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Abstract: The study aims to investigate Maisotsenko cycle evaporative cooling assisted solid desiccant
air-conditioning (M-DAC) system for agricultural storage application. Conventional air-conditioning
(AC) systems used for this application are refrigeration-based which are expensive as they consume
excessive amount of primary-energy. In this regard, the study developed a lab-scale solid silica
gel-based desiccant AC (DAC) system. Thermodynamic performance of the developed system
was investigated using various adsorption/dehumidification and desorption/regeneration cycles.
The system possesses maximum adsorption potential i.e., 4.88 g/kg-DA at higher regeneration
temperature of 72.6 °C and long cycle time i.e., 60 min:60 min. Moreover, the system’s energy
consumption performance was investigated from viewpoints of maximum latent, sensible, and
total heat as well as latent heat ratio (LHR), which were found to be 0.64 kW, 1.16 kW, and 1.80 kW,
respectively with maximum LHR of 0.49. Additionally, the study compared standalone DAC (S-DAC),
and M-DAC system thermodynamically to investigate the feasibility of these systems from the
viewpoints of temperature and relative humidity ranges, cooling potential (Qp), and coefficient of
performance (COP). The S-DAC system showed temperature and relative humidity ranging from
39 °C to 48 °C, and 35% to 66%, respectively, with Q, and COP of 17.55 k] /kg, and 0.37, respectively.
Conversely, the M-DAC system showed temperature and relative humidity ranging from 17 °C
to 25 °C, and 76% to 98%, respectively, with Q, and COP of 41.80 kJ/kg, and 0.87, respectively.
Additionally, the study investigated respiratory heat generation rate (Qy.s), and heat transfer rate
(Qrate) by agricultural products at different temperature gradient (AT) and air velocity. The Qs and
Qrate by the products were increased with AT and air velocity, respectively, thereby generating heat
loads in the storage house. Therefore, the study suggests that the M-DAC system could be a potential
AC option for agricultural storage application.

Keywords: evaporative cooling; desiccant dehumidification; agricultural storage; air conditioning;
system performance
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1. Introduction

The world’s population has grown rapidly over the past few decades and is predicted
to move to about 9.8 billion by 2050. Due to this population growth, the demand for food
will rise about 70% by 2050 [1]. The agriculture sector plays a significant role in managing
global food demand. Being an agriculture-dependent country, Pakistan produces 13.67 mil-
lion tonnes of fruits and vegetables, but about 35-40% of total production is lost owing
to post-harvest losses [2]. The post-harvest losses refer to degradation of quality as well
as quantity of the agricultural products. One of the most important reasons for the post-
harvest losses is high amount of moisture content available in the agricultural products [3,4].
Moreover, several factors are responsible for the post-harvest losses as shown in Figure 1 [5].
After harvesting, fruits and vegetables perform respiration, transpiration, and ripening
processes. These decay processes of agricultural products can be minimized by providing
optimum storage conditions i.e., temperature and relative humidity [6]. Conventional
storage techniques are equipped with refrigeration-based systems which consume huge
amount of primary energy as well as degrading the environment by utilization of harm-
ful refrigerants [7]. Moreover, these systems are incapable of providing the appropriate
temperature and relative humidity conditions especially for agricultural products [8]. In
this regard, alternative energy-efficient and environment-friendly options are available
including evaporative cooling (EC), and desiccant air-conditioning (DAC) systems. The
EC options are direct EC, indirect EC, and Maisotsenko cycle EC (MEC) systems i.e., an
advanced form of the indirect EC [9]. The MEC system thermodynamically lowers the
ambient air temperature by utilizing psychrometric accessible renewable energy [10]. Two
thermodynamic operations which involve EC and heat transfer stipulate a cooling effect
where ambient air almost approaches the dew point temperature rather than wet bulb tem-
perature [9,11]. The MEC system has been investigated in literature for heating, ventilation,
and air-conditioning applications [12-16]. However, the potential of the standalone EC
systems is limited in humid areas [16,17]. Therefore, to overcome this limitation, the DAC
system is an emerging option because of its potential to provide promising results in humid
climates [18-20].

Quality standards & control

Investment capacity

Processing capacity

Post harvest research & development

Market information

Infrastructure

Packaging

Post harvest product handling

Storage facilities

Transport climate control

I ] L) ] L} Ll ] Ll -

0 10 20 30 40 50 60 70 80
Figure 1. Major categories for causes of post-harvest losses, reproduced from ref. [5].

The main component of the DAC system is desiccant material which adsorb moisture
from ambient/ process air and thereby dehumidify the air. The adsorption/dehumidification
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and desorption/humidification processes are mainly dependent on characteristics of
adsorbents [21-23]. The DAC systems are energy efficient as they are operated or regen-
erated with thermal energy that could be available through low-grade waste heat and
renewable energy sources. Niu et al. [24] experimentally compared the energy saving
potential of the DAC system with conventional refrigeration-based AC system. The study
concluded that the DAC system had a maximum energy saving potential of about 58.9% [24].
Jia et al. [25] conducted an experimental study on the DAC system’s ability to remove
moisture from the air and its energy saving potential as compared with a conventional AC
system. The study showed an energy saving potential of about 37.5% as compared with a
conventional AC system [25]. Similar studies are reported in the literature which showed
good energy saving potential by the DAC systems for various AC applications [26-29].
However, the standalone DAC (S-DAC) system i.e., without the integration of MEC with
the DAC system, could not achieve appropriate temperature and relative humidity con-
ditions particularly for agricultural product storage [9,30-32]. In this regard, an MEC
system integrated with a DAC (M-DAC) system combines characteristics of both S-DAC
and MEC systems, and thereby has potential to achieve sensible load via MEC and latent
load through the DAC system [8]. The M-DAC system has been investigated in litera-
ture for various agricultural applications which involve greenhouse AC [33,34], livestock
AC [35,36], and poultry AC [37-40]. The M-DAC system has shown promising results for
these agricultural applications.

In this study, a lab-scale solid silica gel-based DAC system was developed. The per-
formance of the developed system was investigated thermodynamically, using various
adsorption/dehumidification and desorption/regeneration cycles. Furthermore, perfor-
mance of the developed system regarding energy consumption was investigated from
the viewpoints of latent heat (Qy), sensible heat (Qs), and total heat (Qr) as well as latent
heat ratio (LHR). The study proposed two kinds of AC system involving standalone DAC,
and MEC-assisted DAC systems for potential application in agricultural product storage.
A thermodynamic analysis was conducted for both systems to explore applicability of
these systems considering temperature and relative humidity conditions, cooling potential
(Qp), and coefficient of performance (COP). In addition, the study investigates respiratory
heat generation rate (Qy.s) and heat transfer rate (Qy) to investigate heat loads by the
agricultural products.

Temperature/Humidity Requirements for Agricultural Storage Application

The storage and handling of agricultural products is one of the key issues of the
21st century because of the intricate mechanisms of transpiration, respiration as well as
chilling injury. Appropriate temperature and relative humidity conditions are a primary
concern to reduce post-harvest losses. The shelf life of agricultural products is a function of
storage temperature. The storage temperature effect on the shelf life of fruits and vegetables
is represented in Figure 2. A higher storage temperature reduces the shelf life of fruits and
vegetables, while a lower storage temperature could increase the shelf life as represented in
Figure 2. Moreover, the quality, composition, and texture of the products are significantly
influenced by the temperature [41-43]. Figure 3 shows the effect of storage temperature on
quality of peach, Boston-type lettuce, and asparagus. As the storage temperature increases
the quality of the products decreases.

After harvesting, fruits and vegetables behave like living organisms and perform
respiration processes according to Equation (1) available in ref. [46]. When ambient air
oxygen combines with the product’s conserved sugar/starch, carbon dioxide and water
are generated, thereby releasing respiration heat. In order to minimize respiration rate, the
agricultural products should be stored at low oxygen level. However, as the temperature
rises, the respiration rate increases, thereby reducing the shelf life of the product. The
influence of temperature on respiration rate by some fruits and vegetables is shown in
Figure 4. The effect of temperature on some fruits is shown in Figure 4a, which shows respi-
ration rate increases with temperature. Similarly, the effect of temperature on vegetables in
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Figure 4b shows that the respiration rate increases with temperature. This respiration rate
increases heat i.e., respiratory heat in a storage house. The quantity of moisture present in
the ambient air, expressed as relative humidity, is the primary driver of water loss from
harvested goods. The agricultural products preserve their nutritional quality, flavour,
and appearance at high relative humidity. In contrast, shrivelling occurs at low relative
humidity ranges because of excessive transpiration [47,48]. In this regard, the optimum
temperature and relative humidity conditions for fruits and vegetables are available in
refs. [19,49] ranging from —5 °C to 25 °C, and 85% to 95%, respectively. Figure 5 represents
the optimum temperature and relative humidity zones for storage of fruits and vegetables
with the climatic conditions of Multan.

CeH1206 4+ 607 — +6CO, 4 6H,O + respiration heat @D
70 70 3
(@) —Papaya (b) —Sweet Basil
60 1 —{—Rambutan 60 - —{— Asparagus
—{~Banana —{Lettuce

50 —~Fuerte-Avocado 50 | ——Brussel Sprouts
. —Carambola
ES
<40
&
30
2
")

Temperature (°C) Temperature (°C)

Figure 2. Effect of storage temperature on shelf life of some (a) fruits, and (b) vegetables, reproduced
from ref. [44].
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Figure 3. Effect of temperature on the quality (a) peach, (b) Boston-type lettuce, and (c) asparagus.
The dotted lines represent acceptable limits of the product, reproduced from ref. [45].
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Figure 4. Effect of temperature on respiration rate of some (a) fruits, and (b) vegetables, data obtained
from ref. [50].
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Figure 5. Optimum temperature and humidity zones for storage of fruits and vegetables at climatic
conditions of Multan.

2. Proposed Systems
2.1. Standalone Desiccant Air-Conditioning (S-DAC) System

Referring to the Figure 6a, components of the S-DAC system consist of desiccant block,
a sensible heat exchanger (SHX), and a heating source. Ambient/process air is entered into
the block during the adsorption process and gets dehumidified, which thereby increases
the temperature of the air due to the release of the heat of adsorption. After that, the
dehumidified air is entered into the SHX which ideally reduces the temperature to ambient
air temperature. During the desorption process of the S-DAC system, ambient air was
utilized as a return air and directed towards the SHX, which thereby gets heated. Then,
this processed heated air enters a heat source which can be operated with thermal energy
options like low-grade waste heat as well as renewable energy options such as solar thermal
heat and biogas/biomass, etc. In the end, this heated air is directed to a desiccant block

which carries away water vapours from the desiccant material to regenerate and hence
remove humid air.
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Figure 6. Working scheme of proposed (a) standalone DAC (S-DAC), and (b) M-cycle integrated
DAC (M-DAC) system.

2.2. M-Cycle Integrated Desiccant Air-Conditioning (M-DAC) System Collection

Referring to Figure 6b, components of the M-DAC system consist of desiccant block,
SHX, MEC, and a heating source. Ambient air is directed into the block during the ad-
sorption process of the M-DAC system and gets dehumidified, thereby increasing the
temperature due to the release of the heat of adsorption. After that, the dehumidified air is
directed towards the SHX which decreases the process air temperature to nearly that of
the ambient air without change in the humidity ratio. This cooled process air is further
directed towards the MEC which lowers the process air temperature sensibly which could
be supplied to the agriculture storage house. During the desorption process of the M-DAC
system, ambient air, as a return air, is employed and enters the SHX, which thereby gets
heated. Then, this processed heated air is directed towards the heat source which can be
operated with thermal energy options like low-grade waste heat and renewable energy
options such as solar thermal heat and biogas/biomass, etc. In the end, this heated air
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is directed towards desiccant block which carries away water vapours from the block to
regenerate it and hence remove the humid air.

3. Materials and Methods
3.1. Experimental Setup

The solid silica gel-based DAC system was developed at laboratory scale. The ex-
perimental setup was mainly consisted of solid silica gel, sieves, heat exchanger (i.e., fan
heater), temperature, relative humidity, pressure, and velocity (anemometer) measuring
sensors. Figure 7a shows the photographic view of the developed experimental setup. The
sieves are fabricated by using polyacrylic plastic material frame and mesh to support the
material and easy crossing of air. A total of 18 sieves were used to develop the desiccant
unit and each sieve has a dimension of 220 mm x 145 mm X 3 mm and carrying ~68 g
of silica gel. These sieves are stacked over each other to form a desiccant unit and then
insulated on the sides. The important parameters for desiccant unit and silica gel used in
this study is shown in Table 1. The fan was used to continuously throw the process air
at velocity of about 3.5 m/s, resulting in a mass flow rate (1,) of about 0.14 kg/s. The
temperature, relative humidity, and pressure sensors were placed at the inlet and outlet
sides of the desiccant unit to measure the experimental conditions. The measurement range
and absolute accuracy for temperature, relative humidity, pressure, and velocity sensors is
about —40 °C to 80 °C; +2 °C, 0% to 100%; +5%, 75 kPa to 110 kPa; +0.3 kPa, and 0.3 m/s
to 30 m/s; £1.5 m/s, respectively.

(a)

_“. s ol
L

Process air (1)

Regeneration/desorption cycle

Figure 7. (a) Photographic view of the developed experimental system, and (b) working scheme of
the developed experimental system.
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Table 1. Important parameters of desiccant unit and silica gel used in this study.

Parameters Symbol Value Unit

Parameters related to desiccant unit

Width w 0.145 m
Length L 0.220 m
Height H 0.045 m
Total silica gel 1.22 kg
Parameters related to silica gel
Molar mass M 60.08 g/kg
Bulk density 0p 919.5 kg/m3
Specific heat capacity Cp 0.85 kJ/kg-K
Specific surface area SSA 750-850 m2/ g
Pore size ® 2-2.6 nm
Heat of adsorption Ah 2800 KJ/kg
Thermal conduction k 0.175 W/m-K

The experimental process is divided into two stages: desorption/regeneration and
adsorption/dehumidification. Figure 7b shows a schematic representation of the developed
experimental system. During the regeneration process, hot air (achieved by heat exchanger)
is supplied to the desiccant unit to primarily reactivate the adsorbent. After that, the
dehumidification process commences, and process air is directed to the desiccant unit
and moisture adsorbs on the material’s surface because of its hygroscopic nature, thereby
increasing the temperature of process air due to the release of heat of adsorption [51].
In this study, four desorption as well as adsorption cycles were conducted at different
regeneration temperatures. The regeneration temperature was set at 68 °C, 69.2 °C, 70.5 °C,
and 72.6 °C for cycles 1, 2, 3 and 4, respectively. Figure 8 shows the performance of
the experimental system at different regeneration temperatures by conducting various
desorption/adsorption cycles. The system has shown maximum dehumidification potential
at higher regeneration temperature of 72.6 °C. In this regard, the study focuses on the
desorption and adsorption cycle-4 to thermodynamically explore the performance of
the system.

