [5], a large-scale empirical study of the effectiveness
of the channel strategy developed by the authors was carried out from 31 July 1990 to
31 July 2010 for more than 3000 stocks of the NYSE and NASDAQ markets. It was shown
that using the support and resistance levels (SAR), it is in general impossible to build
a steadily profitable trading management system. However, making a decision on the
price rollback from the support level works better than at the resistance level. The authors
substantiate this fact by the globally growing trend in the stock market during this period.

This paper discusses performance of channel strategies, as well as their enhancement
within nonstationary immersion environments, such as the currency market. We show that
there are time intervals at which the use of this strategy will be profitable. The issue of
the influence of optimization of the parameters of the trading system on its profitability is
also considered.

We consider the EURUSD currency pair because it is the most liquid asset at the
international financial market. This makes it possible to assess the effectiveness of channel
strategies without the influence of such manipulative factors as insider trading or mistakes
made by large investors.

2. Methods

As a basic model of market asset quotations, we will use the following additive model
(Wald) [10]:

yk = xk + vk, k = 1, . . . ,n (1)
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where xk, k = 1, . . . ,n is a system component formed by sequentially smoothing the time
series of initial observations yk, k = 1, . . . ,n and used in the process of making management
decisions, and vk, k = 1, . . . ,n is the noise.

The traditional observation model for statistical analysis is based on the assumption
that the system component is an unknown deterministic process, and the noise component
is a stationary random process with independent increments. In the more general approach,
based on the Bayesian concept [17–19], the system component is also considered as a
random process, and various computational schemes for sequential estimation of the
conditional mean are used to identify it. As an example of the Bayesian approach, we
can cite the Kalman filtration model [20], in which the system component is modeled by
a linearized model of the form xk+1 = Φk+1/kxk + wk, k = 1, . . . ,n, where wk is the noise
process that imitates the admissible errors in the system.

These traditional models allow us to construct classes of management strategies based
on trend analysis [7–9], each of which is effective only in a narrow range of possible
variations of the observed process. The underlying reason for the low efficiency of the
proposed trend indicators stems from the fundamental discrepancy between the traditional
statistical approach and the nature of real observations. The following facts represented in
Model (1) are the fundamental differences of the considered market asset observation series:

• Their system component xk, k = 1, . . . ,n is an oscillatory nonperiodic process with a
large number of local trends. This description indicates the possibility of interpreting
this process as an implementation of the dynamic chaos model [21–29]. However,
the proof of this statement requires a strict formalization of the discrimination of
deterministic chaotic and non-stationary random processes, which will require addi-
tional research.

• The noise vk, k = 1, . . . ,n is a nonstationary random process roughly described by
the Gaussian model with fluctuating parameters [11,12]. At the same time, noise
deviations contain local trends, and their correlations and spectral characteristics
change significantly over time [30].

These characteristics violate the conditions of applicability of traditional statistical
methods for effective decision making. Moreover, violation of the condition of repeatability
prohibits any analytical assessments of forecasts and corresponding proactive management
strategies. In essence, the main method of analyzing the quality of asset management in
this case is numerical studies that assess the effectiveness of management algorithms over
long observation intervals.

We have a number of financial instrument quote observations described by Model (1).
Consider the simplest version of a single-channel management strategy. We define a
“channel” as a range of observations limited by a range Yk = xk ± B, k = 1, . . . ,n. Variations
of observations inside the channel |yk − xk| = |δyk| ≤ B are interpreted as fluctuations
that do not contain a pronounced trend, and the process itself is sometimes called a sideways
trend or a flat. The choice of the channel width can be driven by various considerations.
It usually lies in the range (1–3)sy, where sy is the estimate of the standard deviation (SD)
δyk, k = 1, . . . ,n. In general, the choice of channel width is an option that depends on
the features of the TP management. In some cases, it can be a variable value Bk = Bk(yk),
k = 1, . . . ,n.

The current value of observations yk, k = 1, . . . ,n breaking out of the channel is
interpreted as the emergence of a trend in some management strategies. In the case of
“playing by the trend”, this invokes a recommendation to open a position in the direction
corresponding to the sign of the channel boundary. The position can be closed when a
given level of gain (TP, “take profit”) or loss (SL, “stop loss”) is reached, or in accordance
with other, more flexible rules defined by the management strategy.
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The task of a trader or a trading robot is to choose a management strategy S and form
a sequence of actions uj, j = 1, . . . , M corresponding to it that provide maximum profit:

R(S) =
M

∑
j=1

|yj
(
kopen

)
− yj(kclose)| = max (2)

At the same time, each management strategy determines the moments of opening and
closing a position (kopen,kclose)j, j = 1, . . . ,M, and, in some cases, the lot size. If the resulting
amount at some k-th step turns out to be less than the trader’s available deposit R0, then
this means a complete loss. In order to isolate the system component, any technique of
sequential filtration can be applied. In the simplest case, an exponential filter is used for
this purpose, defined as [31]:

xk = αyk + (1 − α)y(k-1) = x(k-1) + α(yk − x(k-1)), k = 2, . . . , n (3)

with a smoothing coefficient α, whose value most often lies in the range [0.01,0.3].
The given simplified channel strategy makes it possible to remove many minor de-

tails. This makes the problem clear for the terminal task of producing the best proactive
management for the selected class of management strategies.

2.1. Channel Strategy Based on Moving by the Trend

Let yk, k = 1, . . . ,n be the observed monitoring process of an asset quotation with a
given duration n. The system component xk, k = 1, . . . ,n consists of an exponential filter
(3) with a given smoothing coefficient α. The channel width is denoted as B, measured
in pipses. Similarly, the levels of profit TP and the level of acceptable loss SL are set.
The values of α, B, TP and SL are optional parameters. The choice of these parameters
depends on the knowledge and intuition of the trader, as they completely determine the
effectiveness of management. However, in trading, intuition and other human abilities
often turn out to be ineffective. Thus, a need for strictly formalized and mathematically
sound solutions arises.

The management strategy based on moving by the trend, which we have named
CSF (channel strategy forward), consists in opening a position up or down when the
process exits, respectively, the upper or lower boundary of the channel. The management
algorithm consists of two rules: Open Up position at yk > xk + B or Open Dn at yk < xk − B,
k = 1, . . . ,n.

Note that a stricter formalization of this rule has the form yk-1 ≤ (xk-1 + B) & (yk > xk + B)
or yk-1 ≥ (xk-1 + B) & (yk < xk + B), k = 1, . . . ,n. Otherwise, a position will be opened at each
step outside the channel. The position is closed either when the yk = yclose > yopen + TP
or yk = yclose < yopen − SL levels are reached (with Open Up) or yclose < yopen − TP or
yclose > yopen + SL (with Open Dn).

The considered version of the channel strategy is basic and can be easily augmented in
various ways, presented, for example, in [5–9]. In particular, it is natural to close a position
at the moment of trend reversal, when the sign of the difference xk − xk − nW, k = 1, . . . ,n,
nW being the size of the sliding observation window, changes to the opposite. However,
this article is focused on the analysis of the fundamental features of channel management
strategies, and, as a result, omits various complications.

2.2. Channel Strategy Based on Moving against the Trend

We will now consider an alternative interpretation of the observed process exiting the
channel boundaries as another well-known channel strategy. In this case, the exit of the
quotation from the channel is considered as a random deviation of the asset value, which
inevitably triggers market compensation mechanisms that return the process to the limits
of normalized fluctuations, i.e., to the limits of the channel. We will call this approach a
channel strategy of playing against the trend (CSB, channel strategy back).
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As a demonstration example, let us consider a day-long observation segment of
EURUSD quotes shown in Figure 1. The strategy consists in opening a position up or down
when the process exits, respectively, beyond the lower or upper boundary of the channel.

Figure 1. Example of CSF implementation.

Note that opening a position at the moment when the observed process leaves the
channel can lead to a large negative drawdown, since the time and level of reversal of the
observed process are unknown. Moreover, if the previous hypothesis about the emergence
of a trend is true, then such a position opening can lead to a big loss. Therefore, it is more
rational to open a position at a reverse intersection of the channel, which increases the
stability of management, but, at the same time, makes a more modest gain.

The basic algorithm for controlling the movement against the trend is described by the
following rules: Open Up is carried out under the condition (yk > xk − B) & (yk-1 < xk-1 − B),
k = 2, . . . , n, and Open Dn − (yk < xk + B) & (yk-1 ≥ xk-1 + B), k = 2, . . . , n. The position
is closed when either of the levels yclose > yopen + TP; yclose < yopen − SL are reached with
Open Up or yclose < yopen − TP; yclose > yopen + SL with Open Dn.

An example of an alternative option for closing a position is the moment when the
observed process crosses the conditional mean level xk, k = 1, . . . ,n.

It should be pointed out that the presented algorithm is extremely “careful”, as in, the
opening is carried out only when the asset price returns to the channel, and the expectation
of profit relies on the fact that the compensation mechanisms of the market do not act
instantly and are prone to a certain inertia. At the same time, the gain turns out to be quite
small, but this provides protection against losses in the event of a systemic trend that takes
the quotation far beyond the channel.

3. Results

Figure 1 illustrates the characteristics of a basic CSF strategy using a concrete imple-
mentation. We consider the quotes of the EURUSD currency pair as the observed process,
and the management duration is one day (1440 min counts). The system component xk,
k = 1, . . . ,n is formed by exponential filter (3) with α = 0.05. The width of the channel
B = ±10 p is measured in points or pipses (p). The level of profit and the level of acceptable
loss are TP = SL = 10 p.

On the chart, blue diamonds indicate the detection of an upward trend, red ones
indicate a downward trend, and circles of corresponding colors indicate the levels of
decision making about the quality of management. Figure 2 shows a plot of changes in
the effectiveness of management (3) in the process of applying the channel strategy in the
selected example. The result is obviously negative: the loss was −93 p per day.
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Figure 2. Performance in the case of using CSF.

The reasons for the loss are obvious. The presented forecasting technique can produce
results only for areas with a strong, pronounced trend. For areas with weak local trends,
this strategy only produces loss. Nevertheless, it allows for improvement via parametric
fitting and introducing additional conditions into the management algorithm.

For example, increasing only the channel width up to B = ±18 p can make the man-
agement strategy at the same observation area profitable (see Figures 3 and 4).

Figure 3. Example 2 of CSF implementation.

To assess the potential gain, we have initially used a brute force search for only two
optional parameters in the ranges B = 11:1:25 and TP = 11:1:25. For the given values of the
options, the best profit was R = 76 p with B = 19, TP = 22. Three-dimensional plots of the
management results for the selected optional parameter ranges are shown in Figure 5. The
same plots with network approximation are shown in Figure 6.

It is not difficult to see that the approximating surface is discontinuous with jumps
in values even at minor variations in arguments. Thus, it can be concluded that the
effectiveness of a channel management strategy based on movement in the direction of the
trend is unstable. At the same time, parametric fitting based on retrospective data on a
selected observation interval does not guarantee a positive result at the next subsequent
time interval with the same parameters. An example of this is shown in Figure 7. When
using the optimal parameters for a selected observation interval for the next interval of the
same duration, the result turned out to be negative and amounted to R = −29 p.
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Figure 4. Performance in the case of using CSF in example 2.

Figure 5. Three-dimensional plots of the management results for the selected ranges of optional parameters.

Figure 6. Network approximation of Figure 5.
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Figure 7. Example of CSF implementation on a subsequent one-day observation interval.

Repeated a priori optimization on the same area produced a result of only R = 5 p
with the best option parameters being TP = 12, B = 19.

It should be noted that channel management can undergo various modifications, each
of which makes sense for certain types of the observed dynamic process [6–8], but none
of them has a margin of stability that makes it possible to obtain a positive result on the
whole variety of processes generated by market chaos.

3.1. Evaluation of CSF’s Potential Performance

Let us consider typical versions of improving channel management strategies. Figure 8
shows the results of management based on CSF on a three-day observation interval with
pronounced areas of strong trends. On the basis of an a priori three-parameter optimization
obtained by brute force search, we have identified best values of B = 19, TP = 22 and SL = 22,
corresponding to exponential smoothing (1) with the transfer coefficient α = 0.05.

Figure 8. Example CSF implementation with three optimized parameters.

The example is profitable at R = 32 p; however, the result is unstable and even small
variations in the structure of observation series definitely lead to a loss. Without a priori
optimization, a trend-based management strategy almost always leads to a negative result.
The rationale for this is given in studies of the inertia of chaotic processes in [32].
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Is it possible to improve the result by extending the vector of optimized parameters
and using different values for the upper and lower boundaries of the channel? To solve
this problem, we consider five-parameter optimization, including the filter smoothing
coefficient α, the lower and upper channel boundaries BDn and BUp, and the stop parame-
ters TP and SL. Let us set the ranges of the selected parameters to α = 0.01:0.01:0.15, BDn,
BUp = 10:1:15, TP, SL = 10:1:15. For the selected three-day observation segment considered
in the previous example, the best result of CSF was R = 166 p with the parameters P* = (α,
BDn, BUp, TP, SL)* = (0.1, 13, 16, 23, 16). The implementation of the management strategy
with the specified parameters at the selected observation interval is shown in Figure 9, and
the changes in the overall result of management are shown in Figure 10.

Figure 9. Example CSF implementation with five optimized parameters.

Figure 10. Performance in the case of using CSF in the previous example.

Experiments show that R(P) is unstable: even minor deviations of the vector of optional
parameters P from the optimum P* lead to a sharp decrease in the effectiveness.

It should be noted that brute force parameter optimization leads to an exponential
growth of arithmetic complexity with an increase in the number of parameters or require-
ments for the accuracy of estimating optimal parameter values (i.e., decrease of the iteration
step). This well-known fact can lead to serious problems in the construction of adaptive
management strategies that sequentially estimate the optimal values of P.

Another important point is the asymmetry of management performance: among all
the selected combinations, only 26% give a positive management result.

Attempts to increase the effectiveness of this strategy by improving system component
isolation, the possibility of which was shown in the previous section, can only have an
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indirect effect, because during optimization it was compensated for by separately choosing
the boundaries BDn, BUp and the filtration coefficient α. It is possible that this strategy will
be more effective with separate dynamic adjustment of the upper and lower boundaries
BDn, BUp, regarded as functions of the rate of change of the system component estimated
on the sliding observation window BDn, BUp = F(xk − xk-τ), k = τ + 1, . . . ,n. This issue
requires additional research.

Figure 11 shows an example of CSB implementation. Similarly to the previous example,
the system component xk, k = 1, . . . ,n is evaluated as the result of the smoothing performed
by exponential filter (3) with α = 0.05. The initial values of the option parameters are:
channel width B = ±10 p, take profit level TP = 10 p, acceptable loss level SL = 10 p.

Figure 11. Example implementation of CSB.

From the above figure, as well as from the plots of changes in the result due to
the management strategy (Figure 12), it can be seen that the adopted asset management
produces stable gain on weak trends (see the first third of the plot). However, when strongly
pronounced trends occur, this strategy leads to incorrect decisions.

Figure 12. Performance of CSB in the example implementation.

To evaluate the effectiveness potential of the proposed management strategy a posteri-
ori, we apply a brute force search to optional parameters, as discussed above. We iterated
over the values of three control parameters in the ranges α = 0.01:0.01:0.1, B = 10:1:25,
TP = 10:2:25 on a single-day observation segment shown in Figure 11. As a result of com-
paring 880 combinations, we found that the optimal values of the option parameters were
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α* = 0.03, B* = 10 and TP* = 10, i.e., the parameters selected in the example were either
close to or coincided with the best. However, the probability of a positive outcome was
low: out of 880 parameter combinations, only 137 provided a positive result. The optimal
profit value for the selected combination option was R* = 78 p.

An example implementation of a CSB management strategy with an optimal combina-
tion of optional parameters is shown in Figure 13, and the corresponding plot of changes in
performance is shown in Figure 14.

Figure 13. Example implementation of CSB with three optimized parameters.

Figure 14. Performance of CSB with three optimized parameters.

It should be noted that a number of losing decisions are explained not by the overall
decision quality, but by a significant bias that occurs during the filtration process (3) during
the isolation of the system component xk, k = 1, . . . ,n. In Figures 1, 8, 11 and 13, it can
be easily seen that when a strong trend occurs, the system component formed by the
smoothing filter lags behind the observation process, which leads to a shift of the entire
channel and incorrect use of the management strategy concept itself. Hence, natural
suggestions arise for improving the management by modifying the sequential filtering
procedure and dynamically changing the size of the lower and upper channel boundaries.

3.2. Evaluation of CSB’s Potential Performance

Let us compare the estimates of the potential effectiveness of CSF and CSB manage-
ment strategies on the same three-day observation interval. We will retain the same set of
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ranges for optional parameters, α = 0.01:0.01:0.15, BDn, BUp = 5:1:15, TP, SL = 7:1:15. Using
a brute force search, the best result of the CSF strategy was R = 166p with P* = (α, BDn, BUp,
TP, SL)* = (0.1, 13, 16, 23, 16). The implementation with the specified parameters at the
selected observation interval is shown in Figure 11.

The CSB’s best result for the selected observation area was R = 250 p, corresponding
to P* = (α, BDn, BUp, TP, SL)* = (0.03, 8, 5, 17, 17). Its implementation is shown in Figure 15.

Figure 15. Example implementation of CSB with five optimized parameters.

Comparing the two channel strategies with optimal vectors of optional parameters
allows us to draw the following conclusions:

• Both strategies have profitable decisions, but the result in both cases is not stable and
small changes in control parameters can lead to a radical decrease in gain;

• Management against the trend needs a higher level of smoothing, which activates the
opening of a position on a sideways trend and reduces the frequency of management
in areas with a strong trend. On the contrary, playing by the trend requires reducing
the degree of smoothness, which makes it possible to more effectively detect a strong
trend and activate management in these areas of observation;

• The width of the channel when playing against the trend is significantly, two to three
times, smaller than in the opposite case, which increases the frequency of opening in
horizontal quotation sections. Obviously, in both cases, the choice of channel width is
related to the degree of volatility, as a measure of which, for example, the standard
deviation (SD) of observations relative to the system component can be used.

Due to the paper limit, we will illustrate our further research with numerical results
based on the use of the CSB management strategy.

3.3. Parametric Stability of Optimal Solutions

In order to check the stability of the solutions produced by the considered a posteriori
determination of optimal parameters, we will consider another three-day observation
section, following the one presented in Figure 15, containing discontinuous sections of
quotation changes.

The result of optimization using CSB was R = 267 p with the parameters P* = (α, BDn,
BUp, TP, SL)* = (0.02, 7, 14, 8, 19).

Now let us evaluate the effectiveness of the same strategy at the same observation
segment, but with the parameters optimal in the previous three-day interval. Comparisons
of management performance with the CSB strategy in the example shown in Figure 15
with optimal parameters (left) and using the same parameters in the subsequent three-day
observation interval (see Figure 16) are shown in Figure 17.
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Figure 16. Example implementation of CSB with five optimized parameters on subsequent three-
day interval.

Figure 17. Performance of optimized control after applying the CSB strategy in the observation area
with optimization (a); and in the subsequent interval of the same duration (b).

It is easy to see that the gain decreased by about three times (R = 88 p), and in the
process of management, the result decreased to a loss of 100 p.

Let us consider the stability of the CSB strategy performance in response to particular
variations of individual parameters. To this end, we will evaluate the effectiveness on the
same three-day time interval as in the previous experiment, but with deviations of the
optional parameters BDn, BUp, TP and SL from optimal in the range P* ± 0.1 P*, and α in
range α* ± 0.5 α*. The range of changes was divided into eight steps, i.e., four steps in
each direction from the optimal value of the parameter. Table 1 presents the changes in
performance for this strategy.
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Table 1. Effectiveness of the management strategy with varying parameters.

k α R BDn R BUp R TP R SL R

1 0.0100 50 6.300 244 12.60 170 7.2 250 17.10 229
2 0.0125 80 6.475 260 12.95 203 7.4 250 17.57 229
3 0.0150 202 6.650 270 13.30 241 7.6 250 18.05 246
4 0.0175 240 6.825 263 13.65 247 7.8 250 18.52 246
5 0.0200 267 7.000 267 14.00 267 8.0 267 19.00 267
6 0.0225 238 7.175 268 14.35 258 8.2 272 19.47 267
7 0.0250 203 7.350 261 14.70 248 8.4 272 19.95 267
8 0.0275 148 7.525 262 15.05 245 8.6 272 20.42 263
9 0.0300 96 7.700 257 15.40 238 8.8 272 20.90 263

3.4. Examining the Dynamic Stability of Optimal Solutions

From the above data, it can be seen that the management has a certain margin of
stability, i.e., small changes in the values of the option parameters do not lead to an abrupt
change in performance. This conclusion leaves hope for the possibility of implementing
an adaptive approach, when the optimal setting at the previous stage is used as the set of
optional parameters at the subsequent observation site.

However, a more accurate conclusion requires an analysis of the stability of the control
with simultaneous variations of groups of parameters. In addition, it is necessary to examine
this issue in dynamics, i.e., taking into account the time shift of the observation area.

For clarity, let us consider the process of asset management with the CSB strategy
during a single day of observation, shown in Figure 18. With brute forcing, we obtain a
vector of optimal parameters P* = (α, BDn, BUp, TP, SL)* = (0.03, 7, 6, 11, 12), the use of
which produces gain R = 164 p.

Figure 18. Example implementation of CSB during a single observation day with optimal optional parameters.

Let us consider the question of how stable the obtained vector will be during the next
two days of management.

Figure 19 shows graphs of three days of observation (separated by days by red circles),
from which it can be easily seen that the relatively smooth dynamics of the first day,
on which parametric optimization was carried out, are not at all similar to the dynamic
data structures of the two following days. The second day is characterized by a decline
followed by a strong positive trend, the third day is characterized by an uneven positive
trend (growth).
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Figure 19. EURUSD quotation chart during three observation days.

Thus, the settings produced on the first day of observation will obviously produce
only loss for the next two days. In this example, the loss was R = −90 p on the second day
and R = −57 p on the third day. Thus, the assumption about the parametric instability of
the channel strategy, which is obvious to all practicing traders, is confirmed.

Note that the first day, which was used for the training, i.e., determining the best values
of optional parameters, was quite “comfortable” for a CSB-type management strategy. The
corresponding observation segment was a sideways trend with small variations. Naturally,
when strong trends occur, management with parameters optimal for a sideways trend turns
out to be losing.

Consider a channel management strategy with enhanced resistance to variations in
the dynamics of observations: a model with parameters optimal over a large observation
interval. In the example, we examine an observation interval of 15 days. This area contains
a large variety of dynamics: sideways trends with different heights, areas of slow and
abrupt increases and decreases, jumps, etc.

We optimized the parameters via brute force on the following ranges: α = 0.01:0.01:0.15,
BDn, BUp = 5:1:15, TP, SL = 7:1:15. The test result of using CSB was R = 475 p with P* = (α*,
BDn*, BUp*, TP*, SL*) = (0.02, 6, 8, 17, 21). The performance of the management strategy
with specified parameters at the selected observation interval is shown in Figure 20.

Figure 20. Performance change in the process of using the CSB strategy.
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Using these parameters separately on each observation day, we obtained R = 456 p,
which is quite close to the previous result of optimizing for the entire 15-day observation
area. Let us consider how effective the parameters P* are in the subsequent 10-day ob-
servation interval that does not intersect with the training data interval. The total sum of
one-day results in this case is R = 51.

We chose the same large observation interval of 15 days as for the CSB strategy, pre-
serving the same ranges for the following parameters: α = 0.01:0.01:0.15, BDn, BUp = 5:1:15,
TP, SL = 7:1:15. Their best values, P* = (α*, BDn*, BUp*, TP*, SL*) = (0.1, 11, 14, 16, 13), were
obtained by brute force search.

Figure 21 presents the performance of the strategy. The best result was R = 252 p, which
is significantly worse than the CSB’s result with optimal parameters at the same interval.

Figure 21. Performance of the CSF strategy with the best parameters.

Following the proposed method of stability analysis of the obtained result, let us con-
sider how effective the found optimal parameters are in the subsequent 10-day observation
interval that does not intersect with the training interval (Figure 21). The total sum of
one-day results in this case is R = −534, which indicates low efficiency and pronounced
dynamic instability of this management strategy.

4. Discussion

Given studies clearly indicate the theoretical applicability of channel strategies to
the task of speculative management of financial instruments in conditions of market
chaos. However, their practical implementation faces the problem of weak predictability
of changes in the value of market assets, which, combined with low statistical stability of
management in the conditions of market chaos, leads in most cases to negative results.

The obvious consequence of this conclusion is the need to extensively modify channel
strategies to increase their resistance to dynamic variations in the structure of observa-
tion series.

The traditional approach to improving the stability of system functioning in conditions
of uncertainty is based on various adaptive computing schemes. For systems with a high
level of dynamic uncertainty characteristic of market pricing processes, it is natural to
use sequential adaptation on a sliding window of application adjacent to the current time
moment. At the same time, it is possible to use both nonparametric adaptation, which
modifies the structures of the observation model, and traditional parametric adaptation.

It should be noted that the parametric adaptation based on posterior brute force
optimization of the values of the optional parameters, in conditions of strong variability
characteristic of quotation dynamics, may not be feasible. This is due to the rapid growth of
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the time complexity with an increase in the number of parameters. Due to this, it is advisable
to utilize suboptimal optimization with significantly lesser computational demands.

It should be pointed out that any kind of adaptation of decision-making algorithms in
conditions of chaotic dynamics is a very difficult problem. The market information space is
an unstable immersion environment. As shown previously [32], similarity of aftereffects
does not follow from the geometric or correlational similarity of two multidimensional situ-
ations. As a consequence, an effective solution on the previous sliding observation interval
does not guarantee a quality solution on the current observation window. Nevertheless,
the studies of the stability of solutions presented in the article retain hope for the possibility
of creating fast self-organizing systems, for example, based on evolutionary optimization
technologies [33], allowing to increase the stability of channel management.

The main alternative to adaptation is reducing the sensitivity of decision-making
algorithms to variations in the dynamic and statistical characteristics of observation series.
The robustification of forecasting algorithms and management decisions is based on the
search for the best options for the least favorable variants of initial data implementation [34].
However, as already noted, there is no similarity of aftereffects for such observation
segments in the conditions of stochastic chaos. In this case, a uniform decrease in the quality
of management does not follow from a consistent decrease in the quality of estimation and
forecasting algorithms. In other words, the quality of the best solution for the worst case of
the source data under these conditions will not be stable for other parts of the source data.

Nevertheless, this requires numerical validation, and even if the assumption is con-
firmed, it is of interest to use robustification in combination with other methods to increase
the stability of proactive management strategies.

Another possible solution is to switch to multi-expert decision-making systems (MES),
involving both strategies in the management [35]. Such an approach can produce many
possible solutions based on consensus and compromise.

As an example, consider an expert arbitrator who has information about the general
mood of the market. In particular, such a software expert can be implemented as an auto-
matic text analyzer that evaluates market sentiment by identifying the required knowledge
from analytical reports circulating on the web [36]. Based on the decision of the expert,
one of the two channel management strategies is selected, the most consistent with the
expected dynamics of the quotations.

Apparently, the best results of management in chaos should be expected from com-
posite algorithms and multi-expert systems that widely use external add-ons such as
fundamental analysis or the results of technical analysis of alternative markets.

Generalizing the abovementioned conclusions, the following directions of increasing
the stability of management seem to be worthy of consideration:

• Dynamic adaptation of decision-making algorithms with the choice of the best param-
eters on sliding observation windows;

• Robustification, i.e., reduction of the sensitivity of solutions to changes in the dynamic
characteristics of the observed processes;

• Improvement of management based on more flexible computational schemes for
selecting boundaries of a channel or several channels and decision-making algorithms;

• Structural adaptation, for example, based on switching between management strate-
gies as a reaction to changes in the dynamic properties of the system component of the
observation series;

• Self-organization based on artificial intelligence, which independently creates strate-
gies that are not contained in the source code of the management program;

• The use of composite algorithms combining the capabilities of robustification and
adaptation in management decision making;

• The use of external add-ons that carry information exogenous to technical analysis on
expected trends of the considered financial instrument and market mood in general.

The outlined issues constitute the subject of our further research.
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5. Conclusions

Our research strategy is to consistently study the effectiveness and sustainability of
management strategies in the conditions of stochastic chaos and develop proposals for their
improvement. An approximate plan of the forthcoming research is given in the Discussion.

The materials presented in this article are an introduction to the general problem of
management stability in the conditions of market chaos. The choice of primitive channel
management strategies at this stage was due to the need to illustrate the problems that
arise in the process of managing financial assets [37]. All computational experiments
conducted in the article were made using real data obtained by monitoring the currency
exchange market.

As a result of the conducted research, the following conclusions were obtained:

1. CSF and CSB strategies are strict alternatives. Nevertheless, in the absence of prior
information about the expected dynamics of the observed process, both strategies, as
a rule, lead to losses on the same trading intervals;

2. Posterior parametric optimization of both CSF and CSB management strategies has
shown that they can be profitable in almost any observation area. This result is quite
paradoxical, because these strategies are strict alternatives;

3. With a shift of the observation interval equal to one full day, the strategy optimized
on the previous interval becomes losing again. This leads to a fairly obvious con-
clusion about the priority of the problem of management stability in an unstable
immersion environment;

4. Small time shifts of observation series lead to a loss of optimality of the management
algorithm parameters; however, the overall positive result of management is pre-
served in most cases. This means there is feasibility to using computational schemes
with sequential parametric adaptation of the management model;

5. Parametric adaptation based on brute forcing the values of optional parameters pro-
duces an optimal solution. However, the computational load increases exponentially
with the increase in the dimension of the parameter vector. If the time shifts between
the observation intervals on which the model is optimized are small, the complexity
can go beyond the limits even for high-performance computers. This implies the
recommendation to switch to suboptimal computational schemes for adapting the
management model;

6. As a variant of suboptimal adaptation of the management model, we propose to use
algorithms based on evolutionary modeling [36]. These studies have been completed
and are being prepared for publication.
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Abstract: In recent decades, AIDS has been one of the main challenges facing the medical community
around the world. Due to the large human deaths of this disease, researchers have tried to study the
dynamic behaviors of the infectious factor of this disease in the form of mathematical models in addition
to clinical trials. In this paper, we study a new mathematical model in which the dynamics of CD4+

T-cells under the effect of HIV-1 infection are investigated in the context of a generalized fractal-fractional
structure for the first time. The kernel of these new fractal-fractional operators is of the generalized
Mittag-Leffler type. From an analytical point of view, we first derive some results on the existence
theory and then the uniqueness criterion. After that, the stability of the given fractal-fractional system is
reviewed under four different cases. Next, from a numerical point of view, we obtain two numerical
algorithms for approximating the solutions of the system via the Adams-Bashforth method and Newton
polynomials method. We simulate our results via these two algorithms and compare both of them. The
numerical results reveal some stability and a situation of lacking a visible order in the early days of the
disease dynamics when one uses the Newton polynomial.

Keywords: existence; fractal-fractional derivative; HIV-1 infection; Newton polynomial; Adams-Bashforth
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1. Introduction

According to medical definitions and clinical findings and virology, human immun-
odeficiency virus (HIV) is a type of retrovirus that leads to acquired immunodeficiency
syndrome (AIDS) in humans [1]. In fact, CD4+ T-lymphocytes are the largest number of
white blood cells in the human immune system that are attacked by HIV viruses, which
attack CD4+ T-cells and infect them, reducing their number and efficiency. They disrupt
cells. Therefore, this process reduces the resistance of the immune system in the human
body and weakens it [1]. Although the HIV virus infects other cells, it causes the most
damage to T cells by causing the degradation and destruction of CD4+ T-cells. As a result,
the affected person’s body gradually becomes sensitive to various types of infections and
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contaminants and completely loses its immunity. Usually, according to laboratory results, a
healthy person has white blood cells with a normal CD4+ T-lymphocyte count of 800 to
1200/mm3. The decrease in CD4+ T-lymphocyte count may be due to thymus insufficiency
or bone defects. One way to determine whether a person is infected with the virus is
recognized through very small number of CD4+ T-lymphocytes (less than 200/mm3).

Currently, AIDS is one of the most unknown and dangerous diseases of our time.
According to UNAIDS 2017, which is published annually, about 36.7 million people world-
wide are living with HIV, and nearly 1.8 million people have recently been infected with
HIV, and almost one million people worldwide are affected by various complication, and
died of AIDS in 2016. There are even several countries, especially in Africa and some less
developed countries, where up to thirty-five percent of the population between the ages
of fifteen and fifty are infected with the HIV virus [2]. Despite significant advances in the
control of the disease, no vaccine for HIV has yet been found.

In recent decades, many attempts have been made to design, analyze, simulate and
solve mathematical dynamic models, which include the basic rules in the analysis of control
and prevention of the spread of various diseases and infections. In this regard, biology
and engineering are among the most widely used fields for various types of mathematical
modeling, which are particularly popular among researchers. For such a purpose, derivation
operators and differential equations play an important role. To demonstrate such high
efficiency, we can refer to a sample of articles in which various types of mathematical
models are observed, including time delying model of COVID-19 [3], anthrax model for
animals [4], Hepatitis C model [5], memristor chaotic model of circuit [6], Lorenz-Stenflo
hyperchaotic model [7], dynamics of environmental persistence of infections [8], Langevin
model [9], Mump virus [10], Zika virus [11], mosaic disease [12], Computer viruses [13],
thermostat control model [14,15], pantograph model [16,17], canine distemper virus [18],
Lassa fever [19], hybrid model of p-Laplacian operators [20], co-dynamics of COVID-19
and diabetes [21], checmical modeling of cyclohexane [22,23], Navier systems [24], etc.

Designing mathematical models to analyze the dynamics of HIV infection is also
known as a valuable and efficient measure in this regard [25–27]. Usually in almost all
of these dynamic mathematical models, we can see the association between HIV viruses
and non-infected CD4+ T-cells and the effects of a variety of drug therapies and clinical
therapies on reducing and controlling infected cells. Perlson [28] designed and presented
a simple model for primary HIV infection in 1989. This model, which is related to HIV
infection, is important, and many other models have been developed later, which are
inspired by this model. Four years later, Perlson et al. generalized the model and examined
some of the behaviors and characteristics of the new model [29]. They considered the model
by defining four different state functions: virus population, non-infected CD4+ T-cells,
productive infected CD4+ T-cells, and latent infected CD4+ T-cells.

In recent years, some other mathematicians developed the basic integer order models
of HIV infection in the context of the fractional order systems. In [30], Ding et al. introduced
a fractional version of the infection of HIV for CD4+ T-cells and analyzed the non-negative
solutions of this system. Arafa et al. [31] used the generalized Euler technique for his model
to obtain solutions and investigated the impact of changes of viral particles on the blood.
After that, Bulut et al. [32] combined the homotopy and sumudu techniques to staudy
the dynamics of their fractional model of the infection of HIV on CD4+ T-cells. Lichae
et al. [33] extended their fractional HIV model based on the effect of drug therapy and
solved three-compartmental model of CD4+ with the help of LADM (Laplace Adomian
decomposition method). In 2020, Nazir et al. [34] investigated not only existenece theory,
but also stability criteria for the Caputo-Fabrizo HIV model of CD4+ T-cells. Wang et al. [35]
studied the time periodic reaction-diffusion equations for modeling 2-LTR dynamics in
HIV-infected patients.

In 2017, Atangana [36] presented a generalized kind of operators entitled fractal-
fractional operators. This definition used the existing notions of fractional calculus and
fractal calculus with together. These operators are the convolution of the power-law,
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exponential law and generalized Mittag–Leffler law with fractal derivatives. There exist two
components for such fractal-fractional operators: the fractional order and fractal dimension
(order). Fractal-fractional differential equations transfer the order and dimension of every
dynamical system into a rational order one. In fact, we are able to generalize each standard
differential equation to the generalized systems having arbitrary order and dimension of
derivatives. The main goal of such a combination is to analyze a vast range of nonlocal
BVPs or IVPs that possess fractal behaviors. In this direction, a limited researchers obtained
some results in which we see that the generalized fractal-fractional operators give accurate
and more exact simulations for describing mathematical models of real-world phenomena.
Some of new works in this regard are [37–41].

Due to the novelty and efficacy of these new fractal-fractional operators, in this paper,
we aim to design a mathematical model of CD4+ T-cells under the effect of HIV-1 infection
in which derivatives are fractal-fractional operators in the sense of Atangana-Baleanu. It is
notable that in 2021, Ahmad et al. [42] studied the dynamics of HIV primary infection in
the context of a model designed by the fractal-fractional operators. The main contribution
and novelty of our work in comparison to their paper [42] is that we analyze all qualitative
behaviors of such a fractal-fractional system. In other words, we first review the existence
and uniqueness of solutions and further, we complete our study by giving new results
about the stability (Ulam-Hyers-Rassias) of solutions. Also, for the first time, in this paper,
we derive numerical schemes for the fractal-fractional CD4+-HIV-1 model with the help of
the Newton polynomials and by applying some real data, we compare our results with the
Adams-Bashforth simulations. In this direction, we can see some dynamical behaviors of
the solutions in our simulations.

The arrangement of the paper is as follows: we introduce our fractal-fractional model
in Section 2 and describe its parameters and coefficients. The existence results are given in
Section 3 and further, in Section 4, we investigate the uniqueness. The stability criterion
are implemented in Section 5. In the sequel, we derive two numerical schemes. In other
words, in Section 6, the Adams-Bashforth method are done and then, we derive another
algorithm in Section 7 by using the Newton polynomials. We present some simulations
and discussions about both numerical methods in Section 8. We end the paper by giving
conclusions in Section 9.

2. The Structure of the Model for CD4+ T-Cells and HIV-1

In 2006, Wang and Li [1] formulated an integer-order classical mathematical structure
of dynamics of CD4+ T-cells under the HIV-1 infection in three-compartmental model as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T′(s) = θ − qVT− ρT+ ζU,

U′(s) = qVT− (ζ + κ)U,

V′(s) = κNU− ϑV,

(1)

via the initial values T(0) = T0, U(0) = U0, and V(0) = V0, and also the state functions
T(s), U(s), V(s) are an amount of susceptible CD4+ T-cells, an amount of infectious CD4+

T-cells, and the free particles of the infection of the HIV virus in the blood at the time
s ∈ J := [0, S], (S > 0), respectively. Moreover, the parameter N stands for the average
number of infected particles by an existing infected cell, ϑ is the natural rate of death for
the virus, ζ is the return rate of infected cells to susceptible compartment, κ is the rate of
death for infected T-cells, q is the rate of infection T-cells, ρ is the natural rate of death, and
θ shows the supply rate for new T-cells. They considered all parameters as positive values
and T0,U0,V0 ≥ 0.

To upgrade and improve the exact results, inspired by the standard model (1), we
present a mathematical fractal-fractional model on dynamics of CD4+ T-cells under the
effect of HIV-1 infection via the generalized Mittag-Leffler-type kernel (fractal-fractional
CD4+-HIV-1-model) as
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
FFMLD(δ,σ)

0,s T(s) = θ − qV(s)T(s)− ρT(s) + ζU(s),

FFMLD(δ,σ)
0,s U(s) = qV(s)T(s)− (ζ + κ)U(s),

FFMLD(δ,σ)
0,s V(s) = κNU(s)− ϑV(s),

(2)

subject to
T(0) = T0 ≥ 0, U(0) = U0 ≥ 0, V(0) = V0 ≥ 0,

where all assumptions and parameters are similar to above classical model (1). Also,
FFMLD(δ,σ)

0,s is the (δ, σ)-fractal-fractional derivative with the fractional order δ ∈ (0, 1] and
the fractal order σ ∈ (0, 1] via the Mittag-Leffler-type kernel.

In other words, let a continuous map Ψ : (a, b) → [0, ∞) be fractal differentiable of
dimension σ. In this case, the (δ, σ)-fractal-fractional derivative of Ψ of the generalized
Mittag-Leffler-type kernel of order δ in the Riemann-Liouville sense is defined as

FFMLD(δ,σ)
a,s Ψ(s) =

AB(δ)
1 − δ

d
dsσ

∫ s

a
Eδ

[
− δ

1 − δ
(s −w)δ

]
Ψ(w)dw, 0 < δ, σ ≤ 1, (3)

where
dΨ(w)

dwσ
= lim

s→w

Ψ(s)− Ψ(w)

sσ −wσ
,

is the fractal derivative and AB(δ) = 1 − δ +
δ

Γ(δ)
and AB(0) = AB(1) = 1 [36].

Moreover, accordingly, for such a function Ψ, the (δ, σ)-fractal-fractional integral via
the Mittag-Leffler-type kernel is given by

FFMLI (δ,σ)
a,s Ψ(s) =

δσ

AB(δ)Γ(δ)
∫ s

a
wσ−1(s −w)δ−1Ψ(w)dw+

(1 − δ)σsσ−1

AB(δ) Ψ(s), (4)

if it exists, where δ, σ > 0 [36].

3. Existence Property

In this section, the existence property is investigated based on fixed point theory. For
the qualitative analysis, make the Banach space X = M3, where M = C(J,R) with

‖K‖X = ‖
(
T,U,V

)
‖X = max

{
|W(s)| : s ∈ J

}
,

for |W| := |T|+ |U|+ |V|. We reformulate the R.H.S. of the fractal-fractional CD4+-HIV-1-
model (2) as: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Q1
(
s,T(s),U(s),V(s)

)
= θ − qV(s)T(s)− ρT(s) + ζU(s),

Q2
(
s,T(s),U(s),V(s)

)
= qV(s)T(s)− (ζ + κ)U(s),

Q3
(
s,T(s),U(s),V(s)

)
= κNU(s)− ϑV(s).

(5)

In this case, the fractal-fractional CD4+-HIV-1-model (2) is transformed into the
following system ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ABRDδ
0,sT(s) = σsσ−1Q1

(
s,T(s),U(s),V(s)

)
,

ABRDδ
0,sU(s) = σsσ−1Q2

(
s,T(s),U(s),V(s)

)
,

ABRDδ
0,sV(s) = σsσ−1Q3

(
s,T(s),U(s),V(s)

)
.

(6)
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In view of (6), we rewrite the developed tripled-system with the compact IVP which
takes the form ⎧⎨⎩

ABRDδ
0,sK(s) = σsσ−1Q

(
s,K(s)

)
,

K(0) = K0,
(7)

where
K(s) =

(
T(s),U(s),V(s)

)T , K0 =
(
T0,U0,V0

)T , δ, σ ∈ (0, 1], (8)

and

Q
(
s,K(s)

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Q1

(
s,T(s),U(s),V(s)

)
,

Q2
(
s,T(s),U(s),V(s)

)
,

Q3
(
s,T(s),U(s),V(s)

)
, s ∈ J.

(9)

By the definition and by (7), we have

AB(δ)
1 − δ

d
ds

∫ s

0
Eδ

[
− δ

1 − δ
(s −w)δ

]
K(w)dw = σsσ−1Q

(
s,K(s)

)
. (10)

In the sequel, operating the fractal-fractional Atangana-Baleanu integral on (10), we
get

K(s) = K(0) +
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1Q(w,K(w))dw+

(1 − δ)σsσ−1

AB(δ) Q(s,K(s)). (11)

Due to the above compact form of the fractal-fractional integral equation, the extended
representation of it is illustrated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(s) = T0 +
(1 − δ)σsσ−1

AB(δ) Q1(s,T(s),U(s),V(s))

+
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1Q1(w,T(w),U(w),V(w))dw,

U(s) = U0 +
(1 − δ)σsσ−1

AB(δ) Q2(s,T(s),U(s),V(s))

+
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1Q2(w,T(w),U(w),V(w))dw,

V(s) = V0 +
(1 − δ)σsσ−1

AB(δ) Q3(s,T(s),U(s),V(s))

+
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1Q3(w,T(w),U(w),V(w))dw.

(12)

We consider a self-map to derive a fixed-point problem, by defining F : X → X as

F(K(s)) = K(0) +
(1 − δ)σsσ−1

AB(δ) Q(s,K(s))

+
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1Q(w,K(w))dw. (13)

The Leray-Schauder theorem is utilized to prove the existence property in relation to
the fractal-fractional CD4+-HIV-1-model (2).
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Theorem 1. [43] Let X be a Banach space, E ⊂ X a convex closed bounded set, O ⊂ E an open
set, and 0 ∈ O. Then for the continuous and compact map F : Ō → E, either:

(HY1)∃ y ∈ Ō s.t. y = F(y), or
(HY2)∃ y ∈ ∂O and 0 < μ < 1 s.t. y = μF(y).

Theorem 2. Let Q ∈ C(J×X,X). Assume:

(P1) ∃ ϕ ∈ L1(J,R+) and ∃ A ∈ C([0, ∞), (0, ∞)) (A is non-decreasing) s.t. ∀ s ∈ J and
K ∈ X, ∣∣Q(s,K(s))

∣∣ ≤ ϕ(s)A(|K(s)|);
(P2) ∃ ω > 0 s.t.

ω

K0 +
[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
ϕ∗

0 A(ω)

> 1, (14)

with ϕ∗
0 = sups∈J |ϕ(s)|.

Then there is a solution for the fractal-fractional problem (7) and accordingly, for the fractal-
fractional CD4+-HIV-1-model (2) on J.

Proof. First, consider F : X → X which is defined by (13) and assume

Nr =
{
K ∈ X : ‖K‖X ≤ r

}
,

for some r > 0. Clearly, as Q is continuous, thus F is so. From (P1), we get

∣∣F(K(s))
∣∣ ≤ ∣∣K(0)

∣∣+ (1 − δ)σsσ−1

AB(δ)
∣∣Q(s,K(s))

∣∣
+

δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1∣∣Q(w,K(w))

∣∣dw

≤ K0 +
(1 − δ)σsσ−1

AB(δ) ϕ(s)A(|K(s)|)

+
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1 ϕ(w)A(|K(w)|)dw

≤ K0 +
(1 − δ)σSσ−1

AB(δ) ϕ∗
0 A(r) +

δσSδ+σ−1B(δ, σ)

AB(δ)Γ(δ) ϕ∗
0 A(r)

= K0 +
(1 − δ)σSσ−1

AB(δ) ϕ∗
0 A(r) +

δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

ϕ∗
0 A(r),

for K ∈ Nr. Hence

‖FK‖X ≤ K0 +
[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
ϕ∗

0 A(r) < ∞. (15)

Thus F is uniformly bounded on X. Now, take s, v ∈ [0, S] s.t. s < v and K ∈ Nr.
By denoting

sup
(s,K)∈J×Nr

|Q(s,K(s))| = Q∗ < ∞,

we estimate
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∣∣F(K(v))− F(K(s))
∣∣ ≤ ∣∣∣∣∣ (1 − δ)σvσ−1

AB(δ) Q(v,K(v))− (1 − δ)σsσ−1

AB(δ) Q(s,K(s))

+
δσ

AB(δ)Γ(δ)
∫ v

0
wσ−1(v −w)δ−1Q(w,K(w))dw

− δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1Q(w,K(w))dw

∣∣∣∣∣
≤ (1 − δ)σQ∗

AB(δ) (vσ−1 − sσ−1) (16)

+
δσQ∗

AB(δ)Γ(δ)
∣∣∣ ∫ v

0
wσ−1(v −w)δ−1 dw−

∫ s

0
wσ−1(s −w)δ−1 dw

∣∣∣
≤ (1 − δ)σQ∗

AB(δ) (vσ−1 − sσ−1) +
δσQ∗B(δ, σ)

AB(δ)Γ(δ)
[
vδ+σ−1 − sδ+σ−1]

=
(1 − δ)σQ∗

AB(δ) (vσ−1 − sσ−1) +
δσQ∗Γ(σ)

AB(δ)Γ(δ + σ)

[
vδ+σ−1 − sδ+σ−1].

We see that (16) approaches to 0 independent of K, as v → s. Consequently

‖F(K(v))− F(K(s))‖X → 0,

when v → s. This gives the equicontinuity of F, and accordingly the compactness of F on
Nr by the Arzelá–Ascoli thoerem. Since all conditions of Theorem 1 are fulfilled on F, we
have one of (HY1) or (HY2). From (P2), we set

Φ :=
{
K ∈ X : ‖K‖X < ω

}
,

for some ω > 0 s.t.

K0 +
[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
ϕ∗

0 A(ω) < ω.

From (P1) and (15), we have

‖FK‖X ≤ K0 +
[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
ϕ∗

0 A(‖K‖X). (17)

Suppose that there are K ∈ ∂Φ and 0 < μ < 1 s.t. K = μF(K). Then by (17), we write

ω = ‖K‖X = μ‖FK‖X < K0 +
[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
ϕ∗

0 A(‖K‖X)

< K0 +
[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
ϕ∗

0 A(ω) < ω,

which cannot be held. Therefore, (HY2) does not hold and F possesses a fixed–point
in Φ̄ by Theorem 1. This confirms the existence of a solution to the fractal-fractional
CD4+-HIV-1-model (2).
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4. Uniqueness Property

Here, on the fractal-fractional CD4+-HIV-1-model (2), we investigate the Lipschitz
property in the first step and further, the uniqueness property.

Lemma 1. Consider T,U,V,T∗,U∗,V∗ ∈ M := C(J,R), and let

(C1) ‖T‖ ≤ β1, ‖U‖ ≤ β2, ‖V‖ ≤ β3 for some constants β1, β2, β3 > 0.

Then the kernels Q1,Q2,Q3 defined in (5) are fulfilled the Lipschitz property with constants
α1, α2, α3 > 0 w.r.t. the relevant components, where

α1 = ρ + qβ3, α2 = ζ + κ, α3 = ϑ. (18)

Proof. For Q1, we take T,T∗ ∈ M := C(J,R) arbitrarily, and we have

‖Q1
(
s,T(s),U(s),V(s)

)
−Q1

(
s,T∗(s),U(s),V(s)

)
‖

=
∥∥(θ − qV(s)T(s)− ρT(s) + ζU(s)

)
−
(
θ − qV(s)T∗(s)− ρT∗(s) + ζU(s)

)∥∥
≤

[
ρ + q‖V(s)‖

]
‖T(s)−T∗(s)‖

≤
[
ρ + qβ3

]
‖T(s)−T∗(s)‖

= α1‖T(s)−T∗(s)‖.

From the above, we find out that Q1 is Lipschitz w.r.t. T under the constant α1 > 0.
For Q2, we choose two arbitrary elements U,U∗ ∈ M := C(J,R), and estimate

‖Q2
(
s,T(s),U(s),V(s)

)
−Q2

(
s,T(s),U∗(s),V(s)

)
‖

=
∥∥(qV(s)T(s)− (ζ + κ)U(s)

)
−
(
qV(s)T(s)− (ζ + κ)U∗(s)

)∥∥
≤

[
ζ + κ

]
‖U(s)−U∗(s)‖

= α2‖U(s)−U∗(s)‖.

The above inequality means that Q2 is Lipschitz w.r.t. U under the constant α2 > 0.
Finally, for both arbitrary elemets V,V∗ ∈ M := C(J,R), we have

‖Q3
(
s,T(s),U(s),V(s)

)
−Q3

(
s,T(s),U(s),V∗(s)

)
‖

=
∥∥(κNU(s)− ϑV(s)

)
−
(
κNU(s)− ϑV∗(s)

)∥∥
≤ ϑ‖V(s)−V∗(s)‖

= α3‖V(s)−V∗(s)‖.

This confirms that Q3 is Lipschitz w.r.t. V under the constant α3 > 0. Therefore kernel
functions Q1,Q2,Q3 are Lipschitze w.r.t. under the constants α1, α2, α3 > 0, respectively.

Now, by invoking the above lemma, we are able to prove the uniqueness property for
solutions of the fractal-fractional system (2).
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Theorem 3. Consider (C1) to be held. Then the fractal-fractional CD4+-HIV-1-model (2) possesses
exactly one solution if

[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
αj < 1, (19)

for j ∈ {1, 2, 3}, and the Lipschitz constants αj > 0 introduced by (18).

Proof. To prove the desired result, we consider the contrary of the conclusion of theorem.
That is, consider the existence of another solution for the fractal-fractional CD4+-HIV-1-
model (2), namely

(
T∗(s),U∗(s),V∗(s)

)
under the initial conditions(

T∗(0) = T0,U∗(0) = U0,V∗(0) = V0
)
.

From (12), we have

T∗(s) = T0 +
(1 − δ)σsσ−1

AB(δ) Q1(s,T∗(s),U∗(s),V∗(s))

+
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1Q1(w,T∗(w),U∗(w),V∗(w))dw,

U∗(s) = U0 +
(1 − δ)σsσ−1

AB(δ) Q2(s,T∗(s),U∗(s),V∗(s))

+
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1Q2(w,T∗(w),U∗(w),V∗(w))dw,

and

V∗(s) = V0 +
(1 − δ)σsσ−1

AB(δ) Q3(s,T∗(s),U∗(s),V∗(s))

+
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1Q3(w,T∗(w),U∗(w),V∗(w))dw.

In this case, we estimate

|T(s)−T∗(s)| ≤ (1 − δ)σsσ−1

AB(δ)
∣∣∣Q1(s,T(s),U(s),V(s))−Q1(s,T∗(s),U∗(s),V∗(s))

∣∣∣
+

δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1

×
∣∣∣Q1(w,T(w),U(w),V(w))−Q1(w,T∗(w),U∗(w),V∗(w))

∣∣∣dw

≤ (1 − δ)σsσ−1

AB(δ) α1‖T−T∗‖+ δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1α1‖T−T∗‖ dw

≤
[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
α1‖T−T∗‖,

and so (
1 −

[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
α1

)
‖T−T∗‖ ≤ 0.
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From (19), we know that the above inequality holds if ‖T− T∗‖ = 0, or T = T∗. In
the similar manner, from

‖U−U∗‖ ≤
[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
α2‖U−U∗‖,

we obtain (
1 −

[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
α2

)
‖U−U∗‖ ≤ 0,

and this gives ‖U−U∗‖ = 0 or U = U∗. Further,

‖V−V∗‖ ≤
[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
α3‖V−V∗‖,

yields (
1 −

[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
α3

)
‖V−V∗‖ ≤ 0.

Hence V = V∗. In consequence,(
T(s),U(s),V(s)

)
=

(
T∗(s),U∗(s),V∗(s)

)
.

The latter equality confirms that the fractal-fractional CD4+-HIV-1-model (2) possesses
a unique solution.

5. Ulam-Hyers-Rassias Stability

In this part, the stability result of solutions in the context of four types of the Ulam–
Hyers, Ulam–Hyers–Rassias and their generalizations are proved on the tripled system of
the fractal-fractional CD4+-HIV-1-model (2).

Definition 1. The fractal-fractional CD4+-HIV-1-model (2) is Ulam–Hyers stable if
∃ aQ1 , aQ2 , aQ3 ∈ R+ such that ∀ rj > 0, j = 1, 2, 3, and ∀

(
T∗,U∗,V∗) ∈ X satisfying⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣∣∣FFMLD(δ,σ)
0,s T∗(s)−Q1

(
s,T∗(s),U∗(s),V∗(s)

)∣∣∣ < r1,∣∣∣FFMLD(δ,σ)
0,s U∗(s)−Q2

(
s,T∗(s),U∗(s),V∗(s)

)∣∣∣ < r2,∣∣∣FFMLD(δ,σ)
0,s V∗(s)−Q3

(
s,T∗(s),U∗(s),V∗(s)

)∣∣∣ < r3,

(20)

∃
(
T,U,V

)
∈ X satisfying the fractal-fractional CD4+-HIV-1-model (2) s.t.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣∣T∗(s)−T(s)
∣∣ ≤ aQ1 r1,∣∣U∗(s)−U(s)
∣∣ ≤ aQ2 r2,∣∣V∗(s)−V(s)
∣∣ ≤ aQ3 r3.

Definition 2. The fractal-fractional CD4+-HIV-1-model (2) is generalized Ulam–Hyers stable
if ∃ aQj

∈ C(R+,R+), (j ∈ {1, 2, 3}) with aQj
(0) = 0 s.t. ∀ rj > 0 and ∀

(
T∗,U∗,V∗) ∈ X
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fulfilling (20), there is
(
T,U,V

)
∈ X as a solution of the given fractal-fractional CD4+-HIV-1-

model (2) s.t. ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣∣T∗(s)−T(s)
∣∣ ≤ aQ1(r1),∣∣U∗(s)−U(s)
∣∣ ≤ aQ2(r2),∣∣V∗(s)−V(s)
∣∣ ≤ aQ3(r3).

Remark 1.
(
T∗,U∗,V∗) ∈ X is a solution for (20) iff ∃ z1, z2, z3 ∈ C([0, S],R) (each of them

depend on T∗,U∗,V∗, respectively) s.t. ∀ s ∈ J,

(i) |zj(s)| < rj;
(ii) We have ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

FFMLD(δ,σ)
0,s T∗(s) = Q1

(
s,T∗(s),U∗(s),V∗(s)

)
+ z1(s),

FFMLD(δ,σ)
0,s U∗(s) = Q2

(
s,T∗(s),U∗(s),V∗(s)

)
+ z2(s),

FFMLD(δ,σ)
0,s V∗(s) = Q3

(
s,T∗(s),U∗(s),V∗(s)

)
+ z3(s).

Definition 3. The fractal-fractional CD4+-HIV-1-model (2) is Ulam–Hyers–Rassias stable w.r.t.
functions h̄j, (j ∈ {1, 2, 3}) if ∃ 0 < a(Qj ,h̄j) ∈ R s.t. ∀ rj > 0 and ∀

(
T∗,U∗,V∗) ∈ X fulfilling⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣∣∣FFMLD(δ,σ)
0,s T∗(s)−Q1

(
s,T∗(s),U∗(s),V∗(s)

)∣∣∣ < r1h̄1(s),∣∣∣FFMLD(δ,σ)
0,s U∗(s)−Q2

(
s,T∗(s),U∗(s),V∗(s)

)∣∣∣ < r2h̄2(s),∣∣∣FFMLD(δ,σ)
0,s V∗(s)−Q3

(
s,T∗(s),U∗(s),V∗(s)

)∣∣∣ < r3h̄3(s),

(21)

∃
(
T,U,V

)
∈ X as a solution of the fractal-fractional CD4+-HIV-1-model (2) s.t.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣∣T∗(s)−T(s)
∣∣ ≤ r1a(Q1,h̄1)

h̄1(s), ∀ s ∈ J,∣∣U∗(s)−U(s)
∣∣ ≤ r2a(Q2,h̄2)

h̄2(s), ∀ s ∈ J,∣∣V∗(s)−V(s)
∣∣ ≤ r3a(Q3,h̄3)

h̄3(s), ∀ s ∈ J,

in which h̄1, h̄2, h̄3 ∈ C([0, S],R+).

Definition 4. The fractal-fractional CD4+-HIV-1-model (2) is generalized Ulam–Hyers–Rassias
stable w.r.t. functions h̄j if ∃ 0 < a(Qj ,h̄j) ∈ R s.t. ∀

(
T∗,U∗,V∗) ∈ X satisfying⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣∣∣FFMLD(δ,σ)
0,s T∗(s)−Q1

(
s,T∗(s),U∗(s),V∗(s)

)∣∣∣ < h̄1(s),∣∣∣FFMLD(δ,σ)
0,s U∗(s)−Q2

(
s,T∗(s),U∗(s),V∗(s)

)∣∣∣ < h̄2(s),∣∣∣FFMLD(δ,σ)
0,s V∗(s)−Q3

(
s,T∗(s),U∗(s),V∗(s)

)∣∣∣ < h̄3(s),

∃
(
T,U,V

)
∈ X as a solution of the fractal-fractional CD4+-HIV-1-model (2) s.t.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣∣T∗(s)−T(s)
∣∣ ≤ a(Q1,h̄1)

h̄1(s),∣∣U∗(s)−U(s)
∣∣ ≤ a(Q2,h̄2)

h̄2(s),∣∣V∗(s)−V(s)
∣∣ ≤ a(Q3,h̄3)

h̄3(s).
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If we take h̄j(s) = 1, in this case Definition 3 yields the Ulam-Hyers criterion for the
stability of solutions.

Remark 2.
(
T∗,U∗,V∗) ∈ X is a solution for (21) iff ∃ z1, z2, z3 ∈ C([0, S],R) (each of them

depend on T∗,U∗,V∗, respectively) s.t. ∀ s ∈ J,

(i) |zj(s)| < rj h̄j(s);
(ii) We have ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

FFMLD(δ,σ)
0,s T∗(s) = Q1

(
s,T∗(s),U∗(s),V∗(s)

)
+ z1(s),

FFMLD(δ,σ)
0,s U∗(s) = Q2

(
s,T∗(s),U∗(s),V∗(s)

)
+ z2(s),

FFMLD(δ,σ)
0,s V∗(s) = Q3

(
s,T∗(s),U∗(s),V∗(s)

)
+ z3(s).

The following lemmas are useful for our main theorems.

Lemma 2. For each r1, r2, r3 > 0, suppose that (T∗,U∗,V∗) ∈ X is considered as a solution
of (20). Then the functions T∗,U∗,V∗ ∈ M fulfill the inequalities

∣∣∣∣∣T∗(s)−
(
T0 +

(1 − δ)σsσ−1

AB(δ) Q1(s,T∗(s),U∗(s),V∗(s)) +
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1

×Q1(w,T∗(w),U∗(w),V∗(w))dw
)∣∣∣∣∣ ≤ [ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
r1, (22)

and

∣∣∣∣∣U∗(s)−
(
U0 +

(1 − δ)σsσ−1

AB(δ) Q2(s,T∗(s),U∗(s),V∗(s)) +
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1

×Q2(w,T∗(w),U∗(w),V∗(w))dw
)∣∣∣∣∣ ≤ [ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
r2, (23)

and

∣∣∣∣∣V∗(s)−
(
V0 +

(1 − δ)σsσ−1

AB(δ) Q3(s,T∗(s),U∗(s),V∗(s)) +
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1

×Q3(w,T∗(w),U∗(w),V∗(w))dw
)∣∣∣∣∣ ≤ [ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
r3. (24)

Proof. Let r1 > 0 be arbitrary. Since T∗ ∈ M satisfies∣∣∣FFMLD(δ,σ)
0,s T∗(s)−Q1

(
s,T∗(s),U∗(s),V∗(s)

)∣∣∣ < r1,

so, by Remark 1, we are allowed to take a function z1(s) s.t.

FFMLD(δ,σ)
0,s T∗(s) = Q1

(
s,T∗(s),U∗(s),V∗(s)

)
+ z1(s),
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and |z1(s)| ≤ r1. Clearly,

T∗(s) = T0 +
(1 − δ)σsσ−1

AB(δ)
[
Q1(s,T∗(s),U∗(s),V∗(s)) + z1(s)

]

+
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1

[
Q1(w,T∗(w),U∗(w),V∗(w)) + z1(w)

]
dw.

In this case, we estimate∣∣∣∣∣T∗(s)−
(
T0 +

(1 − δ)σsσ−1

AB(δ) Q1(s,T∗(s),U∗(s),V∗(s))

+
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1Q1(w,T∗(w),U∗(w),V∗(w))dw

)∣∣∣∣∣
≤ (1 − δ)σsσ−1

AB(δ) |z1(s)|+
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1|z1(w)| dw

≤ (1 − δ)σSσ−1

AB(δ) r1 +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

r1

=
[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
r1.

This states that the inequality (22) is fulfilled. Similarly, we can obtain the inequalities
(23) and (24).

To prove the next result, we regard the following:

(C2) ∃ increasing mappings h̄j ∈ C([0, S],R+), (j ∈ {1, 2, 3}) and ∃ Δh̄j
> 0 provided that

FFMLI (δ,σ)
0,s h̄j(s) < Δh̄j

h̄j(s), (j ∈ {1, 2, 3}), ∀ s ∈ J. (25)

Lemma 3. Let (C2) to be held. For each r1, r2, r3 > 0, suppose that (T∗,U∗,V∗) ∈ X is considered
as a solution of (21). Then the functions T∗,U∗,V∗ ∈ M fulfill the inequalities∣∣∣T∗(s)−

(
T0 +

FFMLI (δ,σ)
0,s Q1(s,T∗(s),U∗(s),V∗(s))

)∣∣∣ ≤ r1Δh̄1 h̄1(s), (26)

∣∣∣U∗(s)−
(
U0 +

FFMLI (δ,σ)
0,s Q2(s,T∗(s),U∗(s),V∗(s))

)∣∣∣ ≤ r2Δh̄2 h̄2(s), (27)

∣∣∣V∗(s)−
(
V0 +

FFMLI (δ,σ)
0,s Q3(s,T∗(s),U∗(s),V∗(s))

)∣∣∣ ≤ r3Δh̄3 h̄3(s). (28)

Proof. Let r1 > 0. Since T∗ ∈ M satisfies∣∣∣FFMLD(δ,σ)
0,s T∗(s)−Q1

(
s,T∗(s),U∗(s),V∗(s)

)∣∣∣ < r1h̄1(s),

thus, from Remark 2, we are allowed to take a function z1(s) s.t.

FFMLD(δ,σ)
0,s T∗(s) = Q1

(
s,T∗(s),U∗(s),V∗(s)

)
+ z1(s),
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and |z1(s)| ≤ r1h̄1(s). Evidently,

T∗(s) = T0 +
(1 − δ)σsσ−1

AB(δ)
[
Q1(s,T∗(s),U∗(s),V∗(s)) + z1(s)

]

+
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1

[
Q1(w,T∗(w),U∗(w),V∗(w)) + z1(w)

]
dw.

Then, we estimate∣∣∣T∗(s)−
(
T0 +

FFMLI (δ,σ)
0,s Q1(s,T∗(s),U∗(s),V∗(s))

)∣∣∣ =
∣∣∣∣∣T∗(s)−

(
T0 +

(1 − δ)σsσ−1

AB(δ) Q1(s,T∗(s),U∗(s),V∗(s))

+
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1Q1(w,T∗(w),U∗(w),V∗(w))dw

)∣∣∣∣∣
≤ (1 − δ)σsσ−1

AB(δ) |z1(s)|+
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1|z1(w)| dw

= FFMLI (δ,σ)
0,s |z1(s)|

≤ FFMLI (δ,σ)
0,s r1h̄1(s)

≤ r1Δh̄1 h̄1(s).

Similarly, we can obtain the remaining inequalities.

The Ulam–Hyers stability is checked about the fractal-fractional CD4+-HIV-1-model (2).

Theorem 4. Let (C1) be fulfilled. Then the fractal-fractional CD4+-HIV-1-model (2) is Ulam–
Hyers stable on J := [0, S] and also is generalized Ulam–Hyers stable s.t.

[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
αj < 1, j ∈ {1, 2, 3},

in which α1, α2, α3 > 0 are given by (18).

Proof. Let r1 > 0 and T∗ ∈ M be an arbitrary solution of (20). Also, from Theorem 3, we
assume T ∈ M as a unique solution of the fractal-fractional CD4+-HIV-1-model (2). Then
T(s) is defined as

T(s) = T0 +
(1 − δ)σsσ−1

AB(δ) Q1(s,T(s),U(s),V(s))

+
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1Q1(w,T(w),U(w),V(w))dw.

Therefore, by Lemma 2 and with the help of the triangle inequality, we estimate

∣∣T∗(s)−T(s)
∣∣ ≤ ∣∣∣T∗(s)−T0 − (1 − δ)σsσ−1

AB(δ) Q1(s,T(s),U(s),V(s))
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− δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1Q1(w,T(w),U(w),V(w))dw

∣∣∣
≤

∣∣∣∣∣T∗(s)−
(
T0 +

(1 − δ)σsσ−1

AB(δ) Q1(s,T∗(s),U∗(s),V∗(s))

+
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1Q1(w,T∗(w),U∗(w),V∗(w))dw

)∣∣∣∣∣
+

(1 − δ)σsσ−1

AB(δ)
∣∣Q1(s,T∗(s),U∗(s),V∗(s))−Q1(s,T(s),U(s),V(s))

∣∣
+

δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1∣∣Q1(w,T∗(w),U∗(w),V∗(w))−Q1(w,T(w),U(w),V(w))

∣∣dw

≤
[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
r1 +

(1 − δ)σSσ−1

AB(δ) α1‖T∗ −T‖

+
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

α1‖T∗ −T‖

≤
[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
r1 +

[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
α1‖T−T∗‖.

Hence,

‖T∗ −T‖ ≤

[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
r1

1 −
[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
α1

.

We set aQ1 =

[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
1 −

[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
α1

. In this case, ‖T∗ − T‖ ≤

aQ1 r1.
Similarly, we obtain

‖U∗ −U‖ ≤ aQ2 r2,

‖V∗ −V‖ ≤ aQ3 r3,

where

aQj
=

[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
1 −

[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
αj

, (j ∈ {2, 3}).

Hence, the Ulam–Hyers stability of the fractal-fractional CD4+-HIV-1-model (2) is
fulfilled. On the other hand, if we take

aQj
(rj) =

[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
rj

1 −
[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
αj

, (j ∈ {1, 2, 3}),

then aQj
(0) = 0, and the generalized Ulam–Hyers stability is simply proved.
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The Ulam–Hyers-Rassias stability is checked about the fractal-fractional CD4+-HIV-1-
model (2) in the next theorem.

Theorem 5. The hypotheses (C1) and (C2) are considered to be held. Then the given fractal-
fractional CD4+-HIV-1-model (2) is the Ulam–Hyers–Rassias and generalized Ulam–Hyers–
Rassias stable.

Proof. Let r1 > 0, and T∗ ∈ M satisfying (21). By Theorem 3, let T ∈ M be the unique
solution of the given fractal-fractional CD4+-HIV-1-model (2). Then T(s) becomes

T(s) = T0 +
(1 − δ)σsσ−1

AB(δ) Q1(s,T(s),U(s),V(s))

+
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1Q1(w,T(w),U(w),V(w))dw.

Therefore, by Lemma 3 and with the help of the triangle inequality, we estimate

∣∣T∗(s)−T(s)
∣∣ ≤ ∣∣∣T∗(s)−T0 − (1 − δ)σsσ−1

AB(δ) Q1(s,T(s),U(s),V(s))

− δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1Q1(w,T(w),U(w),V(w))dw

∣∣∣
≤

∣∣∣∣∣T∗(s)−
(
T0 +

(1 − δ)σsσ−1

AB(δ) Q1(s,T∗(s),U∗(s),V∗(s))

+
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1Q1(w,T∗(w),U∗(w),V∗(w))dw

)∣∣∣∣∣
+

(1 − δ)σsσ−1

AB(δ)
∣∣Q1(s,T∗(s),U∗(s),V∗(s))−Q1(s,T(s),U(s),V(s))

∣∣
+

δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1∣∣Q1(w,T∗(w),U∗(w),V∗(w))−Q1(w,T(w),U(w),V(w))

∣∣dw

≤
∣∣∣T∗(s)−

(
T0 +

FFMLI (δ,σ)
0,s Q1(s,T∗(s),U∗(s),V∗(s))

)∣∣∣
+

(1 − δ)σsσ−1

AB(δ)
∣∣Q1(s,T∗(s),U∗(s),V∗(s))−Q1(s,T(s),U(s),V(s))

∣∣
+

δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1∣∣Q1(w,T∗(w),U∗(w),V∗(w))−Q1(w,T(w),U(w),V(w))

∣∣dw

≤ r1Δh̄1 h̄1(s) +
(1 − δ)σSσ−1

AB(δ) α1‖T∗ −T‖+ δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

α1‖T∗ −T‖

≤ r1Δh̄1 h̄1(s) +
[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
α1‖T−T∗‖.
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Accordingly, it gives

‖T∗ −T‖ ≤ r1Δh̄1 h̄1(s)

1 −
[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
α1

.

Set

a(Q1,h̄1)
=

Δh̄1

1 −
[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
α1

.

Then ‖T∗ −T‖ ≤ r1a(Q1,h̄1)
h̄1(s). Similarly,

‖U∗ −U‖ ≤ r2a(Q2,h̄2)
h̄2(s),

‖V∗ −V‖ ≤ r3a(Q3,h̄3)
h̄3(s),

where

a(Qj ,h̄j) =
Δh̄j

1 −
[ (1 − δ)σSσ−1

AB(δ) +
δσSδ+σ−1Γ(σ)
AB(δ)Γ(δ + σ)

]
αj

, (j ∈ {2, 3}).

In consequence, the fractal-fractional CD4+-HIV-1-model (2) is stable in the context of
the Ulam–Hyers–Rassias criterion. Along with this, by defining rj = 1, (j ∈ {1, 2, 3}), the
mentioned fractal-fractional CD4+-HIV-1-model (2) is generalized Ulam–Hyers–Rassias
stable.

6. Numerical Scheme via Adams-Bashforth Method

In the present section of the paper, we aim to derive a numerical algorithm for the
fractal-fractional CD4+-HIV-1-model (2). To do this, we apply a technique based on two-
step Lagrange polynomials entitled fractional Adams-Bashforth method. We re-define
fractal-fractional integral equations (12) at sk+1. In fact, we discretize these integral equa-
tions (12) for s = sk+1 as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(sk+1) = T0 +
(1 − δ)σsσ−1

k
AB(δ) Q1(sk,T(sk),U(sk),V(sk))

+
δσ

AB(δ)Γ(δ)
∫ sk+1

0
wσ−1(sk+1 −w)δ−1Q1(w,T(w),U(w),V(w))dw,

U(sk+1) = U0 +
(1 − δ)σsσ−1

k
AB(δ) Q2(sk,T(sk),U(sk),V(sk))

+
δσ

AB(δ)Γ(δ)
∫ sk+1

0
wσ−1(sk+1 −w)δ−1Q2(w,T(w),U(w),V(w))dw,

V(sk+1) = V0 +
(1 − δ)σsσ−1

k
AB(δ) Q3(sk,T(sk),U(sk),V(sk))

+
δσ

AB(δ)Γ(δ)
∫ sk+1

0
wσ−1(sk+1 −w)δ−1Q3(w,T(w),U(w),V(w))dw.
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The approximation of above integrals are formulated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(sk+1) = T0 +
(1 − δ)σsσ−1

k
AB(δ) Q1(sk,T(sk),U(sk),V(sk))

+
δσ

AB(δ)Γ(δ)
k

∑
�=1

∫ s�+1

s�
wσ−1(sk+1 −w)δ−1Q1(w,T(w),U(w),V(w))dw,

U(sk+1) = U0 +
(1 − δ)σsσ−1

k
AB(δ) Q2(sk,T(sk),U(sk),V(sk))

+
δσ

AB(δ)Γ(δ)
k

∑
�=1

∫ s�+1

s�
wσ−1(sk+1 −w)δ−1Q2(w,T(w),U(w),V(w))dw,

V(sk+1) = V0 +
(1 − δ)σsσ−1

k
AB(δ) Q3(sk,T(sk),U(sk),V(sk))

+
δσ

AB(δ)Γ(δ)
k

∑
�=1

∫ s�+1

s�
wσ−1(sk+1 −w)δ−1Q3(w,T(w),U(w),V(w))dw.

