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1. Introduction

The continuing achievements in Information Technology and Computer science in
recent decades provide new tools for engineers in the design of devices and systems, with
significant advances both in numerical and in analytical methods of analysis. Thus, mod-
elling and simulation of processes have become mandatory stages prior to the experimental
setup and are now part of the engineering culture.

The purpose of this Special Issue is to offer a platform for ongoing valuable research
involving modelling and simulation methods in mathematical physics, to present new
simulation software applications in engineering, and to also present recent advances in
decision support systems or in the design of experiments.

The response of the scientific community was significant, with a total of 28 papers
being submitted for consideration, of which 14 were accepted for publication after attentive
peer-review by respected reviewers in the fields of the papers.

2. Description of Published Papers

In the following, a brief overview of the published papers is presented.
The paper by R.A. Hamid et al. [1] analyses a ferrofluid transport problem in a

magnetic field, solved using the MATLAB bvp4c routine. The influence of the magnetic field
and of the Stefan blowing parameters was investigated, leading to conclusions regarding
the availability and stability of solutions.

The paper authored by Y. Li et al. [2] proposes a new estimation of the Hurst exponent
used in long-term memory of time series and, in the context of this paper, in volatility
modelling. In order to validate the new Hurst estimator tests are conducted for data
taken from Chinese financial markets, with emphasis on truncated and non-truncated
spot volatility.

The paper by F. Feng et al. [3] proposes an improved version of a RSE algorithm,
previously developed by the same authors, used to recognize the complexity of non-fractals
common in signals (roughness scaling extraction algorithm with first-order flattening (RSE-
f1)). The speed of the newly proposed algorithm increases significantly (by 13 times),
making it also faster than other typical algorithms. The new algorithm is then used to
analyse the vibration signal from a mill in order to distinguish between the machine states
(idle, stable, and chatter).

The paper by V. Saenko et al. [4] performs a study of the anomalous diffusion equation
with a fractional derivative with respect to both time and coordinates, proposing a solution
based on the Monte Carlo method. The numerical method for solving the anomalous
diffusion equation, in which both the time derivative and the coordinate derivative can
be of non-integer order, using a model of random realizations of particle trajectories, is
proposed and applied in the analysis of the combustion process.

Mathematics 2022, 10, 2387. https://doi.org/10.3390/math10142387 https://www.mdpi.com/journal/mathematics1
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The paper by A. Alahmer et al. [5] investigates the effect of using various biodiesel
mixtures on the performance of a CI engine under full load and at different engine speeds.
Specific parameters such as brake torque, brake power, fuel consumption and brake thermal
efficiency are monitored, and an optimisation procedure based on fuzzy logic and particle
swarm optimisation is carried out in order to determine the optimal engine speed and best
fuel type. The results obtained show that the overall performance is fairly increased as
compared to the experimental results.

The paper by K. Zhang et al. [6] studies calcium leaching in hydraulics applications,
formulated as an inverse problem, which is studied using genetic algorithms and the
finite element method. The objective function is constructed using the hydraulic head
and leakage quantity time-series measurements. The proposed inverse analysis method
is applied to predict the grout curtain hydraulic conductivity of a concrete dam in the
leaching process, the simulation results being consistent with the monitored data.

The paper by N.F.H.M. Sohut et al. [7] analyses the unsteady 3D rotating hybrid
nanofluid flow on a stretching sheet, by considering and representing the effects of some
parameters. Thus, the specific system of partial differential equations was transformed
to a system of ordinary differential equations, which were solved numerically using the
MATLAB software.

The paper by G. Gordillo et al. [8] addresses the control of contaminant spill in
water and, more generally, the problem of water quality control by using the gradient-
descent method supplied with a first-order iterative process. The authors consider both
the validation of the numerical technique and the possibilities and limitations of the
applied method.

The paper by N.A. Yacob et al. [9] studies rotating flow in nanofluids over a permeable
stretching/shrinking surface. The authors present the numerical results obtained with
MATLAB software, starting from a mathematical model with carbon nanotubes (single and
multi-walled), and analyse the heat and mass transfer characteristics, and also the stability
of the considered solutions.

The paper by M.I. Dieste-Velasco [10] proposes an artificial neural network for fault
diagnosis in analogue electronic circuits. This method is based on a small number of
measurements and has been successfully tested to predict the hard faults in two elec-
tronic amplifiers.

The paper by V. Saenko et al. [11] analyses the possibility to obtain numerical solutions
for fractional differential equations of anomalous diffusion. The kinetic equations that
describe the process of walks are considered and their numerical solutions based on a
local estimate of the Monte Carlo method are established, highlighting the advantages
and limitations.

The paper authored by C. García-Hernández et al. [12] performs a study of the tro-
choidal milling path with variable feed. A process optimization is considered and a tro-
choidal milling test with the presentation and analysis of the obtained results is presented.

The paper by Y. Li et al. [13] proposes a surrogate for the original Kriging modelling
method, which is tested in an air traffic control radar design simulation system. The pro-
posed high-dimensional Kriging modelling method is characterised by a faster modelling
efficiency and large possibilities for new applications.

D. Legatiuk proposes in [14] a new development of the category theory-based mod-
elling methodology introduced in a previous paper that he co-authored. This methodology
is based on representation of mathematical models by the help of categorical constructions.
Two practical examples are used as illustrations for this method, namely the beam models
and the aerodynamic models used in bridge engineering. The author points out that the
category theory-based modelling methodology presented in the paper can be used in the
model selection process after constructing a set of mathematical models and formulating
criteria imposed on a model for a given practical problem.
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3. Conclusions

As guest editors of the Special Issue Modelling and Simulation in Engineering, we
would like to express our gratitude to all the authors who sent their articles for publication
in this issue. We also express our gratitude and appreciation to the reviewers for their
valuable observations, which helped improve the submitted papers.

We hope that the papers selected for this Issue will attract a significant audience in
the scientific community and will further stimulate research involving modelling and
simulation in mathematical physics and engineering.

Author Contributions: Conceptualization, C.P. and V.D.; writing—original draft preparation, C.P.;
writing—review and editing, C.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The growing complexity of modern practical problems puts high demand on mathematical
modelling. Given that various models can be used for modelling one physical phenomenon, the
role of model comparison and model choice is becoming particularly important. Methods for model
comparison and model choice typically used in practical applications nowadays are computation-
based, and thus time consuming and computationally costly. Therefore, it is necessary to develop
other approaches to working abstractly, i.e., without computations, with mathematical models. An
abstract description of mathematical models can be achieved by the help of abstract mathematics,
implying formalisation of models and relations between them. In this paper, a category theory-based
approach to mathematical modelling is proposed. In this way, mathematical models are formalised in
the language of categories, relations between the models are formally defined and several practically
relevant properties are introduced on the level of categories. Finally, an illustrative example is
presented, underlying how the category-theory based approach can be used in practice. Further, all
constructions presented in this paper are also discussed from a modelling point of view by making
explicit the link to concrete modelling scenarios.

Keywords: category theory; mathematical modelling; abstraction; formal approaches; functors

MSC: 00A71; 06A75; 18B99; 18C10

1. Introduction

The rapid development of modern technologies naturally leads to higher demands
for the mathematical modelling process because practical problems nowadays require
advanced coupled models. Moreover, typically several models can be used for modelling a
given physical phenomenon, and thus a model selection process must be made. Evidently,
the model selection influences the quality of a final coupled model. In this regard, one of
the most important tasks of a modeller is understanding the role of individual models in a
complete coupled model, as well as studying how different models are related along with
the practical meaning of this relation.

In engineering applications, various factors leading to reduction of the quality of
the final coupled model are typically referred to as uncertainties. According to [1], three
types of uncertainties arising during the modelling process can be distinguished: (i) Model
inputs, (ii) numerical approximation, and (iii) model form. While the first two types can
be identified and treated by the help of computational and statistical methods, see for
example [2,3] and references therein, the third type requires an extra treatment. The model
form uncertainty implies that a conceptual modelling error has been made, i.e., basic
physical assumptions of models have been violated. Considering that the impact of such
conceptual modelling errors on the whole modelling process is much more profound, it is
necessary to develop tools towards addressing conceptual modelling errors.

Consideration of mathematical models based only on their physical assumptions,
i.e., without considering a specific engineering example or performing computations with
a model, requires tools of abstract mathematics. Several approaches to using abstract

Mathematics 2021, 9, 1946. https://doi.org/10.3390/math9161946 https://www.mdpi.com/journal/mathematics5
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mathematics in applied mathematical modelling, such as graph theory [3], abstract Hilbert
spaces [4,5], abstract algebraic approach [6,7], predicate logic [8,9], type theory [10,11],
and category theory [12,13], have been proposed in recent years. In this paper, we aim
at revisiting and further developing the category theory-based modelling methodology
introduced in [13]. The motivation for using category theory for abstract description
of mathematical models is based on several aspects: (i) The abstract nature of category
theory allows description of very different objects and structures on common basis; (ii)
a practical interpretation of abstract constructions provided by category theory-based
modelling methodology is straightforward, and thus the methodology can really be used in
engineering practice; (iii) category theory naturally provides scaling possibilities implying
that description of more sophisticated objects and structures can be done by using the
same principles as descriptions of their individual parts; (iv) finally, various applications
of category theory scattering from modelling of dynamical systems [14] to ontological
representation of knowledge [15] presented in recent years indicate that advantages of
category theory are seen and accepted now not only by mathematicians, but also by people
interested in applications.

As we have already mentioned, the category theory-based modelling methodology
discussed in this paper has been originally proposed in [13]. After publishing this work, sev-
eral new ideas on categorical modelling methodology providing a deeper understanding
of mathematical models and modelling process have appeared in recent years. Therefore, it
is necessary to revise ideas presented in [13] with new results and more refined categorical
constructions. Moreover, it is worth to mention, that the use of category theory-based
modelling methodology for analysis of models appearing in real-world engineering prob-
lems from the field of aeroelastic analysis of bridges has been presented in [16]. This work
indicated practical advantages of using category theory for modelling purposes. To this
end, the category theory-based modelling methodology presented in this paper aims at a
consistent description of mathematical models and relations between them in the language
of category theory. For the sake of clarity, we focus in this paper only on individual mathe-
matical models, while coupled models will be treated in future research using results from
the current paper as a basis.

Abstract categorical descriptions of mathematical models requires at first defining
universal properties of models, which are properties shared by models in general, i.e., in-
dependent on a particular problem of an engineering field. If a universal model property is
defined, then all categorical constructions used in one specific modelling application can be
directly transferred to another field. Thus, we will start our construction with defining such
a universal model property which is common for all models. Moreover, the main goal is to
keep track of real physical and engineering interpretations of the constructions introduced
in the category theory-based modelling methodology. The paper is organised as follows:
Section 2 presents a general structure of categories of mathematical models together with
a detailed discussion on practical interpretation of the introduced definition; after that,
relations between mathematical models are discussed in Section 3; Section 4 formalises
the problem of having different formulations of the same mathematical model by intro-
ducing the notion of convertible mathematical models; Section 5 provides an illustrative
example how categorical constructions introduced in the previous sections can be used
for comparison and analysis of models. Finally, in Section 6 we discuss a universal arrow
in the framework of category theory-based modelling methodology, as well as establish a
connection to an abstract algebraic approach, after we draw conclusions and discuss shortly
the scope of future work. For making the paper self-contained, some basic definitions from
category theory are presented in the Appendix A.

2. Categories of Mathematical Models

Before starting with categorical constructions, it is important to underline, that models
used in practice can be generally classified in two types:

6
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• physics-based models—models which are based on mathematical formalisations of
physical laws and assumptions;

• data-driven models—models which are based on representations of data, e.g., results
of experiments or measurements obtained from a monitoring system.

This paper deals with physics-based models, which are referred to simply as mathe-
matical models, because this type of models is typically implied by the term mathematical
modelling. Moreover, because mathematical models are based on physical assumptions
formalised by the help of mathematical expressions, they provide a richer basis for abstract
considerations, compared to data-driven models, which are very often black-box models
not relying on any physical assumptions.

We start our construction with the introduction of concrete categories Modeli,
i = 1, 2, . . ., which are associated with mathematical models used to describe a certain
physical phenomenon, such as, for example, models of elasticity theory or heat conduction.
The term “associated” has been used, because, strictly speaking, the objects of categories
Modeli, i = 1, 2, . . . are not mathematical models themself, but rather sets of basic physical
assumptions on which the corresponding mathematical models are created. However,
to keep notations short and transparent, we will refer to these categories simply as to
categories of mathematical models. The following definition introduces basic structure of
these categories:

Definition 1 (Category of mathematical models). Let Model1 be a category of mathematical
models describing a given physical phenomenon. Then for all objects of Model1 the following
assumptions hold:

(i) each object is a finite non-empty set – set of assumptions of a mathematical model, denoted by
SetA, where A is the corresponding mathematical model;

(ii) morphisms (arrows) are relations between these sets;
(iii) for each set of assumptions and its corresponding model exists a mapping

SetA
S�→ A;

(iv) all objects are related to mathematical models acting in the same physical dimension.

Let us now provide some motivation from the modelling perspective and comments
for the assumptions used in this definition:

• Assumption (i). This assumption comes naturally from the modelling process: A math-
ematical model is created to describe a certain physical phenomenon or process, and
evidently, it is possible only if physical background of the phenomenon or process is
clearly stated, i.e., assumptions to be satisfied by the model are formulated. Moreover,
for a stronger distinction between different mathematical models, the set of assump-
tions is understood in a broader sense: Not only basic physical assumptions are listed,
but all further modifications and simplifications of the model, such as for example a
linearisation of original equations, are also elements of the set of assumptions. The
requirements for the set of assumptions to be finite comes from the fact that no model
possess an infinite set of physical assumptions. Therefore, consideration of more
general sets is not necessary.
It is also important to remark that having finite sets as objects in the category is one
possible way to approach mathematical models. Alternatively, one could think of
working directly with mathematical expressions (equations) representing the models.
However, in this case it will be more difficult to distinguish models, since the same set
of assumptions can be formalised differently in terms of final equations, as we will
see in Section 4.

• Assumption (ii). This assumption, in fact, introduces the structure of categories of
mathematical models. The main point here is that instead of working with discrete
categories, it is beneficial to study more elaborated structure. Since the objects in

7
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categories of mathematical models are sets, it is natural to use relations between sets
as morphism in the categories. We will make these relations more specific in Section 3.

• Assumption (iii). This assumption formally describes the process of obtaining the
final form of a model, e.g., differential or integral equation, from basic physical
assumptions. In this case, mapping S is, in fact, a formalisation process consisting
in writing basic physical assumptions in terms of mathematical expressions, which
constitute a mathematical model in the end of the formalisation process. Naturally,
the formalisation process can be done by different means and approaches, for example
first ideas on using type theory to describe the formalisation process towards detecting
conceptual modelling errors have been presented in [10,11].
We also would like to remark, that originally, mapping S has been called invertible
in [13]. The invertibility in this case means, that set of assumptions can be uniquely
reconstructed from the final form of a model. While that such a reconstruction is
theoretically indeed possible, it is generally not unique. Even if we consider the
following canonical parabolic equation

ut = a2uxx,

then without extra context it cannot be decided if this is a heat equation or a diffu-
sion equation. Therefore, the invertibility of a mapping S has been dropped from
Definition 1.

• Assumption (iv). This assumption ensures that we do not treat equally models from
different dimensions.

It is also important to mention that according to Definition 1, models with different
parameters, e.g., material constants, will be corresponded to the same set of assumptions.
For example, if we consider the set of assumptions leading to the Lamé equation (partial
differential equation with constant coefficients), then it is clear that infinite number of
constant coefficients exists, but all these specific models are originated from the same set of
assumptions. In general, models originating from the same set of assumptions, but having
different material parameters are just particular instance of a general set of assumptions.
This fact is particularly important for engineering applications, where stochasticity of
material parameters in deterministic models is often considered as stochastic modelling.
However, as we discussed above, the stochasticity only in material parameters does not
change basic modelling assumptions, because the fact that a constant is chosen according
to a certain probability law does not principally affect the assumption of having constant
coefficients. In contrast, modelling of physical process by the help of stochastic partial
differential equations is based on completely different modelling assumptions, see for
example [17], and therefore, should not be put together with “classical” mathematical
models.

3. Relations between Mathematical Models

This section is devoted to defining relations between sets of assumptions, which are
objects in categories of mathematical models, as introduced in Definition 1. The main
requirement for such relations is that their must define a universal model property, which
is independent on a specific problem, meaning that boundary or initial conditions (but
not coupling/transmission conditions!) should not have influence on the model property.
For satisfying this requirement, the comparison of mathematical models by the help of
universal model property called model complexity is proposed [13]:

Definition 2 (Complexity of mathematical models). Let A and B be mathematical models
in a category Model1. We say that model A has higher complexity than model B if and only
if SetA ⊂ SetB, but SetB �⊂ SetA. Consequently, two models are called equal, in the sense of
complexity, iff SetB = SetA.
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The model complexity in this definition is defined relatively, since we do not describe
it explicitly. From the point of view of physics, model complexity reflects the fact that
a model which has less assumptions provides a more accurate description of a physical
phenomenon under consideration. Thus, the model complexity is a relative quality measure
of how good a mathematical model represents a given physical phenomenon. The relativity
in the measure comes from the fact, that any comparison needs at least two objects, and one
model cannot be assessed with respect to its ability represent the corresponding physical
process, otherwise that would imply that the exact representation of the physical process is
known a priori.

It is important to underline, that the notion of model complexity proposed in Definition 2
is neither related to the notion of complexity of an algorithm, nor to the notion of complexity
used for statistical models, where the number of parameters is typically served as complexity
measure. The advantage of the notion of model complexity introduced in Definition 2 is the
fact that it does not depend on specific boundary or initial conditions, since typically basic
model assumptions are not influenced by them. Nonetheless, if boundary conditions are
essential for basic model assumptions, e.g., singular boundary conditions, then they will be
automatically listed in the corresponding set of assumptions, since such boundary conditions
are critical for describing the physical process. Thus, the model complexity introduced in
Definition 2 is a universal model property.

Additionally, Definition 2 might sound a bit counterintuitive, since it states that a
model satisfying less modelling assumption is more complex, and not of higher simplicity,
as it could be expected as well. In fact, both points of view on the complexity are possible,
and differ only in the general understanding of modelling assumptions. Definition 2 is
based on the idea that modelling assumptions act as restrictions for a model, and thus
implying that a model with less modelling assumptions is more general. Nonetheless,
another perspective on the notion of model complexity still can be considered, which
would reflect the opposite point of view that model assumptions are not restrictions, but
rather generalisations of models. This discussion is also directly related to the following
important remark:

Remark 1. Sets of assumptions introduced in Definition 2 are assumed to be written by the help of a
natural language. While intuitively it is clear how to formulate these sets, as well as how to compare
them in the sense of model complexity, from the formal perspective it is not so straightforward. In
fact, a formal comparison of sets of assumptions written in a natural language can be done only by
the help of a detailed semantic analysis of these sentences, and only after that, sentences, and hence
sets of assumptions, can be rigorously compared. As a possible way around this problem, stricter
rules on formulating sets of assumptions might be imposed. In that case, a kind of basic “alphabet”
containing allowed expressions and symbols could be introduced. Moreover, perhaps a combination
of a natural language and mathematical expressions complemented by strict rules could be a suitable
option. Different possibilities to address the problem of a rigorous comparison of sets of assumptions
will be studied in future work.

From the point of relational algebra, model complexity is a binary relation in a category
of mathematical models. Hence, the objects in categories of mathematical models can be
ordered by using model complexity. However, the ordering of objects defined by model
complexity is only partial, and not total, since examples of mathematical models which
should belong to the same category but cannot be ordered according to Definition 2 can
be easily found, see for example aerodynamic models used in bridge engineering [16].
Naturally, in some cases mathematical models can constitute a category with totally ordered
objects. To have a clear distinction between categories with partial and total ordering of
objects, we introduce the following definition [16]:

9



Mathematics 2021, 9, 1946

Definition 3. Let Model1 be a category of mathematical models in which n objects SetAj ,
j = 1, . . . , n can be ordered according to Definition 2 as follows

SetAi ⊂ SetAj , for i < j ≤ n.

Moreover, let X be the set of all modelling assumptions used in this category. Then category
Model1 contains totally ordered objects, and therefore is associated with totally ordered models, iff

X = SetA1 ∪ SetA2 ∪ . . . ∪ SetAn , and SetAn = X,

otherwise, the category Model1 contains partially ordered objects corresponding to partially
ordered models.

As a direct consequence of this definition we have the following corollary:

Corollary 1. In a totally ordered category Model1 with n objects always exist two unique objects:

• object SetA1 satisfying SetA1 ⊂ SetAi ∀i = 2, . . . , n, which is called the most complex object,
and the associated model A1 is called the most complex model;

• object SetAn satisfying SetAn = SetA1 ∪ SetA2 ∪ . . . ∪ SetAn , which is called the the
simplest object element, and the associated model An is called the simplest model.

It is worth to mention, that in the framework of introduced modelling formalism,
the most complex object and the simplest object are, in fact, initial object and terminal
object in categories of mathematical models, respectively. Note that, although categories
of mathematical models have finite sets as objects, the initial and terminal objects are
different to the ones in the classical category Sets, where these are given by the empty set
and one-element set, correspondingly. The difference comes precisely from the modelling
background of our categories, since while formally it is still possible to consider the empty
and one-element sets as sets of assumptions of some (fictitious) models, it does not make
sense from the modelling perspective.

The proof of Corollary 1 is straightforward, and we only would like to mention, that
uniqueness of objects SetA1 and SetAn follows immediately from Definition 2 and from
the fact that a totally ordered category is considered. The situation is trickier in the case of
partially ordered categories:

Proposition 1. For a partially ordered category Model1 with n objects one of the following
statements holds:

(i) the most complex object SetA1 and the simplest object SetAn do not exist;
(ii) the most complex object SetA1 exists, while the simplest object SetAn does not exist;
(iii) the most complex object SetA1 does not exist, while the simplest object SetAn exists;
(iv) the most complex object SetA1 and the simplest object SetAn exist simultaneously.

Proof. We prove this proposition by straightforwardly constructing corresponding struc-
tures of partially ordered categories. We start the proof by proving cases (ii) and (iii) at
first, since the proof of case (i) will be based on cases (ii) and (iii), and finally we will prove
case (iv). We consider a category with one object SetA1, and the rest objects we construct
explicitly from SetA1 . Without loss of generality we assume that SetA1 contains at least one

element, which will be denoted by A(1)
1 . The objects SetA2 and SetA3 are then constructed

from SetA1 by adding different elements A(2)
1 and A(3)

1 to SetA1, correspondingly, i.e., we
obtain new sets of assumptions by adding two different assumptions. This construction is
shown by the diagram
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SetA1 =
{

A(1)
1

}
{

A(1)
1 , A(2)

1

}
= SetA2 SetA3 =

{
A(1)

1 , A(3)
1

}
implying that SetA1 ⊂ SetA2 and SetA1 ⊂ SetA3, but SetA2 and SetA2 are not related.
Thus, SetA1 is the most complex object in this category, but no the simplest object exists.
Thus, the case (ii) is proved.

The proof of case (iii) is analogues to case (ii), where only instead of adding extra
assumptions, we remove different assumptions from the initial set. Thus, for simplicity,
we assume that SetA1 has at least two different assumption. The rest of the proof follows
immediately.

To prove case (i), we consider now two distinct objects SetA1 and SetA2 given by

SetA1 =
{

A(1)
1 , A(2)

1 , A(3)
1

}
and SetA2 =

{
A(1)

1 , A(2)
1 , A(1)

2

}
, respectively. Similar to cases (ii)

and (iii), we construct now two other objects in two different ways as follows:

SetA3 =
{

A(1)
1 , A(2)

1 , A(3)
1

}
\
{

A(2)
1 , A(3)

1

}
=
{

A(1)
1

}
,

SetA4 =
{

A(1)
1 , A(2)

1 , A(3)
1

}
\
{

A(1)
1 , A(3)

1

}
=
{

A(2)
1

}
,

and
SetA3 =

{
A(1)

1 , A(2)
1 , A(1)

2

}
\
{

A(2)
1 , A(1)

2

}
=
{

A(1)
1

}
,

SetA4 =
{

A(1)
1 , A(2)

1 , A(1)
2

}
\
{

A(1)
1 , A(1)

2

}
=
{

A(2)
1

}
.

This construction is illustrated by the following diagram:

SetA1

SetA2

SetA3 SetA4

Thus, the constructed category is partially ordered, and since objects SetA1 and SetA2

are not related, this category does not contain neither the most complex nor the simplest
objects, since no object satisfies assumptions of Corollary 1.

For proving case (iv), let us consider the object SetA1 =
{

A(1)
1 , A(2)

1 , A(3)
1 , A(4)

1

}
, and

let us construct several other objects according to the following commutative diagram

{
A(1)

1 , A(2)
1 , A(3)

1 , A(4)
1

}
{

A(1)
1 , A(2)

1 , A(4)
1

} {
A(1)

1 , A(2)
1 , A(3)

1

}
{

A(1)
1 , A(4)

1

} {
A(1)

1 , A(2)
1

}
{

A(1)
1

}

11
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While the diagram is commutative, but the objects on the left side are not related
to the objects of the right side in the sense of Definition 2. Thus, we have a partially
ordered category, where both the most complex object

{
A(1)

1

}
and the simplest object{

A(1)
1 , A(2)

1 , A(3)
1 , A(4)

1

}
exist simultaneously. Hence, the proposition is proved.

Next, we have the following theorem:

Theorem 1. Consider a category Model1 with n objects. If the most complex object SetA1 and
the simplest object SetAn exist simultaneously in the category Model1, then Model1 is either a
totally ordered category, or contains at least two totally ordered subcategories.

Proof. The proof of the theorem follows immediately from Corollary 1, Proposition 1, and
Definition 3. Looking at the proof of the case (iv) in Proposition 1, we see immediately that
two totally ordered subcategories exist. The case of only one totally ordered subcategory
is excluded by the assumption of simultaneous existence of the most complex and the
simplest objects. Further, if the most complex and the simplest objects exist simultaneously
and all objects in the category Model1 are related by the help of complexity, then it follows
immediately that Model1 is a totally ordered category.

Evidently, the last statement can be straightforwardly generalised as follows:

Theorem 2. Every partially ordered category of mathematical models contains at least one totally
ordered category of mathematical models as a subcategory.

4. Convertible Mathematical Models

In this section, we will discuss the mappings S between sets of assumptions and the
corresponding models appearing in Definition 1, and as we will see from the upcoming
discussion, the role of mappings S provides clear reasoning why objects of categories
of mathematical models are sets of assumptions and not the models themselves. The
mappings S are generally not invertible, because they represent a formalisation process
of basic modelling assumptions in terms of mathematical expressions. Moreover, these
mappings are also not unique, since the same set of assumptions can be formalised differ-
ently. However, if objects in a category have been ordered (partially or totally) according
their complexity, then the mappings will preserve this structure. Thus, these mappings are
structure preserving mappings, i.e., they are functors.

Because the mappings between sets of assumptions and the corresponding mathemat-
ical models are functorial, then, in fact, the mathematical models constitute also a category.
However, since final form of a model depends on the formalisation process, it is more
difficult to work directly with categories of models, rather than to describe categories of
sets of assumptions, as we have done already. Nonetheless, we will point out now some
results related to the models directly. First, we summarise the above discussion in the
following definition:

Definition 4. Let SetA1 be an object in the category Model1, and let B1 and B2 be two possible
model formulations associated with the object SetA1 via two functors F and G. Then the model
formulations B1 and B2 are connected via a natural transformation of functors ϑ, and the model
formulations B1 and B2 are called convertible. This construction corresponds to the commuta-
tive diagram
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SetA1

B1

B2

F

G

ϑ : F SetA1 → G SetA1

moreover, models which are instantiated by convertible model formulations will be called convert-
ible models.

Obviously, because different model formulations are related to the same set of as-
sumptions, the model complexity of these formulations remains the same. Thus, we have
immediately the following corollary:

Corollary 2. Convertible models have the same complexity.

The discussion about convertible mathematical models underlines once more why
sets of assumptions are considered as objects in categories of mathematical models, and
not model formulations directly. Assume for a moment, that the latter would be the case
and consider the following diagram with three objects for simplicity:

A1

A2 A3

f g

h

Moreover, assume additionally that the model formulations A1 and A2 are convertible
in the sense of Definition 4, while the model formulation A3 is not associated with the
same set of assumptions. Thus, we would end up with two kinds of morphisms in the
category: Morphism f plays the same role as the natural transformation ϑ in Definition 4,
while morphisms g and h represent complexity-relation on the level of model formulations.
Obviously, it is necessary to be able to distinguish between the two kinds of morphisms,
which would imply much more complicated constructions for the structure of the category,
as well as for relations between its objects.

As a simple immediate example indicating the necessity for considering convertible
mathematical models, let us consider the classical model of linear elasticity describing
deformations of an elastic body in a static case. The classical formulation of this model is
given by the following system of equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

div σ̃ + ρ K = 0,

ε̃ =
1
2

[
∇u + (∇u)T

]
,

σ̃ = 2μ

(
ν

1 − 2ν
ϑ Ẽ + ε̃

)
,

ϑ = div u =
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
, (1)

where σ̃ is a symmetric stress tensor, ε̃ is a symmetric strain tensor, u is a displacement
vector, ρ is a material density, ν is the Poisson’s ration, and K is the volume force. System
of Equation (1) is the classical tensor version of elasticity equations, see for example [18].
However, the Lamé equation

μ Δu + (λ + μ)grad div u + ρK = 0, (2)
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is often used in practice as well. Furthermore, model of linear elasticity can be also written
as follows

DMDu = 0, with D =
3

∑
k=1

ek∂k, and u = u0 + u, (3)

where the multiplication operator M is defined by

Mu :=
m − 2

2(m − 1)
u0 + u, m := ν−1.

Equation (3) is a quaternionic form of elasticity model with D denoting the Dirac
operator, see [19] for all details on quaternionic analysis and its applications.

For the sake of clarity of further considerations, let us denote the models (1)–(3)
as follows:

B1 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
div σ̃ + ρ K = 0,

ε̃ =
1
2

[
∇u + (∇u)T

]
,

σ̃ = 2μ

(
ν

1 − 2ν
ϑ Ẽ + ε̃

)
,

ϑ = div u =
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
,

B2 := μ Δu + (λ + μ)grad div u + ρK = 0,

B3 := DMDu = 0, with D =
3

∑
k=1

ek∂k, and u = u0 + u.

A possible representation of these models is provided by the diagram

SetA1 B1

B2

B3

S

F

G
ϑ : F B1 → G B1

Here, functor S is a formalisation process of basic set of assumptions of linear elasticity
SetA1 in the tensor form of model formulation B1, after that, the tensor form can be further
reformulated into the Lamé equation B2, or into the quaternionic form B3 via functorial
mappings F and G. In some sense, the above diagram reflects traditional way of developing
different model formulations: At first, the original form is introduced, and after that, several
more specific forms better suitable for selected methods are introduced. Moreover, looking
in particular at the quaternionic formulation B3, it becomes clear that this form is not
obtained directly through the formalisation process of SetA1 (at least no quaterninic-based
modelling of linear elasticity has been reported till now), but through reformulation of
either Lamé equation or the tensor form, see again [19].

5. Illustrative Examples

In this section, we illustrate the constructions of category theory-based modelling
methodology presented in previous sections on two examples: First, we discuss classical
models of beam theories, and after that, we discuss aerodynamic models used in bridge en-
gineering. These examples have been already presented in works [13,16] at the time of first
steps towards developing the category theory-based modelling methodology. Therefore, it
is necessary to revisit these examples for underlying further development of the theory.
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5.1. Categorical Modelling of Beam Theories

Transverse vibrations of one-dimensional beams are typically modelled by one of three
common beam theories: Bernoulli–Euler theory, Rayleigh theory, and Timoshenko theory.
Thus, let us consider a category of mathematical models, denoted by Beam, containing
as objects sets of assumptions SetB−E, SetR, SetT corresponding to the Bernoulli–Euler,
Rayleigh, and Timoshenko beam theories, respectively. We start our discussion on the
construction of category Beam by explicitly listing the sets of assumptions, which are given
in Table 1.

Table 1. Sets of assumptions of beam theories.

Assumptions SetB−E SetR SetT

1. Cross sections of a beam that are planes remain planes after the
deformation process + + +

2. Normal stresses on planes parallel to the axis of a beam
are infinitesimal + + +

3. A beam has a constant cross section + + +
4. A beam is made of a homogeneous isotropic material + + +
5. Cross sections of a beam perpendicular to its axis remain
perpendicular to the deformed axis + +

6. Rotation inertia of cross sections of a beam is omitted +

Remark 2. The assumptions, as listed in Table 1, are formulated by the help of natural language,
however in some cases it is more convenient to formulate sets of assumptions directly in terms of
mathematical expressions, or as a mixture of both. While from the set-theoretic point of view such
a freedom in writing sets of assumptions is not completely justified, it is acceptable in our setting
because each set of assumption written in natural language can be rigorously formalised in terms
of mathematical expressions. Thus, writing mathematical expressions in sets of assumptions can
be considered as a kind of syntactic sugar, similar to programming languages terminology. Of
course, this analogy not perfect but reflects a general point of view on writing sets of assumptions.

Since derivation of beam models is well known, it will be omitted. Set of assumption
SetB−E of the Bernoulli–Euler theory leads to the following beam equation:

ρ F
∂2u
∂t2 + E Iy

∂4u
∂x4 = 0,

where E is the Young’s modulus of the material, Iy is the moment of inertia, rho is the
density of material, and F is the area of cross section. Next, set of assumption SetR of the
Rayleigh theory leads to the equation:

ρ F
∂2u
∂t2 + E Iy

∂4u
∂x4 − ρ Iy

∂4u
∂x2∂t2 = 0.

Finally, if the effect of bending of cross sections is taken into account, then set of
assumption SetT of the Timoshenko theory is obtained, which leads to the system of
differential equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρF
∂2u
∂t2 − ℵμF

∂2u
∂x2 + ℵμF

∂ϕ

∂x
= 0,

ρIy
∂2 ϕ

∂t2 − EIy
∂2 ϕ

∂x2 + ℵμF
(

ϕ − ∂u
∂x

)
= 0,

where ϕ is the angle of rotation of the normal to the mid-surface of the beam, ℵ is the
Timoshenko shear coefficient, which depends on the geometry of the beam, and μ is the
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shear modulus. After some calculations this system can be reformulated in terms of only
one partial differential equation for u as follows:

ρ F
∂2u
∂t2 + E Iy

∂4u
∂x4 − ρ Iy

(
1 +

E
ℵ μ

)
∂4u

∂x2∂t2 +
ρ2 Iy

ℵ μ

∂4u
∂t4 = 0.

Looking at the above beam models from the categorical perspective, we can summarise
these models and their sets of assumptions as follows:

SetB−E
S�→ ρ F

∂2u
∂t2 + E Iy

∂4u
∂x4 = 0 =: A,

SetR
S�→ ρ F

∂2u
∂t2 + E Iy

∂4u
∂x4 − ρ Iy

∂4u
∂x2∂t2 = 0 =: B,

SetT
S�→ ρ F

∂2u
∂t2 + E Iy

∂4u
∂x4 − ρ Iy

(
1 +

E
ℵ μ

)
∂4u

∂x2∂t2 +
ρ2 Iy

ℵ μ

∂4u
∂t4 = 0 =: C1,

SetT
S�→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ρF

∂2u
∂t2 − ℵμF

∂2u
∂x2 + ℵμF

∂ϕ

∂x
= 0,

ρIy
∂2 ϕ

∂t2 − EIy
∂2 ϕ

∂x2 + ℵμF
(

ϕ − ∂u
∂x

)
= 0.

=: C2,

where S are formalisation mappings, as discussed before. It is worth making the remark:

Remark 3. Note that, in general, mappings S can be different for each set of assumptions, or, can
be the same if all equations are derived based on the same principle, e.g., the Hamilton’s principle.
If the fact that different formalisation processes have been used to obtain models from the sets of
assumptions in one category is essential for the application, then it is necessary to indicate this fact
by using sub-scripts, i.e., S1, S2, . . ., otherwise the general notation for the formalisation mappings
might be kept.

By using Definition 2, the category Beam can be straightforwardly equipped with the
commutative diagram

SetB−E

SetR

SetT

f g

h = g ◦ f

The morphisms f , g, and h indicate the simple fact, that one beam theory can be
obtained from another by weakening basic assumptions. Moreover, the above diagram
clearly indicate that the object SetT (Timoshenko theory) is the most complex, the object
SetR (Rayleigh theory) has higher complexity than the object SetB−E (Bernoulli–Euler
theory), which is the simplest object. The same ordering holds for the corresponding model
instantiations. Next, let us list the following facts we know about the category Beam:

• it is a totally ordered category;
• the object SetB−E is the initial object of this category;
• the object SetT is the terminal object of this category;
• models C1 and C2 are convertible, since they represent different formulations of the

assumptions of Timoshenko theory.

Note that, first three facts, as well as the commutative diagram presented above, do
not require, in fact, models themself, because these facts are solely obtained simply from
the sets of assumptions, i.e., by looking at the objects in the category Beam. Thus, the
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categorical point of view introduced in the previous section reflects the following idea:

The principle difference between models lies not in their final form, but in the basic
modelling assumptions these models are constructed from.

Finally, let us look at the level of models, where the following diagram is obtained

A

B

C1 C2S( f )
ϑ

ϑ−1

S(g)

S(h)

where ϑ denotes a natural transformation appearing in the definition of convertible models,
recall Definition 4.

5.2. Category of Aerodynamic Models Revisited

Next, we briefly revisit the example of aerodynamic models used in bridge engi-
neering presented in [16]. Since the idea is only briefly discuss categorical constructions
introduced in previous sections, we will not present aerodynamic models in details, but
we refer to works [20,21]. We consider the category AeroModel containing as objects
the following sets of assumptions of mathematical models: (i) ST (steady model); (ii)
LST (linear steady model); (iii) QS (quasi-steady model); (iv) LQS (linear quasi-steady
model); (v) LU (linear unsteady model); (vi) MQS (modified quasi-steady model); (vii)
MBM (mode-by-mode model); (viii) CQS (corrected quasi-steady model); (ix) HNL (hy-
brid nonlinear model); (x) MNL (modified nonlinear model); and, (xi) NLU (nonlinear
unsteady model). The structure of category AeroModel is provided by the following
diagram (adapted from [16]):

LST ST

QS

CQS

LQS

HNL

MQS

NLU

MBM

LU

MNL

f3

f2

f4

f9f8

f6

f12 f13

f11

f7 f5

f1

f10

f14

Let us now list some facts we know about the category AeroModel:

• it is a partially ordered category;
• the object LST is the initial object of this category;
• the object NLU is the terminal object of this category;
• according to Theorem 1 several totally ordered subcategories exists, which are
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1. LST ST QS CQS MNL NLU
f2 f4 f9 f13 f14

2. LST LQS QS CQS MNL NLU
f3 f6 f9 f13 f14

3. LST LQS HNL NLU
f3 f8 f12

4. LST LQS MQS LU NLU
f3 f5 f7 f11

5. LST MBM LU NLU
f1 f10 f11

Additionally, we can say that no models associated to the objects of AeroModel are
convertible, but for that it is necessary to take a look at the derivation of models, see
again [16] and references therein.

6. Further Characterisations of Mathematical Models and Conclusions

In this section, we present some further ideas on characterisations of mathematical
models. One of the most important aspect of applications of category theory is a definition
of a universal mapping property (UMP), or simply, a universal arrow, which provides, in
fact, a categorical characterisation of objects, see [22,23] for details. Hence, it is important
to discuss the universal arrow definition also in the context of category theory-based
modelling methodology.

Let us consider a formalisation functor S : Model → M, where M denotes formally a
category of instantiations of mathematical models corresponding to the objects in Model.
Let m be an object of M, then a universal arrow from m to S is a pair 〈r, u〉 consisting of
an object r of Model and an arrow r : m → Sr of M, such that to every pair 〈d, f 〉 with d
an object of Model and f : c → Sd an arrow of M, there is a unique arrow f ′ : r → d of
Model with S f ′ ◦ u = f . Practical meaning of a universal arrow in the context of category
theory-based modelling methodology is that to the same set of assumption can correspond
only convertible model formulations.

Finally, we would like to provide another possible definition of a mathematical model
in general, which would summarise our discussion in this paper:

Definition 5. A mathematical model M is a triple M = 〈Set,M, S〉, where

• Set is the set of assumptions of the model;
• M is an instantiation of the model in terms of mathematical expressions and equations;
• S is a formalisation mapping, which formalises the set of assumptions Set into the model

instantiation M.

Relations between the models can be introduced again by the help of Definition 2.
Definition 5 proposes an abstract description of a mathematical model similar to the abstract
algebraic approach presented in [6]. Thus, a connection between the category theory-based
modelling methodology and abstract algebraic approach is established. Hence, both
approaches to the modelling process in engineering might complement each other, and
therefore, the connection between both approaches will be studied in future research.

In this paper, we have revisited the category theory-based modelling methodology
proposed in recent years. The main idea of this modelling methodology is representation of
mathematical models by the help of categorical constructions. We have presented revised
results from previous works, as well as new results and ideas supporting a deeper un-
derstanding of the modelling process in engineering. Moreover, two illustrative practical
examples, namely categorical perspective of beam models and on aerodynamic models
from bridge engineering, have been revisited. As it can be clearly seen from the examples,
the category theory-based modelling methodology presented in this paper is indeed appli-
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cable in practice and provides various characterisations of mathematical models, relations
between them, and final formulations of models. Finally, we have describe a universal
arrow in the framework of the proposed modelling methodology.

Additionally, we would like to remark how the category theory-based modelling
methodology presented in this paper can be used in a model selection process. After
constructing a category of mathematical models, we can formulate criteria which must
be satisfied by a model for a given practical problem, and thus a subcategory of models
satisfying these criteria can be constructed. Because we are on the abstract level of models,
it is difficult to introduce a quantifiable criterion for the optimal model choice. Nonetheless,
on the abstract level, the simplest model satisfying the criteria can be regarded as “the
optimal choice” in this case, because generally there is no need for overcomplicating the
model. Furthermore, the difference in model assumptions, and thus in model complexity,
can be quantified by the help of numerical calculations, as it has been illustrated in [16] for
the case of aerodynamic models.

The scope of future research is related to a revision and deeper understanding of cou-
pled mathematical models. A categorical description of a coupled mathematical model will
use constructions and ideas introduced in this paper. However, due to the more complex
nature of coupled models, it is expected that more refined and advanced constructions will
be necessary for a proper description of such models. Moreover, further ideas on a formal
model comparison and model selection procedure, as well as a more strict approach to the
formulation of sets of assumptions, will be considered in future work.
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Appendix A. Some Basic Definitions from Category Theory

Following the classical works in category theory [22,23], we list here few important def-
initions.

Definition A1. A category consists of the following data:

• Objects: A, B, C, . . .
• Arrows (morphisms): f , g, h, . . .
• For each arrow f , there are given objects dom( f ) and cod( f ) called the domain and codomain

of f , respectively. We write

f : A −→ B or A
f−→ B

to indicate that A = dom( f ) and B = cod( f ).
• Given arrows f : A −→ B and g : B −→ C, that is, with cod( f ) = dom(g), there is given

an arrow
g ◦ f : A −→ C

called the composite of f and g.
• For each object A, there is given an arrow

1A : A −→ A
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called the identity arrow of A.

These data are required to satisfy the following laws:

• Associativity: h ◦ (g ◦ f ) = (h ◦ g) ◦ f for all f : A −→ B, g : B −→ C, h : C −→ D.
• Unit: f ◦ 1A = f = 1B ◦ f for all f : A −→ B.

Definition A2. A functor
F : C −→ D

between categories C and D is a mapping of objects to objects and arrows to arrows, in such a
way that

(a) F( f : A −→ B) = F( f ) : F(A) −→ F(B),
(b) F(1A) = 1F(A),
(c) F(g ◦ f ) = F(g) ◦ F( f ).

That is, F respects domains and codomains, identity arrows, and composition.

Definition A3. For categories C, D and functors F, G : C −→ D a natural transformation
ϑ : F −→ G is a family of arrows in D

(ϑC : FC −→ GC)C∈C,

such that, for any f : C −→ C′ in C, one has ϑC′ ◦ F( f ) = G( f ) ◦ ϑC, that is, the following
diagram commutes:

FC GC

FC′ GC′

ϑC

F f G f

ϑC′

Definition A4. In any category C, and object

• 0 is initial if for any object C there is a unique morphism 0 −→ C,
• 1 is terminal if for any object C there is a unique morphism C −→ 1.

Definition A5. A subcategory S of a category C is a collection of some of the objects and some
of the arrows of C, which includes with each arrow f both the object dom f and the object cod f ,
with each object s its identity arrow 1S and with each pair of composable arrows s −→ s′ −→ s′′
their composite.
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Abstract: The Kriging surrogate model in complex simulation problems uses as few expensive
objectives as possible to establish a global or local approximate interpolation. However, due to the
inversion of the covariance correlation matrix and the solving of Kriging-related parameters, the
Kriging approximation process for high-dimensional problems is time consuming and even impossi-
ble to construct. For this reason, a high-dimensional Kriging modeling method through principal
component dimension reduction (HDKM-PCDR) is proposed by considering the correlation param-
eters and the design variables of a Kriging model. It uses PCDR to transform a high-dimensional
correlation parameter vector in Kriging into low-dimensional one, which is used to reconstruct
a new correlation function. In this way, time consumption of correlation parameter optimization
and correlation function matrix construction in the Kriging modeling process is greatly reduced.
Compared with the original Kriging method and the high-dimensional Kriging modeling method
based on partial least squares, the proposed method can achieve faster modeling efficiency under the
premise of meeting certain accuracy requirements.

Keywords: surrogate model; Kriging; high-dimensional problems; principal component dimen-
sion reduction

1. Introduction

The surrogate model [1–5], also called a “response surface model”, a “meta model”,
an “approximate model” or a “simulator”, has been applied to different engineering design
fields. Commonly used surrogate models include PRS (polynomial response surface) [6,7],
Kriging [8–12], RBF (radial basis function) [13,14], SVR (support vector regression) [15,16]
and MARS (multiple adaptive spline regression). According to [17] et al., Kriging (also
known as Gaussian process model) is widely used. The main reason for this is that the
Kriging model can attain better approximation accuracy compared to the other meth-
ods mentioned above, and it can handle simple or complex, linear or nonlinear, low-
dimensional or high-dimensional problems. Secondly, Kriging can predict the uncertainty
of unknown points, and its basis function usually has adjustable parameters. Moreover,
the Kriging model can ensure the smoothness of the function, high execution efficiency
and good accuracy.

Although Kriging was developed nearly 70 years ago and has been widely used
in various fields, it always has some shortcomings in the process of dealing with high-
dimensional problems. As shown in [18], using the DACE toolbox in MATLAB and
150 points to construct a Kriging model for a 50-dimensional problem requires 240 to 400 s,
which is time consuming. For high-dimensional problems, constructing a Kriging model
requires a great deal of computational cost, which limits the application of the Kriging
model to high-dimensional problems.
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To solve the key problem of the “curse of dimensionality”, scholars have proposed
various feasible strategies. A new method [19] combining Kriging modeling technology
and a dimensionality reduction method has been proposed. This method uses slice inverse
regression technology and constructs a new projection vector to reduce the original input
vector without losing the basic information of the model’s response. In the sub-region
after dimensionality reduction, a new Kriging correlation function is constructed using
the tensor product of multiple correlation function projection directions. By studying the
correlation coefficient and distance correlation of the Kriging model, an effective Kriging
modeling method [20] based on a new spatial correlation function is created to promote
modeling efficiency. There are also gradient enhancement Kriging methods that use partial
gradient sets to balance modeling efficiency and model accuracy. Chen et al. [21] mainly use
feature selection techniques to predict the impact of each input variable on the output and
rank them, and then select the gradient according to empirical evaluation rules. Mohamed
A. et al. [22] also proposed a new gradient enhancement alternative model method based
on partial least squares, which greatly reduced the number of correlation parameters to
enhance modeling efficiency. In addition, a new method based on principal component
analysis (PCA) [23] has been proposed to approximate high-dimensional proxy models. It
seeks the best linear combination coefficient that can be provided with the smallest error
without using any integral. S. Marelli et al. [24] combined Kriging, polynomial chaos
expansion and kernel PCA to prove and verify that the proposed high-dimensional proxy
modeling method can effectively solve high-dimensional problems.

The above mentioned dimensionality reduction method reduces modeling time while
ensuring that certain model accuracy requirements are met. After all, things have two sides.
The improvement in modeling efficiency leads to a loss in accuracy to a certain extent.
Therefore, how to improve modeling efficiency as much as possible while reducing the loss
in accuracy requires further study.

For this reason, a high-dimensional Kriging modeling method through principal
component dimension reduction (HDKM-PCDR) is proposed. Through this method, the
PCDR strategy can convert high-dimensional correlation parameters in the Kriging model
into low-dimensional ones, which are used to reconstruct new correlation functions. The
process of establishing correlation functions such as these can reduce the time consumption
of correlation parameter optimization and correlation function matrix construction in the
modeling process. Compared with the original Kriging method and the high-dimensional
Kriging modeling method based on partial least squares, this method has better modeling
efficiency under the premise of meeting certain accuracy requirements. In addition, the
high-dimensional modeling method proposed in this article for the Kriging model will
provide other researchers with new ideas and directions for the high-dimensional modeling
research of surrogate models.

The remaining sections of this article are as follows. The second section introduces
the characteristics of the Kriging model and its correlation parameter. The third section
introduces the key issues of the proposed method and the specific implementation process
in detail. In the fourth section, several high-dimensional benchmark functions and a
simulation example are tested. Finally, conclusions are drawn and future research directions
are envisioned.

2. Kriging Model

For experimental design sample X = [x1, . . . , xm]T(X ∈ �m×n) and corresponding ob-
jective Y = [y1, . . . , ym]

T(Y ∈ �m×1), the Kriging surrogate model combining polynomial
regression and stochastic process can be expressed as

Y(x) = Fβ + Z(x) (1)

where parameter Y(x) is a predicted function of interest. In this regression matrix F with
F ∈ �m×p, its elements are usually calculated by the first-order or second-order regression
function of known observation points, and sometimes F can also be a constant regression
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matrix. The weight β of the regression function is a p-dimensional column vector. The
random process Z(x) with zero mean and variance can be stated as

E [Z(x)] = 0, E [Z(x)Z
(

w)] = σ2R(θ, ω, x) (2)

where θ is the correlation parameter and σ2 is the process variance. For any two different
observations ω and x, the spatial correlation kernel function R (θ, ω, x) is shown in
Equation (3).

R(θ, ω, x) =
n

∏
i=1

Ri(θi, ωi − xi) (3)

After determining the correlation among all sample points, the differentiability of
the surface, the smoothness of the Kriging model and the influence of nearby points can
be regulated by R (θ, ω, x). There are generally seven choices for the spatial correlation
function. However, the most widely used is the Gaussian correlation model [25,26]. It can
be expressed by

Ri

(
θi, wk − xk

)
= exp

(
−θi

∣∣∣wk − xk
∣∣∣2) (4)

According to the above analysis, the covariance correlation matrix R can be stated by
Formula (5).

Rm×m =

⎡⎢⎢⎢⎣
R(x1, x1) R(x1, x2) . . . R(x1, xm)
R(x2, x1) R(x2, x2) . . . R(x2, xm)

...
...

. . .
...

R(xm, x1), R(xm, x2) . . . R(xm, xm)

⎤⎥⎥⎥⎦ (5)

Due to unbiased estimation, the regression problem Fβ ≈ Y has a generalized least squares
solution β̂ =

(
FTR−1F

)−1
FTR−1Y and a variance estimate σ̂2 = (Y − Fβ̂)TR−1(Y − Fβ̂)/m.

As seen in Formula (2), process variance σ2 and correlation parameter θ are closely
related among matrix R. The unconstrained optimization problem of the maximum likeli-
hood estimation in Equation (6) is maximized to determine optimal parameter θ.

−(m ln σ2 + ln|R|)/2 (6)

3. HDKM-PCDR Method

3.1. Use PCDR to Generate New Low-Dimensional Kernel Function

The mathematical theory of the principal component (PC) dimensionality reduction
method is PCA, which is used here to reduce the dimensionality of the Kriging design
variables. It uses the idea of dimensionality reduction. Under the premise of losing little
potential function information, all indicators are transformed into several comprehensive
ones by the multivariate statistical method. These comprehensive indicators after conver-
sion are called principal components (PCs). Different linear combinations of original design
variables can constitute different PCs. Under the condition that the PCs are independent
of each other and meet the accuracy, the PCs after dimensionality reduction have greater
advantages in modeling efficiency than the original variables. These are especially suitable
for research into high-dimensional complex problems.

Suppose that the study of a certain problem involves n indicators denoted by x1, x2, . . . ,
xn. Therefore, the n-dimensional random vector x =

(
x1, x2, . . . , xn)T for any sampling

point is formed by these n indicators. A new compound variable v in Equation (7) can be
obtained by linear transformation of x; then, v is the PC we seek. If the first h (h <= n) PCs
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are selected, this is equivalent to reducing the number of indicators from n to h (that is,
from n dimension to h dimension).⎧⎪⎪⎨⎪⎪⎩

v1 = u11x1 + u12x2 + . . . + u1nxn

v2 = u21x1 + u22x2 + . . . + u2nxn

. . . . . .
vn = un1x1 + un2x2 + . . . + unnxn

(7)

The greater the variance in the principal component vi, the greater the amount of
original data information carried. We always hope that the PCs (zi = uT

i x) are independent
of each other and have the largest possible variance. However, in fact, if there is no
restriction on ui, it may make the variance increase arbitrarily; the problem will therefore
become meaningless. For this reason, linear transformation needs to follow the following
principles:

Principle 1. Ensure that uT
i ui is equal to 1, that is, u2

i1 + u2
i2 + . . . + u2

in = 1 (i = 1, 2, . . . , n);

Principle 2. Make vi and vj irrelevant, that is cov(vi, vj) = 0, i �= j; i, j = 1, 2, . . . , n;

Principle 3. Ensure that v1 is the one with the largest variance among all linear combinations
of x1, x2, . . . , xn that satisfy principle 1; v2 is the one with the largest variance among all linear
combinations of x1, x2, . . . , xn when it is not correlated with v1 ; follow this rule, etc., vn is the one
with the largest variance among all linear combinations of x1, x2, . . . , xn when it is not correlated
with v1, v2, . . . , vn−1.

Based on the above three principles, the determined composite variable v1, v2, . . . , vn
is the first to the nth PC of the original variable. And the variances of the composite variable
v1, v2, . . . , vn are arranged in descending order.

According to the above analysis, the specific calculation process of the PCDR method
is described as follows:

Step 1: Calculation of the covariance matrix. Suppose and offer the covariance matrix of
the sample data is ∑ = σ2R =

(
sij
)

n×n.
Step 2: Find the eigenvalue λi of ∑ and the corresponding unit eigenvector ui, and arrange
the eigenvalues λi of the covariance matrix ∑ as λ1, λ2, . . . , λn (λ1 ≥ λ2 . . . λn) in order
of magnitude, and the corresponding unit eigenvectors u1, u2, . . . , ud are the coefficient
vectors of the principal component vi( i = 1, 2, . . . , n), respectively.
Step 3: Choice of PCs. The variance value of each PC vi is equal to the corresponding
λi [27]. Therefore, the contribution rate CRi of the eigenvalue (or variance) is used to reflect

the amount of information; that is, CRi = λi/
n
∑

i=1
λi .

Then, the value h can be determined by the cumulative contribution rate of variance
in Equation (8).

CR(h) =
h

∑
i=1

λi/
n

∑
i=1

λi (8)

When the cumulative contribution rate is greater than 80%, we believe that the PC can
reflect the characteristic of the original variable to a certain extent, and the corresponding
parameter h is the final selected principal component number:

Step 4: Determine a new conversion matrix according to the known sample data and using
the formula zi = ui1x1 + ui2x2 + . . . + uidxd(i = 1, . . . , h) to calculate the value of the h PCs;
meanwhile, the n*h transformation matrix is obtained. This matrix is used as a weight to
replace Formula (3) and recalculate the new kernel function in a more efficient way.
Step 5: Generate new kernel function. First, the linear mapping expression is defined and
shown in Equation (9).
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Fl : B → B
x �→ [

u1
l x1, . . . , un

l xn
]

l = 1, . . . , h
(9)

where B is a hypercube belonging to �d and is represented by the product of the space
interval in each direction. The corresponding kernel function is expressed as

Rl(θl , Fl(x), Fl(w)) =
n

∏
i=1

exp
(
−θl

∣∣∣ui
lw

i − ui
l x

i
∣∣∣2) (10)

Finally, through the tensor product of h kernel functions, a new kernel function based
on Kriging and PCA (KPCA), as shown in Equation (11), can be generated. For new
spatial correlation kernel function, we can use the reduced-dimensional Formula (11) to
replace the high-dimensional Formula (3) so as to improve the modeling efficiency of the
Kriging model.

RKPCA(x, w) =
h

∏
l=1

Rl(Fl(x), Fl(w))

=
h

∏
l=1

n
∏
i=1

exp
(
−θl

∣∣ui
lw

i − ui
l x

i
∣∣2), ∀x, w ∈ B

(11)

Next, take the two-dimensional GP function as an example to describe the dimension-
ality reduction process of the PCDR more clearly. First, use the LHD sampling method
to randomly select 20 sample points, which are shown in Figure 1a. Next, calculate the
covariance matrix of the sample points and use the eigenvector with the largest eigenvalue
in the matrix as the first principal direction (the dotted line in Figure 1a). The first principal
direction is essentially the coefficient in the linear transformation vector. In this way, the
linear transformation of Equation (7) maps the original data points to the direction of the
first principal component (as shown in Figure 1b). Thus far, the first four steps in the PCDR
method are completed. The fifth step is to calculate a new spatial kernel function through
the data points after dimensionality reduction, and then complete the low-dimensional
Kriging modeling.

  
(a) (b) 

Figure 1. Take the GP function as an example, and the selection of the first principal component in the process of turning
two-dimensional data into one-dimensional data. In (a), the 20 sample points are obtained through LHD sampling. After
calculating the covariance matrix using these 20 sampling points, the first principal direction (the dotted line) is formed by
the eigenvector with the largest eigenvalue in the matrix. In (b), the original 20 sampling points are mapped to the first
principal direction through the linear transformation of Equation (7).
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3.2. Specific Implementation of HDKM-PCDR Method

The process of the HDKM-PCDR is shown and stated in detail in Figure 2. Addition-
ally, its specific implementation steps are presented as follows:

Step 1: Initial sampling. LHD (Latin Hypercube Design) method [28] is employed to
generate the initial sample points. To facilitate comparison with other methods, different
initial sampling points will be selected for different real function evaluation times.
Step 2: Build or update sample data. If the sampling data are obtained by the initial LHD
method, we will establish the sample data set {S, Y} for the first time. If a new sampling
point (s, y) is generated by LHD in the optimization process, we will update the sample
data set, i.e., [S, s] → S, [Y, y] → Y.
Step 3: Generate new low-dimensional kernel function.
Step 4: Use new kernel function to rapidly construct the Kriging model.
Step 5: Generate a new candidate point by Latin Hypercube Design.
Step 6: Check the evaluation number of the expensive function.
Step 7: Expensive function evaluation at the new update point.

 

Figure 2. The implementation process of the HDKM-PCDR method.

4. Numerical Test

The KPLS method was proposed by Bouhlel et al. in 2016, and [29,30] demonstrated
that the KPLS method is highly effective at solving high-dimensional problems. The KPLS
combining PLS (partial least squares) technique and Kriging model uses the least squares
dimensionality reduction method in the process of establishing the Kriging model, which
reduces the number of hyper-parameter calculations of the model to be consistent with the
number of PCs retained by the PLS, thereby accelerating the construction of the Kriging
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model. For this reason, we can prove the effectiveness of HDKM-PCDR by comparing
HDKM-PCDR with the KPLS method. If the test result of HDKM-PCDR is better, it can
prove the effectiveness of the HDKM-PCDR method. In addition, Kriging is also used as a
comparison method to verify the applicability of the HDKM-PCDR method for solving
high-dimensional problems.

To compare HDKM-PCDR and KPLS methods in a better and more detailed way, this
work keeps the number of PCs retained in the two methods consistent. The modeling time
and modeling error of the two methods are tested when one principal component, two PCs
and three PCs are retained, respectively.

According to the characteristics of the function’s multimodality, the complexity degree
(the number of valleys or ridges) and the level of dimensionality, the 20-dimensional
Griewank function, the 40-dimensional SUR function, the 60-dimensional DixonPrice
function and the 80-dimensional Michalewicz function shown below are chosen as the
Benchmark functions.

Griewank function:

y(x) =
20

∑
i=1

x2
i

4000
−

20

∏
i=1

cos(
xi√

i
) + 1 − 600 ≤ xi ≤ 600 (12)

SUR function:

y(x) = (x1 − 1)2 + (x40 − 1)2 + 40
39

∑
i=1

(40 − i)(x2
i − xi+1)

2 − 3 ≤ xi ≤ 2 (13)

DixonPrice function:

y(x) = (x1 − 1)2 +
60

∑
i=2

i(2x2
i − xi−1)

2 − 10 ≤ xi ≤ 10 (14)

Michalewicz function:

y(x) = −
80

∑
i=1

sin(xi) sin160(
ix2

i
π

) 0 ≤ xi ≤ π (15)

For each test function, it is tested in two cases. The first case is to obtain 10 initial
sampling points through LHD, and then new sampling points will be added until the total
number of samples reaches 100. The second case is to obtain 20 initial sampling points;
when the total number of samples reaches 200, stop the HDKM-PCDR method. The total
number of sampling points here is reflected in Tables 1–4. For the test in each case, in order
to reflect the robustness and effectiveness of the HDKM-PCDR, the average value of ten
repeated runs is taken as the final test result.

Table 1. Test results on time and RMSE for the Griewank function.

Test Method
100 Sample Points 200 Sample Points

Time (s) RMSE Time (s) RMSE

Kriging 7.5573 11.9916 74.1562 8.6062
HDKM-PCDR-1 0.7652 10.3085 6.5901 6.6526

KPLS-1 0.8119 10.1789 6.6855 6.8414
HDKM-PCDR-2 1.3173 9.6095 13.7230 5.4336

KPLS-2 1.3510 9.9492 13.7983 6.8227
HDKM-PCDR-3 2.5512 9.3348 30.8119 5.4700

KPLS-3 2.7733 9.8196 30.9308 6.7632

29



Mathematics 2021, 9, 1985

Table 2. Test results on time and RMSE for the SUR function.

Test Method
100 Sample Points 200 Sample Points

Time (s) RMSE Time (s) RMSE

Kriging 18.2212 1.3791 × 104 216.5188 1.1123 × 104

HDKM-PCDR-1 1.2272 1.2820 × 104 12.8934 8.8252 × 103

KPLS-1 1.9691 1.2301 × 104 14.1654 7.0127 × 103

HDKM-PCDR-2 2.2761 1.1949 × 104 23.5094 7.6304 × 103

KPLS-2 2.3510 1.2795 × 104 24.1808 8.4033 × 103

HDKM-PCDR-3 4.1168 1.2322 × 104 55.3962 8. 3669 × 103

KPLS-3 4.7523 1.2576 × 104 55.7409 8. 7498 × 103

Table 3. Test results on time and RMSE of the DixonPrice function.

Test Method
100 Sample Points 200 Sample Points

Time (s) RMSE Time (s) RMSE

Kriging 61.4766 2.8969 × 105 664.3026 2.1001 × 105

HDKM-PCDR-1 2.9292 2.8021 × 105 24.3048 1.9415 × 105

KPLS-1 2.8138 2.8041 × 105 25.0655 1.9264 × 105

HDKM-PCDR-2 4.8741 2.7954 × 105 54.7819 1.8945 × 105

KPLS-2 5.9279 2.7961 × 105 56.8854 1.8879 × 105

HDKM-PCDR-3 15.2038 2.6808 × 105 126.8160 1.8643 × 105

KPLS-3 13.6838 2.6488 × 105 137.2857 1.8654 × 105

Table 4. Time and RMSE of the Michalewicz function.

Test Method
100 Sample Points 200 Sample Points

Time (s) RMSE Time (s) RMSE

Kriging 126.6239 0.1296 1289.3620 0.0925
HDKM-PCDR-1 3.4028 0.1276 25.9314 0.0916

KPLS-1 3.6180 0.1276 26.9781 0.0918
HDKM-PCDR-2 4.7722 0.1248 53.1837 0.0920

KPLS-2 5.0228 0.1264 53.8481 0.0923
HDKM-PCDR-3 19.3122 0.1241 184.6957 0.0915

KPLS-3 32.3037 0.1238 285.4663 0.0908

The results of the time consumption and modeling error (RMSE-Root Mean Square
Error) of the four test functions are shown in Tables 1–4. The time is the total modeling time
spent during the whole sampling process for all sample points. The RMSE in these tables
can be obtained by using “leave one out cross” validation [31]. The concrete expression
of RMSE is shown in Equation (12). Here, parameter k represents the number of samples
in the current data. If the Kriging model is used to estimate the variance of point xi, we
first need to reconstruct the Kriging model with the remaining k-1 sampling points, except
for point xi. Then, calculate the estimated variance ŝ2

i of point xi by using the newly built
Kriging model and Formula (8). After repeating k times to complete the variance estimation
of these k sampling points, the average value can be calculated to obtain the RMSE with
Equation (12).

RMSE =
1
k

√√√√ k

∑
i=1

ŝ2
i (16)

Under the condition of different sample points, box plots of 10 test results of each test
function are, respectively, shown in Figures 3–6 to further demonstrate the stability and
effectiveness of the HDKM-PCDR method, as well as to express it intuitively.
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(a) Time for 100 sampling points. (b) RMSE for 100 sampling points. 

  
(c) Time for 200 sampling points. (d) RMSE for 200 sampling points. 

Figure 3. Time and RMSE of the Griewank function.

  

(a) Time for 100 sampling points. (b) RMSE for 100 sampling points. 

Figure 4. Cont.
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(c) Time for 200 sampling points. (d) RMSE for 200 sampling points. 

Figure 4. Time and RMSE of the SUR function.

  

(a) Time for 100 sampling points. (b) RMSE for 100 sampling points. 

  

(c) Time for 200 sampling points. (d) RMSE for 200 sampling points. 

Figure 5. Time and RMSE of the DixonPrice function.
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(a) Time for 100 sampling points. (b) RMSE for 100 sampling points. 

  

(c) Time for 200 sampling points. (d) RMSE for 200 sampling points. 

Figure 6. Time and RMSE of the Michalewicz function.

First, let us take a look at the modeling time test results of the algorithms from
subgraphs (a) and (c) in Figures 3–6. Compared with ordinary Kriging and KPLS methods,
from the median (red solid line) of the time box plots and the size (the area formed by
the upper quartile and the lower quartile) of the box, the median line value shown by the
proposed method is the lowest, and the frame area is also the smallest. In addition, it has
fewer outliers. For example, in the Griewank function test of 200 sampling points, the
HDKM-PCDR-3 method and the KPLS-3 method have abnormal points. However, the
abnormal points generated by the HDKM-PCDR-3 method are located below the box plot,
while the abnormal point of KPLS-3 is located above the box plot. This shows that the
time consumed by HDKM-PCDR-3 in the ten test cycles has a smaller value in a certain
test, while KPLS-3 has a larger value. Therefore, the proposed method has the shortest
modeling time in the process of each test, and the fluctuation of the time spent in these
ten modeling times is not large. These test results show that the HDKM-PCDR modeling
method has better stability and efficiency.

The modeling time and model accuracy in each of the four tables are the average of
the results obtained after ten runs of each benchmark function. All tests were performed in
Matlab2018a by a Lenovo machine equipped with an i5–4590 3.3 GHz CPU and 4 GB RAM.
As expected, for these four benchmark functions, the HDKM-PCDR method and the KPLS
method under the dimensionality reduction condition use 100 and 200 sampling points to
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establish the Kriging model. The corresponding time spent and the approximate accuracy
of the model are better than the Kriging method without direct dimensionality reduction.
For the HDKM-PCDR method and the KPLS using the idea of dimensionality reduction, the
modeling time shown by the HDKM-PCDR-n (n = 1, 2, 3) method stays ahead of the KPLS-n
(n = 1, 2, 3) method under the condition of reducing the same dimensions. For Griewank,
SUR and DixonPrice functions, although the modeling time of the proposed method is
slightly lower than that of KPLS, the total modeling time of the two methods is not much
different. For the more complex Michalewicz function, the HDKM-PCDR-3 method takes
only a little more than half of the time of the KPLS-3 method, which also shows that
the HDKM-PCDR method has higher efficiency in dealing with multi-dimensional and
multi-peak complex problems. In terms of model accuracy, except for the KPLS-1 method
at 100 points, the test results of Griewank function using the proposed method perform
best. Other than the KPLS-1 method in the case of 100 points and 200 points, the RMSE
obtained by the HDKM-PCDR method to test the SUR function meets the high accuracy
requirements. For the DixonPrice and Michalewicz functions, the two methods are evenly
matched, and both have advantages. However, considering modeling time and model
accuracy, the proposed method is slightly better.

