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1. Introduction

Over the years, naturally occurring CO2 has been used in many enhanced oil recovery
(EOR) projects in the United States. There is opportunity to supplement and gradually
replace scarce and regionally limited natural CO2 sources with anthropogenic sources,
giving incentive for operators to become involved in the storage of anthropogenic CO2
within partially depleted reservoirs. Aside from the incremental produced oil revenues,
incentives include a wider availability of anthropogenic sources in regions distant from
natural CO2 sources, and a reduction in emissions to meet regulatory requirements, tax
incentives, and favorable public relations. The US Department of Energy through its Car-
bon Storage Program has sponsored several Regional Carbon Sequestration Partnerships
(RCSPs) that have conducted field demonstrations for both EOR and saline aquifer storage.
This Special Issue highlights some of the observations and lessons learned through one of
these RCSP programs, that of the Southwest Regional Partnership on Carbon Sequestration
(SWP). This Special Issue includes scientific output from the RCSP program on key topics
related to CCUS including reservoir characterization, simulation, monitoring, verification
and accounting (MVA), and risk assessment.

This Special Issue reports some of the work performed by the Southwest Regional
Partnership on Carbon Sequestration (SWP) as part of the United States Department of
Energy (DOE) National Energy Technology Laboratory (NETL) Regional Carbon Sequestra-
tion Partnerships (RCSPs) Phase III demonstration project. The ultimate goal of the RCSPs
was to support the development of regional infrastructure for carbon capture and storage
(CCS). The program had three phases: characterization (Phase I), validation (Phase II), and
development (Phase III). The primary focus of Phase III was on large-scale field laboratories
in saline formations and oil and gas fields, with a target of injecting at least 1 million metric
tons (MMT) of CO2 per project. For the SWP, the Phase III project’s objective has been
to characterize and evaluate an active commercial-scale carbon capture, utilization and
storage (CCUS) operation, and demonstrate the associated effective site characterization,
MVA, and risk assessment techniques. In sum, this project contributes to the development
of future commercial CCUS projects in the United States by demonstrating all aspects
of an actual commercial CCUS field operation, including effective reservoir engineering,
characterization, monitoring, and simulation technologies.

In our introduction, we briefly describe Phase I and II findings, set the stage for our
Phase III project, and summarize the papers included in this Special Issue.

2. Phase Summary

2.1. Phase I: Summary

The SWP commenced work on Phase I in 2003 [1]. The main objective of the SWP Phase
I project was to evaluate and demonstrate the means for achieving an 18% reduction in
carbon intensity by 2012. Many other goals were accomplished on the way to this objective,
including (1) analysis of CO2 storage options in the region, including characterization of
storage capacities and transportation options, (2) analysis and summary of CO2 sources,
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(3) analysis and summary of CO2 separation and capture technologies employed in the
region, (4) evaluation and ranking of the most appropriate sequestration technologies
for capture and storage of CO2 in the Southwest region, (5) dissemination of existing
regulatory/permitting requirements, and (6) assessing and initiating public knowledge
and acceptance of possible sequestration approaches.

Results of the Southwest Partnership’s Phase I evaluation suggested that the most con-
venient and practical “first opportunities” for sequestration would lie along existing CO2
transportation networks in the region. From this study, six Phase II validation tests in the
region were developed, with a portfolio that included four geologic pilot tests distributed
among Utah, New Mexico, and Texas, along with a regional terrestrial sequestration pilot
program focused on improved terrestrial monitoring, verification, and accounting (MVA)
methods and reporting approaches specific for the Southwest region. Phase II also included
a local-scale terrestrial sequestration pilot study using desalinated water from one of the
pilot tests to restore.

2.2. Phase II Validation: Summary

The SWP carried out five field pilot tests in its Phase II Carbon Sequestration Demon-
stration effort [2]. Field-testing demonstrated the efficacy of proposed sequestration tech-
nologies to reduce or offset greenhouse gas emissions in the region. Risk MVA protocols
and effective outreach and communication were additional critical goals of these field
validation tests. The program included geologic pilot tests located in Utah, New Mexico,
and Texas, and a region-wide terrestrial analysis. Each geologic sequestration test site was
planned to be injected with a minimum of 75,000 tons/year CO2, with a minimum injection
duration of one year. These medium-scale validation tests were sited in sinks that have the
capacity for possible larger-scale sequestration operations in the future. Tests demonstrated
a broad variety of carbon sink targets and multiple value-added benefits, including the
testing of enhanced oil recovery and sequestration, enhanced coalbed methane production,
and a geologic sequestration test combined with a local terrestrial sequestration pilot.

2.3. Phase III Demonstration: Summary

In Phase III, the SWP’s work was more closely focused on a single field laboratory
sited in the Farnsworth Unit (FWU) Field, a mature active oilfield in Ochiltree County in the
far northeastern Texas panhandle. The site operator began injection of anthropogenic CO2
in the field in late 2010, starting with several five-spot well patterns with the intent to add
several more each year, up to a total of 25. Planned net CO2 injection at Farnsworth was 10
MMscf/D (million standard cubic feet per day), ~190,000 tons/year, not including recycled
CO2. The actual delivered volumes averaged slightly less, ~9.3 to 9.4 MMscf/D. The SWP
began working at this site in 2013, establishing baselines for surface and subsurface metrics,
drilling, logging, and coring three science wells, collecting a variety of 2D and 3D seismic
data, and devising long-term monitoring protocols. The field operator allowed access to a
wealth of legacy data and the SWP was able to evaluate surface and subsurface areas of the
field with varying degrees of CO2 exposure, from none to 22 months at project inception.
The access to data and continued monitoring efforts have been maintained for almost nine
years to date of this publication, providing an unprecedented look at an active commercial
CCUS project. The ability to compare regions with and without CO2 exposure provides an
invaluable opportunity for the calibration of tools and techniques.

The injection target at FWU is the informally named Morrow B sandstone, a regionally
important rock unit that has produced more than 100 million barrels of oil and 500 billion
cubic feet of gas [3]. Several regional and local studies [3–6] provided excellent baseline
information; however, few have been specifically concerned with using the sandstone as a
target of CO2-EOR or storage and none have had the rich and deep dataset afforded by this
project.
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3. Summary of Publications

This Special Issue presents work accomplished as part of the Phase III of the SWP
project at the FWU field site. The work presented can, in some cases, be used as a guideline
for what would need to be carried out for any successful CCUS project. Selected publi-
cations include those on site characterization, simulation, monitoring, verification, and
accounting (MVA), and risk assessment. The project utilized the FWU as the study site and,
unless noted, all papers relate to this area. The Special Issue also received an additional
publication presenting aspects of CO2 storage in Poland which was included as relevant.

3.1. Characterization

Cather et al. [7] present a geological description of the rocks comprising the reservoir
that is a target for both oil production and CO2 storage, as well as the overlying units that
make up the primary and secondary seals. Core descriptions and petrographic analyses
were used to determine depositional setting, general lithofacies, and a diagenetic sequence
for reservoir and caprock at FWU. This paper synthesizes multiple studies conducted to
determine the FWU capacity and suitability for long-term carbon storage. A rich dataset
including core data and core descriptions, petrographic analyses, petrophysical and ge-
omechanical data from the core, legacy logs from 149 wells, and a very complete suite of
modern logs for three characterization wells, as well 2D and 3D seismic survey data, were
all used in this effort.

Van Wijk et al. [8] report on the analyses of natural, geologic CO2 migration paths in
and near the FWU on the western flank of the Anadarko Basin. The paper interprets 2D
and 3D seismic reflection datasets from the study site and compares seismic interpretations
with results from a tracer study. The authors conclude that CO2 escape in Farnsworth
Field via geologic pathways such as tectonic faults is unlikely. Analysis of 2D legacy and
3D seismic datasets do reveal depth and thickness variations of the Morrow B reservoir
rock; the interpretation is that they are related to erosional events and the creation of
paleotopographic features that underlie the Morrow sandstone and are unlikely to be faults
or fractures within the reservoir.

To assess the multiscale sealing integrity of the caprock system that overlies the Mor-
row B sandstone reservoir, Farnsworth Unit (FWU), Texas, USA, Trujillo et al. [9] combine
pore-to-core observations, laboratory testing, well logging results, and noble gas analy-
sis. A cluster analysis using many parameters defined lithologic classes within the upper
Morrow shale and Thirteen Finger limestone caprock units, and geomechanical properties
were calculated for each class. Several lines of evidence indicate that the overlying shale
and limestone seal rocks have excellent sealing capacity with both strength and elasticity.
The Morrow B sands are weaker than the overlying lithologies and any fracture initiation
around the injection well would not be expected to propagate into the overlying sealing
units. Noble gas analysis from fresh core shows that the caprock lithologies show no degree
of leakage from historical water and CO2 flooding in the FWU, whereas the Morrow B
sandstone shows an impact from historical EOR activities.

Asante et al. [10] present probabilistic methods to estimate the quantity of CO2 that
can be stored in a mature oil reservoir and analyze the uncertainties associated with the
estimation. The results of the estimation of the CO2 storage capacity of the reservoir are
presented with both an expectation curve and log probability plot. From the probabilistic
output generated by both techniques, at least 7.68 MMtons can be stored, 17.79 MMtons of
CO2 can probably be stored, and it may be possible to store as much as 40.58 MMtons of
CO2 in the Morrow B reservoir. From the relative impact plot, the net thickness, storage
efficiency factor, and area contributed about 95% to the total uncertainty for both techniques.
Any further estimation of the storage capacity of the Morrow B reservoir should focus on
reducing the uncertainty of these parameters.
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3.2. Simulation

Relative permeability curves assumed for simulations can introduce a large source of
uncertainty, significantly impacting forecasts of all aspects of the reservoir simulation, from
CO2 trapping efficiency and phase behavior to volumes of oil, water, and gas produced.
Moodie et al. [11] evaluate the impacts on CO2-EOR model forecasts of a wide range
of relevant relative permeability curves, from the near linear to highly curved. Small
variations in the shape of the relative permeability curve have a significant impact on
the model forecasts; thus, selecting an appropriate relative permeability curve for the
reservoir of interest is critical for CO2-EOR model design. If measured laboratory relative
permeability data are not available or limited for the study domain, the relative permeability
curve should be considered a significant source of model uncertainty and accounted for as
part of the simulation effort.

Sun et al. [12] present a hybrid numerical machine-learning workflow to solve various
optimization problems. By coupling the expert machine-learning proxies with a global op-
timizer, the workflow successfully solves the history-matching and CO2-water-alternative-
gas (WAG) design problem with low computational overheads. The history-matching work
considers the heterogeneities of multiphase relative characteristics, and the CO2-WAG
injection design takes multiple techno-economic objective functions into account. This
work trained an expert response surface, a support vector machine, and a multilayer neural
network as proxy models to effectively learn the high dimensional nonlinear data struc-
ture. The selection of the machine-learning algorithm may comprehensively consider the
dimension of the problem and the demand of error margin. The RSM, SVM, and MLNN
are suitable for different types of datasets and a wise choice of method could essentially
enhance the prediction performance of the proxy model. The Pareto front optimum protocol
provides an alternative way to address multiobjective optimization problems.

Kutsienyo et al. [13] assess the fate and impact of CO2 injected into the Morrow
B sandstone in the Farnsworth Unit (FWU) through numerical non-isothermal reactive
transport modeling, and compare the performance of three major reactive solute transport
simulators, TOUGHREACT, STOMP-EOR, and GEM, under the same input conditions.
Model results show several broad similarities, such as the pattern of reservoir cooling
caused by the injected fluids, a large initial pH drop followed by gradual pH neutralization,
the long-term persistence of an immiscible CO2 gas phase, the continuous dissolution
of calcite, very small decreases in porosity, and the increasing importance over time of
carbonate mineral CO2 sequestration. The results of the study show the usefulness of
numerical simulations in identifying broad patterns of behavior associated with CO2
injection, but also point to significant uncertainties in the numerical values of many model
output parameters.

3.3. MVA

Will et al. [14] present the current status of time-lapse seismic integration at the
FWU. The efficacy of seismic time-lapse monitoring depends on a number of key factors
which vary widely from one application to another. Most important among these are the
thermophysical properties of the original fluid in place and the displacing fluid, followed
by the petrophysical properties of the rock matrix, which together determine the effective
elastic properties of the rock fluid system. They present a systematic analysis of fluid
thermodynamics and the resulting thermophysical properties, petrophysics and rock frame
elastic properties, and elastic property modeling through fluid substitution using data
collected at FWU. The resulting fluid/rock physics models are applied to the output
from the calibrated FWU compositional reservoir simulation model to forward model the
time-lapse seismic response. Modeled results are compared with field time-lapse seismic
measurements and strategies for numerical model feedback/updates are discussed.

Morgan et al. [15] analyze greenhouse gas (GHG) emissions related to FWU’s EOR
operations through a gate-to-gate life cycle assessment (LCA). The analysis yielded a net
negative (positive storage) of 1.31 × 106 tonnes of CO2 equivalent, representing 79% of
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purchased CO2. An optimized 18-year forecasted analysis estimated 86% storage of the
forecasted 3.21 × 106 tonnes of purchased CO2 with an equivalent 2.90 × 106 tonnes of
crude oil produced by 2038. The work presented provides a potential roadmap to others for
performing these assessments and, in this case, indicates that the integration of CO2-EOR
and carbon storage is a valid approach to minimizing net GHG emissions.

3.4. Risk

Lee et al. [16] summarize the risk assessment and management workflow developed
and used at the FWU. The SWP employed quantitative methods of risk analysis including
the Response Surface Method (RSM), Polynomial Chaos Expansion (PCE), and National
Risk Assessment Partnership (NRAP) toolset. Tools and workflows used provided useful
methods of risk quantification. However, simulation processes (especially geological ones)
inherently contain aleatory uncertainty. Thus, it would be most helpful to correctly define
the ranges and distribution of uncertain parameters to significantly reduce the uncertainty.

Wei at al. [17] present a simplified model used to screen representative cases from
many mineral reactive surface area (RSA) combinations to reduce computational cost. Three
selected cases with low, mid, and high RSA values were used for the FWU model. Results
suggest that the impact of RSA values on CO2 mineral trapping is more complex than it is
on individual reactions. The impact of mineral RSA values on CO2 mineral trapping, on
the whole, is more complex than it is on individual geochemical reactions. Additionally, the
presence of hydrocarbons affects geochemical reactions and can lead to net CO2 mineral
trapping, whereas mineral dissolution is forecasted when hydrocarbons are removed from
the system.

Xiao et al. [18] present a quantified risk assessment case study of the FWU that
identifies water chemistry indicators for early leak detection and includes the use of
response surface methodology (RSM) to quantify potential risks of CO2 and brine leakage
to the overlying USDW quality. Salient findings include: (1) with a leakage flux up to
0.4% of injected CO2 and brine from a conceptual leaky well with failure, it is likely that
the impacted area is limited to within 50 m from the well after 200 years; (2) toxic trace
metals may be considered an insignificant long-term concern because of clay adsorption; (3)
site-specific, no-impact thresholds could be a preferable reference for groundwater quality
evaluations; and (4) pH is suggested as a likely geochemical indicator for early detection of
a leakage, due to its easy testing and sensitivity aspects.

3.5. Other

Slota-Valim et al. [19] provide the first study of a Polish oil reservoir as a potential
candidate for CCUS. Capacity and integrity were examined using numerical methods that
combined geomechanical and reservoir fluid flow modelling with a standard two-way
coupling procedure. The long-term simulations resulted in a comprehensive assessment
of the total amount of CO2 leakage as a function of time and the leaked CO2 distribution
within the caprock.

4. Conclusions

The storage of CO2 as an incidental byproduct of EOR projects has been happening
in the U.S. for almost fifty years with related research going back about a century. The
first CO2-EOR projects used exclusively anthropogenic CO2, but as demand far outpaced
anthropogenic sources in the Permian Basin, natural CO2 became the dominant source
of CO2. With increasingly urgent demands to reduce GHG emissions, as well as new
incentives offered by tax credits and incremental oil recovery, there is renewed interest
in using depleted reservoirs for carbon storage. Carbon storage can be a bridge between
a carbon-based energy economy and a renewable low-carbon energy economy. The ex-
perience and data collected from EOR projects are vital to the further development of a
viable carbon storage industry. The body of work presented in this Special Issue provides a
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real-world example of the techniques and methodologies used to develop and execute a
successful CCUS project.
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Abstract: Farnsworth Field Unit (FWU), a mature oilfield currently undergoing CO2-enhanced oil
recovery (EOR) in the northeastern Texas panhandle, is the study area for an extensive project under-
taken by the Southwest Regional Partnership on Carbon Sequestration (SWP). SWP is characterizing
the field and monitoring and modeling injection and fluid flow processes with the intent of verifying
storage of CO2 in a timeframe of 100–1000 years. Collection of a large set of data including logs, core,
and 3D geophysical data has allowed us to build a detailed reservoir model that is well-grounded
in observations from the field. This paper presents a geological description of the rocks comprising
the reservoir that is a target for both oil production and CO2 storage, as well as the overlying units
that make up the primary and secondary seals. Core descriptions and petrographic analyses were
used to determine depositional setting, general lithofacies, and a diagenetic sequence for reservoir
and caprock at FWU. The reservoir is in the Pennsylvanian-aged Morrow B sandstone, an incised
valley fluvial deposit that is encased within marine shales. The Morrow B exhibits several lithofa-
cies with distinct appearance as well as petrophysical characteristics. The lithofacies are typical of
incised valley fluvial sequences and vary from a relatively coarse conglomerate base to an upper fine
sandstone that grades into the overlying marine-dominated shales and mudstone/limestone cyclical
sequences of the Thirteen Finger limestone. Observations ranging from field scale (seismic surveys,
well logs) to microscopic (mercury porosimetry, petrographic microscopy, microprobe and isotope
data) provide a rich set of data on which we have built our geological and reservoir models.

Keywords: morrow; Farnsworth; Anadarko; incised valley

1. Introduction

A detailed understanding of reservoir and caprock lithologies is important for any
CO2-EOR project and is crucial for carbon storage projects. Characterization entails de-
veloping knowledge of the reservoir from the pore to the field scale. Such knowledge
must include understanding of the various lithofacies (how they were formed and what
diagenetic processes have they undergone), understanding of depositional systems that
dictate reservoir architecture and heterogeneity, and an understanding of the relationships
between rock composition and resultant geomechanical and flow properties that feed into
the reservoir models used for simulation and prediction of reservoir behavior.

Energies 2021, 14, 1057. https://doi.org/10.3390/en14041057 https://www.mdpi.com/journal/energies9
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Most reservoir studies of Morrow reservoirs in the Anadarko basin have focused on
sandstones because of their importance in conventional oil production. Although this study
examines the sandstones within the field, an important feature of our work is detailed
characterization of both the overlying and underlying confining layers, as these are critical
to containment of injected CO2.

The significance of this paper is twofold: we present a synthesis of extensive work by
several researchers that has not previously been published, and we provide a brief view of
some of the rich dataset that we have collected for the project, which will be archived with
public repositories at the conclusion of the project.

2. Materials and Methods

A variety of datasets were used for the work presented here. Cores from several wells,
including characterization wells drilled specifically for this project, were described and
analyzed. Cored intervals from five wells on the western side of the field (8-5, 9-8, 13-10,
13-14, and 13-10A) and three from the eastern side of the field (32-2, 32-6, and 32-8), were
described (Figure 1). Wells 13-10A, 13-14, and 32-8 were drilled as characterization wells
for this study, and extensive datasets were collected from them. No destructive testing
was allowed on the legacy cores, so observations were limited to visual inspection only.
Limited core was available for each of the legacy wells and almost none from non-reservoir
intervals. Approximately 250 ft of core was obtained from each of the new characterization
wells. Cored intervals include the entire Morrow B reservoir interval, as well as Morrow
shale that underlies and overlies the Morrow B, the B1 sandstone interval, and the Thirteen
Finger limestone that makes up the remainder of the primary seal.

Figure 1. Map of Farnsworth Field Unit (FWU), Ochiltree County, Texas, showing locations of wells
and various data types collected from wells. FWU 13-10A, 13-14, and 32-8 were drilled for this
project.

The core descriptions were the basis for formation identification, development of
detailed stratigraphic columns, facies classification, and interpretation of depositional envi-
ronment and sequence stratigraphy. Samples from the three characterization wells were
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used for measurement of porosity, permeability, geomechanical properties, petrographic
analysis, X-ray diffraction (XRD), stable isotope and electron microprobe studies for charac-
terization of rock composition, textural relationships, diagenetic alteration, and studies of
pore structure and networks. Well logs including borehole imaging logs were run in char-
acterization wells to aid in interpretation of features such as fractures, lithology changes,
and orientation for interpretation of bedding and sediment flow direction. Samples were
also taken for U–Pb and 40Ar/39Ar dating of zircon and muscovite to understand regional
sediment routing and provide new constraints for the age of the Morrow B. Additional
data included a small set of thin sections and core plug porosity and permeability data
from older wells in the field.

Formation-top data and wire-line logs wells in a 95 mile2 area around FWU were
made available from the field operator. An advanced suite of logs for the three character-
ization wells was also available. Formation top-picks in legacy wells were checked and
standardized with respect to the newly-acquired advanced logs, and all well data were
compiled into Schlumberger’s Petrel software program. Correlation of formation tops
allowed construction of formation surfaces and thickness maps. Combining well and log
data with 3D seismic data for FWU allowed creation of a detailed and more accurate model
of this reservoir.

3. Results and Discussion

The processes used during this project are now used as a blueprint for other carbon
sequestration characterization efforts that have been initiated elsewhere within the western
USA. Results of the work include detailed descriptions of cores and thin sections, field maps,
and cross-sections that have been used to establish a robust and increasingly sophisticated
geological model for the field [1]

3.1. Geologic Setting
3.1.1. Regional Stratigraphic Framework

The Farnsworth Field Unit (FWU) is currently the site of a large-scale carbon diox-
ide (CO2) storage and enhanced oil recovery (EOR) project. The field is located in the
northwestern part of the Texas panhandle in Ochiltree County, near the town of Perryton.
The FWU is situated within the northwestern shelf of the Anadarko basin and is one of
many reservoirs that produce from a Pennsylvanian sequence of alternating mudstone and
sandstone intervals [2]. Production at FWU is from the operationally-named Morrow B
sandstone—the uppermost sandstone encountered below the Thirteen Finger limestone
(Figure 2). The Morrow B sandstone has been previously interpreted to be Morrowan in
age-based lithostratigraphic correlation and biostratigraphy of overlying units [3]. Anal-
ysis of fusulinids and references therein] and conodonts [4] recovered from the Thirteen
Finger limestone in southeast Colorado and Kansas suggests an Atokan age that provides
a minimum biostratigraphic constraint for the Morrow B. However, Hollingworth et al. [5]
report a new U–Pb detrital zircon maximum depositional age of 310.9 ± 4.9 Ma, suggesting
that the age of the Morrow B is closer to the Atokan–Desmoinesian boundary. This also has
implications for the age of the primary caprock intervals at FWU, the upper Morrow shale,
previously interpreted as Morrowan in age, and the Thirteen Finger limestone, previously
interpreted as Atokan in age [3]. Additional geochronologic and biostratigraphic work
is necessary to resolve the apparent conflict between depositional ages, but in this study,
we rely on the existing biostratigraphic framework [3,6]. The Thirteen Finger limestone
is an informal name for a series of approximately thirteen predominantly limestone in-
tervals that are intercalated with mudstone and coal layers. Similar Morrowan deposits
in the Anadarko basin throughout the Texas and Oklahoma panhandles, southeastern
Colorado, and western Kansas, have been studied extensively due to their importance
as oil-producing reservoirs [7–12]. Overlying rocks have received less attention but are a
potential target for unconventional production elsewhere in the basin [4]. Our interest in
the Thirteen Finger interval is primarily as a seal and caprock for CO2 storage.
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Figure 2. Stratigraphic column for Upper Morrow and Atokan intervals cored at FWU.

The Morrowan and Atokan intervals were deposited during the early to middle
Pennsylvanian [13]. During this time, the African, South American, and Antarctic cratons
were coalescing in the southern latitudes to form the Gondwanan land mass [14,15]. This
coalescence created a setting in which large ice sheets grew and receded on time scales
corresponding to orbital Milankovitch cycles [16,17]. The fluctuations in ice volume in
turn caused global sea levels to rise and fall, creating the rapid facies changes typical
of Pennsylvanian and Permian stratigraphy [8,9,18]. During this period, North America
was at equatorial latitudes and drifting northward, causing the area to transition from
humid to subhumid climates during the Pennsylvanian [19]. The collision of the North
American and Gondwanan, and/or activity on the western and southwestern Laurentian,
margins drove deformation across southwestern and central Laurentia [20–24]. Uplift
associated with this deformation shed substantial volumes of clastic sediment to adjacent
basins (e.g., [12,25–28]). The subsequent filling of these basins is responsible for most of the
overlying rock column at FWU. Overlying strata includes upper Pennsylvanian through
the middle Permian shales and limestones, with lesser amounts of dolomite, sandstone,
and evaporites [12,18].

3.1.2. Tectonic Setting

The FWU is located on the northwest shelf of the Anadarko basin (Figure 3). From
FWU, the basin plunges to the southeast where it reaches depths of over 40,000 ft (12,192 m)
adjacent to the Amarillo–Wichita Uplift [29]. The Anadarko basin formed as the result of
flexural loading of the lithosphere by the adjacent Amarillo–Wichita Uplift [23,29,30]. The
Amarillo–Wichita Uplift formed as the result of reactivation of basement faults in a region
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known as the Southern Oklahoma Aulacogen that are associated with the Neoproterozoic
breakup of the Rodinian supercontinent [29,31] However, the tectonic drivers for the uplift
on the Amarillo–Wichita are the subject of debate. Most interpretations attribute uplift
to either collision between Gondwana and Laurentia [20,23,32] or stress generated along
the southwest margin of Laurentia [21,24]. Positive features that might have influenced
deposition within the region include the Ancestral Front Range to the northwest [33],
the Central Kansas uplift to the northeast [34], and the Amarillo–Wichita uplift to the
south [35–37].

 

Figure 3. Anadarko basement structure map with major basin bounding faults and tectonic provinces
(from Gragg [38], modified from Davis and Northcutt [39]). Contour intervals are in thousands of
feet. Blue square is approximate location of FWU northwest of the deepest portions of the basin.

Anadarko basin subsidence and Amarillo–Wichita basement uplift were approxi-
mately synchronous, beginning in the Chesterian–Morrowan and continuing through
the Pennsylvanian and ending in the Wolfcampian [21]. Maximum rates of subsidence
occurred during Morrowan to Atokan times [12,29,35]. Tectonic activity slowed after the
Atokan and the region was quiescent by the end of the Pennsylvanian. The uplifts and
associated basins combined with the climate at time of deposition set the stage for the
stratigraphic sequence seen in FWU cores.

3.1.3. Depositional Environment

Interpretations of the depositional setting of the Morrow B have evolved over the
decades. Many previous workers have recognized upper Morrowan sandstones in the
northwestern Anadarko basin as fluvial deposits [2,7–10,36,40–46]. Early regional deposi-
tional and stratigraphic models were developed using core and electric log data from wells
across the Anadarko basin [3,40,41,47]. Swanson [40] proposed relatively synchronous
deposition of sands and muds as different parts of the same fluvial and deltaic systems.
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In contrast, Sonnenberg [41,48] proposed an incised valley-fill (IVF) model to describe
Morrowan sandstones. In the Sonnenberg IVF model, sand distribution is confined within
the walls of previously incised valleys. In this model, lateral changes from sandstone to
mudstone are interpreted to mark the edges of those paleovalleys. A major difference
between this and the earlier-proposed Swanson model is that in the Sonnenberg model,
the laterally equivalent mudstones that encase the reservoir sands were deposited under
marine conditions during the previous high-stand system tract (HST) and are older than
the IVF deposits. Our work at FWU refines the IVF depositional model, and provides a
sequence stratigraphic framework for the reservoir and seal (see below).

In contrast to the predominantly fluvial to estuarine environment proposed for the
Morrow sandstones and shales, the overlying Atokan Thirteen Finger limestone was
deposited in an estuarine to marginal marine environment representing several cycles
of transgression and regression during its deposition [48]. The main lithologies include
mudstone, interlayered with limestone (cementstone), and some coal [49].

3.2. Lithofacies
3.2.1. Log Identification

In FWU, the Morrow B reservoir is identified in logs by a characteristic blocky shape
created by low gamma ray (GR) values (Figure 2), or negative deviations in spontaneous po-
tential (SP) measurements, both associated with clean reservoir sand [2,3,45]. The Morrow
B reservoir is the first blocky, low-GR signature below the Thirteen Finger limestone [36]. If
a sand signature is present below the Morrow B it is termed the Morrow B1, and Morrow-D
if there is a third. The Morrow shale is those parts of the GR curve having consistently high
GR values immediately above and below the Morrow B reservoir (Figure 2). These interca-
lated sand and shale packages are all within the upper Morrow, an informal subdivision
used through many parts of the Anadarko basin [48].

The Thirteen Finger limestone has a distinctive wireline log signature showing 12–17
sharp fluctuations in the GR curve (Figure 2). Spikes of low gamma ray readings correspond
to limestone beds that give the unit its name, and the intervening GR highs are associated
with mudstone or shale beds. The base of the Thirteen Finger limestone is picked at the top
of the second low GR spike above the Morrow B reservoir. This corresponds to a coal bed at
the top that is a reliable regional stratigraphic marker for the top of the uppermost Morrow
shale. The top of the Thirteen Finger limestone is less uniformly designated, but for this
project was chosen using the same criteria as geologists from the industry partner [50]. The
top of the Thirteen Finger is picked from the GR curve at a prominent low GR spike, above
which are relatively high GR values, consistent for 5–15 ft (1.5–4.5 m), above which the
next decrease in GR is less dramatic, and finally above which are two prominent GR lows
associated with limestone beds of the lower Cherokee Group (Figure 2).

3.2.2. Core Description

Core descriptions are based on works of Gallagher [46] and Rose-Coss [49]. Gal-
lagher’s descriptions used observations of legacy cores (Figure 1) that were made available
for viewing, and core from well 13-10A, the first of three characterization wells drilled
during the project (Figure 1). Gallagher’s work focused strictly on the Morrow B and
described the four principal lithofacies encountered in core: fine-grained sandstone, coarse-
grained sandstone, and conglomerate. Rose-Coss [49] was only able to view photographs
of the legacy core, but had access to all three cores for wells drilled for this project, which
included not only the Morrow reservoir rock but portions of underlying Morrow shale, as
well as overlying Morrow sandstone, Morrow shale, Thirteen Finger, and Marmaton units.
Rose-Coss [49] described the entire cored interval of the Morrow sandstone, as well as the
overlying Morrow shale and Atokan Thirteen Finger caprock intervals, subdividing the
section into 10 different lithofacies based on composition, sedimentary structures, grain
size, and color (Tables 1–3). Miall’s 1985 classification [51] was used for the Morrow B
sandstone, and the classification of Lazar et al. [52] for mudstones in the overlying Morrow
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shale caprock. Detailed core descriptions and photographs are found in Gallagher [46] for
the reservoir intervals in legacy wells and well 13-10A, and Rose-Coss [49] for full core
descriptions of the three characterization wells: 13-10A, 13-14, and 32-8.

Figure 4 presents a generalized paleoenvironment reconstruction based on lithofacies
noted in cores for the Morrow B and B1 sandstone at FWU, along with typical examples of
each. Similar features and sequences of lithofacies were noted in all the cores examined,
with small variations in thicknesses, clast types, and sedimentary structures. The general
sequence of lithofacies for the Morrow noted in all FWU cores, from deeper to shallower, is
marine mudstone, channel lag conglomerate, fluvial coarse-grained sandstone, estuarine
fine-grained sandstone, and marine mudstone.

Figure 4. Generalized sequence of depositional environments and lithofacies seen in all Morrow B
and B1 cores. All core slabs in the image are approximately 10 cm wide. Conglomerate slab image is
approximately 22 cm in length.

Morrow Sandstone

The base of the Morrow B sandstone interval is an abrupt, irregular contact above
underlying Morrow shale. The lowest sandstone interval noted in many of the cores
is a highly-indurated calcite-cemented basal lag conglomerate that ranges in thickness
from 0.3–0.9 m. In most cores, the conglomerate is clast-supported with subrounded
clasts, primarily composed of quartzite and granitic rock fragments, as well as some
mudstone and siderite concretion clasts [52]. Maximum clast size is 5 cm; however, average
clast size is 1–2 cm. Well 13-10A contains ~15 cm of matrix-supported conglomerate
(paraconglomerate) approximately 20 cm above the contact between the Morrow shale and
the basal conglomerate (Figure 5). The conglomerate is made up of a lower coarse-grained
light gray sandstone matrix surrounding larger clasts, many elongate, that are typically
subrounded, 2-mm to 3-cm long, and consist of mudstone, sandstone, and pyritized rip-up
clasts. The matrix-supported conglomerate was not noted in the other cored wells. The
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basal conglomerate section in well 13-14 does not contain mudstone clasts and is finer-
grained than in the other two wells. Conglomerates tend to be highly-cemented with a
variety of carbonate cements, including calcite and ankerite.

Figure 5. (A) Lower part of Morrow B core from wells 13-10A, left, and 13-14, right, showing contact
with the underlying Morrow shale and the basal conglomerate grading up into coarse sandstone.
Core slabs are ~10 cm (4 inches) wide. One-foot intervals marked on cores; (B) sharp contact between
Morrow B sand and overlying upper Morrow shale in well 13-10A. There is approximately 11.5 m
(38 ft) of Morrow B reservoir sandstone between the upper and lower shale contacts in well 13-10A.

Basal conglomerates grade upwards into an overlying coarse-grained sandstone facies.
In all characterization cores there is a very thin (<2.5-cm thick) coal layer 15 to 20 cm
above the conglomerate section. The remainder of the Morrow B interval is composed of
brown to dark brown, moderately to poorly sorted, subrounded to subangular, very coarse
sands and fine gravels. The uppermost portion of the Morrow B sandstone is generally
finer-grained, ranging from fine to upper-medium sand.

Primary depositional textures and structures are similar in most of the cores. Using
Miall’s classification for fluvial sediments [51], lithofacies are first described by grain size,
and then bedding. Within the Morrow B, grain size is described as either gravel (G) or
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sand (S), and bedding either massive (m), laminated (l), or irregular (i). Thus, an interval of
predominantly massive gravels is denoted Gm, and an interval of laminated gravels is Gl.
Lithofacies codes and descriptions for Morrow B and B1 sandstones are noted in Table 1.

Table 1. Morrow B and B1 sandstone lithofacies.

Facies Sedimentary Features Description

(Gm)
Gravel massive Massive

Light grey to light brown, matrix supported, granules to
pebbles, moderately to poorly sorted, angular to

subrounded, massive bedding, with mudstone rip-up
clasts, and calcite cementation in lowermost section.

(Gl) Gravel laminated Planar to low-angle cross-bedding

Light brown, matrix supported granules, 2–4-cm
beds/lamina create fine-scale fining and coarsening
upward sections that alternate between very coarse

upper and coarse lower with minor fines or clay seams.
Facies Gl is modified from Miall [51] facies Gp.

(Gi)
Gravel irregularly bedded Massive to crudely bedded.

Finer-grained than Gm with less-developed and finer
(<1 cm) bedding than Gi. Continuously poorly sorted

and possible low-angle streaks of clay or fine sand.

(Sm)
Sand massive Massive, to faint laminations Light brown, massively bedded, moderately sorted,

lower medium to upper coarse grains.

(Sl)
Sand laminated Low-angle (<10◦) cross-bedding

Light brown, lower medium to fine granules, moderate
to poorly sorted

Low-angle bedding, approximately 10 degrees; clay
streaks often present.

In FWU cores, the thickness of sandstone intervals with massive, laminated, or ir-
regular bedding ranges from 15–61 cm [49]. Laminated intervals are planar to low-angle
with 2–10-cm thick fining or coarsening upward sequences. Clay seams, thin mudstone
interbeds, and stylolites were noted in most wells (e.g., Figure 5, depth 7733 ft.) and exam-
ples in [46,49]. Sandstones are mostly fine- to coarse-grained sandstone and exhibit fining
upward sequences. Rounded mudstone intraclasts occur locally, some with desiccation
cracks. A fining upward sequence 15–46-cm thick caps the Morrow B sandstone section,
however internal grain size sequence intervals do not appear to repeat in any recognizable
pattern [49]. Some overall variation in grain size was noted through the field [46]. The
sandstone facies in wells 9-8 (far west side) and 32-8 (east side) is finer-grained than ob-
served in other wells. Well 32-6 contains cross-bedding that exhibits considerable variation
in grain size between laminae, alternating in size between coarse sand and conglomerate;
such well-defined bedding was not noted in any of the other cores examined [46].

Morrow Shale

The Morrow B (and B1, where present) sandstones are encased above and below by
shales. Contacts with shale both below and above the sandstone are sharp and irregular
(Figure 5). Morrow shale facies are described in Table 2. Only a few feet of underlying shale
were cored, so this work describes the shale sequence encountered in the shale overlying
the Morrow B sandstone, except as noted. Similar facies are seen in the underlying shale
section. The overlying shale section starts above a fining-upward sequence at the top of
the Morrow B sandstone (Figure 6 and [46]). The Morrow shale generally fines upwards
in a series of thin beds 2.5–5-cm thick that alternate between upper fine sands and fine to
medium muds. Sand content decreases upwards through the section. The lowest lithofacies
of the Morrow shale (facies gbM) is olive to grey, weakly to moderately bioturbated, with
either massive bedding, or discontinuous parallel and non-parallel laminations. The rock
is friable, argillaceous fine- to medium-grained mud, with minor organic and detrital
content. Facies gbM ranges from 4.3–6.7-m thick in the cored wells. This facies terminates
abruptly in the black, fissile-laminated, mudstone facies blM. Facies blM is argillaceous
and siliceous, fine to coarse muds with minor organic content. Interspersed with the
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mudstone are intervals containing fossil hash beds and scattered pyritized shells, sparse
calcite concretions and rare pyrite nodules. Continuing up-section, facies blM transitions
to a greenish grey, friable calcareous mudstone, facies cM, topped by a thin coal layer.
Although facies cM closely resembles facies gbM seen lower in the section, it has a greater
amount of organic and calcareous content, as compared to facies gbM. Facies cM is the
highest stratigraphic interval of the upper Morrow shale and was not noted in the interval
of Morrow shale below the Morrow B sandstone, which is predominately facies blM with
minor gbM.

Table 2. Morrow shale lithofacies. Total organic carbon (TOC) data from TerraTek Schlumberger core services.

Facies Sedimentary Features Description TOC% Fossils

(Mfms)
Friable, bioturbated

fine sands to fine
mudstone

Low-angle to planar
laminations, low to

moderate bioturbation.

Olive to grey,
moderately bioturbated
laminated to massive,

friable.

0.3–1% Absent to rare.

(Mfml)
Black, finely laminated

fine to medium
mudstone

Low-angle to planar
laminations,

carbonaceous
concretions, fossil hash,

pyrite.

black, laminated, fissile. 0.53–2.67

Scattered disarticulated
pyritized shell fragments.

thick to very thin shell
fragments disarticulated in
a convex up position, fossil

hash beds.

(Mc)
Calcareous mudstone

fossil hash, laminations,
bioturbation

coal.

Brown to grey, green,
laminated to massive,

broken and bioturbated
sections, friable.

0.44–10.7%

13-14 thin section at 7641 ft,
abundant microfossils
including foraminifera,
gastropods, ostracods,

bryozoans, mollusks, and
fish scales.

The uppermost part of the Morrow shale has a distinctive sequence of facies that is
noted in all of the characterization wells (Figure 6). Approximately 45 cm below the contact
with the Thirteen Finger limestone, there is a 2.5–7.5-cm thick section of rock that is smooth
and well-indurated with irregular to rounded bounding surfaces. This distinct interval
contains a diverse microfaunal assemblage including foraminifera, gastropods, ostracods,
bryozoans, mollusks, and fish scales (Figure 6, and [44] Figure 30). Other noteworthy
aspects within the short interval include phosphate nodules and possible dewatering
structures. Above the well-indurated section is another 30–45 cm of facies cM. The facies
terminates at a sharp contact with an 18-cm thick coal bed. The coal is followed by a
15–20-cm grey, calcite-cemented layer (appearing as a concretion in well 13-10A), and then
a 5-cm, highly burrowed interval. The burrowed interval is topped by another 5–7.7-cm
fossil hash bed (Figure 7), then a black carbonaceous mudstone (bcM) that is one of the
signature facies of the Thirteen Finger limestone [49].
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Figure 6. Uppermost sequence of Morrow shale that overlies the Morrow B, showing consistent
sequence of lithofacies seen in all three characterization well cores. All core slabs are approximately
10-cm wide and 122-cm height. One-foot intervals marked on core.
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(a) (b) 

Figure 7. Core from well 13-10A (a, left) showing finely interbedded cementstone (light gray) and mudstone (dark or black)
lithologies of the Thirteen Finger limestone; (b, right) thin section photomicrograph in cross-polarized light, showing the
finely interbedded nature of the mudstones (upper portion of slide) and cementstones [53] (lower portion).

Thirteen Finger Limestone

The Thirteen Finger limestone is not a single limestone bed, but a series of intercalated
black, carbonaceous mudstones (bcM), coals, and limestone intervals that are primarily
diagenetic in origin (cC) (Figure 7 and Table 3). Individual limestone beds are 10–60 cm in
thickness and are separated by 2–10-cm mudstone intervals. The limestones are clustered
in 0.2–2.7-m thick intervals, separated by 0.3–1.2-m mudstone beds. The entire Thirteen
Finger interval is 39.6-m thick, with approximately 41% of the thickness composed of
mudstone, 4% coal, and 46% is limestone. The number of limestone and mudstone beds
varies from well to well; in well 13-10A, 60-70 individual limestone beds were counted [49].

Table 3. Thirteen Finger limestone facies. Total organic carbon (TOC) data from TerraTek Schlumberger core services.

Facies Sedimentary Features Description TOC (%) Fossils

(Cc)
Carbonate cementstone

Massive to faint
stratification.

Grey to white, well
indurated, smooth,
sparse cemented

fractures, abrupt to
gradational bounding

surfaces.

2.29%

No macroscopic fossils
but microscopic

sponge spicules are
present.

(Mfmc)
Pyrite- and

fossil-bearing fine to
medium mudstone and

coal

pyrite nodules, fossil
hash, bioturbation,
bedding parallel

fibrous calcite veins.

Black to grey, smooth,
well indurated fine to
medium mudstone.

0.44–10.70%

Disarticulated and
comminuted shells.

Shells in lower part of
section are pyritized.

Limestone beds are grey to dull white and are dominated by diagenetic calcite and
dolomite cements with sparse sponge spicules and pyrite framboids [54]. This facies is more
accurately described as a cementstone; consequently, the limestone beds in the Thirteen
Finger limestone are classified herein as facies cC. In core, facies cC may have gradational
or sharp contacts with mudstone facies and is predominantly massively bedded with only
faint signs of stratification. Some cC sections have irregular rounded upper and lower
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contacts, and are laterally discontinuous, so are concretion-like in appearance. Mineralized
fractures are present locally. The mudstone, facies bcM, is black to grey, massive and smooth
in some sections, laminated and fissile in others. Some layers are poorly consolidated
and broken, in part due to mechanical fracturing during coring, whereas others are well-
indurated. Facies bcM contains abundant clays and authigenic calcite, dolomite, and
phosphate. Sedimentary features include pyrite nodules, fossil hash, bioturbation, and
bedding parallel fibrous veins (Figure 8) referred to as “calcite beef” [55,56]. Coal beds
within the Thirteen Finger limestone are between 0.15–0.6-m thick and separated by 3–6-m
intervals. Total organic carbon (TOC) within the Thirteen Finger limestone facies is high,
with one measurement at 49.0% within the coal at the base of the formation and another at
10.7% [49].

 

 
(a) (b) 

Figure 8. Thin section image (a) and core slab image (b) from well 13-10A showing fibrous calcite-
filled fracture or “beef”. Core slab is approximately 10 cm in width.

3.2.3. Petrographic Analysis and Interpretation

Details of petrographic analysis for FWU cored samples examined in this project, in-
cluding data and extensive photomicrographs, can be found in Gallagher [46], Cather [57,58],
Cather and Cather [54], Rose-Coss [49], and Trujillo [59]. A summary is included here to
support the interpretations of facies model and sequence stratigraphy. Upper Morrow sand-
stones are mostly subarkosic, with an average framework grain composition of 78% quartz,
7% feldspar, and 15% rock fragments. Feldspars are predominately alkali feldspar. Grain
and clast types are interpreted to indicate derivation primarily from granitic sources [54].
The relatively coarse grain size of these sandstones suggests proximal sources, probably
in the Sierra Grande uplift to the west or the Amarillo–Wichita uplift to the south. Silicic
volcanic sources were a nearly ubiquitous, but minor, contributor to most of the studied
sandstones. Cambrian and Mesoproterozoic rhyolite is common in the Amarillo–Wichita
uplift region, and these rocks are interpreted to have been a source for silicic volcanic grains
in the Morrow B [60,61]. Recycled sedimentary detritus is a minor component of about half
of the samples; much of this may be intraformational. No vertical trends in the abundance
of detrital components are apparent [54]. Composition of the mudstones both within the
Morrow shale and the mudstone beds of the Thirteen Finger limestone is predominately
illite/smectite clays with trace to minor amounts of quartz. Mudstones may contain a
significant amount of carbonate, mainly dolomite, and the amount of carbonate observed
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in core and in log analyses increases up section from the base of the Morrow shale that
overlies the Morrow B sandstone [62]. The limestones within the Thirteen Finger limestone
are almost pure calcium carbonate, primarily diagenetic calcite, and can be described as
cementstones [49].

Documenting the diagenetic processes observed within FWU rocks is important to the
characterization of the reservoir and seal for a variety of reasons. Discussions of diagenesis
and paragenetic sequence can be found in Gallagher [46] (Figure 41) and [54]. Within the
Morrow B, diagenetic processes such as precipitation of cements and clays, and dissolution
of various mineral phases appear to exert the greatest controls on petrophysical properties,
and they overprint primary depositional processes [46,54]. Authigenic cements within
Morrow B reservoir sandstone include quartz and feldspar overgrowths, calcite in the
form of poikilotopic or sparry cement that fills pores and often replaces feldspar grains,
siderite (sphaerosiderite), dolomite and ankerite, kaolinite, illite and other clay minerals,
and residual oil or bitumen [54]. Pyrite occurs both as crystals and nodules within the
mudstones, and as replacement of fossils.

Diagenetic processes within the Thirteen Finger limestone and upper Morrow shale
influence mechanical properties and seal behavior. Mechanical testing has shown the
cementstones of the Thirteen Finger are the most brittle rocks in the primary seal and the
most likely to fracture under stress; therefore, they were a focus of more detailed study [59].
Although most of the cementstones encountered within the cores appear to be continuous
through the core diameter, several cemented zones were also noted with rounded or
cigar-shaped morphology indicative of concretions, thus raising questions concerning the
lateral extent of the cementstones. Isotopic analysis to determine the geometry of the
cementstones (following the approach of Klein et al. [63]) was inconclusive, so for purposes
of modeling and caprock simulation studies, the cementstones are currently treated as
continuous layers [59].

3.2.4. Paragenesis

Morrow B—The paragenetic sequence for the Upper Morrow sandstones is presented
in Figure 9. Rare early cements, including pyrite and phosphate, were noted in a few thin
sections, but siderite and calcite are the most prevalent early cements. Siderite occurs
as sphaerosiderite, commonly associated with pedogenesis, and individual or clusters of
small rhombic crystals. All appear to have precipitated before significant compaction, and a
high Fe/Mg ratio in some microprobe analyses indicate that formation likely occurred in a
freshwater environment. In some samples, multiple stages of siderite with differing Fe/Mg
ratios may document changing pore water chemistry resulting from marine transgres-
sion [46,64,65]. Poikilotopic calcite was precipitated early in the diagenetic sequence, filling
primary porosity and replacing feldspars [54]. Extensive calcite cementation prevented
significant compaction in some intervals but occludes almost all porosity, creating some of
the lowest permeability intervals within the Morrow B [49].

Feldspar alteration and precipitation of authigenic clay, predominantly kaolinite, are
important within the Morrow B, as these processes probably had the greatest effect on
the evolution of the porosity and permeability trends seen in the reservoir. Microprobe
and X-ray diffraction analyses suggest that most detrital feldspar has been replaced by
diagenetic albite [53]. Grains are commonly vacuolized, kaolinized, and/or sericitized.
In many samples, wholesale dissolution of feldspar can create large pore spaces, or pore
space that has subsequently been partially to completely filled with kaolinite. It is clear
from the presence of many delicate skeletal feldspars and large kaolinite-filled pores that
most feldspar dissolution and replacement occurred after compaction. Other authigenic
clays such as illite/smectite and chlorite were noted but were not significant components
of any of the samples examined. Gypsum cement is also a rare constituent. Its position in
the paragenetic sequence is unclear, but seems to be associated with the oxidation of pyrite.
Petrographic evidence [54] shows it follows at least one stage of calcite precipitation in
fracture fills. The studied samples are from below the water table in a reduced, petroleum-
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bearing stratigraphic interval, so oxidation of pyrite to form gypsum late in the paragenetic
sequence is unlikely. The degree of compaction within Morrow B sands varies from very
little in samples that have extensive early cementation to significant in a few samples where
stylolites and long, concavo-convex, or sutured grain contacts are noted. Hydrocarbon
migration appears to be the last major diagenetic event affecting the Morrow B sandstone,
although an additional, relatively minor episode of feldspar dissolution after hydrocarbon
migration was noted in a few thin sections [46,54,57].

 

Figure 9. Paragenetic sequence for Morrow B sandstones.

Less emphasis was placed on study of paragenetic sequence in the Morrow shale
and Thirteen Finger limestone. For the purposes of this project, the greatest emphasis
was placed on the effect of diagenetic events on mechanical properties, and the overall
effectiveness of the caprock as a seal for the injected CO2. Several lines of investigation were
pursued, including fracture analysis, geomechanical studies, and mercury porosimetry
studies; more information can be found in Trujillo [59] and in Trujillo et al. [64]. Isotopic
studies demonstrate that the cementstones, the calcite fracture fillings, and fibrous calcite
“beef” fracture filling each represent different diagenetic events (Figure 10). Cementstone
carbonates were precipitated at temperatures ranging from 15 to 27 ◦C (59 to 81 ◦F),
which corresponds to a range of depths from 582 to 1077 m (1909 to 3533 ft), assuming a
geothermal gradient of 25 ◦C/km (1 ◦F/70 feet). Using the same assumptions, the fibrous
calcite beef would have precipitated at higher temperatures, ranging from 30 to 32 ◦C (86
to 90 ◦F) and at depths of 1188 to 1289 m (3896 to 4228 ft) [59]. The depths for precipitation
of the fibrous calcite beef match the depth at the onset of rapid subsidence within the
basin [63] and coincide with those for the generation and migration of hydrocarbons from
the Thirteen Finger limestone [38]. It is theorized that migration of the hydrocarbons
from a tightly-compacted shale could cause overpressurization within the Thirteen Finger
limestone and might have created the horizontal fibrous calcite-filled fractures [64,66].
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Figure 10. δ13C versus δ18O values for all cemented grid and calcite fracture samples [59].

4. Discussion

4.1. Facies Model

The upper Morrowan facies in FWU, with their sequences of basal conglomerate,
coarse-grained sandstone, and fine-grained sandstone, appear to be typical of IVF deposits
(Figure 4), as described by many previous workers [2,7,42,46,67,68]. The FWU lies southeast
of the area where many of these studies were conducted, but still exhibits many of the same
characteristics, and is interpreted to have been deposited in a similar setting. However,
detrital geochronology [5] suggests that the deposits in FWU were sourced from the
Amarillo–Wichita Uplift to the south of the study area, rather than from the northwest
(Figure 11) as has previously been interpreted for similar deposits [2,8].

Characteristics of Morrowan sands in southeast Colorado and western Kansas (a
region known as the State Line Trend) suggest deposition in fluvial that varied from
sluggish and meandering systems to fast and braided ones. The distinction is not trivial,
as reservoir models that represent the system would need to be constructed differently
depending on the fluvial style. The State Line Trend Morrow fluvial systems contain
braided components; however, bedding dip measurements and facies trends that suggest
that meandering fluvial and estuarine deposits are more volumetrically important [42]. At
FWU, the relatively large grain size, poor sorting, and lack of fines indicate a generally
high-energy fluvial environment of deposition for the Morrow B sandstone. A lack of any
indication of marine deposition (e.g., fossils or glauconite), along with analysis of reservoir
architecture and dip measurements from borehole image logs provides strong evidence
for braided river deposition of the Morrow B [45,49]. The patterns observed in cores and
dip measurements indicate deposition produced by a braided river flowing in an easterly
direction with three to four aggradational events [69].
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Figure 11. Sediment dispersal systems for late Morrowan deposition (modified from Puckette et al.,
2008).

The reservoir architecture and geometry at FWU are well-described by IVF models [49];
however, depositional patterns do not fit as neatly into the paleogeographic interpretations
of Bowen and Weimer [8,9] and Puckette et al. [2]. In these studies, connecting produc-
tive Morrowan IVF trends reflect paleo-drainage patterns within the greater Hugoton
Embayment. Morrow fields of southeast Colorado and western Kansas derived source
material from the Ancestral Rocky Mountains to the northwest [2]. In this model, FWU
would be considered downstream from these fields, but still receiving sediment from the
northwest. Similarly, Bowen and Weimer [8,9] divide Morrowan reservoirs into upstream
and downstream facies tracts, where upstream is to the northwest and downstream is
to the southeast. Here, coastal inundation influenced more southeasterly fields in the
downstream tract earlier during transgression, and reservoir sands would show a stronger
estuarine influence. Again, Farnsworth field would be in the downstream or distal facies
tract in these models, and thus would be expected to have finer-grained, more mature
sands showing evidence of marine or estuarine influence. The Morrow B sands at FWU
are rather coarse-grained and poorly sorted, with little evidence of marine influence. Our
observations suggest the Amarillo–Wichita uplift to the south likely provided source mate-
rial, and not the Ancestral Rocky Mountains to the north, which is consistent with detrital
zircon studies [5,46,53]. While the Morrow B at FWU fits the general facies model of the
incised valley river system, the coarse grain size, general composition, and lack of maturity
reflect a proximal position to a more local source of sediment. The transition to the fine
mudstones and carbonate facies noted in the Thirteen Finger limestone demonstrates a
gradual submergence (transgression) of the fluvial facies and a general transition to a
marine environment.
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4.2. Sequence Stratigraphy
4.2.1. Depositional Environments
Morrow B

In addition to the core facies descriptions already discussed, Rose-Coss [49] used
bedding dip measurements from characterization well logs, isopach and contour maps, and
cross-sections generated from the many legacy wells to aid in interpretation of depositional
environments and reservoir architecture. Most evidence suggests that the Morrow B
sandstone formed as a series of stacked mid-channel bar forms within a northwest-to-
southeast-trending braided river system. Isopach contour mapping and cross-sections
confirm an incised valley geometry. Coastal processes probably influenced the top of the
reservoir interval, and a ravinement surface separates coarse clastics of the reservoir from
fine sands and muds of the overlying (upper) Morrow shale.

Morrow Shale

In general, the Morrow shale facies are interpreted as having been deposited in an
increasingly marine setting. The finest-grained sand facies at the top of the Morrow B sand
is interpreted to be estuarine, deposited in a mixed energy setting [46,49]. Estuaries receive
sediment from fluvial and marine sources and are influenced by tide, wave, and fluvial
processes [70]. A continued fining upwards into the Morrow shale facies gbM represents
the progression from a mixed energy environment to low-energy deposition within central
basin estuarine conditions. Continuing upwards, facies gbM transitions abruptly to the
black laminated fissile mudstone (facies blM). Thin beds of fossil hash, pyritized shells,
and with occasional calcite concretion indicate deposition under primarily anoxic marine
conditions with generally low sediment input.

Facies blM gradually transitions to a more friable and calcareous mudstone, facies
cM, an olive-colored friable mudstone that superficially resembles facies gbM lower in
the shale section. The increase in calcareous and carbonaceous content may result from
deposition in deeper water that was more favorable for carbonate-secreting organisms.
Within facies cM there is a well-indurated section with irregular bounding surfaces, noted
in all three characterization wells, which, following several lines of evidence, is interpreted
as a hardground—a sediment cemented on the sea floor [49]. Hardgrounds often form
hiatal surfaces that can be traced over vast areas and record periods of very little to no
sediment accumulation [71]. The increase in carbonate content and the presence of the
hardground suggest that of a shallow marine depositional environment for the uppermost
part of the Morrow shale. At the top of the interval is a coal bed, indicating a swamp
setting [72]. The hardground and the coal layers are good marker beds because they are
present in all the characterization wells, despite a 3.5-mile (5.6-km) separation. The coal
bed is used as a formation top marker for the Morrow, above which depositional cycles of
the Atokan differ markedly.

Thirteen Finger Limestone

The base of the coal at the top of facies cM marks the transition to the Thirteen Finger
limestone. Above the coal is a distinctive section of bioturbated mudstone indicative of
a shift to deeper water and better-oxygenated conditions. The Thirteen Finger limestone
alternates between cementstones, mudstones, and coal beds. Sedimentary features within
the mudstone intervals include pyrite framboids, sparse fossil hash, and bedding parallel
fibrous veins, also known as “beef” [56]. These features, excluding the beef, can be used
to help interpret depositional setting and sequence stratigraphic context. The repeating
coal intervals suggest that the setting was near a coast with low detrital sediment input.
Diagenetic pyrite typically forms in reducing conditions with limited oxygen diffusion
due to water column restriction, stratification, or high demand from organic matter. Other
conditions that favor the formation of pyrite are an abundance of organic matter, and
sufficient availability of iron, generally derived from iron oxyhydroxide coatings on detrital
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grains (especially clays) and in particulate and colloidal form [52,73]. The presence of coal
and the pyrite indicate low clastic input in paralic to shallow marine conditions.

Carbonate cementstones comprise what have typically been referred to as the lime-
stones of the Thirteen Finger limestone. Cementstones are of diagenetic origin; some
occurrences have been linked to intervals of low sediment accumulation [52,74,75]. They
are thought to form below the sediment–water interface during depositional hiatuses [74].
The presence of sponge spicules noted within the cementstones indicates a shallow-marine
shelf environment for the host sediment [76].

In general, facies of the Thirteen Finger limestone lack the high clastic input of the
Morrowan. Fluvial environments of Morrowan time are increasingly submerged, becoming
first estuarine and subsequently marine. During the time of Thirteen Finger deposition, the
area was largely cut off from clastic input and was a mix of organic-rich coastal swamps
and shallow marine shelves, depending on water depth. The numerous facies changes
indicate that water depths were oscillating significantly; one of many observations that
tie the Farnsworth Field interpretations into the sequence stratigraphic context of late
Pennsylvanian deposition elsewhere in the Anadarko basin and greater Midcontinent
region described below.

4.2.2. Stratigraphic Sequences

Incorporating the core analysis into a sequence stratigraphic context facilitates a
broader geologic understanding of the formations and helps predict lateral and vertical
facies trends. Figure 12 presents a sequence stratigraphic representation of the cored and
logged intervals of the Morrow and Thirteen Finger Limestone at FWU. Regional sequence
stratigraphy has previously been described by many [2,3,8,9,19,67,77–80]. Previously
published works on FWU have not addressed this aspect of reservoir or seal rocks at FWU.
In this study, we note some small differences from regional models that may reflect the
specific paleogeographic location of the FWU.

Fluctuations of sea level during Pennsylvanian time resulted in development of
unconformity-bounded depositional sequences including IVF deposits distributed widely
over the Midcontinent region [78]. Depending on paleogeographic location with respect to
the encroaching late Paleozoic marine seaway, sequences can show alternation between
subaerial and subaqueous depositional settings, resulting in sequences of sandstone interca-
lated with mudstone, or shallower/deeper marine settings that could produce intercalated
shale/limestone sequences [78,80]. The lowest cored interval at FWU (below the Morrow
B sandstone) contains mudstones interpreted to have been deposited during a high-stand
system tract (HST) through the falling stage system tract (FST). The contact between the un-
derlying mudstones and the basal Morrow B is sharp and erosive, where fluvial sediments
sit unconformably on marine sediments. The contact is interpreted to represent a low-stand
surface of erosion (LSE) and a sequence boundary. The lowest interval of the Morrow B is
presumed to represent a period of transition from fluvial incision into underlying marine
mudstones during the low-stand systems tract (LST) into a period of fluvial aggradation.
This aggradational stage is interpreted to represent the transgressive system tract (TST)
paleovalleys that were previously erosive and were backfilled with clastic sediments. In
some areas of FWU, up to five intervals of coarse-grained sandstone are evident from the
wireline logs [49], suggesting that this cycle of sea level rise and fall occurred numerous
times during upper Morrowan time at FWU.

The contact between the Morrow B reservoir and the overlying Morrow shale caprock
is sharp and erosive (Figure 5b). The erosive contact is interpreted as a flooding surface and
possible wave ravinement surface (WRS) and separates the Morrow B reservoir from the
overlying Morrow shale caprock. The continued fining-upward succession in the lowest
portion of the Morrow shale in facies gbM documents continued sea level rise, as the
depositional environment transitions from fluvial to shoreface and estuarine settings. The
contact between facies gbM and blM within the Morrow shale is also interpreted as a
flooding surface and a transition to a deeper water environment. As compared with the
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underlying facies gbM, facies blM (black mudstone) is finer-grained and inferred to be
deposited under deeper, quieter, and primarily anoxic paralic to marine conditions. The
maximum flooding zone is inferred to be near the middle of the Morrow shale in facies
blM, marking the end of the TST and start of an FST as water depth decreased.

Figure 12. Sequence stratigraphy of the FWU cored reservoir and caprock interval in well 13-10A.
From left to right columns illustrate depth, formation, gamma ray (GR) signature, facies, stratigraphic
column, sequence stratigraphic surfaces, and depositional environments. Narrow points at the apex
of blue triangles represent marine flooding surfaces, triangles narrowing upwards are high-stand
systems tracts, while those broadening upwards are low-stand systems tracts. WRS = possible wave
ravinement surface; SF = flooding surface.
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The decrease in water depth is indicated by the facies transition from blM to a more
friable calcareous mudstone having higher calcareous and carbonaceous content, indicating
shallowing water (facies cM) overlain by a thin coal bed. Deposition of facies cM is
interpreted to have occurred in a restricted shallow marine setting during the FST and the
coal within a swamp during the LST.

The coal bed is topped by facies cM, followed by another interval of facies blM, sug-
gesting an additional parasequence where the coal bed represents the LST followed by
facies cM and blM deposited during the TST and HST. Continuing up section, facies blM
is again followed by facies cM, indicating another parasequence FST. Midway through a
second interval of facies cM, there is a well-indurated section with irregular bounding sur-
faces, which, following several lines of evidence (see above), is interpreted as a hardground.
This previously undocumented hardground was identified in all characterization wells
and is thought to represent a period of very little to no deposition (paraconformity) during
the FST to LST. However, with no absolute chronological data, it is impossible to confirm a
period of missing time, only a suggestion of very slow sedimentation rates. Regardless, the
hardground is followed by another interval of facies cM, and then a coal bed.

The second coal bed is often used as the marker for the top of the Morrow and base
of the Thirteen Finger limestone. It marks a transition from a system of relatively high
clastic input that oscillated between fluvial and marine depositional environments, in the
Morrowan, to a system of limited siliciclastic input that varied from a shallow marine
environment during high-stands to a coastal marsh setting during low-stands in the Atokan
formation. These coals provide a robust stratigraphic marker that is seen elsewhere in the
basin and is often used as an anchor in correlating Pennsylvanian cyclothems [81].

The Thirteen Finger limestone was deposited during the early-to-mid Pennsylvanian
at a time of global transgression and regional basin subsidence [12,18], ultimately culminat-
ing with the Late Pennsylvanian Midcontinent Sea stretching from present day Colorado
to Pennsylvania [19,82,83]. Eustatic sea level changes, possibly interwoven with climatic
variability [80], caused deposition in the FWU area to alternate between limestone and
mudstone intervals resulting from variations in water depth and oxygenation levels [18,79].

5. Conclusions

This paper synthesizes work done over the course of six years by multiple researchers
working on characterization of the reservoir and seal rocks at the Farnsworth Unit to
determine capacity and suitability for long-term carbon storage. A rich dataset including
core and core descriptions, petrographic analyses, petrophysical and geomechanical data
from core, legacy logs from 149 wells, and a very complete suite of modern logs for three
characterization wells, as well 2D and 3D seismic survey data were all used in this effort.

From characterization work presented in part in this paper we have:

• Confirmed that the Morrow B reservoir at Farnsworth resembles incised valley de-
posits described elsewhere in the western Anadarko basin and was probably deposited
as a series of stacked mid-channel barforms deposited in a braided stream environ-
ment in an incised valley fluvial system. Many noted features are common to IVF
deposits worldwide and are useful in recognition of these deposits, which can provide
important carbon storage reservoirs [68].

• Described the sequence of facies from the basal conglomerate to the coal layers at the
top of the Morrow that appear to represent the end of incised valley deposition and a
change to the more marine environment seen in Thirteen Finger limestone and other
units that overly the Morrow shale. The layers are a robust stratigraphic marker that
can serve as a useful correlation across the region.

• Presented one of the most thorough descriptions of the Morrow shale and Thirteen Fin-
ger limestone caprock facies available for this part of the Anadarko basin. The core and
facies descriptions laid a framework for subsequent geochemical and geomechanical
investigations of previously undescribed seal rocks.
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• Determined that limestones of the Thirteen Finger limestone are most accurately
described as cementstones; an important distinction, because cementstones are of
diagenetic, rather than primary depositional origin, and not composed of skeletal
material. These cementstones were not previously recognized or described in the
region.

• Provided evidence of a potentially younger age of deposition than previously thought.

With this geologic framework, researchers have constructed increasingly detailed
reservoir models that are the basis for much of the ongoing work conducted by reservoir
modeling, simulation, and risk analysis groups for the Southwest Partnership’s Phase III
research project [84–86].

Beyond providing insights into Morrowan incised valley-fill reservoirs, the study has
provided rarely available data on depositional environments and sequence stratigraphy of
the upper Morrow shale through the Thirteen Finger limestone caprock. Findings from
the work may be applicable to geologically-similar fields regionally and worldwide; the
processes used can be duplicated in other characterization projects regardless of field
geology.
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Abstract: This study reports on analyses of natural, geologic CO2 migration paths in Farnsworth Oil
Field, northern Texas, where CO2 was injected into the Pennsylvanian Morrow B reservoir as part of
enhanced oil recovery and carbon sequestration efforts. We interpret 2D and 3D seismic reflection
datasets of the study site, which is located on the western flank of the Anadarko basin, and compare
our seismic interpretations with results from a tracer study. Petroleum system models are developed
to understand the petroleum system and petroleum- and CO2-migration pathways. We find no
evidence of seismically resolvable faults in Farnsworth Field, but interpret a karst structure, erosional
structures, and incised valleys. These interpretations are compared with results of a Morrow B
well-to-well tracer study that suggests that inter-well flow is up-dip or lateral. Southeastward fluid
flow is inhibited by dip direction, thinning, and draping of the Morrow B reservoir over a deeper,
eroded formation. Petroleum system models predict a deep basin-ward increase in temperature
and maturation of the source rocks. In the northwestern Anadarko Basin, petroleum migration was
generally up-dip with local exceptions; the Morrow B sandstone was likely charged by formations
both below and overlying the reservoir rock. Based on this analysis, we conclude that CO2 escape
in Farnsworth Field via geologic pathways such as tectonic faults is unlikely. Abandoned or aged
wellbores remain a risk for CO2 escape from the reservoir formation and deserve further monitoring
and research.

Keywords: carbon sequestration; Farnsworth Field; petroleum system modeling; CO2 migration

1. Introduction

Underground injection of CO2 is a proven technology for reducing CO2 emissions
into the atmosphere [1–3]. In Farnsworth Field, northern TX (Figures 1 and 2), CO2
was injected into an existing porous petroleum reservoir (the Morrow B sandstone, at a
depth of about 8000 feet) as part of an enhanced oil recovery operation in which the CO2
displaces and mobilizes oil. A portion of the CO2 is extracted; the remainder is stored in
the subsurface [4]. To protect future generations from environmental impacts, the storage
time of the sequestered CO2 needs to be of a timescale of 100–1000s of years or longer [2].
Dependent on the trapping mechanism, and in the absence of leakage, the residence time
can be millions of years [5].

Leakage of CO2 to shallow aquifers and the atmosphere may occur through abandoned
or aged wellbores e.g., [6–10], along natural and induced faults and fractures e.g., [11,12],
along igneous or sedimentary injections (chimneys [13]) and by diffuse leakage through the
overburden rock e.g., [13,14]. In Farnsworth Field, northern TX (Figures 1 and 2) the risk
of leakage through abandoned or aged wellbores is present because about 150–213 wells
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have been drilled into the Morrow B reservoir, of which an unknown percentage has been
abandoned. Petroleum production in this field started in 1952 with the drilling of a gas
well that was completed at a depth of 8096 feet. The first oil well was drilled in 1955 and
completed in the Morrow B sandstone [15], at a depth of ~7965 feet. Secondary oil recovery
began in 1964 by waterflooding, and tertiary recovery is currently underway through
CO2 injection [4]. In Farnsworth Field, leakage through abandoned or aged wellbores
is monitored by the Southwest Regional Partnership (SWP) through CO2 atmosphere
monitoring and soil gas measurements. Farnsworth Oil Field is a study site selected by U.S.
Department of Energy to study carbon management strategies. The Southwest Regional
Partnership monitors and researches CO2 movement through the Morrow B reservoir in
Farnsworth Oil Field [4].

This study focuses on geologic leakage pathways of CO2 in the study site through
igneous and sedimentary intrusions (chimneys) and natural fractures and faults, and
aims to understand natural lateral and vertical migration pathways of CO2. We interpret
and review 2D legacy- and 3D seismic reflection datasets of Farnsworth Oil Field and
surrounding areas to locate chimneys, faults and fractures in the Morrow B and its seal,
the Atokan Thirteen Finger Limestone. Seismic interpretations are combined with a tracer
study to understand well-to-well flow. Petroleum system modeling is used to identify
natural (lateral and vertical) migration pathways for CO2. Because CO2 is injected into
a petroleum reservoir, an understanding of the petroleum system in which the CO2 is
being stored is part of our evaluation. A large-scale petroleum system model of the entire
western Anadarko Basin was published previously [16]; here we develop 1D and a 2D
smaller-scale models for the study site, using geochemical, geological and geophysical
calibrations collected at Farnsworth Field. This petroleum system model provides insight
into the burial, thermal, and petroleum and CO2 migration history of the CO2 reservoir.

The next section summarizes the tectonic history and stratigraphy of the northwestern
Anadarko Basin. During the tectonic history of the study site, phases of subsidence alter-
nated with periods of sometimes significant tectonic uplift, which have had an important
influence on the petroleum system.

2. Anadarko Basin Overview

The Anadarko Basin is a mature, deep (as deep as ~12 km or ~40,000 ft, Figure 1)
sedimentary basin in the North American craton that has been a prolific source of oil and
gas since the early- to mid-1900s [17,18]. Its tectonic history starts in the Pre-Cambrian, and
includes a series of orogenic and basin-forming events [17–25]. Pre-Cambrian basement
rocks (Figure 3) consist of igneous and metasedimentary rocks emplaced in a basin of
unknown origin [18]. In the Early- to Mid- Cambrian, a system of faults formed that has
been interpreted either as indicating extensional deformation, or as a system of strike-slip
faults [26], resulting in the Southern Oklahoma Aulacogen (a failed rift [17,25]. During this
time, sedimentary and igneous rocks were emplaced in this basin [18]. Rifting ceased by
Middle Cambrian time.

Subsequently, a phase of thermal subsidence occurred that led to the deposition of
alternating carbonates, shales and sandstones in the Southern Oklahoma Trough [27]. These
are the Arbuckle and Ellenburger Groups, deposited during the Middle Cambrian-Early
Ordovician, mainly consisting of carbonates (Figure 3). The Simpson Group with sandy
carbonates and clastic rocks was deposited in the Middle Ordovician, followed by the Late
Ordovician Viola limestone and the Sylvan shale. The Silurian-Devonian Hunton Group
mainly consists of shale and limestone; the Late Devonian- Early Mississippian Woodford
Shale Formation overlays this group (Figure 3) [17,27–35]. Finally, the Woodford Shale was
deposited; this is one of the source rocks for the Morrow B reservoir.

Flexural subsidence in the Anadarko Basin began in the Mississippian and continued
through Late Pennsylvanian- Early Permian (Figure 3). From Middle Mississippian to Early
Pennsylvanian (Morrowan), more than 2 km of sediments were deposited in the Anadarko
Basin [36], including the Morrow B reservoir rock which is the focus of this study, and the
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Middle Pennsylvanian Kansas City Group located above the Atokan Thirteen Finger (cap
rock for the Farnsworth Field petroleum system).

