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Šumbera

Cosmology from Strong Interactions
Reprinted from: Universe 2022, 8, 451, doi:10.3390/universe8090451 . . . . . . . . . . . . . . . . . 5

Vitaly Beylin, Maxim Khlopov, Vladimir Kuksa and Nikolay Volchanskiy

New Physics of Strong Interaction and Dark Universe
Reprinted from: Universe 2020, 6, 196, doi:10.3390/universe6110196 . . . . . . . . . . . . . . . . . 83

Andrea Addazi, Stephon Alexander and Antonino Marcianò
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Editorial

Shedding Light to the Dark Sides of the Universe: Cosmology
from Strong Interactions

Roman Pasechnik 1,* and Michal Šumbera 2

1 Department of Astronomy and Theoretical Physics, Lund University, SE-223 62 Lund, Sweden
2 Nuclear Physics Institute CAS, 25068 Řež, Czech Republic
* Correspondence: roman.pasechnik@thep.lu.se

The basic aim of this Special Issue was to reflect upon the modern status of research
on strong interactions and their implications in Cosmology. In addtion to a few important
original research articles, our Special Issue comprises a collection of reviews on existing
implications of the physics of strongly coupled and non-perturbative phenomena such as
those in Quantum Chromodynamics (QCD) to the universe evolution in different epochs.
Such implications concern, in particular, cosmological aspects of quark–gluon plasma and
phase transition dynamics, the physics of neutron stars, QCD equations of state (EoS), as
well as the origins of Dark Matter (DM) and Dark Energy (DE) from both dark sectors and
QCD, inflationary cosmology, etc.

A broad review [1] by the Guest Editors and their collaborators provides a compre-
hensive outlook of the key research results in the field of confined and de-confined QCD
dynamics and their implications in physics of the early Universe. In addition, it briefly
covers the basic methodology for studies of quantum field theories in the strongly coupled
regime on the non-stationary background of the expanding Universe. A few rather im-
portant connections between currently pursued research in particle physics and possible
dynamics of the early Universe have been identified and elaborated upon, potentially
addressing such fundamental questions as particle production mechanisms in the early
Universe, the origins of cosmic acceleration, and the non-perturbative real-time dynamics
of the QCD ground state, among others. Given the broadly inter-disciplinary coverage
of a variety of different and challenging topics, this review represents an important, but
not exhaustive, reference for frontier research at an intersection of particle physics and
cosmology.

The review [2] by Vitaly Beylin, Maxim Khlopov, Vladimir Kuksa, and Nikolay
Volchanskiy discusses some of the basic cosmological effects of strongly coupled New
Physics focusing on the possible nontrivial role of strong interactions. One particular exam-
ple is the presence of new stable colored particles, such as exotic quarks, which could give
rise to a composite DM candidate. In addition, an overview of new stable DM composite
candidates was given in the context of QCD-like interactions in various scenarios of New
Physics, broadly referred to as Techni (or Hyper)-Color. A particular emphasis was given
on possible interactions of new stable particles with those in the Standard Model, with
interesting implications for cosmic-ray and high-energy neutrino astrophysics and for the
phenomenology of stable fractionally charged particles.

Another review [3] by Ralf Hofmann overviews possible cosmological consequences
of a scenario when the SU(2) gauge principle governs the Cosmic Microwave Background
(CMB) instead of U(1) one attempting to address the existing tensions between local
and global cosmological measurements in the framework of ΛCDM. These consequences
concern possible changes in the radiation and dark sector components of the Universe, as
well as in the structure formation assisted by the de-percolation of condensed ultralight
axion configurations with the Peccei–Quinn scale close to the Planck mass. It has been
demonstrated that a compatibility of the axionic field profiles with typical DM galactic
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halos emerges if cosmological Yang–Mills fields confining at much higher energy scales
than that of SU(2)CMB are responsible for the generation of the axion mass.

An extensive review [4] by G. Fiorella Burgio and Isaac Vidaña considers possible
correlations between astrophysical observables of neutron stars (NS) and the properties
of atomic nuclei. This review focuses in particular on the major role of the EoS of nuclear
matter in defining the main characteristics of NS, including the existing experimental
constraints. Such aspects of the NS phenomenology as the NS tidal deformability and its
correlations with the stellar radius, the stiffness of the symmetry energy, and the neutron-
skin thickness have been discussed.

The article [5] by Petr Jizba, Lesław Rachwał, Stefano G. Giaccari, and Jaroslav Kňap
addresses the issue of a dynamical breakdown of scale invariance in quantum Weyl gravity
(QWG), together with the related cosmological implications. In their study, which is
based on the approach of functional renormalization group, the authors investigate the
infrared (IR) physics of the quantum Weyl gravity and find it to be surprisingly rich and
interesting, in particular in connection with the structure of its IR fixed point and the
corresponding cosmological consequences. In a cosmology that is implied by the broken
phase of QWG, they are able to map the broken-phase’s effective action on a two-field
hybrid inflationary model that, in its low-energy phase, approaches the Starobinsky f (R)
model with a gravi-cosmological constant that has a negative sign in comparison to the
usual matter-induced cosmological constant. The implications of this finding for cosmic
inflation are also discussed.

In the article [6] by Roland Kirschner and George Savvidy, it has been considered
a new possibility that inside hadrons inhabitated by standard SU(3)c partons—quarks
and gluons—there are additional partons–tensorgluons, which can carry a part of the
proton momentum. Since the gluons do not couple directly to the photon in deep-inelastic
scattering measurements, their density inside the hadrons is one of the least constrained
functions. Here comes the opportunity for the tensorgluons: although their existence
does not predict a new hadronic state, it leads to a modification of the parton distribution
functions of a proton. Moreover, because tensorgluons have a larger spin than ordinary
gluons, they can influence the spin structure of the nucleon.

The study [7] by Andrea Addazi, Stephon Alexander and Antonino Marcianò ad-
dresses an important fundamental issue of origin of the late-time cosmological acceleration
due to the possible existence of an addition dark QCD-like matter sector. Using the argu-
ments of strong dynamics, such as the formation of dark gluon and dark quark condensates
breaking the chiral symmetry in the dark sector, the authors draw a conclusion that the
interaction energy between the dark condensates may cause late-time cosmic acceleration,
reproducing the observable effect of the cosmological constant.

Last but not least, the article [8] by Dmitri N. Voskresensky is devoted to evolution of
quasiperiodic structures in a non-ideal hydrodynamic description of phase transitions. It
starts with a general introduction to first- and second-order phase transitions. The latter
could have taken place either in the early universe, in the course of heavy-ion collisions
and supernova explosions, and also in proto-neutron stars, in cold compact stars, and in
the condensed matter at terrestrial conditions. The author presents some novel solutions
of non-ideal hydrodynamics describing the evolution of quasiperiodic structures that are
formed in the course of the phase transitions. The most important result of this work
concerns the finding that viscosity and thermal conductivity are the driving forces of the
first-order liquid–gas and quark–hadron phase transitions to the state characterized by the
zeroth wave number and by the instability occurring for temperatures below the isothermal
spinodal region.

Funding: This Guest Editors’ activity received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.
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5. Jizba, P.; Rachwał, L.; Giaccari, S.G.; Kňap, J. Dark side of Weyl gravity. Universe 2020, 6, 123. [CrossRef]
6. Kirschner, R.; Savvidy, G. Parton Distribution Functions and Tensorgluons. Universe 2020, 6, 88. [CrossRef]
7. Addazi, A.; Alexander, S.; Marcianò, A. Invisible QCD as Dark Energy. Universe 2020, 6, 75. [CrossRef]
8. Voskresensky, D.N. Evolution of Quasiperiodic Structures in a Non-Ideal Hydrodynamic Description of Phase Transitions. arXiv

2020, arXiv:2001.10841.

3





Citation: Addazi, A.; Lundberg, T.;

Marcianò, A.; Pasechnik, R.; Šumbera,

M. Cosmology from Strong

Interactions. Universe 2022, 8, 451.

https://doi.org/10.3390/

universe8090451

Academic Editor: Antonino Del

Popolo

Received: 27 April 2022

Accepted: 20 August 2022

Published: 29 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Review

Cosmology from Strong Interactions

Andrea Addazi 1,2, Torbjörn Lundberg 3, Antonino Marcianò 2,4, Roman Pasechnik 3,* and Michal Šumbera 5

1 Center for Theoretical Physics, College of Physics Science and Technology, Sichuan University,
Chengdu 610065, China

2 Laboratori Nazionali di Frascati INFN, Via Enrico Fermi 54, 00044 Frascati, RM, Italy
3 Department of Astronomy and Theoretical Physics, Lund University, SE-223 62 Lund, Sweden
4 Center for Field Theory and Particle Physics, Department of Physics, Fudan University,

Shanghai 200433, China
5 Nuclear Physics Institute CAS, 25068 Řež, Czech Republic
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Abstract: The wealth of theoretical and phenomenological information about Quantum Chromo-
dynamics at short and long distances collected so far in major collider measurements has profound
implications in cosmology. We provide a brief discussion on the major implications of the strongly
coupled dynamics of quarks and gluons as well as on effects due to their collective motion on the
physics of the early universe and in astrophysics.

Keywords: QCD in the early universe; phase transitions; hydrodynamical evolution; equation of
state of super-dense matter; classical Yang-Mills fields; Dark Energy; Dark Matter; gluon condensate;
effective Yang-Mills action; cosmic inflation

PACS: 98.80.Qc; 98.80.Jk; 98.80.Cq; 98.80.Es

1. Introduction and Historical Perspective

The strongly coupled dynamics of quarks and gluons has many important implications
in particle physics, astrophysics, and cosmology [1–16]. The fundamental theory of strong
interactions, known as Quantum Chromodynamics (QCD), provides a successful descrip-
tion of a variety of observables in high-energy hadronic collisions [17], hadronic masses [18],
and, to a lesser extent, also of the properties of phases of the QCD matter [19,20]. While
QCD is successful in the interpretation of short-distance phenomena (i.e., in the weakly
coupled regime), a long-standing theoretical problem is a dynamical description of the color
confinement phenomenon. The latter appears in the infrared (strongly coupled) regime of
QCD and still remains the major unsolved problem of the Standard Model (SM) of particle
physics [21,22].

Due to confinement, color-charged particles do not exist as free states at large spacetime
separations. They are instead bound together into colorless collective excitations that evolve
into a gas of hadrons. No exact dynamical transition in spacetime between the fundamental
(parton) and the composite (hadron) states of QCD is known to date despite the wealth of
phenomenological information available from particle and heavy-ion collision experiments.
Therefore, one usually resorts to a heuristic description using the concept of quark-hadron
duality [23,24] together with effective field theoretical (EFT) approaches [25]; this is used
also in the framework of thermal field theory (for recent reviews of the latter, see also
Refs. [26–28]). On the theory side, effective (typically, static or equilibrium) approaches,
such as lattice QCD (LQCD) [19,21], are commonly being exploited while very little has
been done on first-principle real-time evolution of QCD states [8].

The term “quark matter” was first used in 1970 by Itoh [29] in the context of neutron
stars. Even before then, in 1965, Ivanenko and Kurdgelaidze [30] considered a star made of
quarks. Since the mechanism for quark confinement was unknown at that time, they had to

Universe 2022, 8, 451. https://doi.org/10.3390/universe8090451 https://www.mdpi.com/journal/universe5
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assume that the quark masses are much larger than the masses of ordinary baryons. A few
years later, however, following the realization that QCD exhibits asymptotic freedom [31,32],
several authors have suggested that the transition from a hadronic phase to a one dominated
by quarks and gluons may be relevant to describe the state of matter in the early universe or
inside the neutron stars with a possibility to re-create such a condition also in the laboratory
by colliding heavy ions [3,5,33–38].

The terms “hadronic plasma” [35] and “quark-gluon plasma” (or QGP) [36] were
coined by Shuryak to describe a hypothetical state of matter existing at temperatures of
order 100 MeV. The corresponding phenomena were expected to occur at a characteristic
energy density close to 1 GeV/fm3. This makes a good analogy with a classical gaseous
plasma in which electrically neutral gas at high enough temperatures turns into a statistical
system of mobile charged particles [39]. While for such plasma the particle interactions
obey the U(1)em gauge symmetry of Quantum Electrodynamics (QED), in the former QCD
case, the interactions between plasma constituents are driven by their SU(3)c color charges.
For an exhaustive collection of key references tracing the development of theoretical ideas
on the QGP up to 1990, see e.g., Ref. [2]. For a summary of later developments, see more
recent reviews [8,10,40].

Let us note that contrary to initial oversimplified expectations [2], strongly interacting
multi-particle systems feature numerous emergent phenomena that are difficult to predict
from the underlying QCD theory, just like in condensed matter and atomic systems where
the interactions are controlled by QED. In addition to the hot QGP phase, several additional
phases of QCD matter were predicted to exist [15,41]. In particular, the long-range attraction
between the quarks in the color anti-triplet (3̄) channel was predicted to lead to the color
superconductivity (CSC) phase with condensation of 1S0 Cooper pairs [42,43]. This result
was anticipated, though using a different reasoning, already in 1969 by Ivanenko and
Kurdgelaidze [44], who predicted that the superconducting quark phase may be relevant
for the super-dense star interiors. At high baryon density, an interesting symmetry breaking
pattern SU(3)c× SU(3)L× SU(3)R× U(1)B → SU(3)c+L+R× Z(2) leading to the formation of
quark Cooper pairs was found in QCD with three massless quark flavors (i.e., under an
assumption that mu = md = ms = 0) [41,45]. This breaking of color and flavor symmetries
down to the diagonal subgroup SU(3)c+L+R implies a simultaneous rotation of color and
flavor called the color-flavor locking (CFL). It is expected that CSC and CFL phases might
play important role in the equation of state (EoS) of neutron stars [46].

Another interesting phase of QCD matter called quarkyonic matter situated in the
QCD phase diagram between the chirally restored and the confined phases was proposed
in Ref. [47]. The quarkyonic matter is expected to exist at densities parametrically large
compared to ∼Λ4

QCD when the number of colors Nc is large. Since gluons are in the adjoint
representation of SU(3)c, their effects are scaled as ∼N2

c , and so, they dominate all quark-
induced ∼Nc effects. This provides the binding of gluons into quark-free states, so-called
glueballs, and so, the quarkyonic matter has only Nc degrees of freedom (DoFs). This form
of matter is expected to play some role in the structure of neutron stars [48]. The existence
of another peculiar form of hadronic matter—the pion condensate—was suggested by
Migdal already in the 1970s [49].

The rich phase structure of QCD at nonzero temperature and baryon chemical poten-
tial was recently reaffirmed by the proposed existence of phases with spatial modulations;
see [50] and references therein. Their moat-shaped energy spectrum with a minimum of the
energy over a sphere at nonzero momentum leads to a characteristic peak. In heavy-ion col-
lisions at low energy, these new QCD phases are expected to leave their imprints in particle
spectra and their correlations. Their cosmological implications are so far unexplored.

Our current knowledge of the QCD phase diagram is illustrated in Figure 1. Compar-
ing this diagram to the phase diagram of water, see e.g., Ref. [8], one notices that (at least,
theoretically) the complexity of the former approaches the latter.
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Figure 1. The schematic phase diagram for QCD matter in terms of the temperature T and net baryon
density n normalized to the cold nuclei baryon density no. From https://nica.jinr.ru/physics.php
accessed on 27 April 2022 (see also Ref. [51]).

Experimental study of the QCD phase diagram at high temperatures, see Figure 2,
dates back to the CERN SPS fixed-target program with the lead ion beams in 1995–2000
and covers the domain of the baryon chemical potential μB=200 − 400 MeV [8]. With the
advent of a first heavy-ion collider in 2000, the investigation of the μB�0 region soon led to
a discovery of the strongly interacting quark-gluon plasma (sQGP) at RHIC in 2005 [52–55].
The existence of this new phase of hot and strongly interacting QCD matter was five years
later confirmed at order-of-magnitude higher energies of the LHC at CERN [8,40].
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program, are indicated in the figure. Adapted from Ref. [56] (see also Ref. [57]).
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Starting from 2010, it became possible to explore systematically the phase structure of
hot and dense matter at nonzero baryon density and, in particular, to search systematically
for the critical endpoint (CEP) of the QCD phase diagram. The CEP, a postulated second-
order phase transition point, is an expected endpoint of a line of the first-order phase
transitions (FOPTs) that separates the low-temperature, low-density hadronic phase from
a low-temperature, large-baryon number density QGP phase. Similarly to the water-
steam transition where at the critical point, one finds bubbles of steam and drops of water
intermixed at all length-scales from macroscopic, visible sizes down to atomic scales (with
drops and bubbles near micron scale causing the strong light scattering called “critical
opalescence” [58]), several interesting phenomena are also expected to occur near the CEP
of the QCD phase diagram [57,59–62]. The search for the CEP is conducted by the STAR
collaboration at RHIC within its Beam Energy Scan (BES) program at the energies indicated
in Figure 1.

Current experimental and theoretical studies of the QCD phase diagram thus cover a
wide region in temperature and baryon chemical potential (T, μB), particularly, at small
μB�0 [19,20,63,64] and large μB� 100 − 600 MeV [20,41,57,60], see Figure 2. The red and
black full circles denote the critical endpoints of the chiral and nuclear liquid-gas phase
transitions, respectively. The (dashed) freeze-out curve indicates where the hadro-chemical
equilibrium is attained at the final stage of the collision. The nuclear matter ground-state
at T = 0 and μB = 0.93 GeV and the approximate position of the QCD critical point at
μB ∼ 0.4 GeV are also indicated. The dashed line is the chiral pseudo-critical line associated
with the crossover transition at low temperatures.

The hot and dense QCD matter is considered to be a dominant ingredient of the early
universe evolution in its first few microseconds. Physics of heavy-ion collisions (HIC),
therefore, provides necessary means for theoretical understanding of the cosmological
processes at those time scales. In HIC theory, an important progress has been made when
relativistic viscous fluid dynamics was formulated starting from the first principles in an
EFT framework, which was based entirely on the knowledge of symmetries and long-
lived degrees of freedom, see e.g., Ref. [25] and Appendix B of this review. However,
for proper understanding of the cosmological evolution, at least in a vicinity of the QCD
phase transition epoch, the precise dynamical information on color-field media at finite
temperatures is mandatory. Ongoing precision tests of QCD under extreme conditions,
in particular those at the Large Hadron Collider (LHC) at CERN and the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven National Laboratory (BNL), are currently pushing the
energy, temperature and density frontiers, opening up new largely unexplored possibilities
for understanding also the cosmological QCD phase transition. There is strong hope
that the growing amount of data and phenomenological concepts will eventually boost
theoretical developments on infrared and finite-temperature dynamics of QCD. The latter
is particularly relevant for understanding the real-time evolution of its ground state and the
associated phase transitions as well as hadronization processes relevant for the dynamics
of the early universe.

The QCD dimensional transmutation mechanism, breaking the conformal symmetry
of the classical QCD action, has deep implications for the early universe evolution. Indeed,
from higher to lower primordial plasma temperatures, QCD crosses a phase transition to
a chiral symmetry-breaking ground state related to the color confinement phase. Thus,
an attractive possibility is that the QCD vacuum energy may provide a source of universe
acceleration and Dark Energy (DE) [65,66]. For the current status of this problem, see also
Ref. [67] and references therein.

At high temperatures above the confinement scale ΛQCD, i.e., during the first micro-
seconds after the Big Bang, the thermal bath in the early universe was dominated by the
primordial QGP [11,12,68,69]. When the temperature of the universe decreases down to
ΛQCD, the QGP dissolves out through collective hadronization phenomena. It is worth
remarking that the QGP formation can be highly favoured under the very high-density
conditions, where the matter chemical potential starts to be comparable to the QCD critical

8
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scale. Indeed, this can happen in high-density objects such as in the core of neutron stars
as an effect of the gravitational potential [9,70,71]. Nevertheless, the issue of whether the
QGP exists inside the neutron stars is still highly controversial and is under intense debate
in the literature. In fact, the critical phenomena of QCD dynamics and hadronization
and their connections to the QCD ground-state evolution in real time have paramount
consequences on the whole cosmological scene, which may also shed light on the late-time
cosmic acceleration [65], the formation of Dark Matter (DM) [72], primordial black holes
(PBHs) [73] and could be imprinted in the spectra of primordial density perturbations and
gravitational waves (GWs) [74].

The main aim of our review is to provide a new critical sight on our current picture of
quantum Yang-Mills (YM) field theories in the strong-coupling regime in a dynamical (i.e.,
non-stationary) spacetime background and in cosmology, in connection to the empirical
knowledge that comes from particle physics measurements and cosmological data. In the
following, unless otherwise noted, we will mainly exploit the standard natural units
h̄ = c = kB = 1, where kB is Boltzmann constant, c is speed of light in the vacuum and
h̄ = h/(2π), with h is the Planck constant.

The review is organized as follows. In Section 2, we discuss the nowadays standard
scenario of the phase transitions in the early universe, making a connection to the produc-
tion of primordial black holes and to super-dense weakly interacting saturated QCD matter.
We also discuss possible applications of the axion dynamics to the early universe and
close with the possible role of non-perturbative QCD ground-state cosmological evolution.
For completeness, we also mention the possible role of the phase transitions in grand
unified theories of particle interactions. In Section 3, we first introduce the basic notions
of the hydrodynamical description of an expanding universe. There, we discuss simple
models with constant speed of sound and then move on to a more complicated equation
of states for the early universe. We also present current progress in the description of the
dissipative effects in relativistic hydrodynamics. The section is finalized by an overview
of the problematics regarding the Cosmological Constant and the Vacuum Catastrophe.
Section 4 is devoted to a brief discussion of the real-time dynamics of the ground state in
an effective action approach to quantum YM theories. We first discuss the YM ground state
as time crystal; then, we develop an effective action approach providing the equation of
state of the quantum ground state of the universe. The section is closed with a discussion
of cosmological attractors—the solutions of the YM-Einstein equations using the Renormal-
ization Group (RG) methods. Section 5 provides an overview of basic concepts of cosmic
inflation models driven by YM dynamics in the early universe. Finally, a short summary is
given in Section 6.

2. The Phase Transitions in the Early Universe

2.1. The Phase Transitions in the Standard Model

In the SM of elementary particle interactions, the dynamics of fireball expansion is
based on the asymptotic freedom property of underlying non-Abelian gauge theories [31,32].
QCD is a quantum non-Abelian field theory, an important part of the SM, that describes
the fundamental interactions between colored quarks and gluons. The generalization of
classical electrodynamics to non-Abelian gauge theories was first studied and exemplified
in SU(2) by Yang and Mills in 1954 [75]. The classical Lagrangian density of an SU(N)
gauge theory reads,

Lcl = −1
4

Fa
μνFa μν , (1)

in terms of the field strength tensor defined in terms of YM fields Aa
ν as Fa

μν = ∂μ Aa
ν − ∂ν Aa

μ+

gYM f abc Ab
μ Ac

ν, where f abc are the structure constants of the SU(N) group. Throughout,
a, b, . . . denote internal indices of SU(N) in the adjoint representation. Here, the parameter
gYM is known as the YM coupling constant. Gauge theories based on SU(N) are known as
YM theories, and they became the target of a wider interest prompted by the discovery that
massless particles may acquire a mass and a longitudinal polarization through spontaneous
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symmetry breaking (or Higgs) mechanism of a massless YM theory [76–78]. The latter is a
vital part of the SM framework realizing the classical Higgs mechanism of EW symmetry
breaking that has found an excellent confirmation through the discovery of the Higgs
boson [79,80].

In the framework of the quantum field theoretical approach, the YM field fluctuations
are quantized around a given ground state through the first quantization procedure à la
QED. However, due to self-interactions of the YM quanta, manifested via the term ∝A2

in the field strength tensor, the quantum YM ground state acquires, in general, a very
non-trivial structure. This structure is well understood in the weakly coupled (perturbative)
regime of the theory, implying gYM � 1, which is the case of the EW theory or in the
UV regime of QCD with the so-called asymptotic freedom of color charges. The strongly
coupled (non-perturbative) regime, in which gYM � 1 that is realized in particular in the
infrared limit of QCD, corresponds to the color confinement phenomenon and has remained
the subject of active research over the last few decades. In recent years, significant progress
has been made in understanding of the quantum YM ground state in SU(N) gauge theories
at finite temperatures, see e.g., Refs. [81,82].

As a result of a series of cosmological phase transitions that occurred in early universe
during the first few microseconds after the Big Bang, new vacuum subsystems associated
with breaking of the fundamental symmetries were formed. In the early universe, the SM
predicts that cooling proceeds as a series of two phase transitions associated with the vari-
ous spontaneous symmetry breakings of the corresponding gauge symmetries [12,68,83–86].
One at the temperature TEW

c = 160 GeV [87] is responsible for spontaneous breaking of the
EW symmetry providing masses to the elementary particles; see the left panel on Figure 3.
Due to the large value of its critical temperature Tc, it is not amenable to experimental study
under the laboratory conditions. The second and the only one accessible in the laboratory,
QGP-to-hadronic matter phase transition happening at TQCD

c ≈ 160 MeV [88], is related
to the spontaneous breaking of the chiral symmetry and manifesting itself in the massless
quark limit of the QCD Lagrangian. Since both phase transitions are considered to be
analytic crossovers, the bulk motion of the corresponding plasmas did not depart from
thermal equilibrium. Therefore, such transitions, if realized in nature, are not expected to
generate cosmological relics [86,89,90] or to be helpful for a baryogenesis mechanism.

The QCD phase transition has occurred at characteristic temperatures of above 200 MeV
that correspond to a cosmological time-scale of above 10−5 s and the Hubble length-scale
of approximately 10 km. The nature of the QCD phase transition is still a matter of intense
debates in the literature [74,91–103], with results derived so far heavily relying either on
lattice field theory methods applied to QCD [92,93], i.e., lattice QCD, or on holographic
analyses of QCD at early cosmology [103]. For a thorough review on various aspects of the
QCD transition epoch, see e.g., Refs. [12,104–108].

It is undeniable that an abrupt QCD phase transition occurring reversibly in the early
universe would lead to a promising cosmological scenario, according to which a large
part of the quark excess would be condensed into invisible quark nuggets—a possible
explanation for DM only relying on QCD. As Witten suggested in Ref. [5], this would
happen only if quark matter retains an energy per baryon which is less than 938 MeV: then,
neutron stars might generate a quark matter component for cosmic rays, and detectable
gravitational radiation could be produced during the QCD phase transition. Conversely,
several recent studies drew a different conclusion, pointing toward the realization of
second-order or crossover phase transition scenarios [101,102].

In a hot and dense QCD matter, the u, d and to some extent, depending on the tem-
perature, also the s quarks become nearly massless, and the QCD Lagrangian acquires an
approximate chiral symmetry SU(NF)L × SU(NF)R, with the number of massless quark
flavors NF = 2 (u, d) or 3 (u, d, s). At low T < TQCD

c , the QCD vacuum becomes unstable,
and this symmetry is spontaneously broken by q− q̄ pairing. The corresponding order
parameter 〈q̄q〉=−(245 MeV)3, known as the chiral quark condensate, gives rise to masses
of light hadrons as well as to constituent masses of u, d quarks and to some extent also to
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the s quark; see the left panel of Figure 3. Recent lattice calculations with mu = md = 0
and strange quark having its physical mass reveal that the chiral phase transition occurs at
TQCD

χ =132+3
−6 MeV [109].

Figure 3. (Left) Quark masses in the QCD vacuum and the Higgs vacuum. A large fraction of
the light quark (u, d, s) mass is due the chiral (χc) symmetry breaking in the QCD vacuum, with
numerical values from Ref. [110] (see also Ref. [111]). (Right) The effective number of relativistic
DoFs geff in the cosmological plasma in the SM as a function of temperature T, taking into account
interactions between particles, obtained with both perturbative and lattice methods. From Ref. [112].

Let us note that in addition to the above scenario when the thermal history of the
universe proceeds by a sequence of phase transitions from a more symmetric to a less
symmetric state of matter, there is also a possibility of the reverse evolution when part
of the zero-temperature unbroken gauge group of the SM or other gauge theory might
have been broken in the early universe by thermal effects. As first noted by Weinberg [113]
in the context of an O(n) × O(n) gauge theory, with decreasing T, one may encounter
a transition to a state of higher symmetry O(n)× O(n − 1) → O(n)× O(n). Within the
minimal extensions of the SM containing an additional color triplet scalar field, the scenario
in which the early universe underwent an epoch when SU(3)c was spontaneously broken
but later restored was analyzed in Ref. [114]. The attractiveness of such a multi-step phase
transition scenario stems from the fact that it may generate the observed baryon asymmetry
of the universe [115].

To describe the evolution of energy density ε(T) and entropy density s(T) of the
early universe, it is customary to normalize both quantities to their values ε0(T) and s0(T)
corresponding to an ideal massless Bose gas with a single degree of freedom (DoF) [112,116]

geff(T) ≡
ε(T)
ε0(T)

, ε0(T) =
π2

30
T4 , (2)

heff(T) ≡
s(T)
s0(T)

, s0(T) =
2π2

45
T3 , (3)

and call geff(T) and heff(T) the effective numbers of DoFs in energy and entropy, respec-
tively. For the particular case of a non-interacting gas consisting of NF Dirac fermions,
NV massive vectors, NV0 massless vectors and NS neutral scalars, the two functions are
identical and read

geff(T) = heff(T) =
7
8

4NF + 3NV + 2NV0 + NS , (4)

where the prefactors account for the DoF of each of the considered particles.
It is worth mentioning that in a generic case of interacting (non-ideal) gas geff(T)

and heff(T), they are not identical and depend on temperature. Using the relationship
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p = sT − ε between the pressure p, the entropy density s, the energy density ε and the
generalized EoS parameter w,

p = wε . (5)

and the speed of sound cs can be expressed in terms of the effective DoF measures geff(T)
and heff(T),

w(T) =
sT
ε

− 1 =
4heff(T)
3geff(T)

− 1 , (6)

c2
s (T) =

dp
dε

= T
ds
dε

+ s
dT
dε

− 1 =
4
3

[
4heff(T) + Th

′
eff(T)

4geff(T) + Tg′
eff(T)

]
− 1 , (7)

where the prime indicates differentiation with respect to temperature T [116]. It is worth
mentioning that the causality condition between the speed of sound and the speed of light
cs ≤ 1 induces the inequality

heff(T)
geff(T)

≤ 3
2

, (8)

with an upper bound saturated for w = 1 corresponding to the case of absolutely stiff fluid.
Taking into account all permissible interactions in the SM, one can calculate either

directly [117] or on a lattice the temperature dependence of ε(T) and s(T) and extract cor-
responding DoFs. This is illustrated on the right panel of Figure 3 showing the temperature
dependence of geff(T) in the SM. For realistic values of both geff(T) and heff(T) for a wide
temperature interval from 10 keV to 10 TeV, see Ref. [117].

The simultaneous presence of the EW and the QCD matter in thermal equilibrium is
one of the remarkable differences between the QGP produced in accelerator experiments
and the primordial QGP in the early universe [13,118,119]. To find out which form of matter
prevails, let us use Equation (2) and compare the number of DoFs in an ideal massless gas
consisting only of EW or QCD matter. Including only the particles which at the temperature
T � TEW can be considered as massless, we obtain gEW

eff = 7
8 (12 + 6) + 2 = 17.75 DoFs for

the EW case. The first term in the brackets corresponds to charged leptons e, μ, τ, and the
second term corresponds to neutrinos νe, νμ, ντ . The last term corresponds to photons.
For non-interacting or weakly interacting QCD matter, Equation (4) reduces to

gQCD
eff = 2 × 8 + 7

8 (3 × NF × 2 × 2) , (9)

where the first term accounts for the two spin and N2
c − 1 = 8 color DoFs of the gluons

and the second term accounts for Nc = 3 colors, NF flavors, two spin and two particle-
antiparticle DoFs of the quarks. Including only the quarks with the mass mi/T � 0,
i = (u, d), s, c, b, we obtain successively gQCD

eff = (37, 47.5, 56, 68.5) DoFs. In thermal
equilibrium at the temperature T � TEW and for NF active quark flavors, the QGP contains
a factor of gQCD

eff /gEW
eff � 2 − 4 more energy and pressure than those for the EW matter.

For temperatures T � TEW
c , deep inside the EW era, all six quarks u, d, s, c, b, t can be

considered to be massless, cf. the left panel of Figure 3, and gQCD
eff = 79. At the same time,

the EW matter acquires gEW
eff = 7

8 (12 + 6) + 8 + 4 = 26.75 DoFs, where 8 = 2 × (3 + 1)
are the DoFs of massless gauge bosons, W±, W0, B0, and the last term is due to the Higgs
scalar doublet. For this case, the QGP has a factor of gQCD

eff /gEW
eff � 3 larger energy density

and pressure than those of the EW matter. Hence, we conclude that the QGP was the most
dense form of matter filling the early universe during both the QCD and EW epochs.

2.2. Creation of Primordial Black Holes during the Phase Transitions

According to inflationary theories, initially, very small inhomogeneities in the mat-
ter distribution were produced by the end of the exponential expansion regime. Such
inhomogeneities filling the early universe are described by the metric perturbations δgμν

which can be decomposed into three irreducible pieces—scalar, vector and tensor ones,

12



Universe 2022, 8, 451

see, e.g., Refs. [84,120]. While the scalar part is induced by energy density fluctuations δε,
the vector and tensor perturbations are related to the rotational motion of the fluid and to
the gravitational waves, respectively [84]. Given the scope of this review, in the following,
we focus only on one spectacular phenomenon related to metrics fluctuations in the early
universe—the matter collapse into primordial black holes (PBHs).

Whereas their existence was proposed already a half-century ago first by Zeldovich
and Novikov [121] and later by Hawking [122], it was the detection of gravitational waves
from mergers of tens of solar mass M black hole binaries [123] which has led to a surge
of current interest in the PBHs as a Cold Dark Matter (CDM) candidate [73,124–126].
It can be shown that the creation of PBHs due to the gravitational collapse of hot and
dense matter occurs for the density contrast δ = δε/ε exceeding the critical threshold
δc(w[T]) ≈ 0.3 − 0.45, which generally depends on the EoS parameter w [73,125]. Such
large values of δ can be generated, e.g., during a period of inflation in the very early
universe [126] or during an intermediate period dominated by long-lived massive particles
(for recent work, see e.g., Ref. [127] and references therein) or when the universe in the
course of the phase transition passes a local minimum in the pressure-to-energy density
ratio w = p/ε [125].

For the PBHs forming from Gaussian inhomogeneities with root-mean-square ampli-
tude δrms, the present CDM fraction for PBHs with a mass around M is found as [125,128]

fPBH(M) ≈ 2.4β(M)

√
Meq

M
, β(M) =

2
π

∫ ∞

x
e−y2

dy , x =
δc(w[T(M)])√

2δrms(M)
, (10)

where β(M) is the fraction of horizon patches undergoing collapse to PBHs when the tem-
perature of the universe is T, Meq = 2.8 × 1017M is the horizon mass at matter-radiation
equality, and the numerical factor comes from the ratio of measured baryon Ωb and CDM
ΩCDM abundances. In Equation (10), we have explicitly taken into account dependence of
the critical overdensity δc on the EoS parameter w(T). The temperature depends on the
PBH mass M as T ≈ 200

√
M/M MeV. Note that the parameter δrms(M) appearing in

Equation (10) can be always adjusted to counterbalance the theoretical uncertainties in the
value of δc so that the current PBH DM fraction is preserved [128]. It is worth mentioning
that in the scenarios where PBHs are formed during inflation, their abundance is larger
than the Gaussian result by orders of magnitude, but also the mass function has a more
pronounced tail at larger masses [126].

In fact, there are a plethora of other mechanisms for PBHs formation (including
besides the already mentioned FOPTs, bubble collisions, and the collapse of cosmic strings,
necklaces, domain walls, non-standard vacua, etc., see e.g., the recent reviews [73,125]).
In the following, in conformity with the topic of our review, we will concentrate on the
softest point (SP) mechanism of creation of the PBHs discussed in Ref. [128]. Its virtue
stems from the fact that by tracing the origin of PBHs to the SM phase transitions, it is
capable of explaining the provenance of part, if not all, of the CDM in the universe [124].

The SP, corresponding to a local minimum in the pressure-to-energy density ratio
w = p/ε as given in Equation (6), gives rise to elongation of the expansion time of the hot
and dense matter. In HICs, the interest in locating the SP was started by the recognition
that the longest-lived fireball might provide a clear signature of the QGP-to-hadron phase
transition [129]. Shortly after that, the formation of horizon-size PBHs due to a substantial
reduction of pressure during adiabatic collapse in the course of the QCD transition was
analyzed in the context of the early universe in Refs. [130,131]. Even though the previously
used assumption of the first-order character of the phase transition was later on replaced by
a crossover scenario, the lattice calculations have found a local minimum in w = 0.145(4)
at T = 159(5) MeV [132].

To become acquainted with the influence of the SPs on the cooling of the universe
during its radiation-dominated era, let us follow Ref. [128] and inspect the behavior of the
function geff(T) shown on the right panel of Figure 3. Let us focus on the temperatures
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when a part of the radiation matter transforms into a non-relativistic matter. Starting
from T ≈ 200 GeV downwards, this happens first to the top quark at T ≈ mt = 172 GeV,
which is followed by the Higgs boson at 125 GeV and the Z and W bosons at 92 and
81 GeV, respectively. The fact that these particles become non-relativistic at nearly the same
time of universe expansion induces a significant drop in the number of relativistic DoFs,
from geff = 106.75 down to geff = 86.75. Further changes at the b,c-quark and τ-lepton
thresholds are too small to be noticeable. Hence, further on, geff remains approximately
constant until the QCD transition at around 160 MeV. The number of relativistic DoFs then
falls abruptly to g = 17.25. A little later, pions become non-relativistic, and then muons,
yielding geff = 10.75. Thereafter, geff remains constant until e+e− annihilation and neutrino
decoupling at around 1 MeV, when it drops down to geff = 3.36 [128].

Provided that total entropy is conserved, an abrupt reduction of geff(T) leads to a
sudden drop in the speed of sound cs(T), cf. Equation (7), and hence to a drop of pressure,
p = w(T)ε, cf. Equation (6). The effect is clearly visible on the left panel of Figure 4 showing
the four periods in thermal history of the universe when w(T) reaches its local minimum.
After each period, w returns back to its relativistic value of 1/3, but each sudden drop
modifies the probability of gravitational collapse of any large curvature fluctuations present
at that time [128].

- -
-

Figure 4. (Left) EoS parameter w as a function of temperature T. The gray vertical lines correspond to
the masses of the electron, pion, proton/neutron, W, Z bosons and top quark, respectively. The gray
dashed horizontal line indicates value of w = 1/3. Adapted from Ref. [128]. (Right) The mass
spectrum of PBHs fPBH(M) in solar mass units M. The gray vertical lines correspond to the EW
and QCD phase transitions and e+e− annihilation. The vertical colored lines indicate the masses of
the three LIGO-Virgo events. Gray curves are constraints from microlensing (M), ultra-faint dwarf
galaxies and Eridanus II (E), X-ray/radio counts (X), and halo wide binaries (W). The accretion
constraint (A) is shown dashed, as it relies on uncertain astrophysical assumptions. Adapted from
Ref. [128].

Consider one cooling period T1 < T < T2 with w(T) < w(T1,2) = 1/3 centered
around the local minimum w(TSP) and define the quantity,

Δheff(T) ≡ geff(T)− heff(T) , (11)

measuring departure from the w = 1/3 case; see Equation (6). At the endpoints Δheff(T2) =
Δheff(T1) = 0 but for w(T) < 1/3, it is always positive Δheff(T) > 0, cf. Equation (7). Hence,
the initial drop in the entropy DoFs, heff(T), always precedes the jump in the energy density
DoFs, geff(T). This leads to the following “coarse-grained" scenario for the PBH formation:
the reduction in heff(T) occurring for T2 > T > TSP is followed by a fall in geff(T) for
T1 > T > TSP. An excess in entropy ∼ Δheff(TSP) lost by the radiation during its cooling is
dumped into the collapsing matter, emerging eventually in the form of PBHs—the matter
with the largest entropy density in the universe [133]. This may explain why even at
the present stage of the universe evolution, there is by a huge factor far more entropy in
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supermassive black holes (BHs) in galactic centers than in all other sources of entropy put
together [134].

Assuming that the amplitude of the primordial curvature fluctuations is approximately
scale-invariant [128], one obtains from Equation (10) the mass spectrum of PBHs fPBH(M)
shown on the right panel of Figure 4. The peaks at M � 10−6, 2, 30 and 106M correspond
to the EW and QCD phase transitions, to pions and muons becoming non-relativistic and to
e+e− annihilation, respectively. The latter may also provide seeds for the supermassive BHs’
formation in galactic nuclei. The largest contribution to fPBH(M) comes from the PBHs
formed at the QCD transition epoch and that would naturally have the Chandrasekhar mass
(1.4 M) [128]. Moreover, the peak in the range 1–10 Mrm could explain the LIGO/Virgo
observations [123]. The latter favor mergers with low effective spins as expected for PBHs,
but it is hard to explain BHs of stellar origin [135].

The simple analytical models that describe the dynamical process of gravitational
collapse which may be relevant for PBH formation were studied in Ref. [136]. It is also
worth noting that the gravitational collapse of large inhomogeneities during the quark-
hadron transition epoch may also explain the baryon asymmetry of the universe [137].
The asymmetry can be generated in local hot spots through the violent process of PBH
formation at the QCD transition triggered by a sudden drop in the radiation pressure
and the presence of large amplitude curvature fluctuations caused by the axion field—the
subject to be discussed in Section 2.6.

2.3. Perturbative and Strongly Coupled Regimes of QCD

An important contribution to the effective number of relativistic DoFs, geff, comes from
the hadron-to-QGP phase transition—see a big jump in the interval 102 � T � 103 MeV
in Figure 3 (right panel). At higher temperatures, in the QGP region, the strength of the
interactions between the quarks and gluons is set by the QCD coupling αS(Q) which at the
one-loop order of perturbation theory takes the form,

αS(Q) � 2π

b0 ln(Q/ΛQCD)
, b0=11− 2

3
NF , (12)

where Q is the momentum transferred during the interaction, ΛQCD � 200 MeV is the
characteristic QCD scale, and NF is the number of active quark flavors. The logarithmic
decrease of αS(Q) with increasing Q, i.e., with decreasing distance among the quarks
and gluons, is due to the fact that, in contrast to the photon in QED, the force carriers in
QCD, the gluons, have color charge. Their exchanges in higher-order processes involving
both the quarks and the gluons occur more frequently with increasing Q and lead to a
color charge spread (or anti-screening). Indeed, the gluon multiplicity increases at low
momentum fractions corresponding to the limit of large energies. Dilution of the initial
color charge is responsible for the weakening of αS at small distances � � Λ−1

QCD, i.e., when
the quark experiences a large momentum transfer Q, see Equation (12). This effect known as
asymptotic freedom [31,32,138] is illustrated on the left panel of Figure 5 where the values of
the αS(Q) extracted from proton-(anti)proton and lepton-proton collisions are shown [139].
In agreement with Equation (12), a slow logarithmic decrease from αS(Qmin=5 GeV) = 0.22
to αS(Qmax=1500 GeV) = 0.08 is observed.

