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Antonı́n Dvořák is a senior researcher and associate professor at the Institute of Research

and Applications of Fuzzy Modeling (University of Ostrava). He obtained his Ph.D. in Applied

Mathematics at the University of Ostrava in 2004. He is the author and co-author of more than

60 scientific papers. He co-authored the following book by V. Novák, I. Perfilieva, and A. Dvořák:
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Editorial

Preface to the Special Issue on “Fuzzy Natural Logic
in IFSA-EUSFLAT 2021”

Vilém Novák * and Antonín Dvořák

Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, 30. Dubna 22,
701 03 Ostrava, Czech Republic
* Correspondence: Vilem.Novak@osu.cz

In [1], we gave reasons to focus on one of the possible future directions of fuzzy
logic towards the concept of fuzzy natural logic (FNL). The concept of FNL continues
the program of fuzzy logic in a broader sense (FLb-logic) introduced in [2]. This theory
was established as a formal logic aiming at modeling natural human reasoning, which
necessarily proceeds in natural language. The goal is to make FNL a mathematical theory
being extension of the mathematical fuzzy logic. Its paradigm extends the classical concept
of natural logic suggested by Lakoff in [3]. According to him, natural logic is a collection of
terms and rules that come with natural language and that allows us to reason and argue in
it. Its goals can be characterized as follows:

• To express all concepts capable of being expressed in natural language,
• To characterize all the valid inferences that can be made in natural language,
• To mesh with adequate linguistic descriptions of all natural languages.

It is essential to employ meaning-postulates that do not vary from language to lan-
guage. In other words, all natural languages reflect ability of human mind to reason that
is common to all of us, and thus, its principles are independent on the use of the concrete
natural language. The concept of natural logic has been further developed by several other
authors (cf. [4,5] and others).

We argue that fuzzy set theory has the potential to be a good tool for modeling of
linguistic semantics because it provides a reasonable mathematical model of the vague-
ness phenomenon. This is important because, as argued by many authors (cf., e.g., [6]),
vagueness is an unavoidable feature of natural language semantics. The role of fuzzy sets
in modeling of linguistic semantics has been discussed already by L. A. Zadeh in many of
his papers since the very beginning (cf., e.g., [7–9]). Interesting is his concept of precisiated
natural language [10]. Its main idea is to develop a “reasonable working formalization of
the semantics of natural language without pretensions to capture it in detail and fineness.”
The goal is to provide an acceptable and applicable technical solution, i.e., to relax some of
the requirements of thorough linguistic analysis and, in line with the paradigm of Zadeh’s
precisiated natural language, to focus on smaller parts of natural language and try to
capture only their essential properties.

Therefore, following the definition of natural logic, we can define fuzzy natural logic
as a system of theories of mathematical fuzzy logic enabling us to model terms and rules
that come with natural language together with their inherent vagueness and allowing
us to reason and argue using tools developed in it. A necessary constituent of FNL is a
mathematical model of semantics of a specific part of natural language independent of a
concrete language.

The following are the main sources for the development of FNL:

• Results of classical linguistics.
• Logical analysis of concepts and semantics of natural language

Transparent Intensional Logic (P. Tichý [11], P. Materna [12]).
• Montague grammar [13].
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• Mathematical fuzzy logic, especially the higher order one called Fuzzy Type Theory
(FTT) [14].

The current constituents of FNL are:

• Theory of evaluative linguistic expressions (small, very small, medium, large, etc.).
• Theory of fuzzy and intermediate quantifiers (most, a lot of, few, many, etc.) and

generalized Aristotle’s syllogisms.
• Theory of fuzzy/linguistic IF-THEN rules and logical inference (Perception-based

Logical Deduction).

FNL is expected to contribute to the development of methods for construction of
models of systems and processes on the basis of expert knowledge expressed in genuine
natural language and to develop special algorithms making computer to “understand”
natural language and suggest a corresponding behavior. Let us remark that FNL has
already many interesting applications (cf. [15]).

There are five contributions in this Special Issue devoted to extended versions of the
papers presented in the conference “The 19th World Congress of the International Fuzzy
Systems Association and the 12th Conference of the European Society for Fuzzy Logic
and Technology jointly with the AGOP, IJCRS, and FQAS conferences” that took place
in Bratislava (Slovakia) from September 19 to September 24, 2021. These contributions
use various parts and concepts of FNL mentioned above and apply it to a wide range of
problems, theoretical as well as application-oriented.

A very important building block of FNL is the theory of evaluative linguistic expres-
sions. In [16], this theory is developed in an exciting direction from the perspective of
theoretical linguistics. The range of evaluative linguistic expressions is considerably broad-
ened to also contain verbs (“love” in ”I love you very much”), proper names (“Einstein” in
”Mark is an Einstein”), etc. Essential for this extension is the Fuzzy Property Grammar—the
topic of [17]. In this contribution, the Fuzzy Property Grammar permits to describe linguis-
tic complexity of a natural language and linguistic universality (presence of a grammatical
characteristics in all or most natural languages) as vague concepts. It allows, among other
things, to better understand similarities and differences between natural languages.

One of the important directions of FNL development is the study of intermediate quan-
tifiers and generalized syllogisms. In [18], the authors continue this research program by
studying syllogisms whose constituents (quantified expressions) can contain negated terms,
such as “most people who do not drink alcohol have healthy livers.” The validity of certain
forms of these syllogisms (related to the so-called graded Peterson’s cube of opposition) is
proved syntactically. Examples of syllogisms on finite models are also elaborated.

Paper [19] presents a more applied facet of FNL. It proposes a model for exploring
and extracting knowledge of auction frauds using IF-THEN rules (a crucial component of
FNL). An innovative fuzzy neural network model based on or-neurons using a t-conorm as
their underlying operation is presented in detail and compared with several state-of-art
neuro-fuzzy models. The proposed model shows its superiority by achieving more than
98% accuracy with fewer fuzzy rules and greater assertiveness than other models.

In [20], the authors study the so-called preimage problem in the context of F-transform:
how it is possible to describe the class of all functions mapped onto the same result of direct
F-transform. Note that F-transform is an important technique necessary in various kinds of
applications of FNL. The relationship between objects is determined by closeness (a weaker
concept than metric). The preimage problem is formulated using the language of matrix
calculus. The authors show that its solutions can be given in three different ways (using a
weighted arithmetic mean, any right inverse of the closeness matrix or any element of a
certain affine subspace). The study of this problem contributes to better understanding of
ill-posed problems frequent in machine learning.

We would like to cordially thank all authors, editors, anonymous referees and staff of
MDPI for contributing to the creation of this Special Issue.
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A Formal Analysis of Generalized Peterson’s Syllogisms
Related to Graded Peterson’s Cube

Karel Fiala 1,† and Petra Murinová 2,*,†
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2 Institute for Research and Application of Fuzzy Modeling, University of Ostrava,

702 00 Ostrava, Czech Republic
* Correspondence: petra.murinova@osu.cz
† These authors contributed equally to this work.

Abstract: This publication builds on previous publications in which we constructed syntactic proofs
of fuzzy Peterson’s syllogisms related to the graded square of opposition. The aim of the publication
is to be formally able to find syntactic proofs of fuzzy Peterson’s logical syllogisms with forms of
fuzzy intermediate quantifiers that design the graded Peterson’s cube of opposition.

Keywords: fuzzy Peterson’s syllogisms; fuzzy intermediate quantifiers; graded Peterson’s cube
of opposition

MSC: 03B16, 03B38, 03B50

1. Introduction

The article aims to follow up on the achieved results concerning the formal proofs of
fuzzy Peterson syllogisms.

The theory of syllogistic reasoning was investigated by several authors as a generaliza-
tion of classical Aristotelian syllogisms ([1–3]). Categorical syllogisms ([4,5]) consist of three
main parts: the major premise, the minor premise, and the conclusion. With the introduction of
the term “generalized quantifier“, which was proposed by Mostowski in [6], the study of
logical syllogisms expanded to a group of generalized logical syllogisms. Such syllogisms
include forms that contain different types of generalized quantifiers. One special group is
intermediate quantifiers. This topic started to be interesting for linguists and philosophers,
who laid a question of how to explain expressions that represent generalized quantifiers.

Peterson, in his book [7], is interested in the group of intermediate quantifiers which
lie between classical quantifiers. He first philosophically analyzed and explained the
meaning of intermediate quantifiers in terms of their position in the generalized square
of opposition. Furthermore, he continued the study of the group of generalized logical
syllogisms. Peterson’s enlargement was established on an idea to substitute a classical
quantifier with an intermediate one in the classical four figures, which returned in 105 new
valid intermediate syllogisms. A check of the validity of a group of logical syllogisms was
conducted using Venn diagrams, which was carried out by several authors [7–9]. Below,
we present an example of a non-trivial fuzzy intermediate syllogism as follows:

P1 : Almost all people do not have a plane.
P2 : Most people have a phone.
C : Some people who have a phone do not have a plane.

The work of authors who dealt with generalized quantifiers was followed by several
authors with the advent of the definition of a fuzzy set. Several authors followed up this
approach. They introduced several forms of logical syllogisms with fuzzy generalized
quantifiers. In 1985, L. Zadeh semantically interpreted a special group of fuzzy syllogisms

Mathematics 2022, 10, 906. https://doi.org/10.3390/math10060906 https://www.mdpi.com/journal/mathematics5
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with fuzzy intermediate quantifiers in both premises as well as in the conclusion. Below,
we present a very famous multiplicative chaining syllogism ([10]) as follows:

Q1 Y is M
Q2 M is X
(≥ Q1 ⊗Q2) Y are X.

As was explained by Zadeh, the expression ≥ Q1 ⊗Q2 in the conclusion of Zadeh’s
syllogism can be read as “at least Q1 ⊗Q2”.

Zadeh’s work was later extended and sophisticated by many authors. From the
point of view of fuzzy quantifiers, which are represented as intervals in Didier Duboise’s
approach in ([11,12]), Zadeh’s special syllogism is compared by M. Pereira-Fariña in [13].
In the publications, Dubois et al. work with quantifiers represented as crisp closed intervals
(more than a half = [0.5, 1], around five = [4, 6]). A typical example of such interval fuzzy
syllogism appears as follows:

P1: [5%, 10%] students have a job.
P2: [5%, 10%] students have a child.
C: [0%, 10%] students have a child and have a job.

Recall that a global overview of fuzzy generalized quantifiers and the various mecha-
nisms for defining these quantifiers can be found in [14].

M. Pereira-Fariña et al. follow, in the next publication [15], by interpreting logical
syllogisms with more premises. In this publication, a group of authors suggested a general
inference schema for syllogistic reasoning, which was proposed as the transformation of the
syllogistic reasoning study into an equivalent optimization problem.

The above-mentioned publications study and verify the validity of fuzzy syllogisms,
especially semantically. In [16], a mathematical definition of fuzzy intermediate quantifiers
based on the theory of evaluative linguistic expressions was proposed. The motivation,
fundamental assumptions, and formalization of this theory are described in detail in [17].
Later, in [18], we focused on the syntactic construction of proofs of all 105 basic fuzzy logical
syllogisms that relate to the graded Peterson’s square of opposition (see [19]). Typical
examples of natural language expressions contained in Peterson’s logical syllogisms are
as follows:

Most children like computer games.
Most cats like to sleep.

1.1. Application of Generalized Quantifiers

Generalized quantifiers offer several types of applications in economics, medicine,
heavy industry, biology, etc. Let us first mention applications related to a group of fuzzy
intermediate quantifiers which are represented by natural language expressions. One of
the interesting applications is time series prediction, which has its application mainly in
economic fields. In [20], the author proposed an interpretation, forecasting, and linguistic
characterization of time series. The result makes it possible to obtain information about
the data using natural language, which is much more understandable to the average user.
To illustrate the reader, we present an example of the linguistic interpretation of economic
time series, using natural language, as follows:

Most (many, few) analyzed time series stagnated recently, but their future trend is slightly
increasing [20].

Another area that is very closely related to this application is getting new infor-
mation from natural language data. Here, it is offered to use the theory of syllogistic
reasoning and to obtain new information from natural language data using valid forms
of syllogisms. Time series were also analyzed by a group of authors in [21]. There are
also publications of authors who are interested in the linguistic summarization of data.

6
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In [22], the authors introduced methods for using the linguistic database to summarize
natural data (see [23–26]). Later, these methods were improved in [27] and implemented
by Kasprzyk and Zadrożny [28]. Another linguistic summarization of process data was
proposed in [29].

Another area of application is the use of fuzzy association analysis and the use of
association rules to interpret natural language data. An algorithm for the interpretation of
biological data using fuzzy intermediate quantifiers was proposed in [30].

Most irises with both small-length sepals and petals have small-width petals.

1.2. Main Goals

The main idea of this publication is to work with terms that also contain negated terms
in the antecedent, and to study related valid fuzzy syllogisms. Typical examples of natural
language expressions which are related to the graded Peterson’s ([19]) cube are as follows:

Almost all students who do not like mathematics do not study technical fields.
Most people who do not drink alcohol have healthy livers.

A typical example of a syllogism with fuzzy intermediate quantifiers in both premises,
which is called non-trivial, reads as follows:

P1 : Almost all people who do sports have healthy lungs.
P2 : Almost all people who do sports do not have asthma.
C : Some people who do not have asthma have healthy lungs.

1.3. Application of New Forms of Fuzzy Intermediate Quantifiers

As mentioned above, there are several application areas where natural language
expressions are used. We also gave, in the previous section, specific examples of natural
language expressions that occur in both of the premises of syllogisms or are used to interpret
natural data. Therefore, the idea is offered to first find and formally prove the validity
of new forms of logical syllogisms, and further, to work on the use of these forms in the
areas of fuzzy association analysis, language interpretation, linguistic summarization, the
interpretation of time series, etc.

The paper is structured as follows: after the motivational introduction, the reader is
acquainted with mathematical theory in the methods section. The third section contains
important mathematical definitions of new forms of intermediate quantifiers. In this section,
we follow with proofs of new forms of logical syllogisms. The results section is closed
by concrete examples of valid forms of logical syllogisms. This section continues with a
discussion section, in which we summarize the results achieved. We conclude this paper
with a conclusion and statement of future directions.

2. Main Methods

The main approach of this section is to recall the theory of fuzzy natural logic (FNL)
that was designed based on the fuzzy type theory (FTT). FNL is a formal mathematical
theory that includes three theories:

• Theory of evaluative linguistic expressions (see [17]);
• Theory of fuzzy IF–THEN rules and approximate reasoning (see [31]);
• Theory of intermediate quantifiers, generalized syllogisms, and graded structures of

opposition (see [16,18]).

2.1. Fuzzy Type Theory

This section focuses on the reminder of the main symbols and of the fuzzy type theory.
We will not repeat all the details here; we refer readers to previous publications [17,32].

Let us recall, at this point, that the mathematical theory of fuzzy quantifiers was
proposed over the Łukasiewicz fuzzy type theory (Ł-FTT). The structure of truth values

7
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is represented by a linearly ordered MVΔΔΔ-algebra that is extended by the delta operation
(see [33,34]). A particular case is the standard Łukasiewicz MVΔ-algebra:

L = 〈[0, 1],∨,∧,⊗,→, 0, 1, Δ〉. (1)

The fundamental objects that represent the syntax of Ł-FTT are classical (cf. [35]).
We assume atomic types as follows: ε (elements) and o (truth values). General types are
marked by Greek letters α, β, . . .. A set of all types is marked by Types. The (meta-)symbol
“:= ” used below means “is defined by”.

The language contains of variables xα, . . ., special constants cα, . . . (α ∈ Types), symbol λ,
and parentheses. The connectives are fuzzy equality/equivalence ≡, conjunction ∧∧∧, implication
⇒⇒⇒, negation¬¬¬, strong conjunction &&&, strong disjunction∇∇∇, disjunction∨∨∨, and delta ΔΔΔ. The fuzzy
type theory is complete, i.e., a theory T is consistent iff it has a (Henkin) model (M |= T).
We sometimes use the equivalent notion: T  Ao iff T |= Ao.

The following special formulas are important in our theory below:

Υoo ≡ λzo · ¬¬¬ΔΔΔ(¬¬¬zo), (nonzero truth value)

Υ̂oo ≡ λzo · ¬¬¬ΔΔΔ(zo ∨∨∨¬¬¬zo). (general truth value)

Thus, M(Υ(Ao)) = 1 iff M(Ao) > 0, and M(Υ̂(Ao)) = 1 iff M(Ao) ∈ (0, 1) holds in
any model M.

2.2. Evaluative Linguistic Expressions

As we stated in the introduction, the formal definitions of fuzzy intermediate quanti-
fiers are based on evaluation linguistic expressions. In this subsection, we recall the theory
of evaluative linguistic expressions.

Evaluative linguistic expressions are special expressions of a natural language, for
example, very small, roughly medium, extremely large, very long, quite roughly, extremely rich,
etc. Their theory is the main part of the fuzzy natural logic. The evaluative language
expressions themselves play an important role in everyday human reasoning. We can find
them in a wide variety of areas, such as economics, decision making, and more.

The language JEv contains special symbols as follows:

• The constants �,⊥ ∈ Formo for truth and falsity, and † ∈ Formo for the middle
truth value;

• A special constant ∼∈ Form(oo)o for an additional fuzzy equality on the set of truth
values L;

• A set of special constants ννν, . . . ∈ Formoo for linguistic hedges. The JEv contains the
following special constants: {Ex, Si, Ve, ML, Ro, QR, VR}’ these denote the linguistic
hedges: (extremely, significantly, very, roughly, more or less, rather, quite roughly, and very
roughly, respectively);

• A set of triples of next constants (aννν, bννν, cννν), . . . ∈ Formo, where each hedge ννν is
uniquely connected with one triple of these constants.

The evaluative expressions are interpreted by special formulas Sm ∈ Formoo(oo) (small),
Me ∈ Formoo(oo) (medium), Bi ∈ Formoo(oo) (big), and Ze ∈ Formoo(oo) (zero) that can be
expanded by several linguistic hedges. Let us remind that a hedge, which is often an
adverb such as “extremely, significantly, very, roughly”, etc., is, in general, represented by
a formula ννν ∈ Formoo with specific properties. We proposed a formula Hedge ∈ Formo(oo).
Then, TEv  Hedge ννν means that ννν is a hedge. The other details can be found in [17]. The
formula TEv  Hedge ννν is provable for all ννν ∈ {Ex, Si, Ve, ML, Ro, QR, VR}. Furthermore,
evaluative linguistic expressions are represented by formulas:

Sm ννν, Me ννν, Bi ννν, Ze ννν ∈ Formoo, (2)

8
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where ννν is a hedge. We will also assume an empty hedge ν̄νν that is introduced in front of small,
medium, and big if no other hedge is assumed. A special hedge is ΔΔΔoo, that represents the
expression “utmost” and occurs below in the evaluative expression Bi ΔΔΔ.

Let ννν1,oo, ννν2,oo be two hedges, i.e., TEv  Hedge ννν1,oo and TEv  Hedge ννν2,oo. We propose
a relation of the partial ordering of hedges by:

�:= λpooλqoo · (∀zo)(pooz ⇒ qooz).

Lemma 1 ([17]). The following ordering of the specific hedges can be proved.

TEv  ΔΔΔ � Ex � Si � Ve � ν̄νν � ML � Ro � QR � VR. (3)

Theorem 1. If TIQ  ννν1 � ννν2, then

TIQ  (Bi ννν1)((μ(¬¬¬B))(¬¬¬B|z))⇒ (Bi ννν2)((μ(¬¬¬B))(¬¬¬B|z)).

Proof. Analogously to [16], this can be proved using Theorem 1(g), by replacing B with
its negation.

Evaluative expressions represent certain unspecified positions on a bounded linearly
ordered scale. It is important to introduce the context in which we characterize them. The
context can be characterized by a function w : L → N for some set N. We suggest the
context as a triple of numbers vL, vS, vR ∈ N, such that vL < vS < vR (the ordering on N is
induced by w). Then, x ∈ w iff x ∈ [vL, vS] ∪ [vS, vR]. Introducing the concept of context
means defining the concept of intension and extension. The intension of the evaluative
linguistic expressions (2) is equal to a simple fuzzy set in the support of truth values. For
further details, we recommend readers to the publication [17].

2.3. Fuzzy Measure

As discussed in our previous publications, the semantics of the intermediate quanti-
fiers assumes the idea of a “size” of a (fuzzy) set, which we describe by the concept of a
fuzzy measure. In our theory, we will assume the fuzzy measure below:

Definition 1. Let R ∈ Formo(oα)(oα) be a formula.

• A formula, μ ∈ Formo(oα)(oα), defined by:

μo(oα)(oα) := λzoα λxoα (Rzoα)xoα, (4)

represents a measure on fuzzy sets in the universe of type α ∈ Types if it has the following
properties:

1. ΔΔΔ(xoα ⊆ zoα)&&& ΔΔΔ(yoα ⊆ zoα)&&& ΔΔΔ(xoα ⊆ yoα)⇒⇒⇒ ((μzoα)xoα ⇒⇒⇒ (μzoα)yoα);
2. ΔΔΔ(xoα ⊆ zoα)⇒⇒⇒ ((μzoα)(zoα \ xoα) ≡ ¬¬¬(μzoα)xoα);
3. ΔΔΔ(xoα ⊆ yoα)&&& ΔΔΔ(xoα ⊆ zoα)&&& ΔΔΔ(yoα ⊆ zoα)⇒⇒⇒ ((μzoα)xoα ⇒⇒⇒ (μyoα)xoα).

The fuzzy measure introduced above is defined using three axioms—the axiom of
normality, the axiom of monotonicity, and the fuzzy measure is closed with respect to
the negation.

Example 1. A fuzzy measure on a finite universe can be introduced as follows. Let M be a finite
set and A, B ⊂∼ M be fuzzy sets. Put:

|A| = ∑
m∈Supp(A)

A(m). (5)

9
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Furthermore, let us define a function FR ∈ (LF (M))F (M) by:

FR(B)(A) =

⎧⎪⎪⎨⎪⎪⎩
1, if B = A = ∅,

min
{

1, |A||B|
}

, if Supp(A) ⊆ Supp(B),

0, otherwise

(6)

for all A, B ⊂∼ M.

2.4. Formal Definition of Intermediate Quantifiers

In this subsection, we will recall the modified definition of the fuzzy intermediate
quantifier, which is based on a special fuzzy set representing the cut of a fuzzy set (support).

In this article, we will work with the special fuzzy sets; they represent “cuts” of the
universe B.

Let y, z ∈ Formoα. The cut of y by z is the fuzzy set:

y|z ≡ λxα · zx &&& ΔΔΔ(Υ(zx)⇒⇒⇒ (yx ≡ zx)).

The following result can be proved.

Proposition 1. Let M be a model such that B = M(y) ⊂∼ Mα, Z = M(z) ⊂∼ Mα. Then, for
any m ∈ Mα:

M(y|z)(m) = (B|Z)(m) =

{
B(m), if B(m) = Z(m),
0 otherwise.

We can observe that the operation B|Z picks only those elements m ∈ Mα from the
support B, whose membership degree B(m) is equal to the degree Z(m); otherwise, it is
equal to zero ((B|Z)(m) = 0). If there is no such element, then the cut is represented by an
empty set (B|Z = ∅).

Definition 2. Let Ev be a formula representing an evaluative expression, x be a variable and A, B, z
be formulas. Then, either of the formulas:

(Q∀
Ev x)(B, A) ≡ (∃z)[(∀x)((B|z) x ⇒⇒⇒ Ax)∧∧∧ Ev((μB)(B|z))], (7)

(Q∃
Ev x)(B, A) ≡ (∃z)[(∃x)((B|z)x∧∧∧ Ax)∧∧∧ Ev((μB)(B|z))], (8)

construe the sentence:

“〈Quantifier〉 Bs are A”.

Below, we introduce several examples of fuzzy intermediate quantifiers which fulfill
the property of the monotonicity.

10



Mathematics 2022, 10, 906

A: All Bs are A := (Q∀
BiΔΔΔx)(B, A) ≡ (∀x)(Bx ⇒⇒⇒ Ax);

E: No Bs are A := (Q∀
BiΔΔΔx)(B,¬¬¬A) ≡ (∀x)(Bx ⇒⇒⇒¬¬¬Ax);

P: Almost all Bs are A := (Q∀
Bi Exx)(B, A);

B: Almost all Bs are not A := (Q∀
Bi Exx)(B,¬¬¬A);

T: Most Bs are A := (Q∀
Bi Vex)(B, A);

D: Most Bs are not A := (Q∀
Bi Vex)(B,¬¬¬A);

K: Many Bs are A := (Q∀
¬ Smx)(B, A);

G: Many Bs are not A := (Q∀
¬ Smx)(B,¬¬¬A);

F: A few (A little) Bs are A := (Q∀
Sm Six)(B, A);

V: A few (A little) Bs are not A := (Q∀
Sm Six)(B,¬¬¬A);

S: Several Bs are A := (Q∀
Sm Vex)(B, A);

Z: Several Bs are not A := (Q∀
Sm Vex)(B,¬¬¬A);

I: Some Bs are A := (Q∃
BiΔΔΔx)(B, A) ≡ (∃x)(Bx∧∧∧ Ax);

O: Some Bs are not A := (Q∃
BiΔΔΔx)(B,¬¬¬A) ≡ (∃x)(Bx∧∧∧¬¬¬Ax).

The mathematical definition of fuzzy intermediate quantifiers is extended by a formula
that ensures the non-emptiness of the fuzzy set representing the antecedent.

Definition 3 ([19]). Let Ev be a formula representing an evaluative expression, x be a variable,
and A, B, z be formulas. Then, either of the formulas:

(∗Q∀
Ev x)(B, A) ≡ (∃z)[(∀x)((B|z) x ⇒⇒⇒ Ax)&(∃x)(B|z)x∧∧∧ Ev((μB)(B|z))], (9)

(∗Q∃
Ev x)(B, A) ≡ (∃z)[(∃x)((B|z)x ∧∧∧ Ax)∇¬¬¬(∃x)(B|z)x ∧∧∧ Ev((μB)(B|z))], (10)

construe the sentence:

“〈*Quantifier〉 Bs are A”.

The corresponding quantifiers with presuppositions are denoted by *A, *E, *P, *B, *T,

*D, *K, *G, *F, *V, *S, *Z, *I, and *O.

3. Results

3.1. Formal Structure of Peterson’s Syllogisms Related to Peterson’s Square

Definition 4 (Syllogism). A syllogism is a triple 〈P1, P2, C〉 of three statements. P1, P2 are called
premises (P1 represents major, P2 is minor) and C denotes a conclusion. S (subject) is somewhere
in P2 and also as the first formula of the conclusion C, formula P (predicate) is somewhere in P1
and as the second formula of C; a formula that is not introduced in the conclusion C is called a
middle formula M.

Fuzzy syllogisms are obtained by replacing the classical quantifier (or classical quantifiers)
with the fuzzy quantifier (or fuzzy quantifiers).

Definition 5. Syllogism 〈P1, P2, C〉 is strongly valid in TIQ if TIQ  (P1&P2)⇒⇒⇒ C, or equiva-
lently, if TIQ  P1 ⇒⇒⇒ (P2 ⇒⇒⇒ C).

Naturally speaking, the syllogism is valid if the Łukasiewicz conjunction of the degrees
of both premises is less than or equal to the value of the conclusion.

11
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Since we assume one middle formula, we can therefore consider four possible figures,
which will arise according to the position of the middle formula.

Definition 6. Let Q1, Q2, Q3 be fuzzy quantifiers and M, P, S ∈ Formoα be formulas. Let M be a
middle formula, S be a subject, and P be a predicate. Then, we distinguish four corresponding figures:

Figure I

Q1 M are P
Q2 S are M
Q3 S are P

Figure II

Q1 P are M
Q2 S are M
Q3 S are P

Figure III

Q1 M are P
Q2 M are S
Q3 S are P

Figure IV

Q1 P are M
Q2 M are S
Q3 S are P

For demonstration, we present an overview of the valid Peterson’s logical syllogisms
of Figure I, which were formally proved in [18]. We can observe that the main role plays
the property of the monotonicity.

Theorem 2 ([18]). The following syllogisms are strongly valid in TIQ:

AAA
AAP APP
AAT APT ATT
AAK APK ATK AKK
AAF APF ATF AKF AFF
AAS APS ATS AKS AFS ASS

A(*A)I A(*P)I A(*T)I A(*K)I A(*F)I A(*S)I AII

Below, we present an example of valid logical syllogism AKK-I with the fuzzy inter-
mediate quantifiers.

All cows are herbivores.
Many animals on the farm are cows.
Many animals on the farm are herbivores.

We follow with the negative syllogisms of Figure I.

Theorem 3 ([18]). The following syllogisms are strongly valid in TIQ:

EAE
EAB EPB
EAD EPD ETD
EAG EPG ETG EKG
EAV EPV ETV EKV EFV
EAZ EPZ ETZ EKZ EFZ ESZ

E(*A)O E(*P)O E(*T)O E(*K)O E(*F)O E(*S)O EIO

At this point, we will not present other figures and their valid syllogisms. We refer
readers to publications in which we have addressed the formal construction of mathematical
proofs of all of Peterson’s syllogisms (see [18]).

3.2. New Forms of Fuzzy Intermediate Quantifiers Related to Graded Peterson’s Cube

Below, we introduce the mathematical definitions of intermediate quantifiers, which
form a graded Peterson’s cube of opposition (see Figure A2).

Definition 7 (New forms of fuzzy intermediate quantifiers). Let Ev be a formula representing
an evaluative expression, x be a variable, and A, B, z be formulas. Then, for either of the formulas:

(Q∀
Ev x)(¬¬¬B,¬¬¬A) ≡ (∃z)[(∀x)((¬¬¬B|z) x ⇒⇒⇒¬¬¬Ax)∧∧∧ Ev((μ(¬¬¬B))(¬¬¬B|z))], (11)

(Q∃
Ev x)(¬¬¬B,¬¬¬A) ≡ (∃z)[(∃x)((¬¬¬B|z)x∧∧∧¬¬¬Ax)∧∧∧ Ev((μ(¬¬¬B))(¬¬¬B|z))], (12)

12
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either of the quantifiers (11) or (12) construes the sentence

“〈quantifier〉 not Bs are not A”.

Below, we introduce the list of several forms of fuzzy intermediate quantifiers.

a: All ¬¬¬Bs are not A := (Q∀
BiΔΔΔx)(¬¬¬B,¬¬¬A) ≡ (∀x)(¬¬¬Bx ⇒⇒⇒¬¬¬Ax);

e: No ¬¬¬Bs are not A := (Q∀
BiΔΔΔx)(¬¬¬B, A) ≡ (∀x)(¬¬¬Bx ⇒⇒⇒ Ax);

p: Almost all ¬¬¬Bs are not A := (Q∀
Bi Exx)(¬¬¬B,¬¬¬A);

b: Almost all ¬¬¬Bs are A := (Q∀
Bi Exx)(¬¬¬B, A);

t: Most ¬¬¬Bs are not A := (Q∀
Bi Vex)(¬¬¬B,¬¬¬A);

d: Most ¬¬¬Bs are A := (Q∀
Bi Vex)(¬¬¬B, A);

k: Many ¬¬¬Bs are not A := (Q∀
¬ Smx)(¬¬¬B,¬¬¬A);

g: Many ¬¬¬Bs are A := (Q∀
¬ Smx)(¬¬¬B, A);

f: A few (A little) ¬¬¬Bs are not A := (Q∀
Sm Six)(¬¬¬B,¬¬¬A);

v: A few (A little) ¬¬¬Bs are A := (Q∀
Sm Six)(¬¬¬B, A);

s: Several ¬¬¬Bs are not A := (Q∀
Sm Vex)(¬¬¬B,¬¬¬A);

z: Several ¬¬¬Bs are A := (Q∀
Sm Vex)(¬¬¬B, A)

i: Some ¬¬¬Bs are not A := (Q∃
BiΔΔΔx)(¬¬¬B,¬¬¬A) ≡ (∃x)(¬¬¬Bx∧∧∧¬¬¬Ax);

o: Some ¬¬¬Bs are A := (Q∃
BiΔΔΔx)(¬¬¬B, A) ≡ (∃x)(¬¬¬Bx∧∧∧ Ax).

If the presupposition is needed, we will denote the corresponding quantifiers by *a,

*e, *p, *b, *t, *d, *k, *g, *f, *v, *s, *z, *i, and *o

Just as the theorem represents the monotonicity of the quantifiers that form Peter-
son’s square of opposition, we can also prove the monotonic behavior for new forms
of quantifiers.

Theorem 4. The set of implications below is provable in Ł-FTT:

1. TIQ  a ⇒⇒⇒ p, TIQ  p ⇒⇒⇒ t, TIQ  t ⇒⇒⇒ k,
TIQ  k ⇒⇒⇒ f, TIQ  f ⇒⇒⇒ s, TIQ  s ⇒⇒⇒ i;

2. TIQ  e ⇒⇒⇒ b, TIQ  b ⇒⇒⇒ d, TIQ  d ⇒⇒⇒ g,
TIQ  g ⇒⇒⇒ v, TIQ  v ⇒⇒⇒ z, TIQ  z ⇒⇒⇒ o.

Proof. We will show the proof of TIQ  p ⇒ t. We know that:

TIQ  (∀x)((¬¬¬B|z) x ⇒⇒⇒¬¬¬Ax)⇒ (∀x)((¬¬¬B|z) x ⇒⇒⇒¬¬¬Ax). (13)

By Lemma 1, we know that Ex � Ve and, therefore, from Theorem 1 and from (13),
we obtain:

TIQ  [(∀x)((¬¬¬B|z) x ⇒⇒⇒¬¬¬Ax)∧∧∧ BiEx((μ(¬¬¬B))(¬¬¬B|z))]⇒
⇒ [(∀x)((¬¬¬B|z) x ⇒⇒⇒¬¬¬Ax)∧∧∧ BiVe((μ(¬¬¬B))(¬¬¬B|z))].
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Then, by generalization (∀z) and the properties of the quantifiers, we obtain

TIQ  (∃z)[(∀x)((¬¬¬B|z) x ⇒⇒⇒¬¬¬Ax)∧∧∧ BiEx((μ(¬¬¬B))(¬¬¬B|z))]⇒
⇒ (∃z)[(∀x)((¬¬¬B|z) x ⇒⇒⇒¬¬¬Ax)∧∧∧ BiVe((μ(¬¬¬B))(¬¬¬B|z))].

This proof is analogous to the proof of TIQ  P ⇒ T - we only replace each formula in
the proof by its negation. The monotonicity of fuzzy intermediate quantifiers is ensured
by the monotonicity of evaluative linguistic expressions. The other proofs of implications
are similar to the proof of Theorem A2; we only replace each formula in the proof with
its negation.

There are valid forms of examples of logical syllogisms with new forms of fuzzy inter-
mediate quantifiers related to a graded Peterson’s cube of opposition (see Appendix A).

g: Many animals which are not mammals are fish.
A: All dolphins are mammals.
o: Some animals which are not dolphins are fish.

g: Many diseases which are not lethal are virus diseases.
E: All virus diseases can not be cured by antibiotics.
i: Some diseases which can not be cured by antibiotics are not lethal diseases.

3.3. Valid Forms Related to Second Face

First, the reader is reminded of the valid syllogisms of the first figure that are related to
the second face of the graded Peterson’s cube of opposition. It is not necessary to construct
mathematical proofs, because the validity of syllogisms can be verified very easily by
replacing individual formulas with their negations.

Theorem 5. The following syllogisms are strongly valid in TIQ:

aaa
aap app
aat apt att
aak apk atk akk
aaf apf atf akf aff
aas aps ats aks afs ass

a(*a)i a(*p)i a(*t)i a(*k)i a(*f)i a(*s)i aii

Proof. Analogously to Theorem 2, this can be proved by replacing each formula with its
negation.

Theorem 6. The following syllogisms are strongly valid in TIQ:

eae
eab epb
ead epd etd
eag epg etg ekg
eav epv etv ekv efv
eaz epz etz ekz efz esz

e(*a)o e(*p)o e(*t)o e(*k)o e(*f)o e(*s)o eio

Proof. Analogously to Theorem 3, this can be proved by replacing each formula by its
negation.

Similarly, we can verify the validity of other forms of logical syllogisms of the other
figures. We will not repeat other figures at this point.
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3.4. New Forms of Figure I

In the previous part of this paper, we showed strongly valid syllogisms of the first
face and strongly valid syllogisms of the second face. Another goal of the publication is to
verify the validity of logical syllogisms that describe the relationship between the first face
and the second face in a graded Peterson’s cube of opposition.

Firstly we prove a strong validity of the following syllogisms by concrete syntacti-
cal proofs.

Theorem 7. Syllogisms aEE-I, aBB-I, aDD-I, aGG-I, aVV-I, aZZ-I, and aOO-I are strongly
valid in TIQ.

Proof. Let us assume the syllogism as follows:

aEE-I:
(∀x)(¬¬¬Mx ⇒⇒⇒¬¬¬Px)
(∀x)(Sx ⇒⇒⇒¬¬¬Mx)
(∀x)(Sx ⇒⇒⇒¬¬¬Px).

We know that:

TIQ  (¬¬¬Mx ⇒⇒⇒¬¬¬Px)⇒⇒⇒ ((Sx ⇒⇒⇒¬¬¬Mx)⇒⇒⇒ (Sx ⇒⇒⇒¬¬¬Px)).

By the rule of generalization of (∀x) and using the properties of the quantifiers,
we have:

TIQ  (∀x)(¬¬¬Mx ⇒⇒⇒¬¬¬Px)⇒⇒⇒ ((∀x)(Sx ⇒⇒⇒¬¬¬Mx)⇒⇒⇒ (∀x)(Sx ⇒⇒⇒¬¬¬Px)).

Proof. Let us assume the syllogism as follows:

aOO-I:
(∀x)(¬¬¬Mx ⇒⇒⇒¬¬¬Px)
(∃x)(Sx∧∧∧¬¬¬Mx)
(∃x)(Sx∧∧∧¬¬¬Px).

We know that:

TIQ  (¬¬¬Mx ⇒⇒⇒¬¬¬Px)⇒⇒⇒ ((Sx∧∧∧¬¬¬Mx)⇒⇒⇒ (Sx∧∧∧¬¬¬Px)).

By the rule of generalization (∀x) and using the properties of the quantifiers, we have:

TIQ  (∀x)(¬¬¬Mx ⇒⇒⇒¬¬¬Px)⇒⇒⇒ ((∃x)(Sx∧∧∧¬¬¬Mx)⇒⇒⇒ (∃x)(Sx∧∧∧¬¬¬Px)).

Proof. Let us assume the syllogism as follows:

aBB-I:
(∀x)(¬¬¬Mx ⇒⇒⇒¬¬¬Px)
(∃z)[(∀x)((S|z)x ⇒⇒⇒¬¬¬Mx)∧∧∧ (BiEx)((μS)(S|z))]
(∃z)[(∀x)((S|z)x ⇒⇒⇒¬¬¬Px)∧∧∧ (BiEx)((μS)(S|z))].

Let us denote, by Ev := (BiEx)((μS)(S|z)).
We know that:

TIQ  (¬¬¬Mx ⇒⇒⇒¬¬¬Px)⇒⇒⇒ (
((S|z)x ⇒⇒⇒¬¬¬Mx)⇒⇒⇒ ((S|z)x ⇒⇒⇒¬¬¬Px)

)
.

By the rule of generalization (∀x) and using the properties of the quantifiers, we have:

TIQ  (∀x)(¬¬¬Mx ⇒⇒⇒¬¬¬Px)⇒⇒⇒ (
(∀x)((S|z)x ⇒⇒⇒¬¬¬Mx)⇒⇒⇒ ((∀x)(S|z)x ⇒⇒⇒¬¬¬Px)

)
.
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By Ł-FTT properties, we have the provable formula as follows:

TIQ  (∀x)(¬¬¬Mx ⇒⇒⇒¬¬¬Px)⇒⇒⇒
⇒⇒⇒ (

[(∀x)((S|z)x ⇒⇒⇒¬¬¬Mx)∧∧∧ Ev]⇒⇒⇒ [(∀x)((S|z)x ⇒⇒⇒¬¬¬Px)∧∧∧ Ev]
)
.

Using the generalization rule for (∀z) and by the properties of the quantifiers we
know that:

TIQ  (∀x)(¬¬¬Mx ⇒⇒⇒¬¬¬Px)⇒⇒⇒
⇒⇒⇒ (

(∃z)[(∀x)((S|z)x ⇒⇒⇒¬¬¬Mx)∧∧∧ Ev]⇒⇒⇒ (∃z)[(∀x)((S|z)x ⇒⇒⇒¬¬¬Px)∧∧∧ Ev]
)
.

By putting Ev := (BiEx)((μS)(S|z)), we obtain the strong validity of aBB-I. If we
denote Ev := (BiVe)((μS)(S|z)), we obtain the strong validity of aDD-I. If we put Ev :=
(¬Sm)((μS)(S|z)), we have the strong validity of syllogism aGG-I. By denoting Ev :=
(SmSi)((μS)(S|z)), we obtain the strong validity of syllogism aVV-I. Finally, if we denote
Ev := (SmVe)((μS)(S|z)), we conclude that the syllogism aZZ-I is strongly valid.

From these strongly valid syllogisms, we can obtain other strongly valid syllogisms by
using monotonicity. Below, we continue with other forms of valid syllogisms of Figure I.

Theorem 8. Let syllogisms aEE-I, aBB-I, aDD-I, aGG-I, aVV-I, aZZ-I, aOO-I be strongly valid
in TIQ. Then, the following syllogisms are strongly valid in TIQ:

aEE
aEB aBB
aED aBD aDD
aEG aBG aDG aGG
aEV aBV aDV aGV aVV
aEZ aBZ aDZ aGZ aVZ aZZ

a(*E)O a(*B)O a(*D)O a(*G)O a(*V)O a(*Z)O aOO

Proof. From strongly valid syllogism aEE-I (Theorem 7) and from monotonicity (Theo-
rem A2) by transitivity, we prove the strong validity of syllogisms in the first column. We
prove the strong validity of syllogisms in other columns analogously.

Theorem 9. Syllogisms Aee-I, Abb-I, Add-I, Agg-I Avv-I, Azz-I, Aoo-I are strongly valid
in TIQ.