Cambrian through Mississippian sediments were deposited in large epicontinental
sea environments and consist of a mixed clastic-carbonate system, siltstone, and shallow
marine carbonate facies with minor sandstones and shales [18,36–39]. The Woodford Shale,
one of the Anadarko’s major source rocks, was deposited during the Devonian; it thickens
to over 375 ft in the basin center while pinching out along basin margins [16]. A pre-
Pennsylvanian unconformity marks the contact between Mississippian and Pennsylvanian
units and is present across most of the basin [21]. Paleo highs and lows during this time
helped to control the deposition and drainage systems of early Pennsylvanian Morrowan
incised valley fluvial systems [21].

Intrusive igneous Cambrian rocks were exposed south and southwest of the Anadarko
basin as a result of Early to Middle Pennsylvanian tectonic activity, and are a source for
Morrow B sandstones [40] as well as forming ‘granite wash’ deposits in proximity of
the southern margin of the Anadarko Basin [41,42]. Subsidence of the Anadarko Basin
slowed during Middle-Late Pennsylvanian. Pennsylvanian-Permian organic rich sediments
deposited in the Anadarko Basin formed, together with the Woodford Shale, source rocks
for the Farnsworth Field petroleum system according to our analysis (Section 5).

Strata of the Early Pennsylvanian Morrow B, which is the CO2 injection reservoir, are
up to 4000 ft thick in the deepest southern part of the Anadarko Basin, and thin northward
to less than 100 ft in the study site and on the shelf (Figure 3). Deeper Morrow strata
consist of shallow marine shales, sandstones and limestones; Upper Morrow strata are
shales, discontinuous sandstones, and deltaic deposits, see Figure 3 [18]. As discussed
above, Morrowan deposits are the primary target interval for CO2 injection. An incised
valley model is in agreement with the depositional character of many Morrowan fields,
including Farnsworth Field [43–53]. The formation dips southeastward, and the Morrowan
sandstones exhibit field-scale reflector offsets in seismic data that could indicate facies
changes (discussed below).

Overlying the Morrowan rocks is the Thirteen Finger formation belonging to the
Atokan deposits (Early Pennsylvanian) that forms the seal of the CO2 reservoir. They
consist of marine shales, sandstones and limestones [18] (Figure 3). The seal directly
overlying the Morrowan sandstone reservoir is the Morrowan black shale. It formed as
sea levels rose along the basin margins [40]. Both the Morrowan and Thirteen Finger black
shales contain appreciable TOC values [24]. The lower and Upper Morrow shales and
Thirteen Finger Limestone form, together with the Woodford Shale, the source rocks for
the Morrow B reservoir (Section 5). Timing of maturation of these source rocks is discussed
in Section 5 of this manuscript.

Deposition of shales, carbonates and sandstones continued into the Triassic and
Permian periods. The early Cenozoic Laramide Orogeny affected the Anadarko Basin
by fault reactivation along the Wichita-Amarillo uplift, and tilted the basin eastward [19].
Additionally, associated epeirogenic uplift caused 1–3 km of erosion during the Cenozoic
and brought the Anadarko into its present state. Cretaceous deposits in the basin have
largely been eroded.

37



Energies 2021, 14, 7818

Figure 1. Location of the study site (dark blue star) in Ochiltree County (yellow) in the western
Anadarko Basin (blue). Modified from [6]. Contours: depth to top Arbuckle Group. The Arbuckle
Group is below the Morrow B reservoir, and pre-dates the basin’s flexural subsidence phase. Contour
interval 1000 ft below surface. Black solid lines: major faults. MF = Meers fault zone, MU = Muenster
Arch, MVF = Mountain View fault zone, NE = Nemaha uplift, WF = Willow fault zone. Dashed black
lines are state boundaries: CO = Colorado, KS = Kansas, OK = Oklahoma, TX = Texas. See Figure 2
for details and the location of Farnsworth Field.

3. Subsurface Structure of the Western Anadarko Basin

Faults and fractures provide natural pathways for CO2 migration towards Earth’s
surface. Regional and field-scale faults have been documented across the Oklahoma and
Texas portions of the Anadarko Basin [54–58]. In the western Anadarko Basin, north of our
study area in western Oklahoma, a NW-SE trending fault is reported in Beaver County [59].
In the Texas portion of the basin, a similar trending fault is inferred southeast of our study
area [58]. Marsh and Holland [58] do not list faults in Farnsworth Field.
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The potential presence of faults in proximity to the CO2 sequestration study area
motivates further research on these possible CO2 migration pathways. Below, we discuss
our interpretation of 2D legacy seismic data (Figures 2 and 4), that allow us to search for
faults directly east and north of Farnsworth Field, as well as an interpretation of 3D seismic
data of the Farnsworth Field study site (Figures 5–7).

3.1. Interpretation of 2D Seismic Lines

The SWP purchased over 100 miles of 2D legacy seismic data from Seismic Exchange
Inc. covering an area from near Farnsworth Field to the east and southeast (locations
shown in Figure 2). The 2D lines were acquired by Seisdata Services, Inc. from 1984 to
1986 and all sources were generated by Vibroseis except for line DC-NEP-10 which was
generated using Primacord. The lines were reprocessed in 2014 by Seismic Exchange,
Inc. Interpretations from Gragg [60] (interpreted lines DC-NEP-10 and DC-NEP-33) are
shown in Figure 4. Mis-tie corrections were applied to crossing 2D lines to account for the
inconsistencies in quality, static solutions, and vintages [60]. A seismic well tie was made
from the Killingsworth well because it had sonic and density logs, a checkshot from surface
to approximately 8600 ft., and was close to the seismic line [60]. Gragg [60] constructed a
velocity model from the Killingsworth well tie, and the seismic lines were converted to the
depth domain. The interpreted 2D seismic data also provided the geometry input for the
petroleum system model (Section 5).

Figure 2. Overview map of Farnsworth Field study site within Ochiltree County, seismic lines and
well data used in this study, and locations of 2D seismic lines and 3D seismic survey. The inset shows
the location (grey) of the map. The Killingsworth well has been used for the well-tie with DC-NEP-10.
Well 13-10A is a CO2 injection well in Farnsworth Field.
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Figure 3. Simplified stratigraphic column of Farnsworth Field area, with details of CO2 reservoir
(Morrow B) and cap rock at well 13–10A (location of this well is shown in Figure 2), and major
tectonic events (in red). Grain size: F is fine, M is medium, C is coarse, VC is very coarse.
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Figure 4. Interpretation of seismic lines DC-NEP-10 (short east–west line) and DC-NEP-33 (north and
south), and well-tie with the Killingsworth well (light blue). Locations of lines and Killingsworth well
shown in Figure 2. The Atokan/Morrowan formations are mostly transparent, and their boundaries
cannot be resolved in these data. The Missourian Kansas City Group and Late Devonian-Early
Mississippian Woodford shale are interpreted in the 3D seismic data (Figure 5). No seismically
resolvable faults are observed on the 2D seismic lines in the Atokan or Morrowan formations.

Formations generally dip southeastward in our study area, which is in agreement with
regional trends [22,61,62]. The dip increases with stratigraphic age and units tend to thicken
toward the deep basin. The Atokan and Morrowan formations are continuous, relatively
transparent seismically, and cannot be resolved individually on these low-resolution lines.
The top Mississippian is interpreted as an angular erosional unconformity, formed as a
result of the Wichita orogeny [24]. There are no indications for faulting or seismic chimneys
in both the east–west and north–south lines in the Atokan and Morrowan formations.

3.2. Interpretation of 3D Seismic Survey

3D Reflection seismic data (Figures 2, 5 and 6) were acquired in 2013 by SWP through
WesternGeco over an approximately 42 mi2 surface area, with full fold covering 27 mi2. The
geophones had 33 ft. spacing and dense vibroseis source points with a sweep frequency of
2–100 Hz. Processing steps and survey characteristics are described by [63]. Preliminary
interpretations of this dataset suggested that the Morrow B reservoir could be faulted, with
faults striking E, S, and SE [64]. Our interpretations show that the seismic discontinuities
that were interpreted as faults in White et al. [64] are erosional features, incised channels,
and karst structures.

Wells 13-10A and 32-8 (locations shown in Figure 5) were used for well ties. The
Morrow B reservoir rock reaches a maximum thickness of ~70 ft in Farnsworth Field,
and its boundaries cannot be resolved in the seismic data. Since the exact location of the
Morrow B horizon in the seismic data is thus uncertain, a reflector in the proximity of the
Morrow B (Figure 5a) was traced confidently in the seismic data. In further analyses, we
used an isopach map of the Morrow B that we created from interpolation of 346 well logs.
Figure 5 shows the position of the Morrow B reservoir layer with respect to the overlaying
Thirteen Finger Limestone and Kansas City Group, and the underlying Woodford and
Hunton Formations. In Farnsworth Field, paleozoic formations dip slightly toward the
southeast (Figure 6).

We applied several seismic attributes [65–67] to the 3D seismic dataset to detect faults
and fractures that may act as migration pathways for sequestered CO2. Seismic attributes
were used to help identify features such as fractures, faults, and stratigraphic changes that
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may not be easily discerned in the original data. We generated edge-detection attributes
that measure waveform similarity (Variance and Amplitude Contrast) and Ant Tracking
volumes that track continuous features in an effort to illuminate possible fault structures.
Parameters were varied within Petrel® software to best highlight any discontinuities while
keeping the parameters in a reasonable range.

Variance is an edge enhancement attribute used to estimate localized variance in the
seismic signal [65]. The Amplitude Contrast attribute analyzes derivatives in all three
components [66]. Petrel® software 2017 allows the user to apply dip corrections, vertical
smoothing filters, and the ability to steer the volume along an azimuth. The default values
resulted in the best results, as discussed below. The edge detection attribute Ant Tracking
uses either the Amplitude Contrast or Variance volumes as input. The attribute attempts
to improve the signal-to-noise ratio of discontinuities. To generate the best Ant Tracking
volume for highlighting discontinuities, multiple variations of Variance and Amplitude
Contrast volumes were generated.

The edge-detection attributes did not illuminate any features that could be interpreted
as faults (Figure 6). We did identify channels, a karst-collapse structure, and erosional
features; these are discussed next.

Figure 5. Interpreted horizons at location of well 13-10A (a); Top Kansas City Formation (b); and
Base Hunton Formation (c). Farnsworth Field is outlined in red; also shown are locations of wells
13-10A, 13-14, and 32-8. Based on well ties, the “Morrow B reflector” is located within the Morrow B.
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Figure 6. The Morrow B surface displaying the three characterization wells 13-10A, 13-14, and
32-8; (a) the Variance attribute overlain on the Morrow B surface; and (b) the Ant Tracking attribute
overlain on the Ant Tracking volume. Features discussed in text are labeled as I, II, and III. In (a),
the concentric rings in the eastern side of the survey have not been identified in other attributes and
there is no evidence that they are geologic features.

We identified an elongated area associated with north–south trending linear features
visible in the Variance and Ant Tracking volumes (discontinuities I and II in Figure 6),
which were previously interpreted as faults [64]. In the Variance volume, the N-S features
bounding this area appear wide (approximately 100 to 1000 ft. wide) while they look
sharp in the Ant Tracking volume (Figure 6). Two vertical cross sections through this
feature (Figure 7) illustrate that this is probably caused by differential compaction of
shales above an erosional feature in the Hunton limestone that developed prior to the
deposition of the overlying horizon (which has tentatively been marked “Woodford”). This
resulted in draping over the deeper structure. The Ant Tracking discontinuities and the
wide banding on the Variance volume likely identified changes in the seismic signature.
Surfaces interpolated from well-logs supported this interpretation; a small gradient that is
compatible with draping, and vertical offsets are only about 9 ft to 48 ft at the top of the
Morrow B [56].
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Figure 7. (a) Two seismic lines through the feature (labeled I and II in Figure 6) in the western part of
Farnsworth Field; locations of lines indicated in (b); (b) portion of Farnsworth Field (outlined in red)
and locations of seismic lines; (c) karst collapse infill structure in the eastern part of Farnsworth Field;
location of east line indicated in (b). Vertical lines in (a) mark the dashed line in (b).

The second structure that we discuss here is the feature on the edge of the NE side
of the field (Figure 7c). This feature appears very faintly on the Variance cube (Figure 6a,
indicated with III), and does not appear on the Ant Tracking attribute (Figure 6b). This
feature was interpreted as an E-striking fault in White et al. [64]. Offset of the top of the
Morrow B directly above this feature, based on well log tops, is approximately 30 to 60 ft.
The feature could be identified easily as a pronounced down-warping of the Morrowan,
Atokan, and basal Woodford reflectors. We interpreted this as a karst collapse structure.
The collapse structure possibly formed in the Hunton limestone during a period of low sea
level.

We have identified several channel features (Figure 8) in the western Farnsworth Field
area. Our interpretation is consistent with the incised valley model proposed by Krystinik
and Blakeney [44] in which the Morrow B sandstones were deposited in incised valleys on
the basin margin as the sea level rose. Although not resolvable with the 3D seismic data, it
is possible that such facies changes or channels could form preferential flow paths for CO2.
The channel in Figure 8b is particularly well defined, but most of the reflectors that could
be identified as channel fills seem laterally discontinuous (Figure 8c,d). This is due to the
fact that the thickness of many of these channel infills is below the 3D seismic resolution.

The Kansas City Formation, Morrow B, and Woodford Formation drop down a few
tens of ft southward in the center of Farnsworth Field (Figure 5). They drape over an
erosional edge in the Hunton limestone, which was previously interpreted as an east-
striking fault (fault #3 in White et al., 2017, their Figure 3).

We were not able to identify faults in the Morrow B or overlying formations. We note
that this does not necessarily mean that faults and fractures are not present, but they can
simply not be resolved with our seismic datasets. To understand possible flow paths for
CO2 within the Morrow B, and between the Morrow B and surrounding formations, we
will compare our interpretations of the Morrow B to results of a tracer study and with a
petroleum modeling study.
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Figure 8. (a) Location of three channel-like features in the western Farnsworth Field; (b) details of
seismic line intersecting channel 1; (c) details of seismic line intersecting channel 2; (d) details of
seismic line intersecting feature 3.

4. Flow Paths in the CO2 Reservoir

Seal analyses of the Morrow B and Thirteen-Finger Limestone Formations [68] suggest
that upward CO2 migration through the seal, by flow through permeable pathways or
stress-induced breakage of the seal, is unlikely in Farnsworth Field. The absence of
detectable faults in the Morrow B and overlying formations suggests that no major fault
zones are present along which CO2 could migrate. Here, we discuss lateral migration
through the Morrow B reservoir.

Aqueous-phase tracer studies were conducted in the western half of Farnsworth Field
in 2014, 2015, and 2017. Naphthalene sulfonates were injected in wells 13-3 (2017), 13-5
(2014), 13-10A (2014), 13-13 (2014), and 14-1 (2015), Figure 9, Figure 10, Figure 11. These are
a family of organic compounds that have successfully been used as tracers in geothermal
and petroleum reservoirs [69–73], and ground water studies [74].

4.1. Tracer Study Setup

The naphthalene sulfonate compounds that were used as tracers in this study were
obtained from YickVic Chemicals, Hong Kong, China. The three tracer tests described below
were initiated between May 2014 and June 2017, with sampling and analysis continuing
into 2018. In each case, a concentrated aqueous solution (~5%) of a naphthalene sulfonate
was mixed with fresh water at the wellhead and injected as a slug over a duration of
approximately 0.5 h. Table 1 summarizes the tracer injection scheme.

Table 1. Tracer injection parameters. Well locations shown in Figure 12.

Tracer Mass Injected (kg) Well Injection Date

1,6-naphthalene disulfonate (1,6-nds) 27.5 13-13 2 May 2014

1,3,6-naphthalene trisulfonate (1,3,6-nts) 50 13-10A 2 May 2014

1,5-naphthalene disulfonate (1,5-nds) 25 13-5 2 May 2014

2,7-naphthalene disulfonate (2,7-nds) 100 14-1 13 October 2015

2,6-naphthalene disulfonate (2,6-nds) 100 13-3 15 June 2017

2-naphthalene sulfonate (2-ns) 80 13-3 15 June 2017
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The surrounding production wells were sampled over the subsequent four years for
tracer analysis by High-Performance Liquid Chromatography (HPLC) and fluorescence
detection with detection limits of approximately 100 parts per trillion [68,69]. In order
to separate matrix interferences from the tracer analytes, the samples were subjected to
solid phase extraction prior to analysis. Decay kinetics studies have shown that all of the
naphthalene sulfonate compounds used in this study are suitable for use in geothermal
reservoirs having temperatures up to 250 ◦C, and a subset are suitable for use in reservoirs
as hot as 300 ◦C [68–72].

4.2. Tracer Study Results
4.2.1. Tracer Tests of WAG Injection Wells 13-13, 13-10A, and 13-5

On 2 May 2014, 27.5 kg of 1,6-naphthalene disulfonate (1,6-nds); 50 kg of 1,3,6-
naphthalene trisulfonate (1,3,6-nts); and 25 kg of 1,5-naphthalene disulfonate (1,5-nds)
were each mixed with water and injected into the three injection wells 13-13, 13-10A, and
13-5, respectively. All three wells were receiving alternating injections of water and CO2.
The aqueous phase of all surrounding wells was sampled regularly over the subsequent
four years and analyzed for the presence of the naphthalene sulfonate tracers.

The well showing the most significant returns of the three tracers was 11-2 (Figure 9).
Due to a long sampling hiatus between about day 500 and day 1100, it is not known when
breakthrough first occurred. However, given the shape of the curve, it was probably not
before about day 1000. Thus, it was almost three years before the tracers injected into wells
13-13, 13-10A, and 13-5 broke through to the northeast well 11-2. A second well showing
returns of tracers injected during the 2014 test was 13-17. The other two tracers in which
tracer was injected in 2014 showed negligible concentrations in 13-17.

Figure 9. (a) Returns to well 11-2 of tracers 1,6-nds, 1,3,6-nts, and 1,5-nds that were injected into wells
13-13, 13-10A, and 13-5, respectively, on 2 May 2014; (b) returns to well 13-17 of the tracer 1,5-nds
that was injected into well 13-5 during the 2014 tracing campaign.

4.2.2. Tracer Test of Water-Injection Well 14-1

On 13 October 2015, 100 kg of 2,7-nds was mixed with water and injected as a slug
into water-injection well 14-1. Surrounding production wells were sampled and analyzed
over the subsequent 2.5 years. Figure 10 shows the return curves for the wells that showed
tracer returns.
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Figure 10. (a) Tracer 2,7-nds concentrations measured in well 13–19. 100 kg of this tracer was injected
into water-injection well 14-1 on 13 October 2015; (b) 2,7-nds concentrations measured in well 13-14;
(c) 2,7-nds concentrations measured in well 13-12. A paucity of data points on this plot reflects the
fact that this well was sampled infrequently; (d) 2,7-nds concentrations measured in well 8-2. The
paucity of data points on this plot reflects the fact that this well was sampled relatively infrequently;
(e) 2,7-nds concentrations measured in well 20-8.
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4.2.3. Tracer Test of WAG Injection Well 13-3

On 15 June 2017, 100 kg of 2,6-nds and 80 kg of 2-ns were mixed with water and
injected as a pulse into well 13-3. The surrounding wells were sampled over the subsequent
six months, but the only well showing returns was 8-2, which is located directly west of
13-3. Shown in Figure 11 are the very strong returns of these tracers to 8-2.

Figure 11. Returns of the tracers 2,6-nds and 2-ns, which were injected into well 13-3.

4.3. Discussion: Interpretation of Tracer Study Results

The line of wells running north to south near the middle of the study site (13-13,
13-10A, and 13-5) were all tagged in May 2014. These three wells were subjected to water-
alternating-gas (WAG), whereby brine would be injected for a few weeks followed by
the injection of CO2 for a few weeks. The first arrivals of tracer were all approximately
1000 days after injection in spite of the fact that the distances between wellheads varied
significantly. In the case of well 13-5, the first arrival of tracer was approximately the same
for tracer arriving at adjacent well 13-17 as it was for the much more distal well 11-2. In
contrast, the first arrival of tracer injected into well 14-1 was never more than 625 days
in spite of traveling a greater distance—at least in the case of well 8-2. This difference in
aqueous-phase flow velocity might be explained by the fact that 14-1 was never subjected
to WAG but was only on water injection. In the case of well 13-3, the first arrival time to
adjacent well 8-2 was much shorter (~40 days) with concentrations that were more than
10 times greater than those of any of the other tracers. The two peaks in this return curve
(Figure 11), with maxima at 50 and 110 days reveal the very heterogeneous flow patterns
between this pair of wells. Flow heterogeneity was likewise observed in many of the other
return–curve plots (Figures 9 and 10).

Although we have only a limited number of datapoints available, a well-to-well flow
pattern can be recognized. Flow of the tracers is generally west to northwest, except for
tracers injected into well 14-1, which were also detected toward the east of the injection
well (Figure 12). Close inspection of the depth of the Morrow B reservoir in and between
these well locations suggests that inter-well flow occurs between wells where the Morrow
B is at the same depth, or in an up-dip direction; all wells where tracers were detected are
up-dip from the injection wells. The Morrow B isochore map (Figure 12) shows that the
Morrow B is of irregular thickness, and locally thins significantly just south of wells 13-17
and 13-19. The Morrow B deepens southward along an approximately EW-striking “step”
(previously interpreted as fault #3 [64]), and drapes over the deeper Woodford and Hunton
formations; the Hunton formation is locally eroded. It is possible that tracers injected north
of the step (indicated with the dashed contour in Figure 12) in the Morrow B will not flow
south of this step. If inter-well flow is horizontal or up-dip, the impermeable cap rock of the
Morrow B (Thirteen Finger) would prohibit down-dip, or (generally) southeastward flow
from the tracer injection wells, since the step in Morrow B depth is of the same magnitude
as the thickness of the Morrow B.

This interpretation differs from earlier preliminary work that ascribed inter-well flow
directions to presumed faults in the Morrow B [64]; our updated interpretations discussed
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above suggest that erosional features play a role in inter well flow. The seismic data do not
provide sufficient resolution to link flow directions with incised valleys.

Figure 12. Farnsworth Field map of Morrow B isochore from well logs (well locations shown in White
et al., 2017, Figure 3); tracer injection wells (triangles) and detection wells (stars) from tracer studies
conducted in 2014, 2015, and 2017 indicated in grey, red, and blue, respectively. Stars mark wells
where tracers were detected: injections in 13-13, 13-10A, and 13-5 were detected in 11-2; injections in
13-5 were detected in 13-17; injections in 13-13 were detected in 11-2; injections in 14-1 were detected
in 13-12, 13-14, 13-19, 8-2, and 20-8; injections in 13-3 were detected in 8-2.

5. Petroleum System Model of the Farnsworth Petroleum Field

Higley [16] developed a 4D petroleum system model of the Mississippian-Pennsylvanian
petroleum system in the Anadarko Basin, and found that present and past oil-migration
flow paths in the Texas Panhandle are directed SE-NW, sourced in the deep portion of
the Anadarko Basin, where Transformation Ratios are close to 1 [16,75]. Petroleum in
Farnsworth Field is likely commingled [75], and sourced from four distinct families of oil
(Ordovician-Viola, Woodford, Morrow, and Upper Pennsylvanian). Migration paths may
be over 100 km long [16,75]. In the Farnsworth Field, distribution of oil accumulation is
controlled by the Morrow incised valley complex.

Basin-scale studies of the Anadarko basin [16] provide insight into the petroleum
system of the basin but do not provide detailed insight into petroleum sources and migra-
tion paths for our study site. To fill this gap, we developed a 2D petroleum system model
of the Farnsworth Field region with Schlumberger PetroMod® (2013) software. We also
constructed a burial history curve to understand the time-depth relation of the cap rock
(Thirteen Finger Limestone formation).

5.1. Setup of 1D Petroleum System Models

A burial history curve was constructed for well 13-10A (Figures 13 and 14, Table 2).
Sixteen stratigraphic units and basement were included as a unit in the 1D petroleum
system model. Each unit was assigned lithofacies information (Table 2), thickness, age of
deposition, and, if appropriate, age of erosion. Each unit was also assigned its role in the
petroleum system (source, reservoir, seal, underburden, or overburden). Four source rocks
were included: the Woodford shale, lower Morrowan shale, Upper Morrowan shale, and
Thirteen Finger Limestone. Each source rock was assigned a hydrogen index (HI), total
organic carbon percentage (TOC), and a kinetics model. Lithofacies were generalized based
on SWP well log and core data; TOC and HI values are from SWP core analyses.
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Geologic ages of the different formations (Table 2) are based on Higley et al. [62].
All lithologies were generalized based on the dominant lithology present within a model
layer. Erosion amounts and timing for the pre-Pennsylvanian unconformity were based
on interpretations of the unconformity being regional [21]. Well log data of well 13-10A
did not reach basement depths because operators were not targeting intervals below the
Morrowan Formation. In order to include the complete Anadarko Basin’s burial history, the
modeled wells were extended to basement using 2D seismic data. The top of the basement
in the seismic data has a distinctive seismic character change from sub-parallel laterally
continuous reflectors to chaotic discontinuous reflectors. Basement depths were obtained
by performing a seismic well-tie, and used a velocity model for the depth conversion, as
described above. Once the seismic data were depth-converted, depth estimates for the
Woodford Shale, Cambrian-Devonian, and basement were added to the one-dimensional
and two-dimensional models. The Woodford Shale depth, thickness (40 ft), and initial TOC
(~1.5–2%) were approximated from Higley et al. [62]

Figure 13. Burial and temperature history for well 13-10A. Before onset of the Laramide uplift,
the source rocks from which hydrocarbons in Farnsworth Field are sourced (Table 1; Woodford,
Morrowan, and Atokan) reached the oil/gas windows.

We constrained the burial history curve and basin thermal history with vitrinite
reflectance, production data, and Rock-Eval pyrolysis data [60]. Schlumberger PetroMod®

software was used to predict temperatures in the well, and we calibrated those temperatures
with thermal maturity indicators. As an example, the well 13-10A 1D petroleum system
model predicts a Morrowan reservoir temperature of 74 ◦C and a maximum reservoir
temperature of 104 ◦C that occurred around 50 Ma (Figure 13). Hinds [76] documented the
actual reservoir temperature of Farnsworth at time of discovery as 75.5 ◦C (168 F), similar
to our predicted value. The resulting burial history curve is shown in Figure 13.

50



Energies 2021, 14, 7818

Figure 14. Details of seismic line DC-NEP-33 (location in Figure 2) with a Morrowan sandstone
layer (yellow) that is encased in shale (light red). The projected location of the Killingsworth well is
marked. Geometry of the sand body is based on well logs and average reservoir dimensions (see text
for discussion). Colors correspond to the age of deposition, except for the Morrow sandstone, which
is of Morrowan age.

5.2. Results of 1D Petroleum System Modeling

Slow subsidence with intermittent periods of uplift characterized the pre- Late-
Pennsylvanian history of the western Anadarko Basin (Figure 13). A phase of relatively rapid
subsidence occurred during the Late Pennsylvanian- Early Permian, when the Anadarko Basin
subsidence accelerated as part of foreland basin development [22,27,43,62,77]. Subsidence
continued until the start of the Laramide orogeny. Temperatures increased to about 130 ◦C
in the deepest part of the column (Figure 13) until the onset of the Laramide deformation.
In agreement with previous studies [16], our 1D model predicts that the Woodford Shale,
Morrowan Formations, and the Thirteen Finger Limestone are currently in the oil and gas
windows.

5.3. 2D Petroleum System Modeling Setup

Interpreted seismic line DC-NEP-33 (north and south, Figure 4) provides the depths
and geometries for the layers in our 2D petroleum system model. The 2D petroleum system
model gives insight into petroleum migration and paleo-leakage pathways, and allows
for more detailed analysis of fluid accumulations and compositions in the region than
the 1D analysis. Only thicker sedimentary sequences or packages (hundreds of meters)
were included in the petroleum system models, except around the Morrowan reservoir
of interest where layers decrease to thicknesses of tens of meters. Two erosional events
were modeled: the pre-Pennsylvanian subsurface unconformity and Laramide uplift and
erosion (Table 2). The pre-Pennsylvanian unconformity is present across the NE Texas
Panhandle [21,46]. In our study area, the unconformity associated with the Laramide uplift
is at the surface, where 1–3 km of Mesozoic and Permian deposits have been eroded as the
basin was tilted eastward in the Cenozoic [54,60].

The Booker Field (location in Figure 1) well logs indicate a reservoir sandstone facies
that is not resolvable on the 2D legacy seismic lines; this was included in the 2D model as it
is an important reservoir rock. Dimensions of this sand body are estimated from SWP well
logs and literature [44,60]. This sandstone body is the active injection interval for CO2-EOR
operations at Booker Field. Figure 14 shows formations and corresponding depositional
ages of the 2D model.
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5.4. Results of 2D Petroleum System Modeling

The 2D petroleum system models predict hydrocarbon accumulation and fluid prop-
erties (Figure 15). The Behar et al. [78] type II compositional kinetic model was selected
for the Thirteen Finger Limestone and Upper Morrow shale; the Behar et al. [78] type III
compositional kinetic model was selected for the lower Morrow shale, and the Lewan and
Ruble [79] Woodford shale hydrous pyrolysis kinetics model was used for the Woodford
shale (Table 2). We selected the hybrid Darcy/flowpath model to describe petroleum flow
in Schlumberger PetroMod® software.

Figure 15. Vitrinite reflectance and liquid (green) and gas (red) migration pathways predicted by
Schlumberger Petromod® software. The Morrowan formation is divided into an Upper and Lower
Morrow shale. The black box is enlarged in the inset; the reservoir sandstone formation (yellow)
is charged by the Upper and Lower Morrowan shales, the Woodford, and the Thirteen Finger
Limestone.

Modeled temperatures in the Morrowan formations increase southward along line
DC-NEP-33 from 70 ◦C to 105 ◦C. The model predicts that the CO2 reservoir is presently at
74 ◦C at the locations of Farnsworth and Booker Fields. The Thirteen Finger Formation
temperature ranges from 67.5 ◦C to 87 ◦C. This southward increase in temperature is
reflected in the basin’s maturation; maturation within a formation generally increases
southward (Figure 15). In our modeled transect, the Woodford Shale is most mature, and
its predicted vitrinite reflectance is between 1–1.3% Ro; vitrinite reflectance of the Atokan
Thirteen Finger is between 0.65–0.8% Ro. In our models, only the deep Woodford Shale
is in the gas window. This formation has a Transformation Ratio of 100% in the south,
and 42% in the far-north part of the section. The Thirteen Finger’s Transformation Ratio
ranges from 30.5–6%, the Upper Morrow Shale from 40–7%, and the lower Morrow Shale
from 33–1.3% (south to north; Transformation Ratios are lower in the north). Even though
the Transformation Ratio of the lower Morrow Shale is high, it generates low volumes of
hydrocarbons in our model because the organic carbon content is low.

In our model, hydrocarbons were expelled from the Woodford Shale from c. 301 Ma
in the southern part of the section and around 206 Ma in the northern part. The lower
Morrow Shale is the next deepest potential source layer but does not indicate hydrocarbon
expulsion onset anywhere. This is explained by its low hydrogen index of 10 (Table 2). The
expulsion onset for the Upper Morrow Shale is at 270 Ma in the south and 125 Ma in the
north. The Thirteen Finger has expulsion onsets at 299 Ma and 260 Ma in the south and
north, respectively. Hydrocarbon migration pathways (Figure 15) are generally vertical
and up-dip northward, with some exceptions; primary migration is locally downward, and
the Morrowan sandstone reservoir is charged by the Upper Morrow shale, the Woodford
(through the Lower Morrow shale), and the Thirteen Finger Limestone (Figure 15).
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Table 2. 1D Petroleum system model input, well 13-10A. HI is Hydrogen Index, TOC is Total Organic Carbon.

Layer Name Top (m) Base (m)
Deposited

from-to (Ma)
Erosion (Ma)

[Amount]
Lithology HI TOC Kinetics

Permian-Cenozoic 0 600 30 50–30 Ma
[1000 m] Sandstone (subarkose, clay rich) - - -

Red Cave 600 712 275–270 - Organic lean siltstone - - -
Wellington 712 1006 280–275 - Sandstone - - -

Wolfcampian 1006 1472 299–280 - Dolomite - - -
Virgilian 1472 1731 303–299 - Shale - - -

Missourian 1731 1932 304–303 - Shale - - -
Kansas City 1932 2021 305–304 - Limestone (shaly) - - -
Marmaton 2021 2094 305.3–305 - Limestone (shaly) - - -
Cherokee 2094 2279 310–305.3 - Shale - - -

Thirteen Finger 2279 2320 311–310 - Limestone (shaly) 355 9.18 [78] TII
Upper Morrow shale 2320 2339 311–310 - Shale (organic rich) 57 3.62 [78] TII

Morrow B 2339 2350 314–313.7 - Sandstone, subarkose - - -
Lower Morrow shale 2350 2533 324–314.5 314.5–314 [15 m] Shale (organic rich) 10 1.1 [78] TIII

Mississippian 2533 2745 354–330 330–324 [150] Limestone (organic rich) - - -
Woodford 2745 2758 369–354 - Shale (organic rich) 300 1.8 [79]

Cambrian-Devonian 2758 3320 542–369 - Limestone - - -
Basement 3320 - - - Granite (>1000 Ma) - - -

Migration in the Thirteen Finger Limestone began around 299 Ma along the section.
Migration paths contain both vertical and lateral pathways as hydrocarbons meet resistance
from low permeability strata (Figure 15). In some locations, variations in formation depths
cause local migration paths to diverge from the overall trend of south to north upward
migration. The charging mechanism for the Morrowan sandstone is downward migration
from the overlaying organic rich shales in the Thirteen Finger, Upper Morrowan shales
from the deeper basin, and possibly Woodford shale through upward migration. In two
locations (at ~9 km in the section, and at ~47 km in the section), the model predicts a
breakthrough and upward migration of hydrocarbons toward the surface. Matrix-based
CO2 migration risk through the caprocks is assumed to be low. The caprocks entrapped
large accumulations of hydrocarbons for millions of years, and modeling [60] shows that
permeability decreased and entry pressures increased since oil migration and charging
began through the Cenozoic uplift event.

We used Schlumberger PetroMod® software to analyze the fluid components and
saturation. PetroMod divides groups of carbon chains (i.e., C1, C2–5, C6–14, and C15+)
differently from how the Farnsworth Field 1956 oil components are grouped. In order to
compare the two, both the Farnsworth Field and PetroMod results were re-grouped as
follows; C1, C2–5, C6+. C7+ (Farnsworth Field) was grouped with C6–14 and C15+ (PetroMod);
as a result, some of the carbon chains’ resolution was lost in this process. Results indicate
inter-reservoir variability of saturation and composition. The model predicts that the
southern part of reservoir has a saturation of oil (So) of ~73% and the northern part has a So
of ~64%. Reports indicate that the average So for Booker Field is 70% and for Farnsworth
Field around 69% [80]. Hinds’ [76] analysis at time of discovery shows an API of 38◦ for
Farnsworth Field. PetroMod predicts no gas accumulation within the reservoir, which
is in agreement with observations at time of discovery. The compositional predictions
show largest inter-reservoir variability in the higher order carbon chains. The overall
compositional trend includes ~40 mol% from C1-5 chains and ~60 mol% from C6-15+ chains
throughout the Morrowan sandstone reservoir.

In summary, petroleum migration paths are, like the well-to-well flow paths, generally
up-dip, with local exceptions. Along the modeled line, migration paths are predicted
to have reached the surface in two locations. The sandstone reservoir was charged by
the Upper Morrow shale, Lower Morrow shale, the Woodford, and the Thirteen Finger
Limestone.

6. Conclusions

CO2 leakage from sequestration reservoirs may occur via geologic (structural, sedi-
mentary, igneous) pathways as well as via (abandoned) wellbores. This study analyzed the
geologic migration pathways in Farnsworth Oil Field, northern Texas. Although faults have
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been reported previously in the northwest Anadarko Basin, we found no direct evidence
for tectonic faults in the reservoir or caprock in Farnsworth Field. Analysis of 2D legacy
and 3D seismic datasets do reveal depth and thickness variations of the Morrow B reservoir
rock; our interpretation is that they are related to erosional events and paleo-topography,
including karst formation ad erosion of the underlying Hunton Formation. No igneous or
sedimentary chimneys have been detected in Farnsworth Field.

Combining the 3D seismic data interpretations with results from tracer experiments
provides a mechanism to understand inter-well flow patterns and to predict flow directions
of injected CO2. Tracer study analysis suggests that inter-well flow is generally up-dip
or horizontal within the Morrow B. Flow patterns are affected by depth variations in the
Morrow B and erosional features that may prohibit south-southeast ward flow crossing
the center of Farnsworth Field where the depth of the Morrow B changes due to erosion of
the underlying Hunton Formation. Here, the impermeable caprock of the Morrow B- the
Thirteen Finger- might prohibit southward flow.

1D and 2D Petroleum system models were developed to understand the petroleum
system and petroleum migration pathways in the Farnsworth Field area. Four petroleum
source rocks were modeled in the northwest Anadarko Basin: the Woodford, Lower- and
Upper Morrow shale, and the Thirteen Finger Limestone. The models predict a basin-
ward increase in temperature and maturation; at the location of Farnsworth Field, the
model predicted CO2 reservoir is at present 74 ◦C, which is in excellent agreement with
the measured temperature at the time of discovery. In our modeled transect, the most
basin-ward location of the Woodford Shale is in the gas window; all other source rocks
are in the oil window. Woodford shale began to expulse hydrocarbons around 301 Ma in
the southern part of the section and around 206 Ma in the northern part; migration in the
other source rocks showed a similar temporal-spatial relation, with a more recent onset. In
the northwestern Anadarko Basin, petroleum migration was generally up-dip with local
exceptions; the Morrow B sandstone was likely charged by both formations below and
overlaying the reservoir rock. Along the modeled transect were several locations where
petroleum may have escaped to the surface. Our modeling shows that matrix-based CO2
migration risk through the caprocks is low.

Based on these analyses, vertical CO2 migration from the reservoir formation in
Farnsworth Field via geologic pathways seems unlikely; higher-quality geophysical datasets
than presently available should be analyzed to confirm this finding. Abandoned and aged
wells remain a risk for CO2 escape from the reservoir formation and deserve further
research.
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Abstract: Leakage pathways through caprock lithologies for underground storage of CO2 and/or
enhanced oil recovery (EOR) include intrusion into nano-pore mudstones, flow within fractures
and faults, and larger-scale sedimentary heterogeneity (e.g., stacked channel deposits). To assess
multiscale sealing integrity of the caprock system that overlies the Morrow B sandstone reservoir,
Farnsworth Unit (FWU), Texas, USA, we combine pore-to-core observations, laboratory testing, well
logging results, and noble gas analysis. A cluster analysis combining gamma ray, compressional
slowness, and other logs was combined with caliper responses and triaxial rock mechanics testing to
define eleven lithologic classes across the upper Morrow shale and Thirteen Finger limestone caprock
units, with estimations of dynamic elastic moduli and fracture breakdown pressures (minimum
horizontal stress gradients) for each class. Mercury porosimetry determinations of CO2 column
heights in sealing formations yield values exceeding reservoir height. Noble gas profiles provide a
“geologic time-integrated” assessment of fluid flow across the reservoir-caprock system, with Morrow
B reservoir measurements consistent with decades-long EOR water-flooding, and upper Morrow
shale and lower Thirteen Finger limestone values being consistent with long-term geohydrologic
isolation. Together, these data suggest an excellent sealing capacity for the FWU and provide limits
for injection pressure increases accompanying carbon storage activities.

Keywords: carbon sequestration; caprock integrity; noble gas migration; seal by-pass

1. Introduction

The Site Characterization program of the Southwest Regional Partnership on Carbon
Sequestration (SWP) assesses the integrity of caprock formations that immediately overlie
the Pennsylvanian Morrow B sandstone, which is the target reservoir for a combined
carbon capture, utilization, and storage (CCUS) project involving enhanced subsurface
oil recovery (EOR)–CO2 storage at the Farnsworth Unit (FWU), Texas, USA. Caprock
integrity is the ability of generally low permeability and high capillary entry pressure
formations overlying a reservoir—typically referred to as caprocks—to impede movement
of fluids from the reservoir below and thus display sealing. Capillary sealing behavior
arises from the nanoscale pore throats and interfacial fluid properties of the wetting
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phase in the caprock (e.g., brine) and the non-wetting phase of the reservoir (e.g., CO2
or hydrocarbons). However, caprocks may contain “seal-bypass systems”, which are
features and/or processes that allow reservoir fluids to move out of the reservoir [1], while
wettability of reservoir and caprock can be altered by carbon storage and/or enhanced
hydrocarbon recovery procedures [2]. Seal-bypass systems may include discontinuous
coverage of the sealing lithologies over the reservoir, natural or induced fracture networks,
faults, permeable injectites (i.e., structures formed by sediment injection) or other geologic
pipe structures, and man-made intrusions such as leaky wellbores [1]. Implicit in the
concept of caprock sealing behavior is a timescale of interest, which for geologic CO2
storage is 100 s to 1000 s of years.

This chapter presents a novel caprock integrity study that focuses on evaluating
geologic sealing behavior for capillary, fluid flow, and mechanical properties at different
spatial and temporal scales. Specifically we assess: 1. Pore-scale capillary sealing and
microstructure; 2. local seal bypass mechanisms; 3. seal regional lateral continuity across
reservoir scales; 4. mechanical integrity of the reservoir-caprock package to fluid pressure
perturbation; and 5. reservoir-scale hydrologic isolation over relevant time scales. This
requires a multiscale approach using a variety of techniques to cover the range of length
and time scales, processes, and features involved in caprock integrity (Figure 1). To these
ends we examine well log- to sub-core scale heterogeneity of the reservoir and sealing
lithologies of the Morrow B sandstone lithologies, the upper Morrow shale top seal, and the
overlying Thirteen Finger limestone secondary sealing lithologies. Capillary heterogeneity
is examined using mercury porosimetry. We examine evidence for existing fractures and
faults that could serve as seal bypass systems under present day stress orientations, as
well as geomechanical constraints on induced seal bypass features associated with CCUS
and EOR activities within the FWU. The lateral continuity of sealing units in the FWU is
assessed via subsurface mapping. The large-scale sealing capacity of these lithologies as
have occurred over the geologic time is assessed using noble gas measurements collected
from fresh core. Formation-scale features examining the scale of the entire FWU and
regional stratigraphic architecture using seismic methods have been discussed by Rose-
Coss et al. [3,4] and Ampomah et al. [5]. Together this data set provides a unique time-
integrated assessment of caprock integrity over engineering to geologic time- and length-
scales relevant to CCUS.
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Figure 1. Features, processes, and measurement resolution relevant to the assessment of caprock
integrity (adapted from the original Figure 36 in [6] and the modification thereof in Figure 1.1 in [7]).

2. Site Location and Geologic Setting

2.1. Unit History and General Geology

The FWU is located in Ochiltree county, Texas, USA (Figure 2), with the nearby
Arkalon Ethanol Plant and Agrium Fertilizer Plant supplying anthropogenic CO2 for
enhanced oil recovery in the field. Production and injection at FWU occur strictly within
the Pennsylvanian Morrow B sandstone (Figure 3; [5]). “Morrow” is an operational name
that refers to a sequence of alternating mudstone and sandstone intervals deposited during
the Morrowan period of the late Pennsylvanian [8]. The Morrow B delineates the first
sandstone package deposited below the Atokan Thirteen Finger limestone [9,10].

The primary caprock intervals at FWU are comprised of the upper Morrow shale and
the Thirteen Finger limestone (both operational names/units in the FWU; Figure 3). The
Thirteen Finger limestone is an informal name for a series of predominantly carbonate

61



Energies 2021, 14, 5824

cementstone intervals that are intercalated with black carbonaceous mudstone deposited
during the Atokan period of the late Pennsylvanian (Figure 3; see also Trujillo [10] and
Rose-Coss [9]).

Figure 2. Locations of wells in the Farnsworth Unit (outlined in blue) used in assessing local and
field-wide caprock integrity. Red lines in show locations of inferred faults (modified from Balch and
McPherson [11] and Hutton [12]).

Both the Morrowan and Atokan intervals are common throughout the Texas and Ok-
lahoma panhandles, southeastern Colorado, and western Kansas. Overlying stratigraphy
includes Late Pennsylvanian through the Middle Permian shales and limestones, with
lesser amounts of dolomite, sandstone, and evaporites [8,12–14].

2.2. Tectonic Setting

The FWU sits on the northwest shelf of the Anadarko basin in the Texas Panhandle.
From the FWU, the basin plunges to the southeast where it reaches depths of over 40,000 ft
(12,192 m) adjacent to the Amarillo-Wichita Uplift [15,16]. Maximum rates of subsidence
occurred during Morrowan to Atokan times [14–17]. Positive features which might have
influenced deposition within the region include the Ancestral Rockies to the north, the
Central Kansas uplift to the north-east, and the Wichita-Amarillo uplift to the south [17,18].
The structural grain of the basin was inherited from the Precambrian to Cambrian failed arm
of a triple junction known as the Southern Oklahoma Aulacogen [15,16]. The region was
then tectonically quiet until the beginning of the Chesterian-Morrowan, when the Wichita-
Amarillo uplift and the ancestral Rockies formed as a result of the northeast-directed
basement-involved thrust faulting associated with collision between the North American
and Gondwanan plates [14,15,19,20]. Fault movement within the Wichita-Amarillo uplift
is characterized by the vertical block movement and left-lateral strike slip movement. The
vertical fault movement began in the Chesterian and then continued predominantly at the
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end of the Morrowan into the Atokan time period [17]. This period of faulting created
normal faults with a down-to-the-south displacement parallel to the axis of shear associated
with the Amarillo uplift. The left-lateral strike slip movement occurred afterwards in the
late-to-post Atokan and is expressed as anticlinal horst blocks and synformal grabens
diverging at intersections from the main shear zones [17]. Tectonic activity slowed after
the Atokan and the region was quiescent by the end of the Pennsylvanian. Local uplifts
and associated basins combined with climate variations at time of deposition set the stage
for the stratigraphic variations seen in the core, and especially evident in the Thirteen
Finger limestone.

 
Figure 3. Stratigraphic columns of three SWP characterization wells (modified from Rose-Coss [9]).
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3. Materials and Methods

3.1. Coring Program, Petrologic Description, and Well Log Analysis

The coring program was designed and implemented in 2013 and 2014 by the SWP and
former operator Chaparral Energy LLC, which targeted the primary Morrow B sandstone
reservoir and the overlying caprocks, the upper Morrow shale, and the Thirteen Finger
limestone. The coring program included core analysis plans to support major SWP project
objectives and/or research topics on CO2 storage capacity, injectivity, and plume extent;
storage permanence; and injection- and/or production-induced reservoir damage, and
included a suite of petrophysical, petrological, geomechanical, and geochemical testing.

Schlumberger ran a large suite of wire-line tools for caprock and reservoir characteriza-
tion, and wellbore integrity assessment in cooperation with the SWP, which had personnel
in the field to observe drilling and coring of Well 13-10 A and 13-14, and to assist with
core preservation and core handling. Terra Tek, now a Schlumberger company, performed
core handling in the field and initially housed the core for initial characterization and
sampling. Initial core reviews were performed by Sandia National Laboratories (SNL),
New Mexico Tech (NMT), and Chaparral Energy to choose sample locations for petrologic,
petrophysical, geomechanical, and geochemical analysis to be performed by Terra Tek, SNL,
and NMT. SNL and NMT coauthors submitted formal plans to Terra Tek, which included
sampling and/or analysis for thin sections (of the caprocks and reservoir rocks and of
fractures), relative permeability and capillary pressure, routine plug analysis, mercury
porosimetry, Routine Core Plug (RCPA), and Tight Rock Analysis (TRA) (both by Terra
Tek), X-ray diffraction, geochemical analyses including pyrolysis and vitrinite reflectance,
and geomechanical testing.

To help quantify heterogeneity and guide sampling densities for laboratory testing,
the multi-well Heterogeneous Rock Analysis (HRA; [21]) was performed by Schlumberger
using proprietary methods. For HRA of FWU reservoir and caprock lithologies, results of
gamma ray, deep resistivity, bulk density, neutron porosity, and compressional slowness
logs were combined with caliper responses to make a preliminary assessment of rock
classes, which resulted in determining eleven separate rock unit classes: Two for the
reservoir lithology (Morrow B) and nine for the caprock lithologies (upper and lower
Morrow shale and Thirteen Finger limestone). More discussion on core descriptions and
core photographs are found in Rose-Coss [9] and Trujillo [10].

3.2. Petrologic Characterization

Petrologic methods involved standard optical thin-section petrography and backscat-
tered electron microscopy conducted at both SNL and NMT, using methods described by
Rose-Coss [9] and Trujillo [10] and facilities at the New Mexico Bureau of Geology and
Mineral Resources (NMBGMR) and New Mexico Tech. We report here on some backscat-
tered imaging results, with additional details and petrography given by Rose-Coss [9] and
Trujillo [10].

3.3. Petrophysics

Detailed descriptions of methods used in the report analysis of the coal and organic-
rich shales (performed by Terra Tek) are given by Rose-Coss [9]. Descriptions of Terra
Tek tight rock analysis and pressure pulse decay methods for permeability of caprock
lithology core plugs are given in Trujillo [10]. Intrusion-extrusion mercury porosimetry
was performed on core plugs by Poro-Technology, a Micromeritics company, using a
Micromeritics AutoPore IV 9500 Series porosimeter. Core plugs were oriented either
vertically or horizontally (i.e., parallel or perpendicular to the long axis of the core). The
core plugs were approximately 0.9-inch (2.3 cm) diameter by 0.9-inch (2.3 cm) long and were
jacketed with epoxy for directional intrusion. Poro-Technology made closure corrections
accounting for volumes of mercury injected that did not penetrate into the pore space prior
to the pressure achieving the mercury entry pressure of the pore space. Breakthrough
pressure or the pressure at which a non-wetting phase penetrates a rock through the
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connected pore space [22], was estimated for core plugs using methods of Dewhurst
et al. [23]. Breakthrough pressures were converted from the mercury-air system to a CO2-
water system and to CO2 column heights using the methods of Ingram et al. [24]. We use
an interfacial tension value of 484 mN/m for the mercury-air-rock system, and a contact
angle of 140◦. We assumed a geothermal gradient of 25 ◦C/km and a hydrostatic pressure
gradient of 0.0098 MPa/m to estimate the density of CO2 and water at the depths of the
core plugs. Interfacial tension values for the water-CO2 system assumed zero ionic strength
and used the methods of Heath et al. [25]. Contact angles for the water-CO2-mineral system
were estimated from Iglauer et al. [26] for quartz, calcite, and mica, resulting in a range of
10 to 57◦.

3.4. Geomechanics

A series of rock mechanical tests were performed on rock core sampled and tested at
Terra Tek’s laboratories in Salt Lake City, Utah, using standard techniques. These include
Brazil tension (or cylinder splitting) tests, unconfined compression tests, and triaxial
compression tests. These were used to extract static elastic properties, rock unconfined
and triaxial strength, and tensile strength information from samples from all three SWP
characterization wells in the FWU. A standard Mohr-circle analysis was used to delineate
failure envelopes for sampled lithologies.

3.5. Fracture Analysis

Under the guidance of coauthors, Terra Tek performed a detailed analysis of macro-
scopic fractures on nearly 270 ft of continuous whole core from Well 13-10A. The fracture
descriptions focused on identifying fracture types based on morphologic characteristics
and intensity. As the core was not oriented, Terra Tek drew an arbitrary “North” line on
the core to enable the measurement of relative orientation of measured fractures. Fracture
attributes measured include fracture strike and dip relative to this North line, general
fracture type, type of mineral fill, type of oil stain, fracture porosity, fracture spacing, and
intensity of fractures for each cored interval. Fracture classes include those induced from
drilling or coring versus natural fractures that may or may not exhibit shear, extension
or mineralization. Terra Tek analysis included tabulation of fracture types by depth and
stereo plots of relative fracture orientations by fracture type.

3.6. Preservation of Fresh Core and Noble Gas Analysis

Core preservation for noble and other pore fluid gases followed procedures found in
Osenbrück et al. [27]. Especially, designed canisters were built from high-vacuum service
equipment to seal samples against atmospheric contamination. Sub-samples of core were
weighted and sealed in canisters immediately in the field after the core was retrieved to the
Earth. A purging and vacuum pump-down process evacuated atmospheric noble gases
from the canisters using methods described by Heath [7]. Helium, neon, and argon isotopes
were analyzed at the University of Utah Dissolved and Noble Gas Laboratory in Salt Lake
City, Utah, USA. After the transfer of gases into a purification line, the analysis followed
the methods described by Hendry et al. [28].

4. Results

As stated in the introduction, assessing caprock integrity for EOR-CCUS involves a
multiscale examination of the ability of a caprock lithology or set of lithologies to sustain
emplacement of a body of CO2 for a given time. For CCUS, this may be 100 s or 1000 s of
years. One aspect for CCUS that is favorable for use of CO2 for oil recovery and storage
is the fact that the same caprock invoked for CO2 uses the same caprock involved in oil
and gas storage over the geologic time. We know from the long history of subsurface
engineering at FWU that storage under EOR conditions is favorable for CO2 containment.
We need to build confidence that injection and emplacement conditions under CCUS best
practices does nothing to threaten the integrity of sealing potential of caprock lithologies.
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To this end, we examine the integrity of the FWU upper Morrow shale and Thirteen
Finger limestone from five perspectives: 1. Characterizing the heterogeneity within the
caprock lithologies from well logging and core properties; 2. characterizing the capillary
heterogeneity of unfractured lithologies and calculating abilities to sustain a capillary seal
to CO2 of a given volume or column height; 3. evaluating the potential of existing fractures
and faults to serve as seal bypass features, as well as assessing the potential for creation
of new fractures or reactivating old ones under injection-perturbed stress conditions;
4. characterizing the physical, stratigraphic continuity, and consistency/heterogeneity in
the caprock lithologies over the reservoir extent; and 5. assessing the sealing capacity over
the geologic time using noble gas distributions. Together, these five topics constitute a
multi-length and -time scale assessment of caprock integrity for CCUS at the FWU.

4.1. Heterogeneity at “Well Log”- to Core-Scales

Well logging has been the stalwart of petroleum exploration in determining rock
heterogeneity and its application for CCUS, which is of special import for the sealing
potential in that core recovery of delicate mudstone lithofacies, is difficult. A workflow for
the caprock analysis begins with well logging, proceeds to core description and analysis (if
the core is available), and then to subsampling for laboratory analysis. In this section, we
utilize the Terra Tek HRA to categorize the FWU reservoir and caprock into eleven distinct
lithofacies, which are mapped onto core descriptions and form a basis for subsequent core
plug sampling and analysis including mercury porosimetry and mechanical testing.

4.1.1. Lithofacies Interpretations of Caprock Units

Figure 3 shows stratigraphic columns of each core obtained from the three characteri-
zation wells at Farnsworth (the 13-10A, 13-14, and 32-8), depicting the extent of mud and
sand in the clastic mixture, including fractured zones, depositional fabrics (i.e., carbonate
hardgrounds, burrows, and coal cleats), and diagenetic features (i.e., carbonate “beef”,
concretions, and mineralized fractures) that could exert positive or negative influences
on caprock integrity. Details about these features are found with the accompanying core
descriptions in [9,10].

The upper Morrow shale is a marine mudstone that directly overlies the Morrow B
sandstone reservoir (Figure 3) and thus serves as the primary caprock. It is composed
of three common mudstone lithofacies (Table 1) including the black laminated mudstone
(blM), calcareous mudstone.

The (cM) and green bioturbated mudstone (gbM) as determined by [9]. The lower
portions of the upper Morrow shale consist of the gbM facies, which is transitional from
the sands of the Morrow B reservoir. The green bioturbated mudstone (gbM) lithology is a
slightly fossiliferous, organic-rich, slightly calcareous mudstone, that contains scattered
quartz, feldspar, muscovite, and calcareous fossil-hash silt. The middle portion of the
upper Morrow shale consists of the blM facies, which is interpreted by [9] to be deposited
under anoxic conditions, consisting of fissile, slightly fossiliferous organic-rich mudstone.
This facies gradually transitions upward into the cM facies, a more friable and calcareous
mudstone that contains several hardgrounds (i.e., cemented paleo sea-floor surfaces) that
are found to be laterally continuous through the FWU [9,10]. The variable degree of
cementation in the cM facies imparts a heterogeneity to the geomechanical response, as
discussed later.

The overlying Thirteen Finger limestone was deposited in a marine environment
that underwent several cycles of transgression and regression during deposition [29]
and consists mostly of black carbonaceous mudstone (bcM) lithofacies alternating with
limestone layers [9,10]. On inspection, the limestone layers consist of diagenetic carbonate
cement or diagenetically enhanced carbonate content and thus are denoted as cementstone
lithofacies (cC; [9,10]). Fossil hash concentrations and pyrite nodules occur in varying
amounts throughout the mudstone lithology, and there are some coal seams of varying
thickness. The Thirteen Finger limestone is a widely distributed formation with a distinct
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wireline log signature with recognized open and healed vertical fractures that may provide
a permeable network, especially towards the top of the unit [29,30].

Table 1. FWU caprock lithofacies descriptions (after Rose-Coss, 2017 [9]), TOC analysis, and assigned color for HRA rock
classification (Terra Tek).

Facies and Description Sedimentary Features TOC% HRA Color

Thirteen Finger limestone

(cC) Carbonate cementstone, micritic
dolomite, and dedolomite, grey to white

Well indurated, smooth, sparse cemented
fractures, abrupt to gradational

bounding surfaces
2.3 Light Blue

(bcM-a) Well indurated black carbonaceous
mudstone and siltstone, locally calcareous

pyrite nodules, fossil hash, bioturbation,
bedding-parallel fibrous calcite veins

(“beef” of Cobold, 2013)
0.44–10.7 Black

(bcM-b) Fairly well indurated
carbonaceous black mudstone

Floating sand grains, abundant to
moderate burrowing 0.44–10.7 Purple

(bcM-c) Black mudstone and coal Coal with thin layers of mudstone 0.44–10.7 Olive

(bcM-d) Black to grey laminated mudstone
with silt partings

Locally dolomitic, fossiliferous, organic
rich partings (plant fragments) 0.44–10.7 Orange

(bcM-e) Poorly indurated black
carbonaceous mudstone Locally dolomitic, fossiliferous 0.44–10.7 Grey

Morrow shale

(cM) Calcareous mudstone, brown to grey,
green laminated to massive, broken and

bioturbated sections, friable

Slightly fossiliferous, laminations,
bioturbation, coal 0.44–10.7 Brown

(blM) Black, laminated mudstone Low angle to planar laminations,
concretions, fossil hash 0.53–2.7 Red

(gbM) Friable, bioturbated mudstone, olive
to gray, laminated to massive, friable

Low angle to planar weak laminations, low
to moderate bioturbation, abundant

microfossils
0.30–1.0 Yellow

The caprock lithofacies in Table 1 are mapped onto the Terra Tek HRA classification
scheme as described in [31] denoted by the colors in the last column of Table 1. Note that
the Terra Tek HRA procedure recognizes the variability in the mechanical integrity of the
bcM lithofacies of the Thirteen Finger limestone, and we have denoted this by additional
labels (i.e., bcM-a, bcM-b, etc.). Figure 4 summarizes the results of the HRA performed by
Terra Tek from the well log variability in Well 13-10A [31]. The HRA facies designations are
shown by the color strip down to the middle of the figure, and one can discern the Morrow
B sandstone (dark blue), lower Morrow shale (red), upper Morrow shale (yellow, red, and
brown going from deep to shallow), and the Thirteen Finger limestone, with multiple
alternating bands of color. The lithologic breaks in the Thirteen Finger limestone are easily
discernable from gamma and density logs, for example, a close examination of the density
logs and gamma ray “kicks” reveals the storied thirteen shale members of the Thirteen
Finger limestone alternating with the carbonate layers (designated by the light blue color
bands). Variability in the mechanical integrity within the shale layers of the Thirteen Finger
limestone is manifested in five distinguishable subunits of the bcM lithology, shown by
separate colors. Later, we distinguish these layers in terms of mechanical behavior, and,
for example, moving from elastically stiff to compliant layers we would have the HRA
color designations Black > Purple > Olive > Orange > Grey. HRA logs for Wells 13-14
and 32-8 are given by Figures S1 and S2 in the Supplementary Materials accompanying
this paper. The HRA analysis is commonly performed in the realm of unconventional
“shale” reservoirs [21,32,33] and is a means to better understand the mudstone lithological
variability given the poor core recovery and general difficulty in obtaining core-plug
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samples for standard analyses, which can lead to a sampling bias and over-representation
of the strengths of these materials.

A mapping of HRA color designations and facies designations from core logging
performed by Rose-Coss [9] is facilitated by petrographic observations from thin sections
prepared from the core obtained from the 13-10A, 13-14, and 32-8 Wells. These were
performed by Steve Cather of the NMBGMR (Personal Communication, 2017) and are
summarized in Tables S1–S3 in the Supplementary Materials. From this, we determine that
the Orange HRA refers to Bcm facies with more abundant carbonate, the Olive designation
refers to coal layers and the black mudstone above and below that encapsulates them, and
the grey Bcm lithofacies is the least indurated, and as such has the least values of dynamic
and static elastic moduli (shown later). Black and purple HRA units are the most indurated
of the bcM facies.

The caprock lithologies would classify as silt- (quartz, carbonate, organic matter)
bearing clay-rich mudstone and clay-dominated mudstone (Figure 5A,B; classification of
Macquaker and Adams [34]). From thin section observation [9,10], the mudstones contain
variable amounts of organic matter, quartz, and macro and microfossils. Authigenic pyrite,
calcite, and dolomite are common. Many of the cementstone layers contain fractures, which
are commonly filled with carbonate cement [10]. The limestone is somewhat unusual, in
that it is dominated by diagenetic carbonate (Figure 5C,D). The limestone locally contains
a significant biogenic carbonate [10]. Thus, most of the limestones in the Thirteen Finger
limestone are more properly classified as cementstones. This interpretation is supported by
the obvious occurrence of concretions in the core (Figure 5D), which are similar in character
to the limestone beds.

Although most of our attention is devoted to the caprock, we refer to lithologies
in the Morrow B sandstone reservoir for comparison purposes. Lithologic descriptors
associated with the color codes for the Morrow B sandstones are far simpler and relate to
the hydrologic flow units discussed by [2,4], carrying a dark blue or green HRA designation
as shown in Figure 4 above and Figures S1 and S2 in the Supplementary Materials.

4.1.2. Porosity and Permeability of Sealing Lithofacies

With the HRA mapped onto core descriptions, representative core plugs of the eleven
lithofacies were analyzed for porosity, water and oil saturation, and gas permeability via
Terra Tek’s RCA at depth intervals of approximately 3 ft if core plugs were attainable, and
these are mostly Morrow B (reservoir) lithologies. Data for Well 13-10A are given in the
Appendix of Rasmussen et al. [2], data for the other two Wells (13-14 and 32-8) are given
in Table S4 in the Supplementary Materials, color coded by the HRA rock class. Here,
we present the porosity and permeability of the mudstone and limestone lithofacies that
were recoverable in the coring and represent the sealing lithologies for CO2 containment
at FWU. The relatively poor core recovery of mudstones is evident as a sampling bias
with more core plug data evident from the Morrow B sandstone and the Thirteen Finger
limestone lithologies.

These results are summarized in Table S5 for all three characterization wells and are
mapped to both the caprock facies designation of [9] and the HRA color unit. In Figure 6,
we plot the total porosity and permeability by depth for mudstone and limestone members
of the Morrow B sandstone (depth range shown in purple), the overlying upper Morrow
shale (depth range shown in green), and of the Thirteen Finger limestone (depth range
shown in pink). Although there is well-to-well variability, in general, the Morrow shale
mudstones have higher porosity and slightly higher permeability than mudstone and
limestone in the other formations. Porosities and permeabilities of the hydrologic flow
units in the Morrow B sandstone are considerably higher, with porosity values ranging
largely from 15 to 20%, and permeability ranging from 10 to 1000 mD (orders of magnitude
higher than the mudstone facies of the caprock units at FWU shown in Figure 6; see
Figure 2 in [2]).
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Figure 4. Well 13-10A heterogeneous rock analysis log showing the color by the rock unit and depth. Depths are given in
feet and converted to meters by multiplying by 0.3022. Note that the logging depth and coring depth contain discrepancies
associated with the coring procedures.
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Figure 5. (A) Back-scattered electron image of a silt (carbonate, organic matter) bearing clay-rich mudstone in the Morrow
shale. Stratigraphic-up is to the left, with siltier rich laminae on the left and clay-rich laminae on the right. Black portions
are organic matter, and white features are pyrite framboids. Well 13-10A, 7633.76 ft. (B) Backscattered electron image of
silt (quartz, calcite, organic matter) bearing clay-rich mudstone in the Morrow shale. Stratigraphic-up is to the left. Black
particles are organic matter, irregular dark gray particles are quartz, light gray rhombs are ankerite, white grains are pyrite.
Well 13-10A, 7632.6 ft. (C) Backscattered electron image showing calcite (light gray), dolomite (dark gray), and pyrite (white)
cemented mudstone (cementstone) in the Thirteen Finger limestone, Well 13-10A, 7540.65 ft. (D) Core photographs showing
the variable geometry of limestones in the Thirteen Finger limestone. Some limestones are laterally continuous throughout
the width of the core, whereas other are laterally discontinuous (concretionary). Well 13-10A, depths indicated on the photo.
See [9,10]) for additional images and descriptions.

4.2. Capillary Heterogeneity and Sealing Capacity

The sealing capacity in the context of CCUS is the CO2 column height that is retained
by the capillarity of a water wet rock. Here, we estimate CO2 column heights (using
calculated pore throat diameters and breakthrough pressures) for the different reservoirs
and caprock lithologies using MICP analyses from core plug samples, which is summarized
in Table S6 in the Supplementary Materials. The pore throat size distributions for the
Morrow B sandstone, upper Morrow shale, and the Thirteen Finger limestone for the west
and east side of the FWU are compared in Figure S3 and the accompanying text in the
Supplementary Materials. There is a clear difference in the reservoir and sealing lithologies
across the FWU as one would expect. The Morrow B sandstone pore throat diameters
show a broad range over five orders of magnitude (0.0003 to 1000 μm), whereas the upper
Morrow shale and Thirteen Finger limestone show a much narrower range over two orders
of magnitude (~0.003–0.1 μm).
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Figure 6. Porosity and permeability of Farnsworth mudstone lithofacies within the Morrow B sandstone (purple), Morrow
shale (green), and Thirteen Finger limestone (pink) for Wells 13-10A, 13-14, and 32-8. Color schemes and depths correspond
to those in Figure 3. Data were determined from the Terra Tek tight rock analysis (TRA) methodology.

The mercury porosimetry results were used to calculate the CO2 column heights
for the caprock and reservoir formations using the standard methods [7] and are shown
by depth for the three characterization wells in Figure 7. The CO2 column heights for
the upper Morrow shale and the Thirteen Finger limestone range from 1000 to 10,000 m
(3280–32,808 ft). The cementstone lithology in the Thirteen Finger limestone has 11,000 m
of CO2 column height, with an average of 9000 m (29,527 ft). Two of the cementstone
samples reached the upper limit of pressure 60,000 psi (414 MPa), that the MICP instrument
is capable of sustaining, with no observable intrusion of mercury.

The mudstone lithologies within the upper Morrow shale and Thirteen Finger lime-
stone have an average CO2 column height of 2900 m (9514 ft), with a range of 1000 to
10,000 m (3280–32,808 ft). Not unexpectedly, the caprock CO2 column height values are
1-to-2 orders of magnitude larger than the sandstone reservoir values and exceed the
reservoir thickness, suggesting an excellent caprock integrity. The CO2 column heights
for the Morrow B sandstone reservoir ranged from about 1 to 100 m (3.3–328 ft). These
results would suggest that the Morrow shale and Thirteen Finger limestone caprock should
provide an excellent capillary sealing for CO2 for CCUS operations in the FWU. Note that
these results refer to the lithologic properties of the rock matrices themselves. In order
to further examine the question of caprock integrity, we need to examine in detail the
potential of various seal by-pass features both in the form of existing natural fractures and
in the potential for inducing fractures during injection and operation phases of CCUS-EOR.
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Figure 7. CO2 column heights for Wells 13-10A, 13-14, and 32-8 determined from the MICP analysis. “MB” denotes the
Morrow B sandstone; “UMS” denotes the upper Morrow shale, and “13 Finger” denotes the Thirteen Finger limestone.

4.3. Seal Bypass Potential and Mechanical Integrity
4.3.1. Natural and Induced Fractures

Natural fractures in mudstone lithologies can impact fluid-flow, fracture permeability,
and mechanical strength of the rock [35], all critical aspects for caprock integrity. To
understand how natural fractures impact the ability of FWU caprock lithologies to prevent
CO2 leakage, we need to characterize fracture apertures and density, as well as orientation
spatially and in reference to the current in situ stress orientations. Orientation aspects are
especially relevant as: 1. Fractures are generally strength-limiting at above-core length
scales, and the increase in pore pressure can induce slip and permeability increases for
suitably oriented fractures [36,37]; 2. fracture orientation with respect to the in situ local
stress tensor affects aperture width and thus permeability; and 3. fractures induced by fluid
injection, i.e., hydrofractures, propagate in directions dictated by the local stress tensor. It is
also important to distinguish fractures induced by coring, as these are not indicative of the
state of fracturing in the subsurface, but additionally can aid in determining orientations of
principal stresses in the subsurface as described below.

Fractures in FWU caprock were described via the fracture class type, orientation,
fracture dip, type of mineral fill, fracture porosity, fracture spacing, and intensity for Wells
13-14 and 32-8 [31]. For the Well 13-14 core, a detailed analysis of macroscopic fractures
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was conducted on nearly 270 ft of continuous whole core material, approximately 123 ft of
which contain significant fractures. For our purpose here, we focus on fracture data from
Well 13-14 in the interval corresponding to the upper Morrow shale as it is the primary
caprock lithology, and Well 13-14, being in the western portion of the FWU, is where the
CO2 injection is being monitored by the SWP. Although the 13-14 core is unoriented, the
coring-induced fracture orientations allow an estimation of core orientation with respect to
principal stress orientations in the subsurface at FWU.

There are four types of fracture classes identified in the Well 13-14 core that include:
Drilling or coring induced fractures; open low angle shear fractures; high-angle partially
open fractures that heal through a carbonate interval; and filled fractures, generally a
low angle. Drilling-induced fractures are the most abundant. Mineralized fractures are
rare, but the most common mineral in-fill recognized is calcite. Rose diagrams indicating
relative fracture orientation of all observed fractures in the Morrow shale were created for
each fracture class and shown in Figure 8. The natural fractures in 13-14 show a similar
orientation to the induced fractures and may indicate that the timing of the natural fractures
to be more recent, i.e., formed under current stress orientations. According to the Snee and
Zoback [38] stress map of Texas (see also [10]), the FWU should be located in a transitional
stress state between a normal faulting regime and a strike-slip faulting regime where the
maximum horizontal stress (SH) is slightly less but approaching the vertical stress Sv in
magnitude (i.e., SH~Sv > Sh where Sh is the minimum horizontal stress). The orientations of
maximum horizontal stress in the Texas Panhandle, determined from horizontal breakouts,
trend from SE-NW to EW, which would be the expected orientations of hydrofracture
propagation, as well as open fractures (which open in a direction perpendicular to the least
horizontal compressive stress direction).

If these orientations are indeed characteristic of natural fracture orientations at FWU,
and if we understand the orientations of the principal stress directions, we can then
determine critical dip directions for existing fractures that might be induced to slip upon
pore pressure increases associated with injection. This is beyond the scope of the present
chapter but will be addressed in a later work. However, the coincidence of the coring
induced fractures and the natural fractures would suggest that these fractures would
be of a critical orientation for slip (i.e., shear fracture) associated with fluid-injection
induced overpressure. What works well for caprock integrity, however, is the relative
rare occurrence of fractures overall in the FWU caprock lithologies as represented by
core analysis.