Before proceeding further, let us recall that quantum field theory (QFT) at finite
temperature T is often considered to be equivalent to Euclidean QFT in a space which
is periodic, with period 1/T along the “imaginary time" axis (for a recent review of this
subject, see e.g., Refs. [26,140] and references therein). Thus, in order to formulate the theory
at T > 0 using its variant at T = 0, one should replace zero components of all 4-momenta
kμ in the Euclidean integrals by the discrete Matsubara frequencies—2πnT for bosons and
(2n + 1)πT for fermions, and sum over n ∈ Z instead of integrating over kμ. Consequently,
the average momentum transferred during the interactions in the hot medium Q can be
related to the temperature as Q = 2πT. In particular, the maximum value of the momentum
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transferred Qmax=1500 GeV, which has been so far measured in pp collisions at the LHC,
roughly corresponds to the “temperature” Tmax = Qmax/(2π) � 240 GeV � TEW

c .

Figure 5. (Left) The QCD coupling αS(Q) as a function of the momentum transfer scale Q obtained
by using the MSTW2008 NLO PDF set [141]. Adapted from Ref. [139]. (Right) The partonic phase
diagram showing evolution of the partons’ density and size as a function of their rapidity Y = ln(1/x)
and the logarithm of momentum transfer squared ln Q2. Adapted from Ref. [142].

The asymptotic freedom formula given by Equation (12) is based on the applicability of
QCD perturbation theory to the processes at high momentum transfers, as it is a well-known
fact that the perturbative expansion is an example of asymptotic series. It looses its validity
with decreasing Q when the perturbative approximation breaks down. Interestingly,
by performing the matching of the fundamental theory onto the effective chiral Lagrangian
at the infrared scale Q � 4π fπ � 1 GeV, at which the ranges of validity of perturbative QCD
and chiral perturbation theory (describing interactions among low-momentum hadrons)
descriptions meet, one can infer the information about the behavior of αS(Q) at large
distances. Such a matching implies that the QCD coupling in the infrared region is “frozen"
at 〈αS〉IR � 0.56 [143], incidentally at twice the upper scale value of αS(Q) shown on the
left panel of Figure 5.

Let us note that evolution of the strong coupling parameter αS(Q) described at the
leading order by Equation (12) is valid only for DoFs that dominate the thermodynamical
evolution, i.e., for the partons (quarks and gluons) with momenta of order T = Q/2π,
and it does not apply to the long wavelength non-perturbative modes residing at the
length scales of � > T−1. Those modes are occupied by a liquid in which neighboring
“unit cells” are tightly coupled to each other [144]. This strongly coupled regime [10]
makes the QGP behave as the ideal fluid [145,146]. The fluidity of the QGP was first
established in the collisions of ultra-relativistic nuclei at RHIC [53–55] and later confirmed
at higher energies of the LHC [147–149]. The most prominent signals of the strong in-
teraction in the deconfined bulk manifest in a collective flow of matter [8,146] and in a
spectacular phenomenon of suppression of very energetic partons passing through the
QGP medium [8,150,151]. Direct evidence for the non-perturbative character of deconfined
matter comes from the low-momentum spectra of direct photons measured in Au+Au
collisions at RHIC. The temperatures obtained from the spectra T � 220 MeV [152] point to
the initial temperatures Tini � 300–600 MeV at early times of τ0 = 0.6–0.15 fm/c, which are
way below the perturbative regime of QCD.

By definition, plasma is a state of matter in which charged particles interact via
long-range (massless) gauge fields [153]. This distinguishes it from neutral gases, liquids,
or solids in which the inter-particle interaction is of short range. So, plasmas themselves
can be gases, liquids, or solids, depending on the value of the plasma parameter Γ, which
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is the ratio of interaction energy to kinetic energy of the particles forming the plasma [39].
For a classical plasma of N particles with charge Ze occupying a volume V,

Γ ≡ (Ze)2

akBT
, a(T) =

(
3V

4πN

)1/3
≈ 0.62n(T)−1/3 , (13)

where n(T) = N/V is the temperature-dependent particle number density. While most
plasmas are ideal with Γ < 10−3, a strongly interacting plasma has Γ � 1. For plasma with
Z � 1 at the temperature T � 106 K � 100 eV, the number density n must be as high as
1026 cm−3 to make Γ � 1 [39]. Ion plasma in a white dwarf has Γ = 10–200, in transient
plasmas produced in explosive shock tubes, the values of Γ = 1–5 are found [39]. A more
down-to-earth example is table salt (NaCl), which can be considered as a crystalline plasma
made of permanently charged ions Na+ and Cl− [153]. At temperatures of T ≈ 103 K, still
too small to ionize non-valence electrons, the table salt transforms into a molten salt, which
is a liquid plasma with Γ ≈ 60.

Generalization of Equation (13) to the QGP case was suggested in Ref. [154]

Γ � 2
Cq,gαS

aT
, Cq =

N2
c − 1
2Nc

=
4
3

, Cg = Nc = 3 , (14)

where the strong coupling αS is a slowly varying function of temperature, Cq and Cg
are the Casimir invariants of fundamental and adjoint irreducible representations of the
color SU(3)c group corresponding to quarks and gluons, respectively, and a = a(T) is the
average inter-parton distance at a given temperature T as follows from Equation (13). The
factor 2 in Equation (14) takes into account the equal importance of chromoelectric (CE) and
chromomagnetic (CM) interactions in ultra-relativistic systems. For ideal massless QCD
gas with NF active quarks and dF = gQCD

eff degrees of freedom, see Equation (9), the particle
number density reads

n = dF
ζ(3)
π2 T3 ≈ dF

(
T
2

)3
, dF = 2 × 8 + 7

8 (3 × NF × 2 × 2) . (15)

From Equations (13) and (15), it follows that a � 1.24d−1/3
F T−1, and so, the term aT,

appearing in the denominator of Equation (14), depends on T through the temperature-
dependent number of active quark flavours NF(T) only. Consequently, for an ideal massless
QCD gas, the temperature-dependence of the plasma coupling parameter Γ is driven by
αSd1/3

F . For the QGP created in HICs at RHIC T ≈ 200 MeV and αS = 0.3–0.5 with NF = 2,
Equations (15) and (14) yield dF = 37 and Γ � 2–8 well inside the strongly coupled regime.
At much higher temperatures, say, at T � TEW, with αS = 0.08 and NF = 5, we obtain
dF = 52.5 and Γ � 0.5–1.5—the value located in the vicinity of the strongly coupled regime.
At even higher temperatures, the number of active quark DoFs saturates at NF = 6 and the
evolution of Γ(T) becomes solely driven by the (logarithmically decreasing) QCD coupling
αS(T), cf. (12). Let us note that the ideal gas approximation serves only as a lower estimate
of Γ because it ignores the interactions in the partonic liquid. The latter will slow down the
temperature dependence of the average inter-parton distance a, thus weakening the strong
coupling parameter dependence on T.

A more in-depth approach to strongly coupled non-Abelian plasmas [155] was expected
to come from the gauge/string duality [156]—a correspondence between d-dimensional
conformal QFT and (d + 1)-dimensional string or gravity theory. In these theories, the
graviton needs not live in the same spacetime as the QFT, but due to the holographic principle,
the description of gravity within a volume of spacetime can be thought of as encoded on a
lower-dimensional boundary to the region in the formalism of conformal field theory [157,158].
However, the inherently conformal character of the gauge QFT used in the duality with anti-
de Sitter gravity (AdS) is at variance with QCD where the scale invariance is broken by
the confinement scale (for a recent review of confinement dynamics, see Ref. [22]), causing
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the running of the coupling. This limits the applicability of gauge/string duality [156] to
temperatures T � TQCD

c and hence to weak couplings.

2.4. QCD at High Parton Densities and Saturation

To proceed further, a different type of analysis of the QCD dynamics of partonic matter
is needed. There are two independent paths along which the density of partons can evolve,
and these are illustrated in the right panel of Figure 5. The two together form the basis of
our current understanding of high-energy scattering in QCD.

The first path follows the development of partonic cascade in variable Q. For par-
tons that occupy a transverse area 1/Q2, the increase of Q and hence of the tempera-
ture T ∼ Q leads to dilution of their density. The process is controlled by the Dok-
shitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) [159–161] equations describing the evo-
lution of partonic density as a function of evolution variable ln(Q2/Λ2

QCD) [17,162].
The second path follows the development of a parton shower in variable x = k+/P+,

which is a fraction of the light cone momentum1 P+ of the parent parton, which has
radiated a parton emerging with the light-cone momentum k+. In the x⊥ plane transverse
to the direction of the fast-moving primary parton, the partonic cascade initiated by the
primary parton can be visualized as a Brownian motion-like trajectory developing from
x = 1 toward x → 0. The corresponding Gribov diffusion process is controlled by the
so-called evolution parameter Y = ln(1/x), leading to a difference in rapidity between the
primary and radiated partons, with a coefficient being the diffusion constant proportional
to αS. Its evolution in the Y variable is described by the Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation that is complementary to the DGLAP evolution realized in ln Q2 (see
standard textbooks, e.g., Refs. [17,162] and references therein).

At fixed Q, the radiated partons (mostly, soft gluons with x � 1) are typically of
the same size. When a parton-parton interaction cross-section ∼αS/Q2 multiplied by
xGA(x, Q2)—the probability to find at fixed Q a parton carrying a fraction x of the parent
parton momentum—becomes comparable to the geometrical cross section πR2

A of the
object A occupied by the gluons, the partons “overlap”. The repulsive interactions among
the gluons ensure that their occupation number fg (the number of gluons with a given
x multiplied by the area each gluon fills up divided by the transverse size of the object)
saturates at fg ∼ 1/αS. Note that this is a very generic behavior—the same density
scaling as the inverse interaction strength α−1 is characteristic of a number of condensation
phenomena such as the Higgs condensate, see, e.g., Ref. [163], or superconductivity [164].

The phenomenon of saturation [165] is thus important for gluons with transverse
momenta k⊥ ≤ Qs [166,167], where

Q2
s (x) =

αS(Qs)

2(N2
c − 1)

xGA(x, Q2
s )

πR2
A

∼ 1
xλ

(16)

is the x-dependent saturation scale representing a fixed point of the parton density evolution
in x or, equivalently, the emergent “close packing” scale [167]—see the right panel of
Figure 5 where the saturation line ln Q2

s (Y) = λY, Y = ln x is also displayed. Such gluons
form a highly coherent configuration called Color Glass Condensate (CGC) [142,167,168],
or glasma [169], which due to the high occupation number fg has properties of QCD in the
classical regime [166].

At high temperatures, one usually expects that quantum effects become less important.
To show that, for the CGC, we follow Ref. [166] and write the gluonic part of the QCD
action in terms of the gauge field potential Aa

μ and field strength F a
μν which are obtained
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by rescaling of their equivalents Aa
μ and Fa

μν used in a more traditional approach when the
coupling constant gs multiplies the interaction terms in the Lagrangian,

Aa
μ → Aa

μ ≡ gs Aa
μ , Fa

μν → gsFa
μν ≡ F a

μν = ∂μAa
ν − ∂νAa

μ + f abcAb
μAc

ν , (17)

Sg = −1
4

∫
Fa

μνFμν,ad4x = − 1
4g2

s

∫
Fμν,aF a

μνd4x , (18)

where f abc with (a, b, c) ∈ {1, . . . , 8} are the SU(3) group structure constants. For a classical
configuration of gluon fields, by definition, F a

μν does not depend on the coupling, and the
action is large, Sg � h̄. The number of quanta in such a configuration is then

fg ∼ Sg

h̄
∼ 1

h̄g2
s

ρ4V4 , (19)

where we rewrote Equation (18) as a product of four-dimensional gluon condensate density
ρ4 ∼ 〈Fμν,aF a

μν〉 and spacetime volume V4. The number of quanta fg in such a config-
uration depends only on the product of the Planck constant h̄ and the strong coupling
squared g2

s = 4παS. The classical limit h̄ → 0 is indistinguishable from the weak cou-
pling limit g2

s → 0 [166]. Thus, the weak coupling limit of small αS corresponds to the
semi–classical regime.

An equivalent argument employs the fact that the path integral formulation of the
quantum theory in Minkowski space sums over all field configurations weighted with
exp(−iSg/h̄). Since g2

s appears in the exponential in the same place as h̄, cf. Equation (18),
this already suggests that for g2

s → 0, the path integral is dominated by the classical
configurations. Such configurations are believed to describe the matter inside incident
nuclei during the initial stage of relativistic HICs at RHIC and the LHC [142,168].

Although in its original formulation, the QCD saturation is used for partons with
fixed Q in case of the macroscopic bodies, it is more relevant to consider the partons at
a fixed temperature T = Q/2π, avoiding at the same time the quantum entanglement
problem [170], which is inevitably present in the description of microscopic objects. In this
generalized setting, an object A filled with gluons may represent not only a fast-moving
proton or nucleus but also the interior of the expanding early universe. Moreover, as follows
from Equation (16), the saturation phenomenon is not necessary related to the growth of
the gluon density at small x. For a big fast-moving domain of space filled with deconfined
quarks and gluons, with radius R � 1 fm, and hence also for the fast-expanding early
universe itself characterized by the Hubble horizon LH ≫ 1 fm, the saturation limit can be
reached even at x � 1 [162]2. In the extreme case, when the gluonic part of QCD matter
completely decouples from the QCD fermionic fields and forms the vacuum condensate,
the first term in Equation (9) can be neglected, and we obtain gQCD

eff /gEW
eff � 8/3, making

the CGC a prevailing form of matter during both the QCD and EW epochs.
Thus, in the periods of cosmological evolution when T � ΛQCD, including a very hot

QCD era, EW era and beyond, it is perfectly conceivable that the universe was dominated
by the fully saturated gluonic matter with occupation number fg ∼ α−1

S . If during its
subsequent cooling, the universe followed a trajectory in the

[
ln(1/x), ln Q2] plane staying

still above the ln Q2
s = λY line, see the right panel of Figure 5, the CGC phase would be

a prevailing form of matter down to the temperatures T ≈ (2 − 5) × ΛQCD. For lower
temperatures, the glasma is expected to fragment into a strongly interacting QGP.

The issue of emergence of classical behavior in the cosmological history has drawn
recently a great deal of attention because of its conceptual as well as practical importance,
see e.g., Ref. [171] and references therein. Although the origin of the observed anisotropies
in the cosmic microwave background (CMB) radiation is traced back to vacuum fluctuations
of quantum fields in the very early universe [84,120,172], there is a general expectation
that the main characteristics of the universe can be described in classical terms even in
its early history [171,173,174]. This is consistent with the fact that the initial conditions
of the Hot Big Bang were determined by cosmic inflation driven by the so-called inflaton
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field [84,86,175,176]. Apart from the quantum fluctuations of this field, its very emergence
may well be a quantum phenomenon, e.g., the axion condensation (for a more thorough
discussion, see below).

Let us note that the word “glass” appearing in the acronym CGC is used in condense
matter physics to describe a non-equilibrium, disordered state of matter acting like solids
on short time scales but liquids on long time scales [177]. In the glasma case, there are
two scales present—the light cone time τwee of low x (or wee) partons and the light cone
time τvalence of primary (or valence) partons. For partons of transverse momentum k⊥,
we obtain

τwee =
1

k−
=

2k+

k2
⊥

=
2xP+

k2
⊥

� 2P+

k2
⊥

≈ τvalence , (20)

suggesting that the valence parton modes are static over the times scales over which the
wee modes are probed [167]. It is quite tempting to identify τvalence with the quantum
break-time discussed in Refs. [178,179] defined as the time-scale after which true quantum
evolution of the parton densities departs from the classical mean field evolution.

Glasses are formed when liquids are cooled too fast to form the crystalline equilibrium
state. The fast cooling leads to an enormous number of possible configurations Ngl(T) into
which the glasses can freeze and consequently to their large entropy S = ln Ngl(T), which
does not vanish, even at T = 0, see e.g., Refs. [177,180]. In case of the CGC, the fast cooling
is expected to take place in the Grand Unified Theory (GUT) era (see Section 2.5) when
about one-third of all gauge bosons are gluons. By the end of that period, the excess of
effective entropy DoF heff is almost completely absorbed by the saturated gluonic matter.

The gluon condensation into (many domains of) the saturated phase was also facil-
itated by the fact that the wee partons “see” the color charge of other gluons over very
large distances given by their transverse wavelength λwee ∼ 1/k+ = 1/(xP+). Since the
glasma domains were formed in separate and completely different gluonic configurations,
the saturated gluonic matter occupying the early universe had a substantial excess in
the entropy DoF, hQCD

eff , over the effective number of DoF in energy, gQCD
eff . Consequently,

the value of the generalized EoS parameter w was higher than that of the ideal massless
gas; see Equation (6).

One possibility of how the EoS of a non-equilibrium matter comprising weakly in-
teracting gluons can be approximated by the ideal massless gas of quasi-particles with
w(T) > 1/3 follows from Equation (48) discussed later in Section 3.1. The glasma with
w(T) ≈ 1/D may be looked upon as either a two-dimensional sheet (D = 2), a one-
dimensional string (D = 1) or, more generally, a fractal with the Hausdorff dimension
1 ≤ D < 3. Recent investigations of the dynamics of expanding glasma show that the
spatial asymmetry introduced by the initial geometry is effectively transmitted to the
azimuthal distribution of the gluon momentum field, even at very early times [181,182].

2.5. The Running Couplings of the Standard Model and Their Unification

The importance of QCD interactions in the EW era of the universe evolution can be
also seen by comparing the corresponding couplings—the strong αS, electromagnetic αEM
and weak αW ones. This is illustrated on the left panel of Figure 6 showing the RG flow
in the scale μ = Q of the electromagnetic, weak and strong coupling parameters above
Q = 100 GeV. Note that due to the fact that the gauge group of SM interactions SU(3)C
× SU(2)L × U(1)Y is not a simple Lie group, the theory has not one but three coupling
parameters, which are often denoted as α1 ≡ αEM, α2 ≡ αW and α3 ≡ αS [183].

To see how the values of the coupling parameters influence the state of early universe,
let us compare the collision time among its constituents tc ∼ 1/(σnv) (σ is the effective
cross-section, n is the particle number density and v is their relative velocity) with the
characteristic time-scale of the universe expansion tH ∼ 1/H [84]. Let us first restrict
ourselves to the temperatures T � TEW when all particles of the SM are ultra-relativistic and
the gauge bosons are massless. Then, the cross-sections for strong and EW interactions have
a similar energy dependence σ ∼ α2/T2, where α � 10−1 − 10−2 are the corresponding
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dimensionless running couplings α1,2,3 varying logarithmically with T; see Figure 6. Taking
into account Equations (39) and (42) for n ∼ T3, we find

tc ∼
1

σnv
∼ 1

α2T
� tH ∼ 1

H
∼ 1√

ε
∼ 1

T2 . (21)

Thus, for the temperatures 1015 − 1017 GeV � T � TEW, the local equilibrium in the
fluid is established before expansion of the universe becomes relevant.

At the lower temperatures down to TQCD
c ≈ 160 MeV, the strong interactions prevail

over the EW ones, and the local equilibrium is controlled by the interactions among the
quarks and gluons in the strongly interacting QGP liquid. Even though the number density
of the medium may be smaller3, the big effective cross-section among the particles form-
ing the medium guarantees that the condition for local equilibrium tc � tH is satisfied.
Thus, over that whole range of the temperatures, the early universe is in the local equi-
librium. It develops along the maximal possible entropy path, making it amenable to the
hydrodynamical description.

In spite of its success, the SM cannot be the ultimate theory of particle physics. Such
long-standing problems as the absence of a suitable DM candidate, no explanation of the
observed baryon asymmetry in the universe, as well as various hierarchy problems in
the underlined mass spectra (such as the flavor problem, the neutrino mass problem and
the Higgs hierarchy problem) call for various bottom-up extensions of the SM framework
as well as continuous attempts to derive the SM structure from a top-down perspective.

As was earlier discussed, e.g., in Ref. [184], the Higgs boson quartic coupling in the
SM turns negative at scales �1010 GeV, rendering the vacuum state of the theory unstable
at high energies. The current theoretical developments and experimental measurements
suggest that the metastability of the Higgs vacuum is favored. This means a vacuum decay
may occur with possibly catastrophic consequences for cosmology, since there are many
catalysts that could trigger such a decay in the early universe. For a comprehensive review
on cosmological implications of the Higgs vacuum metastability, see, e.g., Ref. [185].

Incidentally, almost immediately after the discovery of the asymptotic freedom, it
was suggested [186] that at very high energies, the three gauge interactions of the SM are
merged into a single force. The model, a first example of the Grand Unified Theory (GUT),
is based on the smallest simple Lie group which contains the SM gauge groups SU(5) ⊃
SUc(3) × SU(2)L × U(1)Y. Among its 24 gauge bosons, there are in addition to eight gluons
of QCD and four EW gauge bosons W±, Z and γ also 12 new ones called X and Y. Their
emission or absorption makes it possible to transform a lepton into a quark or vice versa.
Hence, the SU(5) GUT does not conserve baryon and lepton numbers separately, making it
the first theory providing an explicit mechanism for the proton decay p → e+π0, with the
half-time τp � M4

X/m5
p � 1030 − 1031 years, where MX is the mass of SU(5) gauge boson at

the scale of Grand Unification and mp is the mass of the proton. Although it was later found
to disagree with experimental lower limit of τp ≥ 8.2 × 1033 years [187] SU(5), unification
is still considered an important example and a reference point of GUT model-building.

The basic property of the SU(5) theory and its later GUT successors [188–192] is that by
virtue of the unification into a single (simple Lie) gauge group at very high energies, strict
unification of the SM gauge couplings must take place. This is hinted at but not really achieved
in the SM; see the left panel of Figure 6. First, α1 and α2 cross each other at μ ∼ 1013 GeV;
then, α1 crosses α3 at μ ∼ 1014 GeV, and finally, α2 and α3 cross at μ ∼ 1017 GeV, providing a
hint of unification close to the Planck scale. Thus, as ultraviolet (UV) completions of the SM
describing the physics at very high energies, GUTs are sometimes connected to theories of
gravity such as string theory.
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Figure 6. (Left) RG flow of the inverse SM gauge couplings α−1
a as functions of the renormalization

scale parameter μ. Index a = 1, 2, 3 stands for QED (a = 1), weak (a = 2) and QCD (a = 3) couplings.
(Right) RG flow of the MSSM gauge couplings. Adapted from Ref. [192].

Let us now try to speculate on how the Grand Unification might have influenced the
dynamics of the early universe at the temperatures when gluons decouple from quarks,
forming a condensate. In SU(5) GUT, with increasing temperatures T � TEW

c , the gluon
exchange between quarks (antiquarks) becomes overshadowed by the exchange of EW
massless gauge bosons W±, W0, B0 to be finally superseded by the GUT super-heavy X
and Y gauge bosons. The latter also facilitate the conversion of quarks into leptons and
vice versa. Since the transformations occur in the thermal and chemical equilibrium, the
number of quarks and leptons remains constant on average.

One of the fundamental issues with the GUT models, which remains a challenge
today, is the large hierarchy between the mass scale of Grand Unification and the EW scale.
The latter is a source of large loop corrections to the Higgs mass. The problem is usually
solved by extending the GUT with supersymmetry, the hypothetical symmetry between
fermions and bosons (for a recent review on the concepts of supersymmetric GUTs, see
e.g., Ref. [192]), which is broken at lower energies. Some of its minimal realizations, such
as the Minimal Supersymmetric Standard Model (MSSM) [193], predict the unification of
all three gauge couplings at the same scale; see the right panel of Figure 6.

Notwithstanding the drawbacks of GUTs, their cosmological signatures look quite
promising. With the critical temperature TGUT

c of the GUT phase transition approximately of
the same order of magnitude as the particle masses at that temperature, the phase transitions
that take place in GUTs at T � 1014 GeV, as a rule, prove to be FOPTs [194]. Such transitions
proceed via bubble nucleation [195]. While an isolated spherical bubble may produce GWs
through sound waves in the plasma and magneto-hydrodynamics turbulence effects (see for
example Refs. [196–199] and references therein), the process of bubble collision contributes
to the GWs spectrum in the quadrupole approximation [86,200]. This contrasts with the
SM phase transitions where the crossovers do not lead to a strong enhancement over
the primordial GW spectrum. Moreover, the FOPTs also generate a primordial magnetic
field during the turbulence phase of the plasma and bubble collision [86,201], and in some
instances, they may generate topological defects such as domain walls and strings [195,202].

Let us add that an FOPT in the EW sector though precluded in the SM is possible
in many of its scalar sector extensions [203]. In the most exotic scenario, a very peculiar
history of the universe may occur: a first-order QCD phase transition (with six massless
quarks) triggers an EW FOPT, which is eventually followed by a low-scale reheating of
the universe where hadrons (likely) deconfine again, before a final, conventional crossover
QCD transition to the current vacuum [204].

2.6. Axions

A promising avenue connecting the strong interactions with physics beyond the SM
having at the same time far-reaching consequences in cosmology is provided by hypothet-
ical ultra-light particles—the axions [183,205–208]. The QCD, unlike the EW interaction,
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is symmetric under time reversal and hence under a combined charge conjugation C and
parity P operation CP. In principle, one can add to the QCD Lagrangian the term:

LQ = θ
g2

s
32π2 Fa

μν F̃μν
a , (22)

where Fa
μν is the gluon field strength tensor (see Equation (17)), and F̃μν

a = 1
2 εμναβFa

αβ is its
dual. For a non-zero value of the parameter θ, called the vacuum angle [209], the strong
coupling permits violation of the CP symmetry. However, since LQ can be written as a total
derivative of Kμ, the Chern–Simons current, LQ = ∂μKμ, the new term does not produce
any effects in perturbation theory and is therefore usually neglected. Nevertheless, classical
configurations, topological in nature, do exist, one example being the instantons [210],
for which this term cannot be ignored. For instance, in the semi-classical dilute instanton
gas approximation (DIGA) [211], the QCD vacuum energy density ε0 depends on θ as

ε0(θ) = −2Ce−Sinst cos θ , Sinst =
8π2

g2
s

. (23)

Here, C is a positive constant and Sinst is the QCD instanton action [207,208],
cf. Equation (18). Moreover, since LQ in Equation (22) preserves the charge conjugation C,
it contributes directly to the neutron electric dipole moment dn ≈ emq/m2

nθ, where e is the
proton charge, mq denotes the mass of u, d quarks, and mn is the neutron mass. Current
measurements [212] provide an upper bound on the CP-violation parameter, |θ| � 10−10.

Within the SM, the smallness of the θ parameter becomes a true fine-tuning problem.
Since θ could acquire an O(1) contribution from the observed CP-violation in the EW sector
(via the common quark mass phase, arg det(Mq), where Mq is the quark mass matrix),
its not obvious why it becomes cancelled to a high precision by the (unrelated) gluon
term [207]. To solve this problem, the SM is augmented with an extra pseudo-scalar particle
called axion A, whose only non-derivative coupling is to the CP-violating topological gluon
density Fa

μν F̃μν
a that is suppressed by a large scale fA. With θ → θ + φ(x)/ fA, where φ is

the angular DoF of spin-zero complex field,

ϕ = |ϕ|eiθ = |ϕ|eiφ/ fA , (24)

the minimum of the vacuum energy occurs when the coefficient θ + φ/ fA in front of Fa
μν F̃μν

a
vanishes.

It is worth noting that interactions of the scalar field with ordinary matter is controlled
by the factor ∂μ ϕ/ fA. Thus, even at its originally suggested value of fA ∼ 250 GeV
at the EW breaking scale [213], the axions interact so weakly that they emerge without
attenuation from reactor cores or stellar interiors. Present astrophysical constraints push
fA to substantially higher values, which are somewhere between a few 108 GeV and a few
1017 GeV.

In cosmology, since their introduction, the axion-like particles were considered to be
potentially important candidates if not for all than at least for the main component of the
DM—a form of matter accounting for about one-quarter of its total energy density [72].
In order to fulfill their mission, the axions must contribute a non-negligible amount to
the energy density of the universe and should have not been in thermal equilibrium with
the cosmological plasma at any time in the history of the universe. This, together with
the smallness of axion mass, implies their large occupation numbers [207]—the situation
already encountered when we have discussed the properties of saturated gluon matter,
cf. Equation (19). This implies that the axions over the whole history of the universe can be
modeled by solving the classical field equations of a scalar condensate [214].
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Starting from the Peccei–Quinn (PQ) scalar field ϕ introduced in Equation (24), the La-
grangian invariant under the global U(1)PQ transformation reads [215]:

L =
1
2
|∂μ ϕ|2 − Veff(ϕ, T) , Veff(ϕ, T) =

λ

4
(|ϕ|2 − f 2

A)
2 +

λ

6
T2|ϕ|2 . (25)

Focusing on the early universe, the evolution of the field ϕ passes the following
milestones. At high temperatures T � Tc =

√
3 fA, the effective potential Veff(ϕ, T)

depicted on the left panel of Figure 7 has the U(1)PQ symmetric minimum at ϕ = 0.
With increasing time t, the universe cools, and the vacuum with ϕ = 0 becomes unstable.
Due to the misalignment mechanism, the field starts to roll down from ϕ = 0, and the
potential becomes tilted. At T � fA, the PQ symmetry is spontaneously broken—the
field acquires the vacuum expectation value 〈ϕ〉 = fA. Then, the axion—the Nambu-
Goldstone boson of the spontaneously broken U(1)PQ symmetry—becomes a massless
angular DoF at the minimum of the potential. The detailed results depend on whether the
PQ phase transition occurs before or after inflation. While in the former case, only one θ0
angle contributes (all other values are inflated away), in a post-inflationary scenario, the
initial value of the angle θ takes all values in the interval 〈−π, π〉. Eventually, when the
universe cools to the temperatures of a few GeV, the axion obtains a mass through the QCD
non-perturbative instanton effect known as the axial anomaly [183,216,217].
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Figure 7. (Left) Potential of the PQ scalar V(ϕ) at different temperatures T � Tc (pink) and
T � Tc (violet). The yellow circles show the positions of the minimum. Adapted from Ref. [215].
(Right) Continuum limit of χtop(T) from LQCD. The inserted sub-figure shows the behavior around
the QCD phase transition temperature. Adapted from Ref. [89].

At the leading order in f−1
A , the axion mass mA(T) at some temperature T can be

extracted from the QCD-generating functional Z(θ) in the presence of a theta term [218],

m2
A(T) =

δ2

δφ2 lnZ
(

φ

fA

)∣∣∣
φ=0

=
1
f 2
A

d2

dθ2 lnZ(θ)
∣∣∣
θ=0

=
χtop(T)

f 2
A

, (26)

where χtop(T) is the QCD topological susceptibility. This quantity is typically computed
using the lattice methods developed by several groups, see e.g., Refs. [89,219–228], but also
in the framework of analytical approaches [218,229]. Its temperature dependence can be
extracted either from the DIGA or from the LQCD calculations; see the right panel of
Figure 7. The lattice simulations performed, for instance, in Ref. [89] have revealed that
for T > T∗ = 150 MeV, the susceptibility falls as χtop(T) ∼ T−b with b = 8.16, extending
thus the previous DIGA result χtop(T) = χ(0)T−8 up to T ≈ 3 GeV. At the temperatures of
T = 100 − 140 MeV in the vicinity of the QCD chiral phase transition temperature Tc, see
Section 2.1, χtop(T) flattens. Further analysis performed in Ref. [89] exploiting the QCD
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EoS obtained therein has revealed that in the post-inflationary scenario, depending on the
fraction of DM consisting of axions, mA = 50–1500 μeV. In particular, for the 50% axion
content of the DM, one obtains the axion mass scale of mA = 50(4)μeV. Since at T < Tc,
the chiral perturbation theory [183] becomes applicable, it is worth making a comparison
with the original formula for the axion mass,

m2
A =

mumd
(mu + md)2

m2
π f 2

π

f 2
A

=⇒ mA ≈ 5.7
(

1012GeV
fA

)
μeV , (27)

where fπ is the pion decay constant, and md and mu are the down- and up-quark masses
appearing in the QCD Lagrangian [183,208]. Let us note that if mA � 20 eV, the axions
decay faster than the age of the universe.

For temperatures above the chiral phase transition, the axion potential computed in
DIGA reads [211]:

V(φ, T) = χtop(T)
[

1 − cos
(

φ

fA

)]
. (28)

Expanding Equation (28) around φ/ fA = 0, we obtain V(φ) = m2
Aφ2/2 at a finite T.

Assuming the Friedmann-Lemaître-Robertson-Walker (FLRW) metric and classical axion
field with this potential, the corresponding unperturbed energy density ε̄A and pressure
p̄A due to the axion field read

ε̄A =
1
2

φ̇2 +
1
2

m2
Aφ2 and p̄A =

1
2

φ̇2 − 1
2

m2
Aφ2 , (29)

respectively. Substituting ε̄A and p̄A from Equation (29) into the fluid Equation (39),
we obtain

φ̈ + 3Hφ̇ + m2
A = 0 . (30)

At early times H(t) � mA(t), we can neglect mA in Equation (30) to obtain the
solution φ(t) = φ0—the axion field is frozen at a constant value φ0 ∼ fA.

With increasing time t, eventually, the oscillating term proportional to m2
A(t) ≡

m2
A(T(t)) in the equation of motion of the axion field (28) begins to contribute. At the

time tosc defined implicitly as mA(tosc) ≈ 3H(tosc), the universe is sufficiently large to
host a sizeable fraction of one oscillation period—the axion field starts to oscillate with an
amplitude damped by the expansion rate. A solution of Equation (30) then reads [120],

φ(t) = φ1

(
a(t1)

a(t)

)3/2

cos
(∫ t

0
mA(t)dt + α

)
, (31)

where t1 is the time at which H(t1) = mA, i.e., when the temperature drops below the
QCD chiral phase transition temperature Tc, φ1 ∼ fA is the constant and α is the phase.
In particular, for mA(t) = mA and a radiation-dominated universe, one obtains φ1 ≈ 1.44φ0
and α = −3π/8 [120].

For the initial conditions at the onset of oscillations θi ≡ θ(tosc), θ̇i ≡ θ̇i(tosc), where θi
is called the initial misalignment angle, we obtain from Equation (30)

θi = θPQ +
φ̇PQ

HPQ
and θ̇i = θ̇PQ

(
H(tosc)

HPQ

)3/2

, (32)

where θ(tPQ) ≡ θPQ, φ̇(tPQ) ≡ φ̇PQ, HPQ ≡ H(tPQ) and aPQ ≡ a(tPQ) are the values at
the PQ symmetry breaking time tPQ � tosc. In the second equation, we have also used
a ∼ 1/T and H ∼ T2G1/2 [208].

While in the pre-inflationary scenario, inflation selects one patch of the universe within
which the spontaneous breaking of the PQ symmetry leads to a homogeneous value of the
initial misalignment angle φi, in the post-inflationary scenario, the PQ symmetry breaks
with θi, taking different values in patches that are initially out of causal contact; see the
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left panel of Figure 7. However, today, they populate the volume enclosed by our Hubble
horizon. In the post-inflationary scenario, the initial misalignment angle φi takes all possible
values on the unit circle. For a quadratic potential, V(φ) = m2

Aφ2/2, this is equivalent to an

assumption that the initial condition reads φi ≡
√
〈φ2

i 〉 = π/
√

3, where the angle brackets
represent the value averaged over 〈−π, π〉 [208].

Starting from Tosc, the number of axions in a comoving frame becomes frozen, and their
number density evolves as

nA(Tosc) ≈ mA(Tosc) f 2
A〈φ2

i 〉 . (33)

For isotropic evolution, the ratio of the number density nA to the entropy density s in the
comoving frame is conserved, i.e., nA(T)/s(T) = nA(Tosc)/s(Tosc) leading for T � Tc to
the expression for the axion energy density,

εmis
A = mAnA(Tosc)

heff(T)
heff(Tosc)

(
T

Tosc

)3
= mA f 2

A〈φ2
i 〉

heff(T)
heff(Tosc)

(
T

Tosc

)3
Tc , (34)

where the effective number of DoFs of the entropy heff(T) is defined in Equation (3). Let
us note that in contrast to Ref. [208] in Equation (34), the constancy of the axion mass for
T � Tc is already taken into account.

After the spontaneous U(1)PQ symmetry breaking the axion field, φ, being an angular
variable, takes values in the interval 〈0, 2π fA〉, cf. Equation (24). Consequently, the axion
potential V(φ) given by Equation (28) is periodic in φ with period Δφ = 2π fA/NDW.
In the other words, V(φ) has an exact ZNDW discrete symmetry. The axion acquires a
periodic potential with NDW equivalent minima. The Kibble mechanism [195,230] then
dictates that, depending on the homotopy group π(M) of the manifold M of degenerate
vacua, the topological defects—domain walls, strings or monopoles—form each time the
symmetry is broken [195,202]. With M = U(1)PQ and π(M = ZNDW), the production of
axionic strings, which are vortex-like topological defects that form as soon as the symmetry
is spontaneously broken, is possible. Those are not important when the PQ symmetry is
broken before inflation—they are inflated away—but they play an important role in the
post-inflationary scenario. When the Hubble parameter H becomes comparable to the
axion mass mA, the axion starts to roll down to one of the minima. Since the axion field
settles into different minima in different places of the universe, domain walls are formed
between the different vacua; see the left panel of Figure 7. It is worth mentioning that this
phenomenon is similar to ice formation on the surface of a pond or a puddle when the
water begins to freeze in many places independently, and the growing plates of ice join up
in random fashion, leaving zigzag boundaries between them [195].

As an example, let us consider a planar wall orthogonal to the z-axis φ = φ(z).
The solution of the classical field equation with potential given by Equation (28) reads [231]:

φ(z)
fA

=
2πk
NDW

+
4

NDW
tan−1 emAz . (35)

This configuration interpolates between the two allowed vacua, φ/ fA = 2πk/NDW at
z → −∞ and φ/ fA = 2π(k + 1)/NDW, which are separated by the wall of thickness 1/mA.

Astrophysical signatures of the axion can be broadly divided into its couplings to
elementary/composite particles, i.e., photons, electrons, protons or neutrons, and to the
macroscopic objects in the universe such as BHs [208]. In the latter case, when the Compton
length of the axions becomes of order of the BH size, they form gravitational bound
states around it. The phenomenon of superradiance [232,233] causes the axion occupation
numbers to grow exponentially, providing a way to extract very efficiently energy and
angular momentum from the BH. The presence of axions could be inferred by observations
of BH masses and angular momenta. Current measurements exclude the region of 6 ×
1017 GeV ≤ fA ≤ 1019 GeV.
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In particle physics signatures, the most important is the decay channel of axion into two
photons with the decay width ΓA→γγ = g2

Aγγm3
A/(64π) in terms of the model-dependent

coupling constant gAγγ. The main uncertainty is due to the electromagnetic and color
anomalies of the axial current associated with the axion. The most relevant process induced
by the gAγγ is the Primakoff process—the conversion of thermal photons in the electrostatic
field of electrons and nuclei into axions,

γ + Ze → A + Ze . (36)

A strong bound on exotic cooling processes in the sun is provided by the helioseis-
mological considerations [234] giving the following constraint: gAγγ ≤ 4.1 × 10−10 GeV−1.
For more details, consult Refs. [205–208,215]. Another option is the inverse Primakoff
scattering, which allows solar axions to coherently scatter off the atomic electric field and
back-convert into photons in the detector volume, A + Ze → γZe, proceeding through a
t-channel photon exchange [235].

The axion besides being a well-recognized DM candidate may provide also an inter-
esting explanation of a wider range of phenomena related to the early universe dynamics.
As a first example, let us mention the SMASH model—a minimal extension of the SM with
additional particle content comprising three sterile right-handed neutrinos Ni, i = 1, 2, 3,
a color triplet Q and a complex SM-singlet scalar σ, whose VEV of vσ ∼ 1011 GeV breaks
the lepton number and the PQ symmetry simultaneously [236]. At low energies, the model
reduces to the SM, which is augmented by seesaw-generated neutrino masses and mixing,
plus the axion. In this scenario, the inflaton, a scalar field driving cosmic inflation in the
very early universe, is a mixture of σ and the SM Higgs fields. The reheating of the universe
after inflation occurs via a mechanism known as a Higgs portal [237]—by the DM particles,
which interact only through their couplings with the Higgs sector of the theory. The model
provides a consistent picture of particle physics from the EW scale to the Planck scale MPL
and of cosmology from inflation until today. In particular, in the SMASH model framework,
the PQ symmetry is first broken and then restored non-thermally during preheating for
fA = 4 × 1016 GeV.

The second example, the Axion Quark Nugget (AQN) DM model, see, e.g., Ref. [238]
and references therein, replaces the commonly accepted baryogenesis scenario with a
charge separation process in which the global baryon number of the universe remains
zero at all times. Similarly to Witten’s idea of stranglets [5], the AQN DM is composed of
quarks and anti-quarks but now in a new high-density CSC phase. Initially, nuggets of
both matter and antimatter are formed with equal probability as a result of the dynamics
of the axion domain walls which at the same time provide the extra pressure needed to
stabilize the CSC phase. Later on, due to the global CP violating processes associated with
the initial misalignment angle θ0 �= 0 during the early formation stage, the populations
of the nuggets with the positive and negative baryon number become different. The un-
observed antibaryons hidden inside the DM would not participate in nucleosynthesis
and, therefore, according to the usual definition would not contribute to the visible matter.
However, since antimatter nuggets can interact with regular matter via annihilation leading
to electromagnetic radiation, their existence has observational consequences [238].

It is worthwhile mentioning here an interesting generalization of the PQ mechanism
where in addition to θ angle, also the strong coupling αS is promoted to a dynamical
quantity. The latter evolves through the VEV of a singlet scalar field that mixes with
the Higgs field [239,240]. In the resulting cosmic history, the QCD confinement and EW
symmetry breaking initially occur simultaneously close to the weak scale.

To conclude this section, as we have already noticed in several examples above, the non-
perturbative dynamics of QCD often exhibits very non-trivial and rather unexpected
consequences at cosmological scales. An attractive mechanism proposing that the QCD
axion may emerge as a composite state has been discussed very recently in Ref. [241].
In particular, it was suggested that Majorana neutrinos, that combine into Cooper pairs,
can form collective low-energy degrees of freedom. This motivates the existence of the
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QCD axion as a collective excitation of the neutrino condensate. Such a condensate can
be produced after the QCD phase transition epoch in a cold coherent state by means of a
misalignment mechanism, thus providing an alternative DM candidate. In this case, a QCD
anomalous portal provides the necessary means for a tiny mass gap generation by neutrinos.
Furthermore, the Cosmological Constant emerges as a result of the spontaneously broken
mirror symmetry of the QCD ground state triggered by the quantum gravity effects as
suggested by Refs. [65,66] (see also below). Hence, one concludes that QCD may be
responsible for the dynamical generation of both the DM and DE components of the
universe such that a complete knowledge of the QCD in the infrared regime may be
absolutely critical for understanding of the cosmological evolution since the latest QCD
transition epoch and for eventual formation of the current state of the universe.