Next, we approximate three functions wσ−1Qj(w,T(w),U(w),V(w)), j = 1, 2, 3, on
the interval [s�, s�+1] by applying two-step Lagrange interpolation polynomials under the
step size h = s� − s�−1. By straighforward computations, we obtain algorithms which yield
the numerical solutions to the fractal-fractional CD4+-HIV-1-model (2) as

Tk+1 = T0 +
(1 − δ)σsσ−1

k
AB(δ) Q1(sk,Tk,Uk,Vk) +

σhδ

AB(δ)Γ(δ + 2)

×
k

∑
�=1

[
sσ−1
� Q1

(
s�,T�,U�,V�

)
Ŷ1(k, �)− sσ−1

�−1Q1
(
s�−1,T�−1,U�−1,V�−1

)
Ŷ2(k, �)

]
, (29)

Uk+1 = U0 +
(1 − δ)σsσ−1

k
AB(δ) Q2(sk,Tk,Uk,Vk) +

σhδ

AB(δ)Γ(δ + 2)

×
k

∑
�=1

[
sσ−1
� Q2

(
s�,T�,U�,V�

)
Ŷ1(k, �)− sσ−1

�−1Q2
(
s�−1,T�−1,U�−1,V�−1

)
Ŷ2(k, �)

]
, (30)

Vk+1 = V0 +
(1 − δ)σsσ−1

k
AB(δ) Q3(sk,Tk,Uk,Vk) +

σhδ

AB(δ)Γ(δ + 2)

×
k

∑
�=1

[
sσ−1
� Q3

(
s�,T�,U�,V�

)
Ŷ1(k, �)− sσ−1

�−1Q3
(
s�−1,T�−1,U�−1,V�−1

)
Ŷ2(k, �)

]
, (31)

where
Ŷ1(k, �) = (k + 1 − �)δ(k − �+ 2 + δ)− (k − �)δ(k − �+ 2 + 2δ),

and
Ŷ2(k, �) = (k + 1 − �)δ+1 − (k − �)δ(k − �+ 1 + δ).
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7. Numerical Scheme via Newton Polynomials Method

In this section, we produce a new numerical scheme for solutions of our fractal-
fractional CD4+-HIV-1-model (2) which was introduced by Atangana and Araz in the
book [44] in 2021. To do this, we again use the compact form of IVP (7) with the condi-
tions (8) and (9). In this case, we have

K(s)−K(0) =
δσ

AB(δ)Γ(δ)
∫ s

0
wσ−1(s −w)δ−1Q(w,K(w))dw+

(1 − δ)σsσ−1

AB(δ) Q(s,K(s)).

Set Q∗(s,K(s)) = σsσ−1Q(s,K(s)). Then

K(s)−K(0) =
δ

AB(δ)Γ(δ)
∫ s

0
(s −w)δ−1Q∗(w,K(w))dw+

(1 − δ)

AB(δ)Q
∗(s,K(s)).

By discretizing the above equation at s = sk+1 = (k + 1)h, we get

K(sk+1)−K(0) =
δ

AB(δ)Γ(δ)
∫ sk+1

0
(sk+1 −w)δ−1Q∗(w,K(w))dw+

(1 − δ)

AB(δ)Q
∗(sk,K(sk)).

If we approximate the above integral, then it becomes

K(sk+1) = K0 +
(1 − δ)

AB(δ)Q
∗(sk,K(sk))

+
δ

AB(δ)Γ(δ)
k

∑
�=2

∫ s�+1

s�
(sk+1 −w)δ−1Q∗(w,K(w))dw. (32)

In this step, the function Q∗(s,K(s)) is approximated by the Newton polynomial as

P∗
k (w) = Q∗(sk−2,K(sk−2)) +

Q∗(sk−1,K(sk−1))−Q∗(sk−2,K(sk−2))

h
(w− sk−2) (33)

+
Q∗(sk,K(sk))− 2Q∗(sk−1,K(sk−1)) +Q∗(sk−2,K(sk−2))

2h2 (w− sk−2)(w− sk−1).

Substitute (33) into (32):

Kk+1 = K0 +
(1 − δ)

AB(δ)Q
∗(sk,K(sk)) +

δ

AB(δ)Γ(δ)
k

∑
�=2

∫ s�+1

s�

[
Q∗(s�−2,K�−2)

+
Q∗(s�−1,K�−1)−Q∗(s�−2,K�−2)

h
(w− s�−2)

+
Q∗(s�,K�)− 2Q∗(s�−1,K�−1) +Q∗(s�−2,K�−2)

2h2 (w− s�−2)(w− s�−1)
]

× (sk+1 −w)δ−1 dw.

We simplify the above relations, and we get

Kk+1 = K0 +
(1 − δ)

AB(δ)Q
∗(sk,K(sk))

+
δ

AB(δ)Γ(δ)
k

∑
�=2

[ ∫ s�+1

s�
Q∗(s�−2,K�−2)(sk+1 −w)δ−1 dw
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+
∫ s�+1

s�

Q∗(s�−1,K�−1)−Q∗(s�−2,K�−2)

h
(w− s�−2)(sk+1 −w)δ−1 dw

+
∫ s�+1

s�

Q∗(s�,K�)− 2Q∗(s�−1,K�−1) +Q∗(s�−2,K�−2)

2h2 (w− s�−2)(w− s�−1)

× (sk+1 −w)δ−1 dw
]
.

In consequence,

Kk+1 = K0 +
(1 − δ)

AB(δ)Q
∗(sk,K(sk))

+
δ

AB(δ)Γ(δ)
k

∑
�=2

Q∗(s�−2,K�−2)
∫ s�+1

s�
(sk+1 −w)δ−1 dw

+
δ

AB(δ)Γ(δ)
k

∑
�=2

Q∗(s�−1,K�−1)−Q∗(s�−2,K�−2)

h

∫ s�+1

s�
(w− s�−2)(sk+1 −w)δ−1 dw

+
δ

AB(δ)Γ(δ)
k

∑
�=2

Q∗(s�,K�)− 2Q∗(s�−1,K�−1) +Q∗(s�−2,K�−2)

2h2

×
∫ s�+1

s�
(w− s�−2)(w− s�−1)× (sk+1 −w)δ−1 dw

]
. (34)

On the other hand, we compute above three integrals separately, and we get

∫ s�+1

s�
(sk+1 −w)δ−1 dw =

hδ

δ

[
(k − �+ 1)δ − (k − �)δ

]
, (35)

and ∫ s�+1

s�
(w− s�−2)(sk+1 −w)δ−1 dw =

hδ+1

δ(δ + 1)
[
(k − �+ 1)δ(k − �+ 3 + 2δ)

− (k − �+ 1)δ(k − �+ 3 + 3δ)
]
, (36)

and

∫ s�+1

s�
(w− s�−2)(w− s�−1)(sk+1 −w)δ−1 dw =

hδ+2

δ(δ + 1)(δ + 2)

(
(k − �+ 1)δ

[
2(k − �)2

+ (3δ + 10)(k − �) + 2δ2 + 9δ + 12
]
− (k − �)δ

[
2(k − �)2

+ (5δ + 10)(k − �) + 6δ2 + 18δ + 12
])

. (37)

By putting (35)–(37) in (34), we obtain

Kk+1 = K0 +
(1 − δ)

AB(δ)Q
∗(sk,K(sk))

+
δhδ

AB(δ)Γ(δ + 1)

k

∑
�=2

Q∗(s�−2,K�−2)
[
(k − �+ 1)δ − (k − �)δ

]
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+
δhδ

AB(δ)Γ(δ + 2)

k

∑
�=2

[
Q∗(s�−1,K�−1)−Q∗(s�−2,K�−2)

]
×
[
(k − �+ 1)δ(k − �+ 3 + 2δ)− (k − �+ 1)δ(k − �+ 3 + 3δ)

]
+

δhδ

2AB(δ)Γ(δ + 3)

k

∑
�=2

[
Q∗(s�,K�)− 2Q∗(s�−1,K�−1) +Q∗(s�−2,K�−2)

]

×
[
(k − �+ 1)δ

[
2(k − �)2 + (3δ + 10)(k − �) + 2δ2 + 9δ + 12

]
− (k − �)δ

[
2(k − �)2

+ (5δ + 10)(k − �) + 6δ2 + 18δ + 12
]]

. (38)

Lastly, we replace Q∗(s,K(s)) = σsσ−1Q(s,K(s)) in (38), and we get

Kk+1 = K0 +
(1 − δ)σsσ−1

k
AB(δ) Q(sk,K(sk))

+
δσhδ

AB(δ)Γ(δ + 1)

k

∑
�=2

sσ−1
�−2Q(s�−2,K�−2)Ψ̂1(k, �, δ) (39)

+
δσhδ

AB(δ)Γ(δ + 2)

k

∑
�=2

[
sσ−1
�−1Q(s�−1,K�−1)− sσ−1

�−2Q(s�−2,K�−2)
]
Ψ̂2(k, �, δ)

+
δσhδ

2AB(δ)Γ(δ + 3)

k

∑
�=2

[
sσ−1
� Q(s�,K�)− 2sσ−1

�−1Q(s�−1,K�−1) + sσ−1
�−2Q(s�−2,K�−2)

]
Ψ̂3(k, �, δ),

where

Ψ̂1(k, �, δ) = (k − �+ 1)δ − (k − �)δ,

Ψ̂2(k, �, δ) = (k − �+ 1)δ(k − �+ 3 + 2δ)− (k − �+ 1)δ(k − �+ 3 + 3δ),

Ψ̂3(k, �, δ) = (k − �+ 1)δ
[
2(k − �)2 + (3δ + 10)(k − �) + 2δ2 + 9δ + 12

]
− (k − �)δ

[
2(k − �)2 + (5δ + 10)(k − �) + 6δ2 + 18δ + 12

]
. (40)

Based on the numerical scheme obtained in (39), numerical solutions of the fractal-
fractional CD4+-HIV-1-model (2) are given by

Tk+1 = T0 +
(1 − δ)σsσ−1

k
AB(δ) Q1(sk,T(sk),U(sk),V(sk))

+
δσhδ

AB(δ)Γ(δ + 1)

k

∑
�=2

sσ−1
�−2Q1(s�−2,T�−2,U�−2,V�−2)Ψ̂1(k, �, δ)

+
δσhδ

AB(δ)Γ(δ + 2)

k

∑
�=2

[
sσ−1
�−1Q1(s�−1,T�−1,U�−1,V�−1)− sσ−1

�−2Q1(s�−2,T�−2,U�−2,V�−2)
]
Ψ̂2(k, �, δ)

+
δσhδ

2AB(δ)Γ(δ + 3)

k

∑
�=2

[
sσ−1
� Q1(s�,T�,U�,V�)− 2sσ−1

�−1Q1(s�−1,T�−1,U�−1,V�−1)
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+ sσ−1
�−2Q1(s�−2,T�−2,U�−2,V�−2)

]
Ψ̂3(k, �, δ), (41)

and

Uk+1 = U0 +
(1 − δ)σsσ−1

k
AB(δ) Q2(sk,T(sk),U(sk),V(sk))

+
δσhδ

AB(δ)Γ(δ + 1)

k

∑
�=2

sσ−1
�−2Q2(s�−2,T�−2,U�−2,V�−2)Ψ̂1(k, �, δ)

+
δσhδ

AB(δ)Γ(δ + 2)

k

∑
�=2

[
sσ−1
�−1Q2(s�−1,T�−1,U�−1,V�−1)− sσ−1

�−2Q2(s�−2,T�−2,U�−2,V�−2)
]
Ψ̂2(k, �, δ)

+
δσhδ

2AB(δ)Γ(δ + 3)

k

∑
�=2

[
sσ−1
� Q2(s�,T�,U�,V�)− 2sσ−1

�−1Q2(s�−1,T�−1,U�−1,V�−1)

+ sσ−1
�−2Q2(s�−2,T�−2,U�−2,V�−2)

]
Ψ̂3(k, �, δ), (42)

and

Vk+1 = V0 +
(1 − δ)σsσ−1

k
AB(δ) Q3(sk,T(sk),U(sk),V(sk))

+
δσhδ

AB(δ)Γ(δ + 1)

k

∑
�=2

sσ−1
�−2Q3(s�−2,T�−2,U�−2,V�−2)Ψ̂1(k, �, δ)

+
δσhδ

AB(δ)Γ(δ + 2)

k

∑
�=2

[
sσ−1
�−1Q3(s�−1,T�−1,U�−1,V�−1)− sσ−1

�−2Q3(s�−2,T�−2,U�−2,V�−2)
]
Ψ̂2(k, �, δ)

+
δσhδ

2AB(δ)Γ(δ + 3)

k

∑
�=2

[
sσ−1
� Q3(s�,T�,U�,V�)− 2sσ−1

�−1Q3(s�−1,T�−1,U�−1,V�−1)

+ sσ−1
�−2Q3(s�−2,T�−2,U�−2,V�−2)

]
Ψ̂3(k, �, δ), (43)

where the constants Ψ̂j(k, �, δ) are introduced in (40) for j = 1, 2, 3.

8. Simulations and Discussions

In this section, we simulate and discuss dynamical behaviors of the fractal-fractional
CD4+-HIV-1-model (2) via real data for parameters and initial values assumed by [45].
Based on the given data in this source, we let θ = 10, q = 0.000024, ρ = 0.01, ζ = 0.2,
κ = 0.16, ϑ = 3.4, and N = 1000. Moreover, the initial values for three state functions are
T(0) = T0 = 1000,U(0) = U0 = 0,V(0) = V0 = 0.001. It is assumed that all parameters
are in days.

In the provided figures, we show the behaviors of three state functions T,U,V under
the effect of different values for the fractal-fractional orders δ = σ = 1.00, 0.98, 0.96, 0.94, 0.92,
0.90 simultaneously. We also compare the results in the graphs with respect to two numeri-
cal algorithms given by (29)–(31) and (41)–(43) as shown in Tables 1–3.

In these graphs, the quantity of the time s interprets the number of days. Note that
Figures 1 and 2 demonstrate the dynamics of the CD4+ T-cells via the Adams-Bashforth
method (Section 6). Figure 1a indicates that when the fractal dimensions and fractional
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orders decrease, the number of susceptible CD4+ T-cells steadily increases from the 42nd
day to the 64th day, and steadily decreases from the 65th day to the 102nd day. Further it
increases again from the 103rd day and finally converges to the integer-order at the 250th
day to the end of the simulation period.

Figure 1b,c show that when the fractal dimensions and fractional orders move from
the integer order, the peak of the amount of infectious CD4+ T-cells and the free particles
of the infection of the HIV-1 virus in the blood decrease respectively and also give slight
differences in their asymptotic stabilities.

(a) (b)

(c)

Figure 1. Numerical trajectories by varying both fractal order and fractional order δ = σ = 1.00,
0.98, 0.96, 0.94, 0.92, 0.90 via the Adams-Bashforth method. (a) Amount of susceptible CD4+ T-cells.
(b) Amount of infectious CD4+ T-cells. (c) Free particles of the infection of the HIV-1 virus in the
blood.

In Figure 2a,c, we show a 0.01-variation in fractal-fractional order. In this case, the
numerical trajectories show that a slight change in the fractal-fractional order produces a
slight changes in the asymptotic behavior of the HIV-1 virus on CD4+ T-cells.
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(a) (b)

(c)

Figure 2. Numerical trajectories by varying both fractal order and fractional orders δ = σ = 1.00, 0.99
via the Adams-Bashforth method. (a) A 0.01-variation in fractal-fractional orders of susceptible CD4+

T-cells. (b) A 0.01-variation in fractal-fractional orders of infectious CD4+ T-cells. (c) A 0.01-variation
in fractal-fractional orders of free particles of the infection of the HIV-1 virus in the blood.

Figures 3 and 4 demonstrate the dynamics of the CD4+ T-cells via the Newton poly-
nomials method (Section 7). Figure 3a also indicates that when the fractal dimensions and
fractional orders decrease, the number of susceptible CD4+ T-cells steadily increases from
the 42nd day to the 64th day, and steadily decreases from the 65th day to the 102nd day.
Also it increases again from the 103rd day and finally converges to the integer-order at the
250th day to the end of the simulation period, but it shows a disorganized behavior from
the 11th day to the 24th day, which indicates the early stages of HIV in the CD4+ T-cells.

Figure 3b,c show that when the fractal dimensions and fractional orders move from
the integer order, the peak of the amount of infectious CD4+ T-cells and the free particles
of the infection of the HIV-1 virus in the blood decrease, respectively and also give slight
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differences in their asymptotic stabilities, but again, they show a disorganized behavior
from the 11th day to the 24th day.

(a) (b)

(c)

Figure 3. Numerical trajectories by varying both fractal order and fractional order δ = σ = 1.00, 0.98,
0.96, 0.94, 0.92, 0.90 via the Newton polynomials method. (a) Amount of susceptible CD4+ T-cells.
(b) Amount of infectious CD4+ T-cells. (c) Free particles of the infection of the HIV-1 virus in the
blood.

In Figure 4a,c, we show a 0.01-variation in fractal-fractional orders, and the numerical
trajectories show that a slight change in the fractal-fractional orders produce slight changes
in the asymptotic behavior of the HIV-1 virus on CD4+ T-cells.
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(a) (b)

(c)

Figure 4. Numerical trajectories by varying both fractal order and fractional order δ = σ = 1.00, 0.99
via the Newton polynomials method. (a) A 0.01-variation in fractal-fractional orders of susceptible
CD4+ T-cells. (b) A 0.01-variation in fractal-fractional orders of infectious CD4+ T-cells. (c) A
0.01-variation in fractal-fractional orders of free particles of the infection of the HIV-1 virus in the
blood.

In Figure 5, based on the Adams-Bashforth method, we see the numerical trajectories
of three state functions by varying the average number of infected particles N for the values
N = 500, 600, 700, 800, 900, 1000 under the fractal-fractional order δ = σ = 0.95. Thus, in
Figure 5a, it shows that the susceptible CD4+ T-cells increase as the average number of
infected particles by an existing infected cell reduces by 10%, and that of the peak of the
amount of infectious CD4+ T-cells and the free particles of the infection of the HIV-1 virus
in the blood decrease, respectively in Figure 5b,c.
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(a) (b)

(c)

Figure 5. Numerical trajectories by varying the average number of infected particles N under the
fractal order and fractional order δ = σ = 0.95 via the Adams-Bashforth method. (a) The effects of N
on T. (b) The effects of N on U. (c) The effects of N on V.

In Figure 6, based on the Adams-Bashforth method, we see the numerical trajectories
by varying the supply rate for new T-cells for θ = 10, 15, 20, 25, 30, 35 under the fractal order
and fractional order δ = σ = 0.95. Thus, in Figure 6a, it shows that the susceptible CD4+

T-cells increase for a period of time and gradually decrease as the number of the supply
rate θ increases before converging at the 150th day.
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(a) (b)

(c)

Figure 6. Numerical trajectories by varying the supply rate for new T-cells θ under the fractal order
and fractional order δ = σ = 0.95 via the Adams-Bashforth method. (a) The effects of θ on T. (b) The
effects of θ on U. (c) The effects of θ on V.

In Figure 6b,c, we noticed that the amount of infectious CD4+ T-cells and the free
particles of the infection of the HIV-1 virus in the blood increase, respectively. Figure 7a–c
display the numerical trajectories when we compare the numerical solutions of the Adams-
Bashforth method with the Newton polynomial method under the fractal dimension and
fractional order δ = σ = 0.90.
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(a) (b)

(c)

Figure 7. Numerical trajectories in the Comparison of the numerical solutions of the Adams-Bashforth
method with Newton polynomials method under the fractal dimension and fractional order δ = σ = 0.90.
(a) Comparison of the graphs w.r.t. two different numerical algorithms on T. (b) Comparison of
the graphs w.r.t. two different numerical algorithms on U. (c) Comparison of the graphs w.r.t. two
different numerical algorithms on V.

In Tables 1–3, we see some results of the two numerical schemes (the Adams-Bashforth
method and Newton polynomials method) for all of three state functions under the fractal
dimension and fractional order δ = σ = 0.95 with step size h = 0.1.

Table 1. Results of the two numerical schemes for the susceptible CD4+ T-cells T (s) under the fractal
order and fractional order δ = σ = 0.95 with the step size h = 0.1.

Time: (s) 0.0001 100 200 300 400

Adams-Bashforth method 1000 300.8396 315.4653 318.7946 318.8066
Newton polynomials method 1000 300.7881 315.4643 318.7951 318.8066
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Table 2. Results of the two numerical schemes for the infectious CD4+ T-cells U (s) under the fractal
order and fractional order δ = σ = 0.95 with the step size h = 0.1.

Time: (s) 0.0001 100 200 300 400

Adams-Bashforth method 0 37.7693 46.0612 44.2611 43.7066
Newton polynomials method 0 37.7778 46.0645 44.2612 43.7066

Table 3. Results of the two numerical schemes for free particles of the infection of the HIV virus in
the blood V (s) under the fractal order and fractional order δ = σ = 0.95 with the step size h = 0.1.

Time: (s) 0.0001 100 200 300 400

Adams-Bashforth method 0 1787.4317 2169.7278 2082.8420 2082.8420
Newton polynomials method 0 1787.8611 2169.8866 2082.8597 2082.8472

9. Conclusions

In this paper, we designed a fractal-fractional CD4+-HIV-1-model and analyzed the
dynamics of CD4+ T-cells under the infection of HIV-1 virus. We considered three com-
partments for this model by defining three state functions T, U, and V for the amount
of susceptible CD4+ T-cells, amount of infectious CD4+ T-cells, and the free particles of
the infection of the HIV virus in the blood. We derived three fractal-fractional integral
equations and proved that their kernels are Lipschitz. In this direction, we could prove
the existence and uniqueness criteria for solutions of the fractal-fractional CD4+-HIV-1-
model. In the sequel, we investigated four stability results with the help of two auxiliary
inequality. We extracted two algorithms via the Adams-Bashforth method and also via the
Newton polynomials and simulated our real data in relation to the given fractal-fractional
CD4+-HIV-1-model. The numerical and graphical results showed that these two numerical
algorithms give the same outcomes and differences are small. Also, we investigated the
effect of frcatal dimensions and fractional orders on these simulations. Also, the effect of
different values for the average number of infected particles and the supply rate of new
T-cells were simulated in some graphs under the Adams-Bashforth method. This stude
showed that we can predict the next behavior of the fractal-fractional CD4+-HIV-1-model
via the two mentioned numerical methods and their results are more accurate and identical.
This shows the power of simulation of the frcatal-fractional models in comparison to the
fractional models. In the next researches, we can develope our numerical methods on
different fractal-fractional models of diseases.
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Abstract: Nonhomogeneous systems governed by second-order linear differential equations with
pure delay are considered. As an application, the exact solutions of these systems and their delayed
matrix functions are used to obtain the finite-time stability results. Our results extend and improve
some previous results by removing some restrictive conditions. Finally, an example is provided to
illustrate our theoretical results.
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1. Introduction

Numerous processes in mechanical and technological systems were described using
delay differential equations. These systems are frequently utilized in the modeling of
phenomena in technological and scientific problems. These models have applications in
diffusion processes, forced oscillations, signal analysis, control theory, viscoelastic systems,
modeling disease, biology, computer engineering, finance, and population dynamics. Time-
delays are frequently associated with the economy, electric networks, physico-chemical
processes, heredity in population growth, hydraulic networks, and other relevant indus-
tries. Generally, these mathematical models have a peculiarity, which is that the rate of
change of these processes is determined by their history. On the other hand, in 2003,
Khusainov and Shuklin [1] represented the solutions of linear delay differentiaL equations
by constructing a new concept of a delayed exponential matrix function. In 2008, Khu-
sainov et al. [2] adopted this approach to represent the solutions of an oscillating system
with pure delay by establishing a delayed matrix sine and a delayed matrix cosine. This
pioneering research yielded plenty of novel results on the exact solutions that were used in
the stability analysis and control problems of time-delay systems; see for example [3–13]
and the references therein.

Finite-time stability is a novel definition that involves a fixed finite-time interval and a
prescribed constraint for the system, as opposed to the exponential/asymptotic stability
definition, which is exposed to an infinite-time interval. In the literature, there has been
a considerable interest in finite-time stability analysis of differential or fractional delay
systems, and several methods for studying finite-time stability of differential or fractional
delay systems have been developed; for example, fundamental matrix and the largest sin-
gular value of matrix coefficients [14], Lyapunov-like approach with Jensen’s and Coppel’s
inequality [15], Grownwall’s approach [16], method of steps [17], Hölder inequality [18],
delayed Mittag–Leffler matrix function [19], Gronwall inequality [20], linear matrix in-
equality [21], the delayed matrix exponential and Jensen and Coppel inequalities [22],
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the delayed matrix exponential function and Gronwall integral inequalities [23], the de-
layed matrix cosine and sine [24], the explicit solution of the system [25], and conformable
delayed matrix functions [26].

However, to the best of our knowledge, no study exists dealing with finite-time
stability analysis of a system of second-order linear differential equations with pure delay
of the form

y′′(x) = −By(x − h) + f (x), for h > 0, x ∈ W := [0, L],
y(x) ≡ ψ(x), y′(x) ≡ ψ′(x) for − h ≤ x ≤ 0,

(1)

where h is a delay, L is a pre-fixed positive number, y(x) ∈ Rn, ψ ∈ C2([−h, 0],Rn), B
∈ Rn×n is a constant nonzero matrix and f ∈ C([0, ∞),Rn) is a given function.

Very recently, Elshenhab and Wang [8] gave a new representation of solutions of (1)
as follows:

y(x) = Hh(B(x − h))ψ(0) +Mh(B(x − h))ψ′(0)

− B
∫ 0

−h
Mh(B(x − 2h − �))ψ(�)d�

+
∫ x

0
Mh(B(x − h − �)) f (�)d�, (2)

and they also derived alternative formulas of solutions of (1) as follows:

y(x) = Hh(Bx)ψ(−h) +Mh(Bx)ψ′(−h)

+
∫ 0

−h
Mh(B(x − h − �))ψ′′(�)d�

+
∫ x

0
Mh(B(x − h − �)) f (�)d�, (3)

or

y(x) = Hh(Bx)ψ(−h) +Mh(B(x − h))ψ′(0)

+
∫ 0

−h
Hh(B(x − h − �))ψ′(�)d�

+
∫ x

0
Mh(B(x − h − �)) f (�)d�, (4)

where Hh(Bx) and Mh(Bx) are called the delayed matrix functions formulated by

Hh(Bx) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ, − ∞ < x < −h,
I, − h ≤ x < 0,
I − B x2

2! , 0 ≤ x < h,
...

...

I − B x2

2! + B2 (x−h)4

4!

+ · · ·+ (−1)mBm (x−(m−1)h)2m

(2m)! , (m − 1)h ≤ x < mh,

(5)

Mh(Bx) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ, − ∞ < x < −h,
I(x + h), − h ≤ x < 0,
I(x + h)− B x3

3! , 0 ≤ x < h,
...

...

I(x + h)− B x3

3! + B2 (x−h)5

5!

+ · · ·+ (−1)mBm (x−(m−1)h)2m+1

(2m+1)! , (m − 1)h ≤ x < mh,

(6)
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respectively, where m = 0, 1, 2, . . ., the notation I is the n × n identity matrix and Θ is the
n × n null matrix.

Motivated by [8,24], as an application, the explicit formulas of solutions of the system
(1) and the delayed matrix functions are used to obtain finite-time stability results on
W = [0, L].

The rest of this paper is arranged as follows: In Section 2, we present some basic
definitions and estimations of norms for the delayed matrix functions, which are used
while discussing finite-time stability. In Section 3, as an application, the representation
of the solutions of (1) are used to obtain finite-time stability results. Finally, we give an
example to illustrate the main results.

2. Preliminaries

Throughout the paper, we denote the vector norm as ‖y‖ = ∑n
i=1|yi| and the matrix

norm as ‖B‖ = max1≤j≤n ∑n
i=1

∣∣aij
∣∣; yi and aij are the elements of the vector y and the

matrix B, respectively. Denote C(W,Rn) the Banach space of vector-valued continuous
function from W → Rn endowed with the norm ‖y‖C = maxx∈W‖y(x)‖ for a norm ‖·‖ on
Rn. We introduce a space C1(W,Rn) = {y ∈ C(W,Rn) : y′ ∈ C(W,Rn)}. Furthermore, we
see ‖ψ‖C = max�∈[−h,0]‖ψ(�)‖.

We recall some basic definitions used further in this paper.

Definition 1 ([27]). The two-parameter Mittag–Leffler function is given by

Eα,γ(z) =
∞

∑
k=0

zk

Γ(αk + γ)
, α, γ > 0, z ∈ C.

Especially, if γ = 1, then

Eα,1(z) = Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
, α > 0.

Definition 2 ([16]). The system (1) is finite-time stable with respect to {0, W, h, δ, ρ}, δ < ρ if
and only if � < δ implies ‖y(x)‖ < ρ for all x ∈ W, where � = max

{
‖ψ‖C, ‖ψ′‖C, ‖ψ′′‖C

}
and

δ, ρ are real positive numbers.

To conclude this section, we provide estimations of norms for the delayed matrix
functions, which are used in discussing finite-time stability.

Lemma 1. For any x ∈ [(m − 1)h, mh], m = 1, 2, . . ., we have

‖Hh(Bx)‖ ≤ E2

(
‖B‖x2

)
.

Proof. Using (5), we get

‖Hh(Bx)‖ ≤ 1 + ‖B‖ x2

2!
+ ‖B‖2 (x − h)4

4!

+ · · ·+ ‖B‖m (x − (m − 1)h)2m

(2m)!

≤ 1 + ‖B‖ x2

2!
+ ‖B‖2 x4

4!
+ · · ·+ ‖B‖m x2m

(2m)!

≤
∞

∑
k=0

(
‖B‖x2)k

(2k)!
= E2

(
‖B‖x2

)
.

This completes the proof.
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Lemma 2. For any x ∈ [(m − 1)h, mh], m = 1, 2, . . ., we have

‖Mh(Bx)‖ ≤ (x + h)E2,2

(
‖B‖(x + h)2

)
.

Proof. Using (6), we get

‖Mh(Bx)‖ ≤ (x + h) + ‖B‖ x3

3!
+ ‖B‖2 (x − h)5

5!

+ · · ·+ ‖B‖m (x − (m − 1)h)2m+1

(2m + 1)!

≤ (x + h) + ‖B‖ (x + h)3

3!
+ ‖B‖2 (x + h)5

5!

+ · · ·+ ‖B‖m (x + h)2m+1

(2m + 1)!

≤
∞

∑
k=0

[
‖B‖(x + h)2

]k
(x + h)

(2k + 1)!
= (x + h)E2,2

(
‖B‖(x + h)2

)
.

This completes the proof.

3. Main Results

In this section, we derived finite-time stability results of (1) by making use of the three
possible formulas of solutions (2), (3) and (4), respectively.

Theorem 1. The system (1) is finite-time stable with respect to {0, W, h, δ, ρ}, if

E2

(
‖B‖(L − h)2

)
<

ρ −
(

δL + L2

2 (δ‖B‖+ ‖ f ‖C)
)
E2,2

(
‖B‖L2)

δ
. (7)

Proof. By using Definition 2 and (2), we have � < δ and

‖y(x)‖ ≤ ‖Hh(B(x − h))‖‖ψ(0)‖+ ‖Mh(B(x − h))‖
∥∥ψ′(0)

∥∥
+ ‖B‖

∥∥∥∥∫ 0

−h
Mh(B(x − 2h − �))ψ(�)d�

∥∥∥∥
+

∥∥∥∥∫ x

0
Mh(B(x − h − �)) f (�)d�

∥∥∥∥
≤

∥∥Hh,α(B(x − h))
∥∥‖ψ(0)‖+ ‖Mh(B(x − h))‖

∥∥ψ′(0)
∥∥

+ ‖B‖
∫ 0

−h
‖Mh(B(x − 2h − �))‖‖ψ(�)‖d�

+
∫ x

0
‖Mh(B(x − h − �))‖‖ f (�)‖d�

≤ δ
∥∥Hh,α

(
B(x − h)α)∥∥+ δ

∥∥Mh,α
(

B(x − h)α)∥∥
+ δ‖B‖

∫ 0

−h
‖Mh(B(x − 2h − �))‖d�

+ ‖ f ‖C

∫ x

0
‖Mh(B(x − h − �))‖d�. (8)

From Lemma 2, we have

‖Mh(B(x − 2h − �))‖ ≤ (x − h − �)E2,2

(
‖B‖(x − h − �)2

)
≤ (x − h − �)E2,2

(
‖B‖x2

)
, (9)
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for −h ≤ � ≤ 0, x ∈ W, and since E2,2
(
‖B‖x2) is increasing function when x ≥ 0. From (9),

we get ∫ 0

−h

∥∥Mh
(

B(x − 2h − �)α)∥∥d� ≤ x2

2
E2,2

(
‖B‖x2

)
, (10)

and ∫ x

0

∥∥Mh
(

B(x − h − �)α)∥∥d� ≤ E2,2

(
‖B‖x2

) ∫ x

0
(x − �)d�

=
x2

2
E2,2

(
‖B‖x2

)
. (11)

From (8), (10) and (11), we have

‖y(x)‖ ≤ δE2

(
‖B‖(x − h)2

)
+ δxE2,2

(
‖B‖x2

)
+

x2

2
(δ‖B‖+ ‖ f ‖C)E2,2

(
‖B‖x2

)
, (12)

for all x ∈ W. Combining (7) with (12), we get ‖y(x)‖ < ρ for all x ∈ W. This ends
the proof.

Theorem 2. The system (1) is finite-time stable with respect to {0, W, h, δ, ρ}, if

E2

(
‖B‖L2

)
<

ρ − δ(L+h)(L+h+2)
2 E2,2

(
‖B‖(L + h)2

)
− L2‖ f ‖C

2 E2,2
(
‖B‖L2)

δ
. (13)

Proof. By using Definition 2 and (3), we have � < δ and

‖y(x)‖ ≤ ‖Hh(Bx)‖‖ψ(−h)‖+ ‖Mh(Bx)‖
∥∥ψ′(−h)

∥∥
+

∥∥∥∥∫ 0

−h
Mh(B(x − h − �))ψ′′(�)d�

∥∥∥∥
+

∥∥∥∥∫ x

0
Mh(B(x − h − �)) f (�)d�

∥∥∥∥
≤ δ‖Hh(Bx)‖+ δ‖Mh(Bx)‖+ δ

∫ 0

−h
‖Mh(B(x − h − �))‖d�

+ ‖ f ‖C

∫ x

0
‖Mh(B(x − h − �))‖d�. (14)

From Lemma 2, we have∫ 0

−h
‖Mh(B(x − h − �))‖d� ≤ E2,2

(
‖B‖(x + h)2

) ∫ 0

−h
(x − �)d�

≤ (x + h)2

2
E2,2

(
‖B‖(x + h)2

)
. (15)

From (11), (14) and (15), we get

‖y(x)‖ ≤ δE2

(
‖B‖x2

)
+ δ(x + h)E2,2

(
‖B‖(x + h)2

)
+

δ(x + h)2

2
E2,2

(
‖B‖(x + h)2

)
+

‖ f ‖C
2

x2E2,2

(
‖B‖x2

)
(16)

for all x ∈ W. Combining (13) with (16), we have ‖y(x)‖ < ρ for all x ∈ W. This ends
the proof.
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Theorem 3. The system (1) is finite-time stable with respect to {0, W, h, δ, ρ}, if

E2

(
‖B‖L2

)
<

ρ − L
(

δ +
‖ f ‖C

2 L
)
E2,2

(
‖B‖L2)

δ(1 + h)
. (17)

Proof. By using Definition 2 and (4), we have η < δ and

‖y(x)‖ ≤ ‖Hh(Bx)‖‖ψ(−h)‖+ ‖Mh(B(x − h))‖
∥∥ψ′(0)

∥∥
+

∥∥∥∥∫ 0

−h
Hh(B(x − h − �))ψ′(�)d�

∥∥∥∥
+

∥∥∥∥∫ x

0
Mh(B(x − h − �)) f (�)d�

∥∥∥∥
≤ δ‖Hh(Bx)‖+ δ‖Mh(B(x − h))‖

+ δ
∫ 0

−h
‖Hh(B(x − h − �))‖d�

+ ‖ f ‖C

∫ x

0
‖Mh(B(x − h − �))‖d�. (18)

From Lemma 1, we have∫ 0

−h
‖Hh(B(x − h − �))‖d� ≤ hE2

(
‖B‖x2

)
. (19)

From (11), (18) and (19), we get

‖y(x)‖ ≤ δE2

(
‖B‖x2

)
+ δxE2,2

(
‖B‖x2

)
+ δhE2

(
‖B‖x2

)
+

‖ f ‖C
2

x2E2,2

(
‖B‖x2

)
. (20)

for all x ∈ W. Combining (17) with (20), we have ‖y(x)‖ < ρ for all x ∈ W. This ends
the proof.

Remark 1. We see that by dropping the nonsingularity criterion on a matrix coefficient B and
making the matrix B an arbitrary, not necessarily squared matrix B2, our results in Theorems 1–3
improve and extend the corresponding results in Theorems 3.1–3.3 in [24].

4. An Example

Consider the delay differential equations

y′′(x) = −By(x − 0.5) + f (x), x ∈ [0, 1],
ψ(x) =

(
0.1x2, 0.2x

)T , ψ′(x) = (0.2x, 0.2)T , ψ′′(x) = (0.2, 0)T , − 0.5 ≤ x ≤ 0,
(21)

where

h = 0.5, B =

(
2 0
0 0

)
, f (x) =

(
1
2

)
.

From (3), for all 0 ≤ x ≤ 1, and through a basic calculation, we can obtain

y(x) =
(

0.025H0.5(2x)
−0.1

)
+

( −0.1M0.5(2x)
0.2(x + 0.5)

)
+

(
0.2

∫ 0
−0.5 M0.5(2(x − 0.5 − �))d�

0

)

+

( ∫ x
0 M0.5(2(x − 0.5 − �))d�

2
∫ x

0 (x − �)d�

)
=

(
y1(x)
y2(x)

)
,
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which implies that

y1(x) = 0.025H0.5(2x)− 0.1M0.5(2x)

+ 0.2
∫ 0

−0.5
M0.5(2(x − 0.5 − �))d�

+
∫ x

0
M0.5(2(x − 0.5 − �))d�,

and
y2(x) = x2 +

1
5

x,

where

H0.5(2x) =

⎧⎨⎩
1, − 0.5 ≤ x < 0,

1 − x2, 0 ≤ x < 0.5,
1 − x2 + 1

6 (x − 0.5)4, 0.5 ≤ x < 1,

and

M0.5(2x) =

⎧⎨⎩
(x + 0.5), − 0.5 ≤ x < 0,
(x + 0.5)− 1

3 x3, 0 ≤ x < 0.5,
(x + 0.5)− 1

3 x3 + 1
30 (x − 0.5)5, 0.5 ≤ x < 1.

Thus, the explicit solutions of (21) are

y1(x) = 0.025H0.5(2x)− 0.1M0.5(2x)

+ 0.2
∫ x−0.5

−0.5
M0.5(2(x − 0.5 − �))d�

+ 0.2
∫ 0

x−0.5
M0.5(2(x − 0.5 − �))d�

+
∫ x

0
M0.5(2(x − 0.5 − �))d�,

y2(x) = x2 +
1
5

x,

where 0 ≤ x ≤ 0.5, which implies that

y1(x) = − 1
60

x4 +
1
30

x3 +
19
40

x2,

y2(x) = x2 +
1
5

x,

and

y1(x) = 0.025H0.5(2x)− 0.1M0.5(2x)

+ 0.2
∫ x−1

−0.5
M0.5(2(x − 0.5 − �))d�

+ 0.2
∫ 0

x−1
M0.5(2(x − 0.5 − �))d�

+
∫ x−0.5

0
M0.5(2(x − 0.5 − �))d�

+
∫ x

x−0.5
M0.5(2(x − 0.5 − �))d�,

y2(x) = x2 +
1
5

x,
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where 0.5 ≤ x ≤ 1, which implies that

y1(x) =
1

900
(x − 0.5)6 − 1

300
(x − 0.5)5 − 1

16
(x − 0.5)4

+
19
40

x2 +
1

30
x3 − 1

60
x4,

y2(x) = x2 +
1
5

x.

By calculating we get η = max
{
‖ψ‖C, ‖ψ′‖C, ‖ψ′′‖C

}
= 0.3, ‖B‖ = 2, ‖ f ‖C =

3, E2
(
2L2) = 2.1782, E2,2

(
2(L + 0.5)2

)
= 1.938, E2,2

(
2L2) = 1.3683, then we choose

δ = 0.31 > 0.3 = η. Figure 1 shows the state y(x) and the norm ‖y(x)‖ of (21). Now,
Theorems 1–3 imply that ‖y(x)‖ ≤ 3.29158, ‖y(x)‖ ≤ 4.3047395 and ‖y(x)‖ ≤ 3.489486,
respectively, we simply take ρ = 3.3, 4.31, 3.49, respectively. Table 1 shows the data.

We can see ‖y(x)‖ < ρ for all x ∈ W and (21) is finite-time stable under Theorems 1–3.
Concerning the definition of finite-time stable, we need to determine a specific threshold
ρ. By checking the value of ρ in Theorems 1–3, we find that in this example the result of
Theorem 1 is the optimal.

Figure 1. The state y(x) and ||y(x)|| of (21).

Table 1. Finite-time stability results of (21) and fixed the time L = 1.

Theorem L ‖B‖ δ ‖y(x)‖ ρ h Finite-Time Stability

1 1 2 0.31 ≤3.29158 3.3 (optimal) 0.5 Yes
2 1 2 0.31 ≤4.30474 4.31 0.5 Yes
3 1 2 0.31 ≤3.48949 3.49 0.5 Yes

Remark 2. We note that Theorems 3.1–3.3 in [24] cannot be applied to (21) because the matrix B
is singular, and an arbitrary, not necessarily squared matrix B2.

5. Conclusions

In this work, by making use of three possible formulas of solutions of nonhomoge-
neous systems governed by second-order linear delay differential equations, and estima-
tions of norms for the delayed matrix functions, we derived finite-time stability results
of these systems. Finally, we provided an example to demonstrate the effectiveness of
the obtained results. The results are applicable to all singular, non-singular and arbitrary
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matrices, not necessarily squared. Consequently, our results improve and extend upon the
existing results in [24].

One possible direction in which to extend the results of this paper is toward that of
fractional differential and conformable fractional differential systems of order α ∈ (1, 2].
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15. Debeljković, D.L.; Stojanovic, S.B.; Jovanović, A.M. Finite-time stability of continuous time delay systems: Lyapunov-like
approach with Jensen’s and Coppel’s inequality. Acta Polytech. Hung. 2013, 10, 135–150.
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Abstract: In this paper, the problem of estimating the current value of financial instruments using
multidimensional statistical analysis is considered. The research considers various approaches to
constructing regression computational schemes using quotes of financial instruments correlated to
the data as regressors. An essential feature of the problem is the chaotic nature of its observation
series, which is due to the instability of the probabilistic structure of the initial data. These conditions
invalidate the constraints under which traditional statistical estimates remain non-biased and effec-
tive. Violation of experiment repeatability requirements obstructs the use of the conventional data
averaging approach. In this case, numeric experiments become the main method for investigating
the efficiency of forecasting and analysis algorithms of observation series. The empirical approach
does not provide guaranteed results. However, it can be used to build sufficiently effective rational
strategies for managing trading operations.

Keywords: stochastic chaos; multidimensional statistical analysis; multi-regression estimation; sliding
observation window; asset management

1. Introduction

The principal problem of managing any objects in conditions of non-stationarity, non-
uniformity, and/or chaotic dynamics is the lack of repeatability, which obstructs the use of
conventional statistical research techniques. In this case, statistical extrapolation, which
is the basis of automatic generation of management decisions, turns out to be ineffective,
or even inapplicable [1–3]. Hence, there is a need to search for regularizing effects that
stabilize (at least locally) the prediction process in a given range of changes in the values of
characteristic parameters.

This research considers a multidimensional time series of current readings of a number
of financial instruments that evaluate, each from its own viewpoint, a certain market
asset. The current market value of an asset is monitored based on the readings of the
corresponding instrument. These readings can be adjusted, taking into account other
similar instruments. In principle, all readings have a common base and are mutually
correlated. The hypothesis is that the system of correlations between instruments has a
significant degree of inertia [4–6] and is approximately preserved with a small time lag.

Within the framework of this article, correlations between quotations of instruments
are used as a regularizing mechanism. Similarly to other probabilistic characteristics of
observation series, the parameters of the relationship change over time, which corresponds
to the non-stationarity of the observed processes. However, the variability in correlations is
significantly lower than that of the initial quotation changes. Moreover, with the growth
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of the observation window used to estimate the relationship parameters, the correlation
characteristics stabilize near asymptotically stable values.

Hence, an assumption arises about the possibility of using these relationships to build
multi-regression indicators that reflect market estimates of the current value of financial
instruments. The mismatch of the market estimate of an instrument with its current value
allows us to obtain an idea of the further dynamics of its quotation, which, as a rule,
approaches equalizing the value of the instrument in relation to the “fair” market price.
This, in turn, creates the basis for building a proactive management strategy based on
this discrepancy.

It would be irrational to evaluate the quality of forecasting in conditions of market
chaos using conventional indicators of the effectiveness of statistical estimates due to the
above-mentioned features of the considered observation series. Rather, the effectiveness
of such estimates should be assessed via terminal performance indicators of management
strategies based on them. The corresponding numerical studies are provided in this paper.

This article is structured as follows. Section 2 contains the main conceptual research
contributions of this work. It presents quotation data on several financial instruments,
which demonstrate that they are highly correlated. Further on, it contains a detailed
description of the proposed problem, a basic asset management strategy that is based
on corrected estimates of a selected indicator. Next, the task specifics that decrease the
effectiveness of traditional statistical methods are considered as well as the approaches
to improving the estimate quality via selecting the indicator kernel and removing some
of the outliers. Section 3 contains the resulting scheme for correcting estimates using an
evolutionary algorithm. Finally, Sections 4 and 5 are dedicated to a discussion and our
conclusions, respectively.

2. Analyzed Data and Methodology

2.1. Data Model

Papers [7–10] justify describing quotation observation series on the basis of the Wald
theorem by an additive model

yk = xk + vk, k = 1, . . . , n, (1)

where xk, k = 1, . . . , n is a smoothed system component used for constructing management
strategies and vk, k = 1, . . . , n is noise. Similarly, instead of yk, first finite differences of their
logarithms could be used (i.e., the ARCH or GARCH models) [11,12], but this complicates
returning to an estimation of the initial yk. Let us highlight two important features of the
presented observation model:

• the system component is comprised of an oscillatory non-periodic observation series
typical for non-linear dynamics processes; and

• the noise vk, k = 1, . . . , n is a non-stationary random process roughly described by the
Gaussian model with fluctuating parameters [9–15].

As illustrations justifying the choice of the model, Figure 1 shows examples of quota-
tions of financial assets on 10-day observation intervals.

To isolate the system component, an exponential filter

xk = αyk + (1 − α)y(k−1) = x(k−1) + α(yk − x(k−1)), k = 2, . . . , n (2)

with a smoothing coefficient α = 0.01–0.3 was used.
The observed process yk, k = 1, . . . , n does not conform to the efficient market hy-

pothesis [7] and, as shown in [16,17], has almost no inertia. The latter statement leads to
a complete failure of management strategies based on mechanistic prolongation of the
detected trends. At the same time, useful patterns can also be found in the system of
correlations of trading asset quotations, as they are represented by multivariate observation
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series. In particular, increasing the observation interval makes it possible to detect stable
correlations between various instruments of the currency and other markets [18,19].

As an example illustrating the last statement, Figure 2 shows time-synchronized charts
of quotations of five different currency instruments on an 85-day observation area.

Figure 1. Two examples of observing the quotation of the EURUSD currency pair at two 10-day
intervals with the system component identified by means of exponential filtering.

Figure 2. The process of quote change in the EURUSD currency pair and its five most correlated
currency instruments’ quotes.

Figure 3 shows a tonal matrix reflecting the values of estimated pairwise correlations
in the same observation interval for 16 currency pairs presented in Table 1.

Figure 4 shows a similar tonal matrix for the pairwise correlations of EURUSD and its
five most correlated currency pairs (#11: GBPUSD, #14: CHFJPY, #16: NZDJPY, #2: EURJPY,
and #12: AUDJPY). These exact instruments are plotted in Figure 2.

Table 1. Financial instruments and their respective numbers.

Financial Instruments

1 2 3 4 5 6
EURUSD EURJPY EURGBP EURCHF EURCAD USDCAD

7 8 9 10 11 12
USDCHF USDJPY GBPCHF GBPJPY GBPUSD GBPUSD

13 14 15 16 17 18
AUDUSD CHFJPY NZDUSD NZDJPY FTSE DJ
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Figure 3. Tonal representation of the correlation matrix of 16 financial instruments.

Figure 4. Tonal representation of the EURUSD correlation matrix and its five financial instruments
with the highest correlations.

The presence of ordered relationships with lower variability than the quotes of working
assets themselves allows us to construct mutual statistical dependencies, which, in turn,
make it possible to adjust the current value of a financial instrument using its correlated
instruments. Hence, there is a real possibility of constructing management strategies based
on a statistical indicator, the value of which at any given time will be determined by the
difference between the current quotation of a currency instrument and its estimate based
on a group correlated with it. The most natural way of constructing such a forecast is
multivariate linear regression (multi-regression) based on the modifications of the least
squares method (LSM) [20,21].

It is obvious that the difference between the estimate and the current quotation of an
asset can be used to manage assets with a variety of criteria that determine the time of
opening and closing positions during the trading process. At the same time, in conditions
of non-linearity and non-stationarity, analytical methods for comparing these criteria
cannot be implemented. Hence arises the problem of numerical research on analytic
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and management techniques based on multi-regression (MR) estimation of a currency
instrument, which is considered in this article.

2.2. Problem Statement

We consider a number of observations of the value of a non-stationary random process
described by model (1), the system component of which is an oscillatory non-periodic pro-
cess classified as deterministic chaos. On the same observation interval, an m-dimensional
non-stationary random vector process is present, the elements of which are correlated with
(1) and correspond to the same model of stochastic dynamics

YRk = XRk + VRk,
where YRk = (yR1, yR2, . . . , yRm)k, XRk = (xR1, xR2, . . . , xRm)k,

VRk = (vR1, vR2, . . . , vRm), k = 1, . . . , n.
(3)

As a result of numerical experiments, it was found [18] that in general, among a set
of financial instruments, it is possible to choose a vector subset (3) that has a significant
correlation with the working (i.e., used in financial transactions) instrument yk, k = 1, . . . ,
n. In the future, the elements YR will be used as regressors in the traditional MR model

ŷk = CkYRk + vk, k = 1, . . . , n (4)

The most natural way to estimate the value of the transfer coefficient Ck, k = 1, . . . , n,
as already noted, is via the use of a conventional computational scheme based on the LSM:

Ĉk = (YR[1:k−1,m]
T YR[1:k−1,m])−1 YR[1:k−1,m]

T Y[1:k−1, 1], k = 2, . . . , n
where YR[1:k−1,m] = (YR,1, . . . , YR,k−1), Y[1:k−1,1] = (y1, . . . , yk−1), k = 2, . . . , m

(5)

All data accumulated during the observation from 1 to k − 1 are initially used as a
training sample.

The analysis of the condition of a working tool consists in assessing the significance of
the discrepancy between its current value yk, k = 1, . . . , n and its regression estimate (4),
reflecting the opinion of the market, represented by a set of regressor instruments, about its
real value. If the regressors are representative in terms of their ability to reflect significant
market variations, then the difference

dk = ŷk − yk, k = 1, . . . , n (6)

will reflect the degree of under- or overpricing of the selected working instrument. This
directly implies recommendations for a management strategy: the opening of a position
should be carried out in a direction that compensates for the resulting fluctuation discrep-
ancy (6).

2.3. A Simple Management Strategy Based on Multiregression Estimation

Despite the validity and constructiveness of the considered forecasting and manage-
ment technique, the solution of this problem faces a number of significant issues due to the
specifics of the data model (1). Let us consider this question in more detail.

The simplest asset management strategy based on computational regression estimates
can be constructed upon criterion K: |dk| > d*, k = 1, . . . , n. If dk > d*, this means that
ŷk > y + d*, i.e., the financial instrument is underpriced, and its price can be expected to
go up. Vice versa, dk < −d* indicates an overprice, and therefore the instrument’s price
should be expected to go down.

The conventional statistical approach involves determining the critical value d* based
on its distribution tables (or the distribution of an associated statistic) and a given level
of confidence. In the conditions of non-stationary dynamics with a chaotic systemic
component, such an approach is unfeasible. The critical value has to be selected based on
preliminary analysis of retrospective information drawn from a large observation interval.
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As an example, let us consider the change in (6) for USDCHF on a 100-day observation
interval with a 5-min step. The respective plot, its smoothed version, and the decision
levels are presented in Figure 5.

Figure 5. Process dk, its smoothed version, and the levels of SD.

The threshold value d* for making a management decision is the standard deviation
(SD) of dk estimated on the selected observation interval. The corresponding estimate of
the SD of the difference process was s = 24.7 and s = 21.5 for the smoothed process.

Figure 6 contains a histogram of dk, k = 1, . . . , n, which demonstrates the weak
convergence of the given difference’s distribution to the Gaussian law. This picture is static;
considering it dynamics-wise, it can be seen that all the moments of the distribution change
over time, and therefore the process is purely non-stationary.

Next, let us consider the combined plots of the initial process and the criterion statistics
(an oscillator) dk, k = 1, . . . , n (Figure 7). For easier visualization, a relatively small
observation interval (5 days) is considered, and the oscillator and its critical value are
enlarged by 1.5 times.

According to the described management strategy, if the smoothed oscillator surpasses
the threshold value, i.e., dk > d*, a long position should be opened. Alternatively, one can
open a short position if dk < −d*. Positions can be closed along with a reverse crossing of
the threshold d*, or by the conventional methods of setting Take Profit and Stop Loss levels.

Figure 7 shows that there is no stable trend for either underprice or overprice in this
particular example. One can assume that, on a sideways (“flat”) trend, the multi-regression
oscillator will work quite effectively with correctly selected values of the management
strategy’s parameters. However, if there is a strong trend caused by factors external to the
market, the corresponding trend will prevail, majoring the influence of the discrepancy
between the current price of the asset in relation to its market value.

Thus, in order to construct an effective management strategy based on the discrepancy
between the asset price and its market estimate in conditions of non-linearity and non-
stationarity, it is necessary to form a set of regressors most associated with the working
instrument for the current short observation interval. This approach involves structural
adaptation of the MR model (4), which in turn requires a more careful study of the features
of the estimation task in the conditions of non-stationary dynamics of market parameters.
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Figure 6. Histogram of smoothed dk.

Figure 7. Changes in the quotation of a currency instrument and a decision statistic (an oscillator) on
a five-day interval.

2.4. Specifics of Financial Instrument Value Analysis in the Conditions of Non-Stationary and
Non-Linear Dynamics

The traditional MR estimation meets the conditions of non-bias, consistency, and
asymptotic efficiency only when a number of constraints are met. Let us describe some
of them:

1. The system component of a series of observations (1) xk, k = 1, . . . , n is an unknown
deterministic process, which in some cases can be expressed analytically;

2. Regressors are not mutually correlated, i.e.,

cov(yRi, yrj) = 0, ∀i �= j, i, j = 1, . . . , m; and
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3. The noise component of the model (1) vk, k = 1, . . . , n is stationary, centered relative
to the system component, and uncorrelated to the regressor’s random process

E{vk} = 0, cov{vi,vj }k = 0; ∀i �= j;
E{vk, yRi,k} = 0, i = 1, . . . ,m, k = 1, . . . , n.

The simplest methods of data analysis based on algorithms of statistical hypothesis
testing show that real observation series obtained via monitoring values of market assets
do not fully meet the constraints listed above. This means that the price estimates of the
working instrument obtained via statistical analysis are not only not optimal, but also,
as a rule, are biased. At the same time, it is not possible to construct analytical methods
for calculating a market estimate of a financial instrument for a model of type (1). Thus,
the main method of analyzing the quality of evaluation, as has already been noted, is
computational studies.

One of the known ways to reduce the bias of statistical estimates for non-stationary
processes is to limit the length of the series of observations via a sliding observation window
Y(Δk), where Δk = (k − L, k), k = L + 1, . . . , n, and L is the window size. At the same
time, the most up-to-date data should be processed, reflecting the current situation to a
greater extent. The multipliers in the estimation algorithm using the LSM (5) are given
by expressions

YR[k−L:k−1,m] = (YR,k−L, . . . , YR,k−1), Y[k−L:k−1,1] = (yk−L, . . . , yk−1), k = 1, . . . , m

The size of the observation window is usually chosen to minimize the mean square of
the error L*: d2 = s2 + b2 = min(L), where s is the estimate of the SD, and b is the estimated
bias. However, for a model of the form (1) with a chaotic system component, it is not
possible to obtain stable estimates of SD and bias values. In this regard, the choice of the
observation window is carried out empirically, by comparing the estimation results on the
training observation window preceding the current time.

Another important feature of the statistical analysis of financial instruments is the
presence of significant variations in the correlation matrix of the used regressors. Figure 8
shows changes in the estimates of the pairwise correlation between two correlated currency
instruments with an increasing sliding observation window of size L = 10, 25, 50, and
75 counts, respectively.

It is not difficult to see that as the sample size increases, the estimates become more
stable. However, for a current assessment of the value of a financial instrument, the best
composition of regressors YRk, k = 1, . . . , n in the computational scheme (4) will be different
at each time moment. This justifies the use of structural adaptation of the MR model with a
step-by-step selection of financial instruments used as regressors.

Another important feature of the considered problem is the separation of the system
component from the initial process (1). In real time, this procedure is carried out by
sequential filtering methods of type (2). It is quite obvious that an increase in the memory
size of the filter or the weight characteristics of already smoothed observations leads to
a decrease in the noise level vk, k = 1, . . . , n. At the same time, this approach inevitably
leads to delays in the reaction of current estimates to significant changes in the relative
dynamics of quotations of financial instruments. In other words, there is a contradiction
between the quality of smoothing random fluctuations in observations and the growth
of the estimation bias caused by dynamic errors. An illustration of this problem is given
by the example of the allocation of the system component of the quotes of the EURUSD
currency pair using the exponential filter (2) for the filter coefficients α = 0.1 (Figure 9a)
and α = 0.01 (Figure 9b).
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Figure 8. The change in the estimated pairwise correlation between two currency instruments on
sliding observation windows of size L = 10, 25, 50, and 75 counts.

 
(a) (b) 

Figure 9. System component selection using an exponential filter with coefficients α = 0.1 (a) and
α = 0.01 (b).

Thus, the quality of recovery of the system component in data model (1) is determined
by the compromise between the values of statistical and dynamic estimation errors. Fur-
thermore, the shift in the balance between them depends either on the filter coefficient α
(for a filter of type (2)) or on the size of the filter memory [22]. In the conditions of chaotic
dynamics described by model (1), the choice of this parameter also has no analytically
sound recommendations and is based on empirical fitting to the results of retrospective
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analysis on previous observation segments that serve as a dataset. Double exponential
filtration (back and forth) with α decreased to minimize bias could be a reasonable variant.

Based on the studies presented above, it can be concluded that the nature of the consid-
ered series of observations is deeply inconsistent with the known limitations of statistical
analysis, which makes it possible to obtain effective estimates. Hence, an incorrect task of
constructing management strategies arises in conditions when the quality of assessments of
the state of market parameters is very uncertain. Traditional approaches to obtaining stable
results in such situations are most often based on the principles of adaptation of estimates.
The question of how this technique can be useful in conditions of chaotic dynamics remains
open. Some aspects of this problem are touched upon in this article.

3. Results

As an example of structural adaptation of the estimation model, consider the problem
of choosing a group of regressors for a currency asset that consists of USDCHF.

Figure 10 shows the dynamics of the quotation over ten days against the background
of changes in the quotes of the five currency pairs most correlated with it at the specified
observation interval. The corresponding group consists of currency pairs with numbers 1,
9, 8, 10, and 16 (see Table 1).

Figure 10. Changes in the USDCHF quotation and the group of its five most correlated currency pairs.

Note that one of the elements behaves counterphase-like with respect to the considered
process. This is due to the degree of the relationship being evaluated by the absolute value.
A currency pair with a strong negative correlation also carries a large amount of information
about the behavior of the associated instrument. In this case, the corresponding regression
coefficient before this term will be negative.

Within the listed constraints, the correlation matrix of the market (i.e., all 16 currency
pairs) was recalculated. From the resulting matrix, a row corresponding to the number
of the working asset was selected and sorted in descending order of the absolute values
of pairwise correlations. The second to (m + 1)th observations of the obtained variation
series determine the group of regressors with the largest absolute correlation value. The
corresponding results obtained for 24 non-overlapping 10-h observation intervals are
presented in Table 2.

It can be seen that, during the first seven observation intervals, the optimal group
of regressors <1 9 8 10 16> did not change. At steps 8–10, the composition of the group
was preserved as well, but the first and the ninth regressors swapped places. Further
evolution of the group’s composition is clear from the data given in the table. The general
conclusion is that the composition changes quite slowly and the 10-day adaptation interval
is acceptable for producing regression estimates with given regressors.
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Table 2. Lists of regressors in descending order of correlation on 10-h non-overlapping observation
intervals.

Intervals Regressors

1–7 1 9 8 10 16
8–10 9 1 10 8 16

11 9 10 1 8 16
12–14 9 8 10 16 1
15–17 9 8 10 16 1
18–19 8 9 10 16 4
20–21 8 9 10 4 16
22–24 9 8 10 4 16

Figure 11 shows a centered plot of the quotation dynamics of the USDCHF currency
instrument (bottom) and a smoothed plot of dk (top) on a three-day observation interval.
The same figure shows an example of the implementation of a simple management strategy
based on an adaptive MR estimate. If the difference dk between the estimate and the current
value of a currency instrument turns out to be greater (in absolute value) than the threshold
value d*, a recommendation is made to open a position in the appropriate direction. The
asterisk marks the state of the quote at the time of opening a long position. The diamond
corresponds to the position closing at dk intersecting back the threshold value d*.

Figure 11. An example implementation of the simplest control strategy with an adaptive MR oscillator.

The use of structural adaptation in solving the asset management problem with MR
estimation increases the frequency of profitable decisions by 5–10%, but does not solve the
problem of stability of management in chaotic environments in general.

The reason for this is clear: moving in the oscillator’s direction is determined by
its estimate of the prices of financial instruments used as regressors. At the same time,
there are external factors that lead to the appearance of dynamic trends. The sum of this
movements produces the final form of the dynamics, the direction of which is determined
by a vector sum of heterogeneous and hardly forecasted influencing factors.

The absence of an analytical representation of the initial chaotic process does not allow
us to obtain an accurate assessment of the potential capabilities of the chosen management
strategy. The most effective way to obtain such an estimate is numerical analysis based on
random search for optimal parameters of the management strategy. One of the implemen-
tations of random search is evolutionary modeling, which has found wide application in
numerical optimization problems [23–28].

Let us consider the problem of estimating the potential characteristics of the adaptive
MR oscillator discussed above based on the evolutionary optimization method. In accor-
dance with the strategy described in the article, a position is opened when the smoothed
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value dk, k = 1, . . . , n of the threshold value d* is crossed. The position is closed when the
process dk+τ crosses the level d*k+τ back or the zero level dk+τ = 0, where τ is the time of
the crossing.

The list of optimized strategy parameters G = [nW, α, d*] (in terms of evolutionary
modeling, genome G) includes the size of the sliding observation window nW, which is
used to produce a regression estimate, an exponential smoothing coefficient α, and the
decision level d*.

At the initial stage, by introducing small (within the limits of the corresponding
parameters) variations in all parameters, a group of ancestral genomes (AG) of size Na is
formed. Further, in a loop over the number of generations Ng, a new generation is created,
consisting of an already existing group of ancestral genomes and a newly generated group
of descendant genomes (DG). Descendant genomes are constructed from ancestral genomes
in three main ways, including:

1. Small single changes made to one of the AG parameters. The parameter in question is
selected by a random draw. If changes are to be made sequentially to each parameter,
then each AG receives mg modifications, where mg is the size of the genome. In this
case, there are N(1)

d = Namg descendants with a given type of modification, and only
one parameter (gene) is modified in each of them. In this case, mg = 3; therefore, if
Na = 4 best variants (ancestors) are preserved in each generation, N(1)

d = 12 versions
of the first type of DG will be obtained.

2. Small group changes. They are carried out similarly to the previous case, but are
made to all parameters at once instead. Thus, there are N(2)

d = 4 more versions of
DGs with slow changes in all genes.

3. Strong single mutation or parametric mutation. The AG and the gene number are se-
lected via a random draw. With the probability of parametric mutation, Ppm produces
N(3)

d descendants, in each of which one gene in the range |Δ| > 3σ is modified.

As an example, we used a program with Ngc = 9 generation changes in the same time in-
terval of 10 days. As a starting genome, we used a vector G0 = [nW0, α0, d*0] = [5, 0.01, 0.6].
During genome modification, we used rough estimates of the SD of the three listed param-
eters: SD(G) = [3, 0.02, 0.5].

To compare the potential effectiveness of management strategies based on the MR
assessment of the condition of the used asset, we considered two options:

1. A fixed group of five regressors is selected before the start of trading operations
maximizing the correlation with the working instrument (asset). The correlation
matrix for all 16 financial instruments is evaluated based on observations of their
quotes during the 15 days preceding the start of trading.

2. Sequential adjustment of a group of five regressors. The adjustment is carried out
based on the maximum correlation with the working instrument (asset) with an inter-
val of 10 h. The correlation matrix is evaluated based on the results of observations of
their quotes on a sliding observation window of 15 days.

Since the evaluation of gain was carried out via random search, we can only talk about
some approximation of the optimal solution, which theoretically could be obtained via
brute-force search in the values of the management strategy parameters.

Figure 12a shows an example of the implementation of the best variant of manage-
ment strategy parameters obtained via evolutionary parametric optimization over nine
generations of the corresponding programs. The description of the plots is similar to the
description of the processes in Figure 11. This plot corresponds to the first option, i.e., non-
adaptive with respect to the choice of the regressor set. Figure 12b shows the dependence
of the gain growth on the generation number for the non-adaptive strategy.
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(a) (b) 

Figure 12. (a) An example of a suboptimal management strategy using a non-adaptive MR oscillator.
(b) The dependence of the gain increase on the generation number for this strategy.

Similar plots of the implementation of a suboptimal strategy and the dependence
of the gain on the generation number for the second option are shown, respectively, in
Figure 13a,b. A comparison of the two examples shows that adaptation during the choice
of a group of regressors improves the quality of the estimate and, as a result, increases the
potential gain by about 10–15%. Of course, a single example does not give an objective
picture of the gain. To generalize the result, we averaged one hundred 10-day observation
segments of quotations. Note that averaging over implementations in this case is not
equivalent to averaging over one segment of a length equal to the sum of individual
implementations. This is due to the fact that the process of price dynamics is not ergodic.
Therefore, the task was reproduced for both averaging schemes and, ultimately, showed
that the gain from adaptation varies in a wide range of 5% to 15%.

 
(a) (b) 

Figure 13. (a) An example of a suboptimal control strategy using an adaptive MR oscillator. (b) The
dependence of the gain growth on the generation number for this strategy.

4. Discussion

The research presented in this article is focused on establishing the fundamental
possibility of effective proactive management in multidimensional non-stationary, non-
linear, and/or chaotic environments. As a basic hypothesis, the assumption is put forward
that the market seeks to eliminate the mismatch between the current value of a finan-
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cial instrument and its valuation, formed by the “opinion” of the market about its “fair
price”. The traditional MR evaluation of the instrument was used as such a price in the
conducted studies.

In general, the provided numerical studies confirm the hypothesis stated above, but its
implementation for an effective management strategy encountered a number of significant
difficulties. In particular, the nature of real market processes leads to a significant decrease
in the accuracy of the generated estimates of the market value and, consequently, to a
decrease in the effectiveness of the asset management process.

The conventional approach to increasing estimate stability for stochastic processes
is based on adapting the estimation model to variations in the statistical structure of
observation series. However, the effectiveness of adaptation in the tasks of constructing
management strategies for chaotic dynamics can be ambiguous. This is due to the fact that
real processes, due to their non-stationarity and non-ergodicity, do not allow us to close the
adaptation circuit fast enough to have time to track changes in the structure of the observed
dynamic process. Therefore, we propose to use the correlation structure of the initial data
as a regularizing factor based on processes with relatively slow changes. In particular, as
shown in this paper, the adaptation of the estimating model to variations in the correlation
structure of multidimensional quotation dynamics can improve the quality of asset value
recovery, and, as a result, raise the level of the potential efficiency of the MR oscillator.

5. Conclusions

Selecting a single working component and obtaining its current adjustment based on
auxiliary components are problems that arise naturally during the analysis of multidimen-
sional time series that estimate the current values of an indicator from different points of
view using different sources of information. In a number of formulations, it turns out that
the system of correlations between components has a known inertia, which allows it to
be used with some time lag to adjust the current values of the working component. One
such formulation of the problem of estimating the current value of a financial instrument is
considered in this paper.

Further improvement of estimation quality involves the use of self-organizing algo-
rithms of data analysis and management. In this paper, we investigated the construction of
such algorithms using evolutionary modeling, in which the best versions of the observation
model are formed by random changes in both the model’s structure and its parameters,
with further selection of the most effective solutions in the process of changing generations
of models.

The use of self-organization in the task of MR data analysis made it possible to obtain
a fundamental confirmation of the viability of the proposed asset management method.
However, a stable result with permanent profit was not achieved. This is due to the choice
of regressors used for estimating the instrument value being limited to currency pairs
available at the electronic Forex exchange. However, other parameters may have a greater
influence on a particular financial instrument in a given time interval. These parameters
could describe dynamic processes in the stock or commodity market or in the market
infrastructure associated with political, military, environmental, and other factors.

Another direction of development of this approach is based on the robustification of
estimation algorithms [29,30], i.e., reducing the sensitivity of estimates to variations in the
statistical structure of the data. In principle, this approach could serve as an alternative to
adaptation technologies that are insufficiently effective due to the inertia-free and chaotic
nature of the initial series of observations. However, the price of increased stability is a
decrease in accuracy. Thus, this issue requires separate research.
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Abstract: In this paper, least squares homotopy perturbation is presented as a straightforward and
accurate method to compute approximate analytical solutions for systems of ordinary differential
equations. The method is employed to solve a problem related to a laminar flow of a viscous fluid in
a semi-porous channel, which may be used to model the blood flow through a blood vessel, taking
into account the effects of a magnetic field. The numerical computations show that the method is
both easy to use and very accurate compared to the other methods previously used to solve the
given problem.

Keywords: least squares homotopy perturbation method; system of nonlinear differential equations;
approximate analytical solutions; non-Newtonian fluid; magnetohydrodynamics

1. Introduction

The least squares homotopy perturbation method was introduced in 2017 by Bota and
Caruntu in [1], and its main feature is an accelerated convergence compared to the regular
homotopy perturbation method. In the few years since its introduction, the method (or
slightly modified versions of it) was used by several researchers with very good results in
finding approximate solutions for various types of problems, among which, we mention:

• Boundary value problems for ordinary differential equations [2,3].
• Fractional partial differential equations [4–6].
• Fractional order integro-differential equations [7].
• Systems of fractional partial differential equations [8].

In the present paper, we employ the least squares homotopy perturbation method to
compute approximate analytical solutions for boundary problems consisting of systems of
nonlinear ordinary differential equations of the type:

Li(U1(y), U2(y), . . ., Un(y)) +Ni(U1(y), U2(y), . . ., Un(y))− fi(y) = 0, i = 1, n
Bj(Ui(y)) = 0, j = 1, k

(1)

where Ui(y) are the unknown functions, Li are linear operators, Ni are nonlinear operators,
f (t)i are given functions, y denotes the variable, and Bj are boundary operators.

2. The Least Squares Homotopy Perturbation Method

In this section, the least squares homotopy perturbation method (LSHPM) is presented.
Since the numerical application considered in the following section only contains two
equations, we introduce LSHPM for the case of a system consisting of two equations.
Obviously, LSHPM can be easily generalized for systems consisting of as many equations
as needed. We should also note that LSHPM works as well, if instead of Bj(Ui(y)) = 0, we
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have other types of conditions, such as Bj(Ui(y), Vi(y)) = 0, initial-type conditions, or any
combinations of the above.

Thus we consider the system:

L1(U(y), V(y)) +N1(U(y), V(y))− f1(y) = 0,
L2(U(y), V(y)) +N2(U(y), V(y))− f2(y) = 0,

Bi(U(y)) = 0, Bj(V(y)) = 0, i = 1, n1 j = 1, n2
(2)

where U(y) and V(y) are the unknown functions, L1,L1 are linear operators, N1,N2 are
nonlinear operators, and Bi,Bj are boundary operators.

Let Ũ(y) and Ṽ(y) be approximate solutions of the system (2). The error obtained
by replacing the exact solutions U(y), V(y) of the system (2) with the approximate ones
Ũ(y); Ṽ(y) is given by the remainders:

R1(y, Ũ) = L1(Ũ(y)) +N1(Ũ(y))− f1(y), y ∈ R

R2(y, Ṽ) = L2(Ṽ(y)) +N2(Ṽ(y))− f2(y), y ∈ R
(3)

Following the homotopy perturbation method [9–11], the first step in applying LSHPM
is to attach to the system (3) the family of equations:

(1 − p)[L1(Φ1(y, p))− f1(y)] + p [L1(Φ1(y, p)) +N1(Φ1(y, p))− f1(y)] = 0
(1 − p)[L2(Φ2(y, p))− f2(y)] + p [L2(Φ2(y, p)) +N2(Φ2(y, p))− f2(y)] = 0

(4)

where p ∈ [0, 1] is an embedding parameter and Φi(y, p) with i = 1, 2 are unknown functions.
When p increases from 0 to 1, the solutions Φi(y, p) of system (4) vary from Φ1(y, 0) =

U0(y) and Φ2(y, 0) = V0(y) to the solutions Φ1(y, 1) = U(y) and Φ2(y, 1) = V(y) of the
system (2). The functions U0(y) and V0(y) are the solutions of the system:

L1(U0(y))− f1(y) = 0
L2(V0(y))− f2(y) = 0

Bi(U(y)) = 0, Bj(V(y)) = 0, i = 1, n1 j = 1, n2
(5)

We consider the following expansions of Φi(y, p):

Φ1(y, p) = U0(y) + ∑
m≥1

Um(y) pm

Φ2(y, p) = V0(y) + ∑
m≥1

Vm(y) pm (6)

Substituting the relations (6) in (4), collecting the same powers of p and equating the
coefficients of the powers of p, we obtain:

L1(Um(y)) = −N m−1
1 (U0(y), U1(y), . . ., Um−1(y))

L2(Vm(y)) = −N m−1
1 (V0(y), V1(y), . . ., Vm−1(y))

Bi(Um(y)) = 0, Bj(Vm(y)) = 0, i = 1, n1 j = 1, n2
(7)

where N j
i , j ≥ 0 are the coefficients of pj in the nonlinear operator Ni:

N1(U(y)) = N 0
1 (U0(y)) + pN 1

1 (U0(y), U1(y)) + p2N 2
1 (U0(y), U1(y), U2(y)) + . . .

N2(V(y)) = N 0
1 (V0(y)) + pN 1

1 (V0(y), V1(y)) + p2N 2
1 (V0(y), V1(y), V2(y)) + . . .