Next, let us look at the test results of the modeling accuracy of the algorithm from
sub-graphs (b) and (d) in Figures 3–6. Theoretically speaking, the RMSE (model accu-
racy) of the ordinary Kriging method without dimensionality reduction should be the
best. However, as can be seen from subgraphs (b) and (d), the fact is just the opposite.
Judging from the median RMSE in the Griewank function test results, the HDKM-PCDR
performs better than the KPLS. For SUR function, in addition to KPLS-1, the accuracy
results in other cases are still slightly better than the proposed method. For the DixonPrice
function and the Michalewicz function, these two dimensionality reduction methods are
evenly matched, and each has its own merits. However, KPLS-2 and KPLS-3 both showed
better performance of abnormal points in some test functions, which is better than the
proposed method. However, in general, the proposed method is still stronger than KPLS,
and can ensure that the accuracy of the problem after dimensionality reduction meets
certain requirements.

In summary, the following conclusions can be drawn for all the above test results:
(1) Compared to the non-dimensionality reduction Kriging method, regardless of the
modeling time and the accuracy of the model, the HDKM-PCDR method and the KPLS
method using dimensionality reduction have been improved. (2) The modeling time of
the HDKM-PCDR method is almost always shorter than that of the KPLS method while
retaining the same number of PCs. Additionally, with the increase in the dimension and the
number of sample points, the efficiency advantage of the HDKM-PCDR method becomes
more and more obvious. The main reason for this is that the proposed method reduces the
size of the hyperparameter correlation matrix in the Kriging model, which is equivalent to
simplifying the internal structure of the Kriging model, thereby improving the efficiency
of Kriging modeling. (3) However, in terms of modeling accuracy, for different functions,
the proposed method and the KPLS method have their own advantages in accuracy. For
example, HDKM-PCDR’s test results of Griewank function show that its modeling accuracy
is higher. The results of the proposed method and the KPLS method for the other three
benchmark functions are basically evenly divided. The main reason is explained as follows:
the reduction in the proposed method is mainly for the reduction in the dimensions of the
related hyperparameters, which directly leads to the reduction in the correlation matrix,
while the KPLS method also considers the PLS method and the Kriging estimation of
the sampling points. These two different reduction methods consider different angles for
the reduction problem, resulting in approximate accuracy sometimes being better than
KPLS; sometimes, KPLS is better than the proposed method, but the overall accuracy
values are not much different and are even close. (4) In some special circumstances, when
the dimensionality of the problem is higher after dimensionality reduction, the model’s
accuracy will decrease instead. For example, when the Michalewicz function is tested
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at 200 sampling points, it appears that the accuracy of HDKM-PCDR-1 and KPLS-1 are
better than HDKM-PCDR-2 and KPLS-2. The reason for this result may be that the sample
point contains a large amount of information when it is reduced to one-dimensional data.
In other words, the weight of the function on a certain dimensional variable is too large.
However, this situation is rare seen in practice.

5. Air Traffic Control Radar Design

With the continuous and rapid development of China’s air traffic field, air traffic
control technology has higher and higher requirements for the perception of future air
traffic situations. In order to ensure the flight safety of aircraft and the normal operation
of air traffic in real time, a radar detection system has been set up. This radar detection
system can monitor the flight range of an aircraft in real time. In this case, unfortunate
events such as missing aircraft can be avoided.

In order to better design the above air traffic control radar, we simulated an air
traffic control (ATC) radar design through Simulink simulation software in MATLAB.
The simulation model can be divided into three main subsystems: radar, aircraft and
weather. The specific air traffic control model diagram is shown in Figure 7. The air traffic
control radar simulation system designed in this paper introduces real-time data such as
flight information, radar signals, weather forecast, aircraft resistance and flight mileage
as simulation parameters in the simulation process. In order to make the parameters of
the radar system design easier to change and easier to determine their values, this model
provides a GUI (see Figure 8). The parameters of radar and weather can be changed through
the GUI. The effect of different parameters can be seen on the oscilloscope screen during
simulation. The oscilloscope screen shows the actual range of the aircraft and the change
over time in the aircraft’s range estimated by radar under certain parameter settings.

Figure 7. Air traffic control system.

This paper takes the design variables as the parameter settings of the air traffic control
radar design simulation system, so that the simulation results can be obtained by Simulink.
Since the simulation result changes with time, the maximum range of radar detection
is taken as the simulation result and output to the MATLAB workspace. Based on the
simulation results and the HDKM-PCDR method, one, two and three principal components
are retained to construct the Kriging model, and the modeling time and modeling error
in the three cases are recorded. In addition, the Kriging model was directly established
with the data obtained from the simulation, and modeling time and modeling error were
also recorded.
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Figure 8. Air traffic radar design parameters.

Figure 9 shows the results of modeling time and modeling error in a modeling process.
In order to better compare the time for the HDKM-PCDR method to establish Kriging
and to directly establish the Kriging model, the time in Figure 7 has removed the time
used for simulation. In this modeling process, there are 10 initial sample points, and the
corresponding expensive estimates of the sample points are obtained through simulation.
The Kriging model is established by the HDKM-PCDR method, and the modeling time
at this time (excluding time for simulation estimation) is recorded as a first-time value.
In each iteration, a sample point is added, and the corresponding expensive estimate is
simulated; modeling time at this time (excluding the time for the simulation estimate) is
recorded as a time value. Repeat the iterative process until final sample number is 100, and
then stop the iterative process.

  
(a) (b) 

Figure 9. (a) Test results on modeling time of air traffic control systems throughout the Kriging, HDKM-PCDR-1, HDKM-
PCDR-2 and HDKM-PCDR-3 methods. (b) Test results on RMSE of air traffic control systems throughout the Kriging,
HDKM-PCDR-1, HDKM-PCDR-2 and HDKM-PCDR-3 methods.
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The following two conclusions can be drawn from the figure: (a) It can be seen from
the figure that, as the number of sample points increases, the time required for HDKM-
PCDR and Kriging to build a model gradually increases. However, with the increase in
the number of sample points, the time required to directly establish the Kriging model is
greater than the time required to establish the model of HDKM-PCDR. In the end, the time
difference is 8 times, 6 times and 3.2 times, respectively. (b) It can be seen from the figure
that the modeling error is gradually reduced as the number of sample points increases.
The modeling error of the HDKM-PCDR-1 method is unstable and large, but it is not
much different from the modeling error of the Kriging method. The modeling errors of
the HDKM-PCDR-2 and HDKM-PCDR-3 methods are very close to those of the Kriging
method. In summary, the HDKM-PCDR method can improve the modeling efficiency of
the Kriging model when the modeling accuracy loss is small.

6. Conclusions

The complexity of engineering problems causes calculating time to be expensive.
Therefore, the Kriging surrogate model is used to reduce this burden. However, when using
the Kriging model to approximate high-dimensional problems, the modeling process is also
time consuming. The most time is spent during the inversion of the covariance correlation
matrix and the solving of the Kriging correlation parameter. To this end, a high-dimensional
Kriging modeling method through principal component dimension reduction (HDKM-
PCDR) is proposed. In this method, the PCDR way of considering design variables and
correlation parameters can convert the high-dimensional correlation parameter in Kriging
into a low-dimensional one, which is used to reconstruct a new correlation function. In
this way, it will reduce the time spent optimizing correlation parameters and constructing
the correlation function matrix in the Kriging modeling process. Compared with the
original Kriging method and the high-dimensional Kriging modeling based on partial
least squares, the proposed method has better modeling efficiency while meeting certain
accuracy requirements.

When dealing with high-dimensional problems, the proposed method has certain
deficiencies in relation to model accuracy. In principal component dimensionality reduction,
it is necessary to ensure that the cumulative contribution rate of the first few principal
components extracted reaches a higher level (that is, the variable after dimensionality
reduction has a higher amount of information). In this case, when the correlation between
the original design variables is weak, too many principal components may be selected,
which is not conducive to improvements in Kriging modeling efficiency. In future research,
we will further explore new sampling strategies by combining factors such as prediction
target, variance, and distance. In this way, more promising sampling points can be obtained
to improve the model accuracy.
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Abstract: Trochoidal milling is a well-stablished machining strategy which still allows for the
introduction of new approaches. This strategy can be applied to any kind of material, although it is
usually associated to advanced materials, such as titanium and nickel alloys. This study is based on
the adaptation of the feed speed of a milling tool with Ti-6Al-4V, so the chip width can be maintained
constant without modifying the path geometry. A singularity in the experimental stage was to mill
an Archimedes spiral groove instead of the conventional straight grooves. This made it possible to
obtain a concave wall as well as a convex one and to optimize the amount of material used. The time
efficiency compared to a constant feed, was slightly superior to 20%, reducing tool wear also. These
techniques require milling machines with high mechanical and kinematic performance, as well as the
absence of clearance between joints and a high acceleration capacity.

Keywords: trochoidal milling; variable feed; spiral groove; CAM

1. Introduction

The main objective of trochoidal milling is to use all the effective tool length in order
to make the cut [1]. The cutting force on the tool depends on the chip section and produces
the tool flection; furthermore, the cutting power is proportional to the cutting force. A
similar cutting force can appear due to the elimination of a large chip width ae and a small
axial depth of cut ap, or the removal of a small chip width and a large axial cut, Figure 1.

The force application point on the right of Figure 1 is more distant from the handle
clamp, so the flection torque is bigger and the breaking probability increases.

This justifies the increase of ap as much as possible, due to its limited influence [2] in
tool wear and surface quality [3]. The reduction of ae produces a decrease of the chip width,
reducing heat generation and improving tool wear.

In this study, the values of the ap are equal to triple the tool diameter, while ae is
almost 0.06D, which can be considered as finishing conditions, allowing cutting speeds
over 90 m/min. The decrease of tool wear facilitates the possibility of using sharper cutting
edges (less cutting force). Those cutting edges are micro-rounded in order to raise their
robustness, Figure 2.
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Mathematics 2021, 9, 2701

Figure 1. Relation between ap and ae for the same section.

Figure 2. Micro-rounded mill cutting edge.

In theory, for the same values of the chip section (ap × ae), the number of passes
required to complete the machining would be the same. Nevertheless, if the chip width
decreases there are new advantages:

• The tooth gap can be smaller for the same feed (the chip width is reduced), so more
teeth can be implemented and, for the same feed per tooth, the final feed rises and, as
a result, the machining time decreases.

• As a consequence, the mill core has a wider section, being able to support bigger
flection and torque forces, Figure 3. This bigger rigidity makes possible to decrease
deformation and vibrations, being more suitable for materials with superior cutting
requirements [4], such as titanium and nickel alloys.
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Figure 3. For the same tool diameter, with more teeth, there is a tool core increase.

Figure 1 shows a straight peripheral milling, which could also follow a curved path, as
in trochoidal milling, being internally generated. The chip widths are different, as shown
in Figures 4 and 5. There are three different kinds of feed per tooth, which are coincident in
straight milling.

Figure 4. Engagement angle and chip thickness in lineal path.

Figure 5. Engagement angle and chip depth in the interior arch.

The engagement angle, θe, is an important parameter in peripheral millings. Different
studies [5–7] have been based on determining this parameter and maintaining it constant.
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2. Materials and Methods

2.1. Selection of the Radial Cut Depth

The radial cut depth was selected as a parameter for the trochoidal milling. The chip
thickness, h, is a parameter that tool manufacturers use [8–10]. The process to obtain this
parameter has been previously published in different classical books [11–14]; nevertheless,
it has been mentioned below in order to clearly establish the approximations adopted in
this study.

Parameters θe and h are clearly related, as shown in Figure 4, considering the maximum
chip thickness and approximating the CB chord to the tangent in B. This approximation is
valid because the feed per tooth, fz, is small in comparison to the mill dimensions. In this
case, the feed per tooth, f’z, on the milling surface, is equal to the feed per tooth, fz, in the
centre of the mill:

sin θe =
hmax

fz ′
(1)

cos θe =
rm − ae

rm
(2)

Converting the cosine in sine and replacing (2) in (1):√√√√1 −
(

1 +
(

ae

rm

)2
− 2

ae

rm

)
=

hmax

fz ′
(3)

Other aspects to take into account include:

• Considering that ae is small in comparison to the milling tool radius rm.
• Avoiding the use of the squared parenthesis. According to the previous aspect, it is

not significant compared to the other equation terms.
• Using the milling tool diameter instead of the radius.

Finally, the previous expression (3), can be written as follows:

hmax = 2 fz
′
√

ae

D
(4)

Applying the mean value theorem to Equation (1), the mean thickness can be obtained:

hm = 2
fz
′ae

Dθe
(5)

Which can also be written as:

hm = fz
′
√

ae

D
(6)

Milling tool manufacturers give the cutting values referring to the feed per tooth fz,
which is required to determine the feed:

F = fz·z·N (7)

For the straight milling path, fz = fz′.
In trochoidal milling, the path of the milling tool is not straight, but curved. The most

frequent path describes a real trochoid, although other curves can be applied to maintain
the engagement angle θe as constant as possible.

It is necessary to pay attention to the curved paths, noting that the most interesting
path for this purpose is the interior (concave) path, as in Figure 5, where the curvature and
depth are constant. The engagement angle is:
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cos θe =
rm − ae f f

rm
(8)

Equation (8) is similar to Equation (2), but includes the effective radial depth aeff,
which has a much higher value, compared to ae. Furthermore, the feed per tooth and,
therefore, the feed in (7) are different in the centre of the milling tool, which is the point
to be programmed in the numeric control (NC) machine, and in the most external point
(highest cut radius), as shown in Figure 5.

fz = fz
′′ r

r + rm
= fz

′ r
r + rm − ae

(9)

Analysing Figures 4 and 5, it can be observed that:

• For the same feed in the milled part, the programmed feed must be lower in the
interior tool path.

• According to Figure 5 and Equations (2) and (8), for the interior tool path, the engage-
ment angle is higher for the same radial depth, ae, as aeff is larger than ae.

• As the value of the feed per tooth is low in comparison to the milling tool dimensions,
the arch of fz′ is close to a straight line. Thus, the mean thickness can be approximated
to the previous case, considering aeff instead of ae:

hm = fz
′
√

ae f f

D
(10)

• As ae is constant, the values of the engagement angle and the effective axial depth are
constant. However, they are not constant in trochoidal milling.

Moreover, the following considerations must be taken into account:

• Avoiding an excessive decrease of the chip width, as the friction of the part with the
tool edge increases, heat is generated [15]. On the contrary, the increase of the chip
effective width causes a decrease of friction and cut pressure [16].

• The mean chip depth should not be decreased. For this reason, in this study, to let hm
be constant when aeff varies, the feed per tooth fz′ will be continuously modified.

In the experimental stage, fz was selected according to the tool manufacturer’s tech-
nical advice in relation to the straight-line peripheral milling for surface finishing. With
that value in Equation (6), hm can be obtained. This value makes it possible to obtain fz′
in Equation (10). The instantaneous feed per tooth in the centre of the milling tool can be
obtained with (9) for each instantaneous ae.

The trochoidal path is similar to the case in Figure 5, although the axial depth ae is
not constant and, consequently, neither is aeff. For this reason, the engagement angle θe
is variable.

Figure 6 shows a simplified approximation of the trochoidal milling path as a series of
semi-circular arches with a step equal to axial depth, with values from zero to aemax.

The effective axial feed is considered the variable to be studied in the experimental
stage. Its maximum value can be observed in Figure 7, when the first contact point of the
milling tool is in line with the two centres (of trochoid arch and of milling tool).

The position angle γ of a point of the trochoidal path, referred to the axis of the
rotation centre, will be obtained. It must be noticed that this is an approximation in which
the maximum axial depth is much lower than the slot width, being as that the value of b
equal to half of this slot width.

The goal is to determine the angle ωt (which is the position of the milling tool in the
trochoidal path) and the maximum value of aeff.
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Figure 6. Trochoidal path approximation.

Figure 7. Instant in which aeffmax is reached.

In the triangle O2HT1, with r = b − rm:

rm
2 = (b − aemax)

2 + r2 − 2(b − aemax)r cos β

cos β =
(b − aemax)

2 + r2 − rm
2

2(b − aemax)r
(11)

ϕae f f max =
π

2
− cos−1

(
(b − aemax)

2 + r2 − rm
2

2(b − aemax)r

)
(12)

O2M = (b − eemax) cos β
ae f f max = b − O2M

ae f f max = b − (b − aemax)
2 + r2 − rm

2

2r
(13)

Figure 8 shows the calculation of the effective radial depth aeff. To do so, there are two
possibilities: using analytic geometry or trigonometry. In both cases, the coordinate origin
is placed in O2.
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Figure 8. Obtaining the effective radial depth.

For the first method, solving equations with the centre in O1 and in H, T1 is obtained.

x2 + (y − aemax)
2 = b2

(x − r cos ωt)2 + (y − r sin ωt) = rm
2

}
⇒
{

xT1 = x
yT1 = y

(14)

Solving equations of the circles with centres in O2 and H, T2 can be obtained:

x2 + y2 = b2

(x − r cos ωt)2 + (y − r sin ωt)2 = rm
2

}
⇒
{

xT2 = x
yT2 = y

(15)

The coordinates of M can be obtained with the equation of the straight line which
contains O2 and T2, intersected with the line which contains T1 and is perpendicular to the
previous one:

y = yT2
xT2

x
y = yT1 +

−xT2
yT2

(x − xT1)

}
⇒
{

xM = x
yM = y

(16)

Now, the effective width MT2 can be obtained:

ae f f =

√
(xT2 − xM)2 + (yT2 − yM)2 (17)

It is important to consider the double solutions of (14) and (15) in the change of
quadrant, as well as the divisions by zero in (16).

The second method is based on the application of trigonometry:

O1T1 = O2T2 = b

x2 = b cos ωt y2 = b sin ωt (18)

O2H = O2T2 − HT2 = r = b − rm

xH = (b − rm) cos ωt yH = (b − rm) sin ωt (19)

O1H =

√
xH2 + (yH + aemax)

2 (20)
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In the triangle O1HT1, the cosine theorem is applied:

rm
2 = b2 + O1H2 − 2b·O1H· cos β

cos β =
b2 + O1H2 − rm

2

2b·O1H
(21)

cos γ =
xH

O1H
(22)

The coordinates of point T1 are determined as follows:

x1 = b· cos(γ + β)
y1 = b· sin(γ + β)− aemax

(23)

The side T1T2 of the triangle T1HT2:

T1T2 =

√
(x2 − x1)

2 + (y2 − y1)
2 (24)

The engagement angle is obtained with the cosine theorem in the isosceles triangle
T1HT2:

T1T2
2 = rm

2 + rm
2 − 2rm·rm· cos θe (25)

cos θe = 1 − T1T2
2

2rm2 (26)

With this, the segment HM is:

HM = rm cos θe

And the effective radial depth can be obtained:

ae f f = HT2 − HgM = rm(1 − cos θe) (27)

A different method, based in parametric CAD, was applied with Solid Edge™, as
shown in Figure 9, with the values of the angle ωt from a table of variables and a spread-
sheet. This method was important to verify the results of the two previous calculations.

Figure 9. Graphical method to verify aeff.
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In the NC program, the feed was variable in order to maintain constant the value
of the chip width, improving the process efficiency [17]. This variation in the feed F is
possible thanks to the kinematics of the milling machines and the NC, which can process
large numbers of program lines [18], such as the was used in this case.

Finally, the trigonometry-based method was chosen to simplify implementation in the
NC programming. This option made it possible to avoid divisions by zero or considering
double solutions, as previously detailed.

2.2. NC Program of a Trochoid with Adaptive Feed

The trochoidal path [19] described by the centre of the milling tool is the combination
of two simultaneous movements. Figure 10 shows a circular path with radius r and a
straight movement with a speed v.

Figure 10. Generation of the straight-line path.

The movement of the milling tool centre is a straight line, but this carrier route can be
any 2D or 3D curve. Finally, the straight-line path will be transformed into an Archimedes
spiral.

To decrease the processing time, the in and out paths are usually modified to shorten
the milled area with a straight line (with initial and final tangential arches) at a higher
feed [20].

The described angle depends on the angular speed ω at which the centre of the milling
tool plots the circular path which, if the value of ω is constant, is ϕ=ωt. This value of ω can
be variable, as analysed below:

The feed of the tool should be adapted to the chip thickness for each instant. When
the chip thickness is the maximum, the feed is the minimum (this is similar to a progressive
entry, but without constant slope), as shown in Figure 11. In the following segment of the
turn, the feed of the milling tool is at the minimum at the beginning and progressively
increases until reaching its maximum value as a function of the effective depth.

The previous variation is not lineal. The maximum value of the effective radial depth
is in Equation (12). Its variation depends on Equation (27), following the steps between
Equations (18) and (26). The graph displayed in Figure 12 was obtained with the following
values: b = 0.5 mm, Dm = 12 mm, aemax = 0.5 mm. The maximum value of the effective
radial depth is 1.32 mm, and the corresponding ωt angle is 65.3◦.

Equations for the straight trochoidal path, with constant feed, are developed below.
These equations will be the base for adapting the feed and transform the straight path into
a spiral trajectory.
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Figure 11. Equivalence between trochoidal and peripheral ramp milling with variable slope.

Figure 12. Milling time calculation.

The angular speed ω, is obtained from the feed per tooth fz, the number of teeth z, the
cutting speed Vc and the milling tool diameter Dm. The rotation frequency of the milling
tool is:

N =
1000Vc

πD
(28)

The feed of the cutter on the path:

v f = fz·z·N (29)

This feed is also the tangential speed of the tool centre path, so:

v f = ω·r → ω =
v f

r
=

fz·z·N
r

(30)

Units can be found in the initial variable table.
The rotated angle is:

ϕ = ω·t (31)

For the time, T, required for the tool centre to describe a complete rotation (ϕ = 2π),
the simultaneous lineal movement of the path must trace the maximum radial depth aemax.

T =
aemax

v
=

2π

ω
→ v =

ω

2π
aemax (32)
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Replacing the ω of Equation (30) in (32):

v =
fz·z·N·aemax

2π·r (33)

With all this, it is possible to obtain the trochoidal path equation, depending on the
milling parameters, by combining the lineal and rotational movements:

x = vt + r cos(ωt + ϕ0)
y = r sin(ωt + ϕ0)

(34)

Time goes from 0 to a final value tf (Figure 12):

t f =
lm
v

(35)

The time increase to obtain the points (x, y) that define the tool centre path can be
calculated from the maximum chordal error [21]. The objective is to replace arches by
segments by means of the G1 command for lineal interpolation, as well as by the activation
of the high-speed functions in the NC.

When the arch of the trochoid, traced by the tool edge, is approximated to a circumfer-
ence arch (Figure 13):

Δϕ = 2 cos−1
(

1 − e
r + rm

)
(36)

Obtaining:

Δt =
Δϕ

ω
0 < t < t f (37)

The obtained points will be used to establish the feed in every segment. Thus, Equa-
tions (29)–(35) depend on mean feed, although for each time increment (37) there is a
specific feed value, vf, which provides a different v for each ϕ.

Figure 13. Polygonal approximation of the circumference.

Previous equations were programmed using MS Excel™ and Visual Studio™, obtain-
ing higher processing speeds with the latter. The cutting parameters were established
according to the technical advice in two manufacturer’s websites: Sandvik™ [22] and
Seco™ [23]. The depth value was increased up to 35 mm for a 12 mm milling tool, with an
effective cutting length of 36 mm, according to the indications of the local manufacturer
(Marena, S.L., Zaragoza, Spain). This made it possible to test the performance of the milling
tool in a 19 mm wide groove (so the radius of the trochoidal arch is 3.5 mm).

Instead of the total straight path, a single period is traced in order to use, for each
interval between points, a different feed (10) with an effective thickness (27).

Equation (37) was not considered due to the variable values of feed, because the
angular movement was not constant. The process was:

• The points that define a step of the trochoidal path were obtained using (36).
• ω was obtained from (30), using the feed fz for peripheral milling.
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• Introducing the previous values of Δϕ and ω in (37), Δt is obtained.
• With (33), v is obtained.
• Using (34), the coordinates of the trochoidal arc (0 to π) were obtained, with Δϕ.
• For each of the previous coordinates (x, y), the effective chip width was obtained (27).
• The mean value of chip width was obtained from (6), for the peripheral milling, with

ae = aemax.
• With (10), the value of f ’z can be found.
• As the cut is interior, Equation (11) makes it possible to find the corrected fz for each

point. When aeffmax is reached, fz is at the minimum, being maximum in the trochoid
limits (Figure 11).

• Finally, rotation (38) and translation are applied to the points obtained in the previous
step. This step is described below.

The two reasons to mill a spiral groove (Figure 14) are:

• The cost of a cylinder (∅ = 183 mm) of Ti-6Al-4V was significantly lower than a
rectangular plate. In fact, the local provider had a leftover, which made it more
affordable.

• The milled part has concave and convex walls. While the values of the radius of these
walls are not constant, this situation is closer to reality and can be consider a novelty
compared to previous tests with trochoidal milling [24–27].

Figure 14. Spiral groove.

The point with coordinates (xi, yi) belongs to the arch of one of the trochoidal steps
(Figure 15). A rotation is applied to this point:

xpi = xi cos τ − yi sin τ
ypi = xi sin τ + yi cos τ

(38)

The rotation is given by the direction τ, which is tangent to the spiral path, Figure 16.
After this rotation, a translation is applied to the spiral point (xs, ys), where the tangent was
obtained.

The coordinates of the point S (xs, ys) are:

xs = kφs cos φs
ys = kφs sin φs

(39)

The direction of the spiral tangent is obtained from:

dxs = cos φs − φs sin φs
dys = sin φs + φs cos φs

(40)

To obtain the direction of rotation, τ, the arc tangent of dy/dx must be calculated. It
must be considered that a division by zero can be solved as follows:
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Select Case dx
Case 0

If dy > 0 Then τ = Pi/2 + Pi Else τ = -Pi/2 + Pi
Case Else

τ = Math.Atan2(dy, dx) + Pi
End Select

(41)

It can be noticed that π has been added in the previous code, so when the spiral path
is from the outside to the inside, the tangent direction is contrary to the one in Figure 16.

Figure 15. Trochoidal path step.

Figure 16. Rotation and translation for adapting the point (xi, yi) to the spiral path.
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The Visual Net function ATAN2 made it possible to obtain the arc tangent and to
distinguish the sign properly.

The entry and exit paths shown in Figure 15 are circular arches, where a value of the
minimum radius depends on the acceleration performance of the machine [28], given by:

an =
v f

rl
2 =

fz·z·N
rl

2 (42)

In order to avoid additional calculations, the entry and exit paths can be extended, as
shown in Figure 17, following the same trochoidal path. From the exit, the maximum feed
can be used (G0 can be too fast for some milling machines). In the entry point, the required
feed is recovered.

Figure 17. Extension of the entry and exit paths.

The essential points of the trochoidal path in Figure 15, in addition to those additional
ones for the entry and exit, are previously calculated, storing their coordinates and feed (x,
y, F) in numeric arrays. The entry and exit points are also stored with the assigned feed.

The next step would be distributing the points of the trochoid step along the spiral.
Dividing the spiral length [29] by the step (aemax) gives the number of the generated
trochoidal arches. Several expressions can be used to define the length of the spiral arch.
Applying differential calculus:

Δlm =
1
2

k
[

φ
√

1 + φ2 + ln
(

φ +
√

1 + φ2
)]φe

φi

(43)

When the spiral step decreases, an approximated expression of this length can be
deduced:

rs = kφ (44)

Using the mean value of the radius:

rm =
ri + re

2
= k

φi + φe

2
(45)

Multiplying the mean radius by the covered arch, the arch length can be obtained,
approximating with:

Δlm =
k
2

(
φe

2 − φi
2
)

(46)
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The number of trochoidal arches is:

nsp =
Δlm

aemax
(47)

This solution was applied to the integer value plus one, because a verification of the
accumulated length would make possible to stop calculations, not exceeding the value of
Δlm, obtained with (43).

From Equation (36), for a given value of the chordal error, the angle increment can be
obtained. As the angle traced by the trochoid is π radians, the number of points (without
entry and exit points) included in Figure 15 are:

nt = truncate
(

π

Δϕ

)
+ 1 (48)

In an open path, the number of the defined points is equal to the gaps plus one.
The entry and exit points are added to the previous ones (48), as shown in Figure 17.

ni = truncate
(

ϕi
Δϕ

)
+ 1

no = truncate
(

ϕo
Δϕ

)
+ 1

(49)

2.3. Practical Development

The trochoidal milling test was developed with a cylinder of titanium grade 5 with
the previously mentioned dimensions. The initial cylinder was cut in three parts, with an
appropriate saw, to develop the experimental stage using milling machines with the same
features in three different vocational training centres, from Zaragoza, Valls and Puertollano
(Spain), Figure 18.

Figure 18. One of the three NC milling machines.

The dimensions of the spiral groove and the working conditions for the peripheral
milling were placed in a Visual Net form, Figure 19.

Intermediate calculations were obtained from Equation (46), making it possible to
solve the final angle without any numerical approximation from the arch length and the
initial angle. With this equation, a small error is generated.

For each point of the trochoidal path arch (Figures 16 and 18), the rotation of Equation
(38) was obtained with:

• The substitution of angle ϕe (46).
• The substitution of the length increment Δlm by the value of aemax divided by the value

obtained from (48).

The angle previously obtained is introduced again in (46), repeating the process until
the spiral final angle.
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Figure 19. Visual Net data form.

3. Results

Before the milling stage, two different CAM dealers were asked for the roughing of a
straight groove with the dimensions shown in Figure 19 and a length of 100 mm, applying
trochoidal paths (Figure 20a,b). It was also developed by us, using two additional CAM
(Figure 21). From these results, a complete trochoidal arch was isolated. The only restriction
was to apply the Y axis as the milling direction.

Figure 20. Four CAM trajectories applied.

These CAM codes make possible to identify when the milling tool is not cutting
(highest feed) and it is cutting (recommended feed, which remains constant).
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The geometry is similar with all the CAM codes, although they describe an elliptical
trochoidal path, being the semi-axes of (b) and (d) oriented in the opposite direction to (a)
and (c). The intention is to replace the position and the value of aeffmax and to decrease the
value or ϕaeffmax.

(a) and (b) are based on circular arches, while (c) and (d) are described by a series of
points, following the path.

(b) and (c) add two straight segments, in parallel to the milling direction, in order to
improve the finishing.

The entry and exit paths are circular arches (G3) in all of the cases.
The slope and transformation of an elliptical trochoidal path was previously stud-

ied [30]. In this research, the elliptical trochoid was graphically analysed, as seen in
Figures 9 and 21.

Figure 21. Graphical analysis obtaining of aeff in an elliptical trochoidal path.

Figure 22 shows the variation of aeff and the milling displacement angle with incre-
ments of 5◦.

Figure 22. aeff for the circular and elliptical trochoidal paths.

The 20◦ elliptical path keeps the value of aeff more stable, being necessary to optimize
its parameters [30,31]. However, the circular trochoidal path was tested, with the objective
of studying the feed per tooth variation to maintain the chip thickness constant.

Figure 23 shows the path of the milling tool centre, combining Figures 15 and 16, thus
extending the trochoidal arch and rounding entry and exit paths.

During the tests, the milling tool “marena 965” (Figure 24) was used [32], with z =
5 teeth, ∅ = 12 mm, maximum cutting length = 36 mm. The cutting speed was 90 m/min
and the feed was 0.08 mm/tooth for peripheral milling, with ae = 0.5 mm and p = 35 mm.
With these conditions, the spiral path was milled several times with three similar machines
(Figure 17).
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Figure 23. Trochoidal roughing adapted to a spiral groove.

Figure 24. Milling tool used in the experiments.

Figure 25 shows the path in the NC display (FAGOR 8060TM).

Figure 25. Trochoidal-spiral path.

Figure 26 shows the real spiral after milling it (left), and the initial (a), intermediate (b)
and final (c) Titanium chips.
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Figure 26. One of the milling processes and types of chips (a–c).

Finally, Figures 27 and 28 show the tool wear obtained with constant F and with
variable F, respectively.

Figure 27. Tool wear for constant F.

Figure 28. Tool wear for variable F.

4. Discussion

As shown in Figure 22, the 20◦ elliptical path can be interesting because aeff stays
more stable, although its value is higher, decreasing the feed per tooth. In contrast, the 0◦
elliptical path starts with a high value of aeff, making it necessary to decrease the feed per
tooth, although it could be increased at the exit.

The circular trochoidal path was chosen because its initial aeff is not high, obtaining
its maximum value before tracing the centre of the semitrochoid. The feed per tooth has a
high value at the entry and decreases until aeffmax and, after it, its value increases to the exit.
From the exit to the following entry, the feed value can be significantly increased.
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After analysing references [30] and [31], it would be interesting to test these new paths
by varying the F in further research.

The tool holders must be hydraulic, particularly when the loads are high or the feeds
vary a lot during the milling process, because other kinds of tool holders (e.g.,: Weldon or
clamps) were not able to maintain the position of the tool.

In both milling processes, a frontal tool tooth was broken (Figures 27 and 28). The
tool wear was slightly lighter with variable F and the tool coating was not peeled in
any case. The diameter deviation between teeth, before and after the milling, was below
5 micrometres.

The milling process with variable F, even adapting S [28,32], suggests improvements
which should be tested in further research.

An additional possibility would be elevating the milling tool in the exit points (he-
licoidally), descending in the entry points (Figures 15 and 17). This possibility was not
implemented, according to the tool manufacturer indications (to avoid stress in the Z
spindle and the entrapment of chip residues).

5. Conclusions

The machining time with the conditions shown in Figure 19, was 1 h 17 min with
constant F, and 51 min with variable F. When the cutting speed was raised to 100 m/min
and the feed per tooth was 0.07 mm, the machining times were 1 h 36 min and 59 min,
respectively.

The wear of the tool edge decreases with the variable F strategy.
Finally, it was concluded that the variable F strategy was advantageous, but it can

only be applied with milling machines that allow high acceleration of their axes (X, Y).
It is possible to reduce the energy consumption as well as the time required, increasing

tool life and improving the sustainability of machining processes, thanks to several aspects.
These aspects include the improved features of current machine tools, new machining
strategies and advances in tool cooling, e.g., using cryogenic products [33] with phase
change. It is also possible to use cryogenic cooling to improve the effectiveness of lubri-
cation [34,35], significantly reducing the quantity required. Another interesting option is
based on adding nanoparticles [36] to reduce tool wear or by locally applying a process of
laser preheating [37].
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Abstract: The process of Levy random walks is considered in view of the constant velocity of a
particle. A kinetic equation is obtained that describes the process of walks, and fractional differential
equations are obtained that describe the asymptotic behavior of the process. It is shown that, in
the case of finite and infinite mathematical expectation of paths, these equations have a completely
different form. To solve the obtained equations, the method of local estimation of the Monte Carlo
method is described. The solution algorithm is described and the advantages and disadvantages of
the considered method are indicated.
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1. Introduction

At present, the theory of anomalous diffusion is rarely used to describe the combustion
processes of a substance, although there are all the prerequisites for this. For example,
when a substance is burning, various kinds of turbulence are developing. As a result, the
diffusion packet width Δ(t) stops obeying the law Δ(t) ∝ tγ with an exponent γ = 1/2
and starts growing with time by the law with an exponent γ �= 1/2, which testifies to
the appearance of anomalous diffusion. Signs of the appearance of anomalous diffusion
at thermal transport in a low-dimensional system are indicated in the papers [1,2]. This
assumption is also supported by experimental data. For example, in the work [3], the
thermal radiation in the combustion chamber during the combustion of natural gas and
acetylene was studied, depending on the level of fuel enrichment with oxygen. Time series
analysis showed that the combustion process at any oxygen concentration is subdiffusive
in nature.

The assumption about the formation of anomalous diffusion during the combustion
of a substance allows us to introduce into consideration the fractional differential equations
of anomalous diffusion. An effective coefficient of heat conductivity for the Levy–Fokker–
Plank equation was obtained in the papers [4,5]. In the papers [6–8], to describe the
combustion process, it is proposed to use the fractional differential equation of anomalous
diffusion:

0Dβ
t u = ∂xxu + f (u), t > 0, 0 < x < L, (1)

where 0Dβ
t is the fractional Riemann–Liouville derivative [9] of the order 0 < β < 1 by

time and ∂xx is the classical particular derivative of the second order by coordinate. In
the paper [10], a two-dimensional combustion model with a fractional time derivative
was studied. To solve the obtained equation of diffusion, the authors develop an adaptive
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finite-difference discontinuous Galerkin method. A modification of the Equation (1) in
the case of the dependence of the diffusivity on temperature and relaxation time has been
considered in the article [11]. In the papers [8,12], a fractional-differential combustion
model with the first derivative with respect to time and a fractional derivative with respect
to the spatial variable is considered:

∂tu = ∂α

∂|x|α u + f (u), u(x, 0) = u0(x), u(a, t) = u(b, t) = 0. (2)

Here, ∂t is the partial time derivative, and ∂α

∂|x|α is the fractional-differential Riesz
operator [9]. To solve this equation, a finite-difference scheme using an adaptive strategy is
described in the papers [8,12]. In the paper [13], a fractional-differential generalization of
the kinetic equation was obtained that describes the relationship between the radius of the
ball and time in the model of the combustion of a fireball, theoretically predicted by the
Soviet physicist Ya.B. Zeldovich [14].

However, when using the Equations (1) and (2), it should be kept in mind that they
are based on the process of Continuous Time Random Walk (CTRW) [15–22]. This process
assumes that a particle instantly moves from one point in space to another at a random
distance Ri, i = 1, 2, 3, . . . , and then rests at this point for a random time Ti, i = 1, 2, 3, . . .
All these random values Ri and Ti are independent of each other and between one another
and they are distributed by the laws pR(x) ∝ x−α−1, x → ∞ and qT(t) ∝ t−β−1, t → ∞,
respectively.

Depending on the value α, the path distribution has different properties. If α = 2,
then the distribution has finite mathematical expectation and variance, at 1 < α < 2,
mathematical expectation is finite and variance is infinite, at 0 < α � 1 both mathematical
expectation and variance are infinite. The instantaneousness of jumps means that, for
an arbitrarily small time interval from the initial one, the particle can be at an arbitrarily
large distance from the source. In some cases, this non-physical behavior of a particle
does not lead to any contradiction with the experiment. For example, in the case of the
normal diffusion (α = 2, β = 1), when the distribution of paths and rest times have a finite
variance, the process is described by the classical diffusion equation, the solution to which is
expressed in terms of the normal distribution. It is well known that the normal distribution
is nonzero on the entire number axis, which indicates the infinite velocity of the particle
in the inherent walk model. However, in view of the finite variance of the distribution of
paths, the infinite velocity of motion is compensated for by a small value of the paths. The
situation is completely different in the case of anomalous diffusion. As the exponent α
decreases, the probability of greater paths increases and at values α < 1 this probability
turns out to be significant. Therefore, it is necessary to use the anomalous diffusion model
with a certain degree of caution, especially when considering problems with limited spatial
geometry or processes limited in time, for example, to describe combustion processes in
furnaces.

One of the ways to eliminate the difficulty described above is to introduce a constant
final velocity of the particle. One of the first works in which a constant velocity of particle
motion was introduced into the model of anomalous diffusion is the work [23]. In this
paper, the authors called this model Levy walks. Further study of this model was carried
out in the works [24–26]. The work [27] is devoted to the study of Levy walks in bounded
and semi-bounded spaces. In the work [28], kinetic equations of anomalous diffusion
with a finite velocity are obtained, the root-mean-square deviation is investigated, and
an exact solution to the kinetic equation in the one-dimensional case is obtained. The
work [29] is devoted to the study of statistical moments for the case of Levy random walks
with a random finite velocity without traps, and the case of multidimensional walks with
traps of arbitrary type with constant velocity is considered in the works and the case of
multidimensional walks with traps of arbitrary type with constant velocity is considered
in the works [30–33]. The work [34] examines the influence of the final velocity on the
spatial distribution of particles in Levy walks with exponential traps. In this work, it
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was found that, in the case 1 < α � 2, taking account of the constant velocity of particle
motion is reduced to a decrease in the diffusion coefficient in the equation of anomalous
diffusion (2). In the case α < 1 distributions take W-like or U-like form and cannot be
described by the Equation (2). The papers [35–37] study the process of Levy random walks
without traps and it was shown that in the case of infinite mathematical expectation of
the distribution of paths, the asymptotic distributions have U-like and W-like form. In
the paper [38] an expression for current within framework of the Levy walks model was
obtained. The obtained expression generalize the Fourier’s law to the case of anomalous
thermal transport for the Levy diffusion model.

The work [39] succeeded in addressing the problem of describing Levy random walks
in the case α < 1. In this work, it was shown that, in the case of an infinite mathematical
expectation of the distribution of paths, to take account of the finite velocity, it is necessary
to replace the fractional Laplacian in the equation of anomalous diffusion by a material
derivative of a fractional order. Later, the authors of the works [40–44] come to the same
conclusion. The solution to the equation of anomalous diffusion with a material derivative
of the fractional order was obtained in the works [44–46]. In these works, it was shown
that the solution to this equation is expressed in terms of the Lamperti distribution.

In this paper, we consider a method for the numerical solution to the equations of
anomalous diffusion taking account of the constant finite velocity of the particle motion
between collisions. The work is organized as follows. In Section 2, a kinetic equation
describing the considered process of walks is derived. In Section 3, fractional differential
equations and the solutions of these equations are obtained, describing the asymptotic (at
t → ∞ and x → ∞) distribution of particles. It was shown that, in the case of an infinite
mathematical expectation of the distribution of paths (0 < α < 1) and finite mathematical
expectation 1 < α < 2, the behavior of the process is described by completely different
equations. In Section 4, a numerical method for solving the kinetic equation based on the
method of local density estimation is considered.

2. Kinetic Equation of the Random Walk Process

To obtain the kinetic equation, we will use the approach proposed in the paper [28],
which was developed in the paper [47]. We will consider the density of collisions f (r, p, t),
where r is the radius-vector of the particle, p—is the particle momentum, t—is time. The
value f (r, p, t)dr dp dt is the number of collisions in the volume element dr of the vicinity
of the point r for the interval of time dt, at which the momentum of the particle takes on
a value from p to p + dp. We will consider the nonrelativistic case p = mv. Without loss
of generality, we assume that m = 1. The paper [47] shows that, with the presence n of
discrete states, the value f (r, v, t) can be represented in the form:

f (r, v, t) =
n

∑
j=1

f j(r, v, t), (3)

where

f j(r, v, t) = sj(r, v, t) +
n

∑
i=1

cij

∫ t

0
ki(τ)dτ

∫
Wij(Ω

′, Ω)dΩ′×∫
fi
(
r − v′Ω′τ, v′Ω′, t − τ

)
hij(v′, v)dv′. (4)

Here, ki(τ) is the probability density distribution of the residence time in the state
i, cij—the probabilities of transition from the state i into the state j, Wij(Ω

′, Ω) is the
probability density that before collision the velocity had the direction Ω′, after collision
the direction took the value Ω, hij(v′, v) is the density of the probability of the change in
velocity from the value v′ to v, sj(r, v, t) is the density of new particle sources in the state
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j, v = vΩ, v = |v|, dv = dv dΩ, the summation is carried out over all possible previous
states. The values cij, Wij(Ω

′, Ω) and hij(v′, v) are normalized:

n

∑
j=1

cij = 1,
∫

Wij(Ω
′, Ω)dΩ = 1,

∫
hij(v′, v)dv = 1. (5)

The transition from the density of collisions f (r, v, t) to the phase density ψ(r, v, t) is
carried out with the help of the integral,

ψ(r, v, t) =
∫ t

0
K(τ) f (r − vΩτ, vΩ, t − τ)dτ, (6)

where K(t) =
∫ ∞

t k(τ)dτ. Substituting (3) in (6) we get that the phase density has the form
of the sum,

ψ(r, v, t) =
n

∑
j=1

ψj(r, v, t), (7)

where

ψj(r, v, t) =
∫ t

0
Kj(τ) f j(r − vΩτ, vΩ, t − τ)dτ, (8)

where Kj(t) =
∫ ∞

t kj(τ)dτ. The physical interpretation of the last expression is simple. To
detect the particle in the state j of the vicinity dr of the point r with the velocity in the
interval from v to v + dv at the moment of time from t to t + dt the particle must pass to
this state at the point r − vΩτ at the moment of time t − τ and stay in this state during the
time greater than τ. Transition to the density of particles ρ(r, t) is carried out with the help
of the integral,

ρ(r, t) =
∫

ψ(r, v, t)dv. (9)

The system of Equations (4), (7) and (8), together with conditions (5) describes practi-
cally any process of random walks with n discrete states under fairly general assumptions
about the scattering indicatrix Wij(Ω

′, Ω) and the law of redistribution of speed hij(v′, v).
In this work, using these equations, we obtain kinetic equations describing Levy walks
with a constant velocity of motion between two successive scatterings of a particle.

We define the process of walks as follows. There is only this state—the state of motion
(n = 1). A particle moves at a constant velocity v between two successive collisions. After
the collision, the particle changes its direction, which is determined by the scattering
indicatrix W(Ω). After which, the particle continues to move in a new direction with the
same constant velocity v. Random times between two successive collisions of a particle
Ti, i = 1, 2, 3, . . . are independent random values. Since the motion occurs with a finite
speed, then for times Ti the particle covers the path Ri = vTi, i = 1, 2, 3, . . . . The values Ri
are the paths of particles.

Since there is only one state, then in Equations (4), (7) and (8), we need to put n = 1,
c11 = 1. We will also assume that the source can be represented in the form s(r, v, t) =
s(r, t)hs(v)Ws(Ω) and, for brevity, we omit the subscript indicating the status number. As
a result, we obtain:

ψ(r, v, t) =
∫ t

0
K(τ) f (r − vΩτ, vΩ, t − τ)dτ, (10)

f (r, v, t) = s(r, t)hs(v)Ws(Ω)

+
∫ t

0
k(τ)dτ

∫
W(Ω′, Ω)dΩ′

∫
f
(
r − v′Ω′τ, v′Ω′, t − τ

)
h(v′, v)dv′. (11)
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The motion velocity between two successive collisions will be denoted by v0. Let
us also assume that the direction of motion after each collision does not depend on the
previous direction of motion. In view of the foregoing, we get:

h(v′, v) = hs(v) = δ(v − v0), W(Ω′, Ω) = Ws(Ω) = W(Ω).

Now, substituting these expressions in Equation (11), we obtain:

f (r, v, t) = W(Ω)δ(v − v0)

(
s(r, t) +

∫ t

0
k(τ)dτ

∫
dΩ′

∫
f
(
r − v′Ω′τ, v′Ω′, t − τ

)
dv′
)

. (12)

From this relation, it is clear that, in cases when the densities of transition probabilities
h(v′, v) and Wij(Ω

′, Ω) do not depend on the previous value v′ and Ω′, then the density of
the collision can be represented in the form of the product f (r, vΩ, t) = W(Ω)h(v)F(r, t).
Thus, we obtain:

f (r, vΩ, t) = W(Ω)δ(v − v0)F(r, t). (13)

Now substituting this relation in (12) and by integrating over dv dΩ we get the
equation for F(r, t):

F(r, t) = s(r, t) +
∫ t

0
k(τ)dτ

∫
W(Ω′)dΩ′

∫
F(r − v′Ω′τ, t − τ)δ(v′ − v0)dv′

= s(r, t) +
∫ t

0
k(τ)dτ

∫
F(r − v0Ω′τ, t − τ)W(Ω′)dΩ′. (14)

Here, we used the normalization condition
∫

W(Ω′)dΩ′ = 1. The physical meaning
of the quantity F(r, t) is quite simple. This is the density of collisions in the volume element
dr of the vicinity of the point r.

Let us now pass from the collision density to the phase density ψ(r, v, t), and then to
the density of particles ρ(r, t). To this end, we put the expression (13) in (10). As result,
we obtain:

ψ(r, v, t) =
∫ t

0
K(τ)W(Ω)δ(v − v0)F(r − vΩτ, t − τ)dτ.

Now integrating this expression over dv dΩ and taking account of the ratio (9), we get
the equation for the density of particles:

ρ(r, t) =
∫ t

0
K(τ)dτ

∫
W(Ω)F(r − v0Ωτ, t − τ)dΩ. (15)

For the further solution to the obtained equations, it turns out to be convenient to pass
from the time τ to the particle path ξ. By substituting the integration variable τ = ξ/v0, in
Equations (14) and (15), we get:

ρ(r, t) =
1
v0

∫ v0t

0
P(ξ)dξ

∫
F(r − ξΩ, t − ξ/v0)W(Ω)dΩ, (16)

F(r, t) = s(r, t) +
∫ v0t

0
p(ξ)dξ

∫
F(r − ξΩ′, t − ξ/v0)W(Ω′)dΩ′.. (17)

Here, the following notation was introduced: p(ξ) = 1
v0

k(ξ/v0) is the density of

probability of the path distribution and K( ξ
v0
) ≡ P(ξ) =

∫ ∞
ξ p(y)dy.
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From this system of equations, it is possible to exclude the equation for F(r, t). To
do this, we will substitute Equation (17) in (16) and change the order of integration in the
second summand. As a result, we obtain the equation for density,

ρ(r, t) =
1
v0

∫ v0t

0
P(ξ)dξ

∫
s(r − ξΩ, t − ξ/v0)W(Ω)dΩ

+
∫ v0t

0
p(ξ)dξ

∫
ρ(r − ξΩ′, t − ξ/v0)W(Ω′)dΩ′. (18)

The first summand in this equation describes unscattered radiation. The second
summand describes multiply scattered radiation. This equation describes the random
walk of a particle with constant velocity in three-dimensional space with an arbitrary
distribution of paths.

Let us simplify the problem and consider one-dimensional particle walks. Let the
random walk process occur along the axis x. In this case, the function W(Ω) takes the
form:

W(Ω) = W(θ, ϕ) =
1

sin θ
(ω1δ(ϕ) + ω2δ(ϕ − π))δ(θ − π/2), (19)

where ω1 and ω2 are the probabilities of motion in the positive and negative directions of
the axis Ox respectively and ω1 + ω2 = 1. Now substituting (19) in Equation (18) and con-
sidering that Ω = (sin θ cos ϕ, sin θ sin ϕ, cos θ), ρ(r, t) = ρ(x, y, z, t), s(r, t) = s(x, y, z, t),
dΩ = sin θdθdϕ and integrating the resulting equation over the angular variables, we
obtain:

ρ(x, y, z, t) =
1
v0

∫ v0t

0
P(ξ)(ω1s(x − ξ, y, z, t − ξ/v0) + ω2s(x + ξ, y, z, t − ξ/v0))dξ

+
∫ v0t

0
p(ξ)(ω1ρ(x − ξ, y, z, t − ξ/v0) + ω2ρ(x + ξ, y, z, t − ξ/v0))dξ.

Since random walks along the axis Ox are considered, then,

ρ(x, y, z, t) = ρ(x, t)δ(y)δ(z), s(x, y, z, t) = s(x, t)δ(y)δ(z).

Now substituting these expressions into the previous equation and integrating over
the variables y and z, we finally obtain:

ρ(x, t) =
1
v0

∫ v0t

0
P(ξ)(ω1s(x − ξ, t − ξ/v0) + ω2s(x + ξ, t − ξ/v0))dξ

+
∫ v0t

0
p(ξ)(ω1ρ(x − ξ, t − ξ/v0) + ω2ρ(x + ξ, t − ξ/v0))dξ. (20)

The first component in this equation describes unscattered particles that, after escaping
from the source, did not have a single collision and move in positive and negative directions,
respectively. The second component describes multiply scattered particles, which at the
moment of time t − ξ/v0 had a collision and after that they began their motion in positive
and negative directions, respectively.

3. Asymptotic Solution to a Kinetic Equation

An asymptotic solution to this equation can be found. To do this, we perform the
Fourier–Laplace transform:

ρ̂(k, λ) =
∫ ∞

0
dt
∫ ∞

−∞
eikx−λtρ(x, t)dx (21)
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of the Equation (20). As a result, we obtain:

ρ̂(k, λ) =
1
v0

ŝ2(k, λ)
(
ω1P̂(λ/v0 − ik) + ω2P̂(λ/v0 + ik)

)
+ ρ̂(k, λ)(ω1 p̂(λ/v0 − ik) + ω2 p̂(λ/v0 + ik)).

As a result, we obtained a simple algebraic equation, the solution to this equation has
the form:

ρ̂(k, λ) =
1
v0

ŝ(k, λ)
(
ω1P̂(λ/v0 − ik) + ω2P̂(λ/v0 + ik)

)
1 − ω1 p̂(λ/v0 − ik)− ω2 p̂(λ/v0 + ik)

.

Let there be a point instantaneous source s(x, t) = δ(x)δ(t). This means that ŝ(k, λ) = 1.
Considering that

P̂(λ) =
∫ ∞

0
e−λξ P(ξ)dξ =

1 − p̂(λ)
λ

,

we obtain

ρ̂(k, λ) =
1/v0

1 − W(k, v0, λ)

⎛⎝ω1

1 − p̂
(

λ
v0

− ik
)

λ
v0

− ik
+ ω2

1 − p̂
(

λ
v0

+ ik
)

λ
v0

+ ik

⎞⎠, (22)

where W(k, v, λ) = ω1 p̂(λ/v − ik)− ω2 p̂(λ/v + ik). This solution describes the spatial
distribution of particles with random walks of a particle at a constant velocity, with an
arbitrary distribution of paths. This solution is not new and was obtained earlier (see, for
example, [40,42,48–52]). In this paper, we will consider the asymptotic solution to this
equation in the case when the distribution of paths has asymptotics of the form:

p(x) ∝ αxα
0 x−α−1, 0 < α < 2, x → ∞, (23)

where x0 = (Γ(1 − α) sin(π
2 (1 − α)))−1/α. The cases of other distributions of paths are

considered in the work [52].
Let us consider the case 0 < α < 1. In this case, the Laplace transform of the density

(23) has the form (see [33]):

p̂(λ) ≈ 1 − (λx0)
αΓ(1 − α), λ → 0.

Now substituting this expression into the solution (22), we obtain:

ρ̂(k, λ) =
ω1(λ − ikv0)

α−1 + ω2(λ + ikv0)
α−1

ω1(λ − ikv0)
α + ω2(λ + ikv0)

α . (24)

This expression completely coincides with the result obtained in [37,49,53]. Taking
account of the fact that the multiplier (λ ± ikv)α is the Fourier–Laplace transform of the
fractional material derivative [40,54],

(λ ± ıkv)α f̂ (k, λ) =
∫ ∞

0
dt
∫ ∞

−∞
eıkx−λt f (x, t)

(
∂

∂t
± v

∂

∂x

)α

dx,

we obtain that the process is described by the fractional differential equation [44,53–55]:[
ω1

(
∂

∂t
− v0

∂

∂x

)α

+ ω2

(
∂

∂t
+ v0

∂

∂x

)α]
ρ(x, t) =

=

[
ω1

(
∂

∂t
− v0

∂

∂x

)α−1
+ ω2

(
∂

∂t
+ v0

∂

∂x

)α−1
]

δ(x)δ(t). (25)
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By changing the variable s = ik in (24), one can perform the inverse transformation
using the method described in the work [56] (see also [37]). As result, we have:

ρ(x, t) =
2 sin(πα)

πv0t
ω1ω2

(
1 − (x/v0t)2)α−1

ω2
1(1 − x/v0t)2α + ω2

2(1 + x/v0t)2α + 2ω1ω2(1 − (x/v0t)2) cos(πα)
. (26)

In the case 1 < α < 2, the distribution (23) has a mathematical expectation. In view of
the fact that the Laplace transform of density (23) takes the form (see [33]):

p̂(λ) ≈ 1 − m1λ + m2λα, λ → 0,

where m1 = αx0
α−1 , m2 =

xα
0 Γ(2−α)

α−1 . Now substituting this expression in (22) and considering
asymptotics λ → 0, k → 0, |λ/kv| → 0, we get:

ρ(k, λ) ≈ 1
λ + ikv0(ω2 − ω1)− m2

m1
(ω1(−ikv0)α + ω2(ikv0)α)

. (27)

To obtain an equation describing the process of random walks, we rewrite this expres-
sion in the form:

λρ̂(k, λ)− 1 = ρ̂(k, λ)

(
ikv0(ω1 − ω2) +

m2

m1
(ω1(−ikv0)

α + ω2(ikv0)
α)

)
.

Let us simplify the problem and consider symmetric random walks ω1 = ω2 = 1/2,
we obtain:

λρ̂(k, λ)− 1 = ρ̂(k, λ)
m2

2m1
vα

0 |k|α((−i)α + iα).

In view of the fact that 1
2 ((−i)α + iα) = cos(π

2 α) we get:

λρ̂(k, λ)− 1 = −Dαρ̂(k, λ)|k|α. (28)

Here, Dα = m2
m1

vα
0 sin

(
π
2 (α − 1)

)
. To perform the inverse Fourier–Laplace transform of

this equation, we need the Riesz fractional differentiation operator:

∂ν

∂|x|ν =
−1

2 cos(πν/2)
(−∞Dν

x +
∞Dν

x).

The Fourier transform of this operator has the form (see, for example, [9]):∫ ∞

−∞
eikx ∂ν f (x)

∂|x|ν dx = −|k|ν f̂ (k).

Taking this relation into account, it is possible to perform the inverse Fourier–Laplace
transform of Equation (28). As a result, we obtain the equation of anomalous diffusion:

∂ρ(x, t)
∂t

= Dα
∂αρ(x, t)

∂|x|α , (29)

with the initial condition ρ(x, 0) = δ(x)δ(t).
The solution to this equation can be obtained by performing the inverse Fourier–

Laplace transform of the solution (27). It has already been done in the works [52,53]. As a
result, the inverse Fourier–Laplace transform has the form:

ρ(x, t) =
1

(Dαt)1/α
g
(
(x − ωvt)(Dαt)−1/α; α, ω, 0, 1

)
,
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where g(x; α, ω, 0, 1) is the density of the standard stable law and ω = ω1 − ω2. In the case
of symmetric walks ω1 = ω2 = 1/2, this expression takes the form:

ρ(x, t) =
1

(Dαt)1/α
g
(

x(Dαt)−1/α; α, 0, 0, 1
)

. (30)

As we can see, the equation solution (29) is expressed in terms of a symmetrical stable
law [20,57,58].

Thus, taking account of the constant velocity of the particle in the Levy walk model
leads to the need to consider two cases 0 < α < 1 and 1 < α < 2. The principal difference
between these two cases is that, at 0 < α < 1, the mathematical expectation of the
distribution (23) is equal to infinity and in the case 1 < α < 2, the mathematical expectation
is finite. It is this fact that leads to different asymptotic distributions of particles. In the
case of an infinite mathematical 0 < α < 1 the probability of the appearance of large paths
turns out to be significant, and leads to the fact that the overwhelming majority of particles
move along the front of the distribution x = ±vt. This is especially clear at values α < 0.6.
In this case, the U—like form of the asymptotic distribution of particles is formed. As the
parameter α increases, the share of large paths decreases. This leads to the appearance of
multiply scattered particles, which form a hump in the central part of the distributions.
As a result, the W—like asymptotic distribution of particles is formed. These solutions
are not new and were obtained earlier when considering random walks with constant
velocity [49,52,53], and when considering similar models of random walks [37,42,48,59,60]
(see also the overview work [50]). In the case of the finite mathematical expectation
(1 < α < 2), the process of random walks of a particle with a constant velocity falls under
the action of the generalized central limit theorem. As a result, the asymptotic distribution
of the particle coordinate is described by a stable law. In this case, the influence of the final
velocity is reduced to a decrease in the diffusion coefficient D → Dα [34].

As we can see, in the case of the finite mathematical expectation and infinite math-
ematical expectation, not only are the asymptotic distributions different, but so are the
equations describing the process of random walks. In the case of the finite mathematical
expectation, the random walk process is described by the anomalous diffusion equation
with the first time derivative (29), and the influence of the finite velocity is reduced to
replacing the diffusion coefficient in this equation. In the case of the infinite mathematical
expectation for taking account of the finite velocity of motion, as noted in the work [34], it
is no longer sufficient to simply replace the diffusion coefficient. For this, it is necessary to
replace the operator of the fractional Laplacian with the material derivative of the fractional
order, which was first noted in the work [39]. Later, the authors of the works [40–44] come
to the conclusion like this. Thus, in the case 0 < α < 1 in asymptotics t → ∞ the random
walk process is described by Equation (25).

4. Numerical Solution to a Kinetic Equation

It should be noted that the numerical methods for solving Equation (29) are well
investigated (see, for example, [8,12]). For a more detailed familiarization with the methods
of numerical solutions of equations with fractional derivatives we refer the reader to the
reviews [61,62]. However, there are no numerical methods for solving Equation (25) or
similar equations with the material derivative of the fractional order. At least, the authors
are not familiar with works devoted to methods of the numerical solution of such equations.

We consider a method for a numerical solution to Equations (25) and (29), which is
based on the Monte Carlo method. From Section 2, it is clear that the random walk process
of a particle with a constant velocity is described by an integral transport equation, which
in the one-dimensional case takes the form (20). This allows the use of the Monte Carlo
method to find a solution to this equation. The advantage of Monte Carlo methods is that
they allow one to find a solution in multidimensional problems, as well as for various
boundary and initial conditions.
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From Section 2, the simplest method of numerical solution immediately follows based
on modeling trajectories and histogram estimates of the particle distribution density. Each
trajectory starts at a moment in time t = 0 from the origin of coordinates x = 0. We will
consider one-dimensional symmetric walks ω1 = ω2 = 1/2. Therefore, from the origin of
coordinates, a particle with equal probability moves to the right or to the left at a random
distance R1, spending time T1 = R1/v0 on it. After that, the direction of motion is again
modeled and with equal probability the particle continues to move to the right or to the
left, moving a random distance R2, spending time T2 = R2/v0 on it. After that, the process
continues in the same way. The construction of the trajectory continues as long as the
condition is met:

N(T∗)

∑
k=1

Tk � T∗, (31)

where T∗ is a given moment in time at which it is necessary to find a solution. As soon as
this condition is no longer met, the trajectory is terminated and a new trajectory begins.
Random paths Rk, k = 1, 2, . . . are distributed with a density,

p(x) =
{

αxα
0 x−α−1 x � x0,

0 x < x0.

Thus, random quantities Rk, k = 1, 2, . . . are modeled according to the formula
R = x0ζ−1/α, where ζ is a uniformly distributed random variable on a segment (0, 1].

To construct the simplest histogram estimate for the solution to the kinetic equation,
the entire area of interest Δ = [a, b] is broken down into non-overlapping intervals Δi =
(xi, xi+1], i = 1, 2, . . . M − 1, x1 = a, xM = b. To construct a histogram, the trajectory is
modeled until the condition is met (31). As soon as this condition ceases to be met, the
trajectory is terminated and the contribution from this trajectory is calculated:

hj(Δi) =
I(Δi)

Δi
,

where I(Δi) is the interval indicator Δi,

I(Δi) =

{
1, x∗ ∈ Δi,
0, x∗ /∈ Δi,

where x∗ is the coordinate of a particle at the moment of time T∗. As a result, the estimate
of the density for the interval Δi is given by the expression:

ρ̃(Δi, t) =
1
N

N

∑
j=1

hj(Δi), (32)

where summation is performed over the ensemble N of independent trajectories.
Despite the simplicity of this estimate, it has several disadvantages. Firstly, the

estimate of the solution ρ̃(Δi, t) is sought for the interval Δi. This is the source of the
systematic (horizontal) component of the error δx. Secondly, this estimate also contains the
statistical component of the error δ̂, which decreases like N−1/2 at N → ∞. It is impossible
to eliminate these errors completely; one can only reduce their value. However, a decrease
in one of these values leads to an increase in the other value or to an increase in the
calculation time.

It is possible to get rid of the systematic component of the error completely δx, if to
consider one of the varieties of a local estimate. As in the case of the histogram estimate,
the problem is to estimate the probability density of detecting a particle at the point x∗ at
the moment of time T∗. The main element of solving the problem of transport theory by
the Monte Carlo method—trajectory modeling remains unchanged. The difference lies in
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the estimation method. In the case of a local estimate, the probability of a particle reaching
a point is calculated (x∗, T∗), provided that the next collision is the final one.

To find this probability, let us consider the process of a random walk. Suppose that
the density needs to be estimated at the point x∗ at the moment of time T∗ (see Figure 1).
We will consider symmetrical random walks ω1 = ω2 = 1/2. The particle trajectory begins
at the point x = 0 at the moment of time t = 0. Let the particle, as a result of a random
walk at the moment of time t′, reach the point x′. To estimate the density at the point x∗,
it is necessary to calculate the probability of transition from the point (x′, t′) to the point
(x∗, T∗). It is obvious that, to get from the point (x′, t′) to the point (x∗, T∗), there are two
possible alternatives of the trajectory continuation (see, Figure 1). The first option is to
cover the distance ξ1 in the positive direction of the axis Ox. Then, to scatter at the point
(x′1, t′1) and to cover the distance greater than ξ2 in the negative direction of the axis Ox.
The second option is to cover the distance ξ2 first in the negative direction of the axis Ox.
Then, to scatter at the point (x′2, t′2) and to cover the distance greater than ξ1 in the positive
direction of the axis Ox. Since the particle is moving with a constant velocity v0 all the time,
then the paths ξ1 and ξ2 will take time τ1 = ξ1/v0 and τ2 = ξ2/v0. The values of the paths
ξ1 and ξ2 are determined by the formulas:

ξ1 = 1
2 (v0(T∗ − t′) + (x∗ − x′)), ξ2 = 1

2 (v0(T∗ − t′)− (x∗ − x′)).

Figure 1. Possible continuation of the particle trajectory for constructing a local estimate.

Thus, the probability of transition from the point (x′, t′) to the point (x∗, T∗) is deter-
mined by the formula:

ψ(x∗, x′, T∗, t′) = 1
4 (p(ξ1)P(ξ2) + p(ξ2)P(ξ1)), (33)

where P(ξ) =
∫ ∞

ξ p(ξ ′)dξ ′, and the multiplier 1/4 appears as a result of the fact that, on
the considered section of the trajectory, the particle changes its direction of motion twice.
This transition probability is calculated after each particle scattering.

Theoretically, the contribution to the sought density can be made at the point x∗ by
those particles that can get to the point x∗ from the current point without having a single
scatter in the remaining time. Suppose that, as a result of random walks, the particle is
scattered at the point x′1 at the moment of time t′1 (see Figure 1). Thus, staying at the point
x′1 at the moment of time t′1, the particle can be found at the point x∗ at the moment of time
T∗ if its path ξ satisfies the inequality ξ � |x∗ − x′1|. In this case, the contribution to the
density estimate has the form,

ψunsc(x∗, x′, T∗, t′) = 1
2 P(|x∗ − x′|),
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where we need to substitute x′ = x′1, t′ = t′1. However, it should be noted that, for such
a situation to be realized, during the random walk, the particle must undergo scattering
at some point exactly lying on the segments OA or OB. Considering that the probability
that the coordinate of a particle will take exactly a given value is equal to zero, then
the contribution to the sought density from such particles will be zero. Nevertheless,
unscattered particles make a significant contribution to the points lying on the half lines
x = ±vt. These half lines determine the front of the distribution. Beyond this front, the
probability of detecting a particle is zero. In view of the fact that the source is at the point
x = 0, then it is obvious that the probability to detect a particle at the point x = 0 at the
moment of time t = 0 is equal to one. Therefore, if after its appearance, the particle did not
have any scattering and its path ξ � v0T∗, then such particles reach the points x = ±v0T∗
and form the front of the distribution. The contribution of such particles at the points
x = ±v0T∗ is calculated by the formula:

ψunsc(±v0T∗, 0, T∗, 0) = 1
2 P(v0T∗).