3. Dynamics of the Early Universe

3.1. Simple Models with Constant Speed of Sound

In accord with the observations, the Standard Cosmological Model (SCM) postulates
that the cosmic matter at scales larger than 100 Mpc is homogeneously and isotropically
distributed. Consequently, thermodynamic pressure p at early times of its evolution
depends on temperature T and various chemical potentials μi, i = B, Q, L, . . . corresponding
to baryon number B, electric charge Q, lepton number L etc., only via the energy density ε.
Solution of the Einstein equations of general relativity

Rμν − 1
2 gμν(R − 2Λ) = −8πGTμν , (37)

where Rμν is the Ricci tensor, R = Rμνgμν is the scalar curvature, gμν is the metric tensor, and
Λ and G are the cosmological and gravitational constants; preserving the homogeneity and
isotropy of space under its time evolution is a spacetime of constant curvature parameter
k = {+1, 0,−1}. It is described by a single function—the time-dependent scale factor
a(t) [84,120,242] which connects the Lagrangian (or comoving) coordinates r with the
physical Euler coordinates r̂(t) = a(t)r. The metric tensor gμν in the preferred coordinate
system where these symmetries are clearly manifest reads4

ds2= gμνxμxν =dt2−a2(t)
[ dr2

1−kr2 +r2(dθ2+sin2 θdφ2)
]

, k=const . (38)

Using this metric in Equations (37) and (38) and neglecting the dissipative terms yields
the Friedmann equation for the time evolution of a(t) and the fluid equation for the time
evolution of ε(t), respectively (see e.g., Refs. [84,175]),

H2(t) ≡
( ȧ

a

)2
=

8πG
3

ε− k
a2 +

Λ
3

, ε̇ + 3(ε + p)H(t) = 0 , (39)

where H(t) is the Hubble parameter. From Equation (39), it follows that the expanding
universe is characterized by a natural time-scale H−1 = a/ȧ. Any particle species will
remain in thermal equilibrium with the cosmic fluid so long as the mean interaction time tc
allows rapid adjustment to the falling temperature provided that tc < H−1.

In the period of the universe evolution when ε � 1 GeV fm−3, the terms containing
constants Λ and k in Equation (39) can be safely neglected, transforming the above two
equations into a single one describing the time evolution of the energy density [6],

− dε

3
√

ε(ε + p)
=

√
8πG

3
dt . (40)
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For the time-independent speed of sound cs and for the energy densities negligible
compared to the initial density ε(t > 0) � ε(t = 0) integration of Equation (40), the
calculations yield [13]

ε(t) =
1

6πG(1 + c2
s )

2t2 , c2
s ≡ dp

dε
= const . (41)

Substituting this equation into the fluid Equation (39), we obtain the expansion rate of
the early universe

ȧ ∼ t−α , α =
1 + 3c2

s
3(1 + c2

s )
. (42)

In particular, for the massless non-interacting gas with c2
s = 1/3, one obtains ȧ ∼ t−1/2

and hence a(t) ∼ t1/2.
It is worth mentioning that in the cosmological literature, see, e.g., Ref. [120], it is

customary to express the EoS in terms of the parameter w, Equation (5). For the constant
speed of sound case, i.e., for w = const, the solution of the Friedmann Equation (39) yields

ε ∼ a−3(1+w) . (43)

For the non-relativistic matter (dust) with p = 0, we obtain ε ∼ a−3, for the massless
non-interacting gas, ε ∼ a−4, for the EoS p = ε corresponding to absolutely stiff fluid [243],
ε ∼ a−6, and for the vacuum energy with the EoS p = −ε, Equation (43) gives ε = const.

Let us now follow Ref. [244] and consider an ideal gas of free particles in D-dimensional
space. Its particle number density n, energy density ε and pressure p expressed in terms of
single-particle statistical sum f (E, T, μ) of particle with energy E, momentum P and spin s
reads (see e.g., Ref. [245]):

f (E, T, μ) =
1

exp[(E − μ)/T]± 1
, n = γ

∫
f (E, T, μ)dDP , (44)

ε = γ
∫

f (E, T, μ)E(P)dDP = γS(D)
∫ ∞

0
f (E, T, μ)E(P)PD−1dP , (45)

p = − T
V

ln Z = −γT
∫

ln f (E, T, μ)dDP = γ
S(D)

D

∫ ∞

0
f (E, T, μ)

∂E(P)
∂P

PDdP , (46)

where dDP = [DπD/2]/[Γ(D/2 + 1)]PD−1dP ≡ S(D)PD−1dP is a volume element of the
D-dimensional hypersphere and γ ≡ (2s + 1)(2π)−D. When evaluating the first integral
in Equation (46), we have performed integration by parts assuming that the particle energy
E(P) is some generic function of P. The substitution of Equations (45) and (46) into
Equation (5) constrains E(P) to satisfy the differential equation

P
D

∂E(P)
∂P

= wE(P) , (47)

whose solution for w = const reads

E(P) = ξPwD , (48)

with ξ some arbitrary constant. Hence, the medium with constant speed of sound squared
c2

s = w in ordinary three-dimensional space can be equivalently described as an ideal gas
of quasi-particles with energy E and momentum P satisfying the dispersion relation (48) in
D-dimensional space [244]. It is worth mentioning that at some instances, the dispersion
relation (48) can be satisfied by the real particles. The case of w = 0 corresponds to non-
relativistic particles, while wD = 1 corresponds to massless particles in D-dimensional
space with the EoS p = ε/D and hence with the sound velocity cs = D−1/2.

Unfortunately, this is not the case of the absolutely stiff fluid, as first discussed by
Zeldovich [243]. Notwithstanding that its EoS p = ε can be used to describe a large
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variety of systems such as phonon-like excitations in a thin channel (D = 1) [244], thin
film (D = 2) of non-relativistic quasi-particles [244], interiors of neutron stars [246,247], Big
Bang nucleosynthesis [248] or warm self-interacting DM component [249]. The cosmology
and thermodynamics of the FLRW universe with bulk viscous stiff fluid was studied in
Ref. [250]. The fact that the stiff fluid saturates the holographic covariant entropy bound
was used in Ref. [251] to describe a cosmology of the very early universe. Last but not
least, a stiff perfect fluid is energetically equivalent to a time-like massless scalar field φ,
see, e.g., Ref. [252]. From its energy-momentum tensor,

Tφ
μν = ∂μφ∂νφ − 1

2
gμν∂αφ∂αφ , ∂αφ∂αφ > 0 , (49)

we obtain that p ≡ Tφ
kk = ε ≡ Tφ

00 = ∂αφ∂αφ.

3.2. Equation of State of the Early Universe

As already discussed in Section 3.1, the only way how to write the EoS compatible with
homogeneity and isotropy of the universe is through the pressure expressed as a function
of the energy density. Thus, given the barotropic EoS p(ε) of the expanding matter, we
can for instance use Equation (40) to predict the temporal evolution of the energy density
ε(t) and the temperature T(t). For the ideal gas EoS, Equation (41) yields the relation
between the temperature T of the early universe and the time tsec elapsed from the Big
Bang, TMeV=O(1)/

√
tsec [84], i.e., the same time-dependence as for the time derivative of

the scale factor ȧ(t); see Equation (42) and the discussion below it. For the QGP-to-hadronic
matter transition, this leads to tQGP

sec ∼10−5 s, and for the EW phase transition, this leads to
tEW
sec ∼10−11 s.

More sophisticated EoS can be based either on the phenomenological models or on
the microscopic theory. In the latter case, a quantum physics formulation of statistical
mechanics in terms of the S matrix, which describes the scattering processes taking place
in the thermodynamical system of interest, is available—see Ref. [253]. It provides a
simple prescription for calculating the grand canonical potential Z(T, μ) of any gaseous
system given the free-particle energies and S-matrix elements. The application of S matrix
formulation to study the thermal properties of an interacting gas of hadrons can be found
in Ref. [254]. It can be also used to show how the hadron resonance gas model emerges
from the S-matrix framework [255]. However, this approach is based on the perturbative
expansion of the S-matrix and is therefore not applicable in the strong coupling regime of
QFT. There, one resorts to direct calculation of the grand canonical potential on the lattice.

Our first example of the EoS used in a description of the evolution of the early universe
is the Bag Model (BM) EoS [1,256,257] based on the phenomenological description of the
mass spectrum of the hadron states [11,258,259] in terms of gas of massless color objects—
quarks and gluons—moving inside the confining potential—the bag,

εq(T) = σqT4 + B , pq(T) =
σq

3
T4 −B , pq(ε) =

1
3
(ε − 4B) . (50)

In Equation (50), σq = π2

30 gQCD
eff is the Stefan-Boltzmann constant with gQCD

eff given by
Equation (9). The BM EoS (50) incorporates color confinement through the bag constant
B = εbag − εvac > 0, indicating the difference between the energy densities of the physical
vacuum and the ground state for quarks and gluons in the medium. The latter can be
interpreted as the energy needed to create a bubble in the vacuum in which the non-
interacting quarks and gluons are confined. While the fit to hadron masses made in the
original BM predict B1/4 ≈ 140 MeV, the value of B1/4 ≈ 220 MeV is frequently quoted in
works dealing with the vacuum structure of QCD, see, e.g., Ref. [11].

Let us note that BM EoS represents a bare-bones model of hadron-to-QGP phase
transition. At small energy densities, hadrons—the bubbles inside the non-perturbative
vacuum—occupy only a small fraction of the total considered volume V. An increase of ε

30



Universe 2022, 8, 451

leads to the coalescence of several bubbles into larger ones. For ε ≥ 4B, the volume V is
filled with one large bubble, cf. Equation (50), whose surface coincides with the enclosing
walls. Hence, there is no longer free surface against the vacuum, and the new de-confined
phase of matter is created [256]. The critical temperature Tc of the phase transition can be
estimated using Gibbs criteria. Equating the BM pressure (50) with the pressure ph of the
hadron (pion) gas with 3 DoF and hence with σh = 3π2/30, we obtain

pq(Tc) =
σq

3
T4

c −B = ph(Tc) =
σh
3

T4
c , Tc =

(
3B

σq − σh

)1/4
. (51)

For NF = 3 active quark flavors u, d, and c, Equation (2) yields Tc ≈ 0.67B1/4 and
≈150 MeV. Let us add that Equation (51) describes the first-order phase transition with
energy density discontinuity,

Δε = εq(Tc)− εh(Tc) = 3pq(Tc) + 4B − 3ph(Tc) = 4B . (52)

Last but not least, expressing the BM EoS (50) in terms of the dimensionless interaction
measure—the trace anomaly describing the thermal contribution to the trace of the energy-
momentum tensor T μν ≡ Tμν

Θ ≡ T μμ(T)
T4 =

εq − 3pq

T4 =
4B
T4 =

4σqB
εq −B , (53)

we observe a monotonous weakening of the interaction strength with increasing εq [33],
leading ultimately to a Stefan-Boltzmann (SB) value of Θ = 0. At the same time, the
entropy density sq = (εq + pq)/T = 4/3σ1/4

q (εq − B)3/4 converges to its SB limit from
below. The speed of sound derived from the BM EoS (50) is energy-density-independent
and coincides with that of the ideal gas of massless particles c2

s = dpq/dεq = 1/3.
More sophisticated EoS can be constructed, e.g., by adding the term ∼ T2 to expres-

sions for ε(T) and p(T) in Equation (50) with σ = σq

ε(T) = σT4 − CT2 + B , p(T) =
σ

3
T4 − DT2 −B . (54)

The motivation for such a modified BM EoS comes from the observation [260,261] that
in the case of a pure gauge theory up to temperatures a few times the transition temperature
Tc, the dominant power-like correction to the pQCD high-temperature behavior is O(T−2)
rather than O(T−4). Moreover, the quadratic thermal terms in the deconfined phase can be
also obtained from gauge/string duality [262].

In its original setting with C = D > 0, Equation (54) represents the LQCD-motivated
“fuzzy” BM EoS of Ref. [263]. On the other hand, for C = −D < 0, it represents a particular
case of gas of gluonic quasi-particles EoS with a temperature-dependent bag function
B(T) = −CT2 + B; see e.g., Refs. [264,265]. In the following discussion, we will keep the
values of the constants C and D in Equation (54) unrestricted.

By inverting ε(T) in Equation (54) with respect to temperature squared T2,

T2(ε) =
C +

√
C2 + 4σ(ε −B)

2σ
> 0 , (55)

and substituting for T2(ε) into Equation (54), we obtain the barotropic form of the EoS (54):

p(ε) =
1
3
(ε − 4B)− 1

3
sgn(A)|A|T2(ε) A = 3D − C . (56)
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The corresponding sound velocity squared reads

c2
s (ε) =

dp(ε)
dε

=
1
3

(
1 − sgn(A)|A|√

C2 + 4σ(ε −B)

)
. (57)

Note that for A = 0, both Equations (56) and (57) degenerate to the corresponding re-
sult from the BM EoS; see Equation (50). In the context of Equation (54), the situation
with C = 3D = 3

2 NFμ2
B describes the EoS of ideal QGP with non-zero baryon chemical

potential [266]. It is worth mentioning that by tuning the phase transition temperature to
Tc = 160 MeV, this EoS predicts a six times higher value of the bag constant B than the
original BM [266].

Therefore, in the following, we discuss only the non-trivial case of A �= 0. First, we
check which values of the constants C and D in Equation (57) are compatible with the
condition c2

s > 0. While for A < 0 (i.e., C > 0 and −C < D < C/3), Equation (57) is always
satisfied for A > 0 (C ≥ 0 and D > C/3 or D > −C > 0), there exists a lower bound ε0 on
energy density

ε > ε0 =
A2 − C2

4σ
+ B . (58)

Thus, in both cases (A > 0 or A < 0), Equation (55) represents the genuine non-
trivial EoS of non-ideal high-density matter each with its own sound velocity approaching
for ε → ∞, either from below or from above, the SB limit of

√
1/3. However, only for

A < 0, the second term on the right-hand side of Equation (56) with − 1
3 AT2(ε) represents

independent pressure. It is also worth mentioning that for the latter case (A < 0), the
trace anomaly

Θ(ε) =
4B

T4(ε)
+

sgn(A)|A|
T2(ε)

, (59)

with T2(ε) defined in Equation (55), acquires a peak at the energy density

εp =
2B ±

√
2B|A|C

|A|σ −B . (60)

Standard explanation of this phenomenon within the SU(3)c gauge theory, see, e.g.,
Ref. [267], relies on the fact that in the region around and just above the critical temperature
Tc of hadron-to-QGP phase transition, the energy density rises much more rapidly than
the pressure, leading to the observed rapid increase of Θ. Since asymptotically ε/T4

and 3p(T)/T4 converge to their common Stefan-Boltzmann value of σ, see Equation (54),
there must be some temperature Tp (and hence also some energy density εp = ε(Tp)) at
which the growth rates change roles, with the pressure now increasing more rapidly. The
further decrease of Θ is in good approximation given by T−2, so that T2Θ(T) becomes
approximately constant very soon above Tc and up to about 5Tc [263].

Note that Equation (40) with the initial condition ε0(t0) = 104 GeV fm−3 at tQGP
sec �

t0 = 10−9 s � tEW
sec was used in Ref. [13] to study the sensitivity of dilution and cooling

of the early universe to the changes in the primordial QGP EoS. The latter might modify
the pattern of the emission of GWs or the generation of baryon number fluctuations. No
dramatic changes between different EoS, including Equations (50) and (54) (with C = D)
and others, were found in the whole considered time interval. This finding seems to be
supported by the LQCD calculations which show that the transition from primordial QGP
matter to hadronic matter proceeded as a continuous crossover [92]. The latter does not
introduce any fluctuations on length scales much longer than the natural length scales of
QCD ∼ Λ−1

QCD, so it has probably left no imprint in the microseconds-old universe that
survived so as to be visible in some way today [7].

A different conclusion was, however, reached in Ref. [74] where a novel mechanism
for the production of GWs during the QCD phase transition has been proposed. It was
found that while the energy density of the homogeneous gluon condensate is smoothly
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decaying in cosmological time tsec, the pressure of the condensate undergoes a sequence of
violent oscillations at the characteristic QCD time scales—the process called relaxation—the
basic feature of the QCD transition. Such relaxation processes generate a very specific
multi-peaked GWs signature in the domain of radio frequencies. In particular, gravitational
echoes of the QCD transition potentially accessible by the FAST [268] and SKA [269]
GW telescopes are sourced by the formation of domain walls in the QCD vacuum (also
responsible for color confinement in the infrared regime). More details about the dynamical
theory of the YM vacuum will be provided below in Section 4.

Recently, the stochastic GWs induced by the scalar perturbations of the metrics were
investigated in Ref. [270] as a cosmological probe of the sound speed cs during the QCD
phase transition. Although the GW propagation itself does not depend on cs, the sound
speed value affects the dynamics of primordial density. Induced stochastic GWs can thus
be an indirect probe of both the EoS parameter w = p/ε and cs =

√
dp/dε. In particular,

similarly to the conclusions of Ref. [74], the GW frequency ∼ 10−8 Hz corresponding to the
Hubble scale during the QCD phase transition appears to be in the range of the planned
GW detectors.

Let us now turn to a description based on the fundamental theory. Using the La-
grangian of the SM, one can extract the thermodynamical quantities either directly from
the lattice calculations [89], deduce them from lattice simulations using a dimensionally-
reduced EFT [90] or use the perturbation theory. With the temperature T depending
on the lattice spacing a and the number of lattice points in the temporal direction Nt as
T = (aNt)−1, the reliable Monte Carlo simulations of QFT in the high-temperature regime
need very fine lattices. At the same time, as the lattice spacing a is reduced, the autocorrela-
tion times for zero temperature simulations rise, and the costs of these simulations explode
beyond feasibility [89]. This makes the LQCD simulations in the region of temperatures
higher then the few GeVs practically impossible. Alternatively, one can vary the gauge cou-
pling gs, which leads to changing T as well, although the spacial and temporal dimensions
do not [90]. In addition to that, even at the temperatures of the EW phase transition TEW

c ,
the dynamics needs to be treated with lattice methods. This is due to the fact that when the
particle momenta in the range k ∼ g2T/π are considered, then the dynamics of the system
is non-perturbative [194,271,272]. Values much below and far above this value p/T4 can be
determined by a direct perturbative computation [90].

In the SM framework, the basic thermodynamical observable is the pressure [273],
which can be formally defined through the grand canonical partition function Z as

Z ≡ exp
[

pB(T)V
T

]
, pB(T) = pE(T) + pM(T) + pG(T) , (61)

where pB denotes the “bare” result related to the physical (renormalized) pressure as p(T) =
pB(T)− pB(0). The pressure terms pE(T), pM(T) and pG(T) appearing in Equation (61)
collect the contributions from the momentum scales k ∼ πT, k ∼ gT, and k ∼ g2T/π,
respectively. The couplings g relevant in the SM are g ∈ {ht, g1, g2, g3}, where ht denotes
the Yukawa coupling between the top quark and the Higgs boson, and g1, g2, g3 are the
SM couplings related to U(1)Y, SU(2)L and SUc(3) gauge groups, respectively. Note that in
Equation (61), the thermodynamic limit V → ∞ is implied.

Using this technique, the SM calculations of the dimensionless function p(T)/T4

and of the trace anomaly Θ(T) (53) up to O(g5) were performed in Ref. [90]. It was
found that similarly to EoS Equation (54), Higgs dynamics induces a peak in heat capacity
c(T) = dε/dT occurring around TEW

c ≈ 160 GeV. This leads to a short period of slower
temperature change, and correspondingly, a mildly increased abundance of produced particles.
However, in general, the largest radiative corrections originate from QCD effects, reducing
the energy density by a couple of percent from the free value even at T > 160 GeV [90]. It is
worth emphasizing that the above-mentioned effects do not exhaust all possible phenomena
relevant for dynamics of the early universe. In particular, as already discussed in Section 2.4,
at high temperatures, the saturation phenomena become ubiquitous. In this case, the gluon
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DoFs are frozen in the classical field (condensate) and do not contribute to the density of the
QGP. To shed more light on the microscopic theory in the canonical picture, the dynamical
aspects of relativistic gluon and hot meson plasmas, both coupled to the homogeneous
condensate, are discussed in detail in Refs. [274–277], respectively.

In Ref. [278], the results from Refs. [89,90,279] were used to analyze the early universe
EoS p(ε). The extracted EoS depicted on the left panel of Figure 8 covers the broad
interval in energy density 10−2 ≤ ε ≤ 1016 GeV fm−3 and corresponds to the evolution
periods down from the GUT era, through the EW era and the QGP era, into the hadron
era. The apparent smoothness of the function p(ε) hides in the complicated temperature
dependence ε(T) = geff(T)ε0(T) depicted on right panel of Figure 3.

While the GUT EoS pGUT = (0.330 ± 0.024)ε valid for 108 � ε ≤ 1016 GeV·fm−3 (the
red triangles in Figure 8) appears only slightly below the ideal gas limit, the hadronic-era
EoS ph = (0.003± 0.002) + (0.199± 0.002)ε characterizes the region ε � 1 GeV·fm−3. Most
interesting is the intermediate region containing both the QCD and the EW epochs, which
can be described by a single function pSM = a + bε + cεd with
a = 0.048 ± 0.016, b = 0.316 ± 0.031, c = −0.21 ± 0.014, d = −0.576 ± 0.034 [278].
It is worth noting that the critical energy density εc defined implicitly by the equality of the
pressures in hadronic and QGP phases ph(εc) = pSM(εc) reads: εc � (1.2 ± 0.2) GeV·fm−3.

As can be seen from the parametrization of the fit,

pSM = p1(ε) + p2(ε) , p1(ε) = bε , b > 0 , p2(ε) = a + cεd , a > 0 , c < 0 , d < 0 , (62)

throughout the whole QCD and EW eras, there are two independent contributions p1(ε)
and p2(ε) to the overall pressure of the universe. While p1 is always positive, the second
pressure p2 is negative up to ε � (7 − 13) GeV·fm−3. Although the corresponding value of
the trace anomaly can not be directly deduced from the fitted EoS (62)

Θ =
ε − 3p

T4 =
ε(1 − 3b)− 3a − 3cεd

T4 , (63)

it is positive for ε � (3 − 4) GeV·fm−3, and for very large energy densities, it falls as
Θ ∼ geffε

−3/2, cf. Equation (2).
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Figure 8. (Left) The combined EoS p(ε), ε ≡ ρ of QCD and EW matter, using non-perturbative
results [89] extended to include other DoFs such as γ, neutrinos, leptons, EW, and Higgs bosons as
well as perturbative results [90,279]. Adapted from Ref. [278]. (Right) Bulk viscosity ζ at μB = 0 as a
function of the energy density ε. The top symbols stand for the SM contributions, while the bottom
ones stand for the QCD contributions, only. Adapted from Ref. [280].

Note that the sound velocities

c2
s,1(ε) =

dp1

dε
= b > 0 , c2

s,2(ε) =
dp2

dε
= cdεd−1 > 0 , (64)
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are well defined, making it possible for each of two components to represent the EoS of
some substance. Let us add that analytical expressions for the scale factor of the universe
a(t) and Hubble parameter H(t) deduced from the EoS (62) were recently discussed in
Ref. [281].

While the first component of pressure (8) corresponds roughly to the EoS of the
massless gas of non-interacting particles, the second one, in agreement with the asymptotic
freedom of QCD [33], dies out with increasing ε. Interestingly, p2(ε), up to the constant
additive term a, coincides with the generalized Chaplygin EoS used in Ref. [282] to describe
the evolution from a phase dominated by non-relativistic matter to a phase dominated by
the Cosmological Constant (or DE)5. For d = −1 in Equation (62), we obtain the ordinary
Chaplygin gas [283,284] with EoS p = c/ε.

Another possibility of how to read the term p2(ε) in Equation (62) is, in analogy with
Refs. [264,265] and Equation (54), to interpret it as the density-dependent bag function
B(ε) = −(a + cεd), cf. Equation (62). The latter may account for the density-dependent
character of the physical vacuum due to, e.g., the instanton liquid [210,285]. Instantons [272],
classical solutions to the Euclidean equations of motion, are localized in all the four dimen-
sions and correspond to tunneling events between degenerate classical vacua in Minkowski
space. Since tunneling lowers the ground-state energy, the instantons provide a simple
understanding of the negative non-perturbative vacuum energy density. Yet, the Euclidean-
based instanton model is not the only solution representing the QCD vacuum. It remains,
in fact, questionable to what extent it represents the reality due to non-analyticity of the
gluonic field operators and the associated color confinement property. Below, in Section 4,
we elaborate on a recently proposed alternative picture and new gluonic vacuum solutions,
which are readily formulated in Minkowski and FLRW spacetimes.

3.3. Hydrodynamical Description of Dissipative Effects and the Early Universe

According to the currently accepted scenario, see, e.g., Refs. [84,286], the evolution
of the early universe must include a number of dissipative processes in order to explain
the current large value of the entropy per baryon. Some of them, such as the decoupling
of neutrinos during the radiation era [120] or different cooling rates of the fluid compo-
nents in the expanding universe [287], can result from the conventional physics; others,
involving more exotic mechanisms, assume entropy production via string creation [288] or
the GUT phase transitions [289]. The hydrodynamical description of dissipative effects is
summarized in Appendix B.

Let us now follow the evolution of the early universe in terms of the EoS including
bulk viscosity ζ defined in Equation (A11). In Ref. [280], data from non-perturbative [89]
and perturbative [90,279] SM simulations were used to study behavior ζ over a wide
range of temperatures T, entropy densities s and energy densities ε. It was found that
ζ/(Ts) decreases exponentially with T increasing. The bulk viscosity dependence on
the energy density at zero baryon chemical potential μB = 0 is displayed on the right
panel of Figure 8. Looking first on the QCD contributions only, it is apparent that the
non-monotonic dependence of ζ(ε) can be divided into four regions. The first, spanning
ε � 100 GeV/fm3, corresponds to the hadron-QGP phase. The second region, up to
∼5 × 107 GeV/fm3, contains both the QCD and the EW phases of matter. The third one
seems to form an asymmetric parabola with focus at the critical energy density of the
universe, ρc � 1012 GeV/fm3 [280]. The fourth region shows a rapid increase in ε emerging
from a non-continuous point.

In the SM contributions, as shown in the upper curve of Figure 8, besides gluons
and (2 + 1 + 1 + 1) quarks, the contributions of the gauge bosons: photons, W±, and Z0,
the charged leptons: neutrino, electron, muon, and tau, and the Higgs bosons: scalar Higgs
particle, were also taken into account. An overall conclusion drawn in Ref. [280] is that
over the entire range of energy densities, the SM contributions are very significant. It is
worth mentioning that the characteristic structures observed with the QCD contributions
only are almost removed when adding also the EW contributions.
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It is worth noting that the bulk viscosity could be important even outside the realm
of the Hot Big Bang. In Ref. [290], the theory of the inflationary epoch, covering cold and
warm inflation, as well as the models of late universe expansion in the presence of bulk
viscosity, were analyzed. Assuming that the viscous effects during the inflationary epoch
can be represented by a generalized and inhomogeneous EoS of the form:

p = −ε + Aεβ + ζ(H) = −ε + Aεβ + ζ̄

(
8πGε

3

)γ/2
, (65)

where A, β, ζ̄, and γ are positive constants and ζ(H) = ζ̄Hγ is the Hubble parameter-
dependent bulk viscosity, the authors have studied the behavior of various inflationary
observables. Let us turn to important implications of non-perturbative QCD vacuum
dynamics in cosmological evolution.

3.4. Theory of Hot Meson Plasma Interacting with the QCD Vacuum

Shortly after the confinement phase transition, the universe enters the state of hot
meson plasma whose thermal evolution has been thoroughly explored in the framework of
the Linear Sigma Model (LσM) in Ref. [277]. This analysis exploits the non-perturbative
method of a generating functional derived from the effective Lagrangian at finite temper-
atures (for further references on this method, see Refs. [291–294]) and accounting for the
quartic self-interactions of the σ-meson only. The latter approximation corresponds to a
realistic well-motivated configuration of the “hadron gas” interacting with the non-linear
σ-field and reproduces some of the basic thermodynamical characteristics of the hot meson
plasma observed also in other approaches, in particular, in LσM-based scenarios [293,295]
and Polyakov-loop extended Nambu–Jona-Lasinio (PNJL) models [296–298], but also fea-
tures additional properties such as a possibility for σ → ππ decays in the plasma above
the critical temperature.

The effective LσM chiral Lagrangian accounting for the lightest scalar and pseu-
doscalar degrees of freedom π±, π0, K±, K0, K̄0, η, η′, and the σ-meson, in the hadron gas
approximation at T = 0, reads [277],

Leff =
1
2

∂μσ∂μσ + 2g2v2
0σ2 − g4σ4+

1
2
(∂μπα∂μπα + ∂μη∂μη + ∂μη′∂μη′) + ∂μK̄∂μK−

1
2

[
2κg2(mu + md)σ

2παπα +
2
3

κg2(mu + md + 4ms)σ
2η2+

4
3

κg2(mu + md + ms + Λan)σ
2η′2

]
− κg2(mu + md + 2ms)σ

2K̄K , (66)

where mu,d,s are the constituent up, down and strange quark masses, respectively, g is the σ
quartic coupling, and Λan � 0.5 GeV is the gluon anomaly term that provides an explicit
breaking of U(1)L × U(1)R symmetry. The QCD order parameter of the hadron mater
v0 = 265 ± 15 MeV represents the amplitude of the quark-gluon (quantum-topological)
condensate, such that

εtop(T = 0) = −
( b

32
+

(mu + md + ms)lg

4

)
〈0|αs

π
Ga

μνGμν
a |0〉 ≡ −v4

0 , (67)

given in terms of the gluon correlation length lg � (1.2 GeV)−1 [210,299], and the coefficient
of the one-loop β-function of three-flavor QCD, b = 9. The quark-gluon condensate con-
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tributes together with the perturbative hadronic vacuum εhad
vac emerging due to regularized

contributions from meson fluctuations to the net QCD ground-state energy density,

εQCD
vac ≡ ε(T = 0) = εtop + εhad

vac = −v4
0 −

1
128π2

(
m4

σ(vac) + 3m4
π(vac)

+ m4
η(vac) + 4m4

K(vac) + m4
η′(vac)

)
� −7 × 109 MeV4 . (68)

that satisfies the vacuum equation of state in the zero-temperature limit, ε(T = 0) =
−p(T = 0). The hadronic vacuum term is negative εhad

vac < 0 and appears to have a relatively
small magnitude, i.e., εhad

vac /εQCD
vac ≈ 0.15 [277]. The current u, d, s quark masses break the

global chiral SU(3)L × SU(3)R symmetry explicitly, while it is also broken spontaneously
by means of a σ-field expectation value,

σ = 〈σ〉+ σ̃ , 〈σ〉 ≡ v
g

, (69)

In order to generalize the effective Lagrangian approach to finite temperatures, fol-
lowing theoretical foundations laid out in, e.g., Refs. [292,300–302], one should resume
the daisy and superdaisy contributions. This is effectively achieved by utilizing an ap-
proximation that the expectation values of different fields are independent of each other,
while omitting odd-point correlation functions and factorizing the four-point correlation
functions into a product of two-point ones, for instance, 〈η2σ̃2〉 = 〈η2〉〈σ̃2〉, etc. Then, as a
result of the minimization procedure of the non-equilibrium vacuum potential, one obtains
the equation of state for the σ-condensate,

v2 = v2
0 − 3g2〈σ̃2〉 − 1

2
κ(mu + md)〈παπα〉

− 1
6

κ(mu + md + 4ms)〈η2〉 − 1
3

κ(mu + md + ms + Λan)〈η′2〉

− 1
2

κ(mu + md + 2ms)〈K̄K〉 , (70)

as well as the equations of motion for the (pseudo)scalar field fluctuations about the
evolving non-trivial ground state, for example, ∂μ∂μσ̃ + m2

σσ̃ = 0, etc. Those fluctuations
after quantization correspond to physical mesons with masses m2

σ = 8g2v2, etc. that
are, in general, dependent on temperature. The vacuum values of the pseudo-scalar
pseudo-Goldstone meson masses are found in terms of the light quark condensates via
the Gell-Mann–Oakes–Renner relation [303–305], while the σ-meson has been identified
phenomenologically with the scalar f0(500) state with mass, mσ(vac) � 400 − 500 MeV.

The generating functional in the case of zeroth chemical potential is the free energy
density of the considered meson plasma found in terms of the spatial part of the energy-
momentum tensor as follows,

F (T, v, m2
σ,M2) ≡ 1

3
〈T i

i 〉 ,

whose minimization over the independent variables m2
σ and M2 ≡ v2 + g2〈σ̃2〉 provides

the physical meson masses and the equation of state for the condensate v2. Substituting the
meson masses expressed in terms of the temperature T and the order parameter v into F ,
one obtains the non-equilibrium Landau functional,

FNE(T, v) ≡ F (T, v, mσ(T, v),M(T, v)) , (71)
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that provides the critical temperature of the chiral phase transition, where the finite-
condensate phase becomes unstable, by means of

d2FNE

dv2

∣∣∣
T=Tc

= 0 , (72)

while the stability condition of the low-symmetry phase reads d2FNE/dv2 ≥ 0. Finally,
resolving the order parameter as a function of temperature, i.e., v = v(T), one finds the
so-called equilibrium Landau functional as,

FE(T) ≡ FNE(T, v(T)) , (73)

that matches the usual free energy definition. A variety of thermodynamic observables of
the meson plasma are then derived in terms of FE(T) such as pressure, entropy density,
energy density, heat capacity and the speed of sound squared,

p(T) = −FE(T) , σ(T) = − d
dT

FE(T) , ε = FE + Tσ , cV = T
dσ

dT
=

dε

dT
, u2 =

σ

cV
, (74)

respectively. While at T = 0, the QCD vacuum equation of state, ε = −p, is satisfied, both
pressure and energy density grow with T due to positive particle contributions. The total
energy density of the “plasma + condensate” system vanishes at Tε=0 � 237 MeV for
mσ(vac) � 500 MeV.

Using the above formalism, in Ref. [277], the properties of different phases and transi-
tions between them are explored in detail. For instance, at temperatures T > Tc, hadrons
deconfine into quarks and gluons, while the condensates melts away, yielding a decon-
fined (or zero-condensate) phase of the QCD matter. Such a phase becomes metastable at
temperature T0 < Tc, when the σ-meson fluctuation becomes massless mσ(T0) = 0, while
v(T0) = 0 is still valid, and T0 is then found by resolving the extremum conditions on the
generating functional. At another T1, two minima of FNE(T, v) become equal such that
the zero-condensate phase stabilizes and the corresponding temperature is found from
the following equation, FNE(T1, 0) = FE(T1). The first-order chiral phase transition to
the zero-condensate phase then occurs at some temperature between T1 and Tc, and its
strength increases with the σ-meson mass in the vacuum. Note, as expected from the
first-order nature of this transition, the entropy density of the meson plasma grows with T
and remains finite at all values of T, while the heat capacity appears to have a singularity,
and the speed of sound squared vanishes at the critical temperature T = Tc.

The thermal evolution of the meson mass spectrum and the condensate of the LσM
is shown in Figure 9. Interestingly enough, both the condensate and the masses of all
the mesons decrease with temperature for T < Tc = 438 MeV. The critical temperature
becomes reduced if the fermions (quarks and baryons) are introduced [293]. As a result of
the “hadron gas” approximation, the σ-mass rapidly falls to zero at T0 = 402 MeV and then
grows much faster than the masses of other mesons (such that mσ > 2mπ almost for any
values of T) in contrast with the corresponding predictions of other existing approaches
such as PNJL. As a result, at low temperatures, the hadronic plasma is dominated by
pions. There is also a significant phase co-existence domain of size (Tc − T0)/Tc � 0.1.
Pressure p(T), energy density ε(T) and the EoS (ε(T)− 3p(T)− A)/T4, where A = ε(T =
0)− 3p(T = 0) is the net vacuum contribution, are shown in Figure 10 from left to right,
respectively. Due to the positive “hadron gas” contribution, both p(T) and ε(T) rise with
temperature. Their profiles can be approximately reconstructed as a sum of the negatively-
definite constant QCD vacuum term ε(T = 0) and the contribution of the relativistic hadron
plasma ∝ T4 (dashed lines), with the numerical coefficient α � 3.5 and the effective number
of DoFs, gi � 9.
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Figure 9. The condensate and meson masses as function of T. Here, mσ(vac) = 500 MeV, g2 = 0.4,
Tc = 438 MeV, T0 = 402 MeV, T1 = 430 MeV.
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Figure 10. (Left) Pressure p(T) as a function of temperature for the finite-condensate v(T) �= 0 phase
compared to that in the zero-condensate v(T) = 0 phase, p0(T) (solid lines), and to the approximated
result (dashed line). (Middle) The same but for the energy density. (Right) The normalized EoS
(ε(T)− 3p(T)− A)/T4 as a function of temperature, where A ≡ ε(T = 0)− 3p(T = 0) is the net
vacuum contribution.

3.5. Cosmological Constant and Vacuum Catastrophe

The tight observational constraint on the DE EoS

wDE = −1.03 ± 0.03 , (75)

comes through a combination of the cosmological data from various sources such as the
Type Ia supernovae, the baryon acoustic oscillations, the CMB anisotropies, and the weak
gravitational lensing, etc.; for details on the confidence level and datasets, see Ref. [306].
These constraints are consistent with the standard cosmological model known as the
ΛCDM (Λ term plus DM in the form of CDM, as two dominant components of the uni-
verse). Specifically, the DE is considered to be in the form of Cosmological Constant or
Λ-term density,

εDE = εΛ , εΛ ≡ Λ
κ

, κ = 8πG , (76)

expressed in terms of Λ-term in conventional normalization, Λ; see Equation (37). The latter
satisfies the EoS wDE = −1 exactly. For a detailed recent review on achievements and
challenges of the ΛCDM, see, e.g., Ref. [307].

Classically, an arbitrary Λ-term density ε0 can be readily added to the right-hand side
of the Einstein equations of GR that determine the macroscopic evolution of the universe,

Rμν −
1
2

gμνR = κ(ε0gμν + Tμν) , Tμν = − 2√−g
δSm

δgμν , Sm = Sm[φ, ψ, Aμ, gμν] , (77)
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in terms of action of matter fields Sm and their energy-momentum tensor Tμν. In quantum
theory, a non-trivial contribution to the ground-state energy density emerges as an average
of the energy-momentum tensor over the Heisenberg vacuum state [308,309]

〈0|Tμν|0〉 = εvacgμν , εvac �= 0 . (78)

The latter is proportional to the trace of the energy-momentum tensor; hence, it
represents an effect of conformal symmetry breaking in a given fundamental QFT through
either the formation of a Bose-Einstein condensate in a massless theory or through nonzero
mass-dimensional terms in the original Lagrangian. It is generically ill-defined and should
be renormalized, with the classical (“bare”) ε0 being treated as a counter-term in the initial
Lagrangian, such that the divergences are cancelled between the two yielding a finite,
but renormalization scale μ dependent, vacuum energy density, εΛ(μ). This is the physical
vacuum energy density that emerges in cosmological measurements performed at some
fixed scale μ = μIR in the present universe, such that

εΛ(μIR) ≡ ε0 + εvac . (79)

A macroscopic Cosmological Constant effect causing the universe to expand with
acceleration (de-Sitter phase) is usually identified with energy density of the quantum
vacuum that acquires contributions from all the incident vacuum subsystems existing in
the SM and beyond. These would correspond to all quantum fields existing at energy scales
ranging from the quantum gravity (Planck) scale, MPL ∼ 1019 GeV, down to the QCD
confinement scale, MQCD ∼ 1 GeV—the maximal and minimal energy scales of particle
physics, respectively. The current vacuum state of the universe is considered to be produced
in the aftermath of the latest QCD phase transition associated with hadronization of the
cosmological plasma.

In the framework of SM, besides the zero-point energy contributions to the ground
state coming from each elementary particle, there are two major vacuum condensates whose
characteristics are well established in particle physics—the weakly coupled classical Higgs
condensate responsible for spontaneous EW symmetry breaking giving masses to the SM
vector bosons and fermions and the strongly-coupled quantum-topological quark-gluon
condensate in QCD.

One of the important aspects of the cosmological QCD transition epoch concerns the
formation of the negatively-definite (CM) contribution to the ground-state of the universe
that has received little attention in the literature so far. For illustration of this effect, let us
consider the conformal anomaly term in the trace of the effective QCD energy-momentum
tensor [310–312],

Tμ,QCD
μ =

β(g2
s )

2
Fa

μνFμν
a + ∑

q=u,d,s
mqq̄q , (80)

where mq are the light (sea) quark masses q = u, d, s, gs and β are the QCD coupling
constant and the β-function, respectively, and Fa

μν is the gluon field stress tensor. Taking the
vacuum average, we obtain

〈0|Tμ,QCD
μ |0〉 = − 9

32
〈0| :

αS

π
Fa

μν(x)Fμν
a (x) : |0〉+ 1

4

[
〈0| : muūu : |0〉+ 〈0| : mdd̄d : |0〉

+ 〈0| : mss̄s : |0〉
]
� −(5 ± 1)× 10−3 GeV4 , αS =

g2
s

4π
, (81)

representing the maximal value of the averaged quantum-topological QCD contribution to
the physical vacuum energy density, whose spacetime dynamics is not fully understood
and yet to be established. This contribution, also known as the quark-gluon condensate,
is predicted by the theory of QCD instantons [210,299] and plays an important role in the
chiral symmetry breaking and in dynamics of color confinement as well as in generation
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of mass of light mesons in hadron physics as suggested by the Gell-Mann–Oakes–Renner
relation [303–305].

The so-called “Vacuum Catastrophe” reflects the fundamental problem of consistent
matching between the macroscopic observable εΛ value, close to the critical energy density
of the universe ρc,

εΛ � 0.7ρc � 2.5 × 10−47 GeV4 > 0 , ρc ≡
3H2

0
κ

, (82)

and the characteristic sizes of microscopic QFT predictions for the energy scale of each
separate vacuum condensate [313,314]. Indeed, considering the topological QCD vacuum
energy density εQCD

vac alone at macroscopic time and space separations typical for cosmolog-
ical measurements, see Equation (81), its value is off by over forty orders of magnitude and
has a wrong sign compared the observable εΛ.