4.3.2. Static and Dynamic Geomechanical Behavior

It is important to understand the limiting strength of the shallow crust posed by
existing fractures [37], and as well it is necessary to understand the heterogeneity in
matrix rock mechanical properties. Static rock mechanics properties concern poro-elastic
deformation, yielding, and ultimate rock strength and failure. A typical suite of rock
mechanics tests that permit parameterization of constitutive models includes an unconfined
compression (UCS) test (a right cylinder of rock is exposed to an axial load with no confining
load applied to the round surface of the cylinder), several triaxial (TXC) tests at different
confining pressures (an axial load is applied to the long axis of the cylinder with a constant
confining pressure applied to the cylinder sides), and a hydrostatic test in which the
rock cylinder is subject to a constant applied pressure, with or without the separately
controlled pore pressure. A deformable jacket surrounding the cylinder keeps the pore
and confining systems separate. These tests allow us to examine the variability of static
elastic properties (i.e., Young’s Modulus and Poisson’s Ratio, which can either be used
to represent an elastically isotropic medium or be directionally dependent, which is a
simplified means to assess elastic anisotropy, for example, with respect to the primary
bedding direction), yielding behavior (involving inelastic processes such as microfracture
growth and coalescence or pore collapse), and failure (involving complete loss of cohesion
of a deforming rock generally by a through-going shear fracture).
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Figure 8. Strike rose diagrams for fractures observed in the Well 13-14 core for the Morrow shale (7660–7722 ft). (A) Coring-
induced fractures; (B) all natural fractures; (C) open fractures; and (D) partially or totally mineralized fractures. The
coincidence in directions between coring induced fractures and natural fractures existing at FWU suggests that the stress
conditions resulting in the natural fractures were of similar orientation, and that natural fractures occurring in the FWU
caprocks would be kept open under current subsurface stress conditions.

An extensive suite of geomechanical properties have been assembled from the Terra
Tek testing program for the FWU characterization wells [31]. One valuable aspect of the
data set is the degree to which it maps properties on rock units based on Terra Tek’s HRA
methodology for sampling and testing. We focus here on elastic properties, failure envelopes,
and fracture gradients as they concern sealing lithology responses to fluid injection.

Static and dynamic elastic properties are represented as continuous profiles that
combine well logging, Terra Tek’s HRA analysis, and laboratory measurements on the core
that is used for calibration. These are presented in Figures S4–S6 in the Supplementary
Materials. The results for the eleven HRA rock classes for well 13-10A are summarized in
Figure 9.
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Figure 9. Static Young’s Modulus (A) and Poisson’s Ratio (B) determined by combining ranges interpreted from well log
static rock compression tests illustrating the contrast in elastic properties of the Morrow B sandstone reservoir and the
Morrow shale and Thirteen Finger Limestone caprock for Well 13-10A. The left-hand figures show values for samples
oriented horizontally, and the right figures show values for samples oriented vertically. In general, horizontal values are
slightly higher than vertical values, reflecting an anisotropy likely derived from depositional fabrics.

In general, horizontal values are slightly higher than vertical values, reflecting an
anisotropy likely derived from depositional fabrics. The highest values (with light blue)
are found in the Thirteen Finger limestone cementstones, the next highest correspond to
the black color (Bcm facies in the Thirteen Finger limestone), whereas the lowest values
(orange and grey) are weaker Bcm lithofacies in the Thirteen Finger limestone. Morrow B
sandstone lithofacies (dark blue) and Morrow shale (yellow, red, and brown) lithofacies are
intermediate in value. In general, this is not an unexpected degree of elastic heterogeneity,
but could influence how the caprock responds to a reservoir-scale increase in pore pressure
associated with CCUS activities.

Of greater interest for caprock integrity is the failure behavior of the suite of relevant
rock types, and these are presented as failure envelopes in Figure S7 in Supplementary
Materials. Due to core recovery issues, the triaxial testing results are limited to the more
competent lithofacies, whereas for caprock integrity, the weaker lithofacies which were
not recovered or were otherwise damaged during coring are of greater interest as these
lithologies would represent the greater threat to sealing integrity from fluid injection and
over-pressuring. However, the results of the triaxial testing were useful as calibrations
for well log data in a proprietary approach by Terra Tek to estimate fracture gradients.
Figure S7 shows Coulomb failure envelopes for Thirteen Finger limestone and Morrow
shale caprock and Morrow B sandstones created by combining UCS and triaxial test data
for these rock types. As discussed by Trujillo [10], Morrow B sandstones are much weaker
with much lower cohesion than the mudstone or limestone lithofacies in the upper Morrow
shale or the Thirteen Finger limestone.

4.3.3. Fracture Gradients in Farnsworth Reservoir and Sealing Lithologies

We bracketed the orientation of the three principal stresses within the FWU from
regional observations [38], which may correspond to directions of open and induced
fractures in the upper Morrow shale. There is a vertical maximum principal stress, a
minimum horizontal stress in the orientation of 350◦ (North-South), and a maximum
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horizontal stress orientation at about 270◦ (East-West). A more difficult determination is
an assessment of magnitude of the principal stresses (vertical/overburden stress, Sv, the
maximum horizontal stress, SH, and the minimum horizontal stress, Sh), and addressing
this is beyond the scope of this paper. However, based on the rock mechanics testing data
and the Terra Tek analysis (summarized in Figures S4–S6 in the Supplementary Materials),
we can bracket the minimum horizontal stress gradient required to exceed rock strength
and propagate fractures. These estimates are typically used to limit the extent of injection-
associated pore fluid overpressures so as to not damage formations during injection and
production activities. For CCUS in the FWU, these values are important to consider. Based
on the in situ stress orientations in the FWU, any fractures created in the weaker reservoir
lithology would be oriented vertically (for joints or tension fractures) or steeply dipping
(in the case of shear fractures), given the orientations of the least principal stresses.

Estimates of the minimum horizontal stress gradient in FWU caprock and reservoir
lithologies are determined from the Terra Tek suite of testing shown in Figures S4–S6 and
are summarized in Figure 10 for all three characterization wells. The lowest values are in
the well 13-14, but in general values cluster around 0.70 to 0.80 psi/ft (1 psi/ft is equivalent
to 0.0226 MPa/m). Although some of the lowest values are in the caprock lithologies, so are
the highest values, with the Morrow B sandstones falling generally below 0.75 psi/ft. Pore
pressure gradients range from 0.43 psi/ft in the Thirteen Finger limestone and increase to
0.585 psi/ft in the upper Morrow shale [10], while an estimated vertical stress gradient
is 1.1 psi/ft. With a fracture gradient of 0.7 psi/ft at a depth of 7700 ft (2347 m) in the
reservoir, the maximum pore pressure that could be attained within the reservoir without
fracture is ~5390 psi or ~37 MPa. At the caprock-reservoir interface the fracture gradient is
0.85 psi/ft at a depth of 7668 ft (2337 m), the maximum pore pressure that could be attained
within the caprock without fracture is ~6518 psi (~44.9 MPa). Injection-induced pressures
by the CO2 in the western portion of the field are on the order of 5000 psi (34.5 MPa), which
is below the maximum level. The fracture gradients indicate that the Morrow B sandstone
reservoir is weaker than the overlying lithologies, so any fracture initiated around CCUS
injection wells in the FWU should not propagate into the overlying sealing units.

4.4. Seal Continuity across the Farnsworth Unit

Isopach maps of the upper Morrow shale and Thirteen Finger limestone across the
FWU were prepared from formation tops and bottoms after data compiled by [9] and are
shown in Figure S8 in the Supplementary Materials, along with the total caprock thickness.
The minimum thickness for the upper Morrow shale occurs in the middle of the FWU at
~42 ft (12.8 m). The minimum thickness of the Thirteen Finger limestone occurs in the
western portion of the FWU at around 60 ft (18.3 m). In general, the caprock thickness
ranges from 240 ft (73.2) in the eastern portion to ~120 ft (36.6 m) in the western portion
of the FWU. The lateral caprock continuity easily suggests that seal integrity would be
anticipated along the mapped extent of the FWU.

4.5. Seal Integrity Inferred from Noble Gas Analyses

Measurement of naturally occurring noble gases in a vertical profile from the preserved
fresh core in the reservoir and caprock units complements the other caprock integrity
analyses as the pattern of noble gas isotopic content is the direct in situ integrated result of
the driving forces and transport properties through the reservoir and the caprock. Thus, the
noble gas isotopic profile reflects the original infiltration of groundwater with atmospheric
noble gas contents and the addition of subsurface geogenic noble gases, which are affected
by transport via advection and/or diffusion and potentially more recent reservoir activities
since FWU water flooding began in the 1950s. Noble gas profiles that reflect diffusion-
dominated transport are expected for high sealing quality caprock, whereas caprock with
seal bypass systems (i.e., an interconnected fracture network) may result in an advective
noble gas profile [7].
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Figure 10. Estimated minimum horizontal stress (fracture) gradients by rock class for each of the three
characterization wells. In general, the Morrow B sandstone rock classes (light and dark blue) have
lower values indicating they are more easily fractured. Propagating vertical fractures associated with
injection-induced hydrofracturing would likely not propagate into the overlying caprock formations.

The context for interpreting noble gas data measured in this study is that atmo-
spherically sourced isotopes are 20Ne and 36Ar, whereas geogenic isotopes sourced in
the subsurface are 3He, 4He, 40Ar, and 22Ne [39]. Isotopic ratios for atmospheric, crustal,
and mantle reservoirs are well known and used to identify sources of fluids in petroleum
systems [40]. The measured 3He over 4He ratio (R) from FWU samples, normalized by that
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same ratio for the atmosphere (Ra), have values of ~0.02 for most measurements within
the Thirteen Finger limestone and the upper Morrow shale (Figure 11, see the left-most
column; values are listed in Table S7 in the Supplementary Materials). These values of
~0.02 are consistent with crustal fluids—the crustal end-member R/Ra value is 0.02, which
represents the dominant production of 4He from U and Th decay [40]. Deviations from
values of ~0.02 occur within the Morrow B sandstone and near the top of the Thirteen
Finger Formation (Figure 11).

The Morrow B sandstone deviations from 0.02 R/Ra are most likely caused by the
long-term water flooding in the Farnsworth Unit, which initially used groundwater sourced
from the Miocene Ogallala Formation in the Texas, USA, Panhandle that probably had
R/Ra values at closer to 1.00 than the older caprock fluids (younger groundwaters will
probably have values closer to one than the older crustal fluids; see [40]). The R/Ra value
greater than 1.00 in the Morrow B sandstone may be an artifact of the laboratory analysis.
Mantle-sourced fluids have R/Ra values much greater than one [40], but this is unlikely as
a source due to the rest of the samples being less than one. Complex phase partitioning
between groundwater, oil, and any gas phase may also lead to ratios greater than one.
Ratios of 4He/20Ne, normalized by the atmospheric value, are several orders of magnitude
greater than one for most samples, thus indicating high helium concentrations due to the
long-term production of 4He from U and Th in the sealing lithologies with low permeability
and low effective diffusivity. The very distinct change in R/Ra from the Morrow B into the
upper Morrow shale indicates that the upper Morrow shale is a good seal at least at that
contact measured by the coring.

Due to the high amount of methane and helium in many samples as observed during
the laboratory analysis, sample splitting was necessary, which affected the reliability of the
argon values. Thus, argon values were not reported by the laboratory for several samples
(Table S7). The argon isotopic values that are available also reflect some processes that
introduce fluids into the system that may have been in equilibrium with the atmosphere
(Figure 11). A sample within the upper Morrow shale has a relatively low light-to-heavy
Ar isotopic ratio, which is expected as 40K within the formation would produce 40Ar.

The deviations from 0.02 R/Ra for the Thirteen Finger limestone may be due to the
improper sealing or leakage of the preservation canisters, as such leakage would bring
the values closer to 1.00, which may be likely for the sample at depth 7515 ft (2290.57 m)
as its R/Ra is 0.47, and its neon and argon isotope ratios are close to the atmospheric
values (Figure 11). However, the adjacent sample at depth 7502 (2286.01 m) also has a
relatively high R/Ra of 0.034 and its neon and argon ratios are slightly shifted from the
atmospheric equilibrium values. Thus, it is possible that some process occurs near the top
of the Thirteen Finger limestone to introduce a minor atmospheric source of (meteoric)
fluids or is otherwise fractionating the noble gases. We speculate that the observed natural
fractures may permit fluid movement that has larger R/Ra than the crustal values of ~0.02
of the rest of the Thirteen Finger limestone and upper Morrow shale samples. This would
suggest that although the upper Morrow shale and lower Thirteen Finger limestone appear
to have been isolated from the surrounding fluid movement (and fluid contamination
associated with decades-long water flooding operations at FWU), the upper portions of the
Thirteen Finger limestone may have been infiltrated by fluids in contact with atmospheric
noble gas isotopic values.
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Figure 11. Noble gas ratios versus depth for Well 13-10A. The subscript m stands for the ratio measured for the sample,
whereas the subscript ASW stands for the air saturated water value for the ratio.

5. Discussion

Direct formation-scale assessment of caprock integrity is difficult in a large part from
the heterogeneity at all scales. Wire-line logging and seismic techniques may lack resolution
to identify potential seal-by systems (e.g., such as connected fracture networks that are
below seismic resolution). Assessments of capillary heterogeneity and geomechanical
behavior from small-scale core-plug measurements may not be representative of hetero-
geneity across formation scales and can reflect a sampling bias from the core recovery.
However, both methods are used to infer large-scale behavior, which may include modeling
to integrate to the reservoir and caprock properties made at different locations and different
scales [41]. To build confidence in and understanding of caprock integrity at FWU, this
study approaches caprock integrity by systematically assessing processes that govern the
sealing quality at different scales following the framework of Figure 1. Thus, the processes
are examined from nanoscale capillary-wettability controls to mechanical properties and
the full caprock-reservoir system behavior via sedimentological-stratigraphic evaluation
and large-scale in situ noble gas transport. Small-scale sealing integrity is confirmed by
MICP measurements of high breakthrough pressures and very high estimated CO2 column
heights for the upper Morrow shale and the Thirteen Finger limestone. Mechanical proper-
ties from core measurements indicate that, as the Morrow B sandstone is relatively weak,
fractures that may be induced from CO2 injection activities would probably not propagate
into the upper Morrow shale. The naturally occurring in situ noble gas isotopic profile
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builds confidence that water flooding and production reservoir operations prior to coring
of Well 13-10A did not damage a high-quality sealing caprock as the helium ratios are quite
different across the Morrow B sandstone and upper Morrow shale contact. The thickness
and lateral continuity of the upper Morrow shale and Thirteen Finger limestone further
strengthen the argument for a high-quality sealing caprock system at FWU.

6. Conclusions

Our main conclusions from this study are drawn from the five topics in the Results
Section and are as follows:

• A cluster analysis of rock heterogeneity based on well log and other analyses by Terra
Tek shows that the caprock lithologies at FWU can be grouped into nine separate
units. This classification forms the basis for subsampling and core plug analysis (when
possible), as well as determinations of static and dynamic rock mechanics properties
and fracture gradients.

• MICP results show that sealing units in the Morrow shale and Thirteen Finger lime-
stone units should provide excellent sealing capacity for storage of CO2 in the Morrow
B Sandstone injection unit, as calculated CO2 column heights exceed the thickness of
the Morrow B. Cementstones in the Thirteen Finger limestone have anomalously high
sealing potential and strength, and the ability of these thin bands of tight carbonate to
serve as seals by themselves would be limited only by their lateral continuity.

• An assessment of fracture gradient across the reservoir and caprock lithologies is
drawn from the HRA, well log analysis, and laboratory triaxial testing. The range
of fracture gradients show that formations should be able to support a relatively
large injection-induced overpressure to around 7 or so MPa (~a thousand psi) over
hydrostatic pressure values at the depths of interest. Existing fractures are apparently
rare in the FWU caprocks but may have orientations that suggest creation under exist-
ing stress conditions at FWU, given the similarity in orientations to coring-induced
fractures. Failure analyses show that the Morrow B sands are weaker than overlying
lithologies, so that any fracture initiation around the injection well would not be
expected to propagate into the overlying sealing units.

• Caprock units including the upper Morrow shale and Thirteen Finger limestone show
sufficient thickness and lateral continuity across the FWU suggesting good sealing
potential, barring any significant seal by-pass features.

• The noble gas analysis from fresh core shows that the caprock lithologies show no
degree of leakage from historical water and CO2 flooding in the FWU, whereas the
Morrow B sandstone shows an impact from historical EOR activities. The upper
Thirteen Finger limestone contains noble gas values that are consistent with invasion
by meteoric waters, whereas the middle and lower Thirteen Finger limestone and
upper Morrow B shale contain values that suggest hydrologic isolation.

Together, these analyses conducted at different scales strongly suggest an excellent
sealing capacity for the Morrow shale and Thirteen Finger limestone lithologies. This is
ascertained from the high degree of capillary sealing, the low potential for seal bypass, and
the large regional extent of the caprock lithologies in the FWU.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/en14185824/s1, Tables S1–S3: Caprock thin section petrologic descriptors with Schlumberger
Heterogeneous Rock Classification (HRA) assigned unit color; Table S4: Summary of petrophysical
properties (Terra Tek routine core analysis); Table S5: Terra Tek tight rock analysis for mudstone and
limestone lithofacies in the Morrow shale and Thirteen Finger limestone; Table S6: Mercury intrusion
data and associated analysis by rock class for the 13-10A, 13-14, and 32-8 characterization wells;
Table S7: Results of noble gas analysis, including the sample mass and supplementary estimates
of wet bulk density, total porosity based on laboratory analysis on fresh core samples or well
log interpretation; Figure S1: Well 13-14 HRA summary and accompanying well logs used in
the analysis; prepared by Schlumberger; Figure S2: Well 32-8 HRA summary and accompanying
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well logs used in the analysis, prepared by Schlumberger; Figure S3: Pore throat diameter in
microns vs. incremental non-wetting phase saturation by formation and well location, from mercury
porosimetry measurements; Figure S4: Well 13-10A interpolated static and dynamic rock mechanics
properties based on Schlumberger/Terra Tek HRA log analysis and lab experiments (shown as red
and black dots); Figure S5: Well 13-14 interpolated static and dynamic rock mechanics properties
based on Schlumberger/Terra Tek HRA log analysis and lab experiments (shown as red and black
dots); Figure S6: Well 32-8 interpolated static and dynamic rock mechanics properties based on
Schlumberger/Terra Tek HRA log analysis and lab experiments (shown as red and black dots);
Figure S7: Coulomb failure envelopes for representative caprock lithologies from triaxial core testing;
Figure S8: Isopach maps of caprock lithologies in the Farnsworth Unit. A. Morrow shale; B. Thirteen
Finger limestone; C. Total caprock thickness (after Rose-Coss 2017, [9]).
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Abstract: This paper presents probabilistic methods to estimate the quantity of carbon dioxide
(CO2) that can be stored in a mature oil reservoir and analyzes the uncertainties associated with the
estimation. This work uses data from the Farnsworth Field Unit (FWU), Ochiltree County, Texas,
which is currently undergoing a tertiary recovery process. The input parameters are determined
from seismic, core, and fluid analyses. The results of the estimation of the CO2 storage capacity of
the reservoir are presented with both expectation curve and log probability plot. The expectation
curve provides a range of possible outcomes such as the P90, P50, and P10. The deterministic
value is calculated as the statistical mean of the storage capacity. The coefficient of variation and
the uncertainty index, P10/P90, is used to analyze the overall uncertainty of the estimations. A
relative impact plot is developed to analyze the sensitivity of the input parameters towards the
total uncertainty and compared with Monte Carlo. In comparison to the Monte Carlo method, the
results are practically the same. The probabilistic technique presented in this paper can be applied in
different geological settings as well as other engineering applications.

Keywords: carbon dioxide storage; storage efficiency factor; probabilistic; expectation curve; Monte Carlo

1. Introduction

In recent decades, global warming as a result of the greenhouse gas effect has become
the forefront of every discussion worldwide [1–4], and it signifies how much this unabated
issue is of concern to the inhabitants of the world. To address this issue, this study focuses
on the ways in which the greenhouse gas effect can be reduced by capturing, utilizing, and
storing anthropogenic CO2 gas in geologic formations.

From the literature, CO2 can be stored in deep saline formations, unmineable coal
beds, and oil and gas depleted reservoirs [5–8]. In analyzing these geologic formations,
coal beds that may serve as good candidates for geological storage of CO2 are those in
which the coal is unlikely to be mined in the future and which have sufficient permeability.
This option for CO2 storage is still under the demonstration phase [9]. CO2 storage in
hydrocarbon-bearing reservoirs and deep saline formations is normally required to be at a
depth exceeding about 2652 ft [9]. At this depth, the ambient temperature and pressure
will usually cause the CO2 to exist in the liquid or supercritical state. At these conditions,
the density of the CO2 varies from 50% to 80% of that of water [9].

The liquid CO2 behaves as some crude oils do and tends to rise due to buoyant forces.
The presence of a high-quality cap rock is required to impede the upward migration of the
liquid CO2 and ensure that it remains trapped underground. When the CO2 is injected
into the reservoir, it compresses and fills the void spaces available by partly displacing
the in-situ fluids. In a hydrocarbon depleted reservoir, the displacement of in situ fluids
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results in improved oil recovery and also creates a large volume of space for CO2 storage.
Generally, potential storage volumes are estimated to range from a few percent to over 30%
of the rock bulk volume [9]. Upon injection of the CO2 into the underground storage, the
fraction of the CO2 that would be stored depends on both the physical and geochemical
trapping mechanisms. The physical trapping mechanism includes a cap rock that prevents
the upwards movement of the liquid CO2 and capillary forces that keep the liquid CO2 in
the tiny pore spaces.

Nonetheless, porosity can remain open below the caprock, and this allows for the
lateral migration of the CO2. For such conditions, additional trapping mechanisms are
necessary for continual CO2 entrapment. The geochemical trapping involves the reaction of
the injection of CO2 with in-situ fluids and rock. The CO2 dissolves in the formation water,
which becomes denser and sinks further into the formation. Also, injection of CO2 increases
the reservoir pressure and, in the presence of formation water, there is the tendency for
hydrate formation to occur at low temperatures [10]. The formation of hydrates can impact
the CO2 storage by reducing the capacity through flow blockage or improve the storage
capacity through the trapping of the CO2 in an ice-like solid. Hence, a fraction of the
injected CO2 is being stored over millions of years.

Methods of estimating the storage capacity for different types of storage can vary
greatly. Deriving an estimate for a saline aquifer can be complex because as many as four
trapping mechanisms may be present at different times or rates, or may all be operating
simultaneously [6]. Estimating capacity for an oil or gas reservoir may be easier, partly
because of the greater availability of data acquired during exploration and production.
The quantification of the CO2 storage capacity is based on the fundamental assumption
that the injected CO2 will fully occupy the void spaces created by the produced oil. This
assumption holds for reservoirs not in hydrodynamic contact with an aquifer or that
have not undergone flooding during secondary and tertiary recovery [6]. Based on this
assumption, the prospective CO2 storage estimation for any reservoir may be assessed
using two techniques: the production and volumetric approaches.

The production-based method utilizes the estimated ultimate recovery (EUR) of a
reservoir and assumes CO2 can replace its equivalence. Using the production approach to
estimate CO2 storage capacity for a geologic formation is not a common procedure. A few
researchers have suggested methodologies to be used for the production approach. Among
them is Frailey [11], who has developed models analogous to decline curve analysis (DCA)
and mass balance (for gas reservoirs), used in the petroleum industry, to estimate storage
capacity for a saline aquifer formation. The DCA model is valid for an exponential decline
under pseudo-steady state conditions. The production-based approach is associated with
several uncertainties. The amount of CO2 injected is not a direct replacement for the
amount of hydrocarbon produced. The differences in molecular size, shapes, chemistry,
and adsorption properties between injected CO2 and methane (CH4), a major component
of produced gas, also contribute to the uncertainty [12].

The use of the volumetric approach to quantify the storage capacity of a geologic
formation is common. Many, including the United States Department of Energy (USDOE),
have suggested a formulation to estimate the storage capacity for different geologic for-
mations. The volumetric approach for the quantification of the CO2 storage capacity is
based on the methodology used in the industry to calculate the oil initially in place (OIIP)
or gas initially in place (GIIP) [7]. It requires the product of the area, net thickness, average
effective porosity, formation volume factor, and in situ CO2 density [7]. Frailey [11] also
presented another approach using compressibility to estimate the storage capacity of a
geologic formation. Injecting CO2 into an underground reservoir causes the in-situ fluid
(water) to compress further into the micropores as the pore pressure increases, and this, in
turn, increases the effective pore volume. The addition of these volume changes is the extra
volume that the CO2 can occupy. This is only valid for a closed reservoir. In comparison,
the uncertainty of the volumetric approach stems from the original estimation of the rock
volume and the pore space available for CO2 storage.
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The quantification of reservoir properties is not a straightforward approach due
to uncertainty accompanied by the vague and imprecise knowledge gained from the
interpretation of data acquired from the formation [13]. The reservoir is not uncertain; the
uncertainty lies in the ability to fully describe and understand the heterogeneity of the
reservoir [14]. A reservoir is influenced by many complex geological processes, such as
movements due to plate tectonics, alteration of fluid properties due to uplifts or burials, and
precipitation and dissolution of a variety of minerals due to various diagenetic processes,
and all contribute to the uncertainty associated with the quantification of a reservoir
properties. Hence, to quantify a reservoir using a deterministic method will not yield a
good result since there is a range of possible outcomes. This is due to the uncertainties
associated with the imprecise data obtained from the technology employed in revealing
the information of the reservoir. In fact, the probabilistic method is better in quantifying a
reservoir since its model incorporates a range of values and generates a range of possible
outcomes. Additionally, this method also provides a viable technique to analyze the
uncertainty [15].

The main goal of reservoir uncertainty analysis is to quantify and reduce the total
uncertainty to help yield better output. The process requires identifying the factor which
contributes most greatly to the total uncertainty. Uncertainty about an estimate needs to be
minimized to be the most useful in decision making. Achieving this does not come easily,
as the process of reducing uncertainty can be expensive. To improve the outcome of a
project to enhance decision-making at a minimal cost, Zee Ma [14] suggests these questions
should be addressed: How much data is available? How much data can be available?
Moreover, how much data is needed? Addressing these questions improves efficiency
while preventing additional costs from data acquisition because uncertainty will always
exist regardless of the methodology [15].

The storage efficiency factor is one of the most sensitive parameters which affect
the total mass storage of the CO2 and a poor estimation of this can cause the estimation
of reservoir storage capacity to be grossly inaccurate. The storage efficiency factor was
first introduced in the regional scale assessment of the storage capacity in the United
States and Europe in 2007 [16]. Since then, various authors have delved into the subject
using different approaches. Bachu [16] reviewed and analyzed the gaps of different
methodologies presented by various authors on the storage efficiency factor. The efficiency
factor depends on the rock and fluid properties, CO2 storage operation, and regulatory
constraints. Below are some reviews which illustrate different approaches to estimate the
storage efficiency factor.

Brennan [17] determined the residual storage efficiency using pressure, temperature
gradients, depth ranges, irreducible water and gas saturation, and relative permeability
between CO2 and the existing pore fluids. The residual efficiency outcomes were mapped
against the reservoir depth to generate an efficiency gradient at respective depths. Although
this is a promising approach to determine the efficiency factor since it is sensitive to pore
geometry, it is computationally expensive.

Park et al. [18] also determined the efficiency factor by flooding a core plug with water
and displacing the water with ScCO2. Although the experiment was conducted under
reservoir temperature and pressure, the distilled water used is subjective to true output
representation of the efficiency factor affected by total dissolved solids (TDS) [17]. Also,
Rasmussen et al. [19] show that aged cores better represent the wettability of the reservoir
than cleaned cores; hence, this method will not reflect the storage efficiency factor.

For this paper, the storage efficiency factor will be estimated using saturation differ-
ences from the relative permeability curve of the Morrow B reservoir as a function of the
hydraulic flow unit (HFU).

The main objective of this paper is to improve our existing assessment of the amount
of CO2 that can be stored in the Morrow B sandstone at the Farnsworth Field Unit (FWU) in
Ochiltree County, Texas. To achieve the objective, this study will focus on the quantification
of the CO2 storage capacity of the Morrow B reservoir and analyzing the uncertainties
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associated with it. The estimation and computations conducted are based on data obtained
from the Farnsworth Unit located in Texas. Ampomah et al. [20] compared and demon-
strated that among the probabilistic techniques—first-order, parametric, and Monte Carlo
simulation methods— the parametric method, which is an analytical procedure, can be
generated with ease within a spreadsheet and also can be used as a substitute for the Monte
Carlo simulation with a minute to no difference in the output. Hence, the parametric
method will be used to quantify the storage capacity of the Morrow B reservoir. This
paper will greatly contribute to the scope of carbon capture, utilization, and storage (CCUS)
research and industrial projects.

2. Methods

2.1. Theory

This section presents the mathematical formulations employed to estimate the CO2
storage capacity successfully. Although there are many analytical procedures used in the
estimation of reserves, the volumetric approach is generally employed in the petroleum
industry to estimate reserves. However, the input parameters for the volumetric equation
are underlain with many uncertainties, which are dependent on the geologic setting
and quality of geologic and engineering data available [21]. Hence, it is expedient not
to depend on deterministic computations that provide a single best estimate but rather
probabilistic computations, which provide a range of outcomes that reflect the input
parameters’ underlying uncertainties.

The statistical distribution of input parameters used in mathematical models is an
important facet of probabilistic analysis. In the volumetric approach of reserves estimation,
the probability density function (PDF) for input parameters can be a normal distribution,
triangular, and/or lognormal. Chen [22] presented a new approach for generating statistical
input distributions such as mean and standard deviation, from an existing data set. Normal
or Gaussian distribution is bell-shaped and symmetric to the mean. The normal distribution
is mostly defined by the mean and standard deviation of the input parameter X~N (m, s2).

The PDF equation for a random variable X represented by normal distribution is
shown in Equation (1). The mean, median, and mode are generally equal for normal
distributions due to their symmetrical nature. In situations where the amount of data
is limited, the triangular distribution is mostly employed. A triangular distribution is
represented by a minimum (a), mean (m), and a maximum (b) to indicate a random variable
X (X~triangular (a, m, b)). A PDF equation to specify a triangular distribution of a random
variable X is shown in Equation (2). A random function is lognormally distributed when
the logarithms of the values of X are normally distributed. The lognormal distribution is
mostly asymmetric and represented by ln(X) ~ N (α, β2). For a lognormal distribution, the
degree of skewness increases with an increase in standard deviation. For a minute standard
deviation, the lognormal distribution behaves like that of normal distribution. Equation (3)
illustrates a PDF of the lognormal distribution. Normal and lognormal distributions are
used in this paper.
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The volumetric equation proposed by USDOE [8] for the determination of CO2 storage
for an oil and gas depleted reservoir was altered and used for this project. Equation (4)
shows the altered equation utilized for this project.

GCO2 = A × hnet × φ × Shi X ρCO2 X Eoil/gas (4)

where GCO2 = mass CO2 storage capacity, MMtons; A = area, acre; hnet = net thickness,
ft; φ = porosity, fraction; Shi = hydrocarbon saturation, fraction; and Eoil/gas = CO2 storage
efficiency factor.

The efficiency factor was estimated by using the saturation differences of water, oil, and
gas. The fluids’ saturation was determined from water–oil and oil–gas relative permeability
curves from the various HFUs of the Farnsworth Field examined by Rasmussen et al. [19].
Relative permeability is a function of pore geometry, as well as mineralogy of the rocks in
and surrounding pores, and rock properties that influence pore geometry also influence
relative permeability [23]. Hence, wettability, fluid distribution, and fluid saturation
history also affect relative permeability. This makes the use of relative permeability an
even better method to determine the efficiency factor since such factors also influence the
efficiency factor.

Figure 1 illustrates both water–oil and oil–gas relative permeability curves with the
water and oil being the wetting phase, respectively. To determine the efficiency factor, it
was assumed for the oil–gas relative permeability curve that the water saturation in the
reservoir rock does not exceed its irreducible value. That is, water is present but immobile;
it only reduces the void spaces of the reservoir. Equation (5) was used in estimating the
efficiency factor.

E =
1 − Swc − Sorg − Sgc

1 − Swc − Sor
(5)

where E = efficiency factor; Swc = the connate water saturation; Sorg = the residual oil
saturation in the presence of gas; Sgc = the critical gas saturation; and Sor = the residual
oil saturation (before gas injection). From Equation (5), the efficiency factor for each of the
HFUs was determined and the mean and standard deviation were computed for use in the
parametric method.

Figure 1. Cont.
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Figure 1. Relative permeability curves of water(brine)-oil (left) and gas (CO2)-oil (right) created as a function of HFU of the
Farnsworth Field Unit. HFU III-V were considered for both water-oil and oil-gas relative permeability curves. HFU III-V
represents intermediate to highest permeability of Morrow B sandstone at a given porosity.

2.2. Parametric Method

The parametric method is an analytical procedure that uses common statistical infor-
mation such as mean (mj) and standard deviation (sj) and easily quantifies uncertainty. The
mathematical procedures are illustrated in Equations (6)–(11). The first step in parametric
uncertainty quantification is to transform the mean (mj) and standard deviation (sj) from the
original space to the lognormal mean (αj) and lognormal standard deviation (βj) as shown
in Equations (7) and (8), respectively. The output lognormal mean (αΩ) and lognormal
variance (βΩ

2) of hydrocarbon initially in place (HCIIP) is computed by summing input
lognormal mean (αj) and lognormal variance (βj

2) 8s illustrated in Equations (8) and (9),
respectively. Equation (14) is used to compute the relative impact of individual input. A
flow chart illustrating the parametric method is shown in Figure 2.

Vj =
sj

mj
, where V is the coefficient of variation (6)

β2
j = In

(
1 + V2

j

)
, where V2 is computed by equation (7)

αj = In
(
mj

)− 0.5 × β2
j (8)

αΩ = ∑ αj (9)

β2
Ω = ∑ β2

j (10)

Relative impact, μj =
β2

j

∑ β2
j

(11)

A lognormal output of mean (αΩ) and standard deviation (βΩ) are used to generate
various statistical measurements. These statistical outputs are categorized into three main
divisions that include measures of location, measures of variability, and measures of shape.
For example, P90, P50, P10, variance, and P10-to-P90 ratio are shown in Equations (12)–(16),
respectively [24].

P90(90% probability at least this value) = exp(α − 1.2816β) (12)

P50(50% probability at least this value) = exp(α) (13)

P10(10% probability at least this value) = exp(α + 1.2816β) (14)

Variance, s2 =
[
exp

(
2α + β2

)][
exp

(
β2

)
− 1

]
(15)

P10 − to − P90 ratio (uncertainty measure) = exp(2 × 1.2816β) (16)
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Figure 2. A flow chart showing a parametric procedure in probabilistic reserves estimation.

2.3. Plotting Tools

In this work, two approaches were utilized to present the probabilistic distribution
(expectation plots) of HCIIP estimation. They were the “manual” approach and the Mi-
crosoft Excel built-in function. The manual approach is generated with Equation (17). The
zc in the equation can be interpreted as the number of lognormal standard deviations. It
is obvious from the equation that one needs only the lognormal mean (α) and lognormal
standard deviation (β). The expectation curve becomes the exceedance probabilities (at
various confidence levels) vs. Pc (GCO2).

Pc = exp(α + zcβ) = P50 × exp(zcβ) (17)

Microsoft Excel has two built-in functions that can be utilized to generate expectation
curves (e.g., GCO2) at various confidence levels. These are LOGNORM.INV (x, lognormal
mean, lognormal standard deviation) and LOGNORM.INV (p, lognormal mean, lognormal
standard deviation). All input variables (x, α, β) > 0. The “p” is classified as a cumulative
probability (0 ≤ p ≤ 1). A plot of exceedance probabilities (1 − p) vs. x is the expectation
curve from these two functions. Outcomes from parametric studies can also be illustrated
by using a “log probability plot”. This straight-line plot elaborates the relationships
between key confidence levels.

3. Farnsworth Field Unit Static Model

The SWP has developed several generational geological models over the years, re-
volving around the acquisition of a new dataset. Ampomah et al. [25] presented the
second-generation geological model, which was based on preliminary seismic interpreta-
tions. In this work, reservoir properties such as porosity and permeability distributions
were modeled with geostatistical methods using data from core and well logs. In 2016,
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Ampomah et al. [26] presented an improved geological model that modeled the field
permeability distribution by developing correlations that separated the east and west sides
of the field, which appear to have different behaviors. Detailed geological descriptions for
FWU have been presented in several publications [1,25–32]. Ross-Coss et al. [33] presented
an updated geological model for the SWP project, which significantly improved the site
characterization efforts at FWU. This work developed a hydraulic flow unit (HFU) work-
flow based on pore throat aperture. The approach delineated the target reservoir into eight
geological units. The analysis showed that diagenetic processes highly influenced reservoir
property distribution as compared to depositional processes. The HFU methodology has
been the basis for subsequent model improvements within the Morrow B Sand at FWU.

Balch et al. [34] presented the latest static model, which forms the basis for this work.
This model extends from the vertical extent of the model to units above and below the
reservoir and cap rock. There are 14 geologic horizons. The improved static model has a
grid distribution of 189 × 179 × 106 with a total 3D grid of 3.6 million cells. Each grid block
has a dimension of 100 × 100 ft. Figure 3 shows the geological zones used for the structural
framework. This model does not include any previously mapped faults as ongoing work
has thrown existence of such faults into doubt. Reservoir properties for this latest static
model have been mapped from the Thirteen Finger Limestone (one of the caprocks) to
the base of the Morrow B sandstone. The property modeling workflow applied to each
formation depended on the data available and the formation characteristics. Integration
methods included artificial neural network facies identification from well logs and cores,
spatial variogram analysis, discrete and continuous distributions, and co-simulation with
elastic inversion properties. Spatial variograms from 3D seismic acoustic impedance were
used to condition property modeling within the upper layers due to limited well-log
information. The prominent caprock layers within this upper section include the Thirteen
Finger Limestone and Morrow Shale.

 

Figure 3. Geologic model framework elements.

The Morrow B formation was the target reservoir; it ranges in depth from 7550 ft to
7950 ft with an average dip of less than one degree. It has been interpreted as a fluvial
incised-valley deposit [29,30]. The thickness maps were used to estimate formation volume
and architecture. The Morrow B has an average thickness of 22 ft on the west side of the
field and 52 ft thick on the east side, with a mean thickness for the field of 24.47 ft and a
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standard deviation of 11.7 ft [33]. Figure 4 shows the net thickness map for FWU within the
field unit boundary. The thickest sands are restricted to the middle of the field, whereas the
sands thin along the periphery. Thicker accumulations occur in discreet areas such as to the
west of well 13-10A and to the east of well 32-8. The established HFU methodology based
on the Winland R35 was used to model porosity and permeability distribution within the
Morrow B Sand. Fifty-one wells with core porosity and permeability were utilized in the
HFU workflow, which quantified the heterogeneity within the target zone resulting in eight
(8) distinct delineations.

 

Figure 4. Net sand thickness within Morrow B reservoir based on well top information. The mean of the net sand is 24.47 ft
with a standard deviation of 11.65 ft.

Figure 5 illustrates how the depth and GR log for well 13-10A correspond to bedding
and core description. Subsequent columns illustrate log, core, and thin section porosity
along with log and core permeability. Porosity and permeability values were used to
compute the LogR35 log. Thin section mineralogy and pore type summation columns
were created based on point count data. Type thin sections for HFU1, HFU3, and HFU8
were placed in relative order to display where within the reservoir those particular HFUs
were located, and a depiction of the pore type associated with that HFU. Thin Section 1 in
Figure 5 is representative of HFU3. Here, intergranular space is almost filled with siderite
cement and detrital clay. However, there is a large amount of intragranular macroporosity
associated with grain dissolution. This hydraulic unit’s relatively high value for porosity
does not correspond to a high permeability value because of the lower likelihood of
intragranular space creating interconnected networks. From the thin section derived
mineralogy and porosity classes, it becomes apparent that the degree of cementation
and the degree of intergranular porosity development are primary controls on porosity
and permeability. Figure 6 shows a plot of porosity and log permeability to depict the
delineation within the reservoir based on the HFU. Figure 7 shows the 3D distribution of
porosity of the target Morrow B reservoir. Figure 8 shows modeled permeability based on
the porosity–permeability relationship.
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Figure 5. Well section displaying reservoir interval for well 13-10A on west side of field. From left to right columns are
depth (MD), gamma, bedding, sedimentary features, core description, porosity, permeability, LogR35, HFU categories, thin
section derived mineralogy, thin section pore type, and thin section photos displaying scale bar and HFU (designated HU in
this figure). Number on thin section image corresponds to location in core. Pink coloration in thin sections is pink-dyed
epoxy in pore space.

 

Figure 6. Porosity versus permeability for the 51 cored wells, separated by pore throat size into hydraulic flow units.

94



Energies 2021, 14, 7765

 

Figure 7. Porosity distribution for top of Morrow B created using Gaussian random function simulation co-kriged using the
volumes computed from the HFU property.

 

Figure 8. Permeability distribution created by propagating permeability as a function of porosity defined by hydraulic units.
Defining permeability in this way ensured that trends followed those predicted by the HFUs and did not simply assign
high permeability values to high porosity values.
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Volumetric Analysis

Initial fluid saturations for FWU were measured from special core analysis. The mean
of oil saturation was 69%, with a standard deviation of 3.45%. The initial reservoir pressure
and the temperature were 2217.7 psia at a datum of 4900 ft subsea and 168◦F, respectively.
The original bubble point pressure was 2073.7 psia, and a miscibility mean pressure range
of about 4200–4500 psia was also observed. The reservoir was slightly undersaturated
at the time of discovery. The supercritical CO2 (ScCO2) density was calculated using the
Span and Wagner equation of state [35]. The mean and standard deviation of the ScCO2
was estimated to be 47.7 lbm/ft3 and 0.47 lbm/ft3, respectively. Based on the relative
permeability curve of the FWU in conjunction with Equation (5), the mean efficiency factor
was 69.9%, with a standard deviation of 22.6%.

The several volumetric reserves’ computational parameters mentioned in the above
paragraphs, including area, net thickness, porosity, fluid saturation, ScCO2 density, and
storage efficiency factor, were used in analyzing the uncertainty of storage capacity po-
tential for the Morrow B reservoir using the parametric methods. A summary of input
parameters is presented in Table 1. All input parameters were assumed to be lognormal
distributed, although porosity, saturation, and ScCO2 density depicted close to normal
distribution due to their minute standard deviations, and these are illustrated in Figure 9.

Table 1. Mean and standard deviation of the input parameters used for the analysis.

Parameters Units
Mean Standard Deviation

mj sj

Area, A Acre 12,652.500 3795.750
Net thickness, hn ft 24.470 11.650

Porosity, Φ Frac. 0.141 0.020
Initial oil saturation, Soi Frac. 0.690 0.036

Efficiency factor Frac. 0.699 0.226
Density of CO2 lbm/ft3 47.700 0.470

 

Figure 9. The probability density function distribution of the input parameters generated by the Monte Carlo simulation.
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4. Results and Discussion

The main objective was to quantify the storage capacity of CO2 in the Farnsworth
Field Unit using the parametric method and to analyze the contribution of uncertainties
of the input parameters to the total uncertainty. The Monte Carlo simulation was also
presented to validate the results generated by the parametric method. This paper included
the presentation of a new static model of the field and presented a different methodology
in the estimation storage efficiency factor.

Most studies and simulations of the FWU have been focused on the west side of the
field, since this is the part of the field where the CO EOR project has been conducted. The
new model presented in this paper examines the CO2 storage capacity of both the west and
east sides of the FWU, as the east side may eventually have interest for CO2 EOR or carbon
storage. In 2010, the average pressure recorded on the east side was about 4700 psia [27].
The high pressure was a result of a successful waterflood and significantly demonstrates that
minimum miscibility pressure could be achieved if CO2 is injected into this side of the field.

Figure 9 shows the distribution of the input parameters of the FWU. Distribution
in nature was assumed to follow the logarithmic distribution. When the deviation of a
group of variables is small, the values are closer to each other. Then, the distribution of the
variables in the group is normal. However, when the deviation of the variables is large, that
is, the values are farther from each other, then the distribution of the variables in the group
is skewed. Now, from the outputted distribution of the input parameters, the porosity and
the initial oil saturation were normally distributed, but the area, net thickness, and efficiency
factor were highly dispersed, which further confirms the high heterogeneity of the formation.

The storage efficiency factor is one of the most uncertain parameters using the volumet-
ric approach in estimating the storage capacity of a geologic formation. It is influenced by
both rock and fluid properties. Studies show that the FWU is highly heterogeneous [19,27],
and also, due to the alternating water and gas injection, the wettability of the Morrow
B reservoir has changed to intermediate wet or mixed wet [19]. The estimation of the
storage efficiency factor using the relative permeability curve as a function of HFU better
represents the changes that have taken place in the reservoir due to productivity-enhancing
techniques. HFUs III-V were considered in the estimation of the storage efficiency factor,
as these represent the intermediate to highest permeability of the Morrow B sandstone at a
given porosity (Figure 9). The relative permeability generated from these core samples was
measured at an increasing order of pressure values from 3000 psi to 4000 psi, which mimics
the miscibility pressure of the reservoir. From Equation (5), the denominator represents
the theoretical space available for CO2 while the numerator represents the actual space
available for CO2. Assuming a constant irreducible water saturation (Swc), the storage
efficiency factor increases with reducing irreducible oil saturation after CO2 injection (Sorg)
and critical gas saturation (Sgr).

The volumetric approach suggested by the USDOE [8] for oil and gas depleted reser-
voirs was altered and used to estimate the storage capacity of the Morrow B reservoir. The
volumetric analysis uses reservoir rock and reservoir fluid properties to calculate hydrocar-
bon initially in place and the portion that can be recovered. Estimations of reserves using
this approach always result in uncertainties with the output. Based on the degree of uncer-
tainty, reserves are classified as proven (1P or P90), probable (2P or P50), and possible (3P or
P10) [36]. As a result, the probabilistic approach was used, which gives details of the entire
range of possible outcomes of the estimates instead of a single value like the deterministic
approach. Below is a statistical measure illustrating the quantities of the storage capacity of
the supercritical CO2 (GCO2) in the Farnsworth Unit (Morrow B reservoir).

From Table 2, P90 of both the parametric and the Monte Carlo simulation methods
yielded about 8 MMtons, indicating a 90% probability that the estimated GCO2 will be at
least 8 MMtons or 10% confidence that the estimated GCO2 will be less than 8 MMtons.
The P50, which equals about 18 MMtons, is the best estimate in terms of the probabilistic
approach, and it signifies a 50% probability that the estimated GCO2 will be at least
18 MMtons. The P10 is the most unlikely estimate in comparison to the P90 and P50. The
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P10 for both methods is about 41 MMtons, and it shows a 90% probability that the GCO2
will be less than 41 MMtons. The deterministic value is computed as the mean, which is
about 22 MMtons for both methods. There is a 37.6% probability that at least the estimated
GCO2 will be equal to the deterministic value.

Table 2. Summary of the statistical measure of the storage capacity distribution.

Various Statistical Measures of Storage Distribution Units Parametric Monte Carlo

P90 (90% probability at least this value), P90 = exp(α − 1.2816 β) MMtons 7.81 7.68
P50 (50% probability at least this value), P50(mG) = exp(α) MMtons 17.79 17.63

Mean (arithmetic), m = exp(α + 0.5 β2) MMtons 21.87 21.63
P10 (10% probability at least this value), P10 = exp(α + 1.2816 β) MMtons 40.52 40.58

Variance, s2 = [exp(2α + β2)][exp(β2) − 1] MMtons 244,029,852.89 234,984,702.95
Standard deviation, s = (variance)1/2 MMtons 15.62 15.33

Coefficient of variation, V = [exp(β2) − 1]1/2 0.71 0.71
P10-to-P90 ratio, P10/P90 = exp(2 × 1.2816 β) 5.19 5.28

Skewness, S = 3V + V3 2.51 2.30
Closeness of mean-P50 [(Mean − P50)/P50], C = exp(0.5 β2) − 1 0.23 0.23

Figure 10 shows the expectation curve, which illustrates the probabilistic distribution
of the CO2 storage estimation of the Morrow B reservoir. The expectation curve shows the
outcome of the estimated storage capacity at different confidence levels. The P99 and P1
on the expectation curve can serve as a good practical boundary for estimating the storage
capacity of the Morrow B sandstone. The expectation curve of both the parametric and the
Monte Carlo simulation yielded practically the same results. However, 10,000 simulation
runs were needed for the Monte Carlo simulation to generate these outputs. Also, for the
Monte Carlo simulation, prior knowledge of the results should be known to serve as a
guide for the number of simulations runs. Most of the time, the mean value is used. From
the expectation curve, it can be deduced that the probability that the GCO2 will lie between
7.81 and 40.52 MMtons is 80%.

Figure 10. Expectation curve illustrating the CO2 storage capacity at a different confidence level.
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Figure 11 illustrates a log probability plot (P90-P50-P10 straight line). From the log
probability plot, P90, P50, and P10 correspond to −1.2816, 0, and 1.2816 on the number
of lognormal standard deviations axis, respectively. Hence, in terms of the probability
distribution, it is in reverse order to the expectation curve. That is, the P90 comes first,
followed by the P50, then the P10 in ascending order. This P90-P50-P10 straight line is
similar to the expectation curve because all other statistical measures can be found on
this straight line. Hence, the P90-P50-P10 straight line displays the entire range of the
estimated distribution.

Figure 11. Log probability plot showing the probabilistic distribution of the storage capacity of the
Morrow B reservoir.

The standard deviation allocated to each of the input parameters indicates the uncer-
tainty with the mean value. The degree of the uncertainty value stems from how difficult it
is to determine that parameter. For instance, from Table 1, the standard deviation of the net
thickness is about half of its mean value, which signifies how uncertain and difficult it is
to accurately determine the exact value. However, the standard deviation of the ScCO2
density is insignificant as compared to its mean value. This is valid because the mean value
is established using different sophisticated pressure equipment in reading the miscibility
pressure through repeated experiments. These are also observed from Figure 9; the net
thickness is positively skewed while the ScCO2 density seems symmetrical.

From the expectation curve, the mean �= median �= mode and signifies the skewness
of the output probability density function. The expectation curve provides a good way of
visualizing the total uncertainty. The narrower the curve or the closer the curve is to the
vertical axis, the less is the total uncertainty. The log probability plot (P90-P50-P10 straight
line) also provides a way of analyzing the uncertainty. The steeper the P90-P50-P10 straight
line, the lesser the uncertainty to the total outcome.

The overall uncertainty of the Morrow B has a coefficient of variation of 71%, which
translated into a standard deviation of about 16 MMtons. The total uncertainty of output
increases with the product of input parameters. Hence, the total uncertainty is a result
of the degree of uncertainty of the individual input parameters. A relative impact plot
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was constructed to analyze the uncertainty of the individual input parameters towards the
total uncertainty.

From the relative impact plot showing in Figures 12 and 13, the net thickness con-
tributed the most to the total uncertainty of about 50%, followed by the efficiency factor,
which contributed about 25% to the total uncertainty for both the parametric and Monte
Carlo simulation. The net thickness, efficiency factor, and area together contributed about
95% to the total uncertainty. Relatively, the contribution of the efficiency factor to the total
uncertainty was less considering the different parameters which affect it. However, this
was expected considering how long the FWU has been produced; there were enough data
to estimate the efficiency factor.

 
Figure 12. Relative impact plot illustrating the contribution of the input parameters to the total
uncertainty. This plot also compares the sensitivity analysis of both the parametric method and the
Monte Carlo simulation.

Figure 13. Pie chart showcasing impact of the input parameters to the total uncertainty in percentages. The left and right
charts represent the results generated by the Monte Carlo simulation and the parametric method, respectively.

5. Concluding Remarks

This work utilized an approach using the relative permeability curve as a function
of the hydrologic flow unit to determine the storage efficiency factor and employed the
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parametric method to estimate the storage capacity of the Morrow B reservoir. It also shows
sensitivity analysis of the input parameters towards the total uncertainty.

From the new static model presented in this paper, it appears that the eastern side of
the field has sufficient storage capacity to make CCUS a feasible proposition, given the
right economic conditions.

The use of relative permeability curves to estimate storage efficiency factors is an ef-
fective and feasible approach. It is concluded that for constant irreducible water saturation,
the storage efficiency factor increases with the reduction of irreducible oil saturation after
CO2 injection (Sorg) and critical gas saturation (Sgc).

From the probabilistic output generated by both techniques, the parametric method
results show that at least 7.81 MMtons can be stored, 17.79 MMtons of CO2 can probably
be stored, and it may be possible to store as much as 40.52 MMtons of CO2 in the Morrow
B reservoir. The results outputted by the Monte Carlo simulation show similar results;
7.68 MMtons is at least proven to be stored, 17.63 MMtons can probably be stored, and it
may be possible to store as much as 40.58 MMtons of CO2 in the Morrow B reservoir. The
deterministic value, which is the single best estimate, was determined from the parametric
method and Monte Carlo simulation to be 21.87 and 21.63 MMtons, respectively. From
the relative impact plot, the net thickness, storage efficiency factor, and area contributed
about 95% to the total uncertainty for both techniques. To significantly improve the
estimation of the storage capacity of the Morrow B reservoir, this percentage needs to be
reduced drastically. The net thickness contributed the most to the total uncertainty, and
this should be the top-most priority to reduce the total uncertainty and better estimate the
storage capacity.

The probabilistic approach (parametric method) was successfully used to estimate the
storage capacity. Comparing both the parametric method and the Monte Carlo simulation,
the results were practically the same, although 10,000 simulation runs were used, and this
illustrates how computationally expensive the Monte Carlo simulation is. The parametric
method assumes input variables to be lognormally distributed. It is an analytical procedure
and can be performed in a simple spreadsheet application. This technique can be applied
in all disciplines that seek to quantify the feasibility of a project while analyzing and
quantifying total uncertainty. This technique may also assist management in decision-
making procedures by helping them to arrive at a viable conclusion.
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Abstract: Effective multiphase flow and transport simulations are a critical tool for screening, selec-
tion, and operation of geological CO2 storage sites. The relative permeability curve assumed for
these simulations can introduce a large source of uncertainty. It significantly impacts forecasts of all
aspects of the reservoir simulation, from CO2 trapping efficiency and phase behavior to volumes of
oil, water, and gas produced. Careful consideration must be given to this relationship, so a primary
goal of this study is to evaluate the impacts on CO2-EOR model forecasts of a wide range of relevant
relative permeability curves, from near linear to highly curved. The Farnsworth Unit (FWU) is an
active CO2-EOR operation in the Texas Panhandle and the location of our study site. The Morrow ‘B’
Sandstone, a clastic formation composed of medium to coarse sands, is the target storage formation.
Results indicate that uncertainty in the relative permeability curve can impart a significant impact on
model predictions. Therefore, selecting an appropriate relative permeability curve for the reservoir
of interest is critical for CO2-EOR model design. If measured laboratory relative permeability data
are not available, it must be considered as a significant source of uncertainty.

Keywords: relative permeability; geologic carbon storage; multi-phase flow simulation

1. Introduction

With the prospects of climate change looming and an ever-increasing demand for
power generation and heavy industry, reducing greenhouse gas emissions from large
point-source emitters, such as coal and natural gas power plants or fertilizer operations,
has become paramount. Geologic carbon storage (GCS) is one potential path for emission
reductions. Carbon dioxide is captured from the large point-source emitters, compressed
into a supercritical state and injected into a suitable storage formation such as a depleted
oil and gas reservoir or a deep saline aquifer [1–5]. Mature oil fields undergoing CO2-
Enhanced Oil Recovery (CO2-EOR) are another promising option for GCS that also offer
an economic benefit. The incremental recovery for CO2-EOR operations can produce an
additional 7–23% of the oil in place while simultaneously storing roughly 40% of the CO2
injected [6].

Multiphase flow and transport simulation that can characterize CO2 effects in oil and
water are an integral part of designing GCS projects for oil and gas fields. These simulations
are used in project design, permitting, forecasting oil production and storage capacity, and
quantifying possible site risks. Understanding the uncertainty in the simulation model
inputs and their impact on performance and predictions is critical for project success.
The permeability distribution in a reservoir is probably the biggest source of uncertainty,
followed closely by relative permeability. Three-phase relative permeability has significant
impacts on fluid flow and storage capacity, yet is poorly understood and often generalized.
Laboratory measurements have historically been focused on measuring two- and three-
phase relative permeability curves for oil and gas (CH4) reservoirs [7–9]. From these data,
empirical models have been developed which promise broad applicability, including use
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in GCS numerical simulations [7–14]. For this study, we utilized an empirical formula
for relative permeability developed by Corey [10] to described oil and gas flow in porous
media. This empirical formula was to create relative permeability curves for CO2-EOR
numerical simulations at our field site [15,16].

It is important to understand that when measuring three-phase relative permeability
(gas/oil/water), experimental methods generally fall into one of two categories. The first
general method measures pairs’ two-phase relative permeability, gas/oil and oil/water,
and then uses an empirical combination model such as Stone II or the Baker model to
calculate the three-phase relative permeability [7,13,14,17]. In the second general method,
all three phases are measured concurrently to create a true three-phase relationship for the
fluids of interest [8,17,18]. Generally, numerical simulation codes do not leverage three-
phase relative permeability data. Simulators such as STOMP use a two-phase empirical
model along with critical parameters like the residual wetting and non-wetting phase
saturations and a curve parameter to calculate the relative permeability from the fluid
saturations [19]. Alternatively, other numerical simulators, such as the Eclipse® numerical
simulator used in this study, leverage table data in the form of two-phase saturation
versus relative permeability tabular data coupled with linear interpolation between data
points [20]. These methods then use a combination model to calculate the three-phase
relative permeability. Either method requires the input data to be in the form of a pair
of two-phase relative permeability versus saturation curves, one for the gas/oil pair and
one for the oil/water pair. In this study, we leveraged the functionality in Eclipse® to use
tabular data by generating a suite of plausible curves using the Corey’s Curve empirical
formula, then importing those curves into the simulation model.

The choice of relative permeability curve can be a significant source of model uncer-
tainty. This uncertainty can come from the uncertainty inherent in laboratory measurements
or the general lack of relative permeability curves for most GCS candidate sites and for-
mations. At the time of this study, the target reservoir at our study site had a single pair
of binary relative permeability curves that were derived from a laboratory study [21,22].
Studies quantifying the model uncertainty related to the relative permeability curve on
numerical simulation forecasts are rare, and for our study site do not exist. Therefore, a
primary goal of this study is to evaluate how uncertainty in the relative permeability curves
impacts CO2-EOR model forecasts.

2. Study Site: Farnsworth Unit, Texas

The study site is the Farnsworth Unit, an active CO2-EOR site since 2010 located in the
Anadarko Basin of northern Texas. The target formation is in the Upper Morrow sequence
called the Morrow ‘B’ Sandstone. The field has produced 27 billion cubic feet of gas and
more than 1.9 million barrels of oil from the Morrow ‘B’ Sandstone, a fluvial valley-fill
sandstone [22–24]. The formation is at a depth of between 7550 and 7950 feet and is a series
of connected sandstone bodies dipping to the West at less than one degree [21,23,25]. The
sandstone sequences occur at the base of the ‘B’ unit and are up to 44 ft thick consisting of
medium to coarse sand and conglomerates that are thought to be deposited as a series of
fluvial point-bars that are all connected [23,24,26]. Laboratory measurements on core samples
and well log analysis indicate a mean porosity of 14% to 17% and average permeabilities that
range from 27 mD to 140 mD [24,25,27] The older work done by Bolyard (1989) indicated
higher porosity and permeability while the newer work done by Rose-Coss et al. (2016)
indicated lower average porosity and permeability [24,26].

3. Numerical Model Development

3.1. FWU Geological Model

A geological model of the Farnsworth Unit was developed by the Southwest Regional
Partnership on Carbon Sequestration (SWP) using the full suite of petrophysical data
collected during the ongoing characterization effort including SEM, XRD, seismic data sets,
well logs, core samples, and thin sections [26–29]. The full geological model represents
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the whole oil field at Farnsworth. Petrophysical properties of porosity and permeability
were populated across the domain by stochastic algorithm constrained by well logs [16]. A
subset of the domain centered on the west half of the field was used for this study. This is
the current active injection and production area and primary focus of the SWP research.

3.2. Relative Permeability

For this study, 17 different relative permeability curves were constructed that represent
a possible set of curves which may apply to the reservoir. The goal is to study a wide range
of relative permeability curves with the assumption that as the relative permeability curve
becomes more linear, the saturation end-points and the relative permeability end-points
become larger, representing a transition from low fluid mobility to high fluid mobility.
The residual phase saturation, maximum relative permeability, and the curve shape were
varied to create a range of curves that bracket the parameter space from near linear to
highly curved. As of the time of this study, there was only a single relative permeability
curve measured for the Morrow Sandstone [21,22]. This lack of measured data necessitates
that a wide range of input parameters be examined to understand the influence relative
permeability has on a CO2-EOR operation. Figure 1 highlights a representative selection of
curves that transition from highly curved to near linear. The remaining relative permeability
curves used in the study are shown in Figures 2, A1 and A2.

 

Figure 1. A representative selection of relative permeability curves used in this study. All curves used follow a similar trend
of high residual saturation and highly curved to low residual saturation and near linear curve. Only those shown here vary
the maximum relative permeability in addition to the other two variables.
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Figure 2. Plot shows the Base Case relative permeability curve from a UNOCAL study (solid lines) and the C1 relative
permeability curve that represents the most linear curve used in the study.

In this study we used the Eclipse® numerical simulation software for all the sim-
ulations. A key feature that we leveraged is its ability to use lookup tables with linear
interpolation between points instead of empirical formulas to calculate the relative per-
meability. This effectively decouples the empirical formula from the numerical simulator,
allowing much greater flexibility in specifying the saturation and relative permeability
endpoints as well as the degree of curvature. Any empirical formula could have been
chosen to create the curves.

We chose to use a modified version of the Corey’s Curve formula to create all the
Eclipse® lookup tables used except for the Base Case, discussed below. This relationship
provides great flexibility for developing a wide variety of curves from highly non-linear to
linear with the added ability to modify the residual phase saturation and maximum relative
permeability endpoints. The Corey’s Curve formula allows the creation of a wide range of
relative permeability curves based on three sets of inputs, residual saturation, maximum
relative permeability, and lambda (the curve parameter). The gas and non-aqueous liquid
(oil) curve are described by Equations (1) and (2), where St is the liquid saturation defined
as the non-aqueous liquid (oil) saturation plus the residual aqueous liquid saturation, Sgr
is the residual gas saturation, Str is the residual liquid saturation defined as the residual oil
saturation plus the residual water saturation, λ defines the shape of the curve, krgmax is
the maximum gas relative permeability, krnmax is the maximum non-aqueous liquid (oil)
relative permeability, and krg(St) and krn(St) are the gas and non-aqueous liquid relative
permeability at liquid saturation St [19].

krg(St) = krgmax(1 − (St − Str)/(1 − Str − Sgr))λ (1)

krn(St) = krnmax((St − Str)/(1 − Str − Sgr))λ (2)

The water and oil curves are described by Equations (3) and (4), where Sl is the
aqueous saturation, Slr is the residual aqueous saturation, Snr is the residual non-aqueous
(oil) saturation, λ defines the shape of the curve, krlmax is the maximum aqueous liquid
relative permeability, krnmax is the maximum non-aqueous liquid relative permeability,
and krl(Sl) and krn(Sl) are the aqueous and non-aqueous liquid relative permeability at
aqueous liquid saturation Sl [19]. Tables 1 and 2 have the parameters (residual phase
saturation, maximum phase relative permeability, and lambda) used to calculate all the
relative permeability curves in this study, including the subset shown in Figure 1.

krl(Sl) = krlmax((Sl − Slr)/(1 − Slr − Snr))λ (3)
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krn(Sl) = krnmax(1 − (Sl − Slr)/(1 − Slr − Snr))λ (4)

Table 1. Phase residual saturation and curve parameter lambda used in Equations (1)–(4) to create
the relative permeability curves used in this study.

Lambda(G/O) Lambda(O/W)
Model Sgr Str Slr Snr Oil Gas Oil Water

C1 0.020 0.540 0.310 0.270 1.000 1.250 1.250 1.250

C2 0.01 0.25 0.2 0.05 1 1.25 1.25 1.25

C3 0.01 0.25 0.2 0.05 1 1.25 1.25 1.25

C4 0.07 0.2 0.2175 0.0875 1 1.25 1.25 1.25

C5 0.0325 0.3325 0.2275 0.105 1.875 1.8125 2.0625 2.4375

C6 0.0325 0.3325 0.2275 0.105 1.875 1.8125 2.0625 2.4375

C7 0.13 0.1433 0.2533 0.12 1.875 1.8125 2.0625 2.4375

C8 0.055 0.415 0.255 0.16 2.75 2.375 2.875 3.625

C9 0.055 0.415 0.255 0.16 2.75 2.375 2.875 3.625

C10 0.08 0.1 0.15 0.09 2.75 2.375 2.875 3.625

C11 0.0775 0.4975 0.2825 0.215 3.625 2.9375 3.6875 4.8125

C12 0.0775 0.4975 0.2825 0.215 3.625 2.9375 3.6875 4.8125

C13 0.0733 0.26 0.3 0.153 3.625 2.9375 3.6875 4.8125

C14 0.1 0.58 0.31 0.27 4.5 3.5 4.5 6

C15 0.1 0.58 0.31 0.27 4.5 3.5 4.5 6

C16 0.12 0.13 0.215 0.15 4.5 3.5 4.5 6

Table 2. Maximum relative permeability values used in Equations (1)–(4) to create the relative
permeability curves used in this study.

Model krn(St)Max krg(St)Max krl(Sl)Max krn(Sl)Max

C1 0.8 0.95 0.27 0.8

C2 0.8 0.95 0.4 0.8

C3 0.8 0.95 0.27 0.8

C4 0.8 0.95 0.27 0.8

C5 0.7625 0.9125 0.3375 0.7625

C6 0.8 0.95 0.27 0.8

C7 0.8 0.95 0.27 0.8

C8 0.725 0.875 0.275 0.725

C9 0.8 0.95 0.27 0.8

C10 0.8 0.95 0.27 0.8

C11 0.6875 0.8375 0.2125 0.6875

C12 0.8 0.95 0.27 0.8

C13 0.8 0.95 0.27 0.8

C14 0.65 0.8 0.15 0.65

C15 0.8 0.95 0.27 0.8

C16 0.8 0.95 0.27 0.8
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The Base Case model permutation uses a relative permeability curve (BC in Figure 2)
developed by UNOCAL for a simulation study focused on the efficacy of water and CO2
flooding at the Farnsworth Unit [21,22]. The UNOCAL study did not provide a capillary
pressure curve for the Morrow ‘B’ Sandstone. For this site, it is initially believed that capillary
pressure had a negligible effect on phase movement and was thus ignored in the previous
models to aid in simplicity and computational speed. For consistency with previous work
and to reduce extra variables that may influence the simulation results capillary pressure
was not included [16,25]. We plan to study the influence that the addition of capillary
pressure may have on model forecasts to determine if this assumption is valid.

3.3. Farnsworth Units Model Domain

The Farnsworth Unit is divided into an east and west half that appear to be hydrauli-
cally split [22,23]. The west half is the site of most production and injection operations
historically and are where current and future CO2-EOR operations are occurring [22,23]. A
detailed geological model encompassing the Morrow ‘B’ Sandstone in the west half of the
reservoir was the basis of our simulation model [26]. We up-scaled this geologic model
with over 26 million cells to a simulation model consisting of 33,756 active cells. Along
with the grid geometry, we up-scaled the permeability and the porosity (Figure 3). This
yielded a mean permeability of 39 mD with a standard deviation of 54 mD and a mean
porosity of 14% with a standard deviation of 3%, in line with the original geological model
values of 13.6% porosity and 27 mD permeability. We assumed the sealing formation, the
Morrow Shale, made a no-flow boundary on all sides as well as the top and bottom of the
reservoir, so only the reservoir interval is included in the simulation model. See Moodie
et al. (2019) for more details on the model domain description [30].

 

Figure 3. The dynamic model domain showing the porosity distribution for the top of the model with the injection wells in
blue and production wells in red.

The initial conditions were derived from the results of the history-matched primary
production and water-flooding modeling study done previously by the SWP and include
the oil saturation and oil component distribution, the water saturation and the pressure [16].
The simulation is initialized with no gas phase. All methane (CH4) and other light volatiles
are dissolved in the oil. A compositional fluid model is specified for this study based on a
fluid properties report from initial exploration, then refined by fluid modeling [31,32].
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3.4. Well Operations Schedule and Model Fit

The Farnsworth Unit operates under a water alternating gas (WAG) injection scheme.
The schedule used in this study mimics current practices and future plans. Figure 3 indi-
cates the location of the injection and production wells used in the model. The production
and injection schedule are broken into two main operation periods. The first period extends
from 1 December 2010 to 31 July 2016 and uses historical monthly injection and production
data to define well rates. The second period extends from 1 August 2016 to 1 January 2036
and models potential future operations through to the end of the field’s lifetime. During
this second period, the CO2 injection volume gradually decreases until it is completely
reliant on recycled CO2 to meet targets. See Moodie et al. (2019) for a detailed breakdown
of the operations schedule [30].

To assess the model performance, we perform a regression analysis comparing the
historical oil production from December 2010 to January 2016 to the Base Case simulation
model. A R2 value of 0.94 indicates a reasonable fit and comparing this data to a history-
matched model developed by Ampomah et al. (2016) [16]. Reviewing Figure 4 indicates
a strong correlation between the historical data and the model data, with the Base Case
(dashed line), the history-matched model of Ampomah et al. (2016) (solid black line), and
the FWU historical data (open circles) all plotted [16].

 

Figure 4. Plot shows the historical monthly oil production for the Farnsworth Units (black open cir-
cles), Base Case model forecasts (black dashed line), and history-matched model forecasts (SWP_HM)
(solid black line). Both numerical models show a good data fit to the historical production data.

4. Discussion

Results indicate that the shape and endpoints of the relative permeability curve impart
a significant influence on model forecasts. Generally, the more non-linear the curve, the
more CO2 that is predicted to be stored, and the less oil, water, and gas is predicted to
be produced. However, the saturation endpoints and the assumed maximum relative
permeability have a significant impact on this trend, with some of the more non-linear
curves (C11 & C12) predicting more oil production than the most linear curve (C1).

4.1. Carbon Dioxide Storage

The total amount of stored CO2 forecasted in this modeling study is between
2.8 million tons and 3.2 million tons by the end of the simulation. The largest fraction of
the CO2 is dissolved in the oil phase, between 1.2 and 2.4 million tons. The cases using
highly non-linear relative permeability curves with narrow saturation ranges (C11 through
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C16) had overall a larger portion of the CO2 dissolved in the oil phase while the more
linear curves with broader saturation ranges (C1 through C7) have almost a million tons
less CO2 dissolved in the oil phase but significantly more CO2 in the supercritical phase.
This indicates that the CO2 in the supercritical phase has an inverse relationship to the CO2
dissolved in the oil phase with respect to the changes in the relative permeability curve
(Figure 5). As the curve becomes more non-linear, the fluid mobility decreases, leading to
a decrease in the volume of CO2 dissolved in the oil and a corresponding increase in the
supercritical CO2. The highest fluid mobility curve (model C1) predicts an almost even CO2
distribution between the supercritical phase (46%) and oil phase (44%); while the lowest
fluid mobility curves (C14 to C16) predict a significant difference in CO2 phase distribution,
10% in the supercritical phase and 82% dissolved in the oil phase for model C14, see
Table 3 for stored CO2 mass distribution. The CO2 mass dissolved in the water phase is
mostly unaffected by changes in the relative permeability curve, varying by only 2% across
all model permutations, from 8% to 10% of the total CO2 stored. The Base Case (BC) model
predicts the largest mass of CO2 stored in the reservoir and the phase distribution matches
the models with relative permeability curves that describe intermediate fluid mobility. This
indicates that the Base Case relative permeability curve describes an intermediate fluid
mobility relationship, close to what C8 and C9 models predict.

 

Figure 5. This chart shows CO2 storage for each of the model permutations. ‘CO2 SC’ is the supercritical CO2, ‘CO2 Oil’ is
the CO2 and CH4 that is dissolved in the oil phase, ‘CO2 Water’ is the CO2 dissolved in the aqueous phase, and ‘CO2 Total’
is the total amount of gas, both CO2 and CH4, in the reservoir.
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Table 3. The total mass of CO2 stored in each phase; supercritical, dissolved in the oil phase, dissolved
in the aqueous phase. These data are the totals for the end of the simulation.