Proof. Analogously to the proof of Theorem 7, this can be proved by replacing each formula
by its negation.

Theorem 10. Let syllogisms Aee-I, Abb-I, Add-I, Agg-I, Avv-I, Azz-I, and Aoo-I be strongly
valid in TIQ. Then, the following syllogisms are strongly valid in TIQ:

Aee
Aeb Abb
Aed Abd Add
Aeg Abg Adg Agg
Aev Abv Adv Agv Avv
Aez Abz Adz Agz Avz Azz

A(*e)o A(*b)o A(*d)o A(*g)o A(*v)o A(*z)o Aoo

Proof. This can be proved by monotonicity (Theorem 4) similarly to Theorem 8.

In other constructions, we will assume a selected group of valid syllogisms (these
proofs can be obtained similarly as in Theorem 7), from which we will verify the validity of
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other forms of syllogisms, especially with the help of monotonicity. In Theorem 11 and in
Theorem 12, we present other strongly valid syllogisms of Figure I.

Theorem 11. Let syllogisms Eea-I, Ebp-I, Edt-I, Egk-I, Evf-I, Ezs-I, and Eoi-I be strongly valid
in TIQ. Then, the following syllogisms are strongly valid in TIQ:

Eea
Eep Ebp
Eet Ebt Edt
Eek Ebk Edk Egk
Eef Ebf Edf Egf Evf
Ees Ebs Eds Egs Evs Ezs

E(*e)i E(*b)i E(*d)i E(*g)i E(*v)i E(*z)i Eoi

Proof. This can be proved by monotonicity (Theorem 4), similarly to Theorem 8.

Theorem 12. Let syllogisms eEA-I, eBP-I, eDT-I, eGK-I, eVF-I, eZS-I, and eOI-I be strongly
valid in TIQ. Then, the following syllogisms are strongly valid in TIQ:

eEA
eEP eBP
eET eBT eDT
eEK eBK eDK eGK
eEF eBF eDF eGF eVF
eES eBS eDS eGS eVS eZS

e(*E)I e(*B)I e(*D)I e(*G)I e(*V)I e(*Z)I eOI

Proof. This can be proved by monotonicity (Theorem A2), analogously to Theorem 8.

We can prove other strongly valid syllogisms using the following proposition, which
shows the relationship of the sub-alterns between the first and second squares of opposition.

Proposition 2 ([19]). The following is provable:

(a) TIQ  A ⇒⇒⇒ i;
(b) TIQ  E ⇒⇒⇒ o;
(c) TIQ  a ⇒⇒⇒ I;
(d) TIQ  e ⇒⇒⇒ O.

Theorem 13. Let syllogisms AAA-I, aaa-I, EAE-I, eae-I, Aee-I, aEE-I, Eea-I, and eEA-I be
strongly valid in TIQ. Then, the following syllogisms are strongly valid in TIQ: (*A)Ai-I (*a)aI-I,
(*E)Ao-I, (*e)aO-I, (*A)eO-I, (*a)Eo-I, (*E)eI-I, and (*e)Ei-I.

Proof. This can be proved by transitivity and by Proposition 2.

Theorem 14. Syllogisms oAo-I, iAi-I, oeI-I, ieO-I, IEo-I, OEi-I, IaI-I, and OaO-I are strongly
valid in TIQ.

Proof. Let us assume the syllogism as follows:

oAo-I:
(∃x)(¬¬¬Mx∧∧∧ Px)
(∀x)(Sx ⇒⇒⇒ Mx)
(∃x)(¬¬¬Sx∧∧∧ Px).

We know that:
TIQ  (Sx ⇒⇒⇒ Mx)⇒⇒⇒ (¬¬¬Mx ⇒⇒⇒¬¬¬Sx).
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We also know that:

TIQ  (¬¬¬Mx ⇒⇒⇒¬¬¬Sx)⇒⇒⇒ ((¬¬¬Mx∧∧∧ Px)⇒⇒⇒ (¬¬¬Sx∧∧∧ Px)).

By transitivity, we obtain:

TIQ  (Sx ⇒⇒⇒ Mx)⇒⇒⇒ ((¬¬¬Mx∧∧∧ Px)⇒⇒⇒ (¬¬¬Sx∧∧∧ Px)).

By the rule of generalization for (∀x) and using the properties of the quantifiers,
we have:

TIQ  (∀x)(Sx ⇒⇒⇒ Mx)⇒⇒⇒ ((∃x)(¬¬¬Mx∧∧∧ Px)⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px)).

By adjunction, we obtain:

TIQ  ((∃x)(¬¬¬Mx∧∧∧ Px)&(∀x)(Sx ⇒⇒⇒ Mx))⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px).

The strong validity of syllogism OaO-I can be proven analogously, by replacing
each formula with its negation. The strong validity of other syllogisms can be proven
similarly.

Theorem 15. Let syllogisms oAo-I, iAi-I, oeI-I, ieO-I, IEo-I, OEi-I, IaI-I, and OaO-I be
strongly valid in TIQ. Then, the following syllogisms are strongly valid in TIQ:

(*e)Ao (*E)aO (*a)Ai (*A)aI (*e)eI (*E)Ei (*a)eO (*A)Eo
(*b)Ao (*B)aO (*p)Ai (*P)aI (*b)eI (*B)Ei (*p)eO (*P)Eo
(*d)Ao (*D)aO (*t)Ai (*T)aI (*d)eI (*D)Ei (*t)eO (*T)Eo
(*g)Ao (*G)aO (*k)Ai (*K)aI (*g)eI (*G)Ei (*k)eO (*K)Eo
(*v)Ao (*V)aO (*f)Ai (*F)aI (*v)eI (*V)Ei (*f)eO (*F)Eo
(*z)Ao (*Z)aO (*s)Ai (*S)aI (*z)eI (*Z)Ei (*s)eO (*S)Eo

oAo OaO iAi IaI oeI OEi ieO IEo

Proof. By monotonicity (Theorem 4) and the strongly valid syllogism oAo-I, we prove, by
transitivity, the strong validity of the syllogisms in the first column. We prove the other
syllogisms in the other columns analogously by monotonicity (Theorems A2 and 4).

3.5. New Forms of Figure II

Figure II is similar to Figure I, so we will not present concrete syntactical proofs of
syllogisms. The syllogisms can be proved similarly to Theorems 7 and 14.

Theorem 16. Let syllogisms aAA-II, aPP-II, aTT-II, aKK-II, aFF-II, aSS-II, and aII-II be
strongly valid in TIQ. Then, the following syllogisms are strongly valid in TIQ:

aAA
aAP aPP
aAT aPT aTT
aAK aPK aTK aKK
aAF aPF aTF aKF aFF
aAS aPS aTS aKS aFS aSS

a(*A)I a(*P)I a(*T)I a(*K)I a(*F)I a(*S)I aII

Proof. This can be proved by monotonicity (Theorem A2), similarly to Theorem 8.

Theorem 17. Let syllogisms Aaa-II, App-II, Att-II, Akk-II, Aff-II, Ass-II, and Aii-II be strongly
valid in TIQ. Then, the following syllogisms are strongly valid in TIQ:
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Aaa
Aap App
Aat Apt Att
Aak Apk Atk Akk
Aaf Apf Atf Akf Aff
Aas Aps Ats Aks Afs Ass

A(*a)i A(*p)i A(*t)i A(*k)i A(*f)i A(*s)i Aii

Proof. This can be proved by monotonicity (Theorem 4), similarly to Theorem 8.

Theorem 18. Let syllogisms eEA-II, eBP-II, eDT-II, eGK-II, eVF-II, eZS-II, and eOI-II be
strongly valid in TIQ. Then, the following syllogisms are strongly valid in TIQ:

eEA
eEP eBP
eET eBT eDT
eEK eBK eDK eGK
eEF eBF eDF eGF eVF
eES eBS eDS eGS eVS eZS

e(*E)I e(*B)I e(*D)I e(*G)I e(*V)I e(*Z)I eOI

Proof. This can be proved by monotonicity (Theorem A2), similarly to Theorem 8.

Theorem 19. Let syllogisms Eea-II, Ebp-II, Edt-II, Egk-II, Evf-II, Ezs-II, and Eoi-II be strongly
valid in TIQ. Then, the following syllogisms are strongly valid in TIQ:

Eea
Eep Ebp
Eet Ebt Edt
Eek Ebk Edk Egk
Eef Ebf Edf Egf Evf
Ees Ebs Eds Egs Evs Ezs

E(*e)i E(*b)i E(*d)i E(*g)i E(*v)i E(*z)i Eoi

Proof. This can be proved by monotonicity (Theorem 4), similarly to Theorem 8.

Theorem 20. Let syllogisms EAE-II, eae-II, AEE-II, aee-II, aAA-II, Aaa-II, Eea-II, and eEA-II
be strongly valid in TIQ. Then, the following syllogisms are strongly valid in TIQ: (*E)Ao-II,
(*e)aO-II, (*A)Eo-II, (*a)eO-II, (*a)Ai-II, (*A)aI-II, (*E)eI-II, and (*e)Ei-II.

Proof. This can be proved by transitivity and by Proposition 2.

Theorem 21. Let syllogisms OAo-II, oaO-II, IEo-II, ieO-II, OeI-II, oEi-II, IaI-II, and iAi-II be
strongly valid in TIQ. Then, the following syllogisms are strongly valid in TIQ:

(*E)Ao (*e)aO (*A)Eo (*a)eO (*E)eI (*e)Ei (*a)Ai (*A)aI
(*B)Ao (*b)aO (*P)Eo (*p)eO (*B)eI (*b)Ei (*p)Ai (*P)aI
(*D)Ao (*d)aO (*T)Eo (*t)eO (*D)eI (*d)Ei (*t)Ai (*T)aI
(*G)Ao (*g)aO (*K)Eo (*k)eO (*G)eI (*g)Ei (*k)Ai (*K)aI
(*V)Ao (*v)aO (*F)Eo (*f)eO (*V)eI (*v)Ei (*f)Ai (*F)aI
(*Z)Ao (*z)aO (*S)Eo (*s)eO (*Z)eI (*z)Ei (*s)Ai (*S)aI
OAo oaO IEo ieO OeI oEi iAi IaI

Proof. This can be proved by monotonicity (Theorems A2 and 4), analogously to
Theorem 15.
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Theorem 22. Syllogisms (*A)Ai-II, (*a)aI-II, (*E)Ei-II, (*e)eI-II, (*e)Ao-II, (*E)aO-II, (*A)eO-
II, and (*a)Eo-II are strongly valid in TIQ.

Proof. Let us assume the syllogism as follows:

(*A)Ai-II:
(∀x)(Px ⇒⇒⇒ Mx)&(∃x)(¬¬¬Mx)
(∀x)(Sx ⇒⇒⇒ Mx)
(∃x)(¬¬¬Sx∧∧∧¬¬¬Px).

We know that:
TIQ  (Sx ⇒⇒⇒ Mx)⇒⇒⇒ (¬¬¬Mx ⇒⇒⇒¬¬¬Sx). (14)

We know that:
TIQ  (Px ⇒⇒⇒ Mx)⇒⇒⇒ (¬¬¬Mx ⇒⇒⇒¬¬¬Px). (15)

We also know that:

TIQ  (¬¬¬Mx ⇒⇒⇒¬¬¬Sx)⇒⇒⇒ (
(¬¬¬Mx ⇒⇒⇒¬¬¬Px)⇒⇒⇒ (¬¬¬Mx ⇒⇒⇒ (¬¬¬Sx∧∧∧¬¬¬Px))

)
. (16)

By the application of transitivity on (14) and (16), we obtain:

TIQ  (Sx ⇒⇒⇒ Mx)⇒⇒⇒ (
(¬¬¬Mx ⇒⇒⇒¬¬¬Px)⇒⇒⇒ (¬¬¬Mx ⇒⇒⇒ (¬¬¬Sx∧∧∧¬¬¬Px))

)
.

By adjunction, we obtain:

TIQ  (¬¬¬Mx ⇒⇒⇒¬¬¬Px)⇒⇒⇒ (
(Sx ⇒⇒⇒ Mx)⇒⇒⇒ (¬¬¬Mx ⇒⇒⇒ (¬¬¬Sx∧∧∧¬¬¬Px))

)
. (17)

By the application of transitivity on (15) and (17), we obtain:

TIQ  (Px ⇒⇒⇒ Mx)⇒⇒⇒ (
(Sx ⇒⇒⇒ Mx)⇒⇒⇒ (¬¬¬Mx ⇒⇒⇒ (¬¬¬Sx∧∧∧¬¬¬Px))

)
.

By generalization (∀x) and the properties of the quantifiers, we obtain:

TIQ  (∀x)(Px ⇒⇒⇒ Mx)⇒⇒⇒ (
(∀x)(Sx ⇒⇒⇒ Mx)⇒⇒⇒ ((∃x)¬¬¬Mx ⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧¬¬¬Px))

)
.

The strong validity of other fuzzy logical syllogisms can be verified similarly.

3.6. New Forms of Figure III

Firstly, we will show some syntactical proofs of syllogisms on this Figure.

Theorem 23. Syllogisms AOo-III, *(PG)o-III, *(TD)o-III, *(KB)o-III, and IEo-III are strongly
valid in TIQ.

Proof. Let us assume the syllogism as follows:

AOo-III:
(∀x)(Mx ⇒⇒⇒ Px)
(∃x)(Mx∧∧∧¬¬¬Sx)
(∃x)(¬¬¬Sx∧∧∧ Px).

We know that:

TIQ  (Mx ⇒⇒⇒ Px)⇒⇒⇒ ((Mx∧∧∧¬¬¬Sx)⇒⇒⇒ (¬¬¬Sx∧∧∧ Px)).

Analogously, as in previous proofs, using the properties of the quantifiers, we obtain:

TIQ  (∀x)(Mx ⇒⇒⇒ Px)⇒⇒⇒ ((∃x)(Mx∧∧∧¬¬¬Sx)⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px)).

Proof. Let us assume the syllogism as follows:
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IEo-III:
(∃x)(Mx∧∧∧ Px)
(∀x)(Mx ⇒⇒⇒¬¬¬Sx)
(∃x)(¬¬¬Sx∧∧∧ Px).

We know that:

TIQ  (Mx ⇒⇒⇒¬¬¬Sx)⇒⇒⇒ ((Mx∧∧∧ Px)⇒⇒⇒ (¬¬¬Sx∧∧∧ Px)).

Using the generalization of (∀x) and by the logical properties of the quantifiers,
we have:

TIQ  (∀x)(Mx ⇒⇒⇒¬¬¬Sx)⇒⇒⇒ ((∃x)(Mx∧∧∧ Px)⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px)).

By adjunction, we obtain:

TIQ  (∃x)(Mx∧∧∧ Px)⇒⇒⇒ ((∀x)(Mx ⇒⇒⇒¬¬¬Sx)⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px)).

Proof. Let us assume the syllogism as follows:

PGo-III:
(∃z)[(∀x)((M|z)x ⇒⇒⇒ Px)∧∧∧ (BiEx)((μM)(M|z))]
(∃z′)[(∀x)((M|z′)x ⇒⇒⇒¬¬¬Sx)∧∧∧ (¬¬¬Sm)((μM)(M|z′))]
(∃x)(¬¬¬Sx∧∧∧ Px).

We know that:

TIQ  ((M|z)x ⇒⇒⇒ Px)⇒⇒⇒
⇒⇒⇒ (

((M|z′)x ⇒⇒⇒¬¬¬Sx)⇒⇒⇒ (((M|z)x&(M|z′)x)⇒⇒⇒ (¬¬¬Sx∧∧∧ Px))
)
.

By generalization (∀x) and the properties of the quantifiers, we obtain:

TIQ  (∀x)((M|z)x ⇒⇒⇒ Px)⇒⇒⇒
⇒⇒⇒ (

(∀x)((M|z′)x ⇒⇒⇒¬¬¬Sx)⇒⇒⇒ ((∃x)((M|z)x&(M|z′)x)⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px))
)
.

By using the property of Łukasiewicz logic, we obtain:

TIQ  [(∀x)((M|z)x ⇒⇒⇒ Px)∧∧∧ Ev]⇒⇒⇒
⇒⇒⇒ (

(∀x)((M|z′)x ⇒⇒⇒¬¬¬Sx)⇒⇒⇒ ((∃x)((M|z)x&(M|z′)x)⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px))
)
.

By adjunction and the property of Łukasiewicz logic, we obtain:

TIQ  [(∀x)((M|z′)x ⇒⇒⇒¬¬¬Sx)∧∧∧ Ev′]⇒⇒⇒
⇒⇒⇒ (

[(∀x)((M|z)x ⇒⇒⇒ Px)∧∧∧ Ev]⇒⇒⇒ ((∃x)((M|z)x&(M|z′)x)⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px))
)
.

By adjunction, we obtain:

TIQ  ([(∀x)((M|z)x ⇒⇒⇒ Px)∧∧∧ Ev]&[(∀x)((M|z′)x ⇒⇒⇒¬¬¬Sx)∧∧∧ Ev′]&
&(∃x)((M|z)x&(M|z′)x)

)⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px).

By generalization (∀z), (∀z′), and the properties of the quantifiers, we obtain:

TIQ  (∃z)(∃z′)
(
[(∀x)((M|z)x ⇒⇒⇒ Px)∧∧∧ Ev]&[(∀x)((M|z′)x ⇒⇒⇒¬¬¬Sx)∧∧∧ Ev′]&

&(∃x)((M|z)x&(M|z′)x)
)⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px).

If we put Ev := (BiEx)((μM)(M|z)) and Ev′ := (¬Sm)((μM)(M|z′)), we obtain
the strong validity of syllogism *(PG)o-III. If we put Ev := (BiVe)((μM)(M|z)) and
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Ev′ := (BiVe)((μM)(M|z′)), we obtain the strong validity of syllogism *(TD)o-III. If
we put Ev := (¬Sm)((μM)(M|z)) and Ev′ := (BiEx)((μM)(M|z′)), we obtain the strong
validity of syllogism *(KB)o-III.

Theorem 24. Let syllogisms AOo-III, *(PG)o-III, *(TD)o-III, *(KB)o-III, and IEo-III be strongly
valid in TIQ. Then, the following syllogisms are strongly valid in TIQ:

(*A)Eo (*P)Eo (*T)Eo (*K)Eo (*F)Eo (*S)Eo IEo
A(*B)o *(PB)o *(TB)o *(KB)o
A(*D)o *(PD)o *(TD)o
A(*G)o *(PG)o
A(*V)o
A(*Z)o
AOo

Proof. From the strongly valid logical syllogism AOo-III, and using the monotonicity (The-
orem A2), we prove the strong validity of the syllogisms in the first column by transitivity.
From the strongly valid syllogism IEo-III, and by monotonicity (Theorem A2), we can verify
the strong validity of the syllogisms in the first row by transitivity. Analogously, using the
strongly valid syllogism *(PG)o-III and by monotonicity (Theorem A2), we can verify the
strong validity of the syllogisms in the second column by transitivity. The syllogisms in the
third and the fourth column can be proven analogously.

Theorem 25. Syllogisms aoO-III, *(pg)O-III, *(td)O-III, *(kb)O-III, and ieO-III are strongly
valid in TIQ.

Proof. This can be proven analogously to the proof of Theorem 23, by replacing each
formula with its negation.

Theorem 26. Let syllogisms aoO-III, *(pg)O-III, *(td)O-III, *(kb)O-III, and ieO-III be strongly
valid in TIQ. Then, the following syllogisms are strongly valid in TIQ:

(*a)eO (*p)eO (*t)eO (*k)eO (*f)eO (*s)eO ieO
a(*b)O *(pb)O *(tb)O *(kb)O
a(*d)O *(pd)O *(td)O
a(*g)O *(pg)O
a(*v)O
a(*z)O

aoO

Proof. This can be proven by monotonicity (Theorem 4), similarly to Theorem 24.

Next, we will consider the strong validity of some syllogisms without concrete proofs.
These proofs are similar to the proofs in Theorem 23.

Theorem 27. Let syllogisms EOi-III, *(BG)i-III, *(DD)i-III, *(GB)i-III, and OEi-III be strongly
valid in TIQ. Then, the following syllogisms are strongly valid in TIQ:

E(*E)i (*B)Ei (*D)Ei (*G)Ei (*V)Ei (*Z)Ei OEi
E(*B)i *(BB)i *(DB)i *(GB)i
E(*D)i *(BD)i *(DD)i
E(*G)i *(BG)i
E(*V)i
E(*Z)i
EOi

Proof. This can be proven by monotonicity (Theorem A2), similarly to Theorem 24.
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Theorem 28. Let syllogisms oeI-III, *(gb)I-III, *(dd)I-III, *(bg)I-III, and eoI-III be strongly
valid in TIQ. Then, the following syllogisms are strongly valid in TIQ:

e(*e)I (*b)eI (*d)eI (*g)eI (*v)eI (*z)eI oeI
e(*b)I *(bb)I *(db)I *(gb)I
e(*d)I *(bd)I *(dd)I
e(*g)I *(bg)I
e(*v)I
e(*z)I

eoI

Proof. This can be proven by monotonicity (Theorem 4), similarly to Theorem 24.

The following syllogisms are also strongly valid in Figure III.

Theorem 29. Let syllogisms eAe-III, EaE-III, aAa-III, AaA-III, eEA-III, Eea-III, aEE-III, and
Aee-III be strongly valid in TIQ. Then, the following syllogisms are strongly valid in TIQ:

eAe EaE aAa AaA eEA Eea aEE Aee
eAb EaB aAp AaP eEP Eep aEB Aeb
eAd EaD aAt AaT eET Eet aED Aed
eAg EaG aAk AaK eEK Eek aEG Aeg
eAv EaV aAf AaF eEF Eef aEV Aev
eAz EaZ aAs AaS eES Ees aEZ Aez

e(*A)o E(*a)O a(*A)i A(*a)I e(*E)I E(*e)i a(*E)O A(*e)o

Proof. From the strongly valid syllogism eAe-III, and from monotonicity (Theorem 4),
we can prove, by transitivity, the strong validity of the syllogisms in the first column.
Analogously, from monotonicity (Theorems A2 and 4), we can prove the strong validity of
the syllogisms in the other columns.

Theorem 30. Let syllogisms eAe-III, EaE-III, aAa-III, AaA-III, eEA-III, Eea-III, aEE-III, and
Aee-III be strongly valid in TIQ. Then, the following syllogisms are strongly valid in TIQ: (*e)AO-
III, (*E)ao-III, (*a)AI-III, (*A)ai-III, (*e)Ei-III, (*E)eI-III, (*a)Eo-III, and (*A)eO-III.

Proof. This can be proven by transitivity and by Proposition 2.

3.7. New Forms of Figure IV

Firstly, we show a proof of the strongly valid syllogisms of this figure.

Theorem 31. Syllogisms aII-IV, Aii-IV, EOi-IV, eoI-IV, aOo-IV, and AoO-IV are strongly valid
in TIQ.

Proof. Let us assume the syllogism as follows:

aII-IV:
(∀x)(¬¬¬Px ⇒⇒⇒¬¬¬Mx)
(∃x)(Mx∧∧∧ Sx)
(∃x)(Sx∧∧∧ Px).

We know that:
TIQ  (¬¬¬Px ⇒⇒⇒¬¬¬Mx)⇒⇒⇒ (Mx ⇒⇒⇒ Px). (18)

We also know that:

TIQ  (Mx ⇒⇒⇒ Px)⇒⇒⇒ ((Mx∧∧∧ Sx)⇒⇒⇒ (Sx∧∧∧ Px)). (19)
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By the application of transitivity on (18) and (19), we obtain:

TIQ  (¬¬¬Px ⇒⇒⇒¬¬¬Mx)⇒⇒⇒ ((Mx∧∧∧ Sx)⇒⇒⇒ (Sx∧∧∧ Px)).

By generalization (∀x) and quatifier properties, we obtain:

TIQ  (∀x)(¬¬¬Px ⇒⇒⇒¬¬¬Mx)⇒⇒⇒ ((∃x)(Mx∧∧∧ Sx)⇒⇒⇒ (∃x)(Sx∧∧∧ Px)).

The strong validity of other syllogisms can be proven similarly.

Theorem 32. Let syllogisms aII-IV, Aii-IV, EOi-IV, eoI-IV, aOo-IV, and AoO-IV be strongly
valid in TIQ. Then, the following syllogisms are strongly valid in TIQ:

a(*A)I A(*a)i E(*E)i e(*e)I a(*E)o A(*e)O
a(*P)I A(*p)i E(*B)i e(*b)I a(*B)o A(*b)O
a(*T)I A(*t)i E(*D)i e(*d)I a(*D)o A(*d)O
a(*K)I A(*k)i E(*G)i e(*g)I a(*G)o A(*g)O
a(*F)I A(*f)i E(*V)i e(*v)I a(*V)o A(*v)O
a(*S)I A(*s)i E(*Z)i e(*z)I a(*Z)o A(*z)O

aII Aii EOi eoI aOo AoO

Proof. From the strongly valid syllogism aII-IV, and from monotonicity (Theorem A2),
we prove the strongly valid syllogisms in the first column by transitivity. We can prove
the syllogisms in the other columns analogously by using monotonicity (Theorem A2,
Theorem 4).

We will consider the strong validity of some syllogisms without concrete proofs. These
proofs are similar to the previous proofs in this article.

Theorem 33. Let syllogisms AAa-IV, aaA-IV, eAe-IV, EaE-IV, eEA-IV, and Eea-IV be strongly
valid in TIQ. Then, the following syllogisms are strongly valid in TIQ:

AAa aaA eAe EaE eEA Eea
AAp aaP eAb EaB eEP Eep
AAt aaT eAd EaD eET Eet
AAk aaK eAg EaG eEK Eek
AAf aaF eAv EaV eEF Eef
AAs aaS eAz EaZ eES Ees

A(*A)i a(*a)I e(*A)o E(*a)O e(*E)I E(*e)i

Proof. From the strongly valid syllogism AAa-IV and monotonicity (Theorem 4), we prove,
by transitivity, the strongly valid syllogism in the first column. Similarly, we can prove
the strong validity of the syllogisms in the other columns by monotonicity (Theorems A2
and 4).

Theorem 34. Let syllogisms eAe-IV, EaE-IV, eEA-IV, and Eea-IV be strongly valid in TIQ. Then,
the following syllogisms are strongly valid in TIQ: (*e)AO-IV, (*E)ao-IV, (*e)Ei-IV, and (*E)eI-IV.

Proof. This can be proven by transitivity and by Proposition 2.

Theorem 35. Let syllogisms oAO-IV, Oao-IV, oEi-IV, OeI-IV, IEo-IV, and ieO-IV be strongly
valid in TIQ. Then, the following syllogisms are strongly valid in TIQ:
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(*e)AO (*E)ao (*e)Ei (*E)eI (*A)Eo (*a)eO
(*b)AO (*B)ao (*b)Ei (*B)eI (*P)Eo (*p)eO
(*d)AO (*D)ao (*d)Ei (*D)eI (*T)Eo (*t)eO
(*g)AO (*G)ao (*g)Ei (*G)eI (*K)Eo (*k)eO
(*v)AO (*V)ao (*v)Ei (*V)eI (*F)Eo (*f)eO
(*z)AO (*Z)ao (*z)Ei (*Z)eI (*S)Eo (*s)eO

oAO Oao oEi OeI IEo ieO

Proof. From the strongly valid syllogism oAO-IV and monotonicity (Theorem 4), we prove
the strongly valid syllogisms in the first column by transitivity. The syllogisms in the other
columns can be proven similarly, by using monotonicity (Theorems A2 and 4).

3.8. Examples of Logical Syllogisms in Finite Model

The model theory deals with the relation between syntax and semantics. In finite model
theory, an interpretation is restricted to finite structures which have finite universes. In our
examples, the models are restricted to finite universes—the universe in the first example
consists of six elements and the universe in the second example consists of eight elements.

Below, we introduce several examples of new forms of logical syllogisms. We will show
examples of valid syllogisms in the simple model with the finite set Mε of elements. Details of
the constructed model can be found in [16]. The built model is M = 〈(Mα,=α)α∈Types,LΔ〉,
where Mo = [0, 1] is based on the standard Łukasiewicz MVΔ-algebra. The Łukasiewicz
biresiduation ↔ represents the fuzzy equality =o. The logical implication is represented by
the Łukasiewicz residuation →.

We will assume the example of the fuzzy measure which was proposed in Section 2.3
by Equation (6). For model M, it holds true that M |= TIQ. The syllogism in model M is
valid if

M(P1)⊗M(P2) ≤M(C).

3.8.1. Example of Valid Syllogism of Figure III

Let us assume the following syllogism:

AOo:
P1 : All flu are viral diseases.
P2 : Some flu are not diseases transmittable to humans
C Some diseases which are not transmittable to humans are viral diseases.

We assume the frame which is described in the previous subsection. Let Mε be a set of
diseases. We consider six diseases U = {u1, u2, u3, u4, u5, u6}. We interpret the formulas in
the considered model as follows: Let Fluoε be the formula “flu”, with the interpretation
M(Fluoε) = F ⊂∼ Mε defined by

F = {0.3/u1, 0.8/u2, 0.4/u3, 0.7/u4, 0.4/u5, 0.5/u6}.

Let Viroε be the formula “viral diseases”, with the interpretation M(Viroε) = V ⊂∼ Mε

defined by
V = {0.8/u1, 0.2/u2, 0.3/u3, 0.9/u4, 0.7/u5, 0.6/u6}.

Let Tranoε be the formula “diseases transmittable to humans”, with the interpretation
M(Tranoε) = T ⊂∼ Mε defined by

T = {0.2/u1, 0.1/u2, 0.7/u3, 0.3/u4, 0.1/u5, 0.6/u6}.

Let Ntranoε be the formula “diseases not transmittable to humans”, with the interpre-
tation M(Ntranoε) = ¬T ⊂∼ Mε defined by

¬T = {0.8/u1, 0.9/u2, 0.3/u3, 0.7/u4, 0.9/u5, 0.4/u6}.
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Major premise: “All flu are viral diseases” is the formula:

Q∀
BiΔΔΔ(Fluoε, Viroε) := (∀xε)(Fluoε(xε)⇒⇒⇒ Viroε(xε)),

which is interpreted by:

M(Q∀
BiΔΔΔ(Fluoε, Viroε)) =

∧
m∈Mε

(M(Fluoε(m))→M(Viroε(m))) = 0.4. (20)

Minor premise: “Some flu are not diseases transmittable to humans” is the formula:

Q∃
BiΔΔΔ(Fluoε, Ntranoε) := (∃xε)(Fluoε(xε)∧∧∧Ntranoε(xε)),

which is interpreted by:

M(Q∃
BiΔΔΔ(Fluoε, Ntranoε)) =

∨
m∈Mε

(M(Fluoε(m)) ∧M(Ntranoε(m))) = 0.8. (21)

Conclusion: “Some diseases which are not transmittable to humans are viral diseases”
is the formula:

Q∃
BiΔΔΔ(Ntranoε, Viroε) := (∃xε)(Ntranoε(xε)∧∧∧Viroε(xε)),

which is interpreted by:

M(Q∃
BiΔΔΔ(Ntranoε, Viroε)) =

∨
m∈Mε

(M(Ntranoε(m)) ∧M(Viroε(m))) = 0.8. (22)

From (20)–(22), we can see that the condition of validity in our model is satisfied
because M(P1)⊗M(P2) = 0.4⊗ 0.8 = 0.2 ≤M(C) = 0.8.

3.8.2. Example of Valid Syllogism of Figure IV

(*g)Ei:
P1: Many diseases which are not lethal are virus diseases.
P2: All virus diseases can not be cured by antibiotics.
P3: Some diseases which can not be cured by antibiotics are not lethal diseases.

We suppose the same frame and the fuzzy measure as in the previous example. Let Mε

be a set of diseases. We consider eight diseases V = {v1, v2, v3, v4, v5, v6, v7, v8}. We inter-
pret the formulas in the considered model as follows: Let Nlethaloε be the formula “diseases
which are not lethal”, with the interpretation M(Nlethaloε) = ¬L ⊂∼ Mε defined by

¬L = {1/v1, 0.8/v2, 0.3/v3, 0.5/v4, 0.7/v5, 0.4/v6, 0.4/v7, 0.4/v8}.

Let Viroε be the formula “virus diseases”, with the interpretation M(Viroε) = V ⊂∼ Mε

defined by

V = {0.6/v1, 0.4/v2, 0.2/v3, 0.6/v4, 0.7/v5, 0.5/v6, 0.3/v7, 0.2/v8}.

Let Natboε be the formula “diseases which cannot be cured by antibiotics”, with the
interpretation M(Natboε) = ¬A ⊂∼ Mε defined by

¬A = {0.7/v1, 0.5/v2, 0.3/v3, 0.7/v4, 0.7/v5, 0.5/v6, 0.3/v7, 0.5/v8}.

Major premise: “Many diseases which are not lethal are virus diseases.” can be
represented in our model as:

M((∃zoε)[(∀xε)((Nlethaloε|zoε)(xε)⇒⇒⇒ Viroε(xε))&

&(∃xε)(Nlethaloε|zoε)(xε)∧∧∧ (¬Sm)((μ Nlethaloε)(Nlethaloε|zoε))]). (23)
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This leads us to find the fuzzy set M(Nlethaloε|zoε) = C ⊂∼ Mε, which gives us the
greatest degree in (23). It can be confirmed that fuzzy set C = {0.5/v4, 0.7/v5, 0.4/v6} ⊂∼ ¬L
leads to the greatest degree in (23).

M(Q∀
¬ Sm(Nlethaloε, Viroε)) = 1⊗ 0.7∧ 1 = 0.7. (24)

Minor premise: “All virus diseases can not be cured by antibiotics” is the formula:

Q∀
BiΔΔΔ(Viroε, Natboε) := (∀xε)(Viroε(xε)⇒⇒⇒ Natboε(xε)),

which is interpreted by:

M(Q∀
BiΔΔΔ(Viroε, Natboε)) =

∧
m∈Mε

(M(Viroε(m))→M(Natboε(m))) = 1. (25)

Conclusion: “Some diseases which can not be cured by antibiotics are not lethal
diseases” is the formula:

Q∃
BiΔΔΔ(Natboε, Nlethaloε) := (∃xε)(Natboε(xε)∧∧∧Nlethaloε(xε)),

which is interpreted by:

M(Q∃
BiΔΔΔ(Natboε, Nlethaloε)) =

∨
m∈Mε

(M(Natboε(m)) ∧M(Nlethaloε(m))) = 0.7. (26)

From (24)–(26), we can see that the condition of validity is satisfied in our model
because M(P1)⊗M(P2) = 0.7⊗ 1 = 0.7 ≤M(C) = 0.7.

4. Discussion

In the discussion section, we will comment on new forms of fuzzy syllogisms which
we have proven in Section 3. In Section 3, we can see that we can order strongly valid
syllogisms into triangles or columns by monotonicity. In the vertexes of these triangles are
fuzzy syllogisms that consist of classical quantifiers or new forms of classical quantifiers. At
the endpoints of the columns are also fuzzy syllogisms which contain classical quantifiers
or new forms of classical quantifiers. Fuzzy syllogisms are proved by syntactic proofs,
but we also use monotonicity to prove the strong validity of fuzzy syllogisms. We use
monotonicity in three ways - to strengthen the first premise, to strengthen the second
premise, or to weaken the conclusion. We also use Proposition 2 for the proofs.

4.1. Figure I

In the proofs of the strongly valid syllogisms in Theorems 8, 10, 11 and 12, we use
monotonicity to weaken the conclusion. In these Theorems, we can see that we can order
strongly valid syllogisms by monotonicity into triangles.

In Theorem 15, we order, by monotonicity, the strongly valid syllogisms into columns.
In Theorem 15, we proved the syllogisms by strengthening the first premise.

4.2. Figure II

The structures of the syllogisms of Figure II are similar to the structures of Figure I.
We use monotonicity to weaken the conclusion in the proofs of Theorems 16–19. As we
can see in these Theorems that we ordered the strongly valid syllogisms into triangles
by monotonicity.

In Theorem 21, we ordered the syllogisms into columns by monotonicity. In the proof,
we used monotonicity to strengthen the first premise.

In Theorem 22, we can find eight strongly valid syllogisms. We showed the proof of
syllogism (*A)Ai-II, in which we can see that its presupposition is a formula (∃x)(¬Mx),
but the middle formula in this syllogism is (Mx). This is a consequence of the property of
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contraposition (Lemma A1(h)). The formula representing the presupposition is related to
the assumption that all formulas are not empty.

4.3. Figure III

Figure III is different than previous figures. Firstly, on this figure, we can prove non-
trivial syllogisms. Non-trivial syllogisms are syllogisms, as we said in the introduction,
which contain intermediate quantifiers in both premises. This group of syllogisms is specific
in that valid syllogisms work with a common presupposition. While in the previous figures, it
was enough to always assume the presupposition and thus the non-emptiness of the fuzzy
set for one fuzzy set, for non-trivial syllogisms it is necessary to assume the non-emptiness
of the fuzzy set in the antecedent in both premises. This assumption is represented by the
formula below.

(∃x)((B|z) x &&&(B|z′) x). (27)

We denote the Formula (27) as a common presupposition of existential import of two
fuzzy intermediate quantifiers (Q∀

Ev x)(B, A) and (Q∀
Ev x)(B,¬¬¬A).

We can order strongly valid syllogisms by monotonicity into triangles. As we can
see in Theorems 24 and 26–28, these triangles are oriented differently than the triangles in
Figure I and Figure II. In the proofs of Theorems 24 and 26–28, we strengthen the second
premise to obtain strongly valid syllogisms in the columns. To obtain the strong validity
the syllogisms in the first row, we strengthen the first premise.

In Theorem 29, we can order the strongly valid syllogisms into columns by monotonic-
ity. In this Theorem, we use monotonicity to weaken the conclusion.

4.4. Figure IV

In Figure IV, we order strongly valid syllogisms only into columns by monotonicity.
We can see that in Theorem 32, we use monotonicity to strengthen the second premise. We
can also see that in Theorem 33, we use monotonicity to weaken the conclusion. Finally, we
can see that in Theorem 35, we use monotonicity to strengthen the first premise.

5. Conclusion and Future Work

In the article, we followed up on previous results concerning the formal proof of fuzzy
logic syllogisms in fuzzy natural logic. In the introduction to the article, we first set out
the motivation for this, with various references to application areas that address the issue
of fuzzy generalized quantifiers. We also introduced the reader to the main mathematical
territories that shape natural fuzzy logic. The main results are contained in the third section,
where we first presented the mathematical definitions of fuzzy intermediate quantifiers
that form a graded Peterson’s cube of opposition. We managed to formally prove, in the
formal mathematical system, several new forms of logical syllogisms, the validity of which
we semantically verified in the finite model. The main result is that all syntactically proven
fuzzy syllogisms hold in every model.

We see further development of this article in two directions. We will first focus on
extending the structure of valid fuzzy logical syllogisms by more premises. In the second
part, we would like to mathematically propose Peterson’s rules of distributivity, quality,
and quantity for verifying the validity of logical syllogisms related to a graded Peterson’s
cube of opposition. The second main objective for the future is to program an algorithm
based on these rules and verify the validity of new forms of fuzzy syllogisms automatically.
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Appendix A

Appendix A.1. Main Properties of Ł-FTT

The following properties are provable in Ł-FTT and will be used in the proofs.

Lemma A1. (Propositional properties [32]) Let A, B, C, D ∈ Formo. Then, the following is
provable:

(a)  ((A&B)⇒⇒⇒ C) ≡ (A ⇒⇒⇒ (B ⇒⇒⇒ C));
(b)  (A ⇒⇒⇒ (B ⇒⇒⇒ C))⇒⇒⇒ (B ⇒⇒⇒ (A ⇒⇒⇒ C));
(c)  (A&B)⇒⇒⇒ A; (A∧∧∧ B)⇒⇒⇒ A; (A&B)⇒⇒⇒ (A∧∧∧ B);
(d)  (A&B) ≡ (B&A);
(e)  (B ⇒⇒⇒ C)⇒⇒⇒ ((A ⇒⇒⇒ B)⇒⇒⇒ (A ⇒⇒⇒ C));
(f)  (C ⇒⇒⇒ A)⇒⇒⇒ ((C ⇒⇒⇒ B)⇒⇒⇒ (C ⇒⇒⇒ (B∧∧∧ A)));
(g)  (A ⇒⇒⇒ B)⇒⇒⇒ ((A∧∧∧ C)⇒⇒⇒ (B∧∧∧ C));
(h)  (A ⇒⇒⇒ B)⇒⇒⇒ (¬¬¬B ⇒⇒⇒¬¬¬A);
(i)  ((A ⇒⇒⇒ B)&(C ⇒⇒⇒ D))⇒⇒⇒ ((A&C)⇒⇒⇒ (B&D)).

Lemma A2. (Properties of quantifiers [32]). Let A, B ∈ Formo and α ∈ Types. Then, the following
is provable:

(a)  (∀xα)(A ⇒⇒⇒ B)⇒⇒⇒ ((∀xα)A ⇒⇒⇒ (∀xα)B);
(b)  (∀xα)(A ⇒⇒⇒ B)⇒⇒⇒ ((∃xα)A ⇒⇒⇒ (∃xα)B);
(c)  (∀xα)(A ⇒⇒⇒ B)⇒⇒⇒ (A ⇒⇒⇒ (∀xα)B), xα is not free in A;
(d)  (∀xα)(A ⇒⇒⇒ B)⇒⇒⇒ ((∃xα)A ⇒⇒⇒ B), xα is not free in B.

Lemma A3. Let T be a theory and A, B, C, D ∈ Formo.

If T  A ⇒⇒⇒ (B ⇒⇒⇒ C), then T  A ⇒⇒⇒ ((B∧∧∧ D)⇒⇒⇒ (C∧∧∧ D)).

In the proofs, we also use the rules of modus ponens and generalization, which are
derived rules in our theory.

Theorem A1 ([32]). Let T be a theory, and A, B ∈ Formo and α ∈ Types.

• If T  A and T  A ⇒⇒⇒ B, then T  B;
• If T  A, then T  (∀xα)A.