Indeed, such a large and negative contribution to the vacuum density creates a big
problem for existence of the spatially flat universe, as the right-hand side of the corre-
sponding Friedmann equation must be positive at all times (see, e.g., Refs. [67,307,315,316]).
The presence of a negative cosmological constant of the QCD scale would necessarily trigger
a fast collapse of the universe at the time scale of a microsecond, as the other components
of the cosmological plasma energy-density decay as ∝ 1/an (with n = 4 for relativistic and
n = 3 for non-relativistic media). This would prevent the universe from traversing the
QCD horizon scale such that no macroscopic evolution would be possible. For a recent
review on the status of this problem and the existing approaches, see, e.g., Ref. [67] and
references therein.

A consistent resolution of the so-called “old” Cosmological Constant problem (why
is εΛ small and positive?) and the “new” Cosmological Constant problem (why is εΛ
non-zeroth and exists at all?) [307] may require a dynamical mechanism for compensation
of different short-distance vacuum configurations in the infrared limit of the corresponding
QFT. Such a vacuum self-alignment in the non-perturbative regime would be desired in
order to avoid a major fine tuning of different parameters of the fundamental theory [317],
and it may be considered as a new physical phenomenon [65,67,315,318].

As has been pointed out in Ref. [27], in the thermal SU(2)/SU(3) YM theories, the con-
fining phase at low temperatures is expected to be void of energy density and pressure.
Along these lines, one introduces a natural hypothesis about a heterogeneous structure of
the non-perturbative QCD vacuum in the infrared limit of QCD [67]. Such a structure is
characterized by the presence of at least two distinct vacuum subsystems which contribute
with opposite signs to the net QCD vacuum energy density and mutually eliminate each
other on average at large space and time separations, Δx ∼ Δt � 1/ΛQCD. Then, it is
reasonable to assume that a phase transition in the QCD vacuum has occurred in the
course of cosmological evolution. Such a transition has led to a dramatic drop in the net
vacuum energy density due to an (almost) exact cancellation between the different vacuum
subsystems in the IR limit of QCD.

Generically, an ultimate goal would be to develop a universal framework that con-
sistently describes quantum vacua (condensates) dynamics in real cosmological time at
both macroscopic (IR limit) and microscopic (UV limit) separations and then identify the
phase transitions between those. This remains one of the major unsolved problems of
fundamental physics [319,320] (see also Refs. [67,314]).

Since the effect of the negative QCD condensate term must be eliminated somehow
beyond the Fermi scale of QCD, Ref. [277] explores the simplest scenario for cosmologi-
cal evolution by invoking an additional positively-definite cosmological constant in the
framework of the effective meson plasma model, and also using the Bag-like model of the
QCD crossover transition [321] for comparison. The basic working assumption adopted in
this work was that a positive cosmological constant has been formed (stochastically) at the
QCD scale together with the negative (topological) term, which means that the QCD vacua
effects are dynamically eliminated at distances beyond the typical hadron scale. In Figure 11
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(left), the net QCD vacuum energy density ε is shown as a function of the normalized scale
factor in both scenarios with and without an additional positive Λ-term “compensator”.
In this scenario, as the QCD vacuum evolves with temperature and the universe eventually
collapses, a “backward” QCD transition from the meson plasma to QGP may occur above
the critical QCD temperature. Provided that there exists a mechanism for a bounce from
the singularity (for possible scenarios for such a bounce, see, e.g., Refs. [322–325] and
references therein), a possible series of such sequential “direct” and “backward” QCD
transitions implies that the universe may, in principle, oscillate around the QCD epoch for
some time. Eventually, the negative QCD vacuum effect is eliminated, the universe enters
the phase of unbound expansion, and the standard cosmological evolution takes off [277]
(see Figure 11, right).

� Μ

�
�
� �

Figure 11. (Left) The QCD vacuum energy density as a function of the (normalized) scale factor a in
the meson plasma model (solid line) and the same quantity but with an extra positive Λ-term (dashed
line) that exactly compensates the negative (topological) QCD term at large time-scales. (Right) A
scenario of the universe oscillating during the QCD phase transition epoch with stochastic generation
of a positively-definite QCD-scale Λ-term “compensator”.

4. Dynamics of Ground State in YM Theories

Let us discuss the properties of quantized YM theories and their major implications
in cosmology while focusing primarily on QCD-like strongly-coupled dynamics and its
connections to confinement and to the nearly vanishing value of the cosmological constant.

4.1. YM Ground State as a Time Crystal

While Gross, Wilczek and Politzer proved the asymptotic freedom of non-Abelian
gauge theories at large momentum transfers [31,32,138], Savvidy showed that the pertur-
bative QCD vacuum at zero field strength is unstable [326] and thereby demonstrated the
existence of the vacuum condensate (see also Batalin, Matinyan and Savvidy [327]). Nielsen
and Olesen worked out an argument for why the explanation of vacuum condensates
in terms of a homogeneous field filling the vacuum is problematic: such a field mode is
unstable, at least on a static Minkowski background [328]. The ground state of QCD is a
non-perturbative quantum-topological state of the YM theory that is of primary importance
for the understanding of color confinement dynamics [329] as well as of hadronic and
effective quark masses. For a thorough discussion on the QCD vacuum and its implications,
see, e.g., Ref. [330] and references therein.

Despite the possible theoretical frameworks that are available for the description
of the quantum ground state in YM theories, an interesting case of the formation of a
metastable condensate in the Savvidy approach, with gravitational back-reaction providing
a stationary stabilization, was studied in Ref. [74]. Intriguingly, the authors showed that
the relaxation process induced by the QCD phase transition provides a novel mechanism
for the production of GWs in the early universe. Such production is enabled through the
SSB of time translation invariance that is reminiscent of what happens in the time-crystals
that were theoretically predicted by Wilczek in Refs. [331,332] and observed by the Monroe
group [333] (for a detailed review, see Ref. [334]). Within the setting of early cosmology,
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as discussed in Ref. [74] that included the perturbative all-order effective action, it was
derived that the energy density of the quark-gluon mean-field decays monotonically in
time, while the pressure density undergoes violent oscillations at the characteristic QCD
scale. This mechanism entails the generation of a primordial multi-peaked GW signal
that eventually is shifted into the radio frequencies’ domain. If detected, such a signal
would represent an unprecedented echo of the QCD phase transition and it is, in principle,
observable through forthcoming measurements at the FAST and SKA telescopes.

The scenario depicted in Ref. [74] requires the emergence of a quark-gluon condensate
characterized, as mentioned above, by violent oscillations of the pressure density. Such os-
cillations would be periodic in multiples of the inverse characteristic scale ΛQCD � 0.1 GeV.
A very similar result that is consistent with this analysis was derived in Ref. [103] in which
the authors deployed holography with the aim of analyzing relativistic collisions in a
one-parameter family of strongly coupled gauge theories that were undergoing thermal
phase transitions. An oscillating behavior of the pressure density was discovered also
in this latter work, and again, the period of the oscillations was found to be a multiple
of Λ−1

QCD. It was concluded that out-of-equilibrium physics smoothes out the details of
the transition.

Most parts of analyses developed that involve lattice QCD tacitly assume an analytical
continuation of the results obtained on the Euclidean space to the Minkowski spacetime.
The underlying argument, as has been commonly advocated, relies on the idea that locally,
on any FLRW spacetime, the dynamics of QCD can be studied on a “frozen” Minkowski-
like background and, thus, results may be analytically continued to the Euclidean space.
Relying on this assumption, a notable theorem due to Maiani and Testa [335] showed that
the scattering of asymptotic states can be counter-Wick rotated only in the infinite volume
limit (with the scale being the threshold amplitude) and for time scales much smaller than
the level spacing due to momentum discretization.

Specifically, the authors of [335] started out with the Osterwalder-Schrader theorem
that ensures that the Euclidean correlation functions can be analytically continued back to
the Minkowski spacetime. However, this theorem heavily relies on the so-called reflexion
positivity condition [336], and this condition is not fulfilled in the aforementioned cases
when the FLRW dynamics are studied at time scales that exceed the Hubble time by one
order of magnitude. Indeed, for the cases discussed, for instance in Refs. [74,103], non-
perturbative effects that are originating from violent oscillations of the pressure density
definitely spoil the time reflexion positivity condition. This insight suggests that the
Maiani-Testa theorem is inapplicable in the context of the current discussion.

In fact, recent analyses developed according to different frameworks surprisingly
confirm a quite different picture than the one on which the lattice QCD analyses are based:
for instance, the determined period of oscillations in [74,103] that exceeds the Hubble
time by one order of magnitude (in Planck units), as was mentioned above. Thus, effects
of the spacetime curvature cannot be neglected due to the influence of non-trivial non-
perturbative effects that are recovered beyond the characteristic-time of QCD, Λ−1

QCD. This
provides an argument that should influence the confidence of the application of lattice
QCD methods in cosmology; specifically when such methods aim to determine the order
of the phase transition.

Finally, we mention, as a further approach to the problem of determining the order
of the QCD phase transition in the early universe, a method provided by conformal
field theories prescribed by the foundation of the modern understanding of quantum
field theory and particle physics (for a comprehensive overview of the basic concepts,
see Ref. [337]). Having been hitherto deepened so as to unveil the universal properties
of scale invariant critical points, these frameworks were applied to describe continuous
phase transitions in fluids and magnets as well as in many other materials. Substantial
efforts were devoted to the study of non-perturbative strongly coupled conformal field
theories, especially concerning their symmetries and theoretical constraints. Such work
has opened the pathway to the development of the so-called conformal bootstrap [338,339],
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which has proven to be a successful framework in two dimensions and which finally
was extended within the last decade so as to account for higher dimensionality including
the physically relevant cases of three and four dimensions (for a detailed pedagogical
review on the conformal bootstrap approach in d dimensions, see, e.g., Refs. [340,341]).
Notably, significant progress in analytical methods has been achieved, shedding light on
the possibilities of how to cast the bootstrap equations and, in parallel, more powerful
numerical techniques were developed in attempts to find their solution [342]. This has
brought about ground-breaking results including the determination of critical exponents
and correlation function coefficients in the Ising O(N) models in three dimensions [343].

4.2. Effective Action Approach

In this section, the effective action approach is outlined in order to provide a back-
ground to the discussion of the contribution to the vacuum energy density through the
trace of the energy-momentum tensor (EMT). In 1977, Matinyan and Savvidy [344] and
Savvidy [326] investigated the asymptotic behavior of the effective Lagrangian density in
gauge theories building on earlier work by Heisenberg and Euler and by Schwinger (see
references therein). The behavior was studied using RG methods in order to relate the effec-
tive picture of strong fields to the short-range properties of gauge theories. The quantum
corrections to the classical action as found by Schwinger were discussed both in these two
publications and further summarized in a recent review [345].

The investigation begins with an examination of corrections to the classical action as
suggested by Schwinger, i.e., corrections that allow for an expansion of the effective YM
action in the gauge fields Āa

μ (also known as connections):

Γ[A] =
∫

dx Leff

= ∑
n

∫
dx1 · · ·dxn Γ(n) a1···an

μ1···μn
Āa1

μ1(x1) · · · Āan
μn(xn)

= Scl + W(1) + W(2) + . . . . (83)

Here, the effective Lagrangian density Leff undergoes a perturbative expansion so that the
n-loop corrections provide a deviation from the classical action Scl. The charged vector
connection Āa

μ(x) ≡ 〈0|Aa
μ(x)|0〉 is the vacuum expectation value of the field operator and

Γ(n) is the one-particle irreducible (1PI) vertex function. To each order, W(n) provides the
n-loop correction to the classical action.

The effective Lagrangian at all-loop order in an SU(N) YM theory can be defined
in terms of an order parameter J and a running coupling ḡ(J ). It should be noted that
the latter is different from the bare coupling gYM of the classical theory [66,316]. In a
non-stationary cosmological background characterized by the FLRW metric, the conven-
tional effective (quantum) YM Lagrangian can be written, through a rescaling of the fields
according to Equation (17), as

Leff =
J

4ḡ2 , ḡ2 = ḡ2(J ), J = −
F a

μνF a μν

√−g
, (84)

where Aa
μ are the rescaled SU(N) connections, F a

μν are the rescaled field-strength compo-
nents, and the equality entering the covariant field-strength F a

μν in a curved background
∇μAa

ν −∇νAa
μ = ∂μAa

ν − ∂νAa
μ has been accounted for. Furthermore, g ≡ det(gμν), where

gμν = a(η)2 diag(1,−1,−1,−1) is the FLRW metric as a function of the conformal time η.
Now, J simplifies to

J =
2√−g ∑

a

(
�Ea · �Ea − �Ba · �Ba

)
≡ 2√−g

(
�E2 − �B2) , (85)
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which is an expression that emphasizes the dependence on the components of the CE and
CM fields: �Ea, �Ba. The running of the coupling ḡ as a function of the order parameter J in
Equation (84) fully determines the dynamics of the effective YM theory and is given by the
solution of the RG evolution equation [66,345]

2J dḡ2

dJ = ḡ2β(ḡ2) , (86)

where β is the standard beta-function of the YM theory [346,347].
As an aside, it should be noted that apart from J , a second, independent, invariant

may be constructed using the dual field strength [344]:

G = −
F a

μνF∗a μν

√−g
=

4√−g
�E · �B , F∗a μν =

1
2

εμνρσF a
ρσ . (87)

This quantity is usually disregarded in the effective YM approach, since it vanishes
for all fields that have orthogonal electric and magnetic components but it may as well,
in principle, be incorporated into the effective Lagrangian.

In order to study the vacuum dynamics on cosmological scales, the spatially averaged
quantity 〈J 〉 should be considered, and two cases are distinguished in which: (i) 〈J 〉 is
positive, meaning that the averaged CE components 〈�E2〉 dominate over the averaged
CM terms 〈�B2〉; (ii) vice versa, that is the case of a CM-dominated state with 〈J 〉 < 0
that corresponds to a CM condensate. For the purpose of studying the basic features of
the cosmological evolution of the CM and CE condensates in pure gluodynamics, it is
sufficient to consider the effective SU(2) YM theory, since SU(2) subgroups can always be
picked out of the SU(N) YM theory, and such a subgroup is the part that accounts for the
cosmological application [66]. The explicit brackets 〈. . .〉 will be dropped for the remainder
of the discussion.

Applying the variational principle to the effective YM action as in the classical field
theory, one straightforwardly obtains the effective YM equations of motion as described in
Appendix C. Similarly, the EMT of the effective YM theory can be found as

Tν
μ =

1
ḡ2

[ β(ḡ2)

2
− 1

](F a
μλF a νλ

√−g
+

1
4

δν
μJ

)
− δν

μ
β(ḡ2)

8ḡ2 J , (88)

which is particularly useful for our discussion of cosmological evolution of the quantum
YM system in what follows.

4.3. Mirror Symmetry of the Ground-State Solutions

The one-loop ground-state solution behaves differently depending on the sign of
J and of the running coupling ḡ1. In the case of the CM solution, it is again noted
that J < 0 and, hence, F > 0. In addition, one refers to a positive ḡ2 > 0 in this case so
that an absolute value in the one-loop effective Lagrangian, see Equation (A32), may be
removed. Considering the CM branch to one-loop order, which corresponds to a choice of
the initial condition in the RG equation such that ḡ2

1(μ
4
0) > 0, the RG solution as derived in

Equation (A29) can be written on the compact form

ḡ2
1(J ) =

96π2

bN ln(−J /λ4)
. (89)

Here, note that ḡ2
1(J ) > 0 when −J > λ4, with

λ4 ≡ μ4
0 exp

[
− 96π2

bNḡ2
1(μ

4
0)

]
, (90)
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and this gives yet another frequently used representation for the CM SU(N) Lagrangian [66]

L(1)
eff, CM =

bN
384π2 J ln

(−J
λ2

)
. (91)

The minimum of the effective Lagrangian at J∗ is taken to be the physical scale of the
quantum YM theory, which in the case of a CM vacuum reads

−J∗ = μ4
0 , (92)

which is the well-known phenomenon of dimensional transmutation. Readily from Equation (91),
the minimal value of the effective CM Lagrangian reads

L(1)
eff, CM(J∗) =

J∗
4ḡ2

1(J∗)
< 0 , with ḡ2

1(J∗) > 0 , (93)

and this is a negative value. In the standard notation, the CM minimum corresponds to

2g2
YMF∗ = eμ4 ≡ Λ4

QCD → −J∗ ≡ 2Λ4
QCD , L(1)

eff, CM(J∗) =
−Λ4

QCD

2g2
YM

, (94)

expressed in terms of the conventional scale, ΛQCD.
The exact ground-state solution for positive J∗ > 0 may be found immediately by

inspection of the all-loop YM equation of motion; see Equation (A25). This is the CE
condensate characterized by

β(ḡ2
∗) = 2 , ḡ2

∗ = ḡ2(J∗) , J∗ > 0 , (95)

from which it follows that the equation of motion is trivially satisfied. It should be pointed
out that such a special solution is universal for any SU(N) symmetry, i.e., it is independent
of N.

The contribution to the vacuum by the CE condensate comes from the trace of the
EMT (see e.g., Ref. [348]). The trace at the minimum as given by Equation (88) is

Tμ
μ = − β(ḡ2

∗)
2ḡ2∗

J∗ = − 1
ḡ2∗

J∗ . (96)

The CE condensate hence contributes positively to the vacuum energy density, and
this observation is intriguing when remembering that the CM condensate of Savvidy theory
comes as a negative-definite contribution [345].

A striking and very interesting property of the YM effective Lagrangian will be dis-
cussed here, namely a mirror symmetry. It is apparent that the Lagrangian of Equation (84)
is Z2-symmetric under simultaneous sign changes of J and ḡ2. The invariance of the
Lagrangian under this Z2 symmetry results in that the two condensates (CE and CM) are
associated with two, apart from the overall sign, equal minima of the Lagrangian. Since the
running of the coupling is a non-linear function of J in general, this symmetry may only
be realized close to the ground state given in Equation (95) [66]. Therefore, in the vicinity
of the ground state, the action is symmetric under the simultaneous transformation

Z2 : J∗ ←→ −J∗ , ḡ2
∗ ←→ −ḡ2

∗ . (97)

As implicated by the form of the β-function, see Equation (A28), the imposed sym-
metry forces an additional change of sign in precisely β: β(ḡ2

∗) ←→ −β(−ḡ2
∗). There are

important consequences of this symmetry of the action. Mainly, the conventional CE
condensate effectively becomes mapped onto the CM gluon condensate with J∗ < 0 and
ḡ2
∗ > 0 [345].
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Taking the order parameter at the ground state to be the physical scale of the YM
theory, one has, for the two condensates μ4

0 = |J∗|. Then, for the CM branch, with ḡ2
∗ > 0,

the running coupling for the one-loop solution may be rewritten as

ḡ2
1(J ) =

96π2

bN ln(|J |/λ4)
, λ4 = |J∗| exp

[
− 96π2

bNḡ2
1(J∗)

]
, (98)

c.f. Equation (89) and Equation (A29). Insertion of this expression back into the effective
Lagrangian results in

L(1)
eff, CM =

bN
384π2 J ln

( |J |
λ2

)
, (99)

c.f. Equation (91).
Due to the Z2 mirror symmetry, the minima of the effective Lagrangian on the two

symmetry branches where ḡ2
∗ is either positive or negative come with the same value but

with different scales: for the two condensates; the scale is modified by the exponential in
Equation (98), so that

λ± = |J∗| exp
[
∓ 96π2

bN|ḡ2
1(J∗)|

]
. (100)

The upper sign stands for the CM condensate while the lower sign is the CE branch
with ḡ2

1(J∗) < 0.
As is clear from Equation (100) and from the discussion in Ref. [66], the minimum for

which J∗ > 0 appears in the non-perturbative region defined by 0 < J∗ < λ4. Therefore,
this minimum corresponds to the CE condensate found in Equation (95). The mirror mini-
mum is then swiftly found by applying the Z2-symmetry transformation. Note that the
physical scale for the mirror minimum associated with the CM condensate is exponen-
tially suppressed relative to the minimum point |J∗| with the consequence that the CM
condensate, with J∗ < 0, appears in the perturbative region where |J∗| > λ4.

Finally, we may return to the contribution of the CM condensate to the vacuum
energy density. Applying the mirror symmetry to the CE minimum gives β → −2, and
the equations of motion, as presented in Equation (A25), are no longer trivially satisfied.
However, as pointed out in Ref. [66], the dynamical equation in the vicinity of the CM
condensate becomes

D̂ab
ν

[ F b μν

ḡ2√−g

]
= 0 . (101)

This expression bears a close resemblance to the classical YM equations of motion that are
valid in the vicinity of the ground state. The EMT for the CM minimum involves extra
terms in comparison to Equation (96):

Tν
μ

(
β = −2

)
=

−2
ḡ2∗

(F a
μλF a νλ

√−g
+

1
4

δν
μJ∗

)
+ δν

μ
1

4ḡ2∗
J∗ . (102)

However, in the trace of this expression, the terms within the parenthesis cancel out,
yielding

Tμ
μ = +

1
ḡ2∗

J∗ . (103)

The conclusion of Ref. [66] is therefore that the contribution of the two condensates to
the vacuum energy density cancel each other with equal magnitude and opposite signs as
long as the averaging over macroscopic volumes that contains many CE and CM vacuum
“pockets” of typical microscopic length-scales of ∼ λ−1

± ∼ Λ−1
QCD is considered:

εvac =
1
4
〈Tμ

μ〉 = ∓Leff(J∗) . (104)
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Provided that the energy scales of “electric gluon” and “magnetic gluon” condensa-
tion are not the same, as was elaborated above, the condensates are formed at different
spacetime separations. However, they evolve toward the same absolute value of the energy
density, but with opposite signs, due to their cosmological attractor nature (see Section 4.4
below). This effectively causes the cancellation of “electric gluon” and “magnetic gluon”
contributions to the QCD ground state at sufficiently large separations, i.e., in the deep
infrared limit of the theory, although at the expense of a loss of homogeneity at typical
length (Fermi) scales of QCD ∼ Λ−1

QCD. As the QCD vacuum appears to be locally inho-
mogeneous at these length-scales, gravity is expected to react to its electric and magnetic
pockets in opposite ways such that the local metric fluctuations become averaged out be-
yond the length-scale of QCD to a small net effect compatible to that of the global observed
cosmological Λ-term [65].

In the framework of the YM effective action approach, one may reach an intriguing
conclusion that the exact compensation of the CE and CM gluon condensate components
in the QCD vacuum (averaged over spacetime volumes above the QCD Fermi scale) is the
necessary and sufficient condition for confinement in QCD. Indeed, as will be discussed
below, the CE and CM vacuum pockets are always separated by non-analytic domain walls
effectively blocking the gluon field from propagating over length-scales beyond the Fermi
scale of each such pocket. The domain walls that separate different CM and CE pockets of
the QCD vacuum prevent the color fields from propagating over macroscopic distances
and, thus, effectively confine them within such pockets. An exact cancellation of their
contributions to the net vacuum energy-density emerges in experimental observations
as a complete disappearance of the gluon DoFs in the IR limit of the theory, i.e., beyond
the QCD Fermi scale. In this picture of confinement, it would be natural to consider
such pockets (with quarks and gluons being locked inside of them) as hadronic vacuum
excitations. This is fully compatible with the classical limit of the YM theory where the
conformal anomaly is absent and where only the radiation-like medium (hadron gas)
remains at large separations. It remains to be seen exactly how the domain-wall picture of
confinement readily formulated in Minkowski spacetime relates to a more standard center-
vortex mechanism of confinement [349–355] strongly supported by lattice simulations in
Euclidean spacetime (for a recent review of the current status of this research field, see,
e.g., Ref. [22,356]).

Note, with respect to the exact CM/CE cancellation and, hence, color confinement,
the restoration of a discrete (mirror) symmetry between “electric gluon” and “magnetic
gluon” contributions at the level of the ground state is an intrinsic property of the pure
YM theory and the RG flow equations. This generic property is intricately connected to
the fact that the QCD-induced component of the cosmological constant term vanishes for
averages over macroscopic volumes of physical spacetime. A residual effect of the CE/CM
cancellation, emerging due to an effective dynamical breaking of the mirror symmetry by
gravitational interactions in the QCD vacuum, rigorously matches (in both the sign and an
order of magnitude) the observed value of the cosmological constant [65].

Thus, the color confinement phenomenon and the tiny value of the cosmological
constant are the direct and closely connected consequences of the mirror symmetry of the
QCD vacuum in the infrared regime. An important implication of the domain walls in
the QCD vacuum is that no analyticity of the scattering amplitudes can be assumed in
such a case, causing potential problems with the standard imaginary time and Euclidean
formulations such as lattice QCD that is relying on the analyticity properties and vacuum
triviality of the theory.

4.4. YM Cosmological Attractors

The temporal evolution of the condensate(s) discussed in the subsections above may
be described on cosmological scales where short-distance fluctuations are averaged (inte-
grated) out. A simple background can be obtained by splitting the full gauge field into a
background field component Āμ and a fluctuating field aμ: Aμ = Āμ + aμ. This scheme
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was developed in general by Wetterich in, e.g., Ref. [357,358], first for scalar fields in SO(N)
and later for gauge fields, and it was further studied by, e.g., Gies [359] and Eichhorn
et al. [360].

The (up to a rescaling) unique SU(2) pure YM theory will be parameterized in terms
of a scalar time-dependent but spatially homogeneous field component (the background)
on large scales due to the local isomorphism of the isotropic SU(2) gauge group and
the SO(3) group of spatial 3-rotations [361–365]. One may therefore obtain a unique
decomposition of the gauge field into this spatially homogeneous isotropic part (describing
the YM condensate) and a non-isotropic/inhomogeneous component (accounting for the
YM waves), the latter being the fluctuations, according to

Aa
k = U(t)δa

k + Ãa
k(t,�x) . (105)

Here, the decomposition has been performed using the gauge condition Aa
0 = 0 [66].

It should be stressed that the fluctuations that parameterize the inhomogeneous YM wave
modes interpreted as gluons in the field-theoretical framework average out over large
distances by definition in the sense that 〈Ãa

k(t,�x)〉 ≡
∫

d3�x Ãa
k(t,�x) = 0 . Further, the ho-

mogeneous YM condensate itself can be considered positively definite, U(t) > 0, and it
contributes to the ground state of the theory. The parameterization of the gauge field in
SU(2) as a spatially homogeneous isotropic condensate and wave modes may be general-
ized to SU(3) for an application to QCD.

A quasi-classical theory of SU(2) YM quantum-wave excitations of the classical ho-
mogeneous condensate (i.e., without accounting for the vacuum polarization effects) has
been thoroughly discussed in Ref. [276]. The formalism enables a proper extension to an
arbitrary gauge and symmetry group with at least one SU(2) subgroup. Among the key
results: an excitation of longitudinal wave (plasma) modes as well as an energy swap
between the evolving homogeneous condensate and waves have been established in the
linear and next-to-linear approximations. As is shown in Figure 12, the condensate tends to
loose its energy, leading to the growth of YM wave amplitudes denoted as “particles”. This
represents a possible mechanism of particle production due to the dynamical vacuum decay
which can be particularly relevant for cosmology and also in QGP production in heavy ion
collisions. The effect has further been observed in the maximally supersymmetric N = 4
YM theory and in the more complicated two-condensate SU(4) gauge theory. As the next
step, it would be important to perform an analogical study of quantum-wave dynamics in
the effective action approach, i.e., in the case of a quantum YM vacuum, in order to study
the impact of vacuum polarization phenomena on the energy balance in the “condensate +
waves” system and hence on the growth of the wave modes.

Now, the dynamical behavior of the homogeneous YM condensate U(t) introduced
in Equation (105) will be discussed. The Einstein equations for the pure YM theory in a
non-trivial spacetime are obtained through the principle of variation starting from the
effective action [315,316] and read as follows:

1
κ

(
Rν

μ − 1
2

δν
μR
)
= (106)

ε̄δν
μ +

b
32π2

1√−g

[(
−F a

μλF a νλ +
1
4

δν
μF a

σλF a σλ

)
ln

e|F a
αβF a αβ|

√−gλ4 − 1
4

δν
μF a

σλF a σλ

]
,(

δab
√−g

∂ν

√
−g − f abcAc

ν

)(
F b μν

√−g
ln

e|F a
αβF a αβ|

√−gλ4

)
= 0 . (107)
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Figure 12. The time dependence of the Hamiltonian corresponding to the YM condensate, HU, YM
wave modes (or particles), Hparticles, as well as the interaction term between them, Hint of the YM
“condensate + waves” system (with total energy H) in the quasi-classical approximation of small
wave amplitudes. Adapted from Ref. [276].

Here, λ = ξΛQCD, with ΛQCD ∼ 0.1 GeV being the QCD scale and where ξ has been in-
troduced for scaling purposes, e is the base of the natural logarithm and κ is the gravitational
constant. Finally, ε̄ describes the ground-state energy density s.t. ε̄ = εQCD

top + εCC in terms
of the quantum-topological contribution from QCD and the contribution from the Cosmo-
logical Constant. For confined QCD, εQCD

top ∼ −5 × 109 MeV4 for an SU(3) color symmetric
theory, and this value may be extracted from the evaluation of non-perturbative quantum-
topological fluctuations of the quark and gluon fields. The contribution from the Cosmo-
logical Constant as obtained from astrophysical measurements is εCC ∼ 3 × 10−35 MeV4,
which is a comparatively minuscule and positive value. The fact that εQCD

top contributes to
the ground-state energy of the universe with a large negative value is a severe problem for
all existing cosmological paradigms, or more accurately, for the particle physics theories
from which it arises. This is because the large negative contribution must be compensated
for, in any first-order approximation, to a remarkable precision, resulting in the observed
cosmological constant value to an accuracy of a few tens of decimal digits.

The conformal dynamics of the ground state (the condensate) U = U(η) and of the
scale factor a = a(η) are described by the following equations of motion as derived from
Equations (106) and (107):

6
κ

a′′

a3 = 4ε̄ + Tμ,U
μ , Tμ,U

μ =
3b

16π2a4

[
(U′)2 − 1

4
U4
]

, (108)

∂

∂η

(
U′ ln

6e|(U′)2 − 1
4 U4|

a4λ4

)
+

1
2

U3 ln
6e|(U′)2 − 1

4 U4|
a4λ4 = 0 . (109)

It should be noted that a particular exact solution to Equation (109) can be obtained if
the logarithm evaluates to zero at all times: that is, if |Q| = 1 for

Q ≡ 6e
[
(U′)2 − 1

4
U4
]

a−4(ξΛQCD)
−4 . (110)

This may be solved for the two special cases Q = ±1, and the solutions are shown in
Figure 13. The homogeneous background U = U(t) displays quasi-periodic singularities in
physical time in both cases. It should be stressed that the exact compensation of the CE and
CM gluon condensate contributions to the QCD ground-state energy density, as discussed
earlier, is realized in particular if the two components Q = ±1 co-exist in the universe.
The cancellation happens over macroscopic distances as the average of the background
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vanishes in the large-time limit, and importantly, this occurs without any fine tuning.
Crucially, the cancellation will arise due to the time-attractor nature of the contributions
coming from the two minima; a property that is demonstrated in the following.
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Figure 13. The homogeneous QCD condensate amplitude oscillations. The homogeneous component
U(t) displays quasi-periodic singularities in the physical time t =

∫
a dη, plotted here in units of the

characteristic time scale Λ−1
QCD. To the left, the CE vacuum solution of Equation (110) with Q = 1 is

shown, and to the right, the CM ditto with Q = −1 is displayed. ξ = 4.0 has been used along with
initial conditions U = 0 and U′ = 0, respectively. These results are compatible with those of Ref. [66]
up to the scaling of the figure on the right-hand side.

The conformal integral of Equation (108) is

3
κ

(a′)2

a4 = ε̄ + T0,U
0 , (111)

T0,U
0 =

3b
64π2a4

{[
(U′)2 +

1
4

U4
]

ln
6e|(U′)2 − 1

4 U4|
a4λ4 + (U′)2 − 1

4
U4

}
,

which may be verified by differentiating this expression with respect to η and making use of
Equation (109).

Equations (108) and (111) can now be combined in order to find a solution for the
scale factor a, the trace of the EMT Tμ

μ and the total energy density T0
0. This is possible

since the latter equation incorporates the constraint of Equation (109). Solving this set of
equations provides the benefit of obtaining solutions for observable quantities that must
necessarily be smooth functions in time. Hence, the quasi-periodic singularities of U(t)
may be avoided. Since t =

∫
dη a(η), Equations (108)–(111) may be recast in terms of the

physical time as

6
κ

[
ä
a
+

ȧ2

a2

]
= 4ε̄ + Tμ,U

μ ≡ Tμ
μ(t) ,

3
κ

ȧ2

a2 = ε̄ + T0,U
0 ≡ T0

0(t) , (112)

where the energy density of the gluon condensate and the trace in the one-loop effective
YM theory read

Tμ,U
μ =

3b
16π2a4

[
a2U̇2 − 1

4
U4
]

, (113)

T0,U
0 =

3b
64π2a4

{[
a2U̇2 +

1
4

U4
]

ln
6e|a2U̇2 − 1

4 U4|
a4(ξΛQCD)4 + a2U̇2 − 1

4
U4

}
. (114)

In order to eliminate the explicit dependence on U(t) and, hence, the obstructing
singularities in the two equations, [66] introduced a universal analytic function g(t) that
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parameterizes the relation between the trace of the EMT and the total energy density.
The defining equation of this function is

Tμ,U
μ − C =

(
g(t) + 1

)[
T0,U

0 − C
4

]
, (115)

C ≡ −4εQCD
top =

3b
16π2

(ξΛQCD)
4

6e
.

Using g(t), Equation (112) can be written entirely in terms of continuous functions:

6
κ

[
ä
a
+

ȧ2

a2

]
= 4εCC +

(
g(t) + 1

)[
T0,U

0 − C
4

]
, (116)

3
κ

ȧ2

a2 = εCC − C
4
+ T0,U

0 . (117)

Note here that T0,U
0 = T0,U

0 (U, U̇, a). After excluding T0,U
0 above, the resulting equation

for the scale factor that is left to be solved is

6
ä
a
+ 3

(
1 − g(t)

) ȧ2

a2 + κεCC
(

g(t)− 3
)
= 0 . (118)

The general solution is6

a(t) = (119)

a∗ exp

⎡⎢⎣√κεCC

3

∫ t

t0

1 +
√

εCC
ε0

+
(

1 −
√

εCC
ε0

)
exp

{√
κεCC

3

(
−3(t′ − t0) +

∫ t′
t0

g(τ)dτ
)}

1 +
√

εCC
ε0

−
(

1 −
√

εCC
ε0

)
exp

{√
κεCC

3

(
−3(t′ − t0) +

∫ t′
t0

g(τ)dτ
)} dt′

⎤⎥⎦ ,

in terms of the initial values of the scale factor a∗ ≡ a(t = t0) and the total energy density
ε0 ≡ T0

0(t = t0), respectively. Note that εCC � ε0.
The total energy density, T0

0(t), and the trace of the EMT, Tμ
μ(t), both explicitly de-

fined in Equation (112), can be found by insertion of the solution above into Equation (117)
together with a manipulation of Equation (115). The result is

T0
0(t)

εCC
=

⎡⎢⎣1 +
√

εCC
ε0

+
(

1 −
√

εCC
ε0

)
exp

{√
κεCC

3

(
−3(t − t0) +

∫ t
t0

g(τ)dτ
)}

1 +
√

εCC
ε0

−
(

1 −
√

εCC
ε0

)
exp

{√
κεCC

3

(
−3(t − t0) +

∫ t
t0

g(τ)dτ
)}

⎤⎥⎦
2

, (120)

Tμ
μ(t)

εCC
= 4 +

4
(

g(t) + 1
)(

1 − εCC
ε0

)
exp

{√
κεCC

3

(
−3(t − t0) +

∫ t
t0

g(τ)dτ
)}

[
1 +

√
εCC
ε0

−
(

1 −
√

εCC
ε0

)
exp

{√
κεCC

3

(
−3(t − t0) +

∫ t
t0

g(τ)dτ
)}]2 . (121)

It shall be pointed out here that the above solutions for the scale factor, the energy
density, and the trace of the EMT do not rely on any approximations but are the general
solutions that can be obtained from Equation (112). These cosmological observables may
therefore be studied on the full range from t0 to t, provided that g(t) is known.

For practical analyses, the auxiliary function g may be studied in the vicinity of
the exact, large-time cancellation point where Q(t) ∼ 1. This is done by introducing an
expansion of the YM energy density around the asymptotic value of the exact solution,
where T0,U∗

0 = C/4, such that

T0,U
0 (t) � C/4 + δε(t), δε � C . (122)

52



Universe 2022, 8, 451

Depending on the relation between the expansion parameter δε and the remaining
scale εCC, the time derivatives ȧ and Ṫ0,U

0 (t) take two different asymptotic forms. Firstly,
in the case of large δε(t) � εCC, these are

ȧ �
√

κ

3
a
√

δε, (123)

Ṫ0,U
0 �

√
κ

3
(

g(t)− 3
)(

δε
)3/2 ,

when keeping only the leading terms in δε(t) � C. Secondly, in the opposite case when
δε(t) � εCC, the same quantities instead become

ȧ �
√

κεCC

3
a

(
1 +

∞

∑
n=1

( 1
2
n

)(
δε

εCC

)n
)

, (124)

Ṫ0,U
0 �

√
κεCC

3
(

g(t)− 3
)
δε

(
1 +

∞

∑
n=1

( 1
2
n

)(
δε

εCC

)n
)

.

The difference between Equations (123) and (124) introduces only a very small correc-
tion to the period of g(t), and this correction can safely be neglected, as will be shown later
in this section.

It is now possible to study g in the vicinity of the asymptote (Equation (122)) and in
the two limits of δε(t) relative to εCC. First, solve Equations (113) and (114) for U, U̇ in
terms of T0,U

0 , Tμ,U
μ . Then, insert the expansion of the energy density from Equation (122)

in the resulting expressions as well as in Equation (115). Explicit expressions for U, U̇ in
terms of the EMT components and the scale factor allows for the formulation of

∂tU(t)− U̇ ≡ 0 . (125)

Explicit computation of the first term results in a differential equation for g(t) when the
expansions in Equation (123) are inserted. The final form of such a differential equation is

ġ4 − 8
(
ξΛQCD

)4

3e
(
1 − g2)3

= 0 . (126)

Its implicit analytic solution can be found for the inverse function t(g) over half a
period of oscillation of g(t) as

t(g) = − (6e)1/4

2ξΛQCD

[
2F1

(
1
2

,
3
4

,
3
2

; g2
)

g − k
]

, 0 < t(g) < Tg/2 . (127)

The constant k ≈ 2.622 is defined through the above equation, and the initial condition
g(t0) = 1 is adopted for simplicity. These conditions determine g = g(t) as a periodic
quasi-harmonic function with unit amplitude. The period of oscillation may be found from
Equation (126) as

Tg =
2(6e)1/4

ξΛQCD

∫ 1

0

dg
(1 − g2)3/4 =

2k(6e)1/4

ξΛQCD
. (128)
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Using instead the expansions in Equation (124), the above calculation can be repeated
for the case of δε(t) � εCC. The analogue of Equation (126), now with an additional term
proportional to α � 1, is

dg
dτ

± 2(1 − g2)3/4 − α(1 − g2) = 0, τ = t
ξΛQCD

(6e)3/4 , (129)

T′
g = Tg

[
1 +

π

4k2 α2
]

,

α =
2(6e)1/4

ξΛQCD

√
κεCC

3
≈ 4.8 × 10−24, for ΛQCD ∼ 210 MeV .

Hence, the additional term may safely be neglected.
Note that the function g(t) satisfies the following integral constraint

∫ t

0
dτ g(τ) = ± (6e)1/4

ξΛQCD
(1 − g2)1/4 ,

nTg

2
< t <

(n + 1)Tg

2
, (130)

where the upper sign corresponds to even n and the lower corresponds to odd n. It should
be noted that this constraint can be used in Equations (119)–(121) in order to explicitly
express the general solutions for a(t), T0

0(t) and Tμ
μ(t) in terms of g. A very good analytic

approximation to the exact g(t) may be constructed when keeping only the first two
non-vanishing terms of the harmonic Fourier expansion s.t.

g(t) ≈ A cos
(

2πt
Tg

)
+ (1 + A) cos

(
6πt
Tg

)
. (131)

The amplitude A is found through

A =
2
k

∫ 1

0
dg

g
(1 − g2)3/4 cos

(
π

2k

∫ 1

g

dx
(1 − x2)3/4

)
≈ 1.14 . (132)

A comparison between this approximation and the exact solution g(t) is provided in
Figure 14 from which it is clear that the approximation is indeed capturing the universal
function to a very good accuracy. For a particular approximation to g(t) discussed above,
the physical observables have been plotted in Figure 15 for illustration.
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Figure 14. The time dependence of the quasi-harmonic universal function g = g(t). The exact
solution in Equation (127) (solid line) has been extrapolated from the solution over a single period
Tg/2. A harmonic approximation in Equation (131) (dashed line) captures the behavior of g(t) well.
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Figure 15. Solutions for the total energy density T0
0(t) (left), the trace of the total QCD EMT Tμ

μ(t)
(middle) and the scale factor a(t) (right). The asymptotic values for which Q → 1 are indicated by
horizontal lines in the left and middle panels, respectively. The initial conditions have been chosen as
U0 = 0, U̇0 = (ξΛQCD)

2/
√

3e, Q0 > 1, ξ = 4.0 ΛQCD = 332 MeV and κ = 10−7 MeV−2. The energy
density and the trace are plotted in dimensionless units, rescaled by Λ4

QCD and for illustrative
purposes, εCC was set to ∼ 0.5 % of ε̄. These results are compatible with the qualitative picture in
Ref. [66].

4.5. SU(N) and the Functional RG Approach

So far, we have addressed gluodynamics resorting to an all-order effective pertur-
bative approach. Nonetheless, we can extend our investigation so as to include non-
perturbative all-order analyses, resorting to the Functional Renormalization Group (FRG)
approach [357,366–375]. This latter is a Wilsonian momentum-shell-wise integration
method for the path integral, which was developed to delve into the dynamics of in-
teracting quantum field theories and statistical systems in a non-perturbative way when
couplings cannot be dealt with using perturbative techniques. A regulator function Rk is
taken into account so as to suppress quantum fluctuations at momenta lower than some
physical scale, i.e., at an IR cut-off scale k. This scale is in principle different to the one
defined in the subsections above, namely μ0. The former denotes the scale above which
all quantum fluctuations are integrated out, while the latter captures instead the one-loop
renormalization scale and may further be extended to all-loop accuracy. The regulator
function has been discussed by, e.g., Gies in Ref. [359]. A scale-dependent effective action
that flows with k is then recovered, i.e., Γk, which encodes quantum fluctuations effects at
momenta larger than the IR cut-off k. Varying k then allows to smoothly interpolate among
the microscopic/short-scale action and the full quantum effective action Γk→0.