Model Supercritical CO2 CO2 in Oil CO2 in Water Total
(Tons) (%) (Tons) (%) (Tons) (%) (Tons)

BC 8.98 × 105 30% 1.88 × 106 62% 2.61 × 105 9% 3.04 × 106

C1 1.28 × 106 46% 1.24 × 106 44% 2.79 × 105 10% 2.80 × 106

C2 1.37 × 106 47% 1.24 × 106 42% 3.24 × 105 11% 2.94 × 106

C3 1.18 × 106 41% 1.41 × 106 49% 2.80 × 105 10% 2.87 × 106

C4 1.35 × 106 46% 1.27 × 106 44% 2.89 × 105 10% 2.90 × 106

C5 1.08 × 106 36% 1.63 × 106 54% 3.18 × 105 10% 3.03 × 106

C6 1.16 × 106 39% 1.54 × 106 52% 2.81 × 105 9% 2.99 × 106

C7 1.28 × 106 42% 1.48 × 106 49% 2.77 × 105 9% 3.04 × 106

C8 7.30 × 105 24% 2.05 × 106 67% 2.97 × 105 10% 3.08 × 106

C9 9.46 × 105 31% 1.89 × 106 61% 2.66 × 105 9% 3.10 × 106

C10 1.03 × 106 33% 1.83 × 106 59% 2.50 × 105 8% 3.11 × 106

C11 5.14 × 105 17% 2.22 × 106 74% 2.75 × 105 9% 3.01 × 106

C12 7.27 × 105 23% 2.17 × 106 69% 2.53 × 105 8% 3.15 × 106

C13 7.48 × 105 24% 2.06 × 106 67% 2.69 × 105 9% 3.08 × 106

C14 2.84 × 105 10% 2.34 × 106 82% 2.28 × 105 8% 2.85 × 106

C15 5.08 × 105 16% 2.43 × 106 76% 2.52 × 105 8% 3.19 × 106

C16 5.77 × 105 20% 2.11 × 106 73% 2.22 × 105 8% 2.91 × 106

4.2. Oil Production

Oil production does not follow the same trend as the CO2 storage. Models C1 through
C9 indicate a declining oil production as fluid mobility described by the relative perme-
ability curves decreases, except models C4 and C7 (Table 4). The relative permeability
curve used in models C11, C12, and C14 describes a lower fluid mobility condition but
predicts similar oil production as the highest fluid mobility models (C1 and C2); whereas
the lowest fluid mobility relative permeability models predict the lowest oil production, as
would be expected. A possible reason for the high oil production show in models C11, C12,
and C14 is that the oil saturation falls within a range on the relative permeability curve
that promotes the oil phase mobility, the mid-range of the relative permeability curve. Oil
saturations are between 40% and 60% in the active production and injection areas giving
relative permeability ranges of 0.23 to 0.35. Within the same area, the relative permeabilities
to water never get above 0.1, promoting oil mobility over water mobility.
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Table 4. Table shows the forecasted total oil produced for each simulation case and the magnitude of
difference when compared to the Base Case (BC) forecasts.

Model Oil Produced (STB)
Total Delta vs. BC Model

BC 2.16 × 107 0

C1 2.68 × 107 5.14 × 106

C2 2.57 × 107 4.08 × 106

C3 2.32 × 107 1.59 × 106

C4 2.77 × 107 6.03 × 106

C5 2.20 × 107 3.56 × 105

C6 2.04 × 107 −1.23 × 106

C7 2.60 × 107 4.39 × 106

C8 1.89 × 107 −2.77 × 106

C9 1.77 × 107 −3.96 × 106

C10 2.30 × 107 1.38 × 106

C11 2.63 × 107 4.69 × 106

C12 2.90 × 107 7.40 × 106

C13 2.26 × 107 9.84 × 105

C14 2.60 × 107 4.33 × 106

C15 1.51 × 107 −6.54 × 106

C16 1.75 × 107 −4.17 × 106

The Base Case (BC) model’s oil production falls within the middle of the range
predicted by this study, similar to models C6, C10, C13 (Table 4). This indicates that the
Base Case relative permeability curve was measured from an area of the field that exhibits
medium fluid mobility when compared to the range of fluid mobilities predicted by the
synthetic relative permeability curves.

4.3. Pressure

The influence of relative permeability on the pressure field was highly time dependent.
Figure 6 indicates that during the first phase of injection when historical data are used to
control the injection rates (2010 to 2017), there is less difference in pressure between the
relative permeability curves tested. During the predictive phase of the injection schedule
(2017 to 2036), the difference across all the relative permeability curves tested increased
to 27% by the end of injection. This variation in pressure increases significantly as the
proportion of recycled CO2 in the injection stream increases. An inflection point in all of the
models on 1 January 2024 marks the point when CO2 availability for injection becomes tied
to production volumes and hence the fluid movement within the reservoir. On 1 January
2030, there is another inflection point that marks when new CO2 to the model is stopped
and only recycled CO2 is available to the injection wells.
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Figure 6. Pressure across the whole domain through time. The bold red line is the Base Case results.

The relative permeability curves appear to have a smaller, but still significant, impact
on the average reservoir pressure when there is an unlimited source of CO2 for the injection
wells to meet their targets. Once the fluid mobility within the reservoir influences the
volume of CO2 available to meet injection targets, the impact of the relative permeability
curves becomes much more pronounced. Curves that restrict the fluid movement through
a high degree of curvature and narrow saturation range, such as C15 and C16, have lower
oil production, less CO2 present in the reservoir, and a higher average pressure, while the
curves that promote fluid movement through more linear curvature and a wider saturation
range (C1 and C2) have higher oil production, more CO2 in the reservoir, and a lower
average reservoir pressure.

5. Conclusions

Results of this study indicate that small variations in the shape of the relative perme-
ability curve have a significant impact on the model forecasts. While all models predicted
nearly the same total CO2 stored in the reservoir, the phase it is stored as (supercritical vs.
dissolved in oil vs. dissolved in water) is greatly influenced by the relative permeability
curve. Relative permeability curves that describe low fluid mobility predict most of the
CO2 is stored in the oil phase with very little in the supercritical phase. The relative perme-
ability curves that describe the highest overall fluid mobility predicts that there is an even
distribution of CO2 in the supercritical phase and the oil phase, allowing the CO2 to migrate
faster and in greater quantities to the production wells, leading to lower amounts of total
stored CO2. The higher the mobility, the more contact between the CO2 plume and the
oil, increasing the amount of CO2 that is dissolved in the oil phase and thereby increasing
production when compared to the relative permeability curves that predict low overall
fluid mobility. The reduction in the oil’s viscosity due to CO2 dissolution allows it greater
fluid mobility and may be why there is an increase in oil production when compared to
some of the relative permeability curves that predict low fluid mobility. This may also
account for why there is less CO2 stored in the oil phase with the relative permeability
curves that describe high fluid mobility.

The findings of this study indicate that the relative permeability curve is a critical pa-
rameter that must be given careful consideration when designing multiphase flow models.
It is essential to understand and quantify the uncertainty in the relative permeability curve.
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If measured laboratory relative permeability data are not available or limited for the study
domain, the relative permeability curve should be considered a significant source of model
uncertainty and accounted for as part of the simulation effort.
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Appendix A

 

Figure A1. The C3, C6, C9, C12, and C15 relative permeability curves. The saturation endpoints and curvature are varied,
while the relative permeability end points remain constant.
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Figure A2. The C4, C7, C10, C13, and C16 relative permeability curves. The saturation endpoints and curvature are varied
and the relative permeability endpoints are fixed.
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Abstract: Machine-learning technologies have exhibited robust competences in solving many petroleum
engineering problems. The accurate predictivity and fast computational speed enable a large volume of
time-consuming engineering processes such as history-matching and field development optimization.
The Southwest Regional Partnership on Carbon Sequestration (SWP) project desires rigorous history-
matching and multi-objective optimization processes, which fits the superiorities of the machine-
learning approaches. Although the machine-learning proxy models are trained and validated before
imposing to solve practical problems, the error margin would essentially introduce uncertainties to
the results. In this paper, a hybrid numerical machine-learning workflow solving various optimization
problems is presented. By coupling the expert machine-learning proxies with a global optimizer,
the workflow successfully solves the history-matching and CO2 water alternative gas (WAG) design
problem with low computational overheads. The history-matching work considers the heterogeneities
of multiphase relative characteristics, and the CO2-WAG injection design takes multiple techno-
economic objective functions into accounts. This work trained an expert response surface, a support
vector machine, and a multi-layer neural network as proxy models to effectively learn the high-
dimensional nonlinear data structure. The proposed workflow suggests revisiting the high-fidelity
numerical simulator for validation purposes. The experience gained from this work would provide
valuable guiding insights to similar CO2 enhanced oil recovery (EOR) projects.

Keywords: multi-objective optimization; CO2-WAG; machine learning; numerical modeling; hy-
brid workflows

1. Introduction

The Southwest Regional Partnership on Carbon Sequestration (SWP) project focuses
on the design and monitoring of a field-scale CO2 enhanced oil recovery (EOR) process
in the Farnsworth Unit (FWU) located in the Anadarko Basin, Texas. From 2010 to 2014,
16.82 billion standard cubic feet of anthropogenic CO2 was injected into the Morrow-B
sand [1]. the CO2 utilized in this project is captured by the Arkalon Ethanol Plant and
the Agrium Fertilizer Plant locating in Liberal, Kansas, and Borger, Texas, respectively [2].
According to Munson [3], the original oil (OOIP) and gas in place (OGIP) are approximately
120 million (MM) barrels and 41.48 billion standard cubic feet (SCF), respectively. The field
development was initiated in 1955 and the waterflood started in 1963. Starting from the
end of 2010, the FWU field has been undergoing a water alternative CO2 injection process
to extract the residual oil in place.

The Morrow B sandstone formation is located at a depth interval between 7550 ft
and 7950 ft. The formation has an average dip angle of <1◦ [4] and was deposited in
the late Pennsylvanian by a fluvial system in an incised valley [5]. The average net pay
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thickness is 22 ft. The initial reservoir and bubble point pressure are 2203 psi and 2059 psi,
respectively [4]. The reservoir temperature at a depth of 7900 ft is measured to be 168◦F.
The reservoir has a mean porosity of 14.6% and a mean permeability of 58 md [6]. The
west half of the field is considered highly permeable and porous when compared with
the east half [3]. The reservoir was initially undersaturated with gas–oil solution ratio of
345 SCF/stock tank barrel (STB), and the oil saturation and formation volume factor were
characterized as 69% and 1.192 res bbl/STB, respectively [6].

Reservoir engineers have successfully structured many different versions of numerical
simulation models to investigate the fluid flow transportation dynamics in Morrow-B
formation and monitor the long-term fate of the CO2 plume [7]. A numerical composi-
tional model coupled with geological, geophysical, and engineering data was reported
in previous work [8]. The initial SWP’s FWU geological static model was first presented
in 2015 [9] and was employed by many related works [10–12]. Investigations on the hy-
draulic flow unit (HFU) was performed to characterize the heterogeneous petrophysical
properties [13]. A facies model was developed to populate the petrophysical property
distributions with assistance from the HFU. There are numerous history-matching studies
imposed on reservoir models considering the field historical injection and production data
in the primary, secondary, and tertiary recovery period [14]. The history-matched model
can be used to assess various CO2 water-alternative-gas (WAG) forecasting scenarios and
more importantly, optimize the project design strategies.

The machine-learning technologies exhibit strong competences to solve a large spec-
trum of petroleum engineering problems, including sweet spot identification [15], history
matching [16], fluid property characterization [17], and field development strategy opti-
mization [18]. In the field of reservoir simulation, the machine-learning models compre-
hend the fluid transportation dynamics in porous media via learning the data structure
presented by a knowledge base instead of solving the partial differential equations using
numerical and analytical methods [19]. The training of the machine-learning model takes
advantages of the knowledge base containing field and synthetic data samples. To validate
the machine-learning model, rigorous blind testing applications must be imposed to inves-
tigate the generalization capability. The blind testing performances of the machine-learning
models used in this work were less than 1%. Notably, the computational overhead using
the machine-learning model could be reduced by several orders of magnitudes more than
using the high-fidelity numerical simulator [20]. Literature surveys indicate that machine-
learning models have been successfully developed to simulate production performance of
gas condensate reservoirs [21], shale gas reservoirs [22], coalbed methane reservoirs [23],
enhanced oil recovery processes [24], etc. Moreover, for certain field specified problems,
the machine-learning models can also be trained utilizing seismic, well-log, and production
data, which is competent to assess the production performance within the area covered
by the seismic survey [25]. In this case, the machine-learning model can make reliable
predictions without the presence of hydrodynamic (permeability, relative permeability,
etc.) and petrophysical (fluid composition, pressure-volume-temperature (PVT) data, etc.)
data. Moreover, recent research efforts make attempts to develop machine-learning models
as an alternative to the equation of state and conduct flash calculations in the composi-
tional simulations [26]. Such well-trained machine-learning models (also known as expert
systems) can be employed as “proxies” of the high-fidelity numerical simulator to generate
a large volume of realizations in the computational demanding processes.

The SWP project would demand the use of machine-learning methods to solve the
history-matching and CO2-WAG injection optimization problems. As a carbon capture,
utilization, and sequestration (CCUS) project, the field operator considers not only the oil
recovery, but also the volume of CO2 sequestration, both of which determine the project
economics from different perspectives. When more objective functions are included, the
computational overhead of the optimization study would be even heavier. In this article,
a robust machine-learning assisted multi-objective optimization workflow is presented.
Expert proxy models, a global optimization algorithm, and numerical models are effectively
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coupled in the workflows to generate fast and high-quality reservoir engineering analysis.
The discussion of this paper starts from the description of the reservoir model. Then
the machine-learning proxies employed by this work are summarized. Afterwards, the
optimization algorithms and treatment of the multi-objective problem are presented. By
coupling the machine-learning proxy and the optimization protocols, two workflows are
structured to solve the history-matching and CO2-WAG design optimization problems.
Last but not least, we employ case studies by imposing the proposed workflow on the
FWU field.

2. Reservoir Modeling

A reservoir model is the most fundamental element of the proposed workflow. The
establishment of the numerical simulation model assembles geological, petrophysical, and
field historical data. Reservoir engineers have structured many versions of numerical
simulation models for the FWU field considering hydrodynamic, geo-mechanical, and
geochemical mechanisms of the fluid transportation in Morrow-B formation. The field
scale numerical models are validated via rigorous history-matching processes using the
historical injection and production data and employed to build forecasting scenarios.
In addition, sector models around the well 13–10A pattern are utilized to validate the
optimization workflows.

2.1. Hydraulic Flow Unit

The geological model takes advantage of the petrophysical properties interpolated
from the laboratory measurements using the hydraulic flow unit (HFU). Morrow-B sand-
stone exhibits strong heterogeneity divergences from the diagenetic processes, which leads
to various pore structures, multiphase flow characteristics, and wettability. Moreover, rock
and fluid property variations could evolve progressively after CO2-WAG injection starts.
The porosity–permeability relationship can be identified using the HFU to classify the
sedimentologic and diagenetic heterogeneity of the Morrow-B formation.

Morrow B sandstone was first classified into five porosity facies and eight subfaces;
and eight HFUs were identified to characterize hydrogeologic heterogeneities using the
well log and petrophysical data collected from various scientific wells [13]. Followed up
research works suggest lumping HFU 5 to 8 into an identical group due to the similar flow
features observed from core-flooding experiments [27].

The geological model continuously utilizes the permeability–porosity relationship
developed from the HFUs. When a reservoir simulation model is structured, grids are
assigned with different relative permeability curves based on the HFU characteristics.
In Figure 1, the HFU distributions at different simulation layers of the reservoir model
are displayed.

2.2. Updated Geological Model

As with the advancement of the reservoir characteristic analysis on the FWU field, the
original simulation model is restructured using an updated outer boundary and property
population protocol. As shown in Figure 2, the permeability and porosity distributions of
the updated geological mode are displayed in Figure 2a,c using a 100 ft by 100 ft mesh grid
system. To implement the updated geological model, the history-matching process must
be revisited from the primary and secondary stages. Due to the long production period
(from 1956 to 2010), completing one simulation case takes more than 12,000 s of central
processing unit (CPU) time, which makes the computational cost of the history-matching
process prohibitively expensive. With such a running speed, even preparing the dataset
to train the proxy model becomes unrealistic. Thus, the upscale of the original model
becomes necessary. Figure 2b,d show the upscaled permeability and porosity distribution
using a 200 ft by 200 ft mesh grid system. Figure 3 illustrates the comparison of the
simulation results regarding the oil and water production using the original and upscaled
reservoir model with an average disparity of less than 0.8%. The use of the upscaled
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model significantly reduces the computational time to less than 300 s of CPU time, which is
40 times faster than the original model. With the help of upscaling, the history-matching of
the primary and secondary recovery periods is done using the coarser grid first and then
validated by the finer grids.

Figure 1. HFU (hydraulic flow unit) distributions in different layers of Morrow-B formation.

 

Figure 2. Updated geological model and the upscaled grid displayed as (a) permeability in a finer grid, (b) permeability in
a coarse grid, (c) porosity in a finer grid, and (d) porosity in a coarse grid.
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Figure 3. Comparison of the results generated by the finer and upscaled (coarser) grid simulation models in terms of (a) oil
production and (b) water production.

2.3. Injection Pattern Model

A sector model focusing on the Well 13–10A pattern was structured to simulate the
smaller area. As shown in Figure 4, the sector model is discretized using a 60 by 60
Cartesian grid system (mesh size is 26.7 ft by 26.7 ft) and simulates 1/8 of the five-spot
injection pattern. The property distribution is established using the data collected from
13-A well. This work employs the sector model to generate datasets for the testing purposes
of the optimization workflow, since the computational cost of completing one simulation is
low. Moreover, the injection pattern model is suitable to investigate multiple mechanisms
near the scientific well.

 

Figure 4. Illustration of the injection pattern-based model.

The aforementioned simulation models played a crucial role in this work in terms of
comprehending the fluid flow dynamics in the Morrow-B sands, and more importantly,
generating the desired data to develop the machine-learning proxy models. It is worth
stressing that the interaction between the high-fidelity numerical and machine-learning
protocols is critical for the long-term development and updating of the workflow.

3. Machine-Learning Proxies

In this work, the history-matching and CO2 injection design processes employed many
machine-learning technologies such as response surface models (RSM), multi-layer neural
networks (MLNN), and support vector machines (SVM). These expert machine-learning
models (also called “proxies”) are developed to learn from the numerical simulation
models and investigate the fluid transportation mechanisms via a data-driven perspective.
Due to their high computational efficacies and robust generalization competence, machine-
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learning models have been successfully developed and act as regression tool to evaluate the
field performance in terms of the fluid recovery, injection performance, pressure responses,
and economic assessments.

In the history-matching applications, the proxy models correlate the uncertain hydro-
dynamical properties with the fluid production/injection and pressure data, which assists
the evaluation of the fitting error during the tuning process. There are many generations
of reservoir simulation models evolving as more geological, petrophysical, and field op-
erational data become available. The initial history matching works can be done without
the help of machine-learning technologies because the earlier version of the reservoir
model is simpler in terms of the reservoir characteristics. When the new geological model
arrives, the permeability distributions are updated and more importantly, various relative
permeability curves are assigned to the grids based on the HFU indices. Consequentially,
the number of uncertain parameters becomes considerably larger, and so does the required
volume of simulation realizations. Therefore, the use of machine-learning technologies
becomes quite necessary to history-match the current version of the simulation model.

After a history-matched model was structured, another class of proxy model was
developed to learn the data structure presented between the CO2-WAG injection strategies
and the forecasted project’s techno-economic responses. The development of the proxy
models includes the training process and a rigorous blind testing protocol to ensure the
prediction accuracy. The following discussions summarize the machine-learning models
developed in the history-matching and optimization studies of the SWP CO2-WAG projects.

3.1. Response Surface Models

The response surface model (RSM) is one of the most classic nonlinear regression
algorithms. The prediction model can be expressed via Equation (1):

y = b0 +
m

∑
i=1

bixi +
m

∑
i=1

m

∑
j≥i

bijxixj +
m

∑
i=1

biix2
i (1)

where b0, bi, bii, and bij are the regression coefficients; xi is the ith input feature; m is the
total number of input features; and y is the output feature. To avoid overfitting issues, the
higher than quadratic order terms are usually omitted. Gradient decent and least square
methods [28] can be used to determine the regression coefficient. The RSM model is the
earliest machine-learning model used in the CO2-WAG optimization study of the SWP
project. Four RSM proxies are developed to predict oil and water productions, CO2 in place,
and production volumes in the CO2-WAG injection period of the project [6]. The R2 value
observed by comparing the results predicted by proxy and high-fidelity numerical models
is close to one with relative error values of less than 0.1%, which confirms the validity of
the RSM proxies.

3.2. Multi-Layer Neural Networks

Multi-layer neural networks (MLNN) model a class of artificial neural network (ANN)
model that is inspired by the signal transportation process of biological neural units.
Typically, an MLNN model is composed of an input, an output, and serval hidden layers.
Artificial neurons are included in these layers to store, transform, and transport data signals.
The numerical values connecting the neurons in adjacent layers are “weights.” An MLNN
model transfers the signal via Equation (2):

an
i = fn

(
∑

j
wn

i,j an−1
j + bn

i

)
(2)

where the notation n numbers the current layer (n − 1 is the previous layer) of the layer, a
is the artificial neuron, and w and b are the weight and the bias, respectively. The index
notations i and j number the layer and neuron, respectively. Notably, f n is a transfer
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function constraining the signal within the range of [0, 1] or [−1, 1], which enables the
MLNN model to deal with the nonlinearity of the dataset. The sigmoid and linear functions
are commonly imposed on the hidden and output layers, respectively. The training process
of the MLNN model essentially minimizes the error function depicted by Equation (3):

E(w) =
1
2
||o − t||2 (3)

where w refers to the weight vector, and o and t are the prediction and training target,
respectively. Thus, the training epoch of the MLNN iteratively updates w to minimize the
error function until a prescribed stopping criterion is achieved. Many training algorithms
such as the scaled conjugate gradient and the Levenberg–Marquardt and Bayesian regular-
ization [29] methods are widely used in training MLNN models with complex topologies.

There are many MLNN applications in the SWP project: In the machine-learning-
assisted history-matching process, MLNN models are trained to predict the field production
responses with varying reservoir properties. Two representative blind test cases are shown
in Figure 5. The proxy model is competent to predict the oil and water productions when
the hydrodynamical properties are changed, with overall blind testing errors at 0.5% and
9.87%, respectively. As shown in Figure 5, the satisfactory blind testing performance
indicates that the ANN models have been well trained and could be used to evaluate the
history-matching error in the proposed workflow. Notably, such results have not been
history-matched yet.

 
(a) (b) 

Figure 5. Blind testing performance of multi-layer neural networks (MLNN) proxies in the history-matching applications of
(a) oil production and (b) water production.

The other class of MLNN models are trained to forecast the long-term field devel-
opment responses in terms of hydrocarbon production, CO2 sequestration volume, and
project economic assessments considering the CO2-WAG design parameters as input [18].
The CO2-WAG operational parameters include the durations of CO2 and water injection
cycles, the water injection rate, and production well specifications. In this work, the error
statistics of blind testing applications for an injection pattern and the field case applications,
with overall mean errors observed as 0.71% and 1.00%, respectively. Therefore, the MLNN
model can be employed as a surrogate model to evaluate the techno-economic objective
functions considered in the design of CO2-WAG projects.

In the SWP project, MLNN models have been successfully trained and act as robust
regression tools. The high computational speed enables many time-consuming studies
such as global sensitivity analysis, history-matching, multi-objective optimization, etc.
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3.3. Support Vector Machines

The support vector machine (SVM) is a robust regression model employed in this
work. A linear SVM regression model is an extension of a linear regression model that
aims at [30]:

min
(

1
2
||ω||2

)
(4)

subject to
{

y − 〈ω, x〉 − b ≤ ε

〈ω, x〉+ b − y ≤ ε
(5)

The model is suitable to make predictions for problems with n input and 1 output,
where x ∈ Rn and y ∈ R. Note that in Equations (4) and (5), ω is the coefficient vector
and b is the intercept. The flatness of the model measures how small the norm of ω could
be. ε is the error tolerance of the regression problem. The operator 〈x,ω〉 indicates the
dot product of vectors x and ω. To extend the applicability of SVM model to solve real
problems, the soft margin is introduced to Equation (6) via a slake variable ξ:

min

[
1
2
||ω||2 + C

m

∑
i=1

(ξi + ξ∗i )

]
(6)

subject to

⎧⎨
⎩

yi − 〈ω, xi〉 − b ≤ ε + ξi
〈ω, xi〉+ b − yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0, i = 1, . . . , m

where C is a constant to balance the flatness and the tolerance degree of the deviations
larger than ε. A loss function depicted in Equation (7) is used:

|ξ|ε =
{

0 if |ξ| ≤ ε

|ξ| − ε otherwise
(7)

The modern SVM models are typically written via a dual optimization form, which
can be expressed as follows:

maximize
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subject to
m

∑
i=1

(αi − α∗i ) = 0; αi, α∗i ∈ [0, C]

where α and α* are Lagrange multipliers.
For nonlinear problems, kernel functions are employed to map the original training

patterns into an implicit feature space so that the linear SVM regression can be used. In
this case, Equation (8) is modified as Equation (9):

maximize
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where k(xi, xj) is a kernel. In this work the Gaussian kernel written in Equation (10)
was employed:

k
(

xi, xj
)
= exp

(
−‖xi − xj

2‖
2σ2

)
(10)
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Similar to the MLNN model, the training of an SVM model needs to identify three
hyperparameters, including the constant C, magnitude of ε, and the kernel scale factor
δ. In this work, the SVM models were developed to act as proxy models to predict the
oil production (Proxy-Oil) and CO2 storage volume (Proxy-CO2). The cross validation
results indicate that the relative error of the Proxy-Oil and Proxy-CO2 comparing to the
high-fidelity numerical simulator to be 0.06% and 0.01%, respectively [31].

By developing the machine-learning proxies, the following experiences can
be summarized:

1. The RSM is more suitable for problems with a smaller input dimension and single
output parameter. Compared to MLNN and SVM models, the training overhead is
much lighter.

2. The MLNN model exhibits robust generalization capability for problems with large
input and output dimensions. However, the degree of freedom of the hyperparameter
is more than that of RSM and SVM models. Thus, more computational costs are
required to obtain an optimum model with optimum prediction performance.

3. The SVM model is more suitable for problems with strong nonlinearity and a large
input dimension. The number of hyperparameters to be tuned is smaller than
in the MLNN model. However, it cannot make a prediction for more than one
output variable.

All of the machine-learning proxies play vital roles in the optimization study by
enabling various computational expensive processes, which require giant amounts of
assessments on the objective functions.

4. Optimization Protocols

In this work, the metaheuristic and stochastic optimization protocols such as particle
swarm optimization and genetic algorithms were employed to optimize various technical
and economic objective functions. Compared to the conventional gradient-based opti-
mization methods, such optimization protocols are not constrained by the continuity and
differentiability of the objective function. Therefore, they are more suitable for solving
problems with complex and implicit objective functions. However, the global optimization
technologies used in this work would demand the establishment of populations with a
certain volume of samples. Thus, totally relying on the high-fidelity numerical simulators
would make the computational overhead prohibitively heavy. This section briefly goes
through the critical strategies of global technologies included in this work.

4.1. Objective Functions and Constraints
Economic Objective Functions

The project net present value (NPV) is a major economic consideration in the opti-
mization study. A general definition of NPV can be depicted as Equation (11):

NPV = CAPEX +
m

∑
i=1

(qoi × Oil price)× (1 − tax rate)− Ci

(1 + interest rate)i (11)

In Equation (11), CAPEX is the project capital expenditure, m is the total number of
counted timesteps of the project, qoi is the cumulative oil production of the ith timestep,
and Ci is the operational cost. In this work, the NPV definition was modified to adapt to
the CO2-WAG field operation as Equation (12):

NPV = CAPEX +
n

∑
i=1

(qo × Oil price + qco2,store × rco2,credit − Ci)

(1 + interest rate)i (12)

where the CAPEX = 10 million dollars (USD), oil price is 50 USD/bbl, interest rate is 5%,
the CO2 storage credit (rco2,credit) is 45 USD/metric ton. The cost term Ci includes water
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and CO2 injection cost, CO2 purchase rate, and produced water treatment cost, which can
be expressed by Equation (13):

Ci = qw,inj × rw − qw,pro × rw,pro − qinj, co2 × rco2 − qco2,p × rco2,p (13)

where the water injection cost (rw) is 1.03 USD/STB, the produced water treatment cost
(rw,pro) is 0.64 USD/STB, the CO2 purchase cost is 1.72 USD/thousand(M) SCF, CO2 in-
jection cost is 0.85 USD/MSCF. The variables qw,inj and qw,pro are water injection and
production rates in STB/day, respectively; qinj,CO2 and qCO2,p are CO2 injection and pur-
chasing rates in MSCF/day, respectively.

The evaluation of the NPV value requires the oil/CO2/water production and CO2/water
injection data reported by the numerical simulation model, which is determined by the
CO2-WAG design strategies. When the NPV is considered one of the objective functions in
the optimization workflow, a large volume of realizations is required to find the optimum
CO2-WAG injection protocol to maximize the NPV. In this work, the calculation of the NPV
was done by the proxy models with a low computational cost.

4.2. Technical Objective Functions

History matching error: The history-matching error is a significant objective func-
tion to measure the misfit of the numerical model results with the field historical data.
In this work, the square error was used to account for the differences between the re-
sults generated by the simulator with the field historical measurement for oil, water, gas
production data, water, gas injection data, and pressure data via Equation (14) through
Equation (19), respectively.
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m

∑
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2] (14)
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2] (15)
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m

∑
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)
i
2] (19)

where O and T represent the model prediction and historical data, respectively, and m
is the total number of timesteps of the available field data. Notably, in this work, O was
generated by machine-learning proxy models to reduce the computational overhead.

CO2 storage volume: For a CCUS project, the CO2 storage volume is a critical technical
objective function considered in the optimization study, which can be defined as [6]:

CO2 storage = CO2 purchased − CO2 produced + Recycle (20)

The CO2 storage volume plays a crucial role in the project economic perspective by
bringing considerable tax allowance to the project. Since the SWP project has rigorous
plans to strategically purchase a certain volume of CO2 based on the surface operational
facility capacities, maximizing the CO2 storage volume is essentially minimizing the CO2
production volume in the CO2-WAG process.

Oil recovery: The cumulative oil production (which could be normalized by the
residual oil in place as the recovery factor) in the forecasting period is another technical

128



Energies 2021, 14, 1055

objective function to be maximized in the design of the CO2-WAG project, which also
decides the major income of the project NPV.

Physical and Engineering Constraints

The optimization protocols design the CO2-WAG operational criteria from the algorith-
mic perspective. Without imposing proper physical engineering and physical constraints,
the optimization results would be unrealistic. In this work, the following constraints were
imposed on the optimization workflow to ensure the engineering practicability:

1. The history-matching study specifies the oil production, CO2, and water injection
rates, and considers the CO2 and water production the primary objective functions.
The constraints imposed on the history-matching work is that the average pressure
must be below 5400 psi.

2. The CO2-WAG optimization is constrained by an average reservoir pressure range of
[3700, 5400] psi to maintain the miscibility of the sweeping front.

In the optimization process, either for the history-matching or project design purposes,
the solutions in the population pool would be screened by the constraints to sustain the
engineering applicability. To meet such a requirement, proxy models need to be developed
to predict the average reservoir pressure based on various history-matching and CO2-WAG
design scenarios.

4.3. Treatment of Multiple-Objective Optimizations

The optimization studies in this work considered more than one objective function,
which are called multi-objective optimization problems (MOO). For instance, the history-
matching work needs to minimize the error functions defined by Equation (14) through
Equation (19) simultaneously, and the CO2-WAG design problem aims at maximizing the
NPV, oil recovery, and CO2 storage volume in the meantime. There were two different
ways employed in this work to treat the MOO problems:

Aggregated method: An aggregated objective function can be defined by Equation (21):

fa =
m

∑
i=1

(wi × fi) (21)

where f i refers to various objective functions, wi is the associated weights applied to the
functions, and f a is the aggregated objective function. In this way, the MOO is converted to
a single-objective optimization study. In this work, the weighted method was used to solve
the history matching problem by defining the history matching error as Equation (22):

fHME = Eo + Egp + Ewp + Ewi + Egi (22)

where the weights imposed on the error terms are identical. In addition, the optimization of
the CO2-WAG design uses the aggregated objective function depicted in Equation (23) [6]:

f = w1 × Cumulative Oil Production + w2 × CO2 Storage + w3 × NPV (23)

The weight factors can be justified based on the operational preference.
Pareto optimum theory: An alternative approach to treating the MOO problem is

to generate a Pareto front solution by employing the Pareto optimum theory, which is
suitable for establishing a solution repository considering the tradeoff relationship amongst
multiple objective functions [32].

The Pareto optimum theory defines a vector
→
x = [x1, x3, x3, · · · xn] with n vari-

ables, and a vector
→
f
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)
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with m objective

functions considered in the optimization process. Ω assembles the candidate solutions
in the searching domain. A solution

→
u = [u1, u3, u3, · · · um] is defined to dominate
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solution
→
v = [v1, v3, v3, · · · vm], where

→
u and

→
v are two objective function vectors, if

∀i ∈ {1, 2, 3, · · ·m} to make ui ≤ vi and ∃i ∈ {1, 2, 3, · · ·m} to make ui < vi. This
concept can be denoted as
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v . The Pareto optimum set collects the solution vectors as
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The Pareto optimum theory can be illustrated by Figure 6, which is a hypothetical
problem aiming at minimizing f 1 and f 2. The solutions

→
x
∗
1 and

→
x
∗
2 are two solutions in

the Pareto optimum set.
→
x
∗
1 intends to improve objective function f 2 compared to

→
x
∗
2 by

sacrificing (increasing) f 1 due to the tradeoff relationship. In addition,
→
x ′ is a dominating

solution since solution
→
x
∗
1 exists, which exhibits smaller f 1 and f 2 at the same time.

 
Figure 6. Pareto front, dominated, and dominating solutions.

It should be emphasized that regardless of the optimization algorithm, the application
of the Pareto front theory by itself is a computational expensive process since it ranks a
large volume of solutions regarding multiple objective functions. The CO2-EOR project
is a good candidate upon which to impose the Pareto front theory since the incremental
oil production would yield more produced CO2, which reduces the volume of carbon
sequestration. More importantly, considering the project NPV, the impacts of the tax
allowance and the oil production benefits need to be comprehensively investigated. More
importantly, the Pareto front solution suggests the operators have more flexibility to design
the CO2-WAG processes under various techno-economic conditions. However, such an
optimization protocol is not suitable for the history-matching problems. The reason is that
history-matching processes shoot for a solution that minimizes all the objective functions
simultaneously. A solution fitting the oil production history with large water production
error could be a dominating solution in the Pareto front, but it cannot be considered in
the history-matching study. Therefore, the majority of the Pareto optimum set would
be abandoned.

4.4. Optimization Algorithms

Genetic algorithm (GA): The GA refers to a family of computational models derived
from Darwin’s theory of biological evolution. The idea is one of the natural selection
organization principles for optimizing the individuals of populations. GAs mimic natural
selection to optimize more successfully. Problems are solved by an evolutionary process
resulting in a best solution (fittest survivor). GAs do not search via gradients; the searching
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is done via sampling by stochastic operators rather than by deterministic rules. Figure 7
briefly illustrates the workflow of a GA optimizer. The application of a GA includes the
following operators:

Population Evaluation

Elimination

Figure 7. Optimization workflow using genetic algorithm (GA).

Encoding: The very first step is to convert the solution of a problem, typically com-
posed of vectors of control parameters into a chromosome-type data structure.

Selection: The selection operator is employed to find individuals that exhibit good
fitness functions and become candidates as parents to generated offspring. The most used
selection operators include tournament and roulette wheel selection.

Reproducing: Once the parents are selected, the next step is to make them reproduce
offspring via crossover. The crossover is a GA operator to generate new chromosomes
based on the individuals of previous generations. A certain crossover rate needs to be
specified so that a certain volume of selected individuals will be used to generate offspring.
Typically, the crossover rate ranges from 60% to 95%.

Mutation: Mutation is a GA operator that makes the search range wider. What
mutation does is change a gene of a chromosome completely without any reason. In a
genetic algorithm, the mutation rate is extremely low, typically less than 1%.

Decoding: At the end of a genetic algorithm iteration, the chromosomes need to be
converted back to real number solutions.

The GA is one of the first trials in the SWP project and optimizes multiple techno-
economic objective functions for the CO2-WAG injection process [6].

Particle swarm optimization (PSO): PSO is a nature-inspired evolutionary and stochas-
tic optimization technique to solve computationally hard optimization problems. It is a
fast technology based on the movement and intelligence of swarms. PSO was built by
mimicking the working mechanisms of biological swarm migrations. In a PSO application,
particles communicate directly or indirectly with one another via searching directions.
During the iteration process, the particles update their position according to their previous
experience and the experience of their neighbors. The process of PSO optimization includes
the following three steps [33]:

1. Evaluate the fitness by the proxy model.
2. Calculate the velocity term v using Equation (24):

vi(k + 1) = wvi(k) + c1r1[xi(k)− xi(k)] + c2r2[g(k)− xi(k)] (24)

where k is the iteration level, x is the local best, and g is the global best.
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3. Update the particle position via Equation (25):

xi(k + 1) = xi(k) + vi(k + 1) (25)

Compared to GA, the optimization process of PSO does not include any encod-
ing/decoding procedure, which accelerates the convergence. However, the PSO can be
easily trapped by the local minima when a complex objective function is considered.
Figure 8 is the optimization workflow using a PSO algorithm.

 

Figure 8. Optimization workflow using particle swarm optimization (PSO).

Multi-objective particle swarm optimization (MOPSO): Compared to the single-
objective PSO, MOPSO introduces a “repository (REP)” to restore the nondominated
solutions of each iteration. The size of the repository can be prescribed from 100 to 250 par-
ticles. When the repository is full, the dominated solution in REP needs to be replaced by
the nondominated solutions appearing in the next generation.

A “hypercube” is introduced in MOPSO to quantify the “neighbor” (also known
as the searching domain) of the particles. Hypercubes are a subdivision of the objective
function domain separated by hyperlines that are uniformly distributed in each objective
function domain. We illustrated a hypercube (Figure 9) of a problem with two objective
functions of project NPV and oil recovery. The dots represent the particles of certain
MOPSO iterations. It is worth emphasizing that the hyperlines need to be justified after the
fitness of population (POP) is updated in each iteration due to the upper and lower limits
of the objective function domains possibly being changed.
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Figure 9. Hypercube illustration of a problem with two objective functions.

Similar to the single objective PSO, the MOPSO iteration also includes three stages [34]:
Stage 1: Initialization: The initial population (POP) is generated and the velocity (VEL)

of each particle is set to 0. The objective functions of all the particles are computed and
their fitness is assessed. Then, the initial solution repository (REP) is structured using the
nondominated solutions in the POP. Then the initial personal best (PBEST) of the particles
is set to be the initial fitness.

Stage 2: Velocity calculation: Compute the movement velocity of the particles
using Equation (26):

VEL[i] = 0.4 × VEL[i] + C1(PBEST[i]− POP[i]) + C2(REP[h]− POP[i]) (26)

where C1 and C2 are two weight factors within [0, 1]. Based on the hypercube structure in
the solution repository, a global best REP [h] is randomly picked from the grid where each
particle is located.

Stage 3: Update: The particles in the population are updated via Equation (27):

POP[i] = POP[i] + VEL[i] (27)

Then, the fitness of the particles is re-evaluated based on the updated population.
At this stage, the REP needs to be updated by removing the dominating solutions. The
hypercube structure and the PBEST would also change accordingly.

Current research works still focus on quantifying the convergence criteria of MOPSO.
One of the most broadly accepted opinions to determine the convergence of MOPSO is that
the iteration can be terminated when none of the new particles can dominate any of the
particles involved in REP. Figure 10 shows the workflow of the MOPSO process. MOPSO
is proved to be a robust algorithm that finds the repository of the close to the true Pareto
front by many searches.
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Figure 10. Workflow of multi-objective particle swarm optimization (MOPSO).

5. Structuring the Hybrid Numerical Machine-Learning Workflow

In the previous sections, we introduced the machine-learning proxy models and
optimization protocols. The coupling of them would build robust machine-learning as-
sisted optimization protocols for various engineering purposes in the CO2-WAG injection
project. In this paper, a machine-learning assisted history-matching and a multi-objective
optimization workflow is presented.

5.1. History-Matching Workflow

Due to the high dimension and considerable computational overhead, history-matching
cannot be completed by totally relying on the high-fidelity numerical model. Therefore,
machine-learning models are needed to assist the history-matching work. Using the
prepared numerical simulation runs as the knowledge base, a series of ANN models can be
successfully trained to predict the oil, water, and gas production considering the uncertain
reservoir properties as inputs. The importance of using the proxy models is that one can
conduct a large volume of numerical simulation realizations with little computational cost.
The trained proxy models are coupled with PSO to minimize the history-matching error
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function. The error function is defined as the summation of the square differences between
the field historical data and the model prediction.

In the history-matching process, the oil, gas, and water production rates were consid-
ered primary unknowns to calculate the error function. Considering the extensive number
of tuning parameters, the results of the history-matching model could exhibit strong non-
uniqueness, which means that there is more than one combination of the 62 parameters
that could generate a similar level of history-matching error. After an optimal solution
is obtained, the history matching solution found by the machine-learning workflow is
revisited by the high-fidelity numerical reservoir simulator, which confirms the matching
quality. In Figure 11, the machine-learning assisted history-matching workflow is dis-
played, which was successfully imposed to develop history-matched reservoir models for
the primary/secondary and CO2-WAG period.

 

Identify uncertainty 
parameters

Base simulation 
model

Send batching 
simulation runs

Training of the proxy 
model

Coupling the proxy model 
with the global optimizer

Defining the objective 
function 

Quality check of the optimization results 
using numerical model

Figure 11. Machine-learning assisted history-matching workflow.

5.2. Multi-Objective Optimization Workflow

Figure 12 illustrate the machine-learning assisted multi-objective optimization work-
flow coupling the numerical reservoir simulation model, proxy models, and global opti-
mization algorithm.

Data preparation: The original high-fidelity numerical model is utilized to prepare
a certain volume of numerical realizations. Those realizations are utilized to prepare the
knowledge base that is used to train the proxy model. Considering a blind testing error
margin of <5%, the training of an injection pattern base model needs at least 100 simulation
runs due to the smaller model size and dimensions. Training for the field scale proxy model
may require more than 500 simulation runs.
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Figure 12. Machine-learning assisted multi-objective optimization workflow.

Design of hyperparameters: It is known that the hyperparameters of the machine-
learning models have significant impacts on the prediction performance. The hyperpa-
rameters of SVM are optimized using Bayesian optimization and the MLNN topology is
designed with a self-adaptive training protocol [35].

Structuring the Pareto front: MOPSO employs the proxy models to generate the Pareto
front by considering various t objective functions. The 2- and 3-objective Pareto fronts can
be visualized using a two-dimensional curve and a surface, respectively.

Validation of the result: The Pareto front solutions must be validated before advising
any operational decisions. The input parameters of the Pareto front solutions revisit the
numerical model and compare the between the proxy and simulation results. If large
disparities are observed, then some new samples are added to the training database to
re-train the proxy. This loop can be continued several times until the error between the
simulation results and the proxy predictions is lower than a prescribed error tolerance.

6. Case Studies

6.1. A History-Matching Application

A history-matching application using the proposed machine-learning assisted work-
flow is presented in this discussion. The objective of this study was to tune the reservoir
hydrodynamic properties including the permeability along the x-, y-, and z- directions, and
the Corey’s relative permeability coefficients. The permeability distributions were tuned
by imposing anisotropic multipliers. The reservoir model assigned various three-phase
relative permeability curves based on the HFU characterization. There were five different
relative permeability sets considered in this work. Notably, HFU 5, 6, 7, and 8 were lumped
into one group and shared identical relative permeability data. Considering the perme-
ability multiplier and five different sets of Corey’s coefficients, there were 62 parameters
involved in the history-matching processes.

The machine-learning assisted tuning process was carried out by the workflow dis-
cussed in the previous sections. The Latin cube sampling protocol was used to prepare
100 simulation cases by varying the uncertain hydrodynamic parameters. The dataset
was used to train an expert MLNN proxy to predict the field responses based on different
hydrodynamic properties. In the machine-learning assisted workflow, the proxy model
substituted the high-fidelity numerical simulator to evaluate the history-matching error
defined by Equation (22). Figure 13 shows the history-matching results obtained by the
machine-learning assisted workflow coupling ANN proxy models and PSO optimizer.
It illustrates the fluid production matching quality predicted by the ANN models when
the history-matching error was minimized. The average relative matching errors were
0.9%, 42.9%, and 17.2% for oil, water, and gas production rates comparing the real-field
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historical data, respectively. Although the overall history-matching results obtained by
the PSO algorithm indicated a 20.2% relative error, water production exhibited much
worse performance compared to that of oil and gas. Thus, a confirmation by revisiting the
high-fidelity numerical simulator was quite necessary.

Figure 13. History-matching results obtained by the proxy model for (a) oil production, (b) water production, and (c) gas
production data.

The major objective of the machine-learning assisted history-matching workflow was
to find the combination of reservoir hydrodynamic properties that make the reservoir
simulation model predictions agree with the field historical data. When the PSO optimizer
minimizes the history-matching error during the iterative processes, the ANN proxies
are employed to predict the field responses. Notably, a set of reservoir properties would
be obtained after the PSO iteration converges, which is considered the solution of the
history-matching process. The history matching solution must revisit the high-fidelity
model for the following reasons:

1. Although the proxy models were well-trained, there existed potential error margins.
A history-matching solution must feed into the high-fidelity simulator and confirm
the matching quality.

2. To structure the forecasting scenarios, a base-case numerical simulation model needed
to be established by re-running the high-fidelity simulator using the history matching
solution suggested by the machine-learning assisted workflow.

Figure 14 shows the history-matching quality confirmed by the high-fidelity simu-
lator considering the solution found by the machine-learning assisted workflow. Good
agreements in terms of oil/gas/water production and the gas injection rate were observed,
which indicates that the numerical model was well tuned and effectively characterized
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the underground hydrodynamic environment. More importantly, the successful history-
matching study stressed the robustness of the proxy model by learning the data structure
presented by the dataset. The computational cost was significantly reduced by the machine-
learning assisted workflow. Preparing the 100 simulation runs took 80 h of CPU time. With
the help of the proxy model, the workflow completed more than 600 PSO iterations using a
population size of 100 (60,000 realizations in total) within 300 s.

 

Figure 14. History-matching results confirmed using the high-fidelity numerical model for (a) the oil production rate, (b)
the gas production rate, (c) the water production rate, and (d) the gas injection rate.

6.2. A Multi-Objective Optimization Application

Another application of the proposed workflow successfully designed the CO2-WAG
injection in the FWU field for the period from January 2020 to January 2038. The CO2
injection includes the purchased CO2 and the recycled CO2 from the produced gas. Ac-
cording to the initial analysis of the simulation results and previous studies [31], as shown
in Figure 15, the purchased CO2 rate varies from 2020 to 2033. At the end of 2033, no more
CO2 is purchased.

Figure 15. CO2 purchasing rate.
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A base-case forecasting scenario was established by dividing the CO2-WAG injection
patterns into four groups (WAG A, B, C, and D). The entire project timeline was split into
eight time periods, as shown in Table 1. There are more wells added to the groups as the
project processes.

Table 1. Time period details of the development plan.

Stages Start End

1 January 2020 June 2020
2 July 2020 January 2022
3 January 2022 January 2023
4 January 2023 January 2026
5 January 2026 January 2028
6 January 2028 January 2030
7 January 2030 January 2032
8 January 2032 January 2038

The CO2-WAG injection parameters included the water and gas injection duration,
water injection rates, and production well specifications, which vary for each group and
time period. Thus, there were 37 design specifications considered in the optimization study.
The NPV, oil recovery, and CO2 storage volume were the objective functions. A base case
model was structured using default design parameters suggested by the field operator [2]
The incremental oil production, NPV, and CO2 injection/production volume of the base
case model are displayed in Figure 16. The objective functions of the base case model are
summarized in Table 2. Note that the CO2 storage efficacy is the ratio of CO2 sequestrated
to the total purchased volume.

 

Figure 16. Simulation results of the base case model for (a) incremental oil production/project NPV and (b) cumulative
CO2 injection/production.

Table 2. Objective functions of the base case model.

Objective Function Unit Value

Oil production increments MM bbl 13.3
CO2 storage volume increments MM metric ton 1.06

Project NPV Million USD 183
Cumulative Oil Production by January 2038 MM STB 16.8
Total CO2 storage volume by January 2038 MM metric ton 2.36

CO2 storage efficacy percentage 81.19%

The cumulative oil recovery was 16.8 MM bbl and the total CO2 storage was 2.36 million
metric tons, which was 81.2% of the total purchased CO2. The project NPV was USD
183 million. It is worth stressing that the average reservoir pressure of ≥4000 psi was
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imposed as the physical constraint on the multi-objective optimization to sustain a miscible
flooding process [6]. The proposed optimization workflow aims at improving all the
objective functions simultaneously.

As shown in Figure 17, the Pareto front solution considering three objective functions
is illustrated as a space curve in the domain of f 1 (oil recovery), f 2(CO2 storage), and f 3
(NPV). The dominating solution sitting on the Pareto front was validated by the numerical
simulator. The good agreements can be observed in Figure 17, which confirms the validity
of the proxy model and the MOPSO optimization results. Another interesting observation
was drawn by plotting the projections of the three-objective Pareto front to three of the
orthogonal surfaces. In Figure 18, a strong tradeoff relationship can be observed between
the oil recovery and NPV, as well as the oil recovery and CO2 storage volume, which
means that by improving the oil recovery, the NPV and CO2 storage volume has to be
sacrificed. Therefore, the field operator could have a flexible range of choices to design
the CO2-WAG process based on the primary desire of the project. However, due to the
tax credit brought by the CO2 sequestration, the project NPV and CO2 storage volume
increases monotonically.

Figure 17. Comparison between the Pareto front and numerical simulation results using some of the
optimized input parameters: three-objective.

Figure 18. Projection view of the comparison between the Pareto front and numerical simulation results using some of the
optimized input parameters: three-objective.
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Table 3 summarizes the optimization results using the proposed workflow and the
base case values. The base case oil recovery fell out of the range of the Pareto front
solution, which means that the base case design scenario was part of the dominating
solution. Notably, the range of oil recovery included in the Pareto front was quite narrow
(13.3–15.7 MM STB), and the improvement to the base case was 16.0%. The design of
CO2-WAG made a considerable difference for the CO2 storage volume and NPV. Therefore,
the solution yielding the highest NPV and CO2 storage volume, even with the lowest
oil recovery, should be considered with priority. However, that investigation could be
altered when the oil price increases, or the tax allowance brought by CO2 utilization
becomes lower.

Table 3. Comparison between the results of the base case and the optimized solutions.

Item Unit Range/Value Base Case

Oil production increments MM STB 13.3–15.7 13.2
CO2 storage volume increments MM metric ton 0.42–1.4 1.06

Project NPV Million USD 170–205 -
Max cumulative oil production MM STB 19.3 16.8
Max cumulative CO2 storage MM metric ton 2.7 3.63

Max project NPV Million USD 205 183
CO2 storage efficacy percentage 92.90% 81.19%

The field operator collaborating with the SWP project aims to extract hydrocarbon in
the Morrow-B formation using CO2-EOR technologies. The primary goal of the operation
is to produce residual oil, and the sequestration of CO2 during the EOR stage would
help improve the project NPV via tax credits. That is why oil recovery, the NPV, and
CO2 storage volume are selected as the objective functions. The key to maximizing the
CO2 storage (minimizing the CO2 production) during the EOR process is the injection
specifications. The miscible flooding processes inject CO2 gas in continuous or cyclic
manners. For a multiphase flow system, the mobility of the gaseous phase relates to
the gas saturation. As the gas injection processes, a high gas saturation channel could
form from which the injected gas could break through. Such an issue would occur in
the continuous CO2 injection process. In the practical CO2 injection process, the water
and CO2 may inject in a cyclic manner and avoid the persistent buildup of gas saturation.
More importantly, since the pressure and saturation distributions of the system would
exhibit strong heterogeneity, the CO2-WAG design should vary for different injectors. For
instance, injectors in the high-water saturation region could take a higher gas injection
volume (longer gas injection cycle) and vice versa. Thus, an accurate characterization of
the pressure and saturation distribution is also critical for a successful CO2-WAG design.
The deployment of CO2 foam [36] exhibits more robust mobility control competences.
Although these technologies are not used in the Morrow-B CO2-EOR project, the coupling
of chemical slug and CO2 gas would be beneficial for CO2 storage and oil recovery under
feasible project economic criteria.

7. Conclusive Remarks

This paper presents a comprehensive summary of machine-learning assisted work-
flows to solve various engineering problems associated with the CO2-WAG design. By
coupling the proxy model and the advanced optimization protocols, the computational
overheads of the history-matching and multi-objective optimization processes are signifi-
cantly reduced. Besides the successful experiences obtained from this work, the following
limitations cannot be ignored:

1. The proxy model developed in this work is a field-specified model that only works
for the Morrow-B formation. Its implementation in other fields needs a new reservoir
simulation model structure and needs to go through the proposed workflow.
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2. The CO2-EOR process only includes the CO2-WAG process. Other CO2-EOR technolo-
gies such as CO2 foam, continuous injection, CO2 huff-n-puff, etc., are not considered.

From this work, the following conclusive statements can be drawn:

1. The selection of the machine-learning algorithm may comprehensively consider the
dimension of the problem and the demand of error margin. The RSM, SVM, and
MLNN are suitable for different types of datasets and a wise choice of method could
essentially enhance the prediction performance of the proxy model.

2. Although machine-learning approaches exhibit many superiorities over the con-
ventional numerical approach, a precise reservoir engineering analysis should take
advantage of both. The error margin of the proxy model is the tradeoff for accelerating
the computational speed. Thus, validation via the high-fidelity numerical model is
necessary before deploying the results in operational practices.

3. The Pareto front optimum protocol provides an alternative way to address multi-
objective optimization problems. However, a successful application of the Pareto
front optimum solution must be based on the tradeoff relationship between various
objective functions.

4. The calculation of the project economic objective functions strongly depends on the
tax allowance and crude oil price. Therefore, the operational deployment of the
optimum design suggested by the workflow needs to take practical considerations
such as crude oil market condition, government policies, etc., into account.

SI-Field Unit Conversion Factor

ft × 0.3048 = m
ft2 × 0.0929030 = m2

ft3 × 0.0283169 = m3

bbl × 0.1589873 = m3

psi × 6.894757 = kPa
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Abbreviations

ANN artificial neural network
CAPEX capital expenditure
CCUS Carbon capture utilization and sequestration
CPU central processing unit
EOR enhanced oil recovery
FWU Farnsworth Unit
GA genetic algorithm

142



Energies 2021, 14, 1055

HFU hydraulic flow unit
MLNN multi-layer neural networks
MM million
MOO multi-objective optimization
MOPSO Multi-objective particle swarm optimization
NPV net present value
OGIP original gas in place
OOIP original oil in place
POP population
PSO particle swarm optimization algorithm
REP: repository
res bbl reservoir barrel
RSM response surface models
SCF standard cubic feet
STB stock tank barrel
SVM support vector machines
SWP Southwest Regional Partnership on Carbon Sequestration
VEL velocity
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Abstract: The objectives of this study were (1) to assess the fate and impact of CO2 injected into
the Morrow B Sandstone in the Farnsworth Unit (FWU) through numerical non-isothermal reactive
transport modeling, and (2) to compare the performance of three major reactive solute transport
simulators, TOUGHREACT, STOMP-EOR, and GEM, under the same input conditions. The models
were based on a quarter of a five-spot well pattern where CO2 was injected on a water-alternating-gas
schedule for the first 25 years of the 1000 year simulation. The reservoir pore fluid consisted of water
with or without petroleum. The results of the models have numerous broad similarities, such as
the pattern of reservoir cooling caused by the injected fluids, a large initial pH drop followed by
gradual pH neutralization, the long-term persistence of an immiscible CO2 gas phase, the continuous
dissolution of calcite, very small decreases in porosity, and the increasing importance over time of
carbonate mineral CO2 sequestration. The models differed in their predicted fluid pressure evolutions;
amounts of mineral precipitation and dissolution; and distribution of CO2 among immiscible gas,
petroleum, formation water, and carbonate minerals. The results of the study show the usefulness of
numerical simulations in identifying broad patterns of behavior associated with CO2 injection, but
also point to significant uncertainties in the numerical values of many model output parameters.

Keywords: reactive solute transport; CO2 sequestration; multi-phase fluid flow; Farnsworth Unit;
STOMP; GEM; TOUGHREACT

1. Introduction

The Farnsworth Unit (FWU), a hydrocarbon field in northern Texas, USA, has been
studied by the Southwest Regional Partnership on Carbon Sequestration (SWP) since 2013
as a test site for commercial-scale CO2 sequestration and enhanced oil recovery (EOR) in a
sandstone reservoir [1,2]. Central to assessing the feasibility of CO2 sequestration in the
FWU is determining the behavior of the injected CO2, including where and at what rate
the CO2 will migrate, how the CO2 will be distributed among the pore fluid phases (i.e.,
aqueous, gas, and nonaqueous liquid) and minerals, and how the hydraulic properties of
the reservoir and the composition of the pore fluids will be changed.

Answering these questions requires the ability to quantify the flow of multiple fluid
phases, their transport of solute and heat, and chemical reactions involving the fluid
phases and minerals in the reservoir. Several previous SWP studies have attempted to do
this using numerical reactive transport modeling. Ahmmed [3] used the TOUGHREACT
software [4] to model reservoir behaviors caused by CO2 injection in the immediate vicinity
of an individual well and over the full area of the FWU. His model predicted the pH of
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the formation water to decline to a minimum of 4.7 because of CO2 injection, causing
most of the native minerals in the reservoir to dissolve, except for quartz, kaolinite, and
illite. The model predicted hydrodynamic trapping to be the main mechanism of CO2
sequestration, with ankerite predicted to be the only mineral that sequestered CO2. The
changes in mineral abundance, however, were predicted to be too small to cause much
change in the hydraulic properties of the reservoir. Limitations of the model were that it
did not include petroleum, only CO2 was injected into the reservoir rather than water and
CO2 through a water alternating gas (WAG) scheme as actually implemented in the field,
the model did not implement the actual regional pressure gradient occurring in the field,
and the model was only carried out to 30 years.

Pan et al. [5] used the TOUGHREACT software to evaluate reactive transport in the
Morrow B Sandstone resulting from WAG injection over a 5-spot well pattern. Because
of the symmetry of the 5-spot well pattern, the model domain consisted of a triangle
representing only one-eighth of the total 5-spot pattern area where the injection well and
production well were separated by 504 m. Pan et al. [5] incorporated several chloride and
sulfate minerals plus muscovite and dawsonite in their model as potential precipitates that
were not incorporated in Ahmmed’s [3] model. However, except for halite, these minerals
were not predicted to precipitate as described in the model by Pan et al. [5]. Besides
the relatively small size of their model domain, limitations of the model constructed by
Pan et al. [5] were that it did not treat petroleum and used mineral reactive surface areas
per unit mass that are significantly larger than indicated by Gallagher’s [6] characterization
of the Morrow B. Similar to Ahmmed et al. [3], Pan et al. [5] found the native reservoir
minerals, quartz, kaolinite, and illite to increase in abundance over time, whereas the other
native reservoir minerals dissolved. Like Ahmmed et al. [3], Pan et al. [5] found ankerite to
be a mineral sink for injected CO2, but also magnesite and siderite. Pan et al. [5] found their
predicted changes in mineral abundances to cause only minor changes in the hydraulic
properties of the reservoir—a maximum increase in porosity and permeability of 2.7 and
8.4%, respectively, occurring close to the injection well.

Khan [7] also used the TOUGHREACT software to model reactive transport in the
Morrow B Sandstone as a result of WAG injection but considered a larger model do-
main than Pan et al. [5] consisting of the western part of the FWU. Like Ahmmed [3]
and Pan et al. [5], Khan [7] considered water and CO2 in his models but not petroleum.
Khan’s [7] simulations predicted much of the injected CO2 to leak from the reservoir into
the overlying shales or to migrate across the western boundary of the FWU within a few
decades. Khan’s [7] predicted mineral precipitation and dissolution behaviors resembled
those of Ahmmed [3] and Pan et al. [5]. The native reservoir minerals, ankerite, albite, and
illite were predicted to dissolve because of CO2 injection but quartz; kaolinite; smectite;
and the carbonate minerals calcite, dolomite, and siderite were predicted to precipitate.
However, Khan’s [7] predicted porosity changes of order 0.001% were much smaller than
those of Pan et al. [5].

Sun et al. [8] used the Computer Modeling Group Green House Gas (CMG-GHG)
simulator, GEM [9,10], to model reactive transport of CO2 injected through a WAG scheme
over a model domain consisting of a 5-spot well pattern like that considered by Pan et al. [5].
The total simulation time in Sun et al. [8] was 1000 years, with injection occurring during
the first 20 years. In contrast to Ahmmed [3], Pan et al. [5], and Khan [7], Sun et al. [8]
predicted most of the injected CO2 to be sequestered as an immiscible gas phase. Most
of the remaining CO2 in the model of Sun et al. [8] was sequestered through residual
trapping. Like Ahmmed [3], Pan et al. [5], and Khan [7], Sun et al. [8] predicted the smallest
amount of CO2 sequestration to occur through mineral trapping. Sun et al. [8] predicted
quartz, kaolinite, and siderite to precipitate in their simulations but albite, calcite, chlorite,
dolomite, illite, and smectite to dissolve. Sun et al. [8] did not include ankerite or magnesite
in their models, two potentially important mineral sinks for CO2. Sun et al. [8] predicted
porosity changes of less than 1% in their models.
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White et al. [11] have developed a multi-fluid phase (water–oil–gas) reactive transport
simulator called STOMP-EOR, which they applied to study the physical behavior of fluids
in the western FWU. Like GEM, STOMP-EOR solves coupled conservation equations for
energy, water mass, CO2 mass, CH4 mass, and the masses of multiple petroleum com-
ponents in variably saturated geologic media. Although STOMP-EOR has the capability
to compute reactive transport, STOMP-EOR had not yet been used in reactive transport
modeling studies of the FWU.

Because the previous SWP investigations of the FWU used three different numerical
simulators—TOUGHREACT, GEM, and STOMP-EOR, this raises the question of how
consistent the simulators are in terms of their ability to model the same input conditions.
Thus, one of the objectives of the present study was to try to answer this question by
building identical five-spot pattern models with the same grid design and parameter values
for all three simulators and comparing the results. Because TOUGHREACT currently does
not have the capability to treat a separate petroleum fluid phase, the comparison of the
TOUGHREACT, GEM, and STOMP-EOR models required that water and CO2 were the
only pore fluids. The TOUGHREACT simulator is analogous to the STOMP-CO2 simulator,
both considering only energy conservation, and conservation of water, CO2, and salt mass.
The equations of state differ significantly between STOMP-CO2 and STOMP-EOR, with
CO2 properties being computed from the Span and Wager [12] equation of state, and
cubic equations of state, respectively. A further comparison was made between GEM
and STOMP-EOR for identical five-spot pattern models that included water, CO2, and
petroleum pore fluids.

In addition to providing a rigorous comparison of the TOUGHREACT, GEM, and
STOMP-EOR simulators, the first of its kind and which will help build confidence in
these simulators for future research, the present study also extends the previous reactive
transport modeling studies of the FWU in the following ways:

• The studies by Ahmmed [3], Pan et al. [5], and Khan [7] considered only water and
CO2 as the pore fluids and not oil. The present study included a simulation scenario
that considered water, CO2, and oil.

• Although Sun et al. [8] considered water, CO2, and oil in their reactive transport model,
their model had some differences with actual field conditions: (1) They did not use the
actual fluid injection temperature in the field, but rather the 75 ◦C temperature in the
reservoir, and (2) they used generic mineral reactive surface areas from Pan et al. [5]
and Xu et al. [13] rather than reactive surface areas determined from the field properties
of the Morrow B. The present study used the field-based fluid injection temperatures
and mineral reactive surface areas.

2. Geological Setting

The Farnsworth Unit is located in the western Anadarko Basin (Figure 1), a structural
basin that formed primarily during the Mississippian and Pennsylvanian periods in re-
sponse to the collision of southeastern North America with Gondwanaland. The Morrow
B Sandstone, the main target for hydrocarbon production and CO2 sequestration in the
study, is part of the Upper Morrowan-age (Early Pennsylvanian) stratigraphic succession
in the basin. This succession is characterized by alternating intervals of glacially induced
marine transgression and regression. During times of marine transgression, increasingly
fine-grained clastic sediments were deposited, culminating in the deposition of nearshore
and offshore mud. During times of marine regression, streams flowed through the FWU
from the northwest, carving channels through the older transgressive sediments. During
subsequent marine transgression, the fluvial sediments deposited in these channels were
winnowed to form coarse-grained lag deposits and then were buried by fine-grained clas-
tic sediments. Thus, the Morrow B Sandstone consists of relatively narrow channels of
coarse sandstone enclosed within fine-grained sediments, creating conditions favorable for
stratigraphic CO2 trapping.
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Figure 1. Location of the Farnsworth Unit and the Anadarko basin within the seven-state region of
the SWP.

The Morrow B Sandstone is subarkosic, with quartz and albite as the main constituents.
The remainder of the Morrow B is composed of minor amounts of chlorite; the carbon-
ate minerals, calcite, siderite, and ankerite; and the clay minerals, smectite, illite, and
kaolinite. The Morrow B ranges in thickness from 0 to 16.5 m within the Farnsworth
Unit, with an average thickness of 10 m [6,14]. The permeability and porosity of the
Morrow B are very heterogeneous, with average values of approximately 48.2 mD and
14.5%, respectively. The Morrow B is overlain by the Morrow Shale and an Atokan-age se-
quence of low-permeability evaporites and limestone called the Thirteen Finger Limestone
(Figure 2; [6,14–17]). Together, the Morrow Shale and Thirteen Finger Limestone act as a
caprock for the Morrow B Sandstone [14,15].

 

Figure 2. Pennsylvanian stratigraphic sequence of the of Farnsworth Unit. From Gallagher [6].
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3. Model Construction and Scenarios

3.1. General Model Characteristics

The field development design within the Farnsworth Unit is a sequence of five-spot
well patterns, in which four injection wells are placed at the corners of a square and a
production well is placed at the center of the square. The numerical model generated in the
present study is based on that five-spot well pattern, specifically on the pattern centered
on production well, 13-10A, but because of the symmetry of the well spacing and in the
expected model results, the model considers only one-quarter of the full pattern. Thus,
the grid employed in the numerical model consisted of a three-dimensional block with
an injection well at one corner and a production well at the opposite corner (Figure 3).
The numerical grid had horizontal lengths of 504 m each subdivided by 11 equally spaced
nodes, and a vertical length of 10 m, coinciding with the thickness of the Morrow B at
well 13-10A, subdivided by 4 equally spaced nodes. The small model scale and spatial
homogeneity of model parameters within the model domain were chosen to facilitate
comparison of results from the three simulators.

Figure 3. Model spatial domains. (a) Areal extent of the FWU. Black circles represent production wells. Black circles
with arrows represent injection wells. The dashed rectangle represents the area of the five-spot pattern considered in the
present study. (b) Plan view of the five-spot well pattern on which the present study was based. The blue shaded rectangle
represents the area of the model domain. (c) Numerical grid corresponding to the blue shaded area in panel (b).

All three numerical simulators solve mass and energy conservation equations for multi-
phase pressure distribution and fluid flow, solute transport, and heat transport [18–20].

In TOUGHREACT and STOMP-EOR, these equations are solved using the inte-
grated finite difference method. In GEM, these equations are solved using the finite
difference method.

Hydrological parameter values used in the models were obtained from studies by
Pan et al. [5] and are shown in Table 1.

The initial Morrow B pore water composition used in the models was taken from
Ahmmed et al. [21] and is shown in Table 2.

The minerals shown in Table 3 include both the minerals that were initially present
in the Morrow B (primary minerals) and new minerals that were expected possibly to
precipitate during the model simulations (secondary minerals). The mineral reactive
surface areas were obtained from Khan [7], which were calculated from the average radii
of mineral grains in the Morrow B reported by Gallagher [6]. Kinetic parameters for
mineral precipitation and dissolution were obtained from Palandri and Kharaka [22] and
Xu et al. [19]. Mineral precipitation and dissolution reactions initially proceeded according
to a neutral pH reaction mechanism because of the initially near-neutral pH of the Morrow
B formation water. With the injection of CO2, the formation water became progressively
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acidified and mineral precipitation and dissolution reactions then proceeded according
to an acidic pH reaction mechanism. Chemical reactions that did not involve minerals
were assumed to reach equilibrium within each time step, for example, the intra-aqueous
species reactions.

Table 1. Hydrogeologic parameters used in the STOMP-EOR, TOUGHREACT, and GEM simulations.

Matrix compressibility (1/Pa) 4.5 × 10−10

Diffusion coefficient (m2/s)
1. Gas
2. Aqueous solutes

1.1 × 10−5

2.1 × 10−9

Rock matrix density (kg/m3) 2500
Porosity 0.145
Intrinsic Permeability
1. Horizontal (m2)
2. Vertical Ratio

4.74 × 10−14

0.10
Relative Permeability (Corey, 1954 model)
1. Saturation endpoints
2. Water/gas endpoints

Slr = 0.3 and Sgr = 1 × 10−4

Krw = 0.7 and Krg = 1
Capillary Pressure None
Salt mass fraction in pore water 0.003
Initial aqueous phase saturation
1. Water–CO2 models
2. Water–CO2–oil models

0.99
0.73

Initial gas-phase saturation 0.01
Initial oil-phase saturation (Water-CO2-oil models) 0.27
Initial field temperature (◦C) 75.56
Injection pressure (MPa) 34.47
Injection temperature (◦C) 40
Production well screen pressure (MPa) 29.99
WAG Cycle Ratio (Months) 3 : 6
1. Thermal conductivity of saturated rock (W/m K)
2. Specific heat (J/kg K)

2.28
700

Table 2. Concentrations of aqueous component species in the FWU reservoir from well battery AWT4.

Primary Aqueous Species (mol/L):

Ca2+ 8.25 × 10−4 Ba2+ 1.00 × 10−5

H+ 1.00 × 10−7 AlO−
2 2.80 × 10−7

K+ 1.83 × 10−4 SO2−
4 1.35 × 10−4

Mg2+ 5.10 × 10−4 Cl− 5.90 × 10−2

Na+ 6.18 × 10−2 HCO−
3 1.33 × 10−2

Fe2+ 3.60 × 10−13 SiO2 6.69 × 10−4

Data from Ahmmed et al. [21].

All three numerical simulators use similar kinetic formulations [9,11,13], in which
mineral dissolution and precipitation rates are calculated from

rm = Âmkm

(
1 − Qm

Keq, m

)
(1)

where rm is the rate of dissolution or precipitation, Âm is the reactive surface area of mineral
m, km is the rate constant, Keq, m is the chemical equilibrium constant, and Qm is the activity
product, expressed as

Qm =
naq

∏
k=1

avkm
k (2)
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where naq is the number of aqueous components, vkm is the stoichiometric coefficient of
component k in reaction m, and ak is the activity of the component k.

Table 3. Initial mineral volume fractions, possible secondary mineral phases, reactive surface areas, and kinetic properties
at 25 ◦C.

Minerals
Initial Volume

Fraction %
Reactive Surface

Area cm2/g

Neutral pH Mechanism

Rates Constant 25 ◦C [mol m−2 s−1] Activation Energy [kJ mol−1]

Albite 17.973 11.45 1.0 × 10−12 67.83
Calcite 0.4279 11.07 1.55 × 10−7 23.50

Clinochlore 0.8559 11.41 1.0 × 10−13 62.76
Quartz 58.6261 9.80 1.023 × 10−14 87.70

Illite 0.5991 43.63 1.7 × 10−13 35.00
Kaolinite 7.018 46.15 1.01 × 10−13 62.76
Dolomite 0 10.49 6.0 × 10−10 41.80
Magnesite 0 10 4.57 × 10−10 23.50
Smectite-ca 0 9.8 1.0 × 10−14 58.62

Siderite 0 9.8 1.26 × 10−9 41.80
Ankerite 0 9.84 1.26 × 10−9 41.80

Mineral volume fraction data from Munson [14] and Gallagher [6].

Reaction rate constants at a temperature of interest are computed from

km = k25 exp
[
−Ea

R

(
1
T
− 1

T0

)]
(3)

where Ea is the activation energy and k25 is the reaction rate constant at 25 ◦C.
Other initial conditions are that the model domain had a constant pressure of 30 MPa

and a constant temperature of 75 ◦C.
The boundary conditions for the models constructed for each simulator were the

same. All the faces of the model domains had zero fluid flux boundary conditions. The
lateral faces of the model domains had zero heat flux boundary conditions. A vertical
injection well was placed at one corner of the model domain, and a production well was
placed at the opposite corner (Figure 3). The wells were screened over an elevation from
0.0 m to 10.0 m. A WAG scheme was employed at the injection well in which water was
injected at a rate of 0.336 kg/s at 40 ◦C for 90 days, after which CO2 was injected at a rate of
0.454 kg/s for 180 days at 40 ◦C. This WAG scheme was employed for the first 25 years of
each simulation, after which injection ceased and the simulation was allowed to continue
to run to a total time of 1000 years to be able to track long-term effects of CO2 injection.
A constant bottom hole pressure of 30.0 MPa was assigned to the production well. The
production and injection rates represent 1

4 of the average pumping rates in the field from
wells 13-9 and 8-4, as the model domains intersect only one-quarter of the perimeter of
the wells.