Ideally, the adsorption process follows isenthalpic behaviour, which means that the
heat of water vapor condensation following the vapor stage to liquid stage is the same as the
heat of adsorption. However, experimental studies have shown that the heat of adsorption
is higher than the ideal adsorption heat because of the isosteric heat of adsorption [51,52].
The difference between an ideal isenthalpic line and the actual dehumidification line
is mainly due to the type of adsorption mechanism and interaction between adsorbent
pairs. Figure 9 represents the psychrometric behaviour of the ideal and experimental
dehumidification line and cyclic behaviour of proposed DAC systems. The points 1-8 were
calculated by considering the experimental inlet and outlet conditions.

3.2. Data Reduction

The experimental data of the developed DAC based on various desorption and ad-
sorption cycles were obtained to investigate the performance thermodynamically. The inlet
and outlet air conditions of both desorption and adsorption cycles were measured during
the experiments. After that, Equation (2) was used to calculate the output air condition of
the SHX [19,53]. The modelled Equation (3) of the MEC was used to calculate the perfor-
mance of the MEC system [36,54]. Ambient air as a return air was used to increase the air
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temperature to some extent by Equation (4). Maximum desorption potential (AX ) and
adsorption (AX,;;) potential were calculated from Equations (5) and (6) [31].

T30 = To,pB — €sux(T2,08 — T1,0B) ()
Ty pp = 6.70 + 0.2630(Ts,pp) + 0.5298(X3) ®)
Ts,pB = T5,08 + esux (12,08 — T5,0B) 4)
AXdes = Xin, des — qut,des (5)

AXads = Xin, ads — Xout,ads (6)

where, the subscripts 1-6, and DB, are process air conditions represented in Figure 6, and
dry-bulb, respectively. T is air temperature (°C), esyx is the effectiveness of sensible heat
exchanger defined by the American Society of Heating, Refrigerating, and Air-Conditioning
Engineers (ASHRAE) [46], X is humidity ratio (g/kg-DA), AX;,, is desorption potential
(g/kg-DA), AX,; is adsorption potential (g/kg-DA), X, g is inlet humidity ratio during
desorption process (g/kg-DA), X, 40 is outlet humidity ratio after desorption process
(g/kg-DA), AX,4s is adsorption potential (g/kg-DA), Xjy, 445 is inlet humidity ratio during
adsorption process (g/kg-DA), and X, 445 is outlet humidity ratio after adsorption process
(g/kg-DA), respectively.
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Figure 8. Performance of the experimental system at different regeneration temperatures by conduct-
ing various desorption/adsorption cycles.

The performance of the developed desiccant unit regarding energy consumption can
be evaluated by latent heat ratio (LHR) [55]. The LHR is the ratio of latent heat consumed
to the total energy consumed by the system which is given in Equation (7). The total energy
(Qr) consumed by the system was calculated from Equations (8)—(11) based on sensible
heat (Qs), latent heat (Qy ), and electricity consumed by the fan (Qr) to supply the process
air [55]. However, Equations (12)—(14) were used to calculate cooling potential (Qy) by
the proposed S-DAC and M-DAC system, respectively. Similarly, Equations (13) and (14)
were used to calculate the coefficient of performance (COP) by the proposed S-DAC, and
M-DAC system, respectively. The air enthalpy was calculated by Equation (15) [46].

(2
LHR = <Qr> ()
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Qr =Qs+ QL+ Qr (8)
QS = ma CP (Tdes,in - Tdes,out) (9)
QL= MMy AXpgs v = MMy (huds,in - huds,aut) (10)
oy = YardP a1
EF

Qp, s—pac =h1 —h3 (12)
Qp, M—DAC =h1 — hy (13)

_ mgq (Cooling potential \ _ mga (‘hy — h3
COPs-pac = Mg < Heat input g \ g — hs (14

_ myq (Cooling potential \ _ mga (‘hy — h3
COPm-pac = my ( Heat input " mig \h7 — he (15)
h = 1.006Tpg + X (2501 + 1.86Tpp) (16)

where, LHR is latent heat ratio (-), Q; is latent heat consumption (kW), Qr is total heat
consumption (kW), Qg is sensible heat consumption (kW), Qr is electricity consumed
by fan (kW), m, is mass flow rate (kg/s), C, is specific heat capacity of air (k]/kg K),
Ties,in is the inlet temperature of desorption process (K), Ty o, is the outlet temperature
of the desorption process (K), AX,; is adsorption potential (g/kg-DA), 7 is latent heat of
vaporization with respect to temperature (kJ/kg), l,45,in is inlet enthalpy of adsorption

process (k] /kg), h,4s out is outlet enthalpy of adsorption process (k] /kg), V,.u-r is volume flow
rate (m3/s), dP is pressure drop (kPa), and eF is efficiency of the fan taken as 70%. The
subscripts 1, 3, 4,5, 6, 7 S-DAC, and M-DAC, and DB refer to air states as shown in Figure 6,
standalone desiccant air-conditioning, M-cycle integrated desiccant air-conditioning system,
and dry bulb, respectively. Q, is cooling potential (kJ/kg), h is air enthalpy (kJ/kg), and
COP is coefficient of performance (-), respectively.
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Figure 9. Ideal and experimental dehumidification lines and cyclic behaviour of the proposed DAC
systems on Psychrometric/Mollier diagram.

3.3. Uncertainty Analysis

In the experimentation process, there are always errors in calculating/measuring
variables due to the inaccuracy of instruments, design limitations, ambient conditions,

10
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observations, human errors, and other associated important factors. After experiments, an
uncertainty analysis was performed to determine the level of uncertainty in estimating the
variables (temperature, relative humidity). Estimating the experimental uncertainty gives
confidence in the calculated results. The method is named as the root of the sum of square
methods and Equation (17) is used to measure the uncertainty [56-58].

oR = a—Ra 2+ a—sz 2+ + aRa i (17)

=V \an ™! IN; 2 N, N
where, oy, is the total uncertainty (%) and a1—ay represent the uncertainty in independent
variables, N1—N,, represent the independent variables R is given a function of the inde-

pendent variable. Table 2 shows the uncertainty analysis of various parameters used in
this study.

Table 2. Uncertainty analysis of various parameters used in this study.

Parameter Symbol Value
Temperature T £2.6%
Relative humidity RH £5.1%
Pressure p +1.6%
Velocity Vv +3.4%
Humidity ratio X +1.6%
Enthalpy h +2.9%
Cooling potential Qp £51%
Coefficient of performance cor +£2.7%
Sensible heat Qs +2.2%
Latent heat QL +5.4%
Latent heat ratio LHR +5.37%

3.4. Heat Load Calculations for Agricultural Storage Application

The storage of agricultural products offers considerable challenges as they generate
heat during storage by consuming oxygen and emitting carbon dioxide, water vapours
and heat transfer between product and ambient air. The respiratory process varies with
temperature as well as type of the product. Becker et al. [59] developed a relationship
of measuring respiratory heat generation rate as a function of the temperature of the
agricultural product, given by Equation (18). Furthermore, heat is removed from the
product due to heat transfer between product and ambient air which was calculated by
Equation (19) [60].

~107f (9T g
Qs = T (5 n 32) )
Qrate = hs X Ag X AT = hg x As X (Ts — Tp) (19)

where, Qy.s is respiratory heat generation rate (W/kg), T is temperature of the product (°C),
f and g are respiratory coefficients depending upon the agricultural product. Table 3 shows
the respiratory coefficients of some selected fruits and vegetables. Q4 is heat transfer
rate from the product (W), hs is surface heat transfer coefficient (W /m? °C), A; is surface
area covered by a product (m?), AT is temperature difference between product surface and
ambient air (°C), T; is surface temperature of product (°C), and T, ambient or surrounding
air temperature (°C). The ks vary with velocity of ambient air, product orientation and
geometry. Several studies have investigated the ks against ambient air velocity, and the As
for various agricultural products presented in Table 4. In this principle, behavior of the
Qrate from the agricultural products has been explored by considering literature data of i
against air velocity, and As.

11
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Table 3. Respiratory coefficients of some fruits and vegetables, reproduced from ref. [59].

Respiration Coefficients

Product
f g
Fruits
Apple 5.687 x 1074 2.5977
Grape 7.056 x 107° 3.033
Orange 2.8050 x 104 2.6840
Pear 6.3614 x 1075 3.2037
Tomato 2.0074 x 104 2.8350
Vegetables
Cabbage 6.0803 x 1074 2.6183
Carrot 0.050018 1.7926
Onion 3.668 x 1074 2.538
Potato 0.01709 1.769

Table 4. Surface heat transfer coefficient with air velocity, and surface area for some fruits and vegetables.

Product Air Velocity Surface Heat Transfer Surface Area, Ag Reference
(m/s) Coeff., hs (W/m? °C) (m?)
Fruits
0 11.1
0.39 17
Apple 0.91 27.3 0.0116 [60,61]
2 45.3
5.1 53.4
1 30.7
1.25 33.8
Grape 1.5 37.8 0.0008 [60,62,63]
1.75 40.7
2 42.3
0.11 66.4
Orange 0.33 693 0.01622 [60,64,65]
1 12.6
1.25 14.2
Pear 1.5 15.8 0.007598 [60,62,66]
1.75 16.1
2 19.5
1 10.9
1.25 13.1
Tomato 1.5 13.6 0.008 [60,62,67]
1.75 14.9
2 17.3
Vegetables
Cabbage 0.431 53.8033 0.000415 [68,69]
Carrot 0.0158 547 0.007758 [70,71]
Onion 0.431 54.6125 0.001404 [61,72]
Potato 0.431 39.0599 0.000134 [69,73]

4. Results and Discussion

The performance of the desiccant unit was examined thermodynamically for various
desorption and adsorption cycles. Figure 10 shows experimental desorption and adsorp-
tion cycles profiles of temperature for the developed DAC system at different desorption
temperatures (Tj). The switching time of 1:1 (equal time for both stages) was consid-
ered for the desorption and adsorption cycles. These cycles were conducted to explore
optimum switching time, and desorption/regeneration temperature for higher coefficient
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of performance and maximum adsorption potential. The temperature cycles represent
that 20 min:20 min, 30 min:30 min, 45 min:45 min, and 60 min:60 min was set for the
desorption and adsorption cycle 1, 2, 3 and 4, respectively. The outlet temperature (after
adsorption process) ranges from 39 °C to 62 °C (cycle-1), 37 °C to 57 °C (cycle-2), 43 °C
to 59 °C (cycle-3), and 44 °C to 63 °C (cycle-4), respectively. The process air temperature
increases due to release of heat of adsorption. Figure 11 shows experimental desorption
and adsorption cycles profiles of relative humidity for the DAC system. The outlet relative
humidity (after adsorption process) ranges from 17% to 35% (cycle-1), 22% to 40% (cycle-2),
23% to 43% (cycle-3), and 20% to 38% (cycle-4), respectively.
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Figure 10. Experimental desorption/regeneration and adsorption/dehumidification cycle profiles of
temperature for the DAC system at different desorption temperature (Ts).
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Figure 11. Experimental desorption/regeneration and adsorption/dehumidification cycle profiles of
relative humidity for the DAC system at different desorption temperature (T ;).

Figure 12 shows experimental desorption and adsorption cycle profiles of humidity ra-
tio for the developed DAC system. The adsorption cycle-4 represents maximum adsorption
potential due to higher desorption temperature. Figure 13 shows desorption and adsorp-
tion potential (AX) in different experimental cycles. In the desorption process, the amount
of water vapours desorbed increases rapidly, and then reduces when saturation pressure
of the process air and desiccant material surface approach equilibrium. Consequently,
when the adsorption process starts, the amount of water vapours adsorbed is quite high,

13
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but gradually decreases and becomes steady due to saturation condition of the desiccant
material. In Figure 13, the 60 min adsorption cycle-4 represents the maximum adsorption
potential of 4.8 g/kg-DA via desiccant unit at desorption temperature of 72.6 °C, thereby
showing the significance of switching time for the system and desorption temperature,
which are the most important parameters for the feasibility of the DAC system [19]. More-
over, Aleem et al. [53] investigated the performance of laboratory scale silica gel-based
DAC system thermodynamically. According to the results, maximum adsorption potential
and coefficient of performance was observed at higher desorption temperature of 70 °C
and 60 min:60 min cycle time. In this regard, the adsorption cycle-4 has been explored for
performance evaluation of the developed system.
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Figure 12. Experimental desorption/regeneration and adsorption/dehumidification cycle profiles of
humidity ratio for the DAC system at different desorption temperature (T ;).
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Figure 13. Adsorption and desorption potential in various experimental adsorption and desorption
cycles of the DAC system at different desorption temperatures (T ).

The performance of the developed desiccant unit regarding energy consumption was
explored from viewpoints of latent heat (Qy ), sensible heat (Qgs), total heat (QT) consumed
by the system, and latent heat ratio (LHR) as shown in Figure 14. The Q, consumed by
the system during the adsorption process varied between 0.02 kWh and 0.64 kWh. The Qs
consumed by the system during desorption process varied between 0.20 kW and 1.16 kW.
The Qs was higher due to heat provided for desorption of water vapours from the desiccant
material to regenerate it. The energy consumed to reach the high desorption temperature
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of 72.6 °C directly influenced the total energy consumed by the system. In this regard, the
Qr consumed by the system varied between 0.15 kW and 1.80 kW during both adsorption
and desorption processes. However, the Q1 consumption could be reduced by maintaining
a lower desorption temperature while, according to the experimental results, a higher
desorption temperature was necessary for maximum adsorption potential. The electricity
consumed by the fan was found to be 6.38 W. The LHR by the developed system varied
between 0.02 and 0.49. The proposed air-conditioning (AC) systems are energy-efficient as
compared with conventional refrigeration-based AC systems as discussed in Section 1.
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Figure 14. Latent heat (Q; ), sensible heat (Qs), and total heat (Q1) consumed by the experimental
system, and latent heat ratio (LHR) achieved by the system during desorption and adsorption cycle-4.