This elucidates why this procedure looks to be tailored ad hoc for cosmological
applications, at the IR scale. The Wetterich equation for a non-zero background that fixes
the running dependence on the cut-off scale in the FRG approach reads [357,366]

∂tΓk =
1
2

STr
(
Γ(2)

k + Rk
)−1

∂tRk , (133)

where Γ(2)
k , a matrix in the field space, denotes the second functional variation of the effective

(running) action with respect to the field content of the theory7. Above, STr is the super-
trace, including a summation over all field components and discrete indices, as well as all the
eigenvalues of the Laplacian in the kinetic term. The FRG equation retains a dependence on the
full (field-dependent) non-perturbative regularized propagator [367], namely, (Γ(2)

k + Rk)
−1.

The FRG approach has been then adapted to YM SU(N) theories [358–360]. Specifi-
cally, in Ref. [360], a numerical extrapolation among low and high energy scales for the
full propagators was deployed in order to derive the gluon condensate. Refining these
results in Ref. [376], the FRG approach was extended, within a cosmological setting, to the
SU(2) case.

In Ref. [376], resorting to approximations that are necessary to solve the FRG equation,
which is otherwise too complicated to provide analytic results, the authors considered
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replacing Γk in Equation (133) with the bare action S, allowing for integration on both sides
of the FRG equation, namely,

Γk = −
∫

Leff =
∫

dk
1
2

STr(S(2) + Rk)
−1∂tRk =

1
2

STr log(S(2) + Rk) + const. . (134)

Setting the bare action to the standard expression S = 1
4

∫
dx Fa

μνFa μν, which here
corresponds to the UV limit of the effective theory, the integration constant can be fixed by
requiring that Γk vanishes for a vanishing field strength.

The inversion of the regularized propagator then requires the use of a harmonic
gauge fixing, entering the action Sgf and depending on the α-parameter, with associated
Faddeev-Popov ghosts, in Sgh, namely,

Sgf =
1

2α

∫
dx D̄μ āa

νD̄νaa
μ , Sgh =

∫
dx D̄μ c̄νDμcν , (135)

where the background methods have been deployed, and barred quantities are calculated
with respect to background fields. Then, in the Landau gauge where α → 0, the super-trace
recasts along the transverse sector as

1
2

STr log(S(2) + Rk) =
1
2

Trtrans log
[
D̄μν

T + Rk(D̄μν
T )

]
− 1

2
Trgh log

[
D̄μν

gh + Rk(D̄μν
gh)

]
, (136)

where the differential operators can be expressed in terms of the SU(N) structure constant
f abc and the YM coupling constant gYM as

D̄μν
T = �̄ δcbδμν + gYM F̄a μν f abc , D̄μν

gh = ημν�̄ . (137)

In order to disentangle the emergence of a condensate as a solution to the FRG equation,
one restricts the consideration to the case of SU(2). Although this could seem to be limiting
in the wider theoretical perspective, nonetheless, the restriction to SU(2) shall be considered
as a selection of a subgroup of SU(N).

Bearing the discussion above in mind, one may select a straightforward expression for
the regulator function in terms of a cut-off scale, Rk(D) = k2. The super-trace STr may then
be evaluated using the Schwinger formula

ln A ≡
∫ ∞

0

ds
s

[
e−sA − e−s

]
, A > 0 , (138)

and opting for a convenient choice of the background, the self-dual one, as investigated
in Ref. [360]. These choices allow for the evaluation of the super-trace as a sum over the
eigenvalues of the kinematic terms. In general, the eigenvalues of D̄T are not known for an
arbitrary background. However, those were found in the case of a self-dual background
considered in Ref. [360], and a general discussion on the trace technology used in this
approach can be found, e.g., in Refs. [358,359]. Applying the results of Ref. [360] in the case
of a self-dual background dominated by the color-magnetic field B, Ref. [376] obtained an
expression for the regularized effective action in the following form:

Leff =
g2

YMθ

4π2

∫ ∞

0

ds
s

[
e−As − e−s

]( 1
4 sinh2(s)

+ 1 − 1
4s2

)
, A =

√
k4

g2
YMθ

, θ ≡ B2 > 0 . (139)

This expression can be recast in terms of the order parameter in the CM domain,
J = 2g2

YMθ > 0, which was introduced earlier and then analytically continued to the CE
branch J < 0 as follows [66],

Leff =
2J

16π2

∫ ∞

0

ds
s
[
e−sA[J ] − e−s][ 1

4 sinh2 s
− 1

4s2 + 1
]

, A =

√
λ4

J tanh(J /λ4ε)
, (140)
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for ε � 1. Indeed, due to

J tanh
( J

ελ4

)∣∣∣
ε→0

→ |J | , (141)

the transition between Equation (139) and Equation (140) becomes apparent. Performing
the explicit expansion of the rightmost parenthesis above, the form matches that of the
one-loop effective Lagrangian in Equation (91) for SU(2).

The results of Appendix D, valid at one-loop order, may now be compared to the all-
loop order results. In Figure 16 (left), we show a direct comparison of the one-loop with the
all-loop effective Lagrangian for J > 0 (CE branch only). A unique non-trivial minimum
is found in the non-perturbative region, 0 < J ∗ < λ4, and it is therefore identified with
the CE condensate [66] whose values for one-loop and all-loop cases differ at a permille
level and thus express a remarkable consistency of the one-loop approximation. The all-
loop running coupling may be straightforwardly extracted from the all-loop effective
Lagrangian as

(
ḡ2)−1

=
2

4π2

∫ ∞

0

ds
s
[
e−sA[J ] − e−s][ 1

4 sinh2 s
− 1

4s2 + 1
]

, (142)

and this is shown in Figure 16 (middle) for the one-loop and all-loop cases. To find an
expression for the β-function, one may study the RG equation given by Equation (86).
Using

dḡ2

dJ = −
(

ḡ2)2 d
dJ

( 1
ḡ2

)
. (143)

We may express β as

β

ḡ2 = −2J d
dJ

( 1
ḡ2

)
= −2J 2

4π2

(
− dA

dJ

) ∫ ∞

0
ds e−sA[J ]

[
1

4 sinh2 s
− 1

4s2 + 1
]

, (144)

where
dA
dJ = − 1

2J

√
λ4

J tanh(J /λ4ε)

(
1 +

J
λ2ε

1 − tanh2(J /λ2ε)

tanh(J /λ2ε)

)
. (145)

The β over the running coupling at one-loop order compared to the corresponding
all-loop quantity for SU(2) is displayed in Figure 16 (right). It is clear from the figures that
the one-loop approximation accurately captures the main features of the pure YM theory
as the differences from the corresponding all-loop quantities are negligible.
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Figure 16. (Left) All- and one-loop effective Lagrangian of SU(2) as dependent on J /λ4. Plotted
here for the CE branch with J > 0, it is clear that the one-loop result captures the main features of
pure YM theory. In the non-perturbative regime shown (J < λ4), the two minima in the vicinity
of J∗ > 0 coincide. Here, ε = 0.01 has been used. (Middle) The inverse running coupling ḡ−2 of
SU(2). The (dashed) one-loop result captures well the overall behavior of the running coupling in
comparison to the all-loop coupling (solid). Here, ε = 0.01 has been used. (Right) β over the running
coupling at one-loop order compared to the all-loop quantity for SU(2). The ratio of the β-function to
the coupling coincides with the all-loop result at one-loop level for small J , while a discrepancy is
seen away from zero. Here, ε = 10−5 has been used.

As outlined in Ref. [376], when considering the formation of the non-perturbative CE
condensate as the YM system rolls down toward the minimum of the effective Lagrangian
depicted in Figure 16 (left), the equation that dictates the evolution of this system in
cosmological time is found from the continuity equation [376] (see also Ref. [377] for a more
recent discussion)

ρ̇YM + 3
ȧ
a
(
ρYM + pYM

)
= 0 . (146)

Accounting for only homogeneous CE YM fields (i.e., for θ = E2) in the EMT, for sim-
plicity, the expressions of the energy and pressure densities of the YM system ρYM, pYM
can be written as functionals of the effective action [376]:

ρYM = −Leff(θ) + 2θL′
eff(θ) , pYM = Leff(θ)−

2
3

θL′
eff(θ) , (147)

where prime denotes the functional variation with respect to θ. In this case, Equation (146)
transforms to

θ̇ (L′
eff + 2θL′′

eff) + 4
ȧ
a

θL′
eff = 0 , (148)

in comoving coordinates. Equation (148) may be integrated, given that Leff(θ) is sufficiently
well behaved, such that √

θL′
eff(θ) = C a−2 , (149)

where C denotes a coefficient of proportionality that is fixed by the initial conditions.
Equation (149) may be solved by inversion, providing the dynamics of a SU(2) YM con-
densate in cosmological time. Note that Equation (147) is only valid for the dominant
electric-field configurations. An analogical analysis of magnetic-field quantum config-
urations and their cosmological evolution in the effective Lagrangian approach at the
one-loop level has been performed in Ref. [377]. Note, generic YM configurations contain
both magnetic and electric components. We refer the reader to Section 4.4 above for a
thorough discussion of those more generic configurations and their cosmological (real-time)
dynamics.

5. Cosmological Implications of Gauge-Fields Driven Inflation

Gauge-fields driven inflation has been considered in several models, starting form
the paper by Ford [378], in which a hypercharge cosmological inflationary scenario was

58



Universe 2022, 8, 451

envisaged. The theory that was taken into account included, besides the Einstein-Hilbert
action, the action for a massive hypercharge field, individuated by the Lagrangian

L =
1
4

FμνFμν + V(Aα Aα) . (150)

Anisotropies that are naturally present in the Maxwell tensor impose to consider a
Bianchi type-I metric of the form

ds2 = dt2 − a2(t)(dx2 + dy2)− b2(t)dz2 . (151)

Provided the expression for the energy-momentum tensor of the massive vector field

Tμν = FμβF β
ν − 1

4
gμνFαβFαβ − gμνV + 2V′Aμ Aν , (152)

with prime denoting the functional derivative in Aα Aα, the Einstein equations were
recast as

2
ȧḃ
ab

+
ȧ2

a2 = 8πε , 2
ä
a
+

ȧ2

a2 = −8πpz , (153)

with ε as the energy density and pz as the pressure density component along the z-axis.
The conservation law, derived assuming that the pressure density components along the x
and y axes equal px = py, encodes

ε̇ +

(
2

ȧ
a
+

ḃ
b

)
ε + 2

ȧ
a

px +
ḃ
b

pz = 0 , (154)

and finally, the only non-vanishing component of the vector field fulfills the equation

Äz +

[
2

ȧ
a
− ḃ

b

]
Ȧz + 2V′Az = 0 . (155)

The solutions to this system of equations, Equations (153)–(155), immediately outlined
the impossibility to suppress anisotropies over the dynamical evolution of the background
and the vector field. Thus, already with the seminal attempt of Ref. [378], it was evident
that the over-production of anisotropies at the cosmological level would have provided a
main issue, eventually ruling out this class of models.

A possible way to overcome the abundance of anisotropies, severely constrained by
the CMB observations by WMAP and Planck, was imagined by Golovnev, Mukhanov
and Vanchurin [379], who considered a stochastic distribution of N � 1012 vector fields,
randomly spanning the space directions. Each vector field was assumed to be massive
and regulated by the action

S =
∫

d4x
√
−g

(
− R

16π
− 1

4
FμνFμν +

1
2
(m2 +

R
6
)Aμ Aμ

)
, (156)

where m denotes the mass of the hypercharge vector field considered, such that
Fμν = ∇μ Aν −∇ν Aμ = ∂μ Aν − ∂ν Aμ.

The equations of motion for the gauge field, which in a covariant fashion recast

1√−g
∂

∂xμ

(√
−gFμν

)
+

(
m2 +

R
6

)
Aν = 0 , (157)

split into a temporal “0” component, implying A0 = 0, and into space components, which
finally provide the equation fro the “field strength” Bi ≡ Ai/a, i.e.,

B̈i + 3HBi + m2Bi = 0 , (158)
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having introduced comoving coordinates such that ds2 = dt2 − a2(t)d�x2, and these were
denoted with dot derivative with respect to the cosmological time, so that H = ȧ/a. For a
homogeneous vector field, it was then noticed that the energy-momentum tensor can be
expressed by

T0
0 =

1
2

(
Ḃ2

k + m2B2
k

)
,

Ti
j =

[
−5

6

(
Ḃ2

k − m2B2
k

)
− 2

3
HḂkBk −

1
3
(Ḣ + 3H2)B2

k

]
δi

j + Ḃi Ḃj + H(ḂiBj (159)

+ ḂjBi) + (Ḣ + 3H2 − m2)BiBj ,

where the summation over the index k is meant. Summing up now the contributions of
a triplet of mutually orthogonal fields B(a)

i with the same magnitude |B|, the total energy
momentum tensor is averaged to the quantity

T0
0 = ε =

3
2

(
Ḃ2

k − m2B2
k

)
, Ti

j = −pδi
j = −3

2

(
Ḃ2

k − m2B2
k

)
δi

j , (160)

where Bk satisfies
B̈i + 3HḂi + m2Bi = 0 . (161)

These latter relations for the energy-momentum tensor can be proved by the fact that
for B(a)

i , it holds:

∑
i

B(a)
i B(b) i = |B|2δ

(a)
(b) → ∑

a
B(a)

j B(a) i = |B|2δi
j . (162)

Summing up over a large amount of N triple of fields, the energy-momentum tensor
finally acquires the expression

T0
0 = ε � N

2

(
Ḃ2

k + m2B2
k

)
Tij ∝

N

∑
a=1

B(a)
i B(a)

j � N
3

B2δi
j + O(1)

√
NB2 . (163)

Within this scenario, anisotropies are then proven to fall off as 1/
√

N, hence justifying
consistency with the experimental data.

Finally, accounting for an inflationary slow-roll phase, with Ḃi � 0, one finally finds
for the first Friedmann equation,

H2 =
8π

3
ε � 4π

3
Nm2B2 . (164)

A different perspective was suggested by Maleknejad and Sheikh-Jabbari, who imag-
ined in Refs. [380–382] that it could become relevant at the level of cosmic perturbations,
while at the same time driving the inflationary background evolution of the universe.
Isotropy could be guaranteed here by aligning the internal indices (of the adjoint repre-
sentation) of a SU(2) subgroup of SU(N) to the space directions, namely, for the space
component of the connection A

Aa
i = ψ(t)ea

i = ψ(t)a(t)δa
i , ea = a(t)δa

i , (165)

where ψ(t) is a scalar field, ea
i denotes the triads, which recombine into the space metric

hij = ea
i ea

j and are expressed here in the comoving coordinates. For compactness of notation,
the authors reshuffled φ(t) = ψ(t)a(t).
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Specifically, the authors considered a YM action provided with the square of a Pontria-
gin term, i.e.,

S =
∫

d4x
√
−g

[
−R

2
− 1

4
Fa

μνFμν
a +

κ

384

(
εμνλσFa

μνFa
λσ

)2
]

, (166)

having set 8πG = 1, denoted with εμνλσ the totally antisymmetric tensor, and chosen the
real parameter κ to be positive.

Labeling with a subscript “YM” the contributions arising from the YM terms, and with
κ the ones related to the Pontriagin terms, it was found that

εYM =
3
2

(
φ̇2

a2 +
g2φ4

a4

)
, εκ =

3
2

κg2φ4φ̇2

a6 , (167)

where g is the YM coupling constant entering the definition of the field strength of the
SU(2) connection

Fa
μν = ∂μ Aa

ν − ∂ν Aa
μ − gεabc Ab

μ Ac
ν , (168)

and where ε = εYM + εκ and p = 1
3 εYM − εκ . Having provided these definitions, it was

possible to show the emergence of a slow-roll phase of inflation, which was dominated by
the κ-term contribution εκ over the YM contribution εYM, namely εκ � εYM. Furthermore,
within the scenario introduced in Refs. [380–382], it was conceivable that sizable effects
could be turned on, so as to source primordial magnetic fields at the cosmic perturbation
level, with specific possible observational features on the CMB and primordial cosmic
magnetic fields outlined.

A novel framework with respect to the ones so far discussed was elaborated by Alexan-
der, Marcianò and Spergel in Ref. [383], in which the authors considered the interaction a
model of inflation with as a new ingredient the interaction of an Abelian gauge field with a
fermionic charge. This scenario then dramatically differs from only adopting gauge fields
in order to generate a realistic inflationary epoch. As a by-product of this approach, re-
searchers considered the possibility of generating the a net-lepton asymmetry. The Sakharov
conditions are realized in the model presented in Ref. [383] during the inflationary epoch,
due to a dynamical inter-change of the gauge field fluctuations into the lepton asymmetry
of the universe.

The action the authors moved from involved, as well as a U(1) hypercharge field Aμ,
also a massive scalar field θ, interacting with Aμ through a Chern-Simons term, i.e.,

S = SD +
∫

d4x
√
−g

[
M2

PLR
8π

− 1
2

∂μθ∂μθ − 1
4

FαβFαβ +
θ

4M∗
Fαβ F̃αβ

]
,

SD =
∫

d4x
√
−g

(
ıψ̄γμ∇μψ + cc. + Mψ̄ψ + qψ̄γμψAμ

)
, (169)

where MPL denotes the Planck mass, M∗ is the mass-scale of the pseudo-scalar decay
constant, regulating with theta the CP-violating Chern-Simons such as term, Fμν = ∂[μ Aν] is
the field strength of the U(1) connection A, F̃αβ = εαβλσ F̃λσ is the gravitational Hodge-dual,
and γμ = eμ

I γI , with γI Dirac matrices, eμ
I inverse tetrad and internal indices I = 0, . . . 3.

The model, which is then based on the interaction between a homogeneous and
isotropic configuration of a U(1) gauge field and a fermionic charge density J0, relies on the
regulated fermionic charge density as generated from a Bunch-Davies vacuum state, using
the procedure outlined by Koksma and Prokopec in Ref. [384]. In conformal coordinates,
this was found to redshift as 1/a(η). Then, within the scenario of Ref. [383], the time-like
component of the hypercharge gauge field was found to be sourced by the fermionic charge,
consistently with a growth in the gauge field proportional to the scale factor, namely,

A0(η) ∼ a(η) . (170)
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This motivates results with inflation dominated by the energy density stored within
the interaction among the gauge field and the fermionic charge, namely A0J0, which is
approximately constant over the inflationary epoch. The appealing feature of Ref. [383]
stands in the possibility to obtain an epoch of cosmic inflation involving the physical
description fields already existing in nature, specifically the time-like U(1) gauge field
interacting with a fermionic charge density. Nonetheless, the role of the scalar field cannot
be underestimated, retaining a certain relevance in producing baryogenesis, and providing
a graceful exit from inflation. Indeed, the mechanism that accounted for the graceful exit
is strictly interconnected to the one advocated for reproducing the baryogenesis, with the
right baryon asymmetry index. The Chern-Simons term, through the coupling to the
pseudo-scalar field, converts gauge field fluctuations into lepton number, while the rapid
oscillation of the pseudo-scalar field near its minimum allows achieving thermalization
of the gauge field and thus to end inflation. The relevance of the coupling between scalar
modes, there interpreted as axions, was further investigated in Ref. [385].

An improvement of the scheme first addressed in Ref. [383] was provided in Ref. [386],
where the authors analyzed the consistency of the model via the Stückelberg mecha-
nism [387]. This provided an incorporation of the longitudinal scalar DoFs into the hy-
percharge field, which is now massive. This could be thought again as a further step-
forward, toward the realization of an inflationary mechanism relying on the YM dynamics,
the hypercharge sector being eventually recognized as an Abelian subgroup of the SU(N)
gauge sector.

The action of the theory was then considered to be

S =
∫

d4x
√
−g

[
M2

PLR
8π

− 1
4

GαβGαβ − 1
2

m2CμCμ + CμJ μ + LD

]
LD = −ıψ̄γμ∇μψ + c.c. + Mψ̄ψ , (171)

having introduced the massive Stückelberg field Cμ = Aμ − 1
m ∂μθ and its field strength

Gμν = ∂[μCν] = ∂[μ Aν] = Fμν, and the fermionic vector current J μ = qψ̄γμψ. Gauge
invariance is ensured in this framework by the transformations

Aμ → A′
μ = Aμ + ∂μΛ , θ → θ′ = θ + mΛ . (172)

Within this framework, the authors could prove the existence and the stability of
dynamical attractor solutions for the cosmological inflation epoch, which is again driven
by the coupling among the fermions and a (massive) gauge field. Numerical analyses
then showed that stability is attained for a large basin of the initial conditions, making this
inflationary scenario almost independent on these latter: inflation arises without fine tuning
and without the need of postulating any effective potential or any non-standard coupling.

An alternative scenario featuring a coupling between an axion-like field and an SU(2)
gauge field is known as the chromo-natural inflation [388]. The rotationally invariant
homogeneous condensate of the gauge field satisfies an attractor solution that enables it to
drive cosmic inflation for the axion decay constant having a natural value at a sub-Planckian
scale. Interestingly enough, this scenario features a possibility for termination of inflation
as soon as the axion potential vanishes, simultaneously providing a small tensor-to-scalar
perturbation ratio.

An inflationary scenario, taking into account non-trivial topological features deployed
in Refs. [389–391], was extended in Ref. [392] so as to account, over the universe expansion,
for a sector of a strongly coupled QCD-like gauge theory. The idea at the base of investi-
gations in Refs. [389–391] is to perform a periodic (between the Σ and Σ′ surfaces) path
integral over Euclidean geometries,

e−Γ =
∫

g,φ|Σ=g,φΣ′
D[g, φ]e−SEg,φ , (173)
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with g and φ, respectively, representing the metric and matter field and SE denoting the
Euclidean action, so as to extract the ‘density matrix’ of the universe,

ρ[ϕ, ϕ′] = eΓ
∫

g,φ|Σ,Σ′
D[g, φ]e−SE [g,φ] , (174)

which describes a microcanonical ensemble, ϕ denoting field configurations that encode
both gravitational and matter variables.

The uniform distribution over the Euclidean spaces actually corresponds, over Lorentzian
spaces, to a distribution that is peaked about complex saddle points of the path integral.
The latter can be then represented by cosmological instantons, entailing a bounded range
values for the cosmological constant.

On the other hand, inflationary cosmologies can be engendered by the very same
instantonic solutions [389–391]. The low energy of the accelerated expansion can be then at-
tained at its late stage, resorting to the dynamical evolution of extra dimensions specifically
postulated in string theory framework [391]. This results in a bounded range for the very
early (inflationary) cosmological constant, which provides a constraint on the available
landscape of the string vacua. Finally, the same mechanism can be advocated to give rise to
a possible DE candidate, accounting for the quasi-equilibrium decay of the microcanonical
state of the universe. Within this scenario, Barvinsky and Zhitnitsky promoted a new
picture for the emergence of an inflationary spacetime [392], resorting to considerations
developed in Refs. [14,393,394] on the generation, in a strongly coupled QCD-like gauge
theory, of the vacuum energy from non-trivial topological features.

The limits of the usual semi-classical expansion were overcome by the dominant con-
tribution of the numerous conformal modes. Integration over the modes then provides the
quantum effective action of the conformal field theory ΓCFT[gμν], which can be calculated
with methods similar to those ones implemented in determining the conformal anomaly.
Starting from the FLRW background, accounting for a periodic factor a(τ)—this is due
to the fact that functions of the Euclidean time are supported to the circle S1—and finally
using a local conformal transformation to the static Einstein universe and the very same
well-known trace anomaly, one finds

gμν =
δΓCFT

δgμν
=

1
4(4π)2 g1/2

(
α�R + βEγC2

μνρσ

)
, (175)

where we introduced the Gauss-Bonnet term E = R2
μναγ − 4R2

μν + R2 and the Weyl tensor
Cμνρσ.

Considering a spacetime with topology S3 × S1, and moving from the expression of
the energy of the gauge field holonomy, winding across the compactified coordinate of the
length T , Barvinsky and Zhitnitsky found that

ρ = ρvac[S
3 × S

1]− ρvac[R
4] =

c̄T Λ3
QCD

T , (176)

with ΛQCD being the scale of the QCD-like gauge theory, c̄T being a dimensionless constant
of order one, and similarly, the full period of the proper Euclidean time on these periodic
m-fold garland instantons is given by the analogous integral,

T =
∮
S1

dτ , (177)

which in an FLRW metric background reduces to the 2m-multiple result

T = 2m
∫ a+

a−

da
a

, (178)
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where the integral is between the two neighboring turning points of a(τ) such that
ȧ(τ±) = 0.

6. Summary

In this review, we have made a brief outlook of the current status of confined and
de-confined QCD dynamics in the early universe as well as the key methodology for
studies QCD in the strongly coupled regime relevant for cosmological evolution. The cov-
ered research areas are broadly inter-disciplinary, and our discussion may not be fully
exhaustive. Still, we have identified a few quite unexpected and intriguing connections
between currently pursued research in particle physics and possible dynamics of the early
universe. Such fundamental questions as the gauge-fields-driven inflation, cyclic universe,
particle production mechanisms, non-perturbative real-time dynamics of the QCD ground
state, a rather challenging problem of dynamical generation of cosmological DE and DM,
the structure of the QCD vacuum, the QCD phase transitions and the role of QCD matter in
late-time universe evolution are among the key points of this review. Such a wide breadth
of topics, with deep roots into QCD or, more generically, quantum YM field theories, ex-
hibits enormous and critical significance of microscopic dynamics of particle physics and
confined field theories for understanding of the macroscopic cosmic evolution. The picture
is far from its final shape though, and many more pillars of such connections and possible
interplay are yet to be established. We believe that our review can be useful for both young
researchers and for more senior experts specialized in both particle physics and cosmology
research areas.
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Appendix A. Elements of Relativistic Hydrodynamics

Equations of relativistic hydrodynamics are based on conservation of the energy-
momentum and the current

∂μTμν = 0 , ∂μ jμi = 0 , (A1)

where jμ
i , i = B, Q, L, . . . denotes the conserved currents corresponding to baryon number B,

electric charge Q, lepton number L, etc. Both Tμν and jμi can be decomposed into time-like
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and space-like components using natural projection operators, the local flow four-velocity
uμ, and the second-rank tensor perpendicular to it Δμν = gμν − uμuν [11,25,395,396]:

Tμν = εuμuν − pΔμν + Wμuν + Wνuμ + πμν , (A2)

jμ
i = niuμ + Vμ

i , (A3)

where ε = uμTμνuν is the energy density, p ≡ ps + Π = − 1
3 ΔμνTμν is the total (hydrostatic

ps + bulk Π) pressure, Wμ = Δμ
α Tαβuβ is the energy (or heat) current, ni = uμ jμ

i is the
charge density, Vμ

i = Δμ
ν jνi is the charge current, and πμν = 〈Tμν〉 is the shear stress tensor.

The angular brackets in the definition of the shear stress tensor πμν stand for the following
operation:

〈Aμν〉 =
[

1
2
(Δμ

α Δν
β + Δμ

βΔν
α)−

1
3

ΔμνΔαβ

]
Aαβ . (A4)

To further simplify our discussion, we restrict ourselves in the following to only the
one conserved charge, the baryon number B, and denote the corresponding baryon current
as jμ ≡ jμ

B. The various terms appearing in the decompositions (A2) and (A3) can then be
grouped into ideal and dissipative parts as follows

Tμν = Tμν
id + Tμν

dis = [εuμuν − psΔμν]id + [−ΠΔμν + Wμuν + Wνuμ + πμν]dis (A5)

jμ = jμ
id + Nμ

dis = [nuμ]id + [Vμ]dis . (A6)

Neglecting the dissipative parts, the energy-momentum conservation and the current
conservation (A1) define ideal hydrodynamics. In this case (and for a single conserved
charge), a solution of the hydrodynamical Equation (A1) for a given initial condition
describes the spacetime evolution of the six variables—three state variables ε(x), p(x),
n(x), and three space components of the flow velocity uμ. However, since (A1) constitutes
only five independent equations, the sixth equation relating p and ε, the EoS p(ε), has to
be added by hand in order to solve them.

Two definitions of flow can be found in the literature, see e.g., Refs. [11,395]; one
related to the flow of conserved charge (Eckart):

uμ
E =

jμ√
jν jν

, (A7)

the other related to the flow of energy (Landau):

uμ
L =

Tμ
νuν

L√
uα

LT β
α Tβγuγ

L

=
1
e

Tμ
νuν

L . (A8)

Let us note that Wμ = 0 (Vμ = 0) in the Landau (Eckart) frame. In the case of vanishing
dissipative currents, both definitions represent a common flow. The Landau definition is
more suitable when describing the evolution of matter at zero chemical potential, such as
in the case of the mid-rapidity particle production in ultra-relativistic HIC at the LHC and
at the top RHIC energy, or in the early universe. In this case, all momentum density is due
to the flow of energy density, uμTμν

id = εuν and uμTμν
dis = 0, i.e., the heat conduction effects

can be neglected.

Appendix B. Hydrodynamical Description of Dissipative Effects

In its modern formulation, relativistic fluid dynamics provides an effective description
of a system that is in local thermal equilibrium, and it can be derived from the underlying
kinetic description through Taylor expansion of the entropy four-current Sμ = suμ in
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gradients of the local thermodynamic variables [25]. In zeroth order in gradients, one
obtains ideal fluid dynamics

∂μSμ = ∂μ(suμ) = uμ∂μs + s∂μuμ = 0 , (A9)

and the evolution of the scale factor of the universe is driven solely by the entropy conserva-
tion s(t)a3(t) = const. The higher orders describe effects due to irreversible thermodynamic
processes such as the frictional energy dissipation between the fluid elements that are in
relative motion or their heat exchange with its surroundings on its way to approach thermal
equilibrium with the whole fluid.

When solving the hydrodynamic equations with the dissipative terms, it is cus-
tomary to introduce the following two phenomenological definitions (so-called consti-
tutive equations) for the shear stress tensor πμν and the bulk pressure Π appearing in
Equation (A5) [395],

πμν = 2η〈∇μuν〉 , Π = −ζ∂μuμ = −ζ∇μuμ , (A10)

where the angular brackets 〈. . .〉 are defined in Equation (A4) and ∇μ = Δμν∂ν. Neglecting
the charge current Vμ in Equation (A6), the first-order expansion of Sμ is completely
determined by the shear viscosity η and bulk viscosity ζ coefficients [395]:

T∂μSμ = πμν〈∇μuν〉 − Π∂μuμ =
πμνπμν

η
+

Π2

ζ
= 2η〈∇μuν〉2 + ζ(−∂μuμ)2 ≥ 0 . (A11)

A well-known example of the flow involving both coefficients η and ζ is provided
by boost-invariant one-dimensional expansion with the velocity in the z direction, vz,
proportional to z co-ordinate [397]

uμ
BJ =

xμ

τ
=

t
τ

(
1, 0, 0,

z
t

)
, τ =

√
t2 − z2 . (A12)

After inserting this solution into the constitutive Equation (A10), we arrive at the
equation of motion [395]:

dε

dτ
= − ε + ps

τ

(
1 − 4

3τT
η

s
− 1

τT
ζ

s

)
. (A13)

The last two terms on the right-hand side in Equation (A13) describe a compression of
the energy density due to viscous corrections. Two dimensionless coefficients in the viscous
correction, η/s and ζ/s, where s is the entropy density, reflect the intrinsic properties
of the fluids. It is worth mentioning that neglecting η and ζ in Equation (A13), i.e., for
the ideal fluid EoS with ps = 1

3 ε, one obtains the celebrated Bjorken solution of ideal
hydrodynamics [397]

dε

dτ
= − ε + ps

τ
= −4

3
ε

τ
⇒ ε = τ−4/3 , (A14)

frequently used to discuss the salient features of the ultra-relativistic HICs.
The one-dimensional character of the Bjorken flow (A12) makes it possible to replace

the z co-ordinate with the radial one r. Radial flow in the transverse direction, i.e., when
r⊥ =

√
x2 + y2, was studied in Ref. [398]. For this case and the constant sound velocity

cs, analytic solutions of relativistic viscous hydrodynamics describing expanding fireballs
were developed in Ref. [399]. In a three-dimensional case, a new class of exact fireball
solutions of relativistic dissipative hydrodynamics for arbitrary shear and bulk viscosities,
as well as for other dissipative coefficients, was studied in Ref. [400]. The common property
of these solutions is the presence of the relativistic Hubble flow.
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However, the analogy between the solutions describing HICs and expansion of the
early universe must not be pushed too far, since in the latter case form of the energy-
momentum tensor Tμν and particle four-current jμ of the matter, cf. Equations (A5) and (A6)
is strongly constrained by the symmetries of the FLRW metric (38). In particular, due to
the local momentum isotropy, the term 〈∇μuν〉 appearing in the viscous shear-stress
tensor πμν, cf. Equation (A10), vanishes [401]. Consequently, the term proportional to
η in Equation (A13) disappears. The shear viscosity η also disappears in the theories
with scalar perturbations of the metric tensor gμν [84,270]. There, the fluctuations of
energy density destroy the homogeneity but not the isotropy of the early universe FLRW
metrics. Hence, in the following discussion, we will consider mainly the bulk viscosity—the
property of expanding matter arising typically in mixtures. They can be either of different
species, as in a radiative fluid, or of the same species but with different energies, as in a
Maxwell–Boltzmann gas. In each of these instances, the bulk viscosity provides the internal
‘friction’ that sets in due to the different cooling rates in the expanding mixture [401].

The relativistic Navier-Stokes description given by Equation (A10) accounts only for
terms that are linear in velocity gradient. This leads, unfortunately, to severe problems.
In particular, when the thermodynamic force 〈∇μuν〉 or ∇μuμ is suddenly switched off/on,
the corresponding thermodynamic flux πμν or Π which is a purely local function of the
velocity gradient also instantaneously vanishes/appears [402]. The linear proportion-
ality between dissipative fluxes and forces causes an instantaneous (acausal) influence
on the dissipative currents, leading to numerical instabilities [403]. The solution of this
problem requires the inclusion of terms that are second order in gradients [404]. The re-
sulting equations for the dissipative fluxes πμν and Π then become the relaxation-type
equations [395,405]. The latter encode the time delay between the appearance of ther-
modynamic gradients that drive the system out of local equilibrium and the associated
build-up of dissipative flows in response to these gradients, thereby restoring causal-
ity [405]. Accounting for non-zero relaxation times at all stages of the evolution constrains
departures from local equilibrium, thereby both stabilizing the theory and improving its
quantitative precision.

Let us provide a few examples of this approach. The 2nd-order theory version of
boost-invariant one-dimensional flow, cf. Equation (A13), can be found in Ref. [395]. Due
to its length, we do not reproduce it here and refer the interested reader to the original
publication. The second example can be found in Ref. [406], where the relaxation time
τπ proportional to the shear viscosity parameter η was used to study the evolution of the
universe filled with QGP with nonzero shear viscosity. The authors argue that in general
relativity, the following modification of the shear-stress tensor

πμν → πμν + τπ

[
uαπ

μν
;α +

4
3

πμν∇αuα

]
= 2η〈∇μuν〉 , π

μν
;α ≡ ∂απμν + Γμ

αβπβν + Γν
αβπμβ , (A15)

where π
μν
;α is a covariant derivative of πμν and Γμ

αβ are the Christoffel symbols, makes the
resulting Navier-Stokes equations causal. Using the FLRW metric and taking into account
that the compatibility with the isotropy and homogeneity of the universe demands πμν to
be diagonal, the solution of Equation (A15) reads [406]

π00(t) = π00(t0)

[
a(t0)

a(t)

]4

e−
t−t0
τπ , πij(t) = πij(t0)

[
a(t0)

a(t)

]6

e−
t−t0
τπ δij . (A16)

In the Friedmann equations, the effect of the traceless viscosity tensor shows up in the
modification of the initial energy density ε(t0) and in the behavior of the energy density at
times t � t0 + τπ , which at later times goes over to the standard expression [406]

ε(t) =
[
ε(t0) + π00(t0)

][ a(t0)

a(t)

]4

− π00(t0)

[
a(t0)

a(t)

]4

e−
t−t0
τπ . (A17)
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The third example is provided in Ref. [407] where causal general relativistic viscous
fluid theory with the inclusion of all dissipative contributions (shear viscosity η, bulk
viscosity ζ, and heat flow Wμ) and the effects from nonzero baryon number are discussed.
According to the authors, the applicability of this theory ranges from the modeling of
viscous effects in neutron star mergers to low-energy HICs.

Appendix C. YM Equations of Motion in the Effective Action Approach

This section provides a short summary on the derivation of the YM equations of
motion by means of variational methods with respect to the connections Aa

μ when applied
to the effective Lagrangian of Equation (84), as was performed in Ref. [66].

When varying the effective action with respect to Aa
μ and ∂νAa

μ, one arrives at the
Euler-Lagrange equations of motion:

∂Leff
∂Aa

μ
−∇ν

∂Leff
∂(∂νAa

μ)
= 0, ∇ν

∂Leff
∂(∂νAa

μ)
=

1√−g
∂ν

[√
−g

∂Leff
∂(∂νAa

μ)

]
. (A18)

It is straightforward to compute the derivatives of the effective Lagrangian:

∂Leff
∂Aa

μ
=

1
4ḡ2

[
∂J
∂Aa

μ
− J

ḡ2
∂ḡ2

∂Aa
μ

]
,

∂J
∂Aa

μ
=

4 f abcF b μνAc
ν√−g

,
J
ḡ2

∂ḡ2

∂Aa
μ
=

J
ḡ2

∂ḡ2

∂J
∂J
∂Aa

μ
, (A19)

⇒ ∂Leff
∂Aa

μ
=

1
ḡ2

f abcF b μνAc
ν√−g

[
1 − β

2

]
, (A20)

∂Leff
∂(∂νAa

μ)
=

4F a μν

√−g
, (A21)

⇒ ∇ν
∂Leff

∂(∂νAa
μ)

=
1√−g

∂ν

(√
−g

1
ḡ2

F a μν

√−g

[
1 − β

2

])
, (A22)

where the RG equation for the exact β-function that conveniently recasts Equation (86) as

J
ḡ2

∂ḡ2

∂J ≡ β

2
=

d ln|ḡ2|
d ln|J |/μ4

0
, β = β(ḡ2), (A23)

has been inserted. If β is known to all-loop order, the running of the coupling and hence
the solutions to the equations of motion may be found to all-loop order accuracy. In the
expression above, an arbitrary dimensionful renormalisation parameter μ0 has been explic-
itly introduced as a reference scale. The natural boundary condition is ḡ(J ) → gYM when
|J | → μ4

0.
Inserting Equations (A20) and (A22) into Equation (A18), the resulting equations of

motion is

1
ḡ2

f abcF b μνAc
ν√−g

[
1 − β

2

]
− 1√−g

∂ν

(√
−g

1
ḡ2

F a μν

√−g

[
1 − β

2

])
= 0 . (A24)

This can be rewritten on the operator form

D̂ab
ν

[ F b μν

ḡ2√−g

(
1 − β

2

)]
= 0 , (A25)

where the differential operator D̂ is given by

D̂ab
ν ≡ δab ∂ν

√−g√−g
− f abcAc

ν. (A26)
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The action of this differential operator on a function h(x) is defined as follows:

[
D̂h(x)

]ab
ν

≡ δab ∂ν

[√−gh(x)
]

√−g
− f abcAc

νh(x) . (A27)

Appendix D. One-Loop Effective YM Lagrangian

Let us briefly discuss the effective YM theory at the one-loop order. The usefulness
of studying the one-loop case is further motivated by a comparison of the one-loop and
all-loop order expansion in Section 4.5. The standard one-loop SU(N) β-function reads (see,
e.g., Ref. [408])

β1 ≡ −B1 ḡ2
1 , B1 =

bN
48π2 , b = 11 , (A28)

and the corresponding solution of the RG equation (Equation (A23)) is given by

ḡ2(J ) =
ḡ2

1(μ
4
0)

1 + B1
2 ḡ2

1(μ
4
0) ln

(
|J |/μ4

0
) . (A29)

Substituting this expression into the effective all-order Lagrangian in Equation (84),
we obtain

L(1)
eff =

J
4ḡ2

1(μ
4
0)

[
1 +

B1

2
ḡ2

1(μ
4
0) ln

( |J |
μ4

0

)]
. (A30)

Making trivial substitutions,

J → −4ḡ2
1(μ

4
0)F , μ4

0 → 2eμ4 , ḡ2
1(μ

4
0) → g2

YM , (A31)

one arrives at another form of the one-loop effective Lagrangian frequently used in the
literature (e.g., Ref. [345] and references therein),

L(1)
eff = −F − bN

96π2 g2
YMF

[
ln
(

2|g2
YMF|
μ4

)
− 1

]
. (A32)

The compact form of the all-order effective Lagrangian used earlier in Equation (84)
straightforwardly produces the standard representation of the one-loop effective La-
grangian upon the redefinitions of Equation (A31), which is reassuring. The usual covariant
renormalization condition on the effective Lagrangian [345]

∂Leff
∂F

∣∣∣
t=0

= −1 , t ≡ 1
2

ln
(

2|g2
YMF|
μ4

)
, (A33)

is apparently satisfied for Equation (A32). Indeed,

∂L(1)
eff

∂F = −1 − bN
96π2 g2

YM ln
(

2|g2
YMF|
μ4

)
→ −1 for ln

(
2|g2

YMF|
μ4

)
→ 0 . (A34)

This condition has been originally employed in Refs. [326,344] to derive the generic
form of the one-loop effective Lagrangian in Equation (A32) (see Ref. [345] and references
therein, for a more elaborate review). In a compact notation of Equation (84), the latter
condition reads

∂Leff
∂J

∣∣∣
t=0

=
1

4ḡ2
1(μ

4
0)

, t ≡ 1
2

ln
(

e|J |
μ4

0

)
. (A35)

Notes

1 The light cone four-vectors are related to Minkowski four-vectors in a standard way k = (k0, k⊥, kz) = [k−, k⊥, k+] where
k± = k0 ± kz. The Minkowski dot product in light-cone coordinates is k · p = 1

2 (k
+p− + k−p+)− k⊥ · p⊥.
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2 In the early universe with ε ∼ T4 ∼ a−4, the saturation scale Q2
s (x) ∼ αS(T)RA(T) ∼ [T ln T]−1 was extremely small.

3 Let us recall that at the temperatures T � TQCD
c , most of the gluons are forming the condensate and are thus in the equilibrium

but do not participate in two-particle scatterings.
4 It is worth mentioning that even though a fluid filling a FLRW universe (38) homogeneously is static in the comoving frame

uμ = (1, 0, 0, 0), the expanding geometry induces a nonzero fluid expansion rate ∂μ(
√−g)uμ/

√−g = 3H(t), where g = −a6(t)
is the determinant of the FLRW metric tensor gμν with k = 0.

5 One of the authors (M.Š.) would like to thank Petr Jizba for pointing out this analogy.
6 By means of the following ansatz: a(t) = a∗ exp

[
f (t)

]
, the equation for the scale factor can be rewritten as

f̈ − h̃(t)( ḟ )2 + Ah̃(t) = 0,

with h̃(t) = 1
2
(

g(t)− 3
)

and A = κεCC
3 . The introduction of m(t) ≡ ḟ , results in a first-order equation that may be solved. It is

explicitly
ṁ − h̃(t)m2(t) + Ah̃(t) = 0 .