The particles will also form the front of the distribution which, after their appearance
during scattering, did not change their original direction of motion. Density contribution at
points x = ±v0T∗ from such particles after each collision is calculated by a similar formula:

ψ(±v0T∗, x′, T∗, t′) = 1
2 P(| ± v0T∗ − x′|). (34)

Here, x′, t′ is the coordinate and moment of time at which the particle scattered. It
should be noted that if, after its appearance, the particle began its motion in the positive
direction, then unscattered or multiply scattered in one direction particles contribute only
at the point v0T∗. Particles that began their motion in the negative direction—to the point
−v0T∗. As a result, the contribution to the density estimate from each individual trajectory
has the form:

hj(x∗, T∗) =
K(T∗)

∑
i=1

ψ(x∗, xi, T∗, ti),

where K(T∗) is the number of scatterings that occurred during the time interval (0, T∗).
To estimate the density at the points x �= ±v0T∗, the function ψ(x∗, xi, T∗, ti) has the form
(33), to estimate the density at the points x = ±v0T∗ the function ψ(x∗, xi, T∗, ti) takes the
form (34). We finally obtain that the density at the point x∗ at the moment of time T∗, is
estimated by the formula:

ρ̃(x∗, T∗) = 1
N

N

∑
j=1

hj(x∗, T∗), (35)

where the summation is performed over an ensemble of N independent trajectories.
In Figure 2, the results of the numerical solution to the Equation (25) are given for the

values α = 0.5, v = 1, T∗ = 1000. Circles show the results of the histogram’s estimation
of the Monte Carlo method (32), asterisks are the results of the local estimate (35) and
the solid line is the solution (26). The calculation results are transformed for the variable
−1 � ζ � 1 with the help of transformation ρ(ζ, t) = vtρ(x/vt, t), where −vt � x � vt. As
we can see from the figure, at the value α = 0.5, the results of all three solutions coincide.
The figure also shows the advantages of the considered solution method. The results of the
local estimate (35) do not contain the horizontal component of the error, which is present
in the histogram estimate of the Monte Carlo method (32) and is connected with a finite
quantity of the interval Δi. In view of the fact that the contribution from one trajectory to
the point x∗ is calculated K(T∗) times, then this leads to a decrease in the statistical (vertical)
error. In the figure, the magnitude of the statistical error does not exceed the size of the
symbol. It should be noted that the solution (26) is an asymptotic solution and describes
the distribution of particles at t → ∞. As we can see from the figure, in the case α = 0.5
and time T∗ = 1000, the results of all three methods of solution coincide. This means that
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the process of the random walk of a particle has already entered the asymptotic regime.
However, the moment when the random walk process enters the asymptotic regime for
different values α is different.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 2. Particle distribution density at α = 0.5, v = 1.0, t = 1000. Number of trajectories N = 105.

Figure 3 contains the solution results of a kinetic Equation (20) using the method of
the histogram estimation (circles), the method of the local estimation (asterisks). Solution
results are given for three times T∗ = 102, 103, 104. The figure also shows the solution to
the Equation (25) (solid curve), which describes the asymptotic distribution of particles.
As we can see in the figure, for the value α = 0.8 at the indicated times, the random walk
process does not yet reach the asymptotic regime. However, when time T∗ increases, the
solutions to the kinetic equation gradually approach the asymptotic distribution. It can also
be seen from the figure that, at times T∗ = 103 and T∗ = 104, the solutions to the histogram
estimate of the Monte Carlo method and the local estimate coincide, which confirms the
validity of the results of the local estimation method. It can be seen from this figure that, at
large times T∗ = 103 and T∗ = 104, there is an increase in the magnitude of the statistical
error in the results of the local estimation. This increase in the calculation error is due to
the fact that, at greater times, the value of the contribution (33) turns out to be a small
magnitude. As a result, the calculation error can already affect it.
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Figure 3. The density of particle distribution for the value α = 0.8 and specified values T∗. Number
of trajectories N = 106.

The solution to the kinetic equation for the case α > 1 and specified values T∗ is given
in Figure 4. In this figure, the points are the results of solving the kinetic Equation (20)
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with the use of the local estimation method, the solid curve is the solution (30). As in
the previous cases, the calculation results are given for the variable ζ = x/vt, where
−vt � x � vt. The figure shows that, at times T∗ = 100 and T∗ = 1000, the random walk
process has not yet reached the asymptotic regime. The asymptotic regime of random
walks is reached at T∗ = 104. As one can see, for a given time, the asymptotic solution (30)
and the local estimation results are in good agreement with each other.
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Figure 4. Density of the particle distribution for the value α = 1.3 and specified values T∗. Number
of trajectories N = 105.

One obvious shortcoming of the local estimation method should also be pointed
out. In the considered method, it is necessary to calculate the contribution (33) after each
scattering of a particle. This leads to an increase in the computational operations of the
processor, which in turn leads to an increase in the calculation time in comparison with
the histogram method for estimating the density. However, this increase in calculation
time is a necessary price to pay for the clear advantages of the local estimation method. As
noted earlier, the main benefit of the local estimation (35) is the possibility to find a solution
at a given point x∗. This means that the results of the local estimation do not contain a
systematic (horizontal) component of the error. If we give a set of points x∗i , i = 1, . . . , n,
then one trajectory will contribute at once to all points of the set x∗i . This allows the solution
to be constructed as a smooth function of the coordinate x. If we also take into account
that the contribution (33) is calculated after each particle scattering, then the contribution
from one trajectory is calculated K(T∗) times, where K(T∗) is the number of scatterings
of a particle in the interval [0, T∗]. This leads to a decrease in the statistical component of
the error.

5. Conclusions

The use of the theory of anomalous diffusion to describe combustion processes is only
at the initial stage of development. At present, there are a few works devoted to the studies
undertaken in this area of research [3,6–8,10,12]. In all the works, to describe combustion
processes, the use of the equations of anomalous diffusion (1) or (2) is proposed. As is
known, these equations describe the asymptotic (t → ∞, x → ∞) distribution of particles
in the CTRW process, which is based on the assumption of the instant travel of particles
from one point of space to another. This non-physical behavior of the particle leads to the
fact that, at a time instant that is arbitrarily close to the initial one, the particle can be at an

76



Mathematics 2021, 9, 3219

arbitrarily large distance from the source. Therefore, it is necessary to use these equations
to describe the processes occurring in a limited area of space and develop them in time
with a certain degree of caution.

An obvious way to eliminate the instantaneous movement of a particle is to introduce
into consideration a constant final velocity of the movement of a particle, which was done
in this work. Taking account of the constant velocity of motion shows that, depending
on whether the mathematical expectation of the travel is finite or infinite, the asymptotic
distribution of particles is described by completely different equations. In the case of the
finite mathematical expectation of the path value (1 < α < 2), the asymptotic process is
described by the anomalous diffusion Equation (29), and the consideration of the finite
velocity is reduced to the substitution of the anomalous diffusion coefficient D → Dα. In
the case of the infinite mathematical expectation (0 < α < 1), the consideration of the
finite velocity leads to a completely different Equation (25) containing the fractional-order
material derivative operator.

The main difficulty in using equations in fractional derivatives is to find solutions to
these equations. Analytical methods for solving these equations are only at the stage of
development. Therefore, the main method of solution is to apply numerical methods. In
this paper, a numerical solution method is considered which is based on a local estimate of
the Monte Carlo method. This method is based on the idea of modeling the trajectory of a
particle’s random walk. The idea of the proposed method consists of the following. Now,
after each scattering of a particle, one should calculate the probability of transition from
the scattering point to a given point at which it is necessary to estimate the particle density.
By giving a set of points, the transition probability should be calculated for each point from
the given set. The advantages of this method over the standard histogram estimation of
the Monte Carlo method are obvious. Firstly, since the solution is estimated at a specified
point, then the estimation results do not contain a systematic (horizontal) component of
the error. Secondly, each trajectory will contribute to all points of the given set at once.
Taking account of the fact that, before the termination of the simulation of the trajectory, the
particle undergoes K(T∗) of scatterings, then one trajectory will contribute K(T∗) times to
each point of the given set. This leads to a decrease in the statistical error. However, since
now the transition probability is calculated after each particle scattering, this leads to an
increase in the arithmetic operations of the processor. As a result, in comparison with the
histogram estimate of the Monte Carlo method, more time is spent on modeling the same
number of trajectories. However, an increase in the calculation time should be considered
a necessary payment for the complete absence of horizontal error.

The calculations made show that the results of the local estimation of the Monte Carlo
method are in good agreement with both the results of the histogram estimation of the
Monte Carlo method and the results of solving Equations (25) and (29), describing the
asymptotic behavior of the process. From the calculations presented it also follows that, at
different values of the parameter α, the process of random walks reaches the asymptotic
regime at different times. This indicates another advantage of using the Monte Carlo
method. In fact, Equations (25) and (29) describe the asymptotic behavior of the process at
t → ∞, while the Monte Carlo method allows us to find a solution to the kinetic equation at
any arbitrary moment in time and, thus, trace the evolution of the distribution of particles
in time.
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Abstract: In this study, machine learning techniques based on the development of a pattern–
recognition neural network were used for fault diagnosis in an analog electronic circuit to detect
the individual hard faults (open circuits and short circuits) that may arise in a circuit. The abil-
ity to determine faults in the circuit was analyzed through the availability of a small number of
measurements in the circuit, as test points are generally not accessible for verifying the behavior
of all the components of an electronic circuit. It was shown that, despite the existence of a small
number of measurements in the circuit that characterize the existing faults, the network based on
pattern-recognition functioned adequately for the detection and classification of the hard faults. In
addition, once the neural network has been trained, it can be used to analyze the behavior of the
circuit versus variations in its components, with a wider range than that used to develop the neural
network, in order to analyze the ability of the ANN to predict situations different from those used to
train the ANN and to extract valuable information that may explain the behavior of the circuit.

Keywords: modeling; analog circuits; fault diagnosis; neural networks

1. Introduction

In analog electronic circuits, the limited access to measurement points makes deter-
mining faulty components a very complex task. On the other hand, when defining a set
of measurement variables to characterize faults, many of the states that are generated by
faults in the circuit are equivalent from the point of view of the values of the measured
inputs, because the test points are generally not accessible to verify the behavior of all
the components of the electronic circuit. In addition, performing measurements in each
component of the circuit is not feasible from a practical point of view.

The present study deals with an application of supervised learning, based on the use
of a pattern-recognition artificial neural network (ANN), for the detection of the individual
hard faults (open circuits and short circuits) that may arise in an analog electronic circuit.
The fact that the test points cannot be placed at all locations may cause several equivalent
states to exist, depending on the points chosen to monitor the behavior of the circuit. This
makes the detection of existing faults in an analog circuit a very complex task and much less
developed than the same task in digital electronic circuits. In order to detect the hard faults
that may arise in an electronic circuit, measurements are to be taken at accessible points in
the circuit. Specifically, for the analysis to be carried out in this study, measurements of DC
voltage and voltage gain were considered as input values so that it was possible to monitor
the circuit and to determine, from these easily obtainable measures, whether the circuit
was in a hard fault situation (open circuit or short circuit).

The first circuit under test (CUT) used in the present study was a single-stage small-
signal BJT amplifier, in which it is difficult to detect the hard faults that may arise because
some faults lead to an equivalent state, from the point of view of the inputs used to monitor
the behavior of the circuit, and later a more complex CUT was also studied. First, in the
present study, the outputs of the CUTs versus variations that may arise from the tolerances
of the passive elements of the circuit were obtained through a Monte Carlo analysis by
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using Cadence® OrCAD® (CA, USA) design electronic simulation software. The values
thus obtained were then used to train the ANN applied to predict the faulty components of
the circuit. Moreover, a dataset obtained from the simulation software was used to validate
and test the obtained results. In addition, once the pattern-classification neural network
had been obtained, it was used to predict the behavior of the circuit subject to variations
in the faulty components at wider ranges than those used to develop the neural network.
This was carried out to determine the ranges of the parameters from which it is possible to
detect hard faults in the CUTs.

Nowadays, determining faults in analog electronic circuits is being deeply studied
by several research studies. For example, as shown in a review of Binu and Kariyappa [1],
fault diagnosis in electronic circuits has been extensively researched in the last few years,
for which machine learning approaches have been widely applied for fault detection.
As shown by Binu and Kariyappa [1], open circuits and short circuits are some of the
main failure sources in analog electronic circuits, and these hard faults can be modeled by
including a 1 Ω parallel resistance with the component in a short-circuit situation and a
1 MΩ series resistance with the component in an open-circuit situation.

As previously mentioned, fault diagnosis in analog electronic circuits is a very complex
task and is much less developed than the equivalent task in digital electronic circuits.
The methods for analyzing faults in analog electronic circuits may be classified, roughly
speaking, into two main categories: simulation before test (SBT) and simulation after test
(SAT), as shown in the research study of Aizenberg et al. [2].

In the SBT approach, the development of a fault dictionary is very useful for detecting
the faults in a circuit. In that way, the main faults that may arise in the circuit are simulated
along with the nominal behavior of the circuit. In addition, in order to detect the faults
that can occur in the analog circuit, it is important to consider both ambiguity groups, that
is, the set of components of the electronic circuit that do not provide a unique solution if
considered as a potential fault, and the canonical ambiguity groups, where a canonical
ambiguity group is a group that does not contain other ambiguity groups [2–4], because
it is very difficult to determine which component is faulty within one of these ambiguity
groups.

Over the last few years, soft computing techniques for modeling and analyzing the
behavior of electronic devices, as well as other kind of devices, have been widely used. As
a consequence, several research studies dealing with this subject have been developed, as
can be observed, for example, in [5–9], among many others research studies. With regard
to the application of ANNs for detecting faults in analog electronic circuits, the study of
Gao et al. [10] could be mentioned, where a dual-input fault diagnosis model based on
convolutional neural networks, gated recurrent unit networks, and a softmax classifier
was proposed. Likewise, Zhang et al. [11] used a convolutional neuronal network and
backward difference for soft fault diagnosis in analog circuits, where the circuits being
tested were the Sallen–Key band-pass filter and a four-opamp biquad high-pass filter.

Another studyworth mentioning is that of Wang et al. [12], which used a long short-
term memory neural network for fault detection and classification in modular multilevel
converters in high-voltage direct current systems.

On the other hand, Xiao and Feng [13] used Monte Carlo analysis and SPICE sim-
ulation along with particle swarm optimization to tune the neural networks for analog
fault diagnosis. Likewise, Aizenberg et al. [2] presented a method for detecting single
parametric faults in analog circuits. They used a multi-valued neuron-based multilayer
neural network (MLMVN) as a classifier, and a comparison with support vector machines
(SVMs) was also presented in their study. These authors found that the MLMVN was
highly accurate for classifying the fault class (FC) in the circuits under analysis in their
study. Likewise, in the research of Kalpana et al. [14], Monte Carlo analysis was combined
with machine learning techniques for fault diagnosis in analog circuits based on SBT.

Neural networks and genetic algorithms were also used in Tan et al. [15] for analog
fault diagnosis, in which PSPICE simulations were used, and three different circuits were
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analyzed. These authors applied back propagation neural networks with 28–36 hidden
layers, depending on the CUT, and with a binary coding scheme for the outputs, where the
open-circuit faults were modeled with 1 × 106 times the nominal parameters and the short
circuit as 1 × 10−6 the nominal values of each element. On the other hand, Viveros-Wacher
et al. [16] used a CMOS RF negative feedback amplifier as the CUT for diagnosing faults
using ANNs.

Some other studies on diagnosing analog circuit faults used neural networks and
fuzzy logic, as shown by Bo et al. [17], who used a negative feedback amplifier as the
CUT. Simulation and deep learning were also used by Pawlowski et al. [18] for identifying
circuit faults in post-market circuit boards. In other studies, Li et al. [19] used a radial basis
function (RFB) neural network and a back propagation algorithm for fault detection in a
differential amplifier circuit. An RBF and back propagation were also used by Wuming
and Peiliang [20], who employed a particle swarm optimization algorithm to adjust the
neural network. SPICE and a quantum Hopfield neural network were employed by Li
et al. [21] for fault analysis in a Sallen–Key band pass filter. Likewise, Monte Carlo analysis
combined with deep learning and convolutional neuronal networks were used in Moezi
and Kargar [22] for fault detection in analog circuits. In another study, Mosin [23] applied
a three-layer feedforward neural network for fault diagnosis, where a tan-sigmoid function
was used as the transfer function for the input and intermediate layers, and a log-sigmoid
function was employed for the output layer, with a Sallen–Key bandpass filter being the
CUT.

Further studies are that of Grasso et al. [24], which applied a procedure based on
multifrequency fault diagnosis, where the CUT was a two-stage CE audio amplifier, and
that of Li and Xie [25], which used a method based on the cross-entropy between a circuit
under nominal behavior and one with faults, where the CUT was analyzed by Monte
Carlo simulation. Some other studies are that of Sheikhan and Sha’bani [26], which used a
modular neural model for soft fault diagnosis in analog circuits; that of Liang et al. [27],
which applied a support vector machine classifier and fuzzy feature selection for analog
circuit fault diagnosis; and that of Wang et al. [28], which used a semi-supervised algorithm
for parametric fault diagnosis in analog circuits, among many others.

The remainder of this article is structured as follows: In Section 2, the methodology
used to develop the ANN used to detect circuit faults is shown. In Section 3, the results
are presented. A discussion of these results is provided in Section 4. Finally, the main
conclusions of this study are outlined in Section 5.

2. Fault Diagnosis Method

As previously mentioned, this study analyzed the application of a pattern-classification
ANN to detect hard faults in two analog circuits in which the faults that could arise were
difficult to diagnose because several faults could provide similar results, from the point of
view of the selected test points used to monitor the behavior of the circuit, because the test
points should be selected in accessible points of the circuit and cannot simply be located
anywhere due to practical considerations. Therefore, to detect the faults that may arise in
the circuit, three measurements of DC voltage and the gain voltage were considered as
input variables in the first CUT and six measurements of DC voltage and the gain voltage
were considered as input variables in the second one. In order to develop the ANN used
in this study, the software Cadence® OrCAD® Design Systems was first used in order to
carry out a Monte Carlo analysis of the tolerances of the passive components of the circuit.
The first CUT is shown in Figure 1, for which it is assumed that only the DC voltage in the
transistor and the gain voltage are available. In addition, a simulation was first used to
determine the failure situations that presented ambiguity because it was not possible to
determine precisely which was the faulty component.

Figure 1 shows the first CUT used in the present study, which is a single-stage small-
signal BJT amplifier, similar to that shown in [29]. Likewise, Figure 1 shows the test points
in this study. As can be observed, these test points are easily accessible. The nominal
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values of the circuit’s components are shown in Tables 1 and 2. First, the application of
the pattern-recognition ANN to the CUT shown in Figure 1 is analyzed, and later, a more
complex circuit that incorporates two amplification stages is analyzed in order to show
that the ANN developed is capable of adequately predicting fault situations, as well as
nominal behavior, in the second CUT.

Figure 1. Electrical diagram of the first CUT (a single-stage small-signal BJT amplifier).

Table 1. Nominal values and tolerances of the passive components of the circuit.

R1 (kΩ) R2 (kΩ) R3 (kΩ) R4 (kΩ) C1 (μF) C2 (μF) C3 (μF)

Nominal
value 15 2.7 5.6 1.8 82 10 56

Tolerance 10% 10% 10% 10% 20% 20% 20%

Table 2. Values of the load resistance and voltage sources of the circuit.

VIN (Sinusoidal Voltage Source) Vdc (Power Supply) RL (Load Resistance)

VINmax = 10 mV; frequency = 1 kHz 20 V 8.2 kΩ

Table 3 shows the possible individual faults that may arise in the first CUT obtained
when the hard faults (a short circuit (sc) or an open circuit (oc)) arise in the passive
components. From Table 3, it is possible to see that, in this CUT, there are 14 individual
hard faults, as well as the nominal behavior of the circuit {Nominal, R1oc, R1sc, R2oc, R2sc,
R3oc, R3sc, R4oc,R4sc, C1oc, C1sc, C2oc, C2sc, C3oc, C3sc}, which were coded as {F01, F02, F03,
F04, F05, F06, F07, F08, F09, F10, F11, F12, F13, F14, F15 }. Therefore, these were the working
modes that were analyzed. As previously mentioned, in order to characterize the behavior
of the CUT, an electronic simulation was carried out by using Cadence® OrCAD® design
electronic simulation software for each of the failure modes shown in Table 3. As can be
observed, the faults were grouped into ambiguity groups, from the point of view of the
inputs considered to diagnose the circuit’s behavior, where a hard fault in a component of
the circuit due to an open circuit (oc) was simulated by placing a resistance (RFault = 10 MΩ)
in series with the component, and a hard fault due to a short circuit (sc) was simulated by
placing a resistance (RFault = 1 Ω) in parallel with the component. The ambiguity groups
were determined from the values of the inputs, which were obtained from an electronic
simulation. These ambiguity groups (Mj classes) were coded as {M01, M02, M03, M04, M05,
M06, M07, M08, M09, M10, M11}. It should be mentioned that there are some fault events,
such as those obtained, for example, in the M04 class, which include hard faults {F10, F12}, in
the event of which it would not be possible to determine the faulty component. Moreover,
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in case of a situation due to a catastrophic fault leading to an actual open circuit or a short
circuit, the DC voltages and the gain voltage (Av) could be different from those obtained
by the model employed in this study. These situations were obtained from the simulation
when a 10 MΩ resistance was placed in series with the faulty component to simulate the
open circuit (oc), and when a value of 1 Ω resistance was placed in parallel with the faulty
component. Therefore, to consider the actual catastrophic fault, the values obtained in the
test points were also obtained from the simulation and considered as additional inputs to
those provided by the Monte Carlo analysis in order to train the ANN.

Table 3. Nominal behavior and hard faults grouped by ambiguity groups (Mj classes).

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11

F01 F13 {F02, F05, F11} {F10, F12} F14 {F09, F15} F07 F08 F03 F04 F06

Nominal C2sc {R1oc, R2sc, C1sc} {C1oc, C2oc} C3oc {R4sc, C3sc} R3sc R4oc R1sc R2oc R3oc

A Monte Carlo analysis considering the tolerances of the passive elements of the circuit
shown in Table 1 was first carried out for each of the hard faults (open circuits and short
circuits) in order to train the ANN, and 64 results were generated for each fault (63 results
from the Monte Carlo analysis and 1 additional result from the actual catastrophic fault).
Likewise, 64 results were obtained for the nominal behavior. These results were then
used to train the pattern-recognition ANN considered in this study. Figure 2 shows the
ANN applied, which was trained to detect the nominal behavior and the individual faults
shown in Table 3. The hard faults that may arise in the circuit shown in Figure 1, as well
as the nominal behavior, were characterized from the outputs of the ANN as shown in
Equation (1):

Sj = columnj−th{I} (1)

where Sj corresponds to the ANN outputs, so that the j-th output class corresponds to the j-
th column of the identity matrix (I). The nominal behavior corresponds to M01(F1) and the
remaining classes shown in Table 3 correspond to the short-circuit and open-circuit faults,
where the hard faults were grouped by the ambiguity groups obtained from the inputs
used to characterize the behavior of the circuit. Therefore, the coding used to characterize a
fault should provide a “1” in the position of the fault and “0” in the rest of the outputs, and
hence, all outputs will have a “0” value except the j-th class (the fault class to be identified),
which will have a “1” value. The same is applicable for the nominal value.

As can be observed, in Figure 2, the first ANN used in the present study was made
up of an input layer that has four inputs (VB, VC, VE, AV), which correspond to the DC
voltages in the base, collector, and emitter of the BJT transistor and to the gain voltage (AV),
respectively, as well as a single hidden layer (with two neurons and a hyperbolic tangent
as the transfer function) and one output layer with a softmax transfer function, which is
commonly used in pattern-recognition neural networks. As can be noted, the output layer
has 11 outputs, which correspond to the 10 fault classes identified in the electronic circuit
and to the nominal working mode.

As shown later in this study, with the configuration given in Figure 2, it is possible
to have high accuracy in the ANN for detecting both the hard faults of the circuit and the
nominal behavior. It should be mentioned that different ANN topologies were analyzed
with one and two hidden layers and by using different training algorithms to adjust
the ANN parameters. Finally, a Levenberg–Marquardt back propagation algorithm was
selected to update the weights and biases of the ANN by using the Deep Learning Toolbox™
of MATLABTM 2020a [30]. The ANN shown in Figure 2 was used, since it was able to
provide accurate results without having to increase the number of neurons or the number
of hidden layers. The metric used to test the models was the mean squared error (MSE).
Different transfer functions were also analyzed in the hidden layer but, finally, a hyperbolic
tangent was used in this study. On the other hand, the Levenberg–Marquardt algorithm
was able to provide, in this case, more accurate results than the others analyzed, such as
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the Scaled Conjugate Gradient. Therefore, the topology was that shown in Figure 2, where
W1 and b1 are the weights and bias of the hidden layer, and W2 and b2 are those of the
output layer. As previously mentioned, a hyperbolic tangent ( f1) was used as the transfer
function in the hidden layer and a softmax transfer function ( f2) was used in the output
layer.

Outputs = f2(W2 ∗ f1(W1 ∗ Inputs + b1) + b2) (2)

As Figure 2 shows, the number of outputs was 11, where each output corresponds to
the class identified (Mj); one of them represents the nominal behavior and the remaining
classes representing the ambiguity groups, where the outputs of the ANN can be obtained
from Equation (2). In order to obtain the results shown in this study, the Deep Learning
ToolboxTM of MATLABTM R2020a [30] was used.

 

Figure 2. Pattern-recognition ANN applied in this study.

3. Results

After training the ANN shown in Figure 2 with the data obtained from the Monte
Carlo simulations and following the procedure shown in the previous section, it was
possible to obtain the confusion matrices shown in Figures 3–6, for training, validation,
testing, and all data, respectively, where 70% of data were used for training, 15% for testing
and 15% for the validation. As can be observed, in Figures 3–6, a perfect classification of
the results was obtained with this ANN comprising a single hidden layer that contains two
neurons.

 
Figure 3. Confusion matrix obtained with the ANN (training data).
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Figure 4. Confusion matrix obtained with the ANN (validation data).

Figure 3 shows the results obtained in the confusion matrix when 70% of the data
from the Monte Carlo analysis were employed to train the ANN. It can be seen that there
are fault classes that present a larger amount of data due to the fact that they agglutinate
fault configurations that belong to the same ambiguity group. As can be seen, 100% of the
data are classified correctly.

Figure 4 shows the results obtained in the confusion matrix when 15% of the Monte
Carlo data were used for validation of the ANN, and Figure 5 shows the results for the test
case. Similar to the results obtained during training, the ANN was able to diagnose 100%
of the working modes correctly (hard faults and nominal behavior).

 
Figure 5. Confusion matrix obtained with the ANN (test data).
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Figure 6. Confusion matrix obtained with the ANN (all data).

Figure 6 shows the results of the confusion matrix for each of the hard faults and for
the nominal behavior considering all the Monte Carlo data. As previously mentioned,
64 values were used for each fault and for the nominal behavior in the Monte Carlo analysis
by considering the tolerances of the components.

It can be noted in Figure 6 that, in the confusion matrix generated from all data,
there are classes with a greater number of elements because the ambiguous failure modes
were grouped into failure classes. Thus, for example, class M03 has 192 elements, since it
encompasses three failure modes (R1oc, R2sc, C1sc). In addition, it can be seen that 100% of
the data were classified correctly.

Figure 7a shows the mean squared error (MSE) obtained with the ANN and Figure 7b
shows the error histograms for training, validation, and testing.

(a) (b) 

Figure 7. (a) Validation performance (MSE) and (b) error histogram.
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As Figure 8 shows, the ROC (receiver operating characteristic) curves have an area un-
der the curve (AUC) of 1, which demonstrates that the pattern-recognition ANN developed
was able to diagnose the working modes of the BJT amplifier once they were classified
into the 11 classes shown in Table 3. In order to show that the pattern-recognition ANN is
capable of predicting the behavior of other circuits, a two-stage small-signal BJT amplifier,
such as that shown in Figure 9, was also analyzed in the present study.
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Figure 8. ROC curves.

The nominal values of the circuit’s components are shown in Tables 4–6.

Table 4. Nominal values and tolerances of the passive components of the circuit (R).

R1

(kΩ)
R2

(kΩ)
R3

(kΩ)
R4

(kΩ)
R5

(kΩ)
R6

(kΩ)
R7

(kΩ)
R8

(kΩ)

Nominal value 15 2.7 5.6 2.2 15 2.7 7.5 1.8

Tolerance 10% 10% 10% 10% 10% 10% 10% 10%

Table 5. Nominal values and tolerances of the passive components of the circuit (C).

C1 (μF) C2 (μF) C3 (μF) C4 (μF) C5 (μF)

Nominal value 100 1 0.56 10 47

Tolerance 20% 20% 20% 20% 20%

89



Mathematics 2021, 9, 3247

Table 6. Values of the load resistance and the voltage sources of the circuit.

VIN (Sinusoidal Voltage Source) Vdc (Power Supply) RL (Load Resistance)

VINmax = 1 mV; frequency = 1 kHz 20 V 8.2 kΩ

Figure 9. Electrical diagram of the second CUT (a two-stage small-signal BJT amplifier).

Table 7 shows the possible individual faults that may arise in the second CUT obtained
when the hard faults (short circuit (sc) or open circuit (oc)) arise in the passive components.
From Table 7, it is possible to see that, in this second CUT, there are 27 individual hard
faults, as well as the nominal behavior of the circuit {nominal, C1oc, C1sc, C2oc, C2sc, C3oc,
C3sc, C4oc, C4sc, C5oc, C5sc, R1oc, R1sc, R2oc, R2sc, R3oc, R3sc, R4oc, R4sc, R5oc, R5sc, R6oc, R6sc,
R7oc, R7sc, R8oc, R8sc }, which were coded as {F01, F02, . . . , F26, F27}, where F01 corresponds
to the nominal behavior. Therefore, these are the working modes that are analyzed in the
second case. As can be observed, the faults were grouped into ambiguity groups, from
the point of view of the inputs considered to diagnose the circuit’s behavior, following
the previously mentioned procedure, where a hard fault in a component of the circuit due
to an open circuit (oc) was simulated by placing a resistance (RFault = 10 MΩ) in series
with the component, and a hard fault due to a short circuit (sc) was simulated by placing a
resistance (RFault = 1 Ω) in parallel with the component.

Table 7. Nominal behavior and hard faults in the second CUT grouped by ambiguity groups
(Mj classes).

M01 M02 M03 M04 M05 M06 M07 M08 M09

Nominal C2sc {R1oc, R2sc, C1sc} {C1oc, C2oc, C4oc} C3oc {R4sc, C3sc} R3sc R4oc R1sc

M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20

R2oc R3oc {R8sc, C5sc} {R5oc, R6sc} C4sc C5oc R5sc R6oc R7oc R7sc R8oc

As in the previous case, the ambiguity groups were determined from the values of the
inputs, which were obtained from an electronic simulation. These ambiguity groups (Mj
classes) were coded as {M01, M02, . . . , M19, M20} because, in this second case, 20 classes
were detected. It should be mentioned that there are some fault events, such as those
obtained, for example, in the M03 class, that include hard faults {R1oc, R2sc, C1sc} for which
it would not be possible to determine the faulty component. Moreover, in case of a situation
due to a catastrophic fault leading to an actual open circuit or a short circuit, the DC voltages
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and the gain voltage (Av) could be different to those obtained by the model employed in
this study. Therefore, to consider an actual catastrophic fault, as in the previous case, the
values obtained in the test points were also obtained from the simulation and considered as
additional inputs to those provided by the Monte Carlo analysis in order to train the ANN.

Figure 10 shows the ANN for the second CUT, which is shown in Figure 9. As can be
seen in this case, the number of inputs is seven, which correspond to the voltages at the
base, emitter and collector of both transistors as well as the gain voltage (VB1, VC1, VE1,
VB2, VC2, VE2, AV), and the outputs are 20, corresponding to the detected fault classes and
the nominal behavior. Similar to the previous case, the same network topology is used,
although, in this case, there are four neurons in the hidden layer. As was done with the
ANN developed for the first CUT, a Levenberg–Marquardt back propagation algorithm
was selected to update the weights and biases of the ANN by using the Deep Learning
Toolbox™ in MATLABTM 2020a [30].

 
Figure 10. Pattern-recognition ANN applied to the second CUT.

Figure 11a shows the MSE values obtained versus the number of epochs, and Figure 11b
shows the training state values for the ANN employed to analyze the faults in the second
CUT.
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Figure 11. (a) Validation performance (MSE) and (b) training state of the ANN for the second CUT.

Figure 12 shows the results obtained in the confusion matrix when 70% of the data
from the Monte Carlo analysis were employed to train the ANN shown in Figure 10, which
was employed to model the behavior of the second CUT. It can be seen that there are
fault classes that present a larger amount of data due to the fact that they agglutinate fault
configurations that belong to the same ambiguity group. As can be seen, 100% of the data
are classified correctly in the second case, similar to the previous one. As can be observed,
the fault classes do not have the same number of elements because the data used to train,
validate, and test the ANN were randomly selected.
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Figure 12. Confusion matrix obtained with the ANN (training data) for the second CUT.

Figure 13 shows the results obtained in the confusion matrix when 15% of the Monte
Carlo data were used for validation of the ANN, and Figure 14 shows the results for the test
case. Similar to the results obtained during training, the ANN was able to diagnose 100%
of the working modes correctly (hard faults and nominal behavior). As can be observed,
the same results as those obtained with the first CUT were obtained with the second CUT.

Figure 13. Confusion matrix obtained with the ANN (validation data) for the second CUT.
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Figure 14. Confusion matrix obtained with the ANN (test data) for the second CUT.

Finally, Figure 15 shows the confusion chart for all data, and Figure 16 shows the ROC
curve (all data) for the second CUT. In this curve, the true positive rate (TPR) versus the
false positive rate (FPR) was plotted at different threshold settings. The ANN developed
in this study is a perfect classifier for the electronic faults in the second CUT because it is
perfectly able to distinguish each fault class for any FPR. Similar to the results obtained
with the first CUT, it can be seen that 100% of the data were classified correctly.

Figure 15. Confusion matrix obtained with the ANN (all data) for the second CUT.

93



Mathematics 2021, 9, 3247

 

Tr
ue

 P
os

iti
ve

 R
at

e 
(T

PR
)

Figure 16. ROC curve (all data) for the second CUT.

4. Discussion

As Figures 8 and 16 show, the pattern-recognition ANN can correctly diagnose both
the nominal behavior and the fault classes of the CUTs considered in the present study,
with 100% of the data correctly classified when considering 64 Monte Carlo points for
each fault and for the nominal behavior. However, in order to analyze the ability of the
ANN to explain situations different from those used to train the ANN and to extract
valuable information that may explain the behavior of the circuit, wider ranges of the
fault resistances placed in series and in parallel with the components to simulate the hard
faults in the CUT were used. These values were chosen in order to generate different
fault scenarios to determine the ability of the developed ANN to diagnose possible fault
situations before a hard fault occurs. To test the ANN with these fault resistances, a new
Monte Carlo analysis was performed. In this later case, the number of runs generated for
the fault resistance was 1024, for each fault, instead of the 64 runs used to train the ANN,
following a uniform distribution, as shown in Figure 17a, for the case of a fault resistance
in series with the faulty component to simulate an open circuit, and in Figure 17b for the
case of a fault resistance in parallel with the faulty component to simulate a short circuit.
On the other hand, the rest of the components of the CUT were allowed to vary within the
specified tolerances.

 
(a) (b) 

Figure 17. Histograms showing the 1024 values of the (a) series and (b) parallel fault resistances used
in the Monte Carlo analysis (grouped into 25 bins).
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That is, to train the neural network, an initial Monte Carlo analysis was performed
for the CUT in which 64 runs were used for each fault event as well as for the nominal
value. This results in a total of 960 input vectors (VB, VC, VE, AV) in the case of the first
CUT and a total of 1728 input vectors (VB1, VC1, VE1, VB2, VC2, VE2, AV) in the case of the
second CUT. Therefore, this study employed a supervised learning technique in order to
develop a pattern-recognition neural network. It should be noted that, in the case of the
first CUT, 70% of these 960 data, obtained by Monte Carlo analysis, was used to train the
neural network (i.e., 672 data). The remaining 15% of the data was used for validation
and the other 15% for testing. The same procedure was followed for the second CUT
(70% train, 15% test, 15% validation). Once the neural network was developed, the values
predicted by the network for the different modes of operation were analyzed. This first
Monte Carlo analysis was generated from the tolerances of the circuit components, which
were considered commercial and standardized values with tolerances of 10% for resistors
and 20% for capacitors. As shown in the present study, the proposed ANN is a perfect
classifier since it is able to discriminate 100% of the data, not only with those used for
training, but also with those used for validation and testing, in both CUTs. This can be
observed in the ROC curves shown in Figure 8 (for the first CUT) and Figure 16 (for the
second CUT). Once the network was developed, another Monte Carlo analysis was carried
out to analyze how the ANN is able to predict other fault events, where the resistances
used were different from those used to develop the ANN. This was done by varying the
fault resistances (which are placed in series and in parallel with the potentially faulty
components) with values of 10 MΩ ± 99.9% to simulate the open circuit and values of
1 Ω ± 99.9% for the short circuit. These values of the resistors are shown in Figure 17 and
were chosen in order to generate different fault scenarios to determine the ability of the
ANN to diagnose possible fault situations before a hard fault occurs. In the latter case, the
Monte Carlo analysis was carried out using 1024 values for each fault event. From this,
it was possible to obtain the outputs of the ANN for these fault events and to determine
the thresholds from which the fault will be detected in each component. In the case of
the nominal behavior, it was also considered that the tolerance of the components was
increased by 50% relative to the nominal values, as shown in Figure 18, so that, in this case,
the resistance tolerances were increased to 15% and up to a value of 30% in the case of the
capacitors.

 

Figure 18. Histograms showing the 1024 values used in the Monte Carlo analysis (grouped into 25 bins) for each component
in the case of the nominal behavior.

Figure 19 shows the results of the confusion matrix obtained in the case of a wider
range of variation in the fault resistance, for the first CUT. As can be noted, the ANN was
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able to correctly diagnose most of the fault classes that may arise in the first CUT, as well
as the nominal behavior. A similar analysis could be carried out with the second CUT.

Figure 19. Predicted faults in the first CUT when the fault resistances had 99.9% variation.

Specifically, it can be observed in Figure 19 that, when the first CUT works with
the nominal values of the passive components, with their tolerances increased by 50%,
the ANN predicted nominal behavior in all cases (100%), which is logical, since the BJT
amplifier considered as the first CUT in this study was robust to variations in the tolerances
of the passive components, so it was not greatly affected by the fact that these tolerances
were increased by 50% with respect to the design values, as can be observed in Figure 20.

Figure 20. Response of the amplifier (Monte Carlo analysis of the nominal behavior) vs. variations in
the components (increased by 50% with respect to the design values).

On the other hand, regarding the M02 and M03 classes, these were correctly diagnosed.
In the case of M04, there were some faults that were classified as M02 and M05 classes,
which, at first, may seem like a detection failure by the ANN, but may have actually been
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caused by the fact that varying the resistance in series with C1 and C2 within the range
of values analyzed (by setting 99.9% variation in the series fault resistance) can lead to a
similar configuration from the point of view of the DC voltages of the transistor. In any
case, 93.6% of the cases analyzed were correctly detected. Additionally, in the case of M05,
M06, and M07, 100% of the cases were detected correctly. Moreover, regarding the M08 class
the network predicted 94.6% of the faults. For the rest of the classes (M09, M10, and M11),
the ANN detected 100% of the faults.

Therefore, the ANN developed in this study could accurately predict the behavior of
the first CUT when faced with variations in the fault resistance. Figures 21–26 show the
values predicted by the ANN versus the values of the fault resistance.

Figure 21. Predicted values (ANN) vs. fault resistance (R) in parallel with C2.

Figure 21 shows the values predicted by the ANN for the fault class M02. It can be
noted that the ANN detected all the faults in the circuit for the values of parallel resistance
considered.

Figure 22 shows the values predicted by the ANN for fault class M03. It can be noted
that the ANN detected all the faults in the circuit for the values of serial and parallel
resistances (R) considered. Likewise, Figure 23a shows that, in the case of C1 for low values
of resistance in series (R) with the faulty component, some of these situations could be
detected as M02{C2sc} and M05{C3oc} since the values of the fault resistance in series with
C1 presented a minimum value of 64 kΩ, which was obtained in this study through Monte
Carlo analysis with 1024 runs. The same behavior was obtained in the case of C2, although
for different thresholds of resistance (R), as can be observed in Figure 23b.

 
(a) (b) 

Figure 22. Predicted values (ANN) vs. fault resistance (R) (a) in series with R1 and (b) in parallel with R2 or C1.
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(a) (b) 

Figure 23. Predicted values (ANN) vs. fault resistance (R) (a) in series with C1 and (b) in series with C2.

Figure 24a shows the values predicted by the ANN for the hard faults of class M05
{C3oc}, and Figure 24b shows those for the M06 {R4sc, C3sc} and M07 {R3sc} fault classes. As
can be observed, the ANN detected all the faults in the circuit.

Figure 25 shows the results predicted by the ANN for the M08 fault class (94.6% faults
were detected). Finally, Figure 26 shows the results predicted for the remaining fault classes.
As can be observed, 100% of fault data were correctly diagnosed in the case of R1sc (M09),
R2oc (M10), and R3oc (M11).

 
(a) (b) 

Figure 24. Predicted values (ANN) vs. fault resistance (R) (a) in series with C3 and (b) in parallel with R4, C3, or R3.

Figure 25. Predicted values (ANN) vs. fault resistance (R) in series with R4.
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(a) (b) 

Figure 26. Predicted values (ANN) vs. fault resistance (R) (a) in parallel with R1 and (b) in series with R2 or R3.

5. Conclusions

In the present study, a pattern-recognition neural network with a hyperbolic tangent
as the transfer function in the hidden layer, along with a softmax transfer function in the
output layer, was used to diagnose individual hard faults in two CUTs. First, a single-stage
small-signal BJT amplifier was studied, followed by a two-stage small-signal BJT amplifier.
It was shown that the ANN was able to predict the hard faults accurately in both CUTs
considered in this work.

It was shown that a pattern-recognition ANN such as the one considered in this study
can be used to model hard faults in the CUTs by training the ANN with a reduced number
of measurements that have been taken at accessible points of the circuit and by using only
one hidden layer with a reduced number of neurons.

Moreover, in case of applying the neural network to situations different from those
used to train the neural network, where these situations have been modeled by expanding
the ranges of failure resistance, it was shown that the ANN developed had high precision
in diagnosing the failures in the first CUT, and it was able to explain situations different
from those used to train the ANN and to extract valuable information that may explain the
behavior of the circuit.
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Abstract: The steady three-dimensional rotating flow past a stretching/shrinking surface in water
and kerosene-based nanofluids containing single and multi-walled carbon nanotubes (CNTs) is
investigated. The governing equations are converted to similarity equations, and then numerically
solved using MATLAB software. The impacts of rotational, suction, and nanoparticle volume fraction
on the flow and the thermal fields, as well as velocity and temperature gradients at the surface,
are represented graphically and are analyzed. Further, the friction factor and the heat transfer rate
for different parameters are presented in tables. It is found that the heat transfer rate increases
with increasing nanoparticle volume fraction as well as suction parameter in water and kerosene-
based nanofluids of single and multi-walled CNTs. However, the increment in the rotating flow
parameter decreases the rate of heat transfer. Multi-walled carbon nanotubes and kerosene-based
nanofluid contribute to heat transfer rates better than single-walled carbon nanotubes and water-
based nanofluid, respectively. A unique solution exists for the stretching surface, while two solutions
are obtained for the shrinking surface. Further analysis of their stabilities shows that only one of
them is stable over time.

Keywords: carbon nanotubes; heat transfer; nanofluid; rotating; stretching/shrinking

1. Introduction

Researchers have begun looking for fluids with high thermal conductivity in the last
few decades since traditional fluids have low thermal conductivity. In 1873, Maxwell
studied the dispersion of solid particles with a size of millimeters and micrometers in
traditional fluids. However, the existence of these particles caused a drastic drop in
pressure, clogged flow channels, caused sedimentation of the particles to occur faster and
erosion on the channel, and certain particles are too large for the microsystem [1]. Choi
and Eastman [1] proposed a new fluid called nanofluid, in which solid particles with sizes
ranging from 1–100 nm are dispersed in traditional fluids such as water, oil, and ethylene
glycol. This fluid is significant because of its unique chemical and physical properties,
as well as its high thermal conductivity, which can improve the heat transfer rate [2].
Waqas et al. [3] investigated the impact of nanoparticle shape’s factor in porous media
and discovered that platelet and cylindrical shapes had the highest thermal conductivity
compared to brick and spherical shapes. A comprehensive collection of nanofluids studies
can be found in [4–9].

Recently, many studies have considered carbon nanotubes as nanoparticles since their
thermal conductivity is better and higher than those of traditional fluids. Carbon nanotubes
(CNTs) are a sheet of graphene rolled into a cylinder introduced by Iigima in 1991. Carbon
nanotubes are classified as single-walled (SWCNT) and multi-walled (MWCNT). They have
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a nanometer diameter size which is much smaller than other advanced semiconductor de-
vices, and the length of nanotubes can exceed 1 micrometer. In addition, carbon nanotubes
also offer unique electrical characteristics that other semiconductors lack. Further studies
on unique features and review of carbon nanotubes can be found through investigation by
Popov [10], Patel et al. [11], and Taherian et al. [12].

Due to their performance in optimizing thermal conductivity, researchers carried out
many works to study the influence of carbon nanotubes availability and other effects in
the fluids on the flow behavior. Khan et al. [13] investigated the fluid flow and heat trans-
mission of CNTs nanofluid over a flat plate using three types of base fluids: water, engine
oil, and kerosene. In comparison to water and kerosene-CNTs, they discovered that engine
oil-CNTs have the highest heat transfer rate. Using a homogeneous model, Akbar et al. [14]
investigated the stagnation-point flow of carbon nanotubes towards a stretching sheet
with a magnetic field, velocity slip effect, and convective boundary condition. It was
discovered that a higher magnetic field reduces the heat transfer rate at the surface and that
single-walled carbon nanotubes have a higher heat transfer rate than multi-walled carbon
nanotubes. Later, using similar CNTs nanofluid, Hayat et al. [15] explored the stagnation-
point flow over a nonlinear stretching surface with homogeneous–heterogeneous reactions.
Hussain et al. [16] studied a three-dimensional flow of carbon nanotubes nanofluids over a
nonlinearly stretching sheet with heat generation/absorption effect in a porous medium.
Sreedevi et al. [17] investigated the heat and mass transfer characteristics of nanofluids
containing CNTs towards a vertical cone in a porous medium by considering the magnetic
field, chemical reaction, and suction/injection parameters. The findings revealed that in-
creasing the nanoparticle volume fraction improves the heat transfer rate, while employing
multi-walled CNT. as nanoparticles enhance the heat transfer over single-walled CNT. The
latter conclusion was similar to Anuar et al. [18], who analyzed the mixed convection flow
towards a moving plate. However, Anuar et al. [18] obtained a different result when the
nanoparticle volume fraction increased. Reddy and Sreedevi [19] studied the effects of
thermal radiation and single-walled carbon nanotubes inside a square chamber. From their
observation, increasing these two factors enhances the heat transfer rate. Ramzan et al. [20]
applied the Cattaneo–Christov heat flux model to analyze the impact of nonlinear thermal
radiation and thermal stratification on the unsteady magnetohydrodynamics (MHD) flow
between two stretching rotatory discs in nanofluid with carbon nanotubes. They discovered
that nonlinear thermal radiation gives rise to the temperature of both SWCNT and MWCNT.
Relevant studies on CNT nanofluids can be found in [21–23].

Investigation of the rotating flow towards a stretching surface is vital due to its
application in a variety of scientific, technical, and product applications, designing and
modeling jet engines, pumps, and vacuum cleaners, as well as geophysical flows [24].
Numerical studies on rotating flow have been explored by many researchers such as Singh
and Sathi [25], who obtained an exact solution using Laplace transform for an unsteady
rotating flow over an infinite plate. Wang [26] was the first to study the rotating flow over
a stretching sheet using a perturbation method to identify the velocity profiles of small
parameter values. Later, Nazar et al. [27] extended the work of Wang [26] by considering
an unsteady flow. This study was expanded by Ali et al. [28] to the shrinking surface, and
they obtained dual solutions. Further, Sreelakshmi et al. [29] included the magnetic field
and thermal radiation effects in their study. They reported that the magnetic field, thermal
radiation parameter, and rotation parameter increase the heat transfer rate. Rosali et al. [30]
investigated the rotating flow over an exponentially permeable shrinking surface and
found dual solutions. Rana et al. [31] implemented the Boungiorno model to investigate the
MHD flow across a stretching surface in a nanofluid and numerically solved using a finite
element method. It was revealed that the local Nusselt number and the local Sherwood
number drop with the growth of the rotational parameter. By combining the Boungiorno
and Tiwari-Das models, Bakar et al. [32] solved a rotating flow towards a shrinking surface
with three nanoparticles types: copper, alumina, and titania with water as the base fluid
using a shooting method. Different from Rana et al. [31], they found dual solutions, and the
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local Nusselt number and the local Sherwood number increase with rotational parameter.
Further, Krishna [33] explored the MHD effect in a Jeffrey fluid on a porous surface with
hall and ion slip.

Nadeem et al. [34] explored a rotating flow towards a stretching surface utilizing
copper and titania as the nanoparticles with water as the base fluid by applying the Tiwari-
Das model. They discovered that increasing the volume fraction of nanoparticles boosted
the heat transfer rate while decreasing it with the rotation parameter. Hayat et al. [15]
reported the analytical results of rotating flow with carbon nanotubes over a stretching
porosity surface. Dzulkifli et al. [35] continued the study of Ali et al. [28] by considering the
unsteady rotation flow on a stretched surface in a nanofluid with copper as nanoparticles.
According to the findings, as the rotating parameter and nanoparticle volume percentage
grew, the heat transfer rate dropped. Later, Salleh et al. [36] expanded the study by
Nadeem et al. [34] to a permeable shrinking surface and obtained dual solutions. A stability
analysis was carried out to inspect the stability of the solutions in the long run. As stated
by Merkin [37] and Harris et al. [38], the upper branch is always stable, and this discovery
is similar to the works made by Salleh et al. [36], Mustafa et al. [39], and Tshivhi and
Makinde [40]. Hafeez et al. [41] explored the MHD rotating flow in a hybrid nanofluid
using a finite element method. Mehdipour et al. [42] designed a rotating liquid sheet (RLS)
contactor to explore carbon dioxide absorption from a gas stream using water-based SiO2
and ZnO nanofluids. CO2 absorption is more significant in the presence of ZnO than in the
presence of SiO2, and tube rotation can improve absorption performance.

Acharya et al. [43] conducted a comparative investigation of SWCNTs and MWCNTs
in a rotating regime over a stretching sheet in the presence of a magnetic field using the
RK-4 method. They noticed that increasing the volume fraction of SWCNTs and MWCNTs
improved the nanofluid temperature. Later, Shah et al. [44] analyzed a similar investigation
over a stretching sheet using an analytical method. Noranuar et al. [45] studied a non-
coaxial rotation flow towards a permeable moving disk in an MHD Casson nanofluid.
Hussain et al. [46] extended the work of Nadeem et al. [34] by considering engine oil as the
base fluid with copper and aluminum dioxide as nanoparticles over a stretching surface
with slip condition. They found that copper nanoparticles react as heat carriers better than
aluminum oxide. Manjunatha et al. [47] recently performed a numerical analysis to study
the effect of a magnetic field on the fluid flow over a rotating disc in a nanofluid using
single and multi-walled carbon nanotubes as nanoparticles and water as the base fluid.
They reported that a unique solution exists, and the increase in the magnetic field caused
an increase in the radial velocity and temperature.

Based on the previous studies mentioned above, many researchers focused on a
rotational flow/disk over a stretching surface rather than a permeable stretching/shrinking
surface and only obtained a unique solution. A permeable stretching/shrinking surface
is vital in industrial applications since the surface may not be static such as polymer
extrusion process, liquid crystal, and ceramic production [48]. Therefore, the present
study aims to extend the work of Nadeem et al. [34] and Salleh et al. [36] by exploring the
impact of rotation flow parameter, suction and nanoparticle volume fraction on the heat
and mass transfer characteristics of carbon nanotubes (SWCNTs and MWCNTs) over a
permeable stretching/shrinking surface in a nanofluid. Since no studies have considered
this mathematical model with carbon nanotubes nanoparticles, the results obtained are
genuine and can contribute to the development of this field. The numerical results are
obtained using the bvp4c solver in MATLAB software, and a stability analysis is performed
to investigate the stability of the solutions as time evolves.

2. Mathematical Model Description

A steady 3D rotating boundary layer flow of a carbon nanotube past a stretching or
shrinking surface is examined, and its physical model is illustrated in Figure 1. In Figure 1,
x, y, and z are the Cartesian coordinates with x- and y-axes measured in the plane z = 0
where nanofluid is in the region z ≥ 0. The boundary z = 0 is elastic and linearly stretched
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or shrunk by two equal and opposite forces in the direction of the x-axis with the velocity
Uw = ax. The fluid is rotating at an angular velocity Ω in the z-direction. It is assumed
that the nanofluid has a uniform wall and ambient temperatures, Tw and T∞, respectively.
Based on the above assumptions, the governing equations of mass, momentum, and energy
are (see Nadeem et al. [34] and Salleh et al. [36]):

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

− 2Ωv =
μn f

ρn f

∂2u
∂z2 (2)

u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

+ 2Ωu =
μn f

ρn f

∂2v
∂z2 (3)

 
Figure 1. Physical model of the problem.

u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

= αn f
∂2T
∂z2 (4)

The boundary conditions are

u = εUw, v = 0, w = −w0, T = Tw at z = 0,
u → 0, v → 0, T → T∞ as z → ∞

(5)

where u, v, and w represent the velocity components in the x-, y-, and z-directions, re-
spectively, T represents the fluid temperature, w0 is the constant mass flux with w0 > 0
indicates injection, while w0 < 0 is for suction. Further, ε is the stretching or shrinking
parameter with ε > 0 for stretching, ε < 0 for shrinking and ε = 0 for the static surface. In
this study, we adopt the theoretical model proposed by Xue [49] as follows:

μn f =
μ f

(1−ϕ)2.5 , αn f =
kn f

(ρCp)n f
,

kn f
k f

=
1−ϕ+2ϕ

kcnt
kcnt−k f

ln
kcnt+k f

2k f

1−ϕ+2ϕ
k f

kcnt−k f
ln

kcnt+k f
2k f

,

ρn f = (1 − ϕ)ρ f + ϕρcnt, (ρCp)n f = (1 − ϕ)
(
ρCp

)
f + ϕ(ρCp)cnt.

(6)

In Equation (6), μ is dynamic viscosity, ρ is density, α is thermal diffusivity, k is thermal
conductivity, Cp is the specific heat capacity at constant pressure, ϕ is nanoparticle volume
fraction parameter in which the subscripts nf, f, and cnt, respectively, refer to nanofluid,
fluid, and carbon nanotube.
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The thermophysical properties of SWCNT and MWCNT for different base fluids
namely, water (Pr = 6.2) and kerosene (Pr = 21) at the temperature 20–25 ◦C are given in
Table 1 (Khan et al. [13]). Water and kerosene are chosen as the base fluids for comparison
with the previous studies. Furthermore, water has the highest specific heat that can stabilize
the temperature and is used as a cooling agent, while oil-based nanofluids are often utilized
in industrial operations for lubrication or high-temperature applications [50]. The following
similarity transformations (7) are introduced for solving Equations (2)–(4) together with
the boundary conditions (5) that satisfy the continuity Equation (1).

u = ax f ′(η), v = axh(η), w = −√aν f f (η), η =

√
a

ν f
z, θ(η) =

T − T∞

Tw − T∞
(7)

Table 1. Thermophysical properties of base fluids and carbon nanotubes.

Physical Properties
Base Fluids Nanoparticles

Water (Pr = 6.2) Kerosene (Pr = 21) SWCNT MWCNT

ρ
(
kg/m3) 997 783 2600 1600

Cp (J/kgK) 4179 2090 425 796
k (W/mK) 0.613 0.145 6600 3000

From Equation (7), the velocity mass flux can be defined as

w0 = −√aν f S (8)

where S = f (0), S is the suction parameter in which S < 0 for injection and S > 0 for
suction. Substituting Equations (6) and (7) into Equations (2)–(5) yields

1

(1 − ϕ)2.5
[
1 − ϕ + ϕ

(
ρcnt/ρ f

)] f ′′′ + f f ′′ − f ′2 + 2ωh = 0 (9)

1

(1 − ϕ)2.5
[
1 − ϕ + ϕ

(
ρcnt/ρ f

)]h′′ + f h′ − f ′h − 2ω f ′ = 0 (10)

kn f /k f

Pr
[
1 − ϕ + ϕ(ρCp)cnt/(ρCp) f

] θ′′ + f θ′ = 0 (11)

The BCs (5) become

(0) = S, h(0) = 0, f ′(0) = ε, θ(0) = 1,

h(η) → 0, f ′(η) → 0, θ(η) → 0 as η → ∞.
(12)

In Equations (9)–(12), prime denotes the differentiation w.r.t. similarity variable η,
ω = Ω/a is the rotation parameter, and Pr is the Prandtl number.

The quantities of physical interest are the skin friction coefficients and the local Nusselt
number (heat transfer rate at the surface). The skin friction coefficients in the x- and y-
directions, respectively, are given by:

Cf x =
τxz

ρ f U2
w

, Cf y =
τyz

ρ f U2
w

(13)

The local Nusselt number Nux is defined as:

Nux =
xqw

k f (Tw − T∞)
(14)
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The shear stresses τxz, τyz and the heat flux qw at the surface are given by:

τxz = μn f

(
∂u
∂z

)
z=0

, τyz = μn f

(
∂v
∂z

)
z=0

, qw = − kn f

(
∂T
∂z

)
z=0

(15)

Using Equation (15), Equations (13) and (14) become

Re
1
2
x Cf x = 1

(1−ϕ)2.5 f ′′ (0), Re
1
2
x Cf y = 1

(1−ϕ)2.5 h′(0),

Re−1/2
x Nux = − kn f

k f
θ′(0).

(16)

where Rex = Ux/ν f is the local Reynold number.

3. Stability Analysis

To investigate the stability of the solutions of Equations (9)–(12) over time, the unsteady
case of Equations (2)–(4) are considered as [37,51]

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

− 2Ωv =
μn f

ρn f

∂2u
∂z2 (17)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

+ 2Ωu =
μn f

ρn f

∂2v
∂z2 (18)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

= αn f
∂2T
∂z2 (19)

where t refers to time. Next, new dimensionless variables are introduced as follows:

τ = Ut
x , u = ax ∂ f

∂η (η, τ), v = axh(η, τ), w = −√aν f f (η, τ), η =
√

a
ν f

z,

θ(η, τ) = T−T∞
Tw−T∞

(20)

By utilizing Equation (20), Equations (17)–(19) become:

1

(1 − ϕ)2.5
[
1 − ϕ + ϕ

(
ρcnt/ρ f

)] ∂3 f
∂η3 + f

∂2 f
∂η2 −

(
∂ f
∂η

)2
+ 2ωh − ∂2 f

∂η∂τ
= 0. (21)

1

(1 − ϕ)2.5
[
1 − ϕ + ϕ

(
ρcnt/ρ f

)] ∂2h
∂η2 + f

∂h
∂η

− h
∂ f
∂η

− 2ω
∂ f
∂η

− ∂h
∂τ

= 0. (22)

kn f /k f

Pr
[
1 − ϕ + ϕ(ρCp)cnt/(ρCp) f

] ∂2θ

∂η2 + f
∂θ

∂η
− ∂θ

∂τ
= 0 (23)

where their respective boundary conditions are

f (0, τ) = S, h(0, τ) = 0, ∂ f
∂η (0, τ) = ε, θ(0, τ) = 1,

h(η, τ) → 0, ∂ f
∂η (η, τ) → 0, θ(η, τ) → 0 as η → ∞.

(24)

The stability of the steady flow solutions f (η) = f0(η), h(η) = h0(η), and θ(η) = θ0(η)
can be determined by writing f (η, τ), h(η, τ) and θ(η, τ) as follows [51]:

f (η, τ) = f0(η) + e−γτ F(η, τ), h(η, τ) = h0(η) + e−γτ H(η, τ),

θ(η, τ) = θ0(η) + e−γτG(η, τ).
(25)
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In Equation (25), F(η, τ), H(η, τ), and G(η, τ) are smaller relative to f = f0(η),
h = h0(η) and θ = θ0(η), respectively, and γ is the eigenvalue. Substituting Equation (25)
into Equations (21)–(24), the following system of linear eigenvalue problem is obtained:

1
(1−ϕ)2.5[1−ϕ+ϕ(ρcnt/ρ f )]

∂3F
∂η3 + f0

∂2F
∂η2 + F ∂2 f0

∂η2 − 2 ∂ f0
∂η

∂F
∂η + 2ωH

+γ ∂F
∂η − ∂2F

∂η∂τ = 0
(26)

1

(1−ϕ)2.5
[

1−ϕ+ϕ

(
ρcnt
ρ f

)] ∂2 H
∂η2 + f0

∂H
∂η + F ∂h0

∂η − H ∂ f0
∂η − h0

∂F
∂η + γH

− ∂H
∂τ − 2ω ∂F

∂η = 0
(27)

kn f /k f

Pr
[
1 − ϕ + ϕ(ρCp)cnt/(ρCp) f

] ∂2G
∂η2 + f0

∂G
∂η

+ F
∂θ0

∂η
+ γG − ∂G

∂τ
= 0 (28)

subject to the boundary conditions

F(0, τ) = 0, H(0, τ) = 0, ∂F
∂η (0, τ) = 0, G(0, τ) = 0

H(η, τ) → 0, ∂F
∂η (η, τ) → 0, G(η, τ) → 0 as η → ∞.

(29)

Following Weidman et al. [51], we take τ = 0 to determine the initial decay or growth
of the solutions in Equation (25) and functions F, H, and G can be written as F0(η), H0(η),
and G0(η), respectively. Thus, Equations (26)–(29) can be simplified as

1

(1 − ϕ)2.5
[
1 − ϕ + ϕ

(
ρcnt/ρ f

)] F′′′
0 + f0F′′

0 + F0 f ′′0 − 2 f ′0F′
0 + 2ωH0 + γF′

0 = 0 (30)

1

(1 − ϕ)2.5
[
1 − ϕ + ϕ

(
ρcnt
ρ f

)]H′′
0 + f0H′

0 + F0h′0 − H0 f ′0 − h0F′
0 + γH0 − 2ωF′

0 = 0 (31)

1

(1 − ϕ)2.5
[
1 − ϕ + ϕ

(
ρcnt
ρ f

)]H′′
0 + f0H′

0 + F0h′0 − H0 f ′0 − h0F′
0 + γH0 − 2ωF′

0 = 0 (32)

subjected to the conditions

F0(0) = 0, H0(0) = 0, F′(0)
0 = 0, G0(0) = 0,

H0(η) → 0, F0
′(η) → 0, G0(η) → 0 as η → ∞.

(33)

According to Harris et al. [38], the value of the smallest eigenvalue γ can be computed
by relaxing the boundary conditions on F0(η), H0(η) or G0(η). In this study, the condition
F0

′(η) → 0 as η → ∞ is selected to be relaxed, thus, Equations (30)–(33) are solved along
with a new boundary condition F′′

0 (0) = 1 using bvp4c solver in MATLAB software.

4. Results and Discussion

The system of nonlinear ordinary differential Equations (8)–(10) associated with the
boundary conditions (11) was numerically computed for the diverse values of physical
emerging parameters, namely, rotation parameter ω, stretching or shrinking parameter ε,
nanoparticle volume fraction parameter ϕ, and suction parameter S. Two types of base
fluids, which are water (Pr = 6.2) and kerosene (Pr = 21), were considered using both
SWCNT and MWCNT. Numerical outcomes are obtained through the function bvp4c
in MATLAB software are displayed in graphs and tables [52]. The numerical values of
the velocity gradients at the surface of x- component f ′′ (0) and y-component h′(0) were
compared with the previous work of Wang [26] and Mustafa et al. [53] in the absence of
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stretching/shrinking parameter (ε = 0), nanoparticle volume fraction (ϕ = 0), and suction
parameter (S = 0) for SWCNTs using water as the base fluid. Those values are listed in
Table 2, and the acquired results were deemed adequate compared to previously obtained
data by Wang [26] and Mustafa et al. [53]. Dual solutions are obtained as depicted in
Figures 2–14, and it was worth performing a stability analysis as described in Section 2 to
identify the stability of the solutions. The finding of stability analysis is discussed at the
end of Section 3.

Table 2. Comparison values of f ′′ (0) and h′(0) for multiple values of rotation parameter ω when
ε = ϕ = S = 0 and Pr = 6.2 (water) for SWCNT.

ω
Wang [26] Mustafa et al. [53] Present Study

f”(0) h
′
(0) f”(0) h

′
(0) f”(0) h

′
(0)

0 −1 0 −1 0 −1 0
0.5 −1.1384 −0.5128 −1.13838 −0.51276 −1.138381 −0.512760
1.0 −1.3250 −0.8371 −1.32503 −0.83709 −1.325029 −0.837098
2.0 −1.6523 −1.2873 −1.65235 −1.28726 −1.652352 −1.287259

In this paper, the results in Figures 2–14 and Tables 3–6 are presented to discuss
the impact of various physical parameters on the physical quantities of interest, such as
the local skin friction coefficients Re1/2

x Cf x and Re1/2
x Cf y, and the local Nusselt number

Re−1/2
x Nux, which are proportional to f ′′ (0), h′(0) and −θ′(0), respectively, as well as

the velocity and temperature profiles. Figures 2 and 3 present the variation of f ′′ (0) and
h′(0) for several values of rotation parameter ω versus stretching or shrinking parameter
ε for SWCNT using water as the base fluid. These figures reveal that rising ω causes the
gradients f ′′ (0) and h′(0) to grow. However, it is noted that h′(0) becomes zero when
there is no rotation in the flow or when ω = 0. Further, a higher rotation rate causes fluid
to move faster, which accelerates the velocity. The drag force between the fluid and the
surface expedites and consequently increases the velocity gradient for both components.
In addition, an increase in the values of f ′′ (0) and h′(0) is due to the decrement in the
momentum boundary layer thickness as ω increases (see Figure 7; Figure 8). Besides, as the
stretching or shrinking parameter changes from the negative value to the positive one, both
values of f ′′ (0) and h′(0) seems to decrease. It happens because when the surface shrinks,
less friction occurs on the surface than on the stretching surface. The rotating fluid forces
the friction to appear in the flow significantly when the surface is being compressed. As
a result, the velocity gradients rise for the shrinking surface compared to the stretching
surface. Furthermore, the emergence of dual solutions is noticed when ε is in the region of
εc < ε ≤ −0.8. Meanwhile, unique solutions are obtained when ε > −0.8 and no solutions
when ε < εc.

The variation of f ′′ (0) and h′(0) and −θ′(0) for some values of nanoparticle volume
fraction parameter ϕ versus suction parameter S are plotted in Figures 4–6 for MWCNT
using kerosene as the base fluid. It is found from these plots that increasing the values of ϕ
tends to diminish the f ′′ (0) and −θ′(0). However, the reverse effect is noted for h′(0) since
adding more nanoparticles in the flow will slow down the collision between the molecules
of the base fluid and nanoparticles, which in turn reduces f ′′ (0).

Since the surface is compressed or stretched in the x-direction, thus, the effect of ϕ
on f ′′ (0) is more pronounced than h′(0). As noticed in Figure 5, there is a slight increase
in the value of h′(0) when ϕ increases. Besides, the reduction in −θ′(0), as displayed in
Figure 6, is due to the thickening of the thermal boundary layer thickness as ϕ increases.
This phenomenon prevents heat from the surface from being transferred to the surrounding
fluid, and consequently, reduces −θ′(0). It is also revealed that as S intensifies, f ′′ (0) and
−θ′(0) seem to increase, while the contrary phenomenon is noticed for h′(0). The increment
of −θ′(0) is influenced by the surface texture where suction causes heat to be transferred
from the wall to the fluid. It is observed that non-unique solutions occur for the particular
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values of the suction parameter and no solutions when S < Sc. Figure 4 reveals that in the
case of regular fluid (ϕ = 0), dual solutions exist in the range of Sc = 1.9965 < S ≤ 2.31.
Meanwhile, as the value of ϕ increases from 0 to 0.02 and 0.04, dual solutions are obtained
in the range of Sc = 2.0265 < S ≤ 2.34 and Sc = 2.0584 < S ≤ 2.38, respectively. As can be
seen in Figures 2–5, the range of solutions that exist are different based on the pertinent
parameters involved. Figures 2 and 3 show that when different values of ω are plotted
versus ε, the range of solutions increases with an increasing rotation parameter ω. However,
Figures 4 and 5 depict that it decreases when the nanoparticle volume fraction ϕ increases.

Figure 2. Values of f ′′ (0) for some values of ω versus ε.

Figure 3. Values of h′(0) for some values of ω versus ε.
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Figure 4. Values of f ′′ (0) for some values of ϕ versus S.

Figure 5. Values of h′(0) for some values of ϕ versus S.