Figure 15 shows temperature and relative humidity profiles for the adsorption cycle-4
using S-DAC, and M-DAC system. The temperature and relative humidity of the S-DAC
system ranges between 39 °C and 48 °C, and 35% and 66%, respectively. Therefore, the
S-DAC system was unable to achieve the appropriate temperature and relative humidity
conditions for storage of the agricultural products. Similarly, the temperature and relative
humidity of the M-DAC system ranges from 17 °C to 25 °C, and 76% to 98%, respectively,
and could thereby be a potential option for the storage of agricultural products. The tem-
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perature and relative humidity profiles of the S-DAC, and M-DAC system for adsorption
cycle-1, cycle-2, and cycle-3 is available in Appendix A: Figures A1-A3, respectively.

Standalone desiccant air-conditioning (S-DAC) system M-Cycle integrated desiccant air-conditioning (M-DAC) system|
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Figure 15. Profiles of temperature and relative humidity by the proposed S-DAC, and M-DAC system
for adsorption cycle-4.

Figure 16 shows the cooling potential (Qp) of the S-DAC, and M-DAC systems for
adsorption cycle-4. The Q, of the S-DAC, and M-DAC systems varied between 3.30 k] /kg
and 17.50 kJ /kg, and 29.40 k] /kg to 41.80 k] /kg, respectively. Figure 17 shows COP of
the S-DAC and M-DAC systems for adsorption cycle-4. The COP for S-DAC and M-DAC
systems varied between 0.058 and 0.368, and 0.513 and 0.868, respectively. Figure 18
shows psychrometric representation for performance of the proposed DAC systems. In
Figure 18, the S-DAC system could not achieve appropriate temperature and relative
humidity conditions for the storage of agricultural products. In contrast, the M-DAC
system has achieved appropriate temperature and relative humidity conditions for the
storage of agricultural products. Therefore, the M-DAC system could be utilized for the
potential application of agricultural products storage.
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Figure 16. Profiles of cooling potential (Qp) by the proposed S-DAC, and M-DAC systems for
adsorption cycle-4.
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Figure 17. Profiles of COP by the proposed S-DAC, and M-DAC systems for adsorption cycle-4.
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Figure 18. Psychrometric representation of process air and product air by the proposed (a) S-DAC,
and (b) M-DAC systems.

The fruits and vegetables respire as living organism by emitting carbon dioxide to
surrounding environment, thereby causing respiratory heat generation (Qres). The Qs vary
with temperature and type of the product. Figure 19 shows the effect of temperature on
the Qs by some fruits and vegetables. The Q. increases with temperature, hence during
storage respiration process should be kept as low as possible to avoid heat generation
from the product. In addition, heat is removed from the product due to the Qy,, between
product and ambient or surrounding air i.e., the difference between surface temperature of
product and surrounding air temperature (AT), and velocity of air.

Figure 20 shows the effect of the AT and air velocity on the Q4 by some selected
fruits (apple, grape, orange, pear, and tomato). The Q4 by fruits increases with increase in
air velocity and AT. In case of apple the Qg at 0.91 m/s, with AT of 5 °C was 1.58 W, but at
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same velocity with AT of 10 °C, 15 °C, and 20 °C, the Qe was 3.16 W, 4.75 W, and 6.33 W,
respectively. A similarly increasing trend of the Qg at different air velocity and AT was
observed by other selected fruits. Likewise, Figure 21 shows the effect of AT on the Qe
by some selected vegetables (cabbage, carrot, onion, and potato). The Q. by vegetables
increases with AT. In case of cabbage, Qe at 0.431 m/s with AT of 5 °C was 0.116 W, but at
same velocity with AT of 10 °C, 15 °C, and 20 °C the Qe was 0.22 W, 0.33 W, and 0.45 W,
respectively. A comparable trend was observed for other selected vegetables. Furthermore,
higher air velocities and higher relative humidity of surrounding air caused wilting of
fruits and vegetables. The appropriate air velocity is varied with size of storage house. The
recommended air velocity is about 0.003 m /s for storage house having area of 10 m?, and

relative humidity of about 90% to 95% [50].
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Figure 19. Effect of temperature on respiration rate (Qyes) by some (a) fruits, and (b) vegetables.
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Figure 20. Effect of temperature gradient (AT) and air velocity on the heat transfer rate (Qya.) by
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Figure 21. Effect of temperature gradient (AT) on the heat transfer rate (Q) by (a) cabbage,
(b) carrot, (c) onion, and (d) potato.

5. Conclusions

The present study aims to evaluate the Maisotsenko cycle evaporative cooling assisted
solid desiccant air-conditioning (M-DAC) system for agricultural storage application. The
agricultural products required appropriate temperature and relative humidity conditions
for their efficient storage to avoid post-harvest losses. In this regard, the air-conditioning
(AC) system is principally required to optimize the temperature and relative humidity
conditions, which could potentially reduce post-harvest losses. Therefore, in this study,
a lab-scale solid silica gel-based desiccant AC (DAC) system was developed. The per-
formance of the developed system was investigated thermodynamically, using various
adsorption/dehumidification and desorption/regeneration cycles. The system possesses
better performance in terms of adsorption potential (Qy) i.e., 4.88 g/kg-DA at higher des-
orption temperature i.e., 72.6 °C and comparatively long cycle time i.e., 60 min:60 min.
Furthermore, performance of the developed system regarding energy consumption was
investigated from viewpoints of latent heat (Qy ), sensible heat (Qs), and total heat (Q7)
as well as latent heat ratio (LHR). The maximum consumption of Q;, Qs, and Qr, by the
system was found to be 0.64 kW, 1.16 kW, and 1.80 kW, respectively by achieving the
maximum LHR of 0.49.

Furthermore, the study proposed two kinds of AC options involving standalone DAC
(S-DAC), and M-DAC systems to investigate applicability of these systems for agricultural
storage application. The proposed systems were compared thermodynamically from per-
spectives of temperature as well as relative humidity ranges, cooling potential (Q,), and
coefficient of performance (COP). The S-DAC system showed temperature and relative
humidity ranging from 39 °C to 48 °C, and 35% to 66%, respectively, with Q, and COP of
17.55 kJ /kg, and 0.37, respectively, which were inappropriate conditions for agricultural
storage. Conversely, the M-DAC system showed temperature and relative humidity rang-
ing from 17 °C to 25 °C, and 76% to 98%, respectively, with Q, and COP of 41.80 k] /kg, and
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0.87, respectively which lies somehow between appropriate conditions for the agricultural
products storage application. Additionally, the study investigated respiratory heat gen-
eration rate (Qres), and heat transfer rate (Qyare) by some fruits and vegetables at different
temperature gradient (AT) and air velocity. The Qyes and Qg by the fruits and vegetables
were increased with temperature, and AT as well as air velocity, respectively. These heat
loads reduced shelf life and quality of agricultural products. Therefore, the M-DAC system
could be a potential AC option for agricultural storage application.
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Nomenclature

AC air-conditioning

As surface area of product (m?)

COP coefficient of performance

Cp specific heat capacity of air (k] /kg K)
DAC desiccant air-conditioning

dP pressure drop (kPa)

EC evaporative cooling

f respiratory coefficient (-)

g respiratory coefficient (-)

h air enthalpy (k] /kg)

hs surface heat transfer coefficient (W/m? °C)
LHR latent heat ratio (LHR)

M-DAC Maisotsenko-Cycle integrated desiccant air-conditioning
MEC Maisotsenko-Cycle evaporative cooling
Mg mass flow rate (kg/s)

N1—-Ny, independent variables

) cooling potential (k] kg)

Qr total heat consumption (kW)

QL latent heat consumption (kW)

Qs sensible heat consumption (kW)

Qr electricity consumption by fan (kW)

Qp cooling potential (k] /kg)

Qres respiratory heat generation rate (W/kg)
Qrate heat transfer rate (W)

S-DAC  standalone desiccant air-conditioning
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SHX sensible heat exchanger

T, ambient air temperature (°C)

Ts surface temperature of product (°C)

Viir volume flow rate (m3/s)

X humidity ratio (g/kg-DA)

AX s adsorption/dehumidification potential (g/kg-DA)
AX s desorption/regeneration potential (g/kg-DA)
AT temperature gradient (°C)

N—0N uncertainty in independent variables

aR total uncertainty (%)

eF efficiency of fan (%)

ESHX effectiveness of sensible heat exchanger (-)

0% latent heat of vaporization (kJ/kg)

Subscripts

ads adsorption

DB dry bulb

des desorption

in inlet condition

out outlet condition

Appendix A

Standalone desiccant air-conditioning (S-DAC) system
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Figure Al. Profiles of temperature and relative humidity of the S-DAC, and M-DAC system for

adsorption/dehumidification cycle-1.
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Figure A2. Profiles of temperature and relative humidity of the S-DAC, and M-DAC system for

adsorption/dehumidification cycle-2.
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Standalone desiccant air-conditioning (S-DAC) system
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Figure A3. Profiles of temperature and relative humidity of the S-DAC, and M-DAC system for
adsorption/dehumidification cycle-3.
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Abstract: A precise microclimate control for dynamic climate changes in greenhouses allows the
industry and researchers to develop a simple, robust, reliable, and intelligent model. Accordingly,
the objective of this investigation was to develop a method that can accurately define the most
suitable environment in the greenhouse for an optimal yield of roses. Herein, an optimal and highly
accurate BO-DNN surrogate model was developed (based on 300 experimental data points) for a
quick and reliable classification of the rose yield environment considering some of the most influential
variables including soil humidity, temperature and humidity of air, CO, concentration, and light
intensity (lux) into its architecture. Initially, two BO techniques (GP and GBRT) are used for the
tuning process of the hyper-parameters (such as learning rate, batch size, number of dense nodes,
number of dense neurons, number of input nodes, activation function, etc.). After that, an optimal
and simple combination of the hyper-parameters was selected to develop a DNN algorithm based
on 300 data points, which was further used to classify the rose yield environment (the rose yield
environments were classified into four classes such as soil without water, correct environment, too
hot, and very cold environments). The very high accuracy of the proposed surrogate model (0.98)
originated from the introduction of the most vital soil and meteorological parameters as the inputs of
the model. The proposed method can help in identifying intelligent greenhouse environments for
efficient crop yields.

Keywords: greenhouse; microclimate; Bayesian optimization; deep neural network; roses yield;
Gaussian process; gradient boosting

1. Introduction and Motivation
1.1. Introduction

Climate change throughout the globe is affecting agricultural production due to
increasing temperatures, fluctuating precipitation patterns, and rising corban dioxide
concentrations in the atmosphere. In these changing environmental conditions, greenhouse
crop cultivation is preferred compared with open field growing. The cultivation of crops in
the greenhouse prolongs the agricultural growing season, protect yields against weather
variations, offers a reliable growing ecosystem, and thus maximizes productivity. Thus,
it is essential to adopt precision agriculture techniques in order to maintain the ideal
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environmental parameters such as humidity, carbon dioxide, and temperature along with
soil moisture and nutrients in accordance with the crop growth cycle [1,2]. Exposure to
uneven environmental factors produces stress, disease, or even a fall in the crops, resulting
in substantial financial losses to growers [3]. Greenhouse weather control mechanisms
need to consider multivariate and non-linear systems with variables greatly dependent
on the external environment and the design of the greenhouse [4,5], even though the
greenhouse cannot be independently controlled. Thus, developing a precise climate model
in a greenhouse is an essential approach to control these dynamic climate changes and
attain proficient climate management.

Greenhouse environment models can be developed on either the physical laws driving
ecological cycles, or the interpretation of data obtained from such processes. With the
development of high-performance computational systems, several analytical models [6-8]
have been developed. Yet, this methodology may produce inconsistent outcomes when
applied to true environmental conditions due to the complexity of these models and
the frequent need for calculation and the approximation of unmeasurable parameters,
for example, water vapor pressure, biological factors, rate of photosynthesis, soil heat
flux density, and other factors [9]. On the contrary, due to the advancement of existing
computational strategies, deep leaning prediction models based on big data [10] are being
progressively applied to several fields. ANN models are incredible predicting tools [11,12]
because of their capabilities to model systems without making assumptions [13] and
to evaluate nonlinear systems. The most significant benefits of deep learning models
over several classes of nonlinear models is that ANN models can approximate a vast
group of functions with a high level of precision [14]. This approach delivers swift and
reliable results for precision agriculture applications, namely, the climate estimation of
greenhouses [15], the growth of plants, and the detection of stress compared to existing
physical models [6,7].

For the generation and collection of data, smart greenhouses are equipped with IoTs,
wireless sensor networks (WSNs), and actuators [16]. Sensors sense the atmosphere in
the greenhouse and measure temperature, light intensity, humidity, CO; levels, pressure,
etc. If any irregularity is detected in the environmental conditions of the greenhouse,
the ANN-based central control station directs actuators to execute required actions such
as watering the crops, increasing or decreasing the light intensity, opening and closing
windows, etc.

Besides, an appropriate comprehension of the variations of different parameters
in the greenhouse climate related to the requirements of the particular crop at various
development phases needs more consideration. As rose plants are susceptible to large
variations in temperature, light, and humidity, the cultivation of greenhouse roses in
geographical areas with environmental conditions that are not satisfactorily near the
base prerequisites will encompass added risks and costs of production [17]. Exclusively
relying upon the parameter measurement data from sensors is insufficient to obtain solid
harvests in the greenhouse. Having a profound learning model for forecasting the future
air parameters will assist in keeping up with the climate [18]. For instance, having the
predicted values of temperature, CO,, and humidity assist in maintaining the flower
size and a high yield, and can prevent the growth of pests that harm the rose plants.
Additionally, predicting greenhouse climate changes will help in the event of sensor
breakdown and will reduce the energy utilization in the greenhouse [3].