The scale factor is therefore found in terms of the integral of the solution for m(t) as

a(t) = a∗ exp
[∫ t

t0

dt m(t)
]

.

7 For the case of the simple background considered in Section 4.4, Aμ = Āμ + aμ , then Γ(n,m)
k

[
Ā, a

]
= δn

(δĀ)n
δm

(δa)m Γk
[
Ā, a

]
.
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Abstract: The history of dark universe physics can be traced from processes in the very early universe
to the modern dominance of dark matter and energy. Here, we review the possible nontrivial role of
strong interactions in cosmological effects of new physics. In the case of ordinary QCD interaction,
the existence of new stable colored particles such as new stable quarks leads to new exotic forms of
matter, some of which can be candidates for dark matter. New QCD-like strong interactions lead to
new stable composite candidates bound by QCD-like confinement. We put special emphasis on the
effects of interaction between new stable hadrons and ordinary matter, formation of anomalous forms
of cosmic rays and exotic forms of matter, like stable fractionally charged particles. The possible
correlation of these effects with high energy neutrino and cosmic ray signatures opens the way to
study new physics of strong interactions by its indirect multi-messenger astrophysical probes.

Keywords: cosmology; particle physics; physics beyond the standard model; particle symmetry;
stable particles; dark matter; cosmic rays

1. Introduction

The modern standard model of cosmology, involving inflation, baryosynthesis and dark
matter/energy finds its basis beyond the standard model (BSM) of electroweak (EW) and strong
interactions, thus moving the physics of the universe to the dark side of the fundamental physics.
These phenomena determine the history of the cosmological evolution that resulted in the modern
structure of the universe [1–8].

BSM physics not only provides a physical basis for the standard elements of cosmological
construction, but also inevitably involves new nonstandard cosmological and astrophysical features
(see [9,10] for review and references). Here, we study such features, which may appear as signatures
for the new physics of strong interactions.

In the strong interaction of the standard model (QCD), new physics comes from colored states
with new quantum numbers. If these new charges are conserved, the lightest particle which possesses
this property is stable and can have important cosmological impact. An interesting feature of new
stable heavy quarks is their binding by chromo-Coulomb forces in heavy quark clusters with strongly
suppressed hadronic interaction, making their properties more close to the features of leptons.

BSM models can involve additional non-abelian symmetry, giving rise to new composite particles,
whose constituents are bound by QCD-like confinement. Such states may have exotic features of
multiple or fractional charge leptons.

Universe 2020, 6, 196; doi:10.3390/universe6110196 www.mdpi.com/journal/universe
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In the present review we discuss predictions of QCD and QCD-like models for possible new forms
of stable matter and dark matter candidates (Section 2) as well as their effects and multi-messenger
probes in the galaxy (Section 3).

2. New Physics from QCD and QCD-Like Models

2.1. General Features of New Physics of Strong Interactions in Dark Cosmology

Models adding new symmetry to the symmetry of the standard model (SM) predict new conserved
quantum numbers, which provide stability of the lightest particle that possesses them. Such a particle
can also possess QCD color and constitute new stable hadrons.

The addition of new non-abelian symmetry involves QCD-like interactions binding new QCD-like
constituents in new composite states. Such composite states do not have ordinary hadronic interaction
and look like leptons in their interaction with baryonic matter.

These new stable particles can be dark matter (DM) candidates, since even hadronic interaction
with cosmological plasma is not sufficiently strong to hinder the decoupling of gas of stable hadrons.

2.1.1. New Stable Quarks

Hadronic dark matter (HaDM) is one of the natural variants of strongly interacting dark matter
scenario. The most popular candidates, weakly interacting massive particles (WIMP), have not yet been
discovered. Moreover, strong restrictions on WIMP-nucleon scattering cross section [11] exclude some
variants of WIMP scenarios. Some scenarios of DM with strongly interacting massive particles (SIMP)
are presented in Refs. [10,12–15]. As was noted in the introduction, usually strongly self-interacting
dark matter scenarios are realized by introducing extra groups of gauge symmetry and additional
sets of fields. Here, we consider the scenario with hadronic DM, which contains a minimal set of new
fields. Namely, heavy singlet quark. This scenario is realized in the framework of grand unification
scheme (for example, E6-theory or SU(5) supersymmetric extension contain SU(2)-singlet quark). We
should note that hadronic DM is not only self-interacting; hadron-type DM particles strongly interact
with ordinary matter. Here, we give a brief description of the origin and main properties of new stable
quarks which enter the new heavy hadrons as DM particles.

In the scenario with heavy HaDM, new hadrons consist of new heavy stable quarks Q and light
standard ones, q. New quarks possess standard strong (QCD-type) interactions and, together with
standard quarks, form mesonic M = (qQ) and fermionic F1 = (qqQ), F2 = (qQQ), F3 = (QQQ)

composite states. New heavy quarks arise in the extension with singlet quarks [14], chiral-symmetric
models [15,16] and 4th generation standard model extensions [17–19]. Principal properties of new
heavy hadrons and their phenomenology were presented in Refs. [10,14,15]. It was underlined in
these works that the repulsive character of DM-nucleon interactions makes it possible to escape rigid
cosmochemical restrictions on the relative concentration of anomalous hydrogen and helium [10,16].
In this subsection, we briefly present a theoretical base of the HaDM scenario, which is constructed in
the framework of the extension with a singlet quark [14] and chiral-symmetric model [15].

The minimal Lagrangian of the extension of SM with new stable quarks is as follows:

L = LSM + LQ, (1)

where LQ describes interaction of new quarks Q with gauge bosons. In the case of singlet quark Qs

Lagrangian is defined in standard way:

LQ
s = iQ̄sγμ(∂μ − ig1qQVμ − igsttaGa

μ)Qs − MQQ̄sQs. (2)

In (2), the matrix ta = λa/2 are generators of SUC(3)-group and MQ is the mass parameter of Q.
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The chiral-symmetric extension of SM has an additional set of up and down quarks with
anti-symmetric (with respect to standard one) chiral structure:

Q = {QR = (UR, DR); UL, DL} (3)

The structure of covariant derivatives follows from this definition:

DμQR =(∂μ − ig1YQVμ − ig2

2
τaVa

μ − ig3tiGi
μ)QR;

DμUL =(∂μ − ig1YUVμ − ig3tiGi
μ)UL,

DμDL =(∂μ − ig1YDVμ − ig3tiGi
μ)DL. (4)

In the equations in (4), the values YA (A = Q, U, D) are hypercharges of quarks’ doublets and
singlets and ti are generators of the SUC(3)-group. The gauge fields Va

μ are superheavy chiral partners
of standard gauge fields. Further, we consider some specific variant of the chiral-symmetric model
with vector-like interaction of new quarks with gauge bosons [10].

The structure of interactions in the extension with singlet quarks and in the chiral-symmetric
model has a vector nature in both cases. So, we use universal expression for the Lagrangian model of
EW interactions:

L(Qa, A, Z) = ga(cw Aμ − swZμ)Q̄aγμQa, Qa = Qs, U, D, (5)

where ga = g1qa and qa = 2/3 or qa = −1/3 for the case of up or down new quark. The definitions of
charges for quarks U and D in chiral-symmetrical scenario are standard also. These assumptions make
it possible to form neutrally coupled states with standard quarks. In the models under consideration,
vector interaction of new heavy quarks with gauge vector fields gives small contributions to
polarizations. So, the contributions of new quarks into Peskin–Takeuchi (PT) parameters S, T, U,
which describe their effects in electroweak physics, are small too. Using standard definitions of the PT
parameters and vertices in (5), by a straightforward calculation, we get for the parameters S and U
(T = 0) the following expressions:

S = −U =
ks4

w
9π

[−1
3
+ 2(1 + 2

M2
Q

M2
Z
)(1 −

√
β arctan

1√
β
)]. (6)

Here, β = 4M2
Q/M2

Z − 1, k = 16(4) for the case of singlet quark model with the charge q =

2/3(−1/3), and k = 20 for the case of chiral-symmetric model. From Equation (6), it follows that for
heavy new quarks with mass MQ > 500 GeV the value of parameters S = −U < 10−2 is significantly
less than the experimental limits [20]:

S = 0.00 + 0.11(−0.10), U = 0.08 ± 0.11, T = 0.02 + 0.11(−0.12). (7)

Thus, the scenarios with vector-like new heavy quarks are not excluded by EW experimental
restrictions. There are, also, EW restrictions which follow from the presence of flavor-changing neutral
currents (FCNC). In the scenario under consideration, new quarks do not mix with standard quarks
and FCNC at the tree level are absent. So, there are no additional restrictions which follow from the rare
processes, such as rare decays of mesons and the mixing in the systems of neutral mesons (oscillations).

The potential of interaction of new heavy mesons and nucleons, as was shown in Ref. [10],
has repulsive character. So, new hadrons do not form coupled states with ordinary matter and this
effect excludes the formation of anomalous hydrogen and helium. Thus the scenario with hadronic DM
does not contradict rigid cosmochemical restrictions on the relative concentration of these elements [10].
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2.1.2. QCD-Like Models

For almost forty years, many efforts have been invested in developing SM extensions conjecturing
the existence of new nonperturbative BSM physics. In particular, such models can postulate that the
Higgs boson is a composite object consisting of some new fundamental constituents held together by
an analog of strong force. There are many brilliant reviews surveying different aspects of this huge
field in detail, e.g., [21–29].

In this section, we consider some particular variants of models that extend SM by introducing an
additional strong sector with heavy vector-like fermions, hyperquarks (H-quarks), charged under an
H-color gauge group [30–41]. Depending on H-quark quantum numbers, such models can encompass
scenarios with composite Higgs doublets (see, e.g., [42]) or a small mixing between fundamental Higgs
fields of SM and composite hadron-like states of new strong sector making the Higgs boson partially
composite. Models of this class leave room for the existence of DM candidates whose decays are
forbidden by accidental symmetries. Besides, H-color models comply well with electroweak precision
constraints, since H-quarks are assumed to be vector-like.

Among the simplest realizations of the scenario described are models with two or three
vector-like H-flavors confined by strong H-color force Sp(2χc̃), χc̃ � 1. The models with H-color
group SU(2) [37,43] are included as particular cases in this consideration due to isomorphism
SU(2) = Sp(2) [37,43]. The global symmetry group of the strong sector with symplectic H-color
group is larger than for the special unitary case—it is the group SU(2nF) broken spontaneously to
Sp(2nF), with nF being a number of H-flavors. Going beyond the simplest (two-flavor) model is of
interest because the phenomenology of such models is richer involving new fractionally charged states
that can be stable. We posit that the extensions of SM under consideration preserve the elementary
Higgs doublet in the set of Lagrangian field operators. This doublet mixes with H-hadrons, which
makes the physical Higgs partially composite. The same coset SU(2nF)/Sp(2nF) can be used to
construct composite two Higgs doublet model [42] or little Higgs models [44–49].

It should be also noted that there are multiple options of assigning electroweak quantum numbers
to new H-quarks charged under symplectic color gauge group. In the two-flavor case, for example,
there are two possibilities. Except for the model with vector-like H-quarks considered in this paper,
one can also build a model with one left-handed doublet and two right-handed quark singlets (e.g.,
see [21]).

Let us consider a model with the symmetry G = GSM × Sp(2χc̃), χc̃ � 1, with GSM and Sp(2χc̃)

being the SM gauge group and a symplectic hypercolor group respectively. In its field content,
the model introduces a doublet and a singlet of heavy vector-like H-quarks charged under H-color
group. Then, in the renormalizable case, the most general Lagrangian invariant under G reads

L = LSM − 1
4

Hμν
a Ha

μν + iQ̄ /DQ − mQQ̄Q + iS̄ /DS − mSS̄S + δLY, (8)

DμQ =

[
∂μ +

i
2

g1YQBμ − i
2

g2Wμ
a τa −

i
2

gc̃Hμ
a λa

]
Q, DμS =

[
∂μ + ig1YSBμ − i

2
gc̃Hμ

a λa

]
S, (9)

where Hμ
a , a = 1 . . . χc̃(2χc̃ + 1) are hypergluon fields and Hμν

a are their strength tensors; τa are the
Pauli matrices; λa, a = 1 . . . χc̃(2χc̃ + 1) are Sp(2χc̃) generators satisfying the relation

λT
a ω + ωλa = 0, (10)

where T stands for “transpose”, ω is an antisymmetric 2χc̃ × 2χc̃ matrix, ωTω = 1. Hereafter,
all underscored indices correspond to representations of the H-color group Sp(2χc̃). In the
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Lagrangian (8), the contact Yukawa couplings δLY of the H-quarks and the SM Higgs doublet H are
permitted by the symmetry G if the hypercharges YQ and YS satisfy an additional linear relation:

δLY = yL (Q̄LH ) SR + yR (Q̄RεH̄ ) SL + h.c. for
YQ

2
− YS = +

1
2

; (11)

δLY = yL (Q̄LεH̄ ) SR + yR (Q̄RH ) SL + h.c. for
YQ

2
− YS = −1

2
. (12)

It is a simple exercise to prove that the hypercolor part of the H-quark Lagrangian (8) can be
rewritten in terms of a left-handed sextet as follows:

δLH-quarks, kin = iP̄L /DPL, PL =

⎛⎜⎜⎜⎝
QL

εωQR
C

SL

−ωSR
C

⎞⎟⎟⎟⎠ , DμPL =

[
∂μ − i

2
gc̃Hμ

a λa

]
PL, (13)

where ε = iτ2, the operation C denotes the charge conjugation. Equation (13) makes it obvious that,
in the absence of the electroweak interactions, the H-quark Lagrangian is invariant under an extension
of the chiral symmetry—a global SU(6) symmetry, dubbed the Pauli–Gürsey symmetry [50,51].
The subgroups of the SU(6) symmetry include:

• The chiral symmetry SU(3)L × SU(3)R;
• SU(4) subgroup corresponding to the two-flavor model without singlet H-quark S;
• Two-flavor chiral group SU(2)L × SU(2)R, which is a subgroup of both former subgroups.

The global symmetry is broken both explicitly and dynamically:

• Explicitly—by the electroweak and Yukawa interactions, (9) and (11), and the H-quark masses;
• Dynamically—by H-quark condensate [52,53]:

〈Q̄Q + S̄S〉 = 1
2
〈P̄LM0PR + P̄RM†

0 PL〉, PR = ωPL
C, M0 =

⎛⎜⎝0 ε 0
ε 0 0
0 0 ε

⎞⎟⎠ . (14)

The condensate (14) is invariant under Sp(6) ⊂ SU(6) transformations U that satisfy a condition

UTM0 + M0U = 0, (15)

i.e., the global SU(6) symmetry is broken dynamically to its Sp(6) subgroup. The mass terms of
H-quarks in (8) could break the symmetry further to Sp(4) × Sp(2):

δLH-quarks, masses = −1
2

P̄LM′
0PR + h.c., M′

0 = −M′
0

T =

⎛⎜⎝ 0 mQε 0
mQε 0 0

0 0 mSε

⎞⎟⎠ . (16)

It should be noted that the model under consideration is free of the gauge anomalies and can
be easily reconciled with the electroweak precision constraints, since the H-quarks are vector-like,
i.e., their electroweak interactions are chirally symmetric.

The effective interactions of H-hadrons can be described in a linear σ-model involving
the fundamental (not composite) Higgs doublet H and constituent H-quarks as independent
degrees of freedom. The Lagrangian of the model can be broken down into four sectors—(1)
a sector of the constituent H-quarks (containing interactions of the quarks with gauge bosons),
(2) Yukawa interactions of the (pseudo)scalars with the H-quarks, (3) a sector of (pseudo)scalar
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fields (which produces their self-interactions and interactions with the Higgs boson), and (4) terms
communicating the explicit breaking of the SU(2nF) global symmetry to the effective fields:1

LLσ = LH-quarks +LY +Lscalars +LSB, (17)

LH-quarks = iP̄L /DPL, LY = −
√

2κ
(

P̄LMPR + P̄RM†PL

)
, (18)

Lscalars = DμH † · DμH + Tr Dμ M† · Dμ M − Uscalars, LSB = −ζ〈Q̄Q + S̄S〉(u + σ′). (19)

Here, κ is a coupling constant; the parameter ζ is proportional to the current mass mQ of the
H-quarks (see [57,58], for example); M is a complex antisymmetric 2nF × 2nF matrix of (pseudo)scalar
fields whose singlet component develops a v.e.v. u ∼ −〈Tr (MM0)〉; the multiplets PL, R correspond
now to the constituent H-quarks that are postulated not to interact with H-gluons but interact with the
intermediate gauge bosons in the same way as the fundamental H-quarks. The fields transform under
the global symmetry SU(2nF) as follows:

M → UMUT, PL → UPL, PR → ŪPR, U ∈ SU(2nF), (20)

where Ū is the complex conjugate of U. These transformation laws allow one to define the covariant
derivatives of the fields PL, R and M easily (see explicit expressions in [10]).

The physical (pseudo)scalar components of the field M are listed in Table 1. They include heavier
analogs of all the light mesons of 3-flavor QCD and a set of H-baryons (H-diquarks)—singlets A and
B, and doublets A and B. The Lagrangian of H-quark–H-hadron interactions reads

LH-quarks +LY = iQ̄ /DQ + iS̄ /DS −κu (Q̄Q + S̄S)

−κQ̄
[

σ′ +
1√
3

f + i
(

η +
1√
3

η′
)

γ5 + (aa + iπaγ5) τa

]
Q −κS̄

[
σ′ − 2√

3
f + i

(
η − 2√

3
η′
)

γ5

]
S

−
√

2κ [(Q̄K �) S + i (Q̄K ) γ5S + h.c.]−
√

2κ
[
(Q̄A )ωSC + i (Q̄B) γ5ωSC + h.c.

]
− κ√

2

(
AQ̄εωQC + iBQ̄γ5εωQC + h.c.

)
, (21)

DμQ = ∂μQ +
i
2

g1YQBμQ − i
2

g2Wa
μτaQ, DμS = ∂μS + ig1YSBμS, (22)

where K �, K and A , B are SU(2)L doublets of H-mesons and H-baryons respectively.
The Lagrangian for the case of two-flavor model, nF = 2, is obtained by simply neglecting all terms
with the singlet H-quark S in Equation (21).

The kinetic terms of the (pseudo)scalars in the Lagrangian (19) produce interactions of the
H-hadrons with the gauge bosons:

Tscalars =
1
2 ∑

ϕ

Dμ ϕ · Dμ ϕ + ∑
Φ

(
DμΦ

)† DμΦ + Dμ Ā · Dμ A + Dμ B̄ · DμB, (23)

where ϕ = h, ha, πa, aa, σ, f , η, η′ are singlet and triplet fields, Φ = K , K �, A , B are doublets.
The fields h and ha, a = 1, 2, 3 are components of the fundamental Higgs doublet H = 1√

2
(h +

ihaτa)
(

0
1
)
. The covariant derivatives in the Lagrangian (23) are defined as follows:

1 Although the non-invariant terms responsible for the explicit symmetry breaking can be chosen in a variety of ways [54–56],
we constrain ourselves to the most obvious tadpole-like one (as in [57,58], for example).
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Dμh = ∂μh +
1
2
(g1δa

3Bμ + g2Wa
μ)ha, Dμφ = ∂μφ, φ = σ, f , η, η′, (24)

Dμha = ∂μha −
1
2
(g1δa

3Bμ + g2Wa
μ)h − 1

2
eabc(g1δb

3Bμ − g2Wb
μ)hc, (25)

Dμ Ma = ∂μ Ma + g2eabcWb
μ Mc, M = π, a, DμZ = ∂μZ + ig1YQBμZ, Z = A, B, (26)

DμK =

[
∂μ + ig1

(
YQ

2
− YS

)
Bμ − i

2
g2Wa

μτa
]

K , (27)

DμK � = DμK
∣∣
K →K � , DμA = DμK

∣∣∣∣K →A
YS→−YS

, DμB = DμK

∣∣∣∣K →B
YS→−YS

. (28)

Table 1. The lightest (pseudo)scalar H-hadrons in Sp(2χc̃) model with two and three flavors of
H-quarks (in the limit of vanishing mixings). The lower half of the table lists the states present only in
the three-flavor version of the model containing the singlet H-quark S. T is the weak isospin. G̃ denotes
hyper-G-parity of a state. B̃ is the H-baryon number. Qem is the electric charge (in units of the positron
charge e = |e|). The H-quark charges are QU

em = (YQ + 1)/2, QD
em = (YQ − 1)/2, and QS

em = YS,
which is seen from (22).

State H-Quark Current TG̃(JPC) B̃ Qem

σ Q̄Q + S̄S 0+(0++) 0 0
η i (Q̄γ5Q + S̄γ5S) 0+(0−+) 0 0
ak Q̄τkQ 1−(0++) 0 ±1, 0
πk iQ̄γ5τkQ 1−(0−+) 0 ±1, 0
A Q̄CεωQ 0 (0− ) 1 YQ
B iQ̄Cεωγ5Q 0 (0+ ) 1 YQ

f Q̄Q − 2S̄S 0+(0++) 0 0
η′ i (Q̄γ5Q − 2S̄γ5S) 0+(0−+) 0 0

K � S̄Q 1
2 (0+ ) 0 YQ/2 − YS ± 1/2

K iS̄γ5Q 1
2 (0− ) 0 YQ/2 − YS ± 1/2

A S̄CωQ 1
2 (0− ) 1 YQ/2 + YS ± 1/2

B iS̄Cωγ5Q 1
2 (0+ ) 1 YQ/2 + YS ± 1/2

For simplicity, we consider only renormalizable interactions of the scalar fields—the Higgs boson
and (pseudo)scalar H-hadrons. Therefore, the corresponding potential can be written as follows:

Uscalars =
4

∑
i=0

λi Ii +
3

∑
0=i�k=0

λik Ii Ik. (29)

Here, Ii, i = 0, 1, 2, 3, 4 are the lowest dimension invariants

I0 = H †H , I1 = Tr
(

M† M
)

, I2 = Re Pf M, I3 = Im Pf M, I4 = Tr
[(

M† M
)2
]

, (30)

where Pf M is the Pfaffian of M defined as

Pf M =
1

222!
εabcd Mab Mcd for nF = 2, Pf M =

1
233!

εabcde f Mab Mcd Me f for nF = 3, (31)

with ε being the 2nF-dimensional Levi-Civita symbol (ε12...(2nF)
= +1). In the potential (29), λi2 =

λi3 = 0 for all i if nF = 3; the invariant I3 is CP odd, i.e., λ3 = 0 as well as λi3 = 0 for i = 0, 1, 2.
Besides we can always set λ22 = 0 because of the identity I2

1 − 4I2
2 − 4I2

3 − 2I4 = 0 that holds for
nF = 2. (For nF = 3, the corresponding term is nonrenormalizable and, thus, not taken into account.)
One can derive and solve tadpole equations and diagonalize the quadratic forms in the scalar potential
to obtain the mass spectrum of the (pseudo)scalar H-hadrons (see [10]). Note that the term I0 I1 leads
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to a small mixing of the Higgs field and the singlet H-meson σ′ making the Higgs boson partially
composite in this model.

If the hypercharges of H-quarks are set to zero, the Lagrangian (8) is invariant under an additional
symmetry—hyper G-parity [59,60]:

QG̃ = εωQC, SG̃ = ωSC. (32)

Since H-gluons and all SM fields are left intact by (32), the lightest G̃-odd H-hadron becomes
stable. It happens to be the neutral H-pion π0.

Besides, the numbers of doublet and singlet quarks are conserved in the model (8), because of
two global U(1) symmetry groups of the Lagrangian. This makes two H-baryon states stable—the
neutral singlet H-baryon B and the lightest state in doublet B, which carries a charge of ±1/2.

2.2. Exotic States of New Colored Objects

2.2.1. Fractons

Mixed states with nontrivial electroweak and dark QCD charges (or vice versa, dark electroweak
and ordinary QCD charges) can appear as fractionally charged colorless states (fractons), as first
proposed in [61]. It should be noted that the term “fracton” has appeared later in condensed matter
physics [62] defining the density of states on fractals. Here we use the original notion of fracton as
fractionally charged colorless state.

One can distinguish leptonic and hadronic X particles, forming correspondingly leptonic and
hadronic fractons.

Leptonic fractons are originated from a new lepton like state X-lepton with fractional
electromagnetic charge and dark QCD color. Dark QCD confinement binds it with dark QCD quarks
in a dark colorless state, which possess fractional electromagnetic charge. Created in early universe
X-leptons and their antiparticles are bound with corresponding dark QCD quarks and antiquarks to
form leptonic fractons. Similar to the case of free quarks, studied in [63], negatively charged fractons
can be bound with ordinary positively charged nuclei in stars thus protecting positively charged
fractons from their annihilation. As a result, the amount of primordial fractons cannot decrease and as
it is the case that free quarks [63] exceed by several orders of magnitude experimental constraints in
the search for fractionally charged particles in the terrestrial matter.

Hadronic fractons appear when X-quarks, having dark electroweak and ordinary QCD charges
bind with ordinary quarks in fractional charged colorless states. In baryon asymmetric universe X̄
antiquarks are bound with ordinary quarks u in fractionally charged stable meson X̄u, while X-quark
forms fractionally charged Xud baryon. If dark electromagnetic attraction can overcome ordinary
electromagnetic repulsion, in the dense baryonic matter objects X-meson and X-baryon can recombine
in charmonium-like X̄X, decaying to ordinary particles, and reduce the abundance of fractons below
the experimental upper limit.

2.2.2. Fractionally Charged States in QCD-Like Models

As it follows from the above, in the hypercolor SM extension with three doublets of additional
H-quarks and in the case of zero hypercharges, the Lagrangian contains interacting field of hypermeson
B, the lightest state in doublet, carrying fractional charges ±1/2. These new H-mesons contain singlet
H-quark, s. The problem of such hyperparticle interpretation in SU(6) extension is aggravated
by the fact that the model invariance with respect to two U(1) groups ensures of these objects
stability (simultaneously with the one for neutral singlet H-baryon B). At the same time, very strict
restrictions are imposed on the concentration of fractionally charged particles in the modern universe.
It can be said that within the framework of this SU(6) scenario, such fractionally charged particles
should either be created in some bound states (possibly, these are an analog of QCD tetraquarks),
or effectively annihilated.
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To describe their arising as some bound states from the very beginning, it is reasonable to try to
rewrite the Lagrangian model in such a manner that compound H-quark objects could interact with
other fields. In other words, we should construct effective vertices for the H-tetraquark interactions
with gauge bosons and other H-hadrons. Obviously, only electromagnetic interaction of these
fractionally charged components cannot explain an appearance of such multi-H-quark states at
the early stage of universe evolution. It means that, for this procedure, we need to analyze how
hyperstrong interactions of H-quarks and H-gluons can work at very high temperatures and densities
producing strongly connected systems instead of using effective σ-model construction. In other words,
we need to consider at high energy scale some hyper-QCD with analogous problems of the bound-state
description in the framework of effective Lagrangian approach, with an integration over some degrees
of freedom or introducing of hyper-vacuum v.e.v.’s for the analysis of the bound states of H-quarks
with sum rules method, for example. Then, we would come to consideration of hyper-tetraquarks
as H-quark bags, repeating procedures and approaches of orthodox QCD at other scale. It means
an investigation of the dynamics and magnitudes of H-quark and H-gluon vacuum condensates,
providing an existence of H-quark “bags” with some mass, structure and specific interactions with
fields of matter in a hot and dense universe. So, this mechanism of H-strong interaction as the basis for
the explaining of neutral H-quark states formation should be carefully considered in detail.

It can be, however, assumed that the symmetry breaking occurs and, correspondingly, fractionally
charged objects appear at an early stage of evolution, apparently at the initial stage of inflation when
their creation should be accompanied by a rapid transformation (annihilation) into “ordinary” stable
neutral carriers of DM and fields of matter. Due to the presence of vertices describing their connection
with W and Z-bosons in the σ-model framework, there is both the creation of (still massless) leptons
and standard quarks, as well as the transition of fractionally charged particles into neutral components
of the DM. Possible quick disappearing of charged stable particles in annihilation reactions can be
suggested as an alternative way to save the scenario with U(1) accident symmetries.

It also should be suggested, when the annihilation can be—before or after the hyper-QCD
symmetry breaking? In other words, when all masses are zero or when already massive fractionally
charged particles transform into the set of H-neutral mesons and ordinary quarks and leptons?
Because these variants of high-energy sector of H-fields remains unstudied yet, the question whether
some traces of the initial process exist in the modern observable universe, namely, creation and
following transformation of fractionally charged stable particles does not have an exact answer.

If we suppose that the process of intensive annihilation into neutral particles and/or states with
integer charges takes place mostly through H-strong channels where H-quarks interact via H-gluons, it
should be before these exotic H-mesons will scatter across the universe due to inflation. Early possible
initial inhomogeneities in distribution of this type of matter should effectively transform into neutral
stable objects of the orthodox DM, and in these regions of increased density (prototypes of clumps)
also should be produced photons with energies ∼ MDM and streams of neutrinos and ordinary leptons
and mesons. Perhaps inflation will keep some fingerprints of active processes of creation of photons
and neutrino radiation from initial high density domains. However, the long evolution of the universe
after inflation will inevitably try to hide the total and exact history of DM clumps’ origin accompanied
with high energy photons and neutrinos.

An important channel of B-mesons connection with the SM world follows from (23)
and (24)—these fractionally charged exotic stable states have EW interactions with W-bosons and also
interact with Z-bosons and photons. It means that they participate in the standard set of reactions with
ordinary matter, i.e., they annihilate or produced with the EW cross sections ∼(102–104) pb.

There is, however, some specific feature of the scenario—two B-states with the same fractional
charges can annihilate into one charged W-boson, which decays into quarks or leptons conserving
the charge. Assuming an existence of some initial asymmetry between these exotic states, it can be
supposed that this is a source of the following asymmetry between standard quarks and, consequently,
between baryons. Certainly, then we shift the baryon asymmetry origin to an early stage of evolution
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relating the symmetry breaking possibly with initial stage of inflation and processes of the hidden
mass generation.

Besides, these stable objects (as the other stable particles in H-color model), if they were to exist,
can be produced at collider by decaying virtual vector bosons. These reactions should have small
(electroweak) cross sections manifesting itself as events with large missed energy and/or in generation
of hadronic jets with corresponding fractional charge associated with H-quarks.

It can be concluded, in the hypercolor extension, as, probably, in any extension with additional
(heavy) fermions, new types of stable particles may appear. They can arise as the QCD-like bound
states of additional quarks (mesons, baryons or diquarks) or in the framework of the extended
σ-model. Dynamics of these new objects is defined by the model gauge symmetry, but spectra of their
masses and the scale of their manifestations are unclear in advance. An example is the appearance of
fractionally charged stable objects when we extend the hypercolor symmetry from SU(4) to SU(6).
The peculiarities of such scenarios need to be considered carefully by studying the burn out kinetics
of these stable particles, scales of symmetry breaking induced by new types of vacuum condensates.
The H-color symmetry allows to analyze specific features of these extended scenarios predicting the
specific and measurable signals of new objects.

2.2.3. Multiple Charged States in QCD and QCD-Like Models

Δ-like states of new stable heavy quarks Q are stable and bound much stronger than ordinary
hadrons since their chromo-Coulomb binding energy α2

c mQ exceeds the energy of confinement Λ ∼
300 MeV at mQ > 7.5 GeV for QCD running constant αc = 0.2 [64]. If such stable states are charged,
they should avoid geochemical constraints on anomalous isotopes [10]. It was first noticed in [65] that
this problem can be solved in the case of stable quark of the 4th family, if the U quark is the lightest and
thus most stable quark in this family and the generation of baryon asymmetry simultaneously provides
generation of excess of Ū quarks. Δ−−-like (ŪŪŪ) can be effectively hidden in nuclear interacting
dark atom bound with primordial helium, as soon as it is formed in Big Bang Nucleosynthesis.

Models with new nonabelian symmetry can predict much wider class of multiple charged stable
particles. Such models can provide non-supersymmetric composite Higgs solution for the SM problems
of divergent mass of Higgs boson and of the origin of the scale of electroweak symmetry breaking.
This approach acquires special interest in the lack of positive results of the searches for supersymmetric
particles at the LHC (see, e.g., [66] for review and references).

The Walking TechniColor (WTC) model involves two techniquarks, U and D transforming under
the adjoint representation of a SU(2) technicolor gauge group [67–71]. A neutral techniquark–antiquark
state is associated with the Higgs boson. The accompanying prediction is the existence of bosonic
technibaryons UU, UD, DD, and their antiparticles. Conservation of the technibaryon number TB
leads to stability of the lightest technibaryon.

Electric charges of UU, UD and DD are given in terms of an arbitrary real number q as q + 1, q,
and q − 1, respectively [7,10,72]. Compensation of anomalies requires existence of technileptons ν′ and
ζ with charges (1 − 3q)/2 and (−1 − 3q)/2, respectively. If technilepton number L′ is conserved the
lightest technilepton is stable.

In the early universe sphaleron transitions provide equilibrium relationship between TB, baryon
number B, of lepton number L, and L′. Freezing out of these transitions results in a balance between
the stable techniparticle excess and the observed baryon asymmetry of the universe [10,72,73]. Stable
negatively charged techniparticles are bound in nuclear interacting dark atoms with primordial helium.

In the case of q = 1, stable double charged techniparticles are possible [7,10,72,73].
Another choice of parameter q results in a possibility of multiple −2n charged stable

techniparticles for n > 1. Possible stable multiple charged techniparticles are marked bold in
Table 2 [10].
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Table 2. List of possible integer charged techniparticles. Candidates for even charged constituents of
dark atoms are marked bold [10].

q UU(q + 1) UD(q) DD(q − 1) ν′(1 − 3q
2

) ζ(
−1 − 3q

2
)

1 2 1 0 −1 −2
3 4 3 2 −4 −5
5 6 5 4 −7 −8
7 8 7 6 −10 −11

2.3. Strongly Interacting Dark Matter Candidates

2.3.1. Stable Heavy Quark Hadrons

New heavy quarks possess strong QCD-type interaction, so they can form at hadronization phase
of evolution the coupled states—new heavy mesons, (qQ̄), and fermions, (qqQ), (qQQ), (QQQ).
Classification and the main properties of these new hadrons were considered in [10] for the case of up,
U, and down, D, type of new quark Q. As was noted earlier, the lightest neutral meson appears in the
scenario with new quark of up type. In Table 3, we represent the main quantum characteristics and
quark content of new heavy mesons and fermions which contain new quarks of up type, U.

Table 3. Characteristics and quark content of new hadrons.

JP T Isotopic Content Quark Content

0− 1
2 M = (M0 M−) M0 = Ūu, M− = Ūd

1
2 1 B1 = (B++

1 B+
1 B0

1) B++
1 = Uuu, B+

1 = Uud, B0
1 = Udd

1
2

1
2 B2 = (B++

2 B+
2 ) B++

2 = UUu, B+
2 = UUd

1
2 0 (B++

3 ) B++
3 = UUU

In Table 3, the mesons M0 and baryons B+
1 , B++

2 , B++
3 are stable and the lightest of them, neutral

meson M0, can be proposed as the DM candidate. The evolution of these new heavy hadrons was
briefly considered in Ref. [10], where the process of burning out of heavy baryons was analyzed. Here,
we represent the main properties of new heavy mesons, M0 = (uŪ) and M− = (dŪ), which can lead
to the characteristic signals of the hadronic dark matter.

We have determined the mass of new mesons from the data on DM relic density with the help of
the following equality:

(σ(M)vr)
Mod = (σvr)

Exp. (33)

In Equation (33), the left part of equality is the model value of annihilation cross section and the
right part follows from the data on the modern relic concentration of DM, (σvr)Exp = 2 × 10−9 GeV−2.
To calculate the model cross section σ(M), which is a function of the mass M of meson, we take into
account the fact that the freezing-out temperature Tf reez ≈ M/30 for the case of heavy DM particles
is much greater than the temperature of QCD phase transition, TQCD ≈ 0.15 GeV. So, there are no
coupled hadron states at freezing-out stage and the dynamics of this stage is defined by the process of
annihilation of new quark-antiquark pairs, QQ̄ → gg, qq̄, where g is a gluon and q is a standard quark.
The total cross section of these strong channels of annihilation was calculated in the limit of massless
quarks in the final states and presented in Ref. [10]:

(σ(M))Mod = σ(QQ̄ → gg, qq̄) ≈ 44π

9
α2

s
M2 . (34)

From the expression (34) and equality (33) the estimation of the new quarks mass follows,
M = 10 TeV, which defines mass scale of new hadrons. Electroweak channels of annihilation, QQ̄ →
γγ, ZZ, W+W−, give small contribution into the total value of the annihilation cross section. It is
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known that the Sommerfeld–Gamov–Sakharov (SGS) enhancement effect can significantly modify the
value of a cross section. Such enhancement takes place at hadronization stage of evolution, when SGS
effect is caused by the light meson exchange [10]. At quark-gluon stage this effect can be caused by γ

and Z-boson exchange only. As was shown by numerical calculations [74], in this case the coefficient
of enhancement is of the order of unity, i.e., the effect is small.

The value of mass-splitting in the doublet of neutral, M0 = (uŪ), and charged, M− = (dŪ), new
heavy mesons plays an important role in HaDM description. We define the value of mass-splitting
as follows:

Δm = m(M−)− m(M0). (35)

In the case of standard heavy-light mesons the value Δm is of the order of MeV, besides this
value is positive for the case of D-meson (up type heavy quark) and negative for the case of K- and
B-mesons (down type of heavy quark). New heavy mesons M0 and M− are just the case of heavy-light
meson, mQ � mq. From the heavy quark symmetry, a direct analogy with standard heavy-light
mesons follows, so, in the case under consideration, we can assume that Δm is positive and Δm ∼
MeV. Moreover, the condition of instability of the charged meson M− leads to inequality Δm > me,
where me is the mass of electron. So, the charged partner of neutral DM particle has a unique decay
channel with very small phase space in a final state, M− → M0e−ν̄e. The expression for the width of
the charged meson is as follows [10]:

Γ(M−) =
G2

F
60π3 |Uud|2(Δm5 − m5

e ), (36)

where Uud is the element of CKM matrix, which defines the charged transition d → uW. From the
expression (36) one can see that at Δm → me, the value of width Γ(M−) → 0, i.e., the lifetime can
be arbitrary large. For instance, at Δm ∼ 1 MeV the lifetime τ ∼ 105 s. Thus, in the scenario with
hadronic DM, new neutral meson M0, as a DM candidate, has charged metastable partner with the
same mass, which should be taken into account in the process of co-annihilation. New heavy charged
meson appears in the process of collision of DM with ordinary matter, namely with leptons or nucleons.
The cross sections of these processes were calculated in Ref. [75], where the main signals of hadronic
DM manifestation are considered.

One more principal feature of hadronic DM scenario is the effect of hyperfine splitting of excited
states of new heavy hadrons. First of all, we should note that, in contrast to fine splitting, which is
caused by change of quark content (d → u) and has the value of the order of MeV, hyperfine splitting
takes place for the states with the same quark content and has much smaller value (of the order of KeV).

Further, we describe the effect of hyperfine splitting of ground and excited states, δMq = m(M∗
q )−

m(Mq), where M∗
q is an excited state of heavy meson M. Here, we consider the simplest case of the

lowest excited states of the new mesons Mq = (qŪ). In a direct analogy with the standard heavy-light
(HL) mesons, Dq = (cq) and Bq = (b̄q), we define the ground and excited states in the terms S1

0 and S1
1

(the classification with quantum numbers L2s+1
J ), or 1

2 (0
−) and 1

2 (1
+) (the classification I(JP)). Here,

L, s, J, I and P = (−1)1+L are orbital momentum, spin, total momentum of the system, isospin and
parity. We designate the ground states 1

2 (0
−) of the HL mesons as Dq, Bq and Mq, while the excited

states—as D∗
q , B∗

q and M∗
q . We evaluate the mass-splitting between the excited and ground states, M∗

q
and Mq, in analogy with standard splitting mechanism. This possibility is provided by the heavy
quark symmetry which is the basic assumption of heavy quark effective theory (HQET). Heavy quark
symmetry leads to the relations between the masses of excited states of B and D mesons [76]:

m(B2)− m(B1) ≈
mc

mb
(m(D2)− m(D1)), (37)
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where m(Bk) and m(Dk) are masses of Bk and Dk, mc and mb are masses of constituent quarks.
This expression successfully describes the relation of splitting between the lowest excited 1

2 (1
−) and

ground states 1
2 (0

−) of B and D mesons:

m(B∗)− m(B)
m(D∗)− m(D)

≈ mc

mb
−→ 0.32 ≈ 0.32 (0.28). (38)

In (38), we used m(B∗) − m(B) = 45 MeV and m(D∗) − m(D) = 142 MeV (see [20]),
mc = 1.55 GeV and mb = 4.88 GeV [76]. The value of the relation in parentheses, (0.28), follows
from the data mc = 1.32 GeV and Mb = 4.74 GeV [77]. In order to evaluate the mass-splitting in the
doublet of new mesons Mq = (qŪ), we used the relation (37) and took into consideration the equality
m(U) ≈ m(Mq) = M. Using the value of mass M = 10 TeV, we get:

δm(M)

δm(B)
=

m(M∗)− m(M)

m(B∗)− m(B)
≈ mb

M
−→ δm(M) ≈ δm(B)

mb
M

≈ 2 KeV. (39)

Thus, we get very small mass-splitting (hyperfine splitting) δm, which is much less than the fine
splitting, δm � Δm. This effect follows from the HQFT prediction and is caused by very large mass of
new hadrons, i.e., the hyperfine splitting is a specific property of hadronic DM.

The excited state of hadronic DM particles can manifest itself in the processes of interaction of
neutral meson M0 with radiation. Transition to the first excited state of the meson M0 = (uŪ) can
be realized through the absorption of photons in KeV range which corresponds to the wavelength
λ ∼ 10−9 cm. If we assume that the meson M0 = (uŪ) has the size of the order of nucleon radius,
RM ∼ 10−13 cm, then RM � λtrans and interaction of M0 with photons is described by the higher terms
of multipole expansion of the charge distribution in the composite system (uŪ). So, the cross section of
γM0 scattering is small and these mesons can be interpreted as dark matter particles. At λtrans � RM,
i.e., Eγ � 10 MeV, the cross section of interaction γM0 becomes large and dark matter becomes not
absolutely “dark”.

Low-energy interaction of new heavy hadrons with the standard leptons is described in spectator
approach by the effective Lagrangian of WMM interaction in the differential form [75]:

Le f f (WMM) = iGWMUikW+μ(M̄ui∂μ Mdk − ∂μ M̄ui Mdk) + h.c., (40)

where ui = u, c, t; dk = d, s, b; Uik is corresponding element of CKM matrix, Mui = (uiŪ),
Mdk = (dkŪ), and GWM = gUud/2

√
2. The value of effective coupling constant GWM is equal to

the fundamental constant in W-boson interaction with quark. Thus, the spectator approach, which
directly follows from the structure of process at the fundamental (quark) level, is valid for the case of
low-energy interactions.