Figures 7–14 illustrate the velocities of x- and y-components, f ′(η) and h(η) as well
as the temperature profiles θ(η) for multiple values of ω, ϕ and S for different base fluids.
As can be seen in Figures 7 and 8, both velocities of x- and y-components enhance with a
higher rotation parameter for the first solution. An increase in the rotation rate will force
the fluid to move rapidly and, in the meantime, accelerate both velocity components. This
behavior will complicate the formation of the boundary layer thickness; thus, the boundary
layer thickness becomes thinner. In contrast, the opposite phenomenon is reported for
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the second solution. Furthermore, it is found that the velocity of x-component decreases;
meanwhile, the velocity of y-component and the temperature fields for the first solution
show an increment with the increasing ϕ as displayed in Figures 9–11, respectively.

Figure 6. Values of −θ′(0) for some values of ϕ versus S.

Figure 7. Velocity profiles of x-component f ′(η) for some values of ω.

The presence of more suspended particles in the flow decelerates the velocity of x-
component because the surface is only compressed in the x-direction. Since the surface
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is not compressed in the y-direction, the velocity of y-component increases due to less
collision between the suspended molecules. The higher nanoparticle rate that thickens
the thermal boundary layer thickness, as in Figure 11, will prevent heat diffusion from
the surface to the fluid. As a result, the temperature of the flow rises. As the suction
parameter enhances, the velocity of x-component for the first solution rises, while the
opposite phenomenon is observed for both the velocity of y-component and temperature
profiles as presented in Figures 12–14, respectively. Moreover, all the profiles obtained in
this work satisfy the endpoint boundary conditions (11) asymptotically, thus supporting
the numerical results gained for the current study. Further, the boundary layer thickness
near the surface for the first solution is thinner than the second solution.

Figure 8. Velocity profiles of y-component h(η) for some values of ω.

Figure 9. Velocity profiles of x-component f ′(η) for some values of ϕ.
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Figure 10. Velocity profiles of y-component h(η) for some values of ϕ.

Figure 11. Temperature profiles θ(η) for some values of ϕ.

Tables 3 and 4 provide the numerical values of the skin friction coefficients of x-
component Re1/2

x Cf x and y-component Re1/2
x Cf y, for several values of ϕ, suction S, and

ω for water and kerosene as the base fluids when ε = 1.0 (stretching case), respectively.
It is observed from Tables 3 and 4, that an increase in ϕ tends to decrease

∣∣∣Re1/2
x Cf x

∣∣∣ and∣∣∣Re1/2
x Cf y

∣∣∣ for both water-SWCNT and kerosene-MWCNT as reported by Anuar et al. [18].
This result differs from prior findings for copper, titanium, and alumina nanoparticles (see
Nadeem et al. [34]; Mabood et al. [54]; Dinarvand et al. [55]). Furthermore, as the parameter
S becomes more intense, the values of Re1/2

x Cf x increase, while Re1/2
x Cf y decreases for both
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water-SWCNT and kerosene-MWCNT. This discovery demonstrates that the suction effect
stimulates particle collisions which causes more friction in the x-direction. Moreover, the
suction impact on the skin friction in x-component is more significant than y-component
since the surface is stretched in the x-direction.

Figure 12. Velocity profiles of x-component f ′(η) for some values of S.

Figure 13. Velocity profiles of y-component h(η) for some values of S.
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In addition, both values of
∣∣∣Re1/2

x Cf x

∣∣∣ and
∣∣∣Re1/2

x Cf y

∣∣∣ increased with a higher rotation
rate. Physically, a high rotation rate causes the fluid to rotate continuously and generates
more friction on the surface. The skin friction coefficients of the x- and y-components for
SWCNTs are clearly higher than for MWCNTs. It is also worth noting that kerosene-based
fluid has a greater x- and y-components skin friction coefficient than those of water-based
fluid. Moreover, a positive value of the skin friction coefficient indicates that the fluid exerts
a drag force on the plate, whereas a negative sign suggests the opposite.

Figure 14. Temperature profiles θ(η) for some values of S.

Table 3. Values of Re1/2
x Cf x for different values of ϕ, S, and ω when ε = 1.0 (stretching case) for both

water and kerosene base fluids.

Water Kerosene

ϕ S ω SWCNT MWCNT SWCNT MWCNT

0.01 0 0 −1.02075 −1.01570 −1.02432 −1.01791
2.1 0.1 −2.54543 −2.52381 −2.56079 −2.53326

0.2 −2.55136 −2.52976 −2.56670 −2.53921
0.3 −2.56096 −2.53939 −2.57628 −2.54882

2.2 0.1 −2.63319 −2.61061 −2.64922 −2.62049
0.2 −2.63865 −2.61610 −2.65467 −2.62596
0.3 −2.64751 −2.62499 −2.66351 −2.63484

0.02 2.1 0.1 −2.58922 −2.54595 −2.61994 −2.56488
0.2 −2.59532 −2.55210 −2.62602 −2.57101
0.3 −2.60520 −2.56204 −2.63585 −2.58092

2.2 0.1 −2.67828 −2.63311 −2.71036 −2.65286
0.2 −2.68390 −2.63877 −2.71595 −2.65851
0.3 −2.69302 −2.64796 −2.72502 −2.66767

0.03 2.1 0.1 −2.63333 −2.56839 −2.67943 −2.59680
0.2 −2.63962 −2.57475 −2.68567 −2.60312
0.3 −2.64979 −2.58501 −2.69577 −2.61335

2.2 0.1 −2.72368 −2.65589 −2.77181 −2.68555
0.2 −2.72948 −2.66175 −2.77756 −2.69138
0.3 −2.73887 −2.67125 −2.78688 −2.70083
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Table 4. Values of Re1/2
x Cf y for different values of ϕ, S, and ω when ε = 1.0 (stretching case) for both

water and kerosene base fluids.

Water Kerosene

ϕ S ω SWCNT MWCNT SWCNT MWCNT

0.01 0 0 −1.02075 0 0 0
2.1 0.1 −0.07556 −0.07541 −0.07566 −0.07547

0.2 −0.15042 −0.15011 −0.15063 −0.15025
0.3 −0.22397 −0.22349 −0.22430 −0.22370

2.2 0.1 −0.07342 −0.07328 −0.07352 −0.07334
0.2 −0.14624 −0.14596 −0.14644 −0.14609
0.3 −0.21792 −0.21749 −0.21822 −0.21768

0.02 2.1 0.1 −0.07735 −0.07705 −0.07756 −0.07718
0.2 −0.15398 −0.15336 −0.15441 −0.15363
0.3 −0.22925 −0.22829 −0.22992 −0.22871

2.2 0.1 −0.07517 −0.07489 −0.07537 −0.07502
0.2 −0.14972 −0.14915 −0.15012 −0.14940
0.3 −0.22309 −0.22220 −0.22370 −0.22259

0.03 2.1 0.1 −0.07920 −0.07874 −0.07952 −0.07894
0.2 −0.15765 −0.15670 −0.15830 −0.15712
0.3 −0.23470 −0.23322 −0.23571 −0.23387

2.2 0.1 −0.07698 −0.07655 −0.07727 −0.07674
0.2 −0.15331 −0.15244 −0.15391 −0.15282
0.3 −0.22841 −0.22706 −0.22934 −0.22766

Table 5. Values of Re1/2
x Nux for different values of ϕ, S and ω when ε = 1.0 (stretching case) for both

water and kerosene base fluids.

Water Kerosene

ϕ S ω SWCNT MWCNT SWCNT MWCNT

0.01 0 0 1.891986 1.882514 3.745629 3.726123
2.1 0.1 13.36019 13.36137 44.48189 44.52129

0.2 13.35999 13.36118 44.48181 44.52122
0.3 13.35967 13.36086 44.48168 44.52109

2.2 0.1 13.95826 13.95984 46.55247 46.59429
0.2 13.95809 13.95968 46.55240 46.59422
0.3 13.95781 13.95941 46.55230 46.59412

0.02 2.1 0.1 13.31519 13.31824 44.42055 44.49977
0.2 13.31494 13.31799 44.42045 44.49967
0.3 13.31453 13.31759 44.42027 44.49950

2.2 0.1 13.90693 13.91074 46.48099 46.56501
0.2 13.90671 13.91053 46.48090 46.56492
0.3 13.90636 13.91019 46.48076 46.56478

0.03 2.1 0.1 13.26841 13.27395 44.35873 44.47819
0.2 13.26810 13.27364 44.35859 44.47806
0.3 13.26758 13.27315 44.35837 44.47784

2.2 0.1 13.85391 13.86056 46.40909 46.53571
0.2 13.85364 13.86030 46.40898 46.53560
0.3 13.85320 13.85988 46.40879 46.53542

The numerical values of the local Nusselt number Re−1/2
x Nux for some values of

nanoparticle volume fraction ϕ, suction S and rotation parameter ω are given in Table 5
when ε = 1.0 (stretching case). It is seen in Table 5 that the values of Re−1/2

x Nux in-
crease with increasing ϕ for both water/kerosene-SWCNTs and water/kerosene-MWCNTs.
However, the opposite observation was found for −θ′(0), as displayed in Figure 6. It
demonstrates that the thermal conductivity formula affects the heat transfer rate at the
surface since it involves nanoparticle volume fraction (see Equations (6) and (15)). As a
result of this circumstance, numerous studies are attempting to acquire the most effective
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thermal conductivity, as noted by Li et al. [56] and Fabre and Murshed [57]. However,
a similar pattern was obtained for the values of Re−1/2

x Nux and −θ′(0), where a higher
suction rate leading to an increase in Re−1/2

x Nux and −θ′(0). In contrast, the values of
Re−1/2

x Nux and −θ′(0) decreased with the presence of the rotating fluid in the flow. This is
due to the fluid rotation delaying heat transmission from the surface to the surrounding
fluid, and the opposite trend occurs as suction increases.

Table 6. Minimum eigenvalues γ for multiple values of ω and ε when ϕ = 0.02, S = 2.2, and Pr = 6.2
(water) for SWCNT.

ω ε First Solutions Second Solutions

0.0 −1.1826 0.0891 −0.0861
−1.1820 0.0946 −0.0912
−1.1800 0.1110 −0.1063

0.01 −1.1849 0.0732 −0.0712
−1.1840 0.0829 −0.0803
−1.1800 0.1168 −0.1117

0.02 −1.1899 0.0268 −0.0265
−1.1890 0.0473 −0.0464
−1.1800 0.1333 −0.1267

In the absence of suction and rotation parameters when ϕ = 0.01, SWCNT produces
higher heat transfer rate than MWCNT for both water and kerosene base fluids. Without
any disturbances like rotation in the fluid and suction at the surface, heat is quickly
diffused through the thin wall (SWCNT) compared to the thick wall (MWCNT). In contrast,
when there are suction and rotation parameters, a higher heat transfer rate is obtained for
MWCNT. It is also found that kerosene has a higher heat transfer rate than water since it
has a greater Prandtl number (Pr = 21) than water (Pr = 6.2).

Basically, the solution is stable if the trajectories do not deviate significantly in re-
sponse to a slight perturbation and have the same values of f ′′ (0), h′(0), and −θ′(0) for
η∞. In this study, the second solution is not stable since the solution is only valid for
certain values of boundary layer thicknesses compared to the first solution. However,
the existence of second solutions cannot be ignored since they may have physical sense
in some circumstances. In this study, the stability analysis proposed by Merkin [37] was
performed to determine which solution was stable as time evolved, by solving Equations
(30)–(33) using bvp4c solver in MATLAB software. The values of the smallest eigenvalue
γ for some values of rotation and stretching or shrinking parameters are generated and
tabulated in Table 6 for single-wall carbon nanotubes. It was found that the values of the
smallest eigenvalues γ for the first solutions were positive, whereas the second solutions
had negative values. Referring to Equation (25), the flow was unstable since the initial
growth of disturbance occurred for the negative value of γ. In contrast, the flow was
stable when γ took the positive value, which implies an initial decay of disturbance in the
system. It was noticed that as ε approached its critical value εc, the smallest eigenvalue
tended to zero for both first and second solutions, as shown in Figure 15. This criterion
indicates that the transition occurs at the turning point. Figure 15 also shows the region
for the stable and unstable solutions.
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Figure 15. Minimum eigenvalues γ versus ε when ω = 0.01, ϕ = 0.02, S = 2.2, and Pr = 6.2 (water)
for SWCNT.

5. Conclusions

In the present paper, the numerical results of a steady rotational flow past a stretch-
ing/shrinking surface in a nanofluid with carbon nanotube as the nanoparticles (SWCNTs
and MWCNTs) were obtained using bvp4c solver in MATLAB and reported in Tables
and graphs. One of the most important discoveries in this paper is that dual solutions
exist for the shrinking surface, and we found that only the first solution is stable in the
long run. Moreover, the heat transfer enhancement is higher in water-MWCNTs than in
water-SWCNTs. Kerosene-based carbon nanotubes have a higher heat transfer rate than
water-based carbon nanotubes. Other findings of this study can be summarized as follows:

• Increasing nanoparticle volume fraction tends to increase the heat transfer at the
surface, while decreasing the temperature gradient in both nanofluids;

• The heat transfer rate at the surface is increased by suction parameter, whereas it
decreases by rotating flow parameter in both nanofluids;

• In both nanofluids, increasing the nanoparticle volume fraction reduces the friction on
the surface in the x and y directions, whereas rotational flow increases it;

• The friction in x direction is higher than in y direction in both nanofluids.
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Abstract: Water quality control and the control of contaminant spill in water in particular are becom-
ing a primary need today. Gradient descent sensitivity methods based on the adjoint formulation
have proved to be encouraging techniques in this context for river and channel flows. Taking into
account that most channels and rivers include junctions with other branches, the objective of this
study is to explore the adjoint technique on a channel network to reconstruct the upstream boundary
condition of the convection-reaction equation. For this purpose, the one-dimensional shallow water
equations and the transport equation for a reactive solute are considered. The control is formulated
through the gradient-descent technique supplied with a first-order iterative process. Both the physical
and the adjoint equations are supplied with suitable internal boundary conditions at the junction
and are numerically solved using a finite volume upwind scheme. The results reveal that the adjoint
technique is capable of reconstructing the inlet solute concentration boundary condition in an ac-
ceptable number of iterations for both steady state and transient configurations using a downstream
measurement location. It was also observed that the reconstruction of the boundary condition tends
to be less effective the further away the measurement station is from the target.

Keywords: adjoint; gradient-descent; junctions; transport equation

1. Introduction

Simulation tools based on hydrodynamic models combined with solute transport have
become an essential tool to help decision makers [1], with efficiency and accuracy being
both the fundamental keys of any mathematical model. Particularly, the geometry of the
cross sections as well as the presence of junctions must be included into the model, having
this last feature a greater impact on the physical and chemical properties of water. The
numerical simulation of water flow at channel junctions has been addressed by several
authors. In [2], it was concluded that it is possible to model the flow in a junction when the
Froude numbers are low assuming the same water stage at the junction for every channel.
Hsu et al. [3] derived an analytical approach through the junction over subcritical flows
and uniform beds. The validation of their model was supported by three experimental
tests with different junction angles, showing a good correlation between the numerical data
and experimental values. The hydrodynamic details of flows at junctions have also been
studied in [4–8] with experimental data and with field measurements. Likewise, the flow
propagation in open-channel junctions was analyzed in [9], showing acceptable numerical
results for supercritical transitions with small junction angles.

The influence of geometry in large-scale junctions was evaluated by [10]. It was
concluded that there is a domain of the Kelvin–Helmholtz (KH) mode and the wake mode
within the mixing interface, as the angle of the junction is altered. Based on the flow
structure in the confluences, Constantinescu et al. [11] determined that the mixing interface
can be either in the KH mode or in the wake mode. Both cases are dominated by quasi
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two-dimensional (2-D) eddies whose growth in the first case is boosted by the KH instability
whereas, in the latter case, the mixing interface is populated by eddies with opposing senses
of rotation. The influence of the mixing interface eddies and vortical characteristics on the
mean velocity and turbulent kinetic energy patterns was also analyzed in [12]. Using the
detached eddy simulation model, they were able to capture in detail the flow and turbulent
structure in the confluence zone. This behavior was verified by a real data event at the
confluence of the Kaskaskia River and Copper Slough. The morphological characteristics
of the channel were also considered in [13,14]. In these studies, it was observed that
sediment deposition is within and beyond the flow separation region, forming a large
bank-attached bar.

On the other hand, the chemical change generated by the junction of two streams
has been much more limited due to the requirements on the experimental data. Burguete
et al. [15] demonstrated the innovative aspects for fertigation in furrows and level furrow
systems with solute transport. This work was validated against experimental data and
incorporated a computationally efficient approach of the internal boundary conditions to
ensure the conservation of global mass. The behavior of the concentrations at junctions
was also analyzed in [16]. Detailed analysis at the junction showed that the concentration
distributions were controlled mainly by the shear layer and the two helical cells. The
detailed study for dynamic phosphorus contamination was also considered in [17,18],
showing and application for the Huiji and Ying rivers in eastern China. Additionally, it was
demonstrated that there is an alteration of the flow and the mixing interface in junctions
of two tributaries in natural rivers with large bed discordance due to the temperature
differences in the two inflows [19]. Particularly, the mixing interface is proved to be
very sensitive to inflow changes due to seasonal variations, which may cause significant
differences in density [20].

The quality of the predictions supplied by numerical models is strongly related with
the quality of the data used (initial conditions, boundary conditions or model parameters).
This information is not always available for different reasons, and thus, retrieval techniques
such as trial and error methods are necessary, sometimes resulting in tedious and not very
intuitive processes especially when there is not enough modeling experience. To overcome
this drawback, the gradient-descent method emerges as an alternative due to the use of the
functional gradient where the minimum of the objective function is efficiently found. In this
context, based on existing works [21–26], the adjoint method is considered to reconstruct a
part or all of the necessary information in predictive simulation models. In particular, it is
possible to efficiently reconstruct the boundary condition of a water quality model [27].

With this technique, the sensitivity of an objective function to the parameters of the
system—initial, boundaries or decay coefficients—can be found by solving the adjoint
equation backwards in time. This sensitivity is used in an iterative process, producing a
sequence of improved solutions that ends up providing the desired values.

In this work, a one-dimensional (1D) hydrodynamic model combined with the advec-
tion-reaction equation on a channel junction are used for the predictive simulation of the
flow evolution and solute transport, respectively. The adjoint methodology is adopted to
find a procedure to reconstruct the boundary condition of the transport equation using
a measure of the error at a location downstream the junction. To meet this objective, the
flow, the transport and the adjoint equations are solved using an explicit finite volume
method. Particular attention is paid to the following aspects: (a) reconstruction of the inlet
boundary condition of one or more solutes from downstream measurements after a junction;
(b) validation of the numerical technique against steady state and unsteady scenarios of
both flow and concentration; (c) characterization of the main strengths and limitations of
the adjoint method; (d) test the reconstruction of the information, with different decay rates
when more than one solute acts.

The rest of the paper is structured as follows: Section 2 presents the governing equa-
tions of the physical system together with the numerical method chosen to solve them.
The adjoint formulation is provided in Section 3 and is also presented together with the
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numerical discretization used. In Section 4, the proposed model control is validated with
some synthetic cases. The results of the model are presented in Section 5. Finally, the
conclusions are presented for some test cases are discussed in Section 6.

2. Flow Equations and Numerical Model

The 1D Saint Venant equations are here considered to model the water flow [28] while
the advection-reaction equation is used to model the solute transport with a first order
decay process [29,30]. Diffusion–dispersion effects (particularly longitudinal dispersion) are
important when modeling the behavior of solutes in rivers, mainly in accidental pollution
problems [31,32]. However, for the sake of clarity, they have not been included in this
work. The main reason for this is to simplify the development of this methodology without
introducing another degree of freedom and extra uncertainty in the derivation of the
equations and their resolution. Additionally, boundary conditions are needed for the whole
set of the equations both at the inlet and outlet points and at the junctions. All these items
are explained in the following paragraphs.

2.1. 1D Shallow Water Equations

The cross-sectional averaged 1D system of mass and momentum equations can be
expressed as follows [33]:

∂A
∂t

+
∂Q
∂x

= qL

∂Q
∂t

+
∂

∂x

(
Q2

A
+ gI1

)
= g[I2 + A(So − S f )]

(1)

where A[L2] is the wetted cross section area, Q[L3T−1] is the discharge, qL[L2T−1] is the
lateral inflow per unit width, g[LT−2] is the acceleration due to gravity, I1[L3] represents the
hydrostatic pressure force term, and I2[L2] accounts for the pressure forces due to channel
width change. The remaining two terms So [LL−1] and S f [LL−1] represent the bed slope
and friction slope, the latter formulated with the semi-empirical Manning’s law:

So = − ∂z
∂x

, S f =
n2|Q|Q
A2R4/3

h

, (2)

being z[L] the bed level, Rh[L] the hydraulic radius and n[TL−1/3] the Manning’s rough-
ness coefficient.

2.2. 1D Advection–Reaction Equation

The continuous change of concentration within the hydrodynamic system is generally
affected by the advection and reaction processes. The formulation of this transport equation
along every river or channel reach averaged in the cross section can be expressed as [34]:

∂(Aφ)

∂t
+

∂(Qφ)

∂x
= −AR, (3)

where φ[ML−3] is the cross sectional average concentration of the solute, and R [ML−3T−1]
is the first order rate or decay process:

R = κφ, (4)

where κ [T−1] is the reaction constant. As many transport equations as solutes must be
considered together with the corresponding reaction terms in the case of more than one
reactive solute in the system. This is accomplished simply by generalizing the concentration
φj and Rj in (3) where the subscript j indicates the number of reactive solutes [35].
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2.3. Numerical Model

The numerical solution of Equations (1) and (3) is achieved by applying an explicit
upwind finite volume method based on Roe’s linearization. This scheme has been proved
to be robust, well-balanced and efficient and has been verified in multiple scenarios: for the
1D and 2D the frameworks [36–38].

Following [15,38], the system (1) can be solved for each computational cell i of size Δx:

Un+1
i =Un

i −
Δt
Δx

[(
∑
m

λ̃+γ̃ẽ

)m

i−1/2

+

(
∑
m

λ̃−γ̃ẽ

)m

i+1/2

]n

, (5)

where U = (A, Q), n is the discrete time level, and λ̃ and ẽ are the eigenvalues and
eigenvectors, respectively; γ̃ is the linearized term that contains the fluxes and source
strengths; m is the eigenvalues counter, and Δt is the time step size. This expression (5) is
solved for the interior points in each of the channels considered in the system.

The complete discretization of the transport equation follows [39]:

(Aφ)n+1
i = (Aφ)n

i −
Δt
Δx

[
(qφ)↓i+1/2 − (qφ)↓i−1/2

]n
+ Δt(AR)n

i , (6)

where the variables q↓ and φ↓ are defined in order to decouple conservatively this equation
from the hydrodynamic system. This formulation ensures solute positivity and a non-
oscillatory solution in both space and time [35]. The scheme in (6) is used to solve for each
solute at all the interior points of each channel.

2.4. Junction Boundary Conditions

Appropriate boundary conditions are needed to solve the system of flow and solute
equations formed by (1) and (3). The number of boundary conditions at the inlet, outlet and
junction points depends on the flow regime [2]. For the sake of simplification, this work
only considers sub-critical cases. Regarding the flow equations, it is enough to impose one
boundary condition upstream and downstream. Generally, a discharge hydrograph Q(t) is
imposed upstream while a gauging curve or a water surface level is set downstream. As
for the solute, only an upstream boundary condition is required.

When considering junctions such as the one represented in Figure 1, internal boundary
conditions are needed. In the present work, uniform water surface level together with
discharge continuity at the junction is assumed [40]:

(h + z)imax,1 = (h + z)0,2 = (h + z)imax,3,

Q0,2 = Qimax,1 ± Qimax,3,
(7)

where the number of cells goes from 0 to imax in each channel. As for the internal condition
of the solute, a mass balance at the junction is formulated as in [15]:

(Qφ)0,2 = (Qφ)imax,1 ± (Qφ)imax,3. (8)

Figure 1. Spatial domain of junctions.
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3. Adjoint Equations and Gradient Descent Method

3.1. Solute Transport Adjoint Equation

This study focuses on identifying the sensitivity of the objective function to the inlet
boundary condition of one or more solutes on a network of channels with junctions. For
this purpose, an objective function is defined in order to measure the error between the
values of the concentration predicted by the numerical simulation and those measured at a
certain location (xM):

J(p) =
1
2

∫ T

0

∫ L

0

[
δD(x − xM)(φ(p)− φ̂)2

]
dxdt, (9)

where δD() is the Dirac-delta function, φ(p) is the computed concentration based on a
parameter p which the functional depends on, φ̂ is the target at location xM, T[T] is the
total simulation time, and L[L] refers to the length of the computational domain.

The method to derive the adjoint equation from the configuration shown in Figure 1,
where the measurement point is assumed in channel 2, is summarized in the following
steps: (1) The transport Equation (3) is multiplied by an adjoint variable (σ [MTL−5]) and
integrated in space and time for each channel k:

I =
∫ T

0

∫ ximax,1

x0,1

σ1

[
∂(Aφ)

∂t
+

∂(Qφ)

∂x
+ AR

]
1
dxdt

+
∫ T

0

∫ ximax,2

x0,2

σ2

[
∂(Aφ)

∂t
+

∂(Qφ)

∂x
+ AR

]
2
dxdt

+
∫ T

0

∫ ximax,3

x0,3

σ3

[
∂(Aφ)

∂t
+

∂(Qφ)

∂x
+ AR

]
3
dxdt = 0.

(10)

(2) Integrating (10) by parts, the partial derivatives are passed over to the adjoint variable:

I =
∫ T

0

∫ ximax,1

x0,1

[
−(Aφ)

∂σ

∂t
− (Qφ)

∂σ

∂x
+ AσR

]
1
dxdt

+
∫ T

0
σQφ

∣∣∣∣ximax,1

x0,1

dt +
∫ ximax,1

x0,1

σAφ

∣∣∣∣T
0

dx

+
∫ T

0

∫ ximax,2

x0,2

[
−(Aφ)

∂σ

∂t
− (Qφ)

∂σ

∂x
+ AσR

]
2
dxdt

+
∫ T

0
σQφ

∣∣∣∣ximax,2

x0,2

dt +
∫ ximax,2

x0,2

σAφ

∣∣∣∣T
0

dx

+
∫ T

0

∫ ximax,3

x0,3

[
−(Aφ)

∂σ

∂t
− (Qφ)

∂σ

∂x
+ AσR

]
3
dxdt

+
∫ T

0
σQφ

∣∣∣∣ximax,3

x0,3

dt +
∫ ximax,3

x0,3

σAφ

∣∣∣∣T
0

dx = 0.

(11)

(3) As I = 0, we can redefine (9) as J = J + I and taking the first variation of the
functional with respect to φ leads to
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δJ =
∫ T

0

∫ ximax,1

x0,1

[
−(Aδφ)

∂σ

∂t
− (Qδφ)

∂σ

∂x
+ A

∂R
∂φ

δφ

]
1
dxdt

+
∫ T

0
σQδφ

∣∣∣∣ximax,1

x0,1

dt
∫ ximax,1

x0,1

σAδφ

∣∣∣∣T
0

dx

+
∫ T

0

∫ ximax,2

x0,2

δD(x − xM)
∂ξ

∂φ
δφdxdt+

+
∫ T

0

∫ ximax,2

x0,2

[
−(Aδφ)

∂σ

∂t
− (Qδφ)

∂σ

∂x
+ A

∂R
∂φ

δφ

]
2
dxdt

+
∫ T

0
σQδφ

∣∣∣∣ximax,2

x0,2

dt +
∫ ximax,2

x0,2

σAδφ

∣∣∣∣T
0

dx

+
∫ T

0

∫ ximax,3

x0,3

[
−(Aδφ)

∂σ

∂t
− (Qδφ)

∂σ

∂x
+ A

∂R
∂φ

δφ

]
3
dxdt

+
∫ T

0
σQδφ

∣∣∣∣ximax,3

x0,3

dt +
∫ ximax,3

x0,3

σAδφ

∣∣∣∣T
0

dx,

(12)

with

ξ =
1
2
(φ(p)− φ̂)2. (13)

(4) With the aim of finding the sensitivities of the objective function with respect to the
upstream boundary condition of the first channel, certain restrictions are applied:

σ(xk, T) = 0, k = 1, ..., 3,

δφ(xk, 0) = 0, k = 1, ..., 3,

δφ(ximax,2, t) = δφ(x0,3, t) = 0.

(14)

(5) The adjoint equations are formulated at every channel reach k:[
−A

∂σ

∂t
− Q

∂σ

∂x
+

∂ξ

∂φ
− Aσ

∂R
∂φ

]
k
= 0. k = 1, .., 3 (15)

The adjoint advection–reaction equations are in charge of transporting the error regis-
tered at the measurement station (xM) to the reconstruction point, which is in this case the
inlet boundary of channel 1.

(6) Now, applying the constraints of Equations (14) and (15) on expression (12) leads to

δJ =
∫ T

0

[(
σQδφ

)
ximax,1

−
(

σQδφ

)
x0,1

−
(

σQδφ

)
x0,2

+

(
σQδφ

)
ximax3

]
dt. (16)

(7) Like the flow and transport equations, the adjoint equations also require an internal
boundary condition at the junction.(

σQδφ

)
ximax1

−
(

σQδφ

)
x0,2

+

(
σQδφ

)
ximax,3

= 0. (17)

(8) Accordingly, the sensitivity of the objective function to the boundary condition of
channel 1 is

∇J =
δJ
δφ

∣∣∣∣
(0,t)1

= −(σQ)(0, t)1. (18)

Therefore, the regulation can be applied by means of the perturbation in the value
of the boundary condition φ(0, t) using the discrete version of (18) at every time tn. This
development is part of an iterative process that is detailed later.
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Note that the technique described above is analogous to reconstruct the boundary
condition at channel 3.

3.2. Numerical Model and Gradient Descent Method

The adjoint equations (15) can be discretized (see Figure 2) following the same proce-
dure used in (6). Therefore, the expression that updates the adjoint variables at cell i for
time tn is [27]:

Figure 2. Discretization of time and space in the adjoint equation.

σn
i = σn+1

i +
Δt
Δx

[(
u−δσ

)n+1
i−1/2 +

(
u+δσ

)n+1
i+1/2

]
+ Δt(σR)i + Δt

(
∂ξ

∂φ

1
A

)
i

(19)

where u = Q/A is the cross sectional average flow velocity. It is worth highlighting
that finding the solution of the adjoint variable σ for each channel requires to solve the
system backwards in time, that is, updating the time as tn = tn+1 − Δt. Note that the
upwind contributions (positive or negative superindex in the flow velocity) are opposite
to those on the transport equation. As seen, the solution of Equation (19) also requires
some information such as the time step Δt, the flow velocity un

i and the wetted area An
i

at every time level tn. For this purpose, all the information regarding the hydrodynamic
part is saved at each time step and at each computational cell in a previous first forward
simulation. Due to the explicit character of the scheme, the time step size is restricted by
stability reasons in order to fulfill the CFL condition [35,41].

To obtain the best reconstructed values for the boundary condition, the gradient-
descent method is used. The form of the iterative algorithm is described as follows:

φ(0, t)n+1 = φ(0, t)n − εn(∇J)n, (20)

where n indicates the level of the iteration, ε is the step length, and ∇J is the gradient of J.
Accordingly, as long as all the hydrodynamic information is available, only of the adjoint
equation (backwards) and the transport equation (forward) are necessary to converge to
the minimum of the function with a certain tolerance.

The step length ε is considered a constant value and is obtained through trial and error.
Regarding the target, the location of the measuring station xM does not follow a defined
rule; however, according to a previous work [42], it is known that this location could be
crucial when reconstructing the information at a given point.

Figure 3 illustrates the flowchart followed to reconstruct the information of the solute
boundary condition. This process is summarized in two fundamental stages: the so-called
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flow simulation and the control simulation. In the flow simulation, the flow equations
are solved using (5) with the known initial and boundary conditions, while the transport
equation is computed with an estimated boundary condition (initial guess, generally 0)
using (6). All the hydrodynamic information necessary for the next stage is stored during
this process.

For the control simulation, two main parts are considered: the forward simulation and
the backward simulation. This process is repeated until the functional is below a tolerance.
The backward simulation calculates the value of the adjoint variable using (19) and the
available velocity field and time step size at each time level and at each computational cell.
The upstream boundary condition, i.e., the new value of the concentration at every time
level, is obtained through the gradient method using (20).

Figure 3. Scheme to reconstruct the information of the boundary condition through the adjoint and
gradient-descent method.

4. Test Cases

The robustness and accuracy of the proposed technique is verified with some synthetic
cases. In all of them, a first simulation is performed using a known upstream boundary
condition in order to store time series of concentration values at the measurement point
to be used as the target. These values are then used as the “experimental data” for the
adjoint technique in order to evaluate the ability of the proposed method to reconstruct the
upstream solute boundary condition.

The optimization process starts by solving the transport equation with an initial guess
inlet solute boundary condition φ(0, t)1 = 0 g/m3. The adjoint equation is then solved
backwards to obtain the sensitivity for the optimization algorithm. The process is repeated
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until the functional value is below a tolerance level. This procedure is applied in all
cases presented.

4.1. Cases 1 and 2: Steady State of Both Flow and Concentration

In this scenario, we consider a 90° junction of three 10 m wide rectangular flat and
frictionless channels of lengths L1, L2 and L3 and widths B1, B2 and B3 as shown in Figure 4.
The initial conditions are

Q(x, 0)1 = 1 m3/s Œ(x, 0)1 = 1 g/m3 x ∈ [0, L1]

Q(x, 0)2 = 2 m3/s Œ(x, 0)2 = 0.5 g/m3 x ∈ [0, L2]

Q(x, 0)3 = 1 m3/s Œ(x, 0)3 = 0 g/m3 x ∈ [0, L3]

Figure 4. Case 1. Schematic of the three channels at a 90° confluence.

The inlet flow boundary condition is defined by the following values: Q(0, t)1 =
Q(0, t)3 = 1 m3/s for both channel 1 and channel 3 for t ∈ [0, T]. The solute inlet boundary
condition for channel 3 is φ(x, 0)3 = 0 g/m3 for x ∈ [0, L3]. The inlet boundary con-
dition for the solute of the first channel to be reconstructed by means of the control is
φ(0, t)1 = 1 g/m3 for t ∈ [0, T]. For this case, the reaction constant κ = 0.

The measurement station is located in channel 2 at xM = 25.5 m (see Figure 4). As
previously mentioned, these values are obtained through a first simulation with all the
known parameters.

The time evolution of the solute concentration both at the inlet of channel 1 and at
the target location in channel 2 obtained with CFL = 1, Δx = 1 m and ε = 7 are shown
in Figure 5. The numerical solution with the proposed scheme is plotted for iterations 1,
2, 5, 10, 15 and 20 (colored lines) for both the boundary conditions (a) and the target (b).
The numerical solution of the last iteration converges to the theoretical solution (black line)
with an acceptable accuracy. Small differences show up at the beginning of the simulation
(t ∈ [0, 150 s]) for the boundary reconstruction. This behavior has already been reported
and analyzed in the literature [27] and is attributed to the numerical diffusion. The target is
however successfully achieved at iteration 20.
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(a) (b)

Figure 5. Case 1. Evolution of the reconstruction of the boundary condition (a) and evolution of the
target (b) at some iterations.

This test case has been repeated to evaluate the influence of the mesh size using the
following number of cells (MNC): 100, 200 and 400. The results of both the reconstruction of
the boundary condition in the last iteration and the evolution of the objective functional are
plotted in Figure 6. Particularly, Figure 6a shows the variations that occur at the beginning
of the simulation. They can be attributed to the numerical diffusion as well that tends to
decrease as the mesh number of cells (MNC) increases.

(a) (b)

Figure 6. Case 1. Reconstruction of the boundary condition at iteration 100 (a) and evolution of the
objective function at each iteration (b) for different number of cells.

The results of the objective function also show the same trend, i.e., its value decreases
as the number of cells increases. Furthermore, it is evident that the functional does not
decrease in the same way for the range of iterations, especially in the first 20 iterations. For
example, for a fixed J = 1.0 × 10−4, the number of iterations is different: ten iteration for
MNC = 400, three iterations for MNC = 100. This trend changes after 20 iterations.

In the context of Case 1, new cases are considered (Case 2), to test the influence of
the inlet discharge of channel. For this purpose, three scenarios were carried out. The
initial conditions (I.C.) and boundary conditions (B.C.) of the flow of the three scenarios are
displayed in Table 1.
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Table 1. Initial and inlet boundary conditions to evaluate the reconstruction of the inlet boundary
condition of the solute at channel 3.

Case
I.C. Q(x, 0)m3/s B.C. Q(0, t)m3/s

Channel 1 Channel 2 Channel 3 Channel 1 Channel 3

Case 2.1 1 1.5 0.5 1 0.5
Case 2.2 1 2 1 1 1
Case 2.3 1 3 2 1 2

The initial condition of the solute for the three channels and for the three proposed cases is
φ(x, 0) = 1 g/m3, and the boundary condition is determined by the following expression:

φ(0, t)1 =

{
1 0 ≤ t ≤ 100 s
0 t ≥ 100 s

φ(0, t)3 =

{
1 0 ≤ t ≤ 2000 s
0 t ≥ 2000 s

The results show that the value of the functional tends to decrease the higher the inlet
flow is. The discussion and the Root Mean Square Error (RMSE) of this set of test cases is
presented later.

4.2. Case 3: Unsteady Flow with Gaussian Pulse for Both Flow and Concentration

This test case considers the same configuration displayed in Figure 4. The following
initial conditions for both flow and solute are imposed:

Q(x, 0)1 = 1.14 m3/s φ(x, 0)1 = 0 g/m3 x ∈ [0, L1]

Q(x, 0)2 = 2.14 m3/s φ(x, 0)2 = 0.46 g/m3 x ∈ [0, L2]

Q(x, 0)3 = 1 m3/s φ(x, 0)3 = 1 g/m3 x ∈ [0, L3]

The hydrodynamic inlet boundary condition for channel 1 is defined with a Gaussian
function expressed as

Q(0, t)1 = ae−
(t−b)2

2c2 a = 3, b = 250, c = 180 t ∈ [0, T] (21)

The solute boundary condition φ(0, t)1 used to generate the target to be reconstructed
by the adjoint method follows:

φ(0, t)1 = ae−
(t−b)2

2c2 . a = 2, b = 250, c = 30 t ∈ [0, T] (22)

On the other hand, the inlet boundary conditions at channel 3 are defined as

Q(0, t)3 =

⎧⎪⎨⎪⎩
1 m3/s t ∈ [0, 100 s]
3 m3/s t ∈ [100 s, 200 s]
1 m3/s t ∈ [200 s, 500 s]

φ(0, t)3 = 1 g/m3 t ∈ [0, T] (23)

No reaction or decay processes are considered (κ = 0). The downstream measurement
station is located in channel 2 at xM = 5.5 m. As for the optimization method, ε = 8. The
numerical results are plotted in Figure 7. The method efficiently reconstructs the signals
regardless of their distributions. Particularly, the shape of the target (see Figure 7b) contain-
ing a plateau and the Gaussian pulse coming from the input signals from channels 1 and 3
are satisfactory achieved. With only 15 iterations, it is possible to reconstruct the boundary
condition at channel 1 and achieve a great level of accuracy at the target (channel 2) without
any non-physical concentrations or oscillations.
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(a) (b)

Figure 7. Case 3. Evolution of the reconstruction of the boundary condition (a) and evolution of the
target (b) in some iterations.

4.3. Case 4: Analysis of the Influence of the Measurement Station, Geometry and the Type
of Reconstruction

The purpose of the next set of cases is to observe the influence of the location of the
measurement station and the geometry of the case (length, slope) in the performance of
the adjoint technique for the reconstruction of the upstream solute boundary condition of
either channel 1 or channel 3. The configuration of the channel system is similar to that
shown in Figure 4. Initial conditions for these scenarios are

Q(x, 0)1 = 1 m3/s φ(x, 0)1 = 0 g/m3 x ∈ [0, L1]

Q(x, 0)2 = 2 m3/s φ(x, 0)2 = 0 g/m3 x ∈ [0, L2]

Q(x, 0)3 = 1 m3/s φ(x, 0)3 = 0 g/m3 x ∈ [0, L3]

The boundary conditions for all the cases presented are

Q(0, t)1 =

⎧⎪⎨⎪⎩
1 t ∈ [0, 100 s]
2 t ∈ [100, 1100 s]
1 t ≥ 1100 s

φ(0, t)1 =

⎧⎪⎨⎪⎩
0 t ∈ [0, 100 s]
2 t ∈ [100, 1100 s]
0 t ≥ 1100 s

Q(0, t)3 =

⎧⎪⎨⎪⎩
0.5 t ∈ [0, 100 s]
1 t ∈ [100, 1100 s]
0.5 t ≥ 1100 s

φ(0, t)3 =

⎧⎪⎨⎪⎩
0 t ∈ [0, 100 s]
1 t ∈ [100, 1100 s]
0 t ≥ 1100 s

The roughness coefficient is 0.035 sm−1/3, and Δx = 5 m. This analysis is carried out
by changing the length, slope and target location as shown in Table 2. The results with
ε = 1, CFL = 1 and number of total iterations equal to 100 are plotted in Figure 8. According
to the location of the measurement station (Figure 2a), the study shows that the further it
is from the reconstruction point, the bigger that value of the functional is. Regarding the
length, the functional adopts different forms according to the reconstruction, and when
the reconstruction is on channel 1 (see Figure 2b), there are small differences between the
functional. However, when the information of channel 3 is reconstructed (Figure 2d), there
are large variations, especially when the length of channel 3 is 1500 m. On the other hand,
when the slope is 2%, the value of the functional decreases considerably with respect to the
1% slope (see Figure 2c).
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Table 2. Case 4. Location of the target measuring station (channel 2) and geometric properties.

Channel
Recons.

Case L1 (m) L2 (m) L3 (m) (So)1−3 xM (m)

channel 1

Case 3.1 1000 1000 1000 1% 100
Case 3.2 1000 1000 1000 1% 500
Case 3.3 1000 1000 1000 1% 900
Case 3.4 500 1000 1000 1% 100
Case 3.5 1000 1000 1000 1% 100
Case 3.6 1500 1000 1000 1% 100
Case 3.7 1000 1000 1000 0.5% 100
Case 3.8 1000 1000 1000 1% 100
Case 3.9 1000 1000 1000 1.5% 100

channel 3
Case 3.10 1000 1000 500 1% 100
Case 3.11 1000 1000 1000 1% 100
Case 3.12 1000 1000 1500 1% 100

Figure 8. Case 4. Evolution of the functional in the different proposed scenarios.

4.4. Case 5: Unsteady Flow with Step Pulse for Both Flow and Concentration with Reaction

The purpose of this case is to observe the behavior of the reconstruction of the channel 1
upstream boundary condition given by a solute step pulse on the same configuration of
Case 1 in presence of reaction. The initial conditions are set according to

Q(x, 0)1 = 1 m3/s x ∈ [0, L1]

Q(x, 0)2 = 2 m3/s x ∈ [0, L2]

Q(x, 0)3 = 1 m3/s x ∈ [0, L3]

φ(x, 0)1 = φ(x, 0)2 = φ(x, 0)3 = 1 g/m3 x ∈ [0, Lk]

(24)

and the boundary conditions are
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Q(0, t)1 =

⎧⎪⎨⎪⎩
1 m3/s t ∈ [0, 100 s]
3 m3/s t ∈ [100 s, 400 s]
1 m3/s t ∈ [400 s, 1000 s]

φ(0, t)1 =

⎧⎪⎨⎪⎩
1 g/m3 t ∈ [0, 100 s]
3 g/m3 t ∈ [100 s, 400 s]
1 g/m3 t ∈ [400 s, 1000 s]

Q(0, t)3 =

⎧⎪⎨⎪⎩
1m3/s t ∈ [0, 200 s]
3 m3/s t ∈ [200 s, 600 s]
1 m3/s t ∈ [600 s, 1000 s]

φ(0, t)3 =

⎧⎪⎨⎪⎩
1 g/m3 t ∈ [0, 200 s]
3 g/m3 t ∈ [200 s, 600 s]
1 g/m3 t ∈ [600 s, 1000 s]

The reaction solute constant decay is set to κ = 1 × 10−3 s−1 for all channels. With
these conditions, Δx = 1 m and xM = 5.5 m at channel 2, the flow, the transport and
the adjoint equation are solved following the iterative procedure. Figure 9 plots the time
evolution of the flow at xM and follows the imposed conditions, achieving a bounded and
oscillation-free solution.

Figure 9. Case 5. Temporal evolution of flow-rate at xM,2 = 5.5 m.

Figure 10 shows the numerical solutions at some iterations for both the reconstruction
of the boundary condition and the target. Figure 10a shows small variations in the last
iteration that can be attributed to the considered solute pulse shape, differences that are
totally reduced when the signal to be reconstructed is smoother (Case 4) also observed
in [27]. Figure 10b shows the target reached in only 60 iterations with satisfactory results.

(a) (b)

Figure 10. Case 5. Evolution of the reconstruction of the boundary condition (a) and evolution of the
target (b) in some iterations.
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4.5. Case 6: Unsteady Flow with Two Solutes and Friction

In this case, two solutes φ1 and φ2 with different decay rates kφ1 and kφ2 , respectively,
are considered. The hydraulic characteristics (see Figure 4) include now slope and friction
for all channels: S0 = 0.001 and n = 0.035 sm−1/3. The initial conditions for the flow are

Q(x, 0)1 = 1.14 m3/s φ1(x, 0)1 = 0 g/m3 Œ2(x, 0)1 = 0 g/m3 x ∈ [0, L1]

Q(x, 0)2 = 1.35 m3/s φ1(x, 0)2 = 0 g/m3 Œ2(x, 0)2 = 0 g/m3 x ∈ [0, L2]

Q(x, 0)3 = 0.21 m3/s φ1(x, 0)3 = 0 g/m3 Œ2(x, 0)3 = 0 g/m3 x ∈ [0, L3]

On the other hand, the flow boundary conditions for channels 1 and 3 are a transient
configuration defined by (21) using a1 = 3, b1 = 250, c1 = 180 for channel 1 and a3 = 2.5,
b3 = 400, c3 = 180 for channel 3. The theoretical solute upstream boundary conditions to
be reconstructed are highlighted in grey in Table 3 and are also defined by Equation (22).
The remaining parameters and the decay rates are defined in Table 3.

Table 3. Case 6. Gaussian function parameters and decay rates of the three channels.

Variables

Channel φ1(0, t) φ2(0, t) Decay Rate (s−1)

a b c a b c kφ1 kφ2

channel 1 2 250 30 4 250 30 1 × 10−5 2 × 10−2

channel 2 - - 4 × 10−3 2 × 10−3

channel 3 1 400 30 2 400 30 8 × 10−6 1.5 × 10−6

The measurement station is located downstream of the junctions at xM = 35.5 m in
channel 2. The mesh size used in this test case is Δx = 1 m, with a CFL = 1 and a step
length ε = 10. The numerical results are plotted in the Figure 11. Figure 11a shows the
numerical solution of the flow measured at xM free of disturbances. Figure 11b,d displays
the reconstructions of the inlet boundary condition for solutes φ1 and φ2, respectively,
showing an acceptable convergence to a stable solution after 100 iterations.

Figure 11c,e shows the target for φ1 and φ2 after some iterations (dashed lines in colors),
requiring 100 iterations to successfully converge to the registered downstream shape.

(a)

Figure 11. Cont.
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(b) (c)

(d) (e)

Figure 11. Case 4. Temporal evolution of flow-rate at xM,2 = 35.5 m (a) and reconstruction of the
boundary condition φ1 and φ2 (b,d) and target at xM,2 = 35.5 m (c,e).

5. Discussion

This study presents a predictive explicit model for surface flow and transport of a
non-conservative solute in a channel junction together with the adjoint formulation of the
conservative and non-conservative transport equations. All the test cases used are synthetic
and followed the channel network shown in Figure 4. In this section, the numerical results,
the keys of the scheme, the combination of the hydrodynamic, transport, adjoint and
first-order gradient models, and the limitations of the proposed strategy are analyzed.

The technique is completely stable under the CFL condition when considering the
hydrodynamic source terms (slope and friction) and the source term of the adjoint and
physical transport equation (decay rate). Together with appropriate junction boundary
conditions, this technique is demonstrated to solve satisfactorily both steady state and
unsteady scenarios in a channel junction.

Optimization models considered in the literature frequently require hundreds of calls
of both the hydrodynamic and transport models to find the best accordance between
computed and observed state variables (model components) by variation of a number of
parameters [43,44], so a model with these features will require considerable computational
burden. Among the different alternatives for the inverse modeling offered by predictive
models, the adjoint formulation has demonstrated to be an efficient and flexible tool. This
works explores the extension of the adjoint technique to reconstruct the solute boundary
condition in hydrodynamic models with solute transport at junction of channels.

The adjoint equations are solved using the same numerical scheme, computational
grid and time step size as the physical equations. Moreover, they are supplied with the
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hydrodynamic information previously stored in the first simulation. This allows the error to
be transported from the measurement point to the control point. Consequently, the gradient
is used in the optimization method, allowing the boundary condition to be reconstructed
efficiently and with relevant accuracy in all the scenarios proposed in this work. This
is justified by the value of the functional in the last iteration, generally reduced by a
99.9% factor.

The versatility of the method to reconstruct the information at different channels
has also been demonstrated. This was evidenced in Case 4 where the convergence of
the functional achieves satisfactory results in both cases (Figure 8b,d). These results are
evidenced with the evaluation of the root mean square error (RMSE) of the reconstructed
upstream boundary condition at the last iteration (see Table 4). The evaluation criterion used
reveals that the predictive precision and the fit of the model by means of the adjoint method
have a better performance when the solute transported in unsteady flow is Gaussian. For
this case, an RMSE = 0.0088 g/m3 is reached compared to an RMSE = 0.361 g/m3 in Case
3.3 when the solute pulse is a stepwise function.

Table 4. Root mean square error of the reconstructed boundary conditions.

Case RMSE (g/m3)

Case 1 0.02013
Case 2 MNC 100 0.0101
Case 2 MNC 200 0.0105
Case 2 MNC 400 0.0123

Case 2.1 0.208
Case 2.2 0.085
Case 2.3 0.034
Case 3.1 0.299
Case 3.2 0.3
Case 3.3 0.361
Case 3.4 0.298
Case 3.5 0.299
Case 3.6 0.301
Case 3.7 0.359
Case 3.8 0.299
Case 3.9 0.284

Case 3.10 0.196
Case 3.11 0.198
Case 3.12 0.314

Case 4 0.008
Case 5 0.154
Case 6 0.025

This work is an encouraging step forward to extend the method presented in [27] for
water quality optimization analysis in branched channel or river networks. However, the
main limitation of the model is the oscillatory trend for the reconstruction of a stepwise
signal, leading to notable differences, especially in sudden changes in concentration. An
example of this is Case 5, where the concentration varies sharply from 1 to 3 g/m3 in a
period of time of 1s (see Figure 10a). Another potential downside of the method is the
necessity of storing of all the flow information in each computational cell and each time
step. This downside could be overcome with techniques such as check pointing [45] which
can be analyzed in future works of this nature.

6. Conclusions

This study reveals that the transport equation model can serve as a first step to under-
stand the relationships between the channel network and the control of the concentration
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of a solute downstream junction. The results showed that the accuracy of the boundary
condition reconstruction depends largely on the shape of the signal to be reconstructed.
However, these variations can be reduced by refining the computational mesh and increas-
ing the number of iterations. The numerical solutions also indicate that, as the measurement
station moves away from the reconstruction point, the final functional value in the last
iteration becomes larger. Furthermore, it is demonstrated that few iterations in both steady
state and unsteady scenarios are required to reconstruct the inlet boundary conditions of
one or more solutes at a time.

Finally, the efficiency of the technique requires that the same computational mesh,
the hydrodynamic characteristics and time step size be used when solving the transport
equation and the adjoint equation in the optimization process. Besides this restriction, the
optimization model presented in this work has been proved to be robust, accurate and
efficient for different hydrodynamic and solute configurations.
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Abstract: The problem of an unsteady 3D boundary layer flow induced by a stretching sheet in a
rotating hybrid nanofluid is studied. A dimensionless set of variables is employed to transform the
system of partial differential equations (PDEs) to a set of nonlinear ordinary differential equations
(ODEs). Then, the system of ODEs is solved numerically using the MATLAB software. The impacts of
different parameters, such as copper nanoparticles volume fraction, radiation, rotation, unsteadiness,
and stretching parameters are graphically displayed. It is found that two solutions exist for the flow
induced by the stretching sheet. Furthermore, the increasing nanoparticle volume fraction enhances
the skin friction coefficient. It is noticed that the skin friction coefficient, as well as the heat transfer
rate at the surface, decrease as the rotating parameter increases. Additionally, the thermal radiation
as well as the unsteadiness parameter stimulate the temperature.

Keywords: unsteady flow; rotation; heat transfer; hybrid nanofluid; stretching sheet; radiation

1. Introduction

The investigation into heat transfer is useful in various engineering applications, such
as transpiration cooling, drag reduction, thrust bearing, and radial diffuser design [1].
Usually, fluids are used as heat transporters, such as in heating and cooling processes
in transportation systems and industrial processes. It is also noticed that the stretching
sheet has gained researchers’ attention for years. Researchers have conducted various
studies on the physical phenomena and heat transmissions past a stretching plate. It
has numerous important applications in industrial production, including the extrusion of
plastic sheets, the process of condensation of metallic plates, and glass filer fabrication [2].
The study of flow and heat transfer is of significant importance since the quality of the final
product depends on the large extent of the skin friction coefficient and the heat transfer
rate at the surface [2]. Recently, the investigation of flow over a stretching sheet has been
broadened to many different cases that make the study more interesting. For instance,
Shahid et al. [3] studied the effects of swimming gyrotactic microorganisms using Darcy law
and Vafai et al. [4] explored the effects of Dufour, Soret, and radiation on the Powell–Eyring
fluid flow.

Even though the study of steady-state flows has the greatest practical significance,
many scholars are now paying close attention to the study of unsteady-state flows. Steady
flow can be defined as a flow in which the fluid characteristics at a given location in the
system stay constant throughout time. In contrast, the unsteady flow is defined otherwise,
which is time-dependent flow. Sears and Telionis [5] reported the numerical studies of
steady and unsteady distinguishing boundary layer flow with Goldstein’s type singularities,
and a possible comparison between the position of the singularity in relation to the time
curves and the point of vanishing wall shear can be made. They discovered a significant
difference between vanishing wall shear and separation. The unsteady (transient) boundary
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layer that is time-varying consists of mostly start-up processes, such as the movements
from rest or transitions from one steady-state to another or occasional movements [6].
According to Liao [7], the unsteady flow problem may be resolved in the same manner
as the steady-state similarities governed by the nonlinear ODEs. The study found that
solving the problem for unsteady flow is as easy as steady flow using the homotopy
analysis method (HAM). Suali et al. [8] considered both shrinking and stretching sheets
with injection or suction to explore the unsteady flow towards a stagnation point on the
sheet. According to this study, the spectrum of dual outcomes rises with mass suction,
whereas it reduces with mass injection. The problems related to the unsteady flow can also
be found in numerous literature [9–16].

The applications involved the problem of rotating flow, such as flywheels, cutting
discs, rotating machinery, computer storage devices, electrical items, and many others [17].
Anuar et al. [18] stated that the fluid flow with a rotating plane was initially introduced by
Kármán [19] using the momentum integral method. In the year 1988, Wang [20] explored
the rotating fluid flow of the stretching plate. The solutions were determined by the rotation
rate parameter, and it was found that the perturbation solutions for small and large rotation
rates were comparable to other works of literature. A few years later, Rajeswari and
Nath [21] broadened Wang’s problem to include the unsteady flow problem by combining
the finite-difference scheme with the quasilinearization technique. Takhar et al. [22] have
also extended Wang’s analysis to include the magnetic field. The application that is related
to the present magnetic-rotational model was the chilling process in amalgamation reactors
of liquid metal blankets. Yacob et al. [23] investigated a steady rotating flow in a nanofluid
containing carbon nanotubes past a stretching/shrinking surface. Carbon nanotubes can
be classified into single-walled (SWCNT) and multi-walled (MWCNT). They discovered
that the heat transfer enhancement is greater in water-MWCNTs than in water-SWCNTs.
Moreover, recent studies in this area may be found in references [24–27].

Nanofluid is a new amalgamation formed, as stated by Choi [28]. A nanofluid is
formed by adding tiny particles in nano-dimensions to the base fluid. Nanofluids have
higher thermal conductivity and are more effective in heat transport activities compared
to their base fluid. Hence, it is also well acknowledged and accepted empirically and
conceptually that dispersing nanoparticles in a liquid may improve the liquid’s thermo-
physical properties [29]. Nanotechnology has advanced rapidly in recent years, and by
combining many nanoparticle elements, stability issues and low heat conductivity can be
addressed. Nanofluids will save energy, improve thermal efficiency, speed up processes,
and increase the life of the equipment. Using a finite element simulation, Rana et al. [24]
observed the unsteady magnetohydrodynamic (MHD) boundary layer rotating nanofluid
flow on a stretching plate. Apart from that, nanofluid provides a number of advantages,
including less component degradation and blockage in tiny channels than fluid containing
micro-to millimeter-sized particles in suspension [30]. Similar problems in nanofluid
but with different approaches were published by Ghadimi et al. [31], Noor et al. [32],
Ahmad et al. [33], and Khan et al. [34].

Due to its importance in providing greater properties than nanofluid, hybrid nanofluid
has recently been a topic of discussion. It’s employed in heat transfer applications using
particles that are less than 100 nanometers in size. Higher energy efficiency, lower operating
costs, and greater performance are among the contributions of the high thermal conductivity
of a hybrid nanofluid [35]. Hybrid nanofluids have recently piqued the curiosity of many
academics as a novel technological idea. Using a two-step technique, Suresh et al. [36]
studied the combination of Al2O3-Cu/H2O hybrid nanofluid. They found that the distinct
nanoparticles improved the parameters of the hybrid nanofluid. Later, Suresh et al. [37]
discussed the heat transport and the impacts of the alumina-copper/H2O hybrid nanofluid.
Numerical research of the 3D hybrid nanofluid flux with Newtonian heating and Lorentz
force effects on a stretching plate was conducted by Devi and Devi [38]. Later, they
continued the investigation across a stretching plate on increasing heat transmission in a
copper-alumina/H2O hybrid nanofluid [35].
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Moreover, Waini et al. [39] investigated the unsteady hybrid nanofluid flow and heat
transmission through a stretching, as well as a shrinking surface. For a particular unsteadi-
ness parameter range, dual solutions exist; the results demonstrate that increasing the
nanoparticle volume percentage of Cu for the first solution will improve the skin friction co-
efficient, while the second solutions show the opposite. Furthermore, the unsteady hybrid
nanofluid flow on a porous biaxial stretching or shrinking plate, the effects of buoyancy and
stagnation flow on an exponentially stretching or shrinking vertical plate, heat transfer, and
MHD flow over a porous stretching/shrinking wedge, as well as the flow past a permeable
non-isothermal shrinking surface were reviewed by Waini et al. [40–43]. The stability
analysis was conducted by Zainal et al. [44] for the unsteady 3D magnetohydrodynamic
hybrid nanofluid for Homann flow. Hayat and Nadeem [45] described how heat dissipa-
tion might be improved using Ag-CuO/H2O hybrid nanofluid. Later, Hayat et al. [26]
extended the study of rotational flow with partial slip and radiation effects. Subsequently,
Anuar et al. [18] explored copper-alumina/water hybrid nanofluid with radiation on a
rotating surface. They reported the stability of the solutions over time. The study of hybrid
nanofluid flows has been diversified by Khan et al. [46] to various nanoparticle shape
factors and for different base fluids.

Motivated by the earlier studies on rotating hybrid nanofluids, the present work
intends to explore the rotation and radiation impacts on the unsteady 3D rotating flow
of a hybrid nanofluid over a stretching sheet. The boundary value problem is solved
numerically using the MATLAB software. The model is adopted from Rana et al. [24] and
Devi and Devi [35], where the hybrid nanofluid Al2O3-Cu/H2O is considered in this study.
Rana et al. [24] studied the unsteady magnetohydrodynamic flow on a stretching sheet in
a rotating nanofluid. The influences of the related parameters are visually depicted, and
the numerical findings obtained are compared with the existing literature. The novelty
of this study can also be seen in the discovery of dual solutions when the surface of the
sheet is stretched. This discovery also has applications in a variety of sectors of science and
technology, and it is useful for engineers as well as scientists to understand the behavior of
the boundary layer flow.

2. Problem Formulation

The unsteady rotating flow of a hybrid nanofluid on a stretching sheet is considered as
demonstrated in Figure 1, where (x, y, z) are cartesian coordinates with the sheet at z = 0.
The stretching velocities in the x and y directions are denoted by uw(x, t) and vw(x, t),
respectively, while ω is the uniform angular velocity of the rotation, see Figure 1. Moreover,
the ambient temperature of the fluid is T∞ and the sheet temperature is Tw. The hybrid
nanofluid Al2O3-Cu/H2O is considered in this study. The desired hybrid nanofluid is
formed by scatting copper nanoparticles in water to create Cu-H2O nanofluid, and then
aluminum oxide nanoparticles are added into that Cu-H2O nanofluid.

Figure 1. Physical configuration.

The governing equations are adopted from Refs. [2,20,21,25], and may be written as

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (1)
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∂u
∂t

+ u
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∂x
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ρhn f

∂2u
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∂x

+ v
∂T
∂y

+ w
∂T
∂z

=
khn f(

ρCp
)

hn f

∂2T
∂z2 − 1(

ρCp
)

hn f

∂qr

∂z
(5)

The boundary conditions are

u = uw(x, t) = cx
1−αt , v = 0, w = 0, T = Tw at z = 0

u → 0, v → 0, T → T∞ as z → ∞
(6)

where (u, v, w) are the velocity components along the (x, y, z) directions, t refers to time, T
is the fluid temperature, c > 0 for the stretching sheet and qr is the radiative heat flux, khn f
is the thermal conductivity, μhn f is the dynamic viscosity, ρhn f is the density,

(
ρCp

)
hn f is

the heat capacity, and σhn f is the electrical conductivities. The thermophysical properties
are given in [47] as presented in Table 1.

Table 1. Thermophysical properties.

Properties Hybrid Nanofluid

Density ρhn f = φAl2O3 ρAl2O3 + φCuρCu +
(

1 − φhn f

)
ρ f

Dynamic viscosity μhn f = μ f
(
1 − φAl2O3 − φCu

)−2.5

Thermal conductivity

khn f
k f

=
{

φAl2O3 kAl2O3+φCukCu

φAl2O3+φCu
+ 2k f + 2

(
φAl2O3 kAl2O3 + φCukCu

)− 2
(
φAl2O3 + φCu

)
k f

}
×{

φAl2O3 kAl2O3+φCukCu

φAl2O3+φCu
+ 2k f −

(
φAl2O3 kAl2O3 + φCukCu

)
+
(
φAl2O3 + φCu

)
k f

}−1

Heat capacity
(
ρCp

)
hn f = φAl2O3

(
ρCp

)
Al2O3

+ φCu
(
ρCp

)
Cu +

(
1 − φhn f

)(
ρCp

)
f

Where φhn f = φAl2O3 + φCu.

In Table 1, φ denotes the nanoparticle volume fraction where φ = 0 indicates the regular
fluid, φAl3O2 correlates to Al2O3, and φCu correlates to Cu. The physical properties of the
nanoparticles and the base fluid are given in Table 2, as reported in [48].

Table 2. Thermophysical properties of nanoparticles and water (base liquid).

Physical Properties Al2O3 Cu Water

Cp(J/KgK) 765 385 4179
ρ
(

kg/m3
)

3970 8933 997.1

k(W/mK) 40 400 0.613
β × 10−5(1/K) 0.85 1.67 21

Following Bataller [49], Ishak [50], Magyari and Pantokratoras [51], and Roşca, Roşca
and Pop [52], the Rosseland approximation is applied to exhibit qr as

qr = −4
3

σ∗

k∗
∂T4

∂y
(7)

where qr, k∗ and σ∗ respectively indicate the radiative heat flux, mean absorption coefficient,
and the Stefan–Boltzmann constant. By neglecting higher-order terms and employing the
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Taylor series, T4 may be approximated as T4 ≈ 4T3
∞T − 3T4

∞. Equation (5) is now may be
written as

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

=
1(

ρCp
)

hn f

(
khn f +

16σ∗T∞
3

3k∗

)
∂2T
∂z2 (8)

The given transformation variables are according to Maqsood et al. [25],

u = ax
1−αt f ′(η), v = ax

1−αt h(η), w = −
√

aν f
1−αt f (η)

θ(η) = T−T∞
Tw−T∞

, η = z
√

a/ν f
1−αt

(9)

where (′) denotes differentiation w.r.t. η, a > 0 is the stretching constant along the x
direction, α is a parameter indicating the flow unsteadiness, ν f is the kinematic viscosity of
the base fluid, and the nonlinear rotating angular velocity is ω = ω∗/(1 − αt).

Substituting the similarity variables (9) into Equations (1)–(4) and (8) yields

μhn f /μ f

ρhn f /ρ f
f ′′′ + f f ′′ − f ′2 + 2Ωh − β

(
f ′ + η

2
f ′′
)
= 0 (10)

μhn f /μ f

ρhn f /ρ f
h′′ + f h′ − f ′ h − 2Ω f ′ − β

(
h +

η

2
h′
)
= 0 (11)

1
Pr

1(
ρCp

)
hn f /

(
ρCp

)
f

(
khn f

k f
+

4
3

Rd

)
θ′′ + f θ′ − β

η

2
θ′ = 0 (12)

The boundary conditions are as follows:

f (0) = 0, f ′(0) = λ, h(0) = 0, θ(0) = 1
f ′(η) → 0, h(η) → 0, θ(η) → 0 as η → ∞

(13)

where Ω is the rotation parameter, β the unsteadiness parameter, Pr indicates the Prandtl
number, Rd the radiation parameter, and λ > 0 is the stretching parameter respectively
defined as

Ω =
ω∗

a
, β =

α

a
, Pr =

ν f

α f
, Rd =

4σ∗T∞
3

k∗k f
, λ =

c
a

(14)

It is noted that λ > 0 is for stretching sheet, λ < 0 for shrinking sheet, and λ = 0
corresponds to static sheet.

We notice that the regular fluid
(
φAl2O3 = φCu = 0

)
and the absence of rotating param-

eter (Ω = 0), Equation (10) becomes Equation (15) which is consistent with Equation (6) as
in Fang et al. [53].

f ′′′ + f f ′′ − f ′2 − β
(

f ′ + η

2
f ′′
)
= 0 (15)

The quantities of physical interest are the skin friction coefficients and the local Nusselt
number which are given as follows:

Cf x =
μhn f

ρ f ue2(x)

(
∂u
∂z

)
z=0

, Cf y =
μhn f

ρ f ue2(x)

(
∂v
∂z

)
z=0

,

Nux = − xkhn f

k f (Tf −T∞)

(
∂T
∂z

)
z=0

+ x(qr)z=0

(16)

Using Equations (10) and (17) yields

Rex
1/2Cf x =

μhn f
μ f

f ′′ (0), Rex
1/2Cf y =

μhn f
μ f

h′(0),

Rex
−1/2Nux = −

( khn f
k f

+ 4
3 Rd

)
θ′(0)

(17)
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where Rex is the local Reynolds number defined as Rex = ue(x)x/ν f .

3. Results and Discussion

The governing non-linear ordinary differential equations (ODEs) (10)–(12) subjected
to the boundary conditions (13) are solved numerically using the built-in function “bvp4c”
available in the MATLAB software. The detailed settings are described in [54]. The
validation for the skin friction coefficient in x and y directions f ′′ (0) and h′(0), respectively,
is obtained, which agrees with Wang [20], Nazar et al. [2], and Rana et al. [24]. The
comparisons are for the stretching surface, λ = 1 in the absence of solid volume fraction
(φ1 = φ2 = 0) at a steady state for different values of Ω as presented in Table 3. For
convenient purposes, the subscripts ‘1′ and ‘2′ indicate the alumina (Al2O3) and the copper
(Cu), respectively.

Table 3. Comparison of f ′′ (0) and h′(0) for β = 0, λ = 1 and variation of Ω.

Ω Wang [20] Nazar et al. [2] Rana et al. [24] Present Study

f
′′
(0) h

′
(0) f

′′
(0) h

′
(0) f

′′
(0) h

′
(0) f

′′
(0) h

′
(0)

0 −1 0 −1 0 −1 0 −1 0
0.5 −1.1384 −0.5128 −1.1384 −0.5128 −1.1384 −0.5128 −1.1384 −0.5128
1.0 −1.3250 −0.8371 −1.3250 −0.8371 −1.3250 −0.8371 −1.3250 −0.8371
2.0 −1.6523 −1.2873 −1.6523 −1.2873 −1.6523 −1.2873 −1.6523 −1.2873
5.0 - - - - −2.3903 −2.1502 −2.3903 −2.1502

The effects of non-dimensional parameters like Cu nanoparticle volume fraction φ2,
rotating parameter Ω, radiation parameter Rd, and unsteadiness parameter β, are discussed
and illustrated in Figures 2–9. We can see from these diagrams that there are two solutions
within the first and second solutions when λ > 0. The solutions are found up to a specific
critical value λ = λc.