(8)

Now we can denote by

f1m = U0 + U1 + . . . + Um,
f2m = V0 + V1 + . . . + Vm

(9)

where Um, m ≥ 1, and Vm, m ≥ 1, are obtained from the linear Equation (7).
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For m = 0, 1, 2, . . . let us consider the set Sim containing the functions

ϕim0, ϕim1, ϕim2, . . ., ϕimnm , (10)

chosen as linearly independent functions in the vector space of the continuous functions
on the real interval I, such that Sim−1 ⊆ Sim and fim is a real linear combination of these
functions where i = 1, 2.

Using the functions given by (10), we define some types of approximate solutions of
the system (2).

Definition 1. A sequence of functions {sim(y)}m∈N of the form

sim(y) =
nm

∑
k=0

αk
im ϕimk , m ∈ N, αk

m ∈ R, i = 1, 2 (11)

are called HP-sequences of system (2).
Functions of the HP-sequences are called HP-functions of system (2).
The HP-sequences {sim(y)}m∈N with the property

lim
m→∞

Ri(y, s1m(y), s2m(y)) = 0, i = 1, 2

is called convergent to the solution of the system (2).

Definition 2. The HP-functions Ũ and Ṽ satisfying the conditions

|R1(y, Ũ, Ṽ)| < ε, Bi(Ũ) = 0
|R2(y, Ũ, Ṽ)| < ε, Bj(Ṽ) = 0

(12)

are called ε-approximate HP-solutions of the system (2).

Definition 3. HP-function Ũ and Ṽ satisfying the conditions∫
I

R2
1(y, Ũ, Ṽ)dy ≤ δ, Bi(ỹ) = 0 (13)

∫
I

R2
2(y, ṽ)dy ≤ δ, Bj(ỹ) = 0 (14)

are called weak δ-approximate HP-solutions of the system (2) on the real interval I.

Remark 1. It is easy to see that any ε-approximate HP-solution of the system (2) is also a weak
approximate HP-solution. It follows that the set of weak approximate HP-solutions of the system (2)
also contains the approximate HP-solutions of the system.

The following theorem states the existence of weak approximate HP-solutions of the
system (2) and furnishes the way to construct them.

Theorem 1. The system (2) admits a sequence of weak approximate HP-solutions.

Proof. The first step of the proof is to construct the HP-sequences {sim(t)}m∈N, i = 1, 2.
Let us consider the approximate HP-solutions of the type:

Ũ =
nm
∑

k=0
ck

m ϕ1mk, where m = 0, 1, . . . and

Ṽ =
nm
∑

k=0
dk

m ϕ2mk, where m = 0, 1, . . ..

In the following, the unknown constants ck
m and dk

m k ∈ {0, 1, . . . , km}, will be determined.
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Substituting the approximate solutions Ũ and Ṽ in the system (2), one gets the expression:

R1(y, ck
m) := R1(y, Ũ)

R2(y, dk
m) := R2(y, Ṽ).

(15)

Attaching to the system (2) the following real functionals

J1(ck
m) =

∫
I
R2

1(y, ck
m)dy

J2(dk
m) =

∫
I
R2

2(y, dk
m)dy

(16)

and imposing the boundary conditions, we can determine l ∈ N, l ≤ m, such that
cm

0 , cm
1 , . . ., cm

l and dm
0 , dm

1 , . . ., dm
l are computed as functions of cm

l+1, cm
l+2, . . ., cm

n respectively
dm

l+1, dm
l+2, . . ., dm

n .
Replacing cm

0 , cm
1 , . . ., cm

l and dm
0 , dm

1 , . . ., dm
l in (16), the values of c̃m

l+1, c̃m
l+2, . . ., c̃m

n re-
spectively d̃m

l+1, d̃m
l+2, . . ., d̃m

n are computed as the values, which give the minimum of the
functional (16).

Using again the boundary conditions, the values of c̃m
0 , c̃m

1 , . . ., c̃m
l as functions of c̃m

l+1,
c̃m

l+2, . . ., c̃m
n are determined and the values of d̃m

0 , d̃m
1 , . . ., d̃m

l as functions of d̃m
l+1, d̃m

l+2, . . ., d̃m
n

are determined.
Using the constants c̃m

0 , . . ., c̃m
n and d̃m

0 , . . ., d̃m
n thus determined, the following HP-functions

s1m(t) =
nm
∑

k=0
c̃k

m ϕmk

s2m(t) =
nm
∑

k=0
d̃k

m ϕmk

(17)

are constructed.
The second step of the proof is to show that the above HP-functions sim(y) are weak

approximate solutions of the system (2).
Based on the way the HP-functions sim(y) are computed and taking into account that

fim given by (9) are HP-functions for system (2), it follows:

0 ≤
∫
I

R2
i (y, sim(y))dy ≤

∫
I

R2
i (y, fim(y))dy , ∀m ∈ N, i = 1, 2.

Therefore,

0 ≤ lim
m→∞

∫
I

R2
i (y, sim(y))dy ≤ lim

m→∞

∫
I

R2
i (y, fim(y))dy, i = 1, 2.

Since fim are convergent to the solution of the system (2), we obtain:

lim
m→∞

∫
I

R2
i (y, sim(y))dy = 0.

It follows that for all ε > 0 there exists m0 ∈ N such that for all m ∈ N, m > m0, the
sequence sim(y) is a weak ε-approximate HP-solution of the system (2).

Remark 2. The proof of the above theorem give us a way to determine a weak approximate HP-
solution of the system (2), Ũ, Ṽ. Moreover, taking into account the Remark 1, if |R1(y, Ũ)| < ε
and |R(y, Ṽ)| < ε then Ũ and Ṽ are also ε-approximate HP-solutions of the considered system.

3. Numerical Application

The application presented in this section is the one included in the paper by Basiri
Parsa, Rashidi et al. [12], where the authors employed the well-known homotopy analysis
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method and differential transform method to find approximate analytical solutions for the
following boundary value problem:

UV′ − VU′ = 1
Re
(
U′′ − Ha2U

)
VIV = Ha2V′′ + Re(V′V′′ − VV′′′)

U(0) = 1, V(0) = 0, V′(0) = 0, U(1) = 0, V(1) = 1, V′(1) = 0
(18)

These equations model a laminar magnetohydrodynamic flow of a non-Newtonian
viscous fluid in a semi-porous channel under the influence of an axial uniform static
magnetic field. U and V are the mean axial and normal velocity components, respectively,
Ha is the Hartmann number, and Re is the Reynolds number.

In order to find analytical solutions for this type of problems, various approxima-
tion methods were employed over the years, with various rates of success, methods
among which we mention: the homotopy perturbation method [10], the variational iter-
ation method [11], the Adomian decomposition method [13], and the optimal homotopy
asymptotic method [14]. While these methods (and many others) have been successfully
employed, due to the nature of the equations, the computations involved are usually
very difficult.

We remark that the system (18) may be used to study the influence of a magnetic field
on the blood flow through a blood vessel.Numerous models have been established for
the study of the hydrodynamic blood flow through the vessels, for example in [15]. Here,
the authors analyze the flow of blood in tubes with reduced diameters, while in [16], the
authors engage themselves in the study of the blood flow in small arched tubes, which are
modeled. Blood flow has been analyzed trough the effect of the magnetic field as an great
electrically conductive fluid. Knowing that blood is a ferrofluid, it can be concluded that
there is the possibility of controlling the blood pressure and its flow behavior by using a
fitting magnetic field. In [17], the authors came up with a mathematical representation of
the blood flow in a blood vessel of reduced dimensions, in the presence of a magnetic field.
Moreover, in [18], the authors investigated the apparatus of interaction between the red
blood cells and an external magnetic field. The results will show the capacity of a magnetic
field to modulate the blood flow. Other research on the magnetic properties of the blood
are based on [12,19–27].

Many mathematical models show parts of the human circulatory system (for exam-
ple [28–31]), most of the time, the blood flow is modeled by using differential equations,
mostly nonlinear ones. However, it is usually nearly impossible to find exact solutions for
these types of equations. Such cases require approximation methods for calculating almost
exact solutions, because these approximated solutions may provide important information
about the phenomenon.

In the following, we apply the least squares homotopy perturbation method to com-
pute approximate polynomial solutions for the system (18) for two cases with particular
significant values of the Hartmann number Ha and of the Reynolds number Re, and we
compare our solutions with previous ones obtained in the literature.

3.1. The Case Re = 1 and Ha = 0

The case Re = 1 and Ha = 0 corresponds to a non-conducting blood flow. In [12],
Basiri Parsa et al. computed approximate solutions of the system (18) by using the homo-
topy analysis method (HAM) and the differential transform method (DTM), and in [32],
Caruntu et al. computed approximate solutions by using the polynomial least squares
method (PLSM).

In this case, employing LSHPM for the system (18), we compute the approximate
solutions as follows:

The linear operators are:

L1(Φ1(y, p)) = − 1
Re

U′′

L2(Φ2(y, p)) = VIV
(19)
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and the nonlinear operators are:

N1(Φ1(t, p)) =
Ha2

Re
U + UV′ − U′V

N2(Φ2(t, p)) = −Ha2V′′ − Re(V′V′′ − VV′′′).
(20)

We obtain the HPM approximations:

• First-term approximations:
U0(y) = 1 − y

V0(y) = 3y2 − y3 (21)

• Second-term approximations:

U1(y) =
y5

5
− 3y4

4
+ y3 − 29y

20
+ 1

V1(y) =
2y7

35
− y6

5
+

3y5

10
− 167y3

70
+

113y2

35

(22)

• Third-term approximations:

U2(y) =
2y9

315
− 19y8

560
+

y7

20
− y6

20
+

23y5

70
− 1643y4

1680
+

113y3

105
− 1763y

1260
+ 1

V2(y) =
4y11

5775
− 2y10

525
+

y9

210
− 3y8

560
+

97y7

1225
− 533y6

2100
+

121y5

350
− 774469y3

323400
+

2087479y2

646800

(23)

For the second-term approximation U0 + U1, the set S1m consist of the functions
{y, y3, y4, y5} and for V0 + V1 the set is S2m = {y2, y3, y5, y6, y7}.

We will compute the approximate solutions Ũ(y) = c0 + c1y + c2y3 + c3y4 + c4y5 and
Ṽ(y) = d0y2 + d1y3 + d2y5 + d3y6 + d4y7.

From the initial conditions: Ũ(0) = 1, Ũ(1) = 0 and Ṽ(0) = 0, Ṽ(1) = 1, Ṽ′(0) =
0, Ṽ′(1) = 0 we obtain: c0 = 1 and c1 = −1 − c2 − c3 − c4 respectively −d0 = 2d2 + 3d3 +
4d4 + 3 and d1 = −3d2 − 4d3 − 5d4 − 2.

Replacing these expressions of c0, c1, d0, and d1 in the corresponding remainders (15) are:

R1(y, Ũ) = R(y, c2, c3, c4)
R2(y, Ṽ) = R(y, d2, d3, d4)

(24)

Next, we compute the corresponding functionals (16) (too long to be included here):

J1(c2, c3, c4) =
1∫

0
R2

1(y, c2, c3, c4)dy

J2(d2, d3, d4) =
1∫

0
R2

2(y, d2, d3, d4)dy
(25)

and we compute the minimum of this functionals, determining the coefficients cj and dj,
j = 2, 4, thus finding the approximate solutions of the system (18) by LSHPM.

In a similar way, we compute the third-term approximations by LSHPM, and the
solutions are:

• Second-term approximations:
Ũ(y) = 0.25139431098009168490y5 − 0.89052033909540654567y4

+ 1.0440071928069991650y3 − 1.4048811646916843042y + 1
Ṽ(y) = 0.058317127462336779863y7 − 0.21889392791262717538y6

+ 0.32522212582352969927y5 − 2.3916763031317642956y3 + 3.2270309777585249919y2

• Third-term approximations:
Ũ(y) = −0.012783174216369037776y9 + 0.079312017411340841618y8

− 0.21264602372589301173y7 + 0.26096763633169609359y6
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+ 0.13236850157788926145y5 − 0.90665763559833919190y4 + 1.0653323749944480412y3

− 1.4058936967747729964y + 1
Ṽ(y) = 0.00077252197269867863129y11 − 0.0033512835587865196224y10

+ 0.0028365610269174046158y9 − 0.0031087019658224288029y8

+ 0.079915383004597381009y7 − 0.25695066296630124619y6

+ 0.34706280997410686745y5 − 2.3943088377575857329y3 + 3.2271322102701755958y2

The comparison of these LSHPM solutions with the previous approximate solu-
tions computed in [12] using HAM and DTM, and in [32] using PLSM, is presented in
Figures 1 and 2. Since no exact solutions are available, the comparison is done by means of
computing the error relative to a fourth-order Runge–Kutta method numerical solution
(i.e., the absolute errors are computed as the difference between our approximate solutions
and the numerical solutions).

Figure 1. Comparison of absolute errors corresponding to the approximation from [12] UDTM (red
curve), [10] UHPM 3 terms (blue curve), [32] UPLSM (orange curve), and our LSHPM approximation
ULSHPM (green curve).

Figure 2. Comparison of absolute errors corresponding to the approximation from [12] VDTM (red
curve), [10] VHPM 3 terms (blue curve), [32] VPLSM (orange curve), and our LSHPM approximation
VLSHPM (green curve).

The comparison is further illustrated by Tables 1 and 2, which includes the results
obtained in [12], by means of the HAM and DTM, the results obtained in [32] by PLSM,
and the results computed by classical HPM and by LSHPM. The comparison lead to the
same conclusion: the approximate solutions obtained by LSHPM are more precise.
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Table 1. Comparison of the absolute errors of the approximate solutions U in case Re = 1 and Ha = 0.

y UH AM UDT M UPLSM UHPM2term. UHPM3t. ULSHPM2t. ULSHPM3t.

0.1 9.04 × 10−3 1.08 × 10−2 8.06 × 10−4 4.45 × 10−3 6.77 × 10−4 8.61 × 10−5 3.68 × 10−6

0.2 1.77 × 10−2 1.77 × 10−2 1.90 × 10−3 9.08 × 10−3 1.35 × 10−3 8.00 × 10−5 1.56 × 10−6

0.3 2.71 × 10−2 1.98 × 10−2 2.14 × 10−3 1.37 × 10−2 2.01 × 10−3 4.18 × 10−6 3.41 × 10−6

0.4 3.45 × 10−2 1.79 × 10−2 1.34 × 10−3 1.78 × 10−2 2.64 × 10−3 9.71 × 10−5 9.99 × 10−8

0.5 3.73 × 10−2 1.39 × 10−2 8.14 × 10−5 2.10 × 10−2 3.16 × 10−3 1.29 × 10−4 2.42 × 10−6

0.6 3.46 × 10−2 9.33 × 10−3 1.43 × 10−3 2.24 × 10−2 3.50 × 10−3 7.69 × 10−5 1.22 × 10−6

0.7 2.77 × 10−2 5.39 × 10−3 2.09 × 10−3 2.15 × 10−2 3.54 × 10−3 2.59 × 10−5 9.10 × 10−7

0.8 1.87 × 10−2 2.63 × 10−3 1.74 × 10−3 1.78 × 10−2 3.12 × 10−3 9.63 × 10−5 7.61 × 10−7

0.9 9.27 × 10−3 9.33 × 10−4 6.99 × 10−4 1.07 × 10−2 2.02 × 10−3 6.71 × 10−5 4.05 × 10−7

Table 2. Comparison of the absolute errors of the approximate solutions V in case Re = 1 and Ha = 0.

y VH AM VDT M VPLSM VHPM2term. VHPM3t. VLSHPM2t. VLSHPM3t.

0.1 2.21 × 10−4 1.19 × 10−6 1.48 × 10−7 2.25 × 10−5 2.13 × 10−6 1.41 × 10−6 2.20 × 10−8

0.2 5.75 × 10−4 4.10 × 10−6 7.17 × 10−7 1.14 × 10−4 6.55 × 10−6 1.21 × 10−5 9.78 × 10−9

0.3 6.47 × 10−2 7.91 × 10−6 1.34 × 10−6 2.83 × 10−4 9.89 × 10−6 3.20 × 10−5 4.69 × 10−9

0.4 3.03 × 10−4 1.17 × 10−5 1.26 × 10−6 4.95 × 10−4 9.25 × 10−6 5.07 × 10−5 1.40 × 10−8

0.5 2.63 × 10−4 1.49 × 10−5 4.45 × 10−7 6.84 × 10−4 3.56 × 10−6 5.66 × 10−5 1.53 × 10−8

0.6 7.02 × 10−4 1.65 × 10−5 3.80 × 10−7 7.75 × 10−4 5.54 × 10−6 4.58 × 10−5 1.84 × 10−8

0.7 7.62 × 10−4 1.59 × 10−5 5.63 × 10−7 7.12 × 10−4 1.37 × 10−5 2.53 × 10−5 1.67 × 10−8

0.8 4.73 × 10−4 1.23 × 10−5 2.24 × 10−7 4.87 × 10−4 1.54 × 10−5 7.48 × 10−6 1.46 × 10−8

0.9 1.25 × 10−4 5.88 × 10−6 2.11 × 10−8 1.80 × 10−4 8.05 × 10−6 2.77 × 10−7 1.41 × 10−8

3.2. The Case Re = 1 and Ha = 1

In the case Re = 1 and Ha = 1, the influence of the magnetic field on the blood flow is
non-negligible and the flow is weakly magnetic. The computations by LSHPM are similar
to the ones in the previous case.

The approximations terms by HPM are:

• First-term approximations:
U0(y) = 1 − y

V0(y) = 3y2 − 2y3 (26)

• Second-term approximations:

U1(y) =
y5

5
− 3y4

4
+

5y3

6
+

y2

2
− 107y

60
+ 1

V1(y) =
2y7

35
− y6

5
+

y5

5
+

y4

4
− 181y3

70
+

459y2

140

(27)

• Third-term approximations:

U2(y) =
2y9

315
− 19y8

560
+

9y7

140
− 2y6

15
+

2129y5

4200
− 451y4

420
+

401y3

504
+

y2

2
− 41129y

25200
+ 1

V2(y) =
4y11

5775
− 2y10

525
+

y9

140
− 9y8

560
+

1507y7

14700
− 1129y6

4200
+

317y5

1400
+

153y4

560

−838379y3

323400
+

352623y2

107800

(28)

The corresponding solutions obtained by using LSHPM are:

• Second-term approximations:
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Ũ(y) = 0.24252310472551437387y5 − 0.79607170987751279666y4

+ 0.70039529434560076978y3 + 0.51680281524640722276y2

− 1.6636495044400095698y + 1
Ṽ(y) = 0.058199385875154810585y7 − 0.20176414373359385855y6

+ 0.17947791112252870094y5 + 0.28462933749944678084y4 − 2.5916327628078782832y3

+ 3.2710902720443418494y2

• Third-term approximations:
Ũ(y) = −0.039570918805227895983y9 + 0.18039801278862870509y8

− 0.33738809541609613996y7 + 0.25556139173308396128y6 + 0.28898499486097221037y5

− 0.98687905924276726841y4 + 0.80192640217575596712y3 + 0.50063075107844706510y2

− 1.6636634791727966046y + 1
Ṽ(y) = 0.00070249628967946626576y11 − 0.0034005002946346048030y10

+ 0.0063398061612668565765y9 − 0.017261143110682215908y8

+ 0.10727677845680360313y7 − 0.27266199870132195652y6 + 0.22694957760601929024y5

+ 0.27260900187074289280y4 − 2.5917328827530869045y3 + 3.2711788644752135727y2

Again, the comparisons included in Tables 3 and 4 allow us the reach the same
conclusion as in the previous case, namely that the approximations obtained by LSHPM
are more accurate than the previous ones by other methods.

We mention the fact that we computed approximations for a wide range of values
of the parameters Re and Ha, and the above conclusions remained valid for all of the
computed solutions.

Table 3. Comparison of the absolute errors of the approximate solutions for U for the case Re = 1
and Ha = 1.

y UH AM UDT M UPLSM UHPM2term. UHPM3t. ULSHPM2t. ULSHPM3t.

0.1 1.19 × 10−2 3.18 × 10−2 8.22 × 10−5 1.19 × 10−2 3.13 × 10−3 8.03 × 10−5 4.19 × 10−7

0.2 1.59 × 10−2 5.15 × 10−2 1.17 × 10−4 2.33 × 10−2 6.14 × 10−3 1.14 × 10−4 1.14 × 10−6

0.3 1.25 × 10−2 5.95 × 10−2 3.15 × 10−5 3.35 × 10−2 8.85 × 10−3 2.72 × 10−5 1.41 × 10−7

0.4 5.92 × 10−3 5.84 × 10−2 9.22 × 10−5 4.14 × 10−2 1.10 × 10−2 9.64 × 10−5 1.32 × 10−6

0.5 1.62 × 10−4 5.14 × 10−2 1.48 × 10−4 4.60 × 10−2 1.25 × 10−2 1.52 × 10−4 3.46 × 10−7

0.6 2.79 × 10−3 4.11 × 10−2 9.29 × 10−5 4.65 × 10−2 1.29 × 10−2 9.57 × 10−5 1.10 × 10−6

0.7 3.20 × 10−3 2.99 × 10−2 3.03 × 10−5 4.24 × 10−2 1.22 × 10−2 2.86 × 10−5 3.63 × 10−7

0.8 2.34 × 10−3 1.92 × 10−2 1.16 × 10−4 3.33 × 10−2 9.21 × 10−3 1.15 × 10−4 7.95 × 10−7

0.9 1.21 × 10−3 9.05 × 10−3 8.04 × 10−5 1.92 × 10−2 5.92 × 10−3 8.01 × 10−5 1.05 × 10−7

Table 4. Comparison of the absolute errors of the approximate solutions for V for the case Re = 1
and Ha = 1.

y VH AM VDT M VPLSM VHPM2term. VHPM3t. VLSHPM2t. VLSHPM3t.

0.1 4.90 × 10−4 2.70 × 10−4 3.06 × 10−8 7.74 × 10−5 1.53 × 10−6 1.14 × 10−8 1.91 × 10−8

0.2 1.15 × 10−3 5.83 × 10−4 8.27 × 10−8 3.03 × 10−4 8.01 × 10−6 5.24 × 10−6 7.27 × 10−9

0.3 1.19 × 10−3 5.51 × 10−4 1.37 × 10−7 6.22 × 10−4 2.06 × 10−6 1.87 × 10−5 4.18 × 10−10

0.4 4.36 × 10−4 1.45 × 10−4 1.04 × 10−7 9.38 × 10−4 3.79 × 10−6 3.38 × 10−5 3.16 × 10−9

0.5 7.25 × 10−4 4.47 × 10−4 1.51 × 10−8 1.14 × 10−3 5.51 × 10−6 4.05 × 10−5 1.35 × 10−9

0.6 1.66 × 10−3 9.52 × 10−4 9.11 × 10−8 1.16 × 10−3 6.56 × 10−6 3.41 × 10−5 3.91 × 10−10

0.7 1.90 × 10−3 1.12 × 10−3 6.89 × 10−8 9.70 × 10−4 6.30 × 10−5 1.91 × 10−5 1.24 × 10−9

0.8 1.35 × 10−3 8.72 × 10−4 1.55 × 10−8 6.05 × 10−4 4.48 × 10−5 5.55 × 10−6 7.28 × 10−10

0.9 4.73 × 10−4 3.42 × 10−4 6.71 × 10−10 2.04 × 10−4 1.71 × 10−6 1.06 × 10−7 3.35 × 10−9

4. Discussion of the Results

As we mention in the previous section, we computed approximations for a wide
range of values of the parameters Re and Ha, and the conclusions of our study are in very
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good agreement with previous ones included in [12,33–35] and other studies. This is to be
expected because, even though our approximations are much more precise than the ones
included in the previous studies, the overall phenomena described by the solutions are
obviously the same. In the following, we will briefly summarize the results of the study.

The first results are related to the influence of the Reynolds number on the velocities
U and V, when the value of the Hartmann number is fixed. We were able to draw similar
conclusions for both cases studied in [12] (the non-conducting case Ha = 0 and the weakly
magnetic flow case Ha = 1). The consequences of any increase of the Reynolds number
are a modest increase to the V(y) component of the velocity of the blood flow, and a major
decrease of the U(y) component. The effect of this phenomenon is a major deceleration of
the blood velocity in the x-direction. For the case Ha = 0, these conclusions are illustrated
by the Figures 3 and 4, while for the case Ha = 1 (and, actually, for any other value of Ha
on its nominal interval [0, 2]), the figures look very similar.

Figure 3. The effect of the increase of Re on U for the case Ha = 0—three dimensional plot.

Figure 4. The effect of the increase of Re on V for the case Ha = 0—three dimensional plot.

The next study item is the influence of the Hartmann number on the velocities U and
V for fixed values of the Reynolds number. Because the magnetic field is applied in the
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y-direction only, there is no visible influence of the increase of the Ha V(y) component of
the blood velocity while there is a decrease of the U(y) component, as expected. These
conclusions are illustrated for Re = 1 in Figures 5 and 6 (again, we mention that for any
values of the Reynolds number on its nominal interval [1, 20], the figures are similar).

Figure 5. The effect of the increase of Ha on U for the case Re = 1—three dimensional plot.

Figure 6. The effect of the increase of Ha on V for the case Re = 1—three dimensional plot.

In the last part of the study, we investigated the merged impact of Re and Ha on U(y)
and V(y), impact highlighted in the Figures 7 and 8 for y = 0.2 (red surface), y = 0.4 (blue
surface), y = 0.6 (yellow surface) and y = 0.8 (green surface).

Figure 7 is a good synthesis of the research done on the impact of Re and Ha on a
replicated blood flow in a semi-porous channel, as it is obvious that the increase in both
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Re and Ha conduct to the reduction of U(y). At the same time, Figure 8 gives new insight
regarding the interplay between the impact of Re and Ha on the blood flow velocity in the
y-direction, particularly the fact that the decelerative consequence of the increase of Ha
greatly depends on Re. This effect is greater for reduced values of Re and, as a result, in
situations where, due to practical discussions, a strong suction at the upper wall ( defined
by a large value of Re) cannot be achieved, a decrease of blood flow velocity can be achieved
by boosting the intensity of the magnetic field applied. Even if it is practically possible, an
increase of the suction at the upper wall is apparently the preferable method for reducing
the flow, since the effect of the increase of Re seems to be considerably greater than the
effect of the increase of Ha. Furthermore, if the value of the Reynolds number is large, the
consequences of the increase of the Hartmann number is small.

h=0.2

h=0.4

h=0.6

h=0.8

Figure 7. The combined influence of Re and Ha on U. The red surface corresponds to y = 0.2, the
blue surface to y = 0.4, the yellow surface to y = 0.6 and the green one to y = 0.8.

h=0.2

h=0.4

h=0.6

h=0.8

Figure 8. The combined influence of Re and Ha on V. The red surface corresponds to y = 0.2, the
blue surface to y = 0.4, the yellow surface to y = 0.6, and the green one to y = 0.8.

5. Conclusions

The least squares homotopy perturbation method is introduced as a straightforward
and very accurate method to compute analytically approximate solutions for systems of
ordinary differential equations.
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The method was employed for a system of equations modeling the blood flow through
a blood vessel under the action of a magnetic field. The comparison with approximate
solutions computed by using well-known methods, such as the homotopy analysis method,
the differential transform method and the homotopy perturbation method, clearly illustrate
the precision of our method.
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Abstract: In the present paper, two optimal control problems are studied using Lie geometric methods
and applying the Pontryagin Maximum Principle at the level of a new working space, called Lie
algebroid. It is proved that the framework of a Lie algebroid is more suitable than the cotangent
bundle in order to find the optimal solutions of some driftless control affine systems with holonomic
distributions. Finally, an economic application is given.

Keywords: control affine systems; controllability; optimal control; Hamilton–Jacobi–Bellman equa-
tions; Lie geometric methods; holonomic distribution; economic applications

1. Introduction

In the last decades, Lie geometric methods have been applied successfully in different
domains of research such as dynamical systems or optimal control theory. In this paper,
some Lagrangian systems with some external holonomic constraints are studied. These
types of nonlinear systems have many applications in different areas of optimal control
theory, cybernetics or mathematical economics. In [1], an introduction to optimal control
problems in life sciences and economics is presented, while in [2], some applications of
the control theory of economic growth are given. The book [3] presents a modern and
thorough exposition of the fundamental mathematical formalism used to study optimal
control theory, i.e., continuous time dynamic economic processes and to interpret dynamic
economic behavior. In the book [4], the notions of deterministic optimal control systems
governed by ordinary differential equations are studied. These models cover the problems
of economic growth, exploitation of (non)renewable resources, pollution control, behavior
of firms or differential games. The monograph [5] presents some optimal control models
with management science applications. The book [6] covers the main results of optimal
control theory, in particular necessary and sufficient optimality conditions. In the paper [7],
an optimal control problem regarding a production–inventory system with customer
impatience is studied, and optimizing a production–inventory system under a cost target
is investigated in [8]. In addition, a new approach to maximizing the profit in a stock-
dependent demand inventory model is presented in [9]. Otherwise, there are a multitude of
papers that study the optimization of production and storage costs with various restrictions
(see form instance, [10–15]).

The notion of the Lie algebroid was introduced in differential geometry in the early
1950s, but it can also be found in physics or algebra under a wide variety of names. Using
the geometry of Lie algebroids, in [16] a generalized theory of Lagrangian mechanics is
developed and the equations of motions are obtained using the Poisson structure on the
dual of a Lie algebroid and Legendre transformation associated with a regular Lagrangian.
Later, in [17–19], the same equations of motion are obtained using the symplectic formalism
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for Lagrangians and Hamiltonians, similarly with the J. Klein formalism for the classical
Lagrangian mechanics. The first step in studying the mechanical control systems on
Lie algebroids seems to be performed in [20], where the problems of accessibility and
controllability are also approached. The Pontryagin Maximum Principle on Lie algebroids
is presented in [21] and later extended on almost Lie algebroids in [22]. Some aspects
regarding the abnormality problem in control theory on Lie algebroids are presented
in [23]. The link between optimal control and connection theory on Lie algebroids can
be found in [24–26]. Lie geometric methods in control theory have been applied in many
papers. In [27], the connection between Lie theory and control is presented. The book [28]
deals with the issue of being able to steer the system from any point of departure to
any desired destination and also studies the optimal control problems and the question
of finding the best possible trajectory. In addition, some facts and methods of control
theory treated from the geometric point of view are presented in [29]. The geometry of Lie
algebroids is used in the study of distributional systems (driftless control afine system) in
the papers [12,14,30–36].

One of the most well-known and useful methods in the geometric approach is the
analysis of the solution for the optimal control problem, as given by Pontryagin’s Maximum
Principle. It is known that a curve given by c(t) = (x(t), u(t)) is an optimal trajectory if
there exists a lifting of x(t) to the dual space (x(t), p(t)), which satisfies the Hamilton–
Jacobi–Bellman equations. On the other hand, finding the optimal solution to the control
system remains an extremely difficult problem for several reasons. Firstly, we need to
integrate a Hamiltonian system, which is generally difficult to achieve, depending on the
shape of the dynamic equations and the Hamiltonian function. Thus, if the Lagrangian
has a complicated expression, we cannot guarantee that the Hamiltonian can be calculated
without any dependence on the control. The best situation happens for systems with
quadratic cost, or the so called linear quadratic problems. Secondly, there are some more
special solutions, the so-called abnormal ones, which should be studied and which do not
depend on the shape of the Hamiltonian function. Finally, even if all the solutions are
found, the problem of selecting the optimal solutions from them remains extremely difficult.
For these reasons, we believe that it is important to find new methods and workspaces
that could simplify the study. The optimal trajectories of a driftless control affine system
with holonomic distribution can be regarded as the geodesics in the geometry of Lie
algebroids [37]. In fact, sub-Riemannian problems are distributional systems with quadratic
cost and nonholonomic distribution (bracket generating), see [38,39]. If the distribution is
holonomic, then the system is not controllable, and the distribution determines a foliation
with the property that any curve is contained in a single leaf of the foliation and the
restriction to each leaf of the foliation is bracket-generating. In many cases, it is not possible
to find the exact solution to the optimal control problem. Thus, using the geometry of
the space, we can find information about their local or global behavior. Moreover, if the
geodesic curves belong to a manifold with a constant positive curvature, then the geodesics
focus, and contrarily, the negative curvature spreads the geodesics.

In this paper, we solve two optimal control problems and prove that the framework
of a Lie algebroid is more suitable than the cotangent space in the study of some driftless
control affine systems with holonomic distributions. The paper is organized as follows.
In the second section, the known results about Lie geometric methods in optimal control
theory for control affine systems are presented, including the controllability issues in
the case of holonomic and nonholonomic distributions. In addition, only the necessary
notions about Lie algebroids and their prolongation over the vector bundle projection
are given, and the geometric viewpoint of the optimal control systems on this space is
presented. Moreover, the relation between the Hamiltonian H on dual the Lie algebroid E∗

and the Hamiltonian H on the cotangent space T∗M is given. Our strategy is to apply the
Pontryagin Maximum Principle at the level of a Lie algebroid built in the case of control
affine systems with holonomic distribution. The last two sections contain the novelty of the
paper. In the third section, we give an application of driftless control affine system with
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positive homogeneous cost, which is more general than the quadratic cost and show that the
Hamilton–Jacobi–Bellman equations, provided by the Pontryagin Maximum Principle in
the cotangent bundle, lead to a very complicated system of differential equations. Moreover,
it is very difficult to find the Hamiltonian function without dependence on control variables.
For these reasons, we will use a different approach considering the framework of a Lie
algebroid, which simplifies the study. We also prove that the distribution generated by the
vector fields is holonomic, and it determines a foliation in three-dimensional space. Using
the Lie algebra of the vectors of distribution we study the controllability of the system and
find the surfaces that generate the foliation. These aspects are not investigated in other
previous papers of the authors. In the last part of the third section, we find the complete
solution of the problem using the framework of Lie algebroids. The fourth section deals
with the study of an economic problem of inventory and production using the mathematical
model of optimal control and Lie geometric methods for controllability issues. We prove
that the system is not controllable, meaning that we cannot produce any final quantity of
products. The problem has a solution (it is controllable) if and only if there is a certain
relationship between the final quantities of products. The mathematical models and final
results are completely new and different from other previous works. The optimal solution
is obtained using the Pontryagin Maximum Principle on a Lie algebroid. This approach
simplifies the study and shows the connection between the geometry of Lie algebroids and
optimal control for distributional systems.

2. Lie Geometric Methods in Optimal Control

Let M be a smooth n-dimensional manifold and a continuous-time control system
given by differential equations, in the following form:

dxi

dt
= f i(x, u),

where x ∈ M are the state of the system, and u ∈ U ⊂ Rm represents the controls. Let x0 and
x1 be two points of M. We consider an optimal control problem, which consists of finding
the optimal trajectories of the control system that connects x0 and x1 and minimizing the
functional costs:

min
∫ T

0
L(x(t), u(t))dt, x(0) = x0, x(T) = x1,

where L is the Lagrangian function (energy, cost, time, distance, etc.). We have to remark
that the time T can be fixed or free. Fixing the initial point x0 and letting the final point x1
vary in some domain, we obtain a family of optimal control problems. Similarly, we can fix
x1 and let x0 vary. The theory of control deals with some systems whose evolution can be
influenced by some external agents. It is known that one of the most important methods
for studying the optimal solutions in control theory is Pontryagin’s Maximum Principle. It
generates the differential equations of first order, which are only necessary for the optimal
solutions. For each optimal trajectory, c(t) = (x(t), u(t)), it generates a lift on the cotangent
space (x(t), p(t)), satisfying the Hamilton–Jacobi–Bellman equations. The Hamiltonian
function is given by the relation:

H(x, p, u) = 〈p, f (x, u)〉 − L(x, u), p ∈ T∗M,

and the maximization condition with respect to the control variables u, given by:

H(x(t), p(t), u(t)) = max
v

H(x(t), p(t), v),
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which leads to ∂H
∂u = 0, and the extreme trajectories satisfy the equations:

ẋ =
∂H
∂p

, ṗ = −∂H
∂x

. (1)

2.1. Control Affine Systems

Let us consider a control affine system in the following form [40]:

ẋ = X0(x) +
m

∑
i=1

uiXi(x), (2)

where x = (x1, ..., xn) are local coordinates on a smooth n-dimensional manifold M, u(t) =
(u1(t), ..., um(t)) ∈ U ⊂ Rm, m ≤ n are control variables, and X0, X1...Xm are smooth vector
fields on M. In addition, X0 is usually called the drift vector field, describing the dynamics
of the system in the absence of controls, and the vector fields Xi, i = 1, m are called the
input vector fields.

Definition 1. A control system is named controllable if for any two points x0 and x1 on M there
exists a finite time T and an admissible control u : [0, T] → U, such that for x satisfying x(0) = x0,
we have x(T) = x1.

In other words, the control system is controllable if for any two points x0, x1 there
exists a trajectory of the system (2) that connects x0 to x1. Controllability is the ability to
steer a system from a given initial state to any final state, in finite time, using the available
controls. The reachable set R of a point x0 ∈ M characterizes the states x ∈ M that can
be reached from a given initial state x0 in positive time, by choosing various controls and
switching from one to another from time to time. A system is controllable if R(x) = M,
∀x ∈ M. Controllability does not depend on the quality of the trajectory between two states
of the system and neither the amount nor the effort made for this.

Definition 2. A distribution Δ on the smooth manifold M is a map which assigns to each point in
M a subspace of the tangent bundle at this point:

x → Δ(x) ⊂ Tx M.

The distribution Δ is named locally finitely generated if there is a set of vector fields
{Xi}i=1,m, called local generators, which spans Δ, that is Δ(x) = span{X1(x), ..., Xm(x)}.
In addition, the distribution Δ has dimension k if dim Δ(x) = k, for all points x in M. We
recall that the Lie bracket of two vector fields is given by the relation:

[ f , g](x) =
∂g
∂x

(x) f (x)− ∂ f
∂x

(x)g(x),

( ∂g
∂x is the Jacobian matrix of g). A distribution Δ on M is called involutive if ∀ x ∈ M, then:

f (x), g(x) ∈ Δ(x) ⇒ [ f , g](x) ∈ Δ(x).

Moreover, if the involutive distribution is generated by the vector fields {Xi}i=1,m,
then we have: [

Xi, Xj
]
(x) =

m

∑
k=1

Lk
ij(x)Xk(x).

In other words, every Lie bracket can be expressed as a linear combination of the
vector fields from distribution, and therefore, it already belongs to Δ. A foliation {Sα}α∈A
of manifold M is a partition of M = ∪Sα into disjoint connected (immersed) submanifolds
Sα, called leaves.
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Definition 3. A distribution Δ of constant dimension on M is called integrable (or holonomic) if
there exists a foliation {Sα}α∈A on M whose tangent space is just Δ, i.e., TxS = Δ(x), where S is
the leaf passing through x.

Theorem 1. (Frobenius) If Δ is a distribution with a constant dimension, then Δ is integrable if
and only if Δ is involutive.

Definition 4. The distribution Δ = span{X1, ..., Xm} of the manifold M is called bracket-
generating if the iterated Lie brackets

Xi, [Xi, Xj], [Xi, [Xj, Xk]], · · ·, 1 ≤ i, j, k ≤ m,

span the tangent space TM of M at every point.

Using the Lie brackets of vector fields, we construct the flag of subsheaves:

Δ ⊂ Δ2 ⊂ · · · ⊂ Δr ⊂ · · · ⊂ TM

Δ2 = Δ + [Δ, Δ], ..., Δr+1 = Δr + [Δ, Δr]

where
[Δ, Δr] = span{[X, Y] : X ∈ Δ, Y ∈ Δr}.

If there exists an r ≥ 2 such that Δr = TM, we say that Δ is a bracket-generating
distribution, and r is called the step of the distribution Δ. In this case, the distribution
Δ is not integrable and is called nonholonomic. This condition is also known as a strong
Hörmander condition or a Lie algebra rank condition. If r = 2, the distribution is called a strong
bracket-generating distribution. Next, we consider the driftless control affine system (X0 = 0)
or distributional systems in the following form:

ẋ =
m

∑
i=1

uiXi(x). (3)

The vector fields Xi, i = 1, m, generate a distribution Δ on the manifold M (assumed to
be connected) such that the rank of Δ is assumed to be constant. For x0 and x1, two points
on M, we consider an optimal control problem that consists of finding those trajectories of
the distributional system which connect x0 and x1 and minimizing the cost:

min
u(·)

∫ T

0
F (u(t))dt, (4)

where F is a positive homogeneous function of Δ. We will characterize the controllability
using the properties of vector fields, which generate the distribution Δ.

Theorem 2. (Chow–Rashevsky) If the distribution Δ = span{X1, ..., Xm} is bracket-generating
(nonholonomic), then the driftless control affine system is controllable.

If Δ is not bracket-generating and is integrable (holonomic), then the system (3) is
not controllable, and Δ determines a foliation on M, with the property that any curve is
contained in a single leaf of the foliation, and the restriction of Δ to each leaf of the foliation
is bracket-generating. We will study in this paper the case of holonomic distributions.

If we assume that the distribution Δ = span{X1, X2, ..., Xm} is holonomic with constant
rank, which means that [Xi, Xj] ∈ Δ for every i, j = 1, m, i �= j, then from the Frobenius
theorem, it results that the distribution Δ is integrable, it determines a foliation on M and
two points can be joined if and only if they are situated on the same leaf.

Next, we will present some notions about Lie algebroids, which are useful in the study
of driftless control affine systems.
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2.2. Lie Algebroids

Let M be a real, C∞-differentiable, n-dimensional manifold and Tx M its tangent space
at x ∈ M. The tangent bundle of M is denoted (TM, πM, M), where TM = ∪Tx M and πM
is the canonical projection map πM : TM → M taking a tangent vector X(x) ∈ Tx M ⊂ TM
to the base point x ∈ M. A vector bundle is a triple (E, π, M) where E and M are manifolds,
called the total space and the base space and the map π : E → M is a surjective submersion.
Using [41], we have:

Definition 5. A Lie algebroid over a manifold M is given by a triple (E, [·, ·]E, σ), where (E, π, M)
is a vector bundle of rank m over M, which satisfies the following conditions:
a) C∞(M)-module of sections Γ(E) is equipped with a Lie algebra structure [·, ·]E;
b) σ : E → TM is a bundle map, called the anchor, which induces a Lie algebra homomorphism from
the Lie algebra of sections (Γ(E), [·, ·]E) to the Lie algebra of vector fields (X (M), [·, ·]), satisfying
the Leibniz rule:

[s1, f s2]E = f [s1, s2]E + (σ(s1) f )s2, ∀s1, s2 ∈ Γ(E), f ∈ C∞(M).

In addition, we have the following relations:
1◦ [·, ·]E is a R-bilinear operation,
2◦ [·, ·]E is skew-symmetric, i.e., [s1, s2]E = −[s2, s1]E, ∀s1, s2 ∈ Γ(E),

3◦ [·, ·]E verifies the Jacobi identity:

[s1, [s2, s3]E]E + [s2, [s3, s1]E]E + [s3, [s1, s2]E]E = 0,

and σ, being a Lie algebra homomorphism, then satisfies the relation:

σ[s1, s2]E = [σ(s1), σ(s2)].

For a function f on M, then d f (x) ∈ E∗
x is given by 〈d f (x), a〉 = σ(a) f for ∀a ∈ Ex.

If ω ∈ ∧k(E∗), then the exterior derivative dEω ∈ ∧k+1(E∗) is given by the formula:

dEω(s1, ..., sk+1) =
k+1

∑
i=1

(−1)i+1σ(si)ω(s1, ...,
ˆ
si, ..., sk+1)

+ ∑
1≤i<j≤k+1

(−1)i+jω([si,sj]E, s1, ...,
ˆ
si, ...,

ˆ
sj, ...sk+1),

where si ∈ Γ(E), i = 1, k + 1, and the hat over an argument means the absence of the
argument. In addition, it results that (dE)2 = 0. If we consider the local coordinates (xi)
on U ⊂ M and a local basis {sα} of the sections of the bundle π−1(U) → U, then these
generate local coordinates (xi, yα) on E. The local functions σi

α(x), Lγ
αβ(x) on M are given

by the following relations:

σ(sα) = σi
α

∂

∂xi , [sα, sβ]E = Lγ
αβsγ, i = 1, n, α, β, γ = 1, m,

and are called the structure functions of Lie algebroids. Some examples of Lie algebroids
are as follows:

Example 1. The tangent bundle E = TM itself, with identity mapping as anchor. With respect to
the usual coordinates (x,

·
x), the structure functions are Li

jk = 0, σi
j = δi

j, but if we were to change
to another basis for the vector fields, the structure functions would become nonzero.

Example 2. Any integrable subbundle of tangent bundle TM is a Lie algebroid with the inclusion
as anchor and the induced Lie bracket.
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2.3. The Prolongation of a Lie Algebroid

Let us consider τ : E∗ → M as the dual bundle of π : E → M and (E, [·, ·]E, σ) a Lie
algebroid structure over M. A Lie algebroid structure over E∗ can be constructed by taking
the prolongation of (E, [·, ·]E, σ) over τ : E∗ → M (see [42–44]). This structure is given by:

(i) The associated vector bundle is (T E∗, τ1, E∗), where T E∗ = ∪Tu∗ E∗, u∗ ∈ E∗,

Tu∗ E∗ = {(ux, vu∗) ∈ Ex × Tu∗ E∗|σ(ux) = Tu∗τ(vu∗), τ(u∗) = x ∈ M},

and the projection τ1 : T E∗ → E∗, τ1(ux, vu∗) = u∗.
(ii) The Lie algebra structure [·, ·]T E∗ on Γ(T E∗) is defined as follows: If ρ1, ρ2 ∈

Γ(T E∗) are such that ρi(u∗) = (Xi(τ(u∗)), Ui(u∗)), where Xi ∈ Γ(E), Ui ∈ χ(E∗) and
σ(Xi(τ(u∗)) = Tu∗τ(Ui(u∗)), i = 1, 2, then

[ρ1, ρ2]T E∗(u∗) = ([X1, X2]T E∗(τ(u∗)), [U1, U2]T E∗(u∗)).

(iii) The anchor map is the projection σ1 : T E∗ → TE∗, σ1(u, v) = v.
We remark that if T τ : T E∗ → E, T τ(u, v) = u then (VT E∗, τ1|VT E∗ , E∗) with

VT E∗ = KerT τ is a sub-bundle of (T E∗, τ1, E∗), called the vertical sub-bundle. If (xi, μα)
are local coordinates on E∗ at u∗ and sα is a local basis of sections of π : E → M, then a
local basis of Γ(T E∗) is {Xα, Pα}, where:

Xα(u∗) =
(

sα(τ(u∗)), σi
α

∂

∂xi |u∗

)
, Pα(u∗) =

(
0,

∂

∂μα
|u∗

)
.

The structure functions of T E∗ are given by the following formulas:

σ1(Xα) = σi
α

∂

∂xi , σ1(Pα) =
∂

∂μα
,

[Xα, Xβ]T E∗ = Lγ
αβXγ, [Xα, Pα]T E∗ = 0, [Pα, P β]T E∗ = 0,

and therefore:

dExi = σi
αX α, dEμα = Pα, dEX γ = −1

2
Lγ

αβX α ∧ X β, dEPα = 0,

where {X α, Pα} is the dual basis of {Xα, Pα}. In local coordinates, the Liouville section is
given by:

θE = μαX α.

The canonical symplectic section ωE is defined by:

ωE = −dEθE,

and it results in a nondegenerate 2-section and dEωE = 0. We obtain:

ωE = X α ∧ Pα +
1
2

μαLα
βγX β ∧ X γ.

By a control system on the Lie algebroid (E, [·, ·]E, σ) (see [21]) with the control space
given by τ : A → M, we understand a section ρ of E along τ. A trajectory of the system
ρ is an integral curve of the vector field σ(ρ). Considering the cost function L ∈ C∞(A),
we must to minimize the integral of L over the family of those system trajectories which
satisfy certain constraints. The Hamiltonian function H ∈ C∞(E∗ ×M A) is given by:

H(μ, u) = 〈μ, ρ(u)〉 − L(u),
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and the associated Hamiltonian control system ρH is given by the symplectic equation on
Lie algebroid:

iρH ωE = dEH.

In local coordinates, the solution of the previous equation reads as:

ρH =
∂H
∂μα

Xα −
(

σi
α

∂H
∂xi + μγLγ

αβ

∂H
∂μβ

)
Pα,

on the subset where
∂H
∂uA = 0.

The critical trajectories are given by [21]:

∂H
∂uA = 0,

dxi

dt
= σi

α
∂H
∂μα

,
dμα

dt
= −σi

α
∂H
∂xi − μγLγ

αβ

∂H
∂μβ

. (5)

We have to remark that it can be associated to any positive homogeneous cost L : E →
R on Lie algebroids E. A cost L on Imσ ⊂ TM is defined in the following form:

L(v) = {L(u)|u ∈ Ex, σ(u) = v},

where v ∈ (Imσ)x ⊂ Tx M, x ∈ M. From [35], we have:

Theorem 3. The relation between the Hamiltonian function H on the cotangent bundle T∗M and
the Hamiltonian function H on the dual Lie algebroid E∗ has the form:

H(p) = H(σ�(p)), μ = σ�(p), p ∈ T∗
x M, μ ∈ E∗

x . (6)

Proof. From the Fenchel–Legendre dual of Lagrangian L, we obtain the Hamiltonian H
given by:

H(p) = sup
v

{〈p, v〉 − L(v)} = sup
v

{〈p, v〉 − L(u); σ(u) = v}

= sup
u

{〈p, σ(u)〉 − L(u)} = sup
u

{〈σ�(p), u〉 − L(u)} = H(σ�(p)),

Furthermore, it results in the following:

H(p) = H(μ), μ = σ�(p), p ∈ T∗
x M, μ ∈ E∗

x ,

or in local coordinates:

μα = σ∗i
α pi, (7)

where the Hamiltonian H(p) is degenerate on Kerσ� ⊂ T∗M.

3. Application to Optimal Control

Let us consider the following driftless control affine system (distributional system)
with positive homogeneous cost (Randers type metric):⎧⎨⎩

ẋ1 = u2
ẋ2 = u1 + u2x2

ẋ3 = u1 + u2x3
(8)
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min
u(·)

∫ T

0

(√
u2

1 + u2
2 + εu1

)
dt, 0 ≤ ε < 1.

We are looking for the optimal trajectories of the system, starting from the initial

point (0, 1, 0)t, which are parameterized by constant speed, that is,
√

u2
1 + u2

2 + εu1 = const.
(minimum time problem), and have free endpoints. The control system can be written in
the following form:

ẋ = u1X1 + u2X2, x =

⎛⎝ x1

x2

x3

⎞⎠ ∈ R3, X1 =

⎛⎝ 0
1
1

⎞⎠, X2 =

⎛⎝ 1
x2

x3

⎞⎠ (9)

min
u(·)

∫ T

0
F (u(t))dt, F (u) =

√
u2

1 + u2
2 + εu1, 0 ≤ ε < 1.

The vector fields of distributional system are given by:

X1 =
∂

∂x2 +
∂

∂x3 , X2 =
∂

∂x1 + x2 ∂

∂x2 + x3 ∂

∂x3 .

The Lie bracket of the vector fields is:

[X1, X2] =

[
∂

∂x2 +
∂

∂x3 ,
∂

∂x1 + x2 ∂

∂x2 + x3 ∂

∂x3

]
= X1,

and it results that the associated distribution Δ = span{X1, X2} is holonomic and has the
constant rank 2. Moreover, from the system (8), we obtain:

ẋ2 − ẋ3 = ẋ1(x2 − x3),

which yields the following by integration:

ln
∣∣∣x2 − x3

∣∣∣ = x1 + c, (10)

where c is a constant, and it results that Δ determines a foliation on R3, given by the surfaces
(10). Furthermore, the coordinate point (0, 1, 0)t is on the surface given by ln

∣∣x2 − x3
∣∣ = x1,

and the optimal trajectories of the system belong to the same surface. In order to solve
this optimal control problem, the Pontryagin Maximum Principle in the cotangent bundle
can be used. The Lagrangian has the form L = 1

2F 2 (every minimizer parametrized
by arclength, or constant speed F = 1, is also a minimizer of the so-called energy cost
L = 1

2F 2; see [34] for more details), and we obtain the Hamiltonian as follows:

H(u, x, p) = pi ẋi −L = p1u2 + p2(u1 + u2x2) + p3(u1 + u2x3)− 1
2

(√
u2

1 + u2
2 + εu1

)2
.

The Hamilton–Jacobi–Bellman equations on the cotangent bundle given by ∂H
∂ui

= 0,
dxi

dt = ∂H
∂pi

, dpi
dt = − ∂H

∂xi lead to the following system:

⎧⎪⎨⎪⎩
p2 + p3 −

(√
u2

1 + u2
2 + εu1

)(
ε + u1√

u2
1+u2

2

)
= 0

p1 + p2x2 + p3x3 −
(√

u2
1 + u2

2 + εu1

)
u2√

u2
1+u2

2
= 0

(11)

and a very complicated system of implicit differential equations. From (11), it is difficult
to find the Hamiltonian H without dependence on the control variables. For this reason,
a different approach will be used, involving the framework of a Lie algebroid.
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In order to use the Pontryagin Maximum Principle in the framework of Lie algebroids,
we will consider E = Δ (holonomic distribution with constant rank). The anchor σ : E →
TM is the inclusion, and [·, ·]E the induced Lie bracket. In the case of the previous control
system (9), the anchor σ has the local components given by:

σi
α =

⎛⎝ 0 1
1 x2

1 x3

⎞⎠,

and we consider the Lagrangian function given by:

L =
1
2

(√
u2

1 + u2
2 + εu1

)2
.

Using [45], we can find the Hamiltonian on E∗ in the following form:

H(μ) =
1
2

(√
(μ1)2

(1 − ε2)2 +
(μ2)2

1 − ε2 − εμ1

1 − ε2

)2

. (12)

Using the relations (6) and (7), we can calculate the Hamiltonian H on T∗M given by
H(x, p) = H(μ), μ = σ�(p), where:

(
μ 1
μ2

)
=

(
0 1 1
1 x2 x3

)⎛⎝ p1
p2
p3

⎞⎠.

We obtain that μ1 = p2 + p3, μ2 = p1 + p2x2 + p3x3, and it results in the Hamiltonian
in the cotangent bundle:

H(x, p) =
1
2

(√
(p2 + p3)2

(1 − ε2)
2 +

(p1 + p2x2 + p3x3)2

1 − ε2 − ε(p2 + p3)

1 − ε2

)2

. (13)

Unfortunately, the Equations (1) on T∗M with H(x, p) from (13) lead to a complicated
system of implicit differential equations. We will use the framework of a Lie algebroid.
From the relation [Xα, Xβ] = Lγ

αβXγ, we obtain the non-zero components L1
12 = 1, L1

21 = −1,
while from (5), we deduce the following:

ẋ1 =
∂H
∂μ2

, ẋ2 =
∂H
∂μ1

+ x2 ∂H
∂μ2

, ẋ3 =
∂H
∂μ1

+ x3 ∂H
∂μ2

,

μ̇1 = −μ1
∂H
∂μ2

, μ̇2 = μ1
∂H
∂μ1

,

where

∂H
∂μ1

=

(
1 + ε2)μ1

(1 − ε2)2 −
ε

√
(μ1)2

(1−ε2)2 +
(μ2)2

1−ε2

1 − ε2 − εμ2
1

(1 − ε2)3

√
(μ1)2

(1−ε2)2 +
(μ2)2

1−ε2

,

∂H
∂μ2

=
μ2

1 − ε2 − εμ1μ2

(1 − ε2)2

√
(μ1)2

(1−ε2)2 +
(μ2)2

1−ε2

.

We consider the following change of variables:

μ1(t) = (1 − ε2)r(t) sechθ(t), μ2(t) =
√

1 − ε2r(t) tanh θ(t). (14)
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where

sinh θ =
eθ − e−θ

2
, cosh θ =

eθ + e−θ

2
, tanh θ =

sinh θ

cosh θ
, sechθ =

1
cosh θ

.

In these conditions, we have:√
(μ1)2

(1 − ε2)2 +
(μ2)2

1 − ε2 = |r|,

and the differential equations:

μ̇1 = −μ1
∂H
∂μ2

,

with the relation (14) yielding:

√
1 − ε2

(
ṙ
r
− θ̇ tanh θ

)
= r(− tanh θ + εsechθ tanh θ). (15)

In addition, from the equation

μ̇2 = μ1
∂H
∂μ1

,

and (14), we obtain:√
1 − ε2

(
ṙ
r

tanh θ + θ̇ sech2θ

)
= r((1 + ε)2sech2θ − εsechθ − εsech3θ). (16)

Now, reducing θ̇ and ṙ
r from the Equations (15) and (16), we obtain:√

1 − ε2ṙ = r2εsechθ tanh θ(εsechθ − 1),

and √
1 − ε2θ̇ = r(εsechθ − 1)2.

The last two equations lead to:

ṙ
θ̇
=

rεsechθ tanh θ

εsechθ − 1
,

and to:

dr
r

=
εsechθ tanh θ

εsechθ − 1
dθ,

respectively, with the solution given by:

ln|r| = − ln(εsechθ − 1)− ln c.

which leads to:

|r| = 1
c(εsechθ − 1)

.

Since the optimal trajectories are parameterized by arclength, the conclusion corre-
sponds to the 1/2 level of the Hamiltonian, and we obtain:

H =
r2

2
(1 − εsechθ)2 =

1
2c2 .
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Now, c = ±1 and

r = ± 1
εsechθ − 1

.

The equation
μ̇1 = −μ1 ẋ1,

implies the following:

x1(θ) = ln
c1(1 − εsechθ)

(1 − ε2)sechθ
, c1 ∈ R.

Since we are looking for the optimal trajectories starting from the initial point (0, 1, 0)t,
we have x1(0) = 0 and:

ln
c1

1 + ε
= 0 ⇒ c1 = 1 + ε,

which leads to:

x1(θ) = ln
1 − εsechθ

(1 − ε)sechθ
= ln

cosh θ − ε

1 − ε
.

We also obtain the following:

μ̇2 = μ1

(
ẋ2 − x2 ∂H

∂μ2

)
= μ1 ẋ2 + x2μ̇1,

and, consequently, μ2 = μ1x2 + c2. Furthermore:

x2(θ) =
sinh θ√
1 − ε2

± c2(1 − εsechθ)

(1 − ε2) sechθ
.

From x2(0) = 1, we obtain that c2 = 1 + ε, and this yields:

x2(θ) =
sinh θ√
1 − ε2

+
cosh θ − ε

1 − ε
.

In the same way, we obtain:

x3(θ) =
sinh θ√
1 − ε2

± c3(1 − εsechθ)

(1 − ε2) sechθ
.

From x3(0) = 0, we obtain that c3 = 0 and it results in the following:

x3(θ) =
sinh θ√
1 − ε2

.

The solution is optimal because the Hamiltonian is a convex function. Using (8), we
have u2 = ẋ1, u1 = ẋ3 − u2x3 = ẋ2 − u2x2, and by direct computation, we obtain the
control variables:

u2(θ) =
sinh θ

cosh θ − ε
, u1(θ) =

1√
1 − ε2

1 − ε cosh θ

cosh θ − ε
.

We have to remark that if ε = 0, then we obtain the case of driftless control affine
systems with quadratic cost with the solution:

x1(t) = ln cosh t, x2(t) = sinh t + cosh t, x3(t) = sinh t,
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and control variables
u2(t) = tanh t, u1(t) = secht.

4. Economic Application

Let us consider that in a fixed period of time T, three types of products, P1, P2, P3,
must be manufactured in certain fixed quantities. It is assumed that the production rate
of the product P3 depends on production rates of P1 and P2 by a given law. We assume
that the unit production costs for the first two products increase linearly with the level
of production and the production operations costs for the third product are considered
negligible (for example, being obtained by combining the first two products together with
other external products). We have storage costs of holding inventory given by constants
(β1, β2, β3) for each type of product, and there are no restrictions on production capacity.
The goal is to find an optimal production plan such as to ensure the required quantities of
each type of product on a fixed date but with minimal costs of production and storage.

We will consider the following notations: Pi are the products, i = 1, 2, 3; T is the fixed
period of time to ensure the quantities of products; xi(t) are the accumulated quantities by
time t; si are the final quantities required; pi(t) are the rates of production at time t; and ci
are the unit production costs.

We assume that the initial quantity of products is zero. If, however, there is a certain
quantity of products, then it is deducted from the final quantities required, that is, xi(0) = 0
and xi(T) = si. The production costs increase linearly with the production level and are
given by ci = αi pi, α1, α2 > 0, i = 1, 2. The production rate for the last product is assumed
to be given by the law ẋ3 = u1x2 + u2x1, where u1, u2 ≥ 0 are control variables with
ẋ1 = u1, ẋ2 = u2. It is known that the inventory level is the accumulated past production
pi = pi(t). Considering xi(0) = 0, we obtain:

xi(t) =
∫ t

0
pi(s)ds

and the rate of change of inventory level ẋi is the production rate and we have ẋi(t) = pi(t).
The unit production costs ci increase linearly with the production level, ci = αi pi, where
α1, α2 > 0 are positive constants, and it results that the total cost of production is given
by c1 p1 + c2 p2 = α1(p1)2 + α2(p2)2 = α1(ẋ1)2 + α2(ẋ2)2 = α1u2

1 + α2u2
2. It results that the

total cost of production and storage is α1u2
1 + α2u2

2 + β1x1 + β2x2 + β3x3. Finally, we obtain
the following optimal control problem:

ẋ1 = u1

ẋ2 = u2

ẋ3 = u1x2 + u2x1 (17)

xi(0) = 0, xi(T) = si

u1, u2 ≥ 0, α1, α2 > 0, β1, β2, β3 ≥ 0.

We are looking for a plan of production with the minimum total cost:

min
u

∫ T

0
(α1(u1(t))2 + α2(u2(t))2 + β1x1 + β2x2 + β3x3)dt.

From the conditions u1, u2 ≥ 0, it results that ẋ1 ≥ 0 and ẋ2 ≥ 0 and x1(t), x2(t)
are increasing functions, which together with the initial conditions xi(0) = 0 ensures the
economic conditions of positivity xi(t) ≥ 0, i = 1, 2. In addition, ẋ3 = u1x2 + u2x1 ≥ 0,
and using x3(0) = 0, we obtain x3(t) ≥ 0. Some different mathematical models can be
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found in the papers [10,12–15]. It results that the system (17) is a driftless control affine
system on R3

+, written in the following form:

ẋ = u1X1 + u2X2, x = (x1, x2, x3)t ∈ R3
+

min
u

∫ T

0
F(u(t), x(t))dt,

where we have denoted the vector fields and the total cost:

X1 =

⎛⎝ 1
0
x2

⎞⎠, X2 =

⎛⎝ 0
1
x1

⎞⎠
F(u(t), x(t)) = α1(u1(t))2 + α2(u2(t))2 + β1x1 + β2x2 + β3x3.

In the next, we are looking for the optimal trajectories of the dynamical system starting
from the initial point (0, 0, 0) and endpoint (s1, s2, s3). In addition, the distribution Δ =
span{X1, X2} generated by the vector fields X1, X2 has constant dimension, dim Δ(x) = 2,
for all x ∈ R3. Moreover, in a natural basis

{
∂

∂x1 , ∂
∂x2 , ∂

∂x3

}
of R3, the vector fields have the

following expressions:

X1 =
∂

∂x1 + x2 ∂

∂x3 , X2 =
∂

∂x2 + x1 ∂

∂x3 .

Using the Lie bracket formula [ f X, gY] = f g[X, Y] + f X(g)Y − gY( f )X, it results in
the following:

[X1, X2] =

[
∂

∂x1 + x2 ∂

∂x3 ,
∂

∂x2 + x1 ∂

∂x3

]
=

∂

∂x3 − ∂

∂x3 = 0,

and we obtain that the distribution Δ is involutive. From the Frobenius theorem, it results
that the distribution is integrable (holonomic), and it determines a foliation on R3

+. Two
points can be joined by an optimal trajectory if and only if they are situated on the same
leaf. In fact, the economical system is not controllable in the sense that we cannot reach any
final stock quantity. Indeed, from the system (17), we obtain:

ẋ3 = ẋ1x2 + ẋ2x1,

and it results, through integration, that x3 = x1x2 + c, c ∈ R, which are the surfaces in R3
+,

which determine a foliation. Moreover, using xi(0) = 0, we obtain the relation x3 = x1x2.
From xi(T) = si, it results that the problem has a solution (the system is controllable)
if and only if the final product amounts satisfy the condition s3 = s1s2. In order to use
the Pontryagin Maximum Principle in the framework of Lie algebroids, we will consider
E = Δ (holonomic distribution with constant rank), where the anchor σ : E → TM is the
inclusion and [·, ·]E is the induced Lie bracket. In the case of the previous control system
(17), the anchor σ has the local components given by:

σi
α =

⎛⎝ 1 0
0 1
x2 x1

⎞⎠,

and we consider the Lagrangian function given by:

L = F(u(t), x(t)) = α1(u1(t))2 + α2(u2(t))2 + β1x1 + β2x2 + β3x3.
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Using the Legendre transformation associated to the regular Lagrangian L, we can
find the Hamiltonian H on E∗ in the form:

H(μ) =
(μ1)

2

4α1
+

(μ2)
2

4α2
− β1x1 − β2x2 − β3x3. (18)

Using the relations (6) and (7), we can calculate the Hamiltonian H on T∗M given by
H(x, p) = H(μ), μ = σ�(p), where

(
μ 1
μ2

)
=

(
1 0 x2

0 1 x1

)⎛⎝ p1
p2
p3

⎞⎠.

We find that μ1 = p1 + p3x2, μ2 = p2 + p3x1, and it results in the Hamiltonian function
in the cotangent bundle:

H(x, p) =
(p1 + p3x2)2

4α1
+

(p2 + p3x1)2

4α2
− β1x1 − β2x2 − β3x3. (19)

However, the Equations (1) on T∗M with H(x, p) from (19) lead to a complicated
system of implicit differential equations. We will use the framework of a Lie algebroid. We
will consider two cases:

4.1. The Case β1 = β2 = β3 = 0

From an economic point of view, this means that we have no storage costs, for example,
the products are delivered immediately after manufacture.

Theorem 4. The optimal solution of the control system (17) in the case of zero storage costs has the
following form for 0 ≤ t ≤ T:

x1(t) =
s1t
T

, x2(t) =
s2t
T

, x3(t) =
s1s2t2

T2 , (20)

where the production rates (control variables) are positive constants:

u1(t) =
s1

T
, u2(t) =

s2

T
. (21)

Proof. The Hamiltonian function (18) has, in this case, the form H(μ) = (μ1)
2

4α1
+ (μ2)

2

4α2
. From

the relation [Xα, Xβ] = 0 and Equation (5), we deduce the following:

ẋ1 =
μ1

2α1
, ẋ2 =

μ2

2α2
, ẋ3 =

μ1x2

2α1
+

μ2x1

2α2
, μ̇1 = 0, μ̇2 = 0,

which leads to μ1 = a1, μ2 = a2, where a1, a2 ∈ R. It results in ẋ1 = a1
2α1

, ẋ2 = a2
2α2

.

Moreover, x1 = a1t
2α1

+ b1, x2 = a2t
2α2

+ b2. By using xi(0) = 0, we obtain x1(t) = a1t
2α1

,

x2(t) = a2t
2α2

and x3(t) = a1a2t2

4α1α2
. From xi(T) = si, we obtain s1 = a1T

2α1
, s2 = a2T

2α2
, which leads

to a1 = 2α1s1
T , a2 = 2α2s2

T , and we finally obtain, for 0 ≤ t ≤ T, the results (20) and (21). The
solution is optimal because the Hamiltonian is a convex function, which ends the proof.

4.2. The Case β1, β2, β3 > 0

From an economic point of view, this means that the products are stored and delivered
at the end of the fixed period.
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Theorem 5. The optimal solution of the control system (17) is given by:

x1(t) = c1eαt + c2e−αt + c3 cos αt + c4 sin αt − β2

β3
, (22)

x2(t) =
√

α1

α2

(
c1eαt + c2e−αt − c3 cos αt − c4 sin αt

)
− β1

β3
, (23)

x3(t) = x1(t)x2(t),

with control variables:

u1(t) =
√

β3√
2
√

α1α2

(
c1eαt − c2e−αt − c3 sin αt + c4 cos αt

)
, (24)

u2(t) =
√

β3
√

α1√
2α2

(
c1eαt − c2e−αt + c3 sin αt − c4 cos αt

)
, (25)

where α =

√
β3√

2
√

α1α2
, β = αT and constant coefficients

c1 =
1

eβ − e−β

(
s1

2
+

s2
√

α2

2
√

α1
+

(
β2

2β3
+

β1
√

α2

2β3
√

α1

)(
1 − eβ

))
, (26)

c2 =
1

e−β − eβ

(
s1

2
+

s2
√

α2

2
√

α1
+

(
β2

2β3
+

β1
√

α2

2β3
√

α1

)(
1 − e−β

))
, (27)

c3 =
β2

2β3
− β1

√
α2

2β3
√

α1
, (28)

c4 =
1

2 sin β

(
s1 +

β2

β3
−

√
α2√
α1

(
s2 +

β1

β3

)
−
(

β2

β3
− β1

β3

√
α2√
α1

)
cos β

)
. (29)

Proof. The necessary conditions for optimality (5) and the Hamiltonian function (18) lead
to the following differential equations:

ẋ1 =
μ1

2α1
, ẋ2 =

μ2

2α2
, ẋ3 = x2 μ1

2α1
+ x1 μ2

2α2
, (30)

μ̇1 = β1 + x2β3, μ̇2 = β2 + x1β3. (31)

From (30) and (31) by derivation, it results in the following:

ẍ1 =
μ̇1

2α1
=

β1

2α1
+ x2 β3

2α1
, ẍ2 =

μ̇2

2α2
=

β2

2α2
+ x1 β3

2α2
, (32)

which leads, by twice derivation, to:

....
x 1 = ẍ2 β3

2α1
,

....
x 2 = ẍ1 β3

2α2
, (33)

and together with (32) yields the nonhomogeneous differential equations of order 4,
given by:

....
x 1 = x1 β2

3
4α1α2

+
β2β3

4α1α2
, (34)

....
x 2 = x2 β2

3
4α1α2

+
β1β3

4α1α2
. (35)
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Considering the homogeneous differential equation from (34)

....
x 1 = x1 β2

3
4α1α2

, (36)

with characteristic equation

λ4 − β2
3

4α1α2
= 0,

we obtain the following solutions:

λ1,2 = ±
√

β3√
2
√

α1α2
, λ3,4 = ± i

√
β3√

2
√

α1α2
.

Then, we obtain the general solution of the homogeneous differential Equation (36) in
the following form:

x1(t) = c1eαt + c2e−αt + c3 cos αt + c4 sin αt + d1,

and the solution of the nonhomogeneous differential Equation (34) is given by (22).
In the same way, considering Equations (32) and (35), obtain (23). Using u1 = ẋ1,

u2 = ẋ2, we obtain (24) and (25). The initial and final conditions xi(0) = 0, xi(T) = si,
i = 1, 2 lead to the following linear system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

c1 + c2 + c3 = β2
β3

c1 + c2 − c3 =
β1

√
α2

β3
√

α1

c1eβ + c2e−β + c3 cos β + c4 sin β = s1 +
β2
β3

c1eβ + c2e−β − c3 cos β − c4 sin β =
√

α2√
α1

(
s2 +

β1
β3

)
By direct computation, we obtain the solution (26)–(29). The solution is optimal

because the Hamiltonian is convex.

5. Conclusions

In this paper, some topics of dynamical systems (distributional systems) using Lie
geometric methods are studied. In the case of two driftless control affine systems with
holonomic distributions, we proved that the framework of Lie algebroids is more sustain-
able than cotangent bundles in order to apply the Pontryagin Maximum Principle and find
the optimal solutions. This approach significantly simplifies the study and shows once
again the intrinsic link between geometry and the optimal control, in particular between
Lie algebroids and distributional systems with holonomic distributions. In addition, an eco-
nomical application is given. As further developments, we will try to use the framework
of Lie algebroids in the case of nonholonomic distribution (in particular, strong bracket-
generating distributions) and characterize the abnormal solutions using the geometry of
Lie algebroids.

Author Contributions: Conceptualization, L.P.; methodology, L.P.; investigation, L.P., D.M., G.T.;
writing, L.P. All authors have read and agreed to the published version of the manuscript.
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Abstract: In this paper, we study two mathematical models, involving delay differential equations,
which describe the processes of erythropoiesis and leukopoiesis in the case of maintenance therapy
for acute lymphoblastic leukemia. All types of possible equilibrium points were determined, and
their stability was analyzed. For some of the equilibrium points, conditions for parameters that
imply stability were obtained. When this was not feasible, due to the complexity of the characteristic
equation, we discuss the stability through numerical simulations. An important part of the stability
study for each model is the examination of the critical case of a zero root of the characteristic equation.
The mathematical results are accompanied by biological interpretations.

Keywords: delay differential equations; critical case for stability; acute lymphoblastic leukemia;
maintenance therapy

1. Introduction

1.1. Mathematical Background

The primary goal of this paper is to present the stability analysis of two different
mathematical models for the processes of erythropoiesis and leukopoiesis in the case of
maintenance therapy in acute lymphoblastic leukemia (for more details, see [1–6]).

The models represent the original work of some of the authors and were first intro-
duced in [7]. They consist of systems of delay differential equations (often used to capture
cell dynamics). In [7], the authors presented the models and demonstrated the positivity of
solutions and the existence of equilibria. The novelty of this paper is the thorough stability
study of all of the equilibrium points.

A challenging situation was the presence of critical cases for stability analysis. For these,
we used an original theorem proven in [8] by some of the authors of this paper.

1.2. Biological Background

The models presented in this paper depict the erythropoiesis and leukopoiesis pro-
cesses. These are part of a bigger process called hematopoiesis: the process through which
all blood cells are created. Hematopoietic stem cells become red blood cells (which trans-
port oxygen), white blood cells (which fight infections), or platelets (which stop bleeding).
There is a complex network of cytokines and growth factors that regulate the production of
blood cells.

Hematopoietic stem cells generate two major progenitors cell lineages: myeloid and
lymphoid. The myeloid line contains cells such as granulocytes, monocytes, erythrocytes,

Mathematics 2022, 10, 313. https://doi.org/10.3390/math10030313 https://www.mdpi.com/journal/mathematics135



Mathematics 2022, 10, 313

or platelets, while the lymphoid line contains cells associated with the immune system (i.e.,
natural killer cells, T-cells, and B-cells).

Erythropoiesisis the process through which red blood cells (also called erythrocytes)
are produced. Erythropoietic stem cells mature to red blood cells when a decrease in oxygen
levels is detected by the kidneys. The kidneys secrete a hormone called erythropoietin,
which stimulates the production of erythrocytes. It is the action of this hormone (also
considered in [2,9]), together with the effects of therapy, that complicates the stability study
of equilibria. Since mortality rates are no longer constant, a new variable is introduced.
This variable is the source of a zero root of the characteristic equation.

White blood cells are generated through the process of leukopoiesis. Depending on
which progenitor line they come from, there are two groups of white blood cells: myelocytes
and lymphocytes.

For more information about hematopoiesis and its underlying processes, please
see [2,3,10,11], pp. 1–18.