The structure of low-energy Lagrangian of Z-boson interaction Le f f (ZMM) can be represented in
analogy with Le f f (WMM) by the simplest differential expression with regard to the preservation of
flavor (qi → qi). In contrast to (40), effective coupling GZM is caused by interactions of Z with quarks
Q and q. So, in this case, we meet the problem of an effective coupling definition.

Inelastic scattering of the low-energy leptons on the new heavy M particles is defined by the
t-channel diagram with W-boson in the intermediate state. In the limit of zero lepton mass and
mass-splitting ΔM we get the cross section in the form:

σ(l−M0 → νl M−) =
3g4|Uud|2
210πM4

W
s(1 − M2

s
)2, (41)

where
√

s is full energy in the CMS. In the non-relativistic case, expression (41) can be represented in
the form:

σ(l−M0 → νl M−) =
3G2

F|Uud|2
8π

(El + W)2, (42)
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where El is the energy of lepton and W = Mv2/2 is kinetic energy of the non-relativistic M-particle.
The process of lepton scattering on M0 taking into account final states is as follows: l−M0 → νl M− →
νl M0e−ν̄e. So, in this process, the neutrino with energy Eν ∼ El appears together with e−ν̄e-pair
(with total energy E ∼ δM). For the cross section of the process νl M0 → l−M+ we get the same
expression due to neglecting lepton mass in Equation (41).

Heavy hadronic DM particles at the modern stage of evolution are non-relativistic, they have an
average velocity ∼10−3 with respect to the galaxy. From the kinematics of the heavy DM particles and
nucleon collisions it follows (see Ref. [10]) that low-energy interaction can be described by the effective
meson-exchange approach. The nucleon-meson interaction was considered in [78] on the basis of the
gauge scheme realization of symmetry U(1)× SU(3). This scheme was developed and applied to the
interaction of new heavy mesons with ordinary vector mesons [16,79]. The part of physical Lagrangian
which describes the interaction of nucleons and M-mesons with ordinary vector mesons consists of
two terms:

LNMV = LNV + LMV . (43)

In Equation (43) the first term describes interaction of nucleon with usual mesons:

LNV = gωωμ( p̄γμ p + n̄γμn) +
1
2

gρ0
μ( p̄γμ p − n̄γμn)

+
1√
2

gρ+μ p̄γμn +
1√
2

gρ−μ n̄γμ p, (44)

where gω =
√

3g/2 sin θ, g2/4π ≈ 3.4 and sin θ ≈ 0.78.
The second term in Equation (43) describes the interaction of M particles with ordinary

vector mesons:

LMV = iGωMωμ(M̄0M0
,μ − M̄0

,μ M0 + M+
,μ M− − M+M−

,μ)

+
ig
2

ρ0
μ(M̄0M0

,μ − M̄0
,μ M0 + M+

,μ M− − M+M−
,μ)

+
ig√

2
ρ+μ(M̄0M−

,μ − M̄0
,μ M−) +

ig√
2

ρ−μ(M+M0
,μ − M+

,μ M0). (45)

In Equation (45), the coupling constant GωM = gω/3. In Ref. [10], it was shown that scalar
mesons give very small contribution into NM interaction and we omit it here. Note, the interactions
of new mesons with ordinary pseudoscalar mesons (for instance, π-mesons) are absent due to parity
conservation. This is an important property which differs new heavy hadrons from the nucleons.

Low-energy scattering of nucleons on new mesons is described by t-channel diagrams with
ordinary vector and scalar mesons in the intermediate states. The diagrams with pseudoscalar mesons
in the intermediate states are absent at the tree level, while the contribution of scalar mesons is
negligible. So, the dominant contribution is given by the vector-meson exchange (the vector mesons
being ω and ρ mesons).

Now, we consider the kinematics of elastic scattering process MN → MN, where M = (M0, M−)
and N = (p, n). For the case of non-relativistic particles, the maximal value of momentum transfer
Q2 = −q2 is Q2

max = (pk)2 ≈ 4m2
Nv2

r . So, Qmax ≈ mNvr ∼ 10−3mN , the value Qmax is much less than
the mass of the vector mesons mv (mv ∼ mN) and the meson-exchange model is relevant.

Using the expressions for the vertices from the expressions (44) and (45) we calculated the cross
section of the process Na Mb → Na Mb:

σ(Na Mb → Na Mb) =
g4m2

p

16πm4
v
(1 +

kab

sin2 θ
)2, (46)
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where Na = (p, n), Mb = (M0, M−), g2/4π ≈ 3.4, sin θ = 1/
√

3 and kab = ±1 for the case of proton,
p, and neutron, n. Equation (46) implies a rather large cross section, for example σ(pM0 → pM0) ≈ 0.9
barn. We should note that large cross section of NM-scattering can stipulate large interaction of
dark matter halo and galaxy at some stage of their evolution. The problem of interaction between
galaxies and dark matter halo was considered in details in Ref. [80]. Analysis of the low-energy
elastic scattering Na Mb → Na Mb reveals an important peculiarity of the NM-interaction. Using the
connection of potential and amplitude in Born approximation we show that the potential of M-nucleon
interaction at large distances (d ∼ m−1

ρ ) has repulsive character [10,16]. So, new heavy hadrons as DM
particles do not form coupled states with nucleon at low energy, i.e., at the modern stage of evolution.
This effect makes it possible to escape the problem of anomalous hydrogen and helium [10].

The processes of non-elastic scattering of type Na Mb → Nc Md, where Na = (p, n) and
Mb = (M0, M−), have kinematics which is an analog of elastic scattering kinematics. In this case,
the dominant contribution is caused by t-channel diagram with charged ρ±-meson in the intermediate
state. The structure of expression for the cross section explicitly describes the presence of threshold:

σ(Na Mb → Nc Md) =
g4m

8πvrm4
v

√
2m[Ea − Δab]

1/2, (47)

where Ea ≈ mav2
r /2, m(Na) = ma ≈ mb ≈ m, Δab is some combination of mass-splitting ΔM =

m(M+)− m(M0) and Δm = mn − mp ≈ 1.4 MeV, which depends on the structure of the initial and
final states (see Table 2). Expression (47) can be represented in another form:

σ(Na Mb → Nc Md) =
g4m2

8πm4
v
[1 − Δab

Ep
]1/2. (48)

From (47) it can be seen that the process of scattering has a threshold Ethr
p = Δab when Δab > 0.

In Table 4, we present the expressions for the threshold in the case of basic reactions,
namely pM0 → nM+, nM+ → pM0, nM0 → pM− and pM− → nM0.

Table 4. The threshold parameters Δab.

Na Mb → Nc Md Δab = f (ΔM, Δm) Signum Δab

pM0 → nM+ Δp0 = ΔM + Δm Δp0 > 0 (threshold)
nM+ → pM0 Δn+ = −ΔM − Δm Δn+ < 0 (non-threshold)
nM0 → pM− Δn0 = ΔM − Δm Δn0 > 0 (ΔM > Δm)
pM− → nM0 Δp− = −ΔM + Δm Δp− > 0 (ΔM < Δm)

Consider, for example, the first reaction, pM0 → nM+, where Ep ≈ mpv2
r /2. The expression for

threshold Ethr
p = ΔM+Δm ≡ Δp0 gives the value of corresponding relative velocity vthr

r =
√

2Δp0/mp.

For the case Δp0 = 10 MeV we get the value of velocity vthr
r = 0.1 which is significantly greater than

the DM velocity now, vr ∼ 10−3. So, this reaction is kinematically forbidden at the modern stage of
evolution. The third and fourth processes can be both threshold and non-threshold depending on
the value ΔM/Δm. The first, third and fourth processes lead to the intermediate (final) states with
unstable particles. These reactions go through two stages, for example, pM0 → nM+ → pe−ν̄e M0e−ν̄e

and nM0 → pM− → pM0e−ν̄e. We should note that the reaction nM0 → pM− → pM0e−ν̄e is the
most interesting due to presence of long-lived charge particle M−. Note, the indirect evidences of these
particles were reported in Ref. [16] (and references therein). Thus, we get an interesting phenomenology
of low-energy nucleon-DM scattering which has a specific signature.

The process of annihilation M0M̄0 → X, where a standard light particle appears in the final
state X, has some peculiarities in HDM scenario. DM particles M0, in this scenario, are composite
and annihilation proceeds through both strong and EW channels. Note, the theory of high-energy
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interaction of M particles is unknown, however this reaction at the sub-process level, QQ̄ → qq̄, gg →
jets, can be approximately described. With the help of this approach, we estimated the value of
strong part of annihilation cross section, which is described by the formula (34). Here, we note that the
dominant products of annihilation are the pairs of stable particles, pp̄ and small fraction of e+e−, νν̄, 2γ

with total energy Etot ≈ 2M.
In this subsection, we considered the principal phenomenological consequences of the hadronic

composite DM—low-energy strong interaction, fine and hyperfine splitting of excited states.
Strong interaction of DM with ordinary matter raises the problem of the connection between galaxies
and their DM halos, which can contribute additional information to the modern understanding of
galaxy formation. Fine and hyperfine splitting in the set of new heavy mesons leads to the presence
of metastable charged hadron and luminosity of hadronic DM. The generation and possibility of
registration of heavy charged hadron in cosmic rays was briefly described. We also noted that the
effect of hyperfine splitting generates the processes of electromagnetic transition and recombination.
These processes can be launched by the interactions of new hadrons with the ordinary matter and
cosmic rays and lead to the effect of hadronic DM luminosity. Note, the problems of hyperfine splitting
and luminous DM become pressing now in view of the results of underground experiment XENON1T.

2.3.2. Dark Atoms with Primordial Helium

Natural choice of parameters of sphaleron transitions between baryons, leptons and stable
techniparticles leads in WTC model to balance between baryon symmetry and the excess of stable
−2n charged techniparticles, corresponding to the observed dark matter density at the mass of these
particles in the TeV range.

For the sequential 4th family with electroweak SU(2) charges, similar balance can be established
between the excess of stable Ū quarks and baryon asymmetry.

Stable techniparticles behave like charged multiple charged leptons. (ŪŪŪ) states are also
lepton-like, since their hadronic interaction is strongly suppressed [10,64].

Excessive negatively even charged particles bind with primordial helium as soon as it is formed
in the Big Bang Nucleosynthesis.

Double charged particles form OHe dark atoms—a very nontrivial Bohr like atomic system with
heavy lepton-like core and nuclear interacting helium shell with Bohr radius nearly equal to the size of
helium nucleus.

−2n charged techniparticles bind with n primordial helium nuclei in Thomson like XHe atoms
with heavy lepton-like particle inside a nuclear droplet of n helium nuclei.

The Dark atom model has an advantage to explain the puzzles of direct dark matter searches by
annual modulations of their low energy binding with Na nuclei. Strongly interacting shell of dark
atoms provides their slowing down in terrestrial matter making this form of dark matter elusive for
strategy of WIMP searches, involving significant nuclear recoil. However, dark atom interaction with
nuclei can provide a low energy binding and the corresponding effect experiences annual modulations.

This explanation [81] is based on the following picture of OHe interaction with nuclei. OHe is a
neutral atom in the ground state, perturbed by the Coulomb and nuclear forces of the approaching
nucleus. The sign of OHe polarization changes with the distance. At larger distances, Stark-like effect
takes place—the nuclear Coulomb force polarizes OHe so that the nucleus is attracted by the induced
dipole moment of OHe, while as soon as the perturbation by the nuclear force starts to dominate,
the nucleus polarizes OHe in the opposite way so that He is situated more closely to the nucleus,
resulting in the repulsive effect of the helium shell of OHe. Qualitatively, it leads to a shallow potential
well with a low energy bound state in OHe-Na system, while such a state does not exist for heavy
nuclei like xenon. A quantitative description of OHe-nucleus interaction with self-consistent account
for the effects of nuclear and Coulomb forces is crucial to prove this explanation and such a description
can lead to nuclear physics of OHe (or XHe), which determines their physical and astrophysical effects.
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3. New Physics of Strong Interaction in the Galaxy

3.1. New Components of Cosmic Rays

3.1.1. UHECR Interaction with Dark Matter

Mutual transformations of SM particles and their bound states in numerous reactions governing by
conservation laws and known dynamics are necessarily supplemented by interactions with DM objects
in the universe. In addition to the gravitational interaction, the main role is played by electroweak
physics, ensuring the annihilation of dark matter (WIMPs) into standard particles. So, processes
in which DM candidates disappear generating fluxes of (unstable) mesons and baryons, nuclei,
leptons and photons can also be induced by strong interaction. In any case, macroscopic cross sections
of such annihilation processes are proportional to the DM density squared and provide the main set
of possible signals carrying information about the spatial distribution and dynamics of the hidden
mass. Photons, charged leptons and neutrinos can be considered as the most important carriers of
such information; their spectra are measured by space detectors and telescopes with ever increasing
accuracy and completeness. Obviously, due to lack of hopeful results from collider experiments,
our constant efforts to study the DM characteristics in the recent time inevitably reduce to different
ideas and suggestions on indirect searches of DM manifestations in astrophysical data [82–88].

Actually, all final SM particles arise either directly in the processes of annihilation (or decay) of
the DM particles or at the stage of secondary mesons (π0, π±, K etc.) decays. The search for such
signals which unambiguously produced by the hidden mass objects has been going on for a long time,
but there are no reliably confirmed signals yet. It should be noted that the DM annihilation with the
maximum cross section occurs in regions of increased DM density, i.e., in the central regions of the halo
near active galaxy nuclei (AGN), the process can be also amplified in the possible DM clumps [89–93].
In other regions of galaxies, the efficiency of annihilation signals decreases due to the low density
of DM.

Does not considering the decaying super-heavy DM, besides annihilation reactions, the presence
of hidden mass can manifest itself in reactions of high-energy particles scattering on the DM particles.
Such high-energy fluxes of cosmic rays permeate the entire universe, their composition, in addition
to the main components—protons and nuclei of various elements—includes electrons, photons,
neutrinos. Furthermore, aside from the question of how particles of such high energies are generated
and distributed across the universe [94–99], the processes of quasi-elastic and inelastic scattering
of ultra-high energy cosmic rays (UHECR) by DM particles can give important information on the
hidden mass dynamics and its spatial structures. Despite the fact that in this case the macroscopic
cross sections are proportional only to the first power of the DM density, the low probability of such
processes is partially compensated by the specificity of the signature of the final states, i.e., the unique
nature of the signals [100–106].

Obviously, intergalactic magnetic fields strongly affect the propagation of charged leptons;
therefore, information on the sources, conditions, and principles of UHECR generation is mainly
contained in neutrino and photon differential fluxes. Thus, the cosmic rays interactions with hidden
mass particles should be considered as a useful additional tool for studying DM in the universe.
Analysis of such processes should contain not only the cross sections of CR interactions with hidden
mass objects calculated in various DM scenarios, but also an assessment of how the energy distributions
and composition of UHECR can be changed due to quasi-elastic or inelastic interactions with the
DM particles.

As a testing ground for evaluating and discussing the processes of UHECR interaction with
the DM particles, we consider the above described scenario of the SM extension due to additional
fermions—hyperquarks. As we have seen, in the minimal version of the extension (SU(4) → Sp(4)
H-color model), the DM candidates are stable neutral hyperpion (its charged unstable partners in the
triplet of hyperpions have a masses greater by ≈160 MeV and the neutral stable diquark, B0 (see above,
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Section 2.1.2). Here we will assume the masses of these two different DM candidates are practically
equal; the case of an asymmetric DM, when one of the components is heavier than the other, can also
be analyzed [35]. The reason is the calculated mass difference for these components clearly depends on
the scale of renormalization and can be made nonzero. The dependence itself on the renormalization
follows from different H-quark currents corresponding to these stable objects in the scenario. As it
results from numerical analysis, the mass splitting between two components of the DM cannot be more
than (10–15) GeV for reasonable values of renormalization scale, μ = (100–1000) GeV. It, however,
means that one type of the DM components can effectively transform into another with simultaneous
production of soft leptons, neutrino and diffuse photons (see also [107] where the DM components
masses are rather different).

The reason of this soft radiation is that the dominant decay channel of secondary charged
hyperpions is the decay π̃± → π̃0π± with subsequent leptonic decay of ordinary π±. Therefore,
the signature of such a process—creation and subsequent decay of a charged hyperpion—is the
appearance of a (decaying) muon and a muonic (anti) neutrino. Appearance and decay of charged
H-pions is a characteristic feature of the scenario where additional heavy fermions form new H-hadron
states with possibilities of their transformations into each other. Higher unstable H-quark bound states
are not considered here under the assumption that their masses are sufficiently large (some interesting
results about spectra of masses in H-color extensions basing on the lattice calculations can be found
in [108,109]). Specifics of H-color dynamics in this type of models, with two DM components, is that
one of the DM candidates interacts via standard gauge bosons with the SM particles, but the other one
uses for such interactions only scalar exchanges by partly composite Higgs boson and its more heavier
partner, σ̃-meson.

Thus, the scenario under consideration represents of possible types of hidden mass components in
the SM extensions with additional fermions. Due to the presence of DM components that are different
in their nature and origin makes it possible to analyze various channels of interaction of these DM
components with cosmic rays.

Note that in the pioneering work on studying the channels of leptons scattering on the dark
matter [100,102], supersymmetry (SUSY) scenario was used as the basis, and, accordingly, neutralinos
were considered as obvious candidates for the DM particles. In this case, the main subject of analysis
was the secondary photons emitted during the scattering process. It seems to us that reactions in
which not only leptons, as a (small) part of cosmic ray flux, but also neutrinos play an active role are
very informative. Besides, we mean not only neutrino-initiated processes of quasi-elastic interaction,
but also analysis of secondary neutrinos and photons produced in such scattering events.

Masses of the DM components can be extracted from the system of five kinetic equations for
the DM density assuming the existence of freeze-out point for the annihilating DM candidates [105].
Using cross sections in all possible annihilation channels for the DM components, the system of
equations has been solved numerically. Then, we get some regions depending on the model parameters
where the DM relic density is correct (in Figures 1–3 these areas are crosshatched by vertical and
horizontal lines) with H-pions fraction that is less than 25 percents: (0.1047 ≤ Ωh2

HP + Ωh2
HB ≤ 0.1228

and Ωh2
HP/(Ωh2

HP + Ωh2
HB) ≤ 0.25). The crosshatching with oblique lines correspond to areas where

all parameters are exactly the same, but here H-pions fraction make up just over a quarter of the DM
(0.1047 ≤ Ωh2

HP + Ωh2
HB ≤ 0.1228 and 0.25 ≤ Ωh2

HP/(Ωh2
HP + Ωh2

HB) ≤ 0.4). It is understood why
B-component of DM dominates in all valid regions—this is because B0-baryons interact with the world
of ordinary particles only via H-quark and H-pion loops or through exchanges with scalar states,
but H-pions have tree level interactions with weak vector bosons, so they burn out much faster.

Further, hatching with horizontal lines denotes regions where recent DM relic abundance
is not explained by H-color candidates. Regions with vertical hatching are forbidden by
underground-experiment data from XENON collaboration.
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Thus, results of kinetic analysis of two-component dark matter can be presented in the Mσ̃ − Mπ̃

plane in Figure 1 as three allowed areas for the DM masses and other model parameters (v.e.v. u,
mixing angle θ), namely:

Region 1: Mσ̃ > 2mπ̃0 and u ≥ Mσ̃. At small angles of mixing, sθ , and large masses of H-pions it
is possible to obtain a significant fraction of H-pions.

Region 2: the same relation between Mσ̃, mπ̃0 , u but the H-pion mass is smaller, mπ̃ ≈
300–600 GeV, H-pion fraction is small here.

Region 3: Mσ̃ < 2mπ̃ . This domain is always possible and it is presented in all figures. Note,
decay σ̃ → π̃π̃ is prohibited. H-pion fraction in the DM relic can be large if the mass mπ̃0 is large and
the mixing angle is small. In Figures 2 and 3, we illustrate the regions changing for lower values of the
v.e.v. u and sin θ.

Figure 1. Numerical solution of kinetic equations system in a phase diagram in terms of Mσ̃ and mπ̃ ,
other parameters are also indicated.

Figure 2. Analogous phase diagram in terms of Mσ̃ and mπ̃ , but for much smaller u.
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Figure 3. Phase diagram in terms of Mσ̃ and mπ̃ , the same u but the mixing is smaller.

Thus, knowing tree level cross sections of DM components annihilation, from kinetics we estimate
masses of stable hypercolor particles, π̃0 and B0, B̄0 in the range 0.6–1.2 TeV. Here we consider the
case ΔMBπ̃ ≈ 0. Note, due to connection between masses of H-pions and σ̃-meson for zero h − σ̃

mixing, mass of this scalar partner of “nearly standard” Higgs boson is also constrained in some range.
Now, with the estimation of all masses in hand, we can analyze most simple process of quasi-elastic
scattering e−π̃0 → νeπ̃−[105] with a following decay of the charged H-pion.

Cross section was calculated supposing the target (DM particle) gets a small portion of projectile
energy, so W-boson in t-channel is close to its mass shell, the momentum transfer is small and the final
π̃0 is not accelerated in this process (we return to discussion of this important possibility—acceleration
of the DM objects up to TeV energies [110–116]—somewhat later). Then the secondary neutrino and
leptons from the W decay (in the channel π̃− → π̃0W− → π̃0e−ν̄e) or from dominant channel of decay
π̃− → π̃0π− → π̃0μ−ν̄μ should have energies ∼ 102 GeV or even less (see Ref. [43] for details of the
charged hyperpion decays). Then, the cross section of the process and also distributions on energy
and angle of emission for secondary neutrino were found as and the number of possible neutrino
events at IceCube produced by this reaction [105]. Indeed, the electron scattering on the DM objects
can be interesting as a source of high-energy neutrino from Weν vertex or accelerated DM particles
with masses ∼ 1 TeV, when the momentum transferred is sufficiently large.

However, the electron flux is only a small part of the cosmic ray total flux especially at energies
≥ 102 TeV. As a result, we predict a very small fluxes of secondary neutrinos and, consequently,
small probability to detect such events at IceCube [105,106].

At this moment, an important feature of H-color model emerges—we have two DM components
and the process of UHECR scattering should be considered for both types of neutral stable objects.
Moreover, H-baryons B0 are the largest part of the total DM amount, as it follows from kinetic equations
analysis. It follows from the absence of direct interaction of B0-baryons with the standard gauge bosons
and, consequently, with the SM matter. So, the burning out of this component is much slower than for
π̃0 particles.

It seems that there is a chance to introduce the B0 interaction through H-pion and/or H-quark
loops, however for the scattering channels these loops are exactly zero [105]. Thus, we need to consider
more complex tree diagrams, in particular, tree diagrams with the exchange of Higgs boson and its
partner, σ̃-meson, in t-channel give dominant non-zero contribution to the process e−B → νeW−B.
Virtual W−-bosons eventually decay to lν̄l or into light ordinary mesons. Of course, there is similar
scattering reaction with the scalar-state exchange, e−π̃0 → νeW−π̃0, whose amplitude is smaller by
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half as it is seen from the model Lagrangian. Here, we do not take into account small contributions
from diagrams with H-quark loops, hhZ and other multi-scalar vertices [106].

Note, diagrams of this type were recently considered and suggested for the analysis of neutrino
scattering off nucleons [117], their significant contributions were confirmed by direct calculations.
We, however, found that these diagrams present dominant tree level part of cosmic particles scattering
cross section off the DM. To calculate total width of the process with the final state B0e−νν̄ or π̃0e−νν̄,
we have used factorization method [118,119] considering independently amplitudes squared of
subprocesses with intermediate W and Z-bosons and then estimating the (negative) interference
of these contributions. The approach allows us to estimate with reasonable accuracy (no worse than
∼10% due to approximate estimation of the interference) the cross section of an “averaged” process
where the final electron and neutrinos are produced by different vertices, W → lνl and Z → νl ν̄l ,
which practically coincide for the massless leptons.

So, without using complex computer programs we get the value of total cross section and can
estimate also the possibility to detect at IceCube the neutrino signal produced by the process of electron
scattering off the DM. Again, for these reactions we do not consider those phase space regions which
correspond to acceleration of the initial DM particle (so called up-scattered dark matter). In other
words, the final H-baryon (or neutral H-pion) is slow; nearly all energy of the incident electron is
distributed between three final massless particles (electron and pair of neutrinos). Approximately,
energies of secondary neutrinos are in the interval ∼(Ee/3 − Ee).

In calculations, we use two values of masses of H-baryon and σ̃-meson. Note that in the model
there is a correlation between masses of mσ̃ and mπ̃ : m2

σ̃ ≈ 3 · m2
π̃ . This is an exact equality for zero

mixing of Higgs boson and σ̃. Here, we suppose the splitting between masses of H-baryon and π̃ is
very small. It was found that the cross section strongly depends on the mass of DM particle and grows
with the mass increasing.

Now, we should note an interesting type of the scattering processes produced by high-energy
neutrino off the DM components. Namely, there is a small probability to find in the UHECR content
electrons of very high energies, which will initiate creation of high-energy neutrino in the scattering.
Nevertheless, we calculate cross section values for high energy region despite the fact that the cosmic
electrons flux noticeably decreases for these energies; the hope is based on estimation of effective areas
for IceCube—high-energy neutrinos can be detected with a larger probability. Unfortunately, cosmic
electron motion is strongly affected by galactic magnetic fields, so their sources are hardly identified
both in direction and in intensity. Certainly, if we could separate, in all experimental data, signals
from high-energy electron scattering with specific set of final states, it would manifest itself on the
target with defined properties; and, perhaps, it would have been the DM object. Alas, such signals are
practically unobserved for the ground neutrino telescopes due to large and constant background from
the Sun neutrino and neutrinos resulting from decays of mesons and baryons produced by cosmic rays
interactions with nuclei in the Earth atmosphere. We also note that in processes with the production
of secondary neutrinos, acceleration of DM particles can occur simultaneously; such processes can
themselves be initiated by incident high-energy neutrinos [120–122]. In other words, reactions with
participation of high-energy neutrinos which can be accompanied with the DM accelerated seem as
informative and important, especially because both of these particles are, in fact, messengers from
regions of high DM density—regions near AGN or from possible DM inhomogeneities of some other
nature—and early epoch of the universe [123].

In more detail, the secondary neutrino fluxes calculated are very small in comparison with
expected neutrino fluxes from AGN which can be ∼ 105 cm−2s−1sr−1. Atmospheric neutrino
fluxes with neutrino energies ≤2 TeV are also much larger [124–127]: ∼10−10–10−9 cm−2sr−1s−1.
Namely, we get that the secondary neutrino flux resulted from the cosmic electrons scattering is
∼10−19–10−22 cm−2sr−1s−1[106]. If, however, intergalactic neutrinos with very high energy come to
the Earth (their sources can be jets from blazars), their scattering on the DM from halo can be marked
by the specific reaction: νl + DM → ν̄l + Z∗ + DM → ν̄l + νk ν̄k + DM. Of course, a virtual Z-boson
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can decay into light mesons producing a number of soft leptons, neutrino and photons, but some
correlation in energies and directions between high-energy secondary neutrinos can be detected.
Obviously, cross section of creation of secondary quarks or leptons by virtual Z-boson is resonantly
amplified when the Z-boson is near its mass shell. In any case, for this process we evaluate cross
section as ∼(20–300) pb for initial neutrino energies ∼(10–100) TeV.

Let us note some points which are important for study of the cosmic rays scattering off the DM.
We suppose that, independently of the type of the SM extension, possibility of scalar exchange in the
scattering channel results in a strong dependence of the cross section on the DM particle mass. It was
found in the H-color extension, namely, the changing (increasing) of the DM component mass of 10%
leads to the cross section growth by up to 50%. The opening of channels with scalar exchanges allows
us to consider new ways to produce secondary high-energy leptons, neutrino and photons by UHECR
scattering off the DM. Besides, these reactions can result in acceleration of the DM particles despite that
this process takes place in t-channel. Now, resonant amplifying [120] is possible only due to that part
of total amplitude which describes producing of leptons or quark pairs in virtual gauge boson decays.

3.1.2. Creation of New Components in the UHECR Sources

Cosmic rays of ultrahigh energies have a low intensity which rapidly decreases with increasing
energy; for example, at the border of atmosphere, a detector with an area of 1 m2 can detect about
100 cosmic particles per year with E ≥ 103 TeV. With such small fluxes of UHECR, the analysis of
extended air showers (EAS) generated by high-energy particles in the Earth’s atmosphere becomes an
effective method of studying them. Composition of the initial radiation changes due to creation and
decay of new particles that generate a nuclear-electromagnetic cascade. The path traversed by particles
in the atmosphere is much larger than the average range of inelastic interactions between protons and
nuclei. Secondary particles forming an EAS, can be detected at large distances, up to 103 m or even
more from the shower axis.

Standard picture of EAS production is based mostly on physics of high-energy protons (or light
nuclei from cosmic rays) interaction with nuclei in atmosphere; then, secondary nucleons, pions, kaons,
hyperons, leptons and photons are born. In the initial act of EAS generation leading secondary particle
keeps about ∼50% of its initial energy, so is able to interact several times in the atmosphere. At high
energies, ≥100 TeV, a significant part of unstable secondary particles (π- and K-mesons) do not decay
on the path of the order of one path of the inelastic nuclear interaction, they again interact with the
nuclei, forming new decaying charged and neutral mesons which produce (decaying with lifetime
∼2 × 10−6 s) muons, neutrinos and photons.

Of course, along with a shower of nuclear-active particles, it develops an electron–photon cascade
in the atmosphere due to fast decays of neutral pions into two gammas. So, an electron–photon
component of the shower arises and evolves. Then, photons produce electron–positron pairs interacting
with the medium, and these charged leptons again give high-energy photons due to bremsstrahlung on
the nuclei. Obviously, the multiplication of particles in these showers is defined by energy dissipation
processes for every type of interaction between mesons, nucleons and nuclei or mesons decays.
These interactions have been studied with all necessary detail. The passage of an EAS through
the atmosphere is also accompanied by optical radiation: Cherenkov and ionization radiation. So,
this standard picture of the emergence and development of EAS generated by high-energy protons or
nuclei must be supplemented since EAS can also be generated by high-energy neutrinos and, possibly,
by high-energy accelerated neutral DM particles [128–130].

Neutrinos generate electromagnetic and hadronic showers due to deep inelastic (or quasi-elastic)
scattering off nucleons in case of charged or neutral current interaction. Note that in the last case
there arise some special contributions providing interactions of B0 component with standard fermions
through scalar exchanges. These diagrams, which are called as “trident” [105,106,117]), are especially
important for the cosmic rays (electrons, neutrino, protons) interaction not only with nucleons but
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with the DM objects, in particular, for various multi-component DM models with scalar interaction of
the DM with gauge bosons currents.

It is important to note that the showers generated by neutrinos and nucleons can be
effectively discriminated due to small cross section of neutrino interaction with nuclei in atmosphere
(this argument can also be used for separation of possible showers producing by high-energy neutral
heavy DM particle [131,132]). As a result, EAS induced by neutral particles begins its development
deeply in atmosphere (where the density increases significantly) in comparison with EAS generated
by cosmic protons. Produced by galactic neutrinos EAS are highly inclined, despite this, there is a set
of parameters (Cherenkov light, depth of shower maximum in the atmosphere, duration of the shower
in dependence on the altitude and, correspondingly, density) allowing to separate neutrino showers
from proton ones [128,131,133]. These characteristics of EAS can also be used to mark EAS which are
produced by boosted DM particles.

Remind, the possibility to accelerate light DM particles in the scattering of high-energy cosmic
rays off the DM was supposed and numerically analyzed in [110–116,129,130,134]. This possibility to
boost the DM was also confirmed for heavy DM objects with mass ∼1 TeV, more exactly, we have
considered and approximately calculated scattering of protons of high energy, up to 200 TeV on the
DM particles from halo, in the region of most large DM density—near AGN [135]. In other words,
we consider interaction of protons from blazar’s jets with heavy DM particles. In the framework of the
H-color scenario, in this interaction of protons with two DM components a significant part of protons
energy can be transferred due to charged current to heavy H-pion and to both DM component in the
trident type diagrams involving scalar exchange.

For initial protons with energy 200 TeV cross section of the scattering process where final
charged H-pion is produced with energies (40–50) TeV is ∼(10–15) pb. This charged H-pion decays
predominantly as π̃± → π̃oπ± with the width Γ → 3 × 10−15 GeV. So, we get also secondary muon
(which again decays) and muonic antineutrino.

In fact, in this deep inelastic reaction the main charged component of UHECR (protons)
originated from blazar jet disappear transforming finally into flux of high energy neutrino and leptons.
More exactly, our estimations demonstrates that ∼(10–25)% of the proton energy is transferred to heavy
neutral component of the DM with cross section ≈(10–100) pb. In the scattering channel described
by “trident” diagrams total cross section is of the same order but there appear additional neutrinos,
for example, generated in the resonant decay of intermediate Z-boson.

Despite the cross section not being large, it is an example of accelerating even heavy DM particles
up to significant energies. Most importantly, this boosted neutral particle, as light neutrino, will
pass away from the DM halo moving in the constant direction because it interacts with the matter
very slowly. So, this rare process when the charge component of cosmic rays can be ruined in the
deep inelastic reaction and as a result neutral DM particle moves like a neutrino towards the Earth.
Remind that above considered high-energy electron scattering off the DM can also accelerate the DM
but in quasi-elastic process high energy neutrino are generated with more probability.

Thus, from this brief description of some processes of scattering of high-energy cosmic ray
particles off the DM we can conclude that these reactions can enrich the cosmic rays composition with
boosted heavy neutral DM particles [136]. At energies of these projectiles ∼(10–100) TeV cross sections
of their interactions with nucleons and nuclei, ∼(10−34–10−37) cm2, are compared with cross sections
of neutrino-nucleons scattering. In this deep-inelastic process nucleons or nuclei are transformed a
multiparticle final states consisting of charged leptons, photons and neutrino. Additional neutrinos
are generated by the charged H-pion decay and in the processes with resonant decay of Z-boson. So,
the accelerated neutral DM components can produce rare events - specific types of EAS. Certainly,
these EAS in the atmosphere should be separated in some manner from other types of showers.

It is known that as usually cosmic rays generate a shower of secondary particles which are mainly
muons, electrons and photons. They go to ground detectors and can be fixed as measured signals
registering also due to fluorescence and Cherenkov light, and radio emission generated by charged
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component, electrons, in atmosphere of the Earth. It seems, such type of shower is similar to neutrino
induced shower and its initial point also should be deeply in atmosphere, however, the neutral DM
particle can not disappear from the EAS composition and will interact with the ground detector
producing some radiation from secondary electrons or from excited nuclei in the detector. The DM
showers, as they generated by intergalactic DM objects which were accelerated by UHECR or AGN
jets from halo of other galaxies, or DM particles boosted from halo of our galaxy by intergalactic
UHECR do not have to be mostly inclined or nearly horizontal. It is supposed, these accelerated
DM components and EAS produced by them should be distributed more or less isotropic. May be,
the EAS axis can be connected with direction to some blazar, as it was found for some very high-energy
neutrino events at IceCube.

So, we can conclude that EAS from heavy DM particles are distinguished from EAS generated
by protons or neutrino because in the former event the shower contains in his composition neutral
stable object up to the final moment when this fast DM particle scattered on nucleon in the detector
(see also [137] and references therein). To the contrary, in composition of EAS which was induced
by neutrino or protons (or light nuclei), there is no any heavy stable particles, only leptons, photons
and neutrino are detected as final states. Note also that interaction of DM components with nucleons
in detector should have specific signature: the scattering in charged current channel is accompanied
with creation and following decay of charged H-pion, so, the event can be seen due to charged
lepton bremsstrahlung. We hope that observing and measuring the characteristics new types of EAS
containing heavy neutral stable particles will be possible at modern complex LHAASO [138], in other
words, the DM candidates can manifest itself in a specific types of EAS.

Ionization of dark atoms by high energy cosmic rays or in supernova explosions can lead to
formation of an anomalous cosmic ray flux of stable multiple charged leptons. The search for such
component and the possibility to discriminate the corresponding air-showers are challenges for
LHAASO experiments.

3.2. Multimessenger Probes for New Physics Effects

As was noted above, UHECR can result in specific interactions with DM particles, which are
concentrated in halo with the largest density near AGN, giving some special signatures. First, in the
scattering processes the target (slow heavy stable DM component) can receive a significant portion of
energy of initial projectile. So, the DM particle can be effectively accelerated mostly in the direction
close to the projectile direction. However, in the two-component DM scenario considered, if the
interaction is provided by charged current with the W-exchange neutral H-pion component transforms
into charged H-pion decaying with generation of lepton and neutrinos from π± and muon decays.
This charged H-pion, in fact, decays in flight, so it is possible to estimate energies of final particles and
their angles of emission. Indeed, these reactions are rare because of small density of DM, especially if
we consider the intergalactic UHECR scattering off the DM halo of our galaxy.

Although secondary neutrinos (prompt neutrino from Zνν̄ vertex, neutrino from π̃± decay and
neutrinos from decaying mesons generated by initial proton) are emitted and scattered at different
angles, there is non-zero probability to detect neutrino from this reaction at IceCube together with
observation of specific shower associated with the DM component at LHAASO, for example. Certainly,
the probability of such events which are separated by definite interval of time (its magnitude is defined
by energies and velocities of the neutrino and DM particle) is evaluated as very small. However,
if such twin event would be detected, it could be an important manifestation of the UHECR interaction
with the DM. More precisely, measuring the characteristics of such an event—the delay time between
signals (registration of a high-energy neutrino and a shower of particles), the energy release of the
EAS, its composition, as well as the establishment of the fact of interaction of neutral object (heavy DM
particle) with the substance of the detector (for example, by low-energy radiation)—could improve
our understanding of the DM nature and the features of its interaction with neutrinos, leptons and
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nucleons. These probes can shed light on the possible hadronic and hadron-like particles of dark
matter and their spectroscopy.

4. Conclusions

Over recent decades, the mainstream of BSM physics has been concentrated on the search for
direct and indirect effects of supersymmetry (SUSY). SUSY partners of SM particles with masses in
the range of several hundred GeV–1 TeV were expected to be found at the LHC. The lightest stable
neutral SUSY particle could nicely implement the WIMP miracle and was considered as the preferable
candidate the cosmological dark matter.

However, SUSY particles were not found up to now at the LHC. The results of direct underground
WIMP searches are controversial and the positive result of DM searches by DAMA/NaI and
DAMA/LIBRA experiments can hardly be interpreted in the terms of WIMPs.

It is reasonable to extend the field of studies of the new physics and, in particular, to consider
non-SUSY BSM models. New stable color particles can provide candidates for dark matter with
hadronic interaction, while new BSM nonabelian symmetry can increase the list of WIMP-like dark
matter candidates.

We have presented in this review various nontrivial features of new physics of strong interaction
and their possible physical, astrophysical and cosmological signatures. Experimental probes for
these signature will shed new light on possible role of various forms of strong interaction in the
dark universe.
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Abstract: We account for the late time acceleration of the Universe by extending the Quantum
Chromodynamics (QCD) color to a SU(3) invisible sector (IQCD). If the Invisible Chiral symmetry
is broken in the early universe, a condensate of dark pions (dpions) and dark gluons (dgluons)
forms. The condensate naturally forms due to strong dynamics similar to the Nambu–Jona-Lasinio
mechanism. As the Universe evolves from early times to present times the interaction energy between
the dgluon and dpion condensate dominates with a negative pressure equation of state and causes
late time acceleration. We conclude with a stability analysis of the coupled perturbations of the dark
pions and dark gluons.

Keywords: dark energy; non-Abelian gauge theory; condensate

1. Introduction

A confluence of cosmological data tell us that the Universe is currently accelerating
(see e.g., Refs. [1–3] and references therein). While the data can be explained with a cosmological
constant, it is also possible that the Universe is dominated by a form of Dark Energy (DE) with a
negative pressure barotropic index w∼−1. Another possibility is that general relativity is modified in
the infrared (IR) admitting self accelerating solutions, and such models are still under active research
Ref. [4]. In this work we take the position that the Einstein-Hilbert action is the correct IR description
of gravity and the cosmological constant is zero, by some yet unknown mechanism. We present a
model where DE emerges from an Invisible QCD (IQCD) sector due to the interaction of invisible
pions and gluons which were present in the early Universe.

There are two ways to theoretically motivate an Invisible QCD sector: it has been known for a
long time that the E8 × E8 Heterotic Superstring Theory, both in the weak and strong coupling limit
necessarily gives rise to non-abelian gauge theories that do not directly couple to the standard model
SU(3)c × SU(2)W × U(1)Y gauge group. While String Theory has this property, it is also possible to
obtain a dark copy in another way, which corresponds to modifying general relativity by enlarging
the spin connection ω(e)I J

μ to a larger group G ∼ SU(N), which breaks to SU(2)× SU(N − 2) where
the SU(N − 2) factor is identified with the dark sector. This philosophy was pursued in Refs. [5–9].
Here we take a phenomenological perspective and simply assume that this dark sector exists and focus
on the cosmological consequences.

As a topic contiguous to the one treated in this investigation, we shall provided a short review on
the most relevant studies addressing a possible relation of QCD to dark energy. For sure relevant to
our discussion is the perspective proposed by E. Witten, who has shown that the small value of the
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cosmological constant could be explained in terms of a vacuum state with unbroken supersymmetry.
Specifically, as summarized in Ref. [10], Witten has argued that, while compactifying Calabi-Yau
manifolds, the string tension in higher dimension can be invoked to cancel the vacuum expectation
value of QCD and other fields, and hence reproduce the observed value of the cosmological constant.
An extensive review on the same argument was offered in Ref. [11] by R. Bousso. While an analysis
more focused on the the link between QCD condensate and the observed value of the cosmological
constant is the one contained in Ref. [12], where the authors studied quark and gluon condensates in
QCD, as associated to the internal dynamics of hadrons, and then succeeded in showing that these
condensates actually provide a vanishing contribution to the cosmological constant.

Related to an extended invisible/mirror framework is the investigation carried out in Ref. [13],
which appeared after the first submission of this work on the electronic archives [14]. The analysis in
Ref. [13] has remarkable consequences at the level of the mirror symmetry, which some of us further
investigated in Ref. [15]. Specifically, the authors of Ref. [13] explored the possible compensation
of the negative contribution, due to the QCD vacuum, to the ground state energy density of the
Universe, thanks to the (opposite in sign) contribution that arises from the chromomagnetic gluon
condensate in the invisible/mirror QCD sector. Although not directly related to the fate of the QCD
vacuum, it is nonetheless worth mentioning the study achieved by some of us in Ref. [16], on a physical
mechanism similar to the one we developed here. This mechanism led to a quasi-de Sitter expansion
of the Universe, which inspired the analysis of this paper, by considering a fields backreaction (in the
expanding Universe) that sources an effective cosmological constant. This is due to the interaction
energy among the gauge hypercharge field and the fermion field.