During execution of the model, time step sizes were continuously and automatically
adjusted to achieve convergence. In general, time step sizes increased with time as gradients
in model parameters diminished.

3.2. Model Scenario 1: Injection of CO2 into a Saline Water Aquifer

Pore fluids in the Morrow B Sandstone consist of water, petroleum, and methane.
Thus, to model as robustly as possible the behavior of CO2 injected into the Morrow
B and to assess the CO2 sequestration capacity of the Morrow B, all three pore fluids
should be treated. This in fact was the objective of the present study’s second model
scenario described below. However, another objective of the present study was to assess
the consistency of major reactive solute transport simulators with one another for CO2
sequestration modeling, specifically, the GEM, STOMP-EOR, and TOUGHREACT simula-
tors. The TOUGHREACT simulator did not currently have the capacity to treat petroleum
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as a separate pore fluid. Thus, to the compare the performance of TOUGHREACT to the
GEM and STOMP-EOR simulators, a scenario was chosen involving injection of CO2 into
the Morrow B where water was the only pore fluid present. This scenario has further
value in that it provides a baseline for comparison. As noted above, the same parameter
values (Tables 1–3), boundary conditions, and initial conditions were used with all three
simulators to model this scenario.

3.3. Model Scenario 2: Injection of CO2 into a Depleted Hydrocarbon Reservoir

This scenario investigates the effects of the coexistence of petroleum and water on CO2
sequestration in the Morrow B Sandstone. The parameter values, boundary conditions,
and initial conditions were the same as in Model scenario 1, except that the initial water
saturation was reduced from 99% to 73% and oil saturation was raised from 0 to 16%. The
initial gas saturation remained the same as in Model scenario 1 at 1%.

The composition of the petroleum used in the models is shown in Table 4 and is
based on the FWU petroleum composition reported by Gunda et al. [23]. The presence of
petroleum with water in a porous medium can significantly alter the sequestration behavior
of CO2 compared to the case when only water is initially present in the porous medium. A
significant fraction of the injected CO2 is expected to dissolve into the petroleum, leaving
less CO2 to exist as a separate immiscible gas phase and to dissolve into the formation water,
affecting the physical flow behavior of the pore fluids through altered relative permeability
values. Lower CO2 concentration in the formation water will raise its pH, fundamentally
affecting the concentrations of other aqueous species and the precipitation and dissolution
of minerals. As noted above, only GEM and STOMP-EOR were used to investigate Model
scenario 2, as TOUGHREACT did not currently have the capability to treat a separate
petroleum fluid phase.

Table 4. Model petroleum component properties and initial mole fractions.

Component Mole Fraction
Molar Weight

(kg/kmol)
Critical

Temperature (K)
Critical

Pressure (bar)

CO2 0.0 44.01 304.21 73.77
CH4 0.385 16.04 188.85 46.00
C2 0.039 30.07 197.45 48.83
C3 0.025 44.10 247.19 42.44

C4+ 0.028 58.12 289.89 37.76
C5+ 0.020 72.15 328.13 33.76
C6 0.018 86.18 365.70 29.68

HC1 0.335 189.95 577.54 22.48
HC2 0.150 545.65 864.34 16.25

Component definitions, properties, and abundances derived from Sun et al. [8].

4. Results

4.1. Model Scenario 1
4.1.1. Temperature and Pressure Distributions

Figures 4 and 5 show plan views of the evolution of reservoir pressure and temperature
predicted in the STOMP-EOR, TOUGHREACT, and GEM models in the middle layer of the
model grid as a result of water and CO2 introduced through the injection well at the lower
left corner of each plot. All three models predicted an increase in fluid pressure from the
initial value of 30 MPa during the 25 years of injection, reaching a maximum of ~33 MPa.
After the injection period ended, all three models predicted fluid pressures to decline, but
not at the same rate. The fastest fluid pressure decline was predicted in the TOUGHREACT
model, where fluid pressures returned to initial reservoir values within 100 years. The
STOMP-EOR model predicted a slower decline in pressure, requiring several centuries for
fluid pressure to return to the initial reservoir value. In the GEM model, fluid pressure had
not yet returned to the initial reservoir value by the end of the 1000 year simulation time,
reaching a minimum value of ~31.5 MPa.
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Figure 4. Plan views of the evolution of fluid pressure in the middle cell layer of the model grid predicted by the STOMP-
EOR models (a–c), TOUGHREACT models (d–f), and GEM models (g–i) after 25, 100, and 1000 years.

The temperature evolutions predicted by all three models were similar. In each model,
temperature near the injection well dropped from the initial reservoir temperature of 75 ◦C
to 40 ◦C, the temperature of the injected fluids. Lower temperatures gradually propagated
across the model domain toward the production well located at the upper left corner of
the plots, continuing until the end of the simulations after 1000 years. However, after the
injection well was shut in, temperature near the injection well gradually began to rise,
reaching ~60 ◦C in the TOUGHREACT and GEM models and ~70 ◦C in the STOMP-EOR
model after 1000 years.

4.1.2. Evolution of Pore Fluid and Mineral Composition

In addition to altering the pressure and temperature distribution in the reservoir, the
injected water and CO2 alter the pore fluid composition of the reservoir. Figure 6 shows
CO2 gas saturation after 25, 100, 600, and 1000 years along a vertical profile between the
injection well and production well as predicted by the STOMP-EOR, TOUGHREACT, and
GEM models. The results of the models were most dissimilar at early times (see Figure 6a–c
at 25 years), but all show CO2 to concentrate in the upper part of the profile, which is
due to buoyancy. Similar maximum gas saturations around 0.38 are also predicted by all
three models. Over time the model CO2 gas saturations converged to a similar, vertically
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differentiated pattern with saturations decreasing from the top of the model domain to
the bottom. The CO2 gas saturations in each model also largely stabilized after 100 years,
changing little until the end of the simulations at 1000 years. However, even at longer times
some differences are visible in the results. The STOMP-EOR model predicted the highest
overall gas saturations and the TOUGHREACT model predicted the CO2 gas plume not
to migrate all of the way to the production well on the right boundary of the plots. The
differences in gas saturation may be a function of different CO2 solubility relationships
used in the three simulators [24–26].

 

Figure 5. Plan views of the evolution of temperature in the middle cell layer of the model grid predicted by the STOMP-EOR
models (a–c), TOUGHREACT models (d–f), and GEM models (g–i) after 25, 100, and 1000 years.

CO2 gas saturation as a function of time is shown in Figure 7a. All three models show a
sharp increase in gas saturation during the injection period. In addition, in all three models,
gas saturation remains significantly elevated over the entire 1000-year simulation period,
though in the TOUGHREACT model, gas saturation steadily declines after the injection
well is shut in, whereas in the STOMP-EOR and GEM models, gas saturation remains
relatively constant at its maximum level. The long-term persistence of this immiscible
CO2 gas phase is largely a product of the no-flow boundary conditions that encompass
the model domain. Once the production well is turned off after 25 years, the CO2 can no
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longer exit the model domain and can only diminish in abundance by dissolving into the
formation water. Much of the injected CO2 dissolves into the Morrow B formation water
and this has a direct effect on its pH and HCO−

3 concentration, as indicated by Equation (5)
and as shown in Figure 7b,c. The injection of CO2 causes an immediate drop in the pH
and an increase in the HCO−

3 concentration, though not by the same amounts. The GEM,
TOUGHREACT and STOMP-EOR models predict minimum pH values of 4.6, 4.7, and 4.8,
respectively, at the onset of CO2 injection. All three models predicted a gradual increase in
pH over time; this occurs within the first few years after the injection ceased until the end
of the simulation. The eventual pH increase is probably caused by reactions with various
minerals in the Morrow B that consume H+.

 

Figure 6. CO2 gas saturation along a vertical cross section between the injection well and the producing well after 25 years
predicted by the STOMP-EOR, TOUGHREACT, and GEM models after (a–c) 25 years, (d–f) 100 years, (g–i) 600 years, and
(j–l) 1000 years.

All three models predicted an initial increase in HCO−
3 concentration over time,

though these concentrations varied by ~1.5 orders of magnitude among the three sim-
ulators, with the lowest concentrations predicted by the GEM model, followed by the
STOMP-EOR and TOUGHREACT models, respectively. In the GEM and TOUGHREACT
models, HCO−

3 concentration continued to rise throughout the rest of the simulation,
whereas in the STOMP-EOR simulation, HCO−

3 concentration began to decline after about
200 years. Several competing factors affect the concentration of HCO−

3 . Some HCO−
3 may

be generated through the gradual dissolution of residual CO2 gas into the formation water
and by the dissolution of calcite, a native reservoir mineral, which also neutralizes pH
(Equations (4) and (5); Figures 8 and 9). Some HCO−

3 is removed from the formation water
by the precipitation of other carbonate minerals such as dolomite, magnesite, and ankerite
(Equations (6)–(8)).

CO2(aq) + H2O ↔ H+ + HCO−
3 (4)

H+ + CaCO3(Calcite) → Ca2+ + HCO−
3 (5)

Ca2+ + Mg2+ + HCO−
3 → CaMgCO3(Dolomite) + H+ (6)

Mg2+ + HCO−
3 → MgCO3(Magnesite) + H+ (7)

Ca2+ + 0.3Mg2+ + 0.7Fe2+ + 2HCO−
3 → CaMg0.3Fe0.7(CO3)2(Ankerite) + 2H+ (8)
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Figure 7. Simulated (a) gas saturation; (b) pH; and concentrations of (c) HCO3
−, (d) Ca2+, (e) Fe2+, and (f) Mg2+ as a

function of time integrated over the entire model domain.

The sharp initial drop in pH predicted by all three models during the first years of
the injection period leads to the dissolution of the native reservoir minerals, calcite, albite,
clinochlore, and illite in all three models. In addition, STOMP-EOR and GEM predict
kaolinite to dissolve, whereas TOUGHREACT predicts kaolinite to precipitate. By the end
of the 1000-year simulation period, all three models predict calcite, clinochlore, and illite to
have continued to dissolve. STOMP-EOR and TOUGHREACT also predict albite to have
continued to dissolve, whereas GEM predicts albite to have begun precipitating. STOMP-
EOR and GEM predict kaolinite to continue to dissolve and TOUGHREACT predicts
kaolinite to continue to precipitate until the end of the simulation at 1000 years.
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Figure 8. Simulated changes in carbonate minerals abundances (a) STOMP-EOR, (b) TOUGHREACT, (c) GEM, and changes
in fraction. (d) Porosity as a function of time integrated over the entire model domain.

The predicted steady dissolution of calcite by all three models does not lead to a
corresponding steady increase in Ca concentration in the formation water. Rather, Ca
concentration gradually decreased over time in the TOUGHREACT and GEM models, and
in the STOMP-EOR model, Ca concentration increased for the first 10 years, decreased
from 10 to 200 years, and then gradually increased for the remainder of the simulation.
Decreases in Ca concentration were driven by the precipitation in all three models of the
Ca minerals, dolomite, and Ca-montmorillonite. In the STOMP-EOR and GEM models,
further Ca was removed from the formation water by the precipitation of ankerite, siderite,
and magnesite. No Fe minerals were predicted to precipitate in the TOUGHREACT model.
Thus, the Fe concentration of the formation water in the TOUGHREACT model remained
constant over time. However, ankerite and siderite were predicted to precipitate in the
STOMP-EOR and GEM models, though much more so in the GEM model. This was
enough to cause a steady decrease over time in the concentration of Fe in the formation
water in the GEM model, but not enough to prevent a slight increase over time in the
STOMP-EOR model. The GEM model predicted a brief initial period of increase in Mg
concentration in the formation water over the first 25 years, followed by a gradual decline.
The initial increase in Mg concentration is probably caused by the dissolution of clinochlore.
However, with increasing time, the precipitation of dolomite, ankerite, magnesite, and Ca-
montmorillonite led to a net decrease in Mg concentration. In the TOUGHREACT model,
the absence of dissolution of any Mg minerals during the early years of the simulation
and the precipitation of dolomite caused a decrease in Mg concentration in the formation
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water. At later times, high levels of clinochlore dissolution caused Mg concentration in the
formation water to increase. In the STOMP-EOR model, Mg concentration increased almost
continuously throughout the simulation, with the exception of a brief decline between
approximately 50 and 100 years. The dissolution of clinochlore is likely the main source for
the Mg concentration increase.

 

Figure 9. Simulated changes in mineral volume integrated over the entire model domain due to dissolution after (a) 25 years,
(b) 1000 years, and due to precipitation after (c) 25 years and (d) 1000 years predicted by the STOMP-EOR, TOUGHREACT,
and GEM models.

Quartz is the only native reservoir mineral that was predicted to precipitate in all
three models (Figure 9c,d). In contrast, kaolinite, another native reservoir mineral, was
predicted to dissolve in the GEM and STOMP-EOR models but was predicted to precipitate
in the TOUGHREACT model.

All three of the models predicted very small, nearly continuous decreases in porosity
over the course of the simulations (Figure 8d). The largest porosity decrease was predicted
by the STOMP-EOR model at 0.0017. These porosity changes are likely to be too small to
have a significant impact on the hydraulic properties of the Morrow B Sandstone and its
capacity to sequester CO2 in either the formation water or as an immiscible gas phase.

Figure 10 shows how the three models predict the injected CO2 to be distributed
among an immiscible gas phase, the formation water, and carbonate minerals. The STOMP-
EOR and GEM models predict most of the injected CO2 to be sequestered within an
immiscible gas phase throughout the 1000 years of the simulation. All three models
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similarly predict the formation water to be the next most important sink for the injected
CO2. Carbonate minerals are a negligible sink for the injected CO2 in the first years of
the simulation. Indeed, in the GEM model, calcite dissolution outpaces the precipitation
of other carbonate minerals for the first 200 years, after which net carbonate mineral
sequestration of CO2 begins to occur. However, in all three models, carbonate minerals
become an increasingly important sink for injected CO2 over time, and by the end of
the simulation after 1000 years, they approach the formation water in importance as a
mineral sink. The TOUGHREACT model predicts a relatively small amount of CO2 to be
partitioned into an immiscible gas phase compared to the other two models. In fact, by the
end of the 1000-year simulation period, the TOUGHREACT model predicts the immiscible
gas phase to be the smallest sink for the injected CO2. As noted for Figure 6, the differences
in the amounts of immiscible CO2 gas predicted by the three simulators may be a function
of the different CO2 solubility functions that they employ [24–26].

 

Figure 10. Mass of injected CO2 that is sequestered in an immiscible gas phase, in the formation
water, and in carbonate minerals as predicted by the STOMP-EOR, GEM, and TOUGHREACT models
in Model Scenario 1.

4.2. Model Scenario 2

Figures 11 and 12 show plan views of the evolution of reservoir pressure and tem-
perature predicted in the STOMP-EOR and GEM models in the middle layer of the model
grid as a result of water and CO2 introduced through the injection well at the lower left
corner of each plot. The two models predicted an increase in fluid pressure from the initial
value of 30 MPa during the 25 years of injection, reaching a maximum of ~34 MPa in
STOMP-EOR and GEM. After injection ceased, fluid pressure was predicted to decline
continuously in the STOMP-EOR model, reaching 32 MPa after 100 years and returning
to the initial reservoir pressure of 30 MPa after 1000 years. A similar pressure evolution
pattern was produced by the GEM model as long as siderite and ankerite were omitted
from the model, as is the case for the results shown in Figure 11. Although the geochemical
input parameters for siderite and ankerite were the same in the GEM and STOMP-EOR
models, including siderite and ankerite in the GEM model caused pressure to continue to
increase over time instead of returning to the initial value after injection ceased. This result
seems to represent a limitation of the GEM model. A comparative analysis showed that
the presence or absence of siderite and ankerite in the GEM model did not significantly
impact the results for any model outputs except kaolinite, magnesite, and temperature.
Compared to the case when siderite and ankerite were present, when siderite and ankerite
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were absent the GEM model predicted kaolinite abundance to be ~65% lower, magnesite
precipitation was almost entirely prevented, and temperature was approximately 2.5 to
6 ◦C lower. The GEM results shown in the remaining plots are for the case when siderite
and ankerite were included in the model.

 

Figure 11. Plan views of the evolution of fluid pressure in the middle cell layer of the model grid predicted by the STOMP-
EOR models (a–c) and GEM models (d–f) after 25, 100, and 1000 years, respectively. The GEM results are for ankerite
and siderite omitted from the model, as the inclusion of these minerals in the GEM model produced unrealistically high
pressures that steadily increased over time.
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Figure 12. Plan views of the evolution of temperature in the middle cell layer of the model grid predicted by the STOMP-EOR
models (a–c) and GEM models (d–f) after 25, 100, and 1000 years, respectively.

The temperature evolutions predicted by the STOMP-EOR and GEM models in Sce-
nario 2 are similar to one another and to the results in Scenario 1. In each model, tem-
perature near the injection well dropped from the initial reservoir temperature of 75 to
40 ◦C during the injection period. After injection ceased, temperatures gradually rose and
became more homogeneous across the model domain, though they had not yet completely
returned to the initial reservoir temperature of 75 ◦C after 1000 years.

Figure 13 shows the changes in CO2 gas saturation along a cross section between the
injection well and the production well as a function of time for the STOMP-EOR and GEM
models. The results of the STOMP-EOR and GEM models differ significantly in detail
but have some broad similarities in that they both show a plume of CO2 gas to migrate
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about halfway across the cross section by about 25 years and to remain relatively stationary
thereafter. The model results of Scenario 2 differ significantly from those of Scenario 1.
In Scenario 2, CO2 gas saturation never develops a strong vertical differentiation as in
Scenario 1, and the injected CO2 plume in Scenario 2 does not arrive at the production well
by the end of the simulations at 1000 years. Maximum gas saturations in Scenario 2 are
higher than in Scenario 1. However, comparing Figure 14a to Figure 7a, both of which
show gas saturation averaged over the entire volume of the model domain, reveals that
gas saturation in Scenario 2 is overall lower than in Scenario 1. This is probably because in
Scenario 2, CO2 can dissolve in both oil and water, whereas in Scenario 1, the only pore
fluid into which CO2 can dissolve is water.

 

Figure 13. CO2 gas saturation and porosity along a vertical cross section between the injection well and the producing
well predicted by the STOMP-EOR and GEM models, respectively, after (a,b) 25 years, (c,d) 100 years, (e,f) 600 years, and
(g,h) 1000 years.

Figure 14 also shows the pH and concentrations of HCO−
3 , Ca2+, Fe2+, and Mg2+

in the Morrow B formation water as a function of time, also averaged over the entire
volume of the model domain. The trends in pH and concentrations of HCO−

3 , Ca2+, and
Mg2+ over time predicted by the STOMP-EOR and GEM models in Model Scenario 2 are
qualitatively similar to those in Model Scenario 1 but differ significantly in their numerical
values. In Model Scenario 2, the STOMP-EOR model consistently predicts higher pH and
concentrations of HCO−

3 , Ca2+, and Mg2+ compared to the GEM model, whereas the GEM
model predicts higher concentrations of Fe2+ than in the STOMP-EOR model at early times,
and the STOMP-EOR model predicts higher Fe2+ concentrations at later times. In Model
Scenario 2, after an early increase in the GEM model, gas saturation decreases and largely
parallels that predicted by the STOMP-EOR model.

The Scenario 2 STOMP-EOR and GEM models made some similar predictions about
the evolution of carbonate mineral abundance (Figures 15 and 16). Both models predicted
continuous dissolution of calcite. The two models differ further in that large amounts of
siderite, magnesite, and ankerite precipitated in the GEM model but only tiny amounts
of ankerite and no siderite precipitated in the STOMP-EOR model. Minimal magnesite
precipitated at early times in the STOMP-EOR model but by the end of the simulation after
1000 years, considerable magnesite had precipitated. The carbonate mineral abundances
predicted in Scenario 2 resemble those in Scenario 1 in some respects. Dolomite continued
to be the main carbonate mineral predicted to be precipitated in Scenario 2 in the STOMP-
EOR model. In contrast, in the GEM model, siderite was the most abundant mineral
precipitated followed by ankerite, dolomite, and magnesite. The presence of oil did not
greatly impact the patterns of carbonate mineral precipitation in the STOMP-EOR model
but appears to have greatly increased the precipitation of siderite and ankerite in the GEM
model. Carbonate mineral precipitation and dissolution trends were monotonic, reaching
their highest levels at the end of the 1000-year simulation period.
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Figure 14. Simulated (a) gas saturation; (b) pH; and concentrations of (c) HCO−
3 , (d) Ca2+, (e) Fe2+,

and (f) Mg2+ as a function of time averaged over the entire model domain.

 

Figure 15. Simulated changes in carbonate mineral abundances for the (a) STOMP-EOR model and (b) GEM model as a
function of time averaged over the entire model domain.
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Figure 16. Predicted carbonate mineral abundances for (a) Scenario 1 and (b) Scenario 2 after 25 and 1000 years.

Changes in the abundances of non-carbonate minerals predicted by the GEM and
STOMP-EOR models are shown in Figure 17. The two models predicted progressive
clinochlore dissolution over time, though the GEM model predicted a much smaller amount.
However, the STOMP-EOR model predicted relatively constant abundances of illite, Ca-
montmorillonite, and albite, whereas the GEM model predicted a large decrease in illite
abundance and a large increase in Ca-montmorillonite and albite abundance. For kaolinite,
the STOMP-EOR model predicted an initial sharp dissolution event followed by relatively
constant abundance, whereas the GEM model predicted precipitation throughout most
of the simulation. Both models predicted continuous quartz precipitation, though the
STOMP-EOR model predicted a much larger amount. The combined effects of mineral
precipitation and dissolution were nearly in balance in the STOMP-EOR model, with a
small porosity increase of ~0.001 predicted during the 25 year injection period, about half
of which was then gradually eliminated over the remainder of the 1000 year simulation
(Figure 18). The GEM model did not predict porosity to change during the injection period,
but after about 100 years, porosity decreased steadily from an initial value of ~0.145 to
~0.138 after 1000 years.

Figure 19 shows how the injected CO2 is distributed among an immiscible gas phase,
oil, formation water, and carbonate minerals. Both the GEM and STOMP-EOR model
predicted oil to be the largest sink for the injected CO2, with the GEM model predicting
higher amounts of CO2 dissolution in oil than the STOMP-EOR model. Both models
predicted less CO2 to occur as immiscible gas than to dissolve in oil, and less CO2 to
dissolve in the formation water than to occur as immiscible gas. In addition, the temporal
trends of CO2 occurring in immiscible gas strongly resembled one another in the two
models, as did the temporal trends of CO2 dissolved in formation water. As for Model
Scenario 1, in Model Scenario 2 carbonate minerals sequester only a small fraction of the
injected CO2, though the amount that they sequester continuously increases over time. By
the end of the 1000-year simulation, the STOMP-EOR model predicts the amount of CO2 to
be sequestered in carbonate minerals to be close to the amounts occurring in immiscible
gas and the formation water. In the GEM model, CO2 sequestration in carbonate minerals
has increased so much by the end of the simulation that this amount exceeds the amounts
in all other CO2 sinks except oil.
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Figure 17. Changes in mineral abundance predicted by the STOMP-EOR and GEM models for
(a) clinochlore, (b) illite, (c) Ca-montmorillonite, (d) kaolinite, (e) quartz, and (f) albite.

 

Figure 18. Simulated changes in porosity as a function of time averaged over the entire model
domain as predicted by the STOMP-EOR and GEM models.
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Figure 19. Mass of injected CO2 that is sequestered in oil, in an immiscible gas phase, in the
formation water, and in carbonate minerals as predicted by the STOMP-EOR and GEM models in
Model Scenario 2.

5. Discussion

The present study showed that although the models for the different simulators in
each scenario were set up in the same way, they produced some significantly different
results. In Model Scenario 1, the STOMP-EOR, TOUGHREACT, and GEM models predicted
similar evolutions in temperature and pressure, though the pressures in the GEM model
were approximately 1–2 MPa higher after 1000 years than in the other two models. This
may have driven slightly higher concentrations of CO2 into solution in the formation water
in the GEM model, which would then account for its generally slightly lower pH. All three
models in Scenario 1 predicted calcite to dissolve, which is a consequence of the lowering
of the pH due to the injection of CO2. However, the lower pH predicted by the GEM model
corresponds with its lower overall amount of carbonate mineral precipitation compared to
the other two models.

In Scenario 1, the three models also predicted significant differences in the abundances
of non-carbonate minerals. The overall net changes in mineral abundances, though, were
similar enough to cause similar decreasing trends in porosity over time, amounting to only
about a tenth of a percent over the 1000 years of the simulation for the reservoir as a whole.
Such a small change in porosity would cause a similarly small change in permeability of
only tenths of a percent, meaning that the hydraulic properties and behavior of the Morrow
B reservoir as a whole would not be expected to change significantly as a result of the
planned CO2 injection.

In Scenario 2, despite the differences in predicted pressures, the amount of CO2
predicted by GEM to dissolve into water and oil does not differ much from the amount
predicted by STOMP-EOR. The pH is consistently lower in the GEM model than in the
STOMP-EOR model, but this does not consistently suppress the precipitation of carbonate
minerals in the GEM models. Instead, overall, more carbonate mineral precipitation is
predicted to occur in the GEM model than in the STOMP-EOR model. This contributes to
the greater decrease in porosity predicted by the GEM model than by the STOMP-EOR
model, though in both models the porosity decrease is relatively small and not enough to
cause significant changes in the hydraulic properties of the reservoir as a whole.
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Some of the differences in predicted mineral abundances between the GEM model
and the other two models may pertain to GEM’s use of damping factors for mineral
precipitation and dissolution reactions. The damping factors are multipliers applied to
the reaction rates in order to aid convergence and are allowed to vary between 0 and
1000. According to the CMG-GEM user’s guide [27], damping factors for mineral reactions
are justified because published reaction rate parameters in the literature, such as the
rate constant and reactive surface area, are often measured on a core scale in the lab.
To use these parameter values appropriately in a field-scale model, the values must be
upscaled corresponding to the larger grid block sizes and the scale of the model. When
laboratory-derived reaction parameters are used without upscaling, then the resultant
reaction rates become spuriously high, which causes numerical convergence difficulties
during the simulation. Thus, specifying mineral reaction damping factors reduces the
reaction rates to more realistic values, which also helps the model to converge better. In the
present study, a damping factor of 0.001 was used in the GEM models, the maximum value
that allowed the models to converge. In contrast, the STOMP-EOR and TOUGHREACT
models converged without damping factors.

6. Summary and Conclusions

Two model scenarios for CO2 injection into the Morrow B Sandstone in the Farnsworth
Unit were investigated in the present study. In Model Scenario 1, water was the only pore
fluid initially present. In Model Scenario 2, water and petroleum were both initially
present as pore fluids. Model Scenario 1 allowed a comparison of the performance of
the TOUGHREACT, STOMP-EOR, and GEM simulators to be made. Model Scenario 2
allowed a comparison of the STOMP-EOR and GEM simulators to be made. Both model
scenarios also provided fundamental insights into the behavior and effects of the injected
CO2. In Model Scenario 1, the models from the three simulators predicted a similar rise in
pressure up to ~33 MPa during the 25-year injection period but predicted different rates
of pressure decline after injection ceased. The three models predicted similar patterns of
reservoir cooling to a minimum temperature of 40 ◦C near the injection well, followed by
similar patterns of temperature homogenization after injection ceased. All three models
predicted the long-term persistence of an immiscible CO2 gas phase but differed by up to
approximately a factor of two in the amounts that persisted. All three models predicted
sharp declines in pH from the initial value of 7 to between approximately 4.6 and 4.9,
gradually rising with increasing time due to water–rock reactions. All three models
predicted calcite to dissolve through the simulations and for dolomite to be the main
carbonate mineral sink for the injected CO2. However, the models differed in the amounts
of other carbonate minerals (siderite, magnesite, and ankerite) that were predicted to
precipitate. The three models differed more strongly in terms of their predictions about
silicate minerals. All three models consistently predicted quartz and Ca-montmorillonite
to precipitate and clinochlore and illite to dissolve, but in significantly different amounts.
However, the predicted differences in neither silicate nor carbonate mineral abundance
were sufficient to cause large changes in porosity, which showed a slight decreasing trend
in all three models. The STOMP-EOR and GEM models predicted similar amounts of
immiscible CO2 gas to be the main sink for the injected CO2 over the 1000 years of the
simulations, while the amount predicted by the TOUGHREACT model was much lower
and not the main injected CO2 sink. All three models predicted similar amounts of injected
CO2 to be sequestered in aqueous solution. Carbonate minerals were predicted by all three
models to be a smaller sink for injected CO2 than the formation water, though carbonate
minerals were the only CO2 sink that grew in magnitude over time.

In Model Scenario 2, only the GEM and STOMP-EOR simulators were tested. Both
the GEM and STOMP-EOR models made similar predictions of initial cooling around the
injection well followed by thermal homogenization that were made in Model Scenario 1.
The STOMP-EOR model made a qualitatively similar prediction of pressure evolution as in
Model Scenario 1. However, the GEM model predicted an ongoing increase in pressure after
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injection ceased until the end of the simulation at 1000 years unless the minerals siderite
and ankerite were removed from the model. The GEM model predicted gas saturations to
be about twice as high as the STOMP-EOR model during the early years of the simulation,
but after about 200 years the two models predicted similar gas saturations. Both models
predicted lower overall gas saturations in Model Scenario 2 than in Model Scenario 1. Both
the GEM and the STOMP-EOR models predicted a sharp decrease in pH during injection
in Model Scenario 2. However, whereas the GEM model predicted a similar minimum
pH of 4.6 in the two model scenarios, the STOMP-EOR model predicted a significantly
higher minimum pH of 5.6 in Model Scenario 2 compared to the minimum pH of 4.9
it predicted in Model Scenario 1. Both models continued to predict calcite to dissolve
continuously in Model Scenario 2. The STOMP-EOR model again predicted dolomite to
be the main carbonate mineral sink for injected CO2, whereas the GEM model predicted
siderite and ankerite to be more important mineral sinks. The two models predicted
significant differences in silicate mineral abundance. Together, the differences in carbonate
and silicate mineral abundances led to significant differences in porosity, with the STOMP-
EOR model predicting an overall porosity decrease to 0.1445 and the GEM model to about
0.1385. Overall, CO2 injection was predicted to have a small impact on porosity over
1000 years. Both models in Scenario 2 predicted oil to be the main sink for injected CO2.
Both models predicted immiscible gas and the formation water, respectively, to be smaller
sinks for injected CO2. STOMP-EOR predicted carbonate minerals to be the smallest sink
for injected CO2. For GEM this was also true for about the first 300 years of the simulation,
but the end of the 1000 years of the simulation, GEM predicted carbonate minerals to be
the second most important sink for injected CO2 after oil.

Although the models in each scenario were set up the same and although the model
results have many qualitative similarities, the models differ in many of the details of their
results. The results indicate that executing models on multiple simulators can more clearly
identify areas of confidence as well as uncertainty in projected outcomes in the field.

Author Contributions: Conceptualization, E.J.K. and M.S.A.; Methodology, E.J.K. and M.S.A.; Soft-
ware, M.D.W.; Validation, E.J.K. and M.S.A.; Formal Analysis, E.J.K. and M.S.A.; Investigation, E.J.K.
and M.S.A.; Resources, M.S.A.; Data Curation, E.J.K.; Writing—Original Draft Preparation, E.J.K.;
Writing—Review and Editing, M.S.A.; Review and Editing, M.D.W. and W.A.; Visualization, E.J.K.
and M.S.A.; Supervision, M.S.A.; Project Administration, M.S.A.; Funding Acquisition, M.S.A. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the U.S. Department of Energy’s (DOE) National Energy
Technology Laboratory (NETL) through the Southwest Regional Partnership on Carbon Sequestration
(SWP) under Award No. DE-FC26-05NT42591.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://mospace.umsystem.edu/ accessed on 20 August 2021.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References

1. Balch, R.; McPherson, B.; Grigg, R. Overview of a Large Scale Carbon Capture, Utilization, and Storage Demonstration Project in
an Active Oil Field in Texas, USA. Energy Procedia 2016, 114, 5874–5887. [CrossRef]

2. Balch, R.; McPherson, B. Integrating Enhanced Oil Recovery and Carbon Capture and Storage Projects: A Case Study at
Farnsworth Field, Texas. In SPE Western Regional Meeting; OnePetro: Anchorage, AK, USA, 2016.

3. Ahmmed, B. Numerical Modeling of CO2-Water-Rock Interactions in the Farnsworth, Texas Hydrocarbon Unit, USA. 2015, Volume 3,
pp. 54–67. Available online: https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/46985/research.pdf?sequence=2
(accessed on 3 May 2021).

4. Xu, T.; Sonnenthal, E.; Spycher, N.; Pruess, K. TOUGHREACT User’s Guide: A Simulation Program for Non-Isothermal Multiphase
Reactive Geochemical Transport in Variably Saturated Geologic Media; V1.2.1-LBNL-55460-2008; Lawrence Berkeley National Lab.
(LBNL): Berkeley, CA, USA, 2008; Volume 32, pp. 1–206.

168



Energies 2021, 14, 5337

5. Pan, F.; McPherson, B.J.; Esser, R.; Xiao, T.; Appold, M.S.; Jia, W.; Moodie, N. Forecasting evolution of formation water chemistry
and long-term mineral alteration for GCS in a typical clastic reservoir of the Southwestern United States. Int. J. Greenh. Gas
Control 2016, 54, 524–537. [CrossRef]

6. Gallagher, S.R. Depositional and Diagenetic Controls On Reservoir Heterogeneity: Upper Morrow Sandstone. Master’s Thesis,
Farnsworth Unit, Ochiltree County, TX, USA, 2014; pp. 1–233.

7. Khan, R.H. Evaluation of the geologic CO2 sequestration potential of the Morrow B sandstone in the Farnsworth, Texas
hydrocarbon field using reactive transport modeling. Am. Geophys. Union 2017. [CrossRef]

8. Sun, Q.; Ampomah, W.; Kutsienyo, E.J.; Appold, M.; Adu-Gyamfi, B.; Dai, Z.; Soltanian, M.R. Assessment of CO2 trapping
mechanisms in partially depleted oil-bearing sands. Fuel 2020, 278, 118356. [CrossRef]

9. Nghiem, L.; Sammon, P.; Grabenstetter, J.; Ohkuma, H. Modeling CO2 Storage in Aquifers with a Fully-Coupled Geochemical
EOS Compositional Simulator. In SPE/DOE Symposium on Improved Oil Recovery; No. SPE 89474 Modeling; OnePetro: Tulsa, OK,
USA, 2004; pp. 1–16.

10. CMG. GEM Compositional and Unconventional Simulator. 2021. Available online: https://www.cmgl.ca/gem (accessed on
10 August 2021).

11. White, M.; McPherson, B.; Grigg, R.; Ampomah, W.; Appold, M. Numerical Simulation of Carbon Dioxide Injection in the Western
Section of the Farnsworth Unit. Energy Procedia 2014, 63, 7891–7912. [CrossRef]

12. Span, R.; Wagner, W. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature
to 1100 K at Pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509–1596. [CrossRef]

13. Xu, T.; Apps, J.A.; Pruess, K. Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep
arenaceous formations. J. Geophys. Res. Solid Earth 2003, 108. [CrossRef]

14. Munson, T.W. Depositional, Diagenetic, and Production History of the upper Morrowan Buckhaults Sandstone, Farnsworth Field
Ochiltree County Texas. OCGS-Shale Shak. Dig. XII 1989, XXXX–XXXXI, 2–20.

15. Heath, J.E.; Dewers, T.A.; Mozley, P.S. Characteristics of the Farnsworth Unit, Ochiltree County; Southwest Partnership CO2
Storage-EOR Project: Ochiltree, TX, USA, 2015.

16. Ross-Coss, D.; Ampomah, W.; Cather, M.; Balch, R.S.; Mozley, P.; Rasmussen, L. An Improved Approach for Sandstone Reservoir
Characterization. In Proceedings of the SPE Western Regional Meeting, Anchorage, AK, USA, 23–26 May 2016.

17. Trujillo, N.A. Influence of Lithology and Diagenesis on Mechanical and Sealing Properties of the Thirteen Finger Limestone and Upper
Morrow Shale, Farnsworth Unit, Ochiltree County, Texas; ProQuest: Ann Abor, MI, USA, 2017.

18. White, M.D.; Oostrom, M. User Guide: Subsurface Transport Over Multiple Phases. June 2006 Contract: DE-AC05-76RL01830.
Available online: https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-15782.pdf (accessed on
20 August 2021).

19. Xu, T.; Apps, J.A.; Pruess, K. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers. Appl. Geochem. 2004,
19, 917–936. [CrossRef]

20. CMG. CMOST User’s Guide: CO2 Sequestration Using GEM. 2018. Available online: https://www.cmgl.ca/training/co2
-sequestration-using-gem (accessed on 20 August 2021).

21. Ahmmed, B.; Appold, M.S.; Fan, T.; McPherson, B.J.O.L.; Grigg, R.B.; White, M.D. Chemical Effects of Carbon Dioxide
Sequestration in the Upper Morrow Sandstone in the Farnsworth, Texas, hydrocarbon unit. Environ. Geosci. 2016, 23, 81–93.
[CrossRef]

22. Palandri, J.L.; Kharaka, Y.K. A Compilation of Rate Parameters of Water-Mineral Interaction Kinectics for Application to
Geochemical Modelling. U.S. Geol. Surv. Open File Rep. 2004, 271, 1–70.

23. Gunda, D.; Ampomah, W.; Grigg, R.; Balch, R. Reservoir Fluid Characterization for Miscible Enhanced Oil Recovery. Carbon Management
Technology Conference; OnePetro: Sugarland, TX, USA, 2015.

24. Battistelli, A.; Calore, C.; Pruess, K. The simulator TOUGH2/EWASG for modelling geothermal reservoirs with brines and
non-condensible gas. Geothermics 1997, 26, 437–464. [CrossRef]

25. Spycher, N.; Pruess, K. CO2-H2O Mixtures in the Geological Sequestration of CO2. II. Partitioning in Chloride Brines at 12–100 ◦C
and up to 600 bar. Geochim. Cosmochim. Acta 2005, 69, 3309–3320. [CrossRef]

26. Harvey, A. Semiempirical correlation for Henry’s constants over large temperature ranges. AIChE J. 1996, 42, 1491–1494.
[CrossRef]

27. CMG-GEM. GHG-GEM Users Guide: GHG Option—Damping Factor for Reactions Other than Chemical *MRDAMP-ALL,
*MRDAMP. 2020. Available online: https://www.cmgl.ca/resources (accessed on 20 August 2021).

169





energies

Article

Time-Lapse Integration at FWU: Fluids, Rock Physics,
Numerical Model Integration, and Field Data Comparison

Robert Will 1, Tom Bratton 2, William Ampomah 1,*, Samuel Acheampong 1, Martha Cather 1 and Robert Balch 1

Citation: Will, R.; Bratton, T.;

Ampomah, W.; Acheampong, S.;

Cather, M.; Balch, R. Time-Lapse

Integration at FWU: Fluids, Rock

Physics, Numerical Model

Integration, and Field Data

Comparison. Energies 2021, 14, 5476.

https://doi.org/10.3390/en14175476

Academic Editor: Ricardo J. Bessa

Received: 1 May 2021

Accepted: 30 July 2021

Published: 2 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 New Mexico Tech/PRRC, Socorro, NM 87801, USA; robert.will@nmt.edu (R.W.);
samuel.acheampong@student.nmt.edu (S.A.); Martha.Cather@nmt.edu (M.C.); robert.balch@nmt.edu (R.B.)

2 Tom Bratton LLC, Littleton, CO 80127, USA; tom@tombrattonllc.com
* Correspondence: william.ampomah@nmt.edu

Abstract: We present the current status of time-lapse seismic integration at the Farnsworth (FWU)
CO2 WAG (water-alternating-gas) EOR (Enhanced Oil Recovery) project at Ochiltree County, north-
west Texas. As a potential carbon sequestration mechanism, CO2 WAG projects will be subject to
some degree of monitoring and verification, either as a regulatory requirement or to qualify for
economic incentives. In order to evaluate the viability of time-lapse seismic as a monitoring method
the Southwest Partnership (SWP) has conducted time-lapse seismic monitoring at FWU using the 3D
Vertical Seismic Profiling (VSP) method. The efficacy of seismic time-lapse depends on a number
of key factors, which vary widely from one application to another. Most important among these
are the thermophysical properties of the original fluid in place and the displacing fluid, followed
by the petrophysical properties of the rock matrix, which together determine the effective elastic
properties of the rock fluid system. We present systematic analysis of fluid thermodynamics and
resulting thermophysical properties, petrophysics and rock frame elastic properties, and elastic
property modeling through fluid substitution using data collected at FWU. These analyses will be
framed in realistic scenarios presented by the FWU CO2 WAG development. The resulting fluid/rock
physics models will be applied to output from the calibrated FWU compositional reservoir simulation
model to forward model the time-lapse seismic response. Modeled results are compared with field
time-lapse seismic measurements and strategies for numerical model feedback/update are discussed.
While mechanical effects are neglected in the work presented here, complementary parallel studies
are underway in which laboratory measurements are introduced to introduce stress dependence of
matrix elastic moduli.

Keywords: 4D; time lapse; CO2; EOR; WAG; sequestration; monitoring

1. Introduction

1.1. Farnsworth Site Background

The Southwest Regional Partnership on Carbon Sequestration (SWP) is one of seven
large-scale CO2 sequestration projects sponsored by the U.S. Department of Energy [1]. The
primary objective of the SWP effort is to exhibit and evaluate an active commercial-scale
carbon capture, utilization, and storage (CCUS) operation, and demonstrate associated
effective site characterization, monitoring, verification, accounting, and risk assessment.
The SWP field site is located within the Farnsworth Unit CO2 WAG (water-after-gas) EOR
(Enhanced Oil Recovery) project at Ochiltree County, northwest Texas which is undergoing
conversion to a CO2 flood. All CO2 utilized by the project is anthropogenic, sourced from a
fertilizer and an ethanol plant, and this CO2 would otherwise be vented to the atmosphere
(Figure 1). The CO2 WAG field development scheme being applied at FWU is a is a popular
form of tertiary hydrocarbon recovery which also holds promise as a large-scale CO2
utilization and storage (CCUS) mechanism. The CO2 WAG process [2] involves cyclic
alternation between CO2 and water injection phases for optimal mobilization and sweep of
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liquid hydrocarbons remaining in pattern drilling developments after primary recovery
and waterflood (secondary recovery). As a potential carbon sequestration mechanism,
CO2 WAG projects will be subject to some degree of monitoring and verification, either
as a regulatory requirement or to qualify for economic incentives. Time-lapse (or “4D”)
seismic provides a robust method for wide-scale fluid monitoring which has been widely
applied in petroleum resource development for decades [3]. More recently time-lapse
method has been used to monitor evolution of the CO2 “plume” on most carbon capture
and sequestration (CCS) projects [4]. The Southwest Partnership has conducted time-lapse
seismic monitoring at Farnsworth using the 3D Vertical Seismic Profiling (VSP) method.

 

Figure 1. Location map of the SWP study area at Farnsworth, Texas and anthropogenic CO2 sources.

The efficacy of time-lapse seismic depends on a number of key factors which vary
widely from one application to another. Most important among these factors are the ther-
mophysical properties of the original fluid in place and the displacing fluid, followed by the
petrophysical properties of the rock matrix which together determine the effective elastic
properties of the rock fluid system. Here, is where monitoring of CO2 WAG systems varies
greatly from other oilfield and brine aquifer (CCS) CO2 storage owing to the thermody-
namic conditions dictated by the properties of the original and displacing fluids, reservoir
temperature, and pressure. Geologic sequestration of supercritical CO2 into a brine aquifer,
which is the typical case for CCS projects, results in a fluid system with effectively binary
fluid properties and relatively simple interface between original and displacing fluids by
comparison with miscible CO2 WAG systems. By contrast, CO2 WAG operations result
in a thermodynamically complex fluid system with multiple fluid contacts and a high
degree of ambiguity in thermophysical properties. Further, under miscible conditions an
additional phase is introduced. We use the data from the SWP Farnsworth West project in
an extensive fluid and rock physics modeling study to understand the unique monitoring
challenges presented by miscible CO2 WAG operations. The rock physics models are
applied to compositional reservoir simulator output and the resulting elastic predictions
compared to time-lapse 3D VSP surveys acquired at the FWU site.

1.2. Literature Review

There are numerous case histories in the literature documenting the application of
time-lapse monitoring for petroleum resource management and carbon sequestration.
Here, we focus on the distinct fluid systems presented by the various applications. CCS
(brine aquifer storage) projects such as Sleipner [5–7], Aquistore [8–10], Illinois Basin-
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Decatur Project (IBDP) [11–13], and Ketzin [14] are all non-miscible fluid systems which
are thermodynamically stable, have relatively favorable fluid mobility ratios, and in which
the single displacing (injected) CO2 volume is monotonically increasing. The result is a
continuous “plume” of CO2 emanating from the injection well, the interface of which with
the aquifer brine may be characterized as a “front”. Similarly, most documented successful
(non-EOR) hydrocarbon reservoir surveillance applications of time-lapse seismic have the
objective of monitoring an encroaching brine aquifer during field depletion, progression of
a water injection front in waterflood operations, or evolution of light hydrocarbon gas upon
pressure drawdown, all of which present essentially binary fluid discrimination problems
which may be characterized (and modeled) using “plume”, “front”, or “cap” concepts.
While not being trivial by any means, these fluid property and displacement scenarios have
the added advantage of well-established empirical correlations, analytical models, and
reasonable conceptual approximations to simplify and/or constrain interpretation. The
binary nature of this problem is further evidenced by the evolution of discrete analytical
methods using classification and analytical integration approaches [15–17].

By comparison there are relatively few documented case histories of time-lapse seismic
monitoring on CO2 EOR projects. Extensive fluid analysis and rock physics modeling
performed by Brown at Weyburn [18] show an estimated maximum of 6.3% variation in
compressional velocities between endpoint saturations of 100% brine and 100% CO2 in
high porosity (24%) fractured marly dolostone. While this degree of sensitivity is favorable
from a seismic detection perspective, the prediction for intermediate fluid mixtures in
a 29% porosity rock with oil and 40% CO2 are on the order of 1%, which is marginal
for seismic detection. Quantitative time-lapse seismic data integration at Weyburn was
performed using a novel methodology which optimized a penalty function formed of
the distance between simulated CO2 “front” from ensemble models and that interpreted
from thresholded time lapse seismic anomaly maps [19]. At Cranfield Gosh [20] applied a
pressure dependent effective media model (PDEM) to invert time lapse seismic data for
CO2 saturation. While success is reported in mapping the extent of CO2 migration, the
author acknowledges the need for additional constraints on gas distribution in order to
accurately predict CO2 movement. Alfi and Housenni [21] compared time-lapse seismic
interpretations to simulator predictions at Cranfield. As Cranfield is not a WAG operation
the CO2 “plume” was continuous. Limited success in the comparison was attributed to
model deficiencies and uncertainties. No attempt was reported to optimize the simulation
model through time-lapse seismic constraints. At the Denbury Bell Creek [22] project
researchers performed extensive rock physics and forward elastic modeling from reservoir
simulator output. The time-lapse seismic interpretation provided insights into reservoir
connectivity which was fed back to simulation modelers for consideration in the subsequent
reservoir model update. Incorporated discrepancies were fed back to reservoir engineers
for use in model updates. While these case histories show high levels of analytical rigor,
all rely either explicitly or implicitly on the concept of a CO2 “plume” or a distinct CO2
saturation “front”.

Our literature review also reveals the wide variety of geophysical analyses and re-
sulting attributes which have been utilized for time-lapse seismic data interpretation and
integration. These range from computationally simple but robust seismic data transforms
which can be extracted without external conditioning, to highly sophisticated and com-
putationally expensive specialized attributes which require conditioning to high quality
geophysical logs and/or numerical models. At the Hall-Gurney field in Kansas [23] re-
searchers experimented with use of low cost noninversion attributes for monitoring the
effectiveness of EOR in thin, shallow carbonates and were able to identify “overall area
effected by injected CO2”. Time or depth shift (sag, displacement) in events underlying a
storage zone is a popular and robust attribute which requires no external constraint for use
as a qualitative indicator [24,25]. With suitable constraint on reservoir properties and rock
physics, time delay may be used to estimate saturation changes in the injection zone. Time
delay has been successfully used at Sleipner [6] and Norne [26]. The next level of analytical
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rigor is seismic post stack (acoustic inversion), followed by pre-stack (elastic) inversion,
both of which have been applied at Sleipner [5,7]. Yet, more sophistication is introduced
by implementing wave equation constraints [27]. In rocks displaying anisotropy such as
the naturally fractured Weyburn dolostone, multi-component seismic attributes may be
used to produce semi-quantitative maps of elastic anisotropy for more representative rock
physics modeling [19].

2. Materials and Methods

2.1. General Methodology

We use the extensive body of site characterization data and reservoir modeling per-
formed at FWU as the basis for a comprehensive fluid property and rock physics modeling
study, followed by comparison with time-lapse VSP surveys. The calibrated FWU com-
positional simulation model is used to characterize expected fluid distributions in the
injection formation at times corresponding to seismic survey times. These results are
used to perform systematic fluid equation of state modeling for representative ranges
of anticipated reservoir fluid mixtures. These fluid EOS models are then used with a
site-specific petrophysical model for systematic fluid substitution modeling over ranges
of representative saturated reservoir rock conditions. These systematic modeling studies
reveal important characteristics of the rock-fluid system which are critical for the following
comparison of reservoir scale simulations with field time-lapse measurements.

The petrophysical and elastic properties used in our compositonal models and subse-
quent rock physics computations are correlated through a common 3D porosity distribution
which has been developed through analysis of log and core data and interpolated using
spatial trends extracted from the available 3D seismic data. First, the 3D permeability
distribution required for reservoir simulation was created through poro-perm relationships
extracted from the logging/core dataset and interpolated through geostatistical integration
with the 3D porosity distribution using the same seismic data for spatial trends. Next, the
3D elastic property distributions required for rock physics computations were developed
through correlations with porosity and interpolated through geostatistical integration with
the same common 3D porosity distribution, using the same seismic data for spatial trends.
In this way we feel that we have maintained correlation across petrophysical and elastic
properties throughout our process.

2.2. FWU Geological Model

Site characterization efforts at FWU have produced a rich collection rock and fluid sam-
ples, geophysical logs, and multiple time-lapse seismic datasets [28,29]. Core from several
wells, including characterization wells drilled specifically for this project, underwent com-
prehensive petrographic analysis, flowthrough, and mechanical testing. Three wells were
drilled as characterization wells (or “science” wells) by the partnership. Approximately
250 ft of core was obtained from each of the new characterization wells. Cored intervals
include the entire Morrow B reservoir interval, as well as Morrow shale that underlies and
overlies the Morrow B, the B1 sandstone interval, and the Thirteen Finger limestone which
forms the remainder of the primary seal. The geophysical logging program for the science
wells was designed to support the anticipated geophysical, petrophysical, geomechanical,
and geochemical studies as well as coupled process modeling.

Although geotechnical data acquisition activities at the FWU site have transitioned
from site-characterization activities to monitoring data collection, ongoing improvements
have been made to the site characterization through application of improved processing
and analytical methods. Figure 2 shows the type well log for the Farnsworth Unit, the
unit boundary, and location of SWP characterization wells. Specialized integration of
geophysical logs and mechanical core tests have resulted in creation of detailed wellbore
Mechanical Earth Models (MEMs). Pre-stack depth imaging of the 3D seismic dataset
has resulted in both higher fidelity structural and stratigraphic imaging and improved
image gathers for elastic inversion. Ongoing core flooding experiments and petrographic
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studies have resulted in definition of distinct hydraulic flow units (HFU’s) [29] within
the Morrow B formation as well as corresponding porosity dependencies and porosity-
permeability relations. The results of these data analyses have been integrated through a
combination of geostatistical and machine learning methods to provide enhanced geologic
description, hydrodynamic property estimation (Figure 3), and development of a 3D
mechanical property model for support of ongoing numerical elastic and mechanical
modeling studies. Although numerical simulations were performed in the Morrow B
production interval, porosity and permeability have been interpolated in from the Thirteen
Finger to base of the Morrow formation to support ongoing related studies. The property
interpolation workflow applied to each formation depended on the data available and the
formation characteristics. Integration methods included artificial neural network facies
identification from well logs and core, spatial variogram analysis, discrete and continuous
distributions, and co-simulation with elastic inversion properties. Due to the limited well
log data in all formations except the Morrow B, spatial variograms from seismic impedance
were used as proxies for well log data variograms in property interpolation. Such use of
variogram proxies, and the use of secondary variables in co-simulation, were justified by
observed correlations in available well log data.

The method applied within the Morrow B was distinct from other formations due to
availability of legacy well logs and research into HFUs conducted by SWP. A “Winland
R35” transform was derived from analysis of core porosity and permeability for 51 wells.
Eight different sub populations were identified in poro-perm space and used to create R35
cut-offs defining HUF. Poro-perm relationships were derived for each HFU sub population
from core data. The R35 transformation was used to compute R35 logs for the 51 wells with
data used in core analysis. For poro-perm interpolation, porosity logs were upscaled into
the grid and interpolated through Gaussian co-simulation with seismic acoustic impedance

 

Figure 2. (Left) type log of FWU caprock and reservoir. (Upper right) surface contour of Morrow B
top with 200 ft depth contour intervals. (Lower right) thickness map of Morrow B sands and location
of characterization wells with 2 ft thickness contour intervals.
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Figure 3. (a) Interpolated porosity logs, (b) R35 created by co-simulation of R35 logs with interpolated porosity, (c) HFU
property created by applying R35 cut-offs, (d) Permeability created by application of HFU-specific poro-perm relationships.

2.3. FWU Numerical Simulation Model

A field-scale Eclipse 300 compositional reservoir flow model has been developed by
SWP researchers for assessing the performance history of the CO2 flood, and optimizing
oil production and CO2 storage at FWU [30–32].

2.3.1. Compositional Fluid Model

The compositional fluid model was constructed from laboratory fluid experiments
tuned to an equation of state (EOS) [33,34]. The mixing rules of Pedersen [35] were followed
to split C7+ fractions into two pseudo-components using the average molecular weight,
average specific gravity and the total mole percent. The 3- parameter Peng Robinson
equation of state [36] with Peneloux volume correction [37] was used to perform all the
calculations with the resulting composition shown in Table 1 and phase envelope shown in
Figure 4. The viscosity was modeled using the Lohrenz-Bray-Clark correlation [38]. After
calibrating the fluid model to equation of state, a slim tube simulation experiment was
conducted to obtain the minimum miscible pressure (MMP) for FWU. A one-dimensional
200 cell model was used for the experiment with a CO2 injection volume of 1.2 pore
volume. The MMP of 4009 psia realized from the simulation as compared to an MMP value
4200 psia derived from laboratory experiments provided by the operator represents a less
than 5% error.
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Table 1. Fluid composition sampled from the FWU.

Components Molecular Molecular Critical Critical

fraction weight Temperature Pressure
% gm/mol ◦F Psi

CO2 0 44.01 87.89 1069.8
C1 38.49 16.04 −116.59 667.17
C2 3.86 30.07 90.05 708.36
C3 2.46 44.1 205.97 615.83

C4′s 1.95 58.12 453.65 430.62
C5′s 1.79 72.15 301.12 547.81
C6′s 2.83 86.18 380.71 489.79

HC1 (7–38) 33.48 189.95 802.94 326.19
HC2 (38–70) 15.13 545.65 1077.75 235.69

 

Figure 4. Regressed phase envelope for the 9 component FWU compositional fluid model.

2.3.2. Numerical Simulation Model

The simulation model for the Morrow B formation was calibrated through primary
(depletion), secondary (waterflood), and tertiary (CO2 WAG) recovery periods using a
machine learning assisted methodology and available pressures and injection/production
rates and pressures [32]. The original geological model uses a mesh-grid with a dimension
of 100 ft by 100 ft. Top and base of the Morrow B formation were modeled as no-flow
boundaries. Running simulation using such a fine grid system takes relatively expensive
computational cost. Our preliminary investigations indicate one run using the fine-meshed
model could take hours, which results in difficulties to the history matching process con-
sidering the demands of running hundreds of simulation cases to find the history matching
solution. Therefore, the first step of the history matching work is to upscale the model
using a coarsened grid of 200 ft by 200 ft mesh without sacrificing the accuracy. Rasmussen
et al. [39] presented relative permeability curves based on laboratory experiment which
corresponds to each hydraulic flow units from the FWU which is used in the numerical
modeling. During the history matching process, the uncertain parameters considered
included lateral permeability, vertical permeability anisotropy, and relative permeability
curve inputs. A total of 100 simulations were run by randomly combine the uncertainty
parameters and neural network based proxies were developed to improve robustness of
history matching workflow and save computational time. Particle swarm optimization
is employed and coupled with the expert proxy models to minimize the history match-
ing error considering the oil and water rate agreements between the simulated and field
observation data. Sun et al. [40] has presented the detailed history matching model and

177



Energies 2021, 14, 5476

results utilized for this study. The various periods timesteps that coincided with the VSP
time-lapse acquisition data were extracted for the rock physics analysis.

2.4. Rock Physics
2.4.1. Properties of Hycrocarbon-CO2-Brine Mixtures—Analytical Study

Thermophysical properties hydrocarbon-CO2 fluid mixtures for systematic rock
physics sensitivity investigations were computed using NIST REFPROP [41] and SU-
PERTRAPP [42] databases and FORTRAN subroutines, integrated with python scripts.
We use REFPROP for calculating the bulk modulus and density of CO2 as a function of
pressure (P) and temperature (T) because of the established REFPROP’s accuracy for PVT
modeling of CO2 [43]. SUPERTRAPP is used for calculating the bulk moduli and bulk
density of hydrocarbon mixture with and without dissolved CO2. Fluid phase velocities
computed with REFPROP and SUPERTRAPP were used to calculate bulk moduli for each
phase. CO2 was in supercritical state at all reservoir temperature and pressure ranges
investigated. Depending on modeling pressure and temperature the fluid mixture has as
many as 4 phases; original oil, water, CO2-oil miscible mixture, and free (supercritical)
phase CO2.

The calibrated reservoir simulation model was used to establish representative
hydrocarbon-CO2-Brine mixtures for investigation by extracting fluid composition along
injector-producer profiles from WAG simulations. It was determined that, as a result of
many decades of primary depletion and waterflood leaving the remaining oil is “dead”,
no significant quantities of hydrocarbon gas evolve during WAG production. The native
hydrocarbon fluid reaches saturation with CO2 and additional CO2 exists as a separate
(supercritical) phase. Further, hydrocarbon components do not exhibit selective stripping
as a result of the miscible extraction process as has been reported by some experimental-
ists [44]. Based on this observation we constructed our hydrocarbon-CO2-brine mixture
EOS computations such that as the feed mole fraction of CO2 and brine in the mixture
increase, the feed mole fractions of hydrocarbon components are reduced in proportion
with the original composition.

Given the original oil composition (without CO2);

Σncomp
1 xHCi = 1 (1)

CO2 is introduced to the feed incrementally, such that,

Σncomp
1 x′HCi = 1 − xCO2, (2)

and,
x′HCi = xHCi ∗ (1 − xCO2). (3)

where x’ are the adjusted hydrocarbon mole fractions.
For this analysis a python wrapper script was constructed to systematically sample

the relevant EOS and fluid substitution parameter space, execute compiled SUPERTRAPP
FORTRAN flash subroutines, calculate thermophysical properties of the hydrocarbon-
CO2-water mixture with additional input from the REFPROP database, and perform
fluid substitution. The python script generates a database of fluid properties and fluid
substitution results for graphical and statistical analysis. The output from python script was
used as input to the rock physics coupled with the numerical simulation model through
series of user-defined workflows developed within Schlumberger Petrel platform. All EOS
results are converted to volume fractions for conversion to liquid and vapor saturations.
Oil and miscible CO2 Oil mixtures are liquids because the reservoir is above MMP. Free
phase CO2 is in supercritical state. There is no hydrocarbon gas because the reservoir
pressure is above the bubble point at the current temperature.
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2.4.2. Properties of Hydrocarbon-CO2-Brine Mixtures—Numerical Model Integration

For integration with the numerical compositional simulation model the fluid prop-
erties were obtained from Eclipse 300 EOS calculations. Bulk reservoir fluid density was
computed using predicted oil, water, and gas saturations and densities (keywords SOIL,
SWAT, SGAS, DENO, DENW, DENG). Bulk fluid modulus was computed as the inverse of
the Eclipse 300 solution for total fluid compressibility (keyword TOTCOMP).

2.4.3. Fluid Substitution

The elastic properties of saturated rock were calculated using Gassmann’s relation [45].

Ksat = Kdry +

(
1 − Kdry

Ks

)2

∅

K f
+ 1−∅

Ks
− Kdry

K2
s

(4)

where;
Φ = Porosity;
Ksat = Bulk modulus of the saturated rock;
Kdry = Bulk modulus of the dry rock;
Ks = Bulk modulus of the mineral constituents;
Kf = Bulk modulus of the pore fluid.
Gassmann’s equation provides a fundamental relationship to relate a fluid saturated

formation with an idealized dry frame formation. However, to apply Gassmann’s equation
to solve fluid substitution problems the geophysicist must supply dry rock properties.
Biot [46] identified systematic relationship between solid matrix moduli (Ks, Gs) and
moduli of the material with porosity.

Kdry = Ks(1 − α). (5)

Introducing the “Biot” coefficient

α = 1 − Kdry

Ks
, (6)

Gassmann’s relation may be rewritten as

Ksat = Kdry +
α2

∅

K f
+ (α−∅)

Ks

(7)

Applying Wood’s mixing law [47];

1
K f l

= ∑n
i=1

Si
Ki

(8)

where i = fluid phase.
Matrix elastic properties were determined through analysis of the available geophysi-

cal logging suite which included magnetic resonance, dipole sonic, spectral gamma ray,
pulsed neutron, array induction, formation image, and spontaneous potential. Petrophysi-
cal analysis yielded formation intrinsic properties enabling evaluation of elastic moduli
for the Morrow B formation. Figure 5 shows the calibration of formation properties to
available core data. Figure 6 shows the analysis of shear and bulk moduli used to determine
Kdry, G, and α for application of Gassmann’s Equation (3) and elastic modeling (10). The
Kdry, G, and Ks obtained from the geophysical log analysis, served as input parameters
for the Gassmann fluid substitution model (4). The saturated bulk modulus, expressed
as a function of the dry rock frame and pore fluid properties, was computed using the
Gassmann Equation (4). A linear regression model was fitted to the data to identify the
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relationship between the changes in the elastic properties to the rock physical properties.
The solid modulus, Ks, was determined by extrapolating porosity to zero on the Kdry vs.
porosity plot.

 

Figure 5. Well 13-10A petrophysics and mechanical properties. Track 1: measured depths; track 2: formation names; track 3:
mineralogy; tracks 4, 5, and 6; total porosity, water saturation and permeability; tracks 7, 8, 9, and 10: Poisson’s ratio,
Young’s modulus, friction angle, and unconfined compressive strength. Dots show core measurements used to calibrate
correlations.

 
Figure 6. Morrow B geophysical log based evaluation of shear (left) and bulk (right) moduli showing Krief model fit for
determination of Ks, Gs (y-intercept) and Kd, Gd vs. porosity relationships.

Shear and compressional seismic velocities were computed as;

Vs =

√
μ

ρb
(9)

Vp =

√
μ + 4

3 Ksat

ρb
(10)
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where;
ρb = φ ∗ ρ f l + (1 − φ) ∗ ρmatrix (11)

ρ f l = ∑n
i=1(Si ∗ ρi) (12)

For analytical studies, these relationships were implemented by python script. For
numerical model integration, fluid substitution was performed on the 3D reservoir model
and simulator output grids using the PETREL process manager.

2.5. Time-Lapse Seismic Surveys

The project has acquired multiple seismic data sets for site characterization and mon-
itoring. In addition to a full-field surface 3D dataset acquired for site characterization
purposes, 3D-VSP surveys were acquired in all three characterization wells [47]. A to-
tal of four 3D VSP surveys (pre-CO2 baseline and 3 monitor surveys), were acquired in
well 13-10A, which is the injector in the 5-spot pattern used for this study. The baseline
survey was acquired in February 2014 during the well shut-in for conversion to WAG
injection. Monitor surveys were acquired January 2015, December 2016, and December
2017. All monitor surveys were acquired after the CO2 leg of the WAG cycle. Baseline and
monitor surveys were processed through an identical three-component (3C) processing
workflow. Pre-processing included source/receiver geometry quality control, receiver
selection, 3 component orientation, noise attenuation, Surface Consistent Amplitude Com-
pensation (SCAC), 3C wavefield separation, deterministic trace-by-trace wave-shaping
deconvolution, and static correction. Images were created from upgoing wavefields us-
ing a Generalized Radon Transform (GRT) imaging algorithm. Figure 7 shows maps of
depth shift below the injection interval computed for the three p-wave baseline-monitor
survey pairs using the method proposed by Nickel and Sonneland [48]. In consideration
of acquisition geometry, and image point coverage, images were cropped outside 1000 ft
radial distance from the survey well (13–10A). It should be noted here that this is an ex-
tremely challenging seismic detection problem due to the relative thinness of the reservoir
(~40–45 ft), the estimated wavelength of p waves (~150 ft) in the data at the reservoir
interval, and what we will later see to be very subtle fluid effects.

 

Figure 7. Normalized measured VSP depth shift below the injection interval in injector 13–10A for; (left) monitor 1, (center)
monitor 2, and (right) monitor 3.

2.6. Numerical Simulaton Model Integration

In addition to aiding in selection of parameter ranges for the analytical fluid EOS
and rock physics study, the numerical simulation model was used to model the time-
lapse change on elastic properties for comparison with the recorded time-lapse VSP data.
Reservoir simulations were configured to output liquid and vapor phase mole fractions
for each fluid component, oil, gas, and water densities, and total fluid compressibility as
computed by the E300 compositional fluid model. In order to minimize computational
effort a sector model was constructed encompassing the 13-10A injector study pattern.
Figure 8 shows the full model and sector model domains, the 3D VSP image area, and the
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well 13-10A/13-12 profile which is used for diagnostic purposes. The reservoir property
model was supplemented with elastic moduli based on log correlations as shown in
Figure 8. Fluid substitution and elastic modeling was performed on the four-layer Morrow
B formation. A shift attribute map was computed for each baseline-monitor pair by
vertically integration of the fluid substitution effects within the reservoir. The statistical
and spatial characteristics of modeled and measured shifts were compared on absolute
value and normalized bases.

 

Figure 8. (left) Full simulation model (magenta) and 13-10A pattern sector model (blue) boundaries. (right) 13-10A pattern
sector model boundary (blue), well 13-10A: 13-12 study profile (green), VSP image area (black stippled).

3. Results

3.1. WAG Operational Factors

Figure 9 shows the CO2 and Water injection rates and cumulative volumes injected
by well 13-10A during the time-lapse monitoring period. We have adopted the labeling
convention that WAG cycles (labeled 1–8) commence with the water leg of the cycle. The
baseline survey was acquired just prior to commencement of the cycle 1 water leg, the
monitor 1 survey was acquired at the end of cycle 1, just before the cycle 2 water leg,
Monitor 2 was acquired at the end of cycle 5, just prior to the cycle 6 water leg, and
Monitor 3 was acquired at the end of cycle 8. It can be seen that the durations and injection
rates are variable, often due to operational or economic factors. Note that in Figure 9
volumes are reported in STB for liquid (water) and mscf (thousand standard cubic ft) for
gas (CO2). While these are standard conventions for reservoir engineering and production
management purposes these units to not adequately represent the relative volumetric
proportions within the reservoir which may impact seismic imaging. To normalize the
volumes to reservoir conditions we use the gas formation volume factor (FVF) Bg.

Bg =
Vg,r

Vg,sc
(13)

where;
Vg,r = Volume of gas at reservoir conditions
Vg,sc = Volume of gas at standard conditions
At reservoir conditions of 168 ◦F and 4500 PSI, BCO2 equals 0.001455 while BH2O~1.

Volumes will also be adjusted to bulk reservoir volume using the relationship;

bulk reservoir volume =
f luid Volume
φ∗ (1 − Swirr)

(14)
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where Swirr = Irreducible water saturation.

 

Figure 9. CO2 and water WAG injection cycles in well 13-10A during time-lapse monitoring. Purple
arrows indicate VSP survey dates. Red lines are CO2 injection rate (solid) and cumulative volume
(dashed). Blue lines are water injection rate (solid) and cumulative volume (dashed). Vertical green
dashed lines delineate WAG cycles for reference.

Table 2 lists cumulative volumes of water and gas injected from the time of the baseline
survey at surface and reservoir conditions, and in equivalent bulk reservoir volumes using
a porosity of 0.15 and Swirr = 0.3. After the short initial WAG cycle the Water: CO2
bulk reservoir volume injection ratio is approximately 1:3 (0.29–0.33). There are several
intervening WAG cycles within the M1–M2, and M2–M3 survey times.

Table 2. Cumulative volumes of water and gas injected from the time of the baseline survey at
surface and reservoir conditions, and in equivalent bulk reservoir volumes using a porosity of 0.15
and Swirr = 0.3.

Standard Conditions
Reservoir
Volume

Monitor Date
Water
(stb)

CO2

(mscf)
Water (cf) CO2 (cf)

W/G
Ratio

1 1/17/2015 16,550 553,100 885,100 7,665,000 0.12
2 12/3/2016 99,100 1,314,000 5,298,000 18,020,000 0.29
3 1/1/2018 141,000 1,623,000 789,100 22,490,000 0.33

In order to achieve a perspective of fluid volume with respect to time-lapse survey tim-
ing we invoke a simplistic conceptual model of non-mixing (piston displacement), annular
rings representing the sequential fluid phase injection cycles to compute an “equivalent
cylindrical radius” for each hypothetical phase front. Figure 10 shows the hypothetical
equivalent annular fluid fronts using a reservoir thickness of 45 ft at each time lapse monitor
survey time.
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Figure 10. Illustration of hypothetical annular phase fronts at time lapse monitor surveys 1 (left), 2 (center), and 3 (right).
The VSP image area is shown as the black dashed line.

While the non-mixing piston front assumption allows us to gain spatial and relative
volumetric perspective with regard to injected volumes and pattern pore volume, a more
accurate representation of the thermodynamics and hydrodynamics of the system are
reflected in numerical simulations. Figure 11 shows streamline (top) and compositional
(bottom) simulation results for the monitor survey times. Streamlines clearly show prefer-
ential drainage in the pore space between the injector and producing wells. Compositional
simulations of gas saturation are consistent with streamlines showing preferential flow
of CO2 toward injectors, albeit exhibiting asymmetry which suggests either differences
in well control parameters and/or performance characteristics, or heterogeneity in reser-
voir properties. Inspection of production data (Figure 12) shows breakthrough in all four
producers shortly after acquisition of M2. Figure 12 shows the simulated mole fraction
of CO2 (top) and oil saturation (bottom) along the study profile between wells 13-10A
and 13-12. Simulations show no CO2 breakthrough at the time of M1. Interestingly, oil
saturation increases in front of the CO2 front at the time of the M1 survey (Figure 13). It
is hypothesized that this is the result of banking of oil by the leading cycle 1 waterfront
before cycle 1 CO2 moves in and the miscibility process develops.

 

Figure 11. Streamlines (top) and compositional simulations of CO2 saturation (bottom) in the 13-10A pattern at monitor
survey times.
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Figure 12. Gas injection and production in 13-10A pattern. CO2 breakthrough occurs in early 2015
just after M1.

 

Figure 13. Simulated mole fraction of CO2 (top) and oil saturation (bottom) along the study profile
between wells 13-10A and 13-12 shown in Figures 10 and 12. Oil banking is suggested by the increase
in Soil in front of the cycle 1 waterfront at the M1 survey time. The distance is in feet.

As a final step in our review of operational factors we inspect the variation of predicted
hydrocarbon compositions in time and space as the oil is mobilized and extracted by the
miscible process. We normalized hydrocarbon composition by component mole fractions
along the study profile (Figure 14) at each survey time and observe that the composition
of the remaining oil stays nearly constant, suggesting that there is no significant selective
stripping of components by the miscible process.
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Figure 14. Simulated CO2 mole fraction and normalized hydrocarbon mole fractions along the
13-10A-13-12 study profile at M1 (top), M2 (center), and M3 (bottom) survey times.

3.2. Analytical Model Rock Physics Investigations

Based on our data and numerical model review we designed a systematic analyti-
cal fluid EOS and rock physics study to investigate the expected elastic response of the
reservoir within representative ranges of fluid composition, rock properties, and reservoir
thermodynamic state. Parameter ranges for the study are listed in Table 3.