Acute lymphoblastic leukemia (ALL) is a type of cancer that affects white blood
cells [4]. In the case of ALL, blood cell production is disrupted, due to the presence of a large
number of immature lymphocytes (called lymphoblasts) in the circulatory system. These
immature cells do not function properly and overcrowd the healthy cells. Lymphoblasts
eventually invade the liver, spleen, and lymph nodes. For more information, statistics,
diagnoses, and prognoses, see [12], pp. 1556–1576, 1616–1636, and [10], pp. 173–192.

Maintenance therapy is conducted after an initial treatment is administered [6]. In
patients with ALL, we consider that this therapy consists of oral administration of mer-
captopurine (6-MP). The biologically inactive substance 6-MP metabolizes into the active
6-thioguanine nucleotide (6-TGN).

Studies have shown that maintenance therapy contributes greatly to the overall evo-
lution and life expectancy of the patient ([12], p. 1566, [13]). The need to mathematically
study the effects of this treatment is very important, as it may help to fill the existing gaps
in knowledge [13].

The models studied in this paper capture the effects of this medication on the creation
of red and white blood cells.

It is worth mentioning that, although we concentrated on patients with ALL, the same
maintenance therapy is administrated for some autoimmune diseases. Thus, the models,
computations, and discussions could also be suitable for those cases.

2. The Modeling of Erythropoiesis

2.1. The Mathematical Model

The mathematical model for erythropoiesis consists of seven delay differential equa-
tions (DDEs) with two delays. We considered the dynamics of the stem-like short-term
erythroid cells (u1), the mature erythrocytes (u2), the concentration of erythropoietin (u3),
the amount of 6-MP in the gut (u5), the amount of 6-MP in plasma (u5), and the concentra-
tion of thioguanine nucleotide (6-TGN) in red blood cells (u7) (see [7,9,14,15]). The variable
u4 represents the loss suffered during the cell cycle.

Each stem-like cell is considered to go through either asymmetric division (a fraction
η1e of the stem-like population), which means that one of the daughter cells re-enters the
stem-like population, while the other goes on to differentiate, symmetric differentiation (a
fraction η2e of the stem-like population)—both daughter cells proceed to differentiate—or
self-renewal (a fraction 1 − η1e − η2e of the stem-like population)—both daughter cells
re-enter the stem-like pool. We used two feedback functions for the rates of self-renewal
and differentiation:

βe(u1, u3) = β0e
1

1 + um
1

· u3

1 + u3

ke(u3) = k0e
u3

1 + u3
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The time necessary for a stem-like cell to go through self-renewal or differentiation
and re-enter the stem-like population is considered to be the same and is represented by
the delay τ1.

These aspects are included in the first equation of the model, which describes the
evolution of stem-like short-term erythroid cells. As can be seen in this equation, both the
erythropoietin and the medication have an impact on cell death. The drug concentration in
the blood stream has a toxicity that increases the apoptosis rate of the stem-like cells (the
second term). The erythropoietin regulates the process of erythropoiesis, either repressing
(the first term) or stimulating (by influencing the rate of self-renewal and differentiation)
the production of stem-like cells.

The constant R̃m represents the maximum drug effect on erythrocytes, and R̃50 repre-
sents the drug saturation.

The healthy erythrocytes, illustrated by the second equation, have a constant mortality
rate (the first term) and a supply controlled by the erythropoietin (the second term). We
introduce the notation Ãe = Ae(2η1e + η2e), where Ae is an amplification factor. The time
necessary for the cells to mature is given by the delay τ2.

The third equation captures the changes in the concentration of erythropoietin. This
protein has a constant rate of clearance, and its production is influenced by the number of
existing erythrocytes in the blood stream.

The fourth equation represents the cell loss sustained during the cell cycle. For more
information regarding this equation, please consult [7].

The last three equations describe the dynamics of the drug after administration.
The model, which depicts the process of erythropoiesis under maintenance therapy, is:

u̇ = fi(u, uτj
), i = 1, 7, j = 1, 2 (1)

u̇1 = − γ0

1 + uα
3

u1 − R̃mu7

R̃50 + u7
u1 − (η1e + η2e)ke(u3)u1 − (1 − η1e − η2e)βe(u1, u3)u1

+2u4(1 − η1e − η2e)βe(u1τ1 , u3τ1)u1τ1 + η1eu4ke(u3τ2)u1τ1

u̇2 = −γ2u2 + Ãeke(u3τ2)u1τ2

u̇3 = −ku3 +
a1

1 + un
2

u̇4 = u4

(
− γ0

1 + uα
3
− R̃mu7

R̃50 + u7
+

γ0

1 + uα
3τ1

+
R̃mu7τ1

R̃50 + u7τ1

)

u̇5 = −b1u5 + a2

u̇6 = b1u5 − e1u6 − c1(1 − e2)

c2 + u6
u6 − m2e2

m1 + u6
u6

u̇7 =
b2c1(1 − e2)

c2 + u6
u6 − e3u7.

2.2. The Equilibrium Points and Linearization

Using some elementary, but tedious calculations, the following types of equilibrium
points corresponding to the model of erythropoiesis in ALL under treatment were obtained
(see also [7]): E1 = (0, 0, û3, û4, û5, û6, û7), which corresponds to the “death of the patient”,
and E2 = (û1, û2, û3, û4, û5, û6, û7), which corresponds to a “chronic phase of the disease”.

In order to study the stability of these equilibrium points, we performed a linearization
of the nonlinear system (1). We denote the matrix of partial derivatives for the undelayed
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variables by A =
∂ f
∂u

= [aij] and the matrices of the partial derivatives with respect to the

delayed variables by: B =
∂ f

∂uτ1

= [bij] and C =
∂ f

∂uτ2

= [cij]. For a complete list of the

matrix elements, please consult [7].

2.3. Stability Analysis of the Equilibrium Point E1

Using the matrices defined above, the characteristic equation corresponding to E1 is:

λ(λ − a22)(λ − a33)(λ − a55)(λ − a66)(λ − a77)(λ − a11 − b11e−λτ1) = 0.

We notice that λ = 0 is a root, and so, we are in a critical case for the stability of the
nonlinear system (1).

2.3.1. The Real Solutions of the Characteristic Equation

The real solutions of the characteristic equation are given by:

λ1 = 0

λ2 = a22 = −γ2 < 0

λ3 = a33 = −k < 0

λ4 = a55 = −b1 < 0

λ5 = a66 = −e1 − c1(1 − e2)c2

(c2 + û7)2 − m2e2m1

(m1 + û7)2 < 0

λ7 = a77 = −e3 < 0.

The existence of a zero eigenvalue implies a critical case for stability by the first
approximation.

2.3.2. Analysis of the Critical Case

The following theorem, developed and proven by some of the authors in [8], gives
stability criteria in the critical case of a zero eigenvalue.

Theorem 1 ([8], Theorem 2.1). Consider the following nonlinear system with time delays:

ẋ(t) = A0x(t) +
m
∑

j=1
Ajx(t − τj) + F[x(t), x(t − τ1), ..., x(t − τm), y(t)]

ẏ(t) = G[x(t), x(t − τ1), ..., x(t − τm), y(t)],
(2)

where Aj ∈ Mn(R), τj > 0 for all 1 ≤ j ≤ m, G(0, 0, ..., 0, y) = F(0, 0, ..., 0, y) = 0, ∀y ∈ R,
F takes values in Rn, and G is scalar. F and G contain only powers of the variables with the
sum greater than or equal to two. Then, for every δ > 0, there exist M1(δ) and M2(δ) with
lim
δ→0

M1(δ) = lim
δ→0

M2(δ) = 0 so that, whenever ||x(t)|| ≤ δ, ||x(t − τj)|| ≤ δ, 1 ≤ j ≤ m, |y| ≤ δ,

‖F(x(t), x(t − τ1), . . . , x(t − τm), y(t))‖ ≤
≤ M1(δ)(‖x(t)‖+ ‖x(t − τ1)‖+ · · ·+ ||x(t − τm)||)

|G((x(t), x(t − τ1), . . . , x(t − τm), y(t))| ≤
≤ M2(δ)(||x(t)||+ ||x(t − τ1)||+ · · ·+ ||x(t − τm)||).

(3)

Now, consider the following system with time delays. Suppose that the linear system:

ẋ(t) = A0x(t) +
m

∑
j=1

Ajx(t − τj) (4)
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is asymptotically stable, that is, if λ is a root of the characteristic equation, then Re(λ) < 0. Then,
the zero solution of (2) is simple stable, and if ϕ is the initial data of (2) in C

(
[−τ, 0];Rn+1) with

τ = max τj
1≤j≤m

, there exist δ > 0 so that, if sup{||ϕ(t)||2/t ∈ [−τ, 0]} < δ, then:

lim
t−→∞

xi(t) = 0, i = 1, ..., n and ∃ lim
t−→∞

y(t) = ỹ.

In what follows, we transform our system so that Theorem 1 can be applied. We first
perform a translation to zero: yi = ui − ûi, for i = 3, 7.

The new system becomes:

ẏ = fi(y, yτj
), i = 1, 7, j = 1, 2 (5)

ẏ1 = − γ0

1 + (y3 + û3)α
y1 − R̃mu7

R̃50 + y7 + û7
y1 − (η1e + η2e)ke(y3 + û3)y1

−(1 − η1e − η2e)βe(y1, y3 + û3)y1

+2(y4 + û4)(1 − η1e − η2e)βe(y1τl , y3τl + û3τl )y1τl

+η1e(y4 + û4)ke(y3τ1 + û3)y1τ1

ẏ2 = −γ2y2 + Ãeke(y3τ2 + û3τ2)y1τ2

ẏ3 = −k(y3 + û3) +
a1

1 + yr
2

ẏ4 = (y4 + û4)

(
− γ0

1 + (y3 + û3)α
− R̃m(y7 + û7)

R̃50 + y7 + û7
+

γ0

1 + (y3τ1 + û3)α

+
R̃m(y7τ1 + û7)

R̃50 + y7τ1 + û7

)
ẏ5 = −b1(y5 + û5) + a2

ẏ6 = b1(y5 + û5)− e1(y6 + û6)−
c1(1 − e2)

c2 + y6 + û6
(y6 + û6)−

m2e2

m1 + y6 + û6
(y6 + û6)

ẏ7 =
b2c1(1 − e2)

c2 + y6 + û6
(y6 + û6)− e3(y7 + û7),

where we consider ẏ4 = g(y3, y4, y7, y3τ1 , y7τ1), with g(0) = 0.

The matrices of partial derivatives into zero are, as before, Ã =
∂ f
∂y

= [ãij],

B̃ =
∂ f

∂yτ1

= [b̃ij], C̃ =
∂ f

∂yτ2

= [c̃ij].

The characteristic equation for the zero solution of the new system (5) has exactly the
same form as the one for E1. The terms that are different are:

∂g
∂y3

(0) =
û4γ0αûα−1

3
(1 + ûα

3)
2

∂g
∂y7

(0) = − R̃mR̃50

(R̃50 + û7)2

∂g
∂y3τ1

(0) = − û4γ0αûα−1
3

(1 + ûα
3)

2

∂g
∂y7τ1

(0) =
R̃mR̃50

(R̃S0 + û7)2 .
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Notice that Theorem 1 is not directly applicable since the linear part is not equal to
zero. In order to apply Theorem 1, we need to rewrite the system (5).

Take η = α1y1 + · · ·+ α7y7 where ẏ = Ãy. This means that:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẏ1
ẏ2
ẏ3
ẏ4
ẏ5
ẏ6
ẏ7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ã11 0 0 0 0 0 0 0
0 ã22 0 0 0 0 0 0
0 0 ã33 0 0 0 0 0
0 0 ã43 0 0 0 0 ã47
0 0 0 0 0 ã55 0 0
0 0 0 0 0 ã65 ã66 0
0 0 0 0 0 0 ã76 ã77

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3
y4
y5
y6
y7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
so, ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẏ1
ẏ2
ẏ3
ẏ4
ẏ5
ẏ6
ẏ7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ã11y1
ã22y2
ã33y3

ã43y3 + ã47y7
ã55y5

ã65y5 + ã66y6
ã76y6 + ã77y7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
We have η̇ = α1ẏ1 + · · ·+ α7ẏ7.
Then,

η̇ = α1 ã11y1 + α2 ã22y2 + α3 ã33y3 + α4(ã43y3 + ã47y7) +

α5 ã55y5 + α6(ã65y5 + ã66y6) + α7(ã76y6 + ã77y7).

Next, by forcing η̇ = 0, it follows that:

0 = α1 ã11y1 + α2 ã22y2 + (α3 ã33 + α4 ã43)y3 + (α5 ã55 + α6 ã65)y5

+(α6 ã66 + α7 ã76)y6 + (α4 ã47 + α7 ã77)y7,

from which we obtain:
α1 = 0, α2 = 0

α3 ã33 + α4 ã43 = 0

α5 ã55 + α6 ã65 = 0

α6 ã66 + α7 ã76 = 0

α4 ã47 + α7 ã77 = 0.

Thus, we have α4 = 1, α3 = − ã43

ã33
, α7 = − ã47

ã77
, α6 =

ã76 ã47

ã66 ã77
and α5 = − ã65 ã76 ã47

ã55 ã66 ã77
.

We remark that:
ẏ3τ1 = ã33y3τ1 + R3τ1

ẏ7τ1 = ã77y7τ1 + R7τ1 ,

with R3τ1 and R7τ1 containing terms of order higher than or equal to two.
We introduce:

η1 = α3y3 + y4 + α5y5 + α6y6 + α7y7 − b̃43

ã33
y3τ1 −

b̃47

ã77
y7τ1 .

Then, we have:

η̇1 = b̃43y3τ1 + b̃47y7τ1 −
b̃43

ã33
ẏ3τ1 −

b̃47

ã77
ẏ7τ1 + R1

4

= b̃43y3τ1 + b̃47y7τ1 −
b̃43

ã33
(ã33y3τ1 + R3τ1)−

b̃47

ã77
(ã77y7τ1 + R7τ1)

= R(2)
4 (y, yτ1).
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We replace the fourth equation in (5) with the equation of η̇1 from above, so that the
equation has a zero linear part.

Next, we consider:

y4 = η1 − α3y3 − α5y5 − α6y6 − α7y7 +
b̃43

ã33
y3τ1 +

b̃47

ã77
y7τ1

and we substitute y4 in the equations of (5). The new system becomes:

ẏ1 = − γ0

1 + (y3 + û3)α
y1 − R̃m(y7 + û7)

R̃50 + y7 + û7
y1 − (η1l + η2l)ke(y3 + û3)y1

−(1 − η1e − η2e)βe(y1, y3 + û3)y1+

+2(η1 − α3y3 − α5y5 − α6y6 − α7y7 +
b̃43

ã33
y3τ1 +

b̃47

ã77
y7τ1)

· (1 − η1e − η2e)βe(y1τ1 , y3τ1 + û3)y1τ1

+η1e(η1 − α3y3 − α5y5 − α6y6 − α7y7 +
b̃43

ã33
y3τ1 +

b̃47

ã77
y7τ1)

· ke(y3τ1 + û3y1τ1)

ẏ2 = −γ2y2 + Ãeke(y3τ2 + û3)y1τ2

ẏ3 = −k(y3 + û3) +
ã1

1 + yr
2

η̇1 = b̃43y3τ1 + b̃47y7τ1 −
b̃43

ã33
ẏ3τ1 −

b̃47

ã77
ẏ7τ1 + R1

4

= b̃43y3τ1 + b̃47y7τ1 −
b̃43

ã33
(ã33y3τ1 + R3τ1)−

b̃47

ã77
(ã77y7τ1 + R7τ1)

= R(2)
4 (y, yτ1)

ẏ5 = −b̃1(y5 + û5) + ã2

ẏ6 = b̃1(y5 + û5)− e1(y6 + û6)−
c1(1 − e2)

c2 + y6 + û6
(y6 + û6)−

− m2e2

m1 + y6 + û6
(y6 + û6)

ẏ7 =
b̃2c1(1 − e2)

c2 + y6 + û6
(y6 + û6)− e3(y7 + û7).

Consider:
f1(y1, y3, y4, η1, y6, y7, y1τ1 , y3τ1 , y4τ1 , y7τ1) =

− γ0

1 + (y3 + û3)α
y1 − R̃m(y7 + û7)

R̃50 + y7 + û7
y1−

−(η1e + η2e)ke(y3 + û3)y1 − (1 − η1e − η2e)βe(y1, y3 + û3)y1+

+
[
2(1 − η1e − η2e)βe(y1τ1 , y3τ1 + û3)y1τ1 + η1eke(y3τ1 + û3)y1τ1

]
η1 + B1(yτ1)

and remark that the linear part of f1 does not contain η1.
Since the other equations, except that of η1, do not contain η1 at all, we conclude

that Theorem 1 can be applied. Therefore, the stability of E1 depends on the study of the
transcendental terms in its characteristic equation.

2.3.3. The Transcendental Part of the Characteristic Equation

Consider the equation:
λ − a11 − b11e−λτ1 = 0. (6)

The stability analysis of Equation (6) is classical (see, for example, [16]).
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Proposition 1. Let p1 =
γ0

1 + ûα
3
+

R̃mû7

R̃50 + û7
. Assume that the following condition is true:

(η1eû4 − η1e − η2e)ke(û3) < p1 + (1 − 2û4)(1 − η1e − η2e)βe(0, û3). (7)

Then, Equation (6) is stable for τ1 = 0 and remains stable for τ1 > 0.

Proof. For the equilibrium point E1, we have:

a11 = −p1 − (η1e + η2e)ke(û3)− (1 − η1e − η2e)βe(0, û3)

b11 = 2û4(1 − η1e − η2e)βe(0, û3) + η1eû3ke(z4).

If τ1 = 0, Equation (6) becomes:

λ + p1 + (1 − 2û4)(1 − η1e − η2e)βe(0, û3)− (η1eû4 − η1e − η2e)ke(û3) = 0

Equation (6) is stable for τ1 = 0 if:

(η1eû4 − η1e − η2e)ke(û3) < p1 + (1 − 2û4)(1 − η1e − η2e)βe(0, û3).

Since b11 > 0, the following conditions from [16,17] must hold for stability when
τ1 > 0 :

1. a11 <
1
τ1

;

2. a11 + b11 < 0.

Since a11 = −p1 − (η1e + η2e)ke(û3) − (1 − η1e − η2e)βe(0, û3) < 0 <
1
τ1

, the first

condition holds true.
For the second condition we must have:

−p1 + (2û4 − 1)(1 − η1e − η2e)βe(0, û3) + (η1eû4 − η1e − η2e)ke(û3) < 0 (8)

We remark that, if Condition (7) holds, Condition (8) will also hold.

Remark 1. The equilibrium point E1 is stable if Condition (7) holds.

2.4. Stability Analysis of the Equilibrium Point E2

The characteristic equation corresponding to E2 becomes:

det(λI − A − Be−λτ1 − Ce−λτ2) = d1(λ)d2(λ),

where:
d1(λ) = (λ − a77)(λ − a66)(λ − a55)

and:

d2(λ) = λ4 − λ3(a11 + a22 + a33 + b11e−λτ1)−
−λ2[−a11a22 − a11a33 − a22a33 − (a22b11 + b11a33)e−λτ1 + a32c23e−λτ2 ]−
−λ[a11a22a33 + a22b11a33e−λτ1 − (a11a32c23 − a13a32c21)e−λτ2−
−(b11a32c23 − a32b13c21)e−λτ1 e−λτ2 ]
−a14a32a43c21e−λτ2 − a14a32c21b43e−λτ1 e−λτ2 .

Remark 2. Since the characteristic equation corresponding to E2 is complicated, the stability of E2
is investigated using numerical procedures.
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2.5. Numerical Simulations

For the numerical simulations, we considered the time scale as days and consulted the
available literature in order to set the values of the parameters. Table 1 shows the numerical
values of the parameters presented in the erythropoiesis model (1).

Table 1. Parameter values for the erythropoiesis model.

Maximal value of the function βe [9,14] β0e 1.5

Maximal value of the function ke [9] k0e 0.1

Parameter for the death rate [14] α 0.8

Loss of stem cells due to mortality [9] γ0 0.1

Rate of asymmetric/symmetric division [18] η1e, η2e 0.3

Parameter in the Hill function [18] m 2

Standard half-saturation (estimated) a1 3

Instant mortality of mature leukocytes [9] γ2 0.025

Amplification factor [9] Ã 2400

Maximum effect of drug on erythrocytes [15] R̃m 0.0022

Saturation constant for drug on erythrocytes [15] R̃50 82.2

The supply rate of the 6-MP in the gut[15] a2 3.9 × 108

6-MP absorption rate from the gut[15] b1 4.8

6-MP elimination rate from plasma [15] e1 5

6-MP to 6-TCN conversion rate [15] c1 29.8

Activity of TPMT enzyme [15] e2 0.5

MM constant for 6-TGN [15] c2 4.04 × 105

MeMP elimination rate from erythrocytes [15] m2 0.06

MM constant for MeMP [15] m1 3.28 × 105

Stoichiometric coefficient for 6-TGN conversion [15] vpt 1

6-TGN elimination rate from erythrocytes [15] e3 0.0714

Self-renewal duration of erythrocytes [14] τ1 2.8

Differentiation duration of erythrocytes [14] τ2 6

Figure 1 depicts the equilibrium point E1 in blue and a small perturbation from this
equilibrium point in red. We obtained parameter conditions for the stability of this equilib-
rium point, but it would be preferable that it be unstable; remember that E1 corresponds to
the death of the patient.

We proved that the equilibrium point E1 is stable if Condition (7) holds. For the
parameter values in the table above, it is easy to verify that (7) does not hold. This can also
be seen in Figure 1, where the evolution seems to be a favorable one for the patient.
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Figure 1. Stability of equilibrium point E1.

Figure 2 depicts the equilibrium point E2 in blue and a small perturbation from this
equilibrium point in red. Although we could not obtain any parameter conditions for
stability, it is easy to notice that the equilibrium point is unstable for the considered set of
parameters. As E2 corresponds to the chronic phase of the disease, the evolution obtained
in Figure 2 is a desired one. The healthy cells grow in number, and the leukemic cells die
out; this basically means that the patient recovers.

Figure 2. Stability of equilibrium point E2.
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3. The Leukopoiesis Model

3.1. The Mathematical Model

In this model, s1 represents the concentration of short-term stem-like white blood cells’
precursors and s2 the adult leukocytes. The treatment is presented through the function l1
(see [15]):

l1(x6) =
x6

L1S0+x6

The equations that describe these variables mirror those in the erythropoiesis model,
as the evolution of the leukocytes has many points in common. The difference between the
two is the influence erythropoietin has on the production of the cells.

A non-constant rate of the elimination of stem cells due to treatment is encountered,
and this leads to the consideration of a new, auxiliary variable s3.

Again, the last three equations depict the progress of the drug after administration.
The following model describes a compartment of leukopoiesis coupled with the

dynamics of 6-MP used in the maintenance therapy:

ṡ = f̃i(s, sτj
), i = 1, 6, j = 3, 4 (9)

ṡ1 = −γ1l s1 − T1l1(s6)s1 − η1lkl(s2)s1 − η2lkl(s2)s1 − (1 − η1l − η2l)βl(s1)s1

+2e−γ1lτ1 s3(1 − η1l − η2l)βl(s1τ1)s1τ1 + η1l e−γ1l τ1 s3kl(s2τ1)s1τ1

ṡ2 = −γ2l s2 + Ãlkl(s2τ2)s1τ2

ṡ3 = s3T1[l1(s6τ1)− l1(s6)]

ṡ4 = −b1s4 + a2

ṡ5 = b1s4 − e1s5 − c1(1 − e2)

c2 + s5
s5 − m2e2

m1 + s5
s5

ṡ6 =
b2c1(1 − e2)

c2 + s5
s5 − c3s6.

3.2. The Equilibrium Points and Linearization

Following [7], we concluded that there are two types of equilibrium points correspond-
ing to the model of leukopoiesis:

Ẽ1 = (0, 0, ŝ3, ŝ4, ŝ5, ŝ6)

Ẽ2 = (ŝ1, ŝ2, ŝ3, ŝ4, ŝ5, ŝ6).

When linearizing System (9), the matrix of partial derivatives with respect to unde-

layed variables is denoted as Ã =
∂ f
∂s

= [ãij] and the matrices of the partial derivatives

with respect to the delayed variables are denoted as B̃ =
∂ f

∂sτ3

= [b̃ij] and C̃ =
∂ f

∂sτ4

= [c̃ij].

For a complete list of the coefficients, please consult [7].

3.3. Stability Analysis for Equilibrium Point Ẽ1

The characteristic equation corresponding to Ẽ1 = (0, 0, ŝ3, ŝ4, ŝ5, ŝ6) is:

λ(λ − a22)(λ − a44)(λ − a55)(λ − a66)
(

λ − a11 − b11e−λτ1
)
= 0.
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The real solutions of the characteristic equation corresponding to Ẽ1 are given by:

λ1 = 0

λ2 = a22 = −γ2l < 0

λ3 = a44 = −b1 < 0

λ4 = a55 = −e1 − c1(1 − e2)c2

(c2 + ŝ5)
2 − m2e2m1

(m1 + ŝ5)
2 < 0

λ5 = a66 = −c3 < 0.

The analysis of the critical case follows the same steps as in the previous case. As
before, we can rewrite the system in a way that Theorem 1 can be applied. In order to avoid
redundancy, we skip the computations. We concluded that the stability of Ẽ1 relies on the
zeros of the transcendental equation:

λ − a11 − b11e−λτ1 = 0. (10)

Proposition 2. Assume that the following condition is true:

(2ŝ3 − 1)(1 − η1l − η2l)βl(0) + (ŝ3η1l − η1l − η2l)kl(0) < γ1l + T1l1(ŝ6). (11)

Then, Equation (10) is stable for τ1 = 0, and it remains stable for all τ1 > 0.

The proof of Proposition 2 is similar to that of Proposition 1.

Remark 3. The equilibrium point Ẽ1 is stable if Condition (11) holds.

3.4. Stability Analysis of the Equilibrium Point Ẽ2

The characteristic equation corresponding to Ẽ2 is:

λ(λ − a44)(λ − a66)(λ − a55)
·
[
(λ − a11 − b11e−λτ1)(λ − a22 − c22e−λτ2)− c21e−λτ2(a12 + b12e−λτ1)

]
= 0.

3.4.1. The Real Solutions of the Characteristic Equation

The nonzero real solutions of the characteristic equation corresponding to Ẽ2 are given by:

λ = a44 < 0

λ = a66 < 0

and
λ = a55 < 0

3.4.2. The Transcendental Part of the Characteristic Equation

The stability of the characteristic equation corresponding to Ẽ2 depends on the stability
of the following equation:

(λ − a11 − b11e−λτ1)(λ − a22 − c22e−λτ2)− c21e−λτ2(a12 + b12e−λτ1) = 0 (12)

The stability analysis of Equation (12) follows the approach in [19], Theorem (1).
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Proposition 3. Assume the following conditions hold:

a11 + b11 + a22 + c22 < 0
a11a22 + a22b11 + a11c22 + b11c22 − a12c21 − b12c21 > 0

(13)

then Equation (12) is stable for τ1 = τ2 = 0.

Proof. For τ1 = τ2 = 0, Equation (12) becomes:

λ2 + λ(−a11 − a22 − b11 − c22) + a11a22 + a22b11
+a11c22 + b11c22 − a12c21 − b12c21 = 0

(14)

Suppose that λ1 and λ2 are two roots for Equation (14), then in order to have Re(λ1),Re(λ2) < 0,
the following conditions must hold:

a11 + b11 + a22 + c22 < 0
a11a22 + a22b11 + a11c22 + b11c22 − a12c21 − b12c21 > 0

Now, let:

u1 = a11 + b11 + a22
v1 = a11a22 + a22b11 = a22(a11 + b11)
u2 = −c22
v2 = a11c22 + b11c22 − a12c21 − b12c21 = c22(a11 + b11)− c21(a12 + b12)

Proposition 4. Consider the following conditions:(
u2

1 − 2v1 − v2
2

)2
− 4

(
v2

1 − u2
2

)
> 0 (15)

u2
1 − 2v1 − v2

2 < 0. (16)

If either Condition (15) or Condition (16) does not hold and if Equation (12) is stable for
τ1 = τ2 = 0, it will remain stable for τ1 = 0 and τ2 > 0.

Proof. Suppose τ1 = 0 and τ2 > 0. Equation (12) becomes:

λ2 − u1λ + v1 + e−λτ2(u2λ + v2) = 0 (17)

The study of this equation follows the approach of Theorem 1 in [19]. Define:

P(λ) = λ2 − u1λ + v1
Q(λ) = u2λ + v2

Note that Conditions (i), (iv), and (v) of Theorem 1 in [19] are most likely to hold and
Conditions (ii) and (iii) of Theorem 1 in [19] hold.

Then, the stability of Equation (17) depends on the zeros of the equation:

|P(iy)|2 − |Q(iy)|2 = 0 (18)

If Equation (18) has no positive roots (y > 0) and if (17) is stable with τ2 = 0, it will
be stable for all τ2 > 0. If Equation (18) has a least one y > 0 as a root and all the roots
are simple, as τ2 increases, there might be stability switches. Therefore, if Equation (17) is
stable at τ2 = 0, it might become unstable when τ2 = τ∗

2 .
Now, consider P(iy) = PR(y) + iPI(y) and Q(iy) = QR(y) + iQI(y) where PR, PI , QR,

and QI are real-valued functions.
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Equation (18) can be written as:

|P(iy)|2 − |Q(iy)|2 = 0

|P(iy)|2 = |Q(iy)|2

P2
R(y) + P2

I (y) = Q2
R(y) + Q2

I (y).

We obtain the following polynomial:

y4 + y2(u2
1 − 2v1 − v2

2) + v2
1 − u2

2 = 0, (19)

By setting α = y2, we have:

α2 + α(u2
1 − 2v1 − v2

2) + v2
1 − u2

2 = 0. (20)

In order that Equation (20) has at least one simple root y > 0, the following conditions
must hold: (

u2
1 − 2v1 − v2

2

)2
− 4

(
v2

1 − u2
2

)
> 0 (21)

u2
1 − 2v1 − v2

2 < 0 (22)

Therefore, Equation (12) is stable if at least one of the conditions (21) or (22) is not met.

Now, we consider τ1 = τ∗
1 (fixed) and τ2 > 0.

Equation (12) becomes:

(λ − a11 − b11e−λτ∗
1 )(λ − a22 − c22e−λτ2)− c21e−λτ2(a12 + b12e−λτ∗

1 ) = 0 (23)

Equation (23) can be written as:

P(λ) + Q(λ)e−λτ2 = 0,

with

P(λ) = λ2 − (a11 + a22)λ + a11a22 − (b11λ + a22b11)e−λτ∗
1

Q(λ) = −c22λ + a11c22 − a12c21 + (b11c22 − b12c21)e−λτ∗
1 .

Remark 4. Suppose that the equation:

|P(iy)|2 − |Q(iy)|2 = 0

has no positive real roots. Then, if Equation (23) is stable for τ1 = τ2 = 0, it will remain stable for
τ1 = τ∗

1 and all τ2 > 0.

Since P(λ) and Q(λ) are analytic functions, we can apply the result of Theorem 1
in [19]. Set λ = iy. We are interested in the roots of the equation:

F(y) = |P(iy)|2 − |Q(iy)|2.

We have:

F(y) = y4 + 2b11y3 sin
(
yτ∗

1
)
+ r1y2 + 2a11b11y2 cos

(
yτ∗

1
)

+r2y sin
(
yτ∗

1
)
+ r3 cos

(
yτ∗

1
)
+ k4

(24)
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r1 = a2
11 + a2

22 + b2
11 − c2

22
r2 = 2a2

22b11 − 2b11c2
22 + 2b12c21c22

r3 = 2a11b12c21c22 + 2a11a2
22b11 − 2a11b11c2

22 − 2a12b12c2
21 + 2a12b11c21c22

r4 = a2
11a2

22 + a2
22b2

11 − a2
11c2

22 − a2
12c2

21 − b2
11c2

22 − b2
12c2

21 + 2a11a12c21c22+
+2b11b12c21c22

If the function (24) has no y > 0 as a root and if Equation (12) is stable with τ1 = τ2 = 0,
it will remain stable for all τ2 > 0 and τ1 = τ∗

1 .

Remark 5. The equilibrium point Ẽ2 is stable if Equations (17) and (23) are stable.

3.5. Numerical Simulations

Again, we considered the time scale as days and consulted the available literature
in order to set the values of the parameters. Table 2 shows the numerical values of the
parameters presented in the leukopoiesis model (9).

Table 2. Parameter values for the leukopoiesis model.

Maximal value of the function βl [9,14] β0l 1.5

Maximal value of the function kl [9] k0l 0.1

Loss of stem cells due to mortality [9] γ1l 0.1

Rate of asymmetric/ symmetric division [18] η1l , η2l 0.3

Parameter in the Hill function [18] ml 2

Standard half-saturation (estimated) a1 3

Instant mortality of mature leukocytes [9] γ2 0.025

Amplification factor [9] Ã 2400

Maximum effect of drug on leukocytes [15] T1 0.0782

The supply rate of the 6-MP in the gut[15] a2 3.9 × 108

6-MP absorption rate from the gut[15] b1 4.8

6-MP elimination rate from plasma [15] e1 5

6-MP to 6-TCN conversion rate [15] c1 29.8

Activity of TPMT enzyme [15] e2 0.5

MM constant for 6-TGN [15] c2 4.04 × 105

MeMP elimination rate from leukocytes [15] m2 0.06

MM constant for MeMP [15] m1 3.28 × 105

Stoichiometric coefficient for 6-TGN Conversion [15] vpt 1

6-TGN elimination rate from leukocytes [15] e3 0.1207

Self-renewal duration of leukocytes [14] τ1 1.4

Differentiation duration of leukocytes [14] τ2 3.5

Due to the fact that the drug dynamics after administration is similar to the one
obtained in the erythropoiesis model, we only focus on the representation of the white
blood cells’ precursors, s1, and the adult leukocytes, s2.

We would prefer that the equilibrium point Ẽ1 be unstable and perhaps attracted to a
healthy state. Figure 3 depicts the equilibrium point Ẽ1 in blue and a small perturbation
from this equilibrium point in red. The evolution of both the white blood cells’ precursors
and adult leukocytes is a favorable one for the patient.

In Figure 3, the equilibrium point Ẽ1 is clearly unstable. By checking Condition (11), we
obtain the same result: the condition does not hold, and the equilibrium point is unstable.
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(a)

(b)

Figure 3. Stability of equilibrium point Ẽ1: (a) Evolution of the white blood cells’ precursors;
(b) Evolution of the adult leukocytes

The equilibrium point Ẽ2 corresponds to a healthy state of the patient. Figure 4 shows
the equilibrium point Ẽ2 in blue and a small perturbation from this equilibrium point in red.
The equilibrium point is clearly unstable, but the evolution of the patient is still promising.
The white blood cells’ precursors and adult leukocytes both show an increase in number.

Oscillatory trajectories are common in blood cell evolution, as there is a natural inner
oscillatory dynamics.
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(a)

(b)

Figure 4. Stability of equilibrium point Ẽ2: (a) Evolution of the white blood cells’ precursors;
(b) Evolution of the adult leukocytes

4. Conclusions

The objective of this article was to present the stability study of two mathematical
models that describe the processes of erythropoiesis and leukopoiesis (which are responsi-
ble for the production of red and white blood cells) in the case of maintenance therapy for
acute lymphoblastic leukemia. The models were developed by some of the authors and
introduced in [7].

The stability of all the equilibrium points was thoroughly investigated. When possible,
parameter conditions for stability were determined. Some provocative and interesting
conclusions resulted from the study of critical cases. For this purpose, a theorem designed
by some of the authors and introduced in [8] was used. Numerical simulations were also
used to validate and extend the study in some cases where the characteristic equation was
too complicated.
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From a biological and medical point of view, these models were validated first by the
fact that the equilibrium points make sense biologically, as they correspond to existing
states in which a patient may be found. Secondly, the numerical simulations, which were
obtained using parameter values from the relevant literature (thus as close to reality as we
could manage), depicted genuine developments of a potential patient’s health.

In the case of the erythropoiesis model, the steady-states correspond to either the
death of the patient or a chronic phase of the disease. As neither is the desired state of a
patient, it would be preferable that these equilibrium points be unstable. The numerical
analysis yielded this favorable result.

In the leukopoiesis model, the equilibrium points depicted either the death of the
patient or a healthy state of the patient. For the considered configuration of the param-
eters, both these steady-states were unstable, but presented a positive evolution of the
patient’s condition.

Mathematical models that capture complicated situations in some diseases can aid
in designing an adequate treatment. After a comprehensive mathematical study, these
models can help to determine the correct dose of drug that needs to be administered for
each individual patient.
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Abstract: The research presented in this article is dedicated to analyzing the acceptability of tradi-
tional techniques of statistical management decision-making in conditions of stochastic chaos. A
corresponding example would be asset management at electronic capital markets. This formulation
of the problem is typical for a large number of applications in which the managed object interacts
with an unstable immersion environment. In particular, this issue arises in problems of managing gas-
dynamic and hydrodynamic turbulent flows. We highlight the features of observation series of the
managed object’s state immersed in an unstable interaction environment. The fundamental difference
between observation series of chaotic processes and probabilistic descriptions of traditional models is
demonstrated. We also present an additive observation model with a chaotic system component and
non-stationary noise which provides the most adequate characterization of the original observation
series. Furthermore, we suggest a method for numerically analyzing the efficiency of conventional
statistical solutions in the conditions of stochastic chaos. Based on numerical experiments, we estab-
lish that techniques of optimal statistical synthesis do not allow for making effective management
decisions in the conditions of stochastic chaos. Finally, we propose several versions of compositional
algorithms focused on the adaptation of statistical techniques to the non-deterministic conditions
caused by the specifics of chaotic processes.

Keywords: currency market; Forex risk control models; chaotic processes; trends prediction

1. Introduction

A distinctive feature of dynamic open systems that interact with unstable immersion
environments is the presence of random perturbations associated with unpredictable
physical, economical, political, natural, etc. factors. At each moment of time any given
(often latent) factor may start to dominate, which makes many explicitly pronounced local
trends appear. The presence of such trends and large areas of observation series that are
oscillatory non-periodic processes exactly satisfies the description of chaotic processes [1–6].
The chaotic nature of observation series violates the established constraints that are required
for statistical estimates to be consistent, efficient, and non-biased. In particular, this refers
to the stationarity of the noise, independence of increments, normality (gaussianity) of
value variations, and others. The full list of conditions that provide effectiveness and
consistency of statistical solutions can be found in classical and modern textbooks on
mathematical statistics [7–12]. At the same time, as dedicated statistical studies [5,6]
show, the most adequate model for describing observation series of the state of unstable
objects is an additive combination of a system component consisting of an oscillatory
non-periodic process with many local trends, and a random component that is a non-
stationary random process. It is obvious that in these conditions, aptly named stochastic
chaos, the most important assumption about the repeatability of events which underlies the
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probabilistic-statistical paradigm has been violated. At the same time, statistical analysis
methods remain the primary tool of management decision-making in the conditions of
non-determinism. Hence, there is a problem of evaluating the effectiveness of statistical
methods of data analysis in conditions in which they are obviously not optimal. Moreover,
the estimates made in the conditions of stochastic chaos generally are not unbiased and
effective. Therefore, the question about the effectiveness of management decisions based
on them remains open. Currently, there are no analytical methods for assessing the quality
of statistical estimates generated for chaotic data. The only available assessment means are
numerical studies. Therefore, this is the methodology we use in the present article. Note that
the specifics of chaotic dynamics do not allow us to obtain a stable result that determines
the effectiveness of the estimation procedures themselves. However, considering the
management task for which such estimates are made, it would be more sensible to assess
the quality of the used algorithms via terminal performance indicators of the constructed
strategies. We propose and examine the corresponding technique in this study.

2. Materials and Methods

2.1. Generalized Statistical Decision-Making

Decision-making via statistical synthesis requires constructing a statistical model of
the trading situation state. A traditional example of such a model is the statement that
an observation series of financial instrument quotations y1, y2, . . . , yn are independent,
identically distributed random variables with a total density f (y, θ), y ∈ R1, where
θ ∈ Θ ⊂ Rm is the set of market parameters, Rm is an m-dimensional real Euclidean space,
and D is the decision space. It is assumed that information about X is needed to select a
trading decision d ∈ D from a predetermined set of management decisions D. In general,
d is the result of a certain predictive analysis procedure concerning the trading situation,
which includes formalized data processing and interpretation of the obtained results. In
practice, a trading decision d is made based on the predicted values of the trading situation
state vector X̂.

A trading strategy (a decision function) is a map S : Y → D, i.e., a rule according to
which, within the framework of a given statistical model, a set of observations of a trading
situation y1, y2, . . . yn ∈ Y corresponds to a trading decision d ∈ D. Thus, a trading
strategy is essentially a procedure for analyzing and processing observation series, and a
rule for interpreting the result.

The fundamental task of statistical synthesis of management decisions is to choose
a strategy that is optimal with respect to some specific quality measure. Such a choice
requires the introduction of “more—less”, “better—worse” order relations to the class of
all strategies. Strategy S0 is called feasible if it provides management decisions that satisfy
a given class of constraints. Strategy S∗ is optimal in a given class of feasible strategies
S ∈ {S0} if, taking into account the existing constraints, it outperforms any other strategy
from this class by a specified effectiveness measure μ(S): S = S∗ : μ(S∗) > μ(S), ∀S ∈ {S0}.

The most common method of ordering a set of strategies requires a loss function w(X, d)
that maps X̂τ × D → R+, where R+ is the positive semi-axis of the real axis R, which
represents the loss of a trading decision d ∈ D based on forecast X̂τ in conditions when
the true state of the trading environment is described by a vector parameter Xτ , and τ is
the forecasting interval. In estimation problems,the full square of the forecast error is often
used as a loss function: w(Xτ , X̂τ) = (X̂τ − Xτ)2, i.e., the square of the Euclidean distance
between X̂τ and Xτ . Sometimes the loss function is made more complex by adding a
weight, thus becoming a weighted sum: w(Xτ , X̂τ) = λ(Xτ)(X̂τ − Xτ)2, where the weight
λ(Xτ) is selected from the condition of a specific task.

2.2. Specifics of Asset Management in the Conditions of Dynamic Chaos

During the construction of Bayesian management strategies, each acceptable trading
strategy S ∈ {S0} is mapped to an average loss or risk RS(X) = E{w(X, d)}, where E
is the symbol of mathematical expectation. In the tasks of proactive (i.e., forecast-based)
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management, which is typical for trading, the main cause of risk is errors in predicting the
market situation state vector X̂τ for the forecast interval τ chosen by the trader. In the case
of a point state vector of a particular financial instrument based on an independent sample
of observations y1, y2, . . . , yN with a distribution density f (Y), the average loss from the
selected trading decision will have the form

RS(xτ) =
∫

. . .
∫

Rn
w(xτ , x̂τ(y1, . . . , yn))

n

∏
i=1

f (yi | xτ)dy. (1)

In the conditions of chaotic dynamics, the observed process does not meet the condi-
tions of stationarity and ergodicity [5,6], the distribution function continuously changes
in time and it is not possible to restore it from the previous sample of observations. In
this case, the quality of the forecast itself is often estimated based on average square error
RS = E{(X̂τ − Xτ)2} = D{X̂τ}+ (E{X̂τ}− Xτ)2, where D{X̂τ} is the variance of the fore-
cast X̂τ . The trading risk from adopting a management strategy S is mainly related to the
probabilistic scatter of X̂τ near the true value Xτ for time t + τ. For a normal distribution
law, variance lim

n→∞
E{X̂τ − X} = lim

n→∞
D{X̂τ} = σ2

τ is a natural scatter measure. However,

for chaotic processes, there is no natural general measure of scatter, and the choice has to
be made in accordance with the conditions of a specific task.

The risk RS(X) associated with the application of strategy S introduces a partial order
in the set of strategies so that S1 ≥ S2 ⇔ RS1(X) ≤ RS2(X) ∀X ∈ {X}.

Generally, in chaotic conditions curves RS1(X) and RS2(X) intersect and, therefore,
the corresponding strategies are generally incomparable. Only in very rare cases there may
exist a curve in this class that lies uniformly below all the others at ∀X ∈ {X}, and thus
corresponds to the optimal strategy according to the criterion of minimum trading risk.

2.3. Specifics of Applying Statistical Synthesis of Management Strategies in Asset Management

Making control decisions, according to the general theory of statistical decisions, is a
procedure for choosing a decision d ∈ D0 from a set of acceptable decision D0 based on the
results of observations of the state of the trading situation of interest to us, described by the
process Xt, t = 1, . . . , n. In a real situation, this vector process can not always be observed
directly and a judgment about it is made on the basis of functionally related, technically
accessible observations Yt, t = 1, . . . , n. In other words, an investor or trader usually only
has access to direct or indirect observations that are functionally related to the considered
trading situation. It would be interesting to consider a generalized representation of an
asset’s state phase trajectory in a visual coordinate system “profit P — risk R — state
X” using posterior observation data. The trading situation is described by the respective
estimates of the specified parameters (P, R, X)tat the time t = 1, . . . , n. In some cases, in
particular forecasting changes in the trading situation, the estimated parameters include
estimates of the speed and acceleration of changes in the expected profit and risk measures.
Then, the vector of the estimated parameters of the phase trajectory at the time t = 1, . . . , n
will have the form (P, P′ , P′′, R, R′, R′′, X, X′, X′′)t. Observations Yt, t = 1, . . . , n are
the values of quotation vector of financial instruments Xt, t = 1, . . . , n and, possibly, some
other econometric, political, social and other values, the ensemble of which determines
the dynamics of expected changes in profit and risk. The perturbations that a submersion
environment exerts on a trading situation ensures that observations contain a random
component in all cases. The association between the the parameter vector and observation
series Yt, t = 1, . . . , n can be expressed with a (generally non-linear) one-dimensional
operator: Φ : y = Φ(x, v), y ∈ Y0, x ∈ X0.

A management decision d ∈ D is chosen based on observations Yt, t = 1, . . . , n and
all prior information available to the trader. Thus, the procedure for making a management
decision, which is the main subject of statistical synthesis, can be written in the form of an
operator S : d = S(Y, x). In the ideal case, this operator inverts Φ. The quality of a decision
is substantially determined by the availability and reliability of prior information. The lack
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of reliable prior and current information relating to the trading situation defines the level
of uncertainty at which a trading decision is made.

The most complete prior information consists of a probabilistic description of the
observation and state spaces that uses a prior distribution of state g(x) and a family of
distributions of observations f (y|x) for all x ∈ X0. In this case, the management decision is
chosen in accordance with the Bayesian ordering of strategies (1) described above, and the
preference rule is based on Bayesian risk

RS( f , g) =
∫

Θ
RS(x, f )g(x)dx =

∫
X

g(x)
∫

Rn
w(xτ , x̂τ(y1, . . . , yn))

n

∏
i=1

f (yi, x)dyi, (2)

where h(x) is the prior distribution density of the estimated parameter. This approach
provides the most effective management decisions for conventional statistical synthesis
problems. However, in the conditions of non-stationary dynamics of observation series,
prior information turns out to be unsuitable for dynamic reconstruction of distribution
functions. The transition to conventional non-Bayesian techniques eliminates the need to
restore the prior distribution of the forecast parameter. However, statistical technologies re-
main inapplicable due to the non-stationarity of the observed process, i.e., the dependence
of observation distribution density f (Y | x) on time. In particular, maximum likelihood
estimation (MLE) [1–4], which is based on minimization of the joint distribution of observa-
tions L(X) = ∏n

i=1 f (yi, x) and is widely used in statistical synthesis problems [1–4], turns
out to be unsuitable for the same reason — the non-stationarity of observation series.

At the same time, it is known [1–6] that the purely random component of observations
consisting of the difference between the values of observations, and the smoothed (or sys-
tem) component of quotation dynamics, will tend to a Gaussian distribution by the central
limit theorem. This convergence is approximate, and its degree remains undetermined,
due to the impossibility to strictly separate the system component of observation series
(deterministic chaos) and the random component.

Nevertheless, even for an approximate Gaussian scheme, using MLE (for a Gaussian
model, this leads to the well-known least squares method (LSM)) it is possible to build
constructive computational schemes intended to generate predictive management deci-
sions. However, analytical estimates of the quality of such decisions are impossible due
to the aforementioned uncertainty regarding the structure of the source data. The only
possible way to analyze the problem is thus via numerical studies based on computational
experiments. This article is dedicated to the investigation of these issues.

2.4. Observation Model in Asset Management

Figure 1 shows several examples of changes in various currency instrument quotations
on a 250-day observation interval.

Figure 1. Change dynamics of EURUSD, EURJPY, and USDJPY during 250 observation days.
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A visual examination of asset price observation series reveals that their nature is
chaotic and can be described by an additive model of form:

yk = xk + vk, k = 1, . . . , n, (3)

in which the systemic component of the observed process xk, k = 1, . . . , n used to make
a decision is an implementation of dynamic chaos [1–10,13], and usually is an oscillatory
non-periodic process with a large quantity of false local trends of undetermined length.
The noise vk, k = 1, . . . , n , as shown by applying statistical hypothesis tests [5,6], is a
non-stationary heteroscedastic process with a non-degenerate time-dependent autocorrela-
tion function.

Further on, we evaluate the feasibility of using decisions made based on conventional
statistical methods in asset management described by the observation model (3). In order
to do so, we have constructed a method based on the general theory of evaluating the
effectiveness of IT systems presented in [14].

2.5. Analysing the Effectiveness of Statistical Decision-Making in Asset Management

According to the aforementioned theory, the effectiveness of IT systems (in this case,
data analysis algorithms) should be assessed according to the performance of the meta-
system, in interests of which it is utilized. In the trading case, the management decision
is proactive, i.e., it is based on the forecast of the development of the observed process.
Conventional statistical synthesis provides an ability to construct an optimal forecast based
on well-known methods such as Bayesian estimation, maximum likelihood estimation,
least squares method, etc. [1–4,7], as shown above. It is impossible to analytically estimate
whether such methods are effective if the observed processes present chaotic and non-
stationary dynamics. Considering that, we present numerical studies based on the terminal
estimate of the efficiency of the forecast algorithms and proactive management decisions
for real trading asset quotation dynamics processes.

In particular, we consider extrapolation-based computational schemes of optimal
statistic forecasting, which estimate the parameters of a polynomial forecast model via the
least squares method.

The movement model undergoes statistical identification on the segment of observa-
tions that corresponds to the time interval of a financial instrument’s price changing by a
specific value dL. This approach corresponds to the problem in which the entire range of
price changes of a financial instrument is divided into uniform segments of width dL. A
positive or correct decision based on statistical trend identification accounts for the ability
of the considered process to preserve the previously identified trend from the level it was
detected at to the crossing of the next level in its direction. In the cases when the process
turns around and reaches the opposite level, the respective experiment fragment will be
considered to be a false decision. This approach is quite compatible with the tasks of
electronic trading, when the gain (TP, Take Profit) is achieved when the process reaches a
given level before it reverses and reaches the level of limiting losses (SL, Stop Loss).

Thus, the criterion of decision effectiveness is defined as the estimated probability
(frequency) of the process intersecting the trend presence and identification level earlier
than the Stop Loss level.

It should be noted that visual posterior observation of chaotic processes reflecting
the currency instrument quotation dynamics confirms the assumption that there are local
areas with pronounced trends which can be described by low-order polynomials. If this
can be proven mathematically, then we can say that the degree of chaos of the observed
process decreases locally. This, in turn, opens up prospects for constructing effective trading
strategies. Areas that preserve trend direction can be described via conventional statistical
methods. If this assumption turns out to be incorrect, it will not be possible to construct
effective management strategies based on statistical methods of identifying trends.

As a typical process with non-stationary dynamics, we will consider changes in the
quotations of currency pairs at the electronic FOREX market. To study this question, a
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number of computational experiments for the most commonly used currency instruments
are carried out in this paper.

3. Computational Experiments

3.1. Description

The area on which the studied process Yt changes is divided into equal sectors that are
dL points in percentage (pipses) long. Suppose that the process has moved from level dL to
the level Lk+1 above it. We can loosely consider this to be an appearance of a positive trend.
Such a transition will be denoted as Lk → Lk+1. Conversely, we can understand Lk → Lk−1
as negative dynamics [15].

The main problem that we focus on consists in proving the persistence of process Yt
defined as it arriving at the next level of the detected trend.

We assess positive outcome probability, i.e., Yt going from Lk → Lk+1 after it has gone from
Lk−1 → Lk. We define a negative outcome as a opposite transition to the level below Lk → Lk+1
directly after an upwards transition Lk−1 → Lk. Due to symmetry, similar measurements
work for downwards transitions as well. Therefore, the set of exhaustive events consists of two
positive outcomes (Lk → Lk+1 | Lk−1 → Lk),(Lk → Lk−1 | Lk+1 → Lk) and two negative
outcomes (Lk → Lk−1 | Lk−1 → Lk), (Lk → Lk+1 | Lk+1 → Lk).

As in illustration, Figure 2 presents an example of EURUSD quotation dynamics on a
10-day observation interval with segmentation boundaries and marks denoting boundary
intersections.

Figure 2. An example of EURUSD quotation dynamics on a 10-day observation interval.

The figure presents both the Yt, t = 1, . . . , n process and its smoothed version Ỹt,
t = 1, . . . , n. It was smoothed via a simple exponential filter Ỹt = αYt + βỸt−1, t = 1, . . . , n,
in which α ∈ (0, 1), β = 1 − α.

Examples of positive outcomes are shown in Figure 3, and negative ones in Figure 4.
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Figure 3. Examples of positive outcomes of management decisions.

Figure 4. Examples of negative outcomes of management decisions.

Assume that N experiments were run, each of which has identified a transition from
level to level, interpreted as a trend. If this direction persists until the process intersects
the next level, this outcome will confirm the trend. Conversely, if the process reverses
and reaches the previous level, it will point to trend absence. Suppose that as the result
of N consecutive experiments m outcomes prove trend presence, and N − m outcomes
disprove it.

Thus, this can be considered as an alternative H1 : p �= 0.5 to the null hypothesis
H0 : p = 0.5 of trend absence, in which pn = m

n is the frequency of experiments that confirm
trend presence. If an experiment is repeated a sufficient number of times, the frequency
of observed event is considered to be an estimate of the probability of the corresponding
assumption. To test the H0 hypothesis, it is possible to use a well-known rule u < u∗, where
u = ( fn − 0.5)(0.25/n)1/2 [8–10]. The critical value u∗ for the right-tailed criterion is found
using the Laplace function Φ table of values, considering that Φ(u∗) = (1−2γ)

2 . Here, γ is
the significance level of the null hypothesis.

3.2. Results

In order to cover as many variations of chaotic dynamics in electronic trading as
possible, we have considered five 100-day segments for three most widespread financial
instruments: EURUSD, EURJPY, and USDJPY. We have used the dL = 100 (pipses) as the
size of the inter-level interval.

Probability is estimated using the frequency of positive outcomes, that is, the ratio of
positive outcomes to the total number of experiments. The corresponding results of the
computational experiment are presented in Table 1.
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Table 1. Positive outcome frequency at dL = 100.

Time Interval, Days EURUSD EURJPY USDJPY

1–100 0.552 0.484 0.444
101–200 0.507 0.536 0.465
201–300 0.533 0.552 0.560
301–400 0.494 0.452 0.465
401–500 0.446 0.545 0.444

The presented data clearly indicates complete absence of any inertia in quotation
dynamics. This statement can be verified with statistical hypothesis testing. As mentioned
above, the null hypothesis H0 : p = 0.5 is tested against the alternative H1 : p �= 0.5.

As an example, consider an experiment for the 100-day interval of EURUSD obser-
vation. It resulted in N = 76 closes, out of which m = 42 corresponded to the inertia
condition at dL = 100. The relative frequency m

N = 0.552 corresponds to the value of the
decision statistic

u =
(m

N − p0)
√

N
√

p0q0
=

0.052
√

76√
0.25

= 0.91.

Here, q0 = 1− p0, u ∈ N(0, 1), i.e., it is subject to the standard Gaussian distribution
with the (0, 1) parameters. The assumption about the normal distribution of the criterion
follows from Laplace’s theorem (for a sufficiently large n, the relative frequency can be
approximately considered normally distributed with the mathematical expectation p and

standard deviation
√

pq
N ). In the general case, this assumption needs additional verification.

The critical area for the symmetrical competing hypothesis H1 : p �= 0.5 is determined
based on the selected significance level α = 0.99. For a two-sided critical area, ucr is determined
via the Laplace function value table according to Φ(ucr) =

1−α
2 = 0.005. Using the distribution

tables of the Laplace function, we determine ucr = 2.85. Therefore, the calculated value of
statistic u = 0.91 belongs to the area of hypothesis acceptance H0 : p = 0.5, which means that
statistical solutions are unsuitable for the considered processes.

The conclusion that inertia is absent in the previous experiment may be caused by
an excessively large confirmation interval dL = 100 p. Let us check whether we can
confirm the presence of inertia on smaller segmentation levels. Note that the considered
process contains a significant completely random component. Considering the random
value spread relatively to the smoothed process from Ỹt, t = 1, . . . , n α = 0.02 then its
SD on 100-day observation segments oscillates within 11–14 pipses for various currency
instruments. Decreasing α to 0.01, the corresponding SD changes within 15–20 pipses,
which is due to a lower degree of smoothness and therefore a smaller difference between
the initial and smoothed processes.

The width of the spread is responsible for random decisions that do not correspond
to systemic processes of quotation dynamics and therefore skews the conclusions on inertia
presence. Thus, in order to obtain a correct conclusion on inertia, the size of the segmentation
step (system dynamics) must be significantly larger than the random component.

As an example that illustrates the minimum feasible segmentation step for the pre-
sented SD values, consider the same task with dL = 50. The frequencies of positive
outcomes that confirm process inertia can be found in Table 2.
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Table 2. Positive outcome frequency at dL = 50.

Time Interval, Days EURUSD EURJPY USDJPY

1–100 0.539 0.568 0.522
101–200 0.524 0.528 0.497
201–300 0.529 0.503 0.537
301–400 0.503 0.550 0.534
401–500 0.493 0.548 0.552

The results, similarly to the previous case, confirm the stability of the hypothesis
H0 : p = 0.5, which refutes the use of statistical management techniques in a chaotic environ-
ment. The positive asymmetry is too small to accept the null hypothesis on the significance of
the difference between the frequency of positive outcomes and 50%. The difference between
the following series of experiments is that the beginning of each stage of the management
process is fixed when the segmentation level is crossed not by the process itself, but by
its smoothed version. Positions are closed (i.e., establishing the fact of recognizing or not
recognizing inertia in each experiment) by the process Yt, t = 1, . . . , n itself.

Obviously, the higher the degree of smoothness, the less the result will depend on the
fluctuating component of the process randomly crossing the levels. On the other hand, a
higher degree of smoothness inevitably leads to a lag in the smoothed process relative to
the original one, which skews the resulting estimates. As a compromise, we will use values
α = 0.005 − 0.02. The segmentation step, as in the first experiment, is equal to 100 p. The
results of estimating the probability of a positive outcome confirming the alternative H1
for five 100-day observation intervals and different values of the exponential filter transfer
coefficient α are presented in Table 3.

Table 3. Positive outcome frequency: opening by smoothed curve.

Time Interval, Days α = 0.005 α = 0.01 α = 0.01

1–100 0.667 0.681 0.618
101–200 0.771 0.791 0.667
201–300 0.606 0.706 0.612
301–400 0.612 0.653 0.618
401–500 0.648 0.581 0.574

It can be seen from the above data that the smoothed version of the process has more
inertia, which in general is suitable for making useful trading recommendations. However,
one should keep in mind that negative decisions are more drastic in terms of loss, since in
this case the dynamics of the quote reverse, and the departure of the process Yt, t = 1, . . . , n
during the time when the smoothed curve Ỹt, t = 1, . . . , n crosses the opening level can be
very large.

The final computational experiment is similar to the previous one, but both were
carried out by a smoothed process Ỹt, t = 1, . . . , n at the intersection of the corresponding
level. The results of the experiment are shown in Table 4.

Table 4. Positive outcome frequency: opening and closing by smoothed curve.

Time Interval, Days α = 0.005 α = 0.01 α = 0.01

1–100 0.652 0.652 0.593
101–200 0.698 0.706 0.696
201–300 0.686 0.707 0.688
301–400 0.612 0.612 0.582
401–500 0.567 0.534 0.574
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It is easy to see that the presented results are quite close to the corresponding estimates
given in Table 3. In other words, using a smoothed curve did not change the final result.
This is due to the fact that the probability of process Yt, t = 1, . . . , n reaching the decision
level will be higher both with a positive and negative outcome.

The disadvantage of the analysis method proposed above is that it does not take into
account the quality of the transitions on which the local trend is detected. For example,
transition Y(k) → Y(k) + dY can go on for a long time, with fluctuations and with a large
negative “sagging” (it is only necessary that it does not turn around and does not reach
level Y(k) − dY). Such a process is quite difficult to perceive as a trend. However, in
accordance with the above formalization, such a transition will also be interpreted as a
positive trend. In this regard, it makes sense to move on to a more complex trend detection
criterion, based, for example, on the average rate of change in the state of the process on a
sliding time window of size l:

ΔY(k, l) = Y(k − l + 1, k) = [Y(k − l + 1), Y(k − l + 2), . . . , Y(k)] (4)

Trend detection in this case is exceeding the value of the linear approximation coeffi-
cient a1(k) calculated at the observation site ΔY(k, l) of a certain critical value a1(k) > a∗.
This approach can be generalized to more complex trend detection rules. In particular,
we can consider a version of trend detection based on linear approximation coefficients
calculated on two observation windows of different lengths ΔY(k, l1) and ΔY(k, l2), l1 > l2,
or a version that uses a sliding approximation by a second-order polynomial. The second
half of the proposed effectiveness analysis approach, namely, confirming the existence of
a trend, remains unchanged. The H0 hypothesis of trend absence in the prolongation of
the detected trend means that the process, after its detection at t0, reaches threshold values
Y(t0) + dL and Y(t0)− dL with the same probability, i.e., H0 : p = p0 = 0.5, p being the
value of the observed process at the time of trend detection. An alternative hypothesis
indicating the possibility of using such strategies in conditions of market chaos will have
the form H1 : p �= p0 = 0.5. As in previous experiments, in addition to the main chaotic
process Y(t), we will use its smoothed version Ys(t) (4) with a transmission coefficient.
The process Ys(t), which simulates the system component of chaotic dynamics makes
it possible to isolate the purely random component of the initial noise chaotic process
v(t) = Y(t)− Ys(t), which is a centered random process with a distribution that is close to
Gaussian. The variance of the residual process D(v(t)) , in turn, allows us to estimate the
lower bound of the parameter dL that determines the level of confirmation or denial of the
trend presence hypothesis. The method of conducting computational experiments is close
to its prototype described above. An observation series of a trading asset’s state at various
non-intersecting 100-day observation intervals is considered as the polygon of chaotic
data. Next, we form a sliding observation window ΔY(k, l) of size l, on which we calculate
approximating polynomials P(q, l), q being their degree. A decision about the presence of a
trend is made based on the comparison of estimated coefficients of a with critical values a∗ .
The number of outcomes corresponding to the process reaching a predetermined level dL is
calculated to statistically verify the effectiveness of management decisions made following
trend-based strategies. Due to the symmetry of the task, the negative result consists in a
trend reversal and reaching the −dL level. If the ratio of reaching dL to the total number of
position openings m/n (the frequency of the event) is close to 0.5, then this confirms the
hypothesis H0 that it is impossible to successfully implement trend-based management
strategies. The parameters of the computational experiment are observation window l,
degree of smoothing polynomial q, threshold values of trends a∗, and trend confirmation
level dL . The simplest linear approximation scheme Ỹ(t) = a0 + a1t is used on a sliding
observation window ΔY(k, l). A trend is confirmed when the linear approximation coeffi-
cient a1 exceeds a pre-set value a∗ : a1 ≥ a∗. Trend presence is either denied or confirmed
when the condition Y(t) = Y0 ± dL is met, in which Y0 = Y(t0) is the value of the process
at the time of trend detection t0, and dL = 30, 50, 100 are the trend confirmation levels. The
size of the observation window l varies in the (0.1–0.5) day range. A trend is detected if
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|a1| ≥ a∗ is satisfied, and confirmed when Y(t) = Y0 ± dL levels are reached. Estimates of
the probability (frequency) of reaching the trend confirmation level for its various values
dL = 25, 50, 75, 100, for the l = 0.1, 0.25, 0.5-day observation window and for threshold
values a∗ = 0.05, 0.075, 0.1 on a 100-day observation interval are shown in Table 5.

Table 5. Trend confirmation frequency for different parameter values.

a∗ dL, n l, Days 0.025 0.05 0.075 0.1

0.025 25 0.50 0.48 0.49 0.49
0.025 50 0.51 0.50 0.51 0.50
0.025 75 0.50 0.50 0.50 0.51
0.025 100 0.50 0.51 0.51 0.51
0.05 25 0.50 0.48 0.48 0.50
0.05 50 0.50 0.50 0.51 0.50
0.05 75 0.50 0.50 0.51 0.50
0.05 100 0.50 0.51 0.51 0.51

0.075 25 0.50 0.49 0.49 0.49

The presented data clearly confirms that it is impossible to successfully prolongate
Ys(t) in a wide range of changes in intensity values, fixation levels and trend confirmation
levels. The disadvantage of this experiment is the fixed length of the sliding observation
window l. A large window causes a significant delay in trend detection, which leads to
a delayed decision and, as a result, to an incorrect assessment of the probability of trend
confirmation. An example is shown in Figure 5.

Figure 5. Examples of incorrect conclusions about the presence of a trend associated with a delay in
decision-making.

A small window leads to an increased sensitivity of the trend detection procedure to
the random component, which, in turn, leads to statistical errors of Type II (false alarms),
that is, to the detection of a non-existent trend. In this regard, it makes sense to consider the
problem of trend detection based on a complex criterion that uses two sliding observation
windows of different sizes.

Unlike the previous experiment, in this one we consider two trends. In this case,
linear approximations q = 1 are used for two sliding observation windows of size l1 and
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l2, l1 > l2. It is obvious that the first trend has stronger smoothing characteristics, and the
second is more sensitive to both systemic process changes and “false alarms”. Let l1 = 300,
l2 = 90 minute counts, critical values of the linear regression coefficient a∗1 = 0.05, a∗2 = 0.1 ,
the level of trend confirmation dL = 75. The decision on the presence of a trend is made
if both linear regression coefficients exceed their critical values by the absolute value. An
example of the implementation of such a scheme is shown in Figure 6.

Figure 6. Example of a decision-making scheme with two trends

Longer trends correspond to larger observation windows. Let us consider the result
of using this method for four 100-day intervals with different levels of trend confirmation
dL = 25 : 25 : 100. The corresponding data is presented in Table 6. It is easy to see that the
modification did not have a positive effect.

Table 6. Trend confirmation frequency for various time intervals.

dL, n / ΔT 1–100 Days 101–200 Days 201–300 Days 301–400 Days

25 0.48 0.49 0.48 0.47
50 0.53 0.46 0.48 0.48
75 0.53 0.50 0.49 0.45

100 0.55 0.50 0.52 0.47

Obviously, the issues of the previous version of this approach have not been resolved.
Additionally, the method, as a rule, detects a trend at the time of confirmation (or denial)
of the previous trend. At the same time, there is no new trend detection during the
confirmation time: this would require a method that simultaneously analyzes several
trends. The provided data clearly illustrates the extremely insignificant fluctuations in
the frequency of trend confirmation relative to the 0.5 value. This conclusion is easily
confirmed by testing the statistical hypothesis H0 : p = 0.5 about the absence of a trend
using U-statistics and confidence level α = 0.99.

4. Discussion

The applicability of statistical techniques for making management decisions for chaotic
processes with a non-stationary random component is a key question in applied problems
of asset management. An example of such a problem are effective management strategies
based on statistical trend analysis. It is impossible to make analytical estimates of unstable
inertia-less system management strategies because the observed processes are unstable
parameter-wise. Thus, such studies can be conducted as numerical studies exclusively,
considering large observation intervals that cover the variety of stochastic chaos. The
technique proposed in the article uses segmentation of the area of change of the considered
random process. Thus, it allows us to build a visual system for analyzing the effectiveness
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of statistical management decisions. The use of the process itself to fix the levels of confir-
mation or denial of the management effectiveness does not lead to a stable solution due to
the high degree of its stochastic spread. The process reaches decision-making levels more
often due to high variance than as a result of an inertial trend. This leads to the idea of
using a smoothed process for analysing inertia. In particular, good results are obtained
with smoothing via an exponential filter with transfer coefficient α = 0.005 − 0.02.

A better management result can be expected from more efficient computational
schemes for the extraction of the system component in observation series. This issue
is currently under study.

Trend analysis that we have conducted does not confirm the effectiveness of trend-
based statistical decisions. The trend management strategy for areas with a weak trend of
chaotic variations of the immersion environment is essentially non-profitable. Detecting a
trend on such segments of price dynamics indicates an upcoming change in the near future
and, therefore, it being appropriate to open a position in the opposite direction. In other
words, the problem lies not in the statistical methods of estimation themselves, but in the
infinite variety of dynamic forms generated by market chaos, which makes it impossible to
utilize simple stationary observation models.

It should be noted that currency market inertia is still not confirmed with statistical
significance. Some facts that are observed at financial markets confirm this point. If a
trend is detected, it is highly likely that in the next moment it will reverse. This means
strategies that were effective on backtest could accidentally be effective in the future. The
inability of the trend to continue its development can be explained by the fact that most of
the time the composition of trading participants is in an equilibrium balance. The influence
of trend-following traders (momentum traders) is compensated by market makers and
mean reversion traders [16]. At the same time, according to the inaction inertia theory [17],
individual investors who missed the opportunity to enter a position at a good price prefer
to hold back from a trade at a less favorable price, thereby preventing the trend from
developing. However, these factors become insignificant when the fundamental valuation
of the asset is changed. When this view is shared by the majority of traders, a continuous
trend may develop [18].

This leads to the conclusion that the market situation needs multilateral analysis.
In particular, the use of the considered types of statistical solutions combined with an
automatic text analyzer, which would assess the general “mood” in relation to the financial
instruments used, would significantly increase the effectiveness of the generated decisions.

Therefore, the most promising direction in the development of the task of automatic
management of market assets is the development of trading robots based on multi-expert
systems. Our current and planned publications will be dedicated to the development of
the conceptual and practical aspects of such systems.
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Abstract: This paper analyses an SIRS epidemic model with the vaccination of susceptible individuals
and treatment of infectious ones. Both actions are governed by a designed control system whose
inputs are the subpopulations of the epidemic model. In addition, the vaccination of a proportion of
newborns is considered. The control reproduction number Rc of the controlled epidemic model is
calculated, and its influence in the existence and stability of equilibrium points is studied. If such
a number is smaller than a threshold value Rc, then the model has a unique equilibrium point: the
so-called disease-free equilibrium point at which there are not infectious individuals. Furthermore,
such an equilibrium point is locally and globally asymptotically stable. On the contrary, if Rc > Rc,
then the model has two equilibrium points: the referred disease-free one, which is unstable, and
an endemic one at which there are infectious individuals. The proposed control strategy provides
several free-design parameters that influence both values Rc and Rc. Then, such parameters can be
appropriately adjusted for guaranteeing the non-existence of the endemic equilibrium point and, in
this way, eradicating the persistence of the infectious disease.

Keywords: epidemic models; vaccination and treatment actions; feedback control; equilibrium
points; stability

1. Introduction

The propagation of epidemic diseases within a host population has been studied since
several decades ago. Kermack and McKendrick developed one of the first works in the sub-
ject [1]. They proposed an SIR epidemic model where the host population is split in three
categories depending on the status of the individuals with respect to the disease. In such a
context, S, I, and R denote, respectively, the susceptible, infectious, and recovered subpopu-
lations. Later, a lot of models have been proposed and analysed in the specialised literature.
Such models consider some additional population categories and/or control actions for
eradicating or, at least, diminishing the effects of the disease in the host population [2–5]. In
this sense, the models can include the exposed subpopulation E composed by individuals
without symptoms of the disease and without the capacity of transmitting the infection
to a susceptible individual after a contagion. Such a model is referred to as the SEIR
model [6]. The more usual control actions are the vaccination of susceptible individuals and
the treatment of infectious individuals by antivirals, antibiotics, or other medicaments [7,8].
Additionally, other control actions such as quarantine of infectious individuals have also
been proposed [9]. These control actions give place to include other subpopulations in
the models as vaccinated, treated, and quarantined ones [10–13]. For instance, the authors
in [13] propose a SVEIR model to analyse the impact of vaccination in the control of spread
of poliomyelitis. Moreover, the control actions can be applied in continuous-time or impul-
sive ways during the vaccination campaigns and/or treatment procedures [14–16]. The
social distancing is another alternative way to fight against the propagation of infectious
diseases [17]. Such a measure may be crucial when there are asymptomatic infectious
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individuals and/or neither vaccines nor medicaments are available to maintain the disease
propagation under control. The early phase of the COVID-19 pandemic is a clear example
of such a fact [18]. In such situations, the susceptible subpopulation can be split in several
categories according to its preventive care and responsible behaviour to avoid the disease
contagion. For instance, the study in [19] considers two susceptible subpopulations ac-
cording to its risk aversion. One of the categories contains individuals with self-protection
awareness, and the other one is composed by people without such an awareness. Recently,
new approaches from game theory have been proposed for analysing the spreading of
infectious diseases [20,21]. The studies in [20] introduce the concept of a vaccination game
so as to evaluate provisions other than vaccination, including protective measures as mask
wearing. They also analyse the efficiency of quarantine compared with that of isolation
policies or the efficiency of preventive versus late vaccination. The work in [21] proposes a
double-layer game structure of vaccination and treatment. The vaccination game considers
whether the vaccine is accepted or declined by the individual, while the treatment game
depends on the antiviral resistance evolution and prescribing behaviour. In this way, the
vaccination game deals with the presence of anti-vaccine behaviour, while the treatment
game considers the antibiotic overuse.