Appendix A.2. Graded Peterson’s Square of Opposition

The characteristics and position of the above-mentioned fuzzy intermediate quantifiers
were studied using a graded Peterson’s square of opposition. In this part of the article, we
will not deal with the whole construction of the square in detail (for details, see [19]). We
will recall the main definitions that form the before-mentioned square of oppositions, and
show the connection between the property of monotonicity and the property of sub-altern.

Definition A1. Let T be a consistent theory of Ł-FTT, M |= T be a model, and P1, P2 be
closed formulas.

• P1 and P2 are contraries if M(P1)⊗M(P2) = 0;
• P1 and P2 are sub-contraries if M(P1)⊕M(P2) = 1;
• P1 and P2 are contradictories if both M(ΔΔΔP1)⊗M(ΔΔΔP2) = 0 and M(ΔΔΔP1)⊕M(ΔΔΔP2) = 1;
• P2 is a sub-altern of P1 if M(P1) ≤M(P2).
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The proposed mathematical definitions generalize the classical definitions that form
both Aristotle’s and Peterson’s squares of opposition. At this point, we would like to
emphasize that all formally proven syllogisms apply in every model of TIQ.

A : All Bs are A E : No Bs are A

P : Almost all Bs are A B : Almost all Bs are not A

T : Most Bs are A D : Most Bs are not A

K : Many Bs are A G : Many Bs are not A

F : A few Bs are A V : A few Bs are not A

S : Several Bs are A Z : Several Bs are not A

I : Some Bs are A O : Some Bs are not A

Figure A1. 7-graded Peterson’s square of opposition.

Let us remind that the dashed lines denote contraries, the straight lines indicate
contradictories, and the dotted lines represent subcontraries. The arrows denote the
relation between superaltern–subaltern.

We continue with the theorem which represents the property of the monotonicity of
quantifiers which form the 7-graded Peterson’s square of opposition.

Theorem A2. [16] Let A,. . . ,O be intermediate quantifiers. Then, the following set of implications
is provable in TIQ:

1. TIQ  A ⇒⇒⇒ P, TIQ  P ⇒⇒⇒ T, TIQ  T ⇒⇒⇒ K,
TIQ  K ⇒⇒⇒ F, TIQ  F ⇒⇒⇒ S, TIQ  S ⇒⇒⇒ I;

2. TIQ  E ⇒⇒⇒ B, TIQ  B ⇒⇒⇒ D, TIQ  D ⇒⇒⇒ G,
TIQ  G ⇒⇒⇒ V, TIQ  V ⇒⇒⇒ Z, TIQ  Z ⇒⇒⇒ O.

There are, of course, other studies of the graded cube of opposition. At this point, we
also recall the classic cubes of opposition that were proposed by Moretti and Keyne. Gradual
extensions to these two structures have been made and deeply studied by Dubois et al. in [36].
In the possibility theory, a graded extension of these cubes of opposition was analyzed by
Dubois in [37].
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Figure A2. Graded Peterson’s cube of opposition.
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34. Novák, V.; Perfilieva, I.; Močkoř, J. Mathematical Principles of Fuzzy Logic; Kluwer: Boston, MA, USA, 1999.
35. Andrews, P. An Introduction to Mathematical Logic and Type Theory: To Truth through Proof; Kluwer: Dordrecht, The Netherlands, 2002.
36. Dubois, D.; Prade, H.; Rico, A. Structures of Opposition and Comparisons: Boolean and Gradual Cases. Log. Universalis 2020,

14, 115–149.
37. Dubois, D.; Prade, H.; Rico, A. Graded cubes of opposition and possibility theory with fuzzy events. Int. J. Approx. Reason. 2017,

84, 168–185. [CrossRef]

31





Citation: Torrens-Urrutia, A.;

Jiménez-López, M.D.;

Brosa-Rodríguez, A.; Adamczyk, D.

A Fuzzy Grammar for Evaluating

Universality and Complexity in

Natural Language. Mathematics 2022,

10, 2602. https://doi.org/10.3390/

math10152602

Academic Editor: Michael Voskoglou

Received: 30 June 2022

Accepted: 19 July 2022

Published: 26 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Fuzzy Grammar for Evaluating Universality and Complexity
in Natural Language

Adrià Torrens-Urrutia 1,*,†, María Dolores Jiménez-López 1,†, Antoni Brosa-Rodríguez 1,† and David Adamczyk 2,†

1 Research Group on Mathematical Linguistics (GRLMC), Universitat Rovira i Virgili, 43002 Tarragona, Spain;
mariadolores.jimenez@urv.cat (M.D.J.-L.); antoni.brosa@urv.cat (A.B.-R.)

2 Institute for Research and Applications of Fuzzy Modeling (IRAFM), University of Ostrava,
701 03 Ostrava, Czech Republic; david.adamczyk@osu.cz

* Correspondence: adria.torrens@urv.cat
† These authors contributed equally to this work.

Abstract: The paper focuses on linguistic complexity and language universals, which are two im-
portant and controversial issues in language research. A Fuzzy Property Grammar for determining
the degree of universality and complexity of a natural language is introduced. In this task, the
Fuzzy Property Grammar operated only with syntactic constraints. Fuzzy Natural Logic sets the
fundamentals to express the notions of universality and complexity as evaluative expressions. The
Fuzzy Property Grammar computes the constraints in terms of weights of universality and calculates
relative complexity. We present a proof-of-concept in which we have generated a grammar with 42B
syntactic constraints. The model classifies constraints in terms of low, medium, and high universality
and complexity. Degrees of relative complexity in terms of similarity from a correlation matrix have
been obtained. The results show that the architecture of a Universal Fuzzy Property Grammar is
flexible, reusable, and re-trainable, and it can easily take into account new sets of languages, perfect-
ing the degree of universality and complexity of the linguistic constraints as well as the degree of
complexity between languages.

Keywords: linguistic universals; linguistic complexity; evaluative expressions; fuzzy grammar;
linguistic gradience; linguistic constraints
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1. Introduction

In this paper, we propose a formal grammar for approaching the study of universality
and complexity in natural languages. With this model, we afford from a mathematical
point of view two key issues in theoretical linguistics. There has been a long tradition of
using mathematics as a modeling tool in linguistics [1]. By formalization, we mean “the use
of appropriate tools from mathematics and logic to enhance explicitness of theories” [2].
We can claim that “any theoretical framework stands to benefit from having its content
formalized” [2], and complexity and language universals are not an exception.

Linguistic complexity and language universals are two important and controversial
issues in language research. Complexity in language is considered a multifaceted and
multidimensional research area, and for many linguists, it “is one of the currently most hotly
debated notions in linguistics” [3]. On the other hand, theoretically, linguistic universals
have been the subject of intense controversy throughout the history of linguistics. Their
nature and existence have been questioned, and their analysis has been approached from
many different perspectives.

Regarding linguistic complexity, it has been defended for a long time. The so-called
dogma of equicomplexity defends that linguistic complexity is invariant, that languages are
not measurable in terms of complexity and that there is no sense in trying to show that there
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are languages more complex than others. Given this dogma, some questions that come up
are the following: if the equicomplexity axiom supports the idea that languages can differ
in the complexity of subsystems, why is the global complexity of any language always
identical? What mechanism slows down complexity in one domain when complexity
increases in another domain? What is the factor responsable for the equi-complexity?

There has been a recent change in linguistics with regard to studies on linguistic
complexity that is considerable. It has gone from denying the possibility of calculating
complexity—a position advocated by most linguists during the 20th century—to a great
interest in studies on linguistic complexity since 2001 [4]. During the 20th century, the
dogma of equicomplexity prevailed. Faced with this position, at the beginning of the 21st
century, a large group of researchers argued that it is difficult to accept that all languages
are equal in their total complexity and that the complexity in one area of the language is
compensated by simplicity in another. Therefore, equicomplexity is questioned, and there
are monographs, articles and conferences that, in one way or another, are concerned with
measuring the complexity of languages.

In fact, the number of papers published in recent years on complexity both in the field
of theoretical and applied linguistics [3,5–13] highlights the interest in finding a method
to calculate linguistic complexity and in trying to answer the question of whether all
languages are equal in terms of complexity or, if on the contrary, they differ in their levels
of complexity.

Despite the interest in studies on linguistic complexity in recent years and although, in
general, it seems clear that languages exhibit different levels of complexity, it is not easy to
calculate exactly these differences. Part of this difficulty may be due to the different ways
of understanding the concept of complexity in the study of natural languages.

Different types of complexity can be distinguished. Pallotti [14] classifies the different
meanings of the term into three types:

• Structural complexity, if we calculate complexity in terms of a formal property of texts
related to the number of rules or patterns.

• Cognitive complexity is the type of complexity that calculates the cost of processing.
• Complexity of development. In this case, we are talking about the order in which linguistic

structures emerge and are mastered in second (and possibly first) language acquisition.

These types of complexity identified by Palloti are captured by the two main types
of complexity in the literature: absolute complexity, an objective property of the system
measured in terms of the number of parts of the system, the number of interrelationships
among parts, or the length of a phenomenon description [15]; and relative complexity, which
considers language users and is related to the difficulty or cost of processing, learning or
acquisition. Other common dichotomies in the literature are those that distinguish global
complexity from local complexity [16] or those that establish a difference between system
complexity and structural complexity [15].

To measure complexity, studies in the field propose ad hoc measures of complexity
that depend on the specific interests of the analysis carried out. The proposed measures
are very varied, and the formalisms used can be grouped into two types: (1) measures
of absolute complexity (number of categories, number of rules, ambiguity, redundancy,
etc. [16]); and (2) measures of relative complexity that face the problem of determining what
type of task (learning, acquisition, processing) and what type of agent (speaker, listener,
child, adult) to consider. Second language learning complexity (L2) in adults [17,18] or
processing complexity [19] are examples of measures that have been proposed in terms
of difficulty/cost. In many cases, other disciplines have been turned to in search of tools
to calculate the complexity of languages. Information theory, with formalisms such as
Shannon entropy or Kolmogorov complexity [15,16], and complex systems theory [20]
are some examples of areas that have provided measures for a quantitative evaluation of
linguistic complexity.

Most of the studies carried out on the complexity of natural languages adopt an
absolute perspective of the concept, and there are a few that address the complexity
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from the user’s point of view. This situation may be due to the fact that in general, it is
considered that the analysis of absolute complexity presents fewer problems than that of
relative complexity, since its study does not depend on any particular group of language
users [16]. Relative complexity approaches compel researchers to face many problems:

• What do we mean by complex? More difficult, more costly, more problematic,
more challenging?

• Different ways of using language (speaking, hearing, language acquisition, second
language learning) may differ in classifying something as difficult or easy.

• When we determine that a phenomenon is complex, we must indicate for whom it
is complex, since some phenomena can be very complex for one group and instead
facilitate the linguistic task for other groups.

• An approach to the concept of complexity based on use requires focusing on a specific
user of the language and determining the “ideal” user. How do we decide which is
the main use and user of the language?

Although, as we have said, most of the works carried out adopt an absolute perspective
of the concept, many specialists are interested in analyzing the relative complexity. From a
relative point of view, there are three different questions that could be answered:

• From the point of view of second language learning, is it more difficult for an adult to
learn some languages than to learn others?

• If we consider the processing of a language, is it more difficult to speak some languages
than others?

• Focusing on the language acquisition process, does it take longer to acquire some
languages than others?

Therefore, one of the possible perspectives in studies on relative complexity is one
that understands complexity in terms of “learning difficulty”. A relative perspective is
adopted here that forces us to take the language user into account: the adult learning
a language. Trudgill [17], for example, argues that “linguistic complexity equates with
difficulty of learning for adults” and Kusters [18] defines complexity as “the amount of
effort an outsider has to make to become acquainted with the language in question [. . . ]. An
outsider is someone who learns the language in question at a later age, and is not a native
speaker”. The problem that we find in these studies on relative complexity is the large
number of definitions and different measures used that make the results obtained often
inconsistent and not comparable. On the other hand, most complexity studies that focus on
the learning process pay attention almost exclusively to the target language and the success
rate of learners. In general, they do not consider the weight that the learner’s mother
tongue has in calculating the complexity of L2. They thus consider a kind of “ideal learner”
as the basis of their analyses and focus on the complexity of the different subdomains of
the target language.

In the model that we present here, we consider that in order to calculate the relative
complexity of languages in terms of L2 learning, it is necessary to consider the mother
tongue of the learners when calculating the relative complexity of the target language, since
it seems clear that the mother tongue can facilitate or complicate the process of learning the
target language and, therefore, can condition the assessment of linguistic complexity.

Regarding language universals, we can define a universal of language as a grammat-
ical characteristic present in all or most human languages [21]. Although linguists have
always been interested in discovering characteristics shared by languages, it was not until
Greenberg’s contribution [22], with universals based on a representative set of 30 languages,
that the research topic gained popularity and depth. A decade later, despite the interest
aroused by Greenberg’s findings, the impossibility of improving on these results caused
the study of universals to lose interest and usefulness. This object of study became relevant
again a decade later, thanks to the innovations in sampling proposed by linguistic typology
and authors such as Comrie [23] or Dryer [24,25]. However, this expansion of data and
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sampling techniques aggravates the congenital problem of linguistic universals: more and
more exceptions to them appear and, therefore, the term is less reliable or representative.

In recent years, although the problem presented above has not been solved, the boost
in Natural Language Processing has rescued linguistic universals from oblivion. There
is a clear symbiosis between the two fields, since NLP offers many tools, resources and
techniques that improve the study of universals and, above all, make it more efficient [26,27].
In turn, a true understanding of the features shared by all languages implies that recent
advances in NLP, applicable only in English and a few other languages, can be more easily
extended to low-resource languages.

Language universals have been investigated from two different perspectives in lin-
guistics: on the one hand, the typological, functional or Greenbergian approach; and on the
other hand, the formal or Chomskyan approach [28]. From the typological point of view,
taking into account the limited data available, the universals are derived inductively from a
cross-linguistic sample of grammatical structures [29]. In contrast, in the formal approach,
universals are derived deductively, taking into account assumptions about innate linguistic
capacity and using grammatical patterns in languages (Universal Grammar) [30].

Linguistic universals have been classified taking into account the modality and do-
main [21]. If we consider the modality, we can distinguish the following types of universals:

• Absolute universals. These universals are those that do not present exception and that,
therefore, are fulfilled in all members of the universe. Absolute universals defend the
hypothesis that a grammatical property be present in a language.

• Probabilistic or statistical universals. These types of universals are valid for most lan-
guages, but not for all. Probabilistic universals defend the hypothesis that a grammati-
cal property can be present in languages with a certain degree of probability.

To the typology proposed by Moravcsik [21], we can add another common concept
in the literature on universals: the concept of rara or rarissima [31,32]. In this case, we are
talking about a linguistic feature that is completely opposite to the one that is considered
universal. We are referring to those characteristics that are not common in languages.

Taking into account the domain, linguistic universals can be divided into two main types:

• Unrestricted universals. These type of universals may be stated for the whole universe
of languages. These universals are applicable to any human language.

• Restricted, implicational or typogical universals. These universals affect only a part of the
world’s languages: those that share a given characteristic previously (if x, then y).

The above four types of universals can be schematized as follows [21]:

• Unrestricted and absolute: In all languages, Y.
• Unrestricted and probabilistic: In most languages, Y.
• Restricted and absolute: In all languages, if there is X, there is also Y.
• Restricted and probabilistic: In most languages, if there is X, there is also Y.

As Moravcsik [21] states, taking into account that it is not possible to analyze every
natural language, all language universals are nothing more than mere hypotheses. As a
consequence, “The empirical basis of universals research can only be (a sample of) a subset
of the domain for which universals could maximally claim validity, and have traditionally
been claiming validity: that of humanly possible languages. Therefore, the only viable
domain for universals research, then, is all-languages-present-and-past-as-known-to-us-
now” [33].

What we have said reveals both the significance of complexity and universals in
language studies and the difficulties to deal with these notions. In this paper, we aim
to contribute to the field by proposing a fuzzy grammar for determining the degree of
universality and complexity of a natural language. By considering the degree of universality,
the model calculates the relative complexity of a language. In fact, in our proposal, an
inversely proportional relation between universality and complexity is established: the
more universal a language is, the less complex it is. With our model, we can calculate the
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degree of complexity by checking the number of universal rules this language contains.
The idea at the base of our model is that those languages that have high universality values
will be more similar to each other, and therefore, their level of relative complexity will be
lower. On the contrary, those languages with low levels of universality will have a high
number of specific rules, and this will increase their level of relative complexity.

The paper is organized as follows. In Section 2, we present the models of Fuzzy
Universal Property Grammar and Fuzzy Natural Logic as a strategy to define linguistic
universality and language complexity as vague concepts. In Section 3, material and methods
are described. In Section 4, we provide a description of the experimental results. Finally, in
Section 6, we discuss the results and highlight future research directions.

2. Related Work

Both Fuzzy Property Grammars (FPGr) and Fuzzy Natural Logic (FNL) can provide
strategies to approach linguistic universals and the measurement of language complexity.

Regarding linguistic universality, we consider that the concept of universal can be
better defined considering a continuous scale than adopting a discrete perspective. We
disregard the fact that only those linguistic rules shared by all known languages—roughly
7000—can be regarded as linguistic universals. On the other hand, we define “universality”
as a continuum using the FNL’s gradient features of the theory of evaluative expressions.
As a result, we shall continue to respect the two extreme points that already exist: 0 (non-
universal) and 1 (full-universal). However, we create a spectrum in which we shall fit
those linguistic rules known as “quasi-universals” between these two positions. On the
other hand, FPGr and FNL make it possible to devise universal models, that is language-
independent models, that can be applied to all natural languages, and they use a fuzzy-
gradient technique to describe linguistic universals in fuzzy terms [0, 1] rather than labeling
universals with a confusing nomenclature. The times that a fuzzy universal is fulfilled or
violated in a fuzzy grammar determines the fuzzy degree membership of a linguistic rule.
To create a Fuzzy Universal Grammar, we will use the model of FPGr. Finally, FPGr is a
cheap and reusable architecture to define linguistic phenomena and their variation and
makes it possible to advance in the systematization of variation in languages.

Regarding the complexity of language, it can be captured in quantitative terms (abso-
lute complexity), such as the more rules a grammar has, the more complex it is. Therefore,
if we have a system that provides all the rules of a language, we could capture its degree of
complexity under the architecture of FNL of the theory of evaluative expressions. It is also
possible to measure complexity between languages with a FPGr. The more rules are shared
between two languages, the less complexity will be found between those two languages.
The fewer rules those languages share, the more complex they will be in relation to each
other. However, this approach will have a higher cost, since it will demand checking how
many rules of a targeted language are shared with respect to all the other languages. That is
why we have disregarded such an approach, and we have implemented a Fuzzy Universal
Property Grammar that will consider all the possible combinations of rules. Therefore,
for every single set of languages, we will only need to check coincidences in our Fuzzy
Universal Property Grammar. Thus, a value in terms of degree [0–1] will arise from the
number of coincidences defining universality: as in what is the membership degree of a set
of rules of a language with respect to a Fuzzy Universal Property Grammar. In this way, the
notion of universality can help measure the relative complexity of a language, assuming
that those languages that have a lot of specific rules are meant to be more complex. That is,
the more universal a language is, the less complex it is; the less universal a language is, the
more complex it is.

In the following, we present the models of Fuzzy Universal Property Grammar and
Fuzzy Natural Logic as a strategy to define linguistic universality and language complexity
as vague concepts.
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2.1. Fuzzy Property Grammars for Linguistic Universality

Fuzzy Property Grammars (FPGr) [34–36] combine the formalism of Fuzzy Natural
Logic [37–43] and linguistic constraints typically used in linguistics. The higher-order
fuzzy logic as a formalism describes the grammar at a higher level (abstractly), enabling
a mathematical formalization of the degrees of grammaticality. In comparison, linguistic
constraints allow us to describe vague phenomena on a local-sentence level, characterizing
the objects (constraints) as prototypical and borderline ones. Therefore, both assets are
necessary to build an FPGr. There are three key concepts of an FPGr: linguistic constraint,
universe of the linguistic domains and fuzzy grammar, and linguistic construction.

2.1.1. Linguistic Constraint

A linguistic constraint is a relation that puts together two or more linguistic ele-

ments such as linguistic categories or parts-of-speech. Formally, a linguistic constraint is an
n-tuple 〈A1, ..., An〉 where Ai are linguistic categories. We usually have n = 2. For example,
the following linguistic categories can be distinguished for this work:

1. DET (determiner);
2. ADJ (adjectve);
3. NOUN (noun);
4. PROPN (proper noun);
5. VERB (verb);
6. ADV (adverb);
7. CONJ (conjunction);
8. SCONJ (subordinate conjunction);
9. ADP (preposition).

There are four types of constraints in the Fuzzy Property Grammars (FPGr):

1. General or universal constraints that are valid for a universal grammar. They are
built from all the possible combinations between linguistic objects and constraints.

2. Specific constraints that are applicable to a specific grammar.
3. Prototypical constraints that definitely belong to a specific grammar, i.e., their degree

of membership is 1.
4. Borderline constraints that belong to a specific language with some degree only (we

usually measure it by a number from (0, 1)).

The constraints from FPGr that we will work with to describe linguistic universality
and complexity are the following (the A and B are understood as linguistic categories):

− Linearity of precedence order between two elements: A precedes B, in symbols A ≺ B.
For example, DET ≺ NOUN in “The girl”.

− Co-occurrence between two elements: A requires B, in symbols A ⇒ B. For example,
ADJ ⇒ NOUN in “the red car”.

− Exclusion between two elements: A and B never appear in co-occurrence in the
specified construction, in symbols A ⊗ B. That is, only A or only B occurs. For
example, PRON ⊗ NOUN in “He runs”.

− Uniqueness means that neither a category nor a group of categories (constituents) can
appear more than once in a given construction. For example, there is only one PRON
in “She eats pizza”.

− Dependency. An element A has a dependencyi on an element B in symbols A �i B.
Typical dependencies (but not exclusively) for i are subj (subject), mod (modifier), obj
(object), spec (specifier), verb (verb), and conj (conjunction).

2.1.2. Definition of a Fuzzy Property Grammar

Definition 1. A Fuzzy Property Grammar (FPGr) is a couple

FPGr = 〈U, FGr〉 (1)
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where U is a universe

U = Phρ × Mrμ×Xχ × Sδ × Lθ × Prζ × Psκ . (2)

The subscripts ρ, . . . , κ denote types, and the sets in Equation (2) are sets of the following
constraints:

• Phρ = {phρ | phρ is a phonological constraint} is the set of constraints that can be deter-
mined in phonology.

• Mrμ = {mrμ | mrμ is a morphological constraint} is the set of constraints that can be
determined in morphology.

• Xχ = {xχ | xχ is a syntactic constraint} is the set of constraints that characterize syntax.
• Sδ = {sδ | sδ is a semantic constraint} is the set of constraints that characterize semantic

phenomena.
• Lθ = {lθ | lθ is a lexical constraint} is the set of constraints that occur on a lexical level.
• Prζ = {prζ | prζ is a pragmatic constraint} is the set of constraints that characterize prag-

matics.
• Psκ = {psκ | psκ is a prosodic constraint} is the set of constraints that can be determined

in prosody.

The second component is a function:

FGr : U → [0, 1] (3)

which can be obtained as a composition of functions Fρ : Phρ → [0, 1], . . . , Fκ : Psκ → [0, 1]. Each
of the latter functions characterizes the degree in which the corresponding element x belongs to each
of the above linguistic domains (with respect to a specific grammar).

Technically speaking, FGr in Equation (3) is a fuzzy set with the membership function
computed as follows:

FGr(〈xρ, xμ, . . . , xκ〉) = min{Fρ(xρ), Fμ, . . . , Fκ(xκ)} (4)

where 〈xρ, xμ, . . . , xκ〉 ∈ U.
Let us now consider a set of constraints from an external linguistic input D = {d |

d is a dialect constraint}. Each d ∈ D can be seen as an n-tuple d = 〈dρ, dμ, . . . , dκ〉. Then,
the membership degree FGr(d) ∈ [0, 1] is a degree of grammaticality of the given utterance
that can be said in arbitrary dialect (of the given grammar).

2.2. Fuzzy Property Grammars for Linguistic Universality

To take into account linguistic universality, we have to point out the following consid-
erations to the previous definitions.

We constraint the universe of our FPGr to only the syntactic domain Xχ. At this
point, it is only possible to generate all the possible constraints for the syntactic domain.
However, we assume that this formulation is a proof of concept for future work on the rest
of the domains.

Therefore, U-FPGr will be understood exactly as shown in Equation (2).

Definition 2. A Universal Fuzzy Property Grammar (U-FPGr ) is a couple

U-FPGr = 〈U, FGr〉 (5)

However, its (linguistic) universe in written language stands for a simplified version
of an FPGr because only the syntactical domains (x) are relevant for the proof of concept
that we are presenting in this work: < x >, the others are neglected: FPGr =< U, FGr >.
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Definition 3. U-FPGr is
U =< x > (6)

In this case, U is generated as a Cartesian product of all the possible constraints.

U = Posα × Depβ×Xχ × Posα × Depβ × Posα × Depβ. (7)

The subscripts α, . . . , γ denote types, and the sets in Equation (7) are sets of
the following constraints:

• Posα = {posα | posα is a linguistic category in terms of part-of-speech} is the set of
linguistic categories that can be determined in all languages.

• Depβ = {depβ | depβ is a linguistic dependency} is the set of dependencies that can
be determined in all languages.

• Xχ = {xχ | xχ is a syntactic constraint} is the set of constraints that characterize syntax.

From the linguistic point of view, each combination of U = Posα ×Depβ is interpreted
as a linguistic element such as a noun with subject dependency NOUN[nsubj], a determiner
with a determiner dependency DET[det], or a verb as the root of the sentence VERB[root].
Therefore, by repeating this three times, we assume that all the rules follow a linguistic
constituent, such as a linguistic element (category and dependency) in relation in terms
of syntactic linguistic constraints with another element (category and dependency) and a
third element (category and dependency). Because of the fact that some constraints do not
need this third element, we will include in our universe the possibility of having a rule
without the third element.

Any language that will be computed in terms of linguistic universality will need
to follow this formalism to describe its universe. The targeted language will be our lin-
guistic input L = {l | l is a language constraint}. Each l ∈ L can be seen as an n-tuple
l = 〈lα, lβ, . . . , lχ〉. Then, the membership degree FGr(l) ∈ [0, 1] is a degree of univer-
sality given a language as a set. As seen, this is just an adaptation of how FPGr treats
grammaticality. Therefore, the universality of a targeted language is computed in terms
of being grammaticality understood as the membership degree of a targeted language
set with respect to U-FPGr . Therefore, our gradient model suggests the convenience of
a terminological change. We consider that it is not necessary to define our proposal as a
“search for universals” task. However, on the contrary, what we intend is to search for or
define a “spectrum of the universal”, or what is the same, any linguistic rule that can fit to
a membership degree of universality in terms of [0, 1].

Additionally, we have implemented an IF− THEN rule to assign a weight value to
each rule of the U-FPGr .

• If a rule in L coincided with a rule in the U-FPGr , then add +1;
• The more weight a rule has, the more universal it is in a representative set;
• The less weight a rule has, the less universal it is in a representative set.

This is quite a natural way of representing universality, since our knowledge of the
universals is dependent on the system of language that we know. A rule that might be
considered as a universal can become a quasi-universal in the moment that new languages
are discovered, and such languages do not consider such a rule. Therefore, we are always
computing universality in terms of a finite representative set out of the infinite sets of
languages. In this case, U-FPGr is flexible and re-usable, since it can update the weight of
universality according any new language inserted as a linguistic input.

2.3. Fuzzy Natural Logic Computing Universals and Linguistic Complexity with Words

In order to better grasp gradient terminology as it relates to linguistic universals and
complexity, we propose to compute the continuum with natural language words. For this,
the concepts of universality and complexity are assumed.

Fuzzy natural logic is based on six fundamental concepts, which are the following:
the concept of fuzzy set, Lakoff’s universal meaning hypothesis, the evaluative expressions, the
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concept of possible world, and the concepts of intension and extension. The most remarkable
aspect of this work is the theory of evaluative linguistic expressions.

An evaluative linguistic expression is defined as an expression used by speakers when
they want to refer to the characteristics of objects or their parts [37,38,40–44] such as length,
age, depth, thickness, beauty, and kindness, among others. In this case, we will take into
account “universality” and “complexity” as evaluative expressions.

FNL assumes that the simple evaluative linguistic expression has the general form:

〈intensifier〉〈TE-head〉 (8)

〈TE-head〉 can be grouped together to form a fundamental evaluative trichotomy consisting of
two antonyms and a middle term, for example 〈good, normal, bad〉. For our work, we will
take into account the trichotomy of 〈low, medium, high〉. In this sense, as proposed in [45],
the membership scale of universality in linguistic rules recognize:

• High Satisfied Universal. Linguistic rules that trigger a high truth value of satisfaction
in U-FPGr, therefore, they are found satisfied in quasi-all languages. This fuzzy set
includes those rules known as Full Universals, absolute rules, which are located in
(almost) all languages.

• Medium Satisfied Universal. Linguistic rules that trigger a medium truth value of satisfac-
tion in U-FPGr; therefore, they are found satisfied in the overall average of languages.

• Low Satisfied Universal. Linguistic rules that trigger a low truth value of satisfaction in
U-FPGr; therefore, they are found satisfied in almost none of the languages.

The value of complexity is obtained from IF− THEN rules such as:

Definition 4. We characterize fuzzy IF− THEN rules for complexity as follows:

• IF a rule is a High Universal, THEN the value of complexity is low.
• IF a rule is a Medium Universal, THEN the value of complexity is medium.
• IF a rule is a Low Universal, THEN the value of complexity is high.

Similarly, we can express:

• IF the value of complexity is high, THEN the rule is a low universal.
• IF the value of complexity is medium, THEN the rule is medium universal.
• IF the value of complexity is low, THEN the rule is high universal.

The membership scale of complexity in linguistic rules is [45]:

• Low Complexity. Linguistic rules that have a high truth value in terms of weight in
U-FPGr . They are found satisfied in quasi-all languages. This fuzzy set includes rules
known as full universals, absolute rules, which are located in (almost) all languages.

• Medium Complexity. Linguistic rules that have a medium truth value in terms of weight
in U-FPGr: rules found in the overall average of languages.

• High Complexity. Lnguistic rules that have a low truth value in terms of weight in
U-FPGr: rules satisfied in almost none of the languages.

A possible world is defined as a specific context in which a linguistic expression is
used. In case of evaluative expressions, it is characterized by a triple w = 〈vL, vS, vR〉.
Without loss of generality, it can be defined by three real numbers vL, vS, vR ∈ R where
vL < vS < vR.

Intension and extension: Our intension will be simply the membership degree [0–1],
while our extension will be dependent on the number of languages we are taking into
account in a representative set for evaluating universality and complexity.

Figure 1 represents how Fuzzy Natural Logic accounts for the fuzzy-gradient no-
tion of universality in fuzzy sets. The fuzzy limits between sets must be established.
In terms of mathematical fairness rather than from a cognitive perspective, the possible
world of 7000 languages has been divided into three parts for each fuzzy set. Therefore,
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roughly, each set is computed by 2333 language grammars. The proposed cut-off could
be changed. However, we consider that there would not be a big change between the
perceived perspective of the fuzzy transitions and the three-cut part criteria. We claim
that the concept of universality would be better captured with a trichotomical expression
of 〈small −medium− big〉 in terms of 〈low−medium− high〉. This new way of account-
ing for universals may have advantages over the classical nomenclature found in the
literature [29,46,47] (universal trend, statistical universal, rara, rarisima, typological generaliza-
tion, etc.).

Figure 1. Linguistic Universality as a Evaluative Expression.

The advantages of the proposed model can be summarized as follows:

• The model presents a consistent classification without contradictions in terms of
degree for the concepts of universality and complexity.

• The model provides a characterization of the vagueness of linguistic universality.
This characterization fits the data surveys (atlas) that quatitatively collect linguistic
universals terms such as WALS [48] and the Universals Archive [49].

The proposed model aims to collect the work already done in linguistics and present a
universal characterization for the description of fuzzy linguistic universals and linguistic
complexity.

3. Materials and Methods

3.1. A Fuzzy Universal Grammar with a Representative Set

From the 7000 languages in the world (an oscillating and debatable number), there are
still a large number of them without adequate documentation. Therefore, when one wants
to predict possible trends in the set of human languages as a whole, one has to investigate a
selection of languages, hoping that the results will be extensible to the rest. This extension
of languages is what we will consider in FNL our extension regarding the possible world
of our evaluative expression of the notions of linguistic “universality” and “complexity”. To
this end, creating a representative and balanced set is essential. However, this task is by no
means easy, as there are many other limitations [29,50,51].

For this reason, linguistic typology has classically proposed different ways of configur-
ing a set that is as varied and independent as possible in order to be as close as possible to
the reality of the 7000 languages. The selection of this independence between languages can
be based on different criteria: typological, genetic, areal or a combination of them. However,
it is still very difficult to find perfect samples due to what is known as bibliographical bias:
the data available to us are very limited.

The representative set is build under the data from linguistic corpus. Such data allow
us to create sets of languages. Working with a linguistic corpus helps us to obtain a deeper
and more quantitative knowledge of cross-linguistic tendencies [52,53]. The problem with
this methodology is that the available data are still very limited given its novelty and level
of depth, especially in comparison with other resources based on manual notes such as the
World Atlas of Linguistic Structures (WALS) [48,50]. Therefore, in order to reduce as much
as possible the bibliographic bias of the languages present in Universal Dependencies [54],
we have opted for a typological balance.
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To create our set, we have taken into consideration three basic typological requirements
that influence many other grammatical aspects in languages and their behavior [55]:

(1) Difference in the order of the subject–verb relation.
(2) Difference in the order of the object–verb relation.
(3) Difference in the order of the noun–adjective relation.

We have managed to find a good balance on points (2) and (3); however, this has not
been the case with the first aspect, since it is very uncommon for the verb to precede the
subject as an unmarked order. Therefore, in the representative set, its presence is also lower.
We respect the proportion seen in WALS of a one-tenth part. However, it should be noted that
the ascription to a particular typological order is a convenient discrete simplification [56,57].

Subsequently, we have also tried to consider the following aspects of languages to set
a useful representative set:

• Languages from different genus, representatives of the main families.
• Languages from different macro-areas.
• Languages with non-dominant order in different features.
• Isolated languages.
• Agglutinating languages.
• Languages with a greater and lesser degree of ascription to other characteristics such

as, for example, the use of cases.
• Corpora with enough tokens and whose source of origin does not have any type of

bias, as can be the case of FAQs corpus, for example.

After setting all these requirements, primary and secondary, we decided to use the data
from the Universal Dependencies corpora [58]. This data source is chosen, firstly, because
it annotates a lot of different languages by part-of-speech, constituents, and dependencies,
and, secondly, because it is the only formalism in which MarsaGram [59] can be applied to
automatically induce sets of syntactic constraints which can be used to match coincidences
between them and our U-FPGr . After looking at the possibilities offered by Universal
Dependencies, the set established consists of the following languages:

(1) Arabic (ar.);
(2) German (de.);
(3) Basque (eu.);
(4) Spanish (es.);
(5) Estonian (et.);
(6) Indonesian (id.);
(7) Korean (ko.);
(8) Turkish (tr.);
(9) Yoruba (yo.).

Our extension will have a value of 9, and the sets of 〈low, medium, high〉 will range
as follows in Figure 2:

Figure 2. Linguistic Universality of the representative set as a Evaluative Expression.
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1. IF a rule has between 0 and 3 coincidences, THEN the rule is a low universal and it is
high in complexity.

2. IF a rule has between 4 and 6 coincidences, THEN the rule is a medium universal and
it is medium in complexity.

3. IF a rule has between 7 and 9 coincidences, THEN the rule is a high universal and it is
low in complexity.

Additionally, we have implemented an IF− THEN rule to assign a weight value to
each rule of the U-FPGr.

• If a rule in a set of languages coincides with a rule in the U-FPGr, then add +1.
• The more weight a rule has, the more universal it is in a representative set.
• The less weight a rule has, the less universal it is in a representative set.

As we have mentioned, we are aware that we cannot completely avoid bibliographical
bias and, surely, the presence of a language representative of an unrepresented area or
another language whose verb precedes the subject should be added. However, the model
proposed here allows us to enrich the set once Universal Dependencies has such data in
the future.

3.2. Application of the Tasks to Computationally Build a Universal Fuzzy Property Grammar

We have downloaded the Universal Dependency corpora for each of our sets of rep-
resentative languages [58], and we have applied Marsagram [59]. Universal Dependency
provides us with the constraint of dependency between constituents, and Marsagram auto-
matically induces the constraints of linearity, “co-occurrence”, “exclusion”, and “uniqueness”
over a Universal Dependency corpus.

Marsagram will provide us already with quantitative data; however, it is impossible
to know which rules are coincident in a U-FPGr. Therefore, the interpretations that we
obtain are more related with the notion of complexity rather than the notion of universality.

Marsagram presents data and rules in the following way:
Figure 3 is an extract for the marsagram from Arabic language. The rule means that

verb as root excludes adjective as advcl next to ADJ as c-sub. Because of the fact that
we are not interested in the other number, we will clean the data, erasing such noise.
Therefore, to satisfy the coincidences, we will only keep the elements in #headproperty,
symbol1, symbol2.

Figure 3. Rule of the corpus or Arabic in Marsagram.

3.2.1. Building the Universal Fuzzy Property Grammar

To build the Universal Fuzzy Property Grammar (U-FPGr ), we applied Equation (7).
Table 1 is a representation of such a thing. To clarify, we take into account all the cate-
gories or part-of-speech (POS) for all languages according to the tagging in the universal
dependencies. We then have 17 elements in POS. We consider the 64 dependencies that are
present in the whole system of the universal dependencies. We consider the remaining four
constraints. We combine this with two contextual linguistic elements, so, again, POS-dep is
repeated twice. We obtain therefore, 4,242,536,496 rules. We repeat the same process again
but considering the possibility that the rule only needs one contextual element, so POS-
dep-properties-pos-dep. We obtain from that 4,734,976 rules. After summing up the both
output of rules in terms of linguistic constraints, we obtain a U-FPGr with 4,247,273,472
rules belonging to the syntactic domain.
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Table 1. Representation of the elements involved in the production of a U-FPGr for syntactic
constraints.

POS (17) DEP (64) Properties (4) Pos-dep (1088) 4,242,538,496

ADJ acl exclude empty (1088) 4,734,976
ADP acl:relcl precede 4,247,273,472
ADV advcl unicity
AUX advmod require

CCONJ advmod:emph
DET advmod:lmod
INTJ amod

NOUN appos
NUM aux
PART aux:pass
PRON case

PROPN cc
PUNCT cc:preconj
SCONJ ccomp

SYM clf
VERB compound

X ..+48

The technical summary is the following:

(1) Read the excel file with all the grammar rules.
(2) Make all possible combinations as strings. For example, one combination can look

like: “rule1 rule2 rule3”.
(3) Insert all possible combinations into the MongoDB database.

The MongoDB database is not necessary, but it solves many problems instead of
storing universal grammars in a pure text file. The text file may be huge and have an
impact on time complexity for searching for grammar rules.

3.2.2. Preparing Languages for the Universal Fuzzy Property Grammar

As mentioned in Figure 3, the data of each language set had to be cleaned and prepared
before checking coincidences. Therefore, we have followed these steps:

(1) We have a set of possible grammars for n languages stored in CSV/TSV files.
(2) For one language:

(a) Load all possible files with language grammar rules.
(b) Preprocessing (for example: remove empty spaces, replace *, . . . ).

Finally, we have applied the weights to each rule, so we can measure its universality
and complexity:

- For evaluating universality in one rule:

(1) Send query to the MongoDB database for search rule in Universal Grammar.
(2) If we found a rule in Universal Grammar, we insert a new row to the Pandas

Dataframe, where the Universal Grammar column will have a current rule, and
the column for the current language will have 1 and other languages will have 0.

(3) If we not found a rule in Universal Grammar, we insert a Universal Grammar
rule and 0 for all language columns.

(4) Then, we can compute the total numbers for one rule, and we can put them into
the Total column.

Table 2 is a visualization of the output, in this case, of the verb with the dependency
of conjunction excluding two elements next to each other. We can observe how the final
weights vary from one rule to the other. It is also clear how robust and flexible the system
is. We only would need to add another column for any other language set that we would
like to include to make our final weight of universality more representative.
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Table 2. Example of output of rules with universality weight.