Figure 2. Variations of the skin friction coefficient in the x direction, f ′′ (0), with stretching parameter
λ for various values of φ2.
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Figure 3. Variations of the skin friction coefficient in the y direction, h′(0), with stretching parameter
λ for various values of φ2.

Figure 4. Variations of the skin friction coefficient in the x direction, f ′′ (0), with stretching parameter
λ for various values of Ω.
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Figure 5. Variations of the local Nusselt number−θ′(0)with stretching parameter λ for different
values of Ω.

Figure 6. Variations of the local Nusselt number−θ′(0) with stretching parameter λ for different
values of Rd.
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Figure 7. Velocity profiles in the x direction f ′(η), for different values of β when Rd = 2.3, λ = 1,
φ1 = φ2 = 0.01, Pr = 6.2 and Ω = 0.01.

Figure 8. Velocity profiles in the y direction h(η), for different values of β when Rd = 2.3, λ = 1,
φ1 = φ2 = 0.01, Pr = 6.2 and Ω = 0.01.
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Figure 9. Temperature distribution θ(η) for different values of β when Pr = 6.2, Rd = 2.3, λ = 1,
φ1 = φ2 = 0.01 and Ω = 0.01.

Figures 2 and 3 depict the changes in the skin friction f ′′ (0) in the x direction and
h′(0) in the y direction, respectively, for the various values of φ2 when Pr = 6.2, Rd = 2.3,
β = −1, φ1 = 0.01 and Ω = 0.01. It is discovered that as the Cu nanoparticle volume
fraction φ2 increases, the values of f ′′ (0) and h′(0) decrease (increase in absolute sense) for
both solutions. There are two solutions for a particular range of stretching strength λ > 0.
It is noted that the critical value λc for Cu/H2O nanofluid (φ1 = 0.01, φ2 = 0.00) is 0.00087
and for the hybrid nanofluid Al2O3-Cu/H2O (φ1 = 0.01, φ2 = 0.01, 0.02) are 0.00082 and
0.00071, respectively. It is found that the critical values λc decrease when the values of φ2
increase. When compared to the nanofluid, the hybrid nanofluid has a higher concentration
of nanoparticles. In particular, a higher concentration of nanoparticles will lead to the
boundary layer separation being delayed. In Figure 2, the magnitude of f ′′ (0) rises in
perfect sync with the Cu nanoparticle volume fraction φ2. It is noted that the solid surface
exerts a drag force on the fluid for negative values of f ′′ (0). Meanwhile, if the stretching
strength is less (0.05 < λ < 0.4), it has the opposite behavior, in which the fluid exerts a
drag force on the sheet, represented by positive values of f ′′ (0). The solution exists up to
the critical values of λ as shown in Figure 2, where λc = 0.00087, 0.00082, and 0.00071 for Cu
nanoparticle volume fraction parameter φ2 =0.00, 0.01, and 0.02, respectively. It is noted
that there are positive and negative values of f ′′ (0). The positive values indicate a drag
force imposed by the fluid on the solid surface, while the negative sign implies a drag force
imposed by the solid surface on the fluid. On the other hand, the case f ′′ (0) = 0 indicates
that the fluid-solid contact is free of friction moving at the same velocity. Overall, the higher
the ratio of stretching, the higher the drag force on the surface. There are significant effects
on the second solution in Figure 3, where the y-direction skin friction coefficient, h′(0) is
always negative for λ > 0 as the drag force is dominant on the solid surface. The effects of
drag force in the y direction are less than the effects in the x direction.

In addition, Figures 4 and 5 elucidate the variation in the skin friction f ′′ (0) in the x
direction and heat transfer −θ′(0) for various values of the rotating parameter Ω when
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Pr = 6.2, Rd = 2.3, β = −1, and φ1 = φ2 = 0.01. It is observed that the critical values
λc are getting bigger with the increasing values of the rotating parameter Ω. The critical
values of λ for the rotating parameter Ω = 0.01, 0.02, and 0.03 are λc =0.00076, 0.00078,
and 0.00079, respectively. The increment values of the rotating parameter depend on the
rotation rate, as well as the stretching rate [25]. Figure 4 shows that f ′′ (0) decreases as Ω
increases for the first solution, but it increases for the second solution, which is consistent
with the results presented in Figure 2. Even though the gap is small, due to the small
variation of the rotating parameter Ω, but the existence of the dual solutions can still be
seen. However, Figure 5 shows the opposite results, where for the first solution, increasing
Ω leads to a decrease in the heat transfer rate −θ′(0), while for the second solution, it rises.

The variations of heat transfer rate −θ′(0) with λ for various values of radiation
parameter Rd when Pr = 6.2, Ω = 0.01, β = −1, and φ1 = φ2 = 0.01 are presented in
Figure 6. We note that as Rd increases, the absolute value of −θ′(0) decreases. The critical
values, λc = 0.00914, 0.00873, and 0.00687 for Rd =2.0, 2.3, and 2.5, respectively, are also
presented in this figure. It is noted that Rd gives no effect on the skin friction coefficients
for both the x and y directions, which is expected since the velocity field is not affected by
the thermal field, see Equations (10)–(13).

Figures 7–9 elucidate the effects of the unsteadiness parameter β on the fluid velocity
in the x and y directions, as well as the fluid temperature. Initially, by increasing β, the
velocity of the first solution decreases, while the velocity of the second solution increases.
However, the opposite behavior is seen in the velocity in the y direction. When the fluid
moves towards inviscid flow, the directional movement of the velocity changes in the x
direction for first and second solutions, while the movement of velocity in the y direction is
consistent with decreasing towards the quiescent fluid. These scenarios imply thickening
of the velocity boundary layer. In addition, the temperature increases for both solutions. It
shows a consistent analysis that the thermal boundary layer thickness is also rising.

4. Conclusions

The problem of the unsteady 3D rotating hybrid nanofluid flow on a stretching sheet
was explored. The governing PDEs were transformed to ODEs using a suitable similarity
transformation. The effects of the involved parameters on the physical quantities of interest
were visually shown and analyzed. The existence of double solutions was discovered for
the stretching situation. In addition, the higher concentration of the nanoparticle volume
fraction slowed down the boundary layer flow separation. The function h(η) was found to
be negative, which explains that the counterclockwise fluid rotation influences the fluid flow
in the negative y direction. The positive skin friction coefficient shows that the fluid imposes
a drag force on the solid surface, while the negative value implies the contrary. The results
showed that the radiation parameter, Rd, emits the heat energy into the boundary layer,
thus leading to a temperature rise of the hybrid nanofluid and subsequently enhancing the
heat transfer rate of the fluid.
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Nomenclature

a, c constants
C∞ ambient concentration
Cf skin friction coefficient
Cp specific heat at constant pressure (Jkg−1K−1)
(ρCp) heat capacitance of the fluid (JK−1m−3)
f ′ velocity in the x-direction
h velocity in the y-direction
k thermal conductivity of the fluid (Wm−1K−1)
k∗ Rosseland mean absorption coefficient (m−1)
Nux local Nusselt number
Pr Prandtl number
qr radiative heat flux (Wm−2)
Rd radiation parameter
Rex local Reynolds number
t time (s)
T fluid temperature (K)
T∞ ambient temperature (K)
Tw surface temperature (K)
u, v, w velocity component in the x-, y- and z- directions (ms−1)
uw velocity in the x direction (ms−1)
vw velocity in the y direction (ms−1)
x, y, z Cartesian coordinates (m)
Greek Symbols

α a parameter indicates the flow unsteadiness
β unsteadiness parameter
η similarity variable
θ dimensionless temperature
λ stretching parameter
μ dynamic viscosity (kgm−1s−1)
ν kinematic viscosity of the fluid (m2s−1)
ρ density of the fluid (kgm−3)
σ electric conductivity (Sm−1)
σ∗ Stefan-Boltzmann constant (Wm−2K−4)
φ nanoparticle volume fraction
Ω rotating parameter
ω angular velocity (rad s−1)
Subscripts

f base fluid
hn f hybrid nanofluid
Superscript
′ differentiation with respect to η
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Abstract: The calcium leaching effect inevitably increases the grout curtain hydraulic conductivity. It
is diffucult to sample and obtain the leaching-related calculation parameters for deep-buried grout
curtains. This study introduced the inversion method into the calcium leaching analysis to get proper
leaching-related calculation parameters and accurate results. An inverse analysis model was proposed
using the genetic algorithm (GA) and finite element analysis technology to solve the calcium leaching
problems. The objective function is constructed using the hydraulic head and leakage quantity
time-series measurements, which improves the uniqueness and reliability of the inverse results. The
proposed method was applied to the inverse analysis of the hydraulic conductivity evolution of the
grout curtain in a concrete dam foundation. The predicted water heads and leakage quantity are
consistent with the monitored data, indicating the rationality of this simulation. The grout curtain
hydraulic conductivity prediction in 100 years is also presented. The results illustrate the feasibility
of the proposed method for determining leaching-related parameters and the hydraulic conductivity
prediction in the leaching process.

Keywords: inverse modeling; calcium leaching; grout curtain; hydraulic conductivity

1. Introduction

In grouting projects, cement slurry is injected into rock fractures to improve the founda-
tion engineering properties such as permeability, strength, and deformation resistance [1–3].
Hydraulic conductivity is a crucial hydrologic parameter of the grout curtains and foun-
dation rock. For foundation rocks, the hydraulic conductivity is generally not changed
with time, while for the grout curtains and concrete face slabs, the hydraulic conductivity is
constantly changed under the effect of calcium leaching [4]. Calcium leaching occurs when
the calcium compounds in the cement matrix dissolve in a low pH or alkaline solution.
In the calcium leaching process, the decomposition of calcium hydroxide (CH) and cal-
cium silicate hydrate (C-S-H) significantly degrade the cement-based material engineering
performance. For example, the Fengman concrete gravity dam has been demolished and
reconstructed for severe calcium leaching and leakage issues. The annual average leached
quantity of the dam body is about 9.6 t, and the dam foundation is about 8.0 t [5]. After
nearly 40 years of operation, the overall concrete slabs strength of the Gutianxi flat-slab
buttress dam decreased from 49.6 MPa to 37.9 MPa, by 23.6% [6].

The simulation of the leaching process could guide the safe operation of the project.
Many scholars have studied the modeling of the leaching process. Gerard et al. [7], Wan
et al. [8,9], and Phung et al. [10] proposed different solid−liquid equations for diffusion-
driven leaching. For advection-diffusion-driven leaching, Ulm et al. [11] proposed a
calcium compound decomposition rate equation based on the chemo-poro-plasticity theory.
Gawin [12,13] adopted this equation and proposed a pure water hydro-chemo-mechanical
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leaching model of concrete. Calcium leaching significantly increased the hydraulic conduc-
tivity of cement-based materials. The reported data show that the hydraulic conductivity
of the leached cement paste specimen increased by three orders of magnitude [14].

The hydraulic conductivity is often defined as a function of porosity in leaching sim-
ulations. Saito [15] proposed an exponential formula between porosity and permeability.
This equation works well in accelerated electrochemical tests on mortars and was adopted
by Gawin [12,13]. To better understand the leaching effect on the increase in hydraulic con-
ductivity, the evolution of pore structures should be considered. The Kozeny−Carman (KC)
relation introduced microstructure parameters into permeability, including the channel
shapes, specific surface areas, and tortuosity [16]. This relation could provide a more accu-
rate characterization of hydraulic conductivity, and has been widely used in cement-based
materials [17–20]. Phung [10] adopted the Kozeny−Carman (KC) relation for modeling
the cement pastes hydraulic conductivity evolution in the leaching process. However, it is
difficult to obtain the correct calculation parameters in the KC relation. On the one hand,
no calcium leaching test is carried out to determine the parameters. On the other hand, it is
not easy to obtain samples for testing as the anti-seepage structures such as concrete core
walls and grout curtains are deeply buried.

Inverse modeling is an alternative way to obtain the numerical calculation parameters.
Extensive studies have shown the efficiency of inverse modeling for determining the hy-
draulic conductivity of foundation rocks and seepage-proof systems [21–28]. Most previous
studies pursue steady or transient flow conditions in the inverse calculation of aquifer
parameters. These studies are generally aimed at seepage problems or fluid−structure
interaction problems [29,30], and the calcium leaching effect is not considered. Under the
calcium leaching effect, deterioration of the grout curtain will lead to an increase of up-lift
pressure and leakage, and endangered dam safety and benefits. At present, there is no
research on applying the inverse modeling method to predicting grout curtain hydraulic
conductivity. Furthermore, the parameters that are to be inversed in the calcium leaching
process are still unknown.

The present study aimed to determine the calcium leaching parameters and predict
the hydraulic conductivity evolution of grout curtains in the leaching process. Thus, a
new inverse modeling approach is proposed considering the interaction between transient
flow and calcium leaching. The genetic algorithm (GA) is adopted to reduce the computa-
tional cost. The proposed procedure is applied to the inverse modeling of a grout curtain
degradation induced by calcium leaching in the foundation of a concrete gravity dam.
Combined with site characterization data, the calcium leaching parameters are obtained.
The hydraulic conductivity evolution of the grout curtain in 100 years is also presented.

2. Calcium Leaching Effect on the Grout Curtain

2.1. Calcium Leaching in the Grout Curtain

The main chemical reactions equations of the calcium leaching process are given in
Equation (1) [31,32]:

Ca(OH)2 � Ca2++2OH−
nCaO · SiO2 · nH2O � nCa2++H3SiO−

4 +[2n − 1]H2O
(1)

The calcium ions in the pore solution of the grout curtain are assumed to be in thermo-
dynamic equilibrium with the calcium compound in the cement materix [7]. When the Ca2+

ion concentration decreases below 22 mol/m3, CH starts to decompose; when the calcium
ion concentration is lower than 19 mol/m3, C-S-H starts to decay [10]. Decomposition
of calcium compounds increases the grout curtain porosity and hydraulic conductivity,
degrading the anti-seepage performance.

2.2. Characterization of Hydraulic Conductivity Evolution

To characteristic the mortars hydraulic conductivity evolution in the leaching process,
Saito [15] proposed an exponential relation between porosity and hydraulic conductivity.
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This formula works well in accelerated electrochemical tests on mortars and has been
adopted by Kuhl [31,32] and Gawin [12,13]. However, the pore structures of the cement-
based materials are not considered in this relation. The Kozeny−Carman model introduces
the hydraulic radius and tortuosity, which characterizes the pore space geometry into the
hydraulic conductivity of the cement-based materials, as shown in Equation (2) [10].⎧⎨⎩ K = χ

ϕ3

(1 − ϕ)2

χ = 1
τ2S2

a Fs

(2)

where K is the permeability coefficient (m2), χ is the microstructure parameter (m2), ϕ is
the capillary porosity, τ is the tortuosity, Sa is the specific pore surface (m2/m3), and Fs is
the shape factor.

Phung [10] introduced the lumped term Ω to calculate the shape factor Fs and tortuos-
ity τ. The lumped term Ω is defined in Equation (3).⎧⎪⎨⎪⎩

Ω = 1
τ2Fs

Ω0 = 1
n Ωl

Ω = Ω0 − (Ω 0 − Ωl) d2
l

(3)

where Ω0 and Ωl are the lumped term for intact and leached materials, respectively, and
dl is the degradation degree. The degradation degree is defined as the ratio between the
current CH content and the initial values, as shown in Equation (4) [10].

dl =

{
1,
CCH
C0

CH

CCH= 0
, CCH > 0

(4)

where dl is the leaching degree, and C0
CH and CCH are the initial and current concentrations

of CH, (mol/m3), respectively.
Due to the solid skeleton dissolution, the porosity of the grout curtain increases

according to Equation (5) [12,13].{
ϕ = ϕ0 + Δϕ

Δϕ =Mdiss
ρdiss

∫ 1
η Asdt (5)

where ϕ and ϕ0 are current and initial porosity of the grout curtain, respectively; Δϕ is
the increase of the grout curtain porosity due to the leaching process; Mdiss

ρdiss is the average

molar volume of dissolved components of the solid skeleton (in this study, Mdiss
ρdiss is taken as

0.056 mol/m3); η is determined by the micro-diffusion of the Ca2+; and As is the chemical
affinity.

In this study, the inverse parameters are presented in Table 1. Among them, lumped
term and initial specific pore surface are related to the initial hydraulic conductivity—
lumped term increased times n is the parameter that controls the increase of hydraulic
conductivity due to the decomposition of CH. The leached specific pore surface controls
the increase of hydraulic conductivity due to decomposition of CH and C-S-H. The lumped
term increase times, and initial and leached specific pore surface ranges are taken from
Phung’s test results. More details are presented in reference [10]. The rock hydarulic
conductivity range is determined by the water pressure test.
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Table 1. Parameters in the Kozeny−Carman (KC) relation [10].

Parameter Notation Unit Parameter Range

Lumped term Ω0 1 1000~20,000
Lumped term increased times n 1 500~2000

Initial specific pore surface Sa0 106/m 10~50
Leached specific pore surface Sal 106/m 100~500
Rock hydraulic conductivity kr m/s 1.0 × 10−6~1.0 × 10−8

3. The Objective Function

To improve the accuracy of the inverse modeling, this study utilizes the time-series
measurements of both the piezometric head and leakage quantity. Suppose that the number
of hydraulic conductivities of different rock layers yet to be determined is m, and vector K is
defined to denote the hydraulic conductivities of the medium with K = [k 0, k1, k2, . . . , km]

T ,
in which k1∼m is the hydraulic conductivity of the ith rock layer. M denotes the number of
piezometers in the domain, and Hm

i = [H m
i1, Hm

i1, Hm
i1 , . . .]T(i = 1, 2, . . . , M) denotes the

time series measurements at piezometer i, where Hm
i is the measured water head at piezome-

ter i and at time t. Similarly, the leakage measured is denoted by L, and the time-series
measurements from the measuring weir are Lm

j =
[
Lm

1 , Lm
2 , Lm

3 , . . .
]
, (j = 1, 2, 3, . . . , N),

where Lm
j is the leakage measurement at time N. The objective function for the inverse

problem is defined in Equation (6)

min f = wH

(
M
∑

i=1

||Hi(K) − Hm
i ||22

||Hm
i ||22

) 1
2

+wL

(
N
∑

j=1

||Lj(K) − Lm
j ||22

||Lm
j ||22

) 1
2

wH+wL= 1.0
Klow < K < Kup

(6)

where || · ||2 is the Euclidean norm of a vector, and Hi(K) and Lj(K) are the time series
results of the water head at piezometer i and leakage quantity numerically obtained with a
given parameters vector K, respectively. wH and wL are the weight coefficient to ensure a
balance of the relative errors of the measured water head and leakage quantity, respectively.
In this study, the weights of the measured water head and leakage quantity are assumed
to be the same. The sum of wH and wL equals 1.0. Klow and Kup represent the lower and
upper bounds of the possible hydraulic conductivity values of the rock layers and grout
curtains. respectively.

The objective function defined in Equation (6) requires the best fit of the time series
measurements of both the water head and the leakage quantity. This study assumes
the hydraulic conductivity of the rock layer is an isotropic constant, while for the grout
curtain, the hydraulic conductivity increases over the leaching time. This study adopts the
Kozeny−Carman (KC) relation to model the grout curtain hydraulic conductivity evolution
in the leaching process. The porosity is chosen as the coupling parameter to connect the
calcium leaching effect and hydraulic conductivity. The KC relation contains the lumped
term for sound materials Ω0, lumped term increased times n, initial and leached specific
pore surface Sa0 and Sal. These parameters have significant impacts on the grout curtain
hydraulic conductivity evolution. This study aims to obtain the representative values of
these parameters. In addition, the hydraulic conductivity of the rock layer should also be
inversed.

4. Calcium Leaching Model

4.1. Basic Assumptions

Calcium leaching in concrete dams is a complex process that involves the decom-
position of multiple components such as CH, C-S-H, ettringite, and un-hydrated cement
particles. The leached Ca2+ ions may react with carbon dioxide in the air to form CaCO3.
To simplify the problem, the following assumptions are applied:
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(1) The cement has been completely hydrated, the influence of the rehydration and the
leaching of un-hydrated cement particles are ignored;

(2) Only the decomposition of CH and C-S-H are considered;
(3) Ca2+ ions in the solution are not reacting to form any new compounds;
(4) As the grout curtain is deep-buried in the foundation, the materials are and remain

saturated over time, and the isothermal conditions are also preserved;
(5) The flow in the grout curtain is laminar, and Darcy’s law could describe the flow rate.

4.2. Governing Equation

The governing equations of the advection-diffusion driven leaching in the concrete
dams are presented in Equation (7) [33].⎧⎪⎨⎪⎩

u = − k
ρg∇P

∂(ε p ρ)

∂t +∇(ρu)= Qm
∂c
∂t +∇(−D∇c)+u∇c = R

(7)

In this Equation, u is the flow rate (m/s), k is the permeability (m2), ρ is the water
density (kg/m3), g is the gravitational acceleration (m/s2), P is the pore water pressure
(Pa), εp is the porosity, t is the time (s), Qm is a mass source term (kg/(m3·s)), c is the Ca2+

ions concentration of the species (mol/m3), D is the diffusion coefficient (m2/s), and R is
the chemical reaction rate (mol/(m3·s)).

The chemical reactions in the leaching process are the decomposition of the calcium
compounds in the solid skeleton. The decomposition rate is presented in Equation (8) [11–13]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂sCa
∂t = 1

η As

η = RTτleach

As= RT ln
(

cCa
ceq

Ca

)
− ∫ SCa

Seq
Ca

κ(s)ds

κ(sCa) =
RT
cCa

(
dsCa
dcCa

)−1

(8)

In this equation, sCa is the calcium content in the cement materix (mol/m3), η is the
micro-diffusion of Ca2+ ions (mol/(J·s)), As is the chemical affinity (J/m3), R is the gas
constant (J/(mol·K)), T is the temperature (K), τleach is the characteristic time of leaching s,
cCa is the Ca2+ ion concentration in the pore solution (mol/m3), (ceq

Ca, seq
Ca) is the equilibrium

concentration, and κ(s Ca) is the equilibrium constant.

4.3. Diffusivity

Bentz [34–36] proposed the effective diffusion model for cement-based materials. We
can calculate the effective diffusivity from cement hydration and the water−cement ratio.
Bentz’s model holds for a standard non-leached cement matrix. For leached cement-based
materials, Van Eijk and Brouwers [37] proposed a revised formula, as seen in Equation (9).

De
D0

= 0.0025 − 0.07ϕc(x, 0)2 − 1.8H(ϕ c(x, 0) − 0.18)(ϕ c(x, 0) − 0.18)2

+0.14ϕc(x, t)2 + 3.6H(ϕ c(x, t) − 0 .16)(ϕ c(x, t) − 0.16)2= D(ϕ)
(9)

where ϕc(x, 0) is the initial capillary porosity, H() is the Heaviside function, and ϕc(x, t) is
the capillary porosity. D0 is the diffusivity of Ca2+ ion in water, D0 = 4.5 × 10−10 m2/s.

Equation (9) has been widely used in calcium leaching simulations, such as by
Wan [8,9]. In this study, we also adopted this equation.
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5. Hydraulic Conductivity Prediction Model Optimized by GA

5.1. Genetic Algorithm

The genetic algorithm (GA) is a free-derivative method based on natural selection
and evaluation [38]. The genetic algorithm has been widely used as an optimizing tool
in many engineering problems, including in dam seepage inverse analysis [39–43]. This
study adopted GA to obtain the globally optimal hydraulic conductivity of rock layers and
grout curtains. The population size was 50, the function tolerance was 1.0 × 10−6, and
the constraint tolerance was 0.001. In this way, the objective function of Equation (6) is
minimized, and reasonable results can be obtained.

5.2. Mathematical Framework of the Model

The procedure for the inversion of the parameters is shown in Figure 1. The calcium
leaching inverse model of the coupled seepage and chemical reactions are numerically
solved with COMSOL, compiled with Matlab software. The calculations steps are presented
as follows:

Step 1: Input all the initial parameters, including the materials property, initial and bound-
ary conditions, and the variation range of the parameters to be inversed;
Step 2: Solve the calcium leaching model and obtain the seepage characteristics;
Step 3: Calculate the objective functions value F and evaluate the precision requirement;
Step 4: Generate the new solvable groups according to the operational approach of the GA;
Step 5: Steps (2) to (4) are repeated until the objective functions meet the precision require-
ments;
Step 6: Output the optional objective function values and predict the grout curtain hydraulic
conductivity evolution.

Figure 1. Flowchart of the inverse modeling.
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6. Application: A Case Study of the Shimantan Concrete Gravity Dam

6.1. General Description

The Shimantan reservoir is located in Wugang City, Henan Province. The Shimantan
dam is a complete roller compacted concrete (RCC) gravity dam with a height of 40.5 m.
The maximum width of the dam body is 31.74 m. There are 22 dam sections, with a total
length of 645 m. The Shimantan dam started to store water in 1997. The dam foundation is
composed of quartz sandstone. The longitudinal wave velocity of the foundation rock is
varied from 4000 m/s to 5000 m/s, and is regarded as a relatively uniform elastomer. After
16 years of operation, a severe calcium leaching phenomenon was observed. The location
and the calcium leaching phenomena in the corridors of the Shimantan dam are presented
in Figure 2.

Figure 2. Shimantan concrete gravity dam location and the calcium leaching in the corridors.

6.2. Computational Model

In this study, the foundation of the Shimantan dam is taken as an example to verify
the proposed model. The finite element model of the Shimantan dam foundation is built
based on actual size. We extended the foundation two times the dam’s height at both the
upstream and downstream sides of the dam. The foundation’s height is considered two
times the dam’s height. The thickness of curtain grouting is 2 m and reaches into slightly
weathered rock by 3 m. The key wall is located at the top of the curtain, with a 32 m and a
thickness of 1m. This study simplifies the key-wall and rock foundation’s bonded surface
into straight. In total, 4157 finite elements are used in this model. The maximum element
width is 2.5 m, and the minimum element width is 0.1 m. The finite element meshes of
the model are presented in Figure 3. The finite elements families used in this study are
four-node convection/diffusion quadrilateral elements.
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Figure 3. 2D finite element meshes and boundary conditions of the inverse model.

6.3. Calculation Parameters

As the grout curtain has been in operation for more than 20 years, it is not easy to
obtain the initial components of the grout materials. In this study, the inverse parameters of
the grout curtain adopt Phung’s test parameters of Sample 3. The CH and C-S-H contents
are 3027 and 6054 mol/m3, respectively [14]. The parameters of the rock and grout curtain
are presented in Table 2. The parameters of non-equilibrium solid−liquid dissolution
follow Gawin’s model [12]. The calculation parameters are presented in Table 3.

Table 2. Numerical parameters used for simulation.

Material Parameter Notation Value

Rock Initial porosity ϕ f 0.10
Rock Initial diffusivity Dr0 1.47 × 10−11 m2/s

Concrete Initial porosity ϕk0 0.10
Concrete Initial diffusivity Dk0 7.11 × 10−12

Concrete CH content CCH_K 3027 mol/m3

Concrete C-S-H content CC−S−H_K 6054 mol/m3

Grout curtain CH content CCH 3027 mol/m3

Grout curtain C-S-H content CC−S−H 6054 mol/m3

Grout curtain Initial porosity ϕg0 0.15
Grout curtain Initial diffusivity Dg0 9.87 × 10−12 m2/s
Grout curtain Intact/leached bulk density ρ0/ρL 30.6/145.8

Table 3. Values of the non-equilibrium decomposition model of calcium compounds [12].

Skeleton
Compound

Ca2+

(mol/m3)
dsCa/dcCa

Diffusivity
(m2/s)

τleach
(s)

1
η

(mol/(J · s))

CH 19–22 2142 1.44 × 10−9 1.17 × 104 3.45 × 10−8

C-S-H 2–19 203 1.62 × 10−9 5.88 × 102 0.7 × 10−8

C-S-H 0–2 1910 1.83 × 10−9 6.52 × 103 6.2 × 10−8

6.4. Initial and Boundary Conditions

The initial and boundary conditions for the calcium leaching model are present in
Figure 3. The applied boundary conditions are the same as the working conditions. The
pore solution is assumed to be saturated for the grout curtain zones, according to previous
studies such as [9,10]. The upstream water head is 107.0 m, and the downstream head is
86.0 m. The upstream water head boundary is applied on the bottom of the reservoir basin
at an elevation of 76.0 m. The distance is from 0 m to 80.0 m. The downstream water head
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boundary is applied on the downstream side foundation surface at an elevation of 76.0 m.
The distance is from 116 m to 204 m. The water head boundary in the corridor is 85.0 m.
The distance is from 85.6 m to 85.7 m. The calcium ion concentration boundary at the
upstream side, downstream side, and corridor is 0 mol/m3. The distribution of the calcium
ion concentration boundary is the same as for the water head boundary. The initial calcium
ion concentrations in the grout curtain and key-wall are 22 mol/m3. The initial calcium
ion concentration in the rock foundation is 0 mol/m3. The long-term observations of
upstream and downstream water levels are presented in Figure 4. Data observations shown
in Figures 4–6 are obtained from the Shimantan reservoir project management report. The
time-series measurements adopt the annual average values presented in Figures 5 and 6.

Figure 4. Long-term observations of upstream and downstream water level.

Figure 5. Comparison of the simulated leakage quantity and monitored data.
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Figure 6. Comparison of measured and simulated hydraulic heads at piezometer: (a) hydraulic head
at piezometer P9

3 and (b) hydraulic head at piezometer P9
4 .

6.5. Results
6.5.1. Verification of the Results

The predicted results are listed in Table 4.

Table 4. Inverse analysis results of the grout curtain and rock layers.

Parameter Ω0 n Sa0 Sal kr

Values 12,251.43 1125.31 3.21 × 107 3.13 × 108 1.0 × 10−7

Figure 5 compares the simulated dam foundation leakage quantity and the monitored
data. The monitored data recorded the leakage quantity of the dam foundation from 2003 to
2010. As we can see from Figure 5, with the increase in time, the leakage quantity increases
from 1.20 L/s to 1.33 L/s. The predicted leakage quantity fluctuates between the average
annual monitored values. The predictions are basically consistent with the monitored data,
indicating the rationality of this simulation.

Figure 6 presents a comparison of measured and simulated water heads at piezometers
P9

3 and P9
4 . The upstream hydraulic head fluctuates around 107.0 m, and the downstream

hydraulic head fluctuates around 86.0 m. The positions of piezometers P9
3 and P9

4 are
presented in Figure 1. The square dots are the measured data from 2003 and 2010. As we
can infer from the figure, the predicted water head at P9

3 increases from 87.25m to 87.40m.
The predicted water head at P9

4 increases from 86.82 m to 86.93 m. The predicted water
heads are basically consistent with the monitored data, indicating the rationality of this
simulation.

The bar graphs of the water head and leakage relative error are presented in Figures 7 and 8.
The relative error is computed from the D-value between the annual average measurements
and predicted values divided by the yearly average measures. As we infer from the figures,
the presented maximum water head relative error is 2.4% and the maximum leakage
quantity relative error is 24.1%. The scatter field data showed a comparative considerable
leakage relative error. Overall, the predicted leakage and water head are consistent with
the monitored data.
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Figure 7. Bar graph of the water head relative error.

Figure 8. Bar graph of the dam foundation leakage relative error.

6.5.2. Hydraulic Conductivity of the Grout Curtain

Figure 9a presents the grout curtain porosity evolution in the leaching process. As
we can infer from the porosity contour distribution, the porosity of the upper part is
larger than the middle and bottom parts. The porosity of the upstream side is larger than
the downstream side. Figure 9b presents porosity evolution in 100 years at H = 63.0 m.
After 100 years of leaching duration, the maximum porosity on the upstream side is 0.21
and the minimum porosity at the downstream side is 0.17. Figure 9c shows the grout
curtain porosity evolution at the different positions after 50 years of leaching duration. The
elevation of these three positions is 72.0, 63.0, and 54.0 m. The maximum porosity at the
elevation of 72.0 m is 0.02 larger than the other two positions.

Figure 10a presents the grout curtain hydraulic conductivity evolution in the leaching
process. The hydraulic conductivity evolution is similar to the porosity. The hydraulic
conductivity at the upper and upstream sides is more significant than in the other regions.
Figure 10b presents the hydraulic conductivity evolution in 100 years at H = 63.0 m. The
maximum hydraulic conductivity on the upstream is 1.8 × 10−6 m/s and the minimum
porosity at the downstream side is 1.9 × 10−7 m/s. The hydraulic conductivity of the
upstream side is one order of magnitude larger than the downstream side. Figure 10c shows
the evolution of the hydraulic conductivity at different positions after 50 years of leaching.
The hydraulic conductivity at an elevation of 72.0 m is half an order of magnitude larger
than for the other two elevations. According to the above analysis, the most vulnerable
parts of the grout curtain are the upper and upstream sides.
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Figure 9. Grout curtain porosity evolution in the leaching process: (a) porosity contour distribution,
(b) porosity evolution at H = 63.0 m in 100 years, and (c) porosity evolution at different positions.

Figure 10. Grout curtain hydraulic conductivity evolution in the leaching process: (a) hydraulic
conductivity contour distribution, (b) hydraulic conductivity evolution at H = 63.0 m in a hundred
years, and (c) hydraulic conductivity evolution at different positions.

7. Conclusions

Accurate determination of the hydraulic conductivity of the anti-seepage structures,
such as grout curtains, concrete face slabs, and core walls, is challenging. Under the
calcium leaching effect, the hydraulic conductivity of the grout curtain is not constant.
The evolution of grout curtain hydraulic conductivity in the leaching process is closely
related to the project safety and benefits. It is not easy to sample and obtain the calculation
parameters for deep-buried grout curtains. This study introduced the inversion analysis
into the calcium leaching analysis in order to obtain proper calculation parameters and
accurate results. This method can analyze the new curtain and the curtain built for many
years.

The proposed inverse analysis model provides a new way to obtain calcium leaching
parameters. The genetic algorithm (GA) is adopted to reduce the computational cost.
The time-series measurements, including the hydraulic head and leakage quantity, were
adopted to construct the objective function, which improves the uniqueness and reliability
of the inverse results. The proposed inverse analysis method is applied to predict the grout
curtain hydraulic conductivity of a concrete dam in the leaching process. The predictions
are basically consistent with the monitored data, indicating the rationality of this model.
The simulation results of this study show that the increase in the permeability coefficient
at the connection between the curtain and tooth wall is more significant than that at other
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parts. It is necessary to strengthen the grout curtain and key-wall joint monitoring to
prevent leakage, abnormal uplift pressure, and for other problems induced by calcium
leaching.

The calcium leaching problem is common in hydraulic engineering anti-seepage
structures such as concrete face slabs and grout curtains. Compared with the grout curtains,
the hydraulic conductivity evolutions of the concrete face slabs in the leaching process is
more complex, involving the interaction of stress state, seepage flow, and chemical reactions.
The inverse modeling of concrete face slabs hydraulic conductivities needs further study.
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Abstract: Biodiesel is considered to be a promising alternative option to diesel fuel. The main
contribution of the current work is to improve compression ignition engine performance, fueled
by several biodiesel blends. Three metrics were used to evaluate the output performance of the
compression ignition engine, as follows: brake torque (BT), brake specific fuel consumption (BSFC),
and brake thermal efficiency (BTE), by varying two input parameters (engine speed and fuel type).
The engine speeds were in the 1200–2400 rpm range. Three biodiesel blends, containing 20 vol.% of
vegetable oil and 80 vol.% of pure diesel fuel, were prepared and tested. In all the experiments, pure
diesel fuel was employed as a reference for all biodiesel blends. The experimental results revealed
the following findings: although all types of biodiesel blends have low calorific value and slightly
high viscosity, as compared to pure diesel fuel, there was an improvement in both BT and brake
power (BP) outputs. An increase in BSFC by 7.4%, 4.9%, and 2.5% was obtained for palm, sunflower,
and corn biodiesel blends, respectively, as compared to that of pure diesel. The BTE of the palm oil
biodiesel blend was the lowest among other biodiesel blends. The suggested work strategy includes
two stages (modeling and parameter optimization). In the first stage, a robust fuzzy model is created,
depending on the experimental results, to simulate the output performance of the compression
ignition engine. The particle swarm optimization (PSO) algorithm is used in the second stage to
determine the optimal operating parameters. To confirm the distinction of the proposed strategy, the
obtained outcomes were compared to those attained by response surface methodology (RSM). The
coefficient of determination (R2) and the root-mean-square-error (RMSE) were used as comparison
metrics. The average R2 was increased by 27.7% and 29.3% for training and testing, respectively,
based on the fuzzy model. Using the proposed strategy in this work (integration between fuzzy logic
and PSO) may increase the overall performance of the compression ignition engine by 2.065% and
8.256%, as concluded from the experimental tests and RSM.

Keywords: optimization; fuzzy model; response surface methodology; diesel engine performance;
biodiesel
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1. Introduction

Recently, the energy crisis, environmental contamination, and climate change are
considered the most critical difficulties facing the country [1–6]. Therefore, the increased
awareness of potential environmental risks on human health has been focused on keeping
engine emissions under control. Diesel fuel has a crucial problem related to exhaust, vibra-
tion, and acoustic emissions [7–11]. Biodiesel is considered an eco-friendly, bio-degradable,
energy efficient, renewable, scientifically feasible, and non-toxic fuel alternative [12–14].
Besides, it is considered one of the safest fuels, because it has a high flash point amongst all
conventional fuels [15], and can operate diesel engines with little or no adjustments [16].
Biodiesel can be produced from a variety of animal fats, as well as vegetable oils, pro-
cessed with a catalyst and alcohol. For example, the utilization of palm oil as biodiesel
is recognized as palm oil methyl ester, which is growing rapidly in popularity, due to its
huge productivity and low prices. Biodiesel produced from palm oil is categorized by a
high amount of saturated fatty acids and displays tremendous combustion characteristics,
such as the calorific value and cetane number, despite its high kinematic viscosity at low
temperatures [17]. The continuous improvement of the cetane number will actually im-
pact the injection time, the coefficients of combustion variables, and heat release aspects,
according to Labeckas and Slavinskas [18]. Various mixtures and fuel attributes have a sig-
nificant impact in the ignition delay and evaporation processes, within similar experimental
settings. Generally, most of the biodiesel blends have a high cetane number, no sulfur,
no aromatics, and they contain up to 11 wt% oxygen. The National Renewable Energy
Laboratory (NREL) [19] reported that the oxygen concentration in biodiesel fuel, including
vegetable oil blends, ranges from 2.5% to 11%, for biodiesel blends of 20% and 100% by
volume. In contrast, pure diesel does not contain any oxygen molecules. The significant
oxygen concentration in the biodiesel enhances the combustion efficiency and decreases
some of the exhaust emissions. Conversely, the main crucial drawback of biodiesel, in terms
of high viscosity, leads to many difficulties in the atomization and pumping processes.
Therefore, there was a need for a transesterification process. Furthermore, biodiesel fuels
have greater surface tension and viscosity than regular diesel fuels, and these differences
become crucial in cold circumstances, because the rate of fuel injection is greatly influenced,
and the combustion mechanism might be influenced as a result. Additives have been used
in biodiesel fuels to improve the biodiesel cold filter plugging point (CFPP) property and,
consequently, improve the properties of the flow at low temperatures, to make them more
appropriate for low-temperature operations [20]. Other drawbacks are the lower calorific
value, which is about 80% of the heating value compared to that of pure diesel, low oxida-
tion stability, high pour point, and low volatility [21,22]. To address the difficulties related
to biodiesel fuel having a high viscosity, the following techniques could be adopted [23–26]:
(i) Use small blend ratios with pure diesel [23]. It is commonly recognized that up to 20% of
biodiesel blends can be used without engine modifications; (ii) Make a micro-emulsification
by the use of ethanol or methanol [24]; (iii) Use nanoparticles as fuel additives to lower
the density and viscosity of the fuel mixture [25,26]. In terms of feasibility issues, Rajak
et al. [27] examined the economics of diesel fuel compared to biodiesel fuels made from
Jatropha curcas and Moringa oleifera. According to the authors, the cost of diesel is nearly
equal to the cost of alternative biofuels. The prior viewpoint was examined in detail and
scientifically interpreted by Tasca et al. [28–30]. Yee et al. [30] introduced the concept of life
cycle assessment (LCA), to investigate and assess whether biodiesel fuel is a sustainable
fuel. The three phases of the LCA analysis were as follows: biodiesel transesterification
process, agricultural processes, and oil milling. For each process, the energy and green-
house gas balances were computed. According to the findings, the use of palm biodiesel
was found to be more ecologically friendly than regular diesel fuel, with a significant 38%
reduction in CO2 emissions per liter combusted.
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1.1. A Literature Review of Biodiesel Engine Performance

Numerous previous works have been conducted to assess the impacts of different types
of biodiesel blends on engine durability, injection manner, exhaust emission, performance,
heat losses and availability, spray formation, engine vibration analysis, catalyst synthesis
for biodiesel production, and acoustic emissions [31–36]. Nalgundwar et al. [37] stated
that a higher cetane of palm biodiesel blends is the reason for improved brake power and
results in reduced ignition delay, which makes combustion start in advance. Moreover, a
higher cetane number is required for the higher engine rotational speed. Sanjid et al. [38]
compared the performances of two types of biodiesels; namely, mustard and palm biodiesel
fuels, with volume blends of 10% and 20%. The results showed that the BSFC for mustard
biodiesel is 1% and 3.5% higher than palm biodiesel blends of 10% and 20%, respectively.
Ndayishimiye and Tazerout [39] examined the engine performance of a diesel engine fueled
with palm oil blends. The authors found a small increase in BSFC and BTE, compared to
pure diesel fuel.

Patel et al. [40] suggested the employment of biodiesel fuel instead of pure diesel to
make some modifications in diesel engines, especially for the fuel filter, fuel pumps, and
injector needle, to overcome the higher viscosity of biodiesel fuel and, therefore, to improve
its performance.

1.2. Literature Review on Engine Performance Optimization Approaches

To avoid financial constraints and time-consuming experiments, scholars have em-
ployed different modeling techniques, including artificial intelligence (AI), in terms of
an artificial neural network (ANN) tool, and fuzzy modeling in modeling engine perfor-
mances and exhaust emissions [41–44]. Accordingly, the correlation coefficient between the
experimental data and ANN predictions can accurately forecast the engine efficiency and
exhaust emissions powered with biodiesel mixes [45].

The fuzzy model is a more advantageous method to estimate the parameters of
the diesel engine that maximized the engine performance, as compared to other tech-
niques, such as the computational fluid dynamics reaction kinetic model, because it ne-
cessitates less time and effort [46,47]. On the other hand, computational techniques for
studying internal combustion engines have several drawbacks. To avoid this, Salam and
Verma [48] innovated an alternate, non-traditional way to explore the challenge of empirical
redundancy in engine operation and behavioral characterization. This study provided a
unique empirical approach to assess the relative empirical importance of chosen variables
of interest, addressing the comprehensibility of engine operation. Furthermore, Salam
and Verma [49,50] employed redundancy to create a sequence of variables of interest,
depending on their importance in the ICE operation. Dey et al. [51] examined the per-
formance of a single-cylinder compression ignition (CI) engine, fueled by palm/diesel
and ethanol biofuel blends, using two models of ANN and RSM. The results revealed
that the optimized engine performance, in terms of BTE and BSFC, was obtained from
a blend of 20% palm biodiesel, mixed with 5% ethanol and 75% pure diesel at full load.
Krishnamoorthi et al. [52] maximized the diesel engine performance responses with two ap-
proaches (ANN tool and RSM). The engine was powered with diesel/vegetable oil/diethyl
ether blends at different engine loads, along with various compression ratios. The error per-
centage of the two approaches was rated less than 5%. Therefore, the authors stated that the
application of previous approaches plays a crucial role in improving engine performance.
Dey et al. [53] and Reang et al. [54] employed the fuzzy-based Taguchi technique, to boost
CI performance and reduce emission characteristics for a CI engine, with varying engine
loads and varied biodiesel blends. Shirneshan et al. [55] used response surface techniques
to investigate the effects of biodiesel–ethanol fuel mixes on the performance of a CI engine.
Parameter optimizations were also performed, using the genetic method. According to
the findings, increasing the quantity of ethanol in the gasoline combination reduced BP
and BT by around 30%. Because ethanol has a lower calorific value than biodiesel, the
BSFC of fuel blends increased by roughly 16% with a larger proportion of ethanol. To
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minimize and identify the proper number of experimental trials, the Taguchi experimental
approach could be utilized [56]. Rith et al. [57] employed RSM and the desired function
to optimize a dual gas-diesel fuel engine, with several objectives. The goal was to use the
desired function to optimize the desirability of SFC and specific exhaust emissions, at a
high engine speed of 3000 rpm. The optimal desirability of 0.829 was reached with input
parameters of 11◦ BTDC. Ghanbari et al. [58] examined how the percentage of alumina
nanoparticles in biodiesel blends affected the exhaust emissions and performance of a CI
engine. Furthermore, the authors designed empirical correlations, using RSM, to simulate
diesel engine performance and exhaust emissions powered by nano biodiesel fuel mixes.
The findings of the experiments demonstrated that alumina nanoparticles are a useful addi-
tion to diesel–biodiesel blends, to boost engine performance and reduce exhaust emissions.
Devarajan et al. [59] examined CI engine performance by adding nanoparticles of silver
oxide as additives, in various weight fractions, to a palm oil biodiesel. According to the
results, the addition of nanoparticles to biodiesel improves the igniting behavior.

1.3. Research Gap, Objectives, and Originality

Although there are many articles in the literature about engine performance using
different biodiesel fuel blends, there is still a gap in its modeling-based AI and modern
optimization of the diesel engine. The current research aims to investigate a diesel engine,
operated at full load conditions and at various engine speeds. In this work, engine per-
formance has been studied extensively for an unmodified diesel engine, fueled with corn,
sunflower, and palm biodiesel blends. Then, based on the experimental results, a robust
fuzzy model, to simulate the output performance of the compression ignition engine, was
created. Finally, a PSO algorithm was used to establish the best operating parameters. To
confirm the distinction of the proposed strategy, the obtained outcomes were compared
to those attained by RSM. Therefore, the novelty of this study relates to the integration
between fuzzy logic and particle swarm optimization, to determine the optimal engine
speed and the best fuel type that maximizes the output BT and BTE and significantly
minimizes the BSFC.

1.4. Manuscript Organization

The rest of the manuscript is structured as follows: The experimental setup is dis-
cussed, in terms of biodiesel preparation, biodiesel characteristics, experimental equipment
and procedure, engine performance measurements, proposed modeling and optimization,
including fuzzy modeling, ANOVA test, and PSO in section two. The influence of biodiesel
blends on diesel engine performance in terms of BT, BSFC, and BTE under full load and
at various engine speeds was examined in section three, using the observed experimental
results, combined with the uncertainty analysis. In addition, in section three, the outcomes
of modeling and optimization, using fuzzy-based modeling logic, PSO algorithm to deter-
mine the optimal engine speed and best fuel type that maximize output BT and BTE, while
momentarily minimizing the BSFC, RSM based on ANOVA test, and the best input pa-
rameters and related output performance from the RSM-based optimization method, were
discussed and analyzed. In section four, we compared the performance of the experimental,
RSM, and suggested strategies. Finally, the findings of the investigation were summarized
in section five, which leads to the conclusion.

2. Experimental Setup, Equipment, Procedure, Modeling, and Optimization

A set of tests were carried out using a single-cylinder, water-cooled, four-stroke, and a
direct injection PETTER PHIW Lister LV1 CI engine, with a compression ratio of 17:1, which
is primarily powered by pure diesel fuel. The details of diesel engine specifications are
demonstrated in Table 1. All tested fuels, which were pure diesel, corn biodiesel, sunflower
biodiesel, and palm biodiesel, were implemented without making any adjustments to the
diesel engine. The schematic diagram of an experimental diesel test engine is depicted in
Figure 1.
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Table 1. Technical data of PETTER PHIW diesel engine.

Technical Data Specification

Type Lister LV1
Maximum Power 9 HP (6.7 kW) @ 3000 rpm
Maximum torque 25 Nm @ 2000 rpm

Number of cylinders Single
Engine Operation Four Stroke

Nominal speed range 1000–3000 rpm
Bore ∗ Stroke 85.73 × 82.55 mm

Compression ratio 0.70902778
Connecting rod length 188.5 mm
Combustion chamber Direct injection

Piston shape Bowl-in-piston
Orifice diameter of the nozzle 0.250 mm

Fuel injector holes 3
Valve number/cylinder 2

Pressure @ injector opens 180 bars
Intake valve opening/closing 150 CA BTDC/410 CA ABDC

Exhaust valve opening/closing 410 CA BBDC/150 CA ATDC

Dynamometer Swinging field DC machine with torque
measurement by load

Figure 1. Schematic diagram of an experimental diesel test engine.

2.1. Biodiesel Preparation

As displayed in Table 2, numerous techniques have been used, including blending
with transesterification, petrodiesel, pyrolysis, and microemulsification [60–64]. In our
experimental test, three different biodiesel blends, consisting of 20 vol.% of vegetable
oil and 80 vol.% of pure diesel fuel (namely, corn, sunflower, and palm biodiesels) were
prepared according to the following procedure and depicted in Figure 2: 4 g of sodium
hydroxide was added to 200 cm3 of methanol in an electrical blender at low speed for
around 2 min. The reaction heats up the mixture. It was vigorously stirred until all of
the sodium hydroxide was fully dissolved in the methanol to form sodium methoxide.
1000 cm3 of vegetable oil was preheated to 65 ◦C and added gradually to the previous
mixture, while the electrical blender continued operating for around 30 min. After blending,
the solution was left for 4 h of reaction time to settle down. Finally, the solution is separated
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by gravity into two layers; one at the top is the biodiesel and one at the bottom is glycerin.
Darker colored glycerin was gathered in a distinct layer at the bottom of the container,
with an obvious line of separation from the pale liquid above, which was biodiesel. To
eliminate all traces of glycerin and contaminants, the biodiesel product must be rinsed.
The washing technique involves adding hot water to the biodiesel and allowing it to settle
for 12 h in a separating funnel. The bottom layer was gradually removed until the sample
was transparent. To eliminate the water content, the purified biodiesel was poured into a
beaker and heated to 55 ◦C. Table 3 displays the percentage of fatty acids in oil materials
used [60,64,65]. The measured fuel properties are recorded in Table 4, accompanied by
equipment specifications.

Table 2. A summary of alternative biodiesel preparation approaches [60–64].

Technique Preparation Process Features Drawbacks

Transesterification

Alcohol (methanol or ethanol)
and catalyst were used to
react the vegetable/animal
oils. Following that, the
combination of glycerol and
methyl/ethyl esters (biodiesel)
will be separated and purified
before being used.

Relatively low cost with a
high conversion, moderate
processing settings, product
qualities comparable to diesel
and large-scale manufacturing

Low levels of water and free
fatty acids in the raw
resources were required, as
well as lengthy separation and
purification stages, the
possibility of side reactions,
and the formation of a
substantial volume of effluent.

Blending

Pre-heated vegetable/animal
oils were mixed with diesel in
a 10–40% (w/w) ratio. The
diesel engine was then
coupled with the oil-diesel
mixture.

There is no need for a
chemical process (it is
non-polluting), no technical
adjustments, and it is simple
to apply.

Inadequate spraying
behaviour, weak atomization,
improper fuel combustion,
and difficulties in fueling by
conventional engines caused
by the high viscosity,
unreliable, low volatility, and
rise in vegetable/animal oil
component.

Microemulsification

The vegetable/animal oils
were dissolved in an
alcohol-based solvent and a
surfactant until they reached
the desired viscosity.

Simple method that does not
pollute the environment.

High viscosity, limited
stability, and the possibility of
sticking, incomplete
combustion, and carbon
deposition.

Pyrolysis

The vegetable/animal oils
were preheated to a high
temperature, usually
exceeding 350 degrees Celsius,
and then decomposed. It did
not matter if the catalyst was
there or not. Several products
were examined depends on
the individual product’s
boiling temperature range.

Practical technique, easy (no
washing, drying, or filtration
is necessary), waste, and
pollution-free.

High temperatures and costly
equipment are required, and
the biodiesel produced is of
low purity
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Figure 2. Production steps of vegetable oil biodiesel.

Table 3. Percentage of fatty acids in oil materials used [60,64,65].

Sources
% (wt)

Palmitic
(C16:0)

% (wt)
Stearic
(C18:0)

% (wt)
Oleic

(C18:1)

% (wt)
Linoleic
(C18:2)

% (wt)
Linolenic

(C18:3)

Palm oil 45 4 39 11 - *
Sunflower 3–10 1–10 14–35 55–75 <0.3

Corn 8–10 1–4 30–50 3456 0.5–1.5

* Not specified.

According to the following equation [66,67], the % error related to the experimental
quantities was determined as depicted in Table 4.

Error % =
Apparatus Accuracy

Minimum value of apparatus measured
× 100% (1)

Table 4. Measured fuel blend properties of all tested fuel [60,68–73].

Properties Diesel
Corn

Biodiesel
Palm

Biodiesel
Sunflower
Biodiesel

Test
method

Equipment Accuracy Error

Cetane Number 47 53 61 52 ASTM
D613 - -

Flash Point, ◦C 52 74.74 72 86 ASTM
D-93

Point-
automatic
NPM 440

(Norma Lab,
France)

- -

Iodine Value (cg
I/g oil) - 103–140 35–61 110–143 ASTM

D5554-15
FTIR

spectroscopy - -

Saponification
Number - 202 186–209 200 ASTM

D5558-95
FTIR

spectroscopy - -

Pour point, ◦C −32 −18 −10 −5.0 ASTM D97
Cloud And
Pour Point
Apparatus

- -

Cloud point, ◦C −18 −15 −5 4.0 ASTM
D2500

Cloud And
Pour Point
Apparatus

- -

Specific gravity@
15 ◦C 0.83 0.855 0.85 0.853 IP 190/93

Capillary
stoppered

Pycnometer
±10−3 g/cm3 ±0.12%
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Table 4. Cont.

Properties Diesel
Corn

Biodiesel
Palm

Biodiesel
Sunflower
Biodiesel

Test
method

Equipment Accuracy Error

Viscosity at
40 ◦C (cSt) 3.85 4.772 5.281 4.963 ASTM

D445

EMILA rotary
viscometer
apparatus

±0.1 cP ±2.6%

Heating Value
(MJ/kg) 43.5 39.5 40.1 39.8 ASTM

D240

automated
adiabatic

bomb
calorimeter

±0.04 MJ/kg ±0.1%

2.2. Engine Performance Measurements

A trunnion-mounted, swinging field of a direct current (DC) electrical machine capable
of absorbing a maximum load of 10 kW at a speed of 4000 rpm was utilized as the dy-
namometer. The rated BT was 50 Nm. Torque was measured with a precision of ±0.2–0.3%
of full scale (FS), whereas rotational speed measurement accuracy was ±1 r/min. The
engine was driven by a speed-increasing tooth belt. A strain gauge load cell system with
mechanical overload protection was included, as well as appropriate calibration equip-
ment. For speed measurement and feedback to the control system, a toothed wheel and
magnetic pick-up were employed. A dynamometer attached with a DC motor to produce
a load was used to evaluate the engine brake power. A varying field current regulated
the load and operation. Therefore, this dynamometer can work at different loads and
speeds according to any required amount of torque. Because the test used a regular engine
speed, the dynamometer power absorption unit absorbed the power generated by the
engine to drive a DC motor that works as a generator to produce a load. This absorption
unit delivered a variable quantity of braking torque to operate the engine at the desired
rotation. Moreover, the braking power absorption unit on the engine was executed using
an electronic control unit. The dynamometer control system is a microprocessor-controlled,
completely regenerative thyristor drive that enables the dynamometer to run a motor or
generator at a constant speed. A strain gauge load cell sensor was used to assess engine
load. The magnetic pick-up sensor was used to monitor engine speed using a dented wheel
on the dynamometer shaft. The performance test measurements are regulated according to
the following procedure: The engine warms up until the cooling water and lubricating oil
reach the set operating temperatures. After that, the choke is opened gradually by turning
the lever to its widest setting. The speed control lever is set to the low-speed position
and warms it up without applying the load for a few minutes. The speed control lever is
gradually moved towards the high-speed position and set to the required engine speed.
The tested fuel is applied. The following parameters were recorded: a digital tachometer
was utilized to quantify the engine speed, the dynamometer was employed to measure a
BT, temperatures of the exhaust gases, lubricating oil, and cooling water were monitored
with a thermocouple type K of resistance temperature detectors (RTD) integrated with a
high-temperature surface probe with accuracy of ±1.6 ◦C. Finally, install the air velocity
sensor in the air intake duct, ensuring that the sensor element is aligned with the airflow
and in the middle of the duct with an accuracy of ±0.3% full-scale deflection (FSD). The
twin bulb glass burette and timer were used to calculate the fuel consumption rate with an
accuracy of (±0.05 cm3).

The previous steps were repeated for different biodiesel fuel blends. Before con-
ducting any test, the engine and dynamometer were calibrated and regulated to their
default values. After the engine was stabilized, all of the measurement data were logged.
For each tested fuel, the experiments were repeated three times and the average of the
measurements was taken.
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2.3. Modeling and Optimization

There are two stages to the suggested modeling and optimization technique. The
first phase involves fuzzy modeling based on an experimental dataset to predict the
compression ignition engine’s output performance. To confirm the distinction of the
fuzzy model proposed in this work, the obtained results are compared to those attained
by ANOVA. The second phase is determining the engine speed and the best types of
fuel using PSO. Unlike mathematical methods, the definition of the model structure that
makes up the system rule base is the first step in the fuzzy modeling technique. Thus, the
relation between inputs and outputs are represented by fuzzy IF-THEN rules. In the case
under study, the Takagi–Sugeno fuzzy was adopted to build the fuzzy rules because it
can track the nonlinear input data. The inputs’ membership functions were selected as
the Gaussian shape. The rules are typically established depending on dataset inputs [74].
The following expressions are simply adopting the form of a fuzzy rule statement for a
two-input single-output system:

IF x is MFx and y is MFy THEN z is MFz (2)

where, MFx, and MFy are the fuzzy membership functions for two inputs, x and y, respec-
tively; MFz is the fuzzy membership function for a single output z.

One of the most well-known optimizers is PSO. Kennedy and Eberhart proposed the
initial form of PSO. The main concept of PSO is derived from the natural flocking behavior
of birds [75]. The original PSO is fairly simple and straightforward. Every particle has the
potential to be a prospective solution. It consists of the two following vectors: velocity and
position. The values for each of the variables in the problem are included in the location
vector. The velocity is taken into account while changing the position of particles. For each
dimension and particle separately, the velocity determines the magnitude and direction of
step size. Further information on the mathematical representation and physical dispersion
can be found in [76]. The following is a description of the updating process for particle
velocity and location.

vt+1 = vt + c1r1(Pt
best − xt) + c2r2(gt

best − xt) (3)

xt+1 = xt + vt+1 (4)

where, V indicates velocity, Pbest is the best solution, gbest is the best solution globally. c1
and c2 denote cognitive and social aspects, r1 and r2 are random values, and t represents
the number of iterations.

Figure 3 displays a schematic diagram of the experimental approach integrated with
an optimization process.
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Figure 3. A schematic diagram of the experimental approach integrated with an optimization process.

3. Results and Discussion

The generated experimental findings provide a thorough examination of the impact
of biodiesel blends on diesel engine performance, under full load and at different
engine speeds.

3.1. Engine Performance Analysis

The effects of biodiesel blends on the CI engine BT, BP, BSFC, and BTE, at different
engine speeds, have been investigated and discussed in the following sections.

3.1.1. Engine Brake Torque (BT) and Brake Power (BP)

The variations of BT and BP output of the diesel engine, at various engine speeds,
powered by different biodiesel blends, are displayed in Figures 4 and 5, respectively. As
depicted in Figures 4 and 5, the BT of a diesel engine increases with the engine speed,
peaking at 1800 rpm, and then decreasing as the engine speed increases. The decrease might
be attributed to the higher friction loss and a lack of air consumption at high speeds [77,78].
Although all types of biodiesels have a lower calorific value and a slightly higher viscosity
than pure diesel, engine BT and BP are improved. On average, palm, sunflower, and corn
biodiesels improved brake power by 8.7%, 5.4%, and 2.5%, respectively, as compared to
pure diesel. The higher content of oxygen in all blends of biodiesel, which improves the
combustion behavior to become more complete [43], might be responsible for the increased
brake power. Typically, the diesel fuel is pumped into the engine according to volumetric
measures. The density of all forms of biodiesel mixes is greater than pure diesel. As a
consequence, for the same fuel volume, a higher fuel flow rate must be injected into the
engine cylinder. Because of the high viscosity of biodiesel blends, there was less internal
leakage in the diesel fuel pump [79]. Lapuerta et al. [80] attributed the change in brake
power not only to the change in fuel mass supplied, but also due to the fact that the
volume pumped was greater (1.2–3.2%) when biodiesel was used, especially in full-load
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settings. Biodiesel has a greater viscosity, which lowers backflow over the piston clearance
for the injection pump. Furthermore, as the injection temperature was increased, the
disparity in fuel delivery reduced, indicating that the viscosity of the fuel had decreased.
However, when the injection temperatures for diesel and biodiesel were altered to achieve
comparable viscosities, the volume of diesel fuel injection was somewhat higher, due to its
lower density, which boosts flow rate across orifices. The increased lubricity of biodiesel
may contribute to reducing friction loss, resulting in more effective braking [16]. Mekonen
and Sahoo [81] proposed a method of preheating intake air, to increase the braking power
of palm biodiesel engines. Preheating the intake air decreases the ignition delay, allowing
the obtainable oxygen in the combustion chamber to be utilized for combustion, resulting
in completing combustion and improved energy conversion. Furthermore, preheating
the intake air has a significant impact on fuel atomization, resulting in full combustion
and, hence, increased brake power. Many studies [82,83] have shown that increasing the
biodiesel content ratio reduces the heating value and increases the viscosity of biodiesel,
resulting in erratic combustion, which reduces engine BT and BP. On the other hand, the
reduced fuel leakages in the injection pumping system, the advanced combustion process,
and better biodiesel lubricity have all been identified in response to the aforementioned
power regeneration.

Figure 4. Variation of BT output vs. engine speed for different biodiesel blends.

3.1.2. Brake Specific Fuel Consumption (BSFC)

Figure 6 depicts the nature of BSFC against engine speed, for pure diesel and various
kinds of biodiesel fuel. The BSFC gradually declines with engine speed, until it hits a
minimum, then increases with engine speed. This was the case for all of the tested fuels.
Greater heat loss towards the combustion chamber walls, which decreases combustion
efficiency and increases fuel consumption, is a major cause of this reduction. The rise
in BSFC is due to an increase in engine friction at high engine speeds. Another finding
was that all biodiesel mixes had greater BSFC than pure diesel, especially at low engine
speeds. The indirect reasons for the increased specific fuel consumption are as follows:
(i) lesser formation of a finer dispersion, due to relatively low biodiesel vaporization (micro-
explosion), (ii) less air entrained in the spray due to decreased momentum and penetrating
force, and (iii) decrease in the local excess air ratio due to the biodiesel being replaced. In
comparison to pure diesel, palm, sunflower, and corn biodiesels showed, on average, an
increase in BSFC of 7.4%, 4.9%, and 2.5%, respectively. Because all biodiesel mixes have a
lower calorific value than pure diesel, they require greater fuel consumption to generate
the same braking power output. Since palm biodiesel has the highest kinematic viscosity,
which leads to poor fuel atomization and mixture formation, it has a higher rise in BSFC
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than the other tested fuels [84]. Another observation was that at high engine speeds, above
2000 rpm, there was a small difference in BSFC for all biodiesel mixes, compared to pure
diesel. It indicates that all biodiesel fuels tested may get an increase in combustion efficiency.
This enhancement is attributed to increased diffusion rates for biodiesel fuel vapor inside
the combustion chamber, which stimulates the formation of an air–fuel mixture prior to
beginning the ignition, in the form of fine spray, related to fast evaporation. Due to an
increase in the cetane number, the studied biodiesel fuel blends featured a shorter ignition
delay, resulting in more power combustion efficiency and less fuel burning in pre-mixed
combustion [85]. According to Fayad et al. [86], increasing the proportion of biodiesel in
fuel mixes increases the BSFC, for various engine loads and speeds. Further investigations
have shown similar outcomes [83,87,88].

Figure 5. Variation of brake power vs. engine speed for different biodiesel blends.

Figure 6. Variation of BSFC vs. engine speed for different biodiesel blends.

3.1.3. Brake Thermal Efficiency (BTE)

The fluctuation of BTE for pure diesel and various biodiesel blends, over a range of
engine speeds, is displayed in Figure 7. The BTE steadily improves with engine speed,
until it reaches a maximum value, as depicted in this figure. This then lowers, as the engine
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speed rises. This trend might be explained by the fact that cylinder walls take a long time
to transmit heat, especially at low speeds, resulting in a considerable amount of fuel being
required to compensate for the increased heat loss. The braking power increases as the
engine speed rises, resulting in better BTE. Due to the high inertia of the moving parts,
friction power increases fast at higher speeds, which might be a result of the decrease in BTE.
Another observation is that, as compared to pure diesel, all biodiesel blends have a poorer
BTE. In comparison to pure diesel, palm, sunflower, and corn biodiesel had, on average,
BTE drops of 6.7%, 4.4%, and 2.4%, respectively. The use of biodiesel fuel causes higher
thermal friction losses, which transfer to the cylinder walls and engine coolant. The brake
BTE is known to be inversely related to the BSFC and heating value [89]. For all biodiesel
blends, for example, BSFC increased, while the heating value dropped. In this scenario,
however, the brake-specific fuel consumption increase is more prominent. This explains
why, despite their low heating value, biodiesel blends have a lower BTE. Furthermore, as
compared to pure diesel, biodiesel blends have a shorter ignition delay, which implies that
combustion begins sooner. As a result of the shorter ignition delay, more heat is lost to
the environment, requiring more power for the piston to complete the compression stroke.
According to Khiraiya et al. [90], the kinematic viscosity of palm biodiesel is 150% that of
pure diesel fuel. Palm biodiesel requires a greater injection pressure than diesel, due to its
higher kinematic viscosity, resulting in smaller diameter droplets and poorer BTE. In terms
of fuel injection system design, sound speed and bulk modulus data are critical. In the fuel
injection system, the speed of sound and the bulk modulus of the fuel have a significant
impact on the fuel injection time. The propagation of pressure waves, from the fuel injection
pump to the injectors, requires a few degrees of crank angle, especially in pump-line-nozzle
injection systems [91]. According to Szybist et al. [92], biodiesel has a higher bulk modulus
and sound velocity, as well as its higher viscosity, resulting in earlier injection starts. This,
combined with any increment in the cetane number, has the potential to dramatically
speed up and advance the combustion process. Traditional diesel engines require delayed
combustion to reduce pressure and temperature peaks in the combustion chamber. A delay
will result in a reduction in BTE and braking power. When the injection starts, and therefore
the combustion process is advanced, the combustion process is re-centered, and the BP
improves [93]. Many researchers reached the same conclusions [37,87,90,94–96]. However,
a few scholars [21,23,97] observed the opposite pattern. They attributed the enhanced BTE
to the oxygenated biodiesel fuel’s better combustion characteristics, or to the lower friction
loss as a result of increased lubricity. Because of the tight tolerances in the injectors and
injection system, high lubricity is essential for diesel fuels. More friction and wear between
moving elements inside the injection system may occur if a diesel fuel with low lubricity
is utilized.

Figure 7. Variation of thermal efficiency vs. engine speed for different biodiesel blends.
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Table 5 presents a brief quantitative comparison of the current work to previous studies
published in the literature.

Table 5. Comparison of the current work to previous studies published in the literature [39,86,98–103].