Table 3. Fluid EOS and rock physics study parameter ranges.

Parameter Min Max

Porosity (fraction) 0.075 0.175
Water Saturation (fraction) 0.3 0.75

Oil Saturation (fraction) 0.27 0.7
CO2 Feed Fraction 0 1

Hydrocarbon Fractions Proportional
Temperature (◦F) 163 173

Pressure (psi) 4000 6000

Used together, our petrophysical data analysis, the python implementation of NIST
subroutines, and databases facilitated a comprehensive investigation of a broad range
of realistic fluid substitution scenarios providing valuable insights into the time-lapse
integration problem. Here, we show a selection of graphical results which capture many
of the important behaviors of the rock-fluid system resulting from WAG implementation
at FWU.

Figure 15 shows contour plots of reservoir fluid compositions which represent stiffness
endpoints. The top row with the maximum possible water saturation and no CO2 represents
the stiffest fluid in the system. The bottom row with the minimum possible water saturation
and maximum CO2 represents the softest fluid in the system. Contours are relative to the
attribute value at user selected reference temperature which is annotated on each plot. For
this comparison we used nominal reservoir temperature and pressure (168 ◦F, 4500 psi)
as the reference point. These plots show that the saturated rock properties have little
sensitivity to temperature for both fluids. Further, the stiff fluid shows negligible variation
with pressure from a seismic detection perspective, but can vary as much as 20% from
nominal conditions for highest anticipated pressures. However, this interpretation must be
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put in the perspective that such high pressures are not optimal for the production scheme
and should be considered anomalous.

 

Figure 15. Contoured variations of fluid bulk modulus (left), density (center), and velocity (right) vs. temperature and
pressure for stiffest fluid mix (top) and softest fluid mix (bottom). Contours are percent change relative to reference
points shown.

Figure 16 illustrates another informative visualization tool, again comparing (end-
point) stiff versus soft fluids at a selected nominal reference temperature and pressure. The
four plots in Figure 16 show the variation of normalized elastic properties for hydrocarbon-
CO2-water mixtures (left column), saturated reservoir rock (right column), stiff fluid (top
row), soft fluid (bottom row) as a function of CO2 molar (feed) fraction. All curves are
normalized to their value at xCO2 = 0. Additionally, shown are the fluid mixture vapor
(red) and liquid (blue) fraction curves which clearly show the saturation point of 0.75 mole
fraction of CO2. Inspection of the top and bottom plots on the left shows the approximately
7% drop in velocity of the reservoir fluid at zero mole fraction CO2 (owing to the differ-
ence in water saturation), and a much-amplified response to the addition of CO2 for the
softer fluid, again owing to replacement of water with potentially miscible hydrocarbon.
Comparing left columns to right illustrated the extreme dampening effect of the rock frame
on the elastic response. The difference in velocity between stiff and soft fluids (maxim vs.
minimum water saturation) at zero CO2 mole fraction is only ~0.5%. Velocity of the rock
saturated with the stiff fluid drops by only ~0.6% at CO2 fractions up to saturation before
the existence of free phase CO2 begins to take effect on the bulk fluid properties. For the
soft fluid the response to additional CO2 is somewhat stronger but still at just under 1% at
CO2 saturation.

Finally, we looked at elastic property variations in saturated rock at nominal tem-
perature and temperature (168 ◦F, 4500 psi). Figure 17 illustrates contoured variations of
p wave velocity with CO2 mole fraction and porosity (left), and water saturation (right).
The left plot shows a high degree of sensitivity with respect to porosity, which is a source
of significant statistical uncertainty in 3D models, while showing little sensitivity to the
quantity of CO2 except for the inflection at saturation (xCO2 = 0.75). Variation with water
saturation and CO2 mole fraction (right) shows a complex response surface with most
significant variations related to the phase transition and at lower water saturations.
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Figure 16. Normalized reservoir fluid (left) and saturated rock (right) elastic properties for stiff fluid
scenario where Swat = 1-Sor and xCO2 = 0 (top), and soft fluid scenario where Swat = Swirr (bottom)
at nominal conditions (T = 168 ◦F, p = 4500 psi, and ϕ = 0.15).

 

Figure 17. Contoured variations of saturated rock P velocity vs. CO2 mole fraction and porosity (left), and water saturation
(right) at reservoir conditions T = 168 ◦F, and p = 4500 psi, xCO2 = 0.5. Contours are percent change relative to reference
points shown.

3.3. Model Rock Physics from Compositional Simulator

Elastic properties were computed from 3 dimensional arrays of reservoir porosity and
reservoir fluid properties at each time-lapse survey time. Computed velocities from the
baseline survey and each monitor survey were used to compute synthetic time-lapse depth
shifts. Figure 18 shows the computed time-shifts (color maps) and the contour for mole
fraction of CO2 at the saturation level of 0.75. Figure 19 shows distributions of computed
monitor survey depth shifts. Monitor 1 survey has the fewest depth shifted samples
(simulator blocks) with depth shifts. The number of shifted cells increases over time as
expected injection of additional CO2. Depth shift magnitude for M1 is distributed uniformly
by comparison to those for M2 and M3 which show apparent shifting of magnitudes
downward. It is possible that this is due to a greater amount of free phase CO2 in the early
stages of miscibility development, with more complete mixing over time yielding lower
magnitude depth shifts. In all cases the computed depth shifts are extremely small from a
seismic detection perspective.
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Figure 18. Simulated time-lapse depth shifts mole fraction at monitor times M1 (left), M1 (center), and M3 (right). The
xCO2 = 0.75 contour is shown (black).

 

Figure 19. Magnitude distributions of simulated time-lapse depth shifts for monitor survey times
M1 (light blue), M1 (green), and M3 (dark blue).

3.4. Comparison with Time-Lapse Measurements

We compare simulated depth shifts with Schlumberger displacement attribute compu-
tations for the three monitor survey times. Figure 20 shows maps of simulated depth shifts
(top) and Schlumberger displacement attribute (bottom) in the zone beneath the Morrow B
at M1 (left), M2 (center), and M3 (right) survey times. Color scales have been adjusted to
normalize the visual comparison between simulated and measured values. Although the
visual comparison is not encouraging, we note that the spatial trends in the measured dis-
placement maps are suggestive of preferential fluid saturation changes toward producing
wells, consistent with the known hydrodynamics of the 5-spot pattern. Differences from
the simulated distribution may be due to local heterogeneities not captured in the reservoir
model and not corrected by the calibration which was achieved through optimization at a
global parameter scale.

Figure 21 compares the frequency distributions of absolute and normalized, measured
and simulated time-lapse shifts for the three monitor surveys. Simulated and measured
datasets were normalized independently to their maximum values. Maximum shifts were
0.68 ft for simulations and 3.8 ft for the measured displacement attribute for a ratio of
5.6. Ratios of average distribution values were 7.5, 10.4, and 3.7, respectively for M1, M2,
and M3.
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Figure 20. Simulated depth shifts (top) and Schlumberger displacement attribute (bottom) in the zone beneath the Morrow B
at monitor M1 (left), M2 (center), and M3 (right) survey times. Color scales are adjusted to normalize the visual comparison
between simulated and measured values.

 

Figure 21. Magnitude distributions of simulated time-lapse depth shifts (blue) and Schlumberger Displacement attribute
computed from VSP data (green) for monitor surveys M1 (top), M2 (Mid), and M2 (bottom). and M3. Data in the left
column is true amplitude. Data in the right column has been normalized to the maximum observed value for each data type.

4. Discussion and Conclusions

We are tasked with interpretation and integration of time-lapse VSP data optimizing
the FWU reservoir simulation model. From previous experience and literature review
we know that WAG operations result in fluid properties and seismic detection scenarios
that are much more challenging than immiscible systems. Because these processes are
difficult to isolate for investigation in a complex compositional reservoir simulation, we first
performed an analytical fluid study which enabled us to isolate and investigate complex
thermodynamic processes. We reviewed the field operations at FWU in terms of the fluids
in place, and the volumes and timing of injected fluids. We discovered that, contrary to
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the concept of a discrete CO2 plume, as a conformance management technique the WAG
operation is specifically designed to create an optimal CO2-hydrocarbon mixture with water
as an intermediate phase. We used available data and models to perform a systematic
EOS analysis of WAG fluid thermodynamics. We found that the FWU WAG operational
scenario results in a thermodynamically complex transient distribution of fluid mixtures
with largely similar thermophysical properties while the hydrocarbon undersaturated with
respect to CO2. We then used Gassmann’s model to perform a systematic rock physics
study which showed that already subtle differences in fluid properties are heavily muted
by the rock framework. From these analytical studies we conclude that the most likely
seismic detection scenario at FWU is for the existence of free phase CO2 which exists where
the available oil is saturated, or the miscibility process has not yet fully developed.

We applied our rock physics model to compositional simulations using the production
data calibrated FWU reservoir model. These simulations verify a continuum of saturations
rather than a distinct distribution of high concentration CO2 which might be characterized
as a plume, or as forming a discrete fluid front. These gradational compositional variations
are reflected in similarly gradational spatial distributions of simulated depth shifts. Poor
spatial correlations between simulated and measured depth shifts may be attributed
to either data resolution or model error. Clearly, strict application of seismic imaging
fundamentals tells us that these shifts are all well below the seismic resolution. However,
it is not yet clear whether or not we are able to achieve the less stringent goal of merely
detecting changes in bulk reservoir properties with the given data. As regards to seismic
data fidelity, interpretating estimates of effective media properties at seismic wavelengths
is a well-studied problem. Worthington [49] reports ratios of up to 10:1 for estimates of
bulk reservoir properties from multi-scale measurements of fractured media compliance
using cross-well seismic and laboratory ultra-sonic measurements. On the side of the
model accuracy, the model used was calibrated at the global (full field) scale. As such,
the calibration at the pattern scale may be non-unique with respect to production data
only. Recognition of such ambiguities and non-uniqueness in geostatistical model property
distributions is one of the main motivators for introduction of time-lapse seismic data as a
calibration constraint. If the fidelity of our measured data can be verified, then the spatial
discrepancies between simulated and measured shifts can be used to drive model updates.
This subject is currently under study.

Other potential sources of simulated versus measured discrepancies owing to nu-
merical simulations but not investigated here include: the accuracy of the Eclipse 300 as-
sumption of first contact miscibility, the effects of simulation grid scale on the modeling of
miscible process development, and the correspondence between the Eclipse calculation
of total fluid system compressibility and the assumptions used by the Wood’s law mixing
equation and Gassmann’s equation. We also assume that the time-lapse response of the
reservoir is independent of pore pressure and effective stress. While we are aware of
ultra-sonic measurements under stress on Morrow B reservoir samples which indicate
potentially significant velocity versus stress sensitivity, inclusion of such effects was not
within the scope of funding for this project.

5. Avenues for Future Work

It is clear that successful integration of the time-lapse seismic data at FWU depends
on establishing the confidence level for the seismic data. This is not a black and white
issue and should not be considered a binary decision. All quantitative integrations provide
a mechanism for scaling the contribution of each observation in computation of model
updates. Unfortunately, a rigorous estimate of confidence in seismic data is difficult to
establish. It is possible that methods based on data signal to noise characteristics may
be implemented. However, these are based on seismic amplitude data so a strategy for
application to displacement data would be required.

Quantitative integration of the time-lapse seismic data for reservoir model updating
presents a number of spatial and temporal sampling challenges. One of these is the dis-
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crepancies between spatio-temporal sampling characteristics of the different observation
domains. Seismic data are finely and spatially sampled (~50′ × 50′) but coarsely sampled
temporally (1–2 years). Production data are coarsely sampled spatially (~1000′ × 1000′)
but finely sampled temporally (hourly, daily). Further, the dynamic processes dictating
fluid compositional changes and movement in 3D space over time are very complex. This
is why that it is essential to use a transient compositional simulation model as the basis for
integration. Although integration of simulation models for 3D interpretation is not new,
recent advances in distributed computing and machine learning techniques (such as proxy
model based optimization) are fuelling progress. Another challenge is the superposition
of effects from sub-pattern scale fluvial system heterogeneity and the thermodynamically
active fluid system effects. First, we feel that further lateral refinement of the simulation
grid scale is needed. An update and optimization scheme such as the one implemented
by Ampomah et al. [32] or Sun et al. [40] for production data calibration of the reservoir
model and optimization of development schemes at FWU may be used for time-lapse
data integration. In these studies, machine-learning technologies such as response surface
models (RSM), multi-layer neural networks (MLNN), and support vector machines (SVM)
are used to develop proxy models for numerical simulation results against production data.
These proxy models are coupled with suitable optimization strategy (such as the evolu-
tionary strategy) to achieve optimization of a penalty function which includes historical
data. For time-lapse integration, the proxy model would include both production data
from pattern wells and time-lapse seismic measurements. The required proxy for EOS
and rock physics response could be developed through integration of NIST databases in
a similar manner as was used in our analytical fluid and rock physics study. Although
the full field reservoir model property distribution was developed through a pixel based
geostatistical method, it may be necessary to implement an object-based property popula-
tion method using a fluvial system model in order to impose and systematically update
representative anisotropy in model porosity and permeability updates. These methods
are currently being applied for calibration of coupled hydro-chemical simulation models
by SWP researchers [unpublished]. The proxy model process for time-lapse integration
may be preconditioned with a geologically realistic and equiprobable realization ensemble
strategy such as implemented by Souza et al. [17].
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Abstract: Greenhouse gas (GHG) emissions related to the Farnsworth Unit’s (FWU) carbon dioxide
enhanced oil recovery (CO2-EOR) operations were accounted for through a gate-to-gate life cycle
assessment (LCA) for a period of about 10 years, since start of injection to 2020, and predictions of
18 additional years of the CO2-EOR operation were made. The CO2 source for the FWU project has
been 100% anthropogenically derived from the exhaust of an ethanol plant and a fertilizer plant. A
cumulative amount of 5.25 × 106 tonnes of oil has been recovered through the injection of 1.64 × 106

tonnes of purchased CO2, of which 92% was stored during the 10-year period. An LCA analysis
conducted on the various unit emissions of the FWU process yielded a net negative (positive storage)
of 1.31 × 106 tonnes of CO2 equivalent, representing 79% of purchased CO2. An optimized 18-year
forecasted analysis estimated 86% storage of the forecasted 3.21 × 106 tonnes of purchased CO2 with
an equivalent 2.90 × 106 tonnes of crude oil produced by 2038. Major contributors to emissions
were flaring/venting and energy usage for equipment. Improvements on the energy efficiency of
equipment would reduce emissions further but this could be challenging. Improvement of injection
capacity and elimination of venting/flaring or fugitive gas are methods more likely to be utilized
for reducing net emissions and are the cases used for the optimized scenario in this work. This
LCA illustrated the potential for the CO2-EOR operations in the FWU to store more CO2 with
minimal emissions.

Keywords: life cycle analysis; CO2-enhanced oil recovery; anthropogenic CO2; global warming
potential; greenhouse gas (GHG); carbon storage

1. Introduction

Carbon dioxide (CO2) atmospheric concentrations are high compared to the last
400 centuries and are still rising [1]. About 50% of the increase has been in the last forty
years and is mainly attributed to human activities [1]. This has led to rising temperatures
and climate change globally [2]. One (1) megawatt (MW) electrical coal fire plant releases
up to eight (8) megatons of CO2 yearly. About 75% and 50% of this amount is released
by oil fired and natural gas combined-cycle electrical plants, respectively [3]. In the US,
about 86% of anthropogenic greenhouse gas (GHG) emissions are from energy production,
which includes principally the generation of power and transportation [4]. The oil and gas
industry globally accounts for about 8% of anthropogenic carbon dioxide (CO2) and 15%
of the methane gas (CH4) with 3% coming from upstream operations [5]. This increase
in GHG emissions is believed to have an adverse impact on the environment. Improved
energy efficiency of production equipment, use of renewable energy and low carbon fuels,
and storage/sequestration of captured CO2 are all potential emission reduction approaches
with each having their inherent pros and cons [5]. From the works of Farajzadeh et al.,
CO2-EOR incorporating carbon capture consumes a high amount of energy compared to
the amount of crude produced [2]. This also significantly leads to an increase in emissions.

Geologic formations are estimated to have storage capacities of about 9 × 1011 tonnes
of CO2 globally with oil and gas fields alone offering capacities of about 1.3 × 1011 tonnes
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of CO2 [6]. Carbon dioxide can be sequestrated as part of CO2-enhanced oil recovery
(EOR), a process used to increase oil production in use since the early 1970’s [7]. Injection
of pressurized CO2 into oil reservoirs causes crude oil to swell, decreases viscosity thus
increasing crude mobility, and develops miscibility as interfacial tension is reduced [8]. CO2-
EOR is common in the US in the Permian Basin, Rocky Mountains, Northern Plains, and
Louisiana-Mississippi, all regions that have access to natural CO2 and/or large natural gas
processing plants that may produce high volumes of CO2 as a by-product [9]. International
CO2-EOR projects include the Weyburn-Midale CO2 project in Saskaatchewan, Canada and
the Lula field in the Santos Basin, Brazil (offshore) [10]. Notable international CCS include
the Sleipner in Norway, In Salah in Algeria, Ketzin in Germany, k12B in Netherland [11]
and the Gorgon project in Western Australia by Chevron, ExxonMobil and Shell [12].

Assuming a reservoir has the requisite caprock integrity, using CO2 for EOR in low-
performing or depleted oil reservoirs presents a number of advantages including incremen-
tal oil recovery, stabilization of the storage formation by repressurizing, and sequestration
of CO2 that can reduce the net CO2 emission of the EOR project [13]. Carbon capture
and storage (CCS) is a highly capital-intensive operation that becomes more economically
viable when incorporated as part of an EOR project by producing crude oil which may
not be extracted by primary and secondary recovery processes [14]. EOR can use natural
or anthropogenic CO2, but for GHG reduction anthropogenic sources from industrial
processing plants (e.g., gas processing, fertilizer, and ethanol plants) and power-generating
plants (e.g., coal, oil and natural gas power plants) would be used.

This paper does not consider the detailed technologies and processes involved in
CO2-EOR operations, but instead focuses on a GHG emission Life Cycle Assessment (LCA),
of CO2-EOR operations. This is a necessary analysis, because CO2-EOR involves operations
that may contribute to GHG emissions. These operations include processes from the up-
stream sector (capture and separation of carbon dioxide, facility construction and pipeline
transportation), gate to gate (carbon dioxide dehydration, drilling of wells, oil production
and processing, constructions of facilities, land usage, gas separation as well as venting
and flaring) and down-stream sector (crude transport, refining and fuel combustion) [15].

Calculating and evaluating all inputs and outputs of environmental stressors and
products potential impact on the environment describes LCA. By ISO 14000 environmental
management standards, LCA is performed in phases: the scope/goal definition, the
Life Cycle Inventory (LCI), Impact Assessment (Classification and Characterization), and
interpretation/application [16]. The extent of these phases depends on the goal/scope
defined. The issues addressed are the energy balance of the integrated system, substances
that are emitted at a higher rate, and the part of the system linked to these emissions [17].

Thus, to undertake LCA, specific boundaries or areas of interest are to be determined
for the analysis. There have been a number of studies that have looked into GHG emissions
and its relation to the operations of CO2-EOR [1,4,14–17]. The focus of this LCA is to
estimate the total GHG emissions from the Farnsworth Unit (FWU) CO2-EOR operation
and further forecast emissions for another period of 18 years, a period proposed by the
field operators to continue CO2 injection. Within this projected operational period, the
operators seek to incorporate a number of improved conditions to reduce emissions as will
be discussed following sections. In this paper the focus is on emissions that contribute
to Global Warming potential (GWP, kg CO2eq/bbl. of crude produced), and as such the
greenhouse emissions that will be considered are CO2, CH4, and Nitrous Oxide (N2O). It is
good to emphasize that 100% of the CO2 used for EOR at the FWU came from anthropogenic
sources (ethanol and fertilizer plants) or CO2 from field production that is essentially 100%
anthropogenic CO2 previously injected into the field from the same anthropogenic sources.
There was no CO2 detected in the original reservoir oil [18].

1.1. Geological and Reservoir Description of FWU

The Farnsworth Unit is located in the northern part of Texas in Ochiltree County,
situated on the northwestern shelf of the Anadarko Basin (Figure 1). The producing
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reservoir is Morrow B sandstone, an incised valley fluvial sandstone deposited during
the Regional Stage of the Lower -Pennsylvanian Morrowan period [18,19]. Overlying
and underlying the Morrow B formation are late Pennsylvanian through to mid-Permian
shales and limestones. The primary seals are the overlying Morrow shale and Thirteen
Finger limestone with secondary seals overlying these units that include thousands of feet
of limestones and interbedded dolomite, and evaporites. Morrow B sandstone is about
18 m thick and occurs at a depth of about 2301 m to 2423 m, with about 55 m to 61 m
of the primary seal overlying the reservoir [19]. The Morrow B at FWU is a relatively
coarse-grained sandstone interpreted as a fluvial deposit within an incised valley [20].
Rocks are subarkosic in composition and typically exhibit one or more sequences of basal
conglomerates overlain by coarse-to-fine grained sandstone and capped by very fine
sands that grade into the mudstones of the Morrow shale and then transition abruptly
into the alternating limestones and shales that characterize the Thirteen Finger limestone.
Porosity and permeability for the Morrow B averages 15% and 35 mD respectively [20].
Caprock integrity testing using mercury porosimetry and geo-mechanical (Brazil tension,
unconfined compression, triaxial compression, and multi-stress compression) tests indicate
the integrity of the caprock and its ability to ensure safe storage of injected CO2 [21].

Figure 1. Location of the Farnsworth Unit (FWU) on the Northwest Shelf of the Anadarko Basin in
West Texas. Red lines are approximate locations of faults that have been documented in the region.
Blue pentagons indicate locations of Anthropogenic CO2 sources.

Reservoir discovery was listed as 26 October 1955 and the FWU was unitized on 6
December 1963 by the operator with the initiation of water-flooding with fresh-water from
the Ogallala Formation shortly thereafter. Table 1 gives a summary of initial reservoir
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conditions. The field has two distinct sections that seemed to behave differently over its
lifetime. Primary production was initially better in the eastern side in comparison to the
western side, but the western performed much better during waterflooding [22]. This work
focuses on the western side of the FWU.

Table 1. Initial reservoir conditions.

Reservoir Properties Values

Oil initially in place 120 MM STB
Gas initially in place 41.48 BSCF
Reservoir pressure 2217.7 psia

Bubble point 2073.7 psia
Formation volume factor 1.192 RB/STB

Reservoir temperature 168 ◦F
Reservoir drive Solution gas drive

1.2. Overview of CO2-EOR Operations on the FWU

CO2-EOR was initiated in the western portion of FWU in December 2010, and the
present operator intends to continue CO2-EOR until the economic limit of the field is
reached. Initially, CO2 came via pipeline from both the Arkalon ethanol plant in Liberal
Kansas and the Agrium fertilizer plant in Borger, Texas. Currently the only source of CO2
is from the Arkalon ethanol plant.

Figure 2 illustrates a simplified flow chart of the facilities, equipment and the CO2-
EOR processes at FWU. Three major processes are involved once CO2 is delivered to the
unit: CO2 distribution, produced liquid handling, and produced gas handling.

Figure 2. Simplified flow chart representing an overview of the CO2-EOR Operations of FWU (Red lines indicate injection
fluids, black: produced fluids and blue: gas from AWT).

Delivered CO2 and recycled CO2 are transported via pipeline from the Central Bank
Battery (CTB) CO2 distribution units to water alternating gas (WAG) injectors. Produced
fluids go to several central gathering system (All Well Test (AWT)) locations where each
site consists of a central gathering line, vessels for fluid separation, and individual well
test separators, after which fluids are transferred to the CTB. At the CTB the separation of
gas, crude, and brine continues using a series of vessels and storage tanks based on density
differences and resident time to separate the fluids. Flow meters are used to record both
daily purchased and produced volumes of CO2.

The FWU currently operates thirty two producing wells and seventeen injection
wells with three injection manifolds which have valves to switch between water and CO2.
Separated crude oil has 2930 ppm CO2 (0.293%) and is sold out of tanks. The gas (89–93%
CO2) mixture is produced with less than 690 ppm i.e., 0.069% water and is reinjected using
reciprocal compression and high-pressure horizontal pumps. Thus, no dehydration is
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required. The minimum miscible pressure (MMP) of the reservoir crude oil and CO2 was
determined to be 4200 psia [23].

Figure 3 shows CO2 production and injection volumes from the FWU between De-
cember 2010 and 1 September 2020 as well as oil and water production and disposition
As of this period the purchased CO2 is 1.64 × 106 tonnes, with 1.51 × 106 tonnes (92% of
purchased) being stored and a crude oil production of 4.76 × 106 barrels.

Figure 3. Production and injection data gathered from the FWU from December 2010 to August 2020.

2. Materials and Methods

The LCA approach employed in this project followed in part the framework estab-
lished by ISO [16] as mentioned in previous sections, and the Plains CO2 Reduction (PCOR)
LCA approach by DOE-NETL [24]. The PCOR approach comes with a spreadsheet model
allowing users to modify specific fields and CO2-EOR operations to suit their needs. The
model includes a cycle analysis from a coal fired power plant retrofitted with CO2 capture
through to a CO2-EOR operation to the transportation of crude to refineries and finally to
end users, usually for combustion. This LCA is a complete cradle-to-grave cycle, which has
the upstream, gate to gate and downstream representing the end nodes of the cycle. Our
work focuses on the operations within the FWU or a gate to gate analysis of the CO2-EOR
operations. Where the required FWU data were unavailable they were estimated from the
literature [25–27] and the National Energy Technology laboratory (NETL) databases [28,29]
(Figure 3). In addition, because this model was quite generic and lacked certain variations
with respect to FWU operations, a number of modifications were made based on a couple
of scenarios:

Scenario 1: Perform an LCA specific to the FWU and compare with a more generalized
CO2-EOR operations from 2010 to 2020 (period for which CO2-EOR has been in operation
at the FWU).

� For general CO2-EOR, gas separation would be considered but not in the case for
FWU because all recycled gases are reinjected.

� The percentage of water content in gas is insignificant hence a dehydration component
is not included in study.

� There is an insignificant percentage of CO2 and lighter hydrocarbons in separated
crude oil and water hence estimates of gases or volatile oil components (VOC) vented
on storage are omitted.

� Based on the geological description and study, it is very unlikely for formation
leakages to occur.

Scenario 2: Perform a FWU LCA for a forecasted CO2-EOR for a period of 18-year (2020
to 2038) model run with bottomhole pressure and oil rate target constraints as proposed
by the field operator. This would also look at two scenarios; an optimized operational
condition to reduce emissions or reach a net-zero carbon operational condition and to
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ensure higher percent of injected CO2 storage as encouraged by the US government 45Q
incentives versus current operational practices as used in task one.

� A flexible compressor capacity—expanded to meet large volumes of recycled CO2,
thus flaring or venting of excess recycled gases would occur only during maintenance
periods (due to high cost of backup compressors).

� Conversion of existing water injectors to WAG wells to add to existing WAG wells.
� All purchased and produced gases would be reinjected within the 12-year period.
� All produced water is reinjected in the WAG process, hence treatment of produced

water is omitted.
� Surveillance is put in place (pipelines, wellheads, wells and other surface equipment)

to meet requirements in the Texas Administrative Code (TAC) rules for the Texas
Railroad Commission (TRRC) Oil and Gas Division to report and quantify leaks, and
to minimize leakage of GHG from surface equipment.

� The option for gas powered/energy efficient compressors other than electric power is
also considered.

Based on a maximum monitoring area (MMA) defined by the operator as the boundary
of the FWU with 1

2 mile buffer zone (minimum required by Subpart RR). Figure 4 shows a
simulated tertiary CO2 flood for 22 years (2010 to 2020 plus the additional 12 years projected
operational period) shown in Figure 4A in addition to 5 years post-injection monitoring
shown in Figure 4B. These demonstrate the stored CO2 remains within the boundary of the
FWU with little change during the 5 years post-injection. The geologic seals are expected
to contain the injected CO2 within the Morrow B formation. Abandoned wells are properly
plugged and very unlikely to have any leaks. Mechanical integrity testing (MIT) as per the
Underground Injection Control (UIC) program is also conducted and provides evidence
of mechanical integrity, therefore no leakage is expected through injection/production
wells [30,31]. Further, regular analysis of fluids from Ogallala aquifer wells around FWU
as well as soil gas and atmospheric monitoring by the Southwest Regional Partnership on
Carbon Sequestration (SW) shows no indications or unusual occurrences of CO2, brine or
hydrocarbons since 2013.

2.1. Life Cycle Inventory

Site-specific data inputs from the FWU within a set system boundary were used in
this analysis. A flow chart indicating major processes within the scope of the analysis is
presented in Figure 5. Data collection and treatment, allocation (impact of products or
processes operations on the environment) and calculation, and data quality checks would
be done at this stage. Rates of fluid production were major inputs to the model, as well
as other process key to GHG relation to the CO2-EOR operation, such as fluid injection
(CO2 and brine), gas and liquid separation, gas compression, crude and brine storage, gas
venting and flaring, produced gas, gas combustion for heat, and gas separation. Initially gas
separation was taken into consideration analyzing three common processing techniques;
Ryan-Homes, refrigeration/fractionation, and membrane [15]. They were each taken into
account in this gate to gate LCA. Specific FWU fluid volumes, incremental oil recovery,
produced brine, gas injection, and production were used for Task 1. Other comparable
data to DOE-NETL (2013) [15,28], and NETL Unit Process Library [32] were also utilized in
the study.
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Figure 4. CO2 Plume Extent (A) Before; (B) 5 years post-injection.
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Figure 5. A simplified boundary/scope of Life Cycle Inventory for CO2- EOR at the FWU.

Fractionation/refrigeration operates by chilling a gas stream, which separates CO2
from hydrocarbon (HC) gases. Distillation columns are then used to separate the HC
gases. This technique can be reconfigured to bypass distillation columns, thus reducing the
energy consumption. The Ryan-Holmes separation technique also involves the separation
of CO2, lighter HC, and NGL by a refrigeration vessel, a de-methanizer, and HC separation
columns. For the membrane process, the rate of permeation through a porous medium
between two different gases is the principle utilized for its separation technique. This comes
with a pre-treatment; compression of gas to about 3.45 MPa, dehydration, and chilling.
Energy requirements and material usage vary widely among these techniques [15].

For Scenario 2, volumes or fluid injection and production rates used were from
forecasted simulation data. The Electric Reliability Council of Texas (ERCOT) grid mix
emission factor of 411 kg CO2e/MWh [33] was specified as the electricity delivered to
the FWU [28]. Other parameters such as brine and hydrocarbon gas production, which
might not readily be available for the forecasting aspect of this analysis (Scenario 2) were
estimated using various correlations [28].

Summary of Forecasting Model Description

Fluid transport dynamics were investigated through a compositional numerical reser-
voir simulation model. The model was used to perform a history matching simulation
for primary, secondary and tertiary recovery processes for the FWU. The duration for the
primary and secondary processes was 55 years, and for tertiary (CO2 flood) the duration
was between December 2010 and August 2019. Hydraulic flow units (HFU) as delineated
by Rose-Coss et al. [20] were utilized to characterize heterogeneity of the reservoir. Porosity
and permeability relationships were also established based on depositional and diagenetic
facies described from cores and thin sections from 51 wells. The HFUs and parameters
of Corey’s correlations corresponding to each permeability porosity relation were used
as parameters to history match the primary and secondary production data through a
machine learning based methodology [34]. X, Y, and Z directional permeability multipliers
and Corey coefficients of three phase relative permeabilities were parameters considered
for tuning. Comparing simulation results with field data, it was observed that the history-
matched case was consistent with oil production, gas injection, and production data. The
Table 2 summarizes estimated volumes from the model.
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Table 2. Summary of predicted volumes.

Parameter Unit Value

Max cumulative oil production MM bbl 19.3
Max cumulative CO2 storage MM tonnes 2.98

Max % Storage of purchased CO2 percentage 92.9%

2.2. Emissions/Emission Factor Estimations

The contributions of each unit process to GHG emissions within the boundary of the
CO2-EOR operations were estimated using a functional unit of kilograms -CO2—equivalent
(kgCO2eq) to signify the quantity of CO2 per barrel of crude oil produced. The 100-year
GWP coefficients of 298 for N2O and 34 for CH4, to convert amounts of N2O and CH4 to
equivalent CO2, were applied [16].

Separation of gas and liquids could lead to the release of volatile organic compounds
(VOC) due to the changes in temperature and pressure conditions, which are either flared
or vented. Storage of crude and brine may result in VOC emissions as a result of flashing,
working, and standing losses. These are recovered by vapor recovery equipment and
directed to flaring and venting units. A 99% conversion efficiency of flared gases to CO2
was used in this study (for each kg of CH4 flared, 0.99 kg is converted to CO2eq) [25]. The
required amount of fuel and electricity for each unit process is estimated based on the
amount of product to be processed. The equivalent mass of carbon dioxide emitted as a
result of generating these amounts of energy is estimated. Table 3 gives a summary of key
parameters, units, and their associated values used in modelling the LCA for CO2-EOR.
Aside from site-specific data, all other data sets (mostly emission factors to specific unit
operations) were gathered from literature as indicated in the table representing tempo-
geographical and associated technical characteristics of CO2-EOR. Venting and flaring
volumes for Scenario 2 were assumed to be the difference between the purchased and
stored CO2, arising mainly as results of compressor maintenance/break down.

Table 3. Summary of parameter/factors and Input values.

Parameters Unit Values Reference

Crude oil produced bbl crude Operator/forecast
Crude oil density kg crude/bbl 135 Operator/forecast

Net CO2 utilization rate Mscf CO2/bbl Operator/forecast
Purchased CO2 requirement kg CO2 Operator/forecast

Fugitive loss rate of purchased CO2 % 2.0% [13]
CO2 produced (recycled) kg CO2 Operator/forecast

CO2 injected kg CO2 Operator/forecast
CO2 stored kg CO2 Operator/forecast

CO2 leakage rate from storage over
100-year time period % CO2 stored 0.5% [25]

Hydrocarbon gas production rate kg gas/kg crude Operator/forecast
Brine production rate kg brine/kg crude Operator/forecast

Well footprint Acre 0.25 [25]
Number of wells Count 49 Operator/forecast

Emissions per m2 of
repurposed land

kg CO2eq/m2 7.5 [32]

Water disposal well construction kg CO2eq/bbl 1.0 [32]
Injection well construction kg CO2eq/bbl 1.2 [32]

artificial lift pump electricity
rate kWh/kg crude 1.18 × 10−1 [32]

Compressor power factor MW/[tonne recycled CO2/day] 2.70 × 10−3 [25]
CO2 pump power factor MW/[tonne injected CO2/day] 1.91 × 10−4 [25]

Compressor CO2 emissions rate
(direct to atmosphere) kg CO2eq/MW-day 63.6 [25]

Brine injection pump electricity
rate kWh/kg brine injected 7.87 × 10−4 [34]

VOC uncontrolled emissions rate to
venting and flaring kg VOC/kg crude 8.70 × 10−3 [25]
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Table 3. Cont.

Parameters Unit Values Reference

Flare rate (% of vented VOC that is
flared) % 95% [25]

Combustion efficiency % 99% [15]
Natural gas usage rate kg natural gas/kg crude 3.09 × 10−3 [32]

Natural gas delivered CO2
emissions factor kg CO2/kg natural gas 1.68 × 10−1 [32]

Natural gas delivered CH4
emissions factor kg CH4/kg natural gas 1.81 × 10−2 [32]

Natural gas delivered N2O
emissions factor kg N2O/kg natural gas 4.60 × 10−6 [34]

Natural gas combustion CO2
emissions factor

kg CO2/kg natural gas
combusted 2.75 [32]

Natural gas combustion CH4
emissions factor

kg CH4/kg natural gas
combusted 5.26 × 10−5 [32]

Natural gas combustion N2O
emissions factor

kg N2O/kg natural gas
combusted 5.03 × 10−5 [32]

Produced water methane content kg CH4/bbl water 1.50 × 10−3 [32]
Brine disposal pump electricity rate kWh/kg brine disposal injected 3.30 × 10−3 [32]

ERCOT mix, electricity delivered
carbon emission factor kg CO2eq/MWh 4.11 × 102 [32]

3. Results and Discussion

This study focuses on the estimations of the GHG emissions for the CO2-EOR opera-
tions at the FWU for a period of about ten years from December 2010 to September 2020
for which CO2 injection has already occurred, and for another projected 18-year period
(2020–2038) with optimized operational conditions. These estimates account for emissions
that are direct functions of the mass of CO2 and oil production volume, hence the functional
unit of kgCO2eq/bbl of crude oil produced. The first scenario accounted for the emissions
of the FWU and compared these to a base case, which included gas separation options.
The second task also focused on a projected optimized operation and a comparison of
GHG emissions to a base case of current existing conditions on the FWU. Emissions were
estimated and presented on the basis of various units within the CO2-EOR field that are key
contributors to emissions within the system. The goal here was to identify specific units to
optimize to aid in the reduction of GHG emissions. Cumulated purchased CO2 amounted
to 1.64 × 106 tonnes, with 1.51 × 106 tonnes (92% of purchased) stored and a corresponding
crude oil production of 4.76 × 106 barrels represent estimates from the operator which
were utilized in Scenario 1 (Figure 3). Scenario 2 utilized the forecast (Table 2).

3.1. Scenario 1

(a) Gas Separation
Economics dictate whether hydrocarbon gas and CO2 are separated from the pro-

duced gas. There are at least two reasons to separate hydrocarbon gas before reinjecting
the produced gas. The first reason is if the impurities in the produced CO2 increase
the MMP in the reservoir above the fracture pressure or high enough to significantly in-
crease cost, and the second is if the value of the recovered gases is more than the cost
of separation, or more likely a combination of the two. In the base case in Scenario 1
gas separation techniques considered are the fractionation/refrigeration, Ryan–Holmes,
and membrane. The energy requirements and material usage vary widely among these
techniques. Table 4 represents emission factors and Table 5 represents total mass emissions
for refrigeration/fractionation, Ryan–Holmes and membrane gas processing techniques,
respectively. For both Ryan–Holmes and membrane separation, natural gas usage accounts
for the majority of emissions in their operations with electricity being the key source of
emission for refrigeration/fractionation. The natural gas upstream represents the emissions
from the recovery of natural gas delivered to the plant; this in many situations is a small
quantity since the plant utilizes part of the gases separated in the combustion processes.

204



Energies 2021, 14, 2499

These are estimates generalized for the processes of these techniques with actual production
and injection data from FWU, and the results are similar to published studies [9,15,24].

Table 4. Emission Factors of major components of Gas Separation units.

Factors (kgCO2eq/bbl)

Fract/Ref Ryan-Holmes Membrane

Electricity 1.4988 - 2.3641
Natural gas upstream 0.0004 1.3608 33.3343

Natural gas
combustion 0.0014 12.0493 15.6464

Diesel Usage - 0.1933 -
Fugitive emissions - - 0.1815

SUM 1.5006 13.6035 51.5262

Table 5. Mass Emissions of major components of gas Separation units.

Emission (kgCO2eq)
Frac/Refr Ryan-Holmes Membrane

Electricity 7,137,323 - 11,257,801
Natural gas upstream 1892 64,80,307 158,738,878

Natural gas
combustion 6661 57,379,327 74,508,567

Diesel Usage - 920,532 -
Fugitive emissions - - 864,146

SUM 7,145,875 64,780,167 245,369,392

(b) FWU CO2-EOR Processes
Table 6 highlights the emission factors and mass emissions of key unit processes as

defined in the boundary of the LCA. Gas compression and injection electricity accounted
for 47% (7.41 kgCO2eq/bbl. and 35.31 × 106 kgCO2eq) of GHG emissions from equipment
in the CO2-EOR system. Thus, improving the energy efficiency of compression would
significantly reduce the life-cycle GHG emissions. Unfortunately, increasing the efficiency
of compressors is technically challenging [9]. Differences in the life cycle emissions of
compressors, however, may differ depending on the energy source since each source has
its emission factor (660 kgCO2/MWh for coal powered plant, 423 kgCO2/MWh for natural
gas powered, etc.). The ERCOT power factor of 411 kgCO2/MWh is lower due to the
inclusion of renewable (wind, hydro) energy source components as part of its power
generation mix and probably represents the source of power to the FWU. Artificial lifting
of crude oil and associated produced water and gases comes next with estimates of about
4.44 kgCO2eq/bbl and 21.12 × 106 kgCO2eq. These estimates were made based on the
volumes of fluids produced. A factor of 0.118 kWh/kg crude lifted [25] was used. From
this the amount of energy required to lift the volumes of fluids produced and the associated
quantity of potential emissions was estimated. These values are not exact representations
of emissions from artificial lift from the FWU, since there are different kinds of lifting
mechanisms employed in the field (sucker rods and submersible pumps) and in many of
the wells artificial lift was not initially required. Thus, this value is expected to be an over-
estimate, but the idea presented here is to show how much CO2 would have been emitted if
all of the produced fluids were acquired through artificial lift. Artificial lift is quite energy
intensive and is used throughout the production period once a well is put on artificial lift.
Construction and land use also account for significant GHG emissions directly through
energy use, construction of facilities, well drilling, and other processes and indirectly in
land use effects on existing vegetation, repurposing land and so on. Using a factor for
an emission per square meter of repurposed land of 7.46 kgCO2/m2 [29], emissions were
estimated at 2.98 kgCO2eq/bbl corresponding to a mass of 14.18 × 106 kgCO2eq. These
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processes and their GHG emissions could be classified as indirect as associated GHG
emissions are due to the processes or energy usage. Flaring and venting which in this study
is classified as a direct emission accounted for an estimated 60% of GHG emissions through
the 10-year period of CO2-EOR. This was highest in the early stages of CO2 injection, but
reduced as compressors for reinjection came online. On a longer-term scale, most venting
and flaring occurs during times when compressors are offline for maintenance or repairs.
The cumulative quantity of equivalent CO2 flared within the period from December 2010
to August 2020 was 117.52 × 106 KgCO2eq with an emission factor of 24.68 kgCO2eq/bbl.
This is the highest source of emissions amongst the CO2-EOR processes. Though there
could be challenges with respect to improving on the efficiency of equipment to reduce
GHG emissions, analysts have suggested that reduction of fugitive GHG emissions of
vented and flared CO2 and methane would be more easily achieved. This effect is reflected
in Scenario 2 of this study. Based on the geological description and the mechanical integrity
tests performed on the field’s reservoir cap rocks, emissions due to leakages from the
geologic storage formation were estimated to be zero (0%) of the stored CO2 [21].

Table 6. Mass Emissions and Factors for EOR units (Task 1).

Unit Processes
Emission

106 kg CO2eq
Factors

kg CO2eq/bbl

Construction/Land use 14.18 2.98
Artificial lift 21.12 4.44

CO2 compression, and injection (Electricity) 35.31 7.41
Brine injection (Electricity) 3.43 0.72
Brine disposal (Electricity) 1.11 0.23

Flared/Vented 117.52 24.68

(c) Comparative Analysis of Gate to Gate Results
Table 7 (mass emission) and Table 8 (emissions factors), sums up the overall total

emissions and emission factors for the CO2-EOR processes both with (Base cases) and
without (FWU) gas separation techniques. Total net storage factors and net CO2 storage,
were estimated as; total emission factors minus initial storage factor, and total emissions
minus initial CO2 storage. For the base cases, the total emissions from CO2-EOR operations
in order of increasing total emissions and emission factors are Fractionation/ Refrigeration,
Ryan-Holmes, and Membrane. In comparison, FWU without gas separation recorded
the lowest. The net storage and net storage factors resulted in negative net values for all
scenarios. This is an indication of a pay-off to global warming reduction and/or a positive
outcome to environmental intervention, that is, much more CO2 is stored in the formations
than is emitted to the atmosphere. The major difference is the use of gas separation.
Refrigeration/fractionation has a greater advantage with regards to emissions due to its
low energy consumption. This is because the fractionation process could be configured to
bypass distillation columns, thus reducing energy that would have been consumed by such
columns. However, when it comes to efficiency in separation of gases, the Ryan-Holmes
and membrane processes both are highly effective in recovering natural gas liquids but
come with a higher energy penalty, as can be seen from the results.

Table 7. Total Emission and Net Storage for cases considered.

Total Emissions Net Storage Purchased Stored

106 kgCO2eq 106 kgCO2eq %

Refrigeration/fractionation 217.53 −1161.86 78.80
Ryan-Holmes 275.16 −1104.22 74.95

Membrane 454.93 −924.46 62.94
FWU (No Gas Separation) 210.38 −1169.00 79.28
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Table 8. Summary of emission factors for Task 1 and Task 2.

Process
Emission Factor

kgCO2eq/bbl
Net Storage Factor

kgCO2eq/bbl

Refrigeration/fractionation 42 −247.70
Ryan-Holmes 54 −235.60

Membrane 92 −197.85
FWU (No Gas Separation) 40 −249.20

FWU (Forecast-opt) 10 −130.01
FWU (Forecast-Base) 28 −112.00

3.2. Scenario 2

(a) Forecasted FWU CO2-EOR with Optimized Conditions
Scenario 2 considers an 18-year forecast of the CO2-EOR operations, a time range

chosen because that concludes with the probable expiration date of a 45Q tax credit. The
scenario assumes all purchased CO2 (2.91 × 106 Metric tons) will be injected and stored
within the 18-year period. Assumptions also consider that adequate compressor capacity
precludes venting or flaring and (during compressor optimum performance except failure
or maintenance), injection of all produced gas and water. Our emission estimates were
made factoring all these conditions. A base case of the current condition as applied in
Scenario 1 for FWU was also applied to this forecasted CO2 purchased volume. For the base
case, venting and flaring accounted for the majority of emissions with 17.9 kgCO2eq/bbl
(345.28 × 106 kgCO2eq), and compression and artificial lift energy being the next major
source of GHG contributors in both the optimized and base case. For the same volume of
crude oil produced, the energy requirement for artificial lift is likely to be the same in both
cases for the same period of time. Differences between the two cases arise as a result of
fugitive emissions from equipment as well as from venting and flaring. Total estimated
emission factors for both the forecasted base and optimized scenarios are shown in Table 8
with detailed estimates on individual operations in Figure 6. A net negative storage factor
of −130 kgCO2eq/bbl and −112 kgCO2eq/bbl corresponding to 86% of the purchased
CO2 for the optimized case and 74.3% for base case was found. As this LCA excludes all
fugitive emissions, this is an indication that energy consumption by process equipment is a
key contributor to GHG emissions. Flaring and venting, being a direct emission of GHG,
is a major component in the CO2-EOR process which increased emissions in all cases. A
reduction in this one key source could significantly reduce total emissions. This could be
achieved through a reduction in time needed for repair and maintenance or through other
operational methods.

Table 8 summarizes the emission factors of the various case studies, using volume
estimates in Figure 3 for Scenario 1 and Table 2 for Scenario 2 (projected). The factors in
both cases are not directly comparable due to different volumes of CO2 and crude oil used
in their estimates. These estimates (emission factors) can be compared to other gate to
gate CO2-EOR GHG LCA even with the inclusion of a gas processing facility. Figure 7
gives a number of CO2-EOR operations and their estimated emission factors that range
60 kgCO2ee to 175 kgCO2eq compared to Scenario 1 for FWU of about 40 kgCO2eq.
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Figure 6. FWU emission factors for Base and forecasted optimized cases.

Figure 7. Reproduced gate-to-gate emission factors of other CO2-EOR fields [9], in comparison to
FWU CO2-EOR.

4. Summary and Conclusions

Emissions of GHGs such as CO2, CH4, and N2O are considered as major pollutions
and have become a source of concern in efforts to slow the pace of global warming. This
study presents a GHG LCA for the FWU for a period during which CO2-EOR has been in op-
eration (about 10 years) and a projected future operation of 18 years. For these cases, GHG
emissions were estimated for a number of CO2-EOR processes, fugitive emissions, and from
flaring/venting. Data from the operator as well as simulated and forecasted fluid volumes
were utilized in estimating emissions. Data gathered by the operator through monitoring
and metering recorded 1.64 × 106 tonnes (1.49 × 109 kgCO2eq) of CO2 purchased, with
92% being stored during the 10 years CO2-EOR has been in operation. A gate-to-gate LCA
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of the GHG emissions estimated a net negative 2.25 × 106 tonnes (1.19 × 106 kgCO2eq) of
CO2 representing storage of 79% of purchased CO2. For this period, venting and flaring
accounted for the highest source of emissions with compressor energy consumption being
the next-highest. Improving conditions through an optimized process (Scenario 2) for a
forecasted period of operations lowering or eliminating fugitive emissions and including
flaring/venting only during maintenance of compressors yielded 86% (130 kgCO2eq/bbl)
of projected purchased volumes of 3.21 × 106 tonnes of CO2 compared to a forecasted base
case estimated at 74% of the purchased CO2.

A very significant consideration for the implementation of the forecasted optimized
scenario would be economics and technology that dictate the amount of CO2 to be pur-
chased as well as to be stored. These factors can also dictate how a CO2-EOR operation
might be designed. Higher crude oil prices might create a favorable condition for the use
of CO2 due to the ratio between the cost of oil price and cost of CO2. A drop in CO2 cost
might encourage CO2 use for EOR, and a change in tax policy might change either side
of the equation. The financial incentive of the 45Q tax credit from the current U.S. tax
policy for both capture and storage of CO2 is currently providing another motivation for
CO2-EOR operators to retain more CO2.

This GHG life-cycle assessment is an indication that the integration of CO2-EOR and
carbon storage, such as seen at FWU, is one approach to minimize net GHG emissions to the
atmosphere. This study presents specific emission estimates for the FWU and could give
useful information to field operators with regards to GHG emissions of their operations.
The basic processes and methodologies could easily be followed in other fields.

Key unit processes have been demonstrated to be major contributors to emissions
that operators need to take notice of and seek to improve for reduced GHG emissions.
Energy consumption for process equipment is a significant input and a major cause of GHG
emissions. Improving on the energy efficiency of equipment and the use of alternative clean
energy sources are sure ways of reducing emissions from this source. These changes may
be technologically challenging, or in some cases beyond the control of field operators. In
our study, flaring and venting accounted for the largest source of emissions in all scenarios
examined. Reducing emissions from this source is believed to be easier compared to the
challenging issues of improving the energy efficiency of equipment. Proper monitoring,
smart and quick sealing of fugitive sources and the avoidance of flaring/venting as much
as possible could reduce emissions. Expanding compressor capacities and/or backup
compressors are ways of ensuring sufficient gas recycle capacity and hence emission
reductions, though these could be capital intensive and project economics would play
a major role in this decision. The FWU has a simpler operational boundary, hence its
low gate-to-gate emission factors as compared to other studies mentioned earlier. Added
complexity of operational processes as seen in some fields could lead to an increase in
sources of emissions; however, reducing the direct emission of GHGs via venting and
flaring should provide beneficial in almost all cases.
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Abstract: This paper summarizes the risk assessment and management workflow developed and
applied to the Southwest Regional Partnership on Carbon Sequestration (SWP) Phase III Demonstra-
tion Project. The risk assessment and management workflow consists of six primary tasks, including
management planning, identification, qualitative analysis, quantitative analysis, response planning,
and monitoring. Within the workflow, the SWP assembled and iteratively updated a risk registry
that identifies risks for all major activities of the project. Risk elements were ranked with respect to
the potential impact to the project and the likelihood of occurrence. Both qualitative and quantitative
risk analyses were performed. To graphically depict the interactions among risk elements and help
building risk scenarios, process influence diagrams were used to represent the interactions. The
SWP employed quantitative methods of risk analysis including Response Surface Method (RSM),
Polynomial Chaos Expansion (PCE), and the National Risk Assessment Partnership (NRAP) toolset.
The SWP also developed risk response planning and performed risk control and monitoring to
prevent the risks from affecting the project and ensure the effectiveness of risk management. As
part of risk control and monitoring, existing and new risks have been tracked and the response
plan was subsequently evaluated. Findings and lessons learned from the SWP’s risk assessment
and management efforts will provide valuable information for other commercial geological CO2

storage projects.

Keywords: risk assessment; workflow; Farnsworth; workshop; process influence diagram; response
surface model; polynomial chaos expansion; NRAP

1. Introduction

Storage of CO2 in geologic formations is one of the most applicable options for mit-
igating anthropogenic CO2 emissions contributing to climate change [1–3]. Particularly,
CO2-enhanced oil recovery (CO2-EOR, an oil production method in which oil recovery is
enhanced by CO2 injection) and storage have gained specific interest for its potential economic
benefits of increasing hydrocarbon recovery and reducing risks of overpressure [4–8]. How-
ever, due to the nature of the deep subsurface environment and its uncertainties, geologic
CO2 storage (GCS) projects require appropriate assessment and management of risks for
safe operation.

The Southwest Regional Partnership (SWP) Phase III project is an industrial research
collaboration focused on an active CO2-EOR and storage field, the Farnsworth Unit (FWU),
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located within the Anadarko Basin of northernmost Texas along the Oklahoma border [9].
The FWU is both a CO2 sequestration demonstration and a research project managed by
the SWP, one of seven regional carbon sequestration partnerships (RCSP’s) instigated and
supported by the U.S. Department of Energy (DOE) and its National Energy Technology
Laboratory (NETL) [10].

The FWU project seeks to predict and to monitor the effects of injecting CO2 into
an actively producing oilfield. The outcomes of the FWU project research are of value to
oilfield operators, who seek CO2-EOR and storage, as well as other stakeholders interested
in long-term GCS.

For the SWP’s FWU project, risk information was routinely applied toward both
strategic and tactical design and adjustment of project activities so that risk of failure
(in any dimension) can be minimized. Risks associated with GCS include CO2 leakage
(to shallow subsurface and/or atmosphere), geomechanical risks (e.g., fault reactivation
and induced seismicity), storage/injectivity loss, production decrease in CO2-EOR, etc.
This paper summarizes the risk assessment workflow developed and applied to the FWU
project. The risk assessment workflow is an iterative process where potential risks are
identified and monitored. The likelihood and severity of the risks are quantified, and a
response plan is subsequently established and updated.

2. Risk Assessment Workflow

To accomplish the effective risk assessment and risk management, SWP formed a risk
assessment working group (RAWG) from the initial stage of the project and established and
applied the continuous and iterative risk assessment and management workflow shown in
Figure 1. Other major working groups within the SWP include monitoring, verification,
and accounting (MVA), characterization, and simulation. Each working group comprises
of active project personnel of each discipline.

Figure 1. Risk assessment and management workflow diagram depicting six primary tasks and how
they relate.

The SWP’s risk assessment approach consists of six primary tasks: risk management
planning, risk identification, qualitative risk analysis, quantitative risk analysis, risk re-
sponse planning, and risk control and monitoring. Tools essential to risk communication
are applied within several of these tasks.

2.1. Risk Management Planning

The risk management plan comprises roles and responsibilities of personnel, budget
assignment, and timing and frequency of risk assessment tasks. In this task the RAWG
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defined the best methodologies, tools, and data sources for both technical and program-
matic risks. This task also sets how RAWG coordinated with other working groups. For
example, RAWG coordinated with the simulation group to ensure models were developed
on identified risk pathways (e.g., wellbore leakage, shallow groundwater impacts, caprock
integrity, induced seismicity, and performance goals). Coordination among working groups
in regard to risk management planning is a key aspect of internal risk communication.

2.2. Risk Identification

Risk identification (also known as risk source assessment) is the process of determining
project risks and their characteristics. The RAWG first developed an initial (draft) risk
registry that included programmatic/operational risks as well as technical/sequestration
risks by using a Features, Events, and Processes (FEPs)-based approach. A FEP is a broad
entity: an individual FEP could create negative impact on the project values through
various chains of events (scenarios) and could function in combination with various other
FEPs. Based on the initial FEPs registry, the SWP performed its risk survey from 2014 to
2017 annually. The purpose of this risk survey was to identify and evaluate current risks
to project objectives. Participants of the risk survey evaluated FEPs, each of which was
associated with one or more example scenarios.

On 13 January 2014, a live web-based risk workshop was held to evaluate and rank
the identified risks and to newly identify additional risks associated with the SWP Phase III
project. Then, the evaluation of 24 additional FEPs collected from the online workshop was
completed by a follow-up spreadsheet. Initially, a total of 405 FEPs were identified for the
SWP Phase III project. Twenty-three (23) project professionals participated in the workshop
and all the personally attributed data were collected and evaluated. Project professionals
provided self-assessments of areas of expertise. After FEPs were screened for redundancy
and relevance to the SWP, 103 FEPs were ranked by risk with the expertise-weighted
evaluation method.

In August 2015, the second risk survey was conducted. The 2015 survey was exe-
cuted entirely via email and telephone communication, with spreadsheets as the primary
information tool, whereas the 2014 assessment included a “live” online workshop with
discussion and real-time visibility of charted data. The risk elements evaluated in the 2015
risk assessment exercise were the 50 highest risks as determined in 2014, of the 103 total
risks evaluated at that time. Respondents in 2015 (to a large degree, the same individuals
who participated in 2014) were invited to add “new” risks or re-nominate other “old” risks
for evaluation, but in practice no risks beyond the 2014 top-50 set were identified.

In September 2016, substantially the same group of project professionals again re-
evaluated the project risks. The process focused on 69 risk entities comprising the 50 FEPs
evaluated in 2015 plus additional FEPs nominated or agreed by risk-workshop participants.
The additional FEPs grew out of information gathering that was used to identify the
important new or potentially higher-risk elements.

On 14 December 2017, the fourth risk workshop was held as a one-day face-to-face
session during the SWP annual meeting at New Mexico Tech, Socorro, New Mexico. The
23 workshop participants included nearly all persons actively involved in the project. The
risk workshop followed a day of plenary meetings in which the staff shared information
on project technical and managerial topics. This shared information formed a solid basis
for exposing and exploring sources of risk to project objectives.

2.2.1. Risk Calculation

Risk was calculated as the product of Severity (S) and Likelihood (L), each of which
factors was judged on a categorical 5-point scale (Table 1) by the risk workshop participants.
S is defined as “severity of potential negative impact to defined project values,” and L
is defined as “likelihood that the specified severity level will occur during the project
lifespan.” In the 2014 and 2016 risk surveys, participants provided two values of S and
one of L for each FEP. The S values are upper-bound Severity (Sub) and best-guess Severity
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(Sbg), and the L value is Likelihood of the best-guess Severity (L of Sbg, or simply L).
The Sub or worst-case severity value is of specific interest. In addition, the process of its
elicitation provides a measure of self-calibration for participants. For each risk element,
the Sub value is elicited first, followed by the Sbg value. In this way, each participant’s
best-guess severity value is appropriately related to the just-provided “worst case” aspect
of the same risk element.

Table 1. Severity and likelihood scales.

Ranking Factor Severity of Negative Impact (S)

5 Catastrophic Multiple fatalities. Damages exceeding $100M. Project shut down.
4 Serious One fatality. Damages $10M–$100M. Project lost time greater than 1 year.

3 Significant
Injury causing permanent disability, Damages exceeding $1M to $10M. Project
lost time greater than 1 month. Permit suspension. Area evacuation.

2 Moderate
Injury causing temporary disability. Damages $100k to $1M. Project lost time
greater than 1 week. Regulatory notice.

1 Light
Minor injury or illness. Damages less than $100k. Project lost time less than
1 week.

Ranking Factor Likelihood of Impact or Failure Occurring (L)

5 Very Likely
Happens every year, or more often. Nearly sure to happen during Farnsworth
Project.

4 Likely Happens every few years. Probably will happen during the project.

3 Unlikely
Happens every few decades. Might not happen during the project even if
nothing is done.

2 Very Unlikely Would happen less often than every century, in projects similar to this one.
1 Incredible or Impossible If these projects like this went on forever, would not happen in a thousand years.

Whereas, in the 2015 and 2017 workshop, a single Sbg and the L of Sbg values were
collected for each FEP, rather than separate values for Sub versus Sbg in contrast to 2014
and 2016 evaluations. This saved workshop time and recognized the fact that worst-case
severity data collected during previous workshops was likely to be sufficiently representa-
tive. A “worst-case severity” ranking was computed from the 2017 workshop data based
on the provided severity values plus one standard deviation.

Using the data gathered from all the participants including experts and non-experts,
various risk values and rankings can be constructed by using different weightings of expert
and non-expert views. As noted earlier, participants self-rated their areas of technical
expertise. In 2014, the selected expertise-weighted ranking used gradational weighting
based on gradations of expertise. In 2015, the selected ranking used “triple-weighted”
values from experts and single-weighted values from non-experts, based on a binary
(“yes/no”) designation of subject-matter expertise. Given that experts’ presumably greater
accuracy in estimating risk cannot be confirmed until the project is well advanced, there
are no clear criteria for “optimal” weighting. However, as for 2015 and similar to 2014, a
“triple-weighted experts” risk calculation and ranking based on binary expertise have been
constructed from the 2016 data.

2.2.2. Risk Rankings

Table 2 compares FEP rankings in 2017 (“all participants” ranking) to rankings in the
prior years. Of the 69 FEPs evaluated in 2017, 57 were from the previous evaluations and
13 were newly added. Among the 69 FEPs evaluated in 2016, 46 were evaluated in 2015,
and all but two (new in 2016) were evaluated in 2014. Table 2 shows risk rankings for those
four successive evaluations. In 2015, only the highest-ranking 50 FEPs from 2014 were
evaluated. Only a single ranking method from each year is shown for comparison.
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Table 2. Features, Events, and Processes (FEPs) rankings of four annual evaluations since 2014. Thirteen FEPs evaluated in
2016, but not in 2017, are listed at bottom. FEPs whose titles were worded slightly differently in prior years are indicated by
an asterisk. FEPs not evaluated during a particular year are shown ranked as “N/A.” For most FEPs the related specific
risks are evident to CCS practitioners; certain FEPs followed by a letter in parentheses are further explained below the table.

2017 FEP * Rank 2017 Rank 2016 Rank 2015 Rank 2014

Price of oil (or other related commodities) 1 1 1 6
DOE financial support (a) 2 N/A N/A N/A
On-road driving 3 16 28 35
Change of field owner and/or operator 4 N/A N/A N/A
CO2 supply adequacy 5 4 7 2
EOR oil recovery (b) 6 7 2 37
Operating and maintenance costs 7 5 3 7
Legislation affecting CO2 injection or CO2-EOR * 8 2 18 29
Simulation and modeling—parameters * (c) 9 23 36 1
Well component failure (tubing, seals, wellhead, etc.) 10 N/A N/A N/A
Reservoir heterogeneity (d) 11 29 15 16
Accidents and unplanned events 12 3 8 18
Workovers: Damage to instrumentation 13 N/A N/A N/A
Defective hardware * 14 24 16 48
Simulation of geomechanics 15 25 6 9
Seismic method effectiveness * 16 39 25 12
Severe weather 17 10 N/A 84
Undetected features 18 51 N/A 52
Project execution strategy (DOE project, not EOR or production) * 19 31 9 21
Over pressuring 20 41 10 10
Workovers: Costs, hazards, interruptions 21 N/A N/A N/A
Release of compressed gases or liquids 22 19 13 3
Economic competition (for hardware, staff, etc.) 23 N/A N/A N/A

Relative-permeability and capillary-pressure curves 24 45 N/A N/A
EOR early CO2 breakthrough 25 18 5 25
Ignition of flammable gases or liquids 26 12 N/A 72
Blowouts 27 9 26 8
Simulation of coupled processes 28 22 19 5
Simulation and modeling—Numerical model resolution 29 N/A N/A N/A
Simulation of fluid dynamics 30 6 17 15
Drilling * 31 42 44 14
Fault valving and reactivation 32 30 N/A 57
Operator training 33 37 N/A 62
Injection and production well pattern and spacing * 34 8 4 45
Fractures and faults (CO2 leakage via new or existing) 35 34 N/A 90
Contracting 36 50 27 42
Seismicity (natural earthquakes) 37 35 N/A 101
Caprock lateral extent and continuity 38 13 N/A 80
Contractors: Unavailability of major contractor 39 N/A N/A N/A
Well lining and completion 40 32 31 38
Caprock fracture pressure 41 43 N/A 82
Conflicts in monitoring methods (instrument space, power,
interference, etc.) * 42 14 N/A 51

Co-migration of other gases 43 61 35 27
Moving equipment 44 40 30 39
CO2 leakage through existing wells 45 N/A N/A N/A
Simulation and modeling—software 46 N/A N/A N/A
Geomechanical characterization 47 36 32 4
Operator error in pipeline operation 48 20 49 31
Caprock heterogeneity 49 65 40 11
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Table 2. Cont.

2017 FEP * Rank 2017 Rank 2016 Rank 2015 Rank 2014

Fluid chemistry 50 62 47 20
Leaks and spills (related to oil and chemicals other than CO2) 51 28 23 44
Hydrogen sulfide, H2S * (e) 52 27 21 13
Mineral deposition (porosity or perm loss) 53 N/A N/A N/A
Permit compliance 54 58 N/A 92
Seismic survey execution * 55 59 33 50
Fluid samples and sampling * 56 53 38 24
Integration of technical learnings 57 N/A N/A N/A
Relations among major project proponents and parties * 58 63 37 43
Safety coordination and integration 59 54 N/A 77
EOR viscosity relations (f) 60 46 22 47
Management team 61 64 34 41
Competing project objectives 62 17 42 46
Working in confined areas or spaces 63 60 N/A 68
Permit modifications 64 38 24 40
CO2 release to the atmosphere 65 47 N/A 74
Propagation of project learnings beyond SWP 66 N/A N/A N/A
Exploitation of caprock or reservoir by non-project activities * 67 48 46 28
Health and safety inspections 68 44 43 23
Mineral reactivity * 69 68 N/A N/A
EOR oil reservoir heterogeneity 11 11 19
Reservoir exploitation 15 N/A 97
Seal failure 21 14 22
Injection well components 26 41 33
Competition 33 12 49
On-site facilities for EOR 49 N/A 86
Pipeline supervisory control and data system 52 N/A 98
Modeling and simulation—software 55 20 17
Storage Complex definition 56 N/A 83
Workover 57 29 30
Mineral dissolution 66 N/A 94
Desiccation of clay 67 N/A 99
CO2 exsolution from formation fluids 69 N/A 102

(* Different Wording in Prior Year/s); (a) Risk of loss of financial support from the principal funder, U.S. Dept. of Energy. (b) Risks related
to changes in (mainly declines in) EOR-related oil recovery. (c) Risks related to incorrect or misleading modeling results, due to inaccurate,
imprecise, or overly precise inputs of parameter values and parameter ranges. (d) Risks related to reduced ability to predict and/or control
plume migration, due to reservoir heterogeneity and/or incorrect model specification of heterogeneity. (e) Risks related mainly to H2S
toxicity; also to potential metal embrittlement. (f) Risks related to inability to predict oil movement changes caused by viscosity reduction
from CO2 injection.

The dominance of red to yellow colors in the upper part of the list shows that many
high-risk issues (especially programmatic issues) have remained high-risk throughout the
project. In some cases, progressively cooler colors suggest technical learnings that reduced
the perceived risk; examples include geomechanical characterization, H2S, and Health and
Safety Inspections.

Rankings from 2017 show that programmatic issues remain top concerns: oil price
(as in previous years) and DOE financial support (new FEP in 2017) were rated as the
highest project risks. After the steep drop of oil price from the second half of 2014, price
of oil has been placed at the first in the risk ranking. Other operational risks related to
CO2-EOR were also relatively ranked high due to the concerns about oil price. Except for
those newly included in 2017, most FEPs evaluated in multiple years have maintained
roughly consistent rank positions.

Among the scientific issues, relatively high risk is ascribed to the parameters used
for simulation and modeling and to reservoir heterogeneity. This may imply that for this
project, given geologic heterogeneity, modeling indicates that the extensive available field
data have not constrained model outputs to the degree anticipated. Some FEPs re-included
in 2016 were evaluated as relatively high risk in 2016. The re-included FEPs had not been
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evaluated in 2015 based on their low risk in 2014, but were included for 2016 because of
high 2014 severity values. Their emergence as high risk in 2016 (e.g., ranks #10, 12–15)
is surprising and may suggest recent changes in project status (including funding and
economics) or information that had not been articulated during the information-gathering
process that preceded the workshop.

Based on the four risk workshops and analyses, we have learned that the results of
FEPs-based risk evaluation can be applied toward risk management as follows:

• Using risk rankings and other statistics, select a set of FEPs for which action (treatment)
will be undertaken. It is often useful to select roughly 15–35% of the evaluated FEPs.

• Parse the selected FEPs by FEP group and assign a risk-treatment coordinator for
each group.

• For each FEP, clarify the specific scenarios (chains of events) by which impact would
occur. Develop risk treatments to lower the likelihood of their occurrence and/or the
severity of impact in case of occurrence. Assign and track treatment execution, and
periodically evaluate the effectiveness in treating the target risks (residual risk level).

• Evaluate the effectiveness of treatments in also treating/controlling the non-target
(lower) risks; confirm that all identified risks are adequately controlled.

• Re-evaluate risk whenever there is a substantial change to project information or objectives.

2.3. Qualitative Risk Analysis

The RAWG applied both qualitative and quantitative analysis processes. The qualita-
tive risk analysis is mainly for prioritizing the identified risks according to their potential
effects on the project objectives and for identifying interactions between FEPs, which
includes:

• Continue (update) relative ranking or prioritization of project risks,
• Risk categorization by root cause and potential impacts,
• Define interactions between FEPs,
• Identify risks that require responses in the near-term,
• Identify risks that require more analysis or investigation, and
• Develop watchlists for lower risks for monitoring.

The significant risk matrix components necessary for the risk assessment were first
identified to define the FEPs interaction. For example, for the risks to oil recovery, reservoir
temperature, reservoir pressure, oil composition, and oil viscosity were defined as four
independent (or uncertain) parameters and associated dependent variables (or risk factors)
include oil production, water cut, and methane production. Similarly, we identified
independent and dependents variables for three additional categories such as CO2 storage,
geomechanics, and CO2 leakage which are risk areas in the quantitative risk assessment.
Table 3 summarizes the uncertain parameters and dependent variables identified in the
four different risk areas; CO2 storage, oil recovery, geomechanics, and CO2 leakage.

Based on the FEPs identification, relevant classification and ranking, and risk matrix
development, the SWP utilized process influence diagrams (PIDs). PIDs graphically
depict the interactions between FEPs and help in building risk scenarios, which form an
instrument for effective risk communication. The initial site-specific PID for the SWP project
was based on the PIDs developed for a typical CCUS-EOR project through a previous
DOE-funded project (DE-FE0001112). Appropriate scenarios identified throughout the
PIDs can subsequently be used for the quantitative risk analysis.

Figure 2 shows the PIDs for CO2 storage and CO2-EOR risks/FEPs. Similarly, the
PID associated with the geomechanics and CO2 leakage is illustrated in Figure 3. The risks
(dependent variables) that can be quantified in terms of probability density function (PDF)
or cumulative distribution function (CDF) are highlighted in the PIDs. In the PIDs, an
arrow represents the influence path showing cause and effect. The circle indicates the
interaction between FEPs. No loop or chain start with Events in the PIDs. In other words,
there should be an appropriate cause for an effect. PID only considers direct impact.
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Table 3. Risk matrix components including independent and dependent variables.

Risk Area
Independent Variables
(Uncertain Parameters)

Dependent Variables

CO2 Storage

Reservoir properties (porosity and permeability, Kv/Kh ratio) Amount of CO2 stored (or CO2 recovered or Net CO2 stored)
Relative permeability (e.g., irreducible water saturation) Early CO2 Breakthrough time
WAG (including well pattern and spacing, and injection rate) CO2 Retention (or residence)
CO2 miscibility (e.g., minimum miscibility pressure) CO2 Injectivity reduction (Net CO2 injection amount)
Boundary conditions
Model uncertainty (e.g., simulation of coupled processes,
simulation of fluid dynamics) CO2 storage capacity loss

CO2 impurity -Amount of CO2 mineral trapping
Initial water, oil, and gas saturations -Mineral alteration and porosity evolution
Mineralogical composition AOR (CO2 plume size and pressure buildup)

Oil Recovery

Reservoir temperature Oil production
Reservoir pressure Water cut (or net water injection)
Oil composition, gravity Gas (CH4) production
Oil viscosity

Geomechanics

Fault density and distributions Pressure Buildup
Stress and mechanical properties Induced seismicity (seismic magnitude)
Coefficient of friction (fault properties) Injection-induced faults reactivation
Caprock geomechanical properties
Mechanical processes and conditions

CO2 Leakage

Caprock geometry (discontinuity) and heterogeneity pH change in the overlying aquifer
Caprock capillary entry pressure CO2 concentration or total carbon concentration
Initial water chemistry Heavy metal concentration
CO2 migration (point and non-point source) TDS change in the overlying aquifer
Distributions of leaky wells Trace metal mobilization

CO2 migration through caprock
Caprock sealing quality evolution (porosity change)

Figure 2. Process influence diagram (PID) for CO2 storage and CO2-EOR risks/FEP in Southwest Regional Partnership
(SWP) project. An arrow shows the influence path and each connection point is represented by a filled circle.
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Figure 3. Process influence diagram for geomechanical and CO2 leakage risks/FEP in SWP Farnsworth project. An arrow
shows the influence path and each connection point is represented by a filled circle.