VERB-conj exclude CCONJ-cc VERB-ccomp, 0, 1, 1, 1, 1, 1, 1, 1, 0, 7, 0.7777777777777778

VERB-conj exclude CCONJ-cc PART-advmod, 0, 1, 0, 0, 1, 1, 0, 0, 0, 3, 0.3333333333333333

VERB-conj exclude CCONJ-cc ADJ-amod, 0, 0, 1, 0, 0, 1, 1, 1, 0, 4, 0.4444444444444444

VERB-conj exclude CCONJ-cc NOUN-nsubj, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0.2222222222222222

VERB-conj exclude CCONJ-cc PROPN-obj, 0, 1, 1, 1, 0, 1, 1, 0, 0, 5, 0.5555555555555556

VERB-conj exclude CCONJ-cc PROPN-obl, 0, 1, 1, 1, 1, 1, 0, 1, 0, 6, 0.6666666666666666

VERB-conj exclude CCONJ-cc VERB-xcomp, 0, 1, 1, 1, 1, 1, 0, 0, 0, 5, 0.5555555555555556

VERB-conj exclude NOUN-obj NOUN-obl, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0.1111111111111111

VERB-conj exclude NOUN-obj PROPN-obj, 0, 1, 1, 1, 0, 1, 1, 0, 0, 5, 0.5555555555555556

VERB-conj exclude NOUN-obj PROPN-obl, 0, 1, 1, 1, 1, 1, 0, 1, 0, 6, 0.6666666666666666

VERB-conj exclude NOUN-obj VERB-xcomp, 0, 1, 1, 1, 1, 1, 0, 0, 0, 5, 0.5555555555555556

VERB-conj exclude NOUN-obj ADJ-amod, 0, 0, 1, 0, 0, 1, 1, 1, 0, 4, 0.4444444444444444

VERB-conj exclude NOUN-obj VERB-ccomp, 0, 1, 1, 1, 1, 1, 1, 1, 1, 8, 0.8888888888888888

VERB-conj exclude NOUN-obj NOUN-nsubj:pass, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 0.3333333333333333

VERB-conj exclude NOUN-obj NOUN-compound, 0, 0, 0, 0, 1, 1, 1, 1, 0, 4, 0.4444444444444444

VERB-conj exclude NOUN-obj ADP-case, 0, 0, 1, 0, 0, 1, 1, 1, 0, 4, 0.4444444444444444

VERB-conj exclude NOUN-obj PRON-obj, 0, 1, 1, 1, 1, 1, 1, 1, 1, 8, 0.8888888888888888

VERB-conj exclude NOUN-obj VERB-acl, 0, 1, 0, 0, 0, 1, 1, 0, 0, 3, 0.3333333333333333

VERB-conj exclude NOUN-obj PRON-obl, 0, 1, 1, 1, 0, 1, 0, 1, 1, 6, 0.6666666666666666

VERB-conj exclude NOUN-obj VERB-fixed, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0.1111111111111111

VERB-conj exclude NOUN-obj NUM-nummod, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2, 0.2222222222222222

VERB-conj exclude NOUN-obj PROPN-nsubj, 0, 1, 1, 1, 1, 1, 1, 0, 0, 6, 0.6666666666666666

VERB-conj exclude NOUN-obj PART-advmod, 0, 1, 0, 0, 1, 1, 0, 0, 0, 3, 0.3333333333333333

VERB-conj exclude NOUN-obj ADJ-xcomp, 0, 1, 1, 1, 0, 1, 0, 0, 0, 4, 0.4444444444444444

VERB-conj exclude NOUN-obj PRON-nsubi, 0, 1, 1, 1, 1, 1, 1, 1, 0, 7, 0.7777777777777778

VERB-conj exclude NOUN-obj VERB-advcl, 0, 1,1, 1, 1, 1, 0, 1, 0, 6, 0.6666666666666666

To evaluate complexity, it is necessary to just negate the value (apply −1), since
universality and complexity work as opposites in terms of 〈low, medium, high〉. Therefore,
a rule is that if its universality weights 0.7, its complexity would be 0.3; if its universality is
0.4, its complexity would be 0.6, and so on.

4. Results

Our results can be found in four outputs: the quantitative data of Marsagram for lin-
guistic complexity, the quantitative data regarding number of rules by weights, distribution
of the weighted rules per language, and coincidences between languages.

4.1. Quantitative Data of Marsagram

Table 3 and Figure 4 show the results of the data induction from the application of
Marsagram on the representative set of the universal dependency corpora. We see a high
disparity between sets, among which German is the set with the most structures (32 K) and
constraints (54 K), and Yoruba is the set with the fewest structures (243) and constraints
(1647). We appreciate how the induction creates constraints per structure, providing a bias
in evaluating complexity. That is because German is the language that has more structures.
Therefore, it is the language that will have more properties.
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Table 3. Quantitative data of Marsagram.

Language Trees Structures Constraints Order s/Constraints

German 150,921 32,242 54,410 sv-ndo 1.6875504
Korean 27,363 8853 48,097 sv-ov 5.43284762
Turkish 18,687 5275 30,937 sv-ov 5.86483412
Spanish 16,013 8114 28,808 ndo-vo 3.5504067
Estonian 30,972 9468 28,570 sv-vo 3.01753274
Arabic 19,738 11,226 21,062 vs-vo 1.8761803
Euskera 8993 3283 14,703 sv-ov 4.47852574
Indonesian 5593 3143 12,530 sv-vo 3.98663697

Yoruba 318 243 1647 6.77777778

Figure 4. Quantitative data of Marsagram.

On the other hand, even though Estonian and Arabic have a similar amount of
structures (9468 and 11,226) and constraints (28,570 and 21,062), they have a considerable
difference in the number of trees as the input data (30,972, and 19,738). Additionally, they
display fewer constraints than languages with fewer structures in the corpora, such as
Turkish (5275 structures, 30,937 constraints) or Spanish (8114 structures, 28,808 constraints).
Because of this data, we imply that it will be enough for future tasks to experiment with a
corpus with around 20,000 dependency trees as the input data to generate structures and
constraints of a language set.

However, we can apply an operation to compute the average of constraints per
structure (s/Constraints column). Therefore, we will determine that languages with more
constraints per structure are the most complex. According to this computation, we find
that Turkish, Korean, and Euskera are the most complex language sets according to our
operation, with 5.86, 5.43, and 4.47 constraints per structure, respectively. On the other hand,
we disregard German and Yoruba for this first evaluation of linguistic complexity with
Marsagram because of the over-generation of structures and constraints in the language set
of German and the lack of data for the language set of Yoruba.

To sum up, the inductive data extracted from Marsagram can be helpful for a first
glance to take into account complexity. However, it tells us nothing regarding universality,
and it seems we cannot extract feasible results from asymmetric data.

4.2. Quantitative Data Regarding Number of Rules by Weights

Figure 5 shows the distribution of the number of constraints per weight. We observe
that it is less frequent to find high universal constraints, which are present in all the
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languages. On the contrary, there seems to be a peak in constraints of weights 1 and 2. Such
a thing means that two languages bear a lot of specific constraints.

Figure 5. Quantitative data regarding number of rules by weights.

4.3. Distribution of the Weighted Rules per Set of Language

Figure 6 clarifies the data in Figure 5. The plot tends to converge in 9, since a weight
of 9 means that all the sets have the constraints that weight 9. This plot displays high
membership in the less universal rules. We now acknowledge that Korean, German, Turkish,
and Euskera have most of the rules with weight 1 or 2. That means, in principle, that they
will be the most complex languages and the ones that bear less universal constraints. It
stands out how Korean has a membership degree of 1.0 for the rules of weight 1. This
means that Korean has all the specific constraints found in the U-FPGr.p

Figure 6. Distribution of the weighted rules per set of language.

4.4. Coincidences between Languages

Figure 7 displays the total number of rules found as coincident in our U-FPGr, and,
simultaneously, the number of coincident rules between sets. For example, Spanish (es), and
German (de) share 6968 rules. The matrix diagonal displays the total number of rules per set.
For example, German has a total of (49,895), while Estonian has (22,477) rules. This matrix
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demonstrates how our system cleaned the data from Marsagram from Figure 4, where
according to the induction, German had 54,510 constraints, and Estonian had 28,570. That
means that Marsagram was over-generating, as we were assuming previously. This result
demonstrates that our architecture is good for cleaning data from inductive algorithms that
might over-generate outputs.

Figure 8 is a failed output because the data are not symmetric, so we cannot evaluate
the similarity of the sets: that is, how many constraints or rules they share in terms of
degree [0–1]. Additionally, this output can be read as percentages. For example, it is better
not to convert these outputs into percentages. For example, AR-DE 0.020263 or AR-ES
0.0290902 correspond to 2.0263% and 2.90902%, respectively. Because the values are too
small, we do not think this provides much information. It makes sense that the coincidences
are so low because every set represents different languages. If the number of coincidences
was higher, those two sets with high coincidences could be considered part of the same
language. Normalizing the matrix was a bad option since some sets had much lower data,
and it was not possible to add data. Therefore, our solution was to compute a correlation
between every pair of languages to obtain a correlation matrix such as Figure 9. To make it
readable, we applied a heat scale of color.

Figure 9 is the correlation matrix of our set of languages with respect to each other.
This matrix gives us information about how complex the sets between each other are in
terms of sharing syntactic constraints:

• Red for low quantity of shared rules;
• Yellow for quite average quantity of shared rules;
• Green for quite high quantity of shared rules;
• Blue for high quantity of shared rules.

Figure 7. Coincidences between languages: number of rules.
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Figure 8. Coincidences between languages: degree of similarity.

Figure 9. Coincidences between languages in a correlation matrix.

Therefore, we can represent gradually linguistic complexity in terms of evaluative
expressions.

In this matrix, the closer to 1, the more similar. For example, Korean and German
(ko-de) have a value of −0.3, while Korean and Spanish (ko-es) have a value of −0.19. The
second relation expresses more similarity/sharing of rules than the first one since Therefore,
Ko-es are more similar than ko-de and less complex because they share more rules that
have a closer value to 1.
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5. Discussion

With our research, we have corroborated the hypothesis that it is possible to build a
system that characterizes both universality and relative complexity. The model proposed
has been tested only with a proof-of-concept. However, we see clear potential despite the
fact of its incompleteness. Some of the theoretical criticism that this model might receive
include the following.

The first criticism can be that it only takes into account syntactic constraints. Therefore,
it does not really measure a language’s linguistic universality or complexity.

However, the U-FPGr is a model based on the FPGr. FPGr models vagueness from any
linguistic concept in terms of degrees that can be described with linguistic constraints. FPGr
is compatible with the theory of evaluative expressions of FNL. Consequently, any vague
linguistic concept modeled with FPGr can also be modeled with an evaluative expression
with the formalism of FNL. The main issue for such a thing is that, in fact, it is always
necessary that constraints characterize the concept that will be defined. Therefore, one of the
improvements of both FPGr and U-FPGr is that it needs a tradition that will describe each
linguistic domain in terms of constraints. Such a thing is not that difficult in other domains,
such as phonetics and phonology. To evaluate the universality of phones and phonemes, it
would only be necessary to apply the same architecture to all phonetic and phonological
tables of all the languages and/or dialects worldwide. The most coincident ones will be
the most universal ones and the least complex ones. Therefore, it is not the architecture
of either FPGr or U-FPGr which fails to represent universality and complexity. It is the
limitations of the lack of tradition in defining linguistic domains in terms of constraints.

A second criticism is that it only considers a representative set of nine languages.
Therefore, the results are not a reliable definition of what syntactic constraints are universal
or complex.

We claim that as a proof-of-concept, our task succeeds in showing how the U-FPGr
can characterize constraints and its complexity in terms of weights of universality, such
as in Figure 5. From which image, it is easy to identify the sets of 〈low, medium, high〉
with 1–3, 4–6, and 7–9, respectively. Additionally, our task reveals that high universals
are rare, which is something that goes in the same line as the linguistic literature. At the
same time, it reveals that few languages, such as Korean or Turkish, trigger a lot of specific
constraints. It should be very interesting and necessary that we would widen the data
for further experiments, so we could corroborate if such languages keep their extreme
specificity. It would also be exciting to include more language sets. However, as we have
presented, the inclusion of more data per set or more sets of languages do not change the
basic architecture of the U-FPGr. Our main issue is to provide a system that can, in fact,
represent “universality”, and “complexity” as a continuum. We are looking forward to testing
our model with more data and seeing if the architecture is still robust.

A third criticism is that the constraints are built upon linguistic corpus, which has
induced constraints from real text sources such as Wikipedia, reviews, and newspapers.
Therefore, Marsagram induced constraints of non-grammatical sentences. In such a sense,
it does not represent the real complexity of the standard variant of the languages in the
representative set.

There is no such a problem with respect to the induction of non-grammatical con-
straints regarding the standard variety of a language. FPGr is fuzzy because it takes into
account both grammatical and borderline constraints. Suppose the algorithm induces
constraints that are not canonical within a language or dialectal constraints; that is more
than welcome. We acknowledge a language definition similar to the definition of phoneme
and sound. The phoneme /s/ is the abstract representation (in a non-academic way, the
summary) of several sounds, such as (s) or (z). The distinction between (s) and (z) is, in
particular, that one is voiceless and the other is voiced. However, most speakers would rec-
ognize them under the same perception. This phenomenon is represented abstractly as /s/.
Following this same reasoning, for FPGr, the language is an abstract representation of all
the possible performances of such language. Therefore, the English language /English/ can
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be represented in different dialects or sociolects such as (geordie), (scouse), (apallachian),
and so on. However, they are all “summarized” in the abstract representation of what
English is. Therefore, if the specific constraints of these specific grammars of English are
induced by an algorithm or included ad hoc by a linguist, it is more than welcome because
if that constraint exists in English, it has to be included in the set of English language.

A fourth criticism is that the values in the correlation matrix display, in general, low
values; therefore, it is not a valid representation of the degree of complexity.

We believe that the correlation matrix displays low values because, in fact, they are
different languages. This output reinforces the idea that the architecture of U-FPGr is
robust. Otherwise, if the values are too similar, we might even have to say that those sets of
languages are alike and, probably, they are dialects of each other. This question brings up
an interesting matter for our future work: testing U-FPGr with sets of dialects, or very close
languages, such as the romance languages. If the values displayed in the correlation matrix
are very close to value 1, it will reinforce the idea of the reliability of this architecture.

Finally, a criticism can be that the values of the relative complexity in Figure 9 are not
meant to be necessarily equal between two sets since, even though two languages share a
similar amount of rules, the rules that are not shared could be potentially more complex,
affecting their degree of similarity. Therefore, it fails to represent possible hypothetical
cases such as, for example, that for the majority of the speakers of German, it is easier to
learn English than for English speakers to learn German. In this sense, the correlation of
complexity should be represented asymmetrically.

However, our model does not reflect complexity in terms of difficulty between native
speakers of a language. It would be very interesting to do so. Still, it would be necessary
to include many more constraints in different domains to see more accurately how the
constraints interact between domains and between domains with respect to other languages.
It would probably be best to include the formalism of the agent-based models.

6. Conclusions and Future Work

We believe that the work presented here is a satisfactory proof-of-concept, which
opens a new research line in pursuing the evaluation and definition of language universals
and complexity. There is no such thing in linguistics as a “traditional method” or “fixed
way” of computing such concepts of linguistic universality and complexity. Particularly,
there is no proposed method that pursues to evaluate the concepts of universality and
complexity as vague terms that can be defined in terms of degree. We believe that by
considering such terms as gradient and fuzzy, we will be in a better position to describe
multiple natural languages in linguistics, considering their idiosyncrasies and complexities.
The best framework to do so is the theory of evaluative expressions of Fuzzy Natural Logic,
which sets the basis to compute vague concepts with natural language and trichotomous
expressions, together with Fuzzy Property Grammars, which provide the linguistic con-
straints to be evaluated. Furthermore, we believe this work opens a research line to make
more appealing the fact of defining languages in terms of constraints to provide explicative
or white-box methodologies for the characterization of languages and their features.

Regarding the future work of this research, it is necessary to test the model with data
sets of dialects, and close related languages, such as romance languages. Therefore, we
can test the model’s outputs with data sets that, a priori, should display a larger number
of coincidences and try to establish a fuzzy–numerical boundary between language and
dialect. That is, to obtain a fuzzy–value which characterizes when a dialect starts to be
considered a different language in terms of membership degrees. On the other hand,
testing the model with larger and symmetric data sets would be necessary to reassure its
robustness. Another test that has to be run in the future is to compute linguistic complexity
taking into account other linguistic domains, such as computing similarity between lexicons
and phonemic charts of different languages and dialects by incorporating an Optimality
Theory approach. Similarly, it would be necessary to work on comparing language sets
within the constraints of the morphological domain.
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Abstract: In recent years, the study of evaluative linguistic expressions has crossed the field of
theoretical linguistics and has aroused interest in very different research areas such as artificial
intelligence, psychology or cognitive linguistics. The interest in this type of expressions may be due
to its relevance in applications such as opinion mining or sentiment analysis. This paper brings
together Fuzzy Natural Logic and Fuzzy Property Grammars to approach evaluative expressions.
Our contribution includes the marriage of mathematical and linguistic methods for providing a
formalism to deal with the linguistic vagueness of evaluative expressions by describing the syntax
and semantics of these structures. We contribute to the study of evaluative linguistic expressions
by proposing a formal characterization of them where the concepts of semantic prime, borderline
evaluative expressions and markedness are defined and where the relation between the semantic
constraints of evaluations and their sentiment can be established. A proof-of-concept of how to
create a lexicon of evaluative expressions for future computational applications is presented. The
results demonstrate that linguistic evaluative expressions are gradient, have sentiment, and that
the evaluations work as a relation of hypernym and hyponym, the hypernym being a semantic
prime. Our findings provide the basis for building an ontology of evaluative expressions for future
computational applications.

Keywords: evaluative expressions; linguistic gradience; fuzzy grammar; linguistic constraints;
grammaticality; sentiment analysis

MSC: 94D05

1. Introduction

This article focuses on evaluative linguistic expressions, i.e., expressions such as small,
medium, large, very deep, rather shallow, beautiful, etc. Our main objective is to provide a
formal characterization of this type of expressions by defining them in syntactic terms
(determining their canonical and borderline structures) and by describing them semantically
in order to account for their vagueness and characterizing their sentiment polarity. In this
work, we propose a model with a single scale that allows grading and computing the
semantic orientation of an evaluative expression by means of a fuzzy relationship between
the semantics of these expressions and the concepts of ‘positive–negative’. With this model,
we can calculate the semantic orientation of words.

Fuzzy Natural Logic (FNL) and its theory of evaluative linguistic expressions is a
well-known mathematical theory [1–7]. This theory is based on Lakoff’s hypothesis of
universal meaning [8]. Lakoff argues that natural logic is a collection of terms and rules that
come with natural language and that allow us to reason and argue in it. FNL tries to account
for the basic principle by which people understand each other. This principle is universal
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and makes communication possible between people of different origins and cultures. An
example of this universal representation of meaning is found when any speaker of any
place and language and in any situation is able to understand an expression such as “that
person is far away”. Regardless of whether the meaning of "far" is “800 km” or “5 km”, we
understand that “far” means “a high value on a scale of distance”, with regards to a specific
context. A component of FNL is also the theory of intermediate quantifiers [9–11] that are
expressions such as most, many, a lot of, a few, several, etc..

FNL has been successfully applied in time series analysis [12–14], or data mining [15].
We claim that it can be useful for a richer extraction of semantic meaning and for more
accurate sentiment analysis. The main advantage of our formalism is that it provides a
unified formal analysis for the semantics of all kinds of evaluative expressions.

However, Fuzzy Natural Logic is a hardly known theory in linguistics and is barely
used for linguistic semantic analysis. Most of the recent works in linguistics that involve
the study of the semantics of the evaluative language is found in the area of sentiment
analysis [16].

Some of the works in linguistics integrating FNL as a fundamental part of their
framework can be found in the modelling of a Fuzzy Property Grammar [17–20]. FNL
is essential to define the basis of a fuzzy grammar with linguistic features in such work.
Furthermore, FNL describes the grammar on a higher (abstract) level. In contrast, linguistic
constraints describe the grammar on a local level (at the level of the sentence). The notion of
linguistic constraint stands for a relation that puts together two or more linguistic elements,
allowing Fuzzy Property Grammar to model vague, highly controversial phenomena for
linguists at both levels. Some of the phenomena that a Fuzzy Property Grammar models
using the theory of evaluative linguistic expressions are linguistic gradience in natural
language, grammaticality, linguistic complexity, and linguistic universality.

This paper provides modifications and suggestions to expand the theory of evaluative
expressions towards a linguistic theory as well as future Natural Language Processing
(NLP) applications. We have implemented in FNL the notions of theoretical linguistics,
linguistic constraints, and characterization of borderline semantic linguistic phenomena in
natural language.

Our proposal can contribute to the lexicon-based models in sentiment analysis. The is-
sue of extracting sentiment automatically has been approached in two different ways [21,22]:
by using Machine learning techniques or by considering Lexicon-based approaches. The advan-
tage of the machine learning approach is that with a labeled data set training, a classifier
can be easily built with existing classifier tools [23]. The main drawback of these techniques
is that, being trained with very specific data, it is difficult to apply the model to new
contexts. In contrast, lexical-based methods are robust across domains without changing
dictionaries. Furthermore, applying dictionaries to a new language is a less demanding
task than labeling data in a new language for a classifier [23].

Lexicon-based techniques promote a good synergy between the computational and
linguistic approach since they use the linguistic information contained in the text [23].
Moreover, these approaches have been highly regarded in the recent studies.

Some techniques based on the lexicon start from the following two assumptions [23]:
(1) words have a “prior polarity”, having a semantic orientation independent of the context;
and (2) it is possible to express the semantic orientation with a numerical value. Another
important issue to consider is the fact that the semantic orientation of words is affected
by the linguistic context; for this reason, it is essential to take into account contextual
valence shifters.

Lexicon-based techniques provide for each word classifications of its semantic ori-
entation. To assign each word the value of ‘positive’ or ‘negative’, these classifications are
based on Distribution Semantics (DSm) methods. These classifications are either discrete
or gradual.

As shown in Table 1, both [24]’s SentiWordNet and [25] Macquire’s Dictionary show
only two classifications related to semantic sentiment: positive and negative. On the
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contrary, the Subjectivity Dictionary proposed by [26,27] considers in addition to the
values ‘positive’ and ‘negative’ two additional elements for each of them: strong and
weak. Despite a certain graduality shown by the dictionary of subjectivity, this approach
still fails to capture the vague and gradient spectrum between ‘positive’ and ‘negative’.
In contrast, Ref. [23] offers a richer and more formal model in its proposed Semantic
Orientation Calculator (SO-CAL) that features a graded rating on a 10-point scale, from
−5 to +5. Unlike previous models, Ref. [23] makes an effort to capture both the vague and
gradient nature of semantically oriented word meaning and provides a numerical value for
each evaluative item that allows for more detailed extraction of sentiment and of meaning.

Table 1. Sample of semantic orientation values for lexicon-based approaches from Taboada [23].

SentiWordNet
[24] Baccianella

et al. (2010)

Macquire Dictionary
[25] Mohammad

et al. (2009)

Subjectivity
Dictionary [26]

Wilson et al. (2005)

SO-CAL [23]
Taboada (2016)

good Positive Positive
Positive
(weak) 3

excellent Positive Positive
Positive
(strong) 5

masterpiece Positive Positive
Positive
(strong) 5

bad Negative Negative
Negative
(strong) −3

terrible Negative Negative
Negative
(strong) −5

disaster Negative Negative
Negative
(strong) −4

Although the models presented in Table 1 generally offer good solutions for calculating
the semantic orientation of words, in this paper, we want to propose a different model
that uses a single scale for grading and computing the semantic orientation of words
and its sentiment together with the description of their structure in a sentence with a
fuzzy grammar, i.e., describing prototypical and borderline structures in which such
words appear.

The remainder of this paper is organized as follows. Section 2 introduces the basics of
Fuzzy Natural Logic. Section 3 presents Fuzzy Property Grammars as a constraint-based
grammar that deals with linguistic vagueness. In Section 4, our proposal of a formal
characterization of evaluative expressions is presented by defining the concept and by
providing a syntactic and semantic explanation of evaluative expression. Section 5 describes
a proof of concept to identify trichotomic expressions in Spanish and English from SO-CAL
corpus. Section 6 presents some conclusions and future research lines.

2. Fuzzy Natural Logic: Formal Prerequisites

This section summarizes the basic concepts of Fuzzy Natural Logic. It is underpinned
on six key concepts:

• Fuzzy set. A fuzzy set A in a universe U, is a function A : U −→ L where L = [0, 1] is
a support of the standard Łukasiewicz MV-algebra 〈[0, 1],∧,∨,⊗,→, 0, 1〉. The ∧,∨
are lattice operations (here equal to min and max), ⊗,→ are Łukasiewicz conjunction
and implication, respectively defined by

a⊗ b = max{0, a + b− 1}, a → b = min{1, 1− a + b}

where a, b ∈ [0, 1]. The set of all fuzzy sets on U is denoted by F (U). If A is a fuzzy
set then its kernel is a set Ker(A) = {u | A(u) = 1}.
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• Lakoff’s hypothesis of universal meaning. According to Lakoff [8], natural logic is a
collection of terms and rules that comes with natural language and allows people to
reason and argue in it. This idea captures the basic principle of why people understand
each other. This principle is universal in all languages and makes communication
among people possible.

• Evaluative linguistic expressions are those expressions of natural language used by peo-
ple to characterize features of objects or their parts [1,5,12] such as length, beauty, size,
complexity, economical value, kindness, among others. The most elaborated evaluative
expressions in FNL simple evaluative ones. They have the general form

〈linguistic hedge〉〈TE-adjective〉 (1)

〈TE-adjective〉 can be grouped to form a fundamental evaluative trichotomy consisting of
two antonyms and a middle term, for example 〈good, normal, bad〉, 〈beauti f ul, normal,
ugly〉, 〈easy, average, complex〉, etc. The triple of adjectives 〈small, medium, big〉 is
taken as canonical. On the other hand, 〈linguistic hedge〉 makes more or less specific
the meaning of the 〈TE-adjective〉. Usually it is represented by an intensifying adverb
such as “very”, “roughly”, “approximately”, “significantly”, etc. This is a special expres-
sion representing a linguistic phenomenon called hedging. In some papers of FNL,
〈linguistic hedge〉 is found as 〈linguistic modifier〉.

• Possible world. It is a specific context in which a linguistic expression is used. In
the case of evaluative expressions, it is characterized by a triple w = 〈vL, vS, vR〉.
Without loss of generality, it can be defined by three real numbers vL, vS, vR ∈ R where
vL < vS < vR. These numbers represent an interval of reals [vL, vS] ∪ [vS, vR] where
vS is marked to emphasize position of “typically medium”.

• Intension. The intension of a linguistic expression is a property denoted by a specific
word or expression. It is independent on a concrete possible world (context) and does
not change when the context is changed.

• Extension. The extension of a linguistic expression is the referent. It depends on the
particular context and changes when the possible world changes. With the exception
of few specific cases, the elements falling into an extension are delineated vaguely. In
our theory, they are accompanied by degrees. For example, the expression “very long
distance” has always a high degree in any context of distance (possible world). Thus,
“very long distance in Europe” is “1000 km” when “driving a car”, while it is “5 km” when
“walking on foot”. In such case, extensions are fuzzy sets in the intervals [0, 1000] and
[0, 5].

Definition 1. Let A be an expression of natural language. Then, its intension Int(A) is a function

Int(A) : W → F (V) (2)

where W is a set of possible worlds, V is a set of some objects and F is a set of all fuzzy sets
defined on V. The extension of A in a given possible world (context) w ∈ W is a fuzzy set
Extw(A) = Int(A)(w) ∈ F (V).

In Figure 1 (from [6]), extensions of the expressions forming the fundamental evalu-
ative trichotomy are depicted. Part (b) of the figure contains informal justification, how
the shapes of extensions of evaluative expressions are constructed. Namely, in the given
context 〈vL, vS, vR〉, “small” values are those around the left bound vL, while, e.g., “very
small” or “extremely small” are part of the small ones. Similarly for “big”, that are values
around the right bound vR. “Medium” values are values around the central point vS (note
that it can lay on an arbitrary place between vL and vR).
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Figure 1. (a) Fuzzy sets modeling extensions of expressions that form the fundamental linguistic
trichotomy; (b) Scheme of extensions of evaluative expressions with modifiers.

3. Fuzzy Property Grammar

Fuzzy Property Grammars combine the formalism of Fuzzy Natural Logic and lin-
guistic constraints typically used in linguistics. The higher-order fuzzy logic as a formalism
describes the grammar at a higher level (abstractly), enabling a mathematical formalization
of the degrees of grammaticality. In comparison, linguistic constraints of a Property Gram-
mar [28] allow us to describe vague phenomena on a local-sentence level. However, unlike
a standard Property Grammar, FPGr characterizes the objects (constraints) as prototypical
and borderline. Therefore, both assets are necessary to build a Fuzzy Property Grammar.
In this section, the basic concepts of Fuzzy Property Grammars are presented.

A linguistic constraint is a relation that puts together two or more linguistic elements
such as linguistic categories, or parts-of-speech. Formally, a linguistic constraint is an n-tuple
〈A1, ..., An〉 where Ai are linguistic categories. We usually have n = 2. We consider the
following linguistic categories:DET (determiner), ADJ (adjective), NOUN (noun), PROPN
(proper noun), VERB (verb), ADV (adverb), CONJ (conjunction), SCONJ (subordinate
conjunction) and ADP (preposition).

To identify linguistic categories, it is necessary to either use a part-of-speech tagger or
to identify them according to the constraints of a specific language. For example, Spanish
and English would have their constraints to identify a NOUN and an ADJ, which will not
necessarily be shared with Chinese or Japanese. It could happen that natural languages
would require an extension or a shortening of these part-of-speech. Because FPGr is closely
related to the framework of Universal Dependencies (UD) [29,30], we recommend using
the UD parser to identify each part of speech. UD recognises a maximum of 17 elements
in a part-of-speech parsing. However, when working with FPGr in the syntactic domain,
the model proposes to shorten from 17 part-of-speech to 9 (at maximum) to simplify the
model and the analysis of the inputs from UD. The fact of how FPGr would identify
part-of-speech with constraints UNIVERSALLY is not explored yet, since it is such a new
model and mainly applied for the syntactic domain, mainly in Spanish and English. A
further explanation of this can be found in Torrens–Urrutia in [19] (Chapter 7). One of
the options to describe linguistic categories with constraints universally is to implement
formal definitions of General Natural Syntax (GNS) from Manca and Jiménez-López [31]
into FPGr.

The constraints provide a non-derivational definition of several linguistics. Linguistic
constraints indicate the properties that an object (or objects) must satisfy. Thus, linguistic
constraints define both the linguistic knowledge of a speaker, and the membership of a
linguistic input towards a specific grammar in terms of constraint satisfaction. There are
four types of constraints in Fuzzy Property Grammars:

• General or universal constraints that are valid for a universal grammar (any language).
• Specific constraints that are applicable to a specific grammar.
• Prototypical constraints that definitely belong to a specific grammar, i.e., their degree of

membership is 1.
• Borderline constraints that belong to a specific language with some degree only (we

usually measure it by a number from [0,1]).

The constraints that FPGr work with are the following (the A and B are understood as
linguistic categories):
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− Linearity of precedence order between two elements: A precedes B, in symbols A ≺ B.
Therefore, a violation is triggered when B precedes A. Example: “The (DET) professor
(NOUN)”, Cα(DET ≺ NOUN). Cα stands for satisfied constraint.

− Co-occurrence between two elements: A requires B, in symbols A ⇒ B. A violation is
triggered if A occurs, but B does not. Example: “The (DET) girl (NOUN) plays football”
Cα(NOUN ⇒ DET), but “girl (NOUN) plays football” Cβ(NOUN ⇒ DET). Cβ stands
for violated constraint.

− Exclusion between two elements: A and B never appear in co-occurrence in the speci-
fied construction, in symbols A⊗ B. That is, only A or only B occurs. Example: “He
(PRON) does yoga”, Cα(PRON ⊗ NOUN), but “He (PRON) boy (NOUN) does yoga”
Cβ(PRON ⊗ NOUN).

− Uniqueness means that neither a category nor a group of categories (constituents) can
appear more than once in a given construction. For example, in a construction X,
Uniq = {a, b, c, d}. A violation is triggered if one of these constituents is repeated in a
construction. Example: “The (DET) the (DET) kid that who used to be my friend” Cβ( in
nominal construction: Uniq = {Det, Rel}).

− Dependency. An element A has a dependencyi on an element B, in symbols A�i B.
Typical dependencies (but not exclusively) for i are subj (subject), mod (modifier), obj
(object), spec (specifier), verb (verb), conj (conjunction). A violation is triggered if the
specified dependency does not occur. Example: “Andorra is a small (ADJ) country
(NOUN)”, Cα(ADJ �mod NOUN), but “Andorra is a small (ADJ) goodly (ADV)”, Cβ

(ADJ �mod NOUN).
− Obligation. This property determines which elements are heads. It is expressed

by the symbol �. This property tends to be avoided since FPGr pursues to define
the relationship of part-of-speech without hierarchy or derivation, only at a local
level. However, it is useful to define specific constructions to express the mandatory
appearance of a category or linguistic feature.

Additionally, two key concepts for the formalization of Fuzzy Property Grammars are:

• Linguistic Feature. Features specifies when properties are going to be applied to a
category. The typical feature to be represented is a linguistic function, such as the
function of subject: A[subj]. Features are always written and subindexed in a linguistic
category, i.e., NOUN[subj].

Example 1. A property for an English grammar such as N ≺ V might be inaccurate since the
noun can both precede and be preceded by a verb. We can specify functions and other values for
a category to provide proper linguistic information thanks to the features. Therefore, property
grammars can specify that a noun as a subject precedes a verb: N[subj] ≺ V. Features reinforce
properties as a tool that can describe linguistic information independently of a context and
more precisely represent grammatical knowledge by taking into account linguistic variation.
However, features can express any type of specification from any domain. For this paper, we
are interested in semantic features, which will be expressed like the following A[sem:x]. Such
characterization is useful for words that even being defined with the same category trigger
different meanings, i.e., I have a snake, (snake NOUN[sem:animal]), John is a snake, (snake
NOUN[sem:treacherous]).

• xCategory. An xCategory is a feature which specifies that a certain category is display-
ing a syntactic fit from another category, for example, an adjective with a syntactic
fit of a noun. All the xCategories are marked with a x before a prototypical cate-
gory, i.e., xADJ. For example, in Spanish, el boxeador (NOUN) león (NOUN) (the lion
boxer), león (NOUN) is performing as an adjective; therefore, el boxeador (NOUN) león
(NOUN[xADJ]).
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Definition 2. A Fuzzy Property Grammar (FPGr) is a couple

FPGr = 〈U, FGr〉 (3)

where U is a universe

U = Phρ × Mrμ×Xχ × Sδ × Lθ × Prζ × Psκ . (4)

The subscripts ρ, . . . , κ denote types and the sets in (4) are sets of the following constraints:

• Phρ = {phρ | phρ is a phonological constraint} is the set of constraints that can be deter-
mined in phonology.

• Mrμ = {mrμ | mrμ is a morphological constraint} is the set of constraints that can be
determined in morphology.

• Xχ = {xχ | xχ is a syntactic constraint} is the set of constraints that characterize syntax.
• Sδ = {sδ | sδ is a semantic constraint} is the set of constraints that characterize semantic

phenomena.
• Lθ = {lθ | lθ is a lexical constraint} is the set of constraints that occur on lexical level.
• Prζ = {prζ | prζ is a pragmatic constraint} is the set of constraints that characterize prag-

matics.
• Psκ = {psκ | psκ is a prosodic constraint} is the set of constraints that can be determined

in prosody.

The second component is a function

FGr : U −→ [0, 1] (5)

which can be obtained as a composition of functions Fρ : Phρ −→ [0, 1], . . . , Fκ : Psκ −→ [0, 1].
Each of the latter functions characterizes the degree in which the corresponding element x belongs to
each of the above linguistic domains (with regards to a specific grammar).

Technically speaking, FPGr in (5) is a fuzzy set with the membership function com-
puted as follows:

FGr(〈xρ, xμ, . . . , xκ〉) = min{Fρ(xρ), Fμ, . . . , Fκ(xκ)} (6)

where 〈xρ, xμ, . . . , xκ〉 ∈ U.
Let us now consider a set of constraints from an external linguistic input D = {d |

d is a dialect constraint}. Each d ∈ D can be observed as an n-tuple d = 〈dρ, dμ, . . . , dκ〉.
Then, the membership degree FGr(d) ∈ [0, 1] is a degree of grammaticality of the given
utterance that can be said in arbitrary dialect (of the given grammar).

FPGr operates taking into account the notion of linguistic construction, originally
from [32,33]. A linguistic construction is understood as a pair of structure and meaning.

In FPGr, linguistic constructions in written language stands for a simplified version
of a FPGr because only three linguistic domains are relevant for it: the morphological
domain (mr), the syntactical domain (x), the semantic domain (s), < mr, x, s >, the others
are neglected: FPGr =< U, FGr >.

Definition 3. A construction is:
U =< mr, x, s > (7)

Examples of constraints in the linguistic domains in Equation (7):

• The morphological domain < mr >, which defines the part-of-speech and the constraints
between lexemes and morphemes. For example, in English, the lexeme of an adjective
≺ (precedes) the morpheme -ly, and the morpheme -ly ⇒ (requires) an adjective as
a lexeme.
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• The syntactical domain < x >, which defines the structure relations between categories
in a linguistic construction or phrase. For example, in English, an adjective as a modi-
fier ADJ[mod] of a noun NOUN is dependent (�) of such a noun (ADJ[mod] � NOUN).

• The semantic domain < s >, which defines the network-of-meanings of a language
and its relation with the syntactical domain. This can be defined with semantic
frames [34,35]. It is also responsible for explaining semantic phenomena as metaphor-
ical meaning, metonymy, and semantic implausibility. For example, in English,
drinkable object (i.e., water[sem:drinkable]) ⇒ (requires) recipient (i.e., glass[sem:recipient]).
A metonymy can be triggered with the follow IF− THEN rule: If asking for some-
thing drinkable without recipient (i.e., “may I have some water, please?”), then recipent is
included as a feature in the frame of drinkable object, i.e., water[sem:drinkable,recipient].

All the linguistic descriptions from now on are conducted following the framework of
Fuzzy Property Grammars (FPGr). For a deeper insight of the theory, see [18–20].

4. Evaluative Linguistic Expressions with Linguistic Features

4.1. Linguistic Prerrequisites

Fuzzy Natural Logic must include the following linguistic concepts in the theory
of evaluative expressions. Those concepts are essential to characterize prototypical and
borderline evaluative words.

• Referent. A referent is a person or thing to which a linguistic expression refers. For
example, in the sentence Paul talks to me, the referent of the word Paul is the particular
person called Paul who is being spoken of, while the referent of the word me is the
person uttering the sentence. In the case of the evaluative linguistic expressions, we
will understand the referent as the entity which is being evaluated.
The referent of the evaluation can be: (1) in the linguistic input, (2) close to the
evaluative word, or (3) it can be absent in the linguistic input but present in the
extra-linguistic context.
Usually, in English and Spanish language, the referent will typically be the subject of
the evaluative sentence (X[subj]) if the referent and the evaluation are in a dependency
relationship with a VERB. Otherwise, the syntactic head of the evaluative word will
establish a modifier dependency with it. This syntactic head will usually be a NOUN
from the evaluation. For example, in Paul runs fast, the referent of the evaluation runs
fast is Paul, not the VERB runs. Therefore, the fact that the evaluative word has a
dependency of modifying a VERB, ADJ �mod VERB, does not imply that it will be the
referent, even though VERB is a higher element in the syntactic hierarchy. Sometimes,
a referent can be co-referential. That is, the same referent appears twice in a sentence.
For example, Paul had his huge backpack with him. In such case, Paul and him refers to
the same person. But, following our definition, the referent of the evaluation is not
Paul, but the backpack since it is the one receiving the evaluation.
When the referent is in the linguistic input, the evaluative word and the referent will
have a relationship of dependence. Such as in Mark watches a bad show on TV. In
this case, the referent is a show, and the evaluative word is bad. On the other hand,
typically, when the evaluation and the referent are connected with a dependency
through a verb, the referent will usually be the subject. For example, Cristina thinks
that Claudia is smart enough to pass her degree. The evaluation is is smart enough, and the
referent is Claudia. Both constructions have a relationship of dependence, and they are
connected because of the verb. However, further exploring to set a frequent pattern of
dependency between referent and evaluation is needed.

• Linguistic pairing stands for the task or phenomena in which linguistic features as-
sociate two linguistic elements. These can be syntactic or semantic features or both.
The most interesting linguistic pairing for adding linguistic features in the evaluative
linguistic expressions is the one which pairs the referent with the evaluative word.

• Markedness arises to represent the importance of the linguistic context (not extra-
linguistic) for a word. A sentence α is more marked than a sentence β if α is acceptable
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in less contexts than β. It can be determined either by the judgments of the speakers
or by extracting the number of possible context types for a sentence [36]. Therefore,
a canonical constraint or property (Cα) is never context dependent. For example,
Cα(DET ≺ NOUN). A borderline constraint or property (Cγ) is context-dependent
if the degree of unacceptability triggered by its violation varies from one context to
another. For example, in Spanish, canonically, determiners do not precede proper
nouns, that is Cα(PROPN ⊗ DET). However, such constraint can be violated when
what the structure {DET, PROPN} is triggering the meaning of a football team, “El
(DET) Barcelona (PROPN) era mejor con Messi que ahora” (“The Barcelona was better with
Messi than now”). Such a feature is important to characterize and clarify both the
referent and the evaluation. Following the last sentence, the evaluation of was better
with Messi than now would have a biased referent if the grammar would understand
that the Barcelona meant the city of Barcelona, and not the football club.
In this case, the violation of the property, accepted only in few contexts, displays and
characterizes a marked structure (DET ≺ PROPN[sem:cities]) (sem : means semantics),
with a marked meaning (DET ≺ PROPN[sem: f ootballteam]), expressed as: IFF Cβ(DET ≺
PROPN); ANDPROPN[city]THENCγ(DET ≺ PROPN[sem: f ootballteam]).
Additionally, in semantics, structures are marked when they do not allow interchange-
ability of elements, and yet keep the same meaning. A non-marked structure would
be: “Mary’s house, the nice one, is in Elm Street”. I change the elements and yet I can get
almost same meaning “My sister’s home, the one when you were last time, is next to mine”
(knowing that Mary is my sister, the nice one is the one when you were last time and next to
mine is Elm Street)’. However, this cannot happen with idioms, or other marked struc-
tures such as “Mark is a pain in the ass” by Mark is a pain in the finger/eye/foot/chest/etc., or
“it is raining cats-and-dogs” by it is raining elephants-and-giraffes, etc. Therefore, idioms
tend to have marked meanings. Another example: “No shit, Sherlock”, meaning ‘judg-
ment over a statement that was obvious’. It is implausible to exchange such construction
for other elements such as: No turd, detective, or No smoke, Einstein. Moreover, FNL
should not purse to characterize extra-linguistic extreme-implied (non-)evaluations
that demand extreme knowledge of the context, such as the one when you were last time
understanding that such a construction is a very polite way of saying I am referring to
the nice one, not the ugly one.

• Semantic Coercion stands for implausibility of meaning. Coercion is a typical effect in
defining and identifying metaphors, which non-literal meanings are triggered due to
the implausibility of such meaning. To summarize, it is the similar effect of markedness
but focused on the semantic domain.

• Compositionality is typically understood as that the summarization of meanings brings
us the final meaning, i.e., “it a strong rain”, meaning: [it + is + a + strong + rain].
However, compositionality does not always work taking into account the previous
example it is raining cats-and-dogs. It does not actually mean that animals are falling from
the sky!. Therefore, the evaluative sentence it is raining cats-and-dogs does not fall on
the logic of compositionality.