Reference Engine Type Fuel
Test

Conditions
BP BSFC BTE

Ozsezen et al.
[98] Six cylinders Palm

Constant speed
@ 1500 rpm,

variable load
Reduced 2.5% Increased 7.5% Reduced

0.48%

Dulger and
Kaplan [99] Four cylinders Sunflower Variable speed

@ Full load Reduced 10% Increased 2–5% -

Fayad et al. [86] Four cylinders Sunflower Variable speed
@ Full load - Increased

23–35.7
Reduced

27%–30.4%

Lin et al. [100] Single cylinder

Corn oil methyl
ester Variable speed

and variable
load

Increased 0.4% Increased
10% -

Palm oil methyl
ester Increased 1.5 Increased 14.4% -

Ndayishimiye
and Tazerout

[39]
Single cylinder Palm

Constant speed
@ 1500 rpm,

variable load
- 10% Increased Reduced

1–2%

Canakci et al.
[101] Four cylinder Palm Variable speed

@Full load Reduced 0–7% 11% Increased Reduced 8%

Suryanarayanan
et al. [102] Single cylinder Sunflower

Constant speed
@ 1500 rpm,

variable load
- Increased

6–12% Increased 2–5%

Reddy et al.
[103] Single cylinder Corn seed

Constant speed
@ 1500 rpm,

variable load
- 8% Increased Reduced 3.2%

Current Study Single cylinder

Palm

Variable speed
@Full load

Increased
8.7%

Increased
7.4%

Reduced
6.7%

Sunflower Increased
5.4%

Increased
4.9%

Reduced
4.4%

Corn Increased
2.5%

Increased
2.5%

Reduced
2.4%

3.2. Uncertainty Analysis

The outcomes evaluated from the experimental tests were commonly estimated from
measured physical parameters. These values have some errors, due to their uncertainty
measurements. Therefore, to compute the difference between the experimentally measured
value and the typical true value of a quantity, an uncertainty analysis was used to certify the
reliability of the calculated physical quantities. The technique, suggested by Holman [104],
was anticipated to measure the experimental uncertainties. According to this technique, if
the outcome, R, is a set function of the variables x1, x2, x3 . . . xn, and ω1, ω2, ω3 . . . ωn are
the uncertainties in the independent variables. Therefore, uncertainty in the results ωR is
evaluated by Equation (5) [105], as follows:

ωR = ±
√
(

∂R
∂X1

ωX1)
2
+ (

∂R
∂X2

ωX2)
2
+ (

∂R
∂X3

ωX3)
2
+ . . . + (

∂R
∂Xn

ωXn)
2

(5)

The quantity of uncertainty percentage is calculated by Equation (6), as follows:

Percentage Analysis =
ωR

|R| × 100%. (6)
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For instance, the uncertainty error in braking power (BP) is evaluated as a function of
rotating engine speed (N) and torque (T).

BP = f (N, T)ΔBP =

√(
∂BP
∂N

ΔN
)2

+

(
∂BP
∂T

ΔT
)2

(7)

In regard to Equation (5), the uncertainties for measured physical quantities, such as
BT, BP, BSFC, and BTE were evaluated as ±1.82%, ±1.68, ±1.94%, and ± 2.02% respectively,
which indicates the evaluated results are reliable.

3.3. Modeling and Optimization
3.3.1. Fuzzy-Based Modeling Logic

The following three outputs were utilized to replicate the CI engine’s output perfor-
mance: BT, BTE, and BSFC. The output performance of the CI engine was investigated by
varying the following two input parameters: engine speed and fuel type. The tests were
conducted at various engine speeds, ranging from 1200 to 2400 rpm. Pure diesel, palm oil,
sunflower oil, and corn oil were the four types of fuel examined. The experimental dataset
was split into two parts, with a ratio of 70:30 training:testing stages. The fuzzy model
structure is a Sugeno-type, adaptive network-based fuzzy inference system (ANFIS). In
addition, the fuzzy rules were developed using the subtractive clustering approach, which
yielded 10 fuzzy rules. For the fuzzification procedure, the MFs inputs were chosen as the
Gaussian shape, and just 10 epochs were determined to be adequate for training. During
training and testing, the following three metrics were used to assess the accuracy of a fuzzy
model: mean square error (MSE), root-mean-square error (RMSE), and R2. The values of
the statistical metrics of the fuzzy model response are shown in Table 6.

Table 6. Statistical evaluation for the fuzzy-based models.

MSE Coefficient of Determination (R2)

Train Test All Train Test All

First fuzzy model of brake Torque
6.71 × 10−6 0.0805 0.0259 1 0.9145 0.9713

Second fuzzy model of thermal efficiency
5.99 × 10−8 0.1736 0.0558 1 0.845 0.9626

Third fuzzy model of BSFC
1.53 × 10−7 0.0002 0.0001 0.9998 0.7845 0.9408

Average
2.31 × 10−6 8.48 × 10−2 2.73 × 10−2 1 0.84801 0.9581

Considering Table 6 for the modeling of the BT, the MSE values are 6.71 × 10−6

and 0.0805, and the coefficients of determination values represent 1.00 and 0.9145, for
the training and testing, respectively. This indicates the advantageous nature of fuzzy
modeling. For modeling the BTE, the MSE values are 5.99 × 10−8 and 0.1736, and the R2

values are 1.00 and 0.845, for training and testing, respectively. For modeling the BSFC,
the MSE values are 1.53 × 10−7 and 0.0002, and the R2 values are 0.9998 and 0.7845, for
training and testing, respectively.

The graphical description is essential to evaluate the fuzzy-based model. As a result,
the training and testing phase prediction accuracies were emphasized by graphing the
model’s predictions against their associated targets, as shown in Figure 8. The forecasts
are clearly distributed tightly over the % line, indicating that the model’s performance
accuracy is confirmed.
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Figure 8. Fuzzy models’ prediction precision.

The whole values of the output with the input space may be shown once the fuzzy
model has been established. Figure 9 illustrates the 3D surfaces created, using fuzzy-
based modeling, to simulate the CI engine’s performance. The colored contours enable
us to recognize the input–output function’s nature and to characterize the minimum and
maximum regions.
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Figure 9. The 3D Surfaces of the fuzzy-based models, (a) brake torque, (b) brake thermal efficiency,
and (c) BSFC. Note: Fuel (1 for diesel, 2 for palm oil, 3 for sunflower oil and 4 for corn oil).

The membership functions of the fuzzy model for the CI engine are displayed in
Figure 10. The two inputs’ membership functions (MFs) were determined to be Gaussian-
shape, which is better for providing a smooth prediction surface. A Gaussian MF is defined
by two parameters {m, σ}; m indicates the Gaussian curve’s mean, and σ represents the
curve’s spread. This is a more natural method to show the distribution of data. The
subtractive clustering technique, depending on the number of formed clusters, determines
the number of MFs for each input.

Figure 10. The membership functions of fuzzy models; (a) BT, (b) BTE, and (c) BSFC. (Each color
represents fuzzy membership function).

185



Mathematics 2022, 10, 420

3.3.2. Parameter Optimization

The PSO algorithm is used to calculate the optimal engine speed and best fuel type,
based on the fuzzy-based model of the CI engine, which maximizes the output BT and BTE,
while momentarily minimizing the BSFC. The number of searching agents is 20 and the
number of iterations is 100. The cost objective function is demonstrated in Equation (8),
and the optimization statement is as follows: identify the ideal values of the controlling
variables (S and F) that optimize CI engine performance within their established constraints.

Cost function = −BT (S, F) - BTE (S, F) + BSFC (S, F) (8)

where, BT (S, F), BTE (S, F), and BSFC (S, F) are the three outputs of the fuzzy models,
respectively, for BT, BTE, and BSFC. S and F are the inputs (speed and fuel type). The
negative sign in Equation (8) indicates that the optimization process is being treated as a
maximization problem, rather than a minimization. Numerically merging the outputs in
the cost function has the physical meaning of optimizing all of them simultaneously. The
cost function terms have been converted to a dimensionless quantity that has been divided
by the maximum value.

Based on the optimization process, the optimal engine speed is 1648 rpm, and the best
fuel is sunflower oil. Under this condition, the BT, BTE, and BSFC values are 21.482, 19.71,
and 0.41, respectively. The graph of the iterative values of engine speed, as in Figure 11,
demonstrated that the 100 iterations are sufficient to reach the optimal point before the end
of the optimization procedure.

Figure 11. The convergence curve of the engine speed during the optimization process. (There are
five different particles. Each color corresponds to one particle.)

3.3.3. Response Surface Methodology (RSM)

In the context of complicated interactions, RSM may be used to assess the relative
importance of various elements. It is an effective method for evaluating many process
variables [106]. RSM developed a polynomial model to describe and predict the data. It
guarantees perfect interactions between the independent variables and no lack of fit related

186



Mathematics 2022, 10, 420

to surface curvature [107]. The second-order quadratic polynomial model may be defined
using the following relation:

Y = B0 +
k

∑
i=1

Bixi +
k

∑
i=1

Biix2
i + ∑ ∑

i<j
Bijxixj (9)

where, Y denotes the predicted output response; B0, Bi, Bii, and Bij denote the regression
coefficients; k is the number of factors; xi denotes the factors.

Based on ANOVA, and considering the design matrix presented in Table 7, the first
output response, BT, is modeled and displayed in Table 8. The model F-value of 20.93 in
this table indicates that the model is significant. Due to noise, there is only a 0.01% chance
that an F-value will display such a large amount. The model terms are significant if the
p-values are less than 0.05. In this scenario F, S2, F2, and F3 are significant model variables.
The model terms are not significant if the value is higher than 0.1. In terms of actual factors,
the following relationship may be utilized to generate BT predictions:

BT = 10.0285 − 0.002455S + 11.06832F − 0.0003SF + 5.32552 × 10−6S2

−4.09844F2 − 2.83482 × 10−7S2F + 0.000296SF2 − 1.62760 × 10−9S3 + 0.401190F3 (10)

Table 7. ANOVA design matrix.

Study Type Response Surface Subtype Randomized

Design Type Central Composite Runs 28.00
Design Model Quadratic Blocks No Blocks

Table 8. ANOVA table for first output response (BT).

Source Sum of Squares df Mean Square F-Value p-Value

Model 22.88 9 2.54 20.93 <0.0001 significant
S (speed) 0.1552 1 0.1552 1.28 0.2731
F (fuel) 1.22 1 1.22 10.02 0.0054

SF 0.1407 1 0.1407 1.16 0.2961
S2 9.36 1 9.36 77.06 <0.0001
F2 8.69 1 8.69 71.57 <0.0001

S2F 0.0540 1 0.0540 0.4447 0.5133
SF2 0.3919 1 0.3919 3.23 0.0892
S3 0.1465 1 0.1465 1.21 0.2866
F3 2.03 1 2.03 16.70 0.0007

Residual 2.19 18 0.1214
Cor Total 25.06 27

Table 9 shows the ANOVA statistics for the second output response. The model F-
value of 15.77 indicates that the model is statistically significant. Due to noise, there is
only a 0.01% chance that an F-value will be this large. The model terms are significant if
their p-values are less than 0.05. In this situation S, S2, and F2 are crucial model variables.
The model terms are not significant if their values are higher than 0.1000. The following
relationship can be utilized to construct BTE predictions, in terms of actual variables:

BTE = −1.21079+0.024263S − 2.14003F − 0.000028SF − 6.43799 × 10−6S2 + 0.418537F2 (11)

Table 9. ANOVA table for second output response (BTE).

Source Sum of Squares df Mean Square F-Value p-Value

Model 32.15 5 6.43 15.77 <0.0001 significant
S 4.62 1 4.62 11.33 0.0028
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Table 9. Cont.

Source Sum of Squares df Mean Square F-Value p-Value

F 0.3366 1 0.3366 0.8254 0.3735
SF 0.0044 1 0.0044 0.0109 0.9178
S2 22.28 1 22.28 54.64 <0.0001
F2 4.90 1 4.90 12.03 0.0022

Residual 8.97 22 0.4078
Cor Total 41.12 27

Table 10 displays the ANOVA statistics for the third output response. The F-value of
17.07 for the model indicates that it is significant. Due to noise, there is only a 0.01% chance
that an F-value will appear this large. The model terms are significant if the p-values are
less than 0.05. In this case S, S2, and F2 are important significant model variables. The
model terms are not significant if the value is higher than 0.1000. The following relationship
can be utilized to construct BSFC predictions in terms of actual variables:

BSFC = 0.959687 − 0.000626S + 0.054752F + 1.48809 × 10−7SF + 1.65947 × 10−7S2 − 0.010605F2 (12)

Table 10. ANOVA table for third output response (BSFC).

Source Sum of Squares df Mean Square F-Value p-Value

Model 0.0216 5 0.0043 17.07 <0.0001 significant
S 0.0035 1 0.0035 13.70 0.0012
F 0.0001 1 0.0001 0.5526 0.4651

SF 1.240 × 10−7 1 1.240 × 10−7 0.0005 0.9825
S2 0.0148 1 0.0148 58.62 <0.0001
F2 0.0031 1 0.0031 12.47 0.0019

Residual 0.0056 22
Cor Total 0.0271 27

Table 11 shows the statistical analysis of the ANOVA models. The anticipated R2 value
of 0.7278 for the BT model is rather close to the adjusted R2 value of 0.8692; that is, the
difference is less than 0.2. The signal-to-noise ratio is measured with sufficient precision. It
is preferable to have a ratio of more than four. The signal-to-noise ratio of 16.795 suggests a
good signal. The design space may be navigated using this concept. The anticipated R2

value of 0.6130 for the second model, the BTE, is in reasonable agreement with the corrected
R2 value of 0.7322; that is, the difference is less than 0.2. The appropriate precision ratio is
13.368 and shows that the signal is sufficient. The design space may be navigated using
this concept. The projected R2 value of 0.6274 for the third model, BSFC, is in reasonable
agreement with the adjusted R2 value of 0.7485; that is, the difference is less than 0.2. The
appropriate precision ratio is 13.807, indicating that the signal is sufficient. The design
space may be navigated using this concept. The 3D response surface plots for three output
responses, using RSM, are shown in Figure 12. In detail, Figure 11 shows the map variation
between the engine speed and different types of fuels on the y-axis, where values of 1,
2, 3, and 4, represent pure diesel, palm, sunflower, and corn biodiesel fuel, respectively.
The outputs are BT, BTE, and BSFC, displayed in Figure 12a–c, respectively. The physical
meanings of Figure 12 were analyzed in Section 3.1, whereas comparison of the predicted
and actual values of output responses is presented in Figure 13. In general, the average R2

value for both training and testing is 0.783 and 0.656, respectively.
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Table 11. Statistical analysis of the ANOVA model.

First ANOVA Model of Brake Torque

Std. Dev. 0.3485 R2 0.9128
Mean 20.01 Adjusted R2 0.8692
C.V.% 1.74 Predicted R2 0.7278

Adeq Precision 16.7946

Second ANOVA Model of Rz

Std. Dev. 0.6386 R2 0.7818
Mean 18.24 Adjusted R2 0.7322
C.V.% 3.50 Predicted R2 0.6130

Adeq Precision 13.368

Third ANOVA Model of BSFC

Std. Dev. 0.0159 R2 0.7951
Mean 0.4559 Adjusted R2 0.7485
C.V.% 3.49 Predicted R2 0.6274

Adeq Precision 13.8074

Figure 12. 3D response surface plots for three output responses.
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Figure 13. Comparison of the predicted and actual values of output responses.

3.3.4. Optimization-Based Response Surface Methodology (RSM)

The best input parameters and related output performance from the RSM-based
optimization method are presented in Table 12. The best performance is achieved using
corn oil, with an engine speed of 1862.7 rpm. Under this condition, the overall performance
is increased by 0.268%, 1.9%, and 5.9%, as compared to pure diesel, palm oil, and sunflower
oil, respectively.

Table 12. Optimization-based RSM.

Oil Type
Speed
(rpm)

Torque
(N.m)

Change
(%)

Efficiency
(%)

Change
(%)

BSFC
(kgf/kWh)

Change
(%)

Overall
(%)

Diesel 1841.06 19.8057 0.0 19.8637 0.0 0.415 0.0 0.0
Palm Oil 1845.55 21.5087 +8.599 18.9295 −4.703 0.438 −5.542 −1.647

Sunflower 1844.47 20.9137 +5.594 18.8297 −5.205 0.44 −6.024 −5.635
Corn 1862.71 20.4353 +3.179 19.5726 −1.465 0.421 −1.446 0.268

3.4. Comparison Study

In summary, the average R2 values for training and testing, using fuzzy logic, are 1
and 0.84801, respectively, whereas the average R2 values for both training and testing are
0.783 and 0.656, respectively. Therefore, in comparison with the ANOVA, the average R2

value, using fuzzy-based modeling, has been increased by 27.7% and 29.3%, for training
and testing, respectively.
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Twenty-eight experiments, using four different types of fuel (pure diesel, corn biodiesel,
palm biodiesel, and sunflower biodiesel) were carried out. As a result, each fuel was tested
seven times, relating to seven different speeds (1200 to 2400, step 200 rpm). The first experi-
ment was used as a baseline to compare the three determinants, in terms of BT, BTE, and
BSFC, to find the best improvement. The optimum improvement was selected according to
the following equations:

The optimum% of improvement = % of improvement of torque + % of
improvement of thermal efficiency + % of improvement of BSFC

(13)

% of improvement @ specified speed
= (Torque @ specified speed − Torque @ reference)

Torque @ reference

+(Thermal efficiency @ specified speed − Thermal efficiency @ reference)
Thermal efficiency @ reference

+(BSFC @ reference − Thermal efficiency @ specified speed)
Thermal efficiency @ reference

(14)

Based on the particle swarm optimization process, the optimal engine speed is
1648 rpm, and the best fuel is sunflower oil. Under this condition, the overall perfor-
mance has been increased by 2.065% and 8.256%, as compared to the experimental results
and RSM. The performance comparison of experimental, RSM, and proposed strategy is
presented in Table 13.

Table 13. Performance comparison of experimental, RSM and proposed strategy.

Method Fuel Type
Speed
(rpm)

Torque
(N.m)

Change
(%)

Efficiency
(%)

Change
(%)

BSFC
(kgf/kWh)

Change
(%)

Overall
(%)

Experimental Sunflower
Oil 1600 21.25 0.0 19.848 0.0 0.4169 0.0 0.00

RSM Corn Oil 1862.71 20.4353 −3.834 19.5726 −1.388 0.421 −0.969 −6.191

Proposed Sunflower
Oil 1648 21.482 1.092 19.71 −0.696 0.41 1.669 2.065

4. Conclusions

The impact of utilizing various biodiesel blends, such as corn, sunflower, and palm
biodiesels on the performance of a CI engine were examined experimentally in this research
paper. According to the experimental observations and main findings, the most important
outcomes can be concluded as follows:

• When compared to pure diesel, all biodiesel blends boost brake power. Because of its
slightly higher calorific value and higher oxygen content, palm biodiesel offers the
highest brake power increase of 8.7%, compared to other biodiesel blends.

• On average, there is a reduction in BTE of 6.7%, 4.4%, and 2.4% for palm, sunflower,
and corn biodiesels, respectively, as compared to pure diesel. For all the biodiesel
blends, BSFC increases, while heating value decreases. However, in this case, the
increase in brake-specific fuel consumption is more significant. This explains why
biodiesel blends have a poorer BTE, despite their low heating value. Furthermore,
biodiesel mixes have a shorter ignition delay than pure diesel, implying that combus-
tion starts sooner. More heat is lost to the atmosphere, as a result of the shorter ignition
delay, necessitating more power for the piston to perform the compression stroke.

• Palm, sunflower, and corn biodiesels had an average increase in BSFC of 7.4%, 4.9%,
and 2.5%, respectively, compared to pure diesel. Because biodiesel blends have a lower
calorific value than pure diesel, they consume more fuel to provide the same braking
power output.

• Palm biodiesel has the highest kinematic viscosity, resulting in poor fuel atomization
and mixture formation, as well as a larger BSFC rise than the other test fuels.
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• The physical and chemical characteristics of biodiesel blends, such as oxygen content,
cetane number, calorific value, kinematic viscosity, and latent heat of vaporization
have a direct impact on combustion efficiency.

• The average R2 value, utilizing a fuzzy-based model, has been increased by 27.7% and
29.3%, for training and testing, respectively, as compared to ANOVA.

• Based on the optimization process using PSO, the optimal engine speed is 1648 rpm,
and the best fuel is sunflower oil.

• Using the proposed strategy (integration between fuzzy logic and PSO), the overall per-
formance has been increased by 2.065% and 8.256%, as compared to the experimental
results and RSM.
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Nomenclatures

AI artificial intelligence
ANFIS adaptive network-based fuzzy inference system
ANN artificial neural network
ANOVA analysis of variance
ASTM American Society for Testing and Materials
B0, Bi, Bii, and Bij regression coefficients
BP brake power
BSFC brake specific fuel consumption
BT brake torque
BTDC before top dead center
BTE brake thermal efficiency
c1, c2 a cognitive and social factor
CFPP cold filter plugging point
CN cetane number
CO carbon monoxide
DC direct current
F fuel type
FS full scale
FSD full scale deflection
FTIR Fourier-transform infrared spectroscopy
gbest the global best
K number of factors
M mean of the gaussian curve
MF fuzzy membership function of the input
MSE mean square error
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N rotation engine speed
NOx nitrogen oxides
NREL national renewable energy laboratory
Pbest best solution
PSO particle swarm optimization
R outcome function
r random value
RMS root mean square
RMSE root mean square error
rpm revolution per minute
RSM response surface methodology
RTD resistance temperature detectors
R2 coefficient of determination
S speed
SFC specific fuel consumption
TBHQ tert-butylhydroquinone
V velocity
vol. volume
WR uncertainty error
Wt. weight
x Variable, factors
Y predicted output response
ω realistic error
σ spread of the curve
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Abstract: This paper considers a method of stochastic solution to the anomalous diffusion equation
with a fractional derivative with respect to both time and coordinates. To this end, the process of a
random walk of a particle is considered, and a master equation describing the distribution of particles
is obtained. It has been shown that in the asymptotics of large times, this process is described by
the equation of anomalous diffusion, with a fractional derivative in both time and coordinates. The
method has been proposed for local estimation of the solution to the anomalous diffusion equation
based on the simulation of random walk trajectories of a particle. The advantage of the proposed
method is the opportunity to estimate the solution directly at a given point. This excludes the
systematic component of the error from the calculation results and allows constructing the solution
as a smooth function of the coordinate.

Keywords: anomalous diffusion equation; continuous time random walk; Monte Carlo method;
local estimate

MSC: 58J65; 60J60; 65C05

1. Introduction

Anomalous diffusion processes are characterized by a power-law dependence of the
width of the diffusion packet on time Δ(t) ∝ Dαtγ, where Dα is the diffusion coefficient [1–4].
Depending on the value of the exponent γ, different diffusion regimes are distinguished:
γ < 1/2 (a sub-diffusion), γ = 1/2 (a normal diffusion), γ > 1/2 (a super-diffusion). If
γ = 1, then the quasi-ballistic regime is established, if γ > 1, then this regime bears the
name super-ballistic. More detailed information about various regimes can be found in the
works [5–8].

The Continuous Time Random Walk (CTRW) model underlies the model of anomalous
diffusion [9]. This model was first introduced in the work [10] and was further developed
in the works [4,11–13] (see also survey articles [9,14,15]). The CTRW model describes the
random walk of a particle using a hopping-trap mechanism. The random walk of a particle
represents a sequence of instantaneous random jumps of the value Ri, i = 1, 2, 3, . . . and
rest states with random rest times Ti, i = 1, 2, 3, . . . , which successively change one another.
With a power-law distribution of the free path value p(x) ∝ x−α−1, x → ∞, 0 < α � 2
and rest time q(t) ∝ t−β−1, t → ∞, 0 < β � 1, the width of the diffusion packet will
grow according to the power law Δ(t) ∝ Dαtγ. Within this model, normal diffusion is
obtained if the probability density of the path distribution p(x) has a finite second moment
〈R2〉 < ∞ [6], and the probability density of the rest time distribution q(t) has the finite
mathematical expectation 〈T〉 < ∞ [7].
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The asymptotic distribution of particles in the CTRW process was first obtained by
M. Kotulski in the article [16]. Later, independently from M. Kotulski, these distributions
were obtained in the article [17] in which these distribution were called fractional stable
distributions. It is well known that the anomalous diffusion equation is an asymptotic de-
scription of the CTRW process. The articles [18–20] are devoted to the solution of the anoma-
lous diffusion equation. These papers show that the solution of the anomalous diffusion
equation is expressed through the classes of the fractional stable and stable distributions.

Anomalous diffusion generalizes normal diffusion to the case of considering transport
processes in inhomogeneous and turbulent media. The model of anomalous diffusion was
first used to describe charge transfer in amorphous semiconductors [10–13]. Later, the
model of anomalous diffusion became widespread in the description of transport processes
in turbulent plasma [21–27], propagation of cosmic rays in the galaxy [28–32], studying
the diffusion of microRNA in the cell [33], the fluctuation of prices on exchanges and
currency exchange rates [34]. The theory of combustion is one of the few areas where
anomalous diffusion has not become widespread yet. However, recently, this direction has
been intensively developing. The authors of [35,36] point out that anomalous diffusion
occurs during heat transfer in low-dimensional systems. In the paper [37] devoted to the
study of thermal radiation during the combustion of natural gas and acetylene, it was
found that the combustion process was of a subdiffusion nature.

The assumption about the formation of anomalous diffusion in the combustion process
allows introducing fractional differential equations of diffusion into consideration. In the
papers [38–40], the effective thermal conductivity coefficient was obtained for the Levy–
Fokker–Planck and fractional Boltzmann equations. The authors of [41–43] propose to use
the fractional differential equation of diffusion to describe the combustion process

0Dβ
t u = ∂xxu + s(u), t > 0, 0 < x < L,

where 0Dβ
t is the fractional Riemann-Liouville derivative (Appendix A, A2) of the order

0 < β < 1 in terms of time and ∂xx is the classical second-order partial derivative with
respect to the coordinate. The paper considers the problem when the source f (u) is
singular, and the initial and boundary conditions are chosen in the form u(x, 0) = u0(x),
u(0, t) = u(L, t) = 0. The paper [41] examines the damping effect in the framework of the
investigated model, and the paper [42] explores the phenomenon of explosion and the
possibility of describing this phenomenon with the help of the passage to the limit β → 0.
The authors of [44] examine a two-dimensional combustion model with a fractional time
derivative. To solve the fractional-differential diffusion equation, the authors develop an
adaptive finite-difference discontinuous Galerkin method. In the paper [45], the authors
consider a fractional-differential combustion model with the first derivative with respect to
time and a fractional derivative with respect to the spatial variable.

∂tu = ∂α

∂|x|α u + s(u), u(x, 0) = u0(x), u(a, t) = u(b, t) = 0.

Here, ∂t is the partial time derivative, and ∂α

∂|x|α is the fractional-differential Riesz
operator (A4). Using this fractional-differential model of combustion, the paper investigates
the effect on the damping phenomenon of a quantity of the order of the fractional derivative
α, the spatial size of the area under study, and the initial conditions. To solve the fractional-
differential combustion equation, finite-difference methods of solving the equations are
used. In the article [46], a fractional-differential generalization of the kinetic equation was
obtained that describes the dependence of the radius of the ball on time in the model
of combustion of a fireball, which was theoretically predicted by the Soviet physicist
Ya.B. Zeldovich [47].

As we can see, the use of the anomalous diffusion model and the fractional-differential
generalization of the diffusion equation for modeling combustion processes is only in the
initial state. One of the reasons for this is the complexity of solving such kind of equations.
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Finite-difference methods were used to solve fractional-differential diffusion equations in
the works considered above [41–43,45]. However, in these works, fractional differential
equations are studied in which only one of the derivatives has a fractional order: the time
derivative or the coordinate derivative. In this paper, we will propose a method for the
numerical solution to the anomalous diffusion equation with a fractional derivative in both
time and coordinate and with a source of a special type.

0Dβ
t ρ(x, t) = D ∂α

∂|x|α ρ(x, t) + t−β

Γ(1−β)
δ(x),

with boundary conditions ρ(x, t) → 0 if x → ±∞ and ρ(x, t) = 0, if t < 0. Here, 0 < β � 1,
0 < α � 2, D is the generalized diffusion coefficient.

2. Master Equation of the CTRW Process

To obtain the master equation of the CTRW process, we use the approach proposed
in the paper [48] and further developed in the paper [49]. Consider the collision density
f (r, p, t), where r is the radius of the particle vector, p is the particle impulse, and t is time.
The value f (r, p, t)dr dp dt is the number of collisions in the volume element, and dr is
the vicinity of the point r for the time interval dt, at which the particle impulse takes the
value from p to p + dp. We will consider the nonrelativistic case p = mv. Without losing
generality, we will assume that m = 1. It was shown in the paper [49] that if there are n
discrete states, the value f (r, v, t) can be presented in the form

f (r, v, t) =
n

∑
j=1

f j(r, v, t), (1)

where

f j(r, v, t) = sj(r, v, t) +
n

∑
i=1

cij

∫ t

0
ki(τ)dτ

∫
Wij(Ω

′, Ω)dΩ′×∫
fi
(
r − v′Ω′τ, v′Ω′, t − τ

)
hij(v′, v)dv′. (2)

Here, ki(τ) is the probability density distribution of residence time in the state i and
cij are the probabilities of passing from the state i into the state j, Wij(Ω

′, Ω) is the density
of probability of the fact that before the collision, the velocity had its direction Ω′; after the
collision, the direction obtained the value Ω, hij(v′, v) is the probability density of changing
the velocity from the value v′ to v, sj(r, v, t) is the density of the sources of new particles
in the state j, v = vΩ, v = |v|, dv = dv dΩ, the summation is carried out over all possible
previous states. The quantities cij, Wij(Ω

′, Ω), and hij(v′, v) have normalization

n

∑
j=1

cij = 1,
∫

Wij(Ω
′, Ω)dΩ = 1,

∫
hij(v′, v)dv = 1. (3)

The passage from the collision density f (r, v, t) to the phase density ψ(r, v, t) is carried
out with the help of the integral

ψ(r, v, t) =
∫ t

0
K(τ) f (r − vΩτ, vΩ, t − τ)dτ, (4)

where K(t) =
∫ ∞

t k(τ)dτ. Substituting (1) in (4), we obtain that the phase density has the
form of the sum

ψ(r, v, t) =
n

∑
j=1

ψj(r, v, t), (5)
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where

ψj(r, v, t) =
∫ t

0
Kj(τ) f j(r − vΩτ, vΩ, t − τ)dτ, (6)

where Kj(t) =
∫ ∞

t kj(τ)dτ. The physical interpretation of the latter expression is simple. To
detect a particle in the state j of the vicinity dr of the point r with the velocity in the interval
from v to v + dv at a moment of time from t to t + dt, the particle is supposed to pass
into this state in the point r − vΩτ at the moment of time t − τ and stay in this state some
time more than τ. The passage to the particle density ρ(r, t) is carried out with the use of
the integral

ρ(r, t) =
∫

ψ(r, v, t)dv. (7)

The system of Equations (2), (5) and (6) together with conditions (3) describe practi-
cally any process of random walk with n discrete states under fairly general assumptions
about the scattering indicatrix Wij(Ω

′, Ω) and the velocity redistribution law hij(v′, v).
In this study, using these equations, we will obtain master equations that describe the
CTRW process.

The CTRW process is determined in the following way. At random times T1, T1 + T2,
T1 + T2 + · · ·+ Tj, the particle makes instantaneous jumps with the value R1, R2, . . . , Rj.
Random jumps Ri and random times Ti are independent between one another as well as
between each other. Thus, in the CTRW process, there are two states: j = 1 is the state of
rest and j = 2 is the state of motion. By definition, in the CTRW process, after each jump,
the particle enters a state of rest, and after each state of rest, the particle makes a jump.
This means that the probabilities of passing cij from the state i into the state j have the
following values

c11 = 0, c12 = 1, c21 = 1, c22 = 0. (8)

The state of rest is consistent with the velocity v = 0, and infinite velocity v2 = ∞
corresponds to the state of motion (instant jump). To write the equation for f2(r, v, t), we
first assume that in state 2, the particle moves with some constant velocity v2, and then, we
will carry out the passage v2 → ∞. Taking account of the foregoing, we have

h21(v′, v) ≡ h1(v) = δ(v), h12(v′, v) ≡ h2(v) = δ(v − v2), (9)

δ(x) is the Dirac delta function. Furthermore, we assume that the direction of motion of the
velocity after each collision does not depend on the previous direction of motion

W12(Ω
′, Ω) = W21(Ω

′, Ω) = W(Ω). (10)

We represent the density of sources for each of the states in the form

sj(r, v, t) = σjsj(r, t)hs
j (v)W1(Ω), j = 1, 2. (11)

Here, σj is the probability of the birth of a particle in the state j (σ1 + σ2 = 1), hs
j (v) is

the initial velocity modulus distribution, Wj(Ω) is the velocity direction distribution, and
sj(r, t) is the spatio-temporal density of a source distribution. Without loss of generality,
let us assume that a particle begins its history from a state of rest. Thus, without loss of
generality, we assume that the particle starts its history from the state of rest. Thus,

σ1 = 1, σ2 = 0, hs
1(v) = δ(v), hs

2(v) = δ(v − v2), W1(Ω) = W2(Ω) = W(Ω). (12)
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Taking account of (8)–(12) for the collision density f j(r, p, t), we obtain the system of
two equations

f1(r, v, t) = W(Ω)δ(v)
(

s1(r, t) +
∫ t

0
k2(τ)dτ

∫
dΩ′

∫
f2(r − v′Ω′τ, v′Ω′, t − τ)dv′

)
, (13)

f2(r, v, t) = W(Ω)δ(v − v2)
∫ t

0
k1(τ)dτ

∫
dΩ′

∫
f1(r − v′Ω′τ, v′Ω′, t − τ)dv′. (14)

From this relation, we can see that in the case when the transition probability densities
hij(v′, v) and Wij(Ω

′, Ω) do not depend on the previous value v′ and Ω′ , then the colli-
sion density can be represented in the form of a product f j(r, vΩ, t) = W(Ω)hj(v)Fj(r, t),

j = 1, 2, where h1(v) and h2(v) have the form (9). Thus, we obtain

f1(r, vΩ, t) = W(Ω)δ(v)F1(r, t), f2(r, vΩ, t) = W(Ω)δ(v − v2)F2(r, t). (15)

Now, substituting these relations in (13) and (14) performing the integration over
dv dΩ, for Fj(r, t), j = 1, 2 we get a system of equations

F1(r, t) = s1(r, t) +
∫ t

0
k2(τ)dτ

∫
W(Ω′)dΩ′

∫
F2(r − v′Ω′τ, t − τ)δ(v′ − v2)dv′ =

s1(r, t) +
∫ t

0
k2(τ)dτ

∫
F2(r − v2Ω′τ, t − τ)W(Ω′)dΩ′, (16)

F2(r, t) =
∫ t

0
k1(τ)dτ

∫
W(Ω′)dΩ′

∫
F1(r − v′Ω′τ, t − τ)δ(v′)dv′ =

∫ t

0
k1(τ)F1(r, t − τ)dτ. (17)

In the equation for F2(r, t), the condition of normalization
∫

W(Ω′)dΩ′ = 1 was used.
The physical meaning of quantities Fj(r, t) is simple enough. This is the density of collisions
in a volume element dr of the point vicinity r, as a result of which the particle passes into
the state j for a period of time t, t + dt for any value of the particle velocity.

Let us now pass from the collision density to the phase density ψj(r, v, t) and then to
the density of particles ρj(r, t). For this purpose, we substitute the expressions (15) in (6)

ψ1(r, v, t) =
∫ t

0
K1(τ)W(Ω)δ(v)F1(r − vΩτ, t − τ)dτ,

ψ2(r, v, t) =
∫ t

0
K2(τ)W(Ω)δ(v − v2)F2(r − vΩτ, t − τ)dτ.

Now, integrating each of these expressions over dvdΩ in view of (5) and (7) for the
particle density, we obtain the system of equations

ρ(r, t) = ρ1(r, t) + ρ2(r, t),

ρ1(r, t) =
∫ t

0
K1(τ)F1(r, t − τ)dτ,

ρ2(r, t) =
∫ t

0
K2(τ)dτ

∫
W(Ω)F2(r − v2Ωτ, t − τ)dΩ, (18)

where F1(r, t) and F2(r, t) are determined by Equations (16) and (17). As one can see, the
total particle density is the sum of the particle density in each of the states. It should be
noted that this system of equations is not yet a system of master equations to describe the
CTRW process. This system describes the random walk of a particle with two states: state 1
is rest, and state 2 is motion with a constant final velocity v2.

To obtain the system of equations for the CTRW process, it is necessary to go to the
limit v2 → ∞. It should be pointed out that in Equations (16) and (18), τ is an independent
variable, which has the meaning of the time in the state of motion. Therefore, if we pass
now to the limit v2 → ∞, then it means that τ → 0 and the probability is k2(τ)dτ = 0. To
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avoid this, it is necessary to pass to a new variable ξ = vτ, which has the meaning of the
free path of a particle. As a result, we obtain the system of equations

ρ1(r, t) =
∫ t

0
Q(τ)F1(r, t − τ)dτ,

ρ2(r, t) =
1
v2

∫ v2t

0
P(ξ)dξ

∫
W(Ω)F2(r − ξΩ, t − ξ/v2)dΩ,

F1(r, t) = s1(r, t) +
∫ v2t

0
p(ξ)dξ

∫
F2(r − ξΩ′, t − ξ/v2)W(Ω′)dΩ′,

F2(r, t) =
∫ t

0
q(τ)F1(r, t − τ)dτ.

Here, for convenience, the following notation was introduced p(ξ) = 1
v2

k2

(
ξ
v2

)
,

P(ξ) ≡ K2

(
ξ
v2

)
=
∫ ∞

ξ p(y)dy, q(τ) ≡ k1(τ), Q(τ) ≡ K1(τ).
Let us now pass in this system of equations to the limit v2 → ∞. From the equation

for ρ2(r, t), it is seen that due to the presence of the multiplier 1/v2 before the sign of the
integral ρ2(r, t) → 0 at v2 → ∞. There is a simple explanation for this fact. Since now
the particle is moving with infinite velocity, it instantly moves from one point in space to
another. As a result, the probability of detecting a particle in a state of motion in the time
interval t + dt is equal to zero and as a sequence, ρ2(r, t) = 0. Thus, for the CTRW process,
we arrive at the system of equations

ρ(r, t) = ρ1(r, t) =
∫ t

0
Q(τ)F1(r, t − τ)dτ, (19)

F1(r, t) = s1(r, t) +
∫ ∞

0
p(ξ)dξ

∫
F2(r − ξΩ′, t)W(Ω′)dΩ′, (20)

F2(r, t) =
∫ t

0
q(τ)F1(r, t − τ)dτ. (21)

As one can see, for the CTRW process, the particle distribution density ρ(r, t) only the
density of the spatial distribution of particles at rest is determined.

The obtained system of equations can be simplified, and it is possible to pass to the
equation of the particle density only ρ(r, t). For this purpose, we need to put Equation (21)
into Equation (20). Then, we need to put the obtained equation for the collision density
F1(r, t) into Equation (19) and change the integration order in terms of time. As a result, we
get the equation for density

ρ(r, t) =
∫ t

0
Q(τ)s1(r, t)dτ +

∫ t

0
q(τ)dτ

∫ ∞

0
p(ξ)dξ

∫
W(Ω)ρ(r − ξΩ, t − τ)dΩ. (22)

This equation is the master equation of the CTRW process in three-dimensional space.
The result obtained coincides with similar results obtained in the works [4,14,48].

Let us simplify the problem and consider the one-dimensional case. Let the random
walk process occur along the axis x. In this case, the function W(Ω) takes the form

W(Ω) = W(θ, ϕ) =
1

sin θ
(ω1δ(ϕ) + ω2δ(ϕ − π))δ(θ − π/2), (23)

where ω1 and ω2 are probabilities of motion in the positive and negative direction of
the axis Ox correspondingly and ω1 + ω2 = 1. Substituting now (23) in (22) and taking
account that Ω = (sin θ cos ϕ, sin θ sin ϕ, cos θ), ρ(r, t) = ρ(x, y, z, t), s1(r, t) = s1(x, y, z, t),
dΩ = sin θdθdϕ and integrating the resulting equation over the angular variables, we obtain
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ρ(x, y, z, t) =
∫ t

0
Q(τ)s1(x, y, z, t)dτ

+
∫ t

0
q(τ)dτ

∫ ∞

0
p(ξ)(ω1ρ(x − ξ, y, z, t − τ) + ω2ρ(x + ξ, y, z, t − τ))dξ.

Since we are considering random walks along the axis Ox, then

ρ(x, y, z, t) = ρ(x, t)δ(y)δ(z), s1(x, y, z, t) = s1(x, t)δ(y)δ(z).

Substituting now these expressions into the previous equation and integrating over
dydz, we finally get

ρ(x, t) =
∫ t

0
Q(τ)s1(x, t)dτ +

∫ t

0
q(τ)dτ

∫ ∞

0
p(ξ)(ω1ρ(x − ξ, t − τ) + ω2ρ(x + ξ, t − τ))dξ. (24)

This equation describes one-dimensional walks of a particle in the CTRW process. The
solution to this equation will be sought by the standard method of the Fourier–Laplace
transform. Performing the Fourier–Laplace transform

ρ̂(k, λ) =
∫ ∞

0
dt
∫ ∞

−∞
eikx−λtρ(x, t)dx

we get that the solution to Equation (24) has the form

ˆ̃ρ(k, λ) =
1 − q̃(λ)

λ

ˆ̃s1(k, λ)

1 − q̃(λ)(ω1 p̂(k) + ω2 p̂(−k))
. (25)

Here, q̂(λ) is the Laplace transform of density q(t), p̂(k) is the Fourier transform of
density p(ξ), ŝ1(k, λ) is the Fourier–Laplace transform of source function s1(x, t) and∫ ∞

0
e−λtQ(t)dt =

1 − q̂(λ)
λ

.

3. the Equations of Anomalous Diffusion

The obtained Equation (24) is an exact description of the walk process, and its solution
in Fourier–Laplace images (25) is its exact solution. However, it is possible to perform
the inverse Fourier–Laplace transform of the solution (25) and to write down an equation
describing the process of a walk, only if to consider the asymptotic solution at t → ∞ and
x → ∞. The form of this equation is determined by two characteristics of the distribution of
free path and rest time: mathematical expectation and variance [6,7,14]. If the variance of
free paths 〈R2〉 and rest times 〈T2〉 are finite, then the random walk process is described by a
standard diffusion equation. If the variance of rest time is finite 〈T2〉 < ∞, the mathematical
expectation of free paths is finite (〈R〉 < ∞ and 〈R2〉 = ∞) or infinite (〈R〉 = ∞), then the
random walk process is described with the anomalous diffusion equation with the first
derivative with respect to time and fractional derivative with respect to the coordinate.
In the case 〈T〉 = ∞ and 〈R2〉 < ∞, we obtain the equation of anomalous diffusion with
a fractional time derivative and a second coordinate derivative. In the case 〈T〉 = ∞
and 〈R2〉 = ∞, then the random walk process is described with a fractional derivative
equation in both time and coordinate. Based on the foregoing, we will consider all these
cases separately.

At first, we consider the simplest case 〈T〉 < ∞ and 〈R2〉 < ∞. Let rest times and free
paths have the exponential distribution

q(t) = νe−νt, (26)

p(x) = μe−μx. (27)

205



Mathematics 2022, 10, 511

Performing the Laplace transform of the density q(t) and the Fourier transform of the
density p(x), we obtain

q̃(λ) =
ν

ν + λ
, p̂(k) =

μ

μ + ik
.

The asymptotic solution at t → ∞ and x → ∞ is of interest to us. According to
Tauberian theorems, the behavior of the function at t → ∞ or x → ∞ corresponds to
the behavior of the transformant at λ → 0 or k → 0. Expanding images q̃(λ) and p̂(k)
in a series and leaving one summand in the expansion q̃(λ) and two summands in the
expansion p̂(k), we obtain

q̃(λ) ≈ 1 − 〈T〉λ, (28)

p̂(k) ≈ 1 + i〈R〉k − 〈R2〉
2

k2. (29)

Here, we use the fact that 1/ν = 〈T〉, 1/μ = 〈R〉 and 1/μ2 = 〈R2〉. We will con-
sider symmetrical random walks (ω1 = ω2 = 1/2) with the point instantaneous source
s1(x, t) = δ(x)δ(t). We substitute the expansions (28) and (29) in the solution (25). As a
result, we obtain

ˆ̃ρ(k, λ) =
1

λ + DAk2 , DA =
〈R2〉
2〈T〉 ,

where DA is the diffusion coefficient. If we write this expression in the form

λ ˆ̃ρ(k, λ)− 1 = −DAk2 ˆ̃ρ(k, λ) (30)

and take into account that ∫ ∞

0
e−λt ∂ f (t)

∂t
dt = λ f̃ (λ)− f̃0, (31)∫ ∞

−∞
eikx ∂2 f (x)

∂x2 dx = −k2 f̂ (k), (32)

where f̃0 is the Laplace transform of the initial condition, then it is clear that (30) is nothing
but the Fourier–Laplace transform of the diffusion equation

∂ρ(x, t)
∂t

= DA
∂2ρ(x, t)

∂x2 (33)

with zero boundary conditions at infinity and the initial condition ρ(x, 0) = δ(x). As it is
well known, the solution to this equation is expressed in terms of the normal distribution
and has the form

ρ(x, t) = (4πDAt)−1/2 exp{−x2/(4DAt)}. (34)

An important property of this solution is the self-semilarity of the density profile [9].
Self-similarity is understood as a special form of solution symmetry, which means that
a change in the scale of some variables can be compensated by a change in the scale of
other variables. In the case under consideration, the solution (34) can be represented in
the form ρ(x, t) = (2DAt)−1/2g(x(2DAt)−1/2), where g(x) = (2π)−1/2 exp{−x2/2} is the
density of the normal law (or Gauss distribution). As we can see, the solution ρ(x, t) at an
arbitrary moment of time can be obtained from the density of normal law g(x) by scaling
transformation of coordinate and density. Thus, in the case under consideration, the width
of diffusion packet grows according to the law Δ(t) ∝ (2DAt)1/2.

We consider the case 〈T〉 = ∞ and 〈R2〉 < ∞. Let us assume that free paths have the
distribution (27), and the rest times are distributed according to the law

q(t) =

{
0, t < t0

βtβ
0 t−β−1, t � t0,

, 0 < β < 1. (35)
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A characteristic property of this distribution is that this distribution has moments of
order k < β, i.e., 〈Tk〉 < ∞, if k < β, and 〈Tk〉 = ∞, if k � β. Considering this circumstance,
in the work [50], it was shown that the Laplace transform of density (35) had the form

q̃(λ) ≈ 1 − (λt0)
βΓ(1 − β), λ → 0, (36)

where Γ(x) is Euler’s gamma function. Now, let us substitute this expansion as well as
the expansion (29) in Equation (25). As in the previous case, we will consider symmetrical
random walks (ω1 = ω2 = 1/2) with the point instantaneous source s1(x, t) = δ(x)δ(t).
As a result, from (25), we obtain

ˆ̃ρ(k, λ) =
λβ−1

λβ + DBk2 , DB =
1
2 〈R2〉

tβ
0 Γ(1 − β)

.

We represent this equation in the form

λβ ˆ̃ρ(k, λ) = −DBk2 ˆ̃ρ(k, λ) + λβ−1.

To perform the inverse Fourier–Laplace transform of this expression, we will use the
formulas (A3) and (32). As a result, the random walk process in the case under consideration
is described with the fractional differential equation

0Dβ
t ρ(x, t) = DB

∂2ρ(x, t)
∂x2 +

t−β

Γ(1 − β)
δ(x)

with a diffusion coefficient DB. In the work [18], it was shown that the solution to this
equation has the form

ρ(x, t) =
(

DBtβ
)−1/2

q
(

x
(

DBtβ
)−1/2

; 2, β

)
,

where q(x; α, β) is the density of a fractional-stable law [17,51,52]

q(x, α, β) =
∫ ∞

0
g
(

xyβ/α; α, 0
)

g(y; β, 1)yβ/αdy. (37)

Here, g(x; α, 0) and g(y, β, 1) are the densities of symmetric and one-sided strictly
stable laws [53,54] and 0 < α � 2, 0 < β � 1.

We consider the case 〈T〉 < ∞ and 〈R2〉 = ∞. Let the rest times have the exponential
distribution (26) and free paths have the power distribution

p(x) =
{

0, x < x0
αxα

0 x−α−1, x � x0,
, 0 < α < 2. (38)

As mentioned earlier, distributions of this kind have moments not exceeding α, i.e.,
〈Xk〉 < ∞, if k < α and 〈Xk〉 = ∞, if k � α. Since the parameter α takes values from the
interval 0 < α � 2, then at values 0 < α � 1, the mathematical expectation of free paths 〈R〉
is infinite, and at values 1 < α � 2, the mathematical expectation is finite. In this regard, it
is necessary to consider these two cases separately.

At first, we consider the case 0 < α < 1. Let us perform the Fourier transform of the
density (38)

p̂(k) = αxα
0

∫ ∞

x0

x−α−1eikxdx. (39)

Integrating this expression once by parts, we obtain

p̂(k) = eikx0 + ikxα
0

∫ ∞

x0

x−αeikxdx.

207



Mathematics 2022, 10, 511

In this integral, we change the integration variable ikx = −t. Then, we will pass to
the redistribution of k → 0 and keep the summands that do not exceed xα. As a result,
we obtain

p̂(k) ≈ 1 − (−ikx0)
α
∫ −i∞

0
t−αe−tdt. (40)

Next, we will use the well-known result (see §1.5, the formula (31) in [55])∫ ∞

0
tγ−1e−ct cos ψ−ict sin ψdt = Γ(γ)c−γe−iγψ,

where −π
2 < ψ < π

2 , �γ > 0, or ψ = ±π
2 , 0 < �γ < 1. If we consider that z = teiψ, then

this formula can be represented in the form

∫ ∞eiψ

0
zγ−1e−czdz = Γ(γ)c−γ, (41)

where −π
2 < ψ < π

2 , �γ > 0, or ψ = ±π
2 , 0 < �γ < 1. Comparing this formula with the

integral on the right-hand side (40), we obtain

p̂(k) ≈ 1 − (−ikx0)
αΓ(1 − α), 0 < α < 1. (42)

Now, we consider the case 1 < α < 2. Integrating twice in parts the Fourier transform
of the density (39), we get

p̂(k) = eikx0 +
ikx0

α − 1
eikx0 +

k2xα
0

1 − α

∫ ∞

x0

x−α+1eikxdx.

Now we will change the integration variable ikx = −t in this expression, and then,
we will pass to the limit k → 0. When passing to the limit, we keep only summands with a
degree not exceeding α. As a result, we have

p̂(k) ≈ 1 +
ikx0

α − 1
+

(−ikx0)
α

α − 1

∫ −i∞

0
t1−αe−tdt.

If we use the formula (41) now, then we finally get

p̂(k) ≈ 1 +
ikx0

α − 1
+

(−ikx0)
α

α − 1
Γ(2 − α), 1 < α < 2. (43)

Thus, we have obtained asymptotic expressions for the Fourier transform of the free
path distribution (38) for two cases: 0 < α < 1 and 1 < α < 2.

Now, we get back to the expression (25) and consider the multiplier ω1 p̂(k) +ω2 p̂(−k).
As in the previous cases, we will consider the symmetrical random walks (ω1 = ω2 = 1/2).
Using the expression (42) and taking account of the relation (−i)α + iα = cos(πα/2) for
the case 0 < α < 1, we obtain

ω1 p̂(k) + ω2 p̂(−k) = 1 − Ckα, C = xα
0 Γ(1 − α) cos(πα/2).

Using the doubling formula for the Gamma function Γ(2z) = (2π)−1/222z−1/2Γ(z)
Γ(z + 1/2) and the symmetry formula Γ( 1

2 + z)Γ( 1
2 − z) = π

cos(πz) , the coefficient C can be
represented in the form

C = 2−α

√
πxα

0 Γ
(
1 − α

2
)

Γ
(

1
2 + α

2

) .

In the case 1 < α < 2, it is necessary to use the expression (43). As a result, we obtain

ω1 p̂(k) + ω2 p̂(−k) = 1 − C′kα, C′ = xα
0

Γ(2 − α)

α − 1
sin(π

2 (α − 1)),
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where we also assume symmetrical random walks (ω1 = ω2 = 1/2). Using the doubling
formula for the Gamma function and the symmetry formula Γ(z)Γ(1 − z) = π

sin(πz) , it is
possible to show that C′ = C. Thus,

1
2 ( p̂(k) + p̂(−k)) = 1 − Ckα, α ∈ (0, 1) ∪ (1, 2). (44)

Now, we substitute this expression and the expression (28) in the solution (25). As a
result, we obtain

ˆ̃ρ(k, λ) =
1

λ + DCkα
, DC =

C
〈T〉 . (45)

We rewrite this expression in the form

ˆ̃ρ(k, λ)λ − 1 = −DCkα ˆ̃ρ(k, λ).

If we use now the relations (31) and (A5), then it is possible to perform the inverse
Fourier–Laplace transform of this equation easily. As a result, we obtain

∂ρ(x, t)
∂t

= DC
∂αρ(x, t)

∂|x|α + δ(x)δ(t).

The solution to this equation can be obtained by performing the inverse Fourier–
Laplace transform of the solution (45). It was done in the work [18], which showed that the
solution to this equation has the form

ρ(x, t) = (DCt)−1/αq
(

x(DCt)−1/α; α, 1
)

,

where the density q(x; α, β) is determined by the expression (37).
It remains to consider the case 〈T〉 = ∞ and 〈R2〉 = ∞. Suppose the rest times have

the distribution (35), and free paths are distributed according to the law (38). Since the
parameter α takes the values in the range 0 < α < 2, then, as it was mentioned earlier, there
is a necessity to consider two cases: 0 < α < 1 and 1 < α < 2. This is determined by the fact
that when passing to the limit k → 0, it necessary to take account of different summands
in the expansion of the function image p(x). However, such a passage to the limit has
already been performed when considering the previous case. It was shown that in the case
of symmetric random walks, the multiplier ω1 p̂(k) + ω2 p̂(−k),which is a component of
the expression (25) has the form (44). The Laplace transform of the density (35) was also
obtained by us earlier. It has the form (36). Now, we substitute the expansions (36) and (44)
in the solution (25) and will keep summands in the obtained expression that do not exceed
kα and λβ. As a result, we get

ˆ̃ρ(k, λ) =
λβ−1

λβ + DDkα
, DD = 2−α xα

0
√

πΓ(1 − α
2 )

tβ
0 Γ(1 − β)Γ( 1

2 (1 + α))
.

Here, DD is the diffusion coefficient. If we use the relations (A3) and (A5), it is possible
to show easily that the obtained expression is the solution to the equation

0Dβ
t ρ(x, t) = DD

∂αρ(x, t)
∂|x|α +

t−β

Γ(1 − β)
δ(x).

The paper [18] shows that the solution of this equation has the form

ρ(x, t) =
(

DDtβ
)−1/α

q
(

x
(

DDtβ
)−1/α

; α, β

)
,

where q(x, α, β) is the density of a fractional-stable law (37).
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As we can see, in all considered cases, the asymptotic distribution of particles at t → ∞
and x → ∞ is described with equations of the same type. The difference between these
equations lies only in the order of the derivative with respect to time or coordinate and in
the diffusion coefficient. If we assume that the case 〈T〉 < ∞ corresponds to the parameter
value β = 1, and the case 〈R2〉 < ∞ corresponds to the parameter value α = 2, then the
random walk process is described with the anomalous diffusion equation

0Dβ
t ρ(x, t) = D

∂αρ(x, t)
∂|x|α +

t−β

Γ(1 − β)
δ(x), (46)

where 0 < β � 1, 0 < α � 2, and the generalized diffusion coefficient D for different
parameter values takes different values

D =

⎧⎪⎪⎨⎪⎪⎩
DA, β = 1, α = 2,
DB, 0 < β < 1, α = 2,
DC, β = 1, 0 < α < 2,
DD, 0 < β < 1, 0 < α < 2.

(47)

As the paper [18] shows, the solution of this equation has the form

ρ(x, t) =
(

Dtβ
)−1/α

q
(

x
(

Dtβ
)−1/α

; α, β

)
, (48)

where q(x; α, β) is the density of a fractional-stable law (37). According to the properties of
fractional-stable laws [51] in case of parameter values β = 1, α = 2, the density q(x; 2, 1)
becomes the density of the normal law, and in case β = 1, the density q(x; α, 1) is the density
of a stable law. Thus, Equation (46) describes the random walk process in all considered
cases. The transition from one case to another is carried out only by replacing the value
of the generalized diffusion coefficient D. Different types of the generalized diffusion
coefficient are determined by different distributions of the rest times and the value of a free
path. It is seen from (48) that this solution possesses the self-semilarity property. Therefore,
the diffusion packet expands with time according to the law with exponent γ = β/α, i.e.,
Δ(t) ∝ D1/αtβ/α. As we can see in the case of normal diffusion, we obtain well-known
result Δ(t) ∝

√
DAt1/2.

4. the Solution to the Equation of Anomalous Diffusion

As we can see from Section 2, the CTRW process is described by the integral transport
equation, which in the one-dimensional case takes the form (24). Therefore, the Monte
Carlo method can be used to find a solution to this equation. The advantage of Monte Carlo
methods is that they allow one to find a solution in multidimensional problems, as well as
for various boundary and initial conditions. In this paper, we consider the solution to the
anomalous diffusion Equation (46) under the condition ρ(x, t) = 0 if t < 0 and ρ(x, t) → 0
if x → ±∞.

From Section 2, the simplest method of stochastic solution to the anomalous diffusion
equation immediately follows (46), based on trajectory modeling and histogram density
estimation. Each trajectory begins at the moment of time t = 0 from the origin of coordinates
x = 0 from the state of rest. In the state of rest, the particle stays for a random time T1.
Then, with equal probability, the particle jumps to the right or to the left at a distance R1.
After that, the particles will enter a state of rest. Then, the process continues in the same
way. The construction of the trajectory continues as long as the condition is met

N(T∗)

∑
k=1

Tk � T∗, (49)
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where T∗ is a given moment in time at which a solution is to be found. As soon as this
condition is no longer met, the trajectory is terminated. Then, a new trajectory begins.

Depending on the parameter values α and β, the rest times Tk and free path values Rk
have different distributions. As noted earlier, the determining parameters that influence
the form of the differential equation are the mathematical expectation of the rest time 〈R2〉.
If the mathematical expectation of the rest time has a finite value, then this corresponds
to the case β = 1. If the variance of a free path has a finite value, then this corresponds to
the case α = 2. In this paper, exponential distributions are chosen as such distributions.
Therefore, in the case β = 1, the rest times have the distribution (26). In the case α = 2,
free paths have the distribution (27). The values 0 < β < 1 correspond to the case of the
infinite mathematical expectation of the rest time. In this case, the rest times are distributed
with the density (35). The values 0 < α < 2 correspond to the case of the infinite variance
of free paths. In this case, free paths are distributed with the density (38). Thus, with
the value β = 1, random times Tk, k = 1, 2, . . . are modeled according to the formula
T = −ν−1 log(ζ), and in the case 0 < β < 1 according to the formula T = t0ζ−1/β. If α = 2
random free paths Rk, k = 1, 2, . . . are modeled according to the formula R = −μ−1 log(ζ).
If 0 < α < 2, then R = x0ζ−1/α. Here, ζ represents equally distributed random values on
the segment (0, 1].

To construct the simplest histogram estimate of the solution (46), all the region of
interest Δ = [a, b] is broken down into disjoint intervals Δi = (xi, xi+1], i = 1, 2, . . . M − 1,
x1 = a, xM = b. To construct a histogram, the trajectory is modeled until the condition is
met (49). As soon as this condition ceases to be met, the trajectory is terminated, and the
contribution from this trajectory is calculated

hj(Δi) =
I(Δi)

Δi
.

where I(Δi) is the interval indicator Δi

I(Δi) =

{
1, x∗ ∈ Δi,
0, x∗ /∈ Δi,

where x∗ is the coordinate of a particle at a moment of time T∗. As a result, the density
estimate for the interval Δi is given with the expression

ρ̃(Δi, t) =
1
N

N

∑
j=1

hj(Δi), (50)

where the summation is performed over an ensemble of N independent trajectories.
Despite the simplicity of this estimate, it has several disadvantages. Firstly, the estimate

of the solution ρ̃(Δi, t) is sought for the interval Δi. This is the source of the systematic
(horizontal) component of the error δx. Secondly, this estimate also contains the statistical
component of the error δ̂, which decreases as N−1/2 at N → ∞. It is impossible to eliminate
these errors completely; one can only reduce their value. However, a decrease in one of
these values leads to an increase in the other value or to an increase in the calculation time.

It is possible to get rid of the systematic component of the error completely δx if to
consider one of the varieties of a local estimate. As in the case of the histogram estimate,
the problem is to determine the probability density of detecting a particle at the point x∗
at a moment of time T∗. The main element of solving the problem of transport theory by
the Monte Carlo method, trajectory modeling, remains unchanged. The difference lies in
the estimation method. In the case of a local estimate, the probability of a particle hitting a
point (x∗, T∗) is calculated assuming that the next collision is the final one. This probability
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is calculated after each collision (state change) of the particle. As a result, for the CTRW
process, this probability is given by the value

ψ(ξ, τ) = 1
2 p(ξ)Q(τ), (51)

where Q(τ) =
∫ ∞

τ q(t)dt. It should be pointed out that for the CTRW process, this proba-
bility is calculated only for the transition «rest»→«jump». For transitions «jump»→«rest»,
this probability will be equal to zero. As a result, the contribution to the density estimate
from each individual trajectory has the form

hj(x∗, T∗) =
K(T∗)

∑
i=1

ψ(|x∗ − xi|, T∗ − ti),

where K(T∗) is the number of state change acts «rest»→«jump» that occurred for the
interval of time (0, T∗). The density estimate takes the form

ρ̃(x∗, T∗) = 1
N

N

∑
j=1

hj(x∗, T∗), (52)

where the summation is performed over an ensemble of N independent trajectories.
As we can see, the local estimate evaluates the density at a given point x∗. This

means that this estimate does not contain a systematic component of the error δx, which
is connected with the finite value of the interval Δi, as it was in the histogram estimate.
Moreover, since each individual trajectory contributes more than once, as was the case with
the histogram estimate and K(T∗) times, then this leads to a decrease in the statistical error.

The results of solving Equation (46) are given in Figures 1–3. In these figures, the points
correspond to the results of the local estimation (52), the circles correspond to the results of
the histogram estimation (50), and the solid curves correspond to the solution (48) with the
corresponding diffusion coefficient determined from the relation (47). The solution results
are given for different points in time. From Figure 1, it is clear that for the parameter value
β = 0.3, the results of the local and histogram estimation coincide with the solution (48)
at time T∗ = 10. This means that by this time, the walk process has already entered the
asymptotic regime. Thus, for the given parameter values, the estimate (52) can be used
to solve Equation (46) at times T∗ � 10. In the case β = 0.6 with the time values T∗ = 10
and 100, it is clear (see Figure 1 on the right) that the results of the local estimate and
solution (48) differ. This means that at such times, the random walk process has not yet
reached the asymptotic regime. However, at times T∗ = 103 and 104, the random walk
process already reaches the asymptotic regime. This means that at times T∗ � 103, the
estimate (52) can be used to solve numerically Equation (46) for the given parameter values.
Similar conclusions can be drawn for other presented solution results. For an exponential
distribution of rest times and α = 0.7 and α = 1.4 (Figure 2), it is clear that the random
walk process reaches the asymptotic regime at time T∗ = 10. Thus, for the indicated values
of the parameters, the estimate (52) can be used to solve Equation (46) at times T∗ � 10. In
the case β = 0.7 and α = 0.9 (see Figure 3 on the left), the random walk process becomes
asymptotic at time T∗ = 1000, and for the values β = 0.7, α = 1.4 (see Figure 3 on the right)
at time T∗ = 100.
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Figure 1. The solution to Equation (46) for the case of exponential distribution of free paths (27) and
β = 0.3 (on the left) and β = 0.6 (on the right). The solutions are given for four values of time T, as
indicated in the figures. The points are local estimate results (52), the circles are histogram estimation
results (50), and the solid curve is the solution (48) with a generalized diffusion coefficient D = DB.
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Figure 2. The solution to Equation (46) for the case of exponential distribution of rest times (26) and
α = 0.7 (on the left) and α = 1.4 (on the right). The solutions are given for three values of time T, as
indicated in the figures. The points are local estimate results (52), the circles are histogram estimation
results (50), the solid curve is the solution (48) with a generalized diffusion coefficient D = DC.
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Figure 3. The solution to Equation (46) for the case β = 0.7, α = 0.9 (on the left) and α = 1.4 (on the

right). The solutions are given for three values of time T, as indicated in the figures. The points are
the results of a local estimate (52), the circles are histogram estimation results (50), and the solid curve
is the solution (48) with a generalized diffusion coefficient D = DD.

5. Conclusions

The use of the theory of anomalous diffusion and equations in fractional derivatives
to describe combustion processes is only at the initial stage of research. At the moment,
there are not many papers in which this approach is used to describe combustion processes.
However, existing experimental studies (see, for example [37]) indicate the legitimacy of
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this approach. One of the main difficulties in using equations in fractional derivatives is
finding their solutions. Analytical methods for solving equations of this kind are only at
the stage of development. Therefore, one of the main methods of solving equations in
fractional derivatives is finite difference methods. In the papers [41–45], the numerical
solution of the equation of anomalous diffusion is investigated, which is expressed in terms
of derivatives of fractional order only in the case when one of the derivatives (or derivative
with respect to time or derivative with respect to coordinate) is not of integer order. In this
paper, we propose a numerical method for solving the anomalous diffusion equation in
which both the time derivative and the coordinate derivative can be of non-integer order.

This paper considers the numerical method for solving the anomalous diffusion
equation based on the use of a local estimate. This method is based on the idea of modeling
random realizations of particle trajectories. However, unlike the histogram method for
estimating the distribution density, each individual trajectory contributes to the estimate
not once, but several times. In the proposed approach, after each act of a change in the state
of a particle, the probability is calculated that to get to a given point with the coordinate
x∗ in a moment of time t∗, the following collision will turn out to be the final. For the
considered model of walks, this probability has the form (51). This local estimate has
several advantages over the histogram estimate. Since the density is estimated at a given
point x∗, then this means that the result of the estimate does not contain a systematic
component of the error δx. Specifying a set of points x∗i , i = 1, 2, . . . , M, it becomes possible
to estimate the solution at several points at once. Moreover, one trajectory will contribute
to all points at once x∗i . As a result, the probability ψ(ξ, τ), determined by (51), is calculated
after each act of changing the state of a particle; then, this leads to a considerable decrease
in statistical error. Taking account of the fact that from one trajectory, the contribution can
be calculated at once to all points x∗i , i = 1, 2, . . . , M of a given set, this means that the
desired solution can be constructed as a smooth function of the coordinate x.