For example, if we inject CO2, combined with mineralogical composition and fluid
chemistry, it would affect the mineral reactions which might lead to mineral alteration
and subsequently porosity/permeability change. Therefore, as a result there could be a
storage loss or injectivity reduction. This risk scenario identified with PID was used in the
quantitative risk analysis.

2.4. Quantitative Risk Analysis

Quantitative risk analysis for the FWU project has been conducted to numerically
quantify the effect of risk scenarios on the project objectives. In general, integral aspects of
risk assessment involve:

• Formalism and comprehensiveness of identified risks, which add confidence to the
risk assessment;

• Development of common framework and approaches, which allow inter-comparison
of probabilities for different elements or sites;

• Explicit treatment of uncertainties, which arise from factors such as incomplete pa-
rameters and process constraints, heterogeneities in natural systems, incomplete
knowledge of the natural systems at the site, etc.

The SWP Farnsworth project employed formal quantitative methods of risk analysis
specified in the following sub-tasks (based on evaluation of uncertainty):

• Quantify critical elements or variables that may affect the risk in question;
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• Define the scenarios or conceptual model for each risk;
• Conduct probabilistic risk assessment with an appropriate tool for each potential risk;
• Synthesize the overall risk assessment using National Risk Assessment Partnership

(NRAP) tools (formerly CO2-PENS and other newly developed tools), to evaluate
CO2 and brine fate and associated impact.

Response Surface Method (RSM), Polynomial Chaos Expansion (PCE), and NRAP
toolset are the main computational tools used for quantitative risk assessment in the
Farnsworth project.

2.4.1. Response Surface Method

RSM (also known as proxy model) was used for developing PDFs or CDFs for each
critical risk factor of interest. The RSM with appropriate experimental design has been
applied to reservoir engineering applications such as performance prediction, sensitivity
analyses, upscaling, history matching, and optimization studies [11–13]. Comprehensive
simulations with a conventional Monte Carlo approach may be computationally expensive
given the uncertainties in model parameters, whereas RSM with a statistically linear model
uses only a small number of runs at specified sampling points. We applied RSM combined
with Monte Carlo sampling to efficiently provide probabilistic assessment.

Figure 4 summarizes the RSM workflow, which first determines independent vari-
ables/factors to construct the design of experiment (DoE), followed by the numerical
experiments. Then, the response surface (regression equation or proxy model) is delineated
with a stepwise regression technique applied to eliminate insignificant factors from the
regression equation. Then, several goodness-of-fit measurements examine the performance
of the regression model. Lastly, Monte Carlo samplings of mutually independent input
parameters were used in the obtained response surface models in order to generate the
CDFs of output responses from the given input distributions without running numeri-
cal simulations

Figure 4. Workflow for the response surface methodology combined with Monte Carlo simulation.
For example, reservoir permeability, anisotropy ratio of permeability (kv/kh), water-alternating-gas
(WAG) time ratio are x1, x2, x3, and x4. In addition, net CO2 storage and oil production are y1 and y2

in Pan et al. [14].

The RSM consists of mathematical and statistical techniques to develop a functional
relationship between a response or dependent variable (y) of interest and associated
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independent variables or factors (x1, x2, . . . , xk). The response surface method is typically a
polynomial approximation to the responses (y) obtained with a linear regression given the
input/design variables (xi) in a chosen DoE. For example, the Box-Behnken design (BBD),
which is a particular subset of the factorial combinations from the 3k factorial designs,
consists of three levels (−1, 0, 1) corresponding to (lower, middle, upper endpoint) for
each factor [15]. Each factor is placed at one of the three equally spaced values. The
BBD has been widely used because of its economical design (smaller number of runs)
compared to the full factorial designs. Full factorial design with 2-level (−1, 1) or 3-level
(−1, 0, 1) is fully crossed design requiring 2k and 3k runs, respectively. In addition, the
BBD contains not only the interaction terms of factors but also the higher-order quadratic
effects. We utilized the stepwise regression technique to eliminate the insignificant factors
from the regression equation. The RSM was efficiently implemented within a Monte Carlo
framework to assess uncertainty.

Pan et al. [14] applied RSM with Monte Carlo sampling to quantify the uncertainties in
the key reservoir parameters of Farnsworth project. Forecasted net CO2 storage and oil pro-
duction were predicted by the CDFs given the uncertainty in key reservoir parameters such
as reservoir permeability, anisotropy ratio of permeability (kv/kh), water-alternating-gas
(WAG) time ratio, and initial oil saturation. Similarly, with three independent parameters
(CO2 saturation, reservoir pressure, wellbore fracture proportion), Xiao et al. [16] quantified
potential risks of CO2 and brine leakage into the overlying USDW (the Ogallala aquifer)
with RSM and identified water chemistry parameters as early detection indicators based
on up-to-date site monitoring data.

Dai et al. [17] developed a multiscale statistical framework for CO2 accounting and
risk analysis at the FWU. A set of geostatistical-based Monte Carlo simulations were
conducted for risk and global sensitivity assessment of CO2-hydrocarbon-water flow in the
Morrow B formation. The major risk metrics include CO2/water injection/production rates,
cumulative net CO2 storage, cumulative oil/gas productions, and CO2 breakthrough time.
A response-surface-based economic framework was also derived to calculate the CO2-EOR
profitability for the FWU with an oil price of $38/bbl, suggesting that approximately 31%
of the 1000 realizations can be profitable.

Our RSM-based work [14,16,17] demonstrated useful tools which can be used to nu-
merically and probabilistically quantify the effect of risk scenarios on the project objectives.
In terms of computational time, the RSM was efficient compared to the conventional Monte
Carlo simulation. However, simulation processes inherently contain uncertainty. Thus, it
would be critical to correctly define the ranges and distribution of uncertain parameters to
significantly reduce the uncertainty. In addition, the RSM applied for quantifying risks are
tested and verified with numerical outputs rather than actual data, thus they unavoidably
contain epistemic uncertainty.

2.4.2. Polynomial Chaos Expansion

In addition to the RSM described in the previous section, non-intrusive polynomial
chaos expansion (PCE) was also used in the Farnsworth project, as it only requires a small
number of sampling and does not modify the governing equations. RSM uses a poly-
nomial regression to model the response, y = (y1, y2, · · · , yN)

T where input parameters,
x = (x1, x2, · · · , xM)T . Whereas, if the input parameters vector x is uncertain [18], an
element yi in the vector y can be represented by a PCE as follows:

yi = M(x) = α0B0 +
M

∑
j=1

αjB1
(
xj
)
+

M

∑
j=1

j

∑
k=1

αjkB2
(

xj, xk
)
+

M

∑
j=1

j

∑
k=1

k

∑
h=1

αjkhB3
(

xj, xk, xh
)

(1)

where the α′s are coefficients and the B’s are multivariate polynomial basis functions.
Hermite polynomials basis functions are generally used for normally distributed param-
eters [19]. Once yi is simulated from geo-cellular models, the coefficients can be solved

with linear inversion, e.g., α =
(

BT B
)−1BTyi. Then reduced order models (ROMs) can be
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developed by substituting the calculated coefficients into Equation (1). With the flexibility
regarding the basis functions and not requiring the DoE, PCE is capable of constructing
ROMs for a variety of properties of interest, such as the pressure and CO2 saturation in
each cell of the reservoir model. For the reviews and details of PCE techniques, see the
previous studies such as [20–22].

Jia et al. [23] evaluated primary CO2 trapping mechanisms of Morrow B sandstones at
the FWU. In particular, the heterogeneity of petrophysical properties (porosity and perme-
ability) was considered as the source of parameter uncertainty. Their impacts were analyzed
using PCE-derived ROMs combined with Monte Carlo simulations. Model outputs of
interest in CDFs include amounts of CO2 trapped by three different trapping mechanisms:
hydrodynamic trapping, oil dissolution trapping, and aqueous dissolution trapping. The
wide ranges of CDFs (as shown in Figure 5 in Jia et al. [23]) demonstrate significant vari-
ations in CO2 storage at FWU due to the uncertain reservoir porosity and permeability.
However, the results of the uncertainty analysis suggest that the hydrodynamic trapping is
the dominant trapping mechanism at FWU.

Figure 5. Workflow from physics-based simulators to leakage calculations using National Risk Assessment Partnership
(NRAP) tools.

2.4.3. National Risk Assessment Partnership Toolset

As part of the quantitative risk assessment for the SWP, the NRAP toolset is being
applied to evaluate CO2 and brine leakage risks at the FWU. The NRAP toolset is a
computational toolkit that includes ten science-based computational tools that predict
environmental risk performance of geologic CO2 storage sites [24,25]. In order to conduct
a quantitative risk assessment of wellbore leakage at the FWU multiple realizations must
be run to span to parameter space of key parameters such as wellbore permeability and the
time evolution of CO2 and water saturation in the reservoir. The physics-based simulators
of the reservoir and detailed simulations of the wellbore are computationally intensive
and cannot be practically coupled and run 1000s of times to bound the uncertainty in the
system. The NRAP toolset is being used to establish a comprehensive workflow between
physics-based simulators of the reservoir and physics-based simulators of the wellbore
using the concept of ROMs [26].

NRAP tool RROM-Gen is used for generating response surfaces for the time evolution
of CO2 and water saturation at the depth where wellbores intersect the reservoir. The
response surfaces are generated from output data of a reservoir simulator that simulate
CO2 injection into the reservoir. Response surfaces of CO2 saturation and pressure are
generated as a function of time using RROM-Gen [27]. These response surfaces were
then used to estimate the leakage risk from wellbores using NRAP-IAM-CS (formerly
CO2-PENS, [28]) from the NRAP tool kit. The workflow is shown in Figure 5 for a generic
CO2 sequestration site.
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Chu et al. [29] summarized the leakage risk assessment work for FWU. NRAP tools
were used for risk assessment and uncertainty quantification of wellbore leakage that covers
the full parameter range of ECLIPSE reservoir simulations at FWU representing various
reservoir conditions with different assignments for relative permeability and capillary
pressure to control the CO2 injection amount and fluid mobility for leakage potential.
Various wellbore integrity distribution scenarios were also examined including several
different wellbore permeability probability distribution models such as Alberta, Gulf of
Mexico, and FutureGen low/high flow rate scenarios. The results show that the highest
possible leakage scenario (open well) could result in ~0.1% cumulative CO2 leakage after
25-year CO2 injection and 50-year post-injection.

2.5. Risk Response Planning

To avoid delays, underperformance, or failure of a project, risk factors need to be
identified and promptly addressed. Therefore, the development of a risk response plan is
crucial for the success of a project. Risk responses, or treatments, focus on reducing the
occurrence probability (prevention) and/or the consequences (mitigation) of a risk to the
project objectives and values. Risk transfer is a type of mitigation in which occurrence
probability is unchanged, but negative consequences would be borne by a third party (such
as an insurer), by contract.

Risk identification and analysis tasks discussed in the previous sections provided
the basis for developing a comprehensive risk response (risk treatment) program which
consequently led to the update in project management plan. We updated risk prevention
and mitigation treatments according to the top 40 FEPs identified from the annual risk
survey. For example, Table 4 shows the 2017 top 10 risks for the Farnsworth site and
corresponding risk prevention and mitigation treatments. Treatments are developed by and
shared among all project staff, forming another key element of internal risk communication.

Table 4. Prevention and mitigation treatments for the top 10 FEPs of 2017 risk survey.

FEPs Rank
2017

Rank
2016

Rank
2015

Rank
2014

Risk Prevention Risk Mitigation
*

Price of oil
(or other related
commodities)

1 1 1 6

Analyze trends in
commodity prices
Plan for worst case scenarios
Hedge oil prices
Establish a CO2-EOR economical
model to predict the possible
profit and lost and to evaluate the
economical risk

Control costs
Shut in wells until prices recover
Shift to backup CO2 supplier

DOE financial
support 2 N/A N/A N/A

Use conservative estimates
Maintain good communications
with DOE program manager

Prioritize expenses and exclude
low priority costs
Renegotiate the scope of work
Try to obtain additional funding

On-road
driving 3 16 28 35

Maintain vehicles in safe
operating condition
Implement safety training and
standard procedures for operators
Conduct regular safety audits
during construction and operation
Implement emergency response
plan and risk management plan

Maintain safety training and
standard procedures
Document response to
safety incidents
Maintain emergency
response planning
Maintain risk management plan
Maintain liability insurance

Change of field
owner and/
or operator

4 N/A N/A N/A

Communicate with the operator
continuously
Download/backup the
data regularly

Establish the relationship with the
new owner/operator immediately
Maintain consistent workflow
with the new operator
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Table 4. Cont.

FEPs Rank
2017

Rank
2016

Rank
2015

Rank
2014

Risk Prevention Risk Mitigation
*

CO2 supply
adequacy 5 4 7 2 Maintain multiple sources of CO2

Monitor CO2 quality
Cut back CO2 injection on some
patterns or compensate with
increased water injection

EOR oil
recovery 6 7 2 37

Fully characterize the reservoir for
EOR attributes. Select EOR
reservoirs that fall within the
acceptable range of EOR attributes
Model EOR operation and try to
optimize oil recovery through
reservoir engineering. Operate
above the minimum
miscibility pressure

Monitor EOR actual versus
projected performance. Identify
the cause of any variation. Adjust
CO2 EOR strategy to improve oil
recovery if necessary
Optimize WAG, injected water
curtains, selective perforation, use
of polymer gels or sealants, and
CO2 recycling to control CO2
migration and utilization and
increase oil recovery
Optimize CO2-EOR processes to
maximize both net CO2 storage
and oil
production simultaneously.

Operating and
maintenance
costs

7 5 3 7

Use historical O&M data and
experienced cost estimators to
prepare budgets
Prepare budget for the
unexpected/emergency costs
or insurance

Implement a total productive
maintenance (TPM) program

Legislation
affecting CO2
injection or
CO2-EOR *

8 2 18 29

Tie investment in GCS projects to
passage of appropriate
CO2 legislation
Implement public outreach
program to educate stakeholders
on the legislative needs of
the project
Shift from DSA to EOR or ECBM
if CO2 legislation does not get
passed, is insufficient or too
onerous for DSA

Monitor CO2 legislation and
analyze the impact of CO2
legislation on the project
Continue public outreach program
Comply with CO2 legislation

Simulation and
modeling—
parameters *

9 23 36 1

Understand the statistics (range,
mean, variance, etc.,)
of parameters
Review simulation model results
for accuracy and completeness
using a cross-functional team
of experts

Periodic review of available data
and simulation results
Parameter calibration based on
monitoring data
Parameter uncertainty
quantification
Global sensitivity analysis of
independent parameters

Well
component
failure (tubing,
seals, wellhead,
etc.)

10 N/A N/A N/A

Use the proper
materials/equipment compatible
with CO2 (corrosion)
Maintain tight H2S and H2O
specification on CO2 stream
Monitor CO2 leakage
Develop and adhere to schedule
for inspections and maintenance

Stop injection and fix the leakage
Monitor corrosion and scale
buildup in injection wells
Take corrective actions if necessary

(* Different Wording in Prior Year/s)
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Risk treatments were developed by project staff with areas of technical expertise rele-
vant to the treatment activities. Accordingly, these individuals are also likely to be tasked
to carry out the treatments. Because many of the highest-ranked risks are programmatic
in nature, many treatments were developed by management staff and working-group
leaders. To help further inform the management on resource allocation for treatment
activities, working group leaders were then requested to describe each treatment in terms
of its degree of completion, its expected effectiveness in reducing risk, and its cost. Each
of these attributes was rated on a categorical one-through-five scale. As of this writing,
the treatment attributes work is not yet complete; however, generally it shows that most
treatments suggested midway through the project have been largely completed, and most
are deemed moderately to fully effective in reducing risks.

The SWP also participated in the RCSP Interpartnership Simulation and Risk As-
sessment Working Group to focus collaborative efforts on mitigation planning, as well as
integration of monitoring with risk assessment, with an ultimate objective of updating
the RCSP BPM for Simulation and Risk Assessment [30]. The SWP participation in this
working group serves to support the external risk communication efforts.

2.6. Risk Control and Monitoring

Risk control and monitoring are needed in order to ensure the appropriate operation
of the risk response plan previously developed in the Risk Response Planning task and
to evaluate their effectiveness during the project execution. We iteratively continued risk
identification, analysis, planning, and tracking of new and existing risks, including the
watch list. In addition to characterization and MVA results, outcomes from Quantitative
Risk Analysis Task, and Risk Response Planning Task, provided a basis for monitoring and
controlling risks.

There is a strong need for risk communication which includes formalizing the links
between the various qualitative and quantitative risk assessments performed at FWU
and then conveying those risks to internal project staff, professionals working in other
CCUS projects, and external stakeholders. High-risk elements identified during risk
workshops need to be subjected to scenario modeling to define the pathways by which
risk targets would be impacted, thereby specifying the quantities that could be usefully
constrained through modeling. Evaluation of risk status before and after modeling work
and its communication with other efforts (characterization, monitoring, and simulation)
is important.

Internal risk communications for the FWU project were organized largely around
technical working groups among which all staff members were assigned. In simplest form,
each working group’s weekly meeting provided opportunity to communicate risk status
arising within the technical areas covered by other working groups. The SWP internal
project report by Hnottavange-Telleen [31] identified a set of internal stakeholders among
whom regular risk communications should be pursued; internal stakeholders consist of
the existing working groups, plus a hypothetical “Operations” group that would involve a
field operator, plus project management.

Communications (including about risk) with and among the external stakeholders
were relatively well established at the start of the SWP Phase III demonstration project,
given that FWU was a long established producing oilfield. Consequently an elaborate
new scheme for external risk communication was not needed. Hnottavange-Telleen [31]
tabulates external stakeholders with whom—in a greenfield or otherwise new CCUS
project—risk communications would be needed. Table 5 lists these external stakeholders.
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Table 5. List of external stakeholders.

External Stakeholders Involved in Risk Communication

CO2 Sources (e.g., large emitters that capture CO2)
CO2 Transporters (e.g., pipeline company)
Project operator company
Principal subcontractors
Smaller subcontractors
Town governments
Landowners
Public funding agencies
Private funders; Investors
Insurers
CO2 Taxing or Crediting Authority
State & Federal govt. (legisl., exec.)
Regulatory agencies
Interest groups/NGOs (Non-Governmental Organizations)

Internal and external stakeholders both need certain risk information, and possess or
can generate key risk information needed by other stakeholders. These different types of
information needed or offered are tabulated in the above referenced report, for a generic
commercial-scale CCUS project. An effective network of risk communication is needed
among all stakeholders, in order that each can best judge its own risks and knowledgeably
fulfill its role in the project.

3. Findings and Lessons Learned

The risk identification task indicates that programmatic risks (oil price, legislation,
CO2 supply, operator) and issues specific to EOR were high in the rankings. Among GCS
technical risks, concerns about simulation efforts remain high. With regard to geological
aspects of site suitability, concerns about reservoir rock have remained moderate, which
makes sense considering the pre-project knowledge of the Farnsworth Unit oilfield. Con-
cern about caprock petrology and mineralogy (heterogeneity) has decreased in response
to project-generated information, but concern about caprock stratigraphy (lateral extent
and continuity) has increased. This observation is noteworthy as a demonstration that
increased information (ostensibly decreasing uncertainty) does not necessarily lead to a
decrease in judged risk; rather, increased information can reveal that hidden assumptions
had been in play, leading to under-estimated risk.

Several FEPs ranked #10, 12–15 in 2016 and #2, 4, 10, 13 in 2017 were not evaluated
in prior years because they ranked below #50 in 2014. However, they were re-instituted
in 2016 or 2017 because of their “Black Swan” nature; their high upper-bound severity
values. The high ranking of certain of these FEPs may reflect actual change in risk or
probably changed the appreciation of risk. In designing risk responses, it may be useful to
distinguish between those two potential sources of change.

Our quantitative risk analysis demonstrated useful tools to numerically and probabilis-
tically quantify the effect of risk scenarios on the project objectives. However, simulation
processes (especially geological ones) inherently contain aleatory uncertainty. Thus, it
would be most helpful to correctly define the ranges and distribution of uncertain parame-
ters to significantly reduce the uncertainty. In addition, reduced order models and tools
applied for quantifying risks are tested and verified with the numerical outputs rather
than real world data, thus they unavoidably contain epistemic uncertainty. Without a lot of
real-world data, it is difficult to test whether a proxy model or ROM adequately represents
the physics of a process. Thus, the validation of a model would require history matching,
which cannot happen within a short time period.

To support risk management efforts effectively, risks should be re-assessed approxi-
mately annually, or more frequently when major changes occur in project circumstances
or information. Common examples of possible substantial changes include passage into a
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new project phase, acquisition of new data that significantly alters the understandings of
site attributes or potential project-induced effects, or changes in the external funding or
regulatory environment that could affect the ability to reach project objectives.

For a path forward with the risked FEPs, the following five steps are recommended:

1. Identify a discrete set of high-ranking FEPs to be managed.
2. As necessary, further develop or clarify the scenarios under which each higher-risk

FEP will plausibly create negative impacts within this specific project.
3. Among the higher-risk scenarios, distinguish those with especially high severity from

those with especially high likelihood.
4. Develop at least one actionable prevention and one actionable mitigation treatment for

each scenario. To the extent practical, prefer reducing high likelihoods (i.e., develop
preventive actions); and next prefer low-cost efforts to reduce high severities (e.g.,
ensure that personal protective equipment is worn).

5. Assign responsibility for completing risk treatments and for tracking their effects on
inferred risk levels.

In addition to the above findings on risk evaluation processes and results, some
observations on risk communication can be drawn from the work at FWU:

1. Much internal communication about factors that influence risk has occurred infor-
mally and semi-formally, among the researchers and managers involved in the project.
Capturing this information in a structured way requires additional effort from the
researchers themselves as well as from at least one individual whose role is so tasked
and resourced. Some level of additional resourcing to support formal internal risk
communication is probably justified, but the optimal level is difficult to assess.

2. External communications about FWU work (on risk and other topics) have focused on
extensive technical publications and presentations within the specialized CCS/CCUS
community. Because the project has taken place within an operating oilfield whose
activity, geographic footprint, and risk have not materially changed, the previously
established relationships with neighboring landowners have been largely sufficient
for external risk communications.
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Abstract: Mineral reactive surface area (RSA) is one of the key factors that control mineral reactions,
as it describes how much mineral is accessible and can participate in reactions. This work aims to
evaluate the impact of mineral RSA on numerical simulations for CO2 storage at depleted oil fields.
The Farnsworth Unit (FWU) in northern Texas was chosen as a case study. A simplified model was
used to screen representative cases from 87 RSA combinations to reduce the computational cost. Three
selected cases with low, mid, and high RSA values were used for the FWU model. Results suggest
that the impact of RSA values on CO2 mineral trapping is more complex than it is on individual
reactions. While the low RSA case predicted negligible porosity change and an insignificant amount
of CO2 mineral trapping for the FWU model, the mid and high RSA cases forecasted up to 1.19% and
5.04% of porosity reduction due to mineral reactions, and 2.46% and 9.44% of total CO2 trapped in
minerals by the end of the 600-year simulation, respectively. The presence of hydrocarbons affects
geochemical reactions and can lead to net CO2 mineral trapping, whereas mineral dissolution is
forecasted when hydrocarbons are removed from the system.

Keywords: geological carbon sequestration; reactive surface area; mineral trapping; enhanced oil
recovery with CO2 (CO2-EOR); geochemical reactions; risk assessment

1. Introduction

Geological carbon sequestration (GCS) is a critical component in accomplishing the
goal of net-zero or carbon neutrality set by governments and industries [1–3], as it provides
an enormous estimated storage capacity, and its efficacy has been successfully demon-
strated many times by pilot-scale and field-scale projects worldwide [4]. Among the
storage options, GCS at depleted oil fields, especially enhanced oil recovery with CO2
(CO2-EOR), has drawn a lot of attention, because of the higher economic incentives (in
addition to government subsidies, e.g., the 45Q tax credit in the U.S.) and the lower costs
of characterization, construction, and deployment. While most CO2 trapping mechanism
analyses were performed for GCS at deep saline aquifers (e.g., [5]), the essence of the
trapping mechanisms is similar for CO2-EOR projects [6–8]. However, one particular
trapping mechanism, the mineral trapping of CO2, is often ignored in storage forecasts
for CO2-EOR projects, such as Jia et al., 2016 [6], even though mineral trapping is the
most secure mechanism to sequester CO2 in the long term. Due to the lack of geochemical
modeling in these forecasts, the processes of CO2 dissolution and its presence in aqueous
ions are also ignored. However, understanding the geochemical interactions between CO2,
in situ fluid, and formation, is critical to ensure long term CO2 conformance and to mitigate
the risks of groundwater contamination due to CO2 leakage.

Mineral reactions are numerically described via two key parameters: chemical equilib-
rium constant and mineral dissolution and precipitation reaction rate. For a given reaction,
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the chemical equilibrium constant is a function of temperature, whereas the mineral reac-
tion rate is controlled by further factors. As defined in the Transition State Theory (TST),
the mineral reaction rate is a function of reactive surface area (RSA), activation energy,
temperature, and equilibrium constant [9]. Particularly, the mineral RSA is crucial as
it determines how much mineral is accessible and can participate in the reactions, yet
it has been a challenge for it to be fully characterized. There are several approaches to
measuring the mineral RSA (or specific surface area) in the laboratory, such as the widely
used Brunauer–Emmett–Teller (BET) method [10], and newer image-based methods [11,12].
However, neither of these methods is ideal for characterizing mineral RSA. For example,
the geometry-based method is constrained to the assumption of uniform-sized mineral
grains, and thus its performance is compromised for the heterogeneously shaped mineral
grains; on the other hand, the image-based methods need a drastically large number of
images to capture the evolving mineral RSA over time. Therefore, it is common to observe
order of magnitude differences in RSA measurements for the same mineral [13]. Such
wide ranges of uncertainty pose great challenges in selecting parameters for numerical
simulations. Even worse, most GCS simulation tools that include geochemical modules
(e.g., CMG-GEM, TOUGHReact) ignore the spatial and geometry heterogeneity of mineral
RSA values and simplify the temporal variation of mineral RSA values.

Existing uncertainty studies for GCS primarily focus on uncertainties stemming from
porosity, permeability, and operational factors (e.g., injection scheme) [6,14–20]. Only a few
studies have examined the impact of uncertain reactive surface areas on GCS performances.
Qin and Beckingham (2021) compared simulation results of a core-scale model using
mineral RSA obtained from different methods [21]. Luo et al., 2012 investigated the effect
of the RSA of calcite and anorthite using a two-dimensional (2D) generic deep saline aquifer
model and confirmed that these parameters have a significant impact on CO2 mineral
trapping [22]. Bolourinejad et al., 2014 followed a similar approach to evaluate the impact of
the RSA of seven minerals on CO2 trapping for a depleted gas field in the Netherlands [23].
It was found that the RSA of quartz has the greatest impact on CO2 mineral trapping;
however, neither hydrocarbon components nor realistic field operations were taken into
consideration in their numerical model. Moreover, both Luo et al., 2012 and Bolourinejad
et al., 2014 employed only one well (the injector) in their simulations. Recently, Jia et al.,
2019 studied CO2 trapping mechanisms, including mineral trapping, for an ongoing CO2-
EOR project with multiple five-spot well patterns, but only briefly discussed the potential
impacts of using different mineral RSA values in their simulations [22–24].

This work aims to evaluate the impact of mineral reactive surface area on GCS nu-
merical simulations where hydrocarbons are present. The novelty of this work includes:
(1) using a three-dimensional (3D) field-scale reservoir model to eliminate the boundary
effects imposed by 2D models; (2) using site-specific formation and fluid properties as
well as realistic operational activities, i.e., CO2-EOR with multiple wells; and (3) taking
hydrocarbon components into consideration, thus simulating reactive transport for the
three-phase system (water, gas, and oil). The Farnsworth Unit (FWU) site in northern
Texas is selected as a case study. As the study site of the Southwest Regional Partner-
ship on Carbon Sequestration (SWP) Phase III, the FWU site has been investigated with
many characterization and monitoring techniques (e.g., [25–28]) and numerical analyses
(e.g., [7,8,14,15,24,29,30]).

The rest of this paper is structured as follows: Section 2 describes the FWU reservoir
model and the methods to evaluate the impact of mineral reactive surface areas; Sections 3
and 4 present simulation results and discuss how the presence of hydrocarbon components
and uncertain RSA values affect reactive transport and CO2 mineral trapping; and Section 5
summarizes the findings of this work.
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2. Materials and Methods

2.1. FWU Description

The FWU site is located in the Anadarko basin in northern Texas (Figure 1a). Following
the primary and secondary production that started in the 1950s and 1960s, the FWU has
been currently undergoing CO2-EOR since December 2010. As of 2020, more than one
million metric tons of CO2 has been sequestered at the FWU [31].

Figure 1. (a) Location of the Farnsworth Unit (FWU), and (b) a three-dimensional (3D) reservoir model of the
Farnsworth Unit.

The CO2 storage system at the FWU consists of late Pennsylvanian Morrow B sand-
stone as the storage formation and overlying Atokan Thirteen Finger limestone as the
sealing layer. With the support of the U.S. Department of Energy and the National Energy
Technology Laboratory, the SWP team has been conducting a variety of characterization;
monitoring, verification, and accounting (MVA); simulation; and risk assessment research
activities over the past decade. For the sake of brevity, please refer to previous publications
for the details of CO2 sequestration at the FWU. For example, Ross-Coss et al., 2015 and
Ampomah et al., 2016 focused on geological characterization performed at the FWU [26,32];
Kumar et al., 2018 and Balch et al., 2017 presented MVA findings at the FWU [28,33];
Ampomah et al., 2016, Moodie et al., 2017, and Moodie et al., 2019 presented numerical
simulation results for GCS forecast at the FWU [34–36]; and Dai et al., 2016, Pan et al., 2016,
Xiao et al., 2016, Jia et al., 2017, and Xiao et al., 2020 addressed uncertainty analysis due to
both geological and operational factors and quantitative risk assessment of CO2 leakage
and its impact on overlying underground sources of drinking water [16,17,37–39]. This
study is built upon this previous FWU work and focuses on risk assessments associated
with reactive transport, in particular mineral reactive surface areas.

2.2. Mineral Reactive Surface Area

The reactive surface area of minerals is a dynamic property that varies from mineral
to mineral, changes over time as geochemical reactions develop, and depends on the
heterogeneous distributions, various shapes, and complex contact interfaces of all minerals
in the subsurface. A variety of methods are available to characterize mineral reactive
surface areas, such as the well-known BET (Brunauer-Emmett-Teller) approach, analytical
methods based on kinetic experiments, and the image-based approaches that rely on
scanning electron microscopy (SEM) and computed tomography (CT) techniques [11,40].
These methods have been used for measuring mineral reactive surface areas for GCS
purposes, e.g., [40,41]. As expected, the measured reactive surface area of the same mineral
drastically varies from method to method and from site to site. For example, Bolourinejad
et al., 2014 measured the specific surface area of kaolinite in the Rotliegend reservoir cores
in the range of 1.2 × 106 m2/m3~3.4 × 107 m2/m3; Beckingham et al., 2016 reported
different specific surface areas of calcite, ranging from 8.1 × 104 m2/m3, measured by the
BET approach, to 7.6 × 105 m2/m3, measured by image-based methods [11,23]. The term
specific surface area (SSA) is generally used to describe the reactivity of the pure mineral,
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while the term reactive surface area (RSA) is usually referred to as the average reactivity
of each mineral in the porous media. Therefore, the SSA values need to be converted
to RSA values with site-specific mineral volume fractions. At the FWU, there are seven
key minerals identified from core analyses. A survey of the reactive surface area of these
minerals was performed and is summarized in Table 1. Please note that mineral volume
fractions (listed in Table 2) were used to convert the SSA values reported in other studies
to FWU site-specific RSA values. The several orders of magnitude difference between the
lower and upper values in Table 1 reiterate the primary research question of this study of
whether the choice of a reactive surface area value impacts the results of reactive transport
simulation and to what extent.

Table 1. Ranges of reactive surface area (RSA) of seven minerals from a literature survey [11,22–24,40,41].

RSA (m2/m3) Calcite Kaolinite Dolomite Quartz Ankerite Siderite Illite

Low 88 17,600 560 607 521 2008 2528
High 6446 2,298,400 56,146 42,313 74,030 918,585 1,238,400

Table 2. Major minerals at the FWU and volume fractions [24].

Mineral Chemical Formula Volume Fraction

Quartz SiO2 80.75%
Kaolinite Al2Si2O5(OH)4 6.76%
Siderite FeCO3 4.41%
Calcite CaCO3 3.86%

Illite K0.6Mg0.25Al1.8(Al0.5Si3.5O10)(OH)2 2.58%
Ankerite CaMg0.3Fe0.7(CO3)2 0.37%
Dolomite CaMg(CO3)2 0.01%

While choosing a value from the wide range for a certain mineral is already difficult,
describing the changing characteristics of the mineral reactive surface area is no easier. The
common practice in reactive transport simulations is to calculate the reactive surface area
with the following equation:

Ai = A0
i ×

Ni

N0
i

, (1)

where Ai is the reactive surface area of mineral i at current time step, A0
i is the reactive

surface area of mineral i at time 0 (i.e., initial value), Ni is the mole amount of mineral i per
unit grid block volume at the current time step, and N0

i is the mole amount of mineral i per
unit grid block volume at time 0. There are two main restrictions on using this approach.
Firstly, it assumes a uniform distribution of reactive surface area for the same mineral
across the entire model domain (which could be kilometers for GCS sites); in other words,
a homogenous reactive surface area is assigned to each mineral. Secondly, the controlling
factor of reactive surface area at the current time step, Ni, is determined by the current
mineral dissolution and precipitation rate that is affected by the mineral reactive surface
area at previous time steps, as shown in Equation (2):

ri = Aiki

(
1 − Qi

Keq,i

)
, (2)

where ri is the reaction rate for mineral i, ki is the rate constant of mineral reaction i, Qi is
the activity product of mineral reaction i, and Keq,i is the chemical equilibrium constant
for mineral reaction i. Therefore, deviations between the estimated and real reactive
surface areas accumulate over time and may lead to significantly different mineral reaction
predictions after hundreds or thousands of years.

Given that an exhaustive dataset for the mineral reactive surface area is not available,
and neither is an advanced reactive transport numerical model framework, an uncertainty
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analysis is probably the best approach to investigate the impact of mineral reactive surface
area on GCS predictions. Based on the ranges listed in Table 1, a seven-factor Box–Behnken
Design was developed to cover the entire uncertain space with 85 cases. The low (−1), mid
(0), and high (+1) values for each of the seven minerals are presented in Figure 2. Please
note that the mid values are not the average of the low and high values, but rather the
median taken from the RSA values of the literature survey. Two more cases, (−1, −1, −1)
and (+1, +1, +1), i.e., all low values and all high values, were added to the simulation
design. A full list of the cases is presented in Table A1. It is anticipated that the design
of these permutations will discover the impact of mineral reactive surface areas, with the
mutual dependencies among the mineral reactions taken into account.

Figure 2. Low, mid, and high values of the reactive surface area of seven minerals.

2.3. Numerical Models

The 3D FWU reservoir model consists of 82 cells in the x-direction, 78 cells in the y-
direction, and four cells in the z-direction, with a total of 25,584 grid blocks. Each grid block
is 200 ft (or 60.96 m) by 200 ft (or 60.96 m) in x and y directions and about 8.67 ft (or 2.64 m)
in the z-direction. This model only includes the Morrow B sandstone, as the integrity of the
overlying Thirteen Finger limestone will not be compromised for at least 5000 years [31]. A
total of 55 wells (23 injectors and 32 producers) were distributed across the model domain
in 5-spot patterns (Figure 1b). This reservoir model has been calibrated with the FWU field
history by the SWP [34,42]. Well schedules include a 10-year CO2-EOR period, a subsequent
10-year post-EOR CO2 injection period, and another 580-year monitoring period. In the
CO2-EOR period, CO2 and water were alternatively injected (water alternating gas (WAG)),
reflecting the site history. In the post-EOR CO2 injection period, all producers were shut-in,
and CO2 was continuously injected at 5 × 106 ft3/day (or 1.42 × 105 m3/day) through all
injectors. In the monitoring period, all wells were shut-in, and no CO2 was injected into the
model. The heterogeneous porosity and permeability distributions of the reservoir model
were derived from the site characterization and geostatistical analysis of previous SWP
work. Figure 1b presents the heterogeneous porosity distribution of the 3D FWU model
and the locations of the wells.

Seven major minerals were identified from FWU cores, as listed in Table 2. The
measured volume fractions for each mineral are used as the initial conditions for the
reservoir simulations. The SWP team periodically monitored the water quality of samples

235



Energies 2021, 14, 1608

from the shallow aquifer and produced water collected at the FWU site. In this work, the
averaged measurements of the produced water are used as the initial conditions of the
aqueous species, as shown in Table 3. The compositions of hydrocarbon components were
analyzed from FWU oil samples and are also listed in Table 3.

Table 3. Initial conditions of aqueous species and hydrocarbon components.

Aqueous Species
Molality

(mol/kg H2O)
Hydrocarbon Components Initial Global Composition

H+ 2.494 × 10−7 C1 0.405
K+ 3.288 × 10−6 C2 0.038

Na+ 2.585 × 10−2 C3 0.024
Ca2+ 2.269 × 10−5 IC4 + NC4 0.016
Mg2+ 2.930 × 10−5 IC5 + NC5 0.027

SiO2 (aq) 5.640 × 10−4 C6 0.017
Fe2+ 1.598 × 10−6 C7–C38 0.325
Cl− 1.379 × 10−2 C38–C70 0.147

OH− 6.354 × 10−7 CO2 0.001
HCO−

3 3.720 × 10−2

CO2−
3 1.190 × 10−5

Seven mineral reactions and three aqueous reactions were modeled in this work,
as shown in Table 4. The chemical equilibrium constants (log Keq) were calculated for
reservoir temperature at 70 °C with the EQ3/6 database [43], and the activation energy and
the standard TST rate constant (log k25°C) values were taken from Palandri and Kharaka
(2004) [44]. In particular, fourth-order polynomials were fitted to the EQ3/6 database of
chemical equilibrium constants of the reactions versus temperature (please see Figure A1).

Table 4. Mineral and aqueous reactions and parameters for reactive transport modeling [43,44].

Reaction Activation Energy (kJ/mol) logKeq at 70 °C logk25°C (mol/m2s)

Calcite + H+ = Ca2+ + HCO−
3 41.87 1.192 −5.810

Kaolinite + 6H+ = 5H2O + 2SiO2(aq) + 2Al3+ 62.76 3.103 −13.180
Dolomite + 2H+ = Ca2+ + Mg2+ + 2HCO−

3 73.75 2.278 −8.065
Quartz = SiO2(aq) 89.09 −3.345 −13.680

Ankerite = Ca2+ + 0.95Fe2+ + 0.05Mg2+ + 2CO2−
3 62.76 0.125 −8.900

Siderite + H+ = Fe2+ + HCO−
3 62.76 −1.001 −8.900

Illite + 8.0H+ =
0.25Mg2+ + 0.6K+ + 2.3Al3+ + 3.5SiO2(aq) + 5.0H2O

35.00 4.677 −12.780

H2O = H+ + OH− - −13.263 -
CO2 + H2O = H+ + HCO−

3 - −6.322 -
CO2 + H2O = 2H+ + CO2−

3 - −16.556 -

Reactive transport models require more computational resources than multiphase flow
models because of the additional governing equations for aqueous and mineral reactions.
Therefore, simplified modes are often used for reactive transport simulations. A similar
approach was followed in this work. Instead of using the abovementioned reservoir model
for all 87 simulations, a screening study was conducted first, which used a simplified 3D
model to evaluate the performances of all 87 combinations of mineral reactive surface
areas. Then the selected combinations, which are either representative or extreme scenarios,
were repeated with the full FWU reservoir model. The simplified 3D model effectively
represents a batch simulation. In particular, there are three cells in each direction (x, y,
and z), with infinite acting aquifers around all boundaries to avoid the boundary effect. A
CO2 injection well was placed in the center of the model to introduce supercritical CO2
to the model at a bottom-hole pressure constrained injection rate. Except for the grid
structure and well configurations, all other model settings are identical to the full-size
reservoir model. Simulation results at the center of this simplified model can be used to
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screen the combinations of mineral reactive surface areas. In addition to the much lower
computational cost, the other advantage of this approach is that it can isolate control factors
to simulation results, e.g., the domain size and the interference of multiple wells, and
therefore focus on discovering the impact of mineral reactive surface area.

All simulations were performed with the 2019.10 version of the CMG-GEM simulation
package, the flow equations of which are listed in Appendix B.

3. Results

3.1. Screening the RSA Combinations

The 87 combinations were simulated to study the ranges of uncertainty in mineral
precipitation/dissolution and CO2 mineral trapping caused by using different mineral
RSA values. Figures 3 and 4 present the simulation results of the simplified model and
emphasize three RSA combinations, Case #85, Case #86, and Case #87, where all mineral
RSA values were set at mid, low, and high, respectively (please refer to Table A1 for the
detailed RSA combinations). The predicted pH values of all cases exhibit a similar pattern
(Figure 3a). A drastic drop from the initial pH (~6.7) to the range of 4.0~4.4 during the first
day is followed by a relatively slower recovery through the rest of the simulation period.
While most of the curves overlap each other, the dashed dark green line, which indicates
the results of Case #86, presents a deeper pH decrease in the beginning and a slower pH
recovery rate. Comparing the much faster pH recovery rate of the other cases, it is obvious
that the prolonged recovery time of Case #86 results from the lack of buffers, i.e., fewer
accessible minerals to react with the H+ introduced by CO2.

Figure 3. (a) Predicted pH and mineral precipitation or dissolution of (b) illite, (c) kaolinite, and
(d) quartz at the center of the model. Light green, light red, and light blue indicate low, mid, and
high RSA of the particular mineral in each subplot; dashed lines in dark green, dark red, and dark
blue indicate cases with all low RSA (Case#86), all mid RSA (Case #85), and all high RSA (Case #87),
respectively; two vertical lines denotes the end of 10 years and the end of 20 years.
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Figure 4. Predicted total mineral amount in the simplified model for (a) ankerite, (b) calcite,
(c) siderite, and (d) dolomite. Light green, light red, and light blue indicate low, mid, and high
RSA of the particular mineral in each subplot; dashed lines in dark green, dark red, and dark blue
indicate Case#86, Case #85, and Case #87, respectively; two vertical lines denote the end of 10 years
and the end of 20 years.

Because the changes of the silicate minerals are much smaller than the total amount of
silicate minerals in the model, the mineral reaction rate is a better parameter to illustrate
the silicate mineral reactions. The predicted precipitation or dissolution of silicates at the
center of the model are shown in Figure 3b–d. For illite and quartz, Case #87 (dashed dark
blue line) and Case #86 (dashed dark green line) is the most and the least reactive scenario
for these two minerals, whereas Case #85 (dashed dark red line) overlaps with most of the
medium cases. On the other hand, changes in kaolinite are more complicated. There are
many crossovers and overlaps among results using different kaolinite RSA values, and
the deviations between lines in the same color are much greater than those in Figure 3b
or Figure 3d. This suggests that the reaction of kaolinite is controlled by not only the RSA
of kaolinite but also the RSA of other minerals. Nevertheless, the high RSA cases (blue)
predicted prompt and more intense reactions, while the low RSA cases (green) predicted
delayed and more restricted reactions.

The simulation results of four carbonate minerals, ankerite, calcite, siderite, and
dolomite, are shown in Figure 4a–d, respectively. Please note that all 87 cases started with
the same initial mineral amounts, and Figure 4 presents mineral amounts since Day 1;
therefore, the differences between the starting points of the lines in each subplot indicate
the difference in the reactions that occurred during the first day of simulation. For example,
the total amount of ankerite in the model was initially about 295 kmol, and dropped to
74 kmol in Case #87 (dashed dark blue line), whereas it dropped to about 245 kmol in
Case #85 (dashed dark red line) and to 292 kmol in Case #86 (dashed dark green line), after
the first day of simulation.

For all 87 cases, a monotonic dissolution of ankerite is observed, while all three other
minerals show monotonic precipitation within the 600 years of simulation. The low RSA
cases (green lines) once again exhibit the least reactivity, i.e., the slowest to deviate from the
initial values. Interestingly, the prediction results fall into three clusters for each of these
four minerals in the first year. In other words, the RSA value of the particular mineral,
being either low, mid, or high, determines the reaction of this mineral in the first year,
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regardless of what RSA values are used for the other six minerals. Moreover, there is zero
or small difference among predicted mineral amounts using the three levels of RSA values
for ankerite (Figure 4a) and siderite (Figure 4c) in the later stage of the simulation period.
The differences among the three clusters of lines are more obvious for calcite (Figure 4b)
and dolomite (Figure 4d) after 300 days. At the end of the simulations, the cases with the
high dolomite RSA value forecast much greater dolomite precipitation than the other cases.

Compared to the silicate minerals (Figure 3b–d), a stronger clustering effect is observed
in the carbonate minerals, especially in the first two years of simulation, suggesting that
the reaction of the carbonate mineral (Figure 4a–d) is more controlled by its own RSA
value. The interference (or mutual dependence) between mineral reactions is weaker for
the carbonate minerals than for the silicate minerals. As a result, Cases #85, #86, and #87
seem to be able to represent the median, minimum, and maximum reaction scenarios of all
tested cases for all minerals.

The mineral trapping of CO2 in the simplified model was evaluated with all 87 cases,
and the results are presented in Figure 5. There is a much greater deviation among total
mineral trapping amount predictions than the predictions for each mineral, as shown in
Figures 3 and 4. No clear clustering is observed in Figure 5. While the impact of RSA on
each individual mineral is apparent and easier to interpret, its impact on the CO2 trapping
mechanism is rather complicated. This is likely due to the different abilities of each mineral
to sequester CO2. For example, one mole of precipitated calcite effectively secures one
mole of CO2, while for dolomite the ratio becomes 1:2. At the end of the simulation, the
amount of CO2 trapped in the minerals ranges from 2 kmol to 200 kmol. The results of
three representative cases (#86, #86, and #87) are very close to the median, minimum, and
maximum values of all cases, as shown in the dashed lines in Figure 5. Therefore, these
cases were selected for reactive transport simulations with the FWU reservoir model.

Figure 5. The predicted amount of mineral trapped CO2 in the simplified 3D model. Dashed lines in
dark green, dark red, and dark blue indicate Case#86, Case #85, and Case #87, respectively; gray lines
denote all other cases, and two vertical lines denote the end of 10 years and the end of 20 years.

3.2. Reactive Transport Prediction with the Reservoir Model

As minerals precipitate or dissolve, it can change the porosity of the storage formation
and thus affect fluid flow patterns and subsequent mineral reactions at new fluid-rock
contacts. Therefore, we analyzed the porosity change due to mineral reactions in the FWU
model. Figures 6–8 present the changes in porosity at three critical time steps: the end of
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the CO2-EOR period, the end of the post-EOR CO2 injection period, and the end of the
simulation period, respectively.

Figure 6. Estimated porosity loss at the end of the CO2-EOR period compared to the initial values for (a) Case #86,
(b) Case #85, and (c) Case #87.

Figure 7. Simulated CO2 global mole fraction at the end of the CO2-EOR period for (a) Case #86, (b) Case #85, and
(c) Case #87.

Figure 8. Estimated porosity loss at the end of the post-EOR CO2 injection period compared to the initial values for
(a) Case #86, (b) Case #85, and (c) Case #87.

After ten years of CO2-EOR operation, porosity reduction is observed in all three cases.
Figure 6 shows changes of porosity due to mineral reactions at the top layer of the Morrow
B sandstone using the RSA values of Case #86 (all low RSA values of seven minerals),
Case #85 (all mid RSA values), and Case #87 (all high RSA values), respectively. In general,
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a dominant porosity reduction was observed for all cases. Specifically, Case #86 (Figure 6a)
exhibits the most restricted variation, while Case #87 (Figure 6c) presents the greatest
porosity change across the layer, showing a maximum porosity reduction of 1.86 × 10−3 (or
0.9% of the initial porosity). However, very similar CO2 global mole fraction distributions
were predicted by three models (Figure 7). This suggests that the mineral reactions have an
insignificant impact on the CO2 migration. Given that the CO2 plume shapes are mostly
identical among the three cases, the difference in porosity change is attributed to the
mineral RSA values.

The CO2-EOR period was followed by a post-EOR CO2 injection period, during which
all production wells were shut-in, and CO2 was continuously injected via all injection wells
for ten years. Figure 7 presents the simulation results of porosity changes due to mineral
reactions. There are visible changes in porosity reduction comparing Figures 8b and 6b, and
Figures 8c and 6c. A clear expansion of areas with porosity loss is observed. The greater
porosity reductions occur along the edges of the CO2 plumes (Figure 8c). Specifically,
after ten years of CO2 injection, the maximum porosity loss has been increased to 0.7%
in Case #85 and 2.5% in Case #87, from 0.3% and 0.9%, respectively. However, the CO2
flow patterns are still almost identical for all three cases (figure not shown). Therefore, the
impact of mineral reactions on CO2 flow remains insignificant during the post-EOR CO2
injection period.

Figure 9 presents the estimated porosity loss at the end of the 600-year simulation
period. The simulation results of using all low RSA values present almost no change
in porosity due to mineral reactions (Figure 9a). On the other hand, using all mid and
high RSA values leads to greater porosity reduction, as shown in Figure 9b,c. While
there is only a slight expansion of porosity loss areas during the no-injection period, the
maximum porosity loss due to mineral reactions increased to 1.19% and 5.04% for Case
#85 and Case #87, respectively. It is worth noting that the predicted porosity changes in
Figures 6c and 8c are more profound than those in Figure 9a,b, suggesting that using high
RSA values leads to dramatically different porosity change predictions, hence mineral
trapping of CO2, over even a short time period. Comparing the distributions of CO2 global
mole fraction (Figure 10) and porosity change (Figure 9), it is clear that the mineral reactions
had a nominal impact on the forecast of CO2 migration in 600 years. It is interesting to note
that there are lower porosity changes in the centers of the CO2 plumes, where they exhibit
very high (greater than 0.8) CO2 global mole fractions (see Figures 7 and 10). The areas
with greater porosity reduction are located on the edges (or fronts) of the CO2 plumes,
suggesting that there are more intense geochemical reactions and thus more CO2 trapped
in minerals or aqueous ions. This is because mineral reactions require sufficient contacts
between the minerals and the formation fluids, which is less likely to be present in areas
with very high CO2 saturation.

Figure 9. Estimated porosity loss at the end of the simulation period compared to the initial values for (a) Case #86,
(b) Case #85, and (c) Case #87.
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Figure 10. Simulated CO2 global mole fraction at the end of the simulation period for (a) Case #86, (b) Case #85, and
(c) Case #87.

The performance of trapping mechanisms that are directly related to the geochemical
reactions was evaluated, as shown in Figure 11. As expected, and similar to the simplified
model result (Figure 5), there is a significant difference between the amount of CO2 trapped
in minerals in the FWU field-scale reservoir model (Figure 11a). The mineral trapping
first appeared as early as about 200 days (for Case #87), accelerated during the post-
EOR CO2 injection period (between the two vertical blue lines), and kept growing at a
slower rate after CO2 injection stopped. At the end of 600 years, the estimated amounts
of CO2 trapped in minerals are 3.25 × 106 kmol (1.43 × 105 metric tons), 0.8 × 106 kmol
(3.52 × 104 metric tons), and 0.05 × 106 kmol (2.2 × 103 metric tons) for Case #87, Case #85,
and Case #86, respectively. In other words, mineral trapping with all high RSA values
is about four times more effective than with all mid RSA values, and 65 times more
effective than with all low RSA values. At the end of 600 years, mineral trapping would
contribute to 0.15%, 2.46%, and 9.44% of the total sequestered CO2 at the FWU when
using the low, mid, and high mineral RSA values, respectively. However, the mineral
RSA values have much less impact on the CO2 trapped in aqueous ions (Figure 11b). The
maximum difference between predictions is only about 0.02 × 106 kmol (880 metric tons),
and only 0.12 × 106 kmol (5.28 × 103 metric tons) of CO2 was sequestered in aqueous ions
by the end of the simulation. Nevertheless, mineral reactions and aqueous ions are able to
sequester at least around 3000 metric tons of CO2 (in Case #86), which would be otherwise
presented in other forms (i.e., supercritical phase or dissolved) if reactive transport was not
taken into consideration.

Figure 11. Performance comparison of (a) CO2 mineral trapping and (b) CO2 trapped in aqueous.

4. Discussion

Geochemical reactions, especially mineral reactions, are critical in predicting the fate
and behavior of injected CO2 into the subsurface and are involved in many aspects of a
GCS project, such as the risk assessment of CO2 leakage and caprock integrity. While most
reactive transport studies were focused on CO2 storage in deep saline aquifers, only a few
incorporated the geochemical module into their simulations for CO2 storage in depleted
oil fields. Possible reasons for this could include: (1) mineral reactions in a depleted oil
field are assumed to be similar to those in a deep saline aquifer, but in a much-restricted
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approach because of the presence of hydrocarbons; (2) the mineral trapping at depleted oil
fields is considered to be less effective than other trapping mechanisms in a short period
of time, thus it can be ignored for the purpose of storage estimation; and (3) most CO2
storage numerical simulation packages are incapable of simulating reactive transport in
three-phase systems (oil/water/CO2). The results of this work demonstrate that neither the
porosity reduction due to mineral reactions nor the mineral trapping of CO2 at a CO2-EOR
field is negligible. Using the mid RSA values of all seven minerals, up to 0.7% of porosity
loss was forecasted after 20 years of CO2 injection, and up to 1.19% of porosity loss was
forecasted after 600 years. This is similar to the porosity change estimated by Pan et al.,
2016, which reported up to 0.7% of porosity reduction and up to 2.7% of porosity increase
after 1000 years due to mineral reactions [45]. In that work, a modified FWU model was
used, where there was only one five-spot well pattern and a deep saline storage scenario
had been adopted (i.e., no hydrocarbon in the model). Nevertheless, similar results in
estimated porosity change suggest that mineral reactions in three-phase systems probably
are not as limited as it is assumed.

We have performed a preliminary study comparing the differences of mineral reactions
in two-phase (Figures A2 and A3) and three-phase systems (Figures 3 and 4) using the
simplified 3D model. When hydrocarbon components were replaced with water, different
predictions were found in most minerals. While the changes of illite and quartz slowed
down in the monitoring period and tended to recover to the initial values in the three-
phase models, the dissolution of illite and precipitation of quartz in the two-phase model
was accelerated. Moderate differences were observed in the carbonate minerals. In the
two-phase models, an equilibrium state was reached during the first year of CO2 injection
and maintained throughout the entire simulation period (Figure A3), leading to almost
no CO2 being trapped in minerals (Figure 12); however, the three-phase models predicted
that more carbonate minerals would precipitate in the monitoring period (Figure 4), which
would then result in a significant amount of CO2 being present in the minerals (Figure 5).
There is a clear impact of the presence of hydrocarbons on mineral reactions with this
simplified model. Therefore, the assumption that the mineral reactions in three-phase
systems are only a scaled-down version of those in two-phase systems is not necessarily
correct. When considering the interactions between hydrocarbon components and minerals
and aqueous species (which are not incorporated in this work), it would be inevitable to
develop a new paradigm for the reactive transport modeling of CO2 storage in depleted
oil fields.

Figure 12. The predicted amount of mineral trapped CO2 in the simplified 3D model with hydrocar-
bons removed. Dashed lines in dark green, dark red, and dark blue indicate Case#86, Case #85, and
Case #87, respectively; two vertical lines denote the end of 10 years and the end of 20 years.
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In order to identify and quantify the roles of mineral RSA, many other important
factors were fixed in this work. The simulation results will be affected by varying these
factors, which include geological and hydrogeological properties (e.g., porosity and perme-
ability values), multiphase flow models (e.g., relative permeability, hysteresis, and capillary
pressure models), and operational factors (e.g., well spacing and depths, well operational
limits, and CO2-EOR and WAG configurations). The impacts of mineral RSA will also be
subject to other site-specific conditions when transferring the specific findings of this work
to other case studies. However, it is believed that the importance of mineral RSA and the
necessity of adding reactive transport modeling to CO2-EOR simulations are applicable to
other GCS projects.

Additionally, reactive transport modeling is an indispensable component in under-
standing and mastering the coupled thermal-hydro-mechanical-chemical (THMC) pro-
cesses in the subsurface porous media [46–48]. A thorough investigation of mineral RSA is
vital for coupling mineral reactions with other critical subsurface phenomena, for example,
mechanical and thermal deformation. On the other hand, the thermal and mechanical
in situ conditions will affect mineral reactions on the whole. Given the capability of ex-
isting simulation tools, improvements in geochemical modeling and a better coupling of
THMC processes are in urgent need. The geochemical properties should be treated the
same as the flow or reservoir properties (e.g., porosity, permeability, pressure, saturation,
etc.). The heterogeneity in mineral distributions and the temporal evolution of mineral
properties should be incorporated into the reactive transport modeling. This work em-
ployed 87 combinations of mineral RSA values as a workaround to take both spatial and
temporal variations in mineral RSA into account. While this approach has been effective in
showing the impact of mineral RSA values on mineral reactions, it does not demonstrate
the geochemical-hydrological coupling effect primarily due to the fact that the uniform
distribution of mineral compositions across the model inhibits the ability of mineral reac-
tions to affect the fluid flow. With the recent advances in RSA measurement techniques, it
is vital to make better use of lab observations in numerical simulations for more accurate
predictions. The absence of the geochemical-hydrological coupling effect could also be
attributed to the spatial resolution (200 ft, or 60.96 m) of the numerical model employed in
this work, which might be too coarse to capture reactions and fluid flow at small-scales
(from centimeter to meter). Even with paralleled high-performance computing nodes, each
of the 600-year simulations on the model with 200-ft resolution took more than eight hours.
Refining the spatial resolution will no doubt increase the computational cost significantly,
and very likely cause numerical convergence issues as the reservoir heterogeneity will
be more complicated after adding more small-scale local geological features. Moreover,
obtaining a reasonable down-scaled heterogeneity renders its own challenges and will be
tackled in our future research.

5. Conclusions

In this work, the impact of mineral reactive surface areas on the CO2 storage forecast
was evaluated for the GCS project in the Farnsworth Unit in northern Texas. In order to
reduce the computational cost, a simplified 3D model was used to screen representative
RSA combinations from 87 cases. Three cases were chosen for the FWU reactive transport
simulation. The main conclusions are drawn as follows:

(1) The inter-dependency effects of mineral RSA values are stronger in the silicate mineral
reactions and almost not observed in the carbonate mineral reactions;

(2) The impact of mineral RSA values on CO2 mineral trapping, on the whole, is more
complex than it is on individual geochemical reactions. However, the three selected
cases (with all low, all mid, and all high mineral RSA values) are representative for
predicting CO2 trapped in minerals;

244



Energies 2021, 14, 1608

(3) While the low RSA case predicted negligible porosity change and an insignificant
amount of CO2 mineral trapping for the FWU model, the mid and high RSA cases
forecasted up to 1.19% and 5.04% of porosity reduction due to mineral reactions,
and 2.46% and 9.44% of total CO2 trapped in minerals by the end of the 600-year
simulation, respectively;

(4) The presence of hydrocarbons affects geochemical reactions and can lead to net
CO2 mineral trapping, whereas negative CO2 mineral trapping is forecasted when
hydrocarbons are removed from the system.

Author Contributions: Methodology, W.J. and T.X.; investigation, W.J. and T.X.; resources, Z.W. and
Z.D.; supervision, B.M.; writing—original draft preparation, W.J.; writing—review and editing, all
authors. All authors have read and agreed to the published version of the manuscript.

Funding: Funding for this project was provided by the U.S. Department of Energy’s (DOE) National
Energy Technology Laboratory (NETL) through the Southwest Regional Partnership on Carbon
Sequestration (SWP) under Award No. DE-FC26-05NT42591.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://edx.netl.doe.gov/group/rcsp-swp (accessed on 7 February 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

D Depth
nc Number of components
Ni Moles of Component i per unit of gridblock volume
Nnc+1 Moles of water per unit of gridblock volume
p Pressure
Pcog Oil-gas capillary pressure
Pcwo Water-oil capillary pressure
q Injection/production rate
t Time
Tj Transmissibility of phase j
V Gridblock volume
yij Mole fraction of Component i in phase j
γ Specific gravity
Δt Timestep
ρm Molar density of phase m
φ Porosity
ψ Function
Superscripts
(k) Iteration level
n Old time level
n + 1 New time level
Subscripts
i component
j phase
o oil
g gas
w water
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Appendix A

Table A1. List of cases consists of a seven-factor Box–Behnken design (low: −1; mid: 0; high: 1) and
two extreme permutations (all low values and all high values).

Case No. Calcite Kaolinite Dolomite Quartz Ankerite Siderite Illite

1 −1 −1 0 0 0 0 0
2 1 −1 0 0 0 0 0
3 −1 1 0 0 0 0 0
4 1 1 0 0 0 0 0
5 −1 0 −1 0 0 0 0
6 1 0 −1 0 0 0 0
7 −1 0 1 0 0 0 0
8 1 0 1 0 0 0 0
9 −1 0 0 −1 0 0 0
10 1 0 0 −1 0 0 0
11 −1 0 0 1 0 0 0
12 1 0 0 1 0 0 0
13 −1 0 0 0 −1 0 0
14 1 0 0 0 −1 0 0
15 −1 0 0 0 1 0 0
16 1 0 0 0 1 0 0
17 −1 0 0 0 0 −1 0
18 1 0 0 0 0 −1 0
19 −1 0 0 0 0 1 0
20 1 0 0 0 0 1 0
21 −1 0 0 0 0 0 −1
22 1 0 0 0 0 0 −1
23 −1 0 0 0 0 0 1
24 1 0 0 0 0 0 1
25 0 −1 −1 0 0 0 0
26 0 1 −1 0 0 0 0
27 0 −1 1 0 0 0 0
28 0 1 1 0 0 0 0
29 0 −1 0 −1 0 0 0
30 0 1 0 −1 0 0 0
31 0 −1 0 1 0 0 0
32 0 1 0 1 0 0 0
33 0 −1 0 0 −1 0 0
34 0 1 0 0 −1 0 0
35 0 −1 0 0 1 0 0
36 0 1 0 0 1 0 0
37 0 −1 0 0 0 −1 0
38 0 1 0 0 0 −1 0
39 0 −1 0 0 0 1 0
40 0 1 0 0 0 1 0
41 0 −1 0 0 0 0 −1
42 0 1 0 0 0 0 −1
43 0 −1 0 0 0 0 1
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Table A1. Cont.

44 0 1 0 0 0 0 1
45 0 0 −1 −1 0 0 0
46 0 0 1 −1 0 0 0
47 0 0 −1 1 0 0 0
48 0 0 1 1 0 0 0
49 0 0 −1 0 −1 0 0
50 0 0 1 0 −1 0 0
51 0 0 −1 0 1 0 0
52 0 0 1 0 1 0 0
53 0 0 −1 0 0 −1 0
54 0 0 1 0 0 −1 0
55 0 0 −1 0 0 1 0
56 0 0 1 0 0 1 0
57 0 0 −1 0 0 0 −1
58 0 0 1 0 0 0 −1
59 0 0 −1 0 0 0 1
60 0 0 1 0 0 0 1
61 0 0 0 −1 −1 0 0
62 0 0 0 1 −1 0 0
63 0 0 0 −1 1 0 0
64 0 0 0 1 1 0 0
65 0 0 0 −1 0 −1 0
66 0 0 0 1 0 −1 0
67 0 0 0 −1 0 1 0
68 0 0 0 1 0 1 0
69 0 0 0 −1 0 0 −1
70 0 0 0 1 0 0 −1
71 0 0 0 −1 0 0 1
72 0 0 0 1 0 0 1
73 0 0 0 0 −1 −1 0
74 0 0 0 0 1 −1 0
75 0 0 0 0 −1 1 0
76 0 0 0 0 1 1 0
77 0 0 0 0 −1 0 −1
78 0 0 0 0 1 0 −1
79 0 0 0 0 −1 0 1
80 0 0 0 0 1 0 1
81 0 0 0 0 0 −1 −1
82 0 0 0 0 0 1 −1
83 0 0 0 0 0 −1 1
84 0 0 0 0 0 1 1
85 0 0 0 0 0 0 0
86 −1 −1 −1 −1 −1 −1 −1
87 1 1 1 1 1 1 1
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Figure A1. Relationship between chemical equilibrium constants and temperature based on the EQ3/6 database (blue
diamonds) for determining the chemical equilibrium constants of seven mineral reactions [43].
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Figure A2. Predicted values from the 2-phase models: (a) pH, mineral precipitation or dissolution of
(b) illite, (c) kaolinite, and (d) quartz at the center of the model. Light green, light red, and light blue
indicate low, mid, and high RSA of the particular mineral in each subplot; dashed lines in dark green,
dark red, and dark blue indicate Case#86, Case #85, and Case #87, respectively; two vertical lines
denote the end of 10 years and the end of 20 years.

Figure A3. Predicted total mineral amount in the simplified model with only water and CO2:
(a) ankerite, (b) calcite, (c) siderite, and (d) dolomite. Light green, light red, and light blue indicate
low, mid, and high RSA of the particular mineral in each subplot; dashed lines in dark green, dark
red, and dark blue indicate Case#86, Case #85, and Case #87, respectively; two vertical lines denote
the end of 10 years and the end of 20 years.
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Appendix B

The flow equations of the CMG-GEM simulation package include:

ψi ≡ ΔTm
o ym

io
(
Δpn+1 − γm

o ΔD
)
+ ΔTm

g ym
ig

(
Δpn+1 + ΔPcogm − γm

g ΔD
)
+ qm

i − V
Δt

[
Nn+1

i − Nn
i

]
= 0

i = 1, · · · , nc
(A1)

ψnc+1 ≡ Tm
w

(
Δpn+1 + ΔPm

cwo − γm
g ΔD

)
+ qm

nc+1 −
V
Δt

[
Nn+1

nc+1 − Nn
nc+1

]
= 0 (A2)

Ni = φ
(
ρoSoyio + ρgSgyig

)
(A3)

Nnc+1 = φρwSw (A4)
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Abstract: Potential leakage of reservoir fluids is considered a key risk factor for geologic CO2

sequestration (GCS), with concerns of their chemical impacts on the quality of overlying underground
sources of drinking water (USDWs). Effective risk assessment provides useful information to guide
GCS activities for protecting USDWs. In this study, we present a quantified risk assessment case
study of an active commercial-scale CO2-enhanced oil recovery (CO2-EOR) and sequestration field,
the Farnsworth Unit (FWU). Specific objectives of this study include: (1) to quantify potential risks of
CO2 and brine leakage to the overlying USDW quality with response surface methodology (RSM);
and (2) to identify water chemistry indicators for early detection criteria. Results suggest that trace
metals (e.g., arsenic and selenium) are less likely to become a risk due to their adsorption onto clay
minerals; no-impact thresholds based on site monitoring data could be a preferable reference for early
groundwater quality evaluation; and pH is suggested as an indicator for early detection of a leakage.
This study may provide quantitative insight for monitoring strategies on GCS sites to enhance the
safety of long-term CO2 sequestration.

Keywords: geologic CO2 sequestration; CO2 and brine leakage; underground source of drinking
water; risk assessment; response surface methodology; early detection criteria

1. Introduction

Carbon dioxide capture and sequestration (CCS) in geologic formations is considered a promising
approach for mitigating CO2 emissions, by injecting CO2 from stationary sources into deep geologic
formations [1,2]. After the policy of United States emphasized “utilization” of carbon capture,
utilization, and storage (CCUS), CO2-enhanced oil recovery (CO2-EOR) and storage has gained specific
interest for its potential benefits of increasing oil production and reducing CO2 storage costs [3–5].

It is believed that the risks of geologic CO2 sequestration (GCS) to the environment and human
health are minimized with monitoring and managements of the sites, especially for operational
reservoirs with pressure managements [6–8]. However, the concern of reservoir fluids, especially CO2

leakage to overlying underground sources of drinking water (USDWs) cannot be completely ruled
out [9–12]. Carbon dioxide itself is not hazardous to groundwater quality, but it triggers pH reduction,
water-sediment interactions, and potential toxic trace metal release from sediments [13–15]. Reservoir
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brine leakage may significantly increase shallow groundwater salinity and introduce hazardous
reservoir substances into overlying USDWs [16,17].

Wells are usually identified as a greater risk of potential leakage pathways than geological features
of faults and/or fractures [18,19]. Specifically, reservoir fluids may leak through wellbore cement and
well casing. Wellbore cement degradation caused by CO2 intrusion is a complex function of cement
properties, fluid dynamics, reaction kinetics, and stress state of the wellbore environment [20–23]. It is
believed that moderate exposure to CO2 could provide a less permeable front of the cement with calcite
precipitation to avoid further acid intrusion for centuries [19,21,24,25]. Even with microcracks occurring
in wellbores, most leaked CO2 could be trapped by the cement, and leakage flux of reservoir fluids
(CO2 and brine) is neglectable to be considered as a potential risk [26]. In most risk assessment studies,
abandoned legacy wells with hypothetical open boreholes and/or wellbore failures are assumed as the
most likely leakage pathways [27,28]. It represents the worst-case scenario for area of review (AoR)
evaluations stipulated by the U.S. Environmental Protection Agency (EPA) Underground Injection
Control (UIC) guidance, where wells with stability problems, casing failure, and/or abandoned wells
not identified with site characterization and monitoring approaches [27]. Maximum CO2 leakage rates
between 10−7 and 10−1 kg/s are used for most risk assessment approaches, which is usually up to 0.4%
of the cumulative CO2 injected in the reservoir [27,29,30].

Regulatory policy emphasizes the protections against reservoir leakage to USDWs with assessments
of risks to water quality for the USDWs and groundwater monitoring prior to, during, and after
injection phases [8]. To date, quantitative risk assessments of modeling approaches combined with field
observations play an essential role for site-specific studies of potential leakage and its impact on USDW
quality, to forecast the long-term response of groundwater, and help the operators to make effective
and efficient plans of monitoring strategies [26,27,31–33]. Monte Carlo method is a straightforward
simulation approach for risk assessment [34], but its high computational cost motivates the applications
of reduced order models (ROMs) to replace original simulations with surrogate models [35]. Response
surface methodology (RSM) is a widely-used statistical and mathematical technique to generate ROMs,
and has been applied for many risk assessment approaches for GCS research [26,34,36]. Thus, RSM
was selected to quantify risks on shallow groundwater quality in this study.

In this manuscript, we present quantitative assessment of potential risks to overlying groundwater
quality due to CO2 and brine leakage at an on-going CO2-EOR and storage site, the Farnsworth Unit
(FWU). Considerable operational, geological, and geochemical data available of the reservoir and
the overlying USDW aquifer (the Ogallala aquifer) largely improved the reliability with reduced
uncertainties. Specific objectives include: (1) to quantify potential risks to the overlying USDW quality
due to CO2 and brine leakage from the operational reservoir; and (2) to identify water chemistry
indicators for early detection criteria. Results of this study may provide a useful perspective of
combining numerical simulations, field observations, and ROMs for site-specific risk assessments to
enhance the safety of GCS projects.

2. Materials and Methods

2.1. Site Description

The FWU site (Figure 1) located in northern Texas is a mature hydrocarbon reservoir undergoing
active CO2-EOR and sequestration since December 2010 [37,38]. It is the study site of the Southwest
Regional Partnership on Carbon Sequestration (SWP) Phase III, sponsored by the U.S. Department
of Energy (DOE) and the National Energy Technology Laboratory (NETL) [39]. The primary goal of
this project is to exhibit and evaluate an active commercial-scale CCUS operation, and demonstrate
effective site characterization, monitoring, verification, accounting, and risk assessment for long-term
CO2 sequestration. To date, over one million metric tons of net CO2 from anthropogenic sources (one
fertilizer plant and one ethanol plant) is stored in the subsurface reservoir (the Morrow B Formation),
with CO2 injection and production volumes tracked at the FWU [40]. The SWP acquired significant
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near-surface monitoring data for potential CO2 leakage, including soil CO2 flux (to identify any
potential point-source leakage to the surface), borehole CO2 movement (to monitor subsurface CO2

movement), and the overlying drinkable groundwater chemistry in the Ogallala aquifer (to identify
any potential leakage into the USDW and drinking water quality change). The SWP project partner,
the National Institute of Advanced Industrial Science and Technology (AIST) of Japan conducted
surface/shallow borehole gravity and electrical methods to monitor the subsurface CO2 plume [41].
Continuous gravity, self-potential, and magnetotelluric surveys were also applied for three years to
monitor brine leakage into the Ogallala aquifer. Up to date, these monitoring activities have not seen
any CO2/brine leakage [39], and the monitoring data along with reservoir characterization provide
essential information to improve the reliability of risk assessment at the site.