In this paper, a controlled epidemic model with vaccination of newborns, vaccination
of the susceptible, and treatment of the infectious individuals, as control actions, is proposed.
The model is composed by a basic SIRS epidemic model and a first-order continuous-time
control subsystem, which is based on the feedback of the state variables. Namely, the inputs
of such a control subsystem are the susceptible, infectious, and recovered subpopulations
so that the control subsystem acts under the knowledge of the state of the disease at
each time. The control subsystem provides several free-design parameters that can be
adjusted to eradicate the persistence of the disease within the host population. Namely,
an appropriately adjustment of the control parameters guarantees the non-existence of
the endemic equilibrium (EE) point of the controlled SIRS model. Such a fact implies
the existence of a unique equilibrium point, namely, the disease-free equilibrium (DFE)
point, which is a very advantageous tool to asymptotically eradicate the disease. Moreover,
the local and global asymptotic stability of this DFE point is analytically proved under
appropriate conditions relative to the adjustment of the control parameters. Under such
conditions, the disease is eradicated from the host population after a transient period of
propagation from the initial state until the DFE point is reached. Several modified SIRS-
type models have been proposed and analysed in the epidemiological research. Some
models study the dynamics of such models under the influence of control actions such as
vaccinations of susceptible and/or the treatment of infectious individuals. Both control
actions are applied either in a time continuous or impulsive way, and the intensity of
each control action is usually proportional to the susceptible and/or infectious individuals.
The SIRS model in our paper also proposes the combined application of vaccination to
the susceptible and the treatment to the infectious subpopulation. The main novelties
of the current paper related to the background literature are (i) the use of first-order
dynamics in the vaccination and treatment controls and (ii) the availability of additional
free-design control parameters to shape such vaccination and treatment actions. The first
novelty provides some additional parameters derived from the fact that the vaccination
and treatment actions are provided by a control subsystem instead of being proportional
to the susceptible and/or infectious individuals. Concretely, two parameters arise from
the dynamics of the control subsystem, and then, the control actions can be designed with
two more free-design parameters than in the conventional research. Moreover, the control
subsystem uses the information of the state of the propagation of the disease since the
subpopulation variables are used as the inputs of such a subsystem. In this way, a feedback
control strategy is used for obtaining the vaccination and treatment variables. In summary,
the control designer can make use of the additional free-design parameters to shape the
vaccination and treatment actions in a desired way, which is the second main novelty, to
achieved the required objectives. One of the main objectives is to achieve the eradication
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of the disease or, at least, to minimise its influence within the host population. In this
context, the control parameters governing the intensity of the vaccination of newborns and
susceptible individuals influence on the control reproduction number Rc of the controlled
SIRS model. Moreover, those parameters shaping the intensity of the treatment of the
infectious individuals influence on a threshold value Rc of interest since if Rc < Rc, then
the EE point does not exist, so that the DFE point is the unique one. Furthermore, such
a DFE point is locally and globally asymptotically stable under that condition. In this
way, an appropriate choice of the control parameters associated with the vaccination
actions allows the control reproduction number to reduce with respect to its value in
absence of vaccination. Namely, Rc decreases by increasing the intensity of the vaccination.
On the other hand, an appropriate choice of the control parameters associated with the
treatment action allows the threshold value Rc to be strictly larger than the Rc value of the
controlled SIRS model to guarantee the inexistence of the EE point and then the existence of
a unique globally asymptotically stable DFE point. Namely, Rc increases by increasing the
intensity of the treatment action. In this context, the infectious disease can be extinguished
under an appropriate choice of the design parameters of the control laws. In summary,
two options are available for such a purpose. The first one is increasing the intensity of
vaccination in order to reduce the control reproduction number Rc, and the second one is
increasing the intensity of treatment in order to augment the threshold value Rc. Obviously,
an appropriate solution to guarantee the extinction of the disease can be obtained by
combining both options so that Rc < Rc.

The rest of the paper is organized as follows. Section 2 describes the basic epidemic
SIRS model as well as the subsystem providing the both proposed control actions, namely,
the vaccination of the susceptible and treatment of the infectious subpopulations, respec-
tively. The positivity of the controlled model, composed by combining the basic SIRS model
with the control subsystem, is analysed. In addition, the study of the equilibrium points, as
the existence as the stability properties, of the controlled model is dealt with in this section.
Concretely, the conditions to be satisfied by the free-design control parameters in order
to guarantee the non-existence of the EE point and then, the local and global asymptotic
stability of the DFE point, which is the unique equilibrium point under such conditions,
are established and mathematically proved. Finally, Section 3 illustrates the theoretical
results by some simulation examples. An extended study of the influence of the control
parameters in the dynamics of the controlled SIRS model is done. The results obtained with
the proposed controlled SIRS model are compared with those obtained by an uncontrolled
SIRS model. In addition, the results of the proposed model are compared with an SIRS
model with only a control action, either the vaccination of the susceptible subpopulation or
the treatment of the infectious one. These comparisons are interesting from the viewpoint
of the available resources relative to the existence of vaccines and/or medicaments to fight
against the propagation of the disease.

2. SIRS Epidemic Model under Vaccination and Treatment Controls

An SIRS epidemic model described by the following equations:

.
S(t) = b(1 − q)− β

S(t)I(t)
N(t)

+ ρR(t)− μS(t)− v(t) (1)

.
I(t) = β

S(t)I(t)
N(t)

− (μ + α + γ)I(t)− tr(t) (2)

.
R(t) = bq + γI(t)− (μ + ρ)R(t) + v(t) + tr(t) (3)

with an initial condition given by S(0) ≥ 0, I(0) ≥ 0 and R(0) ≥ 0 is proposed. The model
considers the whole host population split into three categories depending on the state of
the individuals with respect to the infectious disease, namely, susceptible (S), infectious (I),
and recovered (R) subpopulations. Moreover, the model considers a constant recruitment
rate for the population, which is represented by b [22,23]. The model includes three control
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actions: (i) a constant vaccination of newborn individuals defined by the control parameter
q ∈ [0, 1], (ii) a vaccination of the susceptible subpopulation into a vaccination rate v(t),
and (iii) a treatment of the infectious subpopulation into a treatment rate tr(t).

The variables v(t) and tr(t) are the output variables of a first-order control system
whose inputs are the SIRS model state variables. Then, both control actions are synthesised
by the feedback of the epidemic model state. The equations of the control system providing
both actions are as follows:

.
v(t) = −c1v(t) + c2 S(t) + c3 I(t) + c4

S(t)I(t)
N(t)

(4)

.
tr(t) = −c5 tr(t) + c6 I(t). (5)

Concretely, v(t) and tr(t) are the number of vaccinated and treated individuals per
time unit, respectively. Equations (4) and (5) regulate respectively the amount of vaccines
and medicaments to be daily applied according to the time evolution of the disease propa-
gation. In this context, if

.
v(t) > 0 (

.
tr(t) > 0), then the amount of vaccines (medicaments) to

be applied in the current day is larger than those applied in the previous one. Otherwise, if
.
v(t) < 0 (

.
tr(t) < 0), then the amount of vaccines (medicaments) to be applied in the current

day is smaller than those applied in the previous one. The time evolution of the amount of
vaccines and medicaments daily applied to control the propagation of the disease depends
on the current state of the epidemics, as it can be observed in (4) and (5) from the fact that
the subpopulations S(t) and I(t) act as input in the control subsystem. Equations (1)–(5)
compose the controlled epidemic model defined by two sets of parameters. The first set
includes the parameters associated with the transmission of the disease and the features of
the host population, namely:

• b is the natural birth rate of the host population;
• μ is the natural death rate of the host population;
• β is the transmission rate of the disease within the host population;
• ρ is the immunity loss rate within the recovered subpopulation, whose individuals

become susceptible to the disease after losing the immunity;
• α is the death rate by causes related to the disease;
• γ is the recovery rate of the infectious subpopulation.

The second set of parameters is associated to the control actions, namely:

• q ∈ [0, 1] is the proportion of newborn individuals who are vaccinated;
• ci, for i ∈ {1, 2, 3, 4}, are the parameters for designing the vaccination of the sus-

ceptible subpopulation. Such control parameters allow us to weight the vaccination
rate according to the state of the disease propagation considering the number of sus-
ceptible individuals S, infectious ones I, and/or the probability of contacts between
them S(t)I(t)

N(t) at each time t. Such parameters provide the availability of giving more
importance to one term of (4) against the other ones in the design of the law for the
vaccination v(t). The unit of the parameter c1 is (time)−1, usually (day)−1, and that of
the parameters ci, for i ∈ {2, 3, 4} is (time)−2 for coherence in (4).

• ci, for i ∈ {5, 6}, are the parameters for designing the treatment of the infectious
subpopulation. Such control parameters shape the law for the treatment tr(t) accord-
ing to the number of infectious individuals. However, the values allowed for such
parameters are constrained for the potency of the available medicaments. In this sense,
a larger c6

c5
is less the recovery time interval for the treated infectious individuals. The

unit of the parameter c5 is (time)−1, usually (day)−1, and that of the parameters c6 is
(time)−2 for coherence in (5).

All parameters are non-negative. The dynamics of the whole host population N(t) =
S(t) + I(t) + R(t) can be obtained by summing up Equations (1)–(3). In this way:

.
N(t) = b − μN(t)− αI(t). (6)
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The nature of the epidemic models requires the non-negativity of their solutions, so
an analysis of the model positivity is developed in the following.

2.1. Positivity of the Controlled SIRS Epidemic Model

The result below establishes the non-negativity of all the subpopulations of the con-
trolled model as well as the non-negativity of the vaccination and treatment control efforts
under a set of sufficient conditions on the control parameters. The proof is written in
Appendix A.

Theorem 1 (positivity of the model). The solution of the model (1)–(6) is non-negative for all
time and for any initial condition such that S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, v(0) = 0, and
tr(0) = 0 provided that the control parameters ci ≥ 0, for i ∈ {1, 2, . . . , 6}, and q ∈ [0, 1] are
chosen such that:

(i) c1 > μ + β + 2
√

c2 + c4 ; (ii) q ≥ q0 = 1 − μ+β
b S(0)

(iii) c3 ≤ b(1−q)(μ+β)
Imax

; (iv) c5 > μ + α + γ + 2
√

c6 ,

where Imax = max
0≤t<∞

{I(t)}.

Remark 1.

(i) The conditions (i)–(iv) of Theorem 1 are only sufficient conditions, since the solutions of
the model can be non-negative even if some of these conditions are not satisfied by the con-
trol parameters.

(ii) The birth rate of a host population b is close to its mortality rate μN(t) for any t ≥ 0 under
normal conditions (in absence of a lethal disease). Then, b − μN(0) is close to zero at the
beginning of the propagation of an infectious disease. Then, typically b − (μ + β)N(0) ≈
−βN(0) < 0. Moreover, in the first stage of any epidemic disease propagation, the infectious
and recovered subpopulations are much smaller than the susceptible one. Then, N(0) ≈ S(0)
and, as a consequence, the condition (ii) is satisfied for any q ∈ [0, 1].

(iii) The condition (iii) of Theorem 1 depends on the maximum value reached by the infectious
subpopulation during the propagation of the disease. Such a value cannot be known ‘a priori’,
and then, one cannot appropriately choose the values of the parameters c3 and q to satisfy it.
However, such a condition is fulfilled if c3 = 0 for any q ∈ [0, 1]. Then, from continuity
arguments, the condition is fulfilled for c3 ∈ [0, c3] with c3 = c3(q, Imax) =

b(1−q)(μ+β)
Imax

. In
summary, a value for c3 small enough has to be chosen in order to satisfy the condition (iii) if
a vaccination provided by (4) is proposed. Note that if q = 1, which means a vaccination of all
the newborns, then c3 = 0 has to be taken to guarantee the non-negativity of all the model
variables for all the time.

(iv) In a real situation, the control actions to fight against an epidemic outbreak are taken after the
disease is detected in the infectious individuals. Then, the constraint v(0) = tr(0) = 0 in the
initial condition for guaranteeing the non-negativity of the variables of the controlled epidemic
model is coherent with such a fact.

Corollary 1. The feasible region Γ defined as:

Γ =

⎧⎪⎨⎪⎩ [S(t) I(t) R(t) v(t) tr(t)] ∈ R5
0+

∣∣∣ 0 ≤ min
{

N(0), b
μ+α

}
≤ N(t) ≤ max

{
N(0), b

μ

}
v(t) ≥ 0
tr(t) ≥ 0

⎫⎪⎬⎪⎭ (7)

is positively invariant for models (1)–(5) under the conditions of Theorem 1, where N(t) =
S(t) + I(t) + R(t) and R5

0+ denotes the non-negative five-dimension hyper-plane.
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Proof. From (6), it follows that:

b − (μ + α)N(t) ≤
.

N(t) ≤ b − μN(t) (8)

from the fact that 0 ≤ I(t) ≤ N(t) ∀t ≥ 0 as a consequence of Theorem 1. Then, by direct
calculations from (8), one obtains:

b
μ + α

+

(
N(0)− b

μ + α

)
e−(μ+α)t ≤ N(t) ≤ b

μ
+

(
N(0)− b

μ

)
e−μt. (9)

From (4), it follows that
.
v(t) ≥ −c1v(t) by taking into account that S(t) ≥ 0, I(t) ≥ 0

and N(t) ≥ 0 ∀t ≥ 0 as a consequence of Theorem 1. Then, v(t) ≥ v(0)e−c1t ≥ 0. Finally,
from (5), it follows that

.
tr(t) ≥ −c5tr(t) by taking into account that I(t) ≥ 0 ∀t ≥ 0 as

a consequence of Theorem 1. Then, tr(t) ≥ tr(0)e−c5t ≥ 0. Equation (9) and the results
v(t) ≥ 0 and tr(t) ≥ 0 ∀t ≥ 0 lead to the conclusion that solutions for the model (1)–(5)
with any initial condition within Γ persist in Γ for all time. �

From the positivity result of Theorem 1, the following assumption is established for
the rest of the paper.

Assumption 1. A choice of the control parameters satisfying the conditions of Theorem 1 is
supposed in order to guarantee the positivity of the controlled SIRS epidemic model.

Remark 2. Assumption 1 mathematically guarantees that the model subpopulations as well as the
control efforts do not take negative values for all time, as the nature of an epidemic model needs to be
well defined. Such a fact justifies the adoption of such an assumption.

2.2. Control Reproduction Number and Equilibrium Points of the Controlled SIRS Model

The controlled epidemic model given by (1)–(5) possesses two equilibrium points.
One of them is a DFE point, and the other one is an EE point. They are obtained by setting
.
S(t) =

.
I(t) =

.
R(t) =

.
v(t) =

.
tr(t) = 0, since the equilibrium points are those at which

the model variables do not change with time. In this way and by direct calculations, one
obtains that the subpopulations and the values of the vaccination and treatment efforts at
the DFE point are given by:

SDFE = bc1[μ(1−q)+ρ]
μ[c1(μ+ρ)+c2]

; IDFE = 0 ; RDFE = b(c1qμ+c2)
μ[c1(μ+ρ)+c2]

vDFE = bc2[μ(1−q)+ρ]
μ[c1(μ+ρ)+c2]

; trDFE = 0.
(10)

One can define the control reproduction number Rc for the model as the number of
new infections that an infectious individual produces in a population at the DFE point.
Such a number can be calculated by using the next-generation method [24]. For such a
purpose, Equations (1)–(3) related to the dynamics of the epidemiological compartments of
the controlled model (1)–(5) can be, equivalently, rewritten as:

.
x = F (x)−W(x) (11)

where x =
[

S I R
]T and F (x) and W(x) are given by:

F =
[

0 β SI
N 0

]T ; W =

⎡⎣ −b(1 − q) + β SI
N − ρR + μS + v

(μ + α + γ)I + tr
−bq − v − γI + (μ + ρ)R − tr

⎤⎦. (12)

Each component of F (x) is the rate of appearance of new infections in the correspond-
ing compartment. The new infections only appear in the infectious compartment; therefore,
only the second component of F (x) is nonzero. On the other hand, the components of W(x)
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are the difference between the output and input transition rates corresponding, respectively,
to the susceptible, infectious, and recovered compartments. The control reproduction num-
ber can be calculated by analysing the dynamics of the subsystem composed by the infected
compartments. The proposed controlled model only has an infected compartment, namely,
the infectious subpopulation I. The dynamics of such an infected subsystem around the
DFE point is given by the both entries (2,2) of the matrices F = ∂F

∂x

∣∣∣
x=xDFE

∈ R3x3 and

W = ∂W
∂x

∣∣∣
x=xDFE

∈ R3x3, where xDFE =
[

SDFE IDFE RDFE
]T . By direct calculations,

one obtains that such entries are, respectively, f22 = β SDFE
NDFE

and w22 = μ + α + γ. Then,

the next generation matrix, which results a scalar for the current models, is f2,2·(w22)
−1.

Finally, the control reproduction number under control efforts is obtained as the spectral
radius of such a matrix, namely:

Rc = σ
(

f2,2·(w22)
−1

)
=

f22

w22
=

βSDFE

(μ + α + γ)NDFE
=

βc1[μ(1 − q) + ρ]

(μ + α + γ)[c1(μ + ρ) + c2]
(13)

where σ(M) denotes the spectral radius of the matrix M and the fact that NDFE = SDFE +
IDFE + RDFE = b

μ and expressions in (10) have been used. Note that if the vaccination
of newborn individuals is not applied, i.e., q = 0, while the vaccination of susceptible
individuals is given by (4) with c2 = 0, i.e., without the forced term depending on S,
then the control reproduction number of the current controlled model is equal to the basic
reproduction number R0 = β

μ+α+γ of a basic SIRS epidemic model. On the contrary, if
c2 �= 0 and/or q �= 0, then the control reproduction number is smaller than the basic
reproduction number, i.e., Rc < R0, since the control parameters are non-negative by
definition. Such a fact is key to achieve the global stability of the DFE point of the controlled
epidemic model (1)–(5), by means of an appropriate choice of the control parameters c2 and
q, in a situation where the DFE point of an SIRS model without vaccination is not globally
stable. Note also that the control reproduction number depends on neither c5 nor c6, i.e.,
the application of a treatment to the infectious subpopulation does not have influence on
such a number.

On the other hand, one obtains that the subpopulations and the values of the vaccina-
tion and treatment efforts at the EE point are given by:

SEE = bk1(k2k3Rc+k1c4)
k2c5Rc(k2k4Rc+k1k5)

; IEE = bk6[k7(Rc−1)−c6]
k2k4Rc+k1k5

REE =
b(k2

2k8c5R2
c+k1k2k9Rc−k2

1c4)
k2c5Rc(k2k4Rc+k1k5)

; trEE = bk6c6[k7(Rc−1)−c6]
c5(k2k4Rc+k1k5)

vEE =
b(k2

2c3c2
5[μ(1−q)+ρ]R2

c+k1k2k10Rc−k2
1c4(μ+ρ))

k2c5Rc(k2k4Rc+k1k5)

(14)

where:

k1 = c1[μ(1 − q) + ρ][c5(μ + α + γ) + c6] ; k2 = (μ + α + γ)[c1(μ + ρ) + c2]
k3 = c1[c5(μ + γ + ρ + qα) + c6] + c3c5 ; k4 = c1(c5[μγ + (μ + α)(μ + ρ)] + μc6) + μc3c5

k5 = μc4 − α[c1(μ + ρ) + c2] ; k6 = c1[μ(1 − q) + ρ][c1(μ + ρ) + c2]
k7 = c5(μ + α + γ) ; k8 = c1(c5[γ + q(μ + α)] + c6) + c3c5

k9 = c5[c2 − c3 + c4 − c1(αq + γ)]− c1c6
k10 = c2[c5(μ + γ + ρ + qα) + c6]− c3c5(μ + ρ) + c4c5[μ(1 − q) + ρ].

(15)

The following very important result from the disease eradication viewpoint is proved.

Theorem 2 (Non-existence of the EE point). If the control parameters are chosen such that:

Rc < Rc = 1 +
c6

c5(μ + α + γ)
⇔ R0 < R0 =

[c5(μ + α + γ) + c6][c1(μ + ρ) + c2]

c1c5(μ + α + γ)[μ(1 − q) + ρ]
(16)

then the EE point does not exist.
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Proof. The condition (16) can be written as Rc < 1 + c6
k7

from the expression of k7 in (15).
Then, one obtains that NI = bk6[k7(Rc − 1)− c6] < 0, where NI is the numerator of IEE.
Then, IEE < 0 unless that DI = k2k4Rc + k1k5 < 0, where DI is the denominator of IEE.
Suppose that DI < 0 so that IEE > 0. Then, DS = k2c5Rc(k2k4Rc + k1k5) = k2c5RcDI < 0
from the fact that c5, k2, and Rc are strictly positive, where DS denotes the denominator
of SEE. Then, SEE < 0, since NS = bk1(k2k3Rc + k1c4) > 0 since b, c4, k1, k2, k3 and Rc are
strictly positive, where NS denotes the numerator of SEE. In summary, one of SEE or IEE is
negative under the condition (16), which implies the non-existence of the EE point. �

Remark 3. The proposed SIRS epidemic model defined by (1)–(3) has a globally asymptotically stable
EE point whenever R0 > 1, as is always the case in SIR-like epidemic models with demography [25].
The proposed control actions, namely, the vaccination of newborns, the vaccination of the susceptible
subpopulation, given by (4), and the treatment of infectious individuals, given by (5), eliminate the
existence of such an EE point under a choice of the control parameters, satisfying the condition (16).
In this way, the SIRS epidemic model coupled with the control actions only has the DFE point,
which is a crucial result in this paper.

2.3. Local Stability of the Disease-Free Equilibrium Point

The study of the local stability of a nonlinear system around an equilibrium point can
be done by analysing the eigenvalues of the Jacobian matrix corresponding to the linearisa-
tion of the system around such a point. For such a purpose, the controlled model (1)–(5)
can be, equivalently, rewritten as

.
xc = f (xc) where xc =

[
S I R v tr

]T is the
extended state vector of the controlled SIRS model after including the control dynamics and:

f =

⎡⎢⎢⎢⎢⎣
b(1 − q)− β SI

N + ρR − μS − v
β SI

N − (μ + α + γ)I − tr
bq + γI − (μ + ρ)R + v + tr
−c1v + c2S + c3 I + c4

SI
N

−c5tr + c6 I

⎤⎥⎥⎥⎥⎦. (17)

The Jacobian matrix of the model around the DFE point is directly obtained as:

JDFE =
∂ f
∂xc

∣∣∣∣
xc=xc,DFE

=

⎡⎢⎢⎢⎢⎣
−μ j12 ρ −1 0
0 j22 0 0 −1
0 γ j33 1 1
c2 j42 0 −c1 0
0 c6 0 0 −c5

⎤⎥⎥⎥⎥⎦ (18)

where xc,DFE =
[

SDFE IDFE RDFE vDFE trDFE
]T j12 = −(μ + α + γ)Rc, j22 =

(μ + α + γ)(Rc − 1), j33 = −(μ + ρ), and j42 = c3 +
c4
β (μ + α + γ)Rc, and the expressions

(10) and (13) for Rc have been used. The following result is proved.

Theorem 3 (Local stability of the DFE point). If the control parameters are chosen such that:

Rc < Rc ⇔ R0 < R0 (19)

then the DFE point is locally asymptotically stable under Assumption 1, where Rc and R0 are given
in (16).

Proof. The characteristic equation of the linearised model around the DFE point is given
by |λI5 − JDFE| = 0, where I5 denotes the 5th-order unity matrix. By direct calculations,
one obtains that:

|λI5 − JDFE| = (λ + μ)
(

λ2 + p1λ + p0

)(
λ2 + q1λ + q0

)
(20)
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where:

p1 = c5 − (μ + α + γ)(Rc − 1) ; p0 = c6 − c5(μ + α + γ)(Rc − 1)
q1 = μ + ρ + c1 ; q0 = (μ + ρ)c1 + c2.

(21)

Then, the eigenvalues of the matrix JDFE are −μ and the roots of P(λ) = λ2 + p1λ+ p0
and Q(λ) = λ2 + q1λ + q0. By applying the Routh–Hurwitz method to Q(λ), one obtains
that the real part of its roots is negative if q1 > 0 and q2 > 0. From (21), both conditions are
satisfied, since the control parameters c1 and c2 as well as the model parameters μ and ρ
are positive by definition. On the other hand, the roots of P(λ) are given by:

r1,2 =
1
2

(
(μ + α + γ)(Rc − 1)− c5 ±

√
(c5 + (μ + α + γ)(Rc − 1))2 − 4c6

)
(22)

from (21), where the sign ‘+’ corresponds to the root r1 and the sign “−” corresponds
to r2. The control parameters c5 and c6 fulfil the condition (iv) of Theorem 1 provided
Assumption 1. Then, it follows that (c5 + (μ + α + γ)(Rc − 1))2 − 4c6 > 0, since Rc > 0
from (13). In this way, both roots r1 and r2 are real, and r2 < r1. By direct calculations
from (22):

r1 < 1
2

(
(μ + α + γ)

(
Rc − 1

)
− c5 +

√(
c5 + (μ + α + γ)

(
Rc − 1

))2 − 4c6

)
= 1

2

(
c6
c5

− c5 +

√(
c5 +

c6
c5

)2
− 4c6

)
= 1

2c5

(
c6 − c2

5 +
√(

c6 + c2
5
)2 − 4c2

5c6

)
= 0

(23)

by using (19), the definition of Rc in (16) and the fact that c6 < c2
5 from the condition (iv) of

Theorem 1. In summary, both roots of P(λ) are strictly negative. Then, all the roots of the
characteristic equation of the linearised model around the DFE point have a negative real
part under Assumption 1, provided that the control parameters satisfy the condition (19).
Then, the DFE point is locally asymptotically stable. �

Remark 4. Note that the DFE point can be locally asymptotically stable although the control repro-
duction number Rc is larger than 1. Namely, such a property is proved if Rc < Rc independently of
the particular value of Rc. Indeed, the local asymptotic stability of the DFE point is guaranteed if
the transition rate from the infectious subpopulation to the recovered one is larger than the transition
rate from the susceptible subpopulation to the infectious one. In this context, the number Rc is
directly proportional to the transition rate from the susceptible subpopulation to the infectious one,
while Rc is directly proportional to the transition rate from the infectious subpopulation to the
recovered one. In this sense, such a transition rate from the infectious to the recovered subpopulation
depends on several factors: potency of medicaments, amount of material and human resources
in the health-care centres to treat the infectious individuals, and so on. Then, the availability of
enough resources is crucial to avoid the persistence of a disease or, at least, diminish its effects on the
population by increasing the value of Rc.

2.4. Global Stability of the Disease-Free Equilibrium Point

For the purpose of analysing the global stability of the DFE point, the controlled
epidemic model is rewritten as [26,27]:{ .

Xn(t) = A(Xn(t)− Xn,DFE) + B(t)XI(t).
XI(t) = C(t)XI(t)

(24)
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where Xn(t) = [S(t)R(t)v(t)]T , XI = [I(t)tr(t)]
T , Xn,DFE = [SDFERDFEvDFE] is the vector

Xn(t) at the DFE point, with its components given in (10), and:

A =

⎡⎣ −μ ρ −1
0 −(μ + ρ) 1
c2 0 −c1

⎤⎦ ; B(t) =

⎡⎢⎢⎣
−β

S(t)
N(t) 0

γ 1
c3 + c4

S(t)
N(t) 0

⎤⎥⎥⎦
C(t) =

[
β

S(t)
N(t) − (μ + α + γ) −1

c6 −c5

]
.

(25)

The following result about the global stability of the DFE point is proved.

Theorem 4 (Global stability of the disease-free equilibrium point). The DFE point is glob-
ally asymptotically stable under Assumption 1 provided that the control parameters are cho-
sen such that Rc < Rc or, equivalently, R0 < R0 and q ∈ [0, qc) ∩ [0, 1] so that F(q) =

λ1 +
(c5+λ1)μc1qβ

[c1(μ+ρ)+c2](λ1−λ2)
< 0, where qc is such that F(qc) = 0 while λ1 and λ2 are the eigenvalues

of the matrix C0 given by:

C0 =

[
(μ + α + γ)(Rc − 1) −1

c6 −c5

]
. (26)

Proof. The subsystem
.

XI(t) = C(t)XI(t) can be rewritten as:

.
XI(t) = C0XI(t) + C1(t)XI(t) (27)

where C0 is given by (26), and the matrix C1(t) is:

C1(t) =

[
β
(

S(t)
N(t) −

SDFE
NDFE

)
0

0 0

]
(28)

and (13) has been used. From (27), it follows that:[
I(t)
tr(t)

]
= φ(t)

[
I(0)
tr(0)

]
+

∫ t

0
φ(t − τ)C1(τ)XI(τ)dτ ∀t ≥ 0, (29)

with φ(t) = eC0t = L−1
{
(sI2 − C0)

−1
}

. By direct calculations, one obtains that:

φ11(t) =
(c5+λ1)eλ1t−(c5+λ2)eλ2t

λ1−λ2
; φ12(t) = − eλ1t−eλ2t

λ1−λ2
; φ21(t) =

c6(eλ1t−eλ2t)
λ1−λ2

φ22(t) =
[λ1−(μ+α+γ)(Rc−1)]eλ1t−[λ2−(μ+α+γ)(Rc−1)]eλ2t

λ1−λ2
,

(30)

where λ1 and λ2 are the eigenvalues of C0. Note that these eigenvalues are, respectively,
the roots r1 and r2, given in (22), of the polynomial P(λ) defined in the proof of Theorem
3. Under Assumption 1, the condition (iv) of Theorem 1, and Rc < Rc, it follows that the
eigenvalues λ1 and λ2 are real and λ2 < λ1 < 0. From (29) and (30), it follows that:

I(t) = φ11(t)I(0) + φ12(t)tr(0) +
∫ t

0
φ11(t − τ)β

(
S(τ)
N(τ)

− SDFE
NDFE

)
I(τ)dτ ∀t ≥ 0. (31)

The fact that λ2 < λ1 < 0 implies that eλ1t ≥ eλ2t ≥ 0 ∀t ≥ 0. Moreover, c5 + λ2 ≥ 0,

since c6 ≥ 0 from its definition. Then, φ11(t) ≤ (c5+λ1)eλ1t

λ1−λ2
, φ12(t) ≤ 0 ∀t ≥ 0, and one

obtains from (31) that:
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I(t) ≤ (c5 + λ1)I(0)
λ1 − λ2

eλ1t +
(c5 + λ1)β

λ1 − λ2

∫ t

0
eλ1(t−τ)

(
1 − SDFE

NDFE

)
I(τ)dτ ∀t ≥ 0, (32)

where the fact that S(t)
N(t) ≤ 1 ∀t ≥ 0 from the positivity of the model has been used.

Moreover, from the definition of SDFE and NDFE given in (10), it follows:

I(t) ≤ c5 + λ1

λ1 − λ2
eλ1t

(
I(0) +

μc1qβ

c1(μ + ρ) + c2

∫ t

0
e−λ1τ I(τ)dτ

)
∀t ≥ 0. (33)

By applying the Bellman–Gronwall Lemma I [28] in (33), one obtains:

I(t) ≤ c5 + λ1

λ1 − λ2
eλ1t

⎛⎝I(0) +
μc1qβ

c1(μ + ρ) + c2

t∫
0

c5 + λ1

λ1 − λ2
I(0)e

∫ t
τ

(c5+λ1)μc1qβ

[c1(μ+ρ)+c2 ](λ1−λ2)
ds

dτ

⎞⎠ (34)

that leads by direct calculations to:

I(t) ≤ c5 + λ1

λ1 − λ2
I(0)e

(λ1+
(c5+λ1)μc1qβ

[c1(μ+ρ)+c2 ](λ1−λ2)
)t
=

c5 + λ1

λ1 − λ2
I(0)eF(q)t (35)

with F(q) = λ1 +
(c5+λ1)μc1qβ

[c1(μ+ρ)+c2](λ1−λ2)
. Note that the eigenvalues λ1 and λ2 depend on Rc,

which depends on q from its definition in (13). Furthermore, one obtains that F(0) =
λ1(0) < 0 since λ1(q) < 0 ∀q ∈ [0, 1] while:

dF
dq

=
2(μβc1)

2c6q

[c1(μ + ρ) + c2]
2
(
[c5 + (μ + α + γ)(Rc − 1)]2 − 4c6

) 3
2

. (36)

Then, dF
dq = 0 for q = 0 and dF

dq > 0 ∀q > 0, since c6 < [c5+(μ+α+γ)(Rc−1)]2

4 from the
condition (iv) of Theorem 1. Such a fact implies that there exists a critical value qc > 0
such that F(q) < 0 ∀q ∈ [0, qc) by continuity of the function F(q) with respect to q. As a
consequence, one obtains that lim

t→∞
{I(t)} = 0 if q ∈ [0, qc) ∩ [0, 1]. From (29) and (30), it

follows that:

tr(t) = φ21(t)I(0) + φ22(t)tr(0) +
∫ t

0
φ21(t − τ)β

(
S(τ)
N(τ)

− SDFE
NDFE

)
I(τ)dτ ∀t ≥ 0. (37)

The fact that λ2 < λ1 < 0 implies that φ21(t) ≤ c6eλ1t

λ1−λ2
∀t ≥ 0. Moreover, from (22), it

follows that λ2 − (μ + α + γ)(Rc − 1) < λ1 − (μ + α + γ)(Rc − 1) < 0 and then:

φ22(t) ≤ −λ2 − (μ + α + γ)(Rc − 1)
λ1 − λ2

eλ2t ∀t ≥ 0. (38)

One obtains from (37) that:

tr(t) ≤
c6 I(0)

λ1 − λ2
eλ1t +

(μ + α + γ)(Rc − 1)− λ2

λ1 − λ2
tr(0)eλ2t +

c6β

λ1 − λ2

(
1 − SDFE

NDFE

) t∫
0

eλ1(t−τ) I(τ)dτ (39)

where the fact that S(t)
N(t) ≤ 1 ∀t ≥ 0 from the positivity of the model has been used.

Moreover, from the definition of SDFE and NDFE given in (10), it follows:

tr(t) ≤
c6

λ1 − λ2
eλ1t

(
I(0) +

μc1qβ

c1(μ + ρ) + c2

∫ t

0
e−λ1τ I(τ)dτ

)
+

(μ + α + γ)(Rc − 1)− λ2

λ1 − λ2
tr(0)eλ2t. (40)
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By introducing (35) in (40), one obtains:

tr(t) ≤
c6 I(0)

λ1 − λ2
eλ1t

⎛⎝1 +
μc1qβ(c5 + λ1)

[c1(μ + ρ) + c2](λ1 − λ2)

t∫
0

e(F(q)−λ1)τdτ

⎞⎠+
(μ + α + γ)(Rc − 1)− λ2

λ1 − λ2
tr(0)eλ2t (41)

and finally:

tr(t) ≤
c6 I(0)eλ1t + [(μ + α + γ)(Rc − 1)− λ2]tr(0)eλ2t

λ1 − λ2
+

μc1c6qβ(c5 + λ1)I(0)

[c1(μ + ρ) + c2](λ1 − λ2)
2(F(q)− λ1)

(
eF(q)t − eλ1t

)
. (42)

Then, one obtains that lim
t→∞

{tr(t)} = 0 if q ∈ [0, qc) ∩ [0, 1] since λ1 < 0 and F(q) < 0

under such a condition. On the other hand, if one applies the variable change Yn(t) =
Xn(t)− Xn,DFE in the first equation of (24), then:

.
Yn(t) = AYn(t) + B(t)XI(t) (43)

whose solution is:

Yn(t) = φA(t)Yn(0) +
∫ t

0
φA(t − τ)B(τ)XI(τ)dτ ∀t ≥ 0 (44)

where φA(t) = eAt = L−1
{
(sI3 − A)−1

}
. The eigenvalues of A are λA

1 = −μ and the roots
of the Hurwitz polynomial Q(λ), which are defined in the proof of Theorem 3, namely:

λA
2,3 =

1
2

(
−(μ + ρ + c1)(Rc − 1)±

√
(c1 − (μ + ρ))2 − 4c2

)
(45)

where the sign ‘+’ corresponds to the root λA
2 and the sign “−” corresponds to λA

3 . Since the
real part of such roots is negative, there exists some norm-dependent real constant KA ≥ 1
such that:

‖Yn(t)‖ ≤ KAeσAt(‖Yn(0)‖+
∫ t

0
eσAτ‖B(τ)‖‖XI(τ)‖dτ) ∀t ≥ 0, (46)

where σA = max
{
−μ, λA

2
}
< 0 is the stability abscissa of A. From (35) and (42), one obtains

that:

‖XI(t)‖ =
√

I2(t) + tr2(t) ≤ I(t) + tr(t) ≤ g1eλ1t + g2eλ2t + g3eF(q)t ∀t ≥ 0, (47)

where the positivity of the model has been used, and:

g1 = c6 I(0)
λ1−λ2

(
1 − μc1qβ(c5+λ1)

[c1(μ+ρ)+c2](λ1−λ2)(F(q)−λ1)

)
; g2 = [(μ+α+γ)(Rc−1)−λ2]tr(0)

λ1−λ2

g3 = c5+λ1
λ1−λ2

I(0)
(

1 + μc1c6qβ
[c1(μ+ρ)+c2](λ1−λ2)(F(q)−λ1)

)
.

(48)

From (25), it follows that:

‖B(t)‖ = max
{

1, c3 + γ + (β + c4)
S(t)
N(t)

}
≤ max{1, c3 + γ + β + c4} = KB ∀t ≥ 0 (49)

where S(t)
N(t) ≤ 1 has been used. By introducing (47) and (49) in (46), one obtains:

‖Yn(t)‖ ≤ KAeσAt
(
‖Yn(0)‖+ KB

∫ t

0
e−σAτ

(
g1eλ1τ + g2eλ2τ + g3eF(q)τ

)
dτ

)
. (50)
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By direct calculation from (50), it follows that:

‖Yn(t)‖ ≤ KA‖Yn(0)‖eσAt

+KB

[
g1

λ1−σA

(
eλ1t − eσAt)+ g2

λ2−σA

(
eλ2t − eσAt)+ g3

F(q)−σA

(
eF(q)t − eσAt

)]
.

(51)

Finally, from (51), one obtains that lim
t→∞

{‖Yn(t)‖} = 0 if q ∈ [0, qc)∩ [0, 1], since λ1 < 0,

λ2 < 0, σA < 0, and F(q) < 0 under such a condition. Then, lim
t→∞

{‖Xn(t)− Xn,DFE‖} = 0

and, also, lim
t→∞

{Xn(t)} = Xn,DFE. In summary, the DFE point is globally asymptotically

stable. �

Remark 5. Note the following features:

(i) From Theorems 1–4, the model is positive and only has an equilibrium point, namely, the DFE
point, which is locally and globally asymptotically stable provided that the control parameters
fulfil the conditions of Theorem 1 and that Rc < Rc or, equivalently, R0 < R0.

(ii) The control parameters c1 and c2 influence the components of both the DFE and EE points,
see (10) and (14), (15) respectively.

(iii) The control parameters c3, c4, c5, and c6 influence the components of the EE point.
(iv) The control parameters c1, c2, c5, and c6 influence the stability of the DFE point according to

(19) and, also, they can imply the non-existence of the EE point under an appropriate choice of
their values according to (16).

(v) The threshold value Rc given in (16) depends on the control parameters c5 and c6 associated
with the treatment effort, while the control reproduction number Rc given in (13) depends
on the control parameters q, c1, and c2 associated with the vaccination efforts so that the
non-existence of the EE point can be guaranteed by a treatment strategy adapted to a designed
vaccination campaign.

(vi) Neither Rc nor Rc depend on the control parameters c3 and c4 associated with the effort of the
vaccination of susceptible individuals so that such parameters are not relevant for eradicating
the disease. Such parameters affect the values of the subpopulations at the EE point if such a
point is reached, which is intended to be avoided.

(vii) The expression for Rc can be equivalently written as Rc =
β[μ(1−q)+ρ]

(μ+α+γ)
[
μ+ρ+

c2
c1

] = μ(1−q)+ρ

μ+ρ+
c2
c1

R0.

Then, one can see that Rc is inversely proportional to c2
c1

so that an increment in the value
of c2

c1
results in a decrement of Rc, implying a small incidence of the infectious disease. In

this context, a large value for c2
c1

is interesting for reducing the incidence of the disease on
the host population. A large value for the relation c2

c1
can be obtained by considering small

values for c1. However, the condition (i) of Theorem 1 requires a lower bound for c1, namely,
c1 > μ + β + 2

√
c2 + c4, for some prescribed values for μ, β, c2, and c4, in order to guarantee

the non-negativity of the solutions of the controlled model under any non-negative initial
condition. Then, the only way of increasing the relation c2

c1
is by means of an increment of c2,

which also implies an increment of c1 to guarantee the condition c1 > μ + β + 2
√

c2 + c4 for
some prescribed values for μ, β, and c4. In summary, the only practical way of increasing the
relation c2

c1
is via increasing simultaneously the value of both parameters c1 and c2. However,

a large value for c2 can imply large values for the vaccination control effort, since it affects
directly the forced term of Equation (4) for the dynamics of the vaccination law. In fact, the
vaccination can be constrained to a number of available vaccines in a practical situation, which
implies upper-bounds for the control parameters c2, c3, and c4 of the forced terms of (4).

(viii) One can see that Rc is directly proportional to c6
c5

so that an increment in the value of c6
c5

implies
an increase of Rc. Moreover, note that the EE point of the controlled model does not exist if
Rc < Rc so that an increment of Rc can be interesting in order to guarantee the non-existence
of such an EE point for a prescribed value for Rc adjusted by values for q, c1, and c2 adapted
to the number of available vaccines.

(ix) The influence of the parameter q ∈ [0, 1] on the value of the control reproduction number Rc
is negligible if the value of the natural death rate μ is very small, as it happens in the case of
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humans. In such a case, the influence of q ∈ [0, 1] on the eigenvalues λ1 and λ2 of the matrix
C0 as well as on the function F(q), both defined in the proof of Theorem 4, is also negligible.
Such a fact implies that the DFE point is globally asymptotically stable ∀q ∈ [0, 1], since
qc > 1, provided that the control parameters ci, for i ∈ {1, 2, . . . , 6}, are chosen such that
Assumption 1 and Rc < Rc are satisfied.

3. Simulation Results

Some simulation examples based on a high infectivity disease illustrate the efficacy
of the proposed control strategy. The examples have been developed by using the ver-
sion R2020b of MATLAB. They have been simulated by using the solver “ode3 (Bogacki-
Shampine)” with a fixed step of 1

24 days, i.e., one hour. First, a SIRS model without
vaccination and treatment is considered. Later, the same model with the proposed con-
trol actions is analysed to show their impact in the propagation of the disease within the
host population. As a consequence, a drastic mortality reduction is exhibited due to the
application of the proposed feedback control actions. In addition, a set of examples are
used to analyse the influence of certain control parameters on the evolution of the disease
spreading. Finally, the influence of the immunity loss rate is also studied.

3.1. Example 1: SIRS Model without Vaccination and Treatment

The model (1)–(3) with the values b = 0.0384 d−1, μ = 3.653 × 10−5 d−1, β = 0.65 d−1,
γ = 1

22 = 0.0455 d−1, ρ = 1
120 = 0.0083 d−1 and α = 5 × 10−5 d−1, where d means

the unit time “day”, is analysed. In addition, the parameter q = 0 is considered, since
vaccination on the newborn individuals is not applied. The main objective is to show the
time evolution of the subpopulations and that of the whole population under the influence
of the infectious disease. The basic reproduction number of this model is R0 = 14.2728;
that is, each primary infectious individual transmits the disease to more than 14 healthy
individuals. Then, this example describes the propagation of a high infectivity disease. The
DFE point of the model is unstable, while its EE point is globally asymptotically stable,
as Remark 3 points out. Figure 1 shows the time evolution of the susceptible, infectious,
and recovered subpopulations during the first 100 days, while Figure 2 displays that of the
whole population in a very long time period. The considered initial condition is given by
S(0) = 985, I(0) = 10 and R(0) = 5.

Figure 1. Time evolution of the subpopulations in the SIRS model without control actions.
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Figure 2. Time evolution of the whole population in the SIRS model without control actions.

In the longer simulation, one can see that the model tends to an EE point where the
number of individuals is NEE = 877 with SEE = 62, IEE = 127 and REE = 688 accordingly
to (14), (15) with ci = 0, for i ∈ {1, 2, . . . , 6}. Although the mortality rate due to the
disease α = 5 × 10−5 d−1 is not very high, the influence of the disease is very important,
since the whole population notably decreases from 1000 individuals to 877. Moreover, the
percentage of infectious individuals with respect to the whole population in the EE point is
14.48%. In this situation, the application of control measures is crucial in order to eliminate
the infection or, at least, to diminish its effect within the host population while reducing
drastically the mortality.

3.2. Example 2: SIRS Model with Vaccination and Treatment

Models (1)–(3) with the same values for the parameters b, μ, β, γ, ρ and α as those
given in Example 1 are considered. Moreover, a vaccination for newborn individuals
together with the control actions (4) and (5) are applied in order to diminish the effects of
the infectious disease. Concretely, the control actions are (i) a vaccination of a proportion
q = 0.1 of the newborn individuals; i.e., 10% of newborns are vaccinated, (ii) a vaccination
of the susceptible population given by (4) with the values c1 = 25, c2 = 1, c3 = 0.0001 and
c4 = 0.07 for the associated parameters and (iii) a treatment of the infectious population given
by (5) with the values c5 = 2 and c6 = 0.27 for the corresponding parameters. Such values
satisfy the conditions of Theorem 1 so that the model subpopulations and the vaccination
and treatment efforts are non-negative for all time. The initial condition is that of Example
1 together with v(0) = tr(0) = 0 for the initial control efforts. Note that dynamics of the
treatment effort, given by the control law (5), is of first order with a gain that reaches the
value c6

c5
= 0.135 in the stationary regime. Such a gain points out a transition rate from

the infectious subpopulation to the recovered one via applied treatment to be added to
the transition rate γ = 0.0455 between such subpopulations from the natural response of
the immunity system of the individuals against the disease. This fact points out that an
infectious individual under treatment needs an average time of 5.54 days to overcome the
disease. In this way, the average time of recovering is reduced in 16.46 days, since such an
interval time is γ−1 = 22 days if no treatment is applied. Figure 3 shows the time evolution
of the susceptible, infectious, and recovered subpopulations during the first 100 days, while
Figures 4 and 5 display, respectively, that of the whole population during the first 100 days
and along 100,000 days.
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Figure 3. Time evolution of the subpopulations in the SIRS model with vaccination and treatment.

Figure 4. Time evolution of the whole population in the SIRS model with vaccination and treatment
within the 100 first days.

Figure 5. Time evolution of the whole population in the SIRS model with vaccination and treatment
along 100,000 days.

In a longer time performed simulation, one can see that the model tends to a DFE
point where the number of individuals is NDFE = 1050 with SDFE = 182, IDFE = 0 and
RDFE = 868. This result is coherent with Theorems 3 and 4, since Rc = 2.4687, Rc = 3.9644
and F(q) = −0.0732 < 0 for the used value q = 0.1 so that the DFE point is locally and
globally asymptotically stable. Moreover, the choice of the control parameters satisfies the
conditions of Theorem 2, which implies the non-existence of the EE point. Then, the DFE
point is the unique equilibrium point for the controlled model. In summary, this example
exhibits the high mortality reduction due to the application of the proposed feedback
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control actions in the propagation of an infectious disease of a high basic reproduction
number R0. Figure 6 displays the time evolution of the control efforts. One can see that the
treatment effort reaches a peak value when the number of infectious individuals reaches
its maximum value, and then, such an effort converges to zero as a consequence of the
convergence to zero of the infectious subpopulation. On the other hand, the vaccination
effort converges to a constant value vDFE = 7.

Figure 6. Time evolution of the control efforts: vaccination and treatment.

The vaccination and treatment efforts can be interpreted as the number of vaccines and
antivirals, or some appropriated medicaments, applied to the susceptible and infectious
individuals, respectively, during the transition from the initial state to the DFE point. In
this context, one can consider that the DFE point is reached when the number of infectious
individuals is less than 1. Moreover, although the vaccination effort has a constant value
vDFE = 7 given by (10) at the DFE point, one can stop the vaccination control effort once
the number of infectious individuals is smaller than 1. In this way, the vaccination can be
set v(t) = 0 once the DFE point is reached since the transition rate from the susceptible
subpopulation to the infectious one is zero in the absence of infectious individuals due
to such a rate depending on β

I(t)
N(t) . In other words, there is no propagation of the disease

in absence of infectious individuals, and then, the vaccination can be stopped. However,
the vaccination with the value vDFE could be maintained as a preventive measure against
possible new outbreaks of the disease due to immigration or other causes. This preventive
measure gives place to a transition from the susceptible subpopulation to the recovered
one with a rate that compensates for the transition rate ρ from the recovered subpopulation
to the susceptible one caused by the immunity loss. In case that the vaccination is stopped
once the DFE point is reached, which is at the 64th day in this example, the number of
vaccines and medicaments applied to control the propagation in the transient from the
initial day until achieving the DFE point are, respectively, 578 and 483. Such numbers
can be interpreted as the control cost to eradicate the persistence of the disease. Figure 7
displays the number of applied vaccines and medicaments each day during the transition
to the DFE point. The numbers of vaccines and medicaments applied each day, respectively
nv(t) and ntr(t), are obtained by evaluating nv(t) =

∫ t
t−1 v(τ)dτ and ntr(t) =

∫ t
t−1 tr(τ)dτ

for all integer t ∈
[
1, 2 . . . , t f

]
with t f denoting the day at which the DFE point is reached.
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Figure 7. Number of vaccines and medicaments applied each day.

3.3. Example 3: SIRS Model with a Defective Vaccination and Treatment

The same values as those used in Example 2 for the parameters of the model are
considered except that for c2, which is replaced by c2 = 0.2. In this way, Rc = 7.2945,
while Rc = 3.9644. Then, the conditions of Theorem 2 are not satisfied, which implies that
the non-existence of the EE point cannot be guaranteed. In fact, the time evolution of the
subpopulations under these conditions is displayed in Figure 8, and one can see that the
EE point given by (14) and (15) is reached. Concretely, the whole number of individuals at
the EE point is NEE = 1022 with SEE = 284, IEE = 21, and REE = 717, and the vaccination
and treatment control signals converge, respectively, to the values vEE = 2 and trEE = 3.

Figure 8. Time evolution of the subpopulations in the SIRS model under an insufficient vaccination
and treatment.

The time evolution of the control efforts is displayed in Figure 9.

Figure 9. Time evolution of the control efforts under an insufficient vaccination and treatment.
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3.4. Example 4: Study of the Influence of the Control Parameter c2 on the Behaviour of the
Controlled Model

Models (1)–(5) with the same values for the parameters as those given in Example 2,
except that for c2, are considered. In this way, Rc = 3.9644 in all the analysed cases. Con-
cretely, four cases are studied. Each one considers a different value for the parameter c2
in order to change slightly the ratio c2

c1
, which implies a different value for the control

reproduction number Rc. The condition Rc < Rc as well as the conditions of the Theorems
1, 2, 3, and 4 are satisfied in the four cases so that the DFE point is the unique equilibrium
point, and it is locally and globally asymptotically stable, while the solutions of the con-
trolled model are non-negative for all time under any non-negative initial condition. The
interest of this study is to analyse the influence of the parameter c2 on the transition of the
controlled model solutions from the initial state to the DFE point by evaluating the number
of infectious individuals on each day as well as the cost of both vaccination and treatment
control efforts. For such a purpose, the values for the control parameter c2 and then that
of Rc in the four studied cases are: (i) c2 = 1, Rc = 2.4687, (ii) c2 = 0.9, Rc = 2.6912, (iii)
c2 = 0.8, Rc = 2.9579, and (iv) c2 = 0.7, Rc = 3.2832. Note that case (i) is that studied in
Example 2, and it is used as the reference one for the current analysis. The initial condition
is that used in Example 2 for all the cases. Figure 10 displays the time evolution of the
infectious subpopulation in the four cases. Figures 11 and 12 show, respectively, the time
evolution of the vaccination and treatment efforts in the four cases.

Figure 10. Time evolution of the infectious subpopulation for the four considered values of the
control parameter c2.

Figure 11. Time evolution of the vaccination effort for the four considered values of the control
parameter c2.
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Figure 12. Time evolution of the treatment effort for the four considered values of the control
parameter c2.

One can see in these figures that the peaks in the infectious population, the vaccination
and treatment efforts depend on the value of the control reproduction number Rc, which
is established by the control parameters c1 and c2. Concretely, the peak of the infectious
subpopulation as well as that of the treatment effort increases as Rc increases, while the
peak of the vaccination effort decreases as Rc increases, while maintaining Rc < Rc. Table 1
summarises the most relevant specifications, included the aforementioned ones, about the
four cases studied in this subsection.

Table 1. Specifications of the model behaviour for the four considered values of the parameter c2.

c2 = 1
Rc = 2.4687

c2 = 0.9
Rc = 2.6912

c2 = 0.8
Rc = 2.9579

c2 = 0.7
Rc = 3.2832

Infectious peak 215 229 245 261
Transient duration (days) 64 66 69 72

Vaccination peak 39 35 31 27
Treatment peak 29 31 33 35

SDFE 182 198 218 242
RDFE 868 852 832 808

vDFE 7 7 7 7
Vaccines 578 537 502 467

Medicaments 483 515 542 570

The results show that the duration of the transient from the initial state to the DFE
point increases as Rc increases. However, the number of vaccines applied during the whole
transient period decreases when the value of Rc increases. Such a result is due to the fact
that the peak of the vaccination effort decreases and, also, the number of vaccines used per
day, when Rc increases. In summary, the number of required vaccines decreases while that
of the required medicaments increases as Rc increases. Then, a tradeoff between the cost
of vaccination and the number of infectious individuals with its associated treatment cost
has to be taken into account for adjusting the values for the control parameters c1 and c2.
Such a tradeoff is going to depend on constraints about the number of available vaccines
for the newborns and the susceptible individuals and/or medicaments for treatment of
the infectious subpopulation. Finally, Figures 13 and 14 display the number of applied
vaccines and medicaments each day during the transition to the DFE point for the four
analysed cases.
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Figure 13. Number of applied vaccines each day for the four considered values of the control
parameter c2.

Figure 14. Number of applied medicaments each day for the four considered values of the control
parameter c2.

One can see by analysing the results in Table 1 and Figures 10–14 that the increase
of the value of Rc, by decreasing the values of c2, and maintaining the rest of the control
parameters in the prescribed values, gives place to a decrease in the vaccination effort but
both the infectious subpopulation and the applied treatment effort increase at the same
time. The best of the studied cases from the viewpoint of the vaccination cost is case (iv),
but it is not good enough from the viewpoint of both the treatment cost and the number
of individuals who experience the infectious disease during the transition from the initial
state until reaching the DFE point. In this context, it also seems interesting to examine the
influence of the control parameter c6, which take part in the dynamics of the treatment
effort, on the specifications of the transient behaviour.

3.5. Example 5: Study of the Influence of the Control Parameter c6 on the Behaviour of the
Controlled Model

In the current example, the same values for the parameters b, μ, β, γ, ρ, α and q and for
the initial condition as those given in Example 4 are considered. Furthermore, the values of
c1 = 25, c2 = 0.7, and then Rc = 3.2832, c3 = 0.0001 and c4 = 0.07 corresponding with the
case of Example 4 with the smallest vaccination cost, concretely case (iv), which requires
the application of 467 vaccines as one can see in Table 1, are considered. Such a case is
the worst scenario in Example 4 from the viewpoint of the time evolution of the infectious
subpopulation and the cost in applied medicaments during the transient from the initial
state to the DFE point; namely, 570 medicaments are required, as Table 1 points out. The
objective is to analyse the influence of the control parameter c6, which acts on the value
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of Rc, on the specifications of such a transient time interval. Concretely, the value c5 = 2
is going to be considered in four proposed cases while the value for the parameter c6 will
be modified in order to change slightly the ratio c6

c5
. In this way, each case has a different

transition rate from the infectious to recovered subpopulation due to the treatment action.
Moreover, such a transition rate is added to the transition rate γ = 0.0455 d−1 from the
infectious to the recovered subpopulation in the absence of treatment, i.e., that derived from
the natural immunity system of the infectious individuals to fight against the disease. Such
a fact implies a reduction in average for the recovering time of the infectious individuals.
The analysed cases are (i) c6 = 0.24, Rc = 3.635, (ii) c6 = 0.27, Rc = 3.9644, (iii) c6 = 0.3,
Rc = 4.2937, and (iv) c6 = 0.33, Rc = 4.6231. Note that Rc < Rc as well as the conditions of
the Theorems 1, 2, 3 and 4 are satisfied in all the cases so that the DFE point is the unique
equilibrium point while being locally and globally asymptotically stable. Note also that
case (ii) of this current example is the same as case (iv) of Example 4, which is used as the
reference one for the current analysis. In case (i), the recovering time is reduced on average

from γ−1 = 22 days, in absence of treatment, to
(

γ + c6
c5

)−1
= 6.04 days if a treatment is

applied following the rule (5). For cases (ii), (iii), and (iv), the recovering time passes from
22 to 5.54, 5.12, and 4.75 days, respectively. The values of SDFE = 242, RDFE = 808, and
vDFE = 7 are reached at the DFE point in the four analysed cases, as it can be deduced
from (10), since all cases have the same values for c1 and c2. Figure 15 displays the time
evolution of the infectious subpopulation, while Table 2 summarises the specifications for
these four studied cases.

Figure 15. Time evolution of the infectious subpopulation for the four considered values of the
control parameter c6.

Table 2. Specifications of the model behaviour for the four considered values of the parameter c6.

c6 = 0.24
Rc = 3.635

c6 = 0.27
Rc = 3.9644

c6 = 0.3
Rc = 4.2937

c6 = 0.33
Rc = 4.6231

Infectious peak 286 261 237 215
Transient duration (days) 87 72 63 58

Vaccination peak 27 27 27 27
Treatment peak 34 35 35 35

Vaccines 525 467 439 428
Medicaments 573 570 565 554

One can see that the peak of the infectious subpopulation is decreasing as the value of
c6 and then also Rc, increases. In addition, the number of required vaccines and medica-
ments during the transient decreases as the value for c6, and then also Rc, increases. Such a
result is mainly due to the fact that the duration of the transient decreases as the value of c6
increases, since there is a small duration on average for the transition of individuals from
infectious to the recovered subpopulation. Note also that the peak in the vaccination effort
is equal for the four studied cases, since such a peak depends on the values of the parame-
ters c1 and c2, which are the same for the four cases. Case (iv) is the best of the analysed
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ones in the current study. It requires a strong treatment so that an infectious individual
overcomes the infection after an average time of 4.75 days. In such a case, the transient
from the initial state until arriving at the DFE point has the following characteristics:

• The evolution of the infectious population reaches a peak of 215 individuals, i.e.,
approximately 21% of the initial whole population.

• The vaccination cost during the transient supposes 428 vaccines, i.e., the percentage
of the susceptible subpopulation to be vaccinated is around of the 43% of the initial
population, assuming one vaccine per individual.

• The treatment cost during the transient is of 554 medicaments, i.e., the percentage
of infectious subpopulation to be treated is around 55% of the initial population,
assuming one medicament per individual.

If the applied treatment has a lower performance so that the average recovering time
is 5.54 days, corresponding to case (ii), instead of the 4.75 days of case (iv), then the peak of
the infectious population is of 261 individuals, i.e., around the 26% of the initial population.
In such a situation, the costs of vaccination and treatment are, respectively, 467 vaccines
and 570 medicaments. In the considered worst case, i.e., case (i), which requires an average
time of 6.04 days for the transition from the infectious to the recovered subpopulation,
the number of necessary vaccines and medicaments is 525 and 573, respectively. As a
conclusion, the transient duration and the cost in vaccines and medicaments are related
with the performance of the applied treatment. If the applied medicaments have a poor
potency such that the reduction of the recovery time is of a few days, then the duration
of the transient from the initial state until reaching the DFE point can be very long. In
such a case, the transient can be very expensive in relation with the number of required
vaccines and medicaments or, even, the disease evolution can converge to the EE point if
the resources in the number of medicaments and/or vaccines is not enough.

3.6. Example 6: Study of the Behaviour of the Controlled Model under Vaccination

The objective of this subsection is to study the dynamics of the controlled model when
there are not medicaments for treating the infectious subpopulation, and then the only
measure to control the propagation of the disease is the planning of a vaccination campaign
to the newborns and the susceptible subpopulation. For this purpose, models (1)–(5) with
c6 = 0 can be used with the initial condition tr(0) = 0. In this way, tr(t) = 0 for all time.
Moreover, Rc = 1 from (16) such that Rc < 1 is required to guarantee the non-existence
of the EE point, and then, the DFE point is the unique equilibrium point while being
locally and globally asymptotically stable. Since Rc = β[μ(1−q)+ρ]

(μ+α+γ)
[
μ+ρ+

c2
c1

] = μ(1−q)+ρ

μ+ρ+
c2
c1

R0, it

is necessary that c2
c1

>
(

c2
c1

)
min

= [μ(1 − q) + ρ]R0 − (μ + ρ) to guarantee that Rc < 1,
and then, the eradication of the infectious disease can be achieved. Table 3 compares the
results obtained for seven different cases of values for the pair c1 and c2, satisfying the
conditions of the Theorems 1, 2, 3, and 4 so that the solutions of the controlled model are
non-negative and the DFE point is the unique equilibrium point while being locally and
globally asymptotically stable. The same values for the parameters b, μ, β, γ, ρ, α, q, c3 and
c4 as those given in Example 2 are used, and the same initial condition is used as well.
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Table 3. Specifications of the model behaviour for seven considered pairs of values of the control
parameters c1 and c2 when there is not treatment to control the disease propagation.

Infectious Peak
Transient

Duration (Days)
Vaccines DFE Point

Case 1
c1 = 25 ; c2 = 10

Rc = 0.2924
33 120 1869

SDFE = 22
RDFE = 1028

vDFE = 9

Case 2
c1 = 22 ; c2 = 10

Rc = 0.258
29 110 1800

SDFE = 19
RDFE = 1031

vDFE = 9

Case 3
c1 = 19 ; c2 = 10

Rc = 0.2233
25 101 1740

SDFE = 16
RDFE = 1034

vDFE = 9

Case 4
c1 = 25 ; c2 = 15

Rc = 0.1963
22 94 1693

SDFE = 14
RDFE = 1036

vDFE = 9

Case 5
c1 = 25 ; c2 = 17

Rc = 0.1735
20 88 1651

SDFE = 13
RDFE = 1037

vDFE = 9

Case 6
c1 = 25 ; c2 = 20

Rc = 0.1477
18 82 1611

SDFE = 11
RDFE = 1039

vDFE = 9

Case 7
c1 = 25 ; c2 = 25

Rc = 0.1184
16 76 1569

SDFE = 9
RDFE = 1041

vDFE = 9

The results in Table 3 point out that the duration of the transient and also the peak
in the infectious subpopulation decreases as the value for the parameter Rc decreases or,
equivalently, as the ratio c2

c1
increases. Such a decrease in the transient duration implies a

smaller cost in the number of vaccines as Rc decreases. However, even in the cheapest case
shown in Table 3, i.e., case 7, the vaccination cost supposes the use of 1569 vaccines. Such
a cost may be decreased even more by considering small values for Rc. In any case, the
results show that the fight against the disease when there is not treatment and then, only
the vaccination is available, is quite expensive. Moreover, the propagation of the disease
can reach the EE point if there are not enough resources regarding vaccines. Note that
the average rate for the transition from the susceptible subpopulation to the recovered
one is approximately c2

c1
or, equivalently, the average time in the transition of vaccinated

individuals from the susceptible subpopulation to the recovered one is c1
c2

days. In the
cases studied in this subsection, such an average time is constrained between the values of
2.5 days, corresponding to case 1, and 1 day for case 7. Such a fact implies that the effect of
the vaccination in the population is quite fast, less than 3 days, in any case. In this context,
a more realistic scenario can be analysed by considering, for instance, c1 = 25 and c2 = 5.
In such a case, Rc = 0.5731, and the average time in the transition from the susceptible to
the recovered subpopulation is 5 days. The specifications in the transient for this case are
as follows:

• Infectious peak: 92;
• Transient duration: 235 days;
• Number of vaccines: 2559;
• SDFE = 42, RDFE = 1008 and vDFE = 8.

One can see that the transient is very large, as it is the number of vaccines to be applied.
In this context, the slower the effect of the vaccination in the population is, the larger the
value of the parameter Rc is as well as the duration of the transient and the number of
vaccines to guarantee the eradication of the disease. Another alternative to deal with a
more realistic scenario in the absence of treatment action could be the inclusion of a delay,
corresponding to the reaction time of the vaccines, in the epidemic models (1)–(3).
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3.7. Example 7: Study of the Behaviour of the Controlled Model under Treatment

The objective of this subsection is to study the dynamics of the controlled model when
there are not vaccines for the newborns and the susceptible subpopulation, and then, the
only measure to control the propagation of the disease is the application of some treatment
to the infectious subpopulation. For this purpose, models (1)–(5) with q = c2 = c3 = c4 = 0
can be used with the initial condition v(0) = 0. In this way, v(t) = 0 for all time. In
this situation, Rc = R0 = β

μ+α+γ from (13), and such a value cannot be modified by
control. However, a treatment procedure on the infectious population based on law (5)
with appropriate values for the parameters c5 and c6 so that Rc < Rc can be designed. Since
Rc = 1+ c6

c5(μ+α+γ)
, it is necessary that c6

c5
> β − (μ + α + γ) to guarantee that Rc < Rc and

then the non-existence of the EE point and the local and global asymptotic stability of the
DFE point, which is the unique one in that case. In this way, the eradication of the infectious
disease can be achieved. The current subsection compares the results obtained for some
different cases satisfying the conditions of Theorems 1, 2, 3, and 4 so that the solutions of
the controlled models are non-negative and the DFE point is the unique equilibrium point
while being locally and globally asymptotically stable. Note that c6

c5
is the rate of transition

from the infectious subpopulation to the recovered one by means of treatment of infectious
individuals and that such a transition rate is added to the average transition rate γ between
such subpopulations in the absence of treatment. By considering the same values for the
parameters μ, α, γ and β as those used in Example 1, then Rc = R0 = 14.2728, and the
transition rate c6

c5
from treatment actions has to be strictly larger than

(
c6
c5

)
min

= 0.6045 so

that Rc < Rc, and then, the DFE point is the unique equilibrium point while being locally
and globally asymptotically stable. This supposes an average time strictly smaller than(

γ +
(

c6
c5

)
min

)−1
= 1.5387 days for recovering from the infectious disease. Such a situation

is not realistic, since the existence of medicaments with such an extraordinary performance
is improbable. By assuming that the non-existence of the EE point is not secured only with
the applied treatment to the infectious subpopulation, at least, such a treatment campaign
can reduce the effects of the disease in the whole population. Such a result is illustrated by
considering several cases, concretely, those studied in Example 5 but without applying the
vaccination of either the susceptible subpopulation, i.e., c2 = c3 = c4 = 0 with v(0) = 0, or
the newborns, i.e., q = 0. The results are presented in Table 4 below.

Table 4. Specifications of the model behaviour for the four considered pairs of values of the control
parameters c5 and c6 governing the treatment effort.

c5 = 2
c6 = 0.24

Rc = 3.635

c5 = 2
c6 = 0.27

Rc = 3.9644

c5 = 2
c6 = 0.3

Rc = 4.2937

c5 = 2
c6 = 0.33

Rc = 4.6231

Infectious peak 424 395 369 342
Treatment peak 51 53 55 56

SEE 255 280 304 329
IEE 36 32 29 26
REE 710 694 677 659
NEE 1001 1006 1010 1014

IEE
NEE

× 100 3.59% 3.2% 2.87% 2.59%
tr EE 4 4 4 4

One can see the decrease of the value of Rc due to the decrease of the value of c6
c5

,
which implies an increase of the average time that an infectious individual stays in the
infectious subpopulation before passing to the recovered one, leads to a decrease in the
number NEE of individuals in the whole population when the EE point is reached while
increasing the percentage of infectious individuals at such an equilibrium point. In any
case, the application of treatment reduces considerably the effects of the infectious disease if
one compares the results of Table 4 with those of Example 1 where no treatment is applied,
and then, the whole population at the EE point is of 877 individuals with 127 infectious,
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i.e., 14.48% of individuals are infectious. Thus, the application of treatment reduces notably
the high mortality and maintains the percentage of infectious subpopulation in reasonably
small numbers at the achieved EE point.

3.8. Example 8: Study of the Behaviour of the Controlled Model under Different Rates for the Loss
of Immunity

The objective of this subsection is to study the dynamics of the controlled model under
both control actions, vaccination and treatment, with different values of the rate ρ for the
loss of immunity in the recovered subpopulation or, equivalently, different average periods
of immunity for the recovered individuals. For this purpose, case (iv) of Example 4 can
be taken as the reference one for this analysis, since it is one of the most convenient from
the viewpoint of vaccination and treatment costs. The values of the model parameters
are b = 0.0384 d−1, μ = 3.653 × 10−5 d−1, β = 0.65 d−1, γ = 1

22 = 0.0455 d−1, ρ = 1
120 =

0.0083 d−1 and α = 5 × 10−5 d−1, while those of the control actions are q = 0.1, c1 = 25,
c2 = 0.7, c3 = 0.0001, c4 = 0.07, c5 = 2 and c6 = 0.27 in such a reference case. Other
values for the parameter ρ are considered to analyse the influence of such a parameter on
the transient specifications. Concretely, the following four cases are treated: (i) ρ = 1

100 ,
Rc = 3.7647 (ii) ρ = 1

120 , Rc = 3.2832, (iii) ρ = 1
150 , Rc = 2.7554, and (iv) ρ = 0, Rc = 0.0167.

Note that case (ii) is used as a reference for this study and also note that the value of ρ
has an influence on the value for Rc. In case (i), the average duration of the immunity
is 100 days, and that of case (ii) is 120 days, while that of case (iii) is 150 days. Finally,
there is no loss of immunity in case (iv). All the cases have the same values for Rc, namely
Rc = 3.9644, so that Rc < Rc and then, the DFE point is locally and globally asymptotically
stable for all the analysed cases. The results are presented in Table 5 below.

Table 5. Specifications of the model behaviour for the four considered values of the parameter ρ.

. ρ = 1
100 ρ = 1

120 ρ = 1
150 ρ = 0

Infectious peak 262 261 259 253
Transient

duration (days) 91 72 64 49

Vaccination peak 27 27 27 27
Treatment peak 35 35 35 34

SDFE 277 242 203 1
RDFE 773 808 847 1049
vDFE 8 7 6 0

Vaccines 615 467 400 290
Medicaments 589 570 556 512

One can see that the number of necessary vaccines and medicaments in the transient
from the initial state to the DFE point decreases when the immunity period increases.
Such a fact is mainly due to the transient period decreasing as the immunity period
increases. Moreover, the number of recovery individuals at the DFE point increases when
the immunity period increases.

4. Conclusions

An SIRS epidemic model with the vaccination of newborns and susceptible individuals
and treatment of infectious ones has been investigated. The vaccination and the treatment
are governed by a control subsystem containing several free-design parameters. This control
subsystem provides two more free-design parameters comparing with those available in
the more usual SIRS models with vaccination and treatment. In the proposed model, the
intensity of both control actions is not directly proportional to the susceptible and/or
infectious subpopulation, as it usually happens in the SIRS models. Here, both actions
are provided by the control subsystem, and the parameters defining the dynamics of the
controller are also available to shape the vaccination and treatment actions. This control
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strategy allows the achievement of several relevant results. First, an appropriate adjustment
of the control parameters guarantees the positivity of the controller model, as it has been
mathematically proved in Theorem 1. Note that such a property is required for coherence in
epidemic models where all the subpopulations and the control actions, such as vaccination
and treatment, have to be non-negative. Then, the equilibrium points of the proposed
controlled epidemic model are calculated as a function of the system parameters. There
are two equilibrium points: (i) the DFE point where the infectious subpopulation is zero
and then the whole population is composed by susceptible and recovery subpopulations;
and (ii) the EE point where the three subpopulations of the model are presented. The DFE
one always exists while the existence of the EE point depends on the values of the control
parameters. Moreover, the control reproduction number Rc of the controlled epidemic
model and a threshold value Rc are mathematically obtained as functions of the control
parameters. This result allows us to analyse the influence of the control parameters on
both values Rc and Rc. In summary, the values Rc and Rc and the existence of the EE point
depends on the control parameters. As a consequence, the existence of the EE point can
be related with Rc and Rc. In this sense, values of the control parameters doing Rc < Rc
guarantee the non-existence of the EE point, as it has been mathematically proved in
Theorem 2. In such a situation, the proposed controlled SIRS model only possesses a
unique equilibrium point, namely, the DFE point. On the other hand, the local and global
asymptotic stability of the DFE point are mathematically proved in Theorems 3 and 4,
respectively. Then, an appropriate adjustment of the control parameters so that Rc < Rc
allows guaranteeing the positivity of the controlled epidemic model while ensuring the
non-existence of the EE point. In such a situation, the DFE is the unique equilibrium point
of the model, and then, the eradication of the infectious disease can be guaranteed.

Finally, the influence of the control parameters on the time evolution of the disease
propagation has been studied by several simulation examples. The first example shows the
time evolution of the propagation of the disease without applying control actions. One can
see that the model converges to the EE point, and then, the disease is not eradicated. The
second example shows the time evolution of the propagation of the disease if the proposed
control actions are applied in an effective way, i.e., if the control parameters are chosen
such that Rc < Rc. In this case, one can see that the model converges to the DFE point, and
the disease is eradicated. The third example shows the time evolution of the propagation of
the disease if the proposed control actions are applied in a defective way, i.e., if the control
parameters are chosen such that Rc > Rc. One can see that the model converges to the EE
point, and the disease is not eradicated. The fourth example analyses the influence of the
controller parameter c2 in the evolution of the propagation of the disease. Such a parameter
acts in the vaccination control law, and it has an influence on the value of Rc. Concretely, the
value of Rc is indirectly proportional to c2. This example shows that the model converges to
the DFE point whenever Rc < Rc. The number of vaccines and medicaments associated to
the control efforts obtained from the control subsystem to achieve the DFE point depends on
c2. One can see that by decreasing the value c2, or equivalently increasing the value of Rc but
guaranteeing that Rc < Rc, the number of vaccines applied to the susceptible individuals
decreases while that of medicaments applied to the infectious individuals increases. The
fifth example analyses the influence of the controller parameter c6 in the evolution of the
propagation of the disease. Such a parameter acts in the treatment control law, and it has
an influence on the value of Rc. Concretely, the value of Rc is directly proportional to c6.
This example shows that the model converges to the DFE point whenever Rc < Rc. The
number of vaccines and medicaments associated to the control efforts obtained from the
control subsystem to achieve the DFE point depends on c6. One can see that by increasing
the value c6, or equivalently increasing the value of Rc but guaranteeing that Rc < Rc,
the number of both vaccines and medicaments applied to the respective subpopulations
decreases. Example 6 analyses the behaviour of the model when only the vaccination action
is available. Example 7 analyses the behaviour of the model when only the treatment action
is available. Example 6 shows that the DFE point is not achieved with an appropriate
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number of vaccines. Example 7 requires a treatment with a great potency so that the
recovery of the infectious individuals after being treated is faster than in a real situation.
Finally, Example 8 studies the evolution of the propagation for different rates of loss of
immunity. The number of vaccines and medicaments in the convergence of the model to
the DFE point decreases as the rate of losing immunity decreases.
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Appendix A

First, the non-negativity of S(t) is proved by contradiction. Suppose that the result
is false because there exists some ts > 0 such that S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, v(t) ≥ 0,
tr(t) ≥ 0 for all 0 ≤ t < ts and S(ts) < 0. Equations (1) and (4) can be written as:[ .

S(t)
.
v(t)

]
=

⎡⎣ −μ − β
I(t)
N(t) −1

c2 + c4
I(t)
N(t) −c1

⎤⎦[ S(t)
v(t)

]
+

[
b(1 − q) + ρR(t)

c3 I(t)

]

=

[ −(μ + β) −1
c2 + c4 −c1

][
S(t)
v(t)

]
+

⎡⎣ b(1 − q) + ρR(t) + β
S(t)[S(t)+R(t)]

N(t)

c3 I(t)− c4
S(t)[S(t)+R(t)]

N(t)

⎤⎦ (A1)

where the fact that I(t) = N(t)− S(t)− R(t) has been used. Then, the subsystem (A1) may
be compactly written as: [ .