In conclusion, one more important point should be noted. As shown in this study, the
equation of anomalous diffusion (46) describes the asymptotic distribution (at t → ∞) of
particles in the CTRW process. A characteristic feature of this process is that the random
rest times of a particle are characterized by a distribution with an infinite mathematical
expectation 〈T〉 = ∞, and the random free paths in the case of the exponent α ∈ (1, 2) are
characterized by an infinite second moment 〈R2〉 = ∞, and in the case of the exponent
value α ∈ (0, 1], then by the infinite mathematical expectation 〈R〉 = ∞. Taking into
account that in the process of CTRW, a particle instantly moves from one point in space
to another (instantaneous jumps), this leads to a non-physical result: in an arbitrarily
small time interval, a particle can be at an arbitrarily large distance from the point of its
previous position. It should be noted that the random walk process is also characterized by
instantaneous jumps that leads to the diffusion Equation (33). However, as it was shown at
the beginning of Section 3, to obtain normal diffusion, it is necessary to assume that the
distributions of the rest time and the distribution of the jump value of a particle have a
finite mathematical expectation and a finite variance. As a result, the instantaneous motion
of a particle from one point in space to another is compensated by the small value of these
jumps. In the case of a power-law distribution of the jump value (38), the probability
of large jumps remains significant for any jump value. As the value decreases of α, this
probability increases. This property is characteristic of power distributions. Therefore,
when using the equation of anomalous diffusion (46) to describe combustion processes,
especially in furnaces where the geometry is given, a certain amount of care must be taken.
It should be understood that the solution to the anomalous diffusion equation decreases
according to a power law at x → ∞ and is different from zero in the entire space. The
latter means that the probability of detecting a particle at an arbitrarily large distance from
the source at an arbitrarily close moment of time to the initial time is different from zero.
Taking account of the fact that this probability decreases according to a power law, then
this probability will be significant, and it can no longer be neglected.
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Appendix A. Fractional Derivation Operators

Let us give the definitions and properties of some fractional differentiation operators
which were used in the paper. The fractional Riemann–Liouville derivative of order ν > 1
of the function f (x) are the operators

aDν
x f (x) =

1
Γ(n − ν)

dn

dxn

∫ x

a

f (t)dt
(x − t)ν−n+1 ,

bDν
x f (x) =

(−1)n

Γ(n − ν)

dn

dxn

∫ b

x

f (t)dt
(t − x)ν−n+1 ,

where n = [ν] + 1, ν = [ν] + {ν} [56]. Here, [ν] is the integer part of number ν, and {ν}
is the fractional part of number ν (0 � {ν} < 1). The operator aDν

x is called the left-sided
Riemann–Liouville derivative, and the operator bDν

x is the right-sided Riemann–Liouville
derivative. The Fourier transform of these operators in the case a = −∞ and b = ∞ has
the form ∫ ∞

−∞
eikx −∞Dν

x f (x)dx = (−ik)ν f̂ (k),
∫ ∞

−∞
eikx ∞Dν

x f (x)dx = (ik)ν f̂ (k). (A1)

To generalize the fractional time derivative, we need the left-sided fractional Riemann–
Liouville derivative of order 0 < ν < 1 for the function defined on the semiaxis [0, ∞) [56]

0Dν
t f (t) =

1
Γ(n − 1)

d
dt

∫ t

0

f (τ)dτ

(t − τ)ν−n+1 (A2)

The Laplace transform of this differentiation operator has the form∫ ∞

0
e−λt

0Dν
t f (t)dt = λν f̃ (λ). (A3)

The operator bears the name of the fractional Riesz derivative

∂ν

∂|x|ν =
−1

2 cos(πν/2)
(−∞Dν

x +
∞Dν

x). (A4)

Using the definitions (A1) it is easy to show that∫ ∞

−∞
eikx ∂ν f (x)

∂|x|ν dx = −|k|ν f̂ (k). (A5)
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Abstract: Fractal algorithms for signal analysis are developed from geometric fractals and can be
used to describe various complex signals in nature. A roughness scaling extraction algorithm with
first-order flattening (RSE-f1) was shown in our previous studies to have a high accuracy, strong
noise resistance, and a unique capacity to recognize the complexity of non-fractals that are common
in signals. In this study, its disadvantage of a long calculation duration was addressed by using a
dichotomy-binary strategy. The accelerated RSE-f1 algorithm (A-RSE-f1) retains the three above-
mentioned advantages of the original algorithm according to theoretical analysis and artificial signal
testing, while its calculation speed is significantly accelerated by 13 fold, which also makes it faster
than the typical Higuchi algorithm. Afterwards, the vibration signals of the milling process are
analyzed using the A-RSE-f1 algorithm, demonstrating the ability to distinguish different machining
statuses (idle, stable, and chatter) effectively. The results of this study demonstrate that the RSE
algorithm has been improved to meet the requirements of practical engineering with both a fast speed
and a high performance.

Keywords: roughness scaling extraction; fractal dimension; accelerated algorithm; Weierstrass–
Mandelbrot function; milling vibration signal

MSC: 37M10

1. Introduction

Pioneered by the mathematician Mandelbrot [1,2], fractal geometry was established
to investigate the morphological characteristics of filling space in the form of non-integer
dimensions. Early studies have revealed that many features in nature have fractal charac-
teristics, so fractal geometry is widely applied to a large variety of research areas, such as
the influence of the fractal features of transects across vegetation on the arthropods living
on its surface [3], the relationship between biological size and physiological function [4],
and observations of the large-scale structure of the universe [5]. Follow-up studies found
that fractals not only existed in features of nature, but also in various signals such as
physiological electrical signals [6].

Fractal dimension (FD) is often used to measure the degree of geometric irregular-
ity. Generally, the higher the complexity of the signal, the larger the corresponding FD

value [7]. Therefore, many scholars have introduced FD into the research of signal process-
ing in the medical field, such as electroencephalograms (EEG) [8] and electrocardiograms
(ECG) [9–12], and have made remarkable achievements.

In recent years, signal fractals have been extended to the field of mechanical processing,
such as the fractal characteristics of ultrasonic echoes and their application to nondestructive
testing [13], the multifractal characteristics of ball mill dynamics [14], and the application
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of vibration signal multifractals in fault diagnosis [15]. As a typical nonlinear signal,
mechanical vibration has obvious fractal characteristics, and the complexity of the signal is
closely related to the vibration state of the machine tool. Therefore, the fractal analysis of
signals is also used to judge the machining status of machine tools. Ji et al. [16,17] proposed
a multi-indicator chatter prediction method combining FD, power spectral entropy, and
standard deviation. Zhuo et al. [18] identified chatter by calculating the FD of acceleration
signals in thin-wall blade side milling. Chen et al. [19] proposed a multifractal method for
chatter detection in milling processes. It can be seen that the application of FD in the field
of manufacturing has been recognized.

There are various algorithms for calculating FD, including the box-counting (BC)
algorithm [20], the Katz algorithm [21], and the Higuchi algorithm [22]. The Higuchi and
box-counting algorithms have been widely used due to their practical applicabilities and
fast speed [23–26]. In our previous study, a roughness scaling extraction (RSE) algorithm
was proposed [27,28], and it has a higher accuracy and anti-noise performance compared
with other traditional algorithms. The RSE algorithm can identify non-fractal features
in signals [29], which is an ability that traditional fractal algorithms do not have. The
RSE algorithm is based on the exponential relationship between scale (L) and root-mean-
squared roughness (Rq), as shown in Equation (1). Firstly, Equation (2) is used to calculate
the roughness values at each scale (Li, Rqi), where i = 1, 2, . . . , n represents the serial

number of the data point, and y represents the average of yi, y = ∑n
i=1 yi
n , and then to

obtain the dimension value D through Equation (3). L = [L1, L2, . . . , Lp] represents the
signal length at different scales, as well as the number of signal points (Li = [Li−1 × δ], δ
represents the scaling ratio).

Rq = AL2−D (1)

Rq =

√
∑n

i=1(yi − y)2

n
(2)

log Rq = (2 − D) log L + log A (3)

The key procedure of the RSE algorithm is the flattening modification of sub-sequences
that are segmented out of the concerned signal. The RSE algorithm with first-order flatten-
ing (RSE-f1) is the most accurate for fractal signals. First-order flattening refers to first-order
polynomial fitting of the sub-sequences, as shown in Equation (4), where the expressions of
a, b, and xi are shown in Equation (5). The sequence of the RSE-f1 algorithm consists of the
elements mi calculated by Equation (6).

ŷi = b + axi (4)

a =
∑n

i=1 xiyi − nx y

∑n
i=1 x2

i − nx2 ; b = y − ax2; xi = i (5)

mi = yi − ŷi (6)

However, the disadvantage of the RSE algorithm is that calculations are time-intensive,
which limits its application in practical engineering. Considering that the on-line recog-
nition of the machining status of machine tools requires a fast response speed, the RSE
algorithm needs to be accelerated to reflect the signal characteristics in a short delay of
calculation. Therefore, an accelerated RSE-f1 (A-RSE-f1) algorithm based on a dichotomy
and binary strategy is proposed in this paper. Based on theoretical analysis and artificial
fractal signal testing, the A-RSE-f1 algorithm is much faster than the original RSE-f1 and
the Higuchi algorithm, and it retains the high anti-noise performance of the RSE-f1 algo-
rithm. Experimental results demonstrated that the A-RSE-f1 algorithm could distinguish
the different machining statuses effectively of machining tools. In addition, the relationship
between roughness and scale of the A-RSE-f1 algorithm is equivalent to that of the RSE-f1.
Thus, the improvement does not change the fractal calculation principle of the algorithm.
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2. Methods and Samples

2.1. Improvement of the RSE Algorithm

Specifically, the large scale sequence is divided into two small scale sequences, and
the small scale sequence is divided successively until each subsequence contains only
one element. In this way, it is guaranteed that sub-sequences at different scales do not
overlap with each other and that the set of sub-sequences only covers the signal sequence,
thus ensuring the calculation accuracy. It also adaptively changes the summation times
of subsequence roughness according to the scale, which greatly improves the operation
speed of the algorithm. As the formula and code of RSE-f0 are relatively simple, it is
possible to find the core reason why the RSE algorithm requires a long time, so a dichotomy
strategy was first used to preliminarily improve RSE-f0. In order to improve the accuracy
of A-RSE-f0, it needs to carry out first-order flattening and realize random δ through a
binary strategy, so as to obtain A-RSE-f1.

2.1.1. Accelerated RSE-f0 Algorithm

In order to accelerate the RSE algorithm, it must be clear what is taking the longest
time in the program. Therefore, the pseudocode of the RSE algorithm without flattening
(RSE-f0) can be written based on the above equations, as shown in Algorithm 1, where
stepN represents the number of subsequences of different lengths, and subdatai, Rq(m)i
represent the subsequence and roughness extracted for the i-th time at a certain scale,
respectively. As the roughness of the small scale subsequence varies greatly in different
positions of the signal sequence, it needs to be solved many times and then averaged, as
shown in Lines 4 to 6 of the pseudocode. In order to ensure sufficient representativeness of
the calculated roughness and a certain computational efficiency of the RSE-f0 algorithm,
the roughness values of the 50 randomly selected sub-sequences are averaged as the final
roughness value corresponding to the scale. However, it is this part of the operation that
still greatly increases the time cost of the RSE-f0 algorithm. According to statistics, the
4∼6 lines of the pseudocode account for 99% of the calculation duration of the algorithm. It
is understood that, when the sub-sequence scale is large, many of the 50 randomly selected
sub-sequences can overlap, and when the sub-sequence scale is small, it is difficult to
completely cover the signal by randomly selecting positions. Therefore, to accelerate the
RSE-f0 algorithm, calculating the roughness adaptively while covering the entire signal
is key.

Algorithm 1 RSE-f0 algorithm

Input: data: signal data; δ: scaling ratio; minpixle: the number of elements of the; smallest
scale; repeatnum: the calculating times of the roughness of the same scale

Output: D: the dimension value of the signal

1: stepN ← [
log( minpixle

n )
log δ ]

2: L ← N × δ[0 to stepN−1 do], Rq(1)
3: for each m ∈ [2, stepN] do
4: for each i ∈ [1, repeatnum] do
5: subdatai, Rq(m)i
6: end for
7: Rq(m) ← mean(Rq(m)i)
8: end for
9: D ← 2 − log Rq

log L

Aiming at this improvement, a preliminary accelerated algorithm based on RSE-f0
is proposed with a scaling ratio of 0.5. First, the dichotomy method is employed, thus
the calculation flow is reversed, i.e., the roughness values are obtained from large sub-
sequences to small ones in the original RSE-f0, while those in the A-RSE-f0 are from small
sub-sequences to large ones. As sketched in Figure 1, each element in the sequence can be
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regarded as a cell, and the combination of adjacent elements yields the next cell, which
had twice the element number of the previous one. By analogy, the set of sub-sequences
at various scales can be obtained, and the sub-sequences have no overlaps, which also
ensures the full coverage of the signal. Obviously, based on the dichotomy method, the
calculation times of the large-scale subsequence are shorter, while the calculation times of
the small-scale subsequence are longer. For example, there are two sub-sequences after one
scaling (L1 = 0.5× L), while there are 1

0.5n sub-sequences of the n-th scaling (Ln = 0.5n × L),
which conforms to the previous goal of adaptively extracting the number of sub-sequences.

Figure 1. The schematic diagram of improving flow of A-RSE-f0 based on dichotomy method.

Further, the expression of the A-RSE-f0 algorithm is transformed, as shown in Equa-
tions (7) and (8). Equation (7) can be derived from Equation (1), where A = ∑n

i=1 y2
i

and B = ∑n
i=1 yi, thus obtaining Equation (8). The problem is then transformed into the

construction of A and B matrices containing all scales by using the above dichotomy flow.

R2
q =

∑n
i=1 y2

i
n

− (
∑n

i=1 yi

n
)2 (7)

R2
q =

A
n
− (

B
n
)2 (8)

2.1.2. The Accelerated RSE-f1 Algorithm

The next aim of this study is to improve the RSE algorithm with first-order flattening
(RSE-f1), whose accuracy is the highest [27]. The improved method based on the dichotomy
idea can be extended to RSE-f1 as follows. Similar to that of A-RSE-f0, the expression
of the A-RSE-f1 algorithm is also transformed. Equation (9) can be derived based on
Equations (1) and (6). In Equation (9), A = ∑n

i=1 y2
i , C = ∑n

i=1 xiyi and B = ∑n
i=1 yi are

set to obtain Equation (10). In this way, the problem is transformed into the construction
of A, B, and C matrices containing various scales, and the solution of the intermediate
parameters a and b. Thus, an A-RSE-f1 algorithm with δ = 0.5 is obtained.

R2
q =

∑n
i=1 y2

i − a ∑n
i=1 xiyi − b ∑n

i=1 yi

n
(9)

R2
q =

A − aC − bB
n

(10)

However, in order to extend the scaling ratio of A-RSE-f1 to any value of δ to enhance
its applicability, a binary strategy needs to be introduced. Specifically, extending to any
δ is equivalent to the problem of extracting the subsequence between any two points in
the signal sequence. Combined with Equations (9) and (10), the equivalent issue is how to
quickly obtain the sum of the corresponding elements of the subsequence at any position.

For example, in order to obtain the sum from the first point to the Pstart-th point in
a sequence, the following operations can be conducted. Firstly, Pstart is converted into
binary numbers in the matrix constructed when δ = 0.5 is used based on dichotomy. The
ibin-th bit in binary then corresponds to the ibin-th row (a subsequence of length 2ibin−1)
and the (Pstart >> (ibin − 1)) column element of the matrix, where >> represents the
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right-shift operation in binary. The sum of all elements of the matrix corresponding to 1 in
the binary number is the sum of the target sequence. As shown in Figure 2, if Pstart = 7,
it can be written as 111 after it is converted to binary. Its first digit (from right to left) is
1, corresponding to the first row and seventh column of the matrix. The second digit is
also 1, corresponding to the second row and third column of the matrix. The third digit is
also 1, corresponding to the third row and the first column of the matrix. The above three
elements in the matrix are then summed, as shown in Equation (11). The problem is then
transformed from a sum of seven elements to a sum of three elements, effectively reducing
the time of summation and thus reducing the calculation duration. If the sum of elements
between any two points is required, the sum from the first point to the Pstart-th point
SUMPstart and the sum from the first point to the Pend-th point SUMPend can be obtained by
the above algorithm, respectively, and the sum from the Pstart-th point to the Pend-th point
can then be obtained by SUMPend − SUMPstart , as shown in Equation (12). Understandably,
the overlapping elements cancel each other out while they are subtracted, resulting in a
sum of the target elements, as shown in Figure 3.

Figure 2. A diagram of the sum from the first point to the Pstart-th (=7) point of the sequence in binary,
which is employed for A-RSE-f1.

Figure 3. Diagram of summation of subsequence from Pstart to Pend.

To summarize the above methods in a mathematical language, auxiliary matrices A, B,
and C are denoted as TEMP, as shown in Equation (11), where TEMP(ibin, P >> (ibin − 1))
represents the element of the (P >> (ibin − 1)) column of the ibin row of the auxiliary
matrix. In Equation (13), ζ(i) represents a two-valued function that returns 1 when the ibin
bit of the binary number is 1, and 0 when the ibin bit is 0. After converting Pstart into binary
(Pbin), traverse all the elements in the auxiliary matrix corresponding to 1 contained in Pbin,
and these values are then summed. Therefore, the number of summations in Equation (11)
depends on the number of 1 s contained in the Pbin.

SUMpstart = ∑ TEMP(ibin, Pstart >> (i − 1))ζ(i) (11)
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SUM = SUMPend − SUMPstart (12)

ζ(i) =

{
0 if the i-th bit of P in binary is 0
1 if the i-th bit of P in binary is 1

(13)

In such a manner, the A-RSE-f1 algorithm achieved the aim of being adaptive and
providing full coverage in the sub-sequence extraction based on the idea of a dichotomy
so as to avoid repeated calculations caused by random selections with fixed times. The
binary strategy was then used to reduce the summation times, thus further accelerating
the summation process of corresponding elements. Compared with the RSE-f1 algorithm,
the improvements of the A-RSE-f1 algorithm are based on equivalent operations via the
dichotomy-binary strategy and thus do not change its principle, maintaining the accuracy
of calculation.

2.2. Samples
2.2.1. Artificial Fractal and Non-Fractal Signals

As the true value of D cannot be obtained in prior for the actual fractal features, it
is difficult to evaluate the advantages and disadvantages of different fractal algorithms
by using signals from nature. Therefore, using a fractal function to generate ideal fractal
signals or surfaces is an important approach to evaluate the performance of different fractal
algorithms. The fractal function has the property of being continuous everywhere, but not
differentiable [29]. The functions commonly used for generating fractal signals include the
Weierstrass–Mandelbrot (W-M) function [30,31], the Monte Carlo function [32], the Takagi
function [33], and the Brownian motion function [34]. Among them, the W-M function is
widely used in the field of fractal analysis [35–39]. Moreover, the abnormal implementation
of the W-M function enables it to generate non-fractal profiles or surfaces [29]. According
to our previous research, actual signals or surfaces in nature also have non-fractal features,
while traditional fractal algorithms (including Higuchi and box-counting) cannot recognize
the complexity of non-fractal characteristics. Therefore, in this study, the W-M function is
used to generate both fractal and non-fractal signals, so as to evaluate the performances of
different algorithms.

The mathematical expression of the W-M function is shown in Equation (14), where
D is the ideal Dimension value of the generated signals; γ is the density of frequencies in
the signal; M is the number of superposed ridges; φn is a random phase shift; and n is a
frequency index. Fifty groups of fractal signals for each D, ranging from 0.1 to 2 with an
interval of 0.1, were generated by the W-M function. Relevant pictures can be seen in the
previous research [27]. It can be seen that, with the increase in the D value, the complexity
of the curve is higher and the fluctuation of it is more severe.

W(x) =
M

∑
n=0

γ(D−2)n[cosφn − cos(γnx + φn)] (14)

2.2.2. Milling Vibration Signals

In order to apply the A-RSE-f1 algorithm in practical engineering, it is not sufficient to
test its performance only with the generated ideal fractal signals. It also needs to use real
machining signals for verification purposes. Milling is one of the most important machin-
ing technologies in the field of manufacturing. However, the severe vibration of machine
tools usually leads to the deterioration of workpiece surface quality, thus reducing work
efficiency. Therefore, many methods to predict and suppress chatter have been proposed,
including the establishment of a stability lobe diagram (SLD) [40], a cutting dynamics
model [41], and online monitoring [42,43]. Recognizing the signal characteristics of ma-
chine tools is an important on-line monitoring method for preventing chatter [44–48]. For
industries, an acceleration signal is generally recommended [49]. Therefore, the application
effect of the A-RSE-f1 algorithm in practical engineering was verified by milling acceler-
ation signals. The experimental equipment and data analysis are illustrated in Figure 4.
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The machining signals used in this study were the acceleration signals of the machine tool
spindle collected by the experimental equipment. The data acquisition process was carried
out using an accelerometer fixed on the spindle of the machine tool. The data of the sensor
were collected using the Simens LMS TestLab 17 software and finally transmitted to the
computer. The vertical machining center was the EUMA DU810, and the accelerometer
used was a PCB piezoelectric triaxial vibration sensor. The partial enlargement of the
workbench and the workpiece surface obtained by two machining statuses (stable and
chatter) are shown in Figure 4b. The data acquisition equipment was an LMSSCADASIII
multi-channel data acquisition front end, as shown in Figure 4c.

Figure 4. The final assembly of: (a) the milling equipment, (b) workbench and workpiece surfaces,
and (c) LMS signal analyzer.

3. Results and Discussion

3.1. Ideal Fractal Signals Testing

In order to test the improvement effect of this study, the original RSE-f1, A-RSE-f1,
Higuchi, and BC algorithms were used to calculate 20 × 50 artificial signals generated by
the above W-M function. In this study, δ of the A-RSE-f1 has been extended to any value.
Therefore, in order to evaluate the improved algorithm comparatively, the δ values of both
A-RSE-f1 and RSE-f1 were set as δ = 0.85.

Firstly, the calculated dimension (Dc) values by RSE-f1, A-RSE-f1, Higuchi, and BC
algorithms were compared with the ideal dimension (Di) values, as plotted in Figure 5.
Obviously, when D value is less than 1, the calculation results of the Higuchi and BC
algorithms are close to 1, while both the RSE-f1 and A-RSE-f1 algorithms could effectively
approximate the Di value. When the D value is above 1, the curves of RSE-f1, A-RSE-f1,
and Higuchi are very close to Di, but there is significant deviation in the BC curve.

To quantify the deviation of the above four algorithms, the logarithmic coordinate
plot of the mean relative error (MRE) under different Di were summarized, as shown in
Figure 6. It can be seen that, when Di is less than 1, the MRE values of RSE-f1 and A-RSE-f1
are much smaller than those of the Higuchi and BC algorithms, consistent with the results
in Figure 5. These two traditional algorithms are completely invalid in the non-fractal
region. When Di is greater than 1, the MRE values of BC are generally greater than those of
RSE-f1 and A-RSE-f1, while the Higuchi algorithm has a high accuracy when Di is close to
2. It can also be observed in Figure 5 that the Dc values of the Higuchi algorithm are all
larger than Di, which is consistent with what is shown in Figure 6. By contrast, RSE-f1 and
A-RSE-f1 both have high computational accuracy even in the non-fractal region, and their
MREs are below 2% in the fractal region. Therefore, RSE-f1 and A-RSE-f1 are applicable to
a wider range than are the other algorithms in terms of analyzing the signals of fractal and
non-fractal regions.
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Figure 5. Comparision of the ideal dimension (Di) and the calculated dimension (Dc) by RSE-f1,
A-RSE-f1 Higuchi, and BC algorithms.

Figure 6. The logarithmic coordinate plot of the mean relative error (MRE) of RSE-f1, A-RSE-f1,
Higuchi, and BC algorithms under different Di values.

A major advantage of A-RSE-f1 compared with RSE-f1 is that its calculation speed
is greatly accelerated. Figure 7 shows the single running duration (SRD) and standard
deviation (STD) of the RSE-f1, A-RSE-f1, Higuchi, and BC algorithms. The calculation
speed of A-RSE-f1 is significantly higher than that of the RSE-f1 algorithm by about 13 folds,
and is also faster than that of the Higuchi algorithm, indicating that A-RSE-f1 based on
a dichotomy and binary strategy has an advantage in terms of calculation speed. The
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A-RSE-f1 algorithm only needs 7.8 × 10−3 s for a single running, which meets the practical
engineering requirements. However, the RSE algorithm has the disadvantage of a large
fluctuation in the results. As shown in Figure 7, the STD values of both RSE algorithms are
higher than those of the Higuchi and BC algorithms, so multiple measurements are needed
to eliminate such fluctuation.

Figure 7. The single running Duration (SRD) and standard deviation (STD) of the RSE-f1, A-RSE-f1,
Higuchi, and BC algorithms.

In essence, the collected signals in reality are always mixed with noise, which will
reduce the efficiency of the calculations [50], so the algorithm must have an ability to resist
noise. Therefore, the anti-noise performance of the RSE-f1, A-RSE-f1, Higuchi, and BC
algorithms were also compared. The signal–noise ratios (SNRs) used in this study were
0, 5, . . . , 50 dB. As shown in Figure 8, the MRE values of the artificial signals after adding
noise were calculated by the four algorithms. It can be seen that, when the Di and SNR are
both small, the anti-noise performance of all algorithms is low, because noise dominates the
characteristics of the signals, and the Dc values are all close to 2, leading to large calculation
errors. With the increase in SNR, the MRE values of all algorithms except BC gradually
decrease, because the proportion of noise decreases. The BC algorithm shows an opposite
trend in many cases. As indicated in Figure 5, the Dc values of the BC algorithm are low,
and the deviation becomes larger with the increase in Di. When Di is large, noise plays a
role in compensation, making BC more accurate, which is an interesting result. Globally,
the MREs of the RSE-f1 and A-RSE-f1 algorithms are lower than those of the Higuchi and
BC algorithms, demonstrating that the RSE-f1 algorithm has a strong anti-noise property,
and its accelerated version, A-RSE-f1, retains this property.
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Figure 8. The comparision of anti-noise performances of RSE-f1, A-RSE-f1 Higuchi, and BC algo-
rithms under different Di and signal-noise-ratio (SNR) values.

3.2. Chatter Recognition in Milling

As shown in Figures 9 and 10, the typical acceleration signals of stable and chatter
statuses are significantly different. The above signals were denoised by a five-order wavelet
method, and the two sets of signals were calculated by the RSE-f1, A-RSE-f1, Higuchi, and
BC algorithms. The length of the stable signal in Figure 9 is 30 s, of which 5–25 s is under a
stable status of machining. The length of the chatter signal in Figure 10 is 13.5 s, of which
3.5–12 s is under a chatter status of machining. It can be seen that the calculation results of
the RSE-f1, A-RSE-f1, and Higuchi algorithms vary accordingly, along with the operations
and statuses of the milling process. The D values of stable milling are less than 1.4, and
those of chatter milling are greater than 1.9. However, the D values calculated by the BC
algorithm are about 1.5 in the stable milling and 1.7 in the chatter milling. The BC algorithm
might not distinguish the acceleration signals of stable and chatter milling effectively and
may not be suitable for the chatter recognition of acceleration signals. In addition, the D
values of the idling status calculated by RSE-f1 and A-RSE-f1 are generally less than 1,
indicating the non-fractal nature of the signals under such conditions. The Higuchi and
BC algorithms cannot recognize non-fractal features, so their chatter recognition abilities
are weaker. In particular, the D values of acceleration signals calculated by the Higuchi
method in the idling status are basically the same as those in stable machining, as shown in
Figure 9.

Vibration interference is an important factor restricting the development of computer
numerical control (CNC) machine tool technology, including free vibration, forced vibration,
and self-excited vibration. Chatter is a kind of complex, self-excited vibration, which is
also the most serious form of vibration affecting the processing system. The real-time
monitoring and recognition method can detect the status change of machine tools in time,
so as to enable the suppression of the harm of chatter to workpiece and machine tools.
However, the developments of chatter monitoring and suppression require recognition
algorithms with both high accuracy and speed.

In order to further evaluate the application effect of A-RSE-f1 in signal recognition,
40 groups of milling acceleration signals (20 stable signals and 20 chatter signals) are
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identified by the above four algorithms. The calculation durations for 40 groups of signals
are listed in Table 1. The calculation durations are ordered as follows: RSE-f1 > Higuchi
> A-RSE-f1 > BC. It can be seen that A-RSE-f1 is a significant improvement over RSE-f1
in terms of calculation speed and can thus meet the computing requirements of practical
engineering applications.

Figure 9. The acceleration signals of stable milling and D values of signal calculated by RSE-f1,
A-RSE-f1, Higuchi, and BC algorithms.

Figure 10. The acceleration signals of chatter status and D values of signal calculated by RSE-f1,
A-RSE-f1, Higuchi, and BC algorithms.
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Table 1. The calculation durations of RSE-f1, A-RSE-f1, Higuchi, and BC algorithms to process all
40 sets of vibration signals.

Algorithm RSE-f1 A-RSE-f1 Higuchi BC

Duration (s) 2439 157.7 249.1 65.41

Machining statuses can be idling, stable, or chatter. In order to ensure the consistent
proportion of data in various machining statuses and the representativeness of signal
samples, 100 D values were randomly selected from the results of 20 chatter signals in
the idling stage and the machining stage and of 20 stable signals in the signal machining
stage, respectively, so each machining status calculated by each algorithm has 2000 data
points. The above data are plotted in Figure 11 and form the histogram of the D-value
distribution of 40 signals at different statuses calculated by the four algorithms. Obviously,
the results of the RSE-f1, A-RSE-f1, and Higuchi algorithms have less overlap in the stable
and chatter parts than the BC algorithm, indicating that these three algorithms can better
identify the chatter characteristics of milling acceleration signals. As for idling and stable
statuses, it can be seen that the RSE-f1 and A-RSE-f1 algorithms have the least overlap.
As the acceleration signal of the machine tool spindle is relatively simple during idling, it
embodies more non-fractal characteristics. The calculated D values of RSE-f1 and A-RSE-f1
are basically less than 1, which is consistent with the performance of actual machining,
indicating that these two algorithms are applicable to a wider range. However, the Higuchi
and BC algorithms cannot recognize non-fractal signals, so the calculation results of the
idling part will partially overlap with stable processing.

Figure 11. Histogram of D values distribution of 40 signals at different statuses calculated by RSE-f1,
A-RSE-f1, Higuchi, and BC algorithms.

The A-RSE-f1 algorithm is significantly faster than the RSE-f1 algorithm and even
faster than the Higuchi algorithm. Moreover, A-RSE-f1 can recognize non-fractal features,
so the machining status of idling, stable, and chatter can be distinguished significantly
according to the acceleration signal of the spindle of the machine tool. Although the
calculation speed of the BC algorithm is faster, its accuracy and noise resistance are weak,
and it is difficult to distinguish different machining statuses effectively. Therefore, the
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A-RSE-f1 algorithm has the best comprehensive performance with a fast calculation speed,
a high accuracy, strong noise resistance, and a wide application range, and can distinguish
different processing statuses effectively.

3.3. Effects of Cutting Parameters

The establishment of a milling stability lobe diagram [51] is a method used to predict
machining status, and the occurrence of chatter can be avoided by inducing stable cutting
parameters under certain working conditions. Therefore, the selection of machining param-
eters is closely related to machining status and vibration signal. The influence of processing
parameters on signal dimension will be explored below.

The experimental equipment is described in Section 2.2.2. The workpieces are 7075
120 mm × 120 mm × 10 mm aluminum alloy square plates, and the cutting tool is a
tungsten steel 3-edge milling cutter with A diameter of 10 mm. A total of 36 groups of
machining parameters, including changes in feed, cut depth, and speed, are summarized
in Table 2. Fifty windows were randomly selected for each signal (each window contains
1024 data points), and 50 D values were calculated and averaged. According to the above
analysis, the calculation results of RSE-f1 and A-RSE-f1 are almost the same, while the
calculation duration of RSE-f1 is much longer, so only the A-RSE-f1, Higuchi, and BC
algorithms were used for calculation. The calculation results are illustrated in Figure 12.

Table 2. 36 groups of machining parameters with various feed, cut depth and speed values.

No. Speed (r/s) Depth (10−3 m) Feed (10−3 m/s)

1

50.0 1.0

8.3
2 9.2
3 10.0

. . . . . .
13 18.3

14

150.0

0.5

6.7
15 0.7
16 0.9
. . . . . .
26 2.9

27 50.0

1.0 5.0
28 66.7
29 83.3
. . . . . .
36 200.0

As shown in Figure 12a, the D values calculated by the A-RSE-f1 and Higuchi algo-
rithms all increased with the increase in the feed, among which the results of A-RSE-f1
show a more obvious upward trend. The feed per tooth can be expressed as F/(3S), where
F (m/s) represents the feed speed, and S (r/s) stands for spindle speed. The experimental
tool has three teeth. Under the condition of the same speed and cutting depth, the larger
the feed per tooth, the more likely it is to cause chatter, resulting in a higher D in the
acceleration signal of the spindle. As shown in Figure 12b, the D values calculated by
the A-RSE-f1 and Higuchi algorithms drop significantly when the cutting depth range is
0.5∼1.3 mm, indicating that the machine tool is prone to violent vibrations when the cutting
depth is very small, consistent with the experimental phenomenon. When the cutting depth
is greater than 1 mm, the D values of the acceleration signal are relatively stable, indicating
that the cutting depth has little influence on the vibration of the machine tool within this
range. However, a greater cutting depth can increase the cutting force of the tool, such that
the tool can be more vulnerable to damage. As shown in Figure 12c, the D values calculated
by the A-RSE-f1 and Higuchi algorithms generally show a downward trend along with the
increase in spindle speed. This is similar to the situation in Figure 12a. As the spindle speed
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increases, the feed per tooth decreases, so the possibility of chatter and the complexity of
acceleration signal both decrease. However, a higher rotational speed can lead to a tool
temperature that is too high, which becomes negative for machining. In addition, as shown
in Figure 12, the calculation results of the BC algorithm are significantly different from those
of the other algorithms, indicating that the BC algorithm is not sensitive to the changes of
machining parameters, which further verifies that the BC algorithm is not suitable for the
application to machining within the research scope of this study.

Figure 12. The calculation of D values of milling acceleration signal by A-RSE-f1, Higuchi, and BC
algorithms, and the influences of: (a) feed, (b) cut depth, and (c) speed.

The variation range of the calculation results of the A-RSE-f1 algorithm is larger than
the other two algorithms. This fact indicates that the A-RSE-f1 algorithm is more sensitive
to the change in signal characteristics, and the algorithm can recognize more characteristics
that the other algorithms cannot. In conclusion, under the working conditions of this
experiment, a speed of 83.3∼150 r/s, a cutting depth of more than 1 mm, and a small feed
are more appropriate machining parameters. Furthermore, the influences of each parameter
on the machining status are coupled, while the establishment of the SLD preliminarily
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predicts the speed and cutting depth range of stable machining but ignores the influence of
the feed [52,53]. This issue will be further investigated in our future work.

4. Conclusions

In this study, an accelerated RSE-f1 (with first-order flattening) algorithm, A-RSE-f1, is
proposed. Based on the strategy of a dichotomy, the random selection of a fixed number of
sub-sequences in the RSE-f1 algorithm is changed to be adaptive and provide full coverage
of the signal, avoiding redundant calculations. The auxiliary matrices are constructed based
on a binary strategy to reduce the time of summation and further accelerate the algorithm.
The improvement effect of the A-RSE-f1 algorithm is tested using fractal (D = 1∼2) and non-
fractal (D = 0∼1) signals generated by the W-M function, and the engineering application
of the A-RSE-f1 algorithm is demonstrated using 40 milling acceleration signals (20 chatter
signals and 20 stable signals) of the machine tool spindle. In addition, the effects of different
machining parameters on the acceleration signals and the D values are discussed. It
should be noted that, due to differences in applicable parameters and signal characteristics
in various experimental conditions, the experimental results analyzed by the A-RSE-f1
algorithm above are only verified within the experimental condition of this study, and the
feasibility of its utilization under other experimental conditions will be investigated in our
future work. The specific conclusions are as follows:

1. A-RSE-f1 is proposed based on a dichotomy and binary strategy. The A-RSE-f1
algorithm not only has been shown to be more accurate than the Higuchi and BC
algorithms, but also is much faster than the original RSE-f1 algorithm by about 13 folds
and 1.5-fold faster than the Higuchi algorithm. In the range of accuracy allowed, the
lower scaling ratio δ can further improve the operation speed.

2. Through the verification of 40 groups of milling acceleration signals, it is shown that
the RSE-f1 and A-RSE-f1 algorithms can recognize the machining signals of different
statuses and can be applied to the chatter recognition of machine tools. The A-RSE-
f1 algorithm can also identify the non-fractal characteristics of machining signals,
which can play an important role in further studies of the physical significance of
signal characteristics.

3. The single running duration of δ = 0.85 of the A-RSE-f1 algorithm is only 7.8 × 10−3 s.
In the range of accuracy allowed, the lower scaling ratio δ can further improve the
operation speed. Therefore, A-RSE-f1 is promising in that it can meet the application
requirements of practical engineering and can be used for chatter recognition through
the acceleration signals in milling.
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25. Miličić, S. Box-counting dimensions of generalised fractal nests. Chaos Solit. Fractals 2018, 113, 125–134. [CrossRef]
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Abstract: This paper contributes in three stages in a logic of the cognitive process: we firstly propose
a new estimation of Hurst exponent by changing frequency method which is purely mathematical.
Then we want to check if the new Hurst is efficient, so we prove the advantages of this new Hurst in
asymptotic variance in the perspective compared with other two Hurst estimator. However, a purely
mathematical game is not enough, a good estimation should be proven by reality, so we apply the
new Hurst estimator into truncated and non-truncated spot volatility which fills the gap of previous
literatures using 5-min price data (Source: Wind Financial Terminal) of 10 Chinese A-share industry
indices from 1 January 2005 until 31 December 2020.
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1. Introduction

Since the seminal work of Black and Scholes [1], the price dynamics described by the
following equation have been well-known to researchers in the fields.

dlogSt = μtdt + σtdWt,

where μt is a drift process, σt depicts the volatility process and Wt is standard Brownian
motion. Since the constant volatility assumption of the model in Black and Scholes [1]
contradicts empirical observation (see, for example, Fouque et al. [2]), more and more
innovative models are proposed (see Hull and White [3]; Scott [4]; Stein and Stein [5]).

Despite these improvements in the above-mentioned stochastic volatility models,
empirical studies have underlined the long-memory feature of the volatility of financial
assets. To address this issue, a natural idea is to replace Brownian motion in the volatility
process by fractional Brownian motion (fBm), which can describe the long memory property
with the Hurst parameter 0.5 < H < 1. Hence, Comte and Renault [6] proposed a
fractional version of the Hull-White stochastic volatility model with the Hurst parameter
H > 0.5 in fBm to model log-volatility and consider the option pricing problem in a long
memory volatility environment. Other related research has been conducted by Comte
et al. [7], Chronopoulou and Viens [8], Chronopoulou and Viens [9], Xiao and Yu [10].

Recent empirical studies have documented the roughness of historical volatility data
and the implied roughness of option price data (see, e.g., Bennedsen et al. [11]; Bayer
et al. [12]; Gatheral et al. [13]; Livieri et al. [14]; El Euch and Rosenbaum [15]). Early
research conducted by Alòs et al. [16] investigated the short-time behavior of implied
volatility by jump-diffusion models. Compared with Alòs et al. [16], Fukasawa and Taka-
batake [17] discussed self-similar stationary Gaussian noises such as fractional Gaussian
noises, which indicate the volatility series. They extended the Whittle estimation method to
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obtain asymptotically efficient estimators. Moreover, many studies have evaluated realized
volatility forecasting performance of several models (see, e.g., Li et al. [18]; Wang et al. [19];
Wang et al. [20]) More precisely, Gatheral et al. [13] calibrated a model to the SP500 and
NASDAQ indices, showing that the Hurst parameter of volatility should be close to 0.11.
Other important indices, including the FTSE2, N2252, RUT2, DJI2, FCHI2, KS11, SSMI,
IBEX2, NSEI, MXX, BVSP, GSPTSE, STOXX50E, FTSTI, FTSEMIB have also been studied.
This indicates extremely rough directions for the volatility process, being much more irregu-
lar than those of standard stochastic volatility models driven by Brownian motion. Further
empirical studies have confirmed the roughness of the log-volatility of thousands of stocks
on the US equity market (Bennedsen et al. [11]). Livieri et al. [14] found that at-the-money
short term volatility from SP500 options is also rough. Using high-frequency data for major
volatility indices and the qth-order structure function (SF) method proposed by Gatheral
et al. [13], Da Fonseca and Zhang [21] computed the volatility of major indices in the USA
and showed the roughness of the volatility of volatility. Cao et al. [22] showed that even
the elasticity of variance for the SP500 is rough. Takaishi [23] verified the roughness of
Bitcoin volatility using MF-DFA based on Bitcoin tick data. Bennedsen et al. [11] verified
the volatility roughness of many stocks. It has been shown recently that both the realized
volatility and the option-implied volatility are rough. Recently, Fukasawa et al. [24] used a
quasi-likelihood estimator to estimate the Hurst parameter of the S&P 500, FTSE 100, Nikkei
225, DAX, and Russell 3000 indices and found that the volatility is rough. Brandi and Di
Matteo [25] computed the Hurst exponent on realized variance from the Oxford volatility
library and found that the volatility is indeed rough with a Hurst exponent between 0.08
and 0.15. Alòs and León [26] provided a comprehensive discussion of rough volatility. With
research progressing, spot volatility catches the eyes of researchers. Efficient estimation
of spot volatility can be achieved by using Riemann-like integration. Applications of spot
volatility are of great importance. For example, spot volatility can be used to detect the
micro-structure of the of financial assets. It was also useful to explain jumps and co-jumps
of volatility series as shown by Jacod and Todorov [27]. Moreover, spot volatility can be
calibrated to implied volatility and play a key role in the option pricing. There are many
publications about spot volatility in which it has been extensively studied (see, e.g., Fan
and Wang [28]; Reno [29] and references therein).

This paper focuses on the roughness of spot volatility and proposes some interesting
contributions:

• We propose a new Hurst exponent by changing the frequency method, prove consis-
tency, and derive the asymptotic volatility of our estimator. Then we do simulations
by the Monte Carlo method and compare our new Hurst estimator with existing Hurst
exponents, showing its advantages.

• We introduce a non-parametric estimator for spot volatility based on the rough volatil-
ity environment proposed by Bayer et al. [12], and Gatheral et al. [13]. While Fan and
Wang [28] proposed the same non-parametric estimator for spot volatility based on
fractional stochastic volatility models with H ∈ (1/2, 1), we extend this estimator for
all H ∈ (0, 1). The proof method established in this paper can be also applied to a
general fractional stochastic volatility model with a bounded drift term.

• We employ the MF-DFA method proposed by Kantelhardt et al. [30] and qth-order
SF method used by Gatheral et al. [13] to analyze the roughness of 10 industrial
indices’ spot volatility in the Chinese financial market. Then we compared two Hurst
exponents of the least square method proposed by Berzin et al. [31] with our new Hurst
exponents using empirical data. Gatheral et al. [13] proved the SF method in American
markets, and their numeric results are similar to ours in Chinese markets. There is
much evidence showing the roughness of volatility in different sectors and markets
(see Guennoun et al. [32], Funahashi and Kijima [33], Neuenkirch and Shalaiko [34].
We confirmed that the Hurst exponent we propose is universal in other markets and
sectors. Our results suggest that spot volatility is also rough, and has confirmed the

238



Mathematics 2022, 10, 1619

roughness of realized volatility (Bennedsen et al. [10]; Gatheral et al. [13]) and implied
volatility (Livieri et al. [14]).

The rest of this paper is organized as follows. Section 2 introduces the non-parametric
estimator for spot volatility from the rough stochastic volatility model proposed by Bayer
et al. [12], and Gatheral et al. [13] and provides the asymptotic theory for the proposed non-
parametric estimator. Section 3 presents the new estimator and investigates its asymptotic
properties. Four popular methods for estimating the generalized Hurst exponent are also
introduced in the later part of this Section. Section 4 presents some empirical studies. Section 5
discusses the contribution of this study with other research in the literature. Section 6 outlines
the conclusion of our analysis. Components of proofs are collected in Appendix A.

2. The Spot Volatility Model

Modeling rough volatility is becoming increasingly popular and has important appli-
cations in finance. This is because rough volatility models must fit the volatility skew, which
is defined as the derivative of the implied volatility surface under the Black-Scholes-Merton
model with respective to log-strike price evaluated at-the-money. Moreover, rough volatility
models must satisfy the mono-fractal scaling property of the historical volatility data, which
means that for a given lag Δ, each q-th sample moment of the differences of log-volatility ex-
hibits a power-scaling relationship with respect to this lag, i.e., |log σt+Δn − log σt|q ∝ ΔqH

with q > 0 and Δ > 0. Consequently, rough volatility models have important applications
in finance, and the literature on estimating spot volatility is large. From the celebrated
rough volatility model by Bayer et al. [12], Gatheral et al. [13] and Xiao and Yu [10], we
assume that the asset price St follows the following dynamic:⎧⎨⎩

dSt
St

= μtdt + σtdWt

σt = exp{Xt}, t ∈ [0, T]
dXt = α(m − Xt)dt + νdBH

t

(1)

where St and σt are the price and volatility processes, respectively. Moreover, μt is a suitable
drift term and satisfies sup{|μt − μs|, |t − s| ≤ a} = OP(a1/2

∣∣∣log a
∣∣∣1/2) , σt is the diffusion

term, i.e., the spot volatility of the stock, α > 0 is the speed of mean-reversion, m is the
long term level of the variance, ν is the volatility of volatility, Wt is a Wiener process, i.e., a
Brownian motion, and BH

t is a fBm with Hurst parameter H ∈ (0, 1). Following the idea of
Bayer et al. [12] and Gatheral et al. [13], we assume that BH

t is independent of Wt.
The model of (1) can describe both the mean reverting property and the roughness

of the volatility. The self-similarity parameter, also called the Hurst parameter in the fBm,
is a crucial criterion to test the roughness of the volatility. Consequently, estimating the
Hurst parameter in the volatility has been the subject of active research and a challenging
theoretical problem. In the literature, there exist many approaches for estimating the Hurst
parameter, such as rescaled range, aggregated variance, aggregated absolute value, variance
of residuals, log-periodogram regression, Whittle estimation, local Whittle estimation, novel
time-varying generalized Hurst exponent methodology (see, for example, Kermarrec [35],
Keshari Jena et al. [36], and Xiao et al. [37]) and so on. In this paper, we use MF-DFA
proposed by Kantelhardt et al. [30] and the q-th order SF introduced by Gatheral et al. [13].
In what follows, we first introduce a non-parametric estimator for spot volatility in (1) then
we introduce two methods for estimating the Hurst parameter.

The recent availability of high frequency data in finance has permitted more efficient
ways of computing spot volatility. However, the estimation of the spot volatility from asset
price observations is challenging because observed high frequency data are generally af-
fected by noise-microstructure effects. Hence, following Fan and Wang [28], this subsection
is devoted to the nonparametric estimation method for spot volatility in a rough volatility
environment, which yields suboptimal convergence rates.

For any positive integer n, let Δ = T/n and K(x) be a kernel with
∫ 1
−1 K(x)dx = 1.

Moreover, suppose that we observe Sti at n discrete time points with ti = iΔ = iT/n,
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i = 1, 2, . . . , n. Then, following the idea of Fan and Wang [28], we define the kernel type
estimator for the spot volatility as:

σ̂t :=

√√√√ 1
b

t+b

∑
ti=t−b

K
(

ti − t
b

)(
Sti − Sti−1

)2 (2)

where b is a bandwidth.
The estimator (2) will be used for the continuous case as it is not jump robust and not

noise robust. From Christensen et al. [38], we can see that the impact of jumps is negligible
in the data studied here. Moreover, 5-min sampling data is commonly used and not affected
by market micro-structure noise. Fan and Wang [28] impose the following assumptions for
μt, σt and K(x) provided by the following result.

When the price process is assumed to be present with jumps, the truncated estimator
σt for the spot volatility can be calculated as:

σt(kn, νn) =

√
1

knΔn
∑kn−1

i=0

(
Y(m+1+i)Δn − Y(m+i)Δn

)2
1{|Y(m+1+i)Δn−Y(m+i)Δn |≤νn} (3)

Hypothesis 1. Suppose the following conditions are satisfied:

A1 The diffusion term σtin (1) satisfies:

sup{|σs − σt|, |s − t| ≤ a} = OP(a1/2
∣∣∣log(a)

∣∣∣1/2) and sup
0≤t≤T

∣∣σ2
t
∣∣ = OP(1).

A2 For i = 1, 2, . . . , n, sup{|∫ ti
ti−1

(σ(s)− σ(ti−1))dWs|2} = OP

(
n−2+η

)
, where η is an arbitrar-

ily small number.
A3 The drift term μt in (1) satisfies:

sup{|μt − μs|, |t − s| ≤ a} = OP(a1/2
∣∣∣loga

∣∣∣1/2)

A4 Bandwidth b and kernel K satisfy b ∼ n−1/2/log(n), K(·) is twice differentiable with support
[1, 1] and

∫ 1
−1 K(x)dx = 1.

From Cheridito et al. [39], and for α > 0, we can see that Xt = log(σt) defined by (1) is
a stationary and ergodic if one chooses a suitable initial condition X0 = μ+ σ

∫ 0
−∞ eκsdBH

s .
Moreover, we have the following important result.

Lemma 1. For α > 0, the random variable Xt = log(σt) has normal distribution with mean(
1 − e−αt)m + X0e−αt and

VarXt = Hv2
∫ t

0
z2H−1

(
e−αz + e−α(2t−z)

)
dz (4)

To verify the assumptions in Hypothesis 1, we state the following technical lemma.

Lemma 2. For all H ∈ (0, 1) and any p ≥ 1, there exist positive constants C, such that

E|Xt|p ≤ C (5)

E|Xt − Xs|p ≤ C
∣∣t − s

∣∣pH (6)

for all t, s ≥ 0.
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We show below that Assumptions A1 and A2 of σt in Hypothesis 1 are satisfied for
the volatility process in (1) as well as its super-positions.

Lemma 3. Suppose that the volatility process is described by Xt in (1). Then conditions A1 and A2
in Hypothesis 1 are satisfied.

Now, using the definition of μt and K(x) = ex1(x≤0), we can see that A3 and A4 in
Hypothesis 1 are satisfied. Under assumption 1, Fan and Wang [28] provided the asymptotic
theory for σ̂t, which is proposed by the following result.

Proposition 1. Under the Hypothesis 1, we have:

√
nb
(

σ̂2
t − σ2

t

)
d→ N

(
0, σ4

t

∫ 1

−1
K2(x)dx

)
(7)

where d→ denotes convergence in distribution and K(x) is defined in A4 of Hypothesis 1.
Moreover, let Mn = sup

0≤t≤T

√
nb ‖ σ̂2

t − σ2
t ‖ and λ(k) =

∫ 1
−1 K2(x)dx If σt is a stationary

process, then we have

(2log n)1/2(
Mn√∫ 1

−1 K2(x)dx
− dn)

d→ exp
(−2e−x) (8)

where

dn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(2log n)1/2 + log λ1(K)−0.5log π−0.5log(log n)

(2log n)1/2 , if K2(−1)+K2(1)
2λ(K) > 0

(2log n)1/2 +
log
(

1
2λ(K)

∫
[K′(x)]2dx

)
−log(2π)

(2log n)1/2 , otherwise. (9)

Remark 1. The class of kernels K(·) which are allowed for the asymptotic theory in Proposition 2.1
include those in the existing literature. From Fan and Wang [28], we impose differentiability and
some kind of Lipschitz regularity for K(·). Prominent kernel functions, such as the Gaussian kernel
allow for the asymptotic theory in Proposition 1.

Remark 2. Using Proposition 1, we can construct an asymptotic confidence band for the unknown
spot volatility process.

Remark 3. For the asymptotic theory of spot volatility in (2), we have to eliminate the jumps on
inference for spot volatility. In the case of jump activity, we can use truncated power variations
and multipower variations to eliminate the jumps asymptotically. In fact, whether we allow for
discontinuous price processes or not, itis quite crucial from a statistical point of view, since the
existence of jumps requires a significant modification of the involved statistics to ensure jump
robustness. The extension of jumps is complicated and will be reported in later work.

Remark 4. Micro-structure noise in high-frequency data is a commonly accepted fact. The theory
presented in Fan and Wang [28] is clearly not noise-robust. The extension of their theory to
noise-robust estimators is a challenging but very interesting question.

Remark 5. Following the idea of Bayer et al. [11] and Gatheral et al. [13], we assume that there is no
leverage effect in (1). Thus, the Brownian motion and the fBm in (1) are independent. Establishing
the asymptotic theory of the estimator for the spot volatility in (1) will be pursued in a future study.
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3. Estimation Methods of the Hurst Exponent

In the literature, there exist many papers that describe different methods for estimat-
ing the Hurst parameter. For example, the parameter estimation method includes the
exact maximum likelihood estimation and Whittle the maximum likelihood estimation.
Semi-parametric estimation approaches involve the celebrated R/S statistic method, the
modified R/S statistic method, Higuchi’s method, detrended fluctuation analysis, the
log-periodogram regression method and the local Whittle method. Non-parametric esti-
mation includes the increment ratio method, the wavelet-based method and the quadratic
variations approach. In this paper, we first introduce a new estimator, which is based on
the change of frequency.

3.1. A New Hurst Exponent Hn

In this section we propose a new Hurst exponent estimator, which is:

Ĥn =
1
2
− 1

2 ln 2
ln

⎛⎜⎝∑2n−1
k=1

(
Δ(2)

2n,kX
)2

∑n−1
k=1

(
Δ(2)

n,k X
)2

⎞⎟⎠
where

Δ(2)
n,k X = X

(
tn
k+1
)− 2X(tn

k ) + X
(
tn
k−1
)

and tn
k = kT/n

From the equation above, we have:

Ĥn → H a.s.

2 ln 2
√

n
(

Ĥn − H
) d→ N

(
0; σ2

H

)
, σ2

H =
3
2

Σ11 − 2Σ12.

Σ11 = 2(1 + 2
(4−22H)

2

∞

∑
j=1

ρ̂2
H(j)), Σ22 = 1

2 Σ11,

Σ12 = Σ21 = 1
22H(4−22H)

2 ∑
j∈Z

ρ̃2
H(j),

ρ̂H(j) = 1
2 [−6

∣∣j∣∣2H−∣∣j − 2
∣∣∣2H − ∣∣j + 2

∣∣2H + 4
∣∣j − 1

∣∣∣2H + 4
∣∣∣j + 1

∣∣∣2H ],

ρ̃H(j) = 1
2 [
∣∣j + 1

∣∣2H + 2
∣∣j + 2

∣∣∣2H − ∣∣j + 3
∣∣2H+

∣∣j − 1
∣∣∣2H − 4

∣∣∣j∣∣∣2H −∣∣j − 3
∣∣2H + 2

∣∣j − 2
∣∣2H ].

Set BH =
{

BH(t) : t ∈ [0, T]
}

, T > 0 as fBm.
We obtain:

VB̂H

in,T =
in−1

∑
k=1

(
Δ(2)

in,kB̂H
)2

, Δ(2)
in,kB̂H =

Δ(2)
in,k BH√

E
(

Δ(2)
in,k BH

)2
i = 1, 2,

dB̂H ,in
k,j = EΔ(2)

in,kB̂HΔ(2)
in,j B̂

H , 1 ≤ j, k ≤ in − 1, i = 1, 2,

cB̂H ,2n
j,k = EΔ(2)

n,j B̂HΔ(2)
2n,kB̂H , 1 ≤ j ≤ n − 1, 1 ≤ k ≤ 2n − 1,

Δ(2)
in,kB̂H = B̂H

k+1
in T

− 2B̂H
k
in T

+ B̂H
k−1
in TH , 1 ≤ k ≤ in − 1, i = 1, 2.

Then we have following conclusion:

Theorem 1. SupposeBH =
{

BH(t) : t ∈ [0, T]
}

, T > 0 is fBm, then:

Xn =
√

n

(
n−1VB̂H

n,T − 1
(2n)−1VB̂H

2n,T − 1

)
d→ N (0; ΣH), ΣH =

(
Σ11 Σ12
Σ12 Σ22

)
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where N (0; ΣH) is a Gaussian vector:

Σ11 = 2(1 + 2
(4−22H)

2

∞

∑
j=1

ρ̂2
H(j)), Σ22 = 1

2 Σ11,

Σ12 = Σ21 = 1
(4−22H)

2 ∑
j∈Z

ρ̃2
H(j),

ρ̂H(j) = 1
2 [−6|j|2H−|j − 2

∣∣∣2H − |j + 2|2H + 4|j − 1
∣∣∣2H + 4

∣∣∣j + 1
∣∣∣2H ],

ρ̃H(j) = 1
22H+1 [

∣∣j + 1
∣∣2H + 2

∣∣j + 2
∣∣∣2H − ∣∣j + 3

∣∣2H+
∣∣j − 1

∣∣∣2H − 4
∣∣∣j∣∣∣2H

−|j − 3|2H + 2|j − 2|2H ].

Proof. The proof is similar to the proof of Theorem 4 in Kubilius [40]. However, since our
result is slightly different from that in Kubilius [40], we provide brief derivations here.

To determine limiting distribution of Xn, we compute a limiting moment generating
function limMXn(λ) = M(λ).

Consider a centered Gaussian vector Gn =
(

G(l)
n , 1 ≤ i ≤ 3n − 2

)
G(i)

n = Δ(2)
n,i B̂H , 1 ≤ i ≤ n − 1,

G(i)
n =

√
2−1Δ(2)

2n,i+1−nB̂H , n ≤ i ≤ 3n − 2

And a diagonal matrix:

Dn = diag

(
λ1, . . . , λ1︸ ︷︷ ︸

n − 1
,

λ2, . . . , λ2︸ ︷︷ ︸
2n − 1

)

It is evident that EG(i)
n = 0 and E

(
G(i)

n

)2
= 1 for all 1 ≤ i ≤ n − 1, E

(
G(i)

n

)2
= 2−1 for

all n ≤ i ≤ 3n − 2. We denote the covariance matrix of the vector Gn by ΣGn .
Set:

D̃n =
(

Σ1/2
Gn

)T
DnΣ1/2

Gn

We give bound on eigenvalues of D̃n. It is obvious that D̃n is symmetric. Denote
by ‖An‖ = sup

‖x‖=1
‖Anx‖ matrix A norm. For symmetric matrix D̃n its norm is equal to its

spectral norm, i.e., ‖D̃n‖ = ρ(D̃n) := max
k

|λk(D̃n)|. Since norm ‖·‖ is submultiplicative

norm then:

max
k

∣∣∣λk

(
D̃n

)∣∣∣ =‖ D̃n ‖≤‖ Σ1/2
Gn

‖ · ‖ Dn ‖ · ‖ Σ1/2
Gn

‖=‖ Σ1/2
Gn

‖2 · ‖ Dn ‖
= ρ((Σ1/2

Gn
)

2
) · ρ(Dn) = ρ(ΣGn) · ρ(Dn) = λmax(ΣGn) · max{|l1|, |l2|}

Now consider λmax(ΣGn). In order to bound the maximal eigenvalue, we again make
use of the fact that the latter does not exceed the maximal row sum of absolute values. Thus:

λmax(ΣGn) ≤ max
j

3n−2

∑
i=1

∣∣∣(ΣGn)ij

∣∣∣
Note that: (

∑Gn

)
i,j+1−n = 1√

2
E
[
Δ(2)

n,i B̂HΔ(2)
2n,j+1−nB̂H

]
= 1√

2
E
[(

Δ(2)
2n,2i+1B̂H + Δ(2)

2n,2i−1B̂H + 2Δ(2)
2n,2i B̂

H
)

Δ(2)
2n,j+1−nB̂H

]
= 1√

2

[
dB̂H ,2n

2i+1,j+1−n + dB̂H ,2n
2i−1,j+1−n + 2dB̂H ,2n

2i,j+1−n

]
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For 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ 2n − 1, from Equations above, we can obtain:

λmax
(
∑Gn

) ≤ max
1≤j≤n−1

n−1

∑
i=1

∣∣∣dB̂H ,n
i,j

∣∣∣+ 1
2 max

1≤j≤2n−1

2n−1

∑
i=1

| dB̂H ,2n|
i,j

+ 1√
2

max
1≤j≤n−1

2n−1

∑
i=1

(∣∣∣dB̂H ,2n
i,2j+1

∣∣∣+ ∣∣∣dB̂H ,2n
i,2j−1

∣∣∣+ 2
∣∣∣dB̂H ,2n

i,2j

∣∣∣)
+ 1√

2
max

1≤j≤2n−1

n−1

∑
i=1

(∣∣∣dB̂H ,2n
2i+1,j

∣∣∣+ ∣∣∣dB̂H ,2n
2i−1,j

∣∣∣+ 2
∣∣∣dBH ,2n

2i,j

∣∣∣)
⎤⎦

≤ max
1≤j≤n−1

n−1

∑
∣∣∣d ˆBH ,n

i,j

∣∣∣+ ( 1
2 + 8√

2

)
max

1≤j≤2n−1

2n−1

∑
∣∣∣dB̂H ,2n

i,j

∣∣∣ ≤ 20

Summing up, we come to conclusion that max
k

∣∣∣λk

(
D̃n

)∣∣∣ is uniformly (in n, k) bounded

by a finite constant depending only on λ1, λ2.
Note that:

λTYn :=
√

n(λ1, λ2)

⎛⎝ n−1
(

VB̂H

n,T − EVB̂H

n,T

)
(2n)−1

(
VB̂H

2n,T − EVB̂H

2n,T

) ⎞⎠ =
1√
n

(
GT

n DnGn − EGT
n DnGn

)

Recall that Gn
d
=
√

ΣGn Zn with Zn ∼ N (0; I3n−2), where I3n−2 denotes an identity
3n − 2 matrix. So, one can determine the following equality:

GT
n DnGn

d
=
(

Σ1/2
Gn

Zn

)T
DnΣ1/2

Gn
Zn = ZT

n

(
Σ1/2

Gn

)T
DnΣ1/2

Gn
Zn = ZT

n D̃nZn

Let D̃n = QT
nΛ
(

D̃n

)
Qn be canonical representation of D̃n via a diagonal matrix of

eigenvalues and a corresponding orthogonal matrix of eigenvectors. Since the orthogonal
transform does not change the distribution of Zn, we have:

ZT
n D̃nZn = ZT

n QT
n Λ
(

D̃n

)
QnZn

d
= ZT

n Λ
(

D̃n

)
Zn =

3n−2

∑
j=1

Z2
n,jλn,j

The estimation of eigenvalues of D̃n shows that we can choose no n−1/2max
k

|λk(D̃n)| <
1/2 for all n ≥ n0. To have MYn(λ) well defined, we assume that all n in the sequel satisfy
this condition.

Now, the moment-generating function MYn(λ) we can be rewritten as:

MYn(λ) = exp

(
−EGT

n DnGn√
n

)
E

[
exp

(
3n−2

∑
j=1

Z2
n,j

λn,j√
n

)]

Thus:

MYn(λ) = exp
(
−EGT

n DnGn√
n

) 3n−2
∏
j=1

Mχ2(1)

(
λn,j√

n

)
= exp

(
−EGT

n DnGn√
n

)(3n−2
∏
j=1

1

1−2
λn,j√

n

) 1
2

= exp

(
−EGT

n DnGn√
n − 1

2

3n−2
∑

j=1
log
(

1 − 2
λn,j√

n

))
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By Maclaurin’s expansion:

log(1 − x) = −x − x2

2
− x3

3
+ o

(
x3
)

, x → 0

Since max
n,j

∣∣λn,j
∣∣ is uniformly bounded and ∑3n−2

j=1 λn,j = tr
(

D̃n

)
= E

(
ZT

nD̃nZn

)
=

E
(

GT
nDnGn

)
, we can rewrite the expression for MYn(λ) as follows

MYn(λ) = exp

{
−EGT

n DnGn√
n + 1

2

3n−2
∑

j=1
(2

λn,j√
n + 4

λ2
n,j

2n ) + O( 1√
n )

}

= exp

{
1
n

3n−2
∑

j=1
λ2

n,j

}
exp

{
O( 1√

n )
}

Therefore, we can compute the limiting value of the first multiplier. By D̃n, definition:

3n−2
∑

j=1
λ2

n,j = tr(D̃2
n) = tr(((

√
ΣGn)

T Dn
√

ΣGn)
2
) = tr((DnΣGn)

2)

=
3n−2

∑
i=1

3n−2
∑

j=1
(DnΣGn)ij(DnΣGn)ji.

Note that equation above may be rearranged in the following way:

3n−2

∑
i=1

3n−2
∑

j=1
(DnΣGn)ij(DnΣGn)ji =

λ2
1

(4−22H)
2

n−1

∑
i=1

n−1
∑

j=1
ρ̂2

H(i − j) + λ1λ2

(4−22H)
2

n−1

∑
i=1

2n−1
∑

j=n

∼
ρH(j, k)

+
λ2

2

4(4−22H)
2

2n−1

∑
i=1

n
∑

j=1
ρ̂2

H(i − j) =
3
∑

k=1
I(k)n .

Therefore, to obtain a limiting expression for MYn(λ) it suffices to divide each sum by
n and to calculate the corresponding limits. A standard calculation shows:

1
n(4−22H)

2

n−1

∑
i=1

n−1
∑

j=1
ρ̂2(i − j) → 1 + 2

(4−22H)
2

∞
∑

i=1
ρ̂2(k).

1
n

1
(4−22H)

2

n−1

∑
j=1

2n−1
∑

k=1
ρ̃2

H(j, k) → 1
(4−22H)

2 ∑
m∈Z

ρ̃2
H(m).

Results obtained above imply that M(λ) = exp
{

1
2λ

TΣHλ
}

. Thus:

√
n

(
n−1(VB̂H

n,T − EVB̂H

n,T )

(2n)−1(VB̂H

2n,T − EVB̂H

2n,T)

)
d→ N (0; ΣH)

Application of Slutsky’s theorem provides the required result. �

Theorem 2. Let

Ĥn =
1
2
− 1

2 log 2
log

⎛⎝∑2n−1
k=1 (Δ(2)

2n,kX)
2

∑n−1
k=1 (Δ

(2)
n,k X)

2

⎞⎠ (10)

Then we can see that as n → ∞ , Ĥn → H
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Moreover, we have:

2 log 2
√

n(Ĥ(1)
n − H)

d→ N
(
0, σ2

H
)

where
σ2

H =
3
2

Σ11 − 2Σ12 (11)

Proof. The estimator Ĥn can be rewritten as:

Ĥn = 1
2 − 1

2 log 2 [(2H − 1) log 1
2 + log

( 2n
T )

2H−1
V(2)X

2n,T

( n
T )

2H−1V(2)X
n,T

]

= H − 1
2 log 2 log

( 2n
T )

2H−1
V(2)X

2n,T

( n
T )

2H−1V(2)X
n,T

,

Using Theorem 1, the property of fractal Ornstein-Uhlenbeck and the Delta method,
we can obtain:

2 log 2
√

n(Ĥ(1)
n − H)

d→ N
(

0, σ2
H

)
, σ2

H =
3
2

Σ11 − 2Σ12

Σ11 = 2(1 +
2

(4 − 22H)
2

∞

∑
j=1

ρ̂2
H(j)), Σ22 =

1
2

Σ11

Σ12 = Σ21 =
1

22H(4 − 22H)
2 ∑

j∈Z
ρ̃2

H(j)

ρ̂H(j) =
1
2
[−6|j|2H−|j − 2|2H − |j + 2|2H + 4|j − 1|2H + 4|j + 1|2H ],

ρ̃H(j) =
1
2
[|j + 1|2H + 2|j + 2|2H − |j + 3|2H+|j − 1|2H − 4|j|2H−|j − 3|2H + 2|j − 2|2H ]

�

3.2. Alternative Estimators for the Hurst Parameter
3.2.1. MF-DFA

In this subsection we introduce two different methods for estimating the Hurst expo-
nent, as extracted from Kantelhardt et al. [30] and Gatheral et al. [13]. The first method is
the MF-DFA proposed by Kantelhardt et al. [30] and allows multi-fractility. The MF-DFA
has become a popular method to study the multi-fractal properties of various time series in
finance since it may be applied to non-stationary time series. The second is the qth-order
SF proposed by Gatheral et al. [13].

Let us consider the time series xi : i = 1, 2, . . . , N. Then, the MF-DFA involves
the following five steps (most of the following algorithm is extracted from Kantelhardt
et al. [30]):

(i) Compute the profile Y(i) as follows:

Y(i) =
i

∑
j=1

(
xj − x

)
where x denotes the mean of xi for the whole sample. Therefore, the profile Y(i) is the
cumulative sum of the return deviations from the sample mean.

(ii) Divide the profile Y(i) into Ns = int
(

N
s

)
non-overlapping segments of equal

length s, where s is referred to as the time scale. Since the length N of the series is often not
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a multiple of the considered time scale s, a short part at the end of the profile may remain.
In order not to disregard the short part at the end of the profile when N is not a multiple of
s, the same procedure is repeated starting from the opposite end. Therefore, there will be
2Ns segments for a given time scale s. It is recommended that the value of the time scale, s,
should satisfy 10 < s < N

4 .
(iii) Calculate the local trend for each of the 2Ns segments by a least-square fit of the

series. Then determine the following variance F2(v, s):

F2(v, s) ≡ 1
s

s

∑
i=1

{Y[(v − 1)s + i]− yv(i)}2

For v = Ns + 1, Ns + 2, . . . , 2Ns. Here, yv(i) is the fitting polynomial in segment v.
The fitting polynomial captures the local trend. For example, let us consider segment v
that is part of the first Ns segments. This segment includes the profiles Y[(v − 1)s + i],
i = 1, 2, 3 . . . , s. The local trend of the profile for the segment can be captured by fitting the
following m-order polynomial:

Y[t] = α+ β1t + β2t2 + · · ·+ βmtm + ε, t = (v − 1)s + 1, . . . , vs + 1

Then, the fitting polynomial value yv(i) is given by:

yv(i) = α̂+ β̂1t + β̂2t2 + . . . + β̂mtm

where a “hat” above the parameters indicates the estimates obtained using the ordinary
least squares method. In this study, we use the first-order polynomial.

(iv) Average over all segments to obtain the q-th order fluctuation function as follows q �= 0:

Fq(s) ≡
{

1
2Ns

2Ns

∑
v=1

[
F2(v, s)

]q/2
}1/q

The q-th order fluctuations are similar to q-th order moments. However, in the MF-
DFA, q can take negative values. The main purpose of using q-th order fluctuation has
to do with the power-law, mentioned in the next step, which allows us to distinguish a
multi-fractal model from a mono-fractal model. We are interested in how the generalized q
dependent fluctuation functions Fq(s) depend on the time scale s for different values of q.
Hence, we must repeat steps 2 to 4 for several time scales, s. It is apparent that Fq(s) will
increase with increasing s. Of course, Fq(s) depends on the DFA order m. By construction,
Fq(s) is only defined for s ≥ m + 2.