 

Figure 1. The Farnsworth Unit (FWU) location with 5-patterns of CO2 injection and oil production,
and monitoring locations for CO2 leakage to the groundwater and surface.

2.2. Site-Specific Water Chemistry and No-Impact Thresholds

On-site monitoring water chemistry provides reliable baseline of shallow groundwater and
reservoir brine constituents and determines the potential risks of exceeding water quality thresholds
due to any potential CO2 and/or brine leakage. To date, there are hundreds of water samples collected
and analyzed in quarterly basis from the Ogallala aquifer and the reservoir at the FWU area since 2012,
conducted by the New Mexico Institute of Mining and Technology, as part of SWP Phase III. General
chemistry was analyzed for pH (by pH meter), conductivity (by conductivity meter), alkalinity (by
electrometric titration), oxidation and reduction potential (ORP, by pH meter and ORP electrode),
major cations and anions (including Li+, Na+, K+, Mg2+, Ca2+, F−, Cl−, Br−, NO3

−, and SO4
2−, by ion

chromatography (IC)), trace metals (by inductively coupled plasma mass spectrometry (ICP-MS)),
inorganic carbon (IC), and non-purgeable organic carbon (NPOC, by total organic carbon (TOC)
analyzer), and total dissolved solids (TDS, calculated based on the concentrations of major cations
and anions [42]). Table 1 summarizes selected monitored water parameters of the Ogallala aquifer
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and the reservoir produced water. These selected parameters might exceed the U.S. Environmental
Protection Agency (EPA) and/or local primary and secondary maximum contaminant levels (MCL) in
the Ogallala aquifer with CO2 and/or brine leakage. Some of the selected contents are sensitive to CO2

introduction (e.g., pH and trace metals), and some of the contents’ concentrations might increase with
leaked brine (e.g., TDS and Mn). Changes of these contents may become indicators for any potential
leakage as an early-detect criterion.

Table 1. Selected Water Chemistry of the Ogallala Aquifer and the reservoir produced water (PW),
maximum contaminant levels (MCL) of the U.S. Environmental Protection Agency (EPA) and Texas
State, and No-Impact Threshold (NIT) for potential contaminants of the Ogallala aquifer (unit in mg/L,
pH unitless).

Name Ogallala PW EPA MCL Texas MCL NIT

pH 7.7 7.2 6.5 7.0 7.5
Total dissolved solids (TDS) 380 4064 500 1000 508

Mn 0.008 0.27 0.05 0.05 0.05
As 0.003 0.005 0.01 0.01 0.005
Se 0.004 0.07 0.05 0.002 0.007

Usually MCLs are used to evaluate whether a leakage plume is harmful for shallow groundwater
quality—if the concentration exceeds the limit it would be considered as a risk [17,43,44]. However,
the regulatory limits do not reflect the changes from the current background levels at a specific area,
especially when a constituent background concentration is significantly lower than the MCL [45].
To determine statistically significant changes of the groundwater for site-specific early detection
criteria, the “no-impact thresholds” are defined to predict potential impacts of the leakage in the early
stage [45]. The no-impact thresholds are based on site-specific groundwater quality data, and represent
the lowest detectable concentrations above the “no change” scenario to predict groundwater quality
changes due to any leakage [27,45]. The no-impact thresholds are calculated as the 95%-confidence,
95%-coverage tolerance limit from the existing site monitoring data, and, in some cases, the values
might be significantly different from the regulatory standards.

Both no-impact and MCL thresholds were considered in our risk assessments for chemical impacts
of groundwater at the FWU [26]. pH, TDS, arsenic (As), selenium (Se), and manganese (Mn) were
selected as potential key factors to indicate water quality changes and early detection criteria, where pH
directly decreases with CO2 intrusion, trace metals (As and Se) exist in the reservoir brine and may
release from the shallow aquifer sediment at lower pH; TDS and Mn are with high concentrations in
the brine, and CO2-water interactions also change TDS with mineral dissolution.

2.3. Trace Metal Mobilization Due to CO2 Leakage

Increased CO2 concentrations in shallow groundwater aquifers would reduce water pH and enhance
water-sediment geochemical reactions, resulting in mobilization of toxic trace metals [9,13,43,46–48].
Adsorption/desorption is considered the major mechanism of trace metal release [17,49–51], and it
was also considered in our study. The widely used Gouy–Chapman double diffuse layer
surface complexation model was applied in our simulations, to calculate such processes [52].
Adsorption/desorption reactions (take As and Se as examples) of sorbent minerals (S represents
mineral sites) could be written as [49,53]:

SOH(s) + H+
(aq)
� SOH+

2(s)
(1)

SOH(s) � SO−
(s) + H+

(aq)
(2)

SOH(s) + H3AsO4(aq) � SAsO2−
4(s) + 2H+

(aq)
+ H2O (3)
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SOH(s) + H2SeO3(aq) � SHSeO3(s) + H2O (4)

Hydrous ferric oxide (HFO) and clay minerals (e.g., kaolinite, illite, and smectite) are often used
as a sorbent for simulations of trace metal adsorption in groundwater aquifers, because of their large
surface areas and occurrence in natural system [52,53]. Adsorption reactions are controlled by the
total amount of sorption sites, which is controlled by the amount of sorbent, site density, and sorbent
surface area [54]. It is often difficult to quantify the fractions and/or determine their surface areas
because of their low concentrations in the sediments, the minerals playing the role of sorbent are
usually assumed with a small volume fraction in simulations and treated as an uncertainty parameter
in risk assessment [17,26,54]. The X-ray diffraction (XRD) results of the Ogallala aquifer sediments
collected at the FWU area suggested a trace amount of smectite in the samples (< 1% of the aquifer
sediment). Therefore, the sorbent amount of the Ogallala sediment was treated as an uncertainty
parameter in our assessments for trace metal mobilizations by assuming a fixed sorbent fraction with
changing its surface area as an uncertainty parameter.

2.4. Quantification Risk Assessment of Groundwater Quality

2.4.1. Response Surface Methodology (RSM)

Chemical impacts of CO2 leakage into the Ogallala aquifer in our case study was conducted
with RSM, a statistical and mathematical technique for improving and optimizing model exploitation
based on a largely reduced number of numerical simulations compared to traditional approaches
(e.g., Monte Carlo method) [36]. Stages of RSM application include: (1) determining independent
uncertainty parameters and numerical simulation design; (2) conducting simulations according to the
selected experimental matrix to train the RSM model equation; (3) obtaining the RSM model equation
(a polynomial function) and evaluating the model adequacy; and (4) using the RSM model equation to
quantify the risks.

CO2 and brine leakage rates, aquifer thickness, and adsorbent amount were selected as independent
variables in this study (Table 2), because they are controlling variables to determine the leakage plume
and water chemistry changes in the USDW aquifer. A conceptual well with failure was assumed
for reservoir leakage, and 0.4% of CO2 and water injection rates were assigned for the maximum
leakage rates based on injection history of Well 13-9 in the FWU [55], following the typical leakage
rate ranges of previous risk assessment approaches [27]. The Ogallala aquifer thickness range and
distribution were assigned based on ~150 shallow groundwater well-drilling data at the FWU area,
with average thickness 120 m. The adsorbent amount of the Ogallala sediment was treated as an
uncertainty parameter by varying its specific surface area (SSA) with a fixed (assumed) sorbent volume
fraction of 0.5% smectite. Box–Behnken design was applied with 25 simulations in total (Table 3) [56].
Regional groundwater flow was neglected in this study for simplicity, because the regional hydraulic
gradient (~10 m/year) is low for significant impacts on contamination dilution [26].

Table 2. Independent Parameters for response surface methodology (RSM) of CO2 and Brine Impacts
to the Groundwater. SSA, specific surface area.

Parameter Name Low (−1) Mid (0) High (+1) Distribution

CO2 leakage rate: g/s 0 0.5 1.0 Uniform
Brine leakage rate: g/s 0 0.25 0.5 Uniform
Aquifer thickness: m 40 120 200 Normal
Adsorbent SSA: m2/g 1 50.5 100 Uniform
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Table 3. Box–Behnken experimental design for the reactive transport simulations. Low (−1), mid (0),
and high (+1) values are corresponding to the values and order of independent parameters shown
in Table 2.

Simulation Values of Independent Parameters Simulation Values of Independent Parameters

1 −1 −1 0 0 14 0 −1 1 0
2 −1 1 0 0 15 0 1 −1 0
3 1 −1 0 0 16 0 1 1 0
4 1 1 0 0 17 −1 0 −1 0
5 0 0 −1 −1 18 −1 0 1 0
6 0 0 −1 1 19 1 0 −1 0
7 0 0 1 −1 20 1 0 1 0
8 0 0 1 1 21 0 −1 0 −1
9 −1 0 0 −1 22 0 −1 0 1
10 −1 0 0 1 23 0 1 0 −1
11 1 0 0 −1 24 0 1 0 1
12 1 0 0 1 25 0 0 0 0
13 0 −1 −1 0

2.4.2. Reactive Transport Model

A one-dimensional conceptual radial model (Figure 2) was assembled and simulated to analyze
the potential risks to groundwater quality due to CO2 and brine leakage. The model radius was
assigned 10,000 m (significantly far from the potential leaky well) with 80 cells. A constant temperature
of 25 ◦C was assigned with homogeneous porosity of 0.3 and permeability 10−13 m2, according to
the characterizations of the aquifer. With consideration of CO2 injection for at least 30 years, and a
50-year post-monitoring period required for a GCS project after CO2 injection is ceased, the total
simulation time was arbitrarily assigned 200 years, which was significantly longer than the injection
and post-injection (monitoring) period (~75 years in total).

Figure 2. The conceptual model for the Ogallala Aquifer.

The initial groundwater and leakage brine chemistry for the model was assigned based on the
average composition of the FWU monitoring samples (Table 4). The initial mineralogy was assigned
following the XRD results of the Ogallala sediment samples collected at the FWU area (Table 5),
with mineral reactive surface areas assigned following literature [17,55]. Aqueous complexation,
cation exchange (Na+, H+, Ca2+, Mg2+, K+, Fe2+, and Mn2+), adsorption/desorption and mineral
dissolution/precipitation were considered for chemical reactions in the aquifer. The thermodynamic
parameters for aqueous and mineral reactions were assigned following the EQ3/6 database [57].
The parameters for the kinetic rate law of minerals were taken from [58]. The Gouy–Chapman double
diffuse layer model was used for adsorption reactions [53,59]. Cation exchange coefficients were taken
from [60]. All simulations were performed with TOUGHREACT V2 [61] and with equation of state
ECO2N for multiphase CO2 and brine [62].
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Table 4. Initial water chemistry for the Ogallala Aquifer and the leaked reservoir brine (PW) (unit: mol/kg).

Name Ogallala PW Name Ogallala PW

pH (unitless) 7.7 7.2 SiO2 (aq) 6.613 × 10−4 6.667 × 10−4

Ca2+ 1.189 × 10−3 1.937 × 10−3 Cl− 1.582 × 10−3 5.619 × 10−2

Mg2+ 7.935 × 10−5 1.286 × 10−4 HCO3
− 2.355 × 10−3 4.267 × 10−3

Na+ 2.068 × 10−3 6.407 × 10−2 SO4
2− 5.105 × 10−4 2.735 × 10−4

K+ 2.649 × 10−4 4.534 × 10−4 NO3
− 2.399 × 10−4 3.898 × 10−6

Fe2+ 8.880 × 10−9 6.517 × 10−9 H2AsO4
− 5.290 × 10−9 6.775 × 10−8

AlO2
− 2.311 × 10−10 1.732 × 10−10 HSeO3

− 1.733 × 10−8 8.887 × 10−6

Mn2+ 1.457 × 10−7 4.568 × 10−6

Table 5. Initial mineralogy assigned for the model. Mineral surface areas are assigned following
literatures [17,55].

Mineral Name Formula Volume Fraction Surface Area (cm2/g)

Primary
Quartz SiO2 0.780 23.29
Calcite CaCO3 0.110 53.96

K-Feldspar KAlSi3O8 0.092 222.42
Dolomite CaMg(CO3)2 0.004 9.80
Smectite Na0.29Mg0.26Al1.77Si3.97O10(OH)2 0.005 151.60

Albite NaAlSi3O8 0.005 11.40
Secondary

Illite K0.6Mg0.25Al1.8(Al0.5Si3.5O10)(OH)2 0 272.06

3. Results and Discussion

3.1. Impacts on Groundwater Quality

The RSM model equations of our target parameters were trained with 25 numerical simulations.
Overall, the correlation between the original (full reservoir model) simulated results and the RSM
forecasted results are above 0.9 for most of the grids, especially within 100 m from the conceptual
well, suggesting that the trained RSM equations (polynomial functions) sufficiently fit the original
reactive transport model outcomes and are adequate for forecasting the water quality parameters of
interest within the selected range. With the trained polynomial RSM equations, selected parameters
were calculated with 10,000 random cases (each independent variable was created with a random
seed in their selected ranges). Cumulative distribution functions (CDF) were obtained accordingly,
and they were used for forecasting the likelihood that the leakage would impact groundwater quality
over 200 years.

Figure 3 illustrates CDFs of gaseous CO2 saturation (SG) within 50 m radius away from the
conceptual leaky well in the aquifer. If CO2 leaked through a well with a maximum leakage rate of 1 g/s,
it is very likely that gaseous phase CO2 be observed in the aquifer 1 m away from the well after 1 year,
and the plume radius increases to 10 m after 10 years. With the gas phase CO2 intrusion, pH of the
aquifer decreases accordingly, and local groundwater might drain off near the well. TDS concentration
near the well might become extremely high with the worst scenarios due to CO2 dissolution as well as
the leaked brine contribution (Figure 4). It is less likely for gaseous CO2 plume reaching 50 m away
from the conceptual well within 100 years, and at the 200th year, cases above the 60th percentile show a
small amount of free gas at this distance. It is likely that the free gas plume would reach 50 m away
from the well after 200 years’ leakage. With the maximum leakage rate of 0.4% injection rate, none of
the simulations show an occurrence of gas phase CO2 at the location 100 m away from the well.

259



Energies 2020, 13, 6574

 
Figure 3. Cumulative distribution functions (CDFs) of gaseous phase CO2 Saturation (SG) at 1 m, 10 m,
and 50 m from the conceptual well.

Figure 4. Cumulative distribution functions (CDFs) of pH, TDS, Mn and Se concentrations at 10 m
from the conceptual well.

The CDF curves of pH, TDS, Mn and Se at 10 m away from the leaky well are shown in Figure 4.
The RSM model results (10,000 random cases) suggest that the groundwater would not be largely impacted
by the leakage within 1 year, but there are significant changes in pH, TDS, and Mn concentrations after
10 years. After 50 years, these concentrations maintain at a stable level (the curves beyond 50 years are
not shown for pH, TDS, and Mn) because the gas saturation and dissolved CO2 concentration reach a
steady state at this location. However, the response of Se concentration would not start until 100 years
after the leakage starts, due to adsorption onto the sediment. For As, it does not show any significant
changes even near the well, because its concentration in the leaked brine is not significantly higher
than that in the groundwater. It indicates that clay minerals could mitigate trace metal mobilization
within a certain extent with surface complexation reactions of the Ogallala aquifer, which is beneficial
for the aquifer maintaining its quality. To the contrary, the high salinity and the metals not reactive
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with sorbents (clays) of the leaked brine may likely be a larger concern in this case (TDS and Mn).
Similar results are also obtained by other studies [17,63].

Overall, the leakage plume would reach ~50 m away from the well within 200 years of leakage from
the reservoir with 0.4% injection rate in maximum. In the area impacted by the plume of radius 50 m
from the well, pH, and TDS illustrate significant changes, because of the introduced acid plume with
high salinity and reactivity with the sediment. Adsorption of trace metals onto clay minerals would
hinder their mobilization within 200 years, which may reduce the risks of trace metal contaminations.
Usually shallow groundwater monitoring wells are located farther than 50 m apart from each other,
thus it might be difficult to detect water chemistry changes within a short time after leakage occur.

3.2. Thresholds and Indicators for Early Detection Criteria

The principles to choose indicators for early detection include: (1) easy to test, and (2) with
significant changes due to a leakage, compared to the selected threshold. Usually groundwater
chemistry varies over time due to groundwater flow and weather, and it might be difficult to indicate a
leakage if the change is insignificant. Therefore, it is important to select a reasonable threshold for the
indicators as well as indicators sensitive to potential leakage.

The probabilities of water chemistry occurrence ranges are used to forecast the likelihood whether
the groundwater quality would be impacted by potential CO2 and brine leakage with changes of water
constituent concentrations. Figure 5 illustrates the probability of pH exceeding the state and federal
MCLs and the site-specific no-impact threshold at different distances from the conceptual leaky well.

Figure 5. Probability of occurrence for pH exceeding the Texas MCL, the EPA MCL and no-impact
threshold at 1 m, 10 m, and 50 m away from the leaky well.
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At the distance 1 m away from the well, with large impacts of the leakage plume, a high probability
for pH suggests that it is likely to exceed all three thresholds (> 95% probability) with limited differences,
because significant pH drops (< 6.0) occur due to the leakage. At the distance 10 m away from the well,
it is very unlikely to identify any pH change in the first year since the acid plume does not reach this
distance. After 10 years, it is likely to determine the pH change using no-impact threshold compared to
the MCLs. It starts to suggest pH changes exceeding the thresholds with a significant difference after
100 years at 50 m away from the well. It suggests that the no-impact threshold is more sensitive to
indicate a leakage, because it is stricter than the MCLs. It indicates that no-impact thresholds associated
with site-specific monitoring data could be a valuable reference for evaluation of leakage impacts,
which is meaningful for quantifying water quality change, especially for those water parameters that
are significantly different from the MCLs. However, with limited impact area (< 50 m) of the potential
leakage plume, it might be difficult to detect any changes of water chemistry at a monitoring well,
which is usually a few hundred meters away from each other.

Easy-tested water parameters that are sensitive to the leakage should be selected as early detect
criteria. Figure 6 shows the likelihood of changes of the five parameters of interest at different distances
from the well. Due to adsorption of trace metals, such as Se and As, their concentrations maintain
at a low level and are not likely to exceed the thresholds for a long time (also shown in Figure 4).
Thus, such trace metals may not be capable to be selected as indicators for leakage at early stages.
pH and TDS are the most sensitive constituents to indicate a leakage among all the cases with various
leakage rates. Particularly, it is one of the most convenient methods to test pH of a water sample.
Therefore, pH could be selected as an early detection indicator at the FWU site.

Figure 6. Probability of occurrence of pH, TDS, As, Se, and Mn exceeding the no-impact threshold at 1,
10, and 50 m away from the leaky well after 200 years.

4. Conclusions

In this study, we present a series of quantitative assessments of potential risks to the Ogallala
aquifer with potential CO2 and brine leakage at the FWU. Potential chemical risks to the overlying
USDW aquifer were analyzed, and selected water constituents were evaluated for selecting early
detection indicators. Salient findings include: (1) with leakage flux up to 0.4% of injected CO2 and brine
from a conceptual leaky well with failure, it is likely that the impacted area limits within 50 m from
the well after 200 years; (2) toxic trace metals may be considered an insignificant long-term concern
because of clay adsorption; (3) site-specific no-impact thresholds could be a preferable reference for
groundwater quality evaluations; and (4) pH is suggested as a likely geochemical indicator for early
detection of a leakage, due to its easy tested and sensitivity aspects. Results of this study provide a
useful perspective of combining numerical simulations, field observations, and quantitative ROMs for
site-specific risk assessment.
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Abstract: This study addresses the problem of geological structure tightness for the purposes of
enhanced oil recovery with CO2 sequestration. For the first time in the history of Polish geological
survey the advanced methods, practical assumptions, and quantitative results of detailed simulations
were applied to study the geological structure of a domestic oil reservoir as a potential candidate
for a combined enhanced oil recovery and CO2 sequestration project. An analysis of the structure
sequestration capacity and its tightness was performed using numerical methods that combined
geomechanical and reservoir fluid flow modelling with a standard two-way coupling procedure. By
applying the correlation between the geomechanical state and transport properties of the caprock,
threshold pressure variations were determined to be a key factor affecting the sealing properties of
the reservoir–caprock boundary. In addition to the estimation of the sequestration capacity of the
structure, the process of CO2 leakage from the reservoir to the caprock was simulated for scenarios
exceeding the threshold pressure limit of the reservoir–caprock boundary. The long-term simulations
resulted in a comprehensive assessment of the total amount of CO2 leakage as a function of time and
the leaked CO2 distribution within the caprock.

Keywords: CO2-EOR; CO2 sequestration; geomechanics; reservoir fluid flow modelling; tightness of
caprock; CO2 leakage; threshold pressure

1. Introduction

Because CO2 emissions are an increasing problem, many strategies have been devel-
oped to reduce its emissions to the atmosphere, including mineralisation [1,2], CO2 storage
at the bottom of the oceans [3], accelerated weathering [4,5], and subsurface geological
storage [6]. Carbon dioxide capture at the source, followed by its long-term storage in
exploited hydrocarbon reservoirs, is one of the most practical ways to reduce the CO2
concentration in the atmosphere.

Reservoir structures suitable for geological CO2 storage are most frequently water-
bearing formations, depleted hydrocarbon deposits, or unminable methane-rich coal seams.

Geological formations that are selected for CO2 storage must meet the appropriate
criteria related to the minimum and maximum depth of the structure. The reservoir rock
parameters, including thickness, permeability, porosity, and fracture characteristics, are
also critical. However, the most important criterion is the sealing quality of the rock, that is,
the overburden’s integrity and thickness play key roles in assessing the safety of long-term
CO2 geological storage.

Most of these criteria are met for depleted oil and gas fields because hydrocarbon
production from oil and gas fields implies favourable reservoir properties, including
porosity, permeability, and reservoir thickness [7].

During the geological storage of CO2, most of the injected CO2 remains in the free
(liquid, gas, or supercritical) phase. This phase poses the greatest threat to the seal integrity.
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Under reservoir conditions, which are at elevated pressures and high temperatures, CO2
occurs in a dense gas phase, yet its density is lower than that of the formation water. Driven
by the buoyant force that occurs as a result of the difference in the densities of the CO2
and reservoir water, the free fraction of CO2 tends to migrate upward [8–10]. The presence
of free CO2 in the upper parts of reservoir rocks poses a threat of escape to overlying
formations and potentially into the atmosphere, in the case of the caprock integrity loss.

Therefore, it is crucial to maintain a tight sealing layer and not inject CO2 into the
formation beyond a level that guarantees the integrity and stability of the seal and overall
safety of the operation. The long-term tightness of the overburden may be influenced by
the effects of CO2 injection, as operations change the stress and strain field in subsequent
years of sequestration.

The aim of this study was to analyse the tightness of the caprock above the main
dolomite (Ca2). The main dolomite structure with partially depleted hydrocarbon accumu-
lation located in the Gorzów Block, Poland, is considered a potential formation for carbon
dioxide storage.

Numerous research papers address the caprock tightness problem in the potential
site for CO2 geological storage. Edlmann et al. (2013) [11] postulated the existence of a
critical threshold of fracture aperture size controlling the CO2 flow along the shale samples.
Li et al. (2006) [12] examined the occurrence of the volume flow and measured the effective
gas permeability for selected post-failure evaporite beds samples caused by CO2 injection.
Zivar et al. (2019) [13] examined the effect of stress magnitude and stress history on porosity
and permeability values of anhydride and carbonate rocks, while Hangx et al. (2009) [14]
investigated the impact of CO2 on the mechanical strength of Zechstein Anhydrite, which
seals many potential CO2 storage sites in Central and Eastern Europe.

Under the assumptions of the study, CO2 was injected into the reservoir rock for
both enhanced oil recovery (EOR) and geological CO2 sequestration. To meet the research
objectives, several numerical methods were used, involving the coupling of geomechanic
and dynamic modelling of reservoir fluid flow in the main dolomite formation, into which
CO2 was injected, and the surrounding rocks, especially the overburden.

Geological Setting

The study area is located on the Gorzów Block adjacent to Szczecin Trough in the
north, with the Mid-Polish Swell to the east and the Fore-Sudetic Monocline to the south
(Figure 1). This area has a regional sequence of tectonic disturbances and related uplift of
Permian-Mesozoic sediments [15]. These elevated tectonic blocks were accompanied by
extensive volcanic rock cover, as well as a depressions series of clastic deposits in the Lower
Rotliegend. In particular, the erosive outliers of the Zechstein basement had a significant
impact on the development of the overlying Zechstein–Mesozoic complex [16].

In the analysed part of the South Permian Basin, the Zechstein Sea entered a mor-
phologically diverse depositional surface. Considerable denivelations contributed to the
division of the basin into shallow and deep-water zones. In the elevated areas, platforms
and micro platforms of sulphate deposits of the Werra cyclothem developed and became
covered with the main dolomite platforms, which formed as a result of the transgressive
cycle during the Stassfurt cyclothem [16]. Sedimentological studies of the main dolomite
deposits revealed the existence of different sedimentation environments resulting from con-
siderable bathymetric differences [17–19]. These include: the platform and microplatform
zones (including barrier and platform flat), slope and toe of the slope, and basin floor [19].

Optimal reservoir properties were found both in the shallow-water platform forma-
tions and in the formations developed at the toe of the slope in a deep-water environ-
ment [18–20].

From a petroleum exploration and potential storage volume perspective, the most im-
portant property was the development and preservation of significant secondary porosity
in the main dolomite rock (in some areas over 30%), which was caused by the complete or
partial dissolution of granular carbonate components. The presence of this high porosity
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may be related to the dolomitisation and recrystallisation of the primary calcareous rock
matrix [20,21].

The main dolomite, which is the reservoir rock and target formation for carbon dioxide
storage, is covered with a sequence of thick evaporates, thin carbonates, and very thin
layers of shales of the PZ2 (Stassfurt), PZ3 (Leine), and PZ4 (Aller) Zechstein cycles [22,23].
The location of the study area with the lithostratigraphic profile is shown in Figure 1.

 

Figure 1. Lithostratigraphic profile in the reference borehole (left) and the location of the study area on the background of
the map of the main dolomite (Ca2) in Poland (right) [24].

The thickness of the Zechstein evaporates overlying the reservoir rock varies from
253 m on top of the platform flat and reaches 840 m in the basin. Developed over geologic
time on top of the reservoir rock sequence, these hardly permeable or impermeable evapo-
rates constitute the seal for hydrocarbon accumulation and are potentially a good barrier
for carbon dioxide stored in the main dolomite reservoir rock.

2. Methods

Performing fluid flow modelling coupled with geomechanics is essential for the safe
storage of CO2 or other media in subsurface rock formations. In particular, analysing the
mechanical response of rocks to activities related to geological CO2 storage concerns the
reservoir rock itself and the neighbouring rocks, especially the overburden.

As a result of injection, the increased pressure of the fluid filling the pore space in the
rock causes a change in the stress field. The disturbance of the stress equilibrium may lead
to a potential risk of loss of tightness of the sealing rocks, creating a potential pathway
for CO2 leakage to the overlying strata. To evaluate the tightness of the caprock, we
employed numerical methods that combined geomechanic and reservoir fluid modelling
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of the reservoir and surrounding rocks using the Schlumberger software (Houston, TS,
USA)—Petrel™ platform, VISAGE™ geomechanical simulator, and ECLIPSE™ reservoir
simulator. The standard approach to this evaluation includes a two-way coupling of both
types of simulations realised by iterative, alternating runs of the simulations, as shown
schematically in Figure 2.

 

Figure 2. Conventional dynamic and geomechanic model coupling.

For the geomechanical analysis, parameter distributions describing the geomechan-
ical and petrophysical rock properties were developed, and boundary conditions were
determined. The distributions of the pore pressure necessary for the geomechanical simu-
lations were combined with the hydrostatic pressure distribution in the overburden and
the reservoir pressure in the main dolomite (Ca2) developed for certain time steps in the
history of hydrocarbon production and CO2 injection. Upgraded transport properties were
determined according to the resultant geomechanical state of the structure and were used
in the dynamical model to simulate upgraded pressure and saturation distributions. These
results were input to the geomechanical model and thus closed the iteration loop of the
two-way coupling simulation procedure.

Relevant Dataset

To analyse the tightness of the geological structure’s caprock, we used three main
data types:

• Seismic data, which comprises the result of a 3D seismic interpretation of the study
area, the structural surface of the top of the reservoir rock (Ca2) in the depth domain,
and the map of the thickness of the reservoir rock based on seismic data;

• Well log and lab data;
• Lithostratigraphic profiles and well log data from 10 of the 27 boreholes drilled in the

study area with the results of laboratory measurements of petrophysical and static
geomechanical parameters performed on the core material;

• Reservoir engineering data (reservoir fluid saturation distribution, pressure distribu-
tion, and reservoir fluid thermodynamic (PVT) properties);

• Hydrodynamic well tests (multi-rate and pressure build-up tests);
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• Production data (reservoir fluid production rates and totals, and bottom-hole and
well-head pressures).

3. Geological Model

To meet the study’s objectives, we first developed a structural model of the area to
define the 3D space, which was subsequently parameterised. Ultimately, we obtained the
spatial distributions of the petrophysical parameters necessary to determine the weight of
the overburden rocks via geomechanic modelling and during the modelling of the reservoir
fluid flow.

3.1. 3D Structural Geological Model

The structural 3D model of the study area presents the geometry of the entire study
area profile, specifically the reservoir rock (Ca2), but also, for the purposes of geomechanic
modelling, the structure of the overburden rocks reaching up to the ground surface, as
well as the side- and under-burden. The developed spatial structural model was used to
determine the 3D space for parameterisation.

Using the structural map of the main dolomite Ca2 top, the map of the Ca2 thick-
ness, and the stratigraphic borehole data, we developed a map of the bottom of the
main dolomite.

Further, using available interpretations of seismic horizons in the depth domain
and boreholes stratigraphic markers, as well as tools available in the Petrel software, we
constructed structural maps of the remaining stratigraphic levels. These maps began with
the Zechstein limestone (Ca1), through the lithostratigraphic units of the Werra (A1D, Na1,
and A1G), Stassfurt (Ca2, A2, Na2, and A2G), Leine (I3 and A3), and Aller cyclothem
sequence (A1D, Na1, and A1G) occurring in the area of the study. They are followed by the
sediments of the Triassic, Jurassic, Cretaceous, and finally, the Paleogene, Neogene, and
Quaternary sediments. The longitudinal extent of the structural model is approximately
13.8 km, and the latitudinal length is approximately 14.5 km.

The horizontal resolution of the 3D grid was 100 m × 100 m. The vertical resolution of
the model varied depending on the individual zones. To assess the overburden’s tightness,
it was necessary to detail the zones that could play a key role in the possible leakage of
the stored CO2, which included the rocks located in the vicinity of the main dolomite with
minimal permeability. Accordingly, the highest resolution was used in the zones critical for
further investigations, such as the reservoir rock (the main dolomite Ca2) and its closest
sealing layer, the basal anhydrite (A2). The mean vertical resolutions in these intervals
were 1.88 m and 4.85 m, respectively.

The final geometry of the 3D grid used in the geomechanical simulation of the VIS-
AGE™ simulator (Schlumberger) considered the rocks surrounding the reservoir rock.
The geomechanical model was limited from the top at the ground surface, and at the
bottom, which is defined at a depth of approximately 41 km. At the sides of the reservoir
scale model, a volume of rocks with a length of approximately 45 km on each side was
added, resulting in the final latitudinal extent of approximately 103.8 km and a longitudinal
extension of 104 km.

As shown in Figure 3, the geometry of the obtained spatial structural model of
the main dolomite reservoir rock and surrounding rocks, including the overburden,
were identified.

This developed structural model was then parameterised, resulting in spatial models
of the petrophysical and geomechanical parameters.
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Figure 3. Visualisation of the model structures: (A)—3D model reservoir rock, (B)—3D structure including the over and
underburden, (C)—the geometry of the final 3D grid used in the geomechanic simulator, including over-, under-, and
side-burden.

3.2. 3D Modelling of Petrophysical Properties

Because the modelling workflow included a geomechanic modelling task that required
the definition of rock properties for the entire geological profile, the structural model had
to be further developed. Property modelling was carried out in two different model scales:
(1) a model covering the geological profile up to the ground level, which was populated
with total porosity and rock density values; and (2) a detailed 3D model of the interval of
interest covering the Ca2 main dolomite reservoir rock, in which a higher vertical resolution
was applied.

The interval within the geological profile, which is of main concern in this study,
was modelled with increased vertical resolution to enable a more detailed modelling and
interpretation of the geomechanical and fluid flow processes. Figure 4 shows the division
of the stratigraphic and lithological units into layers. The reservoir interval of the Ca2
was divided into 6 layers, and the neighbouring sediments above and below were divided
into varying numbers of layers depending on their average thickness in order to achieve a
vertical resolution of approximately 5 m within the Ca2 and approximately 25 m in the salt
rock formations, with anhydrite intervals of several meters thick.
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Figure 4. Cross—sections in 3D structural model for the entire profile (left) and for the interval of interest (right) showing
the distribution of density within the target CO2 storage reservoir Ca2 main dolomite reservoir and the neighbouring rocks.

3.2.1. Density and Porosity Models of Entire Geological Profile

The property modelling was based on the following data sources: geophysical well-
bore logging and interpretation along the entire wells’ profiles, the results of the laboratory
measurements conducted for the main dolomite reservoir rock, which were used to con-
strain petrophysical interpretation, and the 3D seismic data (previously transformed into
seismic attributes form), which were applied as a secondary input in the 3D property
modelling of the Ca2 reservoir porosity.

For the global grid population with porosity and density values, eight borehole profiles
were used. The analysis included the definition of density and porosity variation ranges
within each stratigraphic unit, as well as the modelling of semivariograms. Further, 3D
density and porosity modelling were accomplished using a stochastic algorithm (Gaussian
random function simulation), in which the modelling process was iterated 20 times to
produce 20 equally probable realisations of the porosity and density 3D models for the
entire profile. Finally, the arithmetic averages of the 20 realisations were calculated for
geomechanic modelling.
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3.2.2. High-Resolution 3D Petrophysical Model of Target Reservoir

The static modelling workflow was focused on the detailed modelling of the petro-
physical properties of the Ca2 main dolomite, which is a potential CO2 storage reservoir.

For this reason, extended datasets were used, including petrophysical interpretation
along eight boreholes calibrated with dense laboratory data, and 3D seismic volumes of
simultaneous inversion and seismic attributes.

Porosity reflects the volume of pore space within the reservoir, which, in this case,
was the oil-saturated dolomite interval. Meanwhile, permeability defines the reservoir’s
capability to conduct fluid flow (oil, natural gas, water, and CO2). Thus, the 3D models of
porosity and permeability are of the highest importance for dynamic modelling the fluid
flow within a storage reservoir.

The porosity model was elaborated using both primary wellbore data and secondary
seismic attributes previously transformed into seismic properties, which exhibit higher
correlation coefficients with porosity along the wellbore profiles. The Gaussian random
function simulation algorithm was applied in a co-kriging version. To develop the per-
meability model, porosity vs. permeability relationship was combined with the borehole
profiles of permeability. Figure 5A shows the outcome of porosity modelling within the
Ca2 reservoir, while Figure 5B shows the permeability 3D distribution.

 
Figure 5. Visualization of the distribution of: (A)—porosity and (B)—permeability within the Ca2 main dolomite along the
cross-sections of the central part of the 3D model within the target reservoir.

4. Geomechanic Model

During hydrocarbon production, the reservoir pressure declines, and the effective
stresses increase. Conversely, during CO2 injection, to utilize the reservoir pressure as
a tertiary oil recovery method (EOR) or for CO2 geological storage, there is an increase
in pore pressure, which causes a decrease in the effective stresses. This effective stress
principle was first proposed by Therzagi (1945) [25], which was later applied to rocks to
understand their ultimate strength and ductility [26].
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The change in stress within the reservoir and surrounding rocks can be expressed
with an equation for isotropic rocks as follows [27]:

σh =
ν

1 − ν
(σv − αP) +

[
E

1 − ν2

]
εh +

[
Eν

1 − ν2

]
εH (1)

where:

– σh and σv are the minimum horizontal and vertical stresses, respectively;
– α is the Biot’s coefficient;
– P is the pore pressure;
– ν is the Poisson’s ratio;
– E is the Young’s modulus;
– σh and εH are the strains in the direction of the minimum and maximum horizontal

stresses, respectively.

In geomechanic modelling, a set of 3D models of geomechanical parameters were
developed, and then, the boundary conditions were determined to calculate the stress field
and predict the geomechanical behaviour of the rock during the period of hydrocarbon
production and CO2 injection into the reservoir rock.

4.1. Modelling of Geomechanical Properties

To model the distribution of geomechanical properties in 3D space, the Young’s
modulus, Poisson’s ratio, unconfined compressive strength (UCS), and tensile strength
were modelled in 1D for 10 boreholes before they were modelled in the geological model
3D space.

4.1.1. 1D Modelling of Elastic and Strength Properties

Herein, the models of the static elastic properties of the rocks in 1D, including Young’s
modulus and Poisson’s ratio, were conducted using the well logs from 10 boreholes, the
results of laboratory measurements of the static Young’s modulus parameter, and the
Poisson’s ratio obtained from the core material from these boreholes. Based on the well
log data, the dynamic Young’s modulus and Poisson’s ratio were calculated, wherein the
relationships between the borehole velocity of the compressional vp, shear wave vs, and
density ρ were used as follows [28–30]:

vdyn = vp
2 − vs

2

2

(
vp

2 − vs
2
)

, (2)

Edyn = ρ vs
2
[(

3vp
2 − 4vs

2
)(

vp
2 − vs

2
)]

, (3)

where vdyn denotes the dynamic Poisson’s ratio, Edyn represents the dynamic Young’s
modulus, vp is the velocity of the compressional wave, vs is the velocity of the shear wave,
and ρ is the rock density.

The static equivalents of the elastic properties were determined by comparing the
calculated dynamic properties with the results of laboratory measurements of the static
elastic properties. The correlation coefficients were 0.640 and −0.588 for the Young’s
modulus and Poisson’s ratio, respectively.

To estimate the static uniaxial compressive strength in the profiles of the analysed
boreholes, the compressional wave velocity was compared with the results of uniaxial
compressive strength laboratory measurements, which produced a linear relationship with
a satisfactory correlation coefficient of 0.682.

Further, to estimate the static tensile strength, T, which was not measured on the core
material, we used a simple and well-known relationship proposed by Hoek (1966) [31]:

T =
UCS

10
. (4)
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As shown in Figure 6, the input data and developed 1D models of static elastic
parameters, including the Poisson’s ratio, Young’s modulus, and UCS (marked with con-
tinuous line), were calibrated with the results of their measured static equivalents (marked
with dots).

 

Figure 6. Graphic presentation of the input data and obtained 1D models of geomechanical parame-
ters: track: 1—measured depth, 2—mineralogical model, 3—stratigraphy, 4—The input data include
the compressional wave (vp), shear wave velocity (vs), density (RHOB), gamma ray (GR), 5—1D
model of static uniaxial compressive strength (UCS), static Poisson’s ratio (PR), and static Young’s
modulus (E).

4.1.2. 3D Modelling of Elastic and Strength Properties

The profiles of the static geomechanical parameters from the study area were scaled
up to obtain their average values along the boreholes with a defined vertical resolution
of the structural model. Then, they were subjected to a geostatistical analysis, which
included determining the degree of spatial correlation among the borehole data for each
geomechanical parameter.

While calculating the spatial distribution of the geomechanical parameters, the trun-
cated Gaussian simulation algorithm (TGS) with the Co-kriging option was employed,
thereby allowing us to use the 3D seismic data as secondary data. The advantage of this
approach is that it compensates for missing data and, therefore, unknown relationships,
especially in the horizontal direction. As a result, we obtained 3D models of the geome-
chanical parameters, including the Young’s modulus, Poisson’s ratio, and UCS, in the
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main dolomite reservoir interval, as shown in Figure 7A–C, respectively. Moreover, in
Figure 7D–F, the average values of the static Young’s modulus, Poisson’s ratio, and UCS in
the reservoir zone, respectively, are shown.

 

Figure 7. Visualisation of 3D distribution of (A) Young’s modulus, (B) Poisson’s ratio, and (C) unconfined compressive
strength (UCS), and the average values of the (D) Young’s modulus, (E) Poisson’s ratio, and (F) UCS.

The spatial distributions of these geomechanical properties exhibited typical relation-
ships, in which there was a negative correlation between the elastic parameters and a
positive correlation between the Young’s modulus and UCS. These relationships were also
observed in the distribution of the values of these parameters illustrated as histograms. The
3D distribution of the tensile strength was obtained in a similar manner as the 1D models,
wherein Hoek’s relationship with UCS was utilized. Other geomechanical parameters,
such as friction angle, angle of dilatation, and the Biot’s coefficient, were assigned based on
the typical values for appropriate lithologies listed in the literature [32–36]. The properties
used as an input in the geomechanic modelling, both as a result of the modelling procedure
and assumed based on the literature, are listed in Table 1.

4.2. Boundary Conditions

The boundary conditions applied to the model in order to define the initial stress for
the geomechanical simulation were determined as the global tectonic stresses (minimum
horizontal stress, σh, and maximum horizontal stress, σH) based on a recent investigation
of a tectonic stress field in Poland conducted by Jarosiński (2006) [37]. The characteristics
of the assumed stress field are listed in Table 2. Note that vertical stress, σv, is caused
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by gravity, and was thus determined using the overburden density (3D distribution of
rock density).

Table 1. Calculated and estimated values of petrophysical and geomechanical parameters in 3D model of the study area.

Parameter
[Unit]

Cenozoic
(Clay,
Sand,

Gravel)

Cretaceous
(Clayey
Shales)

Jurassic
(Sandy
Shales)

Triassic
(Sandstones)

Zechstein

Rock
Salt

Anhydrite
Reservoir

MAIN
Dolomite

Limestone
Rotliegend

(Underburden)

Young’s
modulus [GPa] 0.5 4 5.56 28.5 6.89 52.69 3D model 42.06 46.19

Poisson’s ratio
[-] 0.3 0.32 0.19 0.17 0.3 0.25 3D model 0.18 0.3

Density
[g/cm3] 3D model 3D model 3D model 3D model 3D

model 3D model 3D model 2.75 2.3

Biot’s
coefficient [-] 1 1 1 1 0 0.10 0.7 0.8 1

Porosity [%] 3D model 3D model 3D model 3D model 3D
model 3D model 3D model 2.99 4

Unconfined
compressive

strength (UCS)
[MPa]

2.8 48 56.98 50.7 27.33 90.3 3D model 14.93 50

Friction angle
[◦] 30 32 20 59 29.08 64 28.6 22.8 30

Dilatation
angle [◦] 0 0 0 0 0 0 0 0 0

Table 2. Characteristics of regional principal horizontal stresses in the neighbouring area based on
borehole breakouts (Jarosiński, 2006).

Stress Characteristic Parameter Assigned Value

Gradient of horizontal stress (σh) [MPa/m] 0.01707
Gradient of σH [MPa/m] 0.02134

Azimuth of σH [◦] 6

The developed 3D models of the geomechanical and petrophysical parameters were
used as inputs to the geomechanical simulation. These were run for seven time steps (2003,
2020, 2050, 2052, 2053, 2056, and 2100) over the course of the hydrocarbon field exploitation
and CO2 injection, which were defined by the distribution of the reservoir fluid pressure
developed in the reservoir fluid flow modelling. The calculated stress field reflecting the
geomechanical states of the analysed rocks at specific time steps were then used to evaluate
the tightness of the caprock, which could potentially leak the injected and stored CO2.

5. Dynamic Model

A dynamic model of the analysed structure was constructed using the developed
geological model and was supplemented with the following additional components:

– An initial distribution of reservoir fluids (oil and water) under hydrostatic conditions;
– Reservoir fluid transport properties (relative permeabilities);
– Reservoir fluid (oil) thermodynamic model.

5.1. Reservoir Fluid Distributions

The presence of three reservoir fluids (water, gas, and oil) was assumed in the simu-
lation model of the analysed reservoir. The water–oil contact was established at a depth
of 3280 m b.s.l., while the gas–oil contact was established at a depth of 3178 m b.s.l. The
J-Leverett function was used to generate the initial water saturation distributions that
matched those obtained from the geophysical measurements. This approach enabled us to
obtain the initial dynamic equilibrium by simultaneously reconstructing the water satu-
ration values in the wells. The J-Leverett function of water saturation, Sw, considers the
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dependence of capillary pressure, Pcow, on the parameters of the reservoir rock and has
the form:

J(Sw) =

√
k
φ

Pcow(Sw)

σowcos (θow)
, (5)

where k and φ denote the permeability and porosity of the reservoir rock, respectively, and
σow and θow are the interfacial tension at the oil–water interface and their contact angle,
respectively. The correct fit of the water saturation distributions in the wells was obtained
using the four-parameter J curve model as follows:

J =
(

A
Sn

r + B

)(
1 − Sp

r

)
, Sr =

Sw − Swc

1 − Swc
, (6)

where Swc is the connate water saturation, in which the correlation parameters were found
to be: A = 0.0094, B = 0.0657, n = 2, p = 10, and Swc = 0.0035, while σow = 64.65 dyne/cm
and θow = 0◦.

The water saturation distributions were adjusted for every well. As a result of this
analysis, it was found that the model correctly reproduced the water saturation variation
with depth in most wells. As a result, the average water saturation in the model generated
corresponds with high accuracy to the average water saturation generated using the
interpolation method in the geological model.

5.2. Transport Properties

In general, transport properties in porous media include various flow mechanisms
ranging from continuous flow of viscous type (Darcy flow) through slippage effects to
Knudsen and molecular diffusion. Similarly, thermodynamics associated with transport
phenomena may obey classical laws of locally equilibration state for large porosity systems
and follow non-equilibrium type for small porosity system where molecule collisions with
the walls of the system dominates over inter-particle ones. In contrast to low permeabil-
ity, low porosity rocks [38,39] (tight and shale formations), conventional rocks such as
dolomites included in the analysed case reveal standard viscous flow characterized by
permeability tensors and equilibrium thermodynamic variables like pressure drop and
shear stress. The other type of rocks in the analysed model refers to caprock anhydrite.
Although it is an extremally low permeability rock, its main feature used in this study
concerns the dependence of transport properties upon geomechanical state that was estab-
lished in terms of effective permeability [13]. Consequently, in order to model effects of
gas transport across the anhydrite caprock, a conventional approach was applied adopting
stress-dependent permeability of a single porosity micro-fractured system.

An important part of the transport described by permeabilities is played by relative
permeabilities of various reservoir fluids. Owing to the lack of direct measurements of the
relative permeability curves, kr, and reduced fluid saturation, Sr, for the analysed reservoir,
a power model was adopted according to the relationship: kr = (Sr)n, wherein reduced
saturation was determined as follows:

Sr =
S − Smin

Smax − Smin
, (7)

where Smin and Smax refer to the minimum and maximum available saturations, respectively.
The model used the following parameter values: for water (kr = krw, S = Sw): irreducible
water saturation Smin = Swcr = 0.0528, maximum water saturation, Smax = 1; for oil in the
oil–water system (with no gas kr = krow, S = So): Smin = Sorw = 0.4917, Smax = Somax =
1 − Swco = 0.9964; for oil in the oil–gas system (at connate water saturation, kr = krog,
S = So) Smin = Sorw + Swco, Smax = Somax; and for gas in the oil–gas/water–gas system
(kr = krg, S = Sg) Smin = Sgcr = 0.1, Smax = Sgmax = 1 − Swco = 0.9964. Both the exponent
of the relationship and the other parameters were adjusted during the model calibration
procedure.

279



Energies 2021, 14, 3065

5.3. Reservoir Fluid Model

As the simulation model of the analysed reservoir (structure) is compositional, a
thermodynamic model of the reservoir fluid (oil and gas) was constructed and calibrated
based on the Soave–Redlich–Kwong (SRK) equation of state (EoS) using a standard software
tool (PVTSim software, [40]). SRK equation of state is a conventional equation that relates
temperature, pressure and volume of fluid and uses two parameters taking into account
interaction of fluid molecules and their volumes. Those parameters are expressed in terms
of several physical quantities, such as critical pressure, temperature, and volume. Other
quantities include eccentricity factors [41], molar masses and boiling point temperatures.
All these quantities are well defined for single component fluids such as light hydrocarbons
(up to C6) and non-hydrocarbon components (N2, CO2, H2S). For heavier hydrocarbons
they are determined by empirical correlations with densities and molar masses [42]. In
order to effectively perform compositional reservoir simulations, the number of fluid
components is typically reduced by grouping or lumping the heavier ones. Effective
parameters of such pseudo-components are calculated as averages of the real components
with weights proportional to their concentrations and molar masses. In addition, the
equation of state for multicomponent mixtures includes interaction effects of different polar
molecules by so called mixing rules expressed via binary coefficients [43]. The viscosities
of gas and liquid phases of the analysed fluid were determined using Lohrenz–Bray–Clark
correlation [44] of viscosity and density and the results of the SRK equation of state for the
densities. The SRK equation of state with parameters described above is typically sufficient
to predict fluid properties. However, its results can be improved by the method of EoS
regression [45] to experimental data.

In the analysed case the original fluid model [46] included 25 components determined
by chromatographic analysis (gas phase components) and true boiling point analysis (liquid
phase components) that were subsequently grouped into eight effective components, as
summarized in Table 3.

Table 3. Composition of the reservoir fluid after component grouping.

Component % mol

N2 31.588
CO2 0.612
H2S 5.085
C1 19.353
C2 3.567

C3–C6 11.99
C7–C11 12.27

C12+ 15.5

The model was calibrated using the regression method to the following experimental
data: the pressure at the saturation point, constant mass expansion tests (relative volumes
of gas and liquid phases, effective compressibilities), differential depletion tests (oil and
gas formation volume factors, gas-in-oil solubility, oil density, gas z-factor, oil and gas
viscosities, gas gravity), separator tests (gas–oil ratio, gas gravity, oil formation volume
factor), and viscosity tests (oil viscosity).

The following regression parameters of the SRK EoS were used: critical temperatures
and pressures, eccentricity and ΩA factors of 2 grouped components (C7–C11, C12+)—the
complete set of the EoS parameters and their values are given in Tables 4 and 5. Additional
regression parameters were those of Lohrenz–Bray–Clark correlation coefficients—given in
Table 6.
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Table 4. Equation of state (EoS) parameters of the reservoir fluid model for the Soave–Redlich–Kwong (SRK) model.

Component

Critical
Temper-

ature
Tc [K]

Critical
Pressure
Pc [bar]

Eccentricity
Factor
ω

Parameter
ΩA

Parameter
ΩB

Molar
Mass

M

Boiling
Point
Tb [K]

Critical
Volume

Vc

Critical
Gas Com-
pressibil-
ity Factor

Zc

Parachor

N2 126.2 33.9 0.0400 0.4275 0.0866 28.0 77.4 0.090 0.2905 41.0
CO2 304.2 73.8 0.2250 0.4275 0.0866 44.0 194.7 0.094 0.2741 78.0
H2S 373.2 89.4 0.1000 0.4275 0.0866 34.1 213.5 0.099 0.2837 80.1
C1 190.6 46.0 0.0080 0.4275 0.0866 16.0 111.6 0.099 0.2874 77.3
C2 305.4 48.8 0.0098 0.4275 0.0866 30.1 184.6 0.148 0.2847 108.9

C3–C6 453.2 34.7 0.2315 0.4275 0.0866 65.4 296.9 0.299 0.2752 221.2
C7–C11 641.1 27.3 0.3182 0.4221 0.0866 120.6 418.2 0.631 0.3231 347.6

C12+ 784.1 17.3 0.4975 0.4221 0.0866 234.6 575.6 1.180 0.3135 626.1

Table 5. Fluid model binary coefficients for the Soave–Redlich–Kwong (SRK) equation of state
(EoS) model.

N2 CO2 H2S C1 C2 C3–C6 C7–C11 C12+

N2 - - - - - - - -
CO2 −0.0315 - - - - - - -
H2S 0.1696 0.0989 - - - - - -
C1 0.0278 0.1200 0.0800 - - - - -
C2 0.0407 0.1200 0.0852 0.0000 - - - -

C3–C6 0.0808 0.1200 0.0655 0.0000 0.0000 - - -
C7–C11 0.0928 0.1006 0.0006 0.0000 0.0000 0.0000 - -

C12+ 0.0928 0.1006 0.006 0.0000 0.0000 0.0000 0.0000 -

Table 6. Coefficients of the Lohrenz-Bray–Clark viscosity model.

a1 a2 a3 a4 a5

0.4703 −0.1017 0.0585 −0.0408 0.0093

6. Model Calibration

The model of the analysed reservoir was calibrated against the production data covering
16 years of operation with 11 producing wells. The data included daily oil, gas, and water
production rates from individual wells, bottom-hole pressures, and well test results.

6.1. Calibration Results

Model calibration involved modifying the following model parameters: global and
local petrophysical parameters (absolute and relative permeabilities and permeability
anisotropies), well productivity indices, and skin-effect coefficients. As a result, a significant
increase in the gas–oil-ratio (GOR) during operation was reproduced for wells C-1, A-1,
and A-4, which were located directly or in the vicinity of the primary gas cap (Figure 8),
and for the wells located relatively far away from the primary gas cap but influenced by
the formation of a secondary gas cap.

The necessity to accurately reproduce the measured bottom-hole pressures required a
linear characteristic of the relative gas permeability at the top zone of the structure, which
suggests the existence of micro-fractures in the reservoir. The critical oil saturation was
found to be consistent with the results obtained from the laboratory experiments regarding
oil displacement with water. Further, the permeability vertical-to-horizontal anisotropy
increased, which resulted in the correct depression in the production wells and reduced
the migration of the released gas to the top of the structure.

Acid treatments of wells C-1, C-2k, and A-4 were modelled by modifying the absolute
permeability and effective pore volume in their near-wellbore zones. To reproduce the
relatively high pressure difference measured between the C-1, C-2k, and C-11k wells, dete-
riorated petrophysical properties were introduced among these wells. A local reduction in
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the absolute permeability anisotropy near the A-11H and A-13k wells caused the simulated
results of the GOR to become closer to the observed values. In general, the productivity
indices and skin-effect coefficients of the wells were accordingly adjusted to the depressions
observed during the well tests.

Figure 8. 3D view of the model top layer of the original gas saturation.

Figures 9 and 10 present the total oil and gas production from the field as a result of the
calibrated simulation model versus the measured values, revealing that the model matched
the production data with high accuracy. At the well level, Figure 11 shows an example
of the adjustment quality of the bottom-hole pressures measured at a production well.
Meanwhile, as shown in Figure 12, good GOR fitting in an individual well was achieved.
Further, Figure 13 shows an example of the adjustments to the bottom-hole pressure
evolution reported during the well production test. Thus, the simulation results are in
good agreement with the measured values for all the available historical production data.

 

Figure 9. Total reservoir oil production.

 

Figure 10. Total reservoir gas production.
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Figure 11. Bottom-hole pressure variation at well A-7H.

 

Figure 12. Gas–oil ratio (GOR) variation at well A-7H.

 

Figure 13. Bottom-hole pressure variation at well A-4.

6.2. Model Characterisation after Calibration

After the calibration process, the simulation model of the analysed reservoir was
characterised by the following parameters: total area: 15 km × 10 km, the nature of the
model: single porosity and permeability, lateral dimensions: 376 blocks × 242 blocks, lateral
sizes of the blocks: 100 m × 100 m, layer structure: 15 layers, number of active blocks:
20,325, initial contact depths: oil–water: 3282 m b.s.l., gas–oil: 3178 m b.s.l., initial pressure:
430.2 bar (@ 3282 m b.s.l.), reservoir temperature (constant): 126.8 ◦C, total model pore
volume: 70.2 million m3, average values of basic parameters: porosity: 9.6%, horizontal
permeability: 34.91 mD, vertical permeability: 1.4 mD, and total thickness of a simulation
layer: 2.77 m.

7. Pressure Evolution

The dynamic flow model of the analysed reservoir was used to simulate the reservoir
behaviour during enhanced oil recovery with CO2 injection followed by exclusive CO2
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injection. Production rates of the oil producing wells were assumed at the nominal levels
provided by the reservoir operator. In addition, they were constrained by the minimum
well-head pressure, maximum water cut, maximum gas oil ratio, minimum economic
flow rate, and maximum allowable drawdown. Initially, CO2 injection was performed
using four wells (A-4, A-6H, C-1, and C-4), before injection expanded to other wells,
which were converted from producing wells after they ceased production. The injection
rates of individual wells were controlled by the total injection rate and well contributions
proportional to their injectivities. The injecting wells were constrained by the maximum
bottom-hole pressures not exceeding the formation fracturing pressure. The injection phase
lasted approximately 36 years. As a result of the simulation of this EOR/CO2 sequestration
project (called the basic scenario), all the significant quantities characterising the project
were obtained. Figure 14 shows the total oil production and average reservoir pressure
evolution during the project.

 

Figure 14. Basic scenario of oil production by enhanced oil recovery (EOR) with CO2 injection. Total
oil production, FOPT; and average reservoir pressure, FPR.

The contributions of individual wells to the reservoir oil production are shown in
Figure 15 in terms of their total oil production.

 

Figure 15. Basic scenario of oil production by enhanced oil recovery (EOR) with CO2 injection. Np is
the total oil production of individual wells.
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The quantitative characteristics of the CO2 injection process were expressed as the
total CO2 injection of the project and as the total CO2 injection of individual wells, as
shown in Figures 16 and 17, respectively.

 

Figure 16. Basic scenario of oil production by enhanced oil recovery (EOR) with CO2 injection. FGPT
is the total gas production, and FGIT is the total CO2 injection.

 

Figure 17. Basic scenario of oil production by enhanced oil recovery (EOR) with CO2 injection. Gin

denotes CO2 total injection of individual wells.

Figure 18 shows the effects of EOR with CO2 injection by comparing the total oil
production of this project with total oil production using the primary oil production
method. The incremental oil production exceeds 6.3 × 106 Sm3, which is equivalent to
approximately 130% of the primary production (4.8 × 106 Sm3).
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Figure 18. Comparison of primary production and EOR with CO2 injection. Total oil production, Np;
and average reservoir pressure, FPR.

The simulation results include pressure distributions across the analysed structure
extended model at various stages of the EOR/CO2 sequestration project, as shown in
Figure 19.

 

Figure 19. Example of pressure distribution in the analysed structure extended model. Only the
reservoir and overburden are shown.

To present a more detailed variation in the pressure distribution, pressure maps for
the top layer of the reservoir are shown in Figure 20 for various stages of the project.
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Figure 20. Pressure distributions at the reservoir top at various stages of the project.

8. Caprock Sealing Analysis

The migration of stored CO2 into the overlying strata is inhibited by the sealing
properties of very low permeability and high capillary forces, which prevent gas pene-
tration into the water-saturated caprock. The parameter governing this sealing ability is
the threshold pressure. If the value of the threshold caprock pressure exceeds that of the
gas, the caprock pores begin to be penetrated, ultimately leading to the development of
interconnected pathways for gas to escape upward [47]. This threshold pressure can be
measured using the method first proposed by Thomas et al. (1968) [48], which was later
modified using empirical models adopted for a specific lithology. In general, among the
different lithologies, anhydrites, carbonates, and shales have high threshold pressure and
low permeability, making them potentially good sealing rocks for gas storage.

In this study, to calculate the threshold pressure in the basal anhydrite (A2), a direct
sealing layer neighbouring the reservoir rock, we used the empirical relationship as follows:

Pth = a kb, (8)

where Pth is the threshold pressure, k is the permeability, a is the multiplication coefficient,
and b is the exponent. The coefficients a and b were developed by Ibrahim et al. (1970) [49],
who studied seven samples of anhydrites. The permeability in the history of reservoir
exploitation and forecasting of CO2 injection into the main dolomite reservoir rock was
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estimated based on the stress dependency on permeability, wherein the stress variation
was obtained using geomechanical simulations.

Numerous scientific investigations have revealed that both porosity and permeability
are affected by dominant loading conditions and the history of stresses within the sedimen-
tary basin. This relationship is widely known and well documented [13,50–52]. Based on
the laboratory permeability measurements performed by Morrow et al. (1984) for fault
gouges [53], Shi and Wang (1988) suggested that the power law describes the nonlinear
decline in permeability with increasing effective stress in the low-permeability rocks well
in the following form [50]:

k = k0

(
σ

σ0

)p
, (9)

where k denotes the permeability under effective stress σ, k0 is the initial permeability at
the initial effective stress σ0, and p is the material constant. Regarding effective stress, we
used the magnitude of the minimum horizontal stress as it is mostly responsible for the
decline in permeability in the mechanism of closing microcracks potentially present in the
anhydrite rocks.

As the data regarding the petrophysical characteristics of the Zechstein anhydrites in
Poland were not available, we used a typical value of permeability for anhydrites [54] and
the material constant p determined by Zivara et al. (2019) [13]. The results of geomechanical
simulations performed for the selected time steps provided the distribution of effective
stresses evolving throughout the CO2 injection operation. The calculated permeability was
then used to estimate the threshold pressure at selected time steps, ending approximately
80 years after the initial CO2 injection.

Table 7 lists the assumed values of initial permeability, material constant, and the other
coefficients employed for the threshold pressure calculation in the basal anhydrite (A2).

Table 7. Assumed values of parameters used in the calculation of permeability versus effective stress,
and coefficients for calculation of threshold pressure in the anhydrite caprock.

Parameter Assumed Value

Coefficient a (Equation (8)) [49] 2.6 × 10−7

Exponent b (Equation (8)) [49] −0.348
Initial permeability k0 [m2] (Equation (9)) [54] 9.6 × 10−21

Material parameter p (Equation (9)) [13] 0.6288

As shown in Figure 21, the evolution of pressure in the selected location at the top
of the reservoir Ca2 (red line) and in the basal anhydrite A2 (blue line) exhibit a negative
correlation between the magnitude of the minimum horizontal stress and reservoir pressure,
a positive relationship between the magnitude of the minimum horizontal stress and the
threshold pressure and the evolution of the threshold pressure (green line), and a pressure
step between the top of the reservoir and basal anhydrite (orange line).
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Figure 21. (A)—Pressure evolution in the top of the reservoir Ca2 (red line) and basal anhydrite A2 (blue line), (B)—
relationship between the magnitude of the minimum horizontal stress and reservoir pressure, (C)—relationship between
the magnitude of the minimum horizontal stress and threshold pressure, (D)—evolution of the threshold pressure (green
line) and pressure step between the top of the reservoir and basal anhydrite (orange line) during the history of exploitation
and injection of CO2 into the reservoir rock.

The spatial distributions of the pressure (A), magnitude of the minimum horizontal
stress (B), estimated permeability (C), and calculated threshold pressure (D) for the time
steps representing the end of hydrocarbon production (2020—left column), during the
process of CO2 injection (2056—middle column), and at the end of CO2 injection (2100—
right column) in the sealing anhydrite (A2) are shown in Figure 22.

These distributions show that the increase in pore pressure in the sealing rock along
with the injection of CO2 in the reservoir zone caused a very slight increase in effective
stress and, consequently, a small increase in the permeability, from 9.55 nD to 9.80 nD. This
change results in a small decrease in the threshold pressure, from 24.16 bar to 24.05 bar.
These changes are small and local, and the threshold pressure remains at a safe level of
approximately 24 bars. The most sensitive area is localised within the slope of the platform,
near injection wells B-4 and B-5. The increase in permeability (yellow-red colour) and
decline in threshold pressure (purple colour) were significant in this area. Another sensitive
zone is located in the deep-water zone near injection wells A1, A2, and A-4.
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Figure 22. Spatial distributions of: (A)—pore pressure, (B)—effective minimum horizontal stress (σh), (C)—permeability
(k), and (D)—threshold pressure in the sealing rock in the basal anhydrite (A2) at the end of hydrocarbons production (2020
year—left column), in the process on CO2 injection (2056 year—middle column), and at the end of CO2 injection (2100
year—right column).

The difference between the pressure in the top layer of the reservoir (Ca2) and the
sealing layer of the basal anhydrite (A2) shown in Figure 23 helped to determine where
additional CO2 can be injected without exceeding the threshold pressure in the anhydrite,
thereby lowering the risk of CO2 leakage.
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Figure 23. Distribution of pressure steps between the sealing anhydrite interval and the top of the
reservoir rock at the end of CO2 injection.

9. Gas Leakage Analysis

In addition to caprock sealing conditions, the quantitative studies of gas leakage
to the caprock were performed using the structure simulation model described above.
As the caprock maintains its sealing properties up to the determined threshold pressure,
the leakage occurs only when the pressure step across the caprock-reservoir boundary
exceeds the threshold pressure. In this section, the quantitative results of the leakage to
the caprock were determined for several scenarios, characterised by varying amounts
of injected/sequestrated CO2 as listed in Table 8. The varying amounts of total injec-
tion/sequestration were realised by the modifications of the well group injection rate. All
the other constraints were kept unchanged.

The progress of the CO2 injection process was presented in Figures 24 and 25 in terms
of time evolution for total CO2 injection and average reservoir pressure, respectively.

 

Figure 24. Total CO2 injections for various injection scenarios.
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Table 8. Total CO2 injection/sequestration capacity.

Scenario Total Injection/Sequestration Capacity [×109 SCm3]

Basic 12.01
P490 12.17
P500 12.26
P510 12.38
P520 12.43

 

Figure 25. Average reservoir pressures for various injection scenarios.

The detailed pressure distribution at the reservoir top revealed a pressure step across
the reservoir–caprock boundary exceeding the threshold pressure at several locations. As a
consequence, CO2 leaked from the reservoir to the overlying anhydrite layers. The effects
of this leakage process are shown in Figure 26 for each of the four scenarios considered.
The final (140 years after the injection finish) amounts of the total leakage and their value
as a fraction of injected CO2 are listed in Table 9.

 

Figure 26. Total CO2 leakage amounts to the reservoir caprock for various injection scenarios.
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Table 9. Total leakage of CO2 to the caprock.

Scenario No.
Total Leakage
[×106 SCm3]

Total Leakage as Fraction of Injected CO2

[%]

P490 0.98 0.0080
P500 1.20 0.0098
P510 1.39 0.0113
P520 1.59 0.0128

Although the CO2 leakage rate gradually decreased with time, it continued up to the
extended end of the simulation period (140 years of relaxation phase after the injection
finish). Note that the leaked CO2 accumulated in the bottom layer of the anhydrite horizon,
wherein a relatively small amount (2.5%) of CO2 reached the anhydrite top, as shown in
Figure 27.

 
Figure 27. Total CO2 accumulation at the anhydrite top for various injection scenarios.

The process of CO2 leakage from the reservoir to the caprock was very heterogeneous
because of the following:

– inhomogeneous reservoir rock properties,
– varying depths of the reservoir-caprock boundary,
– inhomogeneity of the CO2 injection process.

The detailed distributions of CO2 saturation at the end of the simulation period found
in the top layer of the reservoir and the three layers composing the anhydrite horizon are
shown in Figure 28 for the selected scenarios.

293



Energies 2021, 14, 3065

 

Figure 28. Reservoir fluid distribution at reservoir top and anhydrite caprock layers 94 years after injection. Scenario P520.

10. Summary and Conclusions

The studies described herein address the practical problem of geological structure
tightness for the purpose of CO2 sequestration applied to a geological structure to be as-
sessed as the potential site of a future sequestration project. The studies took the advantage
of advanced methods, realistic assumptions, and quantitative results of previous, general
studies to practically evaluate the operation of the real geological structure of a domestic
oil reservoir including the initial phase of enhanced oil recovery by CO2 injection and final
phase of CO2 sequestration.

In particular, we performed an analysis of the tightness of the basal anhydrite (A2),
which is the sealing layer for the hydrocarbon accumulation in the main dolomite formation
(Ca2). To this end, we used numerical methods that combined geomechanical and reservoir
fluid flow modelling. Based on a large set of data, geological, structural, and parametric
models were developed. To predict the reservoir and surrounding rock behaviour caused
by CO2 injection, dynamic flow and geomechanical models were constructed based on the
geological model supplemented by all the other required components. These models were
satisfactorily matched with the historical reservoir operation data. Then, the models were
used to forecast the reservoir behaviour (evolution of detailed pressure and fluid saturation
distributions) under the assumptions of an EOR project with CO2 injection followed by a
CO2 sequestration phase. The dynamic simulations were combined with the geomechanical
simulations using a two-way coupling procedure and utilising correlations between the
geomechanical state (stress and strain distribution) and transport properties of the reservoir
rock and caprock, including the threshold pressure at the reservoir–caprock boundary.

The results of the procedure determined the sequestration capacity of the structure.
In addition, the effects of CO2 leakage from the reservoir to the caprock were simulated
in cases where the reservoir pressure at the structure top (reservoir–caprock boundary)
exceeded the limits of the threshold pressure. The long-term simulations resulted in an
assessment of the total amount of CO2 leakage and its distribution within the caprock
horizon as a function of time for various total CO2 injection volumes above the sequestra-
tion capacity.
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Based on the simulation results, the following conclusions can be drawn:

(1) General conclusions:

– The method applied in the studies proves the necessity to employ an extended
model of the analysed structure, wherein the geomechanical and dynamical
simulations allow precise estimations of the threshold pressure and provide
information regarding critical locations at the reservoir–caprock boundary where
leakage could occur.

– The precise determination of the threshold pressure (with inhomogeneous distri-
bution across the reservoir–caprock boundary) and its evolution with time are
crucial factors for estimating the sequestration capacity of the structure.

– The following two correlations are key factors when the sealing properties of the
reservoir caprock boundary are evaluated:

• The correlation between the geomechanical state (stress field) and transport
properties (permeabilities) of the caprock;

• The correlation between the caprock permeability and threshold pressure at
the reservoir-caprock boundary.

(2) Conclusions specific to the analysed geological structure:

– The determined threshold pressure revealed the potential CO2 sequestration capac-
ity of the structure, showing that it could safely store approximately 12 × 109 Sm3

of gas.
– The relatively low (up to 3.6%) excess over the determined sequestration capacity

resulted in a very small total CO2 leakage (0.13‰ of the sequestrated volume) up
to approximately 100 years of relaxation phase after CO2 injection is complete.

– Most of the leaked CO2 accumulates in the bottom part of the caprock.
– The leakage process does not cease even at the end of the simulated (100 years)

relaxation phase.
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Abbreviations

SCm3 Standard cubic meter
εH The strains in the direction of the maximum horizontal stress
εh The strains in the direction of the minimum horizontal stress
p The material constant
A1D The lower Anhydrite of Werra cyclothem
A1G The upper Anhydrite of Werra cyclothem
A2 The basal Anhydrite of Stassfurt cyclothem
A2G Screening Anhydrite of Stassfurt cyclothem
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A3 The main Anhydrite of Leine cyclothem
A4D The lower Anhydrite of Aller cyclothem
A4G The upper Anhydrite of Aller cyclothem
Ca1 Zechstein limestone of Werra cyclothem
Ca2 The main Dolomite of Stassfurt cyclothem
E Young’s modulus
EOR Enhanced oil recovery method
FGIT Total CO2 injection
FGPT Total gas production
FOPT Total oil production
FPR Average reservoir pressure
FPR Average reservoir pressure
Gin Total CO2 injection of individual wells
GOR Gas to oil ratio
GR Natural Gamma radiation
I3 Salt clay of Leine cyclothem
k Permeability of the rock
k0 The initial permeability
M Molar mass
Na1 The oldest Halite of Werra cyclothem
Na2 Older Halite of Stassfurt cyclothem
Na4 The youngest Halite of Aller cyclothem
P Pore pressure
Pcow Capillary pressure
Pc Critical pressure
Pth The threshold pressure
PVT Pressure, volume and temperature
PZ2 Stassfurt cyclothem
PZ3 Leine cyclothem
PZ4 Aller cyclothem
Smax The maximum available saturations
Smin The minimum available saturations
SRK EoS Soave–Redlich–Kwong equation of state
Sw Water saturation
Swc The connate water saturation
T Tensile strength
Tb Boiling point
Tc Critical temperature
TGS Truncated Gaussian Simulation algorithm
UCS Uniaxial compressive strength
Vc Critical volume
vp Compressional wave velocity
vs Shear wave velocity
Zc Critical gas compressibility factor
α The Biot’s coefficient
θow Oil-water contact angle
ν Poisson’s ratio (PR)
ρ Rock density (RHOB)
σeff Effective stress
σH The maximum horizontal stress
σh The minimum horizontal stress
σv The vertical stress
σ0 Initial effective stress
σow Interfacial tension at the oil–water interface
ϕ Porosity of the rock
ω Eccentricity factor
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Gajewska, I.; et al. Budowa geologiczna niecki szczecińskiej i bloku Gorzowa. Inst. Geol. Czech Acad. Sci. 1979, 96, 178.
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