S(t)
.
v(t)

]
= ASV

[
S(t)
v(t)

]
+

[
u1(t)
u2(t)

]
(A2)

with:

ASV =

[ −(μ + β) −1
c2 + c4 −c1

]
(A3)

and:

u1(t) = b(1 − q) + ρR(t) + β
S(t)[S(t) + R(t)]

N(t)
; u2(t) = c3 I(t)− c4

S(t)[S(t) + R(t)]
N(t)

. (A4)

From (A2), it follows that:[
S(t)
v(t)

]
= φSV(t)

[
S(0)
v(0)

]
+

∫ t

0
φSV(t − τ)

[
u1(τ)
u2(τ)

]
dτ ∀t ≥ 0 (A5)

196



Mathematics 2022, 10, 36

with φSV(t) = eASV t = L−1
{(

sI2 − ASV)−1
}

, where L−1 denotes the inverse of the Laplace
transform, I2 is the second-order identity matrix and s is the Laplace variable in the complex
domain. By direct calculations, one obtains that:

φSV
11 (t) = (c1+λSV

1 )eλSV
1 t−(c1+λSV

2 )eλSV
2 t

λSV
1 −λSV

2
; φSV

12 (t) = − eλSV
1 t−eλSV

2 t

λSV
1 −λSV

2

φSV
21 (t) =

(c2+c4)

(
eλSV

1 t−eλSV
2 t

)
λSV

1 −λSV
2

; φSV
22 (t) = (μ+β+λSV

1 )eλSV
1 t−(μ+β+λSV

2 )eλSV
2 t

λSV
1 −λSV

2

(A6)

where:

λSV
1,2 =

1
2

[
−(μ + β + c1)±

√
[c1 − (μ + β)]2 − 4(c2 + c4)

]
(A7)

are the eigenvalues of ASV , with λSV
1 corresponding to the sign “+” and λSV

2 corresponding
to the sign “−”. If the control parameters c1, c2, and c4 fulfil condition (i), then λSV

1 and
λSV

2 are real, and λSV
2 < λSV

1 < 0. From (A4) and (A5), it follows that:

S(t) = (c1+λSV
1 )eλSV

1 t−(c1+λSV
2 )eλSV

2 t

λSV
1 −λSV

2
S(0)− eλSV

1 t−eλSV
2 t

λSV
1 −λSV

2
v(0)

+ 1
λSV

1 −λSV
2

∫ t
0

[(
c1 + λSV

1
)
eλSV

1 (t−τ) −
(
c1 + λSV

2
)
eλSV

2 (t−τ)
]
u1(τ)dτ

− 1
λSV

1 −λSV
2

∫ t
0

[
eλSV

1 (t−τ) − eλSV
2 (t−τ)

]
u2(τ)dτ.

(A8)

From (A4), (A7), (A8), and the condition v(0) = 0, one obtains:

S(ts) ≥ (c1+λSV
1 )eλSV

1 ts−(c1+λSV
2 )eλSV

2 ts

λSV
1 −λSV

2
S(0)

+ b(1−q)
λSV

1 −λSV
2

∫ ts
0

[(
c1 + λSV

1
)
eλSV

1 (ts−τ) −
(
c1 + λSV

2
)
eλSV

2 (ts−τ)
]
dτ

− c3
λSV

1 −λSV
2

∫ ts
0

[
eλSV

1 (ts−τ) − eλSV
2 (ts−τ)

]
I(τ)dτ,

(A9)

where the facts that S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, N(t) ≥ 0, and S(t)
N(t) ≤ 1 jointly to

eλSV
1 t > eλSV

2 t, for all 0 ≤ t < ts, provided that condition (i) is satisfied by the control
parameters, have been used. Then, from (A9) and by direct calculations, one obtains:

S(ts) ≥ (c1+λSV
1 )eλSV

1 ts−(c1+λSV
2 )eλSV

2 ts

λSV
1 −λSV

2
S(0)

+ b(1−q)
λSV

1 −λSV
2

[
− c1+λSV

1
λSV

1

(
1 − eλSV

1 ts
)
+

c1+λSV
2

λSV
2

(
1 − eλSV

2 ts
)]

− c3 Imax
λSV

1 −λSV
2

[
− 1−eλSV

1 ts

λSV
1

+ 1−eλSV
2 ts

λSV
2

]
,

(A10)

where Imax = max
0≤t<∞

{I(t)} ≥ max
0≤t<ts

{I(t)} ≥ 0. From (A10), it follows that:

S(ts) ≥ (c1+λSV
1 )[|λSV

1 |S(0)−b(1−q)]+c3 Imax

(λSV
1 −λSV

2 )|λSV
1 | eλSV

1 ts

− (c1+λSV
2 )[|λSV

2 |S(0)−b(1−q)]+c3 Imax

(λSV
1 −λSV

2 )|λSV
2 | eλSV

2 ts + b(1−q)c1−c3 Imax
λSV

1 λSV
2

.
(A11)

Now, by introducing (A7) in (A11) and since c1 > μ + β from condition (i), direct
calculations lead to:

S(ts) ≥
[(μ+β)S(0)−b(1−q)]

√
[c1−(μ+β)]2−4(c2+c4)

2(λSV
1 −λSV

2 )

(
eλSV

1 ts

|λSV
1 | +

eλSV
2 ts

|λSV
2 |

)
+

[c1−(μ+β)][(μ+β)S(0)−b(1−q)]+2[(c2+c4)S(0)+c3 Imax ]

2(λSV
1 −λSV

2 )

(
eλSV

1 ts

|λSV
1 | − eλSV

2 ts

|λSV
2 |

)
+ b(1−q)(μ+β)−c3 Imax

λSV
1 λSV

2
.

(A12)

197



Mathematics 2022, 10, 36

Then, S(ts) ≥ 0 from the conditions (i)–(iii) jointly with the facts that λSV
2 < λSV

1 < 0
and eλSV

1 ts > eλSV
2 ts . Such a result contradicts the existence of a time instant ts > 0 such that

S(ts) < 0. Then, the non-negativity of S(t) is proved. Now, the non-negativity of I(t) is
proved by contradiction. Suppose that the result is false because there exists some tI > 0
such that S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, v(t) ≥ 0, tr(t) ≥ 0 for all 0 ≤ t < tI and I(tI) < 0.
Then, Equations (2) and (5) can be compactly written as:[ .

I(t)
.

tr(t)

]
= AIT

[
I(t)
tr(t)

]
+

[
1
0

]
u3(t) (A13)

where u3(t) = β
S(t)I(t)

N(t) and:

AIT =

[ −(μ + α + γ) −1
c6 −c5

]
. (A14)

From (A14), it follows that:[
I(t)
tr(t)

]
= φIT(t)

[
I(0)
tr(0)

]
+

∫ t

0
φIT(t − τ)

[
1
0

]
u3(τ)dτ ∀t ≥ 0, (A15)

with φIT(t) = eAITt = L−1
{(

sI2 − AIT)−1
}

. By direct calculations, one obtains that:

φIT
11 (t) =

(c5+λIT
1 )eλIT

1 t−(c5+λIT
2 )eλIT

2 t

λIT
1 −λIT

2
; φIT

12 (t) = − eλIT
1 t−eλIT

2 t

λIT
1 −λIT

2

φIT
21 (t) =

c6

(
eλIT

1 t−eλIT
2 t

)
λIT

1 −λIT
2

; φIT
22 (t) =

(μ+α+γ+λIT
1 )eλIT

1 t−(μ+α+γ+λIT
2 )eλIT

2 t

λIT
1 −λIT

2

(A16)

where:

λIT
1,2 =

1
2

[
−(μ + α + γ + c5)±

√
[c5 − (μ + α + γ)]2 − 4c6

]
(A17)

are the eigenvalues of AIT , with λIT
1 corresponding with the sign “+” and λIT

2 corresponding
with the sign “−”. If the control parameters c5 and c6 fulfill condition (iv), then both
eigenvalues are real, and λIT

2 < λIT
1 < 0. From (A15) and (A16), it follows that:

I(tI) =
(c5+λIT

1 )eλIT
1 tI −(c5+λIT

2 )eλIT
2 tI

λIT
1 −λIT

2
I(0)− eλIT

1 tI −eλIT
2 tI

λIT
1 −λIT

2
tr(0)

+ β

λIT
1 −λIT

2

∫ tI
0

[(
c5 + λIT

1
)
eλIT

1 (tI−τ) −
(
c5 + λIT

2
)
eλIT

2 (tI−τ)
]

S(τ)I(τ)
N(τ)

dτ.
(A18)

Condition (iv) about the control parameters c5 and c6 implies that c5 + λIT
1 > 0.

Under such a condition jointly with tr(0) = 0, one obtains that I(tI) ≥ 0 from (A18) since
eλIT

1 tI > eλIT
2 tI > 0 and S(t)I(t)

N(t) ≥ 0 for all 0 ≤ t < tI . Then, such a result contradicts the
existence of a time instant tI > 0 such that I(tI) < 0. Then, the non-negativity of I(t) is
proved. Now, the non-negativity of R(t) is proved by contradiction. Suppose that the result
is false because there exists some tR > 0 such that S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, v(t) ≥ 0,
and tr(t) ≥ 0 for all 0 ≤ t < tR and R(tR) < 0. From (3), it follows that:

R(t) = e−(μ+ρ)tR(0) +
∫ t

0
e−(μ+ρ)(t−τ)[bq + γI(τ) + v(τ) + tr(τ)]dτ ∀t ≥ 0. (A19)

Then, it follows that R(tR) ≥ 0 for any R(0) ≥ 0. Such a result contradicts the existence
of a time instant tR > 0 such that R(tR) < 0. Then, the non-negativity of R(t) is proved.
Now, the non-negativity of v(t) is proved by contradiction. Suppose that the result is false
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because there exists some tV > 0 such that S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, v(t) ≥ 0, tr(t) ≥ 0
for all 0 ≤ t < tV and v(tV) < 0. From (4), it follows that:

v(t) = e−c1tv(0) +
∫ t

0
e−c1(t−τ)

[
c2S(τ) + c3 I(τ) + c4

S(τ)I(τ)
N(τ)

]
dτ ∀t ≥ 0. (A20)

Then, it follows that v(tV) ≥ 0 for any v(0) ≥ 0. Such a fact contradicts the existence
of a time instant tV > 0 such that v(tV) < 0. Then, the non-negativity of v(t) is proved.
Finally, the non-negativity of tr(t) is proved by contradiction. Suppose that the result is
false because there exists some tT > 0 such that S(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0, v(t) ≥ 0,
tr(t) ≥ 0 for all 0 ≤ t < tT and tr(tT) < 0. From (5), it follows that:

tr(t) = e−c5ttr(0) + c6

∫ t

0
e−c5(t−τ) I(τ)dτ ∀t ≥ 0. (A21)

Then, it follows that tr(tT) ≥ 0 for any tr(0) ≥ 0, since I(t) ≥ 0 ∀t ≥ 0. Such a
result contradicts the existence of a time instant tT > 0 such that tr(tT) < 0. Then, the
non-negativity of tr(t) is proved. In summary, none of the controlled epidemic model
variables take negative values.
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Abstract: The present paper proposes a five-dimensional mathematical model for studying the labor
market, focusing on unemployment, migration, fixed term contractors, full time employment and
the number of available vacancies. The distributed time delay is considered in the rate of change
of available vacancies that depends on the past regular employment levels. The non-dimensional
mathematical model is introduced and the existence of the equilibrium points is analyzed. The
positivity and boundedness of solutions are provided and global asymptotic stability findings are
presented both for the employment free equilibrium and the positive equilibrium. The numerical
simulations support the theoretical results.

Keywords: unemployment model; global stability; Lyapunov function; distributed delay

1. Introduction

Over the time, one of the many challenges that a country faces is economical downturn
fuelled by unemployment. The causes of appearance of this phenomena are countless and
are based on country specificity. Problems ranging from the increasing population to slow
economic growth are some of the leading factors linked to unemployment spanning out of
control. One of the negative impact of unemployment pertains to the social side that puts
the affected population at high risk, such as psychological and mental health problems,
just to name a few [1]. Any responsible government cannot ignore the signals coming
from the labour market and should take appropriate and immediate actions to improve the
overall situation.

Therefore, the need to manage and handle the tendency of unwanted spread of unem-
ployment brings about the necessity of studying the behaviour of complex mathematical
models in conjunction with numerical simulations. In order to comprehend the dynamics
of unemployment, using some concepts from [2], the following variables have been con-
sidered in a previous mathematical model investigated in [3,4]: number of unemployed
persons, employed persons and new vacancies; time delay has been incorporated into the
rate of change for creation of new vacancies. Moreover, by resorting to the skill develop-
ment programs, Misra et al. [5] demonstrated the link between the betterment of workers’
capabilities and the reduction of unemployment. The effect of training programs has
also been studied in [6]. Furthermore, Harding and Neamţu [7] considered the migration
as a contributing factor when defining policies pertaining to unemployment, including
distributed time delay. The optimal control analysis has been completed in [8,9].

The motivation of the present paper is centered around the existing mathematical
models, enabling the development of new ways for studying unemployment, based on

Mathematics 2021, 9, 3037. https://doi.org/10.3390/math9233037 https://www.mdpi.com/journal/mathematics201
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the past history of the state variables. The potential impact of our findings is related
to upcoming biological and economical mathematical models connected to population
dynamics. The most important benefit could be related to the strategic policy makers of
our society.

The novelty of this paper is the investigation of the interaction among the number
of unemployed persons, immigrants, temporary employed persons, regularly employed
persons and the number of available vacancies, in the set up of delay differential equations.
The distributed time delay has been incorporated to reflect the dependence of the rate of
change of available vacancies on the past regular employment levels. Basically, this type of
delay is highlighted for acquiring the realistic sides of the economic process [10–16]. It is
important to emphasize that there are many mathematical models including distributed
time delays, originating from population biology, epidemiology and economics [17–33].

The paper is structured as follows: the mathematical model and its non-dimensional
version are introduced in Section 2; the existence of the equilibrium points of the model
is discussed in Section 3 and the positivity and boundedness of solutions are proved in
Section 4; global asymptotic stability results are proved for the employment free equilib-
rium and the positive equilibrium in Sections 5 and 6, respectively; Section 7 includes
numerical simulations to highlight the theoretical findings, followed by conclusions which
are formulated in Section 8.

2. The Mathematical Model and Its Non-Dimensional Version

We consider the following five variables which describe the mathematical model
for to control the unemployment: the number of unemployed persons U(t), the number
of immigrants M(t), the number of temporary employed persons T(t), the number of
regularly employed persons R(t), respectively and the number of available vacancies V(t)
at time t.

The system of differential equations is:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U̇(t) = a1 − a2U(t)V(t) + a3R(t)− a4U(t) + a5T(t)− b1U(t)
Ṁ(t) = m1 − m2M(t)V(t)− b2M(t)
Ṫ(t) = a4U(t)− a5T(t)− c1T(t)V(t)− b3T(t)
Ṙ(t) = a2U(t)V(t) + m2M(t)V(t) + c1T(t)V(t)− a3R(t)− b4R(t)
V̇(t) = b4

∫ ∞
0 h(s)R(t − s)ds − b5V(t)

(1)

where a1, a2, a3, a4 and a5 are positive constants: a1the constant growth rate of unemployed
persons entering the labor market, a2 the rate of hiring, a3 the rate of firing, a4 the rate
of move to unemployment, a5 the rate of move to temporary employment; b1 the rate of
migration of unemployed persons; b2 is the rate of return or death, b3 the rate of temporary
employment, b4 the rate of retirement, migration or death of employed persons; b5 the
rate of available vacancies; c1 is the rate of good job finding; m1 represent the exogenous
increase in migration, m2 is the migrant employment rate.

The bounded, piecewise continuous function h : [0, ∞) → [0, ∞) is the delay kernel
with average time delay τ for available vacancies based on past employment levels. Hence,
h is a probability density function satisfying the following properties:∫ ∞

0
h(s)ds = 1 , τ =

∫ ∞

0
sh(s)ds < ∞. (2)
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With the changes of variables:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) =
a2b4

a2
5

U
(

t
a5

)
x2(t) =

a2b4

a2
5

M
(

t
a5

)
x3(t) =

a2b4

a2
5

T
(

t
a5

)
x4(t) =

a2b4

a2
5

R
(

t
a5

)
x5(t) =

a2

a5
V
(

t
a5

)
,

(3)

system (1) becomes a non-dimensional system, with fewer dimensionless parameters and
dimensionless state variables:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ1(t) = γ1 − x1(t)x5(t) + α3x4(t)− α4x1(t) + x3(t)− β1x1(t),
ẋ2(t) = γ2 − α2x2(t)x5(t)− β2x2(t),
ẋ3(t) = α4x1(t)− x3(t)− α1x3(t)x5(t)− β3x3(t),
ẋ4(t) = x1(t)x5(t) + α2x2(t)x5(t) + α1x3(t)x5(t)− α3x4(t)− β4x4(t),
ẋ5(t) =

∫ ∞
0 k(s)x4(t − s)ds − β5x5(t),

(4)

where the delay kernel is k(s) = 1
a5

h
(

s
a5

)
and the coefficients are expressed as

γ1 =
a1a2b4

a3
5

, γ2 =
a2b4m1

a3
5

α1 =
c1

a2
, α2 =

m2

a2
, α3 =

a3

a5
, α4 =

a4

a5

β1 =
b1

a5
, β2 =

b2

a5
, β3 =

b3

a5
, β4 =

b4

a5
, β5 =

b5

a5

Initial conditions for system (4) are considered of the form

xi(θ) = ϕi(θ) , ∀ θ ∈ (−∞, 0], ∀ i = 1, 5,

where ϕi belong to the Banach space C0,μ(R−,R) (where μ > 0) of continuous real valued
functions defined on (−∞, 0] such that lim

t→−∞
eμt ϕ(t) = 0, considered with respect to

the norm:
‖ϕ‖∞,μ = sup

t∈(−∞,0]
eμt|ϕ(t)|.

The existence and uniqueness of solutions, as well as the continuous dependence of
solutions on initial conditions, in the framework of the distributed delay system (4), are
guaranteed by theoretical results presented in [34].

3. Equilibrium Points of the Model

The equilibrium points are constant solutions of system (4) and hence they satisfy the
following algebraic equations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

γ1 − x1x5 + α3x4 − α4x1 + x3 − β1x1 = 0
γ2 − α2x2x5 − β2x2 = 0
α4x1 − x3 − α1x3x5 − β3x3 = 0
x1x5 + α2x2x5 + α1x3x5 − α3x4 − β4x4 = 0
x4 − β5x5 = 0

(5)
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On one hand, we observe that system (5) has at least one solution, which corresponds
to the case when x5 = 0. Hence, we obtain the equilibrium point S0 given by:

S0 := (δ1(1 + β3), δ2, δ1α4, 0, 0)

where
δ1 =

γ1

β1 + β1β3 + α4β3
and δ2 =

γ2

β2
.

This equilibrium point corresponds to the state of no regular employment and no
available vacancies.

We now introduce the basic reproduction number R0, which has the role of a threshold
parameter that prognosticates whether the unemployment, immigration and temporary
employment problems will increase or decrease. Using the next generation matrix method,
we deduce:

R0 =
δ1(1 + β3 + α1α4) + δ2α2

(α3 + β4)β5

On the other hand, system (5) has at least one solution with the last component x5 > 0,
if and only if x5 is the solution of the following cubic equation:

E3x3
5 + E2x2

5 + E1x5 + E0 = 0, (6)

where

E3 = α1β4β5

E2 = α1(ν2β4β5 − γ1 − γ2) + β4β5(1 + β3 + α1α4) + α1β1μ

E1 = (ν2β4β5 − γ1 − γ2)(1 + β3 + α1α4)− ν2γ1α1 + μβ1

(
1 + β3 + α1α4

ν1

β1

)
+ (μν2 − γ2)β1α1

E0 =
μγ1γ2

α2δ1δ2
(1 − R0),

where R0, δ1 and δ2 are given above and

ν1 =
β3

α1
, ν2 =

β2

α2
, μ = (α3 + β4)β5.

In this case, system (4) has at least one equilibrium point S+ of the form

S+ :=
(
− Q(x5) + ν1d(x5)

(β1 − ν1)(x5 + ν2)
,

γ2

α2(ν2 + x5)
,

Q(x5) + β1d(x5)

α1(β1 − ν1)(ν2 + x5)
, β5x5, x5

)
where

Q(x5) = (β4β5x5 − γ1 − γ2)(x5 + ν2) + γ2ν2,

d(x5) = μ(x5 + ν2)− γ2.

In fact, we distinguish two cases:
Case 1: If R0 > 1 then E0 < 0 and system (4) has at least one positive equilibrum

point. Moreover, if either E1 < 0, or E1 > 0 and E2 > 0, Descartes’ rule of signs guarantees
the existence of a unique positive equilibrium point S+.

Case 2: If R0 < 1 then E0 > 0, we may have either two or zero positive equilib-
rium points. For instance, if E1 > 0 and E2 > 0, system (4) does not have positive
equilibrium points.
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4. Positivity and Boundedness of Solutions

Theorem 1. The open positive (nonnegative) orthant R5
+ = (0, ∞)5 is invariant to the flow of

system (4). Furthermore, denoting βm = min(β1, β2, β3, β4), the set

Ω =

{
(x1, x2, x3, x4, x5) : 0 ≤ x1 + x2 + x3 + x4 ≤ γ1 + γ2

βm
, 0 ≤ x5 ≤ γ1 + γ2

βmβ5

}
is a region of attraction for the system (1), attracting all the solutions with initial conditions in the
open positive orthant R5

+.

Proof. As a first step, we will show that the open positive (nonnegative) orthant of R5 is
invariant to the flow of system (4). Considering initial conditions ϕi : (−∞, 0] → (0, ∞),
for i = 1, 5, based on the continuity of the solutions, there exists T > 0 such that xi(t) > 0,
for any t ∈ (0, T) and any i = 1, 5.

Therefore, the fifth equation of system (4) provides

ẋ5(t) ≥ −β5x5(t), ∀ t ∈ (0, T)

and an integration over the interval (0, T) leads to:

x5(T) ≥ ϕ5(0)e−b5T > 0.

In a similar manner, it can be show that xi(T) > 0, for any i = 1, 4.
Moreover, from the first four equations of system (4) we observe that

d
dt
[x1(t) + x2(t) + x3(t) + x4(t)] = γ1 + γ2 − β1x1(t)− β2x2(t)− β3x3(t)− β4x4(t),

and taking into account that βm = min(β1, β2, β3, β4) we have

d
dt
[x1(t) + x2(t) + x3(t) + x4(t)] ≤ γ1 + γ2 − βm[x1(t) + x2(t) + x3(t) + x4(t)], ∀ t > 0.

Therefore, using basic differential inequality techniques, we obtain:

x1(t) + x2(t) + x3(t) + x4(t) ≤ e−βmt
(

x1(0) + x2(0) + x3(0) + x4(0)−
γ1 + γ2

βm

)
+

γ1 + γ2

βm
,

for any t ≥ 0.
On one hand, if x1(0) + x2(0) + x3(0) + x4(0) ≤ γ1+γ2

βm
it follows that (x1(0) + x2(0) +

x3(0) + x4(0) ≤ γ1+γ2
βm

, for any t > 0. Otherwise, if x1(0) + x2(0) + x3(0) + x4(0) >
γ1+γ2

βm
,

we have
lim sup

t→∞
[x1(t) + x2(t) + x3(t) + x4(t)] ≤

γ1 + γ2

βm
.

Solving the last equation of (4) for x5(t) leads to

x5(t) = e−β5tx5(0) + e−β5t
∫ t

0
eβ5u

(∫ ∞

0
k(s)x4(u − s)ds

)
du.
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Using the generalized l’Hospital rule (see Lemma 1.1 in [35]) in conjunction with
Lemma 1 from [4], we deduce:

lim sup
t→∞

x5(t) ≤
1
β5

lim sup
t→∞

∫ ∞

0
k(s)x4(t − s)ds

=
1
β5

lim sup
t→∞

(∫ t

0
k(s)x4(t − s)ds +

∫ ∞

t
k(s)ϕ4(t − s)ds

)
≤ 1

β5

(
lim sup

t→∞
x4(t) + ‖ϕ4‖∞,μ lim sup

t→∞

∫ ∞

t
k(s)e−μ(t−s)ds

)
=

1
β5

(
lim sup

t→∞
x4(t) + ‖ϕ4‖∞,μ lim sup

t→∞
e−μt

∫ ∞

t
k(s)eμsds

)
≤ γ1 + γ2

β5βm
,

which concludes the proof.

5. Global Stability Analysis for S0

Theorem 2. The equilibrium point S0 is globally asymptotically stable in the open positive orthant
R5
+, regardless of the delay kernel k(s), if the following inequality holds:

R0 <
β4

α3 + β4
. (7)

Proof. Let us consider an arbitrary solution xi(t), i = 1, 5, of system (4), with initial
conditions ϕi : (−∞, 0] → (0, ∞). From Theorem 1 it follows that xi(t) > 0, for any t > 0
and i = 1, 5. Hence, we consider the functions

Lk(t) = xk(t)− x0
k − x0

k ln
xk(t)

x0
k

, k = 1, 3 ,

and we further denote:

Ek(t) = 1 − xk(t)
x0

k
+ ln

xk(t)
x0

k
< 0 , Ẽk(t) = 1 − x0

k
xk(t)

+ ln
x0

k
xk(t)

< 0 , k = 1, 3.

Therefore, we have:

L′
1(t) = ẋ1

(
1 − x0

1
x1

)
=

(
1 − x0

1
x1

)
[γ1 − x1x5 + α3x4 + x3 − (α4 + β1)x1]

=
(

1 − x0
1

x1

)
[x0

1x0
5 − α3x0

4 − x0
3 + (α4 + β1)x0

1 − x1x5 + α3x4 + x3 − (α4 + β1)x1]

=
(

1 − x0
1

x1

)[
(α4 + β1)x0

1

(
1 − x1

x0
1

)
− x0

3

(
1 − x3

x0
3

)
− x1x5 + α3x4

]
= (α4 + β1)x0

1

(
2 − x0

1
x1

− x1

x0
1

)
− x0

3

(
1 +

x0
1

x1
· x3

x0
3
− x3

x0
3
− x0

1
x1

)

− x1x5 + α3x4 − α3x4
x0

1
x1

+ x5x0
1

≤ (α4 + β1)x0
1

(
2 − x0

1
x1

− x1

x0
1

)
− x0

3

(
2 + ln

x0
1

x1
+ ln

x3

x0
3
− x3

x0
3
− x0

1
x1

)
− x1x5 + α3x4 + x5x0

1

= (α4 + β1)x0
1(E1 + Ẽ1)− x0

3(Ẽ1 + E3)− x1x5 + x0
1x5 + α3x4 − α3x4

x0
1

x1
.
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Furthermore, we evaluate

L′
2(t) = ẋ2

(
1 − x0

2
x2

)
=

(
1 − x0

2
x2

)
(γ2 − α2x2x5 − β2x2)

=
(

1 − x0
2

x2

)
(α2x0

2x0
5 + β2x0

2 − α2x2x5 − β2x2)

= β2x0
2

(
2 − x0

2
x2

− x2

x0
2

)
− α2x2x5 + α2x0

2x5

= β2x0
2(E2 + Ẽ2)− α2x2x5 + α2x0

2x5,

and

L′
3(t) = ẋ3

(
1 − x0

3
x3

)
=

(
1 − x0

3
x3

)
(α4x1 − x3 − α1x3x5 − β3x3)

=
(

1 − x0
3

x3

)[
α4(x1 − x0

1)− (1 + β3)(x3 − x0
3)− α1(x3x5 − x0

3x0
5)
]

=
(

1 − x0
3

x3

)[
α4x0

1(
x1

x0
1
− 1)− x0

3(1 + β3)(
x3

x0
3
− 1)− α1x3x5

]
= −α4x0

1

(
1 +

x0
3

x3
· x1

x0
1
− x0

3
x3

− x1

x0
1

)
+ x0

3(1 + β3)(2 − x3

x0
3
− x0

3
x3

)− α1x3x5 + α1x0
3x5

≤ −α4x0
1

(
2 + ln

x0
3

x3
+ ln

x1

x0
1
− x0

3
x3

− x1

x0
1

)
+ x0

3(1 + β3)(2 − x3

x0
3
− x0

3
x3

)− α1x3x5 + α1x0
3x5

= −α4x0
1(E1 + Ẽ3) + (1 + β3)x0

3(E3 + Ẽ3)− α1x3x5 + α1x0
3x5.

Moreover, considering

L4,5(t) = x4 + cx5 + c
∫ ∞

0

(
k̂(s)

∫ t

t−s
x4(r)dr

)
ds

we have:

L′
4,5(t) = ẋ4 + cẋ5 + c

∫ ∞

0
k̂(s)[x4(t)− x4(t − s)]ds

= x1x5 + α2x2x5 + α1x3x5 − (α3 + β4 − c)x4 − cβ5x5.

Further, considering:

L(t) = L1(t) + L2(t) + L3(t) + L4,5(t)

we compute

L′(t) ≤ (α4 + β1)x0
1(E1 + Ẽ1)− x0

3(Ẽ1 + E3)− x1x5 + x0
1x5 + α3x4

+ β2x0
2(E2 + Ẽ2)− α2x2x5 + α2x0

2x5

− α4x0
1(E1 + Ẽ3) + (1 + β3)x0

3(E3 + Ẽ3)− α1x3x5 + α1x0
3x5

+ x1x5 + α2x2x5 + α1x3x5 − (α3 + β4 − c)x4 − cβ5x5

= β1x0
1E1 +

[
(α4 + β1)x0

1 − x0
3

]
Ẽ1 + β2x0

2(E2 + Ẽ2) + β3x0
3E3 +

[
(1 + β3)x0

3 − α4x0
1

]
Ẽ3

− (β4 − c)x4 − (cβ5 − x0
1 − α2x0

2 − α1x0
3)x5

= β1x0
1E1 + β2x0

2(E2 + Ẽ2) + β3x0
3E3 − (β4 − c)x4 − β5[c − R0(α3 + β4)]x5.
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Therefore, as inequality R0 < β4
α3+β4

holds, there exists c > 0 such that L′(t) < 0.
By means of LaSalle’s invariance principle [12,36], we deduce that the equilibrium equilib-
rium point S0 of system (4) is globally asymptotically stable in R5

+.

6. Global Stability Analysis for S+

Theorem 3. The positive equilibrium point S+ is globally asymptotically stable in the open positive
orthant R5

+, regardless of the delay kernel k(s), if a3 = 0.

Proof. Let us consider an arbitrary solution xi(t), i = 1, 5, of system (4), with initial
conditions ϕi : (−∞, 0] → (0, ∞). From Theorem 1 it follows that xi(t) > 0, for any t > 0
and i = 1, 5.

Taking into account that x − 1 − ln x ≥ 0, for any x > 0, we construct the Lyapunov
function as follows:

L(t) = L1(t) + L2(t) + L3(t) + L4(t) + cL5(t) + cL4,d(t), (8)

where

Lk(t) = xk(t)− x+k − x+k ln
xk(t)
x+k

, k = 1, 5 , (9)

and

L4,d(t) =
∫ ∞

0

(
k(s)

∫ t

t−s

(
x4(r)− x+4 − x+4 ln

x4(r)
x+4

)
dr

)
ds

and we further denote:

Ek(t) = 1 − xk(t)
x+k

+ ln
xk(t)
x+k

≤ 0 , Ẽk(t) = 1 − x+k
xk(t)

+ ln
x+k

xk(t)
≤ 0 , k = 1, 5.

With the notations defined above, taking into account that S+ is an equilibrium point
of system (4) we have:

L′
1(t) = ẋ1

(
1 − x+1

x1

)
=

(
1 − x+1

x1

)
[γ1 − x1x5 + α3x4 + x3 − (α4 + β1)x1]

=
(

1 − x+1
x1

)
[x+1 x+5 − α3x+4 − x+3 + (α4 + β1)x+1 − x1x5 + α3x4 + x3 − (α4 + β1)x1]

=
(

1 − x+1
x1

)[
x+1 x+5

(
1 − x1

x+1

x5

x+5

)
− α3x+4

(
1 − x4

x+4

)
− x+3

(
1 − x3

x+3

)
+ (α4 + β1)x+1

(
1 − x1

x+1

)]
= x+1 x+5

(
1 − x1

x+1

x5

x+5
− x+1

x1
+

x5

x+5

)
− α3x+4

(
1 − x4

x+4
− x+1

x1
+

x+1
x1

x4

x+4

)
− x+3

(
1 − x3

x+3
− x+1

x1
+

x+1
x1

x3

x+3

)
+ (α4 + β1)x+1

(
2 − x1

x+1
− x+1

x1

)
≤ x+1 x+5

(
1 − x1

x+1

x5

x+5
− x+1

x1
+

x5

x+5

)
− α3x+4

(
2 + ln

x+1
x1

+ ln
x4

x+4
− x4

x+4
− x+1

x1

)
− x3

(
2 + ln

x+1
x1

+ ln
x3

x+3
− x+1

x1
− x3

x+3

)
+ (α4 + β1)x+1

(
E1 + Ẽ1

)
= x+1 x+5

(
1 − x1

x+1

x5

x+5
− x+1

x1
+

x5

x+5

)
− α3x+4

(
Ẽ1 + E4

)
− x+3

(
Ẽ1 + E3

)
+ (α4 + β1)x+1

(
E1 + Ẽ1

)
.
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Furthermore, we get:

L′
2(t) = ẋ2

(
1 − x+2

x2

)
=

(
1 − x+2

x2

)
(γ2 − α2x2x5 − β2x2)

=
(

1 − x+2
x2

)
(α2x+2 x+5 + β2x+2 − α2x2x5 − β2x2)

=
(

1 − x+2
x2

)[
α2x+2 x+5

(
1 − x2

x+2

x5

x+5

)
+ β2x+2

(
1 − x2

x+2

)]
= α2x+2 x+5

(
1 − x2

x+2

x5

x+5
− x+2

x2
+

x5

x+5

)
+ β2x+2

(
2 − x+2

x2
− x2

x+2

)
= α2x+2 x+5

(
1 − x2

x+2

x5

x+5
− x+2

x2
+

x5

x+5

)
+ β2x+2

(
E2 + Ẽ2

)
.

Moreover, we obtain:

L′
3(t) = ẋ3

(
1 − x+3

x3

)
=

(
1 − x+3

x3

)
(α4x1 − x3 − α1x3x5 − β3x3)

=
(

1 − x+3
x3

)[
α4(x1 − x+1 )− (1 + β3)(x3 − x+3 )− α1(x3x5 − x+3 x+5 )

]
=

(
1 − x+3

x3

)[
α4x+1

(
x1

x+1
− 1

)
− x+3 (1 + β3)

(
x3

x+3
− 1

)
− α1x+3 x+5

( x3

x+3

x5

x+5
− 1

)]
= α4x+1

(
x1

x+1
− 1 − x+3

x3
· x1

x+1
+

x+3
x3

)
+ x+3 (1 + β3)

(
2 − x3

x+3
− x+3

x3

)

+ α1x+3 x+5
(

1 − x+3
x3

− x3

x+3

x5

x+5
+

x5

x+5

)
≤ α4x+1

(
−2 − ln

x+3
x3

− ln
x1

x+1
+

x+3
x3

+
x1

x+1

)
+ x+3 (1 + β3)

(
2 − x3

x+3
− x+3

x3

)

+ α1x+3 x+5
(

1 − x+3
x3

− x3

x+3

x5

x+5
+

x5

x+5

)
= α4x+1 (−E1 − Ẽ3) + (1 + β3)x+3 (E3 + Ẽ3) + α1x+3 x+5

(
1 − x+3

x3
− x3

x+3

x5

x+5
+

x5

x+5

)
,

and finally:

L′
4(t) = ẋ4

(
1 − x+4

x4

)
=

(
1 − x+4

x4

)
(x1x5 + α2x2x5 + α1x3x5 − α3x4 − β4x4)

=

(
1 − x+4

x4

)
[x+1 x+5

(
x1x5

x+1 x+5
− 1

)
+ α2x+2 x+5

(
x2x5

x+2 x+5
− 1

)
+ α1x+3 x+5

(
x3x5

x+3 x+5
− 1

)

− (α3 + β4)x+4

(
x4

x+4
− 1

)
]

= x+1 x+5

(
x1x5

x+1 x+5
− 1 − x+4 x1x5

x4x+1 x+5
+

x+4
x4

)
+ α2x+2 x+5

(
x2x5

x+2 x+5
− 1 − x+4 x2x5

x4x+2 x+5
+

x+4
x4

)

+ α1x+3 x+5

(
x3x5

x+3 x+5
− 1 − x+4 x3x5

x4x+3 x+5
+

x+4
x4

)
+ (α3 + β4)x+4

(
2 − x4

x+4
− x+4

x4

)

≤ x+1 x+5

(
x1x5

x+1 x+5
− 2 − ln

x+4
x4

− ln
x1

x+1
− ln

x5

x+5
+

x+4
x4

)

+ α2x+2 x+5

(
x2x5

x+2 x+5
− 2 − ln

x+4
x4

− ln
x2

x+2
− ln

x5

x+5
+

x+4
x4

)

+ α1x+3 x+5

(
x3x5

x+3 x+5
− 2 − ln

x+4
x4

− ln
x3

x+3
− ln

x5

x+5
+

x+4
x4

)
+ (α3 + β4)x+4 (E4 + Ẽ4).
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Furthermore, taking into account the algebraic relations satisfied by the coordinates of
the equilibrium point S+, we obtain:

L′
1(t) + L′

2(t) + L′
3(t) + L′

4(t) ≤

≤ x+1 x+5
(

1 − x+1
x1

+
x5

x+5
− 2 + ln

x+1
x1

− ln
x+4
x4

− ln
x5

x+5
+

x+4
x4

)
+ α2x+2 x+5

(
1 − x+2

x2
+

x5

x+5
− 2 − ln

x+4
x4

+ ln
x+2
x2

− ln
x5

x+5
+

x+4
x4

)

+ α1x+3 x+5

(
1 − x+3

x3
+

x5

x+5
− 2 − ln

x+4
x4

+ ln
x+3
x3

− ln
x5

x+5
+

x+4
x4

)
− α3x+4 (Ẽ1 + E4)− x+3 (Ẽ1 + E3) + (α4 + β1)x+1 (E1 + Ẽ1)

+ β2x+2 (Ẽ2 + E2)− α4x+1 (E1 + Ẽ3) + (1 + β3)x+3 (E3 + Ẽ3)

+ (α3 + β4)x+4 (E4 + Ẽ4)

= x+1 x+5 (Ẽ1 − E5 − Ẽ4) + α2x+2 x+5 (Ẽ2 − E5 − Ẽ4)

+ α1x+3 x+5 (Ẽ3 − E5 − Ẽ4)− α3x+4 (Ẽ1 + E4)− x+3 (Ẽ1 + E3)

+ (α4 + β1)x+1 (E1 + Ẽ1) + β2x+2 (Ẽ2 + E2)− α4x+1 (E1 + Ẽ3)

+ (1 + β3)x+3 (E3 + Ẽ3) + (α3 + β4)x+4 (E4 + Ẽ4)

= Ẽ1
[
x+1 x+5 − α3x+4 − x+3 + (α4 + β1)x+1

]
+ β1x+1 E1

+ (α2x+2 x+5 + β2x+2 )Ẽ2 + β2x+2 E2

+ Ẽ3[α1x+3 x+5 − α4x+1 + (1 + β3)x+3 ] + β3x+3 E3

+ Ẽ4[−x+1 x+5 − α2x+2 x+5 − α1x+3 x+5 + (α3 + β4)x+4 ] + β4x+4 E4

+ E5[−x+1 x+5 − α2x+2 x+5 − α1x+3 x+5 ]

= γ1Ẽ1 + γ2Ẽ2 + β1x+1 E1 + β2x+2 E2 + β3x+3 E3 + β4x+4 E4

− (α3 + β4)x+4 E5.

Denoting D[x4] =
∞∫
0

k(s)x4(t − s)ds and employing the inequality x ≥ ln x+ 1, for any

x > 0, we have:

L′
5(t) = ẋ5

(
1 − x+5

x5

)
=

(
1 − x+5

x5

)
(D[x4]− β5x5)

= D[x4]− β5x5 − D[x4]
x+5
x5

+ β5x+5

= (D[x4]− x4) + x+4
x4

x+4
+ β5x+5

(
1 − x5

x+5

)
− x+4

D[x4]x+5
x+4 x5

≤ (D[x4]− x4) + x+4

(
x4

x+4
+ 1 − x5

x+5

)
− x+4

(
ln

D[x4]

x4
+ ln

x4

x+4
+ ln

x+5
x5

+ 1

)

= (D[x4]− x4) + x+4

(
x4

x+4
− ln

x4

x+4
− x5

x+5
+ ln

x5

x+5

)
− x+4 ln

D[x4]

x4

= (D[x4]− x4) + x+4 (E5 − E4)− x+4 ln
D[x4]

x4
.
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Moreover:

L′
4,d(t) =

∫ ∞

0
k(s)

(
x4(t)− x+4 − x+4 ln

x4(t)
x+4

− x4(t − s) + x+4 + x+4 ln
x4(t − s)

x+4

)
ds

= (x4 − D[x4]) + x+4

∫ ∞

0
k(s) ln

x4(t − s)
x4(t)

ds

Therefore, combining the previous relations, we have:

L′(t) = L′
1(t) + L′

2(t) + L′
3(t) + L′

4(t) + c · L′
5(t) + c · L′

4,d(t)

≤ γ1Ẽ1 + γ2Ẽ2 + β1x+1 E1 + β2x+2 E2 + β3x+3 E3 + β4x+4 E4 − (α3 + β4)x+4 E5

+ cx+4 (E5 − E4)− cx+4

(
ln

D[x4]

x4
−

∫ ∞

0
k(s) ln

x4(t − s)
x4(t)

ds
)

= γ1Ẽ1 + γ2Ẽ2 + β1x+1 E1 + β2x+2 E2 + β3x+3 E3 + (β4 − c)x+4 E4 + (c − α3 − β4)x+4 E5

− cx+4

(
ln

∫ ∞

0
k(s)x4(t − s)ds −

∫ ∞

0
k(s) ln x4(t − s)ds

)
.

For α3 = 0, choosing c = β4, it follows that:

L′(t) ≤ γ1Ẽ1 + γ2Ẽ2 + β1x+1 E1 + β2x+2 E2 + β3x+3 E3

− β4x+4

(
ln

∫ ∞

0
k(s)x4(t − s)ds −

∫ ∞

0
k(s) ln x4(t − s)ds

)
.

Jensen’s inequality for probability density functions applied to the concave logarithmic
function [37] provides that

ln
∫ ∞

0
k(s)x4(t − s)ds ≥

∫ ∞

0
k(s) ln x4(t − s)ds,

and hence, we obtain that L′(t) ≤ 0, for any t ≥ 0. Hence, by means of LaSalle’s invariance
principle [12,36], we deduce that the equilibrium equilibrium point S+ of system (4) is
globally asymptotically stable in R5

+.

7. Numerical Simulations

7.1. Scenario 1: Global Asymptotic Stability of S0

In this case, we first consider the following parameter values: a1 = 687.5, a2 =
0.0000152588, a3 = 1, a4 = 0.9375, a5 = 0.125, b1 = 0.5, b2 = 0.51, b3 = 0.03125, b4 = 0.5,
b5 = 0.5, c1 = 0.0000152588, m1 = 25.5, m2 = 0.0078125. For these parameter values,
system (1) has a unique equilibrium point:

S0 = (U0, M0, T0, R0, V0) = (1000, 50, 6000, 0, 0).

We remark that the basic reproduction number R0 satisfies inequality (7), and hence,
based on Theorem 2, the equilibrium point S0 is globally asymptotically stable, for any
delay kernel considered in system (1).

In fact, in this scenario, the very low hiring rates for unemployed persons, immigrants
and temporarily employed persons and the low value of the basic reproduction number,
justify the existence of only one globally asymptotically stable equilibrium point, S0.
For the numerical simulations shown in Figure 1, the following initial condition has
been considered: U(0) = 280, M(0) = 50, T(0) = 2000, R(0) = 6400, V(0) = 40, which
represents a plausible situation in a stable economic environment. However, due to the low
hiring rates mentioned above, the trajectories of system (1) quickly converge to the “crisis”
equilibrium S0, corresponding to no regular employment and no available vacancies.
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Figure 1. Evolution of the state variables U(t), M(t), T(t), R(t) and V(t) in Scenario 1, with fixed
initial conditions: U(0) = 280, M(0) = 50, T(0) = 2000, R(0) = 6400, V(0) = 40 and a discrete time
delay τ ∈ [0, 100]; the trajectories converge to the equilibrium point S0=(1000, 50, 6000, 0, 0).

7.2. Scenario 2: Global Asymptotic Stability of S+

For the numerical simulations we considered: a1 = 300, a2 = 0.0303571, a3 = 0.0582031,
a4 = 0.5, a5 = 0.035, b1 = 0.9375, b2 = 0.5, b3 = 0.02625, b4 = 0.003125, b5 = 0.5,
c1 = 0.00021875, m1 = 60, m2 = 0.0175. For these values of the parameters, we obtain a
unique positive equilibrium point

S+ = (U+, M+, T+, R+, V+) = (280, 50, 2000, 6400, 40).

In fact, in this scenario, we observe that the hiring rate a3 is very small, and hence,
global asymptotic stability can be expected for the equilibrium S+, in line with the theoreti-
cal results presented in Theorem 3. Indeed, in the numerical simulations shown in Figure 2,
convergence to the positive equilibrium S+ is observed, starting from a “crisis” initial con-
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dition: U(0) = 260, M(0) = 120, T(0) = 2100, R(0) = 1, V(0) = 1, with almost no regular
employment or available vacancies. We emphasize that in this scenario, the convergence is
very slow. Moreover, a larger time delay is associated with an even slower convergence to
the positive equilibrium.
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Figure 2. Evolution of the state variables U(t), M(t), T(t), R(t) and V(t) in Scenario 2, with initial
conditions: U(0) = 260, M(0) = 120, T(0) = 2100, R(0) = 1, V(0) = 1 and a discrete time delay
τ ∈ [0, 100]; the trajectories converge to S+ = (280, 50, 2000, 6400, 40).

8. Conclusions

The present paper introduced a five-dimensional mathematical model that facilitates
the understanding of new ways for studying the labour market while observing the
levels of unemployment, migration, fixed term contractors, full time employment and
the number of available vacancies. The distributed time delay has been incorporated to
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reflect the dependence of the rate of change of available vacancies on the past regular
employment levels.

The positivity and boundedness of solutions have been provided. Using the basic
reproduction number, the existence of equilibrium points has been discussed. As a con-
sequence, the employment free equilibrium and positive equilibrium came into focus,
for which we have undertaken a global stability analysis, regardless of the delay kernel
included in the mathematical model.

Through the numerical simulations, the theoretical findings have been emphasized as
well, further revealing that in an economic crisis scenario (Scenario 1), a fast convergence to
the “crisis” equilibrium (with no regular employment or vacancies) is observed. However,
in Scenario 2, if the initial conditions correspond to a crisis situation and the parameters of
the system are adjusted, the convergence to the positive equilibrium is very slow, which
reflects the slow recovery of the job market.

The findings of the paper could be used as input for future developments linked to
population dynamics, and the decision making entities of the society could also use these
findings in various strategies.

The proposed mathematical model is open ended that allows the introduction of
future variables depicting the effects of the unemployment, such as poverty and unsocial
behaviours that can lead to crime, as in [38].
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Abstract: This paper studies the global dynamics of a cholera model incorporating age structures
and general infection rates. First, we explore the existence and point dissipativeness of the orbit
and analyze the asymptotical smoothness. Then, we perform rigorous mathematical analysis on the
existence and local stability of equilibria. Based on the uniform persistence, we further investigate the
global behavior of the cholera infection model. The results of theoretical analysis are well confirmed
by numerical simulations. This research generalizes some known results and provides deeper insights
into the dynamics of cholera propagation.
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1. Introduction

Cholera is a serious infectious disease that is caused by the bacterium Vibrio cholera.
Due to the cholera toxin produced by the bacterium Vibrio cholera, it is characterized by
severe symptoms, including acute diarrhea, vomiting, hypotension and a weak pulse.
Without proper medical treatment, it can cause dehydration and death within hours. This
disease peaks in summer and its propagation among humans depends on direct person-
to-person contact, as well as indirect contact through contaminated food and water [1,2].
Due to the lack of clean food and water, cholera can spread quickly in regions with poor
sanitation conditions and has long been a threat to the public health of human society. In
2018, it was estimated that there were 2.9 million burden cases worldwide, with a death
toll of around 95,000, which corresponds to dozens of countries and regions [3].

A mathematical model of cholera propagation was first proposed to study cholera
infection in 1973 around the Mediterranean region [4]. Henceforward, there have been nu-
merous studies on the dynamics of cholera infection models. Tien and Earn [2] established
a water-borne infectious disease model including multiple propagation paths. Control
strategies, such as vaccination, were also considered in cholera models in Posny et al. [5] to
inhibit the propagation of epidemics. Recently, by combining the cholera infection around
aquatic regions, as well as the interaction between the bacteriophage and the cholera bac-
terium, researchers constructed a refined cholera infection model and provided reasonable
cholera control strategies [6]. Considering environmental uncertainties and stochastic fac-
tors, researchers also studied a cholera system with respect to the Itô stochastic differential
equation and confirmed the decisive effect of the stochastic basic reproduction number on
the system [7].

Age structure, incorporating the age structure of the pathogen the infection age of
individuals, is a significant characteristic in the cholera model [8–11]. A cholera model with
bilinear incidence rates including two age structures was introduced and discussed in the
work of Brauer et al. [12] and was further investigated in the work of Wang and Zhang [13].
The relative compactness of the orbits and the uniform persistence of the system were
explored in [13]. The local stability of disease-free equilibrium and endemic equilibrium
was analyzed in [13] and global stability was studied in [12]. Furthermore, a cholera
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transmission model incorporating vaccination age was analyzed in [14]. Actually, incidence
rates are influenced by the complicated connections between susceptible individuals and
the infected individuals/pathons. Various nonlinear incidence rates have been considered
by researchers [15–19].

Inspired by the above works, we aim to discuss an age-structured cholera model. At
time t, let S(t) and i(t, a) stand for the number of susceptible individuals and infected
individuals with infection age a, with p(t, b) representing the quantity of aquatic cholera
pathogens at the age of b. Then, the infectivity of infected individuals and the total
infectivity of the cholera pathogen at time t can be measured by J(t) =

∫ ∞
0 k(a)i(t, a)da

and Q(t) =
∫ ∞

0 q(b)p(t, b)db, in which kernel functions denote the infectivity of infected
individuals and pathogens at corresponding ages. In this manuscript, we consider the
following cholera model, taking general incidence rates into account, which is a generation
of the model in Brauer et al. [12].⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= Λ − μS(t)− S(t) f (J(t))− S(t)g(Q(t)),

∂i(t, a)
∂t

+
∂i(t, a)

∂a
= −δ(a)i(t, a),

∂p(t, b)
∂t

+
∂p(t, b)

∂b
= −γ(b)p(t, b),

(1)

with boundary conditions

i(t, 0) = S(t) f (J(t)) + S(t)g(Q(t)), t > 0,

p(t, 0) =
∫ ∞

0
ξ(a)i(t, a)da := P(t), t > 0,

(2)

and the initial condition

X0 := (S(0), i(0, ·), p(0, ·)) = (S0, i0(·), p0(·)) ∈ χ+, (3)

where χ+ = R+ ×L1
+(0, ∞)×L1

+(0, ∞) is a functional space equipped with the norm

‖(�, ϕ, φ)‖χ+
= |�|+

∫ ∞

0
|ϕ(a)|da +

∫ ∞

0
|φ(b)|db.

In model (1), Λ ∈ R+ denotes the recruitment of the susceptible, and μ ∈ R+ repre-
sents the natural death rate of individuals. γ(b) describes the removal rate of pathogens at
age b and ξ(a) describes the pathogen shedding rate of an infected patient with infection
age a. δ(a) = μ + δ1(a) + δ2(a), where δ1(a) is the disease-related death rate and δ2(a)
accounts for the recovery rate of infected individuals at infection age a. S(t) f (J(t)) and
S(t)g(Q(t)) represent the direct and indirect transmission of cholera. For system (1), we
make the following assumptions.

Assumption 1. (I) The functions δ(a), γ(b), ξ(a), k(a), q(b) ∈ L∞
+(0,+∞) are bounded,

integrable and Lipschitz-continuous. Denote r = ess. sup
a∈R+

r(a) and r = ess. inf
a∈R+

r(a) as

essential upper and lower bound of r(a) for a ∈ R+.
(II) There exists one positive constant a satisfying i(t, a) = 0 for a ∈ [a,+∞).

(III) f (�) and g(�) are Lipschitz-continuous on R+ with f (0) = g(0) = 0, f (�)
� ≥ f ′(�) ≥

0, g(�)
� ≥ g′(�) ≥ 0 and f ′′(�) ≤ 0, g′′(�) ≤ 0, for � ∈ R+.

In this paper, for an age-infection model, we analyze the qualitative behavior by
means of the Lyapunov functional method [20–22]. By considering the routes of the spread
from the pathogen to the susceptible group and from the infected group to the susceptible
group spread with generalized infection functions, we form a unified theoretical structure
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to present the propagation features of the epidemic. The basic reproduction number
R0 is defined as the threshold value, determining whether the epidemic dies out or not.
Specifically, the cholera epidemic withers away if R0 < 1, whereas if R0 > 1, the disease
persists at the endemic level.

The plan of this article is as follows. We give some preliminaries in the next section.
In Section 3, we explore the existence and local stability of equilibria. In Section 4, we
construct Lyapunov functionals to discuss the global stability of equilibria. In Section 5, we
perform numerical simulations. Section 6 presents brief conclusions and a discussion.

2. Preliminaries

2.1. Existence and Uniqueness of Solutions

The standard theory for age-dependent models [8,11] can be applied to establish the
existence and uniqueness of solutions for system (1) with boundary conditions (2) and
initial condition (3). For this, we introduce the following Banach spaces

χ =R×R×L1(R+,R)×R×L1(R+,R),

χ0 =R× {0} × L1(R+,R)× {0} × L1(R+,R),

χ+ =R+ ×R+ ×L1(R+,R)×R+ ×L1(R+,R),

χ0+ =χ+ ∩ χ0 = R+ × {0} × L1(R+,R)× {0} × L1(R+,R).

In order to formulate system (1) as an abstract Cauchy problem [23], we define the
following linear operator, where Dom(�0) = R× {0} × w1,1(0, ∞)× {0} × w1,1(0, ∞),

�0 : Dom(�0) ⊂ χ → χ,

�0

⎛⎜⎜⎜⎜⎝
φ1(
0
ϕ1

)
(

0
ϕ2

)
⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
−μφ1( −ϕ1(0)

−δ(·)ϕ1 − ϕ′
1

)
( −ϕ2(0)
−γ(·)ϕ2 − ϕ′

2

)
⎞⎟⎟⎟⎟⎠,

and the nonlinear operator

� : Dom(�0) ⊂ χ → χ,

�

⎛⎜⎜⎜⎜⎝
φ1(
0
ϕ1

)
(

0
ϕ2

)
⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
Λ − φ1 f (

∫ ∞
0 k(a)ϕ1(a)da)− φ1g(

∫ ∞
0 q(b)ϕ2(b)db)(

φ1 f (
∫ ∞

0 k(a)ϕ1(a)da) + φ1g(
∫ ∞

0 q(b)ϕ2(b)db)
0

)
(∫ ∞

0 ξ(a)ϕ1(a)da
0

)
⎞⎟⎟⎟⎟⎠.

Similarly to the proof process in [24,25], we can verify that operator �0 is a Hille–
Yosida operator [23].

Let u(t) = (S(t), (0, i(t, ·))T , (0, p(t, ·))T)T ∈ χ0+. System (1) can be expressed by the
following abstract cauchy problem:⎧⎨⎩

du(t)
dt

= �0u(t) +�(u(t)), ∀t ≥ 0,

u(0) = u0 ∈ χ0
⋂

χ0+.

Let (S(t), (0, i(t, ·))T , (0, p(t, ·))T)T ∈ χ0+. We have the following theorem by [23,26]:

Theorem 1. There exists one unique determined semiflow {U (t)}t≥0 on χ0+ such that for any
X0, there exists one unique continuous map U ∈ C([0, ∞], χ0+), acting as an integrated solution
of the Cauchy problem, that is
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⎧⎪⎨⎪⎩
∫ t

0
U (s)X0ds ∈ Dom(�0), ∀t ≥ 0,

U (t)X0 = X0 +�0

∫ t

0
U (s)X0ds +

∫ ∞

0
�(U (s)X0)ds, ∀t ≥ 0.

2.2. Point Dissipativeness

Let

Ξ := {(S(t), i(t, a), p(t, b)) ∈ χ0+|

S(t) +
∫ ∞

0
i(t, a)da ≤ Λ

min{μ, δ} ,
∫ ∞

0
p(t, b)db ≤ Λξ

min{μ, δ}γ
}.

Then we have the following proposition:

Theorem 2. Ξ is a positive invariant set under the semiflow {U (t)}t≥0. Moreover, the semiflow
{U (t)}t≥0 is point-dissipative and attracts all the positive solutions of system (1) in χ0+.

Proof. From the first equation of (1), we have dS(t)
dt ≤ Λ − μS(t). Due to S(0) ≤ Λ

μ , we

have S(t) ≤ Λ
μ . Note that

d
dt

∫ ∞

0
i(t, a)da =

∫ ∞

0
(− ∂

∂a
i(t, a)− δ(a)i(t, a))da

=− i(t, a)|∞0 −
∫ ∞

0
δ(a)i(t, a)da

≤i(t, 0)−
∫ ∞

0
δ(a)i(t, a)da

=S(t) f (J(t)) + S(t)g(Q(t))−
∫ ∞

0
δ(a)i(t, a)da.

Combining the first equation of (1), one yields

d
dt

(
S(t) +

∫ ∞

0
i(t, a)da

)
≤Λ − μS(t)−

∫ ∞

0
δ(a)i(t, a)da

≤Λ − μS(t)− δ
∫ ∞

0
i(t, a)da

≤Λ − min{μ, δ}
(

S(t) +
∫ ∞

0
i(t, a)da

)
.

Since S(0) +
∫ ∞

0 i(0, a)da ≤ Λ
min{μ,δ} , we have S(t) +

∫ ∞
0 i(t, a)da ≤ Λ

min{μ,δ} . Thus, it
follows that

d
dt

(∫ ∞

0
p(t, b)db

)
=

∫ ∞

0

[
− ∂

∂b
p(t, b)− γ(b)p(t, b)

]
db

≤p(t, 0)−
∫ ∞

0
γ(b)p(t, b)db

≤
∫ ∞

0
ξ(a)i(t, a)da − γ

∫ ∞

0
p(t, b)db

≤ Λξ

min{μ, δ} − γ
∫ ∞

0
p(t, b)db.

This implies that
∫ ∞

0 p(t, b)db ≤ Λξ
min{μ,δ}γ

.

Hence, U (t)Ξ ⊂ Ξ and this implies that Ξ is a positively invariant set and attracts all
positive solutions of (1).
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From Theorem 2, we obtain the following result.

Proposition 1. If X0 ∈ χ+ and ‖X0‖χ ≤ B with some sufficiently large constant B, then for
t ∈ R+, we have the following propositions

(i) 0 ≤ S(t),
∫ ∞

0 i(t, a)da,
∫ ∞

0 p(t, b)db ≤ B;
(ii) i(t, 0) ≤ (k̄ f ′(0) + q̄g′(0))B2, p(t, 0) ≤ ξ̄B.

Proof. From the boundedness of system (1), we can find a constant B such that proposition
(i) holds. Due to Assumption 1 (III), we further have

i(t, 0) =S(t) f (J(t)) + S(t)g(Q(t))

≤ f ′(0)S(t)J(t) + g′(0)S(t)Q(t)

≤ f ′(0)S(t)k̄
∫ ∞

0
i(t, a)da + g′(0)S(t)q̄

∫ ∞

0
p(t, b)db

≤( f ′(0)k̄ + g′(0)q̄)B2

and

p(t, 0) =
∫ ∞

0
ξ(a)i(t, a)da ≤ ξ̄

∫ ∞

0
i(t, a)da ≤ ξ̄B.

This completes the proof.

2.3. Asymptotical Smoothness and Global Attractor

From Equations (2) and (3), using the method presented in [8] to integrate the second
and the third equations in (1) along the characteristic lines t − a = const., we have

i(t, a) =

⎧⎨⎩ i(t − a, 0)�1(a), 0 ≤ a ≤ t,

i(0, a − t)
�1(a)

�1(a − t)
, 0 ≤ t ≤ a,

(4)

and

p(t, b) =

⎧⎨⎩ p(t − b, 0)�2(b), 0 ≤ b ≤ t,

p(0, b − t)
�2(b)

�2(b − t)
, 0 ≤ t ≤ b,

(5)

where
�1(a) = e−

∫ a
0 δ(τ)dτ and �2(b) = e−

∫ b
0 γ(τ)dτ (6)

denote the fraction at which an infected cell and virus survive up to age a and b.
In order to explore the existence of an attractor, we first analyze the asymptotical

smoothness of semiflow U (t). For this, we present the following proposition.

Proposition 2. The functions J(t), Q(t) and P(t) are Lipschitz-continuous.

Proof. Here we give the proof of J(t) being Lipschitz-continuous. From Assumption 1,
there exists a positive constant Mk such that |k(a + l)− k(a)| ≤ Mkl. Then, combining
Proposition 1, it holds that

|J(t + l)− J(t)|

≤
∫ l

0
k(a)i(t + l − a, 0)�1(a)da +

∣∣∣∣∫ ∞

l
k(a)i(t + l, a)da −

∫ ∞

0
k(a)i(t, a)da

∣∣∣∣
≤k̄(k̄ f ′(0) + q̄g′(0))B2l +

∣∣∣∣∫ ∞

l
k(a)i(t + l, a)da −

∫ ∞

0
k(a)i(t, a)da

∣∣∣∣.
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Let o = a − l; we have

|J(t + l)− J(t)|

≤k̄(k̄ f ′(0) + q̄g′(0))B2l +
∣∣∣∣∫ ∞

0
k(o + l)i(t + l, o + l)do −

∫ ∞

0
k(a)i(t, a)da

∣∣∣∣
=k̄(k̄ f ′(0) + q̄g′(0))B2l +

∣∣∣∣∫ ∞

0

(
k(a + l)

�1(a + l)
�1(a)

− k(a)
)

i(t, a)da
∣∣∣∣

=k̄(k̄ f ′(0) + q̄g′(0))B2l +
∣∣∣∣∫ ∞

0
k(a + l)

(
e−

∫ a+l
a δ(τ)dτ − 1

)
i(t, a)da

∣∣∣∣
+

∣∣∣∣∫ ∞

0
(k(a + l)− k(a))i(t, a)da

∣∣∣∣
≤k̄(k̄ f ′(0) + q̄g′(0))B2l + k̄δ̄lB + MklB := MJ .

Hence, J(t) is Lipschitz-continuous with the coefficient MJ . Through similar veri-
fication, the functions Q(t) and P(t) are Lipschitz-continuous with coefficients MQ and
MP.

For the asymptotical smoothness of the semiflow, the following lemma [27] is necessary.

Lemma 1. The semiflow U : R+ × χ+ → χ+ is asymptotically smooth if there are maps Ψ,
Θ : R+ × χ+ → χ+ such that U (t, x) = Ψ(t, x) + Θ(t, x) and the following holds for any
bounded closed set B ⊂ χ+, which is forward invariant under U : (i) lim

t→∞
diamΘ(t,B) = 0; (ii)

There exists tB ≥ 0 such that Ψ(t,B) has compact closure for each t ≥ tB.

For condition (ii) of Lemma 1, we introduce the following lemma [27].

Lemma 2. A set B ∈ L1
+(0, ∞) has a compact closure if the following conditions hold: (i)

sup
f∈B

∫ ∞
0 f (�)d� < ∞; (ii) lim

r→∞

∫ ∞
r f (�)d� → 0 uniformly in f ∈ B; (iii) lim

h→0+

∫ ∞
0 | f (�+ h)−

f (�)|d� → 0 uniformly in f ∈ B; (iv) lim
h→0+

∫ h
0 f (�)d� → 0 uniformly in f ∈ B.

Based on Lemmas 1 and 2, we investigate the asymptotical smoothness.

Theorem 3. The semiflow U generated by (1) is asymptotically smooth.

Proof. Define the maps Ψ and Θ such that U = Ψ + Θ, with{
Ψ(t, x0) = (S(t), ǐ(t, ·), p̌(t, ·)),
Θ(t, x0) = (0, ϕ̌i(t, ·), ϕ̌p(t, ·)),

where

ǐ(t, a) =

{
i(t − a, 0)�1(a), 0 ≤ a ≤ t,
0, 0 ≤ t ≤ a,

p̌(t, b) =

{
p(t − b, 0)�2(b), 0 ≤ b ≤ t,
0, 0 ≤ t ≤ b,

ϕ̌i(t, a) =

⎧⎨⎩ 0, 0 ≤ a ≤ t,

i(0, a − t)
�1(a)

�1(a − t)
, 0 ≤ t ≤ a,

ϕ̌p(t, b) =

⎧⎨⎩ 0, 0 ≤ b ≤ t,

p(0, b − t)
�2(b)

�2(b − t)
, 0 ≤ t ≤ b.
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Firstly, we show that map Θ satisfies condition (i) of Lemma 1. For X0 ∈ Γ satisfying
‖X0‖χ ≤ r, letting a − t = ε1 and b − t = ε2, we have

‖Θ(t, X0)‖χ

=
∫ ∞

t

∣∣∣∣i(0, a − t)
�1(a)

�1(a − t)

∣∣∣∣da +
∫ ∞

t

∣∣∣∣p(0, b − t)
�2(b)

�2(b − t)

∣∣∣∣db

=
∫ ∞

0

∣∣∣∣i(0, ε1)e
−
∫ ε1+t

ε1
δ(τ)dτ

∣∣∣∣dε +
∫ ∞

0

∣∣∣∣p(0, ε2)e
−
∫ ε2+t

ε2
γ(τ)dτ

∣∣∣∣dε

≤e−δt
∫ ∞

0
|i(0, ε1)|dε + e−γt

∫ ∞

0
|p(0, ε2)|dε

≤e− min{δ,γ}tr, t ∈ R+.

This shows that ‖Θ(t, X0)‖χ → 0 as t → ∞, which indicates that ‖Θ(t, X0)‖χ ap-
proaches 0 with uniform exponential speed. Thus, the proof of Lemma 1 (i) is completed.

Then, we verify that Lemma 2 holds. Using Proposition 1, we can verify that conditions
(i), (ii) and (iv) of Lemma 2 hold since

0 ≤ ǐ(t, a) ≤ S(t − a)[ f ′(0)J(t − a) + g′(0)Q(t − a)]�1(a) ≤ [ f ′(0)k̄ + g′(0)q̄]B2e−δ̄a.

Finally, we focus on condition (iii) of Lemma 2. For sufficiently small h ∈ (0, t), we
have ∫ ∞

0
|ǐ(a + h, t)− ǐ(a, t)|da ≤ ζ1 + ζ2 + ζ3, (7)

where

ζ1 =
∫ t−h

0
|S(t − a − h) f (J(t − a − h))�1(a + h)− S(t − a) f (J(t − a))�1(a)|da,

ζ2 =
∫ t−h

0
|S(t − a − h)g(Q(t − a − h))�1(a + h)− S(t − a)g(Q(t − a))�1(a)|da,

ζ3 = f ′(0)
∫ t

t−h
|S(t − a)J(t − a)�1(a)|da + g′(0)

∫ t

t−h
|S(t − a)Q(t − a)�1(a)|da

≤( f ′(0)k̄ + g′(0)q̄)B2h := ζ3M.

Note that

ζ1 =
∫ t−h

0
|S(t − a − h) f (J(t − a − h))(�1(a + h)− �1(a))da

+
∫ t−h

0
S(t − a − h)| f (J(t − a − h))− f (J(t − a))|�1(a)da

+
∫ t−h

0
|S(t − a − h)− S(t − a)| f (J(t − a))�1(a)da

≤ f ′(0)k̄B2
∫ t−h

0
|�1(a + h)− �1(a)|da

+ f ′(0)
∫ t−h

0
S(t − a − u)|J(t − a − h)− J(t − a)|�1(a)da

+ f ′(0)
∫ t−h

0
J(t − a)|S(t − a − h)− S(t − a)|�1(a)da.

(8)

Let MS = Λ + μB + (k̄ f ′(0) + q̄g′(0))B2 be the Lipschitz coefficient of S(t). Then, the
following holds:

ζ1 ≤ f ′(0)k̄B2h + f ′(0)BMJh2 + f ′(0)k̄BMsh2 := ζ1M. (9)
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Similarly, we have

ζ2 ≤ g′(0)q̄B2h + g′(0)BMQh2 + g′(0)q̄BMsh2 := ζ2M. (10)

Combining equations (9) and (10) with (7), we obtain∫ ∞

0
|ǐ(a + h, t)− ǐ(a, t)|da ≤ ζ1M + ζ2M + ζ3M.

ζiM, i = 1, 2, 3, does not rely on the initial condition X0. Thus, Lemma 2 holds. Hence,
ǐ(t, a) remains in a pre-compact subset in L1

+(0, ∞), and so does p̌(t, b). We thus accomplish
the proof.

Based on the above preparations, the following results hold due to Theorem 3.4.6 of
Hale [28].

Theorem 4. The semi-flow U (t) has a global attractor A in χ+, which attracts all bound subsets
of χ+.

3. Existence and Local Stability of Equilibria

3.1. Equilibria and Basic Reproductive Number

System (1) possesses two equilibria at most in Θ. Besides the infection-free equi-
librium E0 = (S0, 0, 0) with S0 = Λ/μ, there possibly exists an infection equilibrium
E∗ = (S∗, i∗(a), p∗(b)) in Θ, satisfying the following equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ = μS∗ + S∗ f (J∗) + S∗g(Q∗),

∂i∗(a)
∂a

= −δ(a)i∗(a),

∂p∗(b)
∂b

= −γ(b)p∗(b),

i∗(0) = S∗ f (J∗) + S∗g(Q∗),

p∗(0) =
∫ ∞

0
ξ(a)i∗(a)da,

(11)

where J∗ =
∫ ∞

0 k(a)i∗(a)da and Q∗ =
∫ ∞

0 q(b)p∗(b)db.
From the second and third equations of system (11), we have

i∗(a) = i∗(0)�1(a), p∗(b) = p∗(0)�2(b).

Let

Π1 =
∫ ∞

0
k(a)�1(a)da, Π2 =

∫ ∞

0
q(b)�2(b)db and Π3 =

∫ ∞

0
ξ(a)�1(a)da. (12)

We can further obtain

J∗ =
∫ ∞

0
k(a)i∗(0)�1(a)da =

∫ ∞

0
k(a)[S∗ f (J∗) + S∗g(Q∗)]�1(a)da

= [S∗ f (J∗) + S∗g(Q∗)]Π1

(13)

and

Q∗ =
∫ ∞

0
q(b)p∗(0)�2(b)db =

∫ ∞

0
ξ(a)i∗(a)da

∫ ∞

0
q(b)�2(b)db

=Π2

∫ ∞

0
ξ(a)i∗(0)�1(a)da = Π2Π3(S∗ f (J∗) + S∗g(Q∗)) =

Π2Π3

Π1
J∗.

(14)
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Thus, combining equations S∗ = Λ/(μ + f (J∗) + g(Q∗)), (13) and (14), we have

J∗ =
ΛΠ1[ f (J∗) + g(Q∗)]
μ + f (J∗) + g(Q∗)

=
ΛΠ1[ f (J∗) + g(Π2Π3

Π1
J∗)]

μ + f (J∗) + g(Π2Π3
Π1

J∗)
.

Let h(J) = μJ + [J − ΛΠ1][ f (J) + g(Π2Π3
Π1

J)]. Then, we yield h(0) = 0, h(ΛΠ1) =
μΛΠ1 and

h′(0) = {μ + [ f (J) + g(
Π2Π3

Π1
J)] + [J − ΛΠ1][ f ′(J) +

Π2Π3

Π1
g′(

Π2Π3

Π1
J)]}|J=0

= μ[1 − ΛΠ1

μ
( f ′(0) +

Π2Π3

Π1
g′(0))].

Define the basic reproduction number of system (1) as

�0 =
ΛΠ1

μ
( f ′(0) +

Π2Π3

Π1
g′(0)). (15)

When R0 > 1, h′(0) < 0 and there exists at least one E∗. Then, we obtain

h′(J∗) = μ + [ f (J∗) + g(
Π2Π3

Π1
J∗)] + [J∗ − ΛΠ1][ f ′(J∗) +

Π2Π3

Π1
g′(

Π2Π3

Π1
J∗)]

and

h′′(J∗) = 2[ f ′(J∗) +
Π2Π3

Π1
g′(

Π2Π3

Π1
J∗)] + [J∗ − ΛΠ1][ f ′′(J∗) +

Π2Π3

Π1
g′′(

Π2Π3

Π1
J∗)] > 0.

Thus, there exists one unique positive equilibrium E∗. This yields the following theorem.

Theorem 5. System (1) always exists a disease-free steady state E0 = (S0, 0, 0). Furthermore,
another endemic steady state E∗ = (T∗, i∗(a), V∗) exists if �0 > 1.

3.2. Local Stability of Equilibria

The global asymptotical stability of equilibria is conducive to forecasting the trends
of epidemics [29–35]. For this, we first focus on the local stability by exploring the corre-
sponding characteristic equations.

Theorem 6. The infection-free equilibrium is locally asymptotically stable when R0 < 1. The
infection equilibrium is locally asymptotically stable when R0 > 1.

Proof. The characteristic equation for the linearized part of system (1) with boundary
conditions (2) on (S0, 0, 0) is

(λ + μ)(−1 + S0 f ′(0)π1(λ) + S0g′(0)π2(λ)π3(λ)) = 0, (16)

where

π1(λ) =
∫ ∞

0
k(a)e−λa�1(a)da,

π2(λ) =
∫ ∞

0
q(b)e−λb�2(b)db,

π3(λ) =
∫ ∞

0
ξ(a)e−λa�1(a)da.
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Then, if R0 < 1, all roots of the characteristic equation (16) have negative parts. If not,
that is, if there exists a λ0 such that Reλ0 ≥ 0, then

− 1 + S0 f ′(0)π1(λ) + S0g′(0)π2(λ)π3(λ)

≤ΛΠ1

μ
[ f ′(0) +

Π2Π3

Π1
g′(0)]− 1 = R0 − 1 < 0.

This is a contradiction with equation (16). Thus, the infection-free equilibrium is
locally asymptotically stable when R0 < 1.