• Lexical unit, in FPGr, stands for those structures that work as a single part-of-speech,
that is as a single unit, and, therefore, they only count as a one category. For example,
in the chief (NOUN) executive (NOUN) office (NOUN) of Amazon is Jeff Bezos; FPGr
would parse it as the [chief executive office (NOUN)] of Amazon is Jeff Bezos, and not as
the [chief (NOUN) executive (NOUN) office (NOUN)] of Amazon is Jeff Bezos. Therefore,
the chief executive office is working as a single NOUN. In fact, that is why the tendency
is to reduce it to CEO, the CEO of Amazon is Jeff Bezos. The same applies to evaluations
such as it is raining cats-and-dogs, which stands for it is raining really heavily or it is
pelting down, or it is bucketing down, which stands for it is raining very, very heavily.
Therefore, the notion of the lexical unit serves both the evaluation and its referent.
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4.2. The Concept of Evaluative Expressions

An evaluation is a concept characterizing particularities of a specific object (object
understood in a broad sense, as people are objects too). That is the characterization of
a referent.

Examples of linguistic evaluations are the following ones:

(1) I love you very much.

– Express affection. The verb love is the evaluative word. The referent is ‘you’.

(2) Plane food is disgusting.

– Express a judgment. The evaluative word is ‘disgusting’. The referent is ‘plane
food’. The referent operates as either a lexicalized NOUN (‘plane food’ is NOUN),
or as a NOUN with an adjective fit which modifies the other NOUN: ‘plane’
(NOUN[xADJ] �mod) ‘food’ (NOUN[subj]).

(3) John is not a bad person, but he can be a snake.

– Express a judgment. ‘Snake’ is fitting a metaphorical meaning, ’treacherous’, and
not the animal. The referents are John, and he.

(4) John looked like this (showing at a tomato) when Jennifer asked him for a date.

– Express a judgment. ‘this’ is a deictic work. Thus, it is empty of meaning by
itself, and the context is needed to grasp the meaning that is intended to be
communicated. The context reveals that it probably means John was shy. Probably
is stressed since the meaning is not known for sure. Only an implication can be
made by linking the linguistic input, its linguistic context, world knowledge, and
communicative context.

If we accept that all the above sentences express concepts that are a matter of degrees,
then we have a fuzzy set: A : M −→ [0, 1]. Every element can be associate with types: Mδ

stands for ‘John’, Mε stands for the concept of ‘being bad’, Mθ stands for the sentiment of the
concept (positive or negative), and Mo express a membership degree, creating a complex set
of functions: A : Mε × Mδ × Mθ → Mo.

Therefore, an evaluative linguistic expression is an evaluative concept expressed
through a language system characterizing a referent. The key elements are the evaluator
and the object being evaluated.

Additionally, the linguistic evaluative expressions can be understood under the notion
of linguistic construction [32,33], which stands that a linguistic construction is a pair of
structure and meaning. Therefore, defining both linguistic syntactic and semantic features
of an evaluative construction is necessary. An evaluation construction is a linguistic input
evaluating a referent. This referent can be found in the linguistic input itself or can be
extra-linguistic (found in the communicative context or the common knowledge).

4.3. Semantics of Evaluative Expressions

To express the generation of an evaluative linguistic expression by being the evaluator
at the centre of the concept, we have provided a semantic hierarchy of the evaluation
represented in Figure 2.

Figure 2 expresses the hierarchy of the different levels in which the semantics of an
evaluative concept are found:

• On the first level, closer to the thought, we will find a semantic prime, always under-
standing semantic primes as those most abstract concepts which will define a fuzzy
set. This idea is inspired in [37]. However, this author considers as semantic primes
only the concepts of good-bad. While in this work, we consider primes as all those
triplets that create a fundamental trichotomous expression such as [ugly-medium-beautiful],
[small- medium-big], [easy-medium-complex], etc. Any prime has to be a prototypical
meaning, that is, non-context dependent.
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• On the second level, we would find those evaluations that are sensitive to the linguistic
context. Those words that are given a specific structure trigger a non-prototypical
meaning. That is the case of Example 3), in which the syntactic relation between the
referent he, meaning a person, the verb ‘to be’, and the word snake, trigger a borderline
meaning on the word snake due to the implausibility that a person would be an actual
animal. This effect of implausibility is called semantic coercion [38–41]. However, it
is clear that meaning is not a matter of probabilities in both the semantic prime, and
in the linguistic context stage. The semantics of linguistic inputs related with those
stages can be characterized using logic and linguistic features.

• On the third level, and further from the semantic prime, we would find those evalua-
tions that need extra-linguistic context. Such concepts can only be understood when
the communicative context is known or expresses a common knowledge shared by
the interlocutors. Example 4) is a clear example of extra-linguistic meaning. Therefore,
it is impossible to extract its meaning from the linguistic input’s information to us.
These cases are acknowledged as being extremely borderline. We will not formalize this
type of evaluative expression here.

Figure 2. Semantic hierarchy of evaluative meaning

Summing up, evaluative expressions are linguistic inputs that express a concept of an
evaluation that is a gradient and has a sentiment. The semantic hierarchy gives structure
to identify the abstract types of the meaning of an evaluative concept. The meaning of an
evaluation can be closer to a prototypical evaluation (a semantic prime), to a borderline
evaluation (needing of a characterization of the linguistic context), or closer to an extremely
borderline evaluation (needing of the information of the communicative context).

4.4. Syntax of Evaluative Expressions

Recall from (9) that the general form of an evaluative linguistic expression is

〈linguistic hedge〉〈TE-adjective〉 (8)

This form poses two problems in linguistics: the confusion of the term “hedge” and the fact
that a TE-adjective is not necessarily an adjective.

The term “linguistic hedge” is used in pragmatics for what is called hedging defined
as people use hedging when they try to avoid criticism [42–44] . Some other definitions
can also be found in [45]. Hassan and Said [45] define hedges as those elements “which
serve human communication as more flexible, moderate, and convincing”. Hedges convey
“intentional vagueness”,“mitigation”, “tentativeness”, “politeness”, “indirectness”, “pos-
sibility”, “evasiveness” , “lack of full commitment”, etc. Hedges can be characterized as
expressing the writer’s attitude towards both the propositional information and his/her
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awareness of the readers. Words that are present in hedging strategies are “I think”, “I don’t
know, “a little bit”, “in my view”, “quite”. Some of this hedges can be found also as part of an
evaluative expression; however, it is important to differentiate the intensifier strategy than
the discourse hedging strategy:

• I think this is quite right, but...
• Your paint seems a little bit odd.

The discourse function of the pragmatics of language of the terms “quite” and “a little
bit” is different from the intensifying semantic function in terms of widening or stretching
the degree of vagueness of the TE-adjective “right”, and “odd”. That is why it would be
better to define this first part as simply 〈intensifier〉.

Regarding the use of the concept of 〈TE-adjective〉, it is necessary to change it to
〈TE-head〉. Firstly, not necessarily an adjective will be the head of an evaluative expression
itself. For example, in English, we will find differences of such things:

(1) Mark is very intelligent:
〈intensifier- very〉〈TE-head intelligent (an adjective)〉.

(2) Mark is an Einstein
〈intensifier- none〉〈TE-head Einstein (a Proper Noun)〉.

(3) I love Mark’s intelligence very much
〈intensifier—very much〉〈TE-head love (a verb)〉.

Example (1) is what we would consider a canonical evaluative expression if we
consider that the prototypical evaluative heads in the English language are adjectives. That
is because using an adjective as an evaluative head is very productive in English.

Example (2) has a proper noun as an evaluative head, which could be considered a
borderline form of the evaluative term “intelligence” since, in English, proper nouns do
not usually bear the quality of being evaluative. Additionally, we can satisfactorily apply a
constituent replacement test of the word ”Einstein” for ”intelligent”. The test is a success
since we keep the same meaning, and the constituents work similarly. Such cases will lead
us to distinguish between prototypical and borderline evaluative heads. It must be kept in
mind that each language will decide which linguistic categories are prototypical productive
or borderline for bearing an evaluative semantic meaning. Therefore, sentences (1) and (2)
are synonyms but display different evaluative heads.

Example (3) shows a verb being used as an evaluative head. This case helps us to
stress why the formula of an evaluative expression in its general form should bear the
notion of 〈TE-head〉 and not 〈TE-adjective〉. The evaluative verb “love” is not considered a
borderline evaluative head here since the verb love is prototypical an evaluative verb even
though verbs do not prototypically bare evaluative meanings.

We establish the following rules to determine if a word is a prototypical evaluative
head or a borderline one:

• If the evaluative head is canonically and productively used as an evaluative, the
evaluative head is prototypical.

• If the evaluative head is not canonically and productively used as an evaluative, but it
passes a constituency test by being replaced by a prototypical evaluative head, then
the evaluative head is borderline.

From the above follows that the general form of an evaluative expression should be:

〈intensifier〉〈TE-head〉 (9)

Figure 3 represents the formal characterization in FPGr of the basic structure of a
linguistic construction of an evaluative expression in terms of linguistic constraints.
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Figure 3. Characterization of the universal construction of evaluative expressions.

• The elements within the construction can be found between brackets [].
• The first element is the intensifier, defined as optional, that is why it is between

parenthesis ().

– It is also defined with a linguistic dependency of modifier; meaning that the
intensifier will always be dependent of the evaluative head as a modifier, no
matter the language or grammar.

• The second element is the evaluative head, which is mandatory. That is why it is
represented with the constraint of obligation �.

– Additionally, the evaluative head will bare a dependency on its referent, that is,
the element which is being evaluated. Because we want to keep this formalization
as the most linguistically universal possible, we do not state the dependency
that the evaluative bears. That is why it is represented with�[xdep]. In English,
the most common evaluative construction is found as the object of a copular
verb (“to be”, “feel”, “seem”, “become”, etc.) and as the subject as its reference:
Subject-Copular Verb-Evaluative Construction. In such a case, we would say that
the evaluative head has a dependency on the subject.

* It is specified that the referent Re f experience a pairing with the evaluative
head, which states if they are semantically compatible or if any coercion
would be involved [pairing]. A clear case of a coerced pairing can be found
in the sentence “Mark is a giant”. The pairing between “Mark” and “giant”is
implausible since “Mark” bares the quality of being “+ human” and “giants”
does not exist, they are mythological creatures. However, the paring is
possible, and a coerced meaning is interpreted. If a pairing is not present
in the linguistic context, the referent would be found in the communicative
context; that is, it will be extra-linguistic [extraling].

The possibility of having different categories depending on the language makes the
notion of the evaluative head provide universality to our model.

If we use an intensifier, we can make the evaluative head more precise. FNL does not
imply that adjectives are always a typical evaluative head across languages. For example,
Korean and Japanese do not have adjectives in the strict sense, but can use verbs as eval-
uative units. These kinds of structures are also possible in English where an evaluative
expression such as “I love your food” has a verb as its evaluative head. The meaning of this
structure would be paraphrased as “ Your food is excellent”. Both sentences would be com-
puted with a high value in the degree of judgment. Therefore, with FNL we can characterize
the core/depth structure of the evaluation semantics, extracting the exact core meaning of
both sentences, independently of the surface structure of the linguistic construction.

4.5. Evaluative Expressions: A Formal Characterization

A formal characterization with the FPGr of the syntactic and semantic properties that
a universal construction of an evaluative expression has to fulfill is presented in Figure 4.
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Figure 4. Universal construction of evaluative expressions (syntax and semantics).

As shown in Figure 4, we consider three elements in the formal characterization of
evaluative expressions:

• The insertion of grammar . 〈insert− grammar〉 stands for inserting an FPGr or other
grammar with constraints (a universe), which will define the specific constraints of
a language, as mentioned in Equation (4). This grammar will define those satisfied
and violated constraints of a particular language. Therefore, FPGr will be able to
characterize the degree of grammaticality of an evaluative expression with regards to
a specific grammar.

• The constraints of the intensifier. The intensifier displays the same constraints as
in Figure 3.

– X[INT] �[xmod] X[EH] means any category X as intensifier X[INT] has a depen-
dency as a type of modifier�[xmod] towards any category as an evaluative head
X[EH].

• The constraints of the evaluative head. The evaluative head displays some of the
same constraints observed, as in Figure 3, such as:

– X[EH]� meaning any category X as an evaluative head X[EH] is mandatory �,
leaving the intensifier as optional.

– X[EH] �[xdep] Re f[pairing∨extraling] means any category X as an evaluative head
X[EH] has a non specified dependency�[xdep] towards a referent Re f , which can
be found in the linguistic context with linguistic pairing or in the extra linguistic
context Re f[pairing∨extraling].

– Additionally, the evaluative head displays semantic constraints here that are
necessary to complete such a universal characterization of the constructions of an
evaluative expression.

* X[EH] ⇒ TE〈vL − vS − vR〉∧ ⇒ LSV. Meaning that any category X as an
evaluative head X[EH] requires to be part of one of the sets of a trichotomous
expression ⇒ TE, either the left one vL, the one in the middle vS, or the right
one, vR. And (∧), the trichotomous expression, requires to be tagged with
a Linguistic Semantic Variable (LSV). The trichotomous expression can be
incorporated in any constraint-based grammar in terms of hyponym and
hypernymy (being the hypernym interpreted as our semantic prime) simply
by using 〈vL − vS − vR〉 as a constraint. Therefore, lexical items as “beautiful”,
“difficult”, “pig”, and “hate”, can be defined with such constraints as:

· “beautiful”, ADJ[EH] ⇒ TE〈vR〉∧ ⇒ LSV〈beauty〉.
· “difficult”, ADJ[EH] ⇒ TE〈vR〉∧ ⇒ LSV〈complex〉.
· “pig”, NOUN[EH] ⇒ TE〈vL〉∧ ⇒ LSV〈Pleasing− Likability〉.
· “hate”, VERB[EH] ⇒ TE〈vL〉∧ ⇒ LSV〈Esteem〉.

* Moreover, it can be specified whether such lexical items are a prototypical
or borderline evaluative expression, always with regards to the Linguistic
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Semantic Variable (the semantic prime). If the evaluative head is prototypical
with regards to the prime, it will be defined with the semantic constraint
[PROT(LSVα)]. If the evaluative head is borderline with regards to the prime,
it will be defined with the semantic constraint of [BORD(LSVγ)]. For example:

· “beautiful”, ADJ[EH] ⇒ TE〈vR〉∧ ⇒ LSV〈beauty〉[PROT(LSVα)].
· “pig”, NOUN[EH] ⇒ TE〈vR〉∧ ⇒ LSV〈cleanliness〉[BORD(LSVγ)].

– The last constraint is X[EH] ⇒ SentimentTE−Judgment〈vL−vS−vR〉. Meaning that any
category X as an evaluative head X[EH] requires a sentiment to be assigned ⇒
Sentiment. Sentiment is characterized as a trichotomous expression of judgment
TE−Judgment〈vL−vS−vR〉, such as 〈negative − neutral − positive〉. As with before,
the sentiment can be prototypical or borderline, since it is considered that any
evaluation can be potentially used in both ways [16]. For example:

* “This song is excellent”, it is interpreted as positive because the word “excellent”
is prototypical positive: ADJ[EH] ⇒ SentimentTE−Judgment〈vR〉[PROT(Sα)]

* “This song is excellent for deaf people”, it is used as a borderline negative because
of the linguistic context: X[EH] ⇒ SentimentTE−Judgment〈vL〉[BORD(Sγ)]

Summarizing, in FNL we define an evaluative expression as a linguistic construction
characterized by a lexical unit tagged as Evaluative Heading (EH), which is a subjective
evaluation of an object. Evaluative heads have the following properties:

• They occur in each member of a triplet of expressions –an evaluative trichotomy–,
such as small-medium-big, short-medium-tall, beautiful-average-ugly. A trichotomous
expression is a characterization of a general semantic feature –a semantic prime– called
a linguistic semantic value. Examples of these linguistic semantic values are height,
beauty, complexity, intelligence, etc. Technically, we can refer to features of a given object.

• They have a sentiment value expressed in terms of positive, negative degree. Sentiment
is computed by ordering all the trichotomous expressions as protoypically negative
vL, protoypically medium vS, protoypically positive vR, and converting those to
borderline sentiment when needed.

• FNL can characterize the interpretability of an evaluation even if it is subjective.

5. Towards a Lexicon of Evaluative Expressions

The formal characterization of evaluative expressions we have presented in this paper
constitutes a robust mathematical model that is inapplicable without a lexicon of evaluative
expressions. One of the main reasons for this is because linguistic categories, or part-of-
speech, are not enough to identify an evaluative expression. It is, therefore, necessary to
establish a procedure to find and classify evaluative expressions in trichotomous structures
by identifying semantic primes and assigning values on a sentiment scale.

Taking into account the need to have a lexicon of evaluative expressions, we have
carried out a first experiment, as a proof of concept, to identify trichotomic expressions in
Spanish and English. We have performed a linguistic evaluation for FNL over a sentiment
analysis corpus entirely build on evaluative words.

For our proof-of-concept we have chosen SO-CAL, lexicon. https://github.com/sfu-
discourse-lab/SO-CAL. SO-CAL has two tagged sentiment corpus, one in Spanish, and
another one in English. SO-CAL has three different lexicons for each language: (1) a lexicon
for evaluative adjectives, (2) a lexicon for adverbs, and (3) a lexicon for intensifiers. SO-CAL
lexicon was built through pairing of DSm tools. The corpus merely tagged each word with
a value from −5 to +5 without further detail.

SO-CAL [46] was the best option for building up a lexicon with FNL, since it al-
ready has a classification of 11-point scale, which fits with the theoretical extension of
FNL (Figure 5).
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Figure 5. Trichotomous Expression of [small-medium-big] in FNL.

We have taken the SO-CAL lexicon and re-distributed its adjective-lexical units.
We were interested in re-building the lexicon for characterizing evaluative adjectives
with FNL providing more linguistic information for each EH, and re-distributing the
sentiment polarities.

In order to built a lexicon underpinned in SO-CAL lexicon, two researchers elaborate
Linguistic Semantic Variables (LSV) scales. One worked with an English Lexicon, and the
other worked with a Spanish Lexicon. Without having contact with each other, they had
to find the Prime Evaluative Heads (EHs) for each LSV scale. They have also to tag every
adjective into an LSV scale, under a Prime EH.

The English adjective lexicon has 2827 lexical units, and the Spanish Adjective lexicon
has 2049.

In Figure 6, the x-axis displays the sentiment polarity for each adjective cluster [−5, 5].
At the same time, the y-axis represents the number of words (in proportion from one
corpus to the other) for each polarity set in the lexicon. Therefore, thanks to Figure 6, we
confirm that SO-CAL does not demonstrate substantial differences in the classification of
the adjectives’ polarity in English and Spanish. Moreover, SO-CAL lexicon demonstrates
a preference for medium values. Most of the adjectives are classified in the polarity of
[+2, +1], and [−2, −1], leaving the 0 value just with one case, with the word better.

On the other hand, we re-classified the SO-CAL lexicon applying the criteria from FNL.
We manually re-built half of the lexicon for both languages. We re-tagged 1419 adjectives
for the English language, and 1549 adjectives for the Spanish Language. Therefore, it
allowed us to evaluate FNL cross-linguistically.

After manually tagging each adjective under an LSV, and under a prime EH, the
general result was that the evaluation values’ distribution considerably changed in both
FNL lexicons.

Figure 6. SO-CAL Adjectives by polarity.
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In both Figures 7 and 8, the FNL lexicon preferred extreme values rather than middle
ground values. However, both classifications coincide in leaving the very mid almost
empty, with the exception that in Figure 7, it has a visible small peak in the mid value in
contrast with Figures 6 and 8. These results can be explained by taking into consideration
the following:

• Evaluation of the plots;
• Universality of the mid-value;
• Struggles with TE-adjective in LSV.

Figure 7. English Adjectives SO-CAL vs. FNL lexicon.

Figure 8. Spanish Adjectives SO-CAL vs. FNL lexicon.

Regarding evaluating the plots, it was more natural to classify the plots roughly either
in vL or vR. Acknowledging the context was unnecessary to decide whether the word is
placed in vR or vL or vS. We conclude that the universality of FNL resides in the rough
understanding of fuzzy prime EHs. Therefore, an EH is usually roughly either a vR or vL.
However, when we try to fine-grain a particular value, we do need the linguistic context
to clarify whether that word is a prototypical closer to the extremes of either vL or vR, or
whether it is a lexical unit closer to the middle plot vS, which intersections with vL or vR.

Regarding the universality of the mid-value vS, it turns out that we could barely classify
words in vS. Most of them are general enough to be included in almost every LSV. Some
examples are: ordinary, average, average-sized, grey, central, medium, adult, similar, normal.
We jump into the following conclusion according to this phenomena. Mid words are the
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universal words in an evaluation scale. Because of their lack of markedness, they can
flexibly be included in most of the scales as vS, and they still keep the mid-meaning. Words
in vS can be considered the fuzziest semantics units since they do not show any clear-cut
semantic traits, and yet they roughly fit in several LSV. Table 2, shows some TE-adjective
with an X in the middle. X means that the mid-plot is still existing; however, there is no
specific prime EH for such plot.

Table 2. Linguistic Semantic Variable (LSV) and Prime Evaluative Head (EH) tags in Fuzzy Natural
Logic (FNL) Lexicon.

FNL Tags in English and Spanish Lexicon

LSV Judgment Esteem Beauty Size Capability-Skills

Primes EH
〈negative/bad-

medium/normal-
positive/good〉

〈hated-X-loved〉 〈ugly-X-beautiful〉 〈small/short-
medium-big/long〉

〈disable-average-
capable〉

LSV Complexity Fear-Courage Fullness Indeterminacy Intelligence

Primes EH 〈simple-normal-
complex〉 〈scared-X-brave〉 〈empty-X-full〉 〈blurred-X-clear〉 〈stupid-average-

intelligent〉
LSV Generates-Interest Pleasing-Likability Proximity Veridicality Similarity-Usual

Primes EH 〈boring-X-
interesting〉

〈disgusting-X-
pleasing〉 〈far-central-close〉 〈fake/false-X-

real/truth〉
〈different-similar-

usual〉
LSV Speed Strength-Intensity Temperature Time-Lifetime Worth-Value

Primes EH 〈slow-medium-fast〉 〈weak/fragile-X-
intense/strong〉 〈cold-X-hot〉 〈life/new/young/

beggining- medium/
adult-death/old/end〉

〈worthless-X-
worthy〉

LSV Value (economical)

Primes EH 〈cheap-affordable-
expensive〉

Finally, regarding struggles with TE-adjective in LSV, Table 2 displays the tags that have
been found and agreed after manually tagging both the Spanish and English corpus.

We have found more satisfying those scales that classifies more specific LSV, such
as Fear-Courage, Esteem, Complexity, Capability-Skill, Temperature, or Value (economical) in
contrast with these scales with a more general LSV such as Size, Beauty, Pleasing-Likability,
Fullness, and so on. Using hyper-generic LSV such as Size, or Pleasing-Likability can bias
a fine-grained classification, since it is easy to fit too borderline cases into those scales.
Examples of too borderline cases in the LSV of Pleasing-Likability would be: happy, funny,
or clean. Assuming that all these words transmit a semantic value of something being
pleasing. The LSV of Fullness is a particular one. This LSV is a mishmash of evaluative
heads that cannot completely fit in other LSV without creating a specific scale with almost
no adjectives. Some of the cases are: informative as (full of information), illogic as (empty of
logic), words with the morpheme full like help-ful as (full of help), same with words with
-less or -free like painless (empty of pain), and dramafree (empty of drama), among others.

Therefore, one of the significant challenges in the classification of an FNL lexicon is
(1) not being too specific without reason during the extraction of LSVs, and (2) not pushing
the fit of borderline cases in a hyper-generic LSV.

On the other hand, two other big struggles arise when tagging adjectives:

(1) It is complex to know under which LSV tag the adjective should be classified if we do
not look at the linguistic context of the word,

(2) Some adjectives might be suspicious of being able to appear in more than one LSV
scale. It is the case of beautiful which could be Beauty: she is beautiful, and/or Pleasing-
Likability: the food taste beautiful, and/or Judgment: it is a beautiful job.

These two struggles brought us to implement a new feature in the FNL lexicon. We
are implanting a sub-tag of prototypical LSV (LSVα) and borderline LSV (LSVγ). This tag is
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particular for each lexical unit. Which means that if a prime EH such as beautiful is a tag
with LSVα and LSVγ does not necessarily imply that the lexical units under this prime will
require the same specific tagging.

Table 3 displays how every particular lexical unit is tagged with prototypes, borderline,
and sentiment features. In the case of Table 3, the TE-adjective membership coincides in
the three cases. Let us go back to Table 2. We will realize how all the TE are prepared
for automatically converging in most cases: vL is usually equivalent for a prototypical
negative, vS is usually equivalent for a prototypical neutral, and vR is usually equivalent
for a prototypical positive.

Table 3. Example of a tagged lexical unit.

Lexical Unit: Beautiful

LSVα Beauty vR

LSVγ Judgment, Pleasing-Likability vR

Sentiment positive vR

However, in some cases, some adjectives do need a dual tag for prototype sentiment
(Sα) and borderline sentiment (Sγ). These are the example of words such as sick, geek,
among others.

Table 4 provides two examples in which its lexical units have borderline cases in LSV
and sentiment. Both cases clearly specify that the borderline case is activated only when a
specific LSV is triggered. Therefore, within a particular context, sick would trigger Sγ in
a sentence such as Jordan’s game is sick (skills). Same situation for geek. It would trigger a
borderline sentiment in a sentence such as I am a Netflix geek (generates-interest).

Table 4. Tagging lexical units with borderline cases.

Lexical Unit: Sick Lexical Unit: Geek

LSVα Judgment vL LSVα Similarity-Usual vL

LSVγ
Pleasing-Likability
Capability-Skills

vL
vR

LSVγ Intelligence vR

Sα negative vL Sα negative vL

Sγ
positive

{IFF capability-skills}
vR Sγ

positive
{IFF generates-interest}

vR

Therefore, thanks to FNL, it is only necessary to specify the borderline LSVγ, and in
which side of the fuzzy-graph the lexical unit will be in the borderline case (vL or vR).

We must mention that the borderline cases are challenging to extract. They arise as
words with extreme variability, making it very difficult to know which exact word-pairing
are borderline, and which borderline properties are triggering. The first step in our future
work is working on an FNL lexicon with tagged-nouns. Therefore, we will be in a better
position to evaluate the characterization of borderline cases.

Summing up, with this experimental work, we aimed:

• To evaluate the model’s advantages and limitations when building a lexicon with
FNL—improving the model with new linguistic properties.

• To check if it is feasible to convert adjectives from the semantics of the evaluative
expression into an equivalent positive-negative value.

• To check in which cases the linguistic context is needed to classify an evaluative
adjective in a LSV under a prime EH.
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6. Conclusions

The model we have introduced takes into account the four main features when de-
scribing evaluative expressions:

• Firstly, evaluative linguistic expression’s syntax, semantics, and sentiment are vague
and gradient. The vagueness and gradience of its syntax and semantics are definable
through the concepts of grammaticality and coercion.

• Secondly, the semantics of an evaluative linguistic expression can be associated with a
semantic prime with a sentiment value. A real number cannot represent the extension
of this prime most of the time. Therefore, it is necessary to consider an abstract
extension representing an intensity similar to a Liker-t scale.

• Thirdly, every evaluative linguistic expression has a single lexical unit as an evaluative
head. Such heads are not necessarily adjectives and have to be defined in terms of
prototypical and borderline meanings.

• Lastly, syntactic structures that violate syntactic constraints detonate semantic inten-
sions equivalent to a semantic prime. Therefore, variability does not compromise the
final processing of the meaning of the construction.

Our findings and research provide the basis for creating a lexicon of evaluative ex-
pressions for future computational applications. Furthermore, we have expanded the
trichotomous expressions, extracting new ones from a sentiment analysis corpus by experts.

Additionally, we outline the following aspects related to some of the theoretical
criticism this model might receive.

• The linguistic mechanisms displayed in this paper to define evaluative expressions
are mainly found in Sections 3 and 4. Those mechanisms are mainly the linguistic
constraints from FPGr (Section 3) and selected concepts of Fuzzy Natural Logic (FNL)
adapted to FPGr (Section 4), which consist of using the description of the trichotomous
expression 〈vL, vS, vR〉 as a constraint to define the semantics of an evaluative head.
So, for example, some evaluative heads would have a constraint of 〈VR〉 that define
its semantics, such as “big”, “tall”, “complex”, “beautiful”, and so on. In summary, the
general approach to the model, its mechanisms such as the linguistic constraints, and
its architecture are married to how FNL compute evaluative expressions.

• Evaluative expressions as a “component” are identified with a lexicon. Therefore,
building a lexicon is fundamental for applying both FPGr and FNL to characterize
evaluative expressions, mainly because an evaluative head does not have a fixed
linguistic category.

• Our proposal is theoretical, including a proof-of-concept of how to build a lexicon
of evaluative expressions. In the future, it is necessary to extend the tags on the
evaluative expressions because it does need a lexicon to identify them, so their special
fuzzy semantics can be characterized.

• Regarding whether the system prevents over-generation or not, FPGr and FNL system
does not generate language, treebanks, or tree structures; they only characterize lan-
guage. The generation of constraints or establishing the number of constraints for each
language is up to each language’s grammar or the experts configuring such grammar.
If there is a problem with the overgeneration, it is not a fault of the system or the
architecture. It is a fault of how the system was applied to define a particular language.

• The grammaticality of syntax is considered, as the gradient is a fundamental part
of the FPGr. However, the notion of gradient grammaticality is not as “radical” as
it might seem under the architecture of FPGr. First, as observed in Section 3, the
grammar is defined as a set of constraints. Thus, the set of constraints represents the
knowledge of grammar. These constraints can be prototypical; therefore, they are,
for sure, constraints of a specific grammar, or borderline, so they are “sometimes”
constraints of specific grammar. That is, they are marked, and they appear in specific
contexts that are not prototypical. Therefore, the grammar is fuzzy because it considers
both prototypical and borderline constraints and weighs them. Secondly, a natural
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language input will have a degree of membership of a specific grammar according to
the number of satisfied and violated constraints of such specific grammar. Therefore,
the degree of grammaticality is defined as the degree of belongingness of an input,
with regards to specific natural language grammar. For further information, see
Torrens-Urrutia [19].

• FPGr and FNL do not consider extra-linguistic interpretations, since such a case would
entail pragmatics. Therefore, it cannot generate from an input such as “I love your food”
an output as: “I love the fact that you cooked for me, regardless of the quality of the food”.
Such an interpretation is considered pragmatic due to extra-linguistic reasons, i.e.,
theory of politeness, context, intention, implicatures, etc. (see Figure 2). Semantics in
FPGr only focuses on the essential part of the meaning, the most primitive one, that is
why we defend the notion of semantic primes as a hypernym, and the system defines
constraints of evaluations regarding a prime. These constraints are 〈vR, vS, vL〉.

7. Future Work

The future work for Fuzzy Natural Logic involves expanding the fundamental tri-
chotomous expressions and LSVs. For such a task, it will be necessary to either explore
computational techniques which can automatically extract the LSV, or to perform a sys-
tematisation of surveys in which a significant number of native speakers with linguistic
knowledge of their language perform classifications of words. Regardless of the method,
the final objective should be the creation of an ontology of the evaluative meaning based
on the feature descriptions that this work pointed out.

Figure 9 shows an ontology made ad hoc as a guidance for a future design of a com-
putational one. On the top, at the same level, we find both the Prime Sentiment, and Prime
semantics, which will typically share polarities; that is, vL will be prototypically negative. At
the same time, vR will be prototypically positive. From the most abstract notion of prime,
we will find the next level, at which we find the fundamental trichotomous expressions with
their LSVs. The closer we get to the bottom, the more metaphorical evaluations will be
found. The prototypical relations are marked with a straight line, while fractured lines
denote the borderline relations. The lines will state the semantic distribution between
the prime and the related words if they have a relationship to vL, vS, or vR. For example,
Einstein has a borderline relationship of being a metaphorical evaluation with a semantic
polarity of vR in the LSV prime of intelligence, which means that it will be included in the
fuzzy set of the TE − EH of intelligent. The ontology must be able to define evaluative
words as a combination of several fundamental trichotomous expressions, such as the case of
cute. Typically, something cute is referred for something closer to be pretty, but at the same
time, it shares traits with something being quite small. We would not say that a big truck is
cute, but a cartooney small toy truck could be cute. Independently of how right is this semantic
analysis, the main advantage of such an ontology is that it provides ‘explainability’, and the
particular cases can be changed and improved. Thus, if a semantic relation is inaccurate,
it could be fixed. Some words might have a lot of semantic relationships. It is a case
of do-it-yourself. This lexical unit operates as an evaluation, providing a lot of different
borderline meanings.

Creating several ontologies would help linguistics evaluate complexity of the syntax
and semantics across languages for future experiments and linguistic applications in
explainable AI. That is, computing with constraints how similar the meanings between
languages are, elaborate ontologies of the history of language through the evolution of
importance, and the evaluation of the linguistic universality in the semantic domain,
among others.
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Figure 9. Ontology of evaluative expressions.
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Abstract: In this article, we focus on discrete data processing. We propose to use the concept of
closeness, which is less restrictive than a metric, to describe a certain relationship between objects. We
establish a fuzzy partition of a given set of objects in a way that admits a closeness space to emerge.
The fuzzy (F-) transform is a tool that maps objects with common characteristics to the same discrete
image—the direct F-transform. We are interested in the inverse (preimage) problem: How can we
describe the class of all functions mapped onto the same direct F-transform? In this manuscript,
we focus on this preimage problem, formulated accordingly. Its solution is presented from three
different points of view and shows which functions belong to the same class determined by a given
image (by the direct F-transform). Conditions under which a solution to the preimage problem is
given by the inverse F-transform over the same fuzzy partition, or by transforming a given image
using a new system of basic functions, are formulated. The developed theory contributes to a better
understanding of ill-posed problems that are typical for machine learning. The appendix contains
illustrative numerical examples.

Keywords: closeness; closeness matrix; closeness space; function similarity; fuzzy partition; fuzzy
transform; preimage problem; singular value decomposition

MSC: 15A29

1. Introduction

In this paper, we are focused on spaces with closeness that are characterized using
weighted graphs, as in [1], or local neighborhoods of elements as in [2]. Formally, closeness
can be described by the graph adjacency matrix that contains weights—a higher value of
weight is assigned to the edge that connects closer objects. Those matrices were always
square as they contained mutual closeness values of all objects in the dataset.

In our previous research [1,3], the notion of closeness was used in the new approach
to dimensionality reduction for which fuzzy transform (F-transform for short, [4]) proved
to be useful. Otherwise, the concept of closeness can be observed in multiple contexts and
under different names, where it serves auxiliary purposes. For example, in [5], the phase
space of a dynamical system is described by a network (graph) where each point represents
one state of the system and closeness-describing weights (between two points) are equal
to the frequency with which a transition occurred between the two states. There exists a
related concept of closeness centrality (aggregation of closeness-describing weights with
respect to all neighbors except oneself computed by arithmetic or harmonic mean) that
describes the data density around one particular point in a network, used, e.g., in [6]. In
the area of image processing (image compression, image segmentation, image retrieval,
e.g., [7], etc.), the related concept of proximity space is widely used. It originated from [8]
and then evolved—currently, it is used, e.g., to describe the similarity between pixels
or patches.
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In this research, we consider closeness determined by a fuzzy partition of a universe
of discourse. This particular space structure is used in the theory of F-transforms [4,9]. The
notion of F-transform was introduced in [4], where we explained modelling with fuzzy IF-
THEN rules as a specific transformation. From this point of view, F-transform bridges fuzzy
modelling and the theory of linear (in particular, integral) transforms. The generalization
to a higher degree version was proposed in [9]. Generally speaking, F-transform performs
a transformation of the original universe of functions into a universe of their skeleton
models (vectors or matrices of F-transform components), for which further computations
are easier. In [4], the approximation property of F-transform was described, and in [10],
the effect of the shapes of basic functions on the approximation quality was demonstrated.
F-transform has many other useful properties and great potential in various applications,
such as special numerical methods as well as solutions to ordinary and partial differential
equations with fuzzy initial conditions, mining dependencies from numerical data, signal
processing, compression and decompression of images [11] and image fusion.

Among the recent applications of F-transform, we refer to an image classification
problem, in which data is scarce [12], a numerical solution to fuzzy integral equations [13]
and improving the JPEG compression algorithm in the cases where a high ratio compression
is required [11].

Similarly to F-transform, which, in its direct phase, aggregates a large number of
functional values of all points into a small number of components associated with selected
nodes, we consider that within our (possibly large) dataset, there are several selected points
(nodes) with known closeness values with respect to all the other points and that closeness
among other points is undefined, which gives rise to a rectangular closeness matrix that
describes the closeness space. Nodes can be thought of as the most prominent data points
because the dataset can be sparsely represented as a collection of their neighborhoods.

Following the methodology of F-transform, we aim to demonstrate that a partial
knowledge about the mutual position of all points in the dataset is sufficient for a successful
retrieval of a discrete function (up to non-significant differences that distinguish particular
functions from each other within the same equivalence class) from its F-transform compo-
nents. Thus, we present a not just theoretical tool for demarcating the set of such functions
that can be mutually replaced without losing an important feature in the space.

This allows us to express similarity between functions defined on spaces with closeness.
In specific cases, a representative function is given by the inverse F-transform. Moreover,
we contribute to the general theory of F-transforms in aspects described in this section. The
task of reconstructing an element of an input space (or finding an approximate solution if it
does not exist) based on (a lower-dimensional representation of) an element of a feature
space has been studied in various machine learning domains, e.g., in kernel-based methods
(e.g., [14] where the nonlinear dimensionality reduction is performed using the kernel trick
on an input image and the task is to recover the image from its denoised version in the
feature space, or [15] where algebraic tools based on the simple relationship of distances in
the input space and in the feature space induced by a kernel are used to find the preimage
of a feature vector) and graph-based methods (where the task is to recover structured data
from a single point of a feature space, e.g., to find a representative graph based on features
of a found data cluster). In these applications, the concept of preimage problem was already
used. This paper is focused on finding all functions that share a set of features (given by
the F-transform components) utilizing the above-described concept. We do not consider
that these features might be noisy. On the other hand, in [16], we used a similar initial
setting of the input space and we assumed that the input signal (function placed in this
space) is noisy in a certain sense. The signal was processed in the same manner (based on
closeness) and we proposed how to denoise the signal by finding the appropriate closeness
parameters. The inverse F-transform is known to reduce the noise of the input signal
(provided a suitable fuzzy partition) as was in the continuous case shown, e.g., in [17].

As explained in [18], preimage problems are useful not only in (pattern) denoising and
Kernel Dependency Estimation but also in signal compression, where the kernel technique
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serves as an encoder and the preimage technique as a decoder. Moreover, in [18], a
technique to learn the preimage without the need to solve a difficult nonlinear optimization
problem is presented. Additionally, in [15], the authors consider that a noisy pattern is
mapped to a feature space using the Kernel Principal Component Analysis and then the
approximate preimage is found using their technique. To summarize the main stream
of preimage problems in machine learning, we can say that a nonlinear optimization,
nonlinear iteration, or learning method is used to find a function (the space of all possible
functions comprises an input space), s.t. its image in a specified direct mapping has the
minimal squared distance from the given point in a feature space. The existence of a
precise solution is considered to be a coincidence. The purposes of computing the preimage
in machine learning are various (to denoise a pattern, reconstruct a signal, compress an
image, find a representative example of a data cluster, or learn a general mapping between
the input space and the feature space) but all of them are highly application-oriented,
and, hence, the initial settings are adjusted accordingly. This limits their transferability to
another task.

In contrast, our approach pays close attention to the structure of the input space and
this structure is quite flexible. We are focused on finding the precise solution (we ensure
that it always exists) to the special case of the preimage problem. Using the assumption
of the finiteness of the universe and endowing the input space with a fuzzy partition and
the corresponding closeness, we solve it by the means of linear algebra. The consequent
mapping forms a special case of direct mappings mentioned above. Since our theoretical
work is not aimed at solving any specific task, we compute the whole class (usually infinite)
from which we do not need to choose a particular solution (all of them are equivalent).

In Section 2, we give the details about the notion of closeness considered in this article.
After that, the fuzzy partition and transform are recalled and modified for the discrete case.
We show that a certain fuzzy partitioned space (space with a fuzzy partition) is a special
case of the space with closeness. Section 3 discusses the formulation of the main topic of
the paper—called preimage problem—that takes place in the space introduced in Section 2.
Preimage problem belongs to basic problems in algebra (e.g., in [19]) where it is considered
between certain two structured spaces (we propose to use the space with closeness and the
space of scaled F-transform components). The solution to this problem is described in three
different ways. Theorem 1 is based on a commonly used solution to the set of algebraic
equations. In Section 4, we examine the conditions when the inverse F-transform forms
the solution to this problem. In Section 5, we propose a technique consisting of checking
whether a solution to the preimage problem can be obtained by a certain transformation
of the given element of the space of scaled F-transform components given by a new set
of fuzzy partition units. Appendix A provides the numerical examples related to four
preceding sections, except for the Conclusions (Section 6).

Relationship of Closeness, Metric and Similarity

A space with closeness (X, w) is more general than a metric space (X, ρ) as they share
the axioms of symmetry and non-negativity but metric is more restrictive—it requires two
additional axioms (ρ(x, y) = 0 iff x = y and the triangle inequality ρ(x, y) ≤ ρ(x, z)+ ρ(y, z)
for all x, y, z ∈ X). As closeness is a relaxed version of a reciprocal distance metric, it is
more suitable for the description of data with graph structure (where the triangle inequality
is generally non-enforceable). Another example of a context where closeness is more
suitable is formed by the data that is assumed to lie on a topological manifold as there is no
straightforward way how to establish a metric there. Similarly to metric, closeness encodes
mutual relations between data points.

There is a close connection between closeness and similarity measures—each of these
concepts applies in different contexts. An algebraic, fuzzy, or probabilistic background
is usually assumed as a similarity requirement. There is no standard axiomatization of
its definition. Similarly to closeness, a similarity value is higher for more similar objects
(that are, e.g., more correlated, have a higher intersection, smaller cross-entropy, or belong
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to the same cluster), its values can be negative, it can be non-symmetric, etc. Similarity
spaces emerging in various applied fields are even more general than spaces with close-
ness. A solution to a particular type of problem is often associated with a certain type of
similarity measure.