1.2. Aims and Motivation

Roses are amongst some of the most highly marketed flowers globally and have
ruled the flower market since the 1990s owing to their year-long availability and the
ever-increasing demand in beauty products and from the decoration industry. Roses are a
functional food product similar to barley and other crops [19]. Natural environmental condi-
tions are not always optimum to achieve the growing demand of crop requirements [20,21].
Extreme weather conditions such as exposure to direct sun, hail, biotic, and abiotic stresses
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can critically damage the product quality and yield [22]. Therefore, greenhouses are in-
creasingly being used, since they can adjust the interior environmental parameters through
artificial lights, aeration, and heating and ventilation systems [23]. Thus, crop growing
cycles can be designed based on market demands. The environmental parameters required
for the appropriate growth of roses are relative humidity, CO, concentration, soil humidity,
air temperature, light intensity, and the electrical conductivity of soil (see Figure 1).

Soil Humidity %

Light Intensity

Classification:

Class: Soil without water ‘

Class: Environment correct ‘

Air Temperature ; ;

Air Humidity &}

CO, Concentration @

Class: Too much hot |

Class: Very cold

Figure 1. Parameters affecting the greenhouse rose yield environment.

There are several analytical models for the interpretation of the data collected from
wireless sensor networks or IoTs, but these models may produce inconsistent outcomes
when applied to true environmental conditions due to the high complexity of these models
and the frequent need for calculation and the approximation of unmeasurable parameters.
Based on the aforementioned discussion, it is extremely crucial to develop a method partic-
ularly for Al-based methods [24] that can accurately define the most suitable environment
in the greenhouses for rose yield production. This is because the Al-based methods have
gained lot of success in agriculture during recent years in relation to crop yield production,
detection, precision agriculture, and so on [25-29].

To the best of the authors’ knowledge, only a single study is available in the literature
regarding the use of Alin the rose’s greenhouse environment. This study presents the ANN
and ANFIS methods to forecast the risk level for pests in the rose greenhouse [30]. Other
than this, no study is available in the literature on this subject. The present study is the
first of its kind in classifying the greenhouse environment for rose crops based on Al-based
surrogate models. The proposed models are deep neural networks based on the optimal
set of hyper-parameters defined by the Bayesian optimization scheme. Al-based surrogate
models can be a reliable, simple, and robust solution. For instance, Bayesian optimization
(BO) techniques such as the Gaussian process (GP) and Gradient boosting (GBRT) can be
employed to provide optimal hyper-parameters to be integrated with deep neural networks
(DNN). In line with this, the objective of this study was to develop an optimal and highly
accurate BO-DNN surrogate model (based on 300 experimental data points) for a quick and
reliable classification of the rose yield environment considering some of the most influential
variables including soil humidity, the temperature and humidity of air, CO, concentration,
and light intensity (lux) into its architecture. The rose yield environments (outputs) are
classified into four classes such as soil without water, correct environment, too hot, and
very cold environments. Initially, two BO techniques (GP and GBRT) were used for the
tuning process of the hyper-parameters (such as learning rate, batch size, number of dense
nodes, number of dense neurons, number of input nodes, activation function, etc.). The
most accurate set of hyper-parameters was selected to build the DNN model based on
300 data points, which was further used to classify the rose yield environment. The very
high accuracy of the proposed surrogate model originates from the introduction of the
most vital soil and meteorological parameters as the inputs of the model.
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2. Materials and Methods
2.1. Data Collection

A total of 300 experimental data points from various sensors regarding soil humidity,
light intensity, temperature, air humidity, and CO, concentration for 04 different classes
of greenhouse rose yield environments were taken from the open literature [31]. The data
were acquired by an autonomous robot integrating the sensors including soil humidity,
light intensity, temperature, air humidity, and CO, concentration. Table 1 shows that a
wide range of experimental data have been included in this study to discuss greenhouse
rose yield environments.

Table 1. Investigated parameters and their data range.

Parameter Data Range

Soil humidity (kPa) 124-821

Light intensity (lux) 0-54612.5
Temperature (°C) 15.9-40.2

Air humidity (%) 39.2-96.9

CO, concentration (ppm) 34-243
Environment Class0,1,2,and 3

2.2. Data Visualization

The experimental data have been visualized in terms of heat maps, correlation charts,
pairs, and violin plots. The heat map and correlation chart represent the relationship
between input and output features while the data distribution has been visualized by
pairs, violins, and distplot. In addition, the data density for each class has been shown. A
heat map showing the correlation between the input and output variables Figure 2. The
dependency of the various input variables on the output parameters can be visualized by
using a correlation chart as provided Figure 3. The data distribution of the input and output
parameters including the soil humidity, air temperature and humidity, CO, concentration,
lux (light intensity), and class (output) is represented by a pair plot (see Figure 4). A clearer
picture of the experimental data distribution of various input features with respect to the
only output parameter, class, is highlighted in the violin plots (see Figure 5).
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Figure 2. Heat map showing the correlation between the input and output variables.
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Figure 3. Dependency of the input variables on the output parameter.

Herein, the experimental data were distributed into 04 different classes (namely class
0, class 1, class 2, and class 3). The total number of data points for each class is illustrated
in Figure 6.

The density of each input parameter’s acquired data is presented bydistplot (see
Figure 7). The distplot illustrates the data distribution of each parameter in terms of density
distribution.

2.3. Bayesian Optimization Integrated with a Deep Neural Network Algorithm

Algorithms of two different Bayesian optimization schemes, namely, Gaussian process
regression (GPR) and Gradient boosting regression trees (GBRT) integrated with the deep
neural network are illustrated in Figure 8.
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Figure 5. Violin plots for the experimental data distribution of (a) light, (b) temperature, (c) CO, concentration, (d) air
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3. Results and Discussion

In this section, the range of the considered hyper-parameters is first provided followed
by the tuning processes of two different Bayesian optimization schemes (GP and GBRT).
Furthermore, the way that the maximum convergence was achieved is explained. In ad-
dition, the optimal combination of the hyper parameters is chosen. The chosen optimal
hyper-parameters are then employed to develop a deep neural network model, which is
then used to classify the greenhouse environments for rose yields. Moreover, the classifica-
tion accuracy of the developed model in terms of a confusion matrix and an accuracy table
is presented. The details of the input features and their impact on the model’s classification
accuracy is evaluated in the sensitivity analysis section. Other than that, individual impact
of each input variable on the model’s classification accuracy is evaluated. More discussions
are presented in the subsequent sections.

3.1. Optimization of the Hyper-Parameters

The considered hyper-parameters were tuned by using two different Bayesian optimiza-
tion schemes (GP and GBRT). The selected hyper-parameters include the learning rate, Adam
decay, input nodes, dense layers, dense nodes, batch size, and activation function. The range
of all the investigated hyper-parameters for the tuning process is given in Table 2.

Table 2. Range of hyper parameters.

Hyper Parameter Investigated Range

Learning rate 0.0001-0.1

Adam decay 0.000001-0.01

Input nodes 1-5

Dense layers 1-10

Dense nodes 1-500

Batch size 1-100

Activation function Softmax, Sigmoid, ReLU, tanh

The range of the considered hyper-parameters along with the hyper-parameter tuning
process by the GBRT and GPR algorithms is depicted in Figures 9 and 10, respectively.
It is worth mentioning that the blue and orange regions represent the strong and weak
dependence of the variable, respectively, while the asterisk sign points towards the optimal
point. For further analysis, the GPR algorithm was considered. Detailed information on the
finally selected architecture of the optimal model (GPR) is tabulated in Table 3. From the
Figure 10, it can be observed that the ‘tanh” activation function provided optimal results
compared to the Softmax, sigmoid, and ReLU. A comparison between the suitability of
these activation functions is provided in Figure 11.

Table 3. Selected architecture of the optimal model.

Optimization Method Gaussian Process
Learning rate 0.000416

No. of hidden layers 10

No. of neurons in input layer 5

No. of neurons in each hidden layer 265

Activation function tanh

Batch size 36

Adam decay 0.007963

No. of neurons in output layer 4

No. of iterations 80
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Figure 9. The tuning process of the hyper-parameters in GBRT.

Convergence plots for both optimization schemes such as GP and GBRT provide a
clear picture of the way the error was minimized. The initial convergence was reached
very fast because the number of input parameters and the amount of training data affected
the convergence rate, and in this study the model was evaluated for 300 experimental data
points containing five input parameters. For instance, in Figure 12, it can be clearly noticed
that the convergence error for both the GP and GBRT algorithms was minimized at the
fourth call.
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3.2. Training and Developing the Deep Neural Network

The experimental data were distributed into training (80%)

and testing (20%) datasets.

The training and validation losses of the developed model are depicted in Figure 13. The

total number of iterations was kept up to 80. Apparently, both of

the losses were minimized

until the 36th iteration, so the training process was stopped. This shows that the training

process was computationally economical and quick.

0.8

Mean Square Error
° o
B~ (o)}

o
[N]

0.0

loss
val_loss

0 10 20 30 40 50 60
No of iterations

Figure 13. Training and validation losses during training.

70 80

Figure 14 illustrates the classification performance of the developed model for each
class of the environment. Apparently, the developed model was able to accurately classify
59 out of 60 environments for various classes. This explains how well the model performs
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for different greenhouse environments within the tested range. The classification accuracy
of the selected surrogate model is presented in Table 4.

- 20
-15
-10
o~
B
™
-0

0 1 2 3

Figure 14. Classification performance of the developed model.

Table 4. Classification accuracy description of the selected surrogate model.

Precision Recall F1-Score
0 1.00 1.00 1.00
1 0.80 1.00 0.89
2 1.00 1.00 1.00
3 1.00 0.94 0.97
Accuracy 0.98
Macro Avg. 0.95 0.98 0.96
Weighted Avg. 0.99 0.98 0.98

The performance of the developed model is highlighted in terms of precision, recall,
and Fl-score. Precision and recall are the fraction of the relevant instances among the
retrieved instances and the fraction of the relevant instances that were retrieved. Both
precision and recall are therefore based on relevance. The values of precision and recall
from Table 4 show that the proposed model had a high classification efficiency for the rose’s
greenhouse environment. The F1-score from Table 4 also indicates the perfect precision
and recall of the optimal surrogate model. In addition, the overall accuracy of the model
along with the macro and weighted averages are described as well. The final model could
perform the classification task with an overall accuracy of 0.98.

3.3. Sensitivity Analysis

The individual impact of each input variable on the model’s output (i.e., classification
of the greenhouse rose yield environments) is portrayed using the SHAP library. More
particularly, the ways in which the various input features such as soil humidity, tempera-
ture, air humidity, light intensity, and CO, concentration affected the model’s classification
accuracy are shown in Figure 15. It can be clearly seen that the sensitivity of the different
features was not the same for various classes. However, some of the factors were sensitive
for all the classes. For example, the most influential factor for each class was the soil humid-
ity followed by the temperature. Regarding class 1 (correct environment), the feature with
the most impact was air humidity followed by soil humidity, temperature, light intensity,
and CO, concentration.
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Figure 15. Individual impact of input variables on the model’s output.

A tabulated performance comparison of the various developed models is illustrated
in Table 5. In the original model, all five input variables were considered for classification
while in the rest of the models, each single variable was dropped and rest of the four
variables were used to classify the rose yield environment. It is obvious that there was
no noticeable impact of dropping a single (any of the variable at a time) variable on the
classification accuracy of the models. All of the developed models were able to perform
the classification task with an overall accuracy of 0.98.

Table 5. Performance comparison of the various developed models.

Model No. Input Features Confusion Heat Map Overall Accuracy

soil humidity
light intensity
1 temperature
air humidity
CO, concentration

0.98

light intensity
temperature

air humidity

CO, concentration

0.98

soil humidity
temperature

air humidity

CO, concentration

0.98

soil humidity
light intensity

air humidity

CO, concentration

0.98
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Table 5. Cont.

Model No. Input Features Confusion Heat Map Overall Accuracy

soil humidity
light intensity
temperature o
CO, concentration

0.98

soil humidity
light intensity
temperature o
air humidity

0.98

4. Conclusions

In the current study, surrogate models were developed that can accurately define
the most suitable environment in greenhouses for rose yield production. In this regard,
Bayesian optimization (BO) techniques such as the Gaussian process (GP) and Gradient
boosting (GBRT) were employed to provide optimal hyper-parameters to be integrated
with deep neural networks (DNN).

- The optimal set of hyper-parameters includes the learning rate (0.000416), the number
of hidden layers (10), the number of neurons in each hidden layer (265), the activation
function (tanh), batch size (36), Adam decay (0.007963), and number of iterations (80).

- An optimal and highly accurate BO-DNN surrogate model (based on 300 experi-
mental data points) was developed for a quick and reliable classification of the rose
yield environment considering the most influential variables including soil humidity,
temperature and humidity of air, CO; concentration, and light intensity (lux) into its
architecture.

- The proposed surrogate models can accurately classify the rose yield environments
(classified into four classes such as soil without water, correct environment, too hot,
and very cold environments).

- The developed model can classify different roses yield environments with an overall
accuracy of 0.98. The very high accuracy of the proposed surrogate models originates
from the inclusion of the most influential parameters as the inputs of the model.

- This study provides an easy, quick, reliable, and intelligent method to identify and
perform corrective measures to improve the quality of the roses. With the proposed
method, greenhouse environments can be evaluated and selected for an efficient crop
yield of roses and other vegetables and fruits.
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Abstract: Finding a sustainable approach for municipal solid waste (MSW) management is becoming
paramount. However, as with many urban areas in developing countries, the approach applied to
MSW management in Karachi is neither environmentally sustainable nor suitable for public health.
Due to adoption of an inefficient waste management system, society is paying intangible costs such
as damage to public health and environment quality. In order to minimize the environmental impacts
and health issues associated with waste management practices, a sustainable waste management
and disposal strategy is required. The aim of this paper is to present a concept for the development
of new bioreactor landfills for sustainable waste management in Karachi. Furthermore, this paper
contributes to estimation of methane (CHy) emissions from waste disposal sites by employing the
First Order Decay (FOD) Tier 2 model of the Intergovernmental Panel on Climate Change (IPCC)
and determining of the biodegradation rate constant (k) value. The design and operational concept
of bioreactor landfills is formulated for the study area, including estimation of land requirement,
methane production, power generation, and liquid required for recirculation, along with a preliminary
sketch of the proposed bioreactor landfill. This study will be helpful for stockholders, policy makers,
and researchers in planning, development, and further research for establishment of bioreactor
landfill facilities, particularly in the study area as well as more generally in regions with a similar
climate and MSW composition.