Similarly, for R0 > 1, combining the linearization of the system on (S∗, i∗(a), p∗(b)),
the corresponding characteristic equation of the linearization for system (1) is

(λ + μ + f (J∗) + g(Q∗))/(λ + μ) = S∗ f ′(J∗)π1(λ) + S∗g′(Q∗)π2(λ)π3(λ). (17)

Now we assume that system (17) has one characteristic root with a positive real root.
Since J∗ = i∗(0)Π1, Q∗ = p∗(0)Π2, Π3 =

∫ ∞
0 ξ(a) i∗(a)

i∗(0)da and p∗(0) =
∫ ∞

0 ξ(a)i∗(a)da,
we have

|S∗ f ′(J∗)π1(λ) + S∗g′(Q∗)π2(λ)π3(λ)| ≤
∣∣∣∣S∗ f (J∗)

J∗
Π1(λ) + S∗ g(Q∗)

Q∗ Π2(λ)Π3(λ)

∣∣∣∣
≤

∣∣∣∣S∗ f (J∗)
i∗(0)

+
S∗g(Q∗)

p∗(0)
Π3

∣∣∣∣
= 1.

This is a contradiction with Equation (17). Thus, E∗ is locally asymptotically stable
when R0 > 1.

4. Global Stability of Equilibria

For the proof of the global attractiveness of equilibria, we apply the Lyapunov func-
tional method. For the invariance principle, we have investigated the relative compactness
of the orbits. For the well-posedness of Lyapunov functionals, the uniform persistence of
system should also be discussed.

4.1. Uniform Persistence

In this section, we aim to investigate the uniform persistence of system (1). Define

M = {(S, (0, i), (0, p)) ∈ Ξ : S(t) +
∫ ∞

0
i(t, a)da +

∫ ∞

0
p(t, b)db > 0}

and ∂M = Ξ\M.

Lemma 3. The subsets M and ∂M are both positively invariant under the semiflow {U (t)}t≥0
generated by system (1) on χ0+, that is,

U (t)M ⊂ M, U (t)∂M ⊂ ∂M.

Moreover, for each ξ ∈ ∂M, U (t)ξ → E0 as t → +∞.
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Proof. Let G(t) =
∫ ∞

0 i(t, a)da +
∫ ∞

0 p(t, b)db. For any ς = (S(t), (0, i(t, a)), (0, p(t, b))) ∈
M, we have

dG(t)
dt

=
∫ ∞

0

(
−δ(a)i(t, a)− ∂i(t, a)

∂a

)
da +

∫ ∞

0

(
−γ(b)p(t, b)− ∂p(t, b)

∂b

)
db

=−
∫ ∞

0
δ(a)i(t, a)da + i(t, 0)−

∫ ∞

0
γ(b)p(t, b)db + p(t, 0)

≥− δ
∫ ∞

0
i(t, a)da − γ

∫ ∞

0
p(t, b)db

=− max{δ, γ}G(t).

For any ς = (S(t), (0, i(t, a)), (0, p(t, b))) ∈ M, we have G(0) > 0. Thus, G(T) ≥
G(0)e− max{δ,γ} > 0 and then we have U (t)M ⊂ M. Thus, M is positively invariant.

In the following, we try to prove that U (t)∂M ⊂ ∂M. For any
ς = (S0(t), (0, i0(t, a)), (0, p0(t, b))) ∈ ∂M, we have

0 ≤
∫ ∞

0
i(t, a)da =

∫ t

0
i(t − a, 0)�1(a)da +

∫ ∞

t
i(0, a − t)

�1(a)
�1(a − t)

da ≤ 0

and

0 ≤
∫ ∞

0
p(t, b)db =

∫ t

0
p(t − b, 0)�2(b)db +

∫ ∞

t
p(0, b − t)

�2(b)
�2(b − t)

db ≤ 0.

Thus,
∫ ∞

0 i(t, a)da = 0 and
∫ ∞

0 p(t, b)db = 0.

Then we obtain the following theorem by means of [36].

Theorem 7. If R0 > 1, then the semiflow {U (t)}t≥0 is uniformly persistent with respect to the
pair (∂M, M), that is, there exists ε > 0, such that lim inf

t→∞
d(U (t)ξ, ∂M) ≥ ε, ∀ξ ∈ M.

Proof. We need to verify that Ws(E0)
⋂

M = ∅, where

Ws(E0) = {ξ ∈ Ω : lim
t→∞

U (t)ξ = E0}.

Suppose there exists ξ0 ∈ Ws(E0)
⋂

M. Then, there exists a t1, such that∫ ∞

0
i(t1, a)da +

∫ ∞

0
p(t1, b)db > 0.

Since M is an invariant set, we have∫ ∞

0
i(t, a)da +

∫ ∞

0
p(t, b)db > 0, ∀t > t1.

Since ξ0 ∈ Ws(E0), we have lim
t→∞

S(t) = S0. Thus, for ε0 > 0, there exists t2, such that

S(t) > S0 − ε0, ∀t ≥ t2.

Let H(t) =
∫ ∞

0 σ(a)i(t, a)da +
∫ ∞

0 �(b)p(t, b)db, where

σ(a) =
∫ ∞

a
[S0 f ′(0)k(u) + �(0)ξ(u)]e−

∫ u
a δ(τ)dτdu,

�(b) =
∫ ∞

b
S0g′(0)q(v)e−

∫ v
b γ(τ)dτdv.
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Then we have

H′(t) =
∫ ∞

0
σ(a)

∂i(t, a)
∂t

da +
∫ ∞

0
�(b)

∂p(t, b)
∂b

db

=σ(0)i(t, 0) +
∫ ∞

0
i(t, a)[σ′(a)− σ(a)δ(a)]da

+ �(0)p(t, 0) +
∫ ∞

0
p(t, b)[�′(b)− �(b)γ(b)]db

=σ(0)i(t, 0)−
∫ ∞

0
i(t, a)[S0 f ′(0)k(a)− �(0)ξ(a)]da

+ �(0)p(t, 0)−
∫ ∞

0
p(t, b)S0g′(0)q(b)db.

Since p(t, 0) =
∫ ∞

0 i(t, a)ξ(a)da, i(t, 0) = S f (J) + Sg(Q) and

σ(0) = S0 f ′(0)Π1 + �(0)Π3 =
Λ
μ

Π1[ f ′(0) +
Π2Π3

Π1
g′(0)] = �0,

we further have for a sufficiently large t,

H′(t) =σ(0)i(t, 0)− S0 f ′(0)
∫ ∞

0
i(t, a)k(a)da − S0g′(0)

∫ ∞

0
p(t, b)q(b)db

=σ(0)[S f (J) + Sg(Q)]− S0 f ′(0)J − S0g′(0)Q

=[σ(0)S f (J)− S0 f ′(0)J] + [σ(0)Sg(Q)− S0g′(0)Q]

≥[σ(0)(S0 − ε0) f (J)− S0 f ′(0)J] + [σ(0)(S0 − ε0)g(Q)− S0g′(0)Q]

=S0[σ(0)(1 − ε0

S0
) f (J)− f ′(0)J] + S0[σ(0)(1 − ε0

S0
)g(Q)− g′(0)Q]

≥0.

This indicates that H(t) is a non-decreasing function for a sufficiently large t. Hence,
for a sufficiently large t, H(t) > 0, which prevents the orbits from converging to E0 as
t → +∞. This contradicts ξ0 ∈ Ws(E0).

4.2. Global Stability of the Infection-Free Equilibrium

This subsection explores the global stability of the infection-free equilibrium E0.

Theorem 8. E0 is globally asymptotically stable when �0 < 1.

Proof. Define the Liapunov function L(t) = L1(t) + L2(t) + L3(t), with

L1(t) = S(t)− S0 − S0 ln(
S(t)
S0

), L2(t) =
∫ ∞

0
σ(a)i(t, a)da, L3(t) =

∫ ∞

0
�(b)p(t, b)db.

Then, calculating the derivatives of Li(t), i = 1, 2, 3, along the trajectories of
system (1) gives

dL1

dt
=− μ

S(t)
(S(t)− S0)

2 − i(t, 0) + S0 f (J(t)) + S0g(Q(t))

≤− μ

S(t)
(S(t)− S0)

2 − i(t, 0)

+ S0 f ′(0)
∫ ∞

0
k(a)i(t, a)da + S0g′(0)

∫ ∞

0
q(b)p(t, b)db,

(18)
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and

dL2

dt
=

∫ ∞

0
σ(a)(−δ(a)i(t, a)− ∂i(t, a)

∂a
)da

= −
∫ ∞

0
σ(a)δ(a)i(t, a)da −

∫ ∞

0
σ(a)di(t, a)

= σ(0)i(t, 0) +
∫ ∞

0
i(t, a)(σ′(a)− σ(a)δ(a))da,

(19)

and similarly

dL3

dt
= �(0)p(t, 0) +

∫ ∞

0
p(t, b)(�′(b)− �(b)γ(b))db. (20)

Since σ′(a) = −[S0 f ′(0)k(a) + �(0)ξ(a)] + δ(a)σ(a) and �′(b) = −S0g′(0)q(b) +
γ(b)�(b), we further have

dL
dt

=
dL1

dt
+

dL2

dt
+

dL3

dt

≤− μ

S(t)
(S(t)− S0)

2 − i(t, 0) + σ(0)i(t, 0)

+
∫ ∞

0
i(t, a)[S0 f ′(0)k(a) + σ′(a)− σ(a)δ(a) + �(0)ξ(a)]da

+
∫ ∞

0
p(t, b)[S0g′(0)q(b) + �′(b)− �(b)γ(b)]db

=− μ

S(t)
(S(t)− S0)

2 + i(t, 0)[σ(0)− 1].

(21)

Thus, when �0 = σ(0) < 1, dL
dt ≤ 0. The largest invariant set of { dL

dt = 0} is singleton
{E0}. Hence, due to the invariance principle [37], E0 is globally asymptotically stable when
�0 < 1.

4.3. Global Stability of the Infection Equilibrium

In this subsection, we focus on the global stability of the infection equilibrium E∗. To
this end, we introduce a function h defined by

h(z) = z − 1 − ln z, z ∈ R+.

In order to ensure that h
(

i(t,a)
i∗(a)

)
and h

(
p(t,b)
p∗(b)

)
are well-defined, we have shown that

i(t, a)/i∗(a) and p(t, b)/p∗(b) are bounded below and above through the above uniform
persistence analysis. In the following, we prove the following result.

Theorem 9. The infection equilibrium E∗ is globally asymptotically stable when �0 > 1.

Proof. Define a Lyapunov function V(t) = V1(t) + V2(t) + V3(t), where

V1(t) = S∗h(
S
S∗ )i

∗(0), V2(t) =
∫ ∞

0
Γ(a)i∗(a)h(

i
i∗
)di, V3(t) =

1
Π3

∫ ∞

0
Υ(b)p∗(b)h(

p
p∗ )dp,

with

Γ(a) =
1

Π1

∫ ∞

a
S∗ f (J∗)k(u)e−

∫ u
a δ(τ)dτdu +

1
Π3

∫ ∞

a
Υ(0)ξ(u)e−

∫ u
a δ(τ)dτdu,

Υ(b) =
1

Π2

∫ ∞

b
S∗g(Q∗)q(v)e−

∫ v
b γ(τ)dτdv.
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Here, we make some preparations. Firstly, since i∗a (a) = −i∗(a)δ(a), we have

i∗(a)
d
da

[
i(t, a)
i∗(a)

− 1 − ln
i(t, a)
i∗(a)

] = (1 − i∗(a)
i(t, a)

)
ia(t, a)i∗(a)− i(t, a)i∗a (a)

i∗(a)

= (1 − i∗(a)
i(t, a)

)[ia(t, a) + i(t, a)δ(a)].

Thus,

(1 − i∗(a)
i(t, a)

)ia(t, a) = i∗(a)
d
da

[h(
i(t, a)
i∗(a)

)]− δ(a)[i(t, a)− i∗(a)]. (22)

Similarly, we have

(1 − p∗(b)
p(t, b)

)pb(t, b) = p∗(b)
d
db

[h(
p(t, b)
p∗(b)

)]− γ(a)[p(t, b)− p∗(b)]. (23)

Then, calculating the derivative of V1 along system (1) gives

dV1

dt
=[−μ

S
(S − S∗)2 + S∗ f (J∗) + S∗g(Q∗)− S f (J)− Sg(Q)

− S∗

S
S∗ f (J∗)− S∗

S
S∗g(Q∗) + S∗ f (J) + S∗g(Q)]i∗(0).

(24)

Because of equation (22), we obtain

dV2

dt
=−

∫ ∞

0
Γ(a)(1 − i∗(a)

i(t, a)
)[

∂i(t, a)
∂a

+ δ(a)i(t, a)]da

=
∫ ∞

0
−Γ(a)i∗(a)

d
da

[h(
i(t, a)
i∗(a)

)]da,

=− Γ(a)i∗(a)h(
i(t, a)
i∗(a)

)|∞0 +
∫ ∞

0
h(

i(t, a)
i∗(a)

)[Γ′(a)i∗(a) + Γ(a)i∗a (a)]da

=− Γ(∞)i∗(∞)h(
i(t, ∞)

i∗(∞)
) + Γ(0)i∗(0)h(

i(t, 0)
i∗(0)

)

+
∫ ∞

0
h(

i(t, a)
i∗(a)

)[Γ′(a)i∗(a) + Γ(a)i∗a (a)]da.

Due to the fact that Γ′(a) = − 1
Π1

S∗ f (J∗)k(a)− 1
Π3

Υ(0)ξ(a) + δ(a)Γ(a) and i∗a (a) =

−i∗(a)δ(a), we have

dV2

dt
≤Γ(0)i∗(0)h(

i(t, 0)
i∗(0)

)−
∫ ∞

0
i∗(a)h(

i(t, a)
i∗(a)

)[
1

Π1
S∗ f (J∗)k(a) +

1
Π3

S∗g(Q∗)ξ(a)]da.

Since

Γ(0)i∗(0) =
1

Π1

∫ ∞

0
S∗ f (J∗)i∗(a)k(a)da +

1
Π3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a)da,

we further have

dV2

dt
≤ 1

Π1

∫ ∞

0
S∗ f (J∗)i∗(a)k(a)[h(

i(t, 0)
i∗(0)

)− h(
i(t, a)
i∗(a)

)]da

+
1

Π3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a)[h(

i(t, 0)
i∗(0)

)− h(
i(t, a)
i∗(a)

)]da.
(25)

Similarly, we have
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dV3

dt
≤ 1

Π2Π3

∫ ∞

0
S∗g(Q∗)p∗(b)q(b)[h(

p(t, 0)
p∗(0)

)− h(
p(t, b)
p∗(b)

)]db. (26)

We introduce

A0 :=
1

Π1

∫ ∞

0
S∗ f (J∗)k(a)i∗(a)[1 − i∗(0)S f (J)

i(t, 0)S∗ f (J∗)
]da

+
1

Π3

∫ ∞

0
S∗g(Q∗)ξ(a)i∗(a)[1 − i∗(0)Sg(Q)

i(t, 0)S∗g(Q∗)
]da.

Then we can verify that A0 = 0. Combining equations (24), (25) and (26), we can
transfer dV

dt as follows:

dV
dt

=
dV
dt

+A0 ≤A1 +A2 +A3 +A4 +A5,

where

A1 :=[−μ

S
(S − S∗)2 − S f (J)− Sg(Q)]i∗(0)

+
1

Π1

∫ ∞

0
S∗ f (J∗)i∗(a)k(a)

i(t, 0)
i∗(0)

da +
1

Π3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a)

i(t, 0)
i∗(0)

da,

A2 :=− 1
Π3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a)

i(t, a)
i∗(a)

da +
1

Π2Π3

∫ ∞

0
S∗g(Q∗)p∗(b)q(b)

p(t, 0)
p∗(0)

db,

A3 :=[S∗ f (J∗)− S∗

S
S∗ f (J∗) + S∗ f (J)]i∗(0)

+
1

Π1

∫ ∞

0
S∗ f (J∗)i∗(a)k(a)[− i(t, a)

i∗(a)
− ln

i(t, 0)
i∗(0)

+ ln
i(t, a)
i∗(a)

+ 1 − i∗(0)S f (J)
i(t, 0)S∗ f (J∗)

]da,

A4 :=[S∗g(Q∗)− S∗

S
S∗g(Q∗)]i∗(0)

+
1

Π3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a) ln

i(t, a)
i∗(a)

da − 1
Π2Π3

∫ ∞

0
S∗g(Q∗)p∗(b)q(b) ln

p(t, 0)
p∗(0)

db,

A5 :=S∗g(Q)i∗(0) +
1

Π2Π3

∫ ∞

0
S∗g(Q∗)p∗(b)q(b)[− p(t, b)

p∗(b)
+ ln

p(t, b)
p∗(b)

]db

+
1

Π3

∫ ∞

0
S∗g(Q∗)ξ(a)i∗(a)[1 − i∗(0)Sg(Q)

i(t, 0)S∗g(Q∗)
− ln

i(t, 0)
i∗(0)

]da.

Since S f (J) + Sg(Q) = i(t, a) and i∗(a) = �1(a)i∗(0), we have

A1 =− μ

S
(S − S∗)2i∗(0)− i(t, 0)i∗(0)

+
1

Π1
S∗ f (J∗)i(t, 0)

∫ ∞

0
�1(a)k(a)da +

1
Π3

S∗g(Q∗)i(t, 0)
∫ ∞

0
�1(a)ξ(a)da

=− μ

S
(S − S∗)2i∗(0) ≤ 0.

(27)

Due to
∫ ∞

0 ξ(a)i(t, a)da = p(t, 0) and
∫ ∞

0 �2(b)q(b)db = Π2, we obtain

A2 = − 1
Π3

S∗g(Q∗)
∫ ∞

0
ξ(a)i(t, a)da +

1
Π2Π3

S∗g(Q∗)p(t, 0)
∫ ∞

0
�2(b)q(b)db = 0. (28)

Since i∗(0) = 1
Π1

∫ ∞
0 k(a)�1(a)i∗(0)da = 1

Π1

∫ ∞
0 k(a)i∗(a)da = J∗

Π1
, we obtain

A3 =
1

Π1

∫ ∞

0
S∗ f (J∗)k(a)i∗(a)[−h(

S∗

S
)− h(

i∗(0)S f (J)
i(t, 0)S∗ f (J∗)

)− h(
i(t, a)
i∗(a)

) + h(
f (J)
f (J∗)

)],
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and

1
Π1

∫ ∞

0
S∗ f (J∗)k(a)i∗(a)h(

i(t, a)
i∗(a)

)da = S∗ f (J∗)
∫ ∞

0

k(a)i∗(a)∫ ∞
0 k(a)�1(a)da

h(
i(t, a)
i∗(a)

)da

=S∗ f (J∗)i∗(0)
∫ ∞

0

k(a)i∗(a)
J∗

h(
i(t, a)
i∗(a)

)da ≥ S∗ f (J∗)i∗(0)h(
J(t)
J∗

).

Then, we have

A3 ≤ 1
Π1

∫ ∞

0
S∗ f (J∗)k(a)i∗(a)[−h(

S∗

S
)− h(

i∗(0)S f (J)
i(t, 0)S∗ f (J∗)

)]da

+ S∗ f (J∗)i∗(0)[h(
f (J)
f (J∗)

)− h(
J
J∗
)] ≤ 0.

(29)

Due to p∗(0) =
∫ ∞

0 ξ(a)i∗(a)da, Π2 =
∫ ∞

0 �2(b)q(b)db and

∫ ∞

0
i∗(a)ξ(a)[1 − i(t, a)p∗(0)

i∗(a)p(t, 0)
]da =

∫ ∞

0
i∗(a)ξ(a)da − p∗(0)

1
p(t, 0)

∫ ∞

0
ξ(a)i(t, a)da = 0,

we have

A4 =
1

Π3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a)[−h(ln

S∗

S
)− h(ln

i(t, a)p∗(0)
i∗(a)p(t, 0)

) + ln
S
S∗ ]da

≤ 1
Π3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a) ln

S
S∗ da.

Thus, combining A4 and A5 yields

A4 +A5 ≤ 1
Π3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a)

g(Q)

g(Q∗)
da

+
1

Π3

∫ ∞

0
S∗g(Q∗)i∗(a)ξ(a)[1 − i∗(0)Sg(Q)

i(t, 0)S∗g(Q∗)
+ ln

S
S∗ − ln

i(t, 0)
i∗(0)

]da

+
1

Π2Π3

∫ ∞

0
S∗g(Q∗)p∗(b)q(b)[ln

p(t, b)
p∗(b)

− p(t, b)
p∗(b)

]db.

Then, due to 1
Π2

∫ ∞
0 p∗(b)q(b)db = 1

Π2

∫ ∞
0 p∗(0)�2(b)q(b)db =

∫ ∞
0 i∗(a)ξ(a)da and

h(
p(t, b)
p∗(b)

) =
∫ ∞

0

q(b)p∗(b)
Π2 p∗(0)

h(
p(t, b)
p∗(b)

)db ≥ h

(∫ ∞
0 q(b)p(t, b)db∫ ∞
0 q(b)p∗(b)db

)
= h(

Q
Q∗ ),

we further obtain

A4 +A5 ≤ 1
Π2Π3

∫ ∞

0
S∗g(Q∗)p∗(b)q(b)×

[−h(
i∗(0)Sg(Q)

i(t, 0)S∗g(Q∗)
) + h(

g(Q)

g(Q∗)
)− h(

p(t, b)
p∗(b)

)]db

=
1

Π2Π3

∫ ∞

0
S∗g(Q∗)p∗(b)q(b)[−h(

i∗(0)Sg(Q)

i(t, 0)S∗g(Q∗)
)]db

+
1

Π3
S∗g(Q∗)p∗(0)[h(

g(Q)

g(Q∗)
)− h(

p(t, b)
p∗(b)

)]db

≤0.

(30)
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From Equations (27)–(30), we have dV
dt ≤ 0 and the largest invariant subset of set{

dV
dt = 0

}
is {E∗}. Due to the invariance principle [37], we conclude that E∗ is globally

asymptotically stable if it exists.

5. Numerical Simulations

In this section, as a special case for the age-infection model (1), we consider the
following model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= Λ − μS(t)− S(t)
∫ ∞

0 k(a)i(t, a)da∫ ∞
0 k(a)i(t, a)da + A

− S(t)
∫ ∞

0
q(b)p(t, b)db,

∂i(t, a)
∂t

+
∂i(t, a)

∂a
= −δ(a)i(t, a),

∂p(t, b)
∂t

+
∂p(t, b)

∂b
= −γ(b)p(t, b),

(31)

with the initial condition (3) and the following boundary conditions

i(t, 0) =
S(t)

∫ ∞
0 k(a)i(t, a)da∫ ∞

0 k(a)i(t, a)da + A
+ S(t)

∫ ∞

0
q(b)p(t, b)db, t > 0,

p(t, 0) =
∫ ∞

0
ξ(a)i(t, a)da, t > 0.

Following (15), the basic reproduction number of system (31) is

�1 =
Λ

Aμ
Π1 +

Λ
μ

Π2Π3.

From Theorems 8 and 9, we obtain the following corollary:

Corollary 1. When �1 < 1, model (31) generates unique infection-free equilibrium E0
1, which is

globally asymptotically stable. When �1 > 1, model (31) has E0
1 and a globally asymptotically

stable infection equilibrium E∗
1 .

To verify the result, we perform numerical simulations. Following [6,7] and references
therein, with some assumptions, we adopt the following coefficients, for 0 ≤ a, b ≤ 10,

Λ = 1000, μ = 10−5, A = 105, ξ(a) = 1 + sin
(a − 5)π

10
,

δ(a) = 0.2
(

1 + sin
(a − 5)π

10

)
, γ(b) = 0.3

(
1 + sin

(b − 5)π
10

)
,

k(a) = k
(

1 + sin
(a − 5)π

10

)
, q(b) = q

(
1 + sin

(b − 5)π
10

)
.

Let k = 10−5and observe the dynamical behavior of the model when q varies. Let
q = 10−4 decrease to q = 10−10 . The globally asymptotically stable E∗

1 changes to be
unstable and the epidemic is inhibited effectively, which can be seen in Figures 1 and 2.
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Figure 1. The long-term dynamical behavior of i(t, a) and p(t, b) as q = 10−4.
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Figure 2. The long-term dynamical behavior of i(t, a) and p(t, b) for a = b = 5 as q = 10−10.

6. Conclusions and Discussion

In this paper, an age-structured model of cholera infection was explored. By con-
sidering general infection functions, the discussion provided in this paper serves as a
generalization and supplement to the work presented in F. Brauer et al. [12]. We applied
the Lyapunov functional method to show that the global stability of equilibria are deter-
mined by the basic reproduction number �0. The infection-free equilibrium is globally
asymptotically stable if �0 is less than one, whereas a globally asymptotically stable infec-
tion equilibrium emerges if �0 is greater than one. This shows that both the direct contact
with infected individuals and indirect pathogen infection have vital effects on cholera
epidemics. It is significant to implement effective treatment for infected individuals and to
clean pathogens from contaminated water in a timely fashion. More specifically, for the
critical case when �0 equals one, further bifurcation studies are needed.

In our model, vaccinated individuals and vaccination age have not been incorporated,
which play vital effects on the spread of cholera. Furthermore, the immigration of infected
individuals plays a significant role in the outbreak and infection of cholera. For the
actual control and elimination of cholera, it is necessary to take into account the effects
of vaccination and immigration [5,38]. Thus, our future work will consider these factors
and focus on their effects on cholera transmission. In addition to qualitative analyses,
tremendous amounts of works on numerical methods have been proposed and developed
to deal with various epidemic models [39–41], which provide us with more aspects and
methods to analyze in relation to this model.
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Abstract: Networks and graphs offer a suitable and powerful framework for studying the spread of
infection in human and animal populations. In the case of a heterogeneous population, the social
contact network has a pivotal role in the analysis of directly transmitted infectious diseases. The
literature presents several works where network-based models encompass realistic features (such as
contacts networks or host–pathogen biological data), but analytical results are nonetheless scarce. As
a significant example, in this paper, we develop a multi-group version of the epidemiological SEIR
population-based model. Each group can represent a social subpopulation with the same habits or a
group of geographically localized people. We consider also heterogeneity in the weighting of contacts
between two groups. As a simple application, we propose a simple control algorithm in which we
optimize the connection weights in order to minimize the combination between an economic cost
and a social cost. Some numerical simulations are also provided.

Keywords: epidemic spread; multi-group models; network based model; control of spread dynamics

1. Introduction

The epidemiological modeling of infectious disease transmission has a long history in
mathematical biology, for humans [1–7], animals [3,8] and plants [9–11]. In recent years
it has had an increasing influence on the theory and practice of disease management and
control, e.g., [12–18]. Indeed the forecast of the spread of an infectious disease is critical to
public health decision making.

The proper modeling and analysis of the dynamics of infectious diseases has been a
long-standing area of research among many different fields, including economics, social
sciences, mathematical biology, physics, computer science and engineering [5]. In the
classical population approach, the underlying common factor is the partitioning of the
population into “compartments”; we assume that the populations in the various compartments
are homogenous in the sense that all individuals behave similarly. The two most common
compartments that exist in almost all epidemic models are susceptible (S) and infected
(I) [2,3]. The subpopulation S represents individuals who are healthy but susceptible
to becoming infected, while I represents individuals who became infected but are able
to recover. If the model contains only these two compartments, a given population is
initially divided into them. From this basic compartmentalization, there are numerous
ways for introducing different interactions within the population. Most of these models
for the disease evolution make two basic assumptions. The first assumption states that the
population is well-mixed. In such a population, each individual has the same probability
of encountering other infected individuals, and thus the resulting force of infection is equal
for all. The second assumption states that there are a priori constraints upon the biological
process, whilst gradual but random mutation of disease traits (such as transmission rate
and infectious period) could occur. More refined epidemic models are required; the entire
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population cannot just be divided into two or more compartments/groups which are
defined by a single quantity. In this paper, we consider the effect of the heterogeneity in the
weighting of contacts between two individuals. Moreover, we focus on a meta-population
model where the population is previously subdivided into subpopulations that can consist
in spatially distinct groups of individuals (neighborhoods, towns, cities, etc.) or groups of
individuals with different features. The resulting model is described by a dynamic system
defined on a network (graph). We have also added the possibility of varying the weight
of the connections between groups in order to formalize the problem of controlling the
spread of the epidemic on the network. This generality could also allow the changing of
disease features.

The paper is organized as follows: Section 2 introduces the model and the analysis of
the corresponding dynamical system. Moreover, as an application of this approach, we
will also discuss a new definition of control problem about the spread of epidemics on the
network. Section 3 is devoted to numerical experiments using a reduced network with
different features. Following the findings of the case study and of previous analysis, the
conclusions are presented in Section 4.

2. A Meta-Population Model on a Network

The transmission of infectious diseases raises many important questions. In some
instances, the average behavior of a large population with respect to the time is sufficient
to provide useful insight from the available data. However, the spatial component of
many transmission systems has been recognized to be of pivotal importance in the recent
years. Due to this, spatially heterogeneous interventions must be included in the model,
and hence it is essential to properly represent the transmission pattern. A reasonable
hypothesis may consider that the spatial aspects of transmission heavily influence the
aggregation characteristic of epidemic influence. Hence, we need to investigate data by
using models that include such spatial connections. For example, the understanding of
human mobility and the developing of qualitative and quantitative theories is of key
importance for the modeling and for the comprehension of human infectious disease
dynamics on geographical scales of different size.

2.1. Spatial Heterogeneity in Epidemiological Models

Ideally, the model should be able to account for the states of all N individuals in
the population in an independent manner and, at the same time, it should allow for
arbitrary interactions among them. The analysis of these models is a difficult task, and
the computational cost of numerical simulations is very onerous and the extraction of the
collective behaviors very complex. Although studies on the temporal dynamics of diseases
proved insightful, incorporating space explicitly into epidemiological models revealed
various emergent properties [19]. The phenomenon of the spatial spread of infection
involves several components and scale [20]. Indeed, small region/group models can
incorporate spatial heterogeneity, and more general models allowing for larger households
with continuous or discrete time can be developed. Other typical approaches encompassing
spatial variation in epidemic models involve partial differential equations (PDE). There
exist, nonetheless, cases and scenarios where the latter type of spatial approach may not
reliably model the phenomenon. Consider, for example, a human specific disease which is
spread only by person-to-person contact and consider a geographical context consisting in
a large country with a small number of large cities and a very sparse (or even non-existent)
rural population [21]. The travel of individuals between discrete geographical regions
and/or cities plays a pivotal role in the disease spreading. The depicted situation is
easily described by a directed graph, where the vertices represent the cities (or discrete
geographical regions/patches) and the arcs represent the links between such cities [22].

The main approaches for spatial models concern a different scale: an individual-based
simulation, a meta-population model or a network model (see, e.g., [14]). Individual-based
models explicitly represent every individual i with a state Xi(t) at time t, e.g., Xi(t) = 1
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indicates that i is infected while Xi(t) = 0 indicates that i is healthy at time t. Infected nodes
can transmit the disease to neighboring nodes and an individual becomes infected with a
certain probability based on the status of neighboring individuals. The meta-population
framework consists of dividing the whole population into distinct subpopulations, each
having independent internal dynamics. In addition, at the same time, there is a limited
interaction between the subpopulations. This approach has been used to great effect within
ecological systems [23,24]. The individuals in such subpopulations belong to a particular
state (e.g., susceptible or infectious) which can change during the time. For large networks,
a general approach consists of merging some network information in a relatively small set
of statistics and then studying the impact of such statistics on the infection spread [25].

In the following section, we describe our meta-population model, which considers
communities as the aggregate unit that may represent either subpopulations in different
areas or distinct groups with similar characteristics (e.g., students on a campus and citizens
of a neighborhood or high school students or office workers). Then, each subpopulation is
partitioned according to a particular state of individuals with respect to disease. Finally,
connections and mobility between different communities are introduced. We point out
that various proposed models encompass the geography of spread of the disease, but they
do not present a mathematical analysis of their main properties, while presenting realistic
simulations and an appropriate identification of the parameters involved, e.g., [26].

2.2. A Prototype: SEIR Model on a Direct Graph

We introduce a prototype model that can be generalized considering several states
related to a given disease. Our analysis can, therefore, easily be extended to these more
complex models. We partition a population of N individuals into subpopulations (groups,
patches, communities, etc.) without taking into account any biological interpretation
they have but considering spatially segregated large subpopulations. In this way, we
can encompass a more realistic contact structure into epidemic models, since it usually
preserves analytic tractability (in stochastic and in deterministic models), but at the same
time it also captures the most important structural inhomogeneity in contact patterns in
several applied contexts. The subpopulations and the interactions/connections between
them are modeled through a weighted direct graph G = (V , E) with n vertices (nodes,
regions, patches, subpopulations) and m edges (connections). Each edge is described by an
ordered pairs of nodes (u, v), where u, v ∈ V . We label the nodes with an integer index;
two vertices i and j of the directed graph are joined or adjacent if and only if there exists an
edge from i to j or from j to i. If such an edge exists, then i and j are called its endpoints.
If there is an edge from i to j then i and j are often called tail and head, respectively. The
(n × n) adjacency matrix Ad associated to the graph is constructed as follows: if there exists
an edge from node i to node j, then the entry at row i and column j is set to 1 in the matrix
Ad: ad

ij = 1.
In node i, the corresponding subpopulation possesses Ni individuals, and ∑n

i=1 Ni = N.
We hypothesize that individuals can move to a different node, interact with people in that
node and then return to the original one. If ad

ij = 1, there is an interaction between node
i and node j, but not all the subpopulation Ni from node i interacts with the population
in node j: we denote by aij the total amount of the subpopulation i that “goes” to node j
and interacts with the people in that node. We call A the routing matrix with entries aij, so
that ∑n

j=1 aij = Ni, i = 1, . . . , n. Associated to A, let Po the probability outgoing matrix with
entries po

ij, where we denote by po
ij the percentage (probability) of the subpopulation i that

“goes” to node j. In addition, we denote by Pi the probability incoming matrix with entries
pi

ij, where pi
ij is now the percentage (probability) of the subpopulation in j that “arrived”

from i. Finally, let Mi = ∑n
j=1 aji be the total amount of people arrived in node i = 1, . . . , n,

so that ∑n
i=1 Mi = N again. Then, for any i = 1, . . . , n, ∑n

j=1 po
ij = ∑n

j=1 pi
ji = 1. Moreover

we have

A = Diag(N1, N2, . . . , Nn)Po = Pi Diag(M1, M2, . . . , Mn)
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where Diag(x1, x2, . . . , xn) is the diagonal matrix with the vector (x1, x2, . . . , xn)T ∈ Rn

on the main diagonal.
Four different discrete classes are considered for statuses of individuals in each:

susceptible, exposed, infectious and recovered (SEIR model) [2]. All individuals are born as
susceptible: a susceptible individual in contact with an infectious one may become exposed;
the probability depends on the particular strain of the disease. Exposed individuals are
infected but not yet infectious: individuals experience a long incubation duration. With a
suitable incubation rate, latent individuals become infectious. Finally, a reliable assumption
is that the immune system of infectious individuals combats the infection and then they
move directly into the recovered class, which refers to individuals that are no longer
infectious and have gained full immunity from further infection. Let S(t), E(t), I(t), R(t)
the number of individuals in a node at time t, S(t) + E(t) + I(t) + R(t) = N: we consider
a time interval in which we can neglect demographics. Without any interaction with other
nodes, within a deterministic approach of the compartmental models, with continuous
time t, the epidemic dynamics can be described by the system of differential equations
in (1):

Ṡ(t) = −λ S(t)
Ė(t) = λ S(t)− μE(t)
İ(t) = μE(t)− γI(t)
Ṙ(t) = γI(t)

(1)

where the parameter λ is the force of infection, γ is the recovery rate and 1/μ is an average
latent period.

With respect to the behavior of an epidemic, λ is the rate at which susceptible
individuals become infected or exposed and it is a function depending on the number of
infectious individuals; it contains information about the interactions between individuals
that concur to the infection transmission. If we suppose that the population of N individuals
mixes at random, meaning that all pairs of individuals have the same probability of
interacting, the force of infection may be computed as:

λ = transmission rate
× effective number of contacts per unit time
× proportion of contacts infectious

∼ τ × nc × I
N = β I

N

Then the dynamics state,

Ṡ(t) = −β I
N S(t)

Ė(t) = β I
N S(t)− μE(t)

(2)

where β is the infectious rate. Rescaling the quantities S, E, I, R dividing by N we obtain,

ṡ(t) = −β ı(t)s(t)
ė(t) = β ı(t)s(t)− μe(t)
ı̇(t) = μe(t)− γ ı(t)
ṙ(t) = γ ı(t)

(3)

Pay attention to the fact that ı̇ stands for the derivative of the function ı. Now, we
take a node j that is connected to the other nodes as encoded in matrix A. Then, Sj(t)
can change due to the contribution of susceptible people from j that reached an adjacent
node k and met infectious people in that node, wheresoever they came from. Then the
contribution to Ṡj due to the interactions in node k is given by the po

jkSj = ajksj susceptible
people that met a population in node k with a proportion of infectious people given by
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#{infectious people in node k}
#{total people in node k} =

∑n
l=1 po

lk Il

∑n
l=1 alk

=
∑n

l=1 po
lk Il

Mk

=
∑n

l=1 alkıl
∑n

l=1 alk
=

n

∑
l=1

pi
lkıl .

Let the vectors X(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn, with X = S, E, I, R, the SEIR
model on the graph G is the following

Ṡ(t) = −β Diag(S(t))B̂I(t) ṡ(t) = −β Diag(s(t))Bı(t)

Ė(t) = β Diag(S(t))B̂I(t)− μE(t) ė(t) = β Diag(s(t))Bı(t)− μe(t)

İ(t) = μE(t)− γI(t) ı̇(t) = μe(t)− γı(t)

Ṙ(t) = γI(t) ṙ(t) = γı(t)

(4)

where B̂ = Po Diag(M1, . . . , Mn)−1Po�, B = PoPi�, and the equations on the right side
have been obtained by a premultiplication with Diag(N1, N2, . . . , Nn)−1.

Remark 1. We have assumed that the parameter β is the same in all nodes. It is possible to easily
introduce a different parameter for each node considering more heterogeneity in the model.

In the following, we adopt the notations 1 = [1, 1, . . . , 1]�, 0 = [0, 0, . . . , 0]�, for any
vectors x, y ∈ Rn, x � y ⇔ xi < yi, i = 1, 2, . . . , n; x ≤ y ⇔ xi ≤ yi, i = 1, 2, . . . , n (and
x < y if x ≤ y but x �= y).

We suppose that the directed graph G is strongly connected, i.e., there exists a path in
each direction between each pair of vertices of the graph, then the matrices A and P are
irreducible. This means that we cannot divide the nodes of the graph into two subsets such
that there are no connections between the nodes of the two subsets but only within each
subset. It also follows that the matrix B is a non-negative irreducible n × n matrix; by the
Perron–Frobenius theorem [27] we deduce:

• B has a positive real eigenvalue equal to its spectral radius ρ(B);
• There exists an eigenvector v � 0 corresponding to ρ(B);
• ρ(B) increases when any entry of B increases;
• ρ(B) is a simple eigenvalue of B;

• Collatz–Wielandt formula: ρ(B) = minx>0 maxi:xi>0
[x�B]i

xi
= maxx>0 mini:xi>0

[x�B]i
xi

that are reached identically on every component of the eigenvector: ρ(B) = [v�B]i
vi

, for
any i = 1, . . . , n;

• There is no other, unless rescaled, non-negative eigenvector of B, different from v.

Let Bs(t) = Diag(s(t)) B, λs(t) = ρ(Bs(t)) the dominant eigenvalue of Bs(t) and
vs(t) � 0 the corresponding positive left eigenvector.

It is easy to prove that this system of differential equations has a local solution by
standard argument by the Cauchy–Lipschitz–Picard–Lindelöf theorem. Furthermore, if
ı(0) > 0 and s(0) � 0 then

• ı(t) > 0, and s(t) � 0 for all t > 0;
• ∀t1 > t2 > 0, s(t2) � s(t1);
• λs(t) is monotone decreasing.

Then, the solution is non-negative. Moreover, it is easy to check that if sj(0) + ej(0) +
ij(0) + rj(0) = 1 then sj(t) + ej(t) + ij(t) + rj(t) = 1 and the solution is bounded, so there
is a global solution for any time t > 0.

About the behavior of the epidemic dynamics, we will analyze the most important
epidemiological properties:
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• The threshold phenomenon that states that, under some condition, an epidemic propagates,
in the sense that the introduction of a percentage of infected in the population triggers
the contamination of many other individuals, otherwise the epidemic fades off.

• The asymptotic profiles of the steady states in order to understand if an endemic level
can be reach.

Theorem 1 (Asymptotic behavior). Denote by xs(t) the normalized version of vs(t): xs(t)�

Bs(t) = λs(t)xs(t)� and xs(t)�xs(t) = 1. For any initial condition, λs(t) is a continuous
function, and there exist the limits of the above quantities: s∞ = limt→∞ s(t), limt→∞ Bs(t) =
Bs∞ = Diag(s∞)B, limt→∞ λs(t) = λs∞ , where ρ(Bs∞) = λs∞ .

If s∞ > 0, then ρ(Bs∞) = λ∞ > 0 and any converging subsequence of xs(t) converges to a
λ∞-eigenvector.

If, in addition, s∞ � 0, λ∞ is simple, and then limt→∞ xs(t) = xs∞ � 0, where
x�

s∞ Bs∞ = λs∞ x�
s∞ .

Proof. The existence of the limit of s(t) is obvious, since s(t) is a continuous monotone
function. Accordingly, Bs(t) = Diag(s∞)B converges to Diag(s∞)B. From now on, to
simplify the notations in the proof, we will use Bt = Bs(t), λt = λs(t) and xt = xs(t)
for any t ∈ R+. Now, let t fixed and δ > 0 sufficiently small so that (1 − ε)Diag(1) ≤
Diag(sv)Diag(st)−1 ≤ (1 + ε)Diag(1) for v ∈ (t − δ, t + δ). Then, for t ≤ v < t + δ,

0 ≤ λt − λv ≤ λt − min
i

[x�
t Bv]i
[xt]i

= λt − min
i

[x�
t Diag(sv)B]i

[xt]i

= λt − min
i

[x�
t Diag(sv)Diag(st)−1 Diag(st)B]i

[xt]i

≤ λt1 − min
i
(1 − ε)

[x�
t (Bt)]i
[xt]i

≤ ελt,

while, for t − δ < v ≤ t,

0 ≤ λv − λt ≤ max
i

[x�
t Bv]i
[xt]i

− λt

= max
i

[x�
t Diag(sv)Diag(st)−1Bt]i

[xt]i
− λt

= max
i

(1 + ε)
[x�

t (Bt)]i
[xt]i

− λt

≤ ελt,

which implies that λs(t) is a continuous monotone function that must have a limit; denote
it by λ∞. If s∞ = 0, then 1�Bt → 0�, which implies that λt → 0. From now on, we then
assume 1�s∞ = |s∞|1 > 0, so that λ∞ > 0. Let xtn any converging subsequence, call x̃ its
limit. Then, is a λ∞ non-negative eigenvector of B∞, since

x̃�B∞ = •(x̃� − xtn)B∞ + x�
tn(B∞ − Btn) + x�

tn Btn

= ε(n)1� + λtn x�
tn Btn

→ λ∞ x̃�.

Now, if we add the hypothesis that s∞ � 0, then B∞ is still a Perron matrix, and hence
there exists a unique positive eigenvector of B∞, whence xt → x∞ � 0.
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Theorem 2 (Threshold). Consider the SEIR model (4) on a strongly connected graph G, let λs(t)
be the dominant eigenvalue of Bs(t) and let vs(t) � 0 be the corresponding positive left eigenvector.

(1) If for a time τ ≥ 0, βλs(τ) < γ then q(ε)τ (t) = vs(τ)�(e(t)(1 + ε) + ı(t)) decreases

exponentially to zero for t ≥ τ and any ε ∈
(

0, γ
βλs(τ)

− 1
)

.

(2) If βλs(0) > γ, ı(0) > 0 and s(0) � 0, then ∃t∗ > 0 such that q0(t) = vs(0)� (e(t)+ ı(t))
increases for t ∈ (0, t∗). Moreover, e(t) → 0 and ı(t) → 0.

Proof. Take ε ∈
(

0, γ−βλs(τ)
βλs(τ)

)
, so that

βλs(τ)(1 + ε)− γ < 0,

and define
cε = min

(
γ − βλs(τ)(1 + ε),

εμ

1 + ε

)
> 0. (5)

Multiplying the weighted sum of the second equation of exposed and the third
equation of the infected by vs(τ),

vs(τ)
�(ė(t)(1 + ε) + ı̇(t)) = vs(τ)

�(β Diag(s(t))Bı(t)(1 + ε)− εμe(t)− γı(t))

= vs(τ)
�(βBs(t)ı(t)(1 + ε)− εμe(t)− γı(t)),

then, for t ≥ τ,

d vs(τ)�(e(t)(1 + ε) + ı(t))
dt

≤ vs(τ)
�(βBs(t)(1 + ε)ı(t)− εμe(t)− γı(t)).

Now, βvs(τ)�Bs(τ) = vs(τ)�βλs(τ), then

d vs(τ)�(e(t)(1 + ε) + ı(t))
dt

≤ vs(τ)
�((βλs(τ)(1 + ε)− γ)ı(t)− εμe(t))

≤ −vs(τ)
�cε(ı(t) + (1 + ε)e(t)),

where cε is defined in (5). Using the previous differential inequality, Gronwall lemma
implies that

vs(τ)
�(e(t)(1 + ε) + ı(t)) ≤ vs(τ)

�(e(τ)(1 + ε) + ı(τ))e−cε(t−τ).

To prove (2), we start by noticing that

d
dt

(
vs(0)�(e(t) + ı(t))

)
t=0

= (βλs(0)− γ)vs(0)�ı(0).

Since (βλs(0)− γ) > 0, ı(0) > 0, and vs(0) � 0, then

d
dt

(
vs(0)�(e(t) + ı(t))

)
t=0

> 0.

We have that the solution is a continuous differentiable function, then exists t∗ > 0
such that for s ∈ (0, t∗)

d
dt

(
vs(0)�(e(t) + ı(t))

)
t=s

> 0,

which implies that q0(t) = vs(0)� (e(t) + ı(t)) increases for t ∈ (0, t∗).
Moreover, it is ṡ � 0 and s(t) � 0, then exist limt→+∞ s(t) = s∞. Define b�

j the j–th

row of B, so that ṡj = βsjb�
j ı. Since

s̈j = β2sj(b�
j ı)2 + βsjb�

j (μe − γı)
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then ‖s̈‖ ≤ K, and hence the boundedness and monotonicity of s(t) implies limt→+∞ ṡ(t) =
0, which implies 1� ṡ(t) → 0. Then, for any ε > 0 we have for t sufficiently large that

d
dt

1�e(t) ≤ d
dt

(
1�(e(t) + s(t))

)
+ ε

≤ ε − μ1�e(t).

Then e(t) → 0, that also implies 1� ė(t) → 0. As a consequence, for t sufficiently large,

d
dt

1�ı(t) ≤ d
dt

(
1�(e(t) + s(t) + ı(t))

)
+ ε

≤ ε − γ1�ı(t)

so that ı(t) → 0.

2.3. A Control Problem

We have adopted a network framework that explicitly accounts for the interactions
structure among individuals and group of individuals, in order to provide insights regarding
the spread of a disease. If the proposed model describes the epidemiological phenomenon
sufficiently well, some problems relating to the behavior and the forecast of the epidemic
itself can be addressed.

First, we would like to prevent an epidemic. This is achieved when condition (1) in
Theorem 2 holds at t = 0. Before the epidemic starts, the fractions of infected/exposed
individuals are negligible, for viral infections the recovery rate γ is usually out of control.
Then, the only way to satisfy the no-epidemic requirement is either: control the transmission
(which means to reduce β and/or interactions) or immunization (meaning to increase r(0)).
Second, we aim to limit the economic and social impact as the epidemic occurs. The supply
of healthcare services is inelastic in the short run. Thus, it is important to maintain the
maximum infection rate below the capacity of the existing healthcare system. This may be
achieved by lowering the transmission rate, by controlling the inflow and the outflow of
individuals from and into a node.

We point out that only recent works, e.g., [28–30], started investing the trade-off
between epidemic and economic costs with some analysis. The aim of our applications
would like to be a new step in this direction inside a well based framework. We introduce
the following diagonal matrix

U = Diag(uloc(i))
n
i=1, V = Diag(vloc(i))

n
i=1, (6)

where uloc(i) ∈ (0, 1], i = 1, . . . , n are the control variables for the incoming individuals
into the node i, while vloc(i) ∈ [0, 1], i = 1, . . . , n are the control variables of the outgoing
individuals from the node i to other nodes. Then, the routing matrix A, and its associated
matrices (see their definitions in Section 2.2), changes as follows

Ãuv = U A V = Diag(Ñ1, . . . , Ñn)P̃o = P̃i Diag(M̃1, . . . , M̃n),˜̂B = P̃o Diag(M̃1, . . . , M̃n)
−1P̃o�, B̃ = P̃o P̃i

�
,

so that the SEIR model on the “controlled” graph G becomes

Ṡ(t) = −β Diag(S(t))˜̂BI(t) ṡ(t) = −β Ĩ Diag(s(t))Bı(t)

Ė(t) = β Diag(S(t))˜̂BI(t)− μE(t) ė(t) = β Ĩ Diag(s(t))Bı(t)− μe(t)

İ(t) = μE(t)− γI(t) ı̇(t) = μe(t)− γı(t)

Ṙ(t) = γI(t) ṙ(t) = γı(t)

where Ĩ = Diag(Ñ1/N1, . . . , Ñn/Nn).
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In order to study the “lockdown policies” applied to the various groups (nodes), we
combine a measure of social cost (i.e., hospitalization cost) and, above all, loss of life and the
economic loss. The first objective consists of minimizing both total (excess) deaths during
the epidemic and the public health cost. We suppose that it is possible estimating the
severity of the epidemic in a time interval [0, T], by weighing the total number of infected

social cost =CT
∫ T

0
I(t)dt

where C is a vector of positive weights, and the integral is to be understood component
by component. The lockdown of individuals affects the economic activities; we model
the economic loss through the evaluation of the reduction in flow of individuals between
nodes with a linear cost function

economic loss =W T
∫ T

0

[
A − Ãuv

]
· 1dt.

The goal is finding an optimal trade-off between the total economic loss and the
total social cost. Then, the optimal strategy is obtained by minimizing the following cost
function

min
U, V

(
CT

∫ T

0
I(t)dt − W T

∫ T

0

[
A − Ãuv

]
· 1dt

)
, (7)

where T is the time for which a certain strategy is applied.

Remark 2. If the meta-population model represents a non-geographical subdivision, but instead it
is dependent on certain individuals’ characteristics (such as age, profession, habits, etc.), the weights
C and W can include information linked to these characteristics (e.g., propensity for mobility,
disease mortality). In this case, the lockdown strategy can change based on the vulnerability of each
group.

3. Numerical Tests

This section is devoted to numerical experiments. These experiments were carried
out on a laptop equipped with Linux 19.04, with an Intel(R) Core(TM) i5–8250U CPU (1.60
GHz), 16 GiB RAM memory (Intel, Santa Clara, CA, USA) and under MATLAB R2020b
environment (MathWorks, Natick, MA, USA).

In order to use our framework, two types of parameters are needed:

(BP) biological parameters related to the different epidemiological features of the disease
(parameters γ, β, μ in (4));

(MP)mobility data for the probability outgoing matrix Po and the probability incoming
matrix Pi.

For the first set of parameters, we have referred to a recent work [31] in which the
authors applied a SEIR epidemiological model to the recent SARS-CoV-2 outbreak in the
world. Moreover, they focused on the application of a stochastic approach in fitting the
biological model parameters analyzing the official data and the predicted evolution of
the epidemic in the Italian regions, Spain and South Korea. We considered two different
scenarios,

(A) The parameters of the disease are γ = 0.14, β = 0.74, μ = 0.5.
(B) The parameters of the disease are γ = 0.22, β = 1.0, μ = 0.03.

For the topology of the directed graph G(V, E), we did not refer to any particular
geographic area but we reproduced a realistic situation. The network consists of three large
agglomerates, each one representing a city. The nodes of the graph are the neighborhoods
of the cities and the edges represent the connections between such neighborhoods: these
edges encompass the social and working movements between the nodes; hence, they are
not simply geographical connections (see Section 2.2). The number of the nodes is 20,
10 and 5, respectively, meaning that the largest city has 20 neighborhoods, the second
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one 10 and the last one just 5 neighborhoods. This toy model considers a social cost C
which is ten times higher than the economic cost W : normalizing such costs leads to set
C = 1, W = 10 · 1. The matrix A is set starting from the adjacency matrix E and from the
population of the nodes: the number of individuals, the subpopulations and the matrices
Po and Pi were randomly selected using suitable probability distributions.

All scenarios started with the initial distribution for susceptible, infected and exposed
individuals: the epidemic starts from 1/5 of randomly selected neighborhoods of the
largest city. Once a lockdown strategy is decided by optimizing Equation (7), it is applied
for 14 days: after such period the new distributions for S, I and E are checked and a new
optimization is carried on. The last time interval has a longer duration for observing the
effects of the overall strategy on the long period. This scheme is applied three times in the
numerical simulations.

Figure 1a presents the optimized strategy for Scenario A, while Figure 1b shows
the strategy for Scenario B. We have not represented the whole network but a part of it
considering nodes that represent agglomerations with a different number of individuals.
Furthermore, the strategy that optimizes our objective function is reproduced by showing
the values of the vector V , see (6), for some cities/agglomerations present in the network.
Values close to 1 mean that there are no particular restrictions on mobility, values close
to 0 mean strong restrictions on movement. We point out that the value 0 is not allowed
because it is not realistic to consider a total block of each movement in this context.

In the case of Scenario A, the parameter of the disease induced a light lockdown (85%)
on the large city (blue line), whilst the other two are almost completely open. On the second
case, the disease is more infectious: the large city is forced to adopt a severe lockdown,
while the strategy on the other two suggests a mild lockdown. As soon as the epidemic
spreads, due to the characteristics of the disease, even the smallest cities are forced to adopt
a more severe strategy until the number of infected individuals decreases. We can observe
in Scenario B that, after a period of severe lockdown, when the last chosen strategy is
applied for a longer period, then a further severe approach must be adopted in order to
contain the epidemic.

In both scenarios, we can observe that there is a converging behavior of the strategies
to be applied on the three different cities. Check, for example, the period 50–100 days in
Scenario A: the lockdown strategy for the largest city (blue line) is increasing, while the
strategies for the other cities (orange and yellow lines) are decreasing. Eventually, due to
the disease parameters, they converge to 1, meaning that the epidemic threat is no more.
This behavior is more evident in Scenario B.
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Figure 1. (a,b): Lockdown strategies for Scenario A and B, respectively. We show the optimal strategy
V that minimizes (7) the closer is to 0, the more severe the restrictions are. On the other hand, values
close to 1 denote very mild restrictions on mobility.

Figure 2 presents a visual representation of the evolution of the strategies for Scenario
B at t = 0, 20, 40 and 179 days. The color of the nodes represents the number of infected
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people in that node, while the color of the edges represents the percentage of people
blocked. At the beginning, the optimal strategy suggests to mainly block the outgoing
from the large city (the agglomerate on the top left corner), while the connection between
and inside the other two are open. Letting the epidemic spread in a controlled way, in
order to maintain economy, induces an increase in the number of infected people, then the
connections between cities must be reduced (the more red the edges are, the less people are
allowed to move).
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Figure 2. (a–d): Evolution of the strategy and infected people in Scenario B for timestamps
t = 0, 20, 40, 179, respectively. The color of the nodes represents the number of infected people
in that node, while the color of the edges represents the percentage of people blocked.

4. Conclusions

The network perspective allows to relax the assumption of uniform random mixing
and then we are able to model the population interaction patterns during epidemics.
Moreover, a network-based model provides useful and important insights about the spread
of a disease; such insights cannot be inferred using the classical model. We have focused
on a SEIR meta-population model on a network in order to characterize the epidemic
dynamics and to predict possible contagion scenarios.
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A network model can encompass differences in the number of interactions between
individuals in a population. For example, there exist some realities where people may live
in small environments and they have relatively few contacts (work and/or social life), while
others may live in dense and more populated centers, where the usage of public and maybe
crowded public transportation is very common, they work in high-contact environments
and they have a large number of interactions with many others outside of work. The
classical SEIR model does not allow to include such heterogeneity, while a network model
can easily encompass it. Furthermore, it is possible to adapt our model and, instead of
a geographical distinction of the subgroups of individuals, different stratifications of the
population can be considered.

We justified the model by introducing and analyzing some of its properties, in
particular, we proved a threshold theorem involving both biological parameters and
the topology of the network. In a future paper, we will consider both time-dependent
parameters and a detailed analysis of the asymptotic behavior of the solution of the
proposed model. We point out that our analysis can be applied to recent models, e.g., [26],
where numerical and statistical but not analytical results are provided.

Only recent works, e.g., [28–30], started investigating the trade-off between epidemic
and economic costs with some analysis. In order to take a new step in this direction, we
have also identified an optimal control problem that considers the advantages and benefits
that arise from the application of optimal targeted policies, which lock down the various
groups in an inhomogeneous way. The focus is on the balance between economic loss and
loss of life. The main economic damages consist of lost productivity due to illness and also
in the forgone productivity contributions of the blocked subpopulations. The lives lost are
estimated via the number of the infected individuals, assuming that these losses represent
a constant percentage of the latter.

Some preliminary numerical tests are provided; more effective results could be
obtained by considering a suitable fitting of the parameters and based on some particular
topology of the network. These issues will be analyzed in a future paper involving a
different source of data [32] and recent optimization tools [33,34].
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Abstract: The objective of this work is to examine the dynamics of a fractional-order susceptible-
infectious-recovered (SIR) model that simulate epidemiological diseases such as childhood diseases.
An effective numerical scheme based on Grünwald–Letnikov fractional derivative is suggested to
solve the considered model. A stability analysis is performed to qualitatively examine the dynamics of
the SIR model. The reliability and robustness of the proposed scheme is demonstrated by comparing
obtained results with results obtained from a fourth order Runge–Kutta built-in Maple syntax when
considering derivatives of integer order. Graphical illustrations of the numerical results are given. The
inaccuracy of some results presented in two studies exist in the literature have been clearly explained.
Generalizing of the cases examined in another study, by considering a model with fraction-order
derivatives, is another objective of this work as well.

Keywords: SIR model; fractional derivatives; Grünwald–Letnikov method; stability analysis

1. Introduction

The investigation of the prevalence of the contagious diseases with the aid of math-
ematical modeling has turn into an essential means to realize epidemiological patterns
diseases. A lot of procedures can be studied in the formulation of the mathematical
model to reflect the characteristics in spread types of a disease. Generally, there are two
main types:

i. Direct contact type such as childhood diseases [1–3], Ebola virus disease [4,5], HIV
infection [6–9], and COVID-19 [10–14].

ii. Indirect contact type, that is because of the existence of disease carriers in the natural,
such as, over mosquitoes and their aquatic stage [15–18].

Childhood infections are the highly popular form of infections contagious. These
infections diseases such as chicken pox, mumps, measles, etc., to which infants start
their life susceptible, and mostly develop within next 5 years. Because children are very
close together with their peers, such diseases can prevalence in a fast way. Because the
vaccination is believed to be the best efficient approach counter to such diseases, the
progress of a framework that would develop the optimum vaccine treatment stage needed
to avoid the prevalence of childhood diseases is necessary. The (susceptible–infected–
recovered) SIR models are traditional models that have been used to illustrate many
epidemiological diseases [1–3,10–14].

The considered version of SIR model is the model given in [1–3]. This model that
applied and used to achieve a well understanding of exactly how the childhood disease
spreads within populations of various individuals with time, as well as the risk of surges
in the susceptible individuals. The SIR is a dynamical system that is consists of three
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coupled ordinary differential equations (ODEs) that refer to the time evolution of the next
three individuals:

i. Susceptible group (S): this group is not infected but perhaps becomes infected due to
the spread of the virus or stay susceptible.

ii. Infected group (I): This group has already been infected by the virus and may spread
it to the susceptible group. An infected people may stay infected or may be removed
from this group because of recovering or death.

iii. Removed group (R): This group has been vaccinated against the virus as well as
recovered individuals with permanent immunity. The SIR model considers that the
efficiency of the vaccination is one hundred percentage. The normalized dynamical
system that describes the SIR model is given below [3]:

The normalized dynamical system that describes the SIR model which considered
in [3] is given below:

DtS(t) = (1 − p)ω − ω S(t)− β S(t) I(t),
Dt I(t) = −(σ + ω) I(t) + β S(t) I(t),

DtR(t) = p ω − ω R(t) + σ I(t),
(1)

where D = d/dt, β and σ are the natural birth rate and the natural death rate, respectively;
however, the childhood disease mortality rate is considered extremely low. The factor p
is a fraction of population that have been vaccinated at the birth every year (0 ≤ p < 1)
with taking into consideration that the remainder of the citizens is susceptible. The factor
ω describes the rate of infection of the susceptible citizens due to a contact with infected
peoples. Here, the total population is normalized. Recently, a big attention has been
drawn to examine mathematical models that defined by fractional differential systems
specially in the field of epidemiological diseases [19–21]. The greatest important property
of such models is their memory impact [22], which is not occurring in the differential
systems of integer derivatives. This memory impact is quite described by the mobility of
the differentiation order for the fractional derivatives and realized as an inherited property
on viruses’ genomes and strains (as mentioned in [21]), that is helpful for modeling
epidemiological diseases. It is known that the SIR model is highly impacted by the initial
data and the integer order SIR model may not perfectly explain the spread of the diseases
because of the local nature of the integer order derivatives. The fractional-order derivative
is non-local in its nature and depends on the initial data. Thus, for well understanding
of the epidemiological disease’s models, it is helpful to replace the integer order SIR
model by a fractional-order one. In the present study, we will replace time derivatives
in the system (1) with fractional time derivatives of order γ. In the last few years, many
researchers simulated and analyzed various epidemiological diseases using fractional-
order dynamical models [23–27]. In this work we generally analyze and simulate the
dynamics of the fractional-order SIR model that has been studied in [1,2],

C
t0

Dγ
t S(t) = (1 − p)ω − ω S(t)− β S(t) I(t),

C
t0

Dγ
t I(t) = −(σ + ω) I(t) + β S(t) I(t),

C
t0

Dγ
t R(t) = p ω − ω R(t) + σ I(t),

(2)

where C
t0

Dγ
t is the Caputo fractional-order derivative operator of order γ ∈ (0, 1] which can

be defined as,

C
t0

Dγ
t F(t) = (1/Γ(n − γ))

⎛⎝ t∫
t0

(t − τ)n−γ−1 dnF(τ)
dτn dτ

⎞⎠, (3)

when it effects on a continuous function F on an interval [0, T], where t0 is the start time,
n =  γ! + 1 and  γ! is the integer part of the fraction γ. The Caputo fractional-order
derivative has advantages for solving initial value problems only when it applied with
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analytical or semi-analytical approaches. The Caputo derivative can be approximated
by the Grünwald–Letnikov (GL) method using finite differences of the fractional order,
similar to the Euler method, to handle numerical solutions of initial value problems. The
GL method is proceeding iteratively but the sum in the scheme becomes longer and longer,
which reflects the memory effect.

This paper is structured as follows. An explanation of the Grünwald–Letnikov frac-
tional derivative representation is given in Section 2. In Section 3, the GL discretized scheme
for the considered fractional-order SIR model is developed. In Section 4, the qualitative
stability analysis of the fractional-order SIR model is investigated, and the free equilibrium
fixed point of the disease is examined. Section 5 contains the numerical simulation of
the present results including comparisons with results displayed in [1–3] and with results
of the Maple built-in scheme of the fourth order Runge–Kutta (RK4) method along with
graphical illustrations. A sensitivity analysis, which demonstrates how the model dynam-
ics differently perform as the values of the model parameters changed, is including in
Section 5 as well. Finally, in Section 6, conclusions and observations are provided.

2. Explanation of the Grünwald–Letnikov Fractional Derivatives

Here, some fundamental concepts of fractional Grünwald–Letnikov derivatives are
presented. The form of GL fractional derivative with order γ ∈ (0, 1] is expressed as:

t0
Dγ

t F(t) = lim
h→0

(1/hγ)
(t−t0)/h

∑
j=0

(−1)j
(

γ
j

)
F(t − jh), (4)

where h is the calculations time step and
(

γ
j

)
= Γ(γ+1)

Γ(j+1)Γ(γ−j+1) is binomial coefficients.

The explicit numerical approximation of the fractional derivative of order γ-th at the
points kh, (k = 1, 2, . . . ) is defined by the next formula [28–30]:

(k − (Z/h))t0
Dγ

tk
F(t) ≈ 1

hγ

k

∑
j=0

c(γ)j F
(

tk−j

)
, (5)

where Z is noted as memory length, tk = kh and c(γ)j , (j = 0, 1, . . .) are the binomial
coefficients that easily computed from the following equations [28]:

c(γ)0 = 1, c(γ)j =

(
1 − 1 + γ

j

)
c(γ)j−1, (j = 1, 2, . . .). (6)

Therefore, a general numerical approximation of the fractional-order differential
equation:

t0
Dγ

t F(t) = G(F(t), t), (7)

where G is a nonlinear function, that can be written as,

F(tk) = G(F(tk−1), tk−1)hγ −
k

∑
j=v

c(γ)j F
(

tk−j

)
, (8)

With the aid of the principle of the short memory, the summation index v in Equation (8) is
considered as v = 1 for all k < Z/h and v = k − (Z/h) for k > Z/h. However, we set v = 1 for
all k when the principle of the short memory is not used. Clearly, the consequence for this
approximation makes us pay a penalty in the shape of a few inaccuracies. If F (t) ≤ M, we
may easily estimate the memory length Z, providing the needed accuracy ξ as [31]:

Z ≥ [M/(ξ · |Γ(1 − γ)|)]1/γ (9)
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An investigation of the short memory impact and the differences between long and
short memory were examined and illustrated in [30]. Generally, we can easily apply the GL
fractional derivative approximation to systems of fractional-order in the following form,

t0
Dγ

t Fi(t) = Gi(F1(t), F2(t), . . . , FN(t), t), i = 1, 2, . . . , N. (10)

3. Grünwald–Letnikov Discretization of Fractional-Order SIR Model

For numerical simulation of the fractional-order SIR model described in the system (2),
we will implement the introduced GL discretization technique to solve it. This approach is
established on the fact that for many classes of continuous functions, the fractional-order
derivatives of Grünwald–Letnikov and Caputo are equivalent [31]. Using the fractional
GL numerical approximation in the Equation (8), the numerical solution of the system (2),
when C

t0
Dγ

t ≡ t0
Dγ

t , can be obtained using the following iterative formulas,

S(tk) = [(1 − p) ω − ω S(tk−1)− β S(tk−1) I(tk−1)]hγ −
k
∑

j=v
c(γ)j S

(
tk−j

)
,

I(tk) = [−(σ + ω) I(tk−1) + β S(tk) I(tk−1)]hγ −
k
∑

j=v
c(γ)j I

(
tk−j

)
,

R(tk) = [pω − ω R(tk−1) + σ I(tk)]hγ −
k
∑

j=v
c(γ)j R

(
tk−j

)
,

(11)

where, k = 1, 2, 3, . . . , N, for N = T/h and T is the simulation time. The binomial coefficients
c(γ)j are calculated using the formula in Equation (6). Along this paper we set the start data
(initial conditions) as follows: S(t0) = k1, I(t0) = k2, R(t0) = k3 and the start time t0 = 0.

4. Stability Analysis of the Fractional-Order SIR Model

In this section, we examine the stability of the considered SIR model. We proceed to find
the fixed points (steady solutions) that occur when t0

Dγ
t S(t) = t0

Dγ
t I(t) = t0

Dγ
t R(t) = 0,

and evaluate their stability. The fixed point that occurs at a long-term behavior of the frac-
tional system (2) are Pf =

(
S∗

f = 1 − p, I∗f = 0, R∗
f = p

)
. This fixed point is corresponding

to the disease-free equilibrium which is described by the nonexistence of the infected nodes.
The Jacobian matrix for the SIR system (2) is defined as:

J =

⎡⎣ −βI − ω −βS 0
βI βS − ω − σ 0
0 σ −ω

⎤⎦, (12)

At disease free equilibrium fixed point, the eigenvalues relating to the matrix J are,

λ1 = β(1 − p)− ω − σ, λ2 = −ω, λ3 = −ω. (13)

This disease-free equilibrium fixed point is asymptotically stable if all the eigenvalues
in Equation (13) satisfy the following condition [32]:

|arg(λ1,2,3)| >
π

2
γ. (14)

From Equations (13) and (14), the condition that guarantees the stability of SIR dy-
namical system at the disease-free equilibrium point is,

β(1 − p) < ω + σ, ∀ γ ∈ (0, 1]. (15)

Therefore, the vaccination reproduction number Vr can be defined as,

Vr =
β(1 − p)

ω + σ
. (16)
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If Vr is higher than a limit value, an infectious disease can propagate in a susceptible
group. Moreover, the condition in Equation (15) shows that a critical vaccination fraction
pc can defined as,

pc = 1 − ω + σ

β
. (17)

It is worth to note that above this critical fraction, the disease-free equilibrium is stable
i.e., p > pc. Therefore, the vaccination fraction must be large enough in order to effectively
avoid surge period of the disease.

The other fixed point of the dynamical system (2) is the point corresponding to the
endemic equilibrium point, which is described by the existence of the infected nodes. This
point is obtained as Pe =

(
S∗

e = 1−p
Vr

, I∗e = ω
β (Vr − 1), R∗

e = 1
βS∗

e

[
ωp + σ − σ

β (ω + σ)
])

. It
is clear that the endemic equilibrium will only occur when Vr > 1. At this point, the
eigenvalues relating to the matrix J are obtained as,

λ1 = −ω, λ2,3 = −ωVr

2

⎛⎝1 ±
√

1 − 4
(ω + σ)

ωVr

⎞⎠. (18)

From Equations (14) and (18), the endemic equilibrium point Pe is asymptotically
stable if the following condition is fulfilled,

1 < Vr ≤ 4
ω
(ω + σ), ∀ γ ∈ (0, 1]. (19)

5. Numerical Results and Discussion

In the current section, we present numerical results with many visualizations to
simulate the dynamics of the present fractional-order SIR model subjected to several
fractional order γ, initial conditions and parameters. Along this section, we set the time
step h = 0.01 for the fractional GL iterative scheme and for the Maple RK4 built-in scheme.
Firstly, we consider the numerical values of the case considered in [1,2] to show the
inaccuracy of the results displayed in these papers. As mentioned in [1,2], we assume:

k1 = 1, k2 = 0.5, k3 = 0, p = 0.9, β = 0.8, ω = 0.4, σ = 0.03. (20)

According to the parameters in Equation (20), the critical vaccination fraction pc = 0.4625.
Therefore, this case falls under the disease-free equilibrium case at which the steady state
solution asymptotically approaches to the following fixed point,

Pf =
(

S∗
f = 0.1, I∗f = 0, R∗

f = 0.9
)

(21)

Looking at the results that were presented in [1,2], we found that the graphical repre-
sentations of the solutions are inaccurate and do not agree with the corresponding steady
state solution that shown in Equation (21). In this regard, we compared our numerical
results with the results presented in [1,2] for the susceptible group S(t) only at several
values of the fractional order γ. This comparison is displayed in Figure 1. For the validation
purpose of the present numerical results, we plot the solution of Maple RK4 built-in scheme
along with our solution using the GL scheme at γ = 1.
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(a)

  
(b) (c) 

Figure 1. Comparison of S(t) between (a) present results, (b) results of [1] and (c) results of [2].

From Figure 1, it is shown that the graphical representation of S(t) in [1,2] is incorrect
even in the transient region of the solution. From Figure 1c that was presented in [2], it can
be shown that S(0) = 0 although the authors considered S(0) = 1 in their study. Moreover,
the graphical representations of I(t) and R(t) that displayed in [1,2] are inaccurate as well
because they do not agree with the corresponding fixed point in Equation (21). For γ = 1,
the excellent agreement between the approximate solution using RK4 scheme and the GL
scheme validates the approximate solution of GL scheme. Figure 1a illustrates that our
approximate solution agrees with the steady state fixed point shown in Equation (21). This
note is considered as another validation of the present results.

The rest of this section is related to the generalization of the cases presented in [3]
to examine the analyze of those cases subject to various fractional orders, mainly γ = 1,
γ = 0.75 and γ = 0.5 for the same initial conditions and parameters. Because of the consid-
ered SIR model encounters long interepidemic periods, we set the simulation time T = 250.
For the purpose of the comparison with the results of [3], two versions of the solutions
graphs were displayed. One at a small-time behavior T = 10, to show how the solutions at
the transient region behave; and the other at a long-time behavior T = 250, to show how the
solutions behave at long interepidemic period (steady state solution). Here, we set β = 0.8,
ω = 0.4 and σ = 0.03 for all the considered cases. According to these parameters, the critical
value of the vaccination portion is obtained as pc = 0.4625. The results of the RK4 method
at γ = 1 are plotted by circle points (◦).

• Case 1

We consider the initial conditions and case parameters as k1 = 1, k2 = 0, k3 = 0 and
p = 0.9. Here, we have a stable disease-free equilibrium case with a vaccination reproduc-
tion number Vr = 0.186047.

This case demonstrates the effect of high-level vaccination exposure on the initial
individuals with no infective individuals. Figure 2 displays a comparison between present
numerical results for S, I and R versus time for various fractional orders, γ = 1, γ = 0.75
and γ = 0.5, against the results obtained in [3] when γ = 1. It can be shown that there is an
excellent agreement between the results of GL scheme, RK4 scheme and the obtained in
at γ = 1. Furthermore, the graphical representation of the numerical results demonstrates
that the solutions are monotone dependent on the order of the fractional derivative γ. The
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susceptible, infective, and removed individuals decrease as the fractional order γ decreases
in both transient and steady state stage. Generally, as γ diminishes, the fixed equilibrium
solution reduces as well. For this case, the disease has been successfully eradicated because
of the effect of high-level vaccination fraction p. It is worth to notice that all individuals
normally remain disease-free for all times.

  
(a) (b) 

 
(c)

Figure 2. Behavior of various individual fractions (S in black, I in red and R in blue) versus time for Case 1 at different
fractional order values (a) till T = 10, (b) results of [3] and (c) till T = 250.

• Case 2

In this case we make a slight change in the initial condition to study the influence
of high-level vaccination exposure on the initial low-level infective individuals. Here
we consider k1 = 0.8, k2 = 0.2, k3 = 0 and p = 0.9. This case is also a stable disease-free
equilibrium one, with a vaccination reproduction number Vr = 0.186047, in which the
disease will be eradicated.