This explains why we introduce the notion of closeness and why we give it a preference
over that of metric (too-restrictive axioms) and similarity (too-loose axiomatization). This
good trade-off allows us to express various established concepts, e.g., of graph theory (edge
weights used, e.g., in the dimensionality reduction technique of Laplacian eigenmaps [2]),
fuzzy logic (values of biresiduum of truth values of two formulae), clustering problems
(class membership degrees in, e.g., KNN clustering algorithm), etc., in terms of closeness
and incorporate a theoretical apparatus upon that. Therefore, as the closeness values can be
extracted from the data in various ways, the closeness space creates a platform that enables
both data-driven and model-driven approaches to be utilized.

2. Preliminaries

In this section, we describe the mathematical background by giving some basic defini-
tions and properties. Throughout the manuscript, all settings are discrete.

2.1. Closeness Space

We are interested in the notion of closeness on finite sets that, as described below,
agrees with [1,2]. To emphasize its general applicability, we express it using the language
of classical set theory. We show that it can be also expressed in the languages of fuzzy set
theory and graph theory.

Definition 1 (Closeness). Let X = {xi | i = 1, . . . , L} be a set, L ∈ N, then closeness on X is
any symmetric, non-negative function w : X2 → R, where symmetry means ∀x, y ∈ X : w(x, y) =
w(y, x) and X2 = X × X = {(x, y) | x, y ∈ X} is the Cartesian product of X with itself. The pair
(X, w) is called a space with closeness or simply a closeness space.

We provide the following semantic interpretation of closeness: objects that are closer
in a certain sense (as explained in the Introduction, in some cases, metric cannot be defined)
have a greater closeness value (with respect to natural order on R) than the less-close ones.
Non-close objects have a closeness value equal to zero, and, vice versa, if the closeness
value of a pair of objects is greater, we consider these objects closer in this sense than a pair
of objects with a smaller closeness value. The closeness value hence quantifies a certain
quality of mutual alikeness between objects.

Example 1. Let X = {0, 10, 20, 30, 40, 50} and for all xi, xj ∈ X : w(xi, xj) =
1

1+|xi−xj | , then w

is closeness on X and (X, w) is a space with closeness.

Example 2. Let ρ be a metric and (X′, ρ) a metric space. Let moreover, X ⊆ X′ and for all
xi, xj ∈ X, w1(xi, xj) = 1

1+ρ(xi ,xj)
and w2(xi, xj) = e−ρ(xi ,xj) hold true. Then, (X, w1) and

(X, w2) are closeness spaces.

Definition 2 ((Weakly) Reflexive Closeness). Let X = {xi | i = 1, . . . , L} be a set, L ∈ N, and
w : X2 → R be closeness on X. Then, w is weakly reflexive closeness on X if there exists a
positive real number w, s.t. ∀x, y ∈ X : w(x, y) ≤ w(x, x) = w. If, moreover, w = 1, w is called
reflexive closeness on X. The pair (X, w) is then a space with (weakly) reflexive closeness or
simply a (weakly) reflexive closeness space.

Remark 1. In this paper, we consider only finite closeness domain X, hence there always exists a
constant m = max{w(xi, xj) | (xi, xj) ∈ X2}, in case 1 < m < +∞, it would be more appropriate
to define strong reflexivity by w = m but later, we work with closeness w : X2 ⇀ [0, 1].
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Example 2 contains two reflexive closeness-defining functions. Examples of weakly
reflexive closenesses derived from an arbitrary metric ρ include 1

2+ρ(xi ,xj)
and 1

2 e−ρ(xi ,xj),

both with w = 1
2 .

Let (X, w) be a space with closeness where X = {xi | i = 1, . . . , L} is a set, L ∈ N. Let
us denote

∀xi, xj ∈ X : wij = w(xi, xj) , (1)

and consider a matrix that contains the closeness values

W = (wij)
L
i,j=1 ∈ RL×L , (2)

then the matrix W is called the matrix of closeness on X or simply the closeness matrix.
Functional values of closeness w for the elements of X2 can be arranged into a matrix W—
the matrix of closeness on X.

2.2. Fuzzy Set, Relation and Partition

Definition 3 (Fuzzy Set). Let X be a non-empty universe and K : X → [0, 1] be a function.
Fuzzy set K is the set of pairs {(x, K(x)) | x ∈ X}. The function K is a membership function
and its functional value K(x) is called the membership degree of the element x to K. Fuzzy set
is conventionally identified with its membership function. We call it fuzzy subset of X which is
denoted by K ⊂∼X. We say that the point x ∈ X is covered by the fuzzy set K if K(x) > 0.

Remark 2. Note that if K : X → {0, 1}, then K is a characteristic function of an ordinary set.
The membership function K : X → [0, 1] is a generalization of the characteristic function of the
set K ⊆ X given by a function χK : X → {0, 1}. If the universe of a (fuzzy) set is clear, we can talk
about (fuzzy) set K without referring to it.

Definition 4 (Fuzzy Relation). Let V and X be non-empty sets, then binary fuzzy relation r is
any fuzzy subset of V × X , i.e., r ⊂∼V × X.

Hence, the binary fuzzy relation r is identified with a membership function r :
V × X → [0, 1].

Definition 5 (Convex Fuzzy Set). Let X ⊂ R and K ⊂∼ X. Then K is a convex fuzzy set, if
∀xc, xd, xe ∈ X, xc < xd < xe : K(xd) ≥ min{K(xc), K(xe)}.

Following [4], we recall the notion of fuzzy partition and modify it for a discrete case.
Consecutively, we set fuzzy transform in Section 2.6.

Definition 6 (Fuzzy Partition of a Real Interval with Nodes). Let [y0, yl+1] be a real interval
and y1, . . . , yl ∈ R, s.t. y0 < y1 < y2 < . . . < yl < yl+1 and 0 < l < +∞. Then the fuzzy
partition of [y0, yl+1] is given by a set of fuzzy sets {A1, . . . , Al}, if:

1. ∀i = 1, . . . , l : Ai : [y0, yl+1]→ [0, 1],
2. for all i = 1, . . . , l: Ai is continuous with respect to topologies on [y0, yl+1], [0, 1] ⊂ R

induced by the natural topology on R,
3. ∀i = 1, . . . , l : Ai(x) > 0 iff x ∈ (yi−1, yi+1),
4. for all i = 1, . . . , l: Ai strictly increases in (yi−1, yi],
5. for all i = 1, . . . , l: Ai strictly decreases in [yi, yi+1).

Elements of the set {A1, . . . , Al} are called basic functions (fuzzy partition units). Based
on condition 3., A1, . . . , Al are associated with points y1, . . . , yl, respectively. These points are
called nodes of the fuzzy partition.
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In Definition 6, conditions 3–5 ensure that each basic function is a convex fuzzy set.
Moreover, condition 3 ensures that each basic function covers at least one point. This might
not hold in the case of a discrete universe which motivated the following definition.

Definition 7 (Sufficient Density with respect to Fuzzy Partition). Let X be a set, s.t.
X ⊂ [y0, yl+1] ⊂ R, and 0 < l < +∞. Let P = {A1, . . . , Al} be a fuzzy partition of the inter-
val [y0, yl+1]. Then X is sufficiently dense with respect to P , if ∀i = 1, . . . , l ∃x ∈ X : Ai(x) > 0.

Definition 7 states that a set is sufficiently dense with respect to a given fuzzy partition
if every basic function covers at least one point of that set. This notion allows us to define
the fuzzy partition of a discrete set.

Definition 8 (Fuzzy Partition of a Discrete Subset of a Real Interval with Nodes). Let
X = {x1, . . . , xL} be a set, s.t. X ⊂ [y0, yl+1] ⊂ R, and 0 < l ≤ L < +∞. LetP′ = {A′

1, . . . , A′
l}

be a fuzzy partition of the interval [y0, yl+1] with nodes in Y = {y1, . . . , yl} ⊆ X and X be suffi-
ciently dense with respect to P′. Then P = {A1, . . . , Al} is the fuzzy partition of X with nodes
in Y , if ∀i = 1, . . . , l : Ai = A′

i|X, i.e., if each basic function is replaced by its restriction on X.

Remark 3. Definition 8 can be extended in the converse direction: let X = {x1, . . . , xL} be a set,
s.t. X ⊂ [y0, yl+1] ⊂ R, Y = {y1, . . . , yl} ⊆ X and 0 < l ≤ L < +∞. Let P = {A1, . . . , Al},
s.t. ∀i = 1, . . . , l : Ai ⊂∼ X & Ai(yi) > 0. Then P will be also called the fuzzy partition of X
with nodes in Y, if there exists a fuzzy partition P′ = {A′

1, . . . , A′
l} with nodes in Y, s.t. X is

sufficiently dense with respect to P′ and for each i = 1, . . . , l, A′
i is a continuous extension of Ai on

[y0, yl+1], i.e., A′
i ⊂∼ [y0, yl+1], A′

i is continuous and Ai = A′
i|X.

Below, we show how the space with closeness can be represented by a fuzzy parti-
tioned space and by a weighted graph-structured space that, satisfying certain conditions,
are examples of closeness spaces.

2.3. Closeness as Fuzzy Relation and Closeness Given by a Fuzzy Partition

Using the language of fuzzy set theory, we can say that any symmetric fuzzy rela-
tion w ⊂∼X2, where symmetry means ∀x, y ∈ X : w(x, y) = w(y, x), is closeness on X.

Note that in the context of fuzzy relations, it holds that for weakly reflexive closeness,
we have w ≤ 1. For w = 1, we obtain a special case called reflexive closeness on X.

Lemma 1 (Closeness Given by a Fuzzy Partition – 1). Let {A1, . . . , Al} be a fuzzy partition as-
sociated with nodes y1, . . . , yl of the set {x1, . . . , xL} ⊂ [y0, yl+1], s.t. y0, . . . , yl+1, x1, . . . , xL ∈ R,
0 < l = L < +∞ and y0 < y1 = x1 < y2 = x2 < · · · < yl = xL < yl+1. For all i, j = 1, . . . , l,
let it hold that

Ai(yj) = Aj(yi) , (3)

then the function w : {x1, . . . , xL}2 → R given by ∀i, j = 1, . . . , L : w(xi, xj) = Ai(xj) is
closeness on {x1, . . . , xL}.

Proof. The function w is obviously real, bivariate and non-negative. Using the property (3),
we have ∀i, j = 1, . . . , L : w(xi, xj) = Ai(xj) = Ai(yj) = Aj(yi) = Aj(xi) = w(xj, xi),
hence w is also symmetric.

Lemma 1 shows that a fuzzy partition of a subset of a real interval, s.t. its every point
is a node and satisfying condition (3), determines closeness on this set.

2.4. Closeness as Weighted Adjacency of Graph Vertices

In this subsection, we show that closeness can be expressed using the language of graph
theory. We do not recall the basic concepts of this theory (details can be found, e.g., in [20]).

86



Mathematics 2022, 10, 3209

Generally, closeness between any two objects xi and xj in X is described by the values
(weights) w(xi, xj) of a real, non-negative, symmetric bivariate function w.

Let G(X, E, W) be a weighted graph where the set of vertices corresponds to objects in
X, the set of edges E ⊆ X2 and weights of the edges are given by the adjacency matrix W
and in accordance with (2). The objects are non-close if and only if the corresponding
vertices are not connected by a direct edge, i.e., there is a fictional edge with zero weight
between them. We denote this disconnectedness or non-closeness by �∼ which is a classical
(meaning non-fuzzy) symmetric binary relation on X, i.e., �∼⊆ X2:

xi �∼ xj ⇔ w(xi, xj) = 0 . (4)

In the other words, the value of closeness determines the existence of an edge.
By defining the values of closeness {w(xi, xj) | xi, xj ∈ X}, i.e., by defining the values

of entries of the closeness matrix, we simultaneously define the values of entries of the
adjacency matrix W which uniquely determines a weighted graph G(X, E, W) by (1), (2)
and (4). That is why the notion of closeness can be also established from the perspective of
weighted graphs: let X = {xi | i = 1, . . . , L} be a set of vertices, L ∈ N, then, following the
convention given by (4) as E ⊆ X2, any evaluation of the set of all edges X2 described by a
symmetric, non-negative function w : X2 → R is closeness on X.

Below, we join the theory of closeness with a certain type of fuzzy partition to describe
the space this paper deals with.

2.5. Initial Assumptions

Let us have a finite set of points on R:

X = {xi | i = 1, . . . , L} , (5)

and its non-empty subset

Y ⊆ X, 0 < |Y| = l ≤ L = |X| < +∞ .

Let {At | t ∈ Y} be a fuzzy partition of X with nodes in Y (in the sense of Remark 3),
s.t. with each node t ∈ Y, we associate a basic function At : X → [0, 1]. Let, moreover, (3)
be satisfied, i.e., ∀t, s ∈ Y : At(s) = As(t), and let all points in X be covered by at least one
basic function, i.e., ⋃

t∈Y
{x ∈ X | At(x) > 0} = X . (6)

Let us define node degrees by

∀t ∈ Y : dtt = ∑
x∈X

At(x) . (7)

Following condition 3 in Definition 6, we know that At(t) > 0, t ∈ Y, which implies
that each node degree dtt ∈ (0, ∞). Moreover, based on Definition 7, it means that the set Y
is sufficiently dense with respect to the fuzzy partition {At | t ∈ Y}; hence, the same holds
for the universe X.

It is worth noting that instead of working with the closeness on the whole universe X,
given by a function on X2, we work only with its restriction on Y × X (the values of
closeness on (X \ Y)× X are undefined, as explained in the Introduction). In the other
words, closeness w : X2 ⇀ R is a partial function (partial function f : A ⇀ B maps each
element of a set A to at most one element of the set B, it is a functional binary relation with
carrier set being a subset of A× B) given by

∀xi, xj ∈ X : w(xi, xj) =

{
At(xj) t = xi ∈ Y
undefined otherwise .
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This description justifies the selection of nodes within the universe (Semantic descrip-
tion of nodes is also explained in the Introduction).

Even though we will still call the total function w : Y×X → R (total function f : A → B
maps each element of a set A to exactly one element of the set B, it is a classical function)
closeness on X and denote the corresponding closeness space as (X, w).

Lemma 2 (Closeness Given by a Fuzzy Partition—2). Let {A1, . . . , Al} be a fuzzy partition
associated with nodes y1, . . . , yl of the set {x1, . . . , xL} ⊂ [y0, yl+1], s.t. y0, . . . , yl+1, x1, . . . , xL ∈
R, y0 < y1 < y2 < . . . < yl < yl+1, y0 < x1 < x2 < . . . < xL < yl+1, {y1, . . . , yl} ⊆
{x1, . . . , xL}, 0 < l ≤ L < +∞ and let condition (3) hold. Let us denote

∀i = 1, . . . , L : κ(i) =

{
j xi = yj

l + 1 �y ∈ {y1, . . . , yl} : xi = y

(note that in case xi = yj, we have yj = yκ(i)). Then the function w : {x1, . . . , xL}2 ⇀ R given by
w(xi, xj) = Aκ(i)(xj), where κ(i) ≤ l, is closeness on {x1, . . . , xL}.

Proof. The function w is obviously real, bivariate and non-negative. Using the property (3),
we have ∀i, j = 1, . . . , L , κ(i), κ(j) ≤ l : w(xi, xj) = Aκ(i)(xj) = Aκ(i)(yκ(j)) = Aκ(j)(yκ(i)) =
Aκ(j)(xi) = w(xj, xi), hence w is also symmetric.

Lemma 2 shows that a fuzzy partition of a subset of a real interval, s.t. it contains all
nodes and satisfies condition (3), determines closeness on this set. We will follow Lemma 2,
and hence closeness is given by:

w(t, x) = At(x), where t ∈ Y, x ∈ X . (8)

By that, the closeness space (X, w) is specified. The values of closeness w : Y× X → R
are inserted in the closeness matrix W ∈ Rl×L and given by

∀t ∈ Y, x ∈ X : W(t, x) = w(t, x) . (9)

It means that by fixing a set of basic functions, we determine values of the closeness-
describing function w : Y × X → R.

It follows from (4), (6) and (8) that for every point x of the universe X there exists a
node t ∈ Y, s.t. w(t, x) > 0. It means that every point is connected with at least one node.

Sections 2.1 and 2.2 covered the basic theory of closeness and the theory of fuzzy
partitions, respectively. In the following Section 2.6, we recall the theory of fuzzy transform
that we need to describe a fundamental property (the F-transform identity) of the space
with closeness that will be used in Section 3 to describe the preimage problem.

2.6. Fuzzy Transform

In Section 2.2, we defined the fuzzy partition and its units, basic functions. Below, we
proceed by the establishment of fuzzy transform. The closeness space (X, w) serves as a
ground on which F-transform is established as its key element, a fuzzy partition, is selected
on condition (3) that allows the creation of (X, w) based on (8) in Section 2.5.

Definition 9 (Direct F-Transform [4]). Let X be a set, Y ⊆ X ⊂ [y0, yl+1] ⊂ R, 0 < |Y| =
l ≤ |X| = L < +∞, P = {At : X → [0, 1] | t ∈ Y} be a fuzzy partition of X with nodes in Y,
s.t. y0 < x1 < x2 < . . . < xL < yl+1, and satisfying (3), i.e., ∀t, s ∈ Y : At(s) = As(t). Let
dtt be a node degree given by (7) and u : X → R be a function where ∀i = 1, . . . , L : u(xi) = ui.
Then the direct discrete F-transform of u with respect to P is a vector F[u] ∈ Rl of F-transform
components defined by
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∀t ∈ Y : F[u]t =

L
∑

i=1
ui At(xi)

L
∑

i=1
At(xi)

=

L
∑

i=1
ui At(xi)

dtt
. (10)

Remark 4. Note that in [4], the direct F-transform is defined only with respect to a fuzzy partition
(without closeness) and in that case, the requirement that P satisfies (3) is omitted. This paper,
however, assumes a closeness background. That is why for every node t ∈ Y, the value

dtt =
L

∑
i=1

wti , (11)

is also called a node degree which fully agrees with (7). For the corresponding space with closeness
(X, w) where the closeness values are denoted according to (1), we equivalently define the direct
F-transform of u as a vector F[u] ∈ Rl of F-transform components defined by

∀t ∈ Y : F[u]t =

L
∑

i=1
uiwti

L
∑

i=1
wti

=

L
∑

i=1
uiwti

dtt
, (12)

which fully agrees with (10).

Let F be a real vector-valued operator that acts on the space of all real functions
on the universe X and gives us a real vector in Rl given by (10) that can be uniquely
identified with a function on the set of nodes Y, an element of a functional space on Y, s.t.
∀t ∈ Y : F[u](t) = F[u]t. So,

F : u �→ F[u], where u : X → R and F[u] : Y → R .

Then Definition 9 describes F-transform as a vector of F-transform components, i.e., as
an image of the operator F.

Lemma 3 (F-Transform Identity). Let X be a set, Y ⊆ X, 0 < |Y| = l ≤ |X| = L < +∞,
P = {At : X → [0, 1] | t ∈ Y} be a fuzzy partition of X with nodes Y satisfying the assumptions
of Lemma 2 and (X, w) be a corresponding space with closeness where W ∈ Rl×L is the closeness
matrix given by (8) and (9), and D ∈ Rl×l be a diagonal scaling matrix with diagonal elements
(dtt)t∈Y given by (7) and (11). Let F[u] ∈ Rl be the vector of F-transform components of the
function u : X → R with respect to P and u ∈ RL be the vector form of the function u : X → R
given by ∀i = 1, . . . , L : ui = u(xi). Then the following holds:

DF[u] = Wu . (13)

Equation (13) is called the F-transform identity.

Lemma 3 characterizes the operator F in a matrix form utilizing the fact that both
functional spaces contain discrete functions; hence, they can be represented as vectors
(matrices of finite order):

F : RL → Rl , u �→ F[u] = D−1Wu .

There is a historical reason for representing F-transform as a mapping.

Definition 10 (Inverse F-Transform). Let X be a set, Y ⊆ X, 0 < |Y| = l ≤ |X| = L < +∞,
P = {At : X → [0, 1] | t ∈ Y} be a fuzzy partition of X with nodes Y satisfying the assumptions
of Lemma 2 and (X, w) be a corresponding space with closeness where W ∈ Rl×L is the closeness
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matrix given by (8) and (9). Let Wt be its t-th row and F[u] be the direct F-transform of a
function u : X → R in accordance with Definition 9 and (12). Then the inverse F-transform of the
function u is the vector

F̂[u] = W�F[u] = ∑
t∈Y

F[u]tWt� ∈ RL .

Definition 10 agrees with the standard case given in [4] where it is shown that the
inverse F-transform approximates the original function defined on the fuzzy partitioned
space (the function is sparsely represented by the direct F-transform). Note that it is called
“inverse” as it transforms the vector of direct F-transform components back to the original
space. It is not an inverse mapping, though.

3. Preimage Problem

In this section, we describe a form of preimage problem (see Definition 11 below) that
we would like to solve in order to describe a similarity between functions. The inverse
F-transform of a function u provides a vector F̂[u] that approximates the vector form of u.
Therefore, we were motivated to solve the problem of how to find the class of functions that
have the same inverse F-transform but decided to solve a more specific problem described
in the following paragraph.

Let us have a fixed mapping (based on the F-transform identity in Lemma 3) that
maps functions on vectors: u �→ DF[u] = Wu. We would like to characterize the similarity
between functions in the sense that two functions are similar if their images (scaled vectors
of direct F-transform components) coincide. In that case, their inverse F-transforms coincide
as well (DF[u′] = DF[u] ⇒ F̂[u′] = F̂[u]). We use the singular value decomposition
(formalized, e.g., in [21] and commonly abbreviated as SVD) of the closeness matrix W to
specify the problem and its solution.

We assume that the universe X, its subset Y of nodes and the closeness matrix W ∈ Rl×L

given by (8) and (9), where 0 < |Y| = l ≤ |X| = L < +∞, are fixed. Recall that the node
degrees dtt’s are given by (7) and form the diagonal of the matrix D ∈ Rl×l . In the following
text, we will respect the aforegiven assumptions.

Moreover, for simplicity, we will use the language of linear algebra in the following
two subsections. That is why the clarification of the correspondence between discrete
functions (functional spaces) and vectors (vector spaces) follows.

From the functional viewpoint, let A be the space of all functions u : X → R and let B
be the space of such functions f : Y → R that assign to each node t ∈ Y the value of the
corresponding F-transform component multiplied by the corresponding node degree, i.e.,

f ∈ B ⇔ ∃u : X → R ∀t ∈ Y : f (t) = dttF[u]t .

From the viewpoint of the linear algebra, recalling that |X| = L, A = RL is a vector
space, its elements are later denoted by u or v. Space A contains all vector representations
of functions on X. As each element of A corresponds to one function on the universe X,
we can further identify X, given by (5), with the set of its indices {1, . . . , L}. Hence, the
correspondence between the function u : X → R and the vector u ∈ Rl is given by the
following equation:

∀xi ∈ X : u(xi) = ui . (14)

Following (8) and (9), recall that each row of the closeness matrix W ∈ Rl×L defines
one basic function. Then, based on the F-transform identity, B = range W (range, or column
space, of the matrix W ∈ Rl×L is a linear subspace of Rl spanned by all columns of W) is
a vector subspace of Rl containing the scaled images of the operator F that are uniquely
determined by W. In the other words, the set of all vectors (elements) of B, f ∈ Rl , is
defined by

f ∈ B ⇔ ∃u ∈ A : f = DF[u] = Wu .

90



Mathematics 2022, 10, 3209

Hence, the correspondence between the function f : Y → R (satisfying ∀t ∈ Y : f (t) =
dttF[u]t) and the vector f ∈ range W is given by the following equation:

∀t ∈ Y : f (t) = ft . (15)

Note that, for convenience, the vectors in Rl are indexed based on the indices of nodes
in RL, so their indices need not form an arithmetic sequence. The same convention will be
also respected for the rows of the matrix W.

In the following text, we will also respect the notation of the vector spaces A and B.

3.1. Problem Formulation

In this subsection, we describe the preimage problem in terms of a mapping between
two linear vector spaces.

Definition 11 (Preimage Problem). Let (X, w) be a closeness space with a closeness matrix
W ∈ Rl×L given by ∀t ∈ Y, x ∈ X : w(t, x) = W(t, x), where Y is a non-empty subset of X and
0 < l ≤ L < +∞. Let A = RL, B = range W ⊆ Rl and let an element b ∈ B be given. Let the
direct mapping W : A → B be given by the closeness matrix W, i.e., ∀v ∈ A : W(v) = Wv. Then
the preimage problem is to find the set {v ∈ A |Wv = b}. This set is the preimage of b.

Although the solution to the preimage problem is a set, we will call any of its el-
ements a solution to the preimage problem. By choosing the element b ∈ B, we want to
utilize the closeness on X to induce an equivalence relation on A to describe the similarity
between vectors.

The closeness matrix W generally exists for any closeness (based on (1) and (2)) on
a finite set. It can be also defined for the special case that originates in a certain fuzzy
partition (based on (8) and (9)). Hence, the preimage problem described in Definition 11 is a
general formulation of the problem. By solving the general one (described by the closeness
matrix), we simultaneously solve the problem specified by F-transform.

Assume that we found an SVD (see [21] to recall this technique) of the closeness
matrix W in the form of the product of three matrices PSZ�, where P ∈ Rl×l and Z ∈ RL×L

are orthogonal (these matrices are not determined uniquely) and S ∈ Rl×L is diagonal
(∀i, j : i �= j ⇒ sij = 0) with so-called singular values ∀i = 1, . . . , l : σi = sii on its diagonal,
s.t. σ1 ≥ σ2 ≥ · · · ≥ σk > σk+1 = · · · = σl = 0 where k = dim(range W) = rank W is the
number of linearly independent rows of W (0 < k ≤ l). Any complex-valued matrix can be
represented in an SVD form where the singular values are invariant under different choices
of P and Z.

Lemma 4. Let W ∈ Rl×L be a closeness matrix and PSZ� be its SVD as above, then

range W = range PSZ� =

{
k

∑
i=1

ci pi

∣∣∣∣∣ ci ∈ R

}
,

where pi is the i-th column of the matrix P.

Lemma 4 states that range W is spanned by the left singular vectors (pi, i = 1, . . . , k)
corresponding to positive singular values of W.

Proof of Lemma 4. Let y ∈ range W, i.e.,

y =
L

∑
j=1

djWj ,

where for j = 1, . . . , L, dj ∈ R and Wj is the j-th column of W. For any r = 1, . . . , l, we have
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yr =
L

∑
j=1

djwrj =
L

∑
j=1

dj(PSZ�)rj =
L

∑
j=1

dj

k

∑
i=1

priσizji =
k

∑
i=1

pri

L

∑
j=1

djσizji .

Let

S =

{
k

∑
i=1

ci pi

∣∣∣∣∣ ci ∈ R

}
.

If for each r = 1, . . . , k, we set

ci =
L

∑
j=1

djσizji ,

this proves that y ∈ S because the value ci does not depend on r. Hence, range W ⊆ S . As
both of these sets are k-dimensional subspaces of Rl , they must coincide.

3.2. Problem Solution

Firstly, we discuss conditions when the preimage problem has a solution and when
this solution is unique.

As Y �= ∅, the matrix W has a positive number of rows and, hence, a positive number
of columns, so range W �= ∅ and a vector b can be always selected. Following Definition 11,
we were given a vector b ∈ B. This means that the solution always exists. The solution is
always unique—it is the set of all vectors v ∈ A that are mapped on b.

Let us now discuss when the solution to the preimage problem is formed by a set with
exactly one element. Following the well-known Fredholm alternative, if the homogeneous
system Wv0 = 0 has a nontrivial solution v0 ∈ A, then the set has more than one element.
If Wv0 = 0 has only the trivial solution v0 = 0, then there is only one vector v solving the
problem. Details can be found in Section 3.2.3.

Secondly, we characterize the solution from three perspectives: the first one is a useful
characterization (Lemmas 5 and 6), the latter two (Theorem 1 together with Corollary 1,
and Lemma 9) describe what the solution looks like.

3.2.1. Weighted Arithmetic Mean

Definition 12 (Weighted Arithmetic Mean of a Vector). With respect to the real weights (wi)
L
i=1

that satisfy ∑L
i=1 wi �= 0, the weighted arithmetic mean of a vector

[
v1, . . . , vL

]� ∈ RL is a
real number

L
∑

i=1
viwi

L
∑

i=1
wi

.

The equation of the preimage problem, Wv = b, is a set of linear equations Wtv = bt
where Wt is a row of the matrix W corresponding to the index t ∈ Y, and we solve

bt =
L

∑
i=1

viwti where t ∈ Y . (16)

We have l = |Y| equations in the form (16) of L ≥ l variables v1, . . . , vL ∈ R, from
which stems the following lemma.

Lemma 5. Any vector v ∈ A is a solution to the preimage problem Wv = b if and only if for every
index t ∈ Y, its weighted arithmetic mean with respect to closeness-defining weights (wti)

L
i=1 is

equal to bt
dtt

, where bt is the t-th component of the vector b and dtt is the node degree given by (11).
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Proof. Dividing both sides of (16) by dtt =
L
∑

i=1
wti, the claim is obvious.

Lemma 5 states that with respect to every row of W, the weighted arithmetic means
of the solutions to the preimage problem are equal. By that, Lemma 5 characterizes the
set of all solutions to the preimage problem Wv = b for a given vector b ∈ B. Hence, the
similarity we are looking for is determined by the weighted mean of vectors. Moreover, it
demarcates the solution as the equivalence class of vectors (discrete functions):

Lemma 6. Let us have the equivalence relation on A given by: for all v′, v ∈ A, we have

v′ ≡ v ⇔ ∀t ∈ Y :

L
∑

i=1
v′iwti

L
∑

i=1
wti

=

L
∑

i=1
viwti

L
∑

i=1
wti

.

Let b = Wu for some u ∈ A (i.e., b ∈ B), then the solution to the preimage problem Wv = b
is the set {v ∈ A | v ≡ u}.

Proof. This lemma is a direct consequence of Lemma 5 where for any v ≡ u, we have

∀t ∈ Y :

L
∑

i=1
viwti

L
∑

i=1
wti

=

L
∑

i=1
uiwti

L
∑

i=1
wti

=
bt

dtt
,

and because u is a solution to the preimage problem, any v ≡ u is a solution.
Conversely, consider a vector v∗ �≡ u, s.t. Wv∗ = b. Then

∃t∗ ∈ Y :

L
∑

i=1
v∗i wti

L
∑

i=1
wti

�=

L
∑

i=1
uiwti

L
∑

i=1
wti

=
bt

dtt
,

which, based on (16), contradicts Wv∗ = b. This contradiction proves that the equivalence
class contains exactly all solutions to the preimage problem.

3.2.2. Pseudoinverses

Decomposing W into its SVD by W = PSZ� gives the preimage problem in the form
PSZ�v = b where P ∈ Rl×l and Z ∈ RL×L are orthogonal and S ∈ Rl×L is diagonal (i.e.,
∀i �= j : sij = 0) with singular values of W, σt = stt, t ∈ Y, on its diagonal. The equation at
hand is thus

∀t ∈ Y : ∑
q∈X

∑
r∈Y

σr ptrz�tqvq = bt ,

where z�tq = zqt is the element of the matrix Z� corresponding to the index t in its
q-th column.

Theorem 1 (Explicit Solution). Let W ∈ Rl×L be the closeness matrix given by (8) and (9), its
SVD W = PSZ� be given by matrices P ∈ Rl×l , S ∈ Rl×L and Z ∈ RL×L, s.t. rows of P,
columns of P and rows of S are indexed by Y, Y+ = {t ∈ Y | σt > 0}. Let, moreover, b ∈ B. Then,
an explicit solution to the matrix equation Wv = b with respect to the given SVD is the vector

v = ∑
t∈Y+

b�pt

σt
zt ∈ A ,
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where pt is the t-th column of the matrix P and zt is the t-th column of the matrix Z.

Proof. Let 1t denote the vector containing all zeros but 1 on the t-th coordinate and (σ−1
t )t

denote the vector containing all zeros but σ−1
t on the t-th coordinate. Following the

orthogonality of P, we have:

Wv = PSZ� ∑
t∈Y+

b�pt

σt
zt = ∑

t∈Y+

b�pt

σt
PSZ�zt = ∑

t∈Y+

b�pt

σt
PS1t

= ∑
t∈Y+

b�ptPS(σ−1
t )t = ∑

t∈Y+

b�ptP1t = ∑
t∈Y+

b�pt pt = b .

Remark 5. Note that the matrices P and Z in Theorem 1 are not determined uniquely, and so there
is generally more than one vector v ∈ A solving Wv = b. Following Lemma 6, the solution to
the corresponding preimage problem is given by the set {v′ ∈ A | v′ ≡ v} formed by all vectors
equivalent with the explicit solution v.

Another general description of the solution is expressed using the notion of right
inverse matrix, also called (right) pseudoinverse. Any matrix W−1 ∈ RL×l satisfying
WW−1 = I where I ∈ Rl×l is the identity matrix, is the right inverse matrix of W ∈ Rl×L; if
we demanded that W−1W were symmetric, W−1 would be unique, otherwise there can be
multiple right inverse matrices.

Lemma 7. Let W−1 ∈ RL×l be any right inverse matrix of the closeness matrix W and b ∈ B,
then the vector v = W−1b is a solution to the preimage problem Wv = b with respect to the given
right inverse matrix W−1.

Proof. Wv = WW−1b = Ib = b.

The following corollary is a special case of Theorem 1 written in a matrix form.

Corollary 1. Let W ∈ Rl×L be the closeness matrix and rank W = l. If W = PSZ� is its fixed
SVD, then its right inverse is obtained as W−1 = ZS+P� where S+ ∈ RL×l is the right inverse
of S, i.e., a diagonal matrix with inverted singular values of S on its diagonal. Let b ∈ B, then
v = ZS+P�b is a solution to the preimage problem Wv = b.

Proof. Following the orthogonality of matrices P and Z, we have WW−1 = WZS+P� =
PSZ�ZS+P� = PSS+P� = PP� = I, hence, Wv = WW−1b = b.

Lemma 8. If a matrix W ∈ Rl×L, 0 < l ≤ L, has linearly independent rows, then W−1 =
W�(WW�)−1 is its right inverse.

Proof. Following SVD of W used in the Corollary 1, full rank of W ensures the existence of
(WW�)−1. Then, WW−1 = WW�(WW�)−1 = I.

Note that the condition that no singular value of W is zero is equivalent to the condition
in Lemma 8 that W has linearly independent rows.

Example A1 in the Appendix A illustrates the preimage problem and shows one vector
that solves it.

3.2.3. Affine Subspace

The solution to the preimage problem does not form a linear subspace because, e.g.,
W(v′ + v) = 2b which is generally not equal to b. It is a linear subspace of A if and only if
b = 0, i.e., if and only if it is equal to null W (right nullspace, or kernel, of a matrix W ∈ Rl×L

contains all vectors a ∈ RL, s.t. Wa = 0, it is a linear subspace of RL). In the other words,
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if b = 0, then the preimage problem, Wv = b, becomes a homogeneous system of linear
equations, making its solution be a linear subspace of A.

Coming back to the general case where the vector b ∈ B is arbitrary, we obtain that the
solution to the preimage problem forms an affine subspace of A.

Lemma 9. Let b ∈ B and v′ ∈ A be a particular solution to the preimage problem Wv = b, then
the set of all vectors that solve this problem, forms an affine subspace {v′ + v0 | v0 ∈ null W} of A.

Proof. For the vector v′, it holds that Wv′ = b and for any vector v0 ∈ null W, it holds
that Wv0 = 0. Hence, for any element a = v′ + v0 of the set A = {v′ + v0 | v0 ∈ null W},
it holds that Wa = Wv′ + Wv0 = b + 0 = b, so every element of A is a solution to the
preimage problem.

Conversely, consider a vector a′ ∈ A, s.t. Wa′ = b and a′ �∈ A. Then W(a′ − v′) =
Wa′ −Wv′ = b− b = 0, so the vector a′ − v′ ∈ null W. As the vector a′ can be expressed as
v′ + a′ − v′, we see that a′ ∈ A. This contradiction proves that the set A contains exactly
all solutions to the preimage problem. Moreover, it proves that the set A is unique, i.e.,
if we express the solution to the preimage problem as B = {v + v0 | v0 ∈ null W} for any
vector v ∈ A, s.t. Wv = b, then A = B.

As null W ⊆⊆ A, A is an affine subspace of A with the displacement vector v′.

Using the SVD of W as above, we can express the solution to the preimage problem by
right singular vectors corresponding to zero singular values of W as{

v′ +
L

∑
i=k+1

cizi

∣∣∣∣∣ ci ∈ R

}
.

The dimension of that affine subspace is then dim(null W) which is zero (and hence
exists only one vector solving the preimage problem) if and only if k = l = L, i.e., the
closeness matrix W is square and regular. If W is rectangular, we have infinitely many
vectors a ∈ A solving the preimage problem.

Corollary 2. Any weighted mean of elements of the set of all vectors solving the preimage problem
with respect to weights with nonzero sum is again an element of this set.

Proof. Let n ∈ N and ∀i = 1, . . . , n : Wvi = b, i.e., each vi ∈ A be a solution to the preimage

problem. Let c1, . . . , cn ∈ R, s.t.
n
∑

i=1
ci �= 0. Then it holds that

W

⎛⎜⎜⎝
n
∑

i=1
civi

n
∑

i=1
ci

⎞⎟⎟⎠ =

n
∑

i=1
ciWvi

n
∑

i=1
ci

=

(
n
∑

i=1
ci

)
b

n
∑

i=1
ci

= b ,

which proves the claim.

In this subsection, we described the solution to the preimage problem from three differ-
ent perspectives: using weighted means of functional values (determining an equivalence
class of mutually similar functions), using right inverses of the closeness matrix (that can
be obtained also by SVD) and using the notion of affine subspace (its displacement vectors
can be also obtained by SVD of W, based on Theorem 1).

In the next section, we show the connection between the inverse F-transform and a
solution to the preimage problem as the rows of W are formed by the basic functions of the
fuzzy partition.
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4. Inverse F-Transform

In this section, we omit the assumption (6) stating every point of the universe X
must be covered by at least one basic function. Admitting this degenerated case allows
us to express a useful characterization of the case when the inverse F-transform, given by
Definition 10, provides a solution to the preimage problem.

Lemma 10. Let the assumptions of Lemma 3 be satisfied. If

WW� = D , (17)

then the inverse F-transform v = F̂[u] given by Definition 10 is a solution to the preimage problem
according to Definition 11, DF[v] = Wv = Wu = DF[u] = b for any vector u ∈ A.

Proof. We see that the inverse F-transform is a solution to the preimage problem if and
only if for any u ∈ A, it holds:

Wu = DF[u] = b = Wv = WF̂[u] = WW�F[u] = WW�D−1Wu ,

which holds if
WW�D−1 = I ,

or equivalently if (17) holds true.

Corollary 3. Condition (17) holds true if both of the following equations are fulfilled:

1. ∀t ∈ Y : dtt =
L
∑

i=1
wti =

L
∑

i=1
w2

ti ,

2. ∀t, s ∈ Y, t �= s : dts = 0 =
L
∑

i=1
wtiwsi .

Recalling that wti = W(t, xi) = At(xi) ∈ [0, 1], we infer that condition 1 is equivalent
to stating that ∀t ∈ Y, xi ∈ X : wti ∈ {0, 1}, i.e., only simple-minded assignment of closeness
is possible to be used. Condition 2 is equivalent to stating that every column of the matrix W
contains at most one non-zero value—let us denote the system of all such matrices as W.
Putting these two conditions together, we obtain the following corollary.

Corollary 4. If the matrix W ∈ W contains only values 0 and 1, then the inverse F-transform
v = F̂[u] given by Definition 10 is a solution to the preimage problem.

This property is demonstrated in Examples A2 and A3 in the Appendix A.

5. New Set of Basic Functions

This section was inspired by the paper [17] where one of the main goals consists in
finding conditions under which a noisy signal must be sampled so that it can be recon-
structed from its F-transform components. The authors showed that a fuzzy partition
adjoint to the partition (with the same nodes) that determined the F-transform components,
ensures that the associated inverse F-transform provides the best approximation of the
original, continuous function in a certain space.

We analyzed a possible connection between discrete fuzzy partitions on the closeness
space and decided to address the following question: can we find a solution to the preimage
problem Wv = b by creating a new set of basic functions, s.t. they determine a linear
transformation of the vector b that would solve the problem? If so, what are the conditions
that this new set of basic functions must satisfy?

Throughout this section, assume that the sets X = {1, . . . , L}, Y and {At : X →
[0, 1] | t ∈ Y}, the matrices W and D and the vector b are related as in Lemma 3 and fixed.

96



Mathematics 2022, 10, 3209

We are looking for a new set of basic functions (a new fuzzy partition) {Bt : X →
R | t ∈ Y}, written in rows of a newly created matrix M ∈ Rl×L, i.e.,

∀t ∈ Y, x ∈ X : mtx = Bt(x) , (18)

s.t. the vector v = M�b solves the preimage problem.
Therefore, we require that WM�b = b and from this, we deduce properties of the

matrix M and express them in terms of basic functions At’s and Bt’s. Let for an arbitrary
matrix N, Nt denote its t-th row, Nt denote its t-th column and Nts denote its entry nts.

Hence, we require that

∀t ∈ Y : (WM�)tb = ∑
s∈Y

(WM�)tsbs = ∑
s∈Y

Wt(M�)sbs = bt .

Recalling that Wtx = At(x) and (M�)xs = Msx = Bs(x), for t, s ∈ Y, x ∈ X, we have

∀t ∈ Y : ∑
s∈Y

(
bs ∑

x∈X
At(x)Bs(x)

)
= bt . (19)

Substituting the constants

cts = ∑
x∈X

At(x)Bs(x), (t, s) ∈ Y ×Y ,

in (19), we obtain that
∀t ∈ Y : ∑

s∈Y
bscts = bt .