Keywords: municipal solid waste; sanitary landfill; open dumps; waste to energy; climate change

1. Introduction

In order to control environmental impacts and maintain better public health, municipal
solid waste (MSW) must be managed in a sustainable way [1]. However, sustainable man-
agement of huge amounts of MSW is a challenge, especially in developing countries, due
to lack of financial and technical resources, increasing population, economic development,
and rapid urbanization [2]. According to the study [3], the financial costs to the public of
negligence are five to ten times higher than the economic costs of efficient management of
the waste. The costs to be paid by society if waste is not managed effectively is a ‘cost of
negligence’” which includes public health costs, the cost of environmental deterioration be-
cause of uncollected wastes, uncontrolled dumping, open burning, and inefficient resource
recovery, productivity loss, flood damage, loss of business and tourism, and long-term
cleanup costs [3].

45



Sustainability 2022, 14, 3364

Worldwide, about 2.01 billion metric tonnes of MSW are generated yearly, and this
amount is expected to increase more than two- or even three-fold in lower-income coun-
tries by 2050 due to significant economic development and rising populations [4,5]. One
study [3] estimated that two billion members of the global population lack access to regu-
lar waste collection services, and about three billion people have no access to controlled
waste landfilling facilities. Despite many years of rising public awareness, the problem of
uncollected waste disposal continues to exist in developing countries [6]. The rate of waste
collection strongly depends on the income of the citizens in a country. In high-income coun-
tries, the collection rate is close to 100%; however, in lower-middle income and low-income
countries the waste collection rate is about 51% and 39%, respectively [5].

However, governments are presently proceeding towards sustainable methods of
waste disposal after realizing the environmental risks and economical costs of open waste
dumping [7]. In this regard, economic conditions, specific legislation, and the geographical
location of a country has a significant influence on the adoption of certain waste disposal ap-
proaches [8,9]. Generally, effective MSW management practices involve source separation,
door-to-door collection, transportation, storage, separation of organic and inorganic waste
(plastics, glass and metals) at the storage point, material recycling, biological treatment
(anaerobic digestion and composting) of biodegradable wastes, thermal treatment (inciner-
ation) with energy recovery, and final disposal of residual waste residues at landfills [10].

Over the years, approaches to MSW disposal on land have evolved from uncontrolled
open dumping to engineered landfill systems [11]. Land disposal of MSW accounted
for more than 1.5 billion tonnes of the total 2.01 billion tonnes of waste generated glob-
ally in 2016 [5]. The total number of waste disposal sites in operation globally is about
300,000-500,000 [12]. In the recent past, uncontrolled dumping was the main approach to
waste disposal used worldwide [13]. However, open dumping remains in practice as the
main solid waste disposal method for more than half of the global population [14,15].

According to studies [16,17], the MSW generation rate in Karachi is 15,600 tonnes/day,
with 53-60% of this the organic fraction. Typically, organic waste is neglected after sorting of
recyclables from waste mixture. It is neither collected by scavengers, nor do the municipal
authorities utilise it through compositing, anaerobic digestion, or other treatment [17].
Neither municipal authorities nor private companies are willing to separate organic waste
for biological treatment due to the lack of vision and policy to utilize it for energy generation
and the absence of a market for compost products [18]. Hence, this mismanagement
of waste results in the loss of both a valuable energy-containing resource and leads to
environmental and public health issues.

One study [19] estimated that the amount of MSW annually disposed of at dumpsites
(2.2 million tonnes) has the potential to emit about 3.9 million tonnes of carbon dioxide
equivalent (MtCO;-eq.) emissions. In order to minimize the environmental impacts
and health issues associated with open waste disposal in Karachi, a sustainable waste
management and disposal facility is required. This study intends to present a concept for
the development of bioreactor landfills and sustainable waste management in the city.

This paper contributes to estimation of methane (CHy) emissions from waste disposal
sites, determination of the degradation rate constant (k) value under the prevailing climatic
conditions in Karachi and formulation of a design and operational concept for a bioreactor
landfill. Additionally, estimations concerning land requirements, methane production,
power generation, and liquid required for recirculation in order to maintain the required
waste degradation rate in bioreactor landfill conditions are reported in this paper.

2. MSW Landfilling Approaches
2.1. Open Dumps

The open dump method is an elementary level of solid waste disposal, and is identi-
fied with the uncontrolled deposition of waste with only limited or without any control
measures [20]. Overall, 33% of waste is openly disposed of at dumpsites globally, and in
lower income countries (wWhere dumpsites are the leading waste disposal facilities) more
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than 90% of waste is openly disposed of [5,21]. In Pakistan, 70% of waste generated ends
up in dumpsites [17].

The operation of open dumps poses serious threats to the environment and human
health [22]. The environmental and public health damage caused by open disposal of waste
includes ground and surface water contamination through the generation of leachate, contam-
ination of soil by solid waste or leachate, air pollution due to gaseous emissions, provision of
breeding grounds to disease vectors such as mosquitos, flies, and rodents, odour problems,
and uncontrolled methane emissions [23,24]. Furthermore, open burning of MSW, commonly
practiced in developing countries, leads to the release of harmful contaminants including fine
particulates (PMj5), and damages the air quality in urban areas [25].

2.2. Anaerobic Landfills

Anaerobic sanitary landfills are known as well-designed waste disposal facilities which
do not require any processes to influence waste degradation [26,27]. However, control
measures to minimize environmental and public health effects are incorporated at the
site, including a bottom liner and surface top cover as well as leachate and gas treatment
(heat/power generation or flaring) facilities [26,27].

The sanitary landfill approach is the most popular waste treatment method due to its
high volume handling capacity, low investment, and minimal technical requirements [28].
It has been reported [29] that the biodegradation processes of the organic fraction of
municipal solid waste are slower under anaerobic conditions than under aerobic conditions
in a landfill. Investigation results from old landfills in Germany and other European
countries showed noticeable emission potential from landfills operated under anaerobic
conditions, and it is estimated that gaseous emissions can last at least for thirty years,
and that leachate emissions can last for many decades or even centuries depending on
site-specific conditions [30].

2.3. Semi-Aerobic Landfills

The semi-aerobic is the oldest approach regarding landfill aeration; this method was
developed in the early 1970s in Japan and is known as the “Fukuoka method” [9,31].
The semi-aerobic landfill process is driven by a natural air ventilation mechanism which
provides a speedy waste stabilization solution through the availability of oxygen in the
waste mass without demanding high resources and technology [31]. The semi-aerobic
landfill system can be a suitable method for meeting the sustainability requirements cost-
effectively and with low technical input, especially in developing countries which are
lacking in sustainable waste disposal due to funding issues and technical limitations [32].

A semi-aerobic landfill system consists of a horizontally-installed perforated pipe
network with an adequate slope at the bottom of landfill for leachate collection, with
perforated pipes erected vertically at intersections and at the end of each branch for air
ventilation [9,31]. Furthermore, in a semi aerobic landfill system, air flows through the pipe
network by means of a natural advection process due to temperature differences between
the landfill body and the ambient environment [9,31]. The temperature difference is a result
of exothermic biodegradation of the organic fraction of the waste mass; the release of this
heat can raise the temperature in the waste body by 50-70 °C [31].

This temperature difference leads to density differences in the gas inside the landfill,
creating a buoyance force which allows the gas to flow up through the waste mass and vent
out the vertical gas extraction pipes, developing negative pressure as a result that allows
more air to be drawn inside the landfill body through the leachate collection pipes [31,33].
In an aerobic environment, organic matter degrades more effectively than in anaerobic con-
ditions; thus, air circulation through the waste mass results in enhanced waste stabilization
and improved emission quality and quantity [31].

A study on full-scale aeration in semi-aerobic landfills by [34] has shown that the
relationship between airflow rate and ambient temperature is negatively proportional, as
in winter a large flow rate was noticed, while no flow of air was observed in summer. In
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a semi-aerobic landfill system, anaerobic conditions prevail inside the waste mass due to
insufficient air distribution, which promotes methane formation. However, the CO, and
CH, emission ratio of a semi-aerobic landfill (4:1) is much lower than an anaerobic landfill
system (1:1) [31].

2.4. Aerated Landfills

In situ aeration is a quite new technology for intensified removal of biodegradable
organic material left in old landfills [35]. For aeration of landfills, two approaches are
applied; one is forced aeration, while in the second air is supplied in natural conditions.
Forced aeration is realized by injection of air into the landfilled waste mass through means
of different types of blowers [36]. The major objective of the aerobic in situ aeration is to
stabilize and change the emission behavior of organic matter deposited in the landfill [37].

Aerobic degradation processes in landfills enable the significantly faster decomposition
of organics (e.g., hydrocarbons) compared with anaerobic processes, resulting in increased
carbon discharge in the gas phase and decreased leachate concentration [38,39].

A study by [35] reported that when landfill gas production is decreased to such a level
that energy generation is not economically feasible and even flaring of extracted gas is not
practical, there will be up to 10-20% residual gas production potential remaining of the
total production potential. Moreover, it may take decades to stabilize the remaining organic
material in the anaerobic environment; by providing aerobic conditions, the residual organic
matter can be degraded in a limited time (<10 years under a conducive environment) [35].

The in situ aeration approach goes beyond the concept of injecting air into the landfill,
including a well design and spacing options for the suitable volume and pressure of air,
air distribution, temperature, and moisture control as well as pollution discharge in the
leachate and gas phases [9]. The major objective of aerobic in situ aeration is to oxidize and
change the emission behavior of organic material deposited in landfill, and in the end to
significantly reduce the emission potential in a more appropriate way [37].

Aerobic degradation processes in landfills enable the significantly faster decomposition
of organics (e.g., hydrocarbon) compared with anaerobic processes; as result, carbon
discharge in the gas phase increases and leachate concentration decreases [38,39]. In all,
nitrogen elimination is the most significant advantage that can be obtained from aeration
technology [40,41]. Several authors [9,42] mention that the aeration of waste material in
the landfill body is an essential and unavoidable pretreatment step in the landfill mining
process to prevent uncontrolled gaseous emissions from waste during excavation activity.
Presently, various approaches and concepts are applied in the aeration of landfills, such
as semi-aerobic landfills, high pressure aeration, low pressure aeration (including active
aeration with and without off-gas extraction), passive aeration via air venting, and energy
self-sufficient landfills [9].

2.5. Bioreactor Landfills

A bioreactor landfill is an engineered and modern shape of a conventional anaero-
bic/aerobic landfill where moisturization of the waste takes place by injecting water (fresh
or wastewater) and recirculating the leachate to optimize waste degradation
processes [43-45]. The recirculation of leachate facilitates cycling of microbes and nu-
trients into the waste mass and maintains an optimal moisture content in the landfilled
waste [46]. The cycling of microbes and nutrients is intended to enhance microbial pro-
cesses for transformation and stabilisation of easily and moderately degradable organic
waste fractions, within the timeframe of 5-10 years for bioreactor process execution [47].

Various studies [48-51] have reported the positive effects of moisturization of the
waste and leachate recycling during landfill operation, which includes speedy waste
biodegradation and stabilization, increasing LFG (methane) production, rapid settlement,
reduced leachate quantity, and leachate treatment cost savings. Furthermore, bioreactor
landfills and their variations represent a sustainable alternative approach to conventional
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sanitary (dry tomb) landfills [52]. However, bioreactors can have drawbacks, e.g., odours
and physical instability of the waste material due to increased moisture [53].

Moreover, establishment of infrastructure for leachate recirculation and/or aeration
may cause increased capital and operational costs [53]. Studies have suggested that the
high upfront costs involved in operation and construction of bioreactor landfills can be
balanced by future economic benefits, including an increase in the active life of the landfill
(waste disposal period), more efficient use of airspace [54], lower minimum leachate
treatment/disposal costs, delay in the need to construct a new cell and cap, savings in the
post-closure care period thanks to less need for monitoring and lower financial guarantee
obligations, and higher efficiency in landfill gas collection, resulting in larger revenues
generated from production [55].

According to [53], the bioreactor approach can be applied when the waste to be de-
posited possesses a high quantity of biodegradable organics. Bioreactor landfills can be
designed as anaerobic, aerobic, semi-aerobic, and hybrid landfills [36,56]. The basic dif-
ferences between these designs of bioreactor landfills are linked with their operations,
layouts, and arrangements for leachate recirculation, landfill gas collection, and (optional)
air injection system [45]. Bioreactor landfills are mostly operated under anaerobic condi-
tions [57,58]. In a hybrid bioreactor landfill, a series of aerobic and anaerobic conditions
are observed [53,59]. The aeration of the bioreactor landfill is realized through injection of
air/oxygen to establish an environment for aerobic biodegradation of the landfilled waste
in order to control methane emissions and accelerate waste stabilization [60].

However, hindrances in oxygen distribution in the waste mass due to high moisture
content and leachate recirculation have been reported by various research studies [61-63].
Moreover, other studies [64,65] have stated that degradation of waste is significantly influenced
by the rate of oxygen distribution. The pros and cons associated with the different waste
disposal approaches discussed in the above sections are summarized in Table 1.

Table 1. Summary of pros and cons of different landfill approaches.

Landfilling Approach Pros Cons Reference
Long-term environmental costs such as
uncontrolled emissions of toxic gases due
. No or low cost is involved in the short-term. to open decompom.tlon. of waste, ground
Open disposal water contamination, and soil [66]

Income source for waste scavengers. . .
contamination due to toxic and

concentrated leachate release.
Public health problems.

Anaerobic landfills

High COD, BODs and VFA concentrations
in leachate.

LFG with high methane concentration can be High level of ammonia in leachate.
used as an energy source. Formation of hydrogen sulphide (H,S) gas [59,67]
Relatively low cost is involved in the short from the decomposition of gypsum wall !
term. board in waste.