Figure 3 displays a comparison between present numerical results for susceptible,
infective and removed individuals versus time for various fractional order γ, along with
the results obtained in [3] when γ = 1. When considering an integer order, an excellent
agreement between the results of GL scheme, RK4 scheme and the results obtained in [3] is
realized. As shown from Figure 3, the susceptible and infective individuals reduce with the
passage of time whereas the removed individual raises due to the appearance of recovered
and vaccinated groups with long-lasting resistance against disease and hence the disease
will be eradicated. Here, the disease-free equilibrium is reachable as soon as the vaccination
amount level is more than the critical vaccination value pc (i.e., p > pc) as occurred in Case 1.
The impact of the fractional order γ on the dynamic of the solutions is the same as its effect
in Case 1.
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(a) (b) 

 
(c)

Figure 3. Behavior of various individual fractions (S in black, I in red and R in blue) versus time for Case 2 at different
fractional order values (a) till T = 10, (b) results of [3] and (c) till T = 250.

• Case 3

Here we consider an endemic-equilibrium case by setting k1 = 0.8, k2 = 0.2, k3 = 0
and p = 0.3. This case explains the impact of low-level vaccination exposure on the initial
individuals with low-level infective population. Figure 4 shows a graphical representation
of numerical results for the susceptible, infective, and removed population versus time
for various fractional order γ, alongside the results obtained in [3]. As expected, when
γ = 1, an excellent agreement between the obtained results and the results displayed in [3]
is achieved.

From Figure 4, it can be notice that the number of susceptible individuals reduces,
while the removed individuals increase with a small amount as time expands. Nevertheless,
it is notable that the infective individuals will never vanish as time expands and hence
the endemic case continues with no disease eradication. This proves that a disease-free
equilibrium could not be accomplished when the vaccination amount is less than the
critical vaccination value (i.e., p < pc). In this case, the endemic equilibrium stays stable
because a vaccination reproduction number Vr = 1.302326 satisfies the stability condition
in Equation (19). In such an endemic-equilibrium case, the fractional order γ plays an influ-
ential role. The fractional order affects the susceptible, infective, and removed individuals
by a different manner from disease-free equilibrium cases. When γ < 1, we found that
as the fractional order γ decreases, the susceptible and infective groups rapidly decrease
in the transient stage and then begin to increase once again in the steady state stage. In
addition, for γ < 1, the susceptible individuals will be more than the amount for γ = 1 in
the transient stage. While the infective individuals remain less than the amount for γ = 1 in
both transient and steady state stages.
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(a) (b) 

 
(c) 

Figure 4. Behavior of various individual fractions (S in black, I in red and R in blue) versus time for Case 3 at different
fractional order values (a) till T = 10, (b) results of [3] and (c) till T = 250.

• Case 4

Here we consider another endemic-equilibrium case by setting k1 = 0.8, k2 = 0.2, k3 = 0
and p = 0. This case describes the influence of low-level vaccination exposure on the initial
individuals with no vaccinated people. Figure 5 shows the results visualization for the
susceptible, infective, and removed population with time for various values of γ, beside
the results obtained in [3] for γ = 1.

As expected, an excellent agreement between our results and the results obtained
in [3] is realized. Similar to Case 3, we have a stable endemic-equilibrium situation
with a vaccination reproduction number Vr = 1.860465. Here, the number of susceptible
individuals decreases while the infective individuals increase by the time for the steady
state stage. The only role of the removed individuals is the very little fraction of the
recovered population with long-lasting immunity. Here, the disease is quickly transported
to the bulk of people. The impact of the fractional order γ on the dynamic of the solutions
is similar in its impact in Case 3.

A sensitivity analysis of the considered cases is displayed in Table 1 which illustrates
how the model dynamics differently behave as per parameters values changed. From the
data presented in the table, it is clear that the numerical results are in excellent agreement
with the results of the system fixed points in both disease-free equilibrium and endemic
equilibrium case. For the disease-free equilibrium cases, the fraction of the infected popula-
tion is vanishing for all values of the fractional order γ by the time and hence a disease
has been eradicated. While for the endemic equilibrium cases, the fraction of the infected
population decreases with the decreasing of the fractional order γ by the time, but the
disease is not eradicated.
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(a) (b) 

(c) 

Figure 5. Behavior of various individual fractions (S in black, I in red and R in blue) versus time for Case 4 at different
fractional order values (a) till T = 10, (b) results of [3] and (c) till T = 250.

Table 1. Impact of various parameter values on the population fractions.

Case Vr γ
Fixed Point of the
Stability Analysis

Steady State Equilibrium
of the Numerical

Solution at T = 250
Comment

S I R S I R

1 0.186
1

0.1 0.0 0.9
0.1000 0.0 0.8999

Removal of
the disease

0.75 0.0989 0.0 0.8897
0.5 0.0914 0.0 0.8207

2 0.186
1

0.1 0.0 0.9
0.0999 0.0 0.9000

0.75 0.0989 0.0 0.8897
0.5 0.0913 0.0 0.8208

3 1.302
1

0.5375 0.1512 0.3113
0.5375 0.1512 0.3113

No removal
of the

disease

0.75 0.5457 0.1363 0.3066
0.5 0.6277 0.0102 0.2742

4 1.860
1

0.5375 0.4302 0.0323
0.5375 0.4302 0.0323

0.75 0.5440 0.4140 0.0306
0.5 0.6063 0.2870 0.0188

6. Conclusions

This paper deals with a new application of a Grünwald–Letnikov method for the
achievement of a numerical simulation of a fractional-order SIR epidemiological diseases
model. The significant advantage of the considered technique is that it can be used without
system linearization or any other restrictions for any fractional-order dynamical system. A
stability analysis is performed to qualitatively investigate the dynamics of the model in both
disease-free and endemic equilibrium case. It is explained that the graphical representation
presented in [1,2] are inaccurate. One of the issues that validates the present results is
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the excellent agreement between them with the results presented in [3] and RK4 results
for integer order γ = 1. The excellent agreement between the asymptotic behavior of the
solutions with the numerical results is another evident on the validation and the reliability
of the considered numerical technique in studying such dynamical models in epidemiology.
The proposed technique is reliable and accurate in simulating the behavior of the solutions
for a long-time interval. The disease-free equilibrium is stable if the vaccination amount
above a critical value pc. The dynamics of the model is strongly dependent on the value
of the fractional order γ. For the endemic equilibrium cases, the fraction of the infected
population decreases by the reduction of the fractional order γ as time passes.
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Abstract: The dynamics of a specific consumer-resource model for Daphnia magna is studied from
a numerical point of view. In this study, Malthusian, chemostatic, and Gompertz growth laws for
the evolution of the resource population are considered, and the resulting global dynamics of the
model are compared as different parameters involved in the model change. In the case of Gompertz
growth law, a new complex dynamic is found as the carrying capacity for the resource population
increases. The numerical study is carried out with a second-order scheme that approximates the
size-dependent density function for individuals in the consumer population. The numerical method
is well adapted to the situation in which the growth rate for the consumer individuals is allowed to
change the sign and, therefore, individuals in the consumer population can shrink in size as time
evolves. The numerical simulations confirm that the shortage of the resource has, as a biological
consequence, the effective shrink in size of individuals of the consumer population. Moreover, the
choice of the growth law for the resource population can be selected by how the dynamics of the
populations match with the qualitative behaviour of the data.

Keywords: size-structured population; numerical methods; characteristics method; growth laws;
asymptotic behaviour; Daphnia magna

MSC: 92D25; 92D40; 65M25; 65M12; 35B40

1. Introduction

Population dynamics is a very active field with different disciplines (epidemiology,
ecology, etc.) in which a variety of theoretical studies and different numerical approaches
arise. The purpose of this work is to analyse, from a numerical point of view, some aspects
of the dynamics of a problem that describes the evolution of a Daphnia magna population,
as an example of a consumer-resource model. As, in general, it is not feasible to obtain its
dynamics from a theoretical point of view, the behaviour of the solutions to the problem
is analysed with numerical techniques. The model is solved by means of an efficient
numerical method adapted to the problem, which was proposed and analysed in [1]. It is a
second-order method that has been used successfully to obtain numerical approximations
to solutions of a wide range of physiologically structured population problems [1–3]. The
numerical method provides the size dependence of the density of the consumer population
and can afford numerical approximations even in the situation of unbounded density
functions. With this help, the evolution of the consumer-resource model of the Daphnia
magna is studied to evaluate the effect of different biological growth laws for the resource
on the dynamics of the model. The method allows achieving certainty regarding different
conclusions on the dynamics of the model.

Mathematics 2021, 9, 2746. https://doi.org/10.3390/math9212746 https://www.mdpi.com/journal/mathematics263
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Many population dynamics models can be formulated and analysed as a specific
physiologically structured consumer-resource model. In de Roos and Persson [4], a trophic
chain population model with a resource, a consumer, and a top predator is considered, and
its stability analysis was performed in Sanchez and Getto [5]. Cuesta et al. [6] studied the
stability of a problem for phytoplankton cell dynamics and allometry in the growth rate and
a top predator. Pang et al. [7], also studied the stability of models structured by the age of
infection for HIV transmission. The group of Lafferty approach to these models is through
the formulation of a general complete macrostructured population model [8]. Aylaj and
Noussair [9] analysed the convergence of a numerical method for the approximation to the
solution of a multistage kinetic model of a physiologically structured population of insects
with four stages in their life-cycle. The numerical integration for an erythropoiesis model
with two dynamical growth factors (erythropoietin and glucocorticoids) was proposed
in [10].

The pioneering work of Kooijman and Metz [11] was the beginning of the theoretical
study of consumer-resource models. These authors presented a mathematical model for the
development of an ectothermic population (Daphnia magna, water flea) in which the amount
of food they are supplied with represented a regulatory mechanism for the population
density. The model was length-structured and also included a stage of maturity: the
difference between juveniles and adults in the population. A few years later, this model
was studied by Thieme [12]. He described the population as a distributional solution of
a classical partial differential equation formulation and explained heuristically why the
well-posedness was a problem and to what extent it could be solved. He also included a
dynamical environment in which individuals fed and that evolved with a general growth
law in absence of a consumer. In [13], Diekmann et al. proved that, under appropriate
assumptions, the local stability of a steady-state was determined by the spectral properties
of the linearised semigroup. They applied this theory to the consumer-resource model
that was transformed into a delay ordinary differential equation coupled with a birth law
(Volterra functional formulation). They employed the age of individuals as the structuring
variable with a finite life span and a finite delay in the description of the birth law. These
results were extended to the infinite delay case in [14], which allowed them to study
problems with infinite life span. The properties of the stability of the former model
proposed by Kooijman and Metz, including the maturation stage, were studied in [15].
This work led to the theoretical support of [16], where de Roos et al. performed a numerical
study of such equilibria. This analysis assumed positive continuously differentiable vital
rates and only continuous at the value of maturity.

On the other hand, the numerical study of the dynamics of the model is also important
because it gives an answer to problems that cannot be addressed theoretically. With respect
to the research on the dynamics of the model, recent papers [17,18], tried to compute the
roots of the characteristic equation numerically by means of pseudoespectral discretisation
and then determine the stability properties. This last procedure was also applied to a more
complex model that introduced to the system a superconsumer (predator) [5]. Moreover,
suitable numerical methods were proposed to approximate the solution of the problem
and were used to study its dynamics by means of a long-time integration. These studies
concerned different cases that also included an unbounded consumer population [1–3,19].

Consumer-resource models with undefined sign growth rates for the consumer popu-
lation still have to be considered theoretically concerning the existence, uniqueness, and
regularity of solutions. Numerically, only [1–3] dealt with this problem but by employing
a logistic growth law for the resource. The numerical method used in the simulations is
well adapted to this situation in which the growth rate is allowed to change the sign, and
therefore, individuals in the consumer population can shrink in size as time evolves.

The remainder of the paper is organised as follows. Section 2 describes a general
consumer-resource model of a physiologically structured population and the growth laws
for the resource considered in the numerical experiments. In this model, the maximum
size of individuals in the population is not fixed and they are allowed to shrink. The main
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contribution is included in Section 3, where an extensive numerical experimentation, for
the case of the Daphnia magna, is reported using vital rates and initial conditions selected
from the literature. The simulations will show the complexity of the dynamics of both
populations (consumer—Daphnia magna—and resource—algae) under different biological
growth laws and parameter values in the model. The numerical experimentation is devel-
oped with an efficient numerical scheme, which is completely described in Appendix A to
make the paper self-contained.

2. The Daphnia magna Model and the Growth of the Resource

The problem studied is in the form introduced by de Roos [19]: he did not consider a
maturation stage to distinguish between juveniles and adults (therefore individuals started
reproducing immediately after they were born), and for the first time, he described the
growth rate of the consumer population with a function that had an undefined sign. This
difficult issue, from a mathematical point of view, provided an answer to the modelisation
of rare species that could diminish their size.

A size-structured consumer-resource model that represents the evolution of a single
consumer population preying on a single resource (for instance, a Daphnia magna feeding
on an algal population) is employed. In general, this model is composed of two nonlinear
coupled problems. On the one hand, the evolution of the consumer population, which
is structured by the length of the individuals. On the other hand, the evolution of a
resource, which is seen as an unstructured population. Henceforth, the model is composed
of a classical size-structured problem driven by a nonlinear hyperbolic partial differential
equation (conservation law), a nonlocal boundary condition (the birth law), and an initial
condition:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut + (g(x, t, s(t)) u)x = −μ(x, t, s(t)) u, x0 < x < xM(t), t > 0,

g(x0, t, s(t)) u(x0, t) =
∫ xM(t)

x0

α(x, t, s(t)) u(x, t) dx, t > 0,

u(x, 0) = u0(x), x0 ≤ x ≤ x0
M,

(1)

and by the following nonlinear initial value problem{
s′(t) = f (t, s(t), I(t)), t > 0,
s(0) = s0.

(2)

Here t and x represent, respectively, the time and the length of the consumer individ-
uals, and x0 and x0

M denote the minimum and maximum consumer individual length at
the initial distribution, respectively. Functions s(t) and u(x, t) mean the available resource
and the density of individuals with length x at time t, respectively. The solution of this
evolution problem depends on the initial conditions u0(x), x0 ≤ x ≤ x0

M, and s0, the
vital rates that define the evolution of the consumer (growth, birth, and death), and the
biological growth law of the resource. The fertility and mortality rates, α and μ, respec-
tively, are non-negative functions. The growth rate, g, has the following special properties:
it has an undetermined sign but g(x0, ·, ·) > 0 at any time t > 0. These conditions on
the growth rate mean that, on the one hand, individuals grow from their birth and, on
the other hand, individuals in the population can shrink under food scarcity conditions.
These vital rates are influenced by the time, the length of an individual and the available
resource. Next, the biological growth law of the resource is represented as the sum of
two terms f (t, s, I) = fS(t, s) + fu(t, I) to fulfil the requirements of the further numerical
experimentation. The first one, fS, introduces the evolution of the resource without the
consumer influence; the second one, fu, takes into account the intake of resources by the
consumer-population individuals through a quantity, I(t), that represents its consumption
along time. It is described with the following nonlocal term,

I(t) =
∫ xM(t)

x0

γ(x, t, s(t)) u(x, t) dx, t ≥ 0, (3)
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where γ represents the intake of individuals of size x in the consumer population at time t
and also depends on the available resource. Thus, the evolution of the individuals in the
consumer population is affected by the competition for food through the vital rates, which
depends on the available resource itself. The evolution of the feeding resource is modified
by the individuals through (2).

Finally, the maximum individual length, xM(t), is not fixed and can evolve in a non-
monotonical way with time due to the lack of restriction on the growth rate sign. Its
evolution follows the corresponding characteristic curve. It is the solution of the next initial
value problem, {

x′
M(t) = g(xM(t), t, s(t)), t > 0,

xM(0) = x0
M.

(4)

To close this section, different alternatives for the growth of the resource in the absence
of a consumer, which is given by fS, will be discussed. The analysis is focused on the
growth phenomena with the introduction of three basic distributions which provide the
main mathematical frameworks.

1. The exponential growth: fS(t, s) = r s, r ∈ R.
This is the most basic and simplest growth function and, in essence, it is the growth
relationship considered by Malthus (see [20], for instance). The parameter r is the
specific growth rate. When r �= 0, there is only an equilibrium for the differential
equation associated: the trivial solution. If r < 0, the trivial equilibrium is an attractor.
If r > 0, this solution is unbounded.

2. The chemostat growth function: fS(t, s) = r (K − s), r > 0, K > 0.
This is a modification of the exponential growth function with a limited increment
that depends on the carrying capacity K. There is a stable nontrivial equilibrium that
corresponds with the carrying capacity. When the s0 < K population increases, and
the growth is slower because the available resources decrease. In the case s0 > K,
population decreases to the carrying capacity. It also can represent a population, given
by s, that is growing up in an environment in which a constant quantity of feeding is
provided (the carrying capacity) and r represents the dilution rate [20].

3. The Gompertz growth function: fS(t, s) = r s log
(

K
s

)
, r > 0, K > 0.

The Gompertz equation was formulated originally as a law of decreasing survivor-
ship, but it has also been employed to model the growth of plants, tumours, and
fisheries [20]. There is a limited carrying capacity. The population has a similar
behaviour as when the biological growth is described with the well-known logistic
growth law because there are two equilibria: the unstable trivial equilibrium and a
stable nontrivial one.

Although there are other possibilities (logistic, power laws, Ricker’s, Weibull or
Gaussian distributions, etc., or diverse combinations among them) the results will show
enough variability to consider that the discussion is enough with these choices. The logistic
growth, which was studied in [1–3,19], deserves a special mention. Numerical simulations
for this growth law will not be reported because the dynamics obtained with the numerical
method are basically not different from the numerical results discussed for the Gompertz
growth law.

3. Numerical Experimentation

As it was previously stated, the main interest is to discover the dynamics of the
particular case introduced in [19] to describe the evolution of the Daphnia magna population,
by using different growth laws for the resource. Therefore, most of the parameter data
and functions that were employed in that work are considered in this study. The growth
rate is given as g(x, t, z) = g0

( z
1+z − x

)
, the mortality rate function is chosen constant,

μ(x, t, z) = μ, and the fertility rate is defined α(x, t, z) = α z
1+z x2. The function that controls
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the way in which consumer individuals use the resource, in the definition of the nonlocal
term (3), is considered γ(x, t, z) = z

1+z x2. The functional that depends on the consumer
is given by fu(t, I) = −I. It has to be noted that the growth and fertility rates, and the
nonlocal term weight function γ depend on the resource through the Micaelis–Menten law.
Lastly, the parameters employed are g0 = 1, μ = 0.1, and α = 0.75, as in [19].

The numerical method used in the simulations was analysed in [1] and, for the sake
of completeness, is fully described in Appendix A. The second order of convergence was
proven under enough regularity hypotheses on the function data. It should be pointed
out that the following numerical results are performed beyond the limits of the numerical
convergence theorem because the integration could be made on unbounded problems. On
the one hand, the search of the asymptotic behaviour of the problem compels to employ an
undetermined large time interval. On the other hand, some combination of the parameter
values (as the one employed in [19]) makes the population density unbounded close to
the maximum size xM(t), t > 0. This last case was explored in [3], and it arises from the
relationship g0 > μ = 0.1, which makes the equilibrium solution unbounded when the size
of individuals tends to the maximum size. It should be argued that this situation is fully
admitted because most of the theoretical analysis made for the model asks for solutions on
L1([0, xM(t)]), t > 0 (see [13], for instance). Although the study performed in the following
avoids this kind of unboundness, the numerical approximation given in [3] was based
on modifying the removing procedure (see Equation (A3), Appendix A) to adapt it to the
behaviour of the solution. Therefore, the value g0 = 0.075 is employed, that ensures both
the boundedness of the solution without affecting the behaviour of the model and the
non-negativity of the resource at equilibrium.

In addition to the fixed parameters previously introduced in the vital functions,
different experiments with diverse values of the parameters r ∈ R, the specific growth
rate of the resource, and K ∈ R+, the carrying capacity, are performed. In each trial, the
following initial conditions are employed: s0 = K

2 (s0 = 7 in the case of Malthusian growth,
where there is no declared carrying capacity), and

u0(x) =

⎧⎨⎩ 100 (x̃M − x)β, if 0 ≤ x ≤ x̃M,

0, if x̃M < x ≤ x0
M,

(5)

where x̃M = 0.875 and β = 0.5153 are chosen to fulfil the compatibility between initial and
boundary conditions.

If the growth rate of the resource is autonomous, the computation of the theoretical
equilibrium of (1)–(4) is possible, due to the choice of the function data in this test problem
(note that all the growth functions described in Section 2 are independent of time). Thus,
when f ∗S (s) is defined as the autonomous representation of fS(t, s), whenever a nontrivial
steady state of (2), S∗, exists, the nontrivial equilibrium state for the coupled problem (the
maximum size, consumer, and resource) is given by the following formulae [1]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗
M = 3

√
μ (μ + g0) (μ + 2 g0)

2 α g2
0

,

S∗ =
x∗

M
1 − x∗

M
,

u(x) =

⎧⎪⎨⎪⎩
α

g0

1 + S∗

S∗ f ∗S (S
∗)

(
1 − x

x∗
M

)(
μ
g0

−1
)

, if 0 ≤ x ≤ x∗
M,

0, if x∗
M < x ≤ xM.

(6)

This nontrivial equilibrium state could be stable, unstable or even not exist. The initial
values considered in (5) are different enough from this state to observe the convergence of
the solution towards such a nontrivial equilibrium state when it happens.
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The numerical integration is carried out in an undetermined finite time interval that
varies in different circumstances (for instance, in the case of the Malthusian growth, the
integration time is left free to arrive to extinction or an unbounded solution). In previous
works [1], the convergence of the numerical approximation to the theoretical nontrivial
equilibrium (when it exists) was stated. The good behaviour of the numerical scheme allows
reaching the possible behaviours: unbounded solutions, trivial equilibrium (extinction of
the consumer population), nontrivial equilibrium (coexistence of both populations), and
periodical solutions (stable limit cycles). It is observed that it is enough to consider the
discretisation parameters values as h = k = 1.5625 · 10−2 to describe the full asymptotic
dynamics of the problem.

All in all, different scenarios of the growth of the resource in the absence of the popula-
tion will be considered, and the influence of the consumer population on the dynamics will
be discussed. Therefore, although the original work of de Roos [19] introduced a feeding
resource that evolved with a logistic function, its behaviour is challenged with the three
other new possibilities presented in the previous section.

3.1. Malthusian Growth

The first choice consists of considering an unlimited growth. The evolution of the
resource is given by the Malthusian growth, with a constant intrinsic rate of growth,
fS(t, s) = r s, r ∈ R. Therefore, the resource grows exponentially when r > 0 and declines
to extinction when r is negative. It would only remain constant when births balance deaths
(r = 0).

This kind of growth is introduced into the model. The main consequence expected
would be that the consumer expedites the decline of the resources, due to the consumption
effect produced by fu(t, I) = −I. Therefore, it could be thought that r = 0 will remain the
threshold value of the intrinsic rate of growth that separates the exponential growth from
the extinction of the resource.

In order to validate this assumption, tup and tdown are computed. tup is the integration
time at which the approximated value of the resource is higher than 1020, a sufficiently large
value to represent an exponential growth, i.e., an unbounded solution. tdown is the integra-
tion time at which the numerical approximation is lower than 10−20, a small enough value
to represent the extinction of the population. It is obvious that both values are mutually
exclusive. In addition, the theoretical time values that correspond to these integration times
but when there is no consumption of the resource are computed. The following formula is

employed t∗up =
1
r

log
(

1020

s0

)
or t∗down =

1
r

log
(

10−20

s0

)
. In Figure 1, the results obtained

with the numerical experimentation are plotted. The intrinsic rate of growth r is in the set
[−1, 1] and r is drawn versus tup and t∗up or tdown and t∗down, in a semilogarithmic scale. It is
observed that the consumer influence is interpreted as a modification of the response speed.
It decreases the time the resource takes to arrive to extinction and increases the time that
the numerical approximation needs to reach the fixed upper bound. Furthermore, the value
of the intrinsic growth at which the population remains constant disappears, and when
r = 0, the resource tends to extinction slowly. This behaviour shows the small influence
of the consumer population on the resource evolution with this kind of growth function.
Finally, the evolution of the consumer population is closely related to the behaviour of
the resource and it grows exponentially in the case of unlimited resources and decays to
extinction with scarce resources.

This is a signal of the limitations of exponential growth that could describe accurately
the growth for small values of time. After a certain period, other factors become involved
and the growth is retarded and limited.
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Figure 1. Malthusian growth. Behaviour of the numerical solution depending on r. tdown (solid line):
time at which the approximated resource shows an exponential decay, its value is lower than 10−20

(extinction). tup (dashed line): time at which it shows an exponential growth, its value is higher
than 1020 (unbounded solution). Theoretical values in the absence of the consumer (dotted line):

t∗up =
1
r

log
(

1020

s0

)
, r > 0, and t∗down =

1
r

log
(

10−20

s0

)
, r < 0.

3.2. Chemostat Growth

A growth law that circumvents some of the disadvantages of the Mathusian growth is
introduced. It is clear that the effect of the limitation of the growth of the resource imposed
by the carrying capacity of the environment affects its evolution. The chemostat growth
law is a simple choice to modelise this situation. It is also called exponential confined
growth law because the curve defined by the differential equation maintains the sign of the
curvature along time as it approaches the carrying capacity; therefore, it is always confined
to a region bounded by K. In terms of growth, it means that the resource rate of the growth
is proportional to the available space. Thus, the dynamics of the resource in the absence
of a consumer population are reduced to a stable nontrivial equilibrium that matches the
carrying capacity.

An extensive numerical experimentation with different values of both parameters
r, K ∈ R+ has been performed. It is observed that the size-structured consumer population
defined in (1) modifies the nontrivial equilibrium to which the resource population tends
to, but it does not modify its behaviour. Regardless of the value of parameters K and r
employed, the resource grows very fast to a value close and below the carrying capacity of
the environment (note that s0 is lower than K, otherwise it would decrease) followed by a
smooth transition to the stable nontrivial equilibrium.

Figures 2–5 confirm that statement. Three kinds of plots are shown. First, a 3D plot in
which the density function u(x, t) is drawn versus the size of individuals and time. Second,
the evolution of the maximum size, the resource, and the total population of consumers,
xM(t), s(t), and P(t) =

∫ xM(t)
x0

u(x, t) dx, respectively, are represented versus time. This
last quantity is computed numerically with the quadrature rule employed in the numerical
scheme. In the last plot, the transition that these three quantities follow to the equilibrium is
shown. It is a 3D plot in which the total population versus the resource and the maximum
size, for every value of the time integration interval is drawn. Furthermore, the equilibrium
value is shown.

This growth function confers stability to the equilibrium. However, the equilibrium
reached by the resource population is modified by the action of the consumer population.
It is observed that there is a threshold value of the carrying capacity K∗ (whose value
is K∗ = S∗ in (6)), below which the consumer population tends to extinction, probably
due to the lack of enough resources to survive (Allee effect type), and the resource tends
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to the carrying capacity. Therefore, the existence of a trivial equilibrium of the system
corresponding to the extinction of the consumer population and a value equal to the
carrying capacity for the resource population, can be assessed. This behaviour is shown in
Figure 2, with r = 4.5 and K = 3.4.

However, if K ≥ K∗, both populations tend to nontrivial steady states, which seem
to be stable, and are given by the expressions in (6). It should be assumed that the trivial
equilibrium for the consumer population becomes unstable and a new stable nontrivial
equilibrium appears; then we can affirm the existence of a transcritical bifurcation point for
the consumer population at K = K∗. The emergence of this nontrivial consumer equilibria
modifies the behaviour of the resource (and the maximum size) because, in these conditions,
it never reaches the carrying capacity and tends to the nontrivial equilibrium S∗ (6). In
this case, the nontrivial equilibrium reached by the system is modified and changes with
the value of K. This coexistence pattern between both populations is shown in Figure 3
(experiment made with r = 4.5 and K = 10). Figure 4 shows that the same dynamics
occur when the initial resource is larger than the carrying capacity, with the only novelty of
a continuous decline to the asymptotic state. In this experiment the following values of
parameters have been employed r = 4.5, K = 10, and s0 = 20.

Finally, no other change is noted when the value of the carrying capacity K is aug-
mented. It is only noticeable that the consumer population increases its size without
any other related changes in the other variables xM(t) and s(t). This is shown in a final
experiment with r = 4.5 and K = 20.2, as shown in Figure 5.

Figure 2. Chemostat growth. r = 4.5 and K = 3.4. Stable equilibria: consumer extinction. Plot on the left: evolution of the
structure of the consumer; plot in the centre: evolution of the maximum size, resource, and total consumer population to
the equilibrium; plot on the right: orbit followed towards the equilibrium (0.77, 3.4, 0).

Figure 3. Chemostat growth. r = 4.5 and K = 10. Stable equilibria. Plot on the left: evolution of the structure of the
consumer; plot in the centre: evolution of the maximum size, resource, and total consumer population to the equilibrium;
plot on the right: orbit followed towards the equilibrium (0.80, 4.09, 199.60).
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Figure 4. Chemostat growth. r = 4.5, K = 10, and s0 = 20. Stable equilibria. Plot on the left: evolution of the structure of the
consumer; plot in the centre: evolution of the maximum size, resource, and total consumer population to the equilibrium;
plot on the right: orbit followed towards the equilibrium (0.80, 4.09, 199.60).

Figure 5. Chemostat growth. r = 4.5 and K = 20.2. Stable equilibria. Plot on the left: evolution of the structure of the
consumer; plot in the centre: evolution of the maximum size, resource, and total consumer population to the equilibrium;
plot on the right: orbit followed towards the equilibrium (0.80, 4.09, 543.85).

3.3. Gompertz Growth

The last growth law in this study also presents an effect of limitation on the growth of
the resource. Unlike the chemostat growth law, there are two possible theoretical equilibria
in the system: an unstable trivial equilibrium state and a stable nontrivial equilibrium state
that corresponds to the carrying capacity of the environment. Therefore, in this case, the
evolution of the resource in the absence of the consumer population is towards the carrying
capacity.

An exhaustive numerical experimentation with different values of both parameters
r, K ∈ R+ has also been performed and the results are represented with similar figures
as in the chemostat growth section. First, the evolution of the density function u(x, t) is
plotted versus the size of individuals and the time. The three plots in the middle of the
figure represent the evolution of the maximum size, the resource, and the total population
of consumers versus time, respectively. The right-hand size 3D plot in the figure shows
the orbit that these three previously introduced quantities follow for every value in the
time integration interval. When the system arrives to a stable equilibrium, its value is
also shown.

Initially, a situation in which the consumer population does not affect the unstructured
resource is observed. This happens when the carrying capacity is lower than a threshold
value K∗ (whose value is again K∗ = S∗ in (6)). This case is similar to the corresponding
one in the chemostat growth law. The resource approaches the carrying capacity while the
consumer population tends to extinction, probably the consumer population does not find
enough resources to survive. In Figure 6, the use of r = 3 and K = 3.4 allows showing how
the whole system tends to a so-called stable trivial equilibrium state, s = K and u(x) = 0,
x ∈ [0, x∗

M]. Note that this situation happens regardless of the value of r.
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Figure 6. Gompertz growth. r = 3 and K = 3.4. Stable equilibria. Plot on the left: evolution of the structure of the consumer;
plot in the centre: evolution of the maximum size, resource, and total consumer population to the equilibrium; plot on the
right: orbit followed towards the equilibrium (0.77, 3.40, 0).

When the carrying capacity increases, the resource does as well. As a consequence,
the consumer population is able to survive, and when the consumer population appears
in the system, the dynamics of the resource population change. Thus, when K > K∗,
the resource population converges to the nonlinear steady-state given by S∗ in (6), and
the carrying capacity will never be a steady-state again. With respect to the consumer
population, it tends to the nontrivial equilibrium u∗(x), x ∈ [0, x∗

M] given by (6). Therefore,
the existence of a transcritical bifurcation at K∗ can be stated for the consumer population:
the trivial equilibrium becomes unstable and a nontrivial stable equilibrium emerges. In
Figure 7, the parameter values employed are r = 3 and K = 10, and it is shown how both
populations and the maximum size approach the stable steady-state given by (6). Thus, the
consumer affects the resource, but the stability of the asymptotic state is maintained and,
as a consequence, both populations coexist.

Figure 7. Gompertz growth. r = 3 and K = 10. Stable equilibria. Plot on the left: evolution of the structure of the consumer;
plot in the centre: evolution of the maximum size, resource, and total consumer population to the equilibrium; plot on the
right: orbit followed towards the equilibrium (0.80, 4.09, 82.28).

Thus far, the behaviour is quite similar to what we have described before with the
chemostat growth law. However, the stable nontrivial equilibrium lingers until the carrying
capacity reaches a second threshold K∗∗ > K∗, and then, it becomes unstable and a stable
limit cycle emerges. The value of the threshold depends on r and decreases as r increases.
Its existence was previously reported when the logistic growth law was employed [1].
Thus, the consumer population affects the behaviour of the resource and modifies the
stability of its nontrivial equilibrium. We could describe K∗∗ as a Hopf bifurcation.

The following figures are slight modifications of the others shown above: now the
evolution of the involved quantities (u(x, t), xM(t), s(t), and P(t)) with respect to the full
time-integration interval [0, T] is not presented. Instead, the period, TK, and the amplitude
of the resource oscillations, AK, of the corresponding limit cycle are computed numerically
for each experiment. The time interval, in which the involved quantities are displayed,
corresponds to [0, 5 TK], i.e., five periods once the limit cycle reaches its stability. The
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right-hand picture is completely different. It represents a 3D plot of the stable limit cycle at
which the evolutions of xM(t), s(t), and P(t) converge.

The following experiments are carried out with r = 3 and different values of the
carrying capacity, K > K∗∗. In Figure 8, the announced behaviour for K = 14.73 is
observed: the nontrivial equilibrium is unstable and a stable limit cycle emerges with
T14.73 = 15.26 and A14.73 = 1.14. The nontrivial steady-state loses its stability, and both
populations and the maximum size oscillate around the nontrivial equilibrium. It should
be pointed out the free behaviour of the maximum size as was done in [1] with the logistic
growth law.

Figure 8. Gompertz growth. r = 3 and K = 14.73. Stable limit cycle. Plot on the left: evolution of the structure of the
consumer; plot in the centre: evolution of the maximum size, resource, and total consumer population to the equilibrium;
plot on the right: stable limit cycle.

Beyond this new threshold K∗∗, a complex dynamic, which has never been described
in this kind of model so far, arises. It is shown in Figure 9, where simulations are made
with K = 15.21, K = 15.33, K = 15.45, and K = 15.93. The instability of the nontrivial
equilibrium and the convergence to a stable limit cycle is observed. However, the period
of the oscillations increases from T14.73 = 15.26 to T15.33 = 82.44 and diminishes again to
T15.93 = 32.06 (see Figure 9). This means that the period is doubled twice and, after that,
it is also split twice. This is a common doubling period cascade. The amplitude of the
oscillations (in the resource population) increases from A14.73 = 1.14 to A15.93 = 10.04.

Finally, there are no different situations beyond this value. In Figure 10, we show
the numerical results we obtain with K = 20.2. The only statement is that the amplitude
increases with K, A20.2 = 14.45. A final influence of parameter r reveals the increments of
the consumer population (figure not shown).

Figure 9. Cont.
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Figure 9. Gompertz growth. r = 3. Stable limit cycle. Plot on the left: evolution of the structure of the consumer; plot in the
centre: evolution of the maximum size, resource, and total consumer population to the equilibrium; plot on the right: stable
limit cycle. Values of K from top to bottom: K = 15.21, K = 15.33, K = 15.45, and K = 15.93.

Figure 10. Gompertz growth. r = 3 and K = 20.2. Stable limit cycle. Plot on the left: evolution of the structure of the
consumer; plot in the centre: evolution of the maximum size, resource, and total consumer population to the equilibrium;
plot on the right: stable limit cycle.

4. Conclusions

In this work, the mutual interaction between the dynamics of a consumer population
and an unstructured resource is considered. Through the study of a specific consumer-
resource model for the dynamics of the Daphnia magna, we cope with the numerical
difficulties due to an undefined sign growth law for the individual consumers. The
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numerical method employed is well adapted to this kind of size-structured population
model: it efficiently provides the density function for the individuals in the consumer
population without the numerical dissipation of first-order finite difference methods (the
upwind, for instance) and the spurious oscillations from second-order finite difference
methods.

Although existence, uniqueness, and regularity results about this model with a non-
negative growth rate [12–15] have not been extended to the case of an undefined sign
growth law yet, these properties are assumed under usual hypotheses that include enough
smoothness on the function data. We focus on the numerical study of the long-time
behaviour of both populations. In this case, a numerical method, that deals efficiently with
the complex dynamics that arise, has been employed. With meaningful biological vital
rates for the function data for the Daphnia magna model [19], the complex dynamics, which
the model presents, are shown for each of three different growth laws.

The model behaves as a typical Malthusian population when this kind of growth law
is chosen. The only influence of the consumer population is to slow down or to increase
the speed at which the resource is unbounded or tends to extinction.

For the chemostat growth law, the consumer population does not influence the stable
behaviour of the resource. On the one hand, the whole system stabilises the resource
population towards the carrying capacity, and the consumer population tends to extinction,
and on the other hand, the system stabilises towards the nontrivial steady-state given
by (6). It should be pointed out that the consumer population increases with the increment
of both parameters r and K.

With respect to the Gompertz growth law, the model exhibits many of the same
properties as in the analysis of models that include the logistic growth law. In particular,
several features have been presented, such as: stable and unstable equilibria, and stable
periodical behaviours for different values of the parameters r and K of the resource growth
law. However, in the extensive numerical experimentation with different values of r and K,
a period cascade it is also obtained, short and long oscillations and short and long periods
that have not been presented in this model before. These results could indicate the use of
the Gompertz growth when other distributions do not match the real behaviour.

As the numerical simulations for each of the growth laws considered show, we can
argue that the shortage of the resource has, as a biological consequence, not only the
reduction in the total number of individuals of the stationary equilibria but also the
effective shrink in size of the individuals of the population. This second effect has to be
exclusively attributed to the undefined sign of the growth law of the consumer population.
A future work in this direction is to confirm this effect as a general pattern for other
consumer-resource population models in which an undefined sign growth rate is presented.
Furthermore, we should expect some confirmation with real data from field experiments
for these kinds of dynamics.
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Appendix A. Numerical Method

The description of the numerical scheme used in the simulations is introduced. This
was built “ad hoc” for the problem in the current conditions in [1]. It also could be used in
a long time integration searching for equlibria or periodicity.

The problem (1)–(4), ready to perform the numerical integration, is composed of four
fully coupled problems:{

x′(t; t∗, x∗) = g(x(t; t∗, x∗), t, s(t)), t ≥ t∗,
x(t∗; t∗, x∗) = x∗,{

s′(t) = f (t, s(t), I(t)), t > t∗,
s(t∗) = s∗,

u(x(t; t∗, x∗), t) = u(x∗, t∗) exp
{
−

∫ t

t∗
μ∗(x(τ; t∗, x∗), τ, s(τ))dτ

}
, t ≥ t∗,

where μ∗(x, t, s(t)) = μ(x, t, s(t)) + gx(x, t, s(t)),

g(x0, t, s(t)) u(x0, t) =
∫ xM(t)

x0

α(x, t, s(t)) u(x, t) dx.

Their discretisation will provide numerical approximations for the physiological states,
the evolution of the resource, and the solution at the grid points at each time level.

In the following, the equations of the numerical scheme are introduced. It is a second
order method, based on the trapezoidal quadrature rule (both integral and differential
versions). This is an implicit rule but an explicit predictor–corrector transformation is
used to compute a first aproximation and, in the second stage, to obtain the right value
(with higher order of convergence). The integration is made on a finite time interval
[0, T]. Therefore, given J ∈ N and λ ∈ R+, the discretisation parameters are defined as
h = x0

M/J, k = λ h. Thus, the number of time levels are given by N = [T/k], and the time
discretisation levels are tn = n k, 0 ≤ n ≤ N.

Now, to perform the numerical integration, initial values are provided: the initial
space discretisation, X0, X0

j = j h, 0 ≤ j ≤ J, the initialisation of the resource s0 and the

initial condition on the initial grid, U0, U0
j = u0(X0

j ), 0 ≤ j ≤ J. Then, the computation of

the general step {Xn+1, Sn+1, Un+1}, is built after the corresponding values at the previous
time step {Xn, Sn, Un}, 0 ≤ n ≤ N − 1, are known, by means of the following procedure.
The equations of the first stage are given by,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Xn+1,∗
0 = x0, Xn+1,∗

j+1 = Xn
j + k g(Xn

j , tn, Sn), 0 ≤ j ≤ J + n,

Sn+1,∗ = Sn + k f (tn, Sn, Q(Xn, γn · Un)),

Un+1,∗
j+1 = Un

j exp
{
−k μ∗(Xn

j , tn, Sn)
}

, 0 ≤ j ≤ J + n,

g(Xn+1,∗
0 , tn+1, Sn+1,∗)Un+1,∗

0 = Q(Xn+1,∗, αn+1,∗ · Un+1,∗).

(A1)

The equations in the second stage are⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Xn+1
0 = x0, Xn+1

j+1 = Xn
j +

k
2

(
g(Xn

j , tn, Sn) + g(Xn+1,∗
j+1 , tn+1, Sn+1,∗)

)
, 0 ≤ j ≤ J + n,

Sn+1 = Sn +
k
2

(
f (tn, Sn, Q(Xn, γn · Un)) + f (tn+1, Sn+1,∗, Q(Xn+1,∗, γn+1,∗·Un+1,∗))

)
,

Un+1
j+1 = Un

j exp
{
− k

2

(
μ∗(Xn

j , tn, Sn) + μ∗(Xn+1,∗
j+1 , tn+1, Sn+1,∗)

)}
, 0 ≤ j ≤ J + n,

g(Xn+1
0 , tn+1, Sn+1)Un+1

0 = Q(Xn+1, αn+1 · Un+1).

(A2)
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The discretisation of the nonlocal terms is made by means of a composite quadrature

rule (in this case based on the trapezoidal one), Q(yn, Vn) =
J+n

∑
l=1

yn
l − yn

l−1
2

(
Vn

l−1 + Vn
l
)
.

The grid of the scheme is built following the characteristic curves and, therefore, a new
node appears after each time level. For efficiency reasons, the number of grid nodes is kept
constant by removing one grid node after every time step as in the following procedure:
first, Xn+1

l such that
|Xn+1

l+1 − Xn+1
l−1 | = min

1≤j≤J
|Xn+1

j+1 − Xn+1
j−1 |, (A3)

is selected. Next, the selected node Xn+1
l is removed and the nodes are renamed. Thus, the

quadrature is performed on this subgrid with a fixed number of nodes. Other versions
of this procedure could be possible if the integration interval increases or decreases due
to the variable maximum size. Finally, γn,∗, αn,∗, γn, and αn are the vectors whose com-
ponents are αn,∗

j = α(Xn,∗
j , tn+1, Sn,∗), γn,∗

j = γ(Xn,∗
j , tn+1, Sn,∗), αn

j = α(Xn
j , tn, Sn), and

γn
j = γ(Xn

j , tn, Sn), respectively, 0 ≤ j ≤ J; and the vector products in (A1) and (A2) are
considered component-wise.

The analysis of this numerical method was performed in [1], where the corresponding
smoothness properties demanded by this second-order numerical scheme were specified.
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1. Introduction

The dynamics of the interactions between the individuals of different categories of a
population may be modeled by autonomous first-order differential equations. For a period
of time, there are situations when the total size of the population can be assumed constant,
that is, the model is a dynamical system with constant population. For instance, we recall
here the SIR model [1], a model of the opiate-using career [2], and the NERA model of drug
consumption in a given population [3]. Additionally, there are cases of high-dimensional
Lotka–Volterra systems with constant population [4,5].

A dynamical system with constant population always has a constant of motion. In
the three-dimensional case, if the system has a second constant of motion, then it admits a
Hamilton–Poisson formulation. In addition, controlled versions of such a system that are
also Hamilton–Poisson may be obtained by integrable deformations [6–8].

The paper is organized as follows. In Section 2, we particularize some known results
about Hamilton–Poisson formulations and integrable deformations in the case of a three-
dimensional dynamical system with constant population. In Section 3, we consider three-
dimensional Kolmogorov systems. We deduce the general form of a Lotka–Volterra system
with constant population and we present a Hamilton–Poisson formulation of it. We give
integrable deformations that are also with a constant population. Then, we obtain the
general form of a polynomial Kolmogorov system of degree 3 with constant population and
a particular version of it, which is Hamilton–Poisson. In Section 4, we study the stability of
the equilibrium states of the Lotka–Volterra system with a constant population restricted
to [0, ∞)3, the existence of periodic orbits, and we point out the heteroclinic orbits. We also
study the properties of the energy-Casimir mapping associated with this system and their
connections with the dynamics of the system.

2. Hamilton–Poisson Formulations and Integrable Deformations

In this section, we consider a system of three autonomous first-order differential
equations:

ẋ = f1(x, y, z) , ẏ = f2(x, y, z) , ż = f3(x, y, z), (1)
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where u̇ =
du
dt

, such that the function H(x, y, z) = x + y + z is a constant of motion. In
this case, we say that (1) is a three-dimensional dynamical system with constant popula-
tion. System (1) has only one constant of motion, namely H, or there may exist another
functionally independent constant of motion, denoted by C.

In the following, we particularize some known results about Hamilton–Poisson formu-
lations and integrable deformations in the case of system (1). For the sake of completeness,
we present some proofs. For details about Poisson geometry see, for example, [9–11].

Proposition 1. Let C ∈ C1(P), where P ⊆ R3 is a C∞ manifold, such that H and C are
functionally independent on P, where H(x, y, z) = x + y + z. Then:

(i) System
ẋ = Cz − Cy , ẏ = Cx − Cz , ż = Cy − Cx, (2)

where fu :=
∂ f
∂u

, is a dynamical system with constant population.

(ii) C is also a constant of motion of system (2).
(iii) (P, ΠC, H) is a Hamilton–Poisson formulation of system (2), where the Poisson structure

ΠC is given by

ΠC =

⎡⎣ 0 Cz −Cy
−Cz 0 Cx
Cy −Cx 0

⎤⎦, (3)

and H is the Hamiltonian. Furthermore, C is a Casimir of the Poisson structure ΠC.

Following [12], we have:

Proposition 2. Let C, ν ∈ C1(P), where P ⊆ R3 is a C∞ manifold. If H and C are functionally
independent on P, where H(x, y, z) = x + y + z, then system

ẋ = ν(Cz − Cy) , ẏ = ν(Cx − Cz) , ż = ν(Cy − Cx), (4)

is a dynamical system with constant population. Moreover, C is also a constant of motion and
(P, νΠC, H) is a Hamilton–Poisson formulation of system (4), where ΠC is given by (3) and H is
the Hamiltonian. Furthermore, C is a Casimir of the Poisson structure Πν

C := νΠC.

The next result follows by [13,14].

Proposition 3. Let C, β ∈ C1(P), where P ⊆ R3 is a C∞ manifold, g ∈ R and H(x, y, z) =
x + y + z.

(i) If H and C are constants of motion of system (1) and they are functionally independent on P,
then there is a differentiable function ν on an open and dense subset of P such that system (1)
takes the form (4).

(ii) If H and C + gβ are functionally independent on P, then a family of integrable deformations
of system (1) is given by:

ẋ = f1 + gν(βz − βy) , ẏ = f2 + gν(βx − βz) , ż = f3 + gν(βy − βx), (5)

where g is a deformation parameter. Moreover, H and C + gβ are constants of motion of
system (5).

(iii) If H is the only constant of motion of system (1), then a family of deformations of system (1)
for which H is also a constant of motion is given by (5).
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Proof. (i) By hypothesis, H and C are functionally independent on P, and thus at least one
of the following inequalities

Cx �= Cy , Cx �= Cz , Cy �= Cz

holds.
Let us consider Cx �= Cy. Since H and C are constants of motion of system (1),

it follows that
f1 + f2 + f3 = 0 , Cx f1 + Cy f2 + Cz f3 = 0.

Therefore f1 =
Cz − Cy

Cy − Cx
f3, f2 =

Cx − Cz

Cy − Cx
f3. Considering ν =

f3

Cy − Cx
, the conclu-

sion follows.
(ii) From (i) we have ν∇H ×∇C = ( f1, f2, f3) = (ẋ, ẏ, ż). Then ν∇H ×∇(C + gβ) =

ν∇H ×∇C + gν∇H ×∇β = ( f1, f2, f3) + gν(βz − βy, βx − βz, βy − βx). Therefore system
(5) is obtained. It is easy to see that H and C̃ = C + gβ are constants of motion of system
(5). Then, by Proposition 2, where C is replaced by C̃, (5) is a Hamilton–Poisson system.
Moreover, if the deformation parameter g vanishes then system (5) becomes (1), as required.

(iii) Using (5), it immediately follows that Ḣ = 0.

We end this section with some considerations about the dynamics of a three-dimensional
dynamical system with constant population.

Let (x0, y0, z0) be an initial condition of the system with constant population (1) and
h = x0 + y0 + z0. Since H is a constant of motion, that is H(x(t), y(t), z(t)) = H(x0, y0, z0)
for all t, it follows that x(t) + y(t) + z(t) = h for all t. Therefore, it is clear that the
dynamics of such a system takes place in the level surface S = {(x, y, z) ∈ R3 : x + y + z =
h}. Moreover, if C is the second constant of motion, then the trajectories belong to the
intersection of the level surfaces S and {(x, y, z) ∈ R3 : C(x, y, z) = C(x0, y0, z0)}.

As A. J. Lotka himself highlighted, “Periodic phenomena play an important role
in nature, both organic and inorganic” [15]. In our case, if H and C are functionally
independent constants of motion and the intersection of the corresponding level surfaces
is a closed curve, then the trajectory may be a periodic orbit. On the other hand, if H
is the only one constant of motion of system (1) the Bendixon condition div f �= 0 in a
simply connected region of S precludes periodic solutions in that region (see, e.g., [16] and
references therein).

3. A Particular Case: Polynomial Kolmogorov Systems

Let P1, P2, P3 be three continuously differentiable functions on R3. Consider the differ-
ential equations

ẋ = xP1(x, y, z) , ẏ = yP2(x, y, z) , ż = zP3(x, y, z), (6)

called the three-dimensional ecological equations or Kolmogorov equations [17,18]. If
P1, P2, P3 are polynomial such that the maximum of their degrees is k − 1, then (6) is a
three-dimensional polynomial Kolmogorov system of degree k. Particularly, if k = 2, then
(6) is a three-dimensional Lotka–Volterra system. In this section, we deal with Kolmogorov
systems of degree k ∈ {2, 3} with constant population. More precisely, we deduce the
general forms of such systems that admit Hamilton–Poisson formulations. We recall here
that the Liouville, Darboux integrability, respectively, of Kolmogorov and Lotka–Volterra
systems and their dynamical behavior have been widely investigated (see, e.g., [19–25] and
references therein).

Proposition 4. If H(x, y, z) = x + y + z is a constant of motion of the three-dimensional Lotka–
Volterra Equation (6), then

P1(x, y, z) = cy − bz , P2(x, y, z) = −cx + az , P3(x, y, z) = bx − ay, (7)
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where a, b, c ∈ R.

Proof. Let Pk(x, y, z) = akx + bky + ckz + dk, ak, bk, ck, dk ∈ R, k ∈ {1, 2, 3}. The condition
Ḣ = 0 implies xP1(x, y, z) + yP2(x, y, z) + zP3(x, y, z) = 0, ∀x, y, z ∈ R, or equivalently,

a1x2 + b2y2 + c3z2 + (b1 + a2)xy + (c1 + a3)xz + (c2 + b3)yz + d1x + d2y + d4z = 0, ∀x, y, z ∈ R.

Then a1 = b2 = c3 = d1 = d2 = d3 = 0, and denoting b1 = c, a3 = b, c2 = a, the
conclusion follows.

Remark 1. We obtained that a three-dimensional Lotka–Volterra system with constant population
has the form

ẋ = x(cy − bz) , ẏ = y(−cx + az) , ż = z(bx − ay), a, b, c ∈ R. (8)

Moreover, the function C(x, y, z) = xaybzc is a constant of motion of this system (see
also [26]). In Section 4, we will study this system from some standard and nonstandard Poisson
geometry points of view (for details about such approach see, e.g., [27]).

The next result is a consequence of Propositions 2 and 3.

Proposition 5. Let a, b, c > 0.

(i) The three-dimensional Lotka–Volterra system with constant population (8) has the Hamilton–
Poisson formulation (P, Π, H), where P = (0, ∞)3, H(x, y, z) = x + y + z, and the Poisson
structure

Π =

⎡⎣ 0 cxy −bxz
−cxy 0 ayz
bxz −ayz 0

⎤⎦. (9)

In addition, system (8) reads (ẋ, ẏ, ż) = ν∇H × ∇C, where C(x, y, z) = xaybzc and the
rescaling function ν is given by ν(x, y, z) = x1−ay1−bz1−c.

(ii) If β ∈ C1(P) such that H and C + gβ are functionally independent on P, then a family of
integrable deformations of Lotka–Volterra system (8) is given by⎧⎨⎩

ẋ = x(cy − bz) + gx1−ay1−bz1−c(βz − βy)
ẏ = y(−cx + az) + gx1−ay1−bz1−c(βx − βz)
ż = z(bx − ay) + gx1−ay1−bz1−c(βy − βx)

, (10)

where g ∈ R is a deformation parameter. Moreover, (10) is also a system with constant
population and C + gβ is a constant of motion.

Taking into account the form of system (10), it is natural to ask whether there are
functions β such that (10) is a polynomial Kolmogorov system. The answer is affirmative.
Indeed, let us consider β(x, y, z) = xaybzcQ(x, y, z), where Q is an arbitrary polynomial of
degree n. Then we obtain that system (10) becomes⎧⎨⎩

ẋ = x(cy − bz + g(cy − bz)Q + gyz(Qz − Qy))
ẏ = y(−cx + az + g(−cx + az)Q + gxz(Qx − Qz))
ż = z(bx − ay + g(bx − ay)Q + gxy(Qy − Qx))

, (11)

which is a polynomial Kolmogorov system of degree n + 2. Moreover, by Proposition 5,
it is a system with constant population for which C̃(x, y, z) = xaybzc(1 + gQ(x, y, z)) is a
constant of motion.

In the sequel, we deduce the general form of a three-dimensional polynomial Kol-
mogorov system of degree 3 with a constant population. In addition, we present a family
of such systems that are Hamilton–Poisson.

Proceeding as in the proof of Proposition 4, we obtain the following.
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Proposition 6. The family of three-dimensional polynomial Kolmogorov systems of degree 3 with
constant population is given by⎧⎨⎩

ẋ = x(cy − bz + a1y2 + a2z2 + a3xy + a4xz + a5yz)
ẏ = y(−cx + az − a3x2 + a6z2 − a1xy + a7xz + a8yz)
ż = z(bx − ay − a4x2 − a8y2 − (a5 + a7)xy − a2xz − a6yz)

, a, b, c, ak ∈ R. (12)

We note that system (12) is a deformation of the Lotka–Volterra system (8). Therefore,
if this deformation is an integrable deformation, then system (12) has a second constant of
motion and, consequently, it is a Hamilton–Poisson system.

Proposition 7. A family of three-dimensional Hamilton–Poisson polynomial Kolmogorov systems
of degree 3 with constant population is given by⎧⎨⎩

ẋ = x(cy − bz + cqy2 − brz2 + cpxy − bpxz + ((c + 1)r − (b + 1)q)yz)
ẏ = y(−cx + az − cpx2 + arz2 − cqxy + ((a + 1)p − (c + 1)r)xz + aqyz)
ż = z(bx − ay + bpx2 − aqy2 + ((b + 1)q − (a + 1)p)xy + brxz − aryz)

, (13)

where , a, b, c, p, q, r ∈ R. Moreover, C̃(x, y, z) = xaybzc(1 + px + qy + rz) is also a constant of
motion of the above system.

Proof. Using Proposition 6, it is obvious that (13) is a three-dimensional Kolmogorov
system with constant population. In order to prove that (13) is a Hamilton–Poisson system,
we show that it is a particular case of system (10). Let β be as in Proposition 5 such that
system (10) becomes (12). We obtain

βz − βy = xayb−1zc−1(a1y2 + a2z2 + a3xy + a4xz + a5yz),

βx − βz = xa−1ybzc−1(−a3x2 + a6z2 − a1xy + a7xz + a8yz),

βy − βx = xa−1yb−1zc(−a4x2 − a8y2 − (a5 + a7)xy − a2xz − a6yz),

and

βxz − βxy = xa−1yb−1zc−1(aa1y2 + aa2z2 + aa3xy + aa4xz + aa5yz + a3xy + a4xz),

βxy − βyz = xa−1yb−1zc−1(−ba3x2 + ba6z2 − ba1xy + ba7xz + ba8yz − a1xy + a8yz),

βyz − βxz = xa−1yb−1zc−1(−ca4x2 − ca8y2 − c(a5 + a7)xy − ca2xz − ca6yz − a2xz − a6yz).

Adding the above relations and equating the coefficients of the obtained polynomial
to zero, we obtain

ca4 = −ba3, aa5 = (c + 1)a6 − (b + 1)a8, ba6 = −aa2, ba7 = (c + 1)a2 − (a + 1)a4, ca8 = aa1. (14)

We denote a1 = cq, a2 = −br, a3 = cp, where p, q, r ∈ R. Using (14), we obtain
that system (12) becomes (13). We also consider the function β given by β(x, y, z) =
xaybzcQ(x, y, z), where Q(x, y, z) = p1x + q1y + r1z such that p = gp1, q = gq1, r = gr1.
Now, on one the hand, function β fulfills the above conditions regarding partial derivatives.
On the other hand, we have already seen that for such a function β, system (10) becomes
(11), which also takes the particular form (13).

By Proposition 5 it follows that C̃(x, y, z) = xaybzc(1 + px + qy + rz) is a constant of
motion and, consequently, (13) is a Hamilton–Poisson system, as required.

4. Dynamical Properties of the Three-Dimensional Lotka–Volterra System with
Constant Population

In this section we study the dynamical properties of the three-dimensional Lotka–
Volterra system with constant population (8) and their connections with the corresponding
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energy-Casimir mapping. Lotka–Volterra systems [28] are widely investigated from dy-
namical point of view (see, e.g., [29–31] and references therein).

As we have seen in Section 3, the three-dimensional Lotka–Volterra system with
constant population is given by ⎧⎨⎩

ẋ = x(cy − bz)
ẏ = y(−cx + az)
ż = z(bx − ay)

. (15)

In addition, the constants of motion of this system is

H(x, y, z) = x + y + z , C(x, y, z) = xaybzc. (16)

In the following we consider a, b, c > 0 and we restrict our study on the set [0, ∞)3,
which is the region of ecological interest.

System (15) has the Hamilton–Poisson formulation given by Proposition 5. Therefore,
the corresponding energy-Casimir mapping is given by

EC : [0, ∞)3 → R2, EC(x, y, z) = (x + y + z, xaybzc). (17)

There are some connections between the dynamics of a Hamilton–Poisson system
and the properties of the corresponding energy-Casimir mapping (see, e.g., [27,32–38]).
Most of the connections are provided by the partition of the image of the energy-Casimir
mapping given by the equilibrium states. In the abovementioned papers, the energy-
Casimir mapping is defined on R3; thus, we are interested to see which of the properties
remain true in our case.

Lemma 1. Let a, b, c > 0. Then

xaybzc ≤ aabbcc

(a + b + c)a+b+c (x + y + z)a+b+c , ∀x, y, z ≥ 0.

Moreover, the equality holds if and only if
x
a
=

y
b
=

z
c

.

Proof. If xyz = 0, then the inequality holds. Let x, y, z > 0. We apply Jensen’s inequality
for a real concave function ϕ : A ⊂ R → R, namely

ϕ

(
n

∑
i=1

pixi

)
≥

n

∑
i=1

pi ϕ(xi), for all xi ∈ A, pi > 0, i ∈ {1, 2, . . . , n}, where
n

∑
i=1

pi = 1.

The equality holds if and only if x1 = x2 = . . . = xn or ϕ is linear.

Let ϕ : (0, ∞) → R, ϕ(t) = ln t and x1 =
x
a

, x2 =
y
b

, x3 =
z
c

, p1 =
a

a + b + c
, p2 =

b
a + b + c

, p3 =
c

a + b + c
. Then the conclusion follows.

Remark 2. For H(x, y, z) = x + y + z and C(x, y, z) = xaybzc, the inequality from Lemma 1
becomes

C(x, y, z) ≤ aabbcc

(a + b + c)a+b+c Ha+b+c(x, y, z) , ∀x, y, z ≥ 0, (18)

and the equality holds if and only if (x, y, z) = (aM, bM, cM), M ≥ 0.

Now, we can present the image of the energy-Casimir mapping (17).
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Proposition 8. The image of the energy-Casimir mapping (17) is the set

Im(EC) = {(h1, h2) ∈ R2 : h1 ≥ 0, 0 ≤ h2 ≤ aabbcc

(a + b + c)a+b+c ha+b+c
1 }. (19)

Proof. By definition,

Im(EC) = {(h1, h2) ∈ R2 : ∃(x, y, z) ∈ [0, ∞)3 such that EC(x, y, z) = (h1, h2)}
= {(h1, h2) ∈ R2 : ∃(x, y, z) ∈ [0, ∞)3 such that x + y + z = h1, xaybzc = h2}.

Using Lemma 1, we obtain the conclusion.

Remark 3. The image of the considered energy-Casimir mapping is drawn in Figure 1. In the
abovementioned papers, if Im(EC) is a proper subset of R2, then its boundary is given by the images
of the stable equilibrium states through EC. Moreover, a partition of Im(EC) is given by the images
of all equilibrium states through EC. If the image of an unstable family of equilibrium states through
EC is a half-line, then there are heteroclinic orbits that connect pairs of such states. Furthermore, if
Σp denotes an open subset of the partition of Im(EC) that has dimension 2, then each point of Σp is
the image of at least one periodic orbit through EC. In our case, because EC is restricted to [0, ∞)3,
the image of the energy-Casimir mapping is a proper subset of R2, but without this restriction, it is
R2. If the image of the energy-Casimir mapping is R2, the dynamics is more complicated, but we
can expect to find periodic orbits and heteroclinic orbits.

Figure 1. Image of the energy-Casimir mapping (a + b + c < 1, a + b + c = 1, and a + b + c > 1
respectively).

In the following we study the abovementioned connections.
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The equilibrium states of system (15) are given by the families

E1 = {(aM, bM, CM) | M ∈ [0, ∞)} , E2 = {(M, 0, 0) | M ∈ [0, ∞)} ,

E3 = {(0, M, 0) | M ∈ [0, ∞)} , E4 = {(0, 0, M) | M ∈ [0, ∞)}. (20)

Proposition 9. If M �= 0, the equilibrium states of system (15) that belong to the family E1 (20)
are Lyapunov stable.

Proof. Let M > 0. We use the Arnold method [39]. Consider the function

F(x, y, z) = C(x, y, z)− λH(x, y, z) = xaybzc − λ(x + y + z)

and let W = ker dH(aM, bM, cM) = SpanR{(1, 0, 0), (0, 1, 0)}. For λ = aabbcc Ma+b+c−1,
we obtain:

(i) dF(aM, bM, cM) = 0;
(ii) d2F(aM, bM, cM)|W×W = −aa−1bb−1cc Ma+b+c−2(b dx2 + a dy2), which is negative

definite for all M > 0.

Therefore the equilibrium state (aM, bM, cM), M > 0 is nonlinearly stable.

Proposition 10. For every M ∈ (0, ∞), the equilibrium states of system (15) that belong to the
families Ei, i ∈ {2, 3, 4} (20) are unstable.

Proof. Let J be the Jacobian matrix of system (15). Then

J(x, y, z) =

⎡⎣ cy − bz cx −bx
−cy −cx + az ay
bz −az bx − ay

⎤⎦. (21)

The eigenvalues of J(M, 0, 0) are given by λ1 = 0, λ2 = −cM, λ3 = bM. Since λ3 > 0,
the equilibrium state (M, 0, 0) is unstable for all M > 0. Analogously, we study the stability
of the other equilibrium states.

It remains to study the stability of O(0, 0, 0), the common point of all families of
equilibrium states.

Consider that system (15) is without the restriction x, y, z ≥ 0. We choose the initial
conditions x(0) = 0, y(0) = −z0, z(0) = z0, where z0 > 0 is near to zero. Then we obtain

the particular solution of system (15) given by x(t) = 0, y(t) =
−z0

1 − az0t
, z(t) =

z0

1 − az0t
,

t ∈
[

0,
1

az0

)
. Therefore, the equilibrium state O(0, 0, 0) is unstable.

On the other hand, our system is restricted to [0, ∞)3. The coordinate axes and the
subspaces spanned by them, and also the first octant, are all invariant sets for a Lotka–
Volterra system with constant population (15). Hence, populations that start non-negative
remain non-negative. If V is a neighborhood of O(0, 0, 0), then we say that V ∩ (0, ∞)3 is a
positive neighborhood of O(0, 0, 0).

The next result shows the behavior of a trajectory that starts in a positive neighborhood
of O(0, 0, 0).

Proposition 11. For every positive neighborhood U of O(0, 0, 0) there is a positive neighborhood V
of O(0, 0, 0) such that the trajectories (x(t), y(t), z(t)) of system (15) initially in V never leave U.

Proof. Consider the initial conditions of system (15) given by (x0, y0, z0) ∈ (0, ∞)3. Thus
(x(t), y(t), z(t)) ∈ (0, ∞)3 for t > 0. We have to prove that for all ε > 0 there is δ > 0 such

that if
√

x2
0 + y2

0 + z2
0 < δ, then

√
x(t)2 + y(t)2 + z(t)2 < ε for t > 0.
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For every ε > 0 let δ > 0 such that δ <
ε
√

3
3

. Then the following relations hold:

√
x(t)2 + y(t)2 + z(t)2 ≤ x(t) + y(t) + z(t) = x0 + y0 + z0 ≤ 3

√
x2

0 + y2
0 + z2

0
3

≤
√

3δ < ε,

for every t > 0, as required.

Remark 4. In the case when system (15) is restricted to [0, ∞)3, Proposition 11 tells us that
O(0, 0, 0) behaves as a Lyapunov stable equilibrium state.

Remark 5. For every M ∈ [0, ∞), the sets of images of the equilibrium states through EC are
given by

Σs
1 = {(aM + bM + cM, aabbcc Ma+b+c) : M > 0}

= {(h1, h2) ∈ R2 : h1 > 0, h2 =
aabbcc

(a + b + c)a+b+c ha+b+c
1 },

EC(0, 0, 0) = (0, 0),

Σu
2 = {(M, 0) : M > 0} = {(h1, h2) ∈ R2 : h1 > 0, h2 = 0 },

where “s” and “u” stand for stable and unstable, respectively. We note that in our case the boundary
of Im(EC) is given by Σs

1 ∪ Σu
2 ∪ {(0, 0)}. We also denote by Σp the interior of Im(EC) (see

Figure 1). Therefore,
Im(EC) = Σs

1 ∪ {(0, 0)} ∪ Σu
2 ∪ Σp. (22)

In the next result we prove that there are periodic orbits of the considered system
around the stable equilibrium states. In [40], the existence of periodic orbits of a similar
system has been proven by another approach.

Proposition 12. Let E1
M = (aM, bM, cM) ∈ E1 be such that M ∈ (0, ∞). Then, for each

sufficiently small ε ∈ R∗
+, any integral surface

Σ
E1

M
ε : aabbcc Ma+b+c−1(x + y + z)− xaybzc − aabbcc Ma+b+c(a + b + c − 1) = ε2

contains at least one periodic orbit γ
E1

M
ε of system (15) whose period is close to 2π

M
√

abc(a+b+c)
.

Proof. We apply a version of Moser’s theorem in the case of a zero eigenvalue [41]. By
(21), J(aM, bM, cM) has the eigenvalues λ1 = 0, λ2,3 = ±iM

√
abc(a + b + c) and the

eigenspace corresponding to the eigenvalue zero has dimension 1. Consider the constants
of motion C1(x, y, z) = x + y + z and I(x, y, z) = aabbcc Ma+b+c−1(x + y + z)− xaybzc. We
obtain W = ker dC1(aM, bM, cM) = SpanR{(1, 0, 0), (0, 1, 0)}, dI(aM, bM, cM) = 0, and
d2 I(aM, bM, cM)

∣∣
W×W = aa−1bb−1cc Ma+b+c−2(b dx2 + a dy2), which is positive definite

for all M > 0.
By Theorem 2.1 from [41], for each sufficiently small ε ∈ R∗

+, any integral surface
I(x, y, z)− I(aM, bM, cM) = ε2 contains at least one periodic solution of system (15) whose
period is close to the period of the corresponding linear system around E1

M, which finishes
the proof.

Another special orbit of a Hamilton–Poisson system is the heteroclinic orbit. In our
case we have the following.
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Proposition 13. For each M ∈ (0, ∞) there is a cycle of heteroclinic orbits HE1 ∪HE2 ∪HE3
that connect the unstable equilibrium states (M, 0, 0), (0, 0, M), (0, M, 0) given by

HE1(t) =

(
Mx0

(M − x0)ebMt + x0
, 0,

M(M − x0)ebMt

(M − x0)ebMt + x0

)
,

HE2(t) =
(

0,
M(M − z0)ezMt

(M − z0)eaMt + z0
,

Mz0

(M − z0)eaMt + z0

)
,

HE3(t) =
(

M(M − y0)ecMt

(M − y0)ecMt + y0
,

My0

(M − y0)ecMt + y0
, 0
)

,

where t ∈ R and x0, y0, z0 ∈ (0, M).

Proof. To obtain a parametric form of the heteroclinic orbit HE1, we first reduce our
system from three degrees of freedom to one degree of freedom by using the level sets
H(x, y, z) = H(M, 0, 0) and C(x, y, z) = C(M, 0, 0) and then integrate the resulting reduced
differential equation. We have

x + y + z = M and xaybzc = 0, a, b, c > 0.

Consider y = 0. Thus, z = M − x and system (15) reduces to ẋ = bx(x − M). Let
x0 ∈ (0, M) be the initial condition of the above equation. We obtain the solution x(t) =

Mx0

(M − x0)ebMt + x0
and then HE1(t). We similarly obtain the other parametric forms of the

heteroclinic orbits.

Remark 6. By geometrical point of view, the heteroclinic orbits given in Proposition 13 are open
line segments with endpoints given by the unstable equilibrium states. Another approach in the
study of the existence of heteroclinic orbits of a similar system has been used in [40].

The dynamics of system (15) takes place at the intersection of the level sets H(x, y, z) =
h1, C(x, y, z) = h2, where (h1, h2) ∈ Im(EC). The fiber of the energy-Casimir mapping EC

corresponding to (h1, h2) is the set

F(h1,h2)
=

{
(x, y, z) ∈ [0, ∞)3 | EC(x, y, z) = (h1, h2)

}
. (23)

Then, in other words, the dynamics of system (15) takes place on the fibers of the cor-
responding energy-Casimir mapping. In the following we give a topological classification
of these fibers and, as a consequence, we point out the connections between the partition
of Im(EC) and the dynamics of the considered system. This classification is provided by
the partition of the image of the energy-Casimir mapping (22).

Proposition 14. Let (h1, h2) ∈ Im(EC) (19) and F(h1,h2)
(23) be the corresponding fiber of the

energy-Casimir mapping.

(i) If (h1, h2) ∈ Σs
1, then F(h1,h2)

= {(aM, bM, cM)}, where M =
h1

a + b + c
, that is, a stable

equilibrium state. In addition, F(0,0) = {(0, 0, 0)}.
(ii) If (h1, h2) ∈ Σu

2 , then F(h1,h2)
is the triangle with vertices at E2

M(M, 0, 0), E3
M(0, M, 0),

E4
M(0, 0, M), where M = h1, that is, three unstable equilibrium states and the cycle of

heteroclinic orbits that connect them (see Proposition 13).
(iii) If (h1, h2) ∈ Σp, then F(h1,h2)

=
{
(x, y, z) ∈ [0, ∞)3 | x + y + z = h1, xaybzc = h2

}
, that

is, a periodic orbit.
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Proof. (i) Let (x, y, z) ∈ F(h1,h2)
(23), (h1, h2) ∈ Σs

1, where Σs
1 is given in Remark 5. Using

Lemma 1, we obtain
x
a
=

y
b
=

z
c

. Since x + y + z = h1, we obatin the conclusion.

(ii) We have xaybzc = 0 and x + y + z = M. Using Proposition 13 and Remark 6, the
conclusion follows.

(iii) The dynamics of system (15) takes place at the intersection of the level sets
H(x, y, z) = h1 and C(x, y, z) = h2, which is the closed curve drawn in Figure 2. On the
other hand, by Proposition 12 we know that there are periodic orbits around the stable
equilibrium (aM, bM, cM), for every M > 0. Hence, in this case, we conclude that the fiber
is a periodic orbit.

We notice that the level set Sh = {(x, y, z) ∈ R3 : x + y + z = h, x, y, z ≥ 0}, h > 0 is lo-
cally foliated by the periodic orbits that expand from the stable equilibrium(

ah
a + b + c

,
bh

a + b + c
,

ch
a + b + c

)
. Moreover, these orbits tend to the heteroclinic cycle

given by the boundary of Sh (see Figure 2, right).

Figure 2. Left: The intersection of level sets: a periodic orbit. Right: A local foliation of the level
set Sh = {(x, y, z) ∈ R3 : x + y + z = h, x, y, z ≥ 0} by periodic orbits around the stable equilibrium
( ah

a+b+c , bh
a+b+c , ch

a+b+c ).

Remark 7. Consider that system (15) describes the dynamics of the interactions between three
categories of a constant population of total size h. After an interaction between individuals from
distinct categories, they can change their category. At a moment t, we denote by x(t), y(t), z(t) the
number of individuals of these categories. At t = 0, the initial conditions are x(0) = x0, y(0) =
y0, z(0) = z0 such that x0, y0, z0 ∈ [0, h) and x0 + y0 + z0 = h. The above analysis shows the
following types of behaviors. First, if x0, y0, z0 ∈ (0, h), then we obtain a periodic behavior around

the stable equilibrium
(

ah
a + b + c

,
bh

a + b + c
,

ch
a + b + c

)
. Second, if z0 = 0, then z(t) = 0 for all

t > 0 since the plane of equation z = 0 is an invariant set of our system. In this case, system (15)
reduces to ẋ = cxy, ẏ = −cxy, and hence x increases in time and y decreases, that is (x(t), y(t), 0)
approaches (h, 0, 0) in infinite time (the heteroclinic orbit HE3). Analogously, if y0 = 0, then
(x(t), 0, z(t)) approaches (0, 0, h), and if x0 = 0, then (0, y(t), z(t)) approaches (0, h, 0). Finally,
if (x0, y0, z0) is an equilibrium state, then the number of individuals from each category stays
unchanged.

5. Conclusions

In this paper, Hamilton–Poisson formulations and integrable deformations of a three-
dimensional dynamical system with constant population were presented. Particularly,
general forms of some Kolmogorov systems with constant population were deduced.
Using an integrable deformation of a Lotka–Volterra system with a constant population,
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a Hamilton–Poisson version of a Kolmogorov system of degree threes with a constant
population were constructed.

The dynamical properties of the three-dimensional Lotka–Volterra system with a
constant population were analyzed in connection with the associated energy-Casimir
mapping. Such connections were reported in the case of other Hamilton–Poisson systems
and, even if there is no a general result, the expected properties hold.
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