In the other words, by creating the matrix C = WM� ∈ Rl×l from the constants cts,
(t, s) ∈ Y × Y, we solve Cb = b. As B can be the whole space Rl , we generally demand
that C is an identity matrix I (in the special case of rank W < l, this requirement would be
unnecessarily strong but leads again to a good choice of new basic functions Bt’s).

This means that for all (t, s) ∈ Y ×Y, we demand

1. ∀t = s : cts = ∑
x∈X

At(x)Bs(x) = 1, and

2. ∀t �= s : cts = ∑
x∈X

At(x)Bs(x) = 0.

This observation motivates the following definition.

Definition 13 (Compatible Set of Basic Functions). Let the assumptions of Lemma 3 be satisfied.
We say that the set {Bt : X → R | t ∈ Y} is a compatible set of basic functions with respect to
{At : X → R | t ∈ Y} in the closeness space (X, w), if

∀t ∈ Y : ∑
x∈X

At(x)Bt(x) = 1 ,

and
∀t, s ∈ Y, t �= s : ∑

x∈X
At(x)Bs(x) = 0 .

Theorem 2 (Solution Determined by a Compatible Set of Basic Functions). Let the assump-
tions of Lemma 3 be satisfied and let {Bt : X → R | t ∈ Y} be a compatible set of basic functions with
respect to {At : X → R | t ∈ Y} in the closeness space (X, w). Let b ∈ B and a matrix M ∈ Rl×L

be defined by Mtx = Bt(x), t ∈ Y, x ∈ X, then the vector v = M�b is a solution to the preimage
problem Wv = b.
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Proof. Wv = WM�b ∈ Rl and for each of its components, we have

∀t ∈ Y : Wtv = (WM�)tb = ∑
s∈Y

(WM�)tsbs = ∑
s∈Y

Wt(M�)sbs

= ∑
s∈Y

∑
x∈X

Wtx Msxbs = ∑
s∈Y

∑
x∈X

At(x)Bs(x)bs = bt .

This proves that Wv = b.

If we can find a set of new basic functions Bt’s compatible with At’s, then the vector
v = M�b can be described as an inverse F-transform of an unknown vector u ∈ A, s.t.
b = DF[u], with respect to {Bt : X → R | t ∈ Y} written in the rows of M.

In other words, the direct mapping between the vector spaces A and B is given
by W (W : A → B) and any M� gives an element of the induced inverse relation, i.e.,
(b, M�b) ∈ W−1 where W−1 ⊆ B× A is the inverse relation to the mapping W. This leads
to multiple solutions forming a subset of the affine subspace described in Lemma 9.

Lemma 11. Let the assumptions of Lemma 3 be satisfied. If rank W = l, then there always exists a
compatible set of basic functions with respect to {At : X → R | t ∈ Y} in the closeness space (X, w).

Proof. Following Lemma 8, W−1 = W�(WW�)−1 is a right inverse to W. By setting
M� = W−1, we found a compatible set of basic functions {Bt : X → R | t ∈ Y} given by
(18).

To conclude, we found the inverse-F-transform-like procedure associated with the
system of new basic functions that, applied on b, gives a solution to the preimage problem.
Examples A4 and A5 in the Appendix A illustrate the proposition of this section.

6. Conclusions

In this paper, we discussed the preimage problem in the space where the relationship
between objects is determined by closeness. We showed that any metric can be transformed
into closeness and therefore, the latter is weaker than the former. We interlaced closeness
with fuzzy partition and characterized both by the closeness matrix.

We expressed similarity between functions based on their images (coinciding with
vectors of scaled F-transform components) computed using the closeness matrix. By that
(and by setting the basic structure of the space without metric, or norm), we contributed to
the mathematical theory in the field of functional analysis. We formulated the preimage
problem using the language of matrix calculus. The preimage problem solution is given
by (i) a weighted arithmetic mean, (ii) any right inverse of the closeness matrix or (iii) any
element of a certain affine subspace. Singular value decomposition was applied to describe
the problem and its solution.

We defined the notion of compatible set of basic functions and found conditions
under which the inverse F-transform with respect to the given and compatible set of basic
functions forms a solution to the preimage problem.

Theoretical results were illustrated by numerical examples. They demonstrate, e.g.,
that requiring reflexivity of closeness can be counterproductive.

The future research will be focused on imposing further conditions on both collections of
basic functions (At’s and Bt’s) to reveal stronger connections between the spaces A and B.
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Symbols and Abbreviations

The following symbols and abbreviations are used in this manuscript:

w closeness, closeness-describing bivariate weight function
(X, w) closeness space with the carrier set (universe) X and closeness w
× Cartesian product

W
closeness matrix storing weights wij = w(xi, xj) describing closeness between
xi and xj

⊂∼ fuzzy subset of a given universe
At basic function associated with the node t ∈ Y
l = |Y| number of nodes within the universe X
L = |X| number of all points of the universe X
dtt degree of the node t ∈ Y, diagonal element of the scaling (degree) matrix D
F[u] = [F[u]t]t∈Y F-transform of the function u, vector of F-transform components
F̂[u] inverse F-transform of the function u
·� transpose of ·
Wt t-indexed row of the closeness matrix W

A
space of all real functions on the universe X or all corresponding
L-dimensional vectors

B = range W
space of all real l-dimensional vectors that belong to the column space of the
closeness matrix W

P, S, Z
SVD matrices: m. of left singular vectors, m. with singular values σt on its
diagonal, m. of right singular vectors, respectively

≡ equivalence relation between vectors in A
W−1 right inverse matrix of the closeness matrix W
W system of all real l × L matrices containing at most one non-zero entry in each column
F-transform fuzzy transform
SVD singular value decomposition
s.t. such that

Appendix A

This section contains numerical examples related to the previous five sections (exclud-
ing Section 6) to increase their legibility.

Example A1 relates to Section 3.2, explains the notations of matrices and shows
the detailed computation of the F-transform components which will be omitted in other
examples. It illustrates the preimage problem and shows one vector that solves it.

Example A1. Let a set of nodes Y = {3, 4, 6} be a selected subset of X = {1, 2, 3, 4, 5, 6, 7, 8}, the
universe, and

∀t ∈ Y : At(x) =

⎧⎪⎨⎪⎩
x−t

3 + 1 x ∈ [t− 3, t] ∩ X
t−x

3 + 1 x ∈ [t, t + 3] ∩ X
0 x ∈ X \ [t− 3, t + 3]

be triangular basic functions on X associated with elements of Y that determine the closeness-
describing (weight) matrix

W =

⎡⎣ 1
3

2
3 1 2

3
1
3 0 0 0

0 1
3

2
3 1 2

3
1
3 0 0

0 0 0 1
3

2
3 1 2

3
1
3

⎤⎦ ,

and the scaling (node degree) matrix
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D =

⎡⎣3 0 0
0 3 0
0 0 3

⎤⎦ .

Note that these two matrices, W and the derived D, are independent of the functions acting
on X. Let u = x2 be a particular function on X which has a vector form

u =
[
1 4 9 16 25 36 49 64

]� .

The function u is described by its values (ui)
L
i=1 = (u(xi))xi∈X that represent registered

values of a certain variable (physical, chemical, etc.) measured at all points (on all objects) of
the universe (data set) X. Another possible interpretation of u consists in assuming that there
is a continuous signal that spreads over a certain medium during a time frame described by an
interval [y0, yl+1] ⊃ X and we are able to register that signal only in discrete time steps (xi)

L
i=1.

The components of the direct F-transform of the function u corresponding to all At’s (t ∈ Y) are:

F[u]1 =

(
1 · 1

3
+ 4 · 2

3
+ 9 · 1 + 16 · 2

3
+ 25 · 1

3

)
:
(

1
3
+

2
3
+ 1 +

2
3
+

1
3

)
=

31
3

F[u]2 =

(
4 · 1

3
+ 9 · 2

3
+ 16 · 1 + 25 · 2

3
+ 36 · 1

3

)
:
(

1
3
+

2
3
+ 1 +

2
3
+

1
3

)
=

52
3

F[u]3 =

(
16 · 1

3
+ 25 · 2

3
+ 36 · 1 + 49 · 2

3
+ 64 · 1

3

)
:
(

1
3
+

2
3
+ 1 +

2
3
+

1
3

)
=

112
3

.

Writing them in the vector form, we obtain

F[u] =
[ 31

3
52
3

112
3

]� .

Obviously, it holds that DF[u] = Wu, i.e.,

⎡⎣3 0 0
0 3 0
0 0 3

⎤⎦ ·
⎡⎣ 31

3
52
3

112
3

⎤⎦ =

⎡⎣ 1
3

2
3 1 2

3
1
3 0 0 0

0 1
3

2
3 1 2

3
1
3 0 0

0 0 0 1
3

2
3 1 2

3
1
3

⎤⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4
9

16
25
36
49
64

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣ 31
52

112

⎤⎦ .

The preimage problem given by the vector we ended up with (this ensures that b ∈ B) then has
the form

b = DF[u] =

⎡⎣ 31
52
112

⎤⎦ =

⎡⎣ 1
3

2
3 1 2

3
1
3 0 0 0

0 1
3

2
3 1 2

3
1
3 0 0

0 0 0 1
3

2
3 1 2

3
1
3

⎤⎦ · v = Wv .

We will use SVD of W to find one of the right inverse matrices that constitute a solution.
For one particular SVD decomposition, we obtain an explicit solution

v = ZS+P�b .
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10.563025
8.92437

7.285714
6.403361
29.92437

53.445378
43.764706
21.882353

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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To verify it, we compute
Wv .

=
[
31 52 112

]� ,

and comparing it to b we see that we found a solution to the preimage problem.

In Example A1, we obtained the same particular solution while using the explicit
formula from Theorem 1 as well as while using the right inverse given by SVD of W
(Corollary 1) and the right inverse given by Lemma 8. As SVD is widely used to compute
pseudoinverses, this was not too surprising and our software is no exception.

Examples A2 and A3 relate to Section 4 and show that under certain conditions, the
inverse F-transform is one of the possible solutions to the preimage problem. The former
example illustrates the degenerated case where not all points of the universe are covered
by basic functions (are not connected with at least one node), the latter example uses
non-convex basic functions.

Example A2. Let Y = {3, 4, 6} be a selected subset of nodes of the set X = {1, 2, 3, 4, 5, 6, 7, 8},

∀t ∈ Y : At(x) =

{
1 t = x
0 t �= x

be singleton basic functions on X associated with elements of Y that determine the closeness matrix

W =

⎡⎣0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0

⎤⎦ ,

and the scaling matrix

D =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ .

Let u be a particular function on X with a vector form

u =
[
0 0 9 16 0 36 0 0

]� .

The components of the direct F-transform of u corresponding to all At’s (t ∈ Y) form the vector:

F[u] =
[
9 16 36

]� .

Obviously, it holds that DF[u] = Wu, i.e.,

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ ·
⎡⎣ 9

16
36

⎤⎦ =

⎡⎣0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0

⎤⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
9

16
0

36
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣ 9
16
36

⎤⎦ .

The preimage problem given by the vector we ended up with then has the form

b = DF[u] =

⎡⎣ 9
16
36

⎤⎦ =

⎡⎣0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0

⎤⎦ · v = Wv .

The inverse F-transform of u with respect to W has the form
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F̂[u] = W�F[u] =
[
0 0 9 16 0 36 0 0

]� .

Since this vector is equal to u, we obtain that WF̂[u] = Wu, so F̂[u] is a solution to the
preimage problem. Note that W is such that WW� = I = D.

Example A3. Let Y = {3, 4, 6} be a selected subset of nodes of the set X = {1, 2, 3, 4, 5, 6, 7, 8}
and let the closeness be determined by the matrix

W =

⎡⎣1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

⎤⎦ ,

and the corresponding scaling matrix

D =

⎡⎣3 0 0
0 2 0
0 0 3

⎤⎦ .

Let u be a particular function on X with a vector form

u =
[
0 0 9 16 0 36 0 0

]� .

The components of the direct F-transform of u corresponding to all At’s (t ∈ Y) form the vector:

F[u] =
[
3 8 12

]� .

Obviously, it holds that DF[u] = Wu, i.e.,

⎡⎣3 0 0
0 2 0
0 0 3

⎤⎦ ·
⎡⎣ 3

8
12

⎤⎦ =

⎡⎣1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

⎤⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
9

16
0

36
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣ 9
16
36

⎤⎦ .

The preimage problem given by the vector we ended up with then has the form

b = DF[u] =

⎡⎣ 9
16
36

⎤⎦ =

⎡⎣1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

⎤⎦ · v = Wv .

The inverse F-transform of u with respect to W has the form

F̂[u] = W�F[u] =
[
3 3 3 8 8 12 12 12

]� .

We see that

WF̂[u] =

⎡⎣1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

⎤⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
3
3
8
8

12
12
12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣ 9
16
36

⎤⎦ = Wu ,
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so F̂[u] is a solution to the preimage problem. Note that again W is such that WW� = D.

Examples A4 and A5 relate to Section 5 and illustrate that creating a compatible set of
basic functions leads to a solution to the preimage problem. The latter example shows a
drawback of requiring reflexivity of closeness.

Example A4. Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9} be the universe with a selected subset Y = {2, 5, 8}
of nodes and let the closeness be determined by the matrix

W =

⎡⎣ 1
2

3
4

1
2 0 0 0 0 0 0

0 0 0 1
2

3
4

1
2 0 0 0

0 0 0 0 0 0 1
2

3
4

1
2

⎤⎦ ,

and the corresponding scaling matrix

D =

⎡⎣ 7
4 0 0
0 7

4 0
0 0 7

4

⎤⎦ .

Let u = x2 be a particular function on X which has a vector form

u =
[
1 4 9 16 25 36 49 64 81

]� .

The components of the direct F-transform of the function u corresponding to all At’s (t ∈ Y)
form the vector:

F[u] =
[ 32

7
179
7

452
7

]� .

Obviously, it holds that DF[u] = Wu, i.e.,

⎡⎣ 7
4 0 0
0 7

4 0
0 0 7

4

⎤⎦ ·
⎡⎣ 32

7
179

7
452

7

⎤⎦ =

⎡⎣ 1
2

3
4

1
2 0 0 0 0 0 0

0 0 0 1
2

3
4

1
2 0 0 0

0 0 0 0 0 0 1
2

3
4

1
2

⎤⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4
9

16
25
36
49
64
81

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣ 8
179
4

113

⎤⎦ .

The preimage problem given by the vector we ended up with then has the form

b =

⎡⎣ 8
179

4
113

⎤⎦ =

⎡⎣ 1
2

3
4

1
2 0 0 0 0 0 0

0 0 0 1
2

3
4

1
2 0 0 0

0 0 0 0 0 0 1
2

3
4

1
2

⎤⎦ · v = Wv .

Let us consider, e.g., the following matrix M satisfying WM� = I:

M =

⎡⎣ 1
2

2
3

1
2 0 0 0 0 0 0

0 0 0 1
2

2
3

1
2 0 0 0

0 0 0 0 0 0 1
2

2
3

1
2

⎤⎦ .
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Then the vector

v = M�b =

⎡⎣ 1
2

2
3

1
2 0 0 0 0 0 0

0 0 0 1
2

2
3

1
2 0 0 0

0 0 0 0 0 0 1
2

2
3

1
2

⎤⎦� ·
⎡⎣ 8

179
4

113

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
16
3
4

179
8

179
6

179
8

113
2

226
3

113
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

is a solution to the preimage problem that can be verified by

Wv =

⎡⎣ 1
2

3
4

1
2 0 0 0 0 0 0

0 0 0 1
2

3
4

1
2 0 0 0

0 0 0 0 0 0 1
2

3
4

1
2

⎤⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
16
3
4

179
8

179
6

179
8

113
2

226
3

113
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣ 8
179
4

113

⎤⎦ = b .

Moreover, it demonstrates the fact that the sets of basic functions At’s (given by the rows of
W) and Bt’s (given by the rows of M), t ∈ Y, are compatible.

If we assumed that for each t ∈ Y it holds At(t) = 1 (reflexive closeness), the compati-
ble set of convex basic functions satisfying that also for each t ∈ Y it holds Bt(t) = 1, would
be uniquely formed by singletons (degenerated case). This is illustrated by Example A5.

Example A5. Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9} be the universe with the selected subset Y = {2, 5, 8}
of nodes and let the closeness be determined by the matrix

W =

⎡⎣ 1
2 1 1

2 0 0 0 0 0 0
0 0 0 1

2 1 1
2 0 0 0

0 0 0 0 0 0 1
2 1 1

2

⎤⎦ ,

and the corresponding scaling matrix

D =

⎡⎣2 0 0
0 2 0
0 0 2

⎤⎦ .

Let u = x2 be a particular function on X which has a vector form

u =
[
1 4 9 16 25 36 49 64 81

]� .

The components of the direct F-transform of the function u corresponding to all Ats (t ∈ Y)
form the vector:

F[u] =
[ 9

2
51
2

129
2

]� .
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Obviously, it holds that DF[u] = Wu, i.e.,

⎡⎣2 0 0
0 2 0
0 0 2

⎤⎦ ·
⎡⎣ 9

2
51
2

129
2

⎤⎦ =

⎡⎣ 1
2 1 1

2 0 0 0 0 0 0
0 0 0 1

2 1 1
2 0 0 0

0 0 0 0 0 0 1
2 1 1

2

⎤⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4
9

16
25
36
49
64
81

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣ 9
51

129

⎤⎦ .

The preimage problem given by the vector we ended up with then has the form

b =

⎡⎣ 9
51

129

⎤⎦ =

⎡⎣ 1
2 1 1

2 0 0 0 0 0 0
0 0 0 1

2 1 1
2 0 0 0

0 0 0 0 0 0 1
2 1 1

2

⎤⎦ · v = Wv .

Let us consider the following matrix M satisfying WM� = I (if we want each of its rows to
form a convex fuzzy set with Mt[t] = 1, then this is the only option):

M =

⎡⎣0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0

⎤⎦ .

Note that if for any s ∈ Y \ {t} it holds that At(s) > 0, then no compatible matrix M exists.
The vector

v = M�b =

⎡⎣0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0

⎤⎦� ·
⎡⎣ 9

51
129

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
9
0
0

51
0
0

129
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

is a solution to the preimage problem that can be verified by

Wv =

⎡⎣ 1
2 1 1

2 0 0 0 0 0 0
0 0 0 1

2 1 1
2 0 0 0

0 0 0 0 0 0 1
2 1 1

2

⎤⎦ ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
9
0
0

51
0
0

129
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣ 9
51

129

⎤⎦ = b .

This again demonstrates the fact that the sets of basic functions At’s (given by the rows of W)
and Bt’s (given by the rows of M), t ∈ Y, are compatible. More importantly, it demonstrates that
requiring At(t) = 1 and Bt(t) = 1 for all node indices t ∈ Y can lead to an empty set of compatible
convex basic functions.
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Abstract: The rise in online transactions for purchasing goods and services can benefit the parties
involved. However, it also creates uncertainty and the possibility of fraud-related threats. This work
aims to explore and extract knowledge of auction fraud by using an innovative evolving fuzzy neural
network model based on logic neurons. This model uses a fuzzification technique based on empirical
data analysis operators in an evolving way for stream samples. In order to evaluate the applied
model, state-of-the-art neuro-fuzzy models were used to compare a public dataset on the topic and,
simultaneously, validate the interpretability results based on a common criterion to identify the
correct patterns present in the dataset. The fuzzy rules and the interpretability criteria demonstrate
the model’s ability to extract knowledge. The results of the model proposed in this paper are superior
to the other models evaluated (close to 98.50% accuracy) in the test.

Keywords: evolving fuzzy neural network; or-neuron; auction fraud; knowledge extraction

MSC: 68T35

1. Introduction

Intelligent machine-learning-based models have assumed a prominent role in solving
complex problems common in modern society. Intelligent methods can dynamically solve
problems and optimize industry processes, disease diagnoses, or actions related to Internet
transactions [1].

With the advent of the Internet in people’s lives, and the popularization of e-commerce,
a current problem is online shopping fraud. Some websites promote user interaction based
on bids placed on a product or service. This online auction encourages users to buy products
through bids that can be made remotely, according to the standards set by the platforms
that offer this service. However, purchases involving high-value goods or rare items often
suffer from fraud attempts. In general, online auction fraud has specific characteristics,
ranging from products of dubious origin, suspicious and repetitive bidding on a particular
item, overvaluation of a product through constant bidding, and users registering on the
platform to cause trouble [2]. These problems can make the experience of buying a product
at an online auction appalling, preventing new users from opting for this form of purchase
and discrediting the platform that offers such services [3]. Considering the actuality of the
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problem, some researchers have built a database of factors that exist in auctions to identify
fraud during transactions to prevent such problems from occurring [4]. These studies
support significant areas of current research, and researchers worldwide are working to
identify corresponding patterns and propose solutions, including approaches that use
clustering and machine learning [5].

Machine-learning-based models can act to assist in the detection of fraud in online
auctions. In particular, a model that can combine the efficiency of training artificial neural
networks and interpreting fuzzy systems can solve this problem and extract knowledge of
auction fraud through linguistic rules about the problem [6]. Fuzzy neural networks can
process input data in fuzzy sets and, using neural network training, provide answers to
problems with a high degree of interpretability, because this model is comprised of a fuzzy
inference system that can represent data in a linguistic and interpretable way using fuzzy
operations [7].

When accompanied by logical interpretability about the functioning of the models
that act in this solution, this problem solving can facilitate humans’ understanding and
acceptance of results. Fuzzy natural logic (FNL) is a formal theory that aims to provide a
mathematical model of natural human reasoning whose typical feature is using natural
language. Its central basis is based on the results of linguistics, artificial intelligence, and
logical analysis of natural language [8].

This paper proposes a new evolving fuzzy neural network architecture based on an
empirical data analysis fuzzification process that applies the concepts of self-organized
direction-aware data partitioning [9]. Logic neurons based on t-conorm (or-neurons)
are in the model’s second layer. The model’s training is founded on Extreme Learning
Machine [10] in the offline phase, and the evolving phase is established on indicator-based
Recursive Weighted Least Squares [11]. The three-layer model has a fuzzy inference system
connected to a neural aggregation network represented in its third (and last) layers. This
combination of factors allows the third layer of the model to provide the network’s output
(defuzzification process) with answers about frauds in online auctions and fuzzy rules that
express the logical and interpretable relations present in the evaluated dataset. The model
also includes sophisticated capabilities for the behavior’s interpretability throughout its
analyses, demonstrating tendencies important to interpretability and information extraction.
In addition, this paper proposes a presentation of knowledge about a dataset of fraud in
auctions with IF–THEN rules, presenting the logical relationships between the dimensions
of the problems and the possible impacts of discovering fraudulent behavior. The behavior
of the weights of each dimension linked to the fuzzy sets generated gives an interpretative
dimension to the issues present in identifying fraud.

The motivation for applying evolving fuzzy neural networks in dynamic behavior
problem areas (such as auction fraud) is connected to the dynamic ability of these types of
approaches to identify new behaviors from data, incorporating new neural structures into
their architecture. Auction fraud problems have an extremely dynamic behavior, as the
types of fraud are constantly changing (either by creating new techniques or when previous
frauds are discovered). This evolution of knowledge on the models’ components helps solve
complex problems that can dynamically change over time. Stream data assessments require
models to obtain assertive and adaptive outputs. Thus, evolving fuzzy neural networks act
this way, with the advantage of demonstrating the evolution of knowledge and identifying
behaviors of the elements of their fuzzy rules (antecedents and consequents).

This paper’s main highlight is connected with an assertive and interpretable approach
to the problem of fraud in auctions. Relations on validating interpretability criteria and
generating fuzzy rules are presented to the reader. Another evolving fuzzy neural network
model has already been used to solve these demands [12]. However, this paper presents
the first neuro-fuzzy model to solve problems and extract advantageous interpretations of
the dataset.

The paper is organized as follows: In Section 2, the literature supplies details about
evolving fuzzy neural networks, interpretability of evolving fuzzy systems, and auction
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fraud. Section 3 presents the model employed in this paper, highlighting its layers, training
method, and interpretability criteria applied in the model’s results. Section 4 presents the
test features, the state-of-the-art model to reveal auction fraud, and the results acquired
with due arguments and interpretation. Finally, Section 6 highlights the paper’s conclusions
and possible future work.

2. Literature Review

2.1. Artificial Neural Network and Applications

Artificial neural networks (ANN) are mathematical models that can learn through
computational means and are based on human networks of biological neurons. These
networks process information using storage and processing structures, with each processor
element representing a neuron. They are fed a set of weighted inputs, and their output is
obtained by applying an activation function to simulate the degree of stimulation of the
biological neuron in order to obtain the responses [13]. According to Fausett and others [14],
ANN is a set of computational procedures that provide a mathematical representation
inspired by the neural composition of intelligent organisms and that gain knowledge
through expertise, allowing tasks typically performed by reasonable beings to be performed
in computational environments.

Neural networks are constructed of many interconnected processing units known as
neurons. This method is based on the nature of the human brain and how learning and
problem solving work. Weighted bonds called synapses connect artificial neurons. Each
neuron receives multiple input signals and generates an output signal [13].

Since the 1980s, studies on neural networks have undergone significant evolution,
and this area of research has become well-known, either because of the promising features
introduced by neural network models or because of the general technological requirement
of implementation that allows the audacious development of applications of architectures
with parallel neural networks in dedicated hardware, thus acquiring excellent fulfillment
of these systems (foremost to conventional methods). Deep neural networks represent the
state of the art in neural network development (or Deep Learning) [15]. Where the behavior
of variables is not purely known, ANNs are frequently employed to solve complicated
issues. Their capacity to learn from examples and generalize the knowledge acquired,
producing a nonlinear model, is one of their key properties, which greatly increases the
effectiveness of their use in spatial analysis [13].

The selection of the optimum architecture is one of the most challenging aspects of
using neural networks since it is experimental and takes a long time to complete. The
procedure must be used in practice to evaluate multiple learning models as well as the
many topology configurations a network might have to address a particular issue [13].

In two different ways, a neural network approximates the human brain: information
is obtained through knowledge stages, and synaptic weights are employed to gather expe-
rience. The existing connection between neurons is referred to as a synapse. Values called
synaptic weights are assigned to the connections. This demonstrates that artificial neural
networks are made up of a succession of artificial (or virtual) neurons that are coupled to
form a system of processing components. Their acknowledgments are determined by how
the model’s underlying structures are linked, and their parameters are predicted [13].

At least one hidden layer is required in ANNs. If the model has multiple hidden
layers, each one is accountable for increasing its capacity. The ANN architecture is capable
of executing activities that aid in producing model outputs. The neurons in the hidden
layers can be activated using activation functions (e.g., Gaussian, triangular, sigmoidal,
sine, and hyperbolic tangent). These activation functions are in charge of introducing
the nonlinear aspect of the model’s activities. Backpropagation or Gradient Descent [16],
Extreme Learning Machine [10], and others are examples of training methods for updating
model parameters. An example of an artificial neural network is shown in Figure 1.
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Figure 1. Artificial neural network with five layers.

2.2. Fuzzy Neural Network

Fuzzy neural networks are based on the theory of fuzzy sets and are trained by learning
algorithms derived from neural networks. Being able to unify in a model the generalization
of parameters and the training capacity provided by artificial neural networks together with
the interpretability characteristics of fuzzy systems [17], fuzzy neural networks can work
to solve problems of different varieties, making it easier to find solutions for a parameter
update in the smart models. By interpreting aspects of the user’s database of the problem,
they identify existing patterns that make up a set of fuzzy rules capable of transforming
numerical information into linguistic contexts that can be interpreted by people who do not
necessarily know the main techniques of artificial intelligence. Incorporating fuzzy logic
into the neural network can alleviate the insufficiency of each technique, approaching them
as more economical, robust, and simple to understand problems.

These models have multilayer architectures, commonly, the three-layer ones stand out,
but there may be differences in their architecture. Fuzzy neural networks have also been
used for the detection of Pulmonary Tuberculosis [18]. They are also present in the detection
of COVID-19 cases from chest X-rays [19]. Most of the models listed above have differences
in their architecture. Each of the functions of these layers incorporates the concepts of
fuzzification–defuzzification systems and artificial neural networks. The first layer is the
one that receives the input data, converting them into fuzzy logic neurons. Fuzzy versions
of c-means, adaptive-network-based fuzzy inference systems, and cloud clustering are
usually implemented [7]. These techniques usually have at least one hidden layer. In the
training algorithms, models based on backpropagation, genetic and evolutionary models,
and Extreme Learning Machines stand out [7]. A model with an optimized structure
determines its architecture from the fuzzy neural network and an output layer, which is
also known as the defuzzification layer.

The architecture of a fuzzy neural network can be expressed in layers, where each one
is responsible for a function in the model. Figure 2 represents a fuzzy neural networks in
layers where one is responsible for the fuzzification process, the other takes the aggregation
of fuzzy neurons, and the last layer is responsible for the model outputs. Recent propos-
als for fuzzy neural networks have addressed time-series forecasting [20,21], harmonic
suppression [22], autonomous vehicles [23], and breast cancer [24].
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Figure 2. Example of a layered fuzzy neural network.

2.3. Fuzzy Natural Logic

Fuzzy natural logic (FNL) is a class of mathematical theories that includes evaluative
expression theory, theory of fuzzy/linguistic IF–THEN rules, and approximate reasoning
based on them. The theory of generalized fuzzy quantifiers and their syllogisms, models
of natural human reasoning, are also highlighted. FNL aims to develop models of human
thought whose most relevant feature is the use of natural language [25].

Many works have been proposed to explore this theory to facilitate the understanding
of the results by its users. We highlight works that addressed the theory of intermediate
quantifiers in FNL [26], forecasting in analogous time series [27], integration of proba-
bilistic uncertainty to fuzzy systems [28], and interpretable rules with medical data [29],
among others.

2.4. Auction Fraud

Online markets present themselves as a very popular way to trade online. E-commerce’s
main feature is to unite the real and virtual market for the online shopping model, being
able to be divided into several sales schemes [30]. The most common business models are
Business to Business, which indicates a company that does business with other companies,
Business to Consumer, which is the trade carried out directly between the producer, seller,
or service provider and the final customer, and Consumer to Consumer, which is based on
the direct relationship between consumer and consumer.

According to the Global Payments 2022 Report (https://worldpay.globalpaymentsrep
ort.com/en (accessed on 12 August 2022)) published by FIS Worldpay that examines current
and future payment trends in 40 countries across five regions, the global e-commerce market
will grow 55% by 2025.
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Among the many user benefits, C2C offers minimal costs while maintaining higher
margins for sellers and lower prices for buyers. There is also the convenience factor, and
customers can list their products online and wait for buyers to come to them. A great
example would be an auction.

Large companies promote online auctions, being the only intermediaries to correspond
to consumers [30]. The most prominent example is eBay, a successful site since its launch
in 1995. Anyone can sign up and start selling or buying. However, fraudsters use it to
take advantage by finding alternatives to take advantage of. The leading illicit practices in
online auctions are [31]:

• Advertising illegal (stolen) or black market goods;
• Fraud that happens during the bidding period, such as Shill Bidding;
• Post-auction fraud, such as the exaggerated collection of fees, insurance, and even the

nondelivery of the purchased goods.

According to the FBI’s 2019 Internet Crime Report (FBI’s Internet Crime Complaint
Center (IC3) in its 2019 Internet Crime Report (available in: https://pdf.ic3.gov/2019_IC3
Report.pdf (accessed on 15 August 2022))), there were 467,361 complaints in 2019—and
more than USD 3.5 billion in losses for individual and commercial victims.

The practice of Shill Bidding, the focus of this paper, is when a seller uses a separate
account, be it themselves, a friend, or a family member, or someone else, and asks them to
bid on their auction to raise the auction price artificially. The item’s price is higher than
if a legitimate buyer placed a bid and purchased the item. Machine learning techniques
have been working on solving fraud identification in auctions. Recent works proposed
in [32–35] stand out.

2.5. Evolving Fuzzy Systems and Interpretability

The evolving fuzzy systems are models capable of working with advanced problem
solving with a certain degree of interpretability. This problem-interpreting capacity comes
from its structure, which can transform data into representations people can read and
interpret. A range of models extracts knowledge through fuzzy rules, where each applies
techniques and has different architectures for this purpose. The most famous examples
of existing evolving fuzzy systems are evolving models based on Takagi–Sugeno, fuzzy
classifiers, and fuzzy neural networks.

They differ in the type of fuzzy rules and possible interpretations of them. Several
works in the evolving fuzzy system literature work on pattern classification, linear regres-
sion, and time-series forecasting (see examples in [36]). In particular, this work deals with
interpretable aspects generated by an evolving fuzzy neural network.

Regarding aspects of evolution over time, several proposals were made to facilitate
the understanding of the behavior of models as they analyze data. Lughofer [37] proposed
criteria that ensure that the fuzzy rules generated can bring certainty to users regarding
their actions during the execution of their activities. One should look for more straightfor-
ward and distinguishable models, that is, models with a smaller number of fuzzy rules
solving the target problems in a coherent and interpretable way, avoiding ambiguities, and
that each structure that composes the model avoids redundancy (overlapping of Gaussians
may be an example of redundancy present in these models). Other criteria deal with
overlapping by evaluating consequents and rule antecedents. The relationship between
these two fuzzy rule components determines whether there are inconsistent rules (which
can confuse evaluators). Moreover, the evaluation of completeness (a criterion that eval-
uates the contribution of rules with a significant distance to the sample) and coverage
is noteworthy, which verifies whether all samples evaluated by the model are covered
by the space of characteristics generated in the fuzzification processes. However, there
are also criteria related to assessing the dimensions of the problems. These criteria for
interpretability facilitate the identification of dimensions relevant to the issue, which can
facilitate understanding a new problem.
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On the other hand, this evaluation can also identify less irrelevant features that do
not need to be in constructing fuzzy rules as they do not significantly contribute to the
resolution of the situation itself. Finally, the criteria for identifying the importance of rules
(how much a rule contributes or not to the identification of a target class of the problem), the
interpretation of rule consequents (allowing to assess locally and globally the impacts of a
fuzzy rule response for the problem solving), and knowledge expansion (identifying when
the model identified new patterns and expanded its knowledge base) are fundamental to
affirm that a fuzzy neural network model is interpretable. By guaranteeing these criteria,
analyzing the generated fuzzy rules with a more outstanding guarantee that they represent
solid knowledge about the analyzed problem is possible.

3. Evolving Fuzzy Neural Network Based on Self-Organizing Direction-Aware Data
Partitioning (SODA) Approach and Or-Neurons-eFNN-SODA

The development of evolving fuzzy neural networks, models with unprecedented
adaptability and freedom, allows acquiring knowledge through the information presented
in a data set. This approach assists the precise demonstration of how to build a model able
to identify some patterns in a problem analyzed. In this paper, the leading layer of the
model proposes a calculation with data density to foster consistent neurons with Gaussian
membership function through the idea of or-neurons.

These neurons are responsible for extracting knowledge based on fuzzy rules. The
third layer of the model is represented by an artificial neural network model that can process
the defuzzification approach. Its training is based on the concept of weight definition
through an incremental approach based on recursive least squares. The model’s engineering
is visible in Figure 3, which is introduced in the following section.

Figure 3. Architecture of the fuzzy neural network proposed in this paper.

3.1. First Layer

The model fuzzification layer is present in the first layer. It is responsible for fuzzifying
the data set entries through a clustering process across clouds that identifies them through
data density concepts. Therefore, this procedure is responsible for creating Gaussian
neurons representing neurons of the first layer. These neurons have weights in the range
[0,1] that are defined according to the separability criteria of the dimensions of the problem.
For each input variable xij, L neurons are defined Alj, l = 1, . . . L, whose activation functions
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are composed of membership functions in the corresponding neurons. The Gaussian
neurons created in this layer are expressed by:

ajl = μAl , j = 1 . . . n, l = 1 . . . L. (1)

where ajl (μAl ) represents the degree of association related to the inputs submitted to the
model, N is the number of inputs (features), and L represents the number of neurons. For
each input variable xij, L neurons are defined Alj, l = 1, . . . L, whose activation functions are
composed of membership functions in the corresponding neurons [38].

The respective weights of each Gaussian neuron formed by the fuzzification process
are created using feature weight separability criteria developed by [39]. These weights are
expressed by:

wil , i = 1 . . . N, l = 1 . . . L (2)

The fuzzification process used by the model is described below.

3.1.1. Self-Organizing Direction-Aware Data Partitioning

Self-Organizing Direction-Aware Data Partitioning is a data partitioning approach
based on empirical data analysis [40], which can identify peaks/modes of the input fre-
quency and apply them as focal points. Data clouds can be considered a particular variety of
clouds that possess an especially peculiar contrast. They are non-parametric, as they do not
observe a pre-defined data distribution that is commonly unknown. The technique operates
a magnitude component based on a universal distance metric and a directional/angular
component based on the cosine similarity [9]. This approach is suitable for the online
processing of streaming data.

The definitions of the empirical data analysis [41] operators used in the fuzzification
approaches are listed below. SODA, adopted in this paper, acts to update clouds as new
information changes its data density. These modifications develop new cloud formats
and directly impact the model’s formation of the outputs to be acquired. For the SODA
approach, consider:

- x = {x1, x2, . . . , xk } ∈ Rd: Input variables (where the index k indicates the time
instance at which the data point arrives).

- un = {un1, un2, . . . , unΨ} ∈ Rd: Set of unique data point locations.
- f1, f2, . . . , fΨ: Number of times that different data points occupy the same unique locations.
- Kc: The number of data samples {x}c

Kc belonging to the c-th class.
- Unc

K: The number of unique data samples belonging to the c-th class.
- ∑C

c=1 Kc = K and ∑C
c=1 Unc

K = UnK.

Based on un1, un2, . . . , unΨ and f1, f2, . . . , fΨ, it is possible to reconstruct the dataset
x1, x2, . . . , xk exactly if necessary, regardless of the order of arrival of the data points [41].

The first empirical data analysis operator is cumulative proximity. These elements
are defined as the distance between the samples present in the model evaluation. The
following is the definition of cumulative proximity [41]:

πK(xi) = ∑K
j=1 d2(xi, xj

)
; i = 1, 2, . . . , K (3)

where d(xi, xj) denotes the distance between xi and xj, which can be Euclidean or cosine,
among others [42].

The second operator for the determination of data clouds is the unimodal (or local)
density, which in turn is determined by [41]:

DK(xi) =
∑K

l=1 πK(xl)

2KπK(xi)
=

∑K
l=1 ∑K

j=1 d2(xl , xj
)

2K ∑K
j=1 d2

(
xi, xj

) ; i = 1, 2, . . . , K (4)
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where, for Euclidean distance, ∑K
l=1 d2(xi, xl) = ∑K

l=1 ‖ xi − xl ‖2 and ∑K
l=1 ∑K

j=1 d2(xl , xj) =

∑K
l=1 ∑K

j=1 ‖ xl − xj ‖2. It can be simplified using the average of {x}K, ϕK and the average
scalar product, XK, as in [43]:

K

∑
l=1

‖xi − xl‖2 = K
(
‖xi −ϕK‖2 + XK − ‖ϕK‖2

)
(5)

K

∑
l=1

K

∑
j=1

∥∥xl − xj
∥∥2

= 2K2
(

XK − ‖ϕK‖2
)

(6)

Finally, the third empirical data analysis operator is global density (DG
K ). It is necessary

to identify in the data the weighted sum of the local density by a similar occurrence in
f1, f2 . . . , fΨK. It is defined for unique data samples and their corresponding number of
repetitions in the data set/stream. It is expressed in (7).

DG
K (unk) =

fk

∑
ΨK
j=1 f j

DK(unk) =
fk

1+
‖unk−ϕK‖2

XK−‖ϕK‖2
(7)

The essence of an evolving model is to have its parameters evolve as new samples
emerge with new information. The empirical data analysis operators can be updated
recursively. This update can be seen below:

ϕk =
k−1

k ϕk−1 +
1
k xk; ϕ1 = x1; k = 1, 2, . . . , K (8)

Xk =
k− 1

k
Xk−1 +

1
k
‖xk‖2 ; X1 = ‖x1‖2; k = 1, 2, . . . , K (9)

DK(xk) =
1

1 + ‖xk−ϕK‖2

XK−‖ϕK‖2

(10)

The considerable typical distance metric used, Euclidean, was adopted in SODA as
the magnitude component and, consequently, can be represented between xi and xj by [9]:

dM(xi) =
∥∥xi − xj

∥∥ =

√
m

∑
k=1

(xik − xjk)2i, j = 1, 2, . . . , n (11)

The angular component that assumed the ideas of cosine similarity and is provided in
the SODA model can be expressed as [9]:

dA(xi) =
√

1− cos (Θxi ,xj)i, j = 1, 2, . . . , n (12)

where cos (Θxi ,xj) =
<xi ,xj>

‖xi‖,‖xj‖ expresses the value of the angle between xi and xj [9].

Simultaneously, one applies the measurement and angular component values mutually.
Considerable problems can be estimated on a 2D plane, called the direction-aware plane [9].
The empirical data analytics operators [40] employed in this approach are the cumulative
proximity (3), local density (4), and global density (7).

The recursive update of these parameters also follows the identical concepts as empir-
ical data analysis operators. Their formulation can be seen in Equations (8) and (9). The
angular component updates similarly, as expressed below [9]:

ϕA
n = n−1

n ϕA
n−1 +

1
n

xn
‖xn‖ ; ϕA

1 = x1
‖x1‖ (13)
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When Euclidean distance is used for Local Density in the SODA approach, it can be
represented as follows [9]:

∑n
j=1 πM

n
(

xj
)
= 2n2

(
XM

n − ‖ϕM
n ‖2

)
(14)

The initial phases of the SODA algorithm regard, firstly, composing different direction-
aware planes of the recognized data samples operating both the magnitude-based and
angular-based densities; secondly, distinguishing focal points; and finally, handling the
focal points to partition the data space into data clouds [9]. The algorithm is executed in
the following steps:

Stage 1—Preparation: Estimate the average values between every pair of data sam-
ples, x1, x2, . . . , xn for both the square Euclidean components, dM and square angular
components, dA [9].

d
2
M =

∑n
i=1 ∑n

j=1 d2
M(xi ,xj)

n2 =
∑n

i=1 ∑n
j=1‖xi−xj‖2

n2 = 2
(

XM
n − ‖ϕM

n ‖2
)

(15)

d
2
A =

∑n
i=1 ∑n

j=1 d2
A(xi ,xj)

n2 =
∑n

i=1 ∑n
j=1

∥∥∥∥∥ xi
‖xi‖−

xj

‖xj‖
∥∥∥∥∥

2

2n2 = 1− ∥∥ϕA
n
∥∥2 (16)

After computing the global density, SODA reclassifies the problem samples in a
decreasing way and renames them as {Φ̂1, Φ̂2, . . . , Φ̂nun} [9].