Long duration in waste stabilization.
Long term LFG (methane) emissions.

Semi-aerobic landfills

Promotes waste and leachate stabilization
Reduced biological stabilization time of
landfilled waste.

In situ leachate treatment.
Low-cost system.

Careful management and operation

needed for optimal performance [33,59,68]

Aerobic landfills

Speedy waste stabilization.
No or low methane production with reduced
GHG emissions.
Low or no residual methane emissions.
In situ leachate treatment.
Moisture removal by air stripping.
Nitrogen removal.
Better waste settlement.

High energy demand. [35,59,68]
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3. Methods and Data
3.1. Estimation of Methane Emissions from Waste Disposal Sites in Karachi

The estimations of methane emissions from waste disposal sites in Karachi provided
here are based on the LFG production model by Tabasaran and Rettenberger, (1987) [69] as
given in Equation (1). This model is considered a simple method for prognosis of methane
from waste disposal sites, and depicts the anaerobic degradation of degradable organic
carbon (DOC) as in the first-order decay (FOD) Tier 2 model of the IPCC [70,71]. This model
is used by various studies to estimate landfill gas production rates, such as [37,70]:

Gt = 1.868C0rg (0.014T + 0.28) (1 _ e*’ﬂf) )

where G; is the LFG production during a specific time, t (m3/tonne fresh waste); Corg is
total organic carbon in waste (kg/tonne); T is the temperature (35 °C); k is the degradation
rate constant, (k =In2/T5); and ¢ is the landfill operation time (years).

The Cyry was determined by considering the degradable organic content (DOC) ac-
cording to the organic fraction of MSW in Karachi (as reported by [72-74]), and is provided
in Table 2. The degradable organic content (DOC) of MSW used in this study was deter-
mined using Equation (2), as per the Intergovernmental Panel on Climate Change (IPCC),
2001 [75]:

DOC=(04x A)+(0.2 x B)+(0.15 x C) +(0.43 x D)+ (0.24 x E) + (0.24 X F)  (2)

where A, B, C, D, E, and F represent the fractions of paper, green waste, food waste, wood,
textile, and nappies, respectively, present in MSW generated in Karachi, as shown in Table 3.

Table 2. Composition of MSW generation in Karachi.

Waste Component

FW GW  Paper Glass Metal Plastic Fines Nappies Textile TP Wood

Fraction in sample [% w/w]

26.10 17.04 797 5.6 1.1 8 37 9.8 5.57 10 3.11

Table 3. Determination of DOC in the synthetic waste sample using IPCC default values.

Waste Components % DOC Default Value DOC %
Paper (A) 7.97 0.4 3.2
Green waste (B) 17.04 0.2 34
Food (C) 26.10 0.15 3.9
Wood (D) 3.11 0.43 1.3
Nappies (E) 9.8 0.24 2.4
Textile (F) 5.57 0.24 13
Total 15.5

For selection of the degradation rate constant (k) value of waste disposed at dumpsites
in Karachi, three different k values were analysed. In the first, an average of half-lives of
easily (four years), moderately (nine years), and hardly (twenty years) degradable wastes
were considered. The k value determined in this approach was 0.095/year.

In the second, the default k value 0.05 suggested by IPCC 2000 [76] was applied, and
the third k value for conventional landfills reported in the literature [43,77], 0.04, was used
to model the landfill gas emissions. The data utilized for the estimation of landfill gas
emissions from waste disposal sites in Karachi are provided in Table 4.

50



Sustainability 2022, 14, 3364

Table 4. Data used for estimation of methane emissions from waste disposal sites in Karachi.

Data Unit Value Reference
MSW generation [tonnes/day] 15,600 [17]
MSW landfilled [%] 70 [17]
MSW landfilled-FM [tonnes/day] 10,920
MSW landfilled-FM [million-tonnes/year] 4
Density of methane [kg/ m3] 0.66 [78]
Methane fraction in LFG [%] average 50
methane (over 100 sears horison) [COz-eq] 2 179,80}
Total DOC in the waste kg/tonne FM 155
Default k value for waste 0.05 [76]

disposal sites

3.2. Estimation of Land Requirement for Bioreactor Landfill

The landfill requirements for bioreactor development were estimated using Equation (3),
as reported by previous studies [81,82]:

Waste quantity (t)

Total required disposal area = l( ) /landfill height (m) (©)]

waste density (-)

3.3. Estimation of Power Generation from Bioreactor Landfill

The electric power generation from recovered methane during anaerobic operation of
a bioreactor landfill was estimated using Equation (4), as reported by [78,83]:

1 kWh

Pe =Y X finethane X p X w X 3.6 Mj

X e 4)

where P, is the electrical power generated (kWh), ¥ is landfill gas collection rate (m?/h),
frmetanne 15 the methane fraction in landfill gas (%), p is the density of methane (0.66 kg/ m?),
w is the calorific value of methane (55.53 MJ/kg), and 1. is the electrical efficiency of the
gas engine (%).

3.4. Determination of k Value for Waste Degradation in Karachi

The k value is the biodecomposition half-life value in a year (year!) for landfilled
waste, and is influenced by waste depth, density, pH, and other environmental condi-
tions [77,84]. Several authors have [84-86] reported precipitation as the most significant
parameter in the estimation of k value, because a higher moisture content results in faster
biodegradation of waste. Thus, for the estimation of k value considering the local precipitation
regime, the following Equation (5) provided by [87] and reported by [84] can be used:

k = (3.2 x 107> x annual precipitation in mm) + 0.01 )

3.5. Estimation of Liquid Required for Bioreactor Landfill

The degradation rate constant (k) value (0.3/year) considered for the proposed biore-
actor landfill was taken from the literature [43,77] and is shown in Table 5. In the case of
a bioreactor landfill where additional liquids are introduced into the landfill, the amount
of additional liquid should be determined and added to the amount of precipitation, as
suggested by Alberta Environment [87]. In this case, the equation for k value would be

k=32x10"%x (AP + AL) 4+ 0.01 6)
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where AP is the annual precipitation rate in mm and AL is the amount of additional
liquid required.

Table 5. Data used for estimation of designing a bioreactor landfill for Karachi.

Parameter Value Unit Reference
Waste tipping 3700 [tonnes/day]
Waste compaction 0.8 [tonnes/m®]
Landfill height 30 [meters]
Total DOC in the waste 155 kg/tonne FM
DOC loss in pre-treatment 10 [%]

DOC in the waste disposed in

bioreactor landfill 139.9 kg/tonne FM
Landfill gas collection efficiency 50 [%] [88]
k value for bioreactor landfill 0.3 [43,77]
Density of methane 0.66 [kg/ m?]

Average CHy concentration in LFG
Methane fraction in landfill gas 64 [%] in simulating bioreactor landfill
conditions in Karachi [19]

1 kWh 3.6 [M]]
Electric efficiency (1) 30 [%] [78]
Calorific value of methane 55.53 [M]/tonne]
LHV of methane 36.48 [KJ/m3]

4. Proposal for Development of Bioreactor Landfills in Karachi

The conventional sanitary waste landfill method (dry tomb) is not a long-term sustain-
able solution and has negative impacts on the environment and urban sustainability [52,89].
According to one study [11], two major obstacles are associated with conventional (dry
tomb) sanitary landfills; the first is slow gas production, and the second is that the use
of low-permeability daily/intermediate cover layers hinders the free flow of gas during
extraction. Hence, conventional sanitary landfills are not compatible for the landfill gas
recovery and utilization approach and only serve as places for perpetual storage of waste,
occupying valuable land resources [46].

In the development of new landfill sites in Karachi, a hybrid form of the bioreactor
landfill approach can be applied for rapid gas production and waste stabilization. This
approach can be more environmentally sustainable when bioreactor landfill facilities are
planned with aftercare measures (in situ aeration) taken into account and followed by
a decrease in landfill gas production rate. Furthermore, in [56] the hybrid bioreactor
concept is demonstrated to be an efficient technique for enhancing methane production
and achieving landfill completion in a 25-35% shorter time compared to traditional (dry
tomb) anaerobic landfill systems. Furthermore, the results of a study [19] conducted by
simulating bioreactor landfill conditions in the situation of Karachi (MSW composition
and climatic conditions) reported that a bioreactor landfill with post-aeration (a hybrid
bioreactor) showed accelerated methane production higher than that of a conventional
sanitary landfill.

In this context, the present paper proposes a more advanced and environmentally
sustainable solid waste landfill approach, a hybrid bioreactor landfill for future landfills
development in the city. Under this approach, the waste placed in the landfill would
be subjected to aerobic oxidization by means of in situ aeration after completion of an
anaerobic phase when the landfill gas production will be significantly reduced. The post-
aeration phase is intended to accelerate the degradation of the remaining hardly-degradable
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organic material and shorten the aftercare period of the landfill, as reported by various
authors [35,36].

The bioreactor landfill approach without the aftercare option is only better than exist-
ing waste disposal sites in Karachi regarding its environmental performance and landfill
gas generation. Under this approach there will be significant risks to the environment,
such as long-term residual gas emissions even after power generation from landfill gas
can no longer be economically feasible. As the MSW generated in Karachi contains a high
organic fraction and as most of the recyclable material in the solid waste is collected by
waste pickers (or can be systematically collected through the establishment of material re-
covery facilities), leftover organic material can be valorised by methane production through
application of the bioreactor landfill approach. Later, when the gas production reaches
minimal levels, the landfill could be aerated.

Karachi has two major official solid waste landfill sites, known as Jam Chakro
(N =25°01.675’, E = 67°01.61") and Gond Pass (N = 25°00.634’, E = 66°55.263"), located
north-west and west of the city, respectively [19,90]. Presently, there is no landfill for the
disposal of solid waste generated in the eastern parts of the city. The absence of an official
designated waste disposal site on the eastern side of the city leads to mismanagement of
waste, and provides reasons to the public for open disposal of the waste on street sides,
vacant plots, drainage channels, and in the Malir river.

Furthermore, transportation of solid waste from the eastern side to officially designated
landfill sites located on the northern side of the city has high costs in terms of both fuel
consumption and time. The Sindh Solid Waste Management Board (SSWMB) is planning
to establish a new sanitary landfill to serve the waste disposal needs of the eastern parts of
the city, for which 3000 acres (1214 hectares) of land have been allocated at the Dhabeji site
(N =24°48.804’, E = 67°30.567’) [91]. The locations of Jam Chakro and Gond Pass landfill
sites and the future landfill site at Dhabeji are shown in Figure 1.

Figure 1. Locations of Jam Chakro, Gond Pass, and Dhabeji landfill sites in Karachi (Google maps).

According to SSWMB, both the Jam Chakro and Gond Pass waste disposal sites are
operated as controlled landfills, and sanitary landfills are under planning for future waste
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Past — before 2017

disposal [92].The proposed concept for transformation of waste disposal strategies from
open dumps to sustainable waste disposal in Karachi is illustrated in Figure 2.
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Figure 2. Evolution of solid waste landfilling approach in Karachi.
The following sections provide details regarding the proposed approach.

4.1. Estimation of Methane Emissions from Waste Disposal Sites in Karachi

The methane emission potential is estimated using Equation (1), with three different
values of the degradation rate constant (k) considered: 0.095/year, 0.05/year, and 0.04/year.
The results with all three values of the degradation rate constant (k) were similar, ranging
from 438.6 to 446.9 m3/tonne fresh waste (FW) for the estimation of landfill gas over
100 years. For the modelling of methane emissions from waste disposal sites in Karachi,
the middle value of the degradation constant (k) 0.05 suggested by the IPCC (2000) [76]
was used. The comparison of landfill gas emissions with three different values of the
degradation rate constant (k) for LFG emissions over 100 years is shown in Figure 3.

A significant amount of solid waste generated in Karachi is openly burned, either at
community bins in the city or at the landfill sites [93,94]. Therefore, as a result of burning,
the biodegradable fraction (DOC) in the waste can be significantly reduced.

Therefore, the estimations of methane production for waste disposed at landfill sites
in Karachi are made at four different DOC ranges here: first, considering theoretical (100%)
DOC in solid waste with no loss of DOC; second, at 75% DOC (25% DOC loss); third at
50% DOC; and fourth at 25% DOC (75% DOC loss). The estimated cumulative methane
production from waste disposal sites over 100 years at different DOC fractions in the solid
waste disposed of is shown in Figure 4.

Considering the latest waste disposal quantity and data in Table 4, the theoretical
global warming potential (GWP) over time of 100 years for the solid waste annually
disposed (about 4 million tonnes/year) at dumpsites in Karachi is estimated as 7.3 MtCO,-
eq., with a specific GWP of 1.83 tCO;-eq/t fresh mass (FM). Furthermore, at the DOC levels
of 75%, 50% and 25%, the GWP of the waste quantity disposed annually at dumpsites is
estimated as 5.5 MtCO»-eq (1.4 tCOz-eq/t FM), 3.7 MtCOs-eq (0.9 tCO,-eq/t FM), and
1.8 MtCO;-eq (0.5 tCO,-eq/t EM), respectively, over a time of 100 years.

According to the results obtained from this study and modelling of the methane emis-
sion potential of landfilled solid waste, it is evident that the existing dumpsites in Karachi
are causing significant GHG emissions. These waste disposal sites can be transformed
into sanitary landfill facilities and sources of renewable energy generation by extracting
methane-rich landfill gas. Later, captured methane can be utilized for power generation,
transportation, and industrial purposes. After reaching a point where power generation
from produced landfill gas is no longer economically feasible, the waste placed in landfills
can be rapidly stabilized by employing in situ aeration as a landfill aftercare approach.
Given this idea, a sustainable approach is proposed for the development of new landfills
in Karachi.
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Figure 3. Comparison of different degradation constant (k) values for LFG emissions.

4.2. Bioreactor Landfill Operations

The operation of solid waste tipping in a new bioreactor landfill is proposed in ten
phases, and the duration of each phase is assumed to be one year. After ten years of
waste deposition, the whole landfill could be closed and capped by providing a final cover.
Furthermore, in order to minimize leachate generation and initial operational costs the
waste footprint is divided into cells, as recommended by [95].