(v) Determine the scaling behavior of the fluctuation functions by analyzing log-log
plots Fq(s) versus s for each value of q. If the series xi are long-range power-law correlated,
Fq(s) increases, for large values of s, as a power-law:

Fq(s) ∼ sh(q)

It is clear from the equation above that F0(s) = lim
q→0

Fq(s) and, therefore, h(0) = lim
q→0

h(q),

cannot be determined using the averaging procedure. Therefore, for q = 0, a logarithmic
averaging procedure is employed as follows:

F0(s) ≡ exp

{
1

4Ns

2Ns

∑
v=1

ln F2(v, s)

}
∼ sh(0)

For each q (referred to as moment order), perform a linear regression of ln Fq(s) on
ln(s) for all s. The slope of the regression will be the estimator of the generalized Hurst
exponent h(q).
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3.2.2. The qth-Order SF Method

We also determined h(q) from the qth-order SF method used in Gatheral et al. [13]. In
the spirit of Gatheral et al. [13], we assume that discrete observations of the spot volatility
process, on a time grid with mesh Δ on [0, T] are σ0, σΔ, . . . , σkΔ, . . . , k ∈ {0, �T/Δ�}. Set
N = �T/Δ�, then for q ≥ 0, we can define

m(q, Δ) =
1
N

N

∑
k=1

∣∣∣log(σkΔ)− log
(

σ(k−1)Δ

)∣∣∣q
Under the assumption that the log-spot-volatility process is stationary and that a law

of large numbers holds, for some values of q we can see that qH has monofractual scaling
properties which imply that

m(q, Δ) ∼ CΔqH

As Δ tends to zero and with constant of proportionality C.
Let β1 = log Kq. We further use the market data via the regression

log(m(q, Δ)) = β1 + β2log Δ + ε (12)

which provides an estimator:

HqSF =
β2

q
(13)

For several orders of q, the regression of the slope in (12) against q reveals that the
different orders of q lead to the same estimate of H as the one obtained when q = 2.

3.2.3. Two Least Square Estimation Methods

To test the roughness of the spot volatility, we must estimate the Hurst exponents.
In fact, there exists a vast literature that describes different methods for estimating the
Hurst parameter of the fractional Brownian motion (fBm) including parametric estimation
methods, semi-parametric estimation and non-parametric estimation approaches. In this
paper, we adopt two types of estimators for the Hurst parameter, which are proven to be
strongly consistent and asymptotically normal.

Let Xt = log(σt) as in model (1), and denotes Mk(n) = 1
n−1 ∑n−2

i=0

(
X(i+2)Δ − 2X(i+1)Δ

+XiΔ)
k, where n ∈ N+ − 1, k ∈ R+. The first estimator Ĥk of Hurst parameter H by the

least squares estimation method introduced by Berzin et al. [31], is calculated as follows

Ĥk = − 1
k

�
∑

i=1
zi log(Mk(ni))

= − 1
k

�

∑
i=1

zi log

(
1

ni−1

ni−2
∑

j=0

(
X(j+2)Δ − 2X(j+1)Δ + XjΔ

)k
)

,
(14)

where ni = rin, ri ∈ N∗, i = 1, . . . , � and zi =
yi

∑�
i=1 y2

i
and yi = log(ri)− 1

�

�
∑

i=1
log(ri).

Let Mlog(n) = 1
n−1

n−2
∑

i=0
log
(∣∣∣X(i+2)Δ − 2X(i+1)Δ + XiΔ

∣∣∣). The second estimator H̃log

of H derived by the least square estimation method in Berzin et al. [31] is expressed as

H̃log = − �
∑

i=1
zi Mlog(ni)

= −
�

∑
i=1

zi
1

ni−1

ni−2
∑

j=0
log
(∣∣∣X(j+2)Δ − 2X(j+1)Δ + XjΔ

∣∣∣).
(15)
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The estimator Ĥk is an asymptotically unbiased strongly consistent estimator of H,
and the estimator H̃log is an unbiased weakly consistent estimator of H. The asymptotic
distribution of estimators Ĥk and H̃log can be found in Berzin et al. [31].

From remark 3.12 and remark 3.15 of Berzin et al. [31], asymptotic theory for Ĥk and
H̃log there is a corollary. The estimator Ĥk is an asymptotically unbiased strongly consistent
estimator of H and the estimator H̃log is an unbiased weakly consistent estimator of H.
Furthermore, for k = 2ri = 2i−1 and i = 1, . . . , �, we have:

√
n
(

Ĥk − H
) d→ N

(
0, σ2

Ĥk

)
√

n
(

Ĥlog − H
)

d→ N
(

0, σ2
∼
H

2

log

)

where

σ2
Ĥk

=
(

6
log(2)

)2 1
�2(�2−1)2 ×⎛⎝2

�

∑
i<j;i,j=1

2−j(2i − (�+ 1))(2j − (�+ 1))×
+∞
∑

r=−∞
ρ2

1,2j−i(r) +
�
∑

i=1
2−i(2i − (�+ 1))2 +∞

∑
r=−∞

ρ2
H(r)

⎞⎠ (16)

σ2
H̃log

= ( 3
log(2) )

2 1
�2(�2−1)2 (2

�
∑

i<j;i,j=1
2−j+1(2i − (�+ 1))(2j − (�+ 1))

×
+∞

∑
p=1

(2p)!
(

1
p(2p−1)!!

)2 +∞
∑

r=−∞
ρ

2p
1,2j−i (r) +

�
∑

i=1
2−i+1(2i − (�+ 1))2

×
+∞

∑
p=1

(2p)!
(

1
p(2p−1)!!

)2 +∞
∑

r=−∞
ρ

2p
H (r))

(17)

ρb,c(x) = 1
2(4−22H)

(bc)−H [−|x|2H + 2|x − b|2H − |x − 2b|2H

+2|x + c|2H − 4|x + c − b
∣∣2H + 2|x + c − 2b|2H−|x + 2c|2H

+2|x + 2c − b|2H−|x + 2c − 2b|2H ]

ρH(x) = −6|x|2H+4|x+1|2H−|x+2|2H−|x−2|2H+4|x−1|2H

2(4−22H)

3.3. Comparison of Asymptotic Variance of Hk, Hlog and Hn

In this subsection, we compare Hurst exponents according to the three variance Formulas
(11), (16) and (17). Although, in theory, Hk, Hlog and Hn can eventually converge to the true
value, in engineering practice, the value of �, p, r cannot be very large, which means that
there must be errors in the three Hurst exponent estimates under the condition of limited
computing resources. Therefore, we try to compare the advantages and disadvantages of the
three according to the asymptotic variance under different parameter values.

As can be seen from Table 1, with the increase in the number of �, Ĥk and Ĥlog have a
downward trend, but overall, the asymptotic variance of Ĥk is less than Ĥlog. From this
point of view, Ĥk is a better estimate.
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Table 1. Comparison of asymptotic variance of Hk and Hlog.

H. � 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ĥk

2 61.43384 60.09544 58.74345 57.42546 56.19696 55.12336 54.28286 53.77096 53.7078
5 9.179444 9.099669 8.987028 8.86357 8.745652 8.646854 8.57992 8.558286 8.597588
10 2.973535 2.891396 2.820534 2.762025 2.716779 2.686191 2.672437 2.678699 2.709498

Ĥlog

2 165.8243 75.86426 74.52995 73.18453 71.87646 70.66238 69.6092 68.7972 68.32469
5 11.05752 10.97854 10.86696 10.74497 10.62911 10.53315 10.47013 10.45383 10.50042
10 3.51451 3.432525 3.361931 3.303832 3.259175 3.229411 3.216792 3.22461 3.257532

According to Figure 1 and Table 1, Hk is usually better than Hlog when the parameter
� has a limited value. The variance of Hk is small, but Hlog converges slightly faster with an
increase of �. In general, Hk is recommended in practice.

 

Figure 1. Comparison of asymptotic variance of Hk and Hlog.

Next, given � = 10, compare the asymptotic variance of Hn with that of Hk and Hlog.
Table 2 shows the change of H values from 0.1 to 1. It can be seen that as the value of H
increases, the error of Hn becomes smaller and smaller. When H > 0.4, the asymptotic
variance of Hn is smaller than Hk and Hlog.

Table 2. Comparison of asymptotic variance of Hn with Hk and Hlog.

�=10.

H 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ĥk 2.973535 2.891396 2.820534 2.762025 2.716779 2.686191 2.672437 2.678699 2.709498404

Ĥlog 3.51451 3.432525 3.361931 3.303832 3.259175 3.229411 3.216792 3.22461 3.257531806
Ĥn 4.055571 3.812466 3.552612 3.280313 3 2.716159 2.433252 2.155608 1.887306706

A similar situation is shown in Figure 2. Hn decreases as the value of H increases; after
0.4, the asymptotic variance of Hn is less than that of Hk and Hlog.
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Figure 2. Comparison of asymptotic variance of Hn with that of Hk and Hlog..

4. Research on the Roughness of Truncated and Non-Truncated Spot Volatility of
Chinese A-Share Industry Indices Estimated by Five Hurst Exponents

4.1. Data Description

We collected Shanghai Composite Index and Shanghai Industrial Index series data
from the WIND High-frequency database. The sampling frequency was set at 5 min, which
allowed us to circumvent all the issues associated with micro-structure noise and thereby
focus on questions pertinent to this paper. For assets in the Chinese stock market, we
considered the Shanghai Composite Index (also named SSE Index), the most influential
index in China’s capital market, and the Shanghai Industrial Index series consisting of 10
primary industries.

The Shanghai Composite Index, published on 15 July 1991, is the first flagship index
reflecting the overall market trend in Shanghai. It includes all the stocks listed on the
Shanghai Stock Exchange, such as A shares and B shares, and is weighted by the total share
capital, representing the 30-year development process of China’s capital market. It is a
symbol of China’s capital market. The data set at our disposal ran from 1 January 2005
until 31 December 2020. We excluded weekends and holidays and kept only full trading
days, which resulted in 3888 days. Thus, we obtained 48 observations for every trading day
and obtained 186,624 observations for the SSE index. According to industry classification
standards, the Shanghai Industrial Index series consists of 10 primary industries, such as
the Energy Sector (SSE Energy), Raw Materials Sector (SSE Materials), Industrials Sector
(SSE Industrials), Consumer Discretionary Sector (SSE ConsDisc), Consumer Staples Sector
(SSE ConsStaples), Health Care Sector (SSE HealthCare), Financials Sector (SSE Financials),
Information Technology Sector (SSE InfoTechnology), Telecommunication Services Sector
(SSE TelecomSvc), and the Utilities Sector (SSE Utilities), which cover almost all samples of
the Shanghai stock market and represent the development process of the relating industries.
A detailed descriptions and interpretations for the ten indices are as follows:

1. Base date and base index. The base date of the Shanghai stock exchange industry
index series is 9 January 2009, and the base index is 1000.

2. Index sample stocks selection. The sample stock space of series of the Shanghai
industry index is composed of all sample stocks of Shanghai Index. Based on the inter-
national mainstream industry classification standards and the characteristics of China’s
listed companies, the listed companies are divided into 10 industries: energy, raw materials,
industry, optional consumption, main consumption, medicine and health, finance and real
estate, information technology, telecommunication business and public utilities.

3. Sample stock selection method. The stocks in the sample space are classified
according to the industry classification standard, and all the stocks in their respective
industries constitute the sample stocks of the corresponding industry index.
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4. Index calculation and correction. The industry index series of Shanghai stock
exchange adopts the Paasehe weighting method, and the weighted calculation formula is
as follows.

Index in the reporting period = adjusted market value of sample stock in the reporting
period/base period × 1000.

Specifically, adjust market value = stock price × adjusted capital stock. The adjusted
capital stock is the capital stock after adjusting the capital stock of the sample stock by
“grading and classifying”.

5. Sample stock adjustment. When the Shanghai Stock Index adjusts the sample stocks,
the industry index series of Shanghai stock index is adjusted accordingly. When the sample
company has a special event, which leads to the change of its industry ownership, the
sample stock of Shanghai stock exchange industry index series is adjusted accordingly.

The data set at our disposal run from 1 January 2010 until 31 December 2020, which
results in 2673 days by keeping only full trading days. Thus, we obtain 48 observations for
every trading day and obtain 128,304 observations for each industrial index.

4.2. Non-Truncated Spot Volatility

Ignoring the effects of jumps in the prices, we can apply the non-truncated estimator
of Equation (2) to extract spot volatilities using the 5 min high-frequency data. The esti-
mation procedure calculating with Δn = 5/240 and kn = 96 results in 1944 estimates of
non-truncated spot volatility for the SSE Index and 1337 estimates of non-truncated spot
volatilities for each industrial index. To give a brief insight into the properties of the 11
indices, Table 3 reports summary statistics for non-truncated spot volatility, where Std.Dev
denotes standard derivation. Index abbreviations are given in the first column. The second
to sixth columns contain some basic descriptive statistics for the indices, including the
mean, minimal, median, maximal and standard deviation of the spot volatility estimates.
Moreover, both skewness and kurtosis are presented in the last two columns of Table 3.

Table 3. Descriptive statistics for the non-truncated spot volatility and its logarithm.

stat_non_trunc Mean Min Max Median Std.Dev Skewness Kurtosis

Panel A: Non-truncated Spot Volatility

SSE index 0.00022 9.05 × 10−6 0.00484 0.00010 0.00037 5.61360960 47.7565
SSE Energy 0.00025 1.48 × 10−5 0.00613 0.00014 0.00045 6.96110970 69.8107

SSE Materials 0.00026 1.74 × 10−5 0.00810 0.00014 0.00051 8.30235757 95.8771
SSE Industrials 0.00023 1.02 × 10−5 0.00787 0.00010 0.00052 8.19252067 90.0560
SSE Cons Disc 0.00021 9.85 × 10−6 0.00648 0.00011 0.00041 8.81983563 106.233

SSE Cons Staples 0.00020 1.14 × 10−5 0.00659 0.00012 0.00037 9.56348181 128.357
SSE Health Care 0.00019 7.73 × 10−6 0.00603 0.00011 0.00035 8.82946172 113.921
SSE Financials 0.00021 1.04 × 10−5 0.00562 0.00011 0.00038 6.87344218 67.1841

SSE Info Technology 0.00031 2.28 × 10−5 0.00727 0.00018 0.00048 7.08361470 76.6140
SSE Telecom Svc 0.00034 2.38 × 10−5 0.00934 0.00018 0.00061 7.56650831 79.6772

SSE Utilities 0.00017 1.13 × 10−5 0.00587 7.65 × 10−5 0.00040 7.96280129 83.3764

Panel B: Logarithm of non-truncated spot volatilities

SSE index −9.0228 −11.6127 −5.3299 −9.1544 1.04418 0.48284956 2.92738
SSE Energy −8.8034 −11.1212 −5.0932 −8.8651 0.93912 0.56099374 3.72217

SSE Materials −8.7734 −10.959 −4.8149 −8.8504 0.92463 0.64137993 3.95554
SSE Industrials −9.0030 −11.4906 −4.8435 −9.1269 0.95747 0.87836819 4.56345
SSE Cons Disc −8.9992 −11.5282 −5.0387 −9.0412 0.92581 0.50655449 4.08381

SSE Cons Staples −8.9353 −11.3815 −5.0212 −8.9969 0.82634 0.65934088 4.71016
SSE Health Care −9.0657 −11.7707 −5.11096 −9.0936 0.94631 0.29717300 3.91282
SSE Financials −8.9995 −11.4702 −5.1811 −9.0533 0.96055 0.43924226 3.75374

SSE Info Technology −8.4958 −10.689 −4.9236 −8.5761 0.87165 0.45663801 3.65189
SSE Telecom Svc −8.4808 −10.645 −4.6731 −8.5727 0.86341 0.78021763 4.49018

SSE Utilities −9.3710 −11.3898 −5.1368 −9.4783 0.98057 0.94548892 4.67285
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Panel A of Table 3 shows that mean values of the non-truncated spot volatility range
from 0.0002 to 0.0003 for all indices. SSE TelecomSvc displays the highest standard deviation
(i.e., 0.00061). Considering skewness and kurtosis, the SSE Index achieves the lowest values
while the highest values are obtained for SSE ConsStaples. None of the series seems to be
symmetric. Moreover, all the time series have positive skewness, which implies that the
distributions have a long right tail.

As stated in Da Fonseca and Zhang [21], taking the logarithm has the well-known effect
of reducing the discrepancies between variables and makes distributions closer to normal
distributions. Panel B of Table 3 shows that skewness of the logarithm of non-truncated spot
volatilities are much smaller, and the kurtosis are closer or a little bigger than 3.

The main reason for positive skewness and high kurtosis might be comprised of the
effect of jumps which we don’t filter in the data. Therefore, we next considered the case
when there are jumps in the asset prices.

4.3. Truncated Spot Volatility

To consider the effect of jumps, we estimate the spot volatility using the truncated
estimator of Equation (3) with kn = 96, Δn = 5/240 and vn =

√
Δn/250. Table 4 provides

the basic descriptive statistics for the truncated spot volatility. As shown in Panel A of
Table 4, the mean values and standard deviations of the truncated spot volatility indexes
are all around 0.0001–0.0002. These positive values for the skewness of the spot volatility
indexes indicate that all the spot volatility indexes are skewed right. The values for the
kurtosis of the spot volatility indexes are always greater than 3, which indicates a heavy-
tailed distribution. By taking the logarithm, Panel B of Table 4 shows that the skewness
of the logarithm of truncated spot volatility of all the indices are near the expected value
of zero, and the kurtosis of the logarithm of truncated spot volatility of all the indices are
near the expected value of 3. Hence, the values of skewness and kurtosis of the logarithm
of truncated spot volatility indexes are acceptable ranges for being normally distributed,
which would make the Hurst parameter estimators maintain their good properties.

4.4. Hurst Exponent Estimation

By using the derived logarithm of non-truncated and truncated spot volatility series of
the Composite Index and the 10 industrial indices data in the Chinese stock market, we cal-
culated the Hurst parameter using the four Hurst parameter estimators, Hn,Hk,Hlog, HqSF
in Section 2.

When we calculate the estimator HqSF from (13) by the qth-order SF method, we
should refine how the regression slope β2 from regression (12) depends on the order q.
By the mono-fractal scaling properties, we suppose β2 ∼ Hq, which leads us to a similar
estimate of the Hurst exponent by (13).

By taking q = 1, 1.5, 2, 2.5, 3, 3.5 and conducting a linear regression of (12) for
Δ = 1, 2, 3, . . . , 100, Figure 3 shows the linear relationship of β2 and q based on logarithm
forms of both non-truncated spot volatility and truncated spot volatility for the Shanghai
Composite Index (SSE Index). Additional test results for the 10 industrial indices are shown
in Figures 4 and 5. All the figures illustrate the approximate linear relationship between β2
and q, which is consistent with the theoretical derivation in Gatheral et al. [13] and lead us
to a similar estimate of the Hurst parameter by (13).
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Table 4. Descriptive statistics for the truncated spot volatilities and their logarithms.

stat_trunc Mean Min Max Median Std.Dev Skewness Kurtosis

Panel A: Truncated spot volatilities

SSE index 0.00015 9.05 × 10−6 0.00093 9.38 × 10−5 0.00015 1.910627 6.71405
SSE Energy 0.00016 1.48 × 10−5 0.00089 0.00011 0.00014 2.162615 8.26727

SSE Materials 0.00016 1.74 × 10−5 0.00082 0.00012 0.00014 2.072311 7.87712
SSE Industrials 0.00014 1.02 × 10−5 0.00090 0.0001 0.00013 2.476477 9.72460
SSE Cons Disc 0.00013 9.85 × 10−6 0.00077 0.00010 0.00011 2.323363 9.81297

SSE Cons Staples 0.00014 1.14 × 10−5 0.00081 0.00011 0.00010 2.505865 11.2342
SSE Health Care 0.00013 7.73 × 10−6 0.00085 0.00010 0.00011 2.366167 10.4674
SSE Financials 0.00014 1.04 × 10−5 0.00102 0.00010 0.00013 2.684608 12.6908

SSE Info Technology 0.00021 2.28 × 10−5 0.00095 0.00016 0.00015 1.64547 5.96398
SSE Telecom Svc 0.00020 2.38 × 10−5 0.00100 0.00016 0.00014 1.889841 7.25645

SSE Utilities 0.00010 1.01 × 10−5 0.00086 7.26 × 10−5 0.00012 3.081249 13.9049

Panel B: Logarithm of truncated spot volatilities

SSE index −9.1803 −11.612 −6.9750 −9.2744 0.88871 0.197569 2.41616
SSE Energy −9.0321 −11.121 −7.0142 −9.0610 0.76953 0.124777 2.77233

SSE Materials −8.9674 −10.959 −7.1063 −8.9712 0.74074 0.099774 2.73774
SSE Industrials −9.1668 −11.490 −7.0048 −9.2100 0.76706 0.275856 3.15982
SSE Cons Disc −9.1697 −11.528 −7.1616 −9.1632 0.76327 −0.04621 3.00242

SSE Cons Staples −9.0922 −11.381 −7.1069 −9.1035 0.66098 0.002958 3.49107
SSE Health Care −9.2145 −11.770 −7.069 −9.1831 0.78518 −0.28041 3.35773
SSE Financials −9.1818 −11.470 −6.8844 −9.2013 0.79877 −0.00218 3.09299

SSE Info Technology −8.6952 −10.689 −6.9569 −8.7076 0.6935 −0.10739 2.91148
SSE Telecom Svc −8.6995 −10.645 −6.9032 −8.7227 0.65081 0.013933 3.01487

SSE Utilities −9.4973 −11.507 −7.0505 −9.5307 0.8180 0.394645 3.19111

 
Figure 3. β2 against q based on logarithm forms of both non-truncated spot volatility and truncated
spot volatility for the Shanghai Composite Index (SSE Index).
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Figure 4. β2 against q based on the logarithm of non-truncated spot volatility for the 10 industrial indices.

 

Figure 5. β2 against q based on the logarithm of truncated spot volatility for the 10 industrial indices.

For all the indices, we can calculate the Hurst exponents by the five different Hurst
exponent estimators using both non-truncated spot volatility and truncated spot volatility in
logarithm forms. From the Hurst exponent estimation results listed in Table 5, we can see the
Hurst exponents are all less than 0.5 for all the indices, no matter which Hurst exponent esti-
mator we adopt, and whether or not price jumps are filtered. The results in Table 5 indicate
the roughness in the log-volatility of the Composite Index and the 10 industrial indices in the
Chinese stock market, consistent with findings in the literature, such as Gatheral et al. [13],
Livieri et al. [14], Da Fonseca and Zhang [21] and Takaishi [23]; Bennedsen et al. [11]. Our
study provides further evidence of the roughness in spot volatility.
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Table 5. Hurst parameter estimates for the logarithm of spot volatilities.

Index

Log (Non-Truncated
Spot Volatility)

Log (Truncated Spot Volatility)

Hk Hlog HqSF Hn MF-DFA Hk Hlog HqSF Hn MF-DFA

SSE index 0.27 0.22 0.09 0.27 0.22 0.27 0.17 0.16 0.19 0.26
SSE Energy 0.33 0.28 0.06 0.33 0.23 0.33 0.22 0.05 0.24 0.26

SSE Materials 0.26 0.25 0.28 0.26 0.22 0.26 0.27 0.09 0.26 0.26
SSE Industrials 0.29 0.26 0.18 0.29 0.20 0.29 0.18 0.21 0.15 0.27
SSE Cons Disc 0.23 0.18 0.16 0.23 0.25 0.23 0.25 0.20 0.23 0.28

SSE Cons Staples 0.20 0.17 0.25 0.20 0.22 0.20 0.23 0.13 0.23 0.21
SSE Health Care 0.22 0.21 0.11 0.22 0.27 0.22 0.20 0.22 0.17 0.34
SSE Financials 0.23 0.24 0.27 0.23 0.15 0.23 0.21 0.11 0.20 0.23

SSE Info Technology 0.33 0.33 0.21 0.32 0.18 0.33 0.29 0.23 0.29 0.23
SSE Telecom Svc 0.37 0.38 0.10 0.37 0.21 0.37 0.31 0.21 0.30 0.25

SSE Utilities 0.27 0.22 0.09 0.27 0.22 0.27 0.33 0.15 0.28 0.26

5. Discussion

It is well-known that the constant volatility of Black and Scholes [1] is neither consistent
with real volatility data nor consistent with implied volatility surfaces. Consequently,
several popular stochastic volatility models driven by standard Brownian motions have
been introduced in past decades to reproduce the stylized facts of time series observed
for both the historical volatility and the implied volatility. Moreover, in order to take
into account an apparent presence of long memory in the volatility process, Comte and
Renault [6] first proposed a stochastic volatility model driven by fractional Brownian
motion (fBm) with H > 1/2. Recently, prompted by new insights from realized volatility
data, Gatheral et al. [13] and Bennedsen et al. [11] introduced rough volatility models
driven by fBm with H < 1/2. Using absolute moments estimation and realized volatility
as a proxy of true volatility, Gatheral et al. [13] estimate the Hurst exponent and found that
it is close to 0.14 for both the log-volatility of the SP500 and the NASDAQ, together with
other major indices. Moreover, the estimation of the Hurst exponent H is robust across time,
scales and markets. More empirical studies of the log-volatility for thousands of stocks (see,
e.g., Bennedsen et al. [11]) and implied volatility (see, e.g., Livieri et al. [14]) confirm the
roughness of the volatility.

Since the spot volatility is of importance in several applications, including derivatives
pricing, high-frequency trading, and risk management, it is t natural to assess whether spot
volatility has a rough property, that is, to determine whether the spot volatility is rough.

Many publications consider the roughness of realized volatility and implied volatility.
Gatheral et al. [13] showed the volatility roughness of SP500 index, Livieri et al. [14]
showed that implied volatility is rough, too. Takaishi [23] studied Bitcoin and verified
the roughness of volatilities in Bitcoin. Da Fonseca and Zhang [21] found the volatility of
volatility is also rough. Bennedsen et al. [11] found the roughness of logarithmic volatility of
thousands of stocks. There is much evidence showing the roughness of volatility in different
sectors and markets (see Guennoun et al. [32], Funahashi and Kijima [33], Neuenkirch and
Shalaiko [34]). However, spot volatility is still a problem, especially the comparison of
truncated and non-truncated spot volatility. This paper fills the gaps in previous works.

Following the important work of Gatheral et al. [13], this study aims to provide further
evidence of the roughness of logarithm spot volatility in the Chinese financial market.
Using the non-parametric estimator proposed by Fan and Wang [28], this paper introduces
a non-parametric spot volatility estimator for the fractional volatility model of (1) for
all H ∈ (0, 1). Using five different Hurst exponents, MF-DFA, qth-order SF, two Hurst
estimations using the least square estimation method provided by Berzin et al. [31] and
a new Hurst exponent by changing frequency method, this paper analyzed roughness
of the log-realized volatility of 10 industrial indices in the Chinese financial market. We
found that h(q) calculated by five different Hurst exponents were all less 0.5. These results
confirm the roughness of log-spot volatility.
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Moreover, we propose a new Hurst estimation Hn by changing the data frequency
method. This performs better when H > 0.4 in the perspective of asymptotic variance.

6. Conclusions

Volatility is very important in many aspects of the financial field. First, implied
volatility is the key in option pricing relative to the realized volatility, and a model of
realized volatility can be used to improve the option pricing effectiveness. Second, volatility
is a way to measure risk. With the continuous development of the financial market, financial
assets such as stocks, futures, bonds and foreign exchange are constantly enriched. No
matter the kind of financial asset, price risk is always one of the core risks. The most direct
manifestation of the sharp rise and fall of prices is the rise of volatility, so how to measure
and predict volatility is a very important problem. Therefore, modeling and prediction of
volatility is the answer to the basic problem of the financial risk, and its significance is self-
evident. Third, volatility is an indicator of financial supervision on micro market behavior.
Financial market supervision often faces a dilemma: on the one hand, we should encourage
financial innovation, but innovation often brings new problems, such as new market risks or
new institutional arbitragers. On the other hand, we should not be too conservative, otherwise
it is easy to suppress market vitality and solidify market ecology; then we may lose the fairness
of the market. With the popularity of financial big data, regulators have more micro-detailed
data, which provides the possibility for fixed-point and local supervision. So how to mine and
depict the behavior of market participants from massive data is an important problem. Macro
and micro financial behaviors, related to the banker, money laundering, financial crises, credit
default, and so on, have effects on market price. When the market price changes dramatically,
this reflects volatility. Therefore, the volatility can become a tool and a starting point for
supervision in the era of financial big data.

Since volatility modelling is so important, this section summarizes the contributions
of studies of roughness of volatility, which is one its most important properties. First,
we propose a Hurst estimation Hn by changing the data frequency method. Second, we
prove the asymptotic variance of Hn and that of two Hurst estimations provided by Berzin
et al. [31], and do simulations to find the advantages of Hn that Hn that work better than
those of Berzin et al. [31] when H > 0.4. Third, since much literature verifies the roughness
of volatility (including volatility of the SP500 index by Gatheral et al. [13], implied volatility
of options by Livieri et al. [13], volatility of bitcoin by Takaishi [23], volatility of volatility
by Da Fonseca and Zhang [21], and volatility of many stocks by Bennedsen et al. [11]),
we fill a gap that verifies the roughness of truncated and non-truncated spot volatility by
four different Hurst exponent estimations: Hn, Hk, Hlog, HqSF. We find that truncated spot
volatility has a stronger roughness than that of non-truncated spot volatility.

This study also suggests several important directions for future research. The estimator
methods of constructing the estimators and their asymptotic properties essentially depend
on observations. The first suggestion is to include estimation error and microstructure
noise into the analysis. The second suggestion is to construct a unified volatility model that
correctly accounts for, if possible, all the stylized facts observed in the real data, such as
volatility clustering, multi-fractality, roughness, mean-reversion and persistence. Another
direction for future research is to discuss the pricing and hedging of volatility options in
some rough volatility models. In such cases, efficient Monte Carlo methods and asymptotic
approximations for computing option prices and hedge ratios should be employed, which
might provide insight into the robustness of the results obtained herein.
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Appendix A

Proof of Lemma 1. We give brief derivations here.
From (1), for all H ∈ (0, 1), we have

Xt =
(
1 − e−αt)m + X0e−αt + v

∫ t
0 e−α(t−s)dBH

s
=
(
1 − e−αt)m + X0e−αt + vBH

t − αve−αt ∫ t
0 eαsBH

s ds
=
(
1 − e−αt)m + X0e−αt + X̃

(A1)

where X̃t = νBH
t − ανe−αt

∫ t
0 eαsBH

s ds
Thus, Xt is normal distribution with mean

(
1 − e−αt)m + X0e−αt. For the sake of

convenience, we first consider the covariance of X̃t and X̃s. Using the well known result,
RH(s, t) = 1

2 (|t|2H + |s|2H − |t − s|2H), supporting t > s > 0, the covariance function of, X̃t

and X̃s is given by:

cov(X̃t, X̃s) = E[(−ανe−αt ∫ t
0 eαuBH

u du + νBH
t )(−ανe−αs ∫ s

0 eαvBH
v dv + νBH

s )]

= − αν2

2 e−αt ∫ t
0 eαu(u2H + s2H − |u − s|2H)du

− αν2

2 e−αs ∫ s
0 eαv(v2H + t2H − |v − t|2H)dv + ν2

2 (t
2H + s2H − |t − s|2H)

+ α2ν2

2 e−αt−αs
∫ t

0

∫ s
0 eαu+αv(u2H + v2H − |u − v|2H)dudv= ν2

2

10
∑

n=1
In

(A2)

with

I1 = −αe−αt ∫ t
0 eαus2Hdu, I2 = −αe−αt ∫ t

0 eαuu2Hdu, I3 = αe−αt ∫ t
0 eαu|u − s|2Hdu

I4 = −αe−αs ∫ s
0 eαvt2Hdv, I5 = −αe−αs ∫ s

0 eαvv2Hdv, I6 = αe−αs ∫ s
0 eαv(t − v)2Hdv

I7 = t2H + s2H − (t − s)2H , I8 = α2e−αt−αs ∫ t
0 eαvdv

∫ s
0 eαuu2Hdu

I9 = α2e−αt−αs ∫ s
0 eαudu

∫ t
0 eαvv2Hdv

I10 = −α2e−αt−αs
∫ t

0

∫ s
0 eαu+αv|u − v|2Hdudv

The first two integrals are equal to:

I1 = s2H(e−αt − 1
)

and I2 = −e−αt
∫ t

0
u2Hdeαu = −t2H + 2He−αt

∫ t

0
eαuu2H−1du

By changing variables and integration by parts, we can obtain:

I3 = αe−αt ∫ s
0 eαu(s − u)2Hdu + αe−αt ∫ t

s eαu(u − s)2Hdu
= αe−αt+αs ∫ s

0 e−αzz2Hdz + αe−αt+αs ∫ t−s
0 eαzz2Hdz

= −e−αt+αs
(

e−αss2H − 2H
∫ s

0 e−αzz2H−1dz − eα(t−s)(t − s)2H

+2H
∫ t−s

0 eαzz2H−1dz
)

= −e−αts2H + (t − s)2H + 2He−αt+αs ∫ s
0 e−αzz2H−1dz

−2He−αt+αs ∫ t−s
0 eαzz2H−1dz.
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Similarly, we can have:

I4 = t2H(e−αs − 1), I5 = −s2H + 2He−αs ∫ s
0 eαvv2H−1dv

I6 = αe−αs+αt ∫ t
t−s e−αzz2Hdz = −e−αs+αt ∫ t

t−s z2Hde−αz

= −e−αst2H + (t − s)2H + 2He−αs+αt ∫ t
t−s e−αzz2H−1dz

I8 = e−αt−αs(eαt − 1
) ∫ s

0 u2Hdeαu =
(
1 − e−αt)s2H − 2He−αs(1 − e−αt) ∫ s

0 eαuu2H−1du
I9 = (1 − e−αs)t2H − 2He−αt(1 − e−αs)

∫ t
0 eαvv2H−1dv

Then, we consider the term I10, which can be represented as:

I10 = −α2e−αt−αs
∫ s

0

∫ v
0 eαu+αv(v − u)2Hdudv

−α2e−αt−αs
∫ s

0

∫ s
v eαu+αv(u − v)2Hdudv

−α2e−αt−αs
∫ t

s

∫ s
0 eαu+αv(v − u)2Hdudv

= −2α2e−αt−αs
∫ s

0

∫ v
0 eαu+αv(v − u)2Hdudv

−α2e−αt−αs
∫ t

s

∫ s
0 eαu+αv(v − u)2Hdudv

= I1
10 + I2

10

Using the change of variables u − v = z, the change of order of integration, and
integration by parts, we obtain:

I1
10 = −2α2e−αt−αs ∫ s

0 e2αv ∫ v
0 e−αzz2Hdzdv

= −2α2e−αt−αs ∫ s
0 e−αzz2H ∫ s

z e2αvdvdz
= −2α2e−αt−αs ∫ s

0 e−αzz2H e2αs−e2αz

2α dz
= −αe−αt+αs(∫ s

0 e−αzz2Hdz − ∫ s
0 eαuu2Hdu

)
= e−αts2H − 2He−αt+αs ∫ s

0 e−αzz2H−1dz + e−αts2H − 2He−αt−αs ∫ s
0 eαuu2H−1du

Now, we consider I2
10, First we deal with the case of t > 2s. Using the change of

variables u − v = z in the inner integral, changing the order of integration, and integrating
with respect to v, we obtain:

I2
10 = −α2e−αt−αs

∫ t

s

∫ v
v−s e−αz+2αvz2Hdzdv

= −α2e−αt−αs(

∫ s

0

∫ z+s
s e−αz+2αvz2Hdvdz +

∫ t−s

s

∫ z+s
z e−αz+2αvz2Hdvdz

+

∫ t

t−s

∫ t
z e−αz+2αvz2Hdvdz)

= −α2e−αt−αs(
∫ s

0 e−αzz2H e2α(z+s)−e2αs

2α dz
+
∫ t−s

s e−αzz2H e2α(z+s)−e2αz

2α dz +
∫ t

t−s e−αzz2H e2αt−e2αz

2α dz)
= −α

2 e−αt+αs ∫ t−s
0 eαzz2Hdz − −α

2 e−αt−αs ∫ t
s eαzz2Hdz − −α

2 e−αt+αs ∫ s
0 e−αzz2Hdz

+−α
2 e−αs+αt ∫ t

t−s e−αzz2Hdz
= e−αst2H − e−αts2H − He−αs+αt ∫ t

t−s e−αzz2H−1dz + He−αt+αs ∫ s
0 e−αzz2H−1dz

−He−αt−αs ∫ t
s eαzz2H−1dz + He−αt+αs ∫ t−s

0 eαzz2H−1dz − (t − s)2H
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Similarly, one can verify that the above formula follows in the case of s < t < 2s.
Finally, summing up all the terms, we obtain:

Cov(Xt, Xs) = Cov
(

X̃t, X̃s

)
= Hν2

2 (−e−αt+αs ∫ t−s
0 eαzz2H−1dz + eαt−αs ∫ t

t−s e−αzz2H−1dz
−e−αt−αs ∫ t

s eαzz2H−1dz + e−αt+αs ∫ s
0 e−αzz2H−1dz

+2e−αt−αs ∫ t
0 eαzz2H−1dz)

(A3)

Moreover, using (A3), for all H ∈ (0, 1), we have:

VarXt = VarX̃t = Hν2
∫ t

0
z2H−1(e−αz + e−α(2t−z))dz (A4)

Which implies (4). �

Proof of Lemma 2. From (A1), we can easily obtain:

E[Xt] = m(1 − e−αt) + X0e−αt (A5)

Moreover, using (4) in Lemma 1, we have:

Var[Xt] = Hν2
∫ t

0
z2H−1(e−αz + e−α(2t−z))dz → HΓ(2H)

α2H (A6)

where α > 0 as t → ∞ .
Since the random variable Xt has normal distribution, we can obtain (5) using (A5)

and (A6). Now, we consider (6). For convenience, we assume t ≥ s ≥ 0 and p = 2. Thus,
we show that

E(Xt − Xs)
2 ≤ C|t − s|2H (A7)

Using the fact Xt = X0 + α
∫ t

0 (m − Xs)ds + νBH
t , we obtain:

|Xt − Xs|≤|αm(t − s)|+ α
∫ t

s
|Xu|du + ν

∣∣∣BH
t − BH

s

∣∣∣ (A8)

Therefore, using (5), we obtain:

E(Xt − Xs)
2 ≤ 3

∣∣αm(t − s)|2 + 3
∣∣α|2E(∫ t

s |Xu|du)
2
+ 3ν2E

(
BH

t − BH
s
)2

≤ 3
∣∣αm(t − s)|2 + 3

∣∣α|2(t − s)
∫ t

s E|Xu|2du + 3ν2(t − s)2I

≤ C|t − s|2

Thus, (A7) is proved. Since Xt − Xs has a normal distribution, (6) follows from (A7) in
the standard way. �

Proof of Lemma 3. First, using (5) and (A6), one can easily check the condition

E

[
σ2

t ]= E[e2Xt
]
= e2E[Xt ]+2Var[Xt ] ≤ C

Which implies:
sup

0≤t≤T

∣∣∣σ2
t

∣∣∣ = Op(1) (A9)

From (A9), we can see that the second condition of A1 in Hypothesis 1 is satisfied.
Since ey is a continuous function of y and Xt is H − ε Hölder continuous with any small ε,
using Lemma 2 and (A9), we have:

E
∣∣∣σt − σs|= E|eXt − eXs |= E|eXs

(
eXt−Xs − 1

)∣∣∣ ≤ eXs(eC|t−s|pH−1) ≤ C|t − s|pH (A10)
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Which implies sup{|σs − σt|, |s − t| ≤ a} = OP(a1/2| log(a)|1/2). Hence the condition
of A1 in Hypothesis 1 is satisfied. For the condition A2 in Hypothesis 1, using (A10), we obtain:

sup|
∫ ti

ti−1

(σ(s)− σ(ti−1))dWs|
2
≤ 2 log(n)sup|

∫ ti

ti−1

(σ(s)− σ(ti−1))
2ds| ≤ C log(n)

n2

Which implies A2 in Hypothesis 1. �

Proof of Proposition 1. From Lemma 3, we can see that assumptions A1 and A2 of σt in
Hypothesis 1 are satisfied for the volatility process in (1). From the definition of Mn, we
can see that Mn has the same asymptotic distribution as sup

0≤t≤T

∣∣σ2
t
∣∣. Hence, we can obtain

the desired results. �
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Abstract: The paramagnetic feature of ferrofluid allows it to be utilised in electronic devices and
improvise fluid circulation in transformer windings. Hence, the present article aims to conduct
the numerical study of ferrofluid boundary layer flow along with the Stefan blowing, velocity and
thermal slip, and Soret effects within the stagnation region over a stretching/shrinking surface. The
governing equations were solved numerically using the bvp4c function in the MATLAB computing
package. Based on the results, a stronger magnetic field of ferrofluid was needed to identify the
numerical solutions past the shrinking surface, while the Stefan blowing diminished the solution’s
availability. More than one solution is acquired for some specific values of the shrinking parameter,
and the stability analysis validated that only one solution is reliable and stable.

Keywords: ferrofluidslip effect; Stefan blowing; thermodiffusion

MSC: 34B15; 76Dxx

1. Introduction

The evaporation process is very beneficial in industries that require the removal of
unwanted fluids, such as the food industry. To mention a few, evaporation is applied
to concentrate milk, fruit juice, jams, jellies, and sugar solutions for crystallisation [1].
Furthermore, evaporation is crucial in the pulp and paper industry, where it is used in
the drying section, which is the final and the most vital section to produce paper [2]. In a
particular circumstance, the species transfer or mass transfer in evaporation can create a
different fluid motion. The movement of the species from the interface to the free stream
is called the blowing effect or the Stefan blowing effect because the concept originates
from the Stefan problem of the mass transfer [3]. The formulations of the mass transfer are
similar to the heat transfer equation, but in this problem, the present investigation involves
the coupled blowing effect. Moreover, Fang and Jing [3], who introduced the influence of
coupled Stefan blowing induced by species transport, suggested that the momentum and
the concentration equations should be coupled because the species transfer and the flow
field depend on each other. Then, Fang [4] revisited the work in [3] to examine the transport
phenomena from the view of unsteady stagnation-point flow and solved analytically in
terms of an incomplete Gamma function. After that, the coupled Stefan blowing impact has
been considered in the boundary layer models under various settings and external forces,
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for instance, in the bioconvection flow [5], magnetohydrodynamics [6], and anisotropic
slip [7].

Since very few studies can be found regarding the Stefan blowing effect, we are inter-
ested in studying this problem with the addition of the Soret effect (or thermodiffusion),
velocity slip, and thermal slip over a stretching or shrinking sheet in a ferrofluid. It is
assumed in the present study that the movement of the species particles that is saturated at
the surface results from the temperature gradient. This phenomenon is called thermophore-
sis or the Soret effect and has been studied by Ryskin and Pleiner [8], Ramreddy et al. [9],
and Pal et al. [10] in nanofluids, while Arif et al. [11] studied it in a hybrid nanofluid.
Furthermore, the study of the slip effect is necessary because the presence of the species
blowing at the interface might contribute to the wall slip where the fluid velocity and tem-
perature at the surface are not zero. It was also explained by Uddin et al. [12] that boundary
slip occurs in a fluid that contains particulates, such as emulsions and suspensions. Hence,
they studied the effects of the slip and the Stefan blowing in a nanofluid that contains
gyrotactic microorganisms. On the other hand, many other researchers also considered the
slip effect in their shrinking sheet problem, such as Singh and Chamkha [13], who reported
the numerical analysis on the effects of the second-order slip on a permeable, vertical
isothermal shrinking sheet. In addition, Mahapatra and Nandy [14], Aman et al. [15], and
Merkin et al. [16] investigated the flow induced by the shrinking sheet with the slip effect
near a stagnation point and obtained non-uniqueness solutions. This is in accordance with
the result reported by [17], where the existence of the similarity solutions is guaranteed
within the stagnation region past the shrinking surfaces.

On the other hand, we also aim to study the effect of the Stefan blowing in a ferrofluid
that contains magnetite nanoparticles (Fe3O4). Apart from the nanofluids, which consider
different types of nanoparticles as was examined by the theoretical works in [18–21],
ferrofluid has become one of the essential fields of interest. Ferrofluid has properties that
can be controlled and can absorb electromagnetic energy to increase heat when the external
magnetic field is applied. Hence, ferrofluid is beneficial in many applications, such as
biomedicine, solar system design, and technological applications, for example, dynamic
sealing, damping, and doping of specialised materials [22]. Shokrollahi [23] identified
that ferrofluid had been used in the mechanism for the early detection of cancer, as the
contrast agent for the Magnetic Resonance Imaging (MRI), and in the development of
an implantable artificial heart. In this problem, ferrofluid is numerically modelled using
a single-phase approach. Henceforth, the base fluid and the magnetic nanoparticles are
assumed in thermal equilibrium concerning their physical properties and moving with the
same velocity. Ryskin et al. [24] described that most experiments on ferrofluids could be
conducted as a single-phase model because the Lewis number of the ferrofluid is minimal.
Several numerical studies of the ferrofluid used the single-phase model [25–28]. Recently,
Hamid et al. [29] scrutinised the impact of viscous dissipation on dusty ferrofluid flow and
heat transfer over a shrinking flat surface (single-phase model) and showed that the shear
stress increases when the dust particles augment in the ferrofluid.

Acknowledging these valuable theoretical works reported within the scope of the
magnetic field, ferrofluid flow, coupled Stefan blowing, and Soret impact, it was found that
there is a research gap where the influences of the magnetic field, Soret coefficient, velocity
slip, and thermal slip have not been examined on the ferrofluid flow past the moving
surface. The numerical outputs are generated as the intensity of the external forces varies.
More than one solution that elucidates the transport phenomena is identified, and stability
analysis is implemented to justify the solution’s stability. The present valuable work has
significance in hydrometallurgical applications.

2. Mathematical Model

We examined a steady, two-dimensional, laminar, stagnation-point flow of a viscous
and incompressible water-based ferrofluid with the velocity and thermal slips as shown
in Figure 1, where x and y are the Cartesian coordinates considered past the moving
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surface where the sheet moves in a manner of either stretching or shrinking, and normal
to it, respectively. The sheet moves with a velocity defined as u = λUw + Uslip, where
Uw and Uslip are the sheet velocity and slip velocity, respectively, and λ is the parameter
that measures the stretching or shrinking rate. The free stream velocity is denoted by Ue.
Meanwhile, the ferrofluid temperature, T at the surface is denoted as Tw. A transverse
magnetic field was assumed to exist in the manner of normal to the surface where B0
is the magnetic field strength. Additionally, it was assumed that no external electric
field is available, and the electric field caused by the polarisation charges are omitted.
We took that a binary fluid saturates the surface with dissolved species and magnetite
ferroparticles (Fe3O4) in this problem. It was also assumed that the species’ massive
mass transfer occurred with velocity during the stretching/shrinking action Vw(x) and
generated a blowing effect [3]. It should be noted that the species does not interact with the
magnetite nanoparticles.

 
Figure 1. Present flow problem’s physical model.

Based on these assumptions, the following mathematical model can be formulated [30]:

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= Ue
dUe

dx
+ ν f f

∂2u
∂y2 − σf f B0

2

ρ f f
(u − Ue), (2)

u
∂T
∂x

+ v
∂T
∂y

= α f f
∂2T
∂y2 , (3)

u
∂C
∂x

+ v
∂C
∂y

= DS
∂2C
∂y2 + DCT

∂2T
∂y2 , (4)

where u and v are the velocity components along with the directions x and y, respectively;
ν f f is the ferrofluid kinematic viscosity; σf f is the ferrofluid electrical conductivity; ρ f f is
the ferrofluid density; T is the temperature; α f f is the ferrofluid thermal diffusivity; C is the
species concentration; DS is the species diffusivity; and DCT is the Soret-type diffusivity.
The boundary conditions at the sheet are ([15,31]):
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u = λUw + Uslip = λcx + L
(

∂u
∂y

)
, v = VS = k(x) ∂C

∂y , T = Tw + S
(

∂T
∂y

)
,

C = Cw at y = 0,

u → Ue(x) = ax, T → T∞, C → C∞ as y → ∞,

(5)

where λ is the stretching parameter (λ > 0) or the shrinking parameter (λ < 0), a, c are
the positive constants, L is the velocity slip parameter, S is the thermal slip parameter, and
k(x) signifies the blowing function. The effective properties of ferrofluid (subscript ff ) may
be conveyed in terms of the base fluid’s properties (subscript f ) and solid ferroparticles
(subscript s) and the solid ferroparticles’ volume fraction, φ, as follows [32]:

ν f f =
μ f f
ρ f f

, μ f f =
μ f

(1−φ)2.5 , ρ f f = (1 − φ)ρ f + φρs,

α f f =
k f f

(ρcp) f f
,
(
ρcp
)

f f = (1 − φ)
(
ρcp
)

f + φ
(
ρcp
)

s,

k f f
k f

=
ks+2k f −2φ(k f −ks)
ks+2k f +φ(k f −ks)

,
σf f
σf

= 1 +
3
(

σs
σf

−1
)

φ(
σs
σf

+2
)
−
(

σs
σf

−1
)

φ
.

(6)

We then introduced the following similarity variables as [30]:

u = cx f ′(η), v = −√cν f f (η), η =
√

c/ν f y

θ(η) = T−T∞
Tw−T∞

, H(η) = C−C∞
Cw−C∞

.
(7)

Furthermore, it is a necessity for f (0) to be independent of x, if and only if k(x) and
x vary inversely or k(x) ∝ 1

x [31]. Eventually, the blowing function can be written in the

following form: k(x) =
−κν f

Cw−C∞
, where the nondimensional blowing parameter κ is fixed to

be within the range of κ ≥ 0 to allow the model to be transformed into a similarity form.
Substituting (7) into Equations (1)–(4) and boundary conditions (5) yielded the following
simplified mathematical model,

ε1 f ′′′ + f f ′′ − f ′2 − ε2M
(

f ′ − A
)
+ A2 = 0, (8)

ε3θ′′ + Pr f θ′ = 0, (9)

H′′ + Sc f H′ + STScθ′′ = 0, (10)

with the boundary condition:

f (0) = κH′(0), f ′(0) = λ + δ f ′′ (0), θ(0) = 1 + δTθ′(0), H(0) = 1,

f ′(η) → A, θ(η) → 0, H(η) → 0 as η → ∞,
(11)

where

ε1 =
ν f f
ν f

= 1
(1−φ)2.5((1−φ)+φ(ρs/ρ f ))

, ε2 =
σf f /σf

(1−φ+φ(ρs/ρ f ))
,

ε3 = Pr
α f f
ν f

= Pr
k f f /k f(

1−φ+φ
(ρcp)s
(ρcp) f

) .
(12)

The other parameters are the velocity ratio A, the magnetic interaction parameter
M, the Prandtl number Pr, the Schmidt number Sc, the Soret parameter ST , the blowing
parameter κ, the velocity slip parameter δ, and the thermal slip parameter δT , which are
defined as:
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A = a
c , M =

σf B2
0

aρ f
, Pr =

ν f
α f

, Sc =
ν f
DS

,

ST = DCT(Tw−T∞)
ν f (Cw−C∞)

, δ = L
√

c
ν f

, δT = S
√

c
ν f

.
(13)

The physical quantities that are important in the present work are the skin friction
coefficient Cf and the local Nusselt number Nux, which are expressed as

Cf =
τw

ρ f U2
w(x)

, Nux =
xqw

k f (Tw − T∞)
, (14)

The shear stress τw and the surface heat flux qw are given by

τw = μ f f

(
∂u
∂y

)
y=0

, qw = −k f f

(
∂T
∂y

)
y=0

, (15)

Hence, the dimensionless wall shear stress Cf Re1/2
x and the dimensionless heat flux

NuxRe−1/2
x are defined as

Cf Rex
1/2 =

f ′′ (0)

(1 − φ)2.5 , NuxRex
−1/2 = − k f f

k f
θ′(0), (16)

where Rex = Uw(x)x/ν f .

3. Stability Analysis

The stability analysis is started by introducing the non-dimensional time variable or τ
as shown below

u = cx f ′(η, τ), v = −√cν f f (η, τ), η =
√

c/ν f y, τ = ct,

θ(η, τ) = T−T∞
Tw−T∞

, H(η, τ) = C−C∞
Cw−C∞

.
(17)

Next, using (17), Equations (1)–(4) become the unsteady equations as follows:

ε1
∂3 f
∂η3 + f

∂2 f
∂η2 −

(
∂ f
∂η

)2
− ε2M

(
∂ f
∂η

− A
)
+ A2 − ∂2 f

∂η∂τ
= 0, (18)

ε3

Pr
∂2θ

∂η2 + f
∂θ

∂η
− ∂θ

∂τ
= 0, (19)

∂2H
∂η2 + Sc f

∂H
∂η

+ ScST
∂2θ

∂η2 − ∂H
∂τ

= 0, (20)

with the boundary conditions:

f (0, τ) = κ
∂H(0,τ)

∂η , ∂ f (0,τ)
∂η = λ + δ

∂ f 2(0,τ)
∂η2 , θ(0, τ) = 1 + δT

∂θ(0,τ)
∂η , H(0, τ) = 1,

∂ f (η,τ)
∂η → A, θ(η, τ) → 0, H(η, τ) → 0 as η → ∞.

(21)

Then, the linear stability of the solutions is determined by using the following:

f (η, τ) = f0(η) + e−γτ J(η), θ(η, τ) = θ0(η) + e−γτQ(η),

H(η, τ) = H0(η) + e−γτ B(η),
(22)
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where f0(η), θ0(η), and H0(η) indicate the steady solution of the Equations (8)–(10). Fur-
ther, J(η), Q(η), and B(η) are assumed to be small relative to f0(η), θ0(η), and H0(η)
so the disturbances are minimal [33]. Additionally, γ is the unknown eigenvalue and
portrays the disturbance’s growth (or decay) rate. Using (22) in (18)–(20) and setting
J(η) = J0(η), Q(η) = Q0(η), and B(η) = B0(η) to test the steady flow solutions’ stability,
we obtain the following eigenvalues equations:

ε1 J ′′′0 + f0 J ′′0 + f ′′0 J0 − 2 f ′0 J′0 − ε2MJ′0 + γJ′0 = 0, (23)

ε3

Pr
Q′′

0 + f0Q′
0 + J0θ′0 + γQ0 = 0, (24)

B′′
0 + Sc

(
f0B′

0 + J0H′
0
)
+ STScQ′′

0 + γB0 = 0, (25)

and the boundary conditions become:

J0(0) = κB′
0(0), J′0(0) = δJ ′′0 (0), Q0(0) = δTQ′

0(0), B0(0) = 0,

J′0(η) → 0, Q0(η) → 0, B0(η) → 0 as η → ∞.
(26)

The range of possible eigenvalues γ in the Equations (23)–(25) can be obtained by
resting either one of the outer boundary conditions of J0(η), Q0(η), or B0(η) [34]. This
procedure is a must in executing the stability analysis because it is required only that the
solution should not be exponentially large as τ approaches ∞. Thus, it is necessary to hold
J′0(∞) → 0 and replace it with a new boundary condition J ′′0 (0) = 1. Moreover, since any
constant multiple of J0(η) is also considered a solution, J ′′0 (0) = 1 can be fixed without the
loss of generality to solve Equations (23)–(25) as an initial value problem. This problem
then can be solved via the bvp4c function to distinguish the stable and unstable solutions.

4. Results and Discussion

This section presents and discusses the numerical outputs generated via the bvp4c
function. The thermophysical properties values of the magnetite ferroparticles given in
Table 1 were utilised.

Table 1. Values of the physical properties ([25,35]).

Physical Properties ρ(kg/m3) Cp(J/KgK) k(W/mK) σ(Ωm)−1

Base fluid 997.1 4179 0.613 0.05
Ferroparticle 5180 670 9.7 25,000

We also compared the previous work by Mahapatra and Gupta [36] and Khan et al. [30],
as shown in Tables 2 and 3. It is apparent from these tables that the present study agrees
relatively well with the previous works in the literature. Unless otherwise stated, the values
for the parameters were chosen as the following: φ = 0.01, M = 1, A = 1, Pr = 6.2, Sc = 0.66,
κ = 1, ST = 1, δ = 1, and δT = 1. The values of the Stefan blowing parameter κ were chosen
to be positive because we considered the effects of the species blowing to the ambient.

Table 2. Comparison of Cf Re1/2
x for pure water.

A [36] [30] Present Values

0.1 –0.9694 –0.96938 –0.969386
0.2 –0.9181 –0.91810 –0.918107
0.5 –0.6673 –0.66726 –0.667264
2 2.0175 2.01750 2.017503
3 4.7293 4.72928 4.729282
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Table 3. Comparison of −Cf Re1/2
x for a water-based ferrofluid (Fe3O4) with the variation of M, φ

and A.

Parameters
[30] Present Values

M φ A

0

0.01
0 1.03366 1.033668

0.3 0.87801 0.878017
0.5 0.66726 0.689728

0.1
0 1.35914 1.359170

0.3 1.15448 1.154506
0.5 0.90690 0.906924

1

0.01
0 1.44703 1.447035

0.3 1.12625 1.126254
0.5 0.85391 0.853913

0.1
0 1.77443 1.774455

0.3 1.40123 1.401256
0.5 1.06945 1.069473

The significant effect of the ferrofluid can only occur when there is an applied magnetic
field. In this ferrofluid problem, we wanted to reveal the impact of the magnetic field when
the Stefan blowing is present for the stretching/shrinking surface. Figure 2 shows the
variations of the dimensionless wall shear stress, Cf Re1/2

x , with the stretching/shrinking
parameter, λ, for different magnetic interaction parameter, M, and the Stefan blowing
parameter, κ, when other parameters were set as φ = 0.01, A = 1, and δ = 1. One can see
that there exist second solutions for specific values of λ in the figure. Evidently, samples of
the velocity profiles with second solutions are presented in Figure 3. Hence, we performed
the stability analysis, and the smallest eigenvalues for the first and second solutions of
some selected parameters are depicted in Table 4. It is seen that the first solutions have the
smallest eigenvalues consisting of positive values, but the second solutions have negative
eigenvalues. Thus, the first solutions are stable, while the second solutions are not stable.
Due to the second solutions’ unstable state, the discussions are limited to the behaviours
portrayed by the first solution.

Figure 2. The variations of Cf Re1/2
x with the stretching/shrinking parameter, λ, for different M and

κ when φ = 0.01, A = 1, and δ = 1.
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Figure 3. Velocity profiles for different M when φ = 0.01, A = 1, κ = 1, and δ = 1.

Table 4. Values of the smallest eigenvalues.

M κ λ First Solution Second Solution

0

0
−2 1.1610 −1.0347
−2.3 0.3960 −0.3818
−2.34 0.0607 −0.0603

1
−1.8 0.8498 −1.0356
−2 0.1383 −0.2353

−2.006 0.0062 −0.0953

1

0
−3 2.1402 −1.8271
−3.9 0.6383 −0.6135
−3.98 0.2077 −0.2051

1
−3 1.7442 −1.8234
−3.7 0.4017 −0.5282
−3.72 0.4011 −0.2867

Furthermore, it is also evident in Figure 2 that there is no wall shear stress when λ = 1,
which indicates the ferrofluid moves at the same speed as the sheet. For λ < 1, all the
values of Cf Re1/2

x are positive, inferring that ferrofluid exerts the drag towards the surface.
In the region λ > 1, the values of Cf Re1/2

x are negative, indicating that the sheet’s surface
exerts the drag force on the ferrofluid. Moreover, Figure 2 also reveals that the increment
in M increases the critical points’ positions, wherein physically elucidating that boundary
layer separation has been delayed. This observation is tally with the finding reported by
Khan et al. [37]. This behaviour can be explained further where the magnetic field in the
flow regime helps to sustain the kinetic energy of the fluid molecules, while preventing
them from becoming drained. Conversely, Figure 2 shows that the increased influence of
κ accelerates the boundary layer separation in the flow regime. The increased effect of κ
depletes the fluid molecules’ kinetic energy and, hence, contributes to the earlier boundary
layer separation event.
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To see more precise effects of the parameters in the region λ > 1, Figure 4 is plotted.
In Figures 2 and 4, we can see that the magnetic interaction parameter, M, increases the
magnitudes of Cf Re1/2

x and broadens the range of solutions in the region λ < 1. On the
other hand, the Stefan blowing parameter, κ, gives the opposite effect, i.e., decreases the
magnitudes of Cf Re1/2

x and reduces the range of solutions in the region λ < 1. It is also
noticed that parameter M lessens the momentum boundary layer thickness, while the
parameter κ gives the opposite effect, as shown in Figure 5. A possible explanation for
these results may be that the applied magnetic field produced a Lorenz force that opposed
the flows towards the surface and compressed the boundary layer. However, the increase
in the Stefan blowing means that extra motion in the ferrofluid produced by the diffusion
of the species increases the boundary layer thickness. The species are pushed away from
the surface, and ultimately, the skin friction or the shear stress is reduced. On the other
hand, Table 5 shows that increasing the volume fraction of the magnetite ferroparticles
increases the wall shear stress even in the presence of the Stefan blowing over the
shrinking sheet. The inclusion of more magnetite ferroparticles past the tightening state
of the sheet causes the friction drag of the surface to be increased. Consequently, the
momentum boundary layer becomes thinner and impacts the increased value of Cf Re1/2

x .
It is worth highlighting that the effect of the Stefan blowing becomes insignificant with
the presence of more magnetite ferroparticles volume fraction in the flow regime over
the shrinking surface.

Table 5. Values of Cf Re1/2
x for magnetite ferrofluid with variations of M, κ, and φ when λ = −2.

φ
M=0 M=1

κ=0 κ=1 κ=0 κ=1

0 1.496369 1.041150 1.810827 1.667498
0.01 1.544701 1.089054 1.861782 1.714116
0.05 1.744903 1.257814 2.079717 1.915632
0.1 2.016981 1.468133 2.390081 2.206845

Figure 4. The behaviour of Cf Re1/2
x towards the stretching parameter, λ, for different M and κ when

φ = 0.01, A = 1, and δ = 1.
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Figure 5. Impact of the magnetic parameter, M, on the velocity profiles for different κ and λ.

The dimensionless heat transfer coefficient, NuxRe−1/2
x , trends concerning the

stretching/shrinking parameter, λ, for different values of the magnetic interaction
parameter, M, and the Stefan blowing parameter, κ, are shown in Figure 6. Figure 6
illustrates the heat transfer rate behaviour with and without the Stefan blowing effect.
For the case that considers the Stefan blowing effect, the values of NuxRe−1/2

x increase
with the increased effect of M. This can be explained from the aspect of species
movement wherein the species also carry the heat while traveling, hence increasing the
fluid temperature past the moving sheet. This essentially increased the surface heat
flux and resulted in the enhanced values of NuxRe−1/2

x . Alternatively, for the situation
where the Stefan blowing effect is absent, NuxRe−1/2

x decreases when M intensifies.
The diffusion of the species towards the ambient fluid may cause the deficiency of
the ferrofluid on the surface and reduce the heat transfer rate past the moving sheet.
Meanwhile, the effects of parameter M and parameter κ on the stretching/shrinking
surface temperature profiles are displayed in Figure 7. These figures show that the
heat transfer rate decreases, and the ferrofluid temperature distribution increases with
the species Stefan blowing. The diffusion of the species towards the ambient fluid
can cause the deficiency of the ferrofluid on the surface, reducing the rate of heat
transfer. Another possible explanation is that the species also carry the heat while
moving, consequently increasing the fluid temperature. In addition, Figures 6 and 7
also show that the magnetic interaction parameter, M, on the heat transfer coefficient
and flow temperature is different in the regions λ < 1 and λ > 1. In the region λ < 1,
the parameter M increases the heat transfer coefficient and reduces the temperature
profiles. The opposite behaviour is observed in the region λ > 1. In this region, the
ferrofluid flow slows down with the presence of a magnetic field. Consequently, this
result produces a weaker convection and reduces the heat transfer. The present work
infers that thermophoresis refers to the diffusion of the species particles saturated at
the surface due to a temperature gradient. The effects of the thermophoresis or the
Soret number parameter, ST, on the velocity and the temperature profiles are presented
in Figures 8 and 9, respectively. It is apparent from these figures that the effect of
parameter ST is significant on the velocity profiles and the temperature profiles only
when the Stefan blowing is present. As illustrated in Figures 8 and 9, when the
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parameter λ > 1, the Soret number reduces the velocity and temperature distribution.
In contrast with the stretching sheet state, the Soret number increases the shrinking
sheet’s velocity and temperature distribution.

Figure 6. The variations of NuxRe−1/2
x with the stretching/shrinking parameter, λ, for different M

and κ when φ = 0.01, A = 1, and δT = 1.

 
Figure 7. Effect of the magnetic interaction parameter, M, on the temperature profiles for different
parameters κ and λ.
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Figure 8. Influence of the Soret effect parameter, ST , on the velocity profiles for different parameters
κ and λ.

 
Figure 9. Influence of the Soret effect parameter, ST , on the temperature profiles for different
parameters κ and λ.
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The flow with ultrafine particles is expected to experience a slip at the surfaces.
Hence, the slip parameter was included, and the flow model is observed with the
Stefan blowing effect. The impact of the velocity slip, δ, on the velocity profiles for
different Stefan blowing intensities past the stretching/shrinking surfaces is depicted
in Figure 10. For both surfaces, the velocity slip reduces the velocity distributions of
the magnetite ferrofluid regardless of the Stefan blowing. Meanwhile, Figure 11 shows
the effect of the thermal slip, δT, on the temperature profiles for the stretching and
shrinking surfaces. Thermal slip has the effect of reducing the temperature distribution
for both surfaces. The figure also shows that the temperature profiles are higher when
the Stefan blowing is present. Lastly, we plotted the effects of the velocity ratio param-
eter, A, on the velocity and the temperature profiles as presented in Figures 12 and 13,
respectively. The velocity ratio parameter is the ratio of the strength of the stagnation
rates with the stretching/shrinking rates. In all the results above, we used A = 1,
which means the strength of the stagnation flow and the stretching/shrinking flow
are equal. As the parameter A increases, the strength of the stagnation flow probably
exceeds the velocity of the stretching/shrinking flow and increases the acceleration
of the external stream. Hence, we can see in Figure 12 that the velocity profiles will
also increase for both surfaces. However, the thickness of the boundary layer reduces
with parameter A, and a further reduction is noticed when the Stefan blowing is
present for the stretching surface. Additionally, the thinning of the boundary layer
thickness, as A increases, can be prevented when the Stefan blowing arises for the
shrinking sheet. Furthermore, the parameter A reduces the temperature profiles, as
shown in Figure 13. When the external stream of the stagnation velocity surpasses the
stretching/shrinking velocity, the ferrofluid flow accelerates and produces a stronger
thermal convection. This results in the increment of the heat transfer and reduces the
temperature distribution.

Figure 10. Effect of the velocity slip parameter, δ, on the velocity profiles for different parameters κ

and λ.

275



Mathematics 2022, 10, 1646

Figure 11. Effect of the thermal slip parameter, δT, on the temperature profiles for different parameters
κ and λ.

Figure 12. Effect of the velocity ratio parameter, A, on the velocity profiles for different parameters κ

and λ.

276



Mathematics 2022, 10, 1646

 
Figure 13. Effect of the velocity ratio parameter, A, on the temperature profiles for different parameters
κ and λ.

5. Conclusions

The present theoretical work was devoted to examining upshots of the magnetic
field, thermodiffusion, and slip on the magnetite ferrofluid flow when Stefan blowing
is present. Overall, even though the increment in the magnetic field intensity in the
flow regime increased the values of Cf Re1/2

x past the moving surface, it deferred the
boundary layer separation in the ferrofluid. In contrast, the Stefan blowing effect
expedited the boundary layer separation when its intensity was increased. Next, the
present work found that the heat transfer rate augmented if and only if the presence of
the Stefan blowing was true, and vice versa. The Soret number lowered the velocity and
temperature distribution past the stretching sheet, and vice versa, for the shrinking state
case. Further, the increment effect of the velocity slip lowered the velocity distributions of
the magnetite ferrofluid irrespective of the Stefan blowing influence. The increment effect
of the thermal slip decreased the temperature distribution, while the Stefan blowing
promotes the temperature distribution in the flow regime. The increment impact of the
velocity ratio parameter, A, heightened the velocity profiles, but lowered the temperature
profiles past the moving surface. Additionally, the effects of the thermodiffusion and the
slip were more noticeable if Stefan blowing existed at the surface. Finally, the second
solution was found in this problem, and through a stability analysis, the solutions were
confirmed to be unstable.
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