Stage 2—Direction-Aware Plane Projection: The direction aware projection process
starts with the unique data sample with the highest global density, namely �−1 . It is initially
set to be the first reference, ϕ1 = Φ̂j, which is also the origin point of the first direction-
aware plane, denoted by P1 (Ψ = 1, and Ψ is the number of existing direction-aware planes
in the data space. The following rule can describe the second step of the algorithm [9]:

Condition 1
IF
(

dM(ϕl ,Φ̂j)
dM

< 1
ϑ

)
AND

(
dA(ϕl ,Φ̂j)

dA
< 1

ϑ

)
THEN

(
Pl = Φ̂j

) (17)

where ϑ assists in the deduction of the granularity of the cloud used. When considerable
direction-aware planes satisfy the Equation (17) criteria at the same time, Φ̂j will be assigned
to the one nearest to them according to the following equation [9]:

i = arg min
l=1,2,...,Ψ

(
dM(ϕl ,Φ̂j)

dM
+

dA(ϕl ,Φ̂j)
dA

)
(18)

In this step, the mean, the support (number of samples of the problem), and the sum
of the global density (ϕi, Spi and Di, respectively) are updated as follows [9]:

ϕi =
Si

Si+1ϕi +
1

Si+1 Φ̂j (19)

Spi = Spi + 1 (20)

Di = Di + DG
n

(
Φ̂j

)
(21)

Nonetheless, if Equation (17) is not fulfilled, the parameters involved in the analysis
will be updated after the creation of a new direction-aware plane (PΨ+1) and new references,
as follows [9]:

Ψ = Ψ + 1 (22)

ϕΨ = Φ̂j (23)

SΨ = 1 (24)
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DΨ = DG
n

(
Φ̂j

)
(25)

This procedure occurs until all problem samples are organized. In this situation,
some data samples may be located on several direction-aware planes simultaneously,
depending on the behavior of the problem. In this sense, the final establishment of these
samples is defined by the distances between them and the points of origin of the following
direction-aware plans [9].

Stage 3—Identifying the Focal Points: For each direction-aware plane, denoted as Pβ,
find the neighboring direction-aware planes ({P}n

β, l = 1, 2, . . . , L, l �= β). The subsequent
association can define the rule for determining new plans [9]:

Condition 2
IF

(
dM

(
ϕβ ,ϕl

)
dM

≤ 2
ϑ

)
AND

(
dA

(
ϕβ ,ϕl

)
dA

≤ 2
ϑ

)
THEN

(
{P}n

β = {P}n
β ∪ {Pl }

) (26)

The central mode/peak of data density (Pβ) will be selected if the following equation
is attended (assuming the corresponding D of {P}n

β, l = 1, 2, . . . , Ψ, l �= β is expressed by
{D}n

β [9]):

Condition 3 IF
(

Dβ > max
(
{D}n

β

))
THEN

(
Pβ is a mode/peak o f D

)
(27)

All peaks are found when conditions 2 and 3 perform mutually.
Stage 4—Forming Data Clouds: After all the direction-aware planes encountering the

modes/peaks of the data density are appointed, it reflects their origin points, represented
by ϕo, as the focal points and uses them to form data clouds according to a Voronoi
tessellation [44]. The term that represents the data cloud is suggested as follows [9]:

Condition 4
IF

(
�= arg min

j=1,2,...,ξ

(
dM

(
xl ,ϕo

j

)
dM

+
dA

(
xl ,ϕo

j

)
dA

))
THEN(xl is assigned to the ♦th data cloud)

(28)

where ξ is seen as the number of focal points. The concept of clouds is equivalent to clusters.
Regardless, there are distinctions because they are non-parametric, do not have a typical
shape, and can express any real data distributions following local density criteria [45].

This approach can also perform with the evolution of their clouds due to the ability
to update their parameters recursively. For the evolving strategy used in SODA, some
actions are essential for new samples to influence changes in the data clouds. Therefore,
the following steps, which are related to the steps listed previously, help in describing the
update of the SODA fuzzification method [9]:

Stage 5—Update Problem Parameters: For each new sample introduced to training
(xn+1, ϕM

n , ϕA
n , and XM

n ), they are updated by Equations (9), (13), and (14). Likewise,
the Euclidean components and the angular components between the new sample and
the established centers of the direction-aware planes are also updated for each new sam-
ple employing Equations (11) and (12) and are currently described by dM(xn+1,ϕl) and
dA(xn+1,ϕl) for l = 1, 2, . . . , Ψ, sequentially.

At this point in the procedure, the direction-aware plane projection stage is trig-
gered, letting a joint analysis of Condition 1 and Equation (18) determine whether the
new sample belongs to an actual data set (model parameters are updated based on
Equations (19) and (20), or, if it is a new sample with different behavior, consequently
forming the demand to produce a new direction-aware plane (and hence the parameters
will be updated based on Equations (22), (23) and (24)) [9].
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Stage 6—The Fusion of Overlapping Direction-Aware Planes: After the realization of
Stage 5, a new requirement is examined on the fuzzification approach, recognizing strongly
overlapping direction-aware planes [9]:

Condition 5
IF

(
dM

(
ϕi ,ϕj

)
dM

< 1
2ϑ

)
AND

(
dA

(
ϕi ,ϕj

)
dA

< 1
2ϑ

)
THEN(Pi and Pj are strongly overlapping)

(29)

This situation is not advisable, so these circumstances are solved by assembling a new
direction-aware plane on Pj by combining the analyzed direction-aware plane. This merger
criterion is described by [9]:

Ψ = Ψ− 1 (30)

ϕj =
Spj

Spj+Spi
ϕj +

Si
Sj+Si

ϕi (31)

Spj = Spj + Spi (32)

The procedure occurs until all the direction-aware planes are not highly overlapping.
This technique occurs by eliminating the parameters of Pi and returning to Stage 5. This
flow occurs until the conditions reported in Condition 5 are not satisfied, thus flowing to
the final stage of the evolving fuzzification process [9]. This situation is essential for using
the SODA technique, it is a benchmark for certifying the interpretability of the results.

Stage 7—Forming Data Clouds: Once all samples are examined, SODA defines all
the focal points of the existent centers in the direction-aware planes resulting from Stage 6.
The subsequent steps are correlated to the global density estimation of the centers of the
direction-aware plane through Equation (7), operating the supports of each direction-aware
plane as the number of repetitions to be performed. Therefore, it obtains the global density,
which is called DG

n (ϕl) [9]. Second, each direction-aware plane is examined using Condition
2 to find its neighboring direction-aware plane. In this circumstance, Condition 3 is used in
order to confirm whether the DG

n (ϕe) underneath investigation is one of the local maxima
of (DG

n (ϕl)), so that eventually all the identified maximum DG
n (ϕl) zones and the centers

of the corresponding direction-aware planes, together with Condition 4, will act in the
establishment of a focal point, and hence in the data clouds [9].

It is meaningful that at the first moment of the model’s training, the SODA algorithm’s
demeanor will be similar to the offline behavior of the algorithm (Stages 1–4). From the
subsequent data presented to the model, SODA will act in its evolving state, primarily
concentrating on the stages 5–7 of the SODA algorithm [9].

Figure 4 presents an example of the construction of clouds and identification of the
centers that guide the construction of the structures resulting from the fuzzification process.

3.1.2. Incremental Feature Weights Learning

This paper addresses a different creation in the definition of weights when compared
with various models of evolving fuzzy neural networks that define them randomly. Here,
the weights are defined by an online and incremental criterion for evaluating the relevance
of the problem features when determining the best separation of the target classes. This
proposal increases the reducibility of fuzzy rules, as irrelevant weights can be discarded
from a visual and operational evaluation and, at the same time, bring more interpretability
to the Gaussian neurons of the first layer of the model. It should be noted that this procedure
has already been successfully applied in evolving fuzzy neural networks, as in [11,46].
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Figure 4. Example of the SODA approach with 17 clouds.

The approach proposed in [39] uses the Dy–Brodley separability criterion [47] for the
classes analyzed in the problem. Either compute as a single feature (using each feature (and
only one of them)) or discard each feature from the complete set to identify the feature in
question that best defines the separation of the classes analyzed. This procedure sets values
closer to 1 to features that are more satisfactory in separate classes [11]. On the other hand,
dimensions that are ineffective at identifying labels correctly are assigned values close to
zero. Accordingly, if a dimension is nonessential to the model, it can be excluded from the
model to reduce interpretation complexity.

The class separability criterion can be represented as an extension of Fisher’s separa-
bility criterion [11]:

J = δ(S−1
w Sb) (33)

where δ(S−1
w Sb) is the sum of the diagonal elements of the matrix S−1

w Sb. Sb means the
dispersion matrix between classes that estimate the class’s dispersion averages to the total
average, and Sw denotes the within scattering matrix (that measures the samples’ dispersion
in their class averages) [11].

This paper uses the leave-one-feature-out approach. It works by discarding each
feature from the complete set and then calculates Equation (33) for each obtained subset →
again obtaining J1, . . . , JN for N features in the data set. It can be expressed by [39]:

wj = 1− Jj −mini=1,...,N Ji

maxi=1,...,N Ji
(34)

The lower the value of Ji becomes, the more important feature i is, because feature i
was discarded. Hence, and seeking comparable importance among all features (relative to
the most noteworthy feature, which should acquire a weight of 1), the feature weights are
assigned by [39]:

In particular, Sb can be updated by updating class-wise and the overall mean through
an incremental mean formula. Recursive covariance update formulas update the covariance
matrices per class with rank-1 change for more powerful and faster convergence to the
batch calculation [48]. For all formulas and details, check [39].
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3.2. Second Layer

The second layer comprises fuzzy logic neurons that use fuzzy operators [49]. The
most well-known is the t-norm, (T : [0, 1]2 → [0, 1]), which represents the intersection of
fuzzy sets, and the t-conorm (S : [0, 1]2 → [0.1]), capable of the union of fuzzy sets. In this
paper, these operations are represented by [49]:

t(x, y) = x× y (35)

s(x, y) = x + y− x× y (36)

Neurons that use t-norm and t-conorm are extremely common in constructing evolving
fuzzy neural networks; and-neuron and or-neuron stand out. These fuzzy neural structures,
proposed first by Hirota and Pedrycz [50], can aggregate the model inputs (in the case of
this paper, the Gaussian neurons of the first layer) with their respective weights. They
are considered operational units capable of nonlinear multivariate operations in unit
hypercubes ([0,1] → [0, 1]n) with fuzzy inputs and weights. This process generates a
unique value that allows the construction of fuzzy rules in the IF–THEN format. Their
interpretability is directly related to the operators applied in the procedures of these fuzzy
neuronal structures.

In these neurons with two levels, the first one executes aggregate operations, and
the last completes the procedures with fuzzy operators. This operation simplifies the
aggregation of the fuzzy input with its respective weight, creating interpretable connectivity
between the antecedent connectives [51]. In the case of or-neurons (the neuron structure
used in this paper), all or-type connectors are present in the connection of all antecedents
of a fuzzy rule generated by this structure [50]. It can be exemplified by:

z = orneuron(w;a) = Sn
i=1(wi t ai) (37)

where S is a t-conorms and t is t-norms, a = [a1, a2, ..., a3, ...aN ] is the neuron’s inputs (values of
fuzzy relevance (Gaussian neurons)), and w = [w1, w2, ..., w3, ...wN ] represents the weights,
a, w ∈ [0, 1]n, defined in the range between 0 and 1. Finally, z is the neuron’s output, which
is also seen as a fuzzy rule. This neuron can generate fuzzy rules as shown below:

Rule1 : I f x1 is A1
1 with impact w11 . . .

or x2 is A2
1 with impact w21 . . .

or xn is An
1 with impact wn1 . . .

Then y1 is v1

RuleL : I f x1 is A1
L with impact w1L . . .

or x2 is A2
L with impact w2L . . .

or xn is An
L with impact wnL . . .

Then yL is vL

(38)

with A1
i , . . . , An

i fuzzy sets represented as linguistic terms for the n inputs appearing in
the ith rules, and y1, . . . , yL are consequent terms (output); L is the number of rules, and v

represents the correspondence value for the output [17].

3.3. Third Layer

The third layer of the fuzzy neural network is composed of the neural network that
aggregates all the fuzzy rules generated in the first layer. Its inputs are the fuzzy neurons
with their respective weights generated in the training process, to be explained later. An
artificial neuron aggregates these fuzzy rules and processes them with weights to generate
model outputs. This singleton neural network (composed of a single neuron) has a linear
activation function, and a signal function transforms the values obtained by the model into
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the expected outputs (−1 and 1), indicating whether or not there was fraud in the auction.
This defuzzification process can be mathematically described by [38]:

y = Ω

(
l

∑
j=0

fΓ(zj, vj)

)
(39)

where z0 = 1, v0 is the bias, and zj and vj, j = 1, . . . , l are the output of each fuzzy neuron
of the second layer and their corresponding weight, respectively. fΓ represents the linear
activation function and Ω the signal function [38].

The linear and signal function are represented, respectively, by:

fΓ(z) = z*w (40)

Ω =

{
1, i f ∑l

j=0 fΓ(zj, vj) > 0
−1, i f ∑l

j=0 fΓ(zj, vj) < 0
(41)

3.4. Training

The neural network training process facilitates the definition of existing parameters
in an evolving fuzzy neural network. In the model proposed in this article, this training
takes place in two stages. The first, offline, is performed using the concept of the Extreme
Learning Machine [10], and in the evolving phase of the model, a recursive weighted least
squares (RWLS) approach [52] is used. The first process guarantees a definition of weights
based on the initial architecture, and the second incrementally updates these weights as new
fuzzy rules, and samples with essential information are evaluated. The initial definition
of the weights of the third layer carried out in the offline training stage can be expressed
by [38]:

�vk = Z+�ym ∀m = 1, . . . , 2 (42)

where m is the number of classes, and Z+ = ZTZ is the pseudo-inverse of the Moore–
Penrose matrix [53] of Z (output of the second layer). This procedure is commonly applied
in training artificial neural networks and sets the weights in a single step, allowing the
training to be fast and accurate.

In the evolving phase of the model (new incoming online stream samples), the recur-
sive weighted least squares (RWLS) approach is used [52] with formulas for updating the
�vk , and it can be expressed as follow:

η = �ztQt−1
(

ψ + (�zt)TQt−1�zt
)−1

(43)

Qt = (ILt−ηT�zt)ψ−1Qt−1 (44)

�vt
k = �vt−1

k + ηT(yt
m−�zt�vt−1

k ) (45)

where the index k again denotes the class index k = 1, . . . , C. �zt denotes the regressor vector
of the current sample, η is the current kalman gain vector, ILt

s
is an identity matrix based on

the number of neurons in the second layer, and Lt
s × Lt

s; ψ ∈]0, 1] denotes forgetting factor
(1 per default). Q denotes the inverse Hessian matrix Q = (ZT

selZsel)
−1 and is set initially

as ωILt
s
, where ω = 1000 [54].

This matrix is directly and incrementally updated by the second equation above
without requiring (time-consuming and possibly unpredictable) matrix re-inversion. This
procedure identifies existing changes in the dataset and updates the weight values without
losing the previous reference. Thus, the concept of memory is applied to the weights,
allowing the model’s training to be consistent with the premises of evolving fuzzy systems.

The eFNN-SODA can be synthesized, as represented in Algorithm 1. It has one
parameter during the initial batch learning phase:

Granularity of the cloud results (grid size), ϑ;
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Algorithm 1 eFNN-SODA Training and Update Algorithm
Initial Batch Learning Phase (Input: data matrix X):

(1) Define granularity of the cloud, ϑ.
(2) Extract L clouds in the first layer using the SODA approach (based on ϑ).
(3) Construct L fuzzy neurons with Gaussian membership functions with�c and σ values
derived from SODA.
(4) Calculate the combination (feature) weights �w for neuron construction using Equa-
tion (34).
(5) Construct L logic neurons on the second layer of the network by welding the L fuzzy
neurons of the first layer, using or-neurons (Equation (37)) and the centers�c and widths�σ.
(6)
for i = 1, . . . , K do

(6.1) Calculate the regression vector z(xi).
(6.2) Store it as one row entry into the activation level matrix z.

end for
(7) Extract activation level matrix z according to the L neurons.
(8) Estimate the weights of the output layer for all classes k = 1, . . . , C by Equation (42)
using z and indicator vectors �yk .

Update Phase (Input: single data sample �xt):
(11) Update L clouds and evolving new ones on demand (based on Stages 5, 6, and 7 of
the SODA approach).
(12) Update the feature weights �w by updating the within- and between-class scatter
matrix and recalculating Equation (34).
(13) Perform Steps (3) and (5).
(14) Calculate the interpretability criteria (Section 3.5).
(15) Calculate the regression vector z(�xt).
(16) Update the output layer weights by Equation (45).

The computational complexity of eFNN-SODA encloses the number of flops de-
manded to process one single sample through the updated algorithm (second part in
Algorithm 1) because this affects the online speed of the algorithm. In this sense, the main
steps involved can be listed below:

• SODA algorithm: The complexity of O(p) (p is the dimensionality of the input space
when updating with a single sample).

• Or-neurons: Complexity O(mp) (constructing them from m clouds).
• Weights in the first-layer Gaussian neurons: Complexity Kp3 (where K is the number

of classes). That happens because the between- and within-class scatter matrices need
to be updated for each class for each feature separately and independently, having a
complexity of O(p2) (matrices have a size of p× p).

• Neuron activation in the third-layer model: The complexity of O(mp) (in each sample,
the activation levels to all m neurons (with dimensionality p) require to be estimated).

• Output-layer neuron: The complexity of O(mp2) (because of the weighted method in
each rule individually, demanding this complexity [55].)

3.5. Interpretability Criteria

The interpretability criteria are essential for evaluating the model’s behavior through-
out the evaluations. In this case, the eFNN-SODA model uses some approaches to validate
the interpretability criteria proposed in [37], so that the generated fuzzy rules are reliable.
In this case, the model applies some evaluations throughout the experiments to ensure that
the generated fuzzy rules can add some knowledge about the evaluated dataset. These
procedures are listed below:

Simplicity and Distinguishability: These two criteria verify whether the proposed
model is the simplest and has its structures distinguishable during training. This
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means that the evaluation revolves around low complexity and high accuracy. Regard-
ing the simplicity of the eFNN-SODA, the model is expected to have a more compact
structure and a high degree of assertiveness. The criterion defined for the identification
of model simplicity (in the comparison between models) can be expressed by:

i f {(La < Lb) ∨ (accuracymodela � accuracymodelb
)} then modela is simpler than modelb (46)

where La and Lb are, respectively, the number of fuzzy rules of the modela and modelb.
Regarding distinguishability, it is expected to assess whether there is an overlapping
in the structures formed in the fuzzification process. The SODA approach uses an
assessment of overlapping in the evolution process in its sixth stage, thus ensuring
that this situation does not occur. For the evaluation of the distinguishability criterion,
eFNN-SODA uses the comparison of similarity between the Gaussian neurons formed
in the first layer (termed as zi(be f ) and zi(a f ter)) dimension-wise, and similarity (Sim)
degree Sim(zi(be f ), zi(a f ter)) can be used for calculating an amalgamated value. The
degree of change (�) is then presented by [11]:

� (zi) = 1− Sim(zi(be f ), zi(a f ter)) (47)

be f = N − n and a f ter = N, assuming that n new samples have passed the data-
stream-based transformation phase with N samples operated so far for model training
and adaptation [11].
Therefore, it is feasible to conclude that two rules are only identical if all their an-
tecedent parts are equivalent. The x coordinates of the points of intersection of two
Gaussians used as fuzzy sets in the identical antecedent part of the Gaussian rule i
(here for the jth) before and after its update can be estimated by [56]:

interx(1, 2) = −
�cbe f ,j�σ

2
a f ter,j −�ca f ter,j�σ

2
be f ,j

�σ2
be f ,j −�σ2

a f ter,j

+−
√√√√(

�cbe f ,j�σ
2
be f ,j −�cbe f ,j�σ

2
a f ter,j

�σ2
a f ter,j −�σ2

be f ,j
)2 −

�c2
be f ,j�σ

2
a f ter,j −�c2

a f ter,j�σ
2
be f ,j

�σ2
a f ter,j − σ2

be f ,j
(48)

with�cbe f ,j,�σbe f ,j being the jth center coordinate and standard deviation of the Gaussian
neuron before its update, and�ca f ter,j and�σa f ter,j the jth center coordinate and standard
deviation of the Gaussian neuron after its update [11].
The maximal membership degree of the two Gaussian membership functions in the
intersection coordinates is then used as overlap. Consequently, the similarity degree
of the corresponding rules’ antecedent parts in the jth dimension is [11]:

Sbe f ,a f ter
im (j) = max(μi(interx(1)), μi(interx(2))) (49)

with μi(interx(1)) being the membership degree of the jth fuzzy set in Rule i in the
intersection point interx(1). The amalgamation of overall rule antecedent parts leads
to the final similarity degree between the rule before and after its update:

Sim(zi(be f ), zi(a f ter)) = Tp
j=1Sbe f ,a f ter

im (j) (50)

where T denotes a t-norm operator, and p is the number of inputs, as a robust nonover-
lap along one single dimension is sufficient for the clouds to not overlap at all [56].

• Consistency, Coverage, and Completeness: The concept of consistency in evolving
fuzzy systems is attending when their fuzzy rule-set does not deliver a high noise
level or an inconsistently learned output behavior. Therefore, a set of fuzzy rules is
considered inconsistent when two or more rules overlap in the antecedents, but not in
the consequents. In this paper, the consistency of fuzzy rules (comparing a rule before
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and after its evolution) can be measured by evaluating the similarity involved in its
rule antecedents (Sante) and consequents (Scons). In this case, they can be expressed
by [37]:

Rule z1 is inconsistent to Rule z2 i f and only i f

Sante(z1,z2) � Scons(z1,z2) with Sante(z1,z2) � thr.
(51)

where consistency =

{
1 i f Equation (51) is f alse
0 i f Equation (51) is true

where Sante and Scons are close to 1 invariably can be assumed to indicate a heightened
similarity, and when they are close to 0, a low similarity [37]. thr is a threshold value
usually set at 0.8 or 0.9.
The coverage criterion identifies whether there are holes in the resource space by
generating undefined input states. This criterion can be solved by applying Gaussian
functions, which have unlimited support. In this case, eFNN-SODA guarantees this
criterion using this type of function throughout the model’s training [37].
Finally, the ε-completeness criterion in the eFNN-SODA is defined by [37]:(

∀�x ∃i (zi = T
j=1,...,rl

(μij) > ε)

)
⇒ (∀�x ∃i (∀j μij > ε)

)
(52)

where μij is the membership degree of a fuzzy set Aj appearing in the jth antecedent
part of the ith rule, rl is the rule length, and ε = 0.135 according to definitions made in
other research, which is considered an evaluation standard for this criterion [37].

• Antecedent Interpretation: The evaluation of rule antecedents is also a fundamental
part of interpreting and validating the results. In the case of eFNN-SODA, this
evaluation is performed with the behavior of the evolution of the weights and the
evaluation of the similarity of the Gaussian neurons formed in the first layer.

• Consequent Interpretation: The evaluation of rule consequents in eFNN-SODA is
performed by graphically evaluating changes in the class to which the rule is connected.
This is because the values of �v can change as the model evaluates new samples, and
the consequent of the respective rule can be changed.

• Feature Importance Level: The evaluation of the features of the problem is also a
fundamental part of understanding the model’s behavior. Graphical analyses of the
variations generated by the weights in Equation (34) are obtained, allowing us to
identify the behavior of the features throughout the experiment.

• Knowledge Expansion: The expansion of knowledge takes place by evaluating the
evolution of fuzzy rules throughout the experiment. The SODA approach acts on
the evolution and reduction in irrelevant rules. The eFNN-SODA model can also
appreciate this behavior throughout the experiment.

4. Auction Fraud Testing

The following sections presents the details and procedures of the tests that were
performed, as well as the models and data set. All tests were performed on a computer
with the following settings: Intel (R) Core (TM) i7-6700 CPU 3.40 GHz with 16 GB RAM. In
the execution and elaboration of the models present in the tests of this paper, Matlab was
used, and for data analysis, the Orange Data Mining tool was used (developed in phyton
(https://orangedatamining.com/ (accessed on 17 August 2022))).

4.1. Data Set Features

As mentioned previously, this study aims to analyze Shill Bidding fraud. The analyzed
dataset was collected by [4] and published in the Machine Learning Repository—UCI (arch
ive.ics.uci.edu/ml/datasets/Shill+Bidding+Dataset (accessed on 17 August 2022)). The
data correspond to fraudulent bids on one of the largest auction sites on the Internet, eBay.
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The collected database [4], features completed iPhone 7 auctions for three months
(March to June 2017). The original dataset contains 12 input features. However, for the
studies described in this paper, the dimensions related to personal IDs (Record ID, Auction
ID, and Bidder ID) were removed since they are ID values and, therefore, irrelevant to
the experiments. The remaining nine dimensions are Bidder Tendency, Bidding Ratio,
Successive Outbidding, Last Bidding, Auction Bids, Auction Starting Price, Early Bidding,
Winning Ratio, Auction Duration, and Class (1 to normal and −1 to fraud). Figure 5
presents statistical values and the data distribution by class involved in the problem.

Figure 5. Statistical values and the data distribution—Auction Fraud data set.

As shown in Figure 5, the dataset used in this experiment is imbalanced, making the
classification task challenging.

Figure 6 presents a representation of the data using the FreeViz technique [57]. In it,
points in the same class attract each other, while those from different classes repel each
other, and the resulting forces are exerted on the anchors of the attributes, that is, on unit
vectors of each dimensional axis. With this technique, it is possible to identify projections
of unit vectors that are very short compared with the others. This indicates that their
associated attribute is not very informative for a particular classification task.
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Figure 6. FreeViz projection—Auction Fraud data set.

Based on Figure 6, the most representative dimensions for fraud classification in
auctions are successive outbidding, bidding, and winning ratios. In Figure 7, a data
visualization according to the Radviz technique [58] is presented to demonstrate a nonlinear
multidimensional visualization that can display data defined by three or more variables in
a two-dimensional projection. Visualized variables are presented as anchor points evenly
spaced around the perimeter of a unit circle. Data instances close to a variable anchor set
have higher values for those variables than for others.

Figure 7. Radviz projection—Auction Fraud data set.
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4.2. Models and Hyperparameters

The models used in the experiment are evolving fuzzy systems considered state-of-the-
art in classifying binary patterns. They have different architectures and training methods.
The parameters of each of these models were defined through pre-tests that used 10-folds
in a group of parameters that make up each approach. The models used in the experiment
are listed below:

EFDDC—Evolving fuzzy data density cluster. The evolving model uses data-density-
based clustering based on empirical data analysis operators and nullneuron. The model’s
training is based on the Extreme Learning Machine and Bolasso technique to select the best
neurons. The model parameters are ρ = 0.01, bootstraps bt = 16, and consensus threshold
λ = 0.7 (the best parameters are defined between: ρ = {0.01, 0.02, 0.03, 0.04}, bt = {4, 8, 16, 32},
and λ = {0.5, 0.6, 0.7}) [59].

EFNHN—Evolving fuzzy neural hydrocarbon network. The model combines an evolv-
ing fuzzification technique based on data density (Autonomous Data Partitioning), training
based on Extreme Learning Machine, and unineurons. The defuzzification process is based
on an Artificial Hydrocarbon network. The model parameter is the Learning rate = 0.1 (the
best parameter is defined between: Learning rate = {0.01, 0.05, 0.1, 0.2}) [60].

EFNNS—Evolving fuzzy neural network and Self-Organized direction aware. The
evolving fuzzy neural network model uses the Self-Organized direction aware for fuzzification,
unineurons, Extreme Learning Machine, and pruning technique. The only parameter used in
the model is the ϑ =3 (the best parameter is defined between: Learning rate = {2, 3, 4, 5}) [61].

ALMMo-0*—Autonomous zero-order multiple learning with pre-processing. The
model is a neuro-fuzzy approach to autonomous zero-order multiple learning with pre-
processing that improves the classifier’s accuracy, as it creates stable models. The pa-
rameter is radius =

√
2− 2 cos (30◦) (the best parameter is defined between: radius =

{
√

2− 2 cos (15◦),
√

2− 2 cos (30◦),
√

2− 2 cos (45◦),
√

2− 2 cos (60◦)}) [62].
ALMMo—Autonomous zero-order multiple learning. A neuro-fuzzy approach for

autonomous zero-order multiple models without pre-processing. The parameter is ra-
dius =

√
2− 2 cos (30◦) (the best parameter defined between: radius = {

√
2− 2 cos (15◦),√

2− 2 cos (30◦),
√

2− 2 cos (45◦),
√

2− 2 cos (60◦)}) [63].
eGNN—Evolving Granular Neural Network. A model that uses concepts of hy-

berboxes and nullnorm. The parameters are Rho = 0.85, eta = 2, hr = 40, Beta = 0,
chi = 0.1, zeta = 0.9, c = 0, counter = 1, and alpha = 0 (for this model, the reference val-
ues proposed by the author of the model were used. More information can be seen at
https://sites.google.com/view/dleite-evolving-ai/algorithms (accessed on 18 August
2022)) [64].

4.3. Evaluation Criteria of Experiments

Evolving fuzzy systems approaches can act in the evaluation of stream data, where
each sample is considered separately, and the accuracy of the result is evaluated individually
and incrementally added to the final result. In this case, the evaluation of accuracy in trend
lines is suitable for this type of context as it allows the evolution of the model results to be
seen as new samples are evaluated.

These trend lines were calculated using the following criteria: [65]:

Accuracy(K + 1) =
Accuracy(K) ∗ K + Iŷ=y

K + 1
, (53)

where accuracy:

Accuracy =
TP + TN

TP + FN + TN + FP
∗ 100. (54)

where TP = true positive, TN = true negative, FN = false negative, and FP = false positive.
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4.4. Results

The results of the evaluation of the trend lines are presented in Figure 8. This evaluation
was carried out with 20% of the total samples (1264) for initial training and the rest (5057)
for online adaptation, evolution, and evaluation of the model. For the experiments, the
models listed above were compared with the results obtained by eFNN-SODA with ϑ = 2
(the values were defined through a cross-validation procedure for ϑ = {2, 3, 4, 5}).

Figure 8. Trend lines for the Auction Fraud dataset.

The results presented in Figure 8 corroborate the efficiency of the approach in correctly
classifying the situations involved in the data set that deal with fraud in auctions. The model
proposed in this paper could dynamically and more assertively resolve cases of attack or
nonexistence in evaluating the samples. Next to the results obtained by eFNN-SODA are
the results generated by Autonomous zero-order multiple learning with pre-processing
and Autonomous zero-order multiple learning. Numerically, they are similar, with a
slight advantage for eFNN-SODA. A little less effective, but with good results, is the
evolving fuzzy neural network with Self-Organizing Direction-Aware Data Partitioning
model. The other models did not perform as effectively as the eFNN-SODA models and
the Autonomous zero-order multiple learning variations.

The eFNN-SODA model solved the problem of fraud in auctions with three rules. In
this case, the Self-Organizing Direction-Aware Data Partitioning fuzzification approach did
not generate new neurons, as it was only necessary to change centers in the rule antecedents
to solve the problem. The three fuzzy rules are presented in the following:

Rule 1. If Bidder Tendency is small with impact 0.41 or Bidding Ratio is small with
impact 0.59 or Successive Outbidding is small with impact 1.00 or Last Bidding is medium
with impact 0.39 or Auction Bids is small with impact 0.38 or Auction Starting Price is
medium with impact 0.38 or Early Bidding is medium with impact 0.38 or Winning Ratio is
small with impact 0.53 or Auction Duration is small with impact 0.38 then output is normal.

Rule 2. If Bidder Tendency is medium with impact 0.41 or Bidding Ratio is medium
with impact 0.59 or Successive Outbidding is medium with impact 1.00 or Last Bidding is
high with impact 0.39 or Auction Bids is high with impact 0.38 or Auction Starting Price
is high with impact 0.38 or Early Bidding is high with impact 0.38 or Winning Ratio is
medium with impact 0.53 or Auction Duration is medium with impact 0.38 then output
is fraud.
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Rule 3. If Bidder Tendency is high with impact 0.41 or Bidding Ratio is high with
impact 0.59 or Successive Outbidding is high with impact 1.00 or Last Bidding is small with
impact 0.39 or Auction Bids is medium with impact 0.38 or Auction Starting Price is small
with impact 0.38 or Early Bidding is small with impact 0.38 or Winning Ratio is high with
impact 0.53 or Auction Duration is high with impact 0.38 then output is normal.

These rules are seen as the extraction of knowledge from the evaluated data set and
can serve as a conceptual analysis of the events involved in identifying or not identifying
fraud in auctions. The interpretability criteria help understand and validate the generated
knowledge to confirm the efficiency of the generated fuzzy rules.

The first evaluation seeks to verify whether the eFNN-SODA model was the sim-
plest in solving auction fraud problems. This factor is confirmed because, according to
Equation (46), the eFNN-SODA model had the lowest number of fuzzy rules and the high-
est accuracy result compared with the other models used in the experiments. eFNN-SODA
assertively solved the target problem with only three fuzzy rules. As a comparison, the
different models tested in the experiments generated between 10 and 28 fuzzy rules.

The distinguishability criteria (based on Equation (50)) of the formed solution are
presented in Figure 9. In this figure, the evolution of the first layer of Gaussian neurons
can be observed, and it is identified that the neuron was the one that suffered the most
changes during the experiments. It is responsible for representing when there is no fraud
in the auction (the largest class of the data set). Therefore, it is expected that with a
more significant number of samples in this context, the changes in clouds will be more
remarkable, consequently generating a greater impact on the comparative similarity with
their previous version (before the evolution training). In this evaluation, it is possible to
identify that the fuzzy rules (presented below) are distinguishable from each other, as they
have different antecedents and consequents.

Figure 9. Similarity of Gaussian neurons.

Regarding the overlapping criteria of the generated Gaussians, it can be seen in
Figure 10 (generated at the beginning of the training) that the centers of the generated fuzzy
neurons are not superimposed. This confirms that there are differences between them. This
criterion is also guaranteed by steps 5 and 6 of the Self-Organizing Direction-Aware Data
Partitioning fuzzification approach. This figure presents the evaluation concerning the
successive outbidding and bidding ratio dimensions (more relevant in the model analysis
shown below).
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Figure 10. Evaluation of overlapping of the three generated fuzzy neurons during the fuzzification
process: successive outbidding versus bidding ratio.

The consistency of the generated fuzzy rules (Equation (51)) is visualized in Figure 11.
In this figure, it is possible to see that the consistency relation of the fuzzy rules is vio-
lated only in a few evaluations in each of the three fuzzy rules generated. At the end of
the experiment, all rules are consistent, concluding that model training corrected these
inconsistencies when they appeared.

Figure 11. Consistency of fuzzy neurons.

Concerning the criterion of completeness of the fuzzy rules, an evaluation based on
ε− completeness was applied during training, according to Equation (52). The results
visualized in Figure 12 confirm that the generated fuzzy ruleset meets this validation
criterion throughout the experiment.
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Figure 12. ε− completeness criteria during the training.

Changes in antecedents and consequents of fuzzy rules can also be observed and
visualized in eFNN-SODA. Table 1 presents feedback from the model in the last sample
evaluation that generated impacts on the first and third fuzzy rules.

Table 1. Interpretability concerning (degree of) changes in fuzzy neurons during the evolution phase.

Rule 1 changed with two membership functions, and this impacts changes in the consequent rule by a degree of 45%.

Rule 2 did not change.

Rule 3 changed with two membership functions, and this impacts changes in the consequent rule by a degree of 0.0003%.

The evaluation of the evolving behavior of the problem features is also a relevant part
of the interpretability of the results. This variation can be seen in Figure 13 and identifies
how each weight generated according to the separability criterion (Equation (34)) was
significant during the fraud classification process. The most relevant dimensions were suc-
cessive outbidding, bidding ratio, and winning ratio (which makes sense when compared
with the analysis in Figure 6). Figures 14 and 15 present a graphical evaluation based on a
scatter plot of the two dimensions that best contribute to the class separability criterion.

Finally, the expansion of knowledge given by eFNN-SODA demonstrates a different
way of interpreting the problem through fuzzy rules connected with the relevance of the
problem’s features. The Fuzzy Hoeffding Decision Tree model [66] also generated an
interpretative approach, which presents a decision tree according to fuzzy techniques in
constructing its leaves. The Expliclas [67] online solution (https://demos.citius.usc.es/Ex
pliClas/datasets (accessed on 12 August 2022)) facilitates the acquisition of knowledge to
be compared with the extraction of knowledge obtained in this paper. The decision tree
formed by the Fuzzy Hoeffding Decision Tree is shown in Figure 16.
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Figure 13. Feature separability criteria throughout the evaluations of the eFNN-SODA model.

Figure 14. Scatter plot of successive outbidding feature.
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Figure 15. Scatter plot of bidding ratio feature.

Figure 16. Fuzzy Hoeffding Decision Tree interpretability.

5. Discussions

Discussions about the results obtained by the model are carried out based on the
interpretability criteria to be evaluated in eFNN-SODA. This is required to ensure that the
information extraction stated below is trustworthy and coherent, in addition to verifying
the accuracy findings.

The results obtained by the model present factors that can be interpreted through fuzzy
rules that solve the target problem. The fuzzy rules were validated concerning the criteria of
simplicity (fewer rules with greater accuracy), distinguishability (not similar), consistency,
with coverage in all samples evaluated, and that meet the criteria of completeness. Through
these generated fuzzy rules, it is possible to identify and analyze their antecedents and
consequents and the relationship between them, and finally, it is possible to identify the
evolution of the model through the creation of new fuzzy rules.
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An interpretive evaluation of fuzzy rules leads us to identify that all dimensions of the
problem (except successive outbidding) have similar final relevance values for separating
fraudulent behavior from normal behavior. This indicates that there is not such a clear
separability between the two groups of samples in these dimensions. The evolving behavior
of the weights (Figure 13) also demonstrates stability in the order of relevance of the features
of the problem. They did not change their position of relevance throughout the experiment.
The second highest weight value for the feature weight technique is the Bidding Ratio
of 0.59. This demonstrates that, except for the Successive Outbidding dimension, all the
others involved in the problem have poorly separable samples according to the Dy–Brodley
separability criteria.

The comparison of interpretability extracted by the eFNN-SODA model and the Fuzzy
Hoeffding Decision Tree model (Figure 16) has some similarities and distinctions. The tree
model is easier for visualizing the relationships, but the fuzzy rule model is closer to human
reasoning. Regarding their similarities to the root of the tree shown in Figure 16 that has
the Successive Outbidding as its central dimension, other nodes arise for the following
evaluations. This corroborates that this is the first value to be analyzed in the tree, thus
being the most relevant dimension. The generated fuzzy rules also identify this factor, as
Successive Outbidding significantly impacts rule antecedents.

The three most relevant dimensions to the problem were determined based on the
fuzzy rules generated. With them, it is possible to elaborate future studies and techno-
logical tools that can avoid Successive Outbidding, Bidding Ratio, and Winning Ratio
considered fraudulent. Successive Outbidding Technologies to avoid subsequent bids can
be implemented in digital solutions that provide auction services. For example, if the fuzzy
neural network identifies a user at high risk of fraud, they cannot place successive bids
for a certain period. In the same way, when possible fraud in the bids is identified, they
may undergo an audit (human or through some expert system) or be the subject of extra
validation, such as the confirmation of some data or limitation on the number of bids that
they can give for a product until their veracity is proven. Finally, different mechanisms can
be provided for Winning Ratio fraud if the fuzzy neural network identifies that that winner
has a fraudulent profile.

6. Conclusions

This work presented an evaluation through evolving fuzzy neural network models
to address auction fraud problems. The eFNN-SODA model proposed in this paper
achieved more than 98% in correctly classifying fraudulent situations or not within a
highly unbalanced data set. eFNN-SODA can be considered the most straightforward
approach compared with the other models evaluated in the experiment, as it performed
the fraud classification tasks with fewer fuzzy rules and greater assertiveness. The model
also presented distinguishable fuzzy rules because their antecedents and consequents
are dissimilar.

Another factor verified in the experiments is that the inconsistencies of the fuzzy rules
during the experiment were minimal and promptly corrected by training eFNN-SODA.
Regarding the coverage criterion, as they are Gaussian neurons formed in the fuzzification
process, eFNN-SODA also meets the requirement. Finally, the model meets the criterion of
completeness throughout the experiment. Therefore, it can be concluded that the model’s
fuzzy rules presented at the end of the training meet the criteria of consistency, coverage,
and completeness.

The evaluation of problem features helped the classifier to correctly identify the classes
by assigning to each fuzzy rule antecedent a weight corresponding to its relevance in
correctly identifying the problem classes. Factors such as the expansion of knowledge
through a new approach, the visualization of the interpretability of the problem, and
the analysis of antecedents and consequents were also presented in this article. They
corroborate the statement that the fuzzy rules generated by the eFNN-SODA model are
efficient and interpretable in solving fraud identification problems in an auction.
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The model proposed in this paper can generate technological products that evolve
their knowledge as the behavior of fraud changes. This can happen by creating auxiliary
expert systems to validate or investigate certain behaviors in the auctions. Fuzzy rules can
be shown to system administrators and users, allowing corrective or analysis actions. With
this type of system, both parties have clear and understandable logical relationships. Finally,
creating an expert system to assist in data validation after the auction is also possible.

Possible future work can be conducted to develop new training techniques for model
evolution and to use other neural structures to improve model accuracy. Another interesting
topic to address is to evaluate or propose new methods for verifying the interpretability of
models evolving neuro-fuzzy networks. The validation of the generated fuzzy rules can
also be a potential focus of future research. Other (less unbalanced) data sets and auction
fraud assessments are also encouraged to verify the model’s adaptability in solving the
problems of this behavior.
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