Hence, the placement of the solid waste at the landfill site is planned by tipping in
small daily cells of one larger cell of landfill and providing a daily cover, as recommended
by the authors of [96]. The proposed operational layout of the new bioreactor landfill for
Karachi is presented in Figure 5.

Solid waste arriving at the landfill would be weighed first at the entrance of the site,
and material would be collected at the material recovery and treatment facility where the
recyclable waste fraction would be separated from the organic and non-recyclable fractions
of the waste. Furthermore, it is proposed that before tipping into the daily cell, waste
material should be pre-treated by means of shredding and in situ aeration to reduce readily
degradable organics and enhance landfill gas production, as recommended by the authors
of [36,97]. A study by Ali et al. [98] recommended at least 27% reduction of volatile solids
(VS) during aerobic pre-treatment in order to realize an early start to methanogenesis and
increase LFG generation in the anaerobic phase.

Later, the anaerobic phase of landfill operation would be initiated to establish favourable
conditions for methane production, with a landfill gas (LFG) capture and utilisation ap-
proach for power generation. At the point in time when the rate of LFG production would
significantly decrease and the methane recovered would not be economically/technically
feasible to utilise for power generation, the aftercare phase (in situ post-aeration) would be
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started for accelerated biodegradation of the remaining (mostly hardly-degradable) organ-
ics in the waste, as proposed by various studies [39,64,99]. The concept of transforming
waste disposal strategies from open dumps to sustainable waste disposal is illustrated in
Figure 6.
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Figure 4. Estimated cumulative methane emissions from waste disposal sites in Karachi.

4.3. Estimation of Land Requirement for Bioreactor Landfill

It is assumed that the solid waste will be collected in closed community bins without
initial segregation of recyclables by waste pickers and directly transported to the landfill
site. Taking the total quantity of solid waste coming to the landfill site as 5000 tonnes/day;,
25% (about 1300 tonnes/day) of recyclable material will be collected by establishing a
material recovery facility at the landfill site, and only the organic fraction of MSW will be
deposited in the daily cell of the landfill. Furthermore, it is assumed that each daily cell
will receive about 3700 tonnes of solid waste on daily basis. Hence, each phase will be
completed and covered after one year of waste tipping with a total capacity of 1.3 million
tonnes. Overall, it is assumed that 13.5 million tonnes of waste would be accepted at the
landfill facility.

The waste height for a sanitary landfill ranges between 15 and 30 meters (m) [82].
A similar study assumed a waste height of 22 m for the determination of the required
landfill area [82]. However, if the waste height decreases, the area required for waste
disposal increases [82]. In this proposal, the mean height of waste in the bioreactor landfill
is assumed as 30 m, excluding intermediate and final covers. According to one study [52],
the compaction density of the waste achieved by moderate compaction may range from
0.5-0.85 tonnes/m3. This study assumed the specific density of waste to be placed in the
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landfill as 0.8 tonnes/m?3, the commonly-used value for compacted waste in sanitary land-
fills [32,82]. The land required for landfill construction was determined using Equation (3).

Landfill Processing
and Utilization

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
N
Leachate Treatment
Facility
Solid|waste tipping arga )
Phase 6 Phase 7 Phase 8 Phase 9 Phase 10

Material Recovery and
Pre-Treatment Facility

Office Building

Parking

S =i = ey S VR
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|] weighbridge Vi

- — — — —

Entrance

Figure 5. Proposed operational layout of new bioreactor landfill for Karachi.

Pre-treatment Hybrid-operations

Aftercare phase
(post-aeration)

Pre-aeration
phase

Figure 6. Proposed sequence of bioreactor landfill operations.

By assuming the total waste deposition capacity of a phase as 1.35 million tonnes
of waste, it can be determined that an area of 5.6 ha (56,271 m?) will be required for
construction of each landfill phase, excluding the area required by daily and final covers
and other landfill facilities. This area should be increased by 10-15% for the placement of
daily and final covers [82]. An additional 40-50% area will be required for other facilities
such as a receiving area, treatment facilities, and administration buildings [32,82]. The
land area required by cover material (daily and final covers) was determined to be 0.84 ha
(8440 m?) by assuming 15% of the waste landfilling area. Hence, the total area required for
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waste placement is 6.5 ha for each phase of the landfill. Overall, 65 ha of land area will be
required for tipping the waste during the landfill’s operational life.

Similarly, the area required by the establishment of other facilities (leachate treatment,
LFG process and utilization, road construction, office buildings, etc.) at the landfill site was
determined to be 19.4 ha by assuming 30% of the total area required for waste placement
and cover material. The total land area required to establish a new bioreactor landfill in
Karachi, including waste tipping, cover material, and development of other facilities, is
estimated to be 84 ha.

4.4. Estimation of Methane Production and Power Generation from Bioreactor Landfill

As discussed above in Section 3.2, landfill operation is divided into ten phases; there-
fore, methane production and power generation are estimated from the total amount of
waste assumed to be disposed during the landfill during its life (ten years). The estimation
of methane production from the biodegradation of the organic fraction of the waste in
the landfill was calculated based on the LFG production model using Equation (1). The
data considered for modelling methane production in the bioreactor, such as the k value,
LFG collection rate, methane fraction in LFG, etc., are provided in Table 5. Landfill gas
(methane) production from landfilled waste is modelled by considering a 10% loss in initial
DOC content of 155 kg/tonne FM solid waste material during the pre-treatment phase.

The efficiency of the landfill gas collection system ranges from 13%—80%, with an
average of 50% [88]. In this study, landfill gas collection efficiency is considered to be
50%, as shown in Table 5. Based on the modelled methane production and collection rate,
the anaerobic phase is supposed to be prolonged until 23 years pass due to a significant
reduction in LFG (methane) recovery rate, reaching about 52 m?/h, as shown in Figure 6.
The estimated methane recovery from bioreactor landfill starts from 2572 m3/h in the
first year of anaerobic operation and reaches a maximum rate of 9429 m3/h in ten years
of waste disposal. After closure of landfill, the methane recovery rate gradually decreases
to 52 m3/h thirteen years after closure (23 years of landfill anaerobic operation). The
prognosis of the methane recovery rate during the anaerobic phase is illustrated in Figure 7.

The electric power generation potential of a bioreactor landfill could range from
7.8 MW to a maximum of 28.7 MW during the disposal period, and would be reduced
to 0.16 MW until the 23rd year of landfill anaerobic operation. The estimated power
generation from a bioreactor during the anaerobic operation period is provided in Figure 8.

Moreover, through estimating the specific global warming potential of fresh MSW
disposed at landfill sites in Karachi, the reduction in global warming potential by waste
deposition at each phase of bioreactor landfill operation is estimated as being in the range
of 2.5 MtCO»-eq to 0.6 MtCO,-eq (with different DOC levels, 100% to 25%, in solid waste)
through methane collection and sustainable utilisation via power generation or flaring.
Overall, approximately 25 MtCO;-eq to 6 MtCO,-eq of methane emissions can be controlled
by total waste deposition during the ten year period of bioreactor landfill operation.

4.5. Determination of k Value for Waste Degradation in Karachi

Various researchers have found that the k value increases with higher moisture content
and higher temperature [84,100,101]. The degradation rate constant (k) value for the
biodegradation of the organic fraction of MSW under the climatic conditions (annual
rainfall) of Karachi is determined by understanding the waste decomposition dynamics
using Equation (5) and considering the total annual rainfall, 176 mm, as reported by [19,102].

It can be determined that with the moisture received through rainfall, the k value for
waste degradation at landfill sites in Karachi is 0.016/year. This lower k value is due to low
annual rainfall rates in Karachi. However, a study by authors Amini et al. [77] reported
a k value of 0.1/year for wet cells and 0.08/year for a traditional landfill due to fact that
the study was carried out on a landfill located in Florida, which has relatively high annual
rainfall rates, therefore resulting in a higher k value.

58



Sustainability 2022, 14, 3364

Time [years]

Cummulative CH4 recovery rate [m3/h]

23

21

19

17

—_
(O8]

—_
—_

]

10,000 g
Waste deposition period
9,000 >
Methane recovery and power generation period
8,000
7,000
6,000
5,000
4,000
3,000
2,000
1,000
0 2 4 6 8 10 12 14 16 18 20 22 24
Time [years]
Figure 7. Prognosis of centralised methane recovery rate from bioreactor landfill.
1 0.16
.
-
—
—
—
——
—
——
—————
I ————————
R REREEE——————
R R R R ——————————
R R A R R R R R R R R R ———— 28.07
R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R ——————.
R R R R R R R R R R R R R R R R R R R R R ——————————
R R R R R R R R R R R —————————————————
R R R R R R ———————————
R R ————————————————————————
R ————————————————————————————
I E——————————
I EE—————
I 73 , , , , . , , . , ,
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Electric power generation [MW]

Figure 8. Estimated electric power generation during anaerobic operation of bioreactor landfill.
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4.6. Estimation of Liquid Requirement for Bioreactor Landfill

The sources of liquid addition in a landfill may include storm water, groundwater,
infiltrating rainfall, or leachate [47]. In the case of a lower annual precipitation rate, as in
Karachi, additional liquid would be required to introduce moisture and leachate generation
in the bioreactor landfill. Later, leachate can be collected and reintroduced into the landfill
after pre-treatment (nitrification).

As the k value for the bioreactor landfill (0.3/year) and precipitation rate in Karachi
(176 mm) are known, the additional liquid required to maintain the considered k value in the
landfill can be estimated using Equation (6). Similarly, the additional liquid required for a
bioreactor landfill has previously been estimated in [103]. By taking their recommendations
and integrating Equation (6), it is estimated that 9063 mm of liquid will be required annually
in order to maintain a k value of 0.3/year in the bioreactor landfill considering the local
precipitation regime in Karachi.

Hence, in order to maintain the considered degradation rate, it is determined that
434.2 L/tonne waste liquid will be required for the daily amount of waste disposed in a
cell of the bioreactor landfill at a rate of 67 m3/h. Furthermore, it is determined that given
the annual rainfall rate of the city, only 31 m®/day water can be expected to be available as
run-off from the area allocated to every phase of landfill. However, in the monsoon season
(June-September), the run-off collection rate could increase to 77 m3/day due to the higher
precipitation rate in that period. Overall, due to the low annual rainfall rate in the city,
almost all (98%) of the required liquid will have to be supplied.

4.7. Design Componetnts of Bioreactor Landfill

To operate a bioreactor landfill effectively, careful construction and operation of in-
frastructure is required beyond what is necessary in a conventional landfill [55]. The major
infrastructure for an engineered landfill facility, includes bottom liner, daily covers, top
cover, landfill leachate and gas collection system, embankments, berms, and monitoring
systems, and the service life of this infrastructure is assumed to be up to 100 years [12].
Moreover, the design components of a bioreactor landfill include a leachate recirculation
system, air injection system, intermediate covers, and final cap [47,104,105]. The leachate
recirculation includes the collection of leachate from the bottom of the landfill cell for pump-
ing back into the landfill waste mass [52]. The leachate recirculation system may consist of
horizontal distribution pipes/trenches at different depths inside the landfill cell [52].

The landfill gas collection infrastructure consists of gas extraction wells, including a
transmission pipe network and condensate knockout system [104]. The key component
of the landfill gas collection system is a horizontal pipe network installed during the
placement of the waste [104]. However, according to [106] the horizontal gas extraction
pipe network is vulnerable to damage by overburdened pressure from the waste, and is
easily clogged by leachate components. The vertical extraction wells are most commonly
used; while these are easy to install and operate, they are mostly installed after the closure
of a landfill cell [52].

Alternatively, during the aerobic operation phase an existing LFG extraction system
can be utilized for air injection landfill waste mass [89]. The most commonly used bottom
liner system in bioreactor landfills is the composite liner system, which includes a com-
pacted clay liner (CCL) and a flexible membrane liner (FML) [52]. The preliminary design
concept of the bioreactor landfill development in Karachi is presented in Figure 9.
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Figure 9. The preliminary design concept of the bioreactor landfill proposed for Karachi (adopted
from [107]).

5. Conclusions and Recommendations

Population growth and increasing commercial activities are cumulatively increasing
the amount of waste generated in Karachi. Additionally, the waste disposal sites in the city
are reaching their saturation point, causing a continual degradation of environment and
public health. Therefore, there is an immediate necessity for development of new sanitary
landfills for sustainable disposal of a huge amount of waste while minimizing the negative
implications associated with its uncontrolled disposal.

Both the former (City District Government of Karachi, CDGK) and present (SSWMB)
authorities responsible for solid waste management have been planning the development
of a new sanitary landfill to serve the solid waste disposal needs of the eastern side of
the city beginning in 2007; however, the planning is at the very initial stage. This delay
in the execution of the planned landfill project can be associated with various political,
administrative, technical, and financial reasons.

Considering the recent progress in sanitary landfill development for Karachi from
SSWMB, this study proposes the approach of a hybrid bioreactor with post-aeration for
aftercare for the development of new sustainable landfills in the city based on the concept
of energy recovery from municipal solid waste. All estimations made here (such as the
quantity and organic fraction of MSW arriving at the landfill, land requirements, timing
of each operation phase, methane production and power generation, etc.) as well as the
proposed design for the development of the bioreactor landfill in the study area are based
on carefully considered assumptions and an extensive literature survey related to the
concept. In conclusion, a comprehensive feasibility study shall be conducted by developing
a pilot-scale bioreactor on the proposed landfill sites in Karachi to confirm the assumptions
taken in this study.

Furthermore, in order to improve the solid waste management situation and opti-
mize the GHG mitigation potential of landfills, this study recommends the adoption of
an integrated solid waste management approach in Karachi, with full financial, legal ad-
ministrative and institutional support. The valorisation of the organic fraction of MSW
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generated in Karachi should be enhanced through separate collection and utilization for
energy generation.
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Abstract: Consumer interest in food quality and safety has shifted over time, as consumers increas-
ingly prefer minimally processed items. As a result, numerous non-thermal approaches have been
implemented due to their potential to preserve the nutritional profile of products along with length-
ening their storability. Microwaving, a green processing technique, volumetrically heats the product
because of the interactions developed between charged ions, polar water molecules of foodstuff
and the incoming electromagnetic waves. The study was mapped out to investigate the effect of
microwave exposure time (60, 90 and 120 s) at fixed power (1000 W) and frequency (2450 MHz) on
physicochemical properties, phytochemical constituents, antioxidant potential and microbial counts
of lemon cordial stored at refrigerated temperature (4 £ 2 °C). The mentioned parameters were
analyzed after an interval of 30-90 days. Statistical findings illustrated a highly significant (p < 0.01)
impact of microwave treatment and storage on titratable acidity, pH, total soluble solids, total
phenolic contents, total flavonoids contents, antioxidant potential and total plate count. Sample mi-
crowaved for 120 s showed the highest pH values (2.45 £ 0.050), total soluble solids (56.68 + 2.612 °B)
and antioxidant activity (1212.03 £ 716.5 pg—equivalent of ascorbic acid per 100 mL of cordial);
meanwhile, it exhibited the lowest total plate counts (1.75 £ 0.144 Log 10 CFU/mL). Therefore,
microwaving can be suggested as a suitable alternate to traditional pasteurization techniques as well
as to chemical preservatives.

Keywords: lemon cordial; microwave; preservation; green processing; antioxidant potential

1. Introduction

Prevention of various diseases is possible by including fruits in our diet as they are
an excellent source of minerals, vitamins, antioxidant components and other phytocon-
stituents [1]. Generation of free radicals, which are triggering factors for several acute
and chronic diseases, can be prohibited by the antioxidant potential of the fruits, thus
promoting a healthier life [2]. Elevated levels of plasma carotenoids and vitamin C are
associated with the increased intake of fruits, which ultimately reduces the probability of
diabetes, cardiovascular diseases, neurological disorders and cancer [34].

Citrus limon (L.) Burm. f., most commonly known as lemon, a yellow-colored edible
fruit, is the third most widely produced representative of the Rutaceae family and hybrid
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of genus Citrus—just after orange and mandarin—worldwide [5]. Citrus limon can either be
consumed as a fresh fruit, as beverage, as cooking material or for preservation purposes.
Because of its tart flavor, it is most often used in manufacturing of beverages, desserts, ice
creams, salad dressings, jams, jellies, pickles and in several kinds of vegetable and meat
dishes [6,7].

Citrus limon is also a good supplier of a variety of phytoconstituents, including pheno-
lics. Among these phenolics, eriocitrin, coumarins, flavonoids and limonoid glycosides are
present in adequate concentrations [8]. Consumption of Citrus limon has shown reduction
in the risk of several types of cancers, along with cardiovascular disorders [7]. Organic
compounds present in lemons are effective against asthma and can serve as antidepressants
and stress relievers. Moreover, these also stimulate digestion and are effective in case of
flu, fever, boils and in several kinds of ulcers, particularly mouth ulcers [9]. In the past,
when vitamin C was not discovered, the juice extracted from Citrus limon fruit was used for
treatment of scurvy [10]. Additionally, the juice has also served as traditional medicine for
the cure of hypertension, common cold, sore throat, chest pain and rheumatism [11].

Cordial can be defined as sparkling, clear, or syrup concentrated fruit juice formed
by the complete removal of pulp and other suspended particles, and needs to be diluted
upon consumption [12] (Yusof and Chiong). Citrus limon is also cultivated in Pakistan and
it occupies 6th position in terms of area and production [13]. Due to more production and
less utilization, the fruit obtain wasted. In order to overcome the losses, there is a need
to convert them to some value-added products, such as squashes and cordials. The study
focused on making cordial from lemons in order to meet the rising consumer demands
regarding new value-added products.

During the last couple of years, consumers’ interest throughout the entire world has
been changed regarding quality and safety of the food product [14]. They demand mini-
mally processed products that are not only healthy, but are also processed by means of safe
preservation techniques, so that their quality and nutritional profile are not affected [15].

In general, fruit juices are preserved by heating them near the boiling point of water,
or slightly below it, for a set amount of time, to kill or inactivate deterioration-causing
microbes and enzymes. [16]. Although traditional heating methods ensure the safety and
stability of the juices, they greatly affect the phytochemical profiles of the fruit juices, along
with causing a decline in the physical and chemical properties, the nutritional profiling
and the volatile compounds [14,17]. Similarly, chemical preservatives are other means to
extend the shelf life of products, but these chemicals also produce several health complica-
tions in humans, particularly cancer, neurological dysfunction, asthma, hyperactivity and
hypersensitivity, dermatitis, allergies and gastrointestinal and respiratory disorders [18-20].

Due to disadvantages of thermal techniques and chemical preservatives, several novel
non-thermal techniques have been in practice to enhance the shelf stability of processed
products [21,22]. Microwaving, a novel technique, utilizes electromagnetic waves that heat
the product by means of molecular interaction, as generated by the electromagnetic field.
In this technique, there is a direct interaction of food particles with that of the incoming
waves. As a result of this direct contact, penetration of heat is easier within the food, and
thus volumetric heating takes place [23,24]. Microwaving also preserves the nutritional
contents of products to a greater extent, such as the retention of vitamins, thus enhancing
the quality and safety of products through the inactivation of microbes and enzymes within
a short duration [25,26].

Keeping the above benefits in mind, the present research aimed to develop lemon
cordial and to investigate the effect of the microwave technique for preserving lemon
cordial’s physicochemical properties and microbial counts, and to determine the effect of
microwave treatment on the shelf stability of lemon cordial at refrigerated temperature for
a period of 90 days.
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2. Materials and Methods
2.1. Collection of Fruit

Lemons were purchased from a local farm and sorted to separate damaged and
diseased fruits from healthy fruit. Subsequently, the fruits were washed using tap water to
remove dirt and dust.

2.2. Chemicals and Reagents

All the chemicals used in analysis were of analytical grade and purchased from Sigma-
Aldrich (Gillingham, UK), available in the local market.

2.3. Preparation of Lemon Cordial

Extraction of the juice from the fresh fruit was carried out using a manual juice
extractor. After extraction, the juice was filtered through 4 folds of muslin cloth to remove
seeds and juice vesicles to obtain clear filtrate. The remaining ingredients, such as sugar,
water, citric acid and lemon-yellow color, were added to the cleared juice (Table 1) with
constant stirring to obtain lemon cordial (45 °brix), following the procedure of [27], with
some modifications.

Table 1. Formulation of lemon cordial.

Ingredients Quantity
Clarified lemon juice 1L
Sugar 1.5Kg
Water 500 ml
Citric acid 1g/1L
Carboxymethyl cellulose 1g/1L
Lemon-yellow coloring 01g/1L

2.4. Microwave Processing of Lemon Cordial

The cordial was subjected to microwave treatment with a domestic microwave pro-
cessor (Model No: DW- 131A operating at 1000 W power and frequency of 2450 MHz)
for 60, 90 and 120 s. Microwaving of cordial samples (200 mL) was carried out in ster-
ilized beakers (500 mL). Immediately after pasteurization, the product was transferred
and packed in presterilized 250 mL plastic bottles that were immersed in ice cold water to
prevent shrinkage of the bottles and to cool the product instantly, as the temperature after
pasteurization for 120 s reaches 90 & 2 °C. The treated lemon cordial was later stored at
refrigerated temperature (4 &+ 2 °C) for further study (Figure 1).

2.5. Chemical Preservative

In treatment, Ty, potassium metabisulphite (KMS) was used as preservative to com-
pare the cordial with other treatments, as well as with the control (Ty_), without adding
chemical preservatives and microwave application. The treatment plan is depicted in
(Table 2).

Table 2. Treatment plan of lemon cordial.

Microwave Time -
Treatments (Seconds)/Preservatives Storage Conditions

Toy 0.1% (KMS) Temperature (4 + 2 °C)
To— - Temperature (4 + 2 °C)
T; 60 s Temperature (4 + 2 °C)
Ts 90s Temperature (4 &+ 2 °C)
T3 120 s Temperature (4 + 2 °C)
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Figure 1. Processing of lemon cordial (1st row); preservation of lemon cordial at refrigerated temper-
ature (4 £ 2 °C) (2nd row); different analysis of lemon cordial (3rd row).

2.6. Physicochemical Analysis

Acidity was accessed through procedure no. 942.15, as mentioned in [28]. pH was
evaluated by using a digital pH meter (AD 1040 Benchtop meter, Adwa, Hungary), as per
method no. 981.12 of [28]. Degree brix were measured using a hand refractometer (Atago,
Japan), according to method no 932.12, as explained by [28].

2.7. Determination of Total Phenolic Contents

Total phenolics of lemon cordial were accessed through a modified Folin—Ciocalteu
reagent method, as explained by [29]. A diluted lemon cordial sample (0.5 mL, or 500 uL)
was used for analysis and absorbance was measured by spectrophotometer at 760 nm.
Gallic acid (in ethanol) was taken as standard, and the findings of total phenolic contents
were indicated as mg of gallic acid equivalents (GAE) per 100 mL of lemon cordial.

2.8. Determination of Total Flavonoids Contents

The total flavonoids of the lemon cordial were accessed by using aluminum chloride
reagent through procedure described by [30]. Diluted lemon cordial samples (0.25 mL
or 250 pL) were used for analysis and absorbance was measured by spectrophotometer
at 510 nm wavelength. Catechin (in ethanol) was taken as standard, and the findings of
total flavonoids were demonstrated as mg of (+)—catechin equivalent (CE) per 100 mL of
lemon cordial.

2.9. Determination of Total Antioxidant Activity

Total antioxidant activity of all the diluted lemon cordial samples was accessed through
the procedure described by [31]. Diluted lemon cordial samples (0.4 mL or 400 uL) were
used for analysis and absorbance was probed through a spectrophotometer at 695 nm
wavelength. Standard calibration curves were made by using ascorbic acid. Findings
of total antioxidant activity were demonstrated as pg ascorbic acid equivalent (AAE)
per mL sample.
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2.10. Microbiological Analysis

Total plate count of all lemon cordial samples was accessed through the [32] standard
method of the Bacteriological Analytical Manual [33]. A measure of 1 mL of lemon cordial
sample was poured in presterilized test tubes with the aid of sterilized pipette. To these
test tubes, 9 mL of normal saline solution was added to make dilutions. Serial dilutions
were made by transferring 1 mL of previously generated dilution to a test tube, containing
9 mL of normal saline as diluent. The prepared dilutions were shaken well to prevent the
settling of suspended materials. Subsequently, the prepared dilutions were sprinkled upon
the control plates for each series of samples. After the media and poured dilutions had
completely solidified, the Petri dishes were inverted and placed in an incubator at 35 °C
for 48 h. Plates with colonies between 30 and 300 were compounded with dilution factor
based on the number of colonies that appeared on the plates. The arithmetic average was
calculated as the total plate count per mL.

2.11. Statistical Analysis

Findings of each parameter were statistically analyzed through statistics software.
ANOVA technique and Tukey’s HSD test were employed to determine difference among
means by having the level of significance at 5% confidence interval, according to the method
illustrated by [34].

3. Results and Discussion

The impact of microwave treatments and storage on titratable acidity of lemon cordial
retained at refrigerated temperature is illustrated in (Table 3). Microwaving produced a
highly significant impact (p < 0.01) on titratable acidity, leading to a gradual reduction in the
acidity of lemon cordial. The highest value for acidity was exhibited by T_, proclaiming
a mean value of 0.38 &= 0.038%, while the lowest was observed in T3, exhibiting a mean
value of 0.32 £ 0.045%. The observations are in conformance with those obtained by
Pandiselvam et al. [35] and Bozkir et al. [36], who reported the same decreasing tendency in
the acidity after the application of microwave treatment on kalparasa and apple juice. They
articulated that increased time and temperature during microwave treatment resulted in
destruction of fermenting microbes, due to which the production of organic acids declines.
Considering the impact of storage on the titratable acidity, it was noticed that titratable
acidity increased gradually throughout the storage duration. The highest mean value of
0.41 £ 0.014% was observed at 90 days, while the lowest mean value of 0.29 & 0.024% was
examined at 0 days. These results are supported by the findings of Pandiselvam et al. [35],
who reported an increase in titratable acidity of microwave-treated kalparasa (coconut
inflorescence sap) upon refrigeration storage and claimed that an increased production
of organic acids during anaerobic fermentation is responsible for an increase in acidity.
Similarly, Palanisamy et al. [37] reported that increase in the acidity of noni fruit juice
blended squash during storage was caused by the soluble proteins hydrolyzing to free
amino acids, which ultimately resulted in an interlinkage of citric acid in squash. An
increase in acidity during storage in mixed fruit squash and microwaved apple puree was
also communicated by Jothi et al. [38] and Picouet et al. [39], respectively.

Microwave treatment and storage duration both produced a highly significant impact
(p < 0.01) upon the pH of the lemon cordial (Table 4). Gradual increase in the pH of the
lemon cordial upon microwaving was observed. The highest pH value was expressed by
T3, with a mean value of 2.45 & 0.050, while the lowest was observed in T_, exhibiting a
mean value of 2.38 & 0.046. A similar trend for pH was reported by Pandiselvam et al. [35]
in microwave-treated kalparasa, who documented that reduction in the contents of organic
acids of kalparasa, as result of heating, increased the pH. Picouet et al. [39] articulated that
the pH of apple puree, when subjected to microwaving for 35 s at 652 W power, slightly
enhanced from 3.2 to 3.3. Considering the impact of storage on the pH, it was noticed
that it decreased throughout the storage duration. The highest mean value of 2.46 & 0.027
was noticed at start of study while the lowest mean value of 2.35 4 0.024 was observed
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at 90 days. The observation of the conducted study correlates with those proposed by
Palanisamy et al. [37], Yadav et al. [40] and Jothi et al. [38]. They claimed that the pH of
noni fruit juice blended squash, guava mango RTS and squash and mixed fruit squash
made from banana, papaya and carrot juice decreased during storage, which was attributed
to the accumulation of acidic compounds—particularly lactic acid and acetic acid—because
of the activity of microbes during natural fermentation process.

Table 3. Titratable acidity (%) of lemon cordial.

Storage (Days)

Treatments Means

0 30 60 90
To_ 0.33 ©8 + 0.007 0.35 ¢f 4+ 0.001 0.39 b¢ + 0.004 