In this model, late time acceleration arises from extending the color sector of QCD to have an
“invisible-copy”. IQCD has similar quantum field theoretic properties of QCD, in that it is confining
in the IR. It is well known that pions arise as Goldstone modes associated to Chiral Symmetry
Breaking (CSB), and in turn the microphysical description of CSB, the Nambu–Jona-Lasinio mechanism
Ref. [17,18], is a strongly coupled version of superconductivity induced by hard gluon exchange. A key
feature of our DE model uses the same physics of CSB in the IQCD sector. During the matter and
radiation era, the dark pions and gluons have negligible effects. However, we will show that at late
times the interaction energy between the dark pions and gluons become more significant because they
remain nearly constant, mimicking an effective cosmological constant. Through the consistency of the
coupled field equations, this interaction energy naturally leads to late time acceleration and we find an
interesting connection between the scale of CSB and the scale of DE.

2. The Theory

We assume that Chiral symmetry in the IQCD sector is broken at some scale fD corresponding
to the mass of a dark pion1 (dpion) πD . At the renormalizable level, such a hidden sector can
communicate with the standard model only through gauge interactions: SU(3)c, SU(2)W or
U(1)Y—see e.g., Refs. [19–21]. In this work, for clarity of presentation, we assume no gauge coupling
to the standard model. However, this model can easily be extended such that the gauge-confined
quarks are coupled vectorially to SU(2)W . The authors of Ref. [21] showed that a dark sector with
purely vectorial coupling to the standard model has remarkable universal features. A specific parity
symmetry (known as G-parity) acting only on the hidden sector fields is left unbroken and stable
weakly interacting dark-pions become a compelling candidate for a dark-matter particle. It would
be interesting to revisit the constraints on the coupling to the visible sector that is simultaneously
consistent with dark-matter and DE. We find it intriguing that our model has the possibility of
connecting late time acceleration to Dark Matter and will pursue this possibility in Ref. [22].

1 From now on, we will remove the subscript D when referring to dark pions.
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The SU(N)D gauge theory we are considering is assumed to have a behavior similar to
QCD. The gauge coupling becomes strong in the IR limit, triggering confinement and chiral
symmetry breaking at a scale ΛD. Below ΛD, the effective theory is described by “pions” which
are pseudo-Nambu–Goldstone bosons (pNGBs) associated with the spontaneously broken global
flavor symmetry of the hidden sector.

For concreteness and without loss of generality, we consider the subgroup, SU(2)L × SU(2)R →
SU(2)V with its gauge field Aa

μ, where a, b = 1, 2, 3 and μ, ν = 0, 1, 2, 3 are for the dark color and
space-time indices, respectively. The gauge field strength F is

Fa
μν = ∂μ Aa

ν − ∂ν Aa
μ − gεa

bc Ab
μ Ac

ν, (1)

where εabc is the totally antisymmetric Levi-Civita symbol, the structure constant of the SU(2) algebra.
We are led to consider the most general gauge invariant action coupled to “dark quarks”, with masses
mi and Lagrangian

LIQCD ≡ LA +LD = − 1
4g2 Fa

μνF μν
a + ψi (ı Dμγμ − mi)ψi . (2)

Here Dμ stands for the covariant derivative with respect to the dark SU(3) sector and the
gravitational connection, γμ =γI eμ

I and the metric field is decomposed in tetrad, namely gμν = eI
μ eI

ν,
the inverse of which is denoted as eμ

I and the internal SO(3, 1) indices of which are I = 1, 2...4. Given
that we are working in a system where the dpion forms as a result of CSB, the decay constant fD is
defined through the coupling of the axial current to the dpion. In particular, dpions can be created by
the axial isospin currents.

Matrix elements of J5 I
a (x) between the vacuum and an on-shell dpion state can be parametrized

as (see e.g., Ref. [23])

〈0|J5 I
a (x)|πb(p)〉 = −ı δb

a pI fD e−ıp·x , (3)

where the chiral current is J5 I
a (x) = ψ(x) γIγ5 τa ψ(x) and |π(p)〉 is the pion ground-state with

normalization 〈π(p′)|π(p)〉 = 2(2π)3 p0δ3(p′ − p). Relation (3) can be recast in terms of the dpion
field as

〈0|J5 I
a (x)|πb〉 = fD δb

a ∂Iπb(x) . (4)

We can rotate the expectation value of 〈0|J5 I
a (x)|πb〉 within the internal Lorentz indices’

space, so to accomplish an explicitly space-like axial vector with vanishing temporal component.
The symmetry of the vacuum state on the FLRW background allows to further reduce Equation (4) to
a homogenous axial vector:

〈0|J5 I
a (x)|πb〉 = f 2

D
δi

a π(t, 0) , (5)

where π(t)≡||πa(t)||, with respect to the internal indices. The interaction of the axial current with the
gauge field Lint.

π = g Aa
μ J

5 μ
a is therefore consistent with homogenous and isotropic metrics.

The low energy dpion effective Lagrangian reads

L0
π = −1

2
∂μπa∂μπa +

λ

4

(
πa πa − f 2

D

)2
. (6)

Consequently, the total effective Lagrangian reads

Ltot. = LGR +LA +Lint.
π +L0

π (7)

= M2
p R − 1

4
Fa

μνF μν
a + g Aa

μ J
5 μ
a +L0

ß,
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in which we have introduced the reduced Planck mass as M2
p = (8πG)−1. Quark fields have

been integrated out in the path integral in order to get the effective action. The interaction term
Lint.

π = g Aa
μ J

5 μ
a , which entails parity violations of the SU(2) subgroup of the dark sector, preserves

renormalizability. The total action is Stot. =
∫

d4x e Ltot., with e volume density denoting the
determinant of the tetrad eI

μ.

3. Field Equations

Solutions to the field equations that are consistent with a FLRW background can be recovered
once a rotationally invariant configuration for the gauge field has been implemented:

Aa
μ =

{
a(t) φ(t) δa

i , μ = i ,
0 , μ = 0 .

(8)

Thanks to Equations (4) and (8), the energy-momentum tensor of the theory is isotropic and
homogenous. In particular, the energy-momentum tensor associated to the interaction Lagrangian
yields the remarkable feature of having a barotropic index w = −1, since energy and pressure densities
respectively read

ρ
AJ

= 3 g f 2
D φ(t)π(t),

− P
AJ

= 3 g f 2
D φ(t)π(t),

g denoting above the absolute vale of the coupling constant. This naturally leads towards a de
Sitter accelerating phase of the Universe, as soon as the interaction term becomes dominant.

In the rotationally symmetric configuration Equation (8) the gauge field-strength’s components
simplify and read Fa

0i = ∂t(φ(t)a(t)δa
i ) and Fa

ij = −g εa
ij(φ(t)a(t))2, having specified our system in

co-moving coordinates ds2=dt2−a2(t) d�x2. Using (8), the total gauge Lagrangian becomes

LA + Lint.=
1

2 g2

(
3 (φ̇ + Hφ)2 − 3 g2φ4

)
+ 3gφ J̄(a), (9)

where J̄(a)≡ f 2
D

π(t). From 1
a3

∂
∂t (a3 ∂L

∂φ̇
)= ∂L

∂φ , we obtain the equation of motion for φ, which captures
the dynamics of Aa

μ through Equation (8), namely

φ̈ + 3Hφ̇ + (2H2 + Ḣ) φ + 2 g2φ3 − g J̄(a) = 0 . (10)

The equation of motion for the dpion field is recovered varying Equation (6), within the
assumption of spatial homogeneity. This is plausible, since a previous inflationary epoch of the
universe can smooth out the dpion field. In the next section, we show that the dpion field remains
homogenous against perturbations.

Using the decomposition in a homogeneous absolute value (in the internal space) times a
space-dependent unit vector, i.e. πa = ||πa|| na = π(t) na(x), we recover for the pion field

π̈ + 3Hπ̇ + λ π(π2 − f 2
D)− 3 g f 2

Dφ = 0 . (11)

To gain some insight as to why we might expect to see late time acceleration, consider the slow roll
regime of the dpion field, which is obtained by neglecting the acceleration term. In this approximation,
when the dpion field exhibits an inverse scaling with time, π = π0 a−1(t), the equation of motion
reduces to

3H
ȧ
a2 =

λ

a

(
π2

0
a2 − f 2

D

)
. (12)
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Solving this latter results in a power law acceleration of the Universe, namely H(t) � t−1,
provided that2 π(t0) = π0 >> fD and, as customary when taking into account cosmological scalar
fields, the slow roll condition holds: 3Hπ̇ � V′>> π̈. When the interaction term Lint=−g Œ(t) f2

D
ß(t)

between the dpion and the gauge field is considered, we will see that this term persists to have a nearly
constant energy density yielding a negative pressure equation of state. Finally, it is straightforward to
show that a slightly different behavior in the time dependence of the dpion, i.e. π =π0 a−n(t) with
n > 0, would yield the same late time-behavior H(t) � t−1.

Late time acceleration is recovered when the gauge field asymptotically evolves in time as the
scale factor, and the pion field approaches the constant value π � fD. Below we show how these
self consistent solutions to the equations of motion for the pion and gauge field can be recovered,
by working in comoving coordinates and assuming the expansion of the universe to be given by
de Sitter phase. Finally, given the non-linearities in the coupled differential equations, we pursue a
numerical analysis of the full system of equations.

First we consider the energy density ρ and the pressure P for our low energy effective system that
emerges from the dark sector, namely

ρ = ρ
YM

+ ρ
AJ

, P =
1
3

ρ
YM

− ρ
AJ

, (13)

where
ρ

YM
=

3
2
(φ̇ + Hφ)2 +

3
2

g2 φ4 , ρ
AJ

= 3 g φ J̄(a) , (14)

and recall that the Friedmann equations are given by

H2 M2
p =

1
2
(φ̇ + Hφ)2 +

1
2

g2φ4 + g φ J̄(a)

+
1
6

π̇2 +
λ

12

(
π2 − f 2

D

)2
,

(Ḣ + H2) M2
p = −1

2
(φ̇ + Hφ)2 − 1

2
g2 φ4 + g φ J̄(a)

− 1
3

π̇2 +
λ

12
(π2 − f 2

D)
2 .

(15)

Having derived the differential equations that govern the dynamical system, we can now proceed
to solve it.

4. Field Dynamics

Unlike usual gauge field theories, where the gauge fields dilute during cosmic expansion,
the coupling of the gauge field to the dquark current leads to a growth of its homogenous component.
This can be understood from the inspection of the equations of motion on the FLRW background.
The growth of the gauge field will generically occur as it scales with a(t), while the interaction energy
ρAJ = g φ J̄(a) remains nearly constant at late times. We can then get ahead with our purpose of solving
the full dynamical system for the fields involved, so as to plot the evolution of barotropic index

2 Notice that assuming a very large initial value of the pion field may actually induce to consider the tower of all the higher
dimensional operators. Nevertheless, taking into account these terms would just strengthen our argument, since the crucial
ingredient that ensures the quasi-de Sitter solution at the cosmological level is the mass of the pion. Thus any other higher
order term would imply a power law time evolution at earlier cosmological times. Even more, at very high energy the very
same concept of pion ground-state looses meaning, and the asymptotic behaviour for the pion field that is sustaining the
accelerated phase of the Universe shall no longer be considered. Bearing in mind that our intent in this section is only to
show the power law behavior of the background at earlier cosmological times, we avoid further comments.
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w =
P
ρ
=

P
AJ
+ P

YM
+ Pπ

ρ
AJ
+ ρ

YM
+ ρπ

= (16)

=
1
2 (φ̇ + Hφ)2 + 1

2 g2φ4 − 3gφ J̄(a)+ 1
2 π̇2− λ

4 (π
2− f 2

D)
2

3
2 (φ̇ + Hφ)2 + 3

2 g2φ4 + 3gφ J̄(a)+ 1
2 π̇2+ λ

4 (π
2− f 2

D)
2

.

Under customary assumption, we are able to solve for the coupled system of differential equations
in the configuration space {φ(t), π(t)}, and to find solutions consistent with a de Sitter expanding
phase. We assume in Equation (11) the slow roll condition for π. Furthermore, we assume that at any
time energy densities are dominated by the coupling of the gauge field to the axial current, ρπ <<ρ

AJ

and ρ
YM

<< ρ
AJ

, and show later that these assumptions are consistent with the solutions obtained.
In this heuristic analysis, the dynamical system is analytically solved imposing initial conditions at
recombination3. From Equations (11) and (15) we find, imposing slow roll conditions on π, and then
considering the late-time dominant contribution to the solution,

π(t) � fD

[
1 − c0 exp

(
−2λ f 2

D t
3H

)]− 1
2

, (17)

which asymptotically reaches the value π∞ = fD, and in which c0 is an initial constant. We can then
solve for the gauge field, and within a similar assumption on its time derivatives than the condition
imposed for π(t) we find

φ(t) � fD

(2g)
1
3

[
1 − c0 exp

(
−2λ f 2

D t
3H

)]− 1
6

. (18)

Both solutions Equayion (17) and (18) are monotonically decreasing and converge asymptotically
towards values that are proportional to fD; thus their product conspire to provide an accelerating
solution well approximated by a de Sitter phase, the effective cosmological constant of which assumes
the asymptotic value

Λ � f 4
D

M2
p

. (19)

Supernovae data, which entail at current times H � 10−42 GeV, are consistent with the asymptotic
value for the gauge field A� fD � 10−3 eV, the coupling constant g having been assumed to be order
unity. This suggests a fascinating conclusion: cosmic acceleration is the consequence of the CSB in the
dark sector, since it occurs at the same scale of energy, i.e. MDE � fD. We remark that our heuristic
analysis has ben focusing only on the radiation energy density of the dark SU(3) sector, with the aim
of showing how the evolution of the dark energy component — namely, the interaction energy density
among the pion condensate field and the dark radiation — would differ from that one of radiation,
rather than dealing with the observed amount of (visible and dark) matter of the Universe.

Conservation of the energy-momentum tensor is easily checked, and the attractor behavior of
the solutions is also recovered. Indeed, specifying the numerical values g = λ = 0.1, the system of
differential equations provides the unique fixed point:

(φ f , π f , Hf )=(2.17 · 10−3eV, 2.04 · 10−3eV, 1.08 · 10−35eV).

3 Integration over the dark quark degrees of freedom may provide higher-order derivative terms in the dark gauge sector,
exactly as it happens for the Euler-Heisenberg effective action in QED. Higher order derivative terms then provide corrections
to the radiation energy-density redshift dependence, which are subdominant in the asymptotic time limit. In our case,
these corrections will be further suppressed by powers of the masses of the heaviest dark quarks present in our picture and
powers of the coupling constants.
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Upon linearization, the first order dynamical system recast in term of derivatives in the variable
N = ln a(t), provides a matrix the eigenvalues of which have negative real components. This ensures
that the fixed point is an attractor, and that the system asymptotically converges towards a de Sitter
phase. A detailed analysis of the linearization of the first order dynamical system, and of the related
eigenvalues of the matrix that is hence recovered, is provided in Ref. [22].

A more cogent numerical analysis corroborates the analytical investigations reported above.
Related plots are shown in Figure 1, which makes evident the transition from a radiation dominated
epoch (at the recombination z�1100) to our present time (z = 0) dominated by DE. Coupling with
Standard Model matter would affect the time-evolution of w at z>>10, without changing its qualitative
behaviour and the asymptotic value at recombination epoch.

�

�

�

�

Figure 1. Plot of w against the redshift z, from current time up to recombination. For the blue line, the
coupled system of non-linear differential Equations (10), (11) and (15) has been solved numerically for
g= 10−1 and λ= 1, and the initial conditions on the functions H(0)= 10−42 GeV and φ(0)�π(0)�
fD =10−3 eV , and on their derivatives φ′(0)�π′(0)=10−5 (eV)2 . Transition from DE to (dark sector)
radiation happens for z � 2 in the blue line. The plotted red line entails a coupling constant g, the value
of which is one order of magnitude smaller than in the case of the blue line.

Notice that in our toy-model, which provides a mechanism for an effective dynamical cosmological
constant, the strong energy condition is clearly violated Ref. [24]. Indeed, the (predominant,
with respect to the other contributions) interaction energy density ρAJ equals the opposite sign
of the (predominant, with respect to the other contributions) interaction pressure density pAJ.
Nonetheless, the null energy condition is not violated, the interaction energy density providing
a positive contribution to the total energy density.

Finally, we wish to emphasize the relevance of the value of the coupling constant g, as already
outlined in Figure 1. At this purpose, considering the renormalization group flow of the coupling
constant g will provide improvement of the toy-model we present here, and shall be considered in
forthcoming more refined and realistic analyses. On a different foot, the relevance of the running
of the coupling constant was also studied for QCD in Ref. [15]. Nonetheless, differently that in this
latter investigation, we do not expect here that novelties in the attempt to reproduce the cosmological
dynamics of the accelerating Universe will be provided by the emergence of a discrete symmetry,
but rather that the absolute value of the coupling constant will affect the precise determination of the
transition epoch to the dark energy cosmological behavior.

5. Perturbation Analysis

The analysis of perturbations can be developed on the FLRW background by implementing the
choice of conformal coordinates gμν = a(η)2 ημν. Varying action Equation (7), we recover the gauge
field equation of motion:

ημρ(∂μFa
ρν + g εa

bc Ab
μFc

ρν) = g a4J5 a
ν .
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From the above equation, the gauge field spatial perturbations immediately follow:

�δAa
i + g

(
εa

bc Ab
j ∂jδAc

i + εa
bc δAb

j ∂jAc
i

)
+

+g2
(

δAk
b Ab

[k Aa
i] + Ak

bδAb
[k Aa

i] + Ak
b Ab

[kδAa
i]

)
=

= g fD a(η)4 ∂iδπa(�x, η) . (20)

The time component perturbations (denoted by ′ = d/dη) of the gauge field are found to be:

� δAa
0 + gεa

bc Ab
k ∂kδAc

0 − g2 Ai
bδAb

[0 Aa
i] = g a4 δπa ′(�x, η) .

As stated above while using co-moving coordinates, the background solutions for Aa
j (η) are

subjected to the gauge Aa
j (η) = A(η) δa

j , which reduces the spatial perturbation equation to

� δAa
i (�x, η) + g A(η) [∇∧ δ�A(�x, η)]ai + (21)

+ g2
[
2A2(η)Tr[δAa

i (�x, η)] δa
i

]
= g a(η)4 ∂iδπa(�x, η) ,

� δAa
0(�x, η) + g A(η)εa

bc∂bδAc
0(�x, η) +

+2g2 A(η)2δAa
0(�x, η) = g a(η)4 δπa ′(�x, η) . (22)

Taking the trace of the gauge-field perturbations and writing δAa
i = Tr[δAa

i (�x, η)] δa
i /3 yield

�Tr[δAa
i (�x, η)] + 6g2 A2(η)Tr[δAa

i (�x, η)]

= g a(η)4 Tr[∂iδπa(�x, η)] . (23)

Implementing the same gauge, we recover the equation for the perturbations to the dpion field,

�
a δπa(�x, η)+2 a′

a2 δπa ′(�x, η)+λa δπa(�x, η)
(
3 π(η)2− f 2

D
)

= −g fD

(
∂iδAa

i (�x, η) + δAa
0
′(�x, η)

)
. (24)

We are interested in seeing if sub-horizon modes of the dpion field, (24), develop instabilities and
cluster. Therefore we focus on wavelengths which are either sub-horizon or above the binding energy of
the dpions involved, H>> |�k|>> fD , by studying the evolution of plane-waves δπ(�x, η)�α(η) exp (ı�k·�x)
solutions to (24). The equation of motion further reduces to α′′ + 2Ha α′ + (�k2 + λ a2 f 2

D) � 0, solutions
of which are superpositions of spherical Bessel functions of the first and second type,

α(η) = α1 jν

(
k

Ha(η)

)
+ α2 yν

(
k

Ha(η)

)
,

ν =
−H ±

√
H2 − 4λ f 2

D

2H
,

in which k= |�k|, and are convergent to zero at late times for a proper choice of the initial conditions,
α1 ∈ R and α2 = 0. Indeed, assuming λ << 1 we see that sub-horizon modes are oscillatory and
bounded over all the time axis. This behavior mimics the behavior of super-horizon modes of scalar
fields during inflation and is a consequence of the acceleration of space-time. Zero modes are constant
and not evolving in time.

Finally, perturbations of the gauge field decrease exponentially (in comoving time), i.e. show the
conformal time behavior

Tr[δ̃A
a
i (k, η)] � 1/a(η) .
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We therefore conclude that all sub-horizon perturbations are suppressed. In future work we will
perform a full perturbation analysis taking into account metric perturbations Ref. [25].

6. Conclusions and Discussion

We have provided a model of late time acceleration from minimal assumptions, in that aside
from instantiating a dark non-abelian copy, we have not introduced any new physics. In fact, we have
employed the well known physics of the Nambu–Jona-Lasinio mechanism of chiral symmetry breaking
in ordinary QCD applied to IQCD, which is well motivated from string theory. Late time acceleration
emerges from the interaction between gravity, a chiral condensate and an invisible gluon that
fills the universe today. A preliminary perturbation analysis shows that DE does not cluster on
sub-horizon modes.

Finally, we leave to detailed investigations (see e.g., Ref. [22]) the analysis of constraints on the
coupling to the visible sector, and the eventual behavior as dark-matter of dquark and dpions in
this scenario. Indeed we find intriguing that our model has the possibility of connecting late time
acceleration to Dark Matter (see e.g., Refs. [26,27]).
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Abstract: We address the issue of a dynamical breakdown of scale invariance in quantum Weyl
gravity together with related cosmological implications. In the first part, we build on our previous
work [Phys. Rev. D 2020, 101, 044050], where we found a non-trivial renormalization group fixed point
in the infrared sector of quantum Weyl gravity. Here, we prove that the ensuing non-Gaussian IR fixed
point is renormalization scheme independent. This confirms the feasibility of the analog of asymptotic
safety scenario for quantum Weyl gravity in the IR. Some features, including non-analyticity and
a lack of autonomy, of the system of β-functions near a turning point of the renormalization group
at intermediate energies are also described. We further discuss an extension of the renormalization
group analysis to the two-loop level. In particular, we show universal properties of the system of
β-functions related to three couplings associated with C2 (Weyl square), G (Gauss–Bonnet), and R2

(Ricci curvature square) terms. Finally, we discuss various technical and conceptual issues associated
with the conformal (trace) anomaly and propose possible remedies. In the second part, we analyze
physics in the broken phase. In particular, we show that, in the low-energy sector of the broken phase,
the theory looks like Starobinsky f (R) gravity with a gravi-cosmological constant that has a negative
sign in comparison to the usual matter-induced cosmological constant. We discuss implications
for cosmic inflation and highlight a non-trivial relation between Starobinsky’s parameter and the
gravi-cosmological constant. Salient issues, including possible UV completions of quantum Weyl
gravity and the role of the trace anomaly matching, are also discussed.

Keywords: Weyl gravity; renormalization group; inflation; dark energy

1. Introduction

It was just two years after the birth of the Yang–Mills (YM) gauge theory [1] when Utiyama in
his 1956 seminal paper [2] recognized the similarity between gravity and YM fields, and started a
new research line known as “gauge theories of gravity” [3–5]. The central focus of such a program
was based on gauging Lorentz, Poincaré, or de-Sitter groups and this, in turn, has led to gravity
theories (including Einstein–Hilbert, Einstein–Cartan theories, etc.) that despite their formal appeal
share the same fate with Einstein’s general relativity. Namely, such theories have dimensionful
couplings and hence they are perturbatively non-renormalizable when quantized. More recently,
the deep relationship between gauge and gravity theories has further been explored in the light
of the holographic principle (as realized, for example, by the AdS/CFT correspondence [6]) and
the “gravity = gauge × gauge” principle (as embodied, for example, in the Ben–Carrasco–Johansson
color-kinematic correspondence [7]).

Both Lorentz, Poincaré, and de-Sitter groups are subgroups of the 15-parameter conformal group
O(4, 2), which is the group of spacetime transformations that leave invariant the null interval. It is

Universe 2020, 6, 123; doi:10.3390/universe6080123 www.mdpi.com/journal/universe
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known that YM theories have a number of desirable features when quantized and this, in part, comes
from their conformal invariance. Indeed, the conformal invariance of the YM action immediately
implies that no massive (or dimensionful) coupling is present and so the theory is (power-counting)
renormalizable. Conformal invariance is also instrumental in finding self-dual YM instantons [8,9].
One might thus expect that by gauging the conformal group one obtains gravity theory that would
inherit on a quantum level some of the alluring traits of the YM theory, such as renormalizability,
asymptotic freedom, non-trivial topological configurations, etc.

In 1920, Rudolf Bach proposed an action based on the square of the Weyl tensor Cμναβ where
the Weyl tensor itself is an invariant under local re-scalings of the metric [10]. In 1977, Kaku,
Nieuwenhuizen, and Townsend [11] showed that Bach’s action is the action of the gauge theory
of the conformal group provided that conformal boosts are gauged by means of a non-propagating
gauge field. In other words, Bach’s theory of gravity may be regarded as the gauge theory of the
conformal group. In fact, Ref. [11] was apparently the first paper that explicitly referred to Bach’s
action as Weyl gravity (WG)—a terminology that we utilize throughout this paper.

As anticipated, quantum Weyl gravity (QWG) has proved to have a number of desirable features
that are shared together with quantum YM theory. In particular, as in the YM theory, the coupling
constant α is dimensionless, and this makes the theory perturbatively renormalizable. In accordance
with analogy with YM instantons, QWG also has gravitational instantons that encode information
about a non-perturbative vacuum structure of QWG [12,13]. Particularly intriguing is a parallel
between QWG and the SU(3) YM gauge theory of the strong force (QCD). Some speculation about an
analogy between quadratic gravity (including QWG) and QCD (which extends an old analogy between
general relativity and the chiral Lagrangian of QCD) has occurred already before [14,15], but QWG
is very particular in this respect. Similarly to QCD, the gravitational interaction in QWG exhibits
an antiscreening behavior at high energies on the account of the negative β-function. There are also
strong indications that the ensuing UV fixed point of QWG is Gaussian [16,17] (as in QCD) and that
the dynamical breakdown of the scale (Weyl) symmetry in QWG [16] in IR might be compared to the
confinement–deconfinement phase transition in QCD where it is anticipated that a mass gap (effective
gluon mass) develops in the confining phase [18]. In addition, certain aspects of the QCD functional
integral and its measure are also shared by QWG [19].

Nevertheless, QWG is typically not considered as a viable candidate for a fundamental theory
of quantum gravity for at least two reasons: (i) its perturbative spectrum contains ghosts (namely
a massless spin-2 dipole ghost), and (ii) its β-function at the one-loop level is non-zero, which implies
a non-vanishing conformal (trace) anomaly. Since, in QWG, one has conformal symmetry in a gauged
(local) version, the appearance of the anomaly is typically considered disastrous for the construction of
the quantum theory because it signals the absence of the symmetry defining the theory on the quantum
level [20]. This should be contrasted with quite benign conformal anomaly that arises in YM theories.

The problem (i) is not specific only to QWG, but it is shared by all higher derivative gravity
(HDG) theories. In these theories, the unitarity is in danger because there are perturbative states
with negative kinetic energy or negative mass square parameter—so-called ghosts or tachyonic states,
respectively [21]. For QWG, the problem can be most directly seen from the propagator of the
metric-field fluctuations around a flat background. The tensor structure projects out spin-2 and spin-1
degrees of freedom. The propagator in the spin-2 sector exhibits one massless pole for normal graviton
and another massless pole with negative residue. The tachyonic states can be easily eliminated from the
spectrum of the theory by properly shifting the vacuum state. There are two possible interpretations of
the massless ghost pole, which depend on the prescription of the iε term. One can view it either as a
state of negative norm or a state of negative energy. In both cases, the optical theorem implies that the
S-matrix based on the ensuing perturbation theory is inevitably non-unitary. Obviously, both ghosts
and tachyons in HDG theories are undesirable and various approaches have been invoked to remove
them (or their effects) from the observable predictions of the theory: Lee–Wick prescription [22,23],
fakeons [24–26], perturbative expansion around true vacuum state [16], non-perturbative numerical
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methods [27–30], ghost instabilities [31–33], non-Hermitian PT-symmetric quantum gravity [34,35],
etc. One might even entertain the idea that unitarity in quantum gravity is not a fundamental
concept [36–38]. Thus far, none of the proposed solutions has solved the problem conclusively.
Moreover, for QWG, one could question whether perturbative non-unitarity is really an issue for an
asymptotically free theory whose IR degrees of freedom are probably different from the ones in the UV.

Instead of debating various attitudes that can be taken toward the ghost/unitarity issue, our
aim here is more modest. We will explore, via functional renormalization group (FRG) [39–43],
the low-energy phenomenology of the QWG and see whether it can provide a realistic cosmology and
what role (if any) is played by ghost fields. We start from the UV fixed point (FP) where the potential
quantum gravity has an exact scale-invariance, so that only causal structure of events is relevant.
This is a minimalistic assumption about quantum gravity in UV. In order not to invoke any unjustified
structure, we consider only metric-field based gravity without any matter field. The UV FP in question
might be, for instance, one of the critical points in a series of putative phase transitions that the Universe
underwent in the very early (pre-inflationary) period of its evolution. Out of many scale-invariant
HDG candidate theories, we choose to work with the simplest one, namely the theory that has only one
single coupling constant. The latter corresponds to the QWG theory. Precisely at the UV FP, the QWG
has exact local scale-invariance. A consistency of the entire scheme implies that the UV fixed point
must be Gaussian [16]. Existence of the Gaussian UV FP for QWG was also conjectured in earlier
works [17,44]. We start with this premise and let the theory flow toward IR energy scales. In the close
vicinity of the UV FP, the Weyl symmetry in the renormalized action is still preserved as only the
Gauss–Bonnet (GB) term is generated. Corrections explicitly violating Weyl symmetry, such as the R2

term, are generated only at the second (or higher) loop order.
In the vicinity of the UV FP, we choose a truncation ansatz for the effective action that will

be further used to set up the FRG flow equation. Our truncation prescription is directly dictated
by the one-loop effective action. We further enhance this by incorporating into the FRG equation
two non-perturbative effects, namely threshold phenomena and the effect of graviton anomalous
dimension. One may also wonder about how a consistent quantum theory can emerge when the
action is problematic at tree-level (ghost problem). Nevertheless, the RG flow analysis reveals that by
the inclusion of the two non-perturbative effects the quantum theory yields a sensible IR FP. Indeed,
by solving the RG flow equation algebraically for β-functions βC and βGB, we show that there exists
a non-Gaussian IR fixed point where both β-functions simultaneously disappear. Aforementioned
IR FP represents a critical point after which the (global) scale-invariance is broken. This is reflected
through the presence of a composite order-parameter field of the Hubbard–Stratonovich type, which
in the broken phase acquires a non-trivial vacuum expectation value.

We map the broken-phase effective action on a two-field hybrid inflationary model that in
its low-energy phase approaches the Starobinsky f (R) model with a non-trivial gravi-cosmological
constant. The requirement that Einstein’s R term in the low energy actions must have a coupling
constant 1/2κ2 ties up the values of Starobinsky’s inflation parameter ξ and the gravi-cosmological
constant Λ. This fixes the symmetry-breakdown scale for QWG to be at about the GUT inflationary
scale. Moreover, the existence of a regime where gravity is approximately scale invariant (fixed-point
regime and departure of the RG flow from it) provides a simple and natural interpretation for the
nearly-scale-invariance of the power spectrum of temperature fluctuations in the Cosmic Microwave
Background radiation.

As for the conformal anomaly, typical imprints of it are new terms generated in the
functional-integral action via higher loop corrections. In particular, loop corrections will generate the
Weyl-symmetry violating R2 term in the action. There are various possible ways how one can deal
with conformal anomaly. For instance, one might embed QWG in N = 4 conformal supergravity
found by Fradkin and Tseytlin in 1985 [45,46] (which is known to be unique anomaly-free theory
containing Weyl gravity in its bosonic sector) or in Witten–Berkovits twistor superstring theory [47].
One should then consider QWG as the low-energy limit of such UV-finite models. In these cases, QWG
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is confined to the purely bosonic sector of spin-2 and spin-1 fluctuations where the conformal symmetry
is only softly violated, or one could embed QWG in recently found perturbatively UV-finite quantum
gravitational theories [48,49] considered as an extension of superrenormalizable higher derivative
theories. Yet another option is to take seriously also theories with anomalous conformal symmetry
similarly as done, for instance, in string theory with strings propagating in non-critical spacetime
dimensions [50]. Here, we will employ yet another scenario, in particular, we will take advantage
of the fact that the symmetry-breaking R2 term is presumably generated only at the two-loop order
(so that to one loop we do not observe the appearance of the ensuing anomalous conformal mode).
On the other hand, our FRG approach will show that the IR FP (for the two involved couplings)
appears already at the enhanced one-loop level and hence the prospective observational consequences
of the trace anomaly do not take over before the Weyl symmetry is dynamically broken. In the
broken phase, the trace anomaly is not anymore a signal of inconsistency since the theory there is not
scale-invariant to begin with and hence there is no reason why the ensuing energy momentum tensor
should be traceless.

The word dark in the title of this paper refers to two different things. First, it is related to
conceptual and technical issues that plague QWG and that make it discouraging or dark in eyes of
many practitioners. Second, the appearance of the dynamical gravi-cosmological constant in the
broken phase of QWG can be associated with ensuing dark energy. It is the purpose of this work to
demonstrate that despite the aforementioned problems, QWG may serve as a healthy theoretical setup
for the UV-model building of phenomenologically viable quantum theory of gravity with pertinent
cosmological implications.

Our paper is organized as follows: in the next Section 2, we discuss some fundamentals of both
classical and quantum Weyl gravity. In particular, we highlight a formal similarity of the WG with
nonabelian Yang–Mills theories and stress some of dissimilarities and potential problems met during
quantization. Section 3 is dedicated to the construction of the FRG flow equation for the QWG in the
one-loop enhanced scheme, and with this tool we analyze in Section 4 the running of the β-functions
associated with the Weyl tensor square and Gauss–Bonnet terms. In particular, we demonstrate that,
apart from the IR–stable fixed point that is reached at a zero-value of the running scale, the RG flow
also exhibits a non-trivial bouncing behavior in the vicinity of the IR fixed point. The issue of conformal
anomaly of QWG is discussed in Section 5. There we point out various technical and conceptual issued
associated with the conformal anomaly in QWG and propose possible remedies. In Section 6, we first
employ a Hubbard–Stratonovich (HS) transformation, which introduces a non-dynamical spurion
scalar field without spoiling the particle spectrum and (perturbative) renormalizability. After the
dynamical breakdown of the Weyl symmetry, the HS field acquires a non-trivial vacuum expectation
value and gets radiatively generated gradient (kinetic) term. If QWG has any physical relevance,
then its effective action in the broken phase must contain an Einstein–Hilbert term. This is shown
in the second part of Section 6. We further demonstrate that in the broken phase the corresponding
one-loop effective action consists (in the Einstein frame) of two scalar fields—scalaron and dynamical
Hubbard–Stratonovich field that interact via derivative coupling. The resulting low-energy behavior
in the broken phase can be identified with Starobinsky’s f (R)-model (SM) with a gravi-cosmological
constant (dark side of Weyl gravity) that has a negative sign in comparison to the usual matter-induced
cosmological constant. After this, we discuss anomaly matching conditions between symmetric and
broken phase of QWG. A brief summary of results and related discussions are provided in Section 7.

2. Some Fundamentals of Quantum Weyl Gravity

2.1. Classical Weyl Gravity

The WG is a pure metric theory that is invariant not only under the action of the diffeomorphism
group, but also under Weyl rescaling of the metric tensor by the local smooth functions Ω(x):
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gμν(x) → Ω2(x)gμν(x). The simplest WG action functional in four spacetime dimensions that is
both diffeomorphism and Weyl-invariant has the form [10,51,52]

S = − 1
4α2

∫
d4x

√
|g|CμνρσCμνρσ , (1)

where Cμνρσ is the Weyl tensor which can be written as

Cμνρσ = Rμνρσ −
(

gμ[ρRσ]ν − gν[ρRσ]μ

)
+ 1

3 R gμ[ρgσ]ν , (2)

with Rμνρσ being the Riemann curvature tensor, Rμρ = Rμνρ
ν the Ricci tensor, and R = Rμ

μ the scalar
curvature. Throughout the text, we employ the time-like metric signature (+,−,−,−) whenever
pseudo-Riemannian (Lorentzian) manifolds are considered. The dimensionless coupling constant α

is conventionally chosen so as to mimic the YM action. On the other hand, in order to make connection
with the usual RG practice, it will be more convenient to consider the inverse of the coupling α2. In the
following, we denote the coupling in Equation (1) as ωC , by employing the prescription ωC ≡ 1/(4α2).

Henceforth, we employ the following notation: for the square of the Riemann tensor contracted
naturally that is RμνρσRμνρσ, we use the symbol R2

μνρσ, the square of the Ricci tensor RμνRμν we denote
by simply R2

μν, the square of the Ricci curvature scalar is always R2, while for the Weyl tensor square
CμνρσCμνρσ we employ a shorthand and schematic notation C2. When the latter is treated as a local
invariant (not under volume integral) in d = 4 dimensions, one finds the following expansion of the
C2 invariant into standard invariants quadratic in curvature

C2 = R2
μνρσ − 2R2

μν + 1
3 R2 . (3)

We will also need another important combination of the quadratic curvature invariants, namely
Gauss–Bonnet (GB) term

G = R2
μνρσ − 4R2

μν + R2 , (4)

which in d = 4 is the integrand of the Euler–Poincaré invariant [53]

χ =
1

32π2

∫
d4x

√
|g|G . (5)

In order to underline the similarity with nonabelian YM theories, we use the Riemann curvature
tensor so that it is related to the usual general relativistic one by

Rμνλ
κ = Rκ

μνλ|genrel . (6)

Note that due to skew and interchange symmetries of the Rieman tensor we have

Rλν = Rλν|genrel ⇒ R = R|genrel . (7)

In addition, also

CλμνκCλμνκ = CλμνκCλμνκ |genrel , (8)

trivially holds. In particular, in our convention, we consider both Christoffel symbols and curvature
tensors as 4 × 4 matrices; Rμνλ

κ ≡ {Rμν}λ
κ and Γνλ

κ ≡ {Γν}λ
κ . With this, one can write

Rμνλ
κ = {∂μΓν − ∂νΓμ − [Γμ, Γν]}λ

κ , (9)
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which is clearly analogous to the relation

Fa
μν = {∂μ Aν − ∂ν Aμ − ig[Aμ, Aν]}a , (10)

for the field strength in nonabelian YM theories with Aμ representing the gauge field. A natural
geometrical language for the description of this analogy is provided by the fiber-bundle theory.
While Γνλ

κ represents connection in the frame bundle, Aa
ν plays the same role in the ensuing

principal bundle. Similarly, Rμνλ
κ quantifies anholonomy in a parallel transport around a closed

infinitesimal loop in the frame bundle, whereas Fa
μν quantifies the anholonomy in the principal bundle.

Although the fibre-bundle theory provides the most adequate language for the parallelism between
Riemannian-geometry-based gravity and nonabelian YM theories, we will not pursue this point any
further here.

With the help of the Chern–Gauss–Bonnet theorem, one can cast the Weyl action S into equivalent
form (modulo topological term)

S = − 1
2α2

∫
d4x

√
|g|

(
R2

μν − 1
3 R2

)
. (11)

It should be stressed that although the omitted topological term is clearly not important on the
classical level, it is relevant on the quantum level where summation over distinct topologies should
be considered (see following subsection). However, even when one stays on topologies with a fixed
Euler–Poincaré invariant, the renormalization will inevitably generate (already at one loop) the GB
term with a running coupling constant (see, e.g., Section 3).

In passing, we note also that both (1) and (11) are Weyl-invariant only in d = 4 dimensions. In fact,
under the Weyl transformation gμν → Ω2gμν and the densitized C2 transforms as√

|g|C2 → Ωd−4
√
|g|C2 , (12)

in general dimension d of spacetime, while
√
|g| G supplies topological invariant only in d = 4.

This is particularly important to bear in mind during the quantization where (similarly as in the
Yang–Mills theories), one should choose such a regularization method that preserves the local gauge
symmetry of the underlying Lagrangian and thus does not introduce any unwanted symmetry breaking
terms. For this reason, one should preferentially rely on fixed-dimension renormalization and avoid,
e.g., dimensional regularization. This is the strategy we will pursue also in this paper.

Variation of S with respect to the metric yields the field equation of motion (EOM) known as the
Bach vacuum equation:

[2Cμλνκ
;λ;κ − Cμλνκ Rλκ ] ≡ Bμν = 0 , (13)

where Bμν is the Bach tensor (trace-free tensor of rank 2) and “; α” denotes the usual covariant derivative
(with Levi–Civita connection). We remind that the form (13) of the EOM is specific only to d = 4.
Moreover, apart from being traceless, the Bach tensor is also divergence-free (Bμν; μ = 0), which is
a consequence of diffeomorphism symmetry. Because Bach tensor results from variational derivative
of the action S with respect to symmetric metric tensor gμν, it must also be symmetric (Bνμ = Bμν).
When for a given background Bμν = 0 (i.e., given backgound is a classical vacuum solution of Weyl
gravity), then we say that it is Bach–flat. More general discussion of classical singularity-free solutions
in WG can be found in [54–56].
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2.2. Quantization

One can formally quantize WG by emulating the strategy known from quantum field theory,
i.e., by introducing a functional integral (h̄ = c = 1)

Z = ∑
i

∫
Mi

Dgμν eiS . (14)

Here, Dgμν denotes the functional-integral measure whose proper treatment involves the
Faddeev–Popov gauge fixing of the gauge symmetry Diff × Weyl(Mi) plus ensuing Faddeev–Popov
(FP) determinant [45,57]. As for local factors [−det gμν(x)]w in the measure, we choose to work with
DeWitt convention [58,59]: w = (d − 4)(d + 1)/8. Clearly, when the fixed-dimension renormalization
scheme in d = 4 is employed, the local factor does not contribute. Strictly speaking, for a full-fledged
quantization program, one should consider generator of correlation functions Z[Jμν], i.e., functional
of a source field that is coupled to a dynamical metric field. Such object would contain information
on all correlations functions, but, unfortunately, it is far beyond our present computational capability.
Fortunately, for our purposes, i.e., for the computation of enhanced one-loop effective action the use of
quantum partition function (14) will suffice.

The sum in (14) is a sum over four-topologies, that is, the sum over topologically distinct
manifolds Mi (analogous to the sum over genera in string theory or sum over homotopically
inequivalent vacua in the Yang–Mills theory) which can potentially contain topological phase factors,
e.g., the Euler–Poincaré characteristic of Mi, cf. Ref. [60]. It should be stressed that the sum over
four-topologies is a problematic concept since four-manifolds are generally un-classifiable—i.e., there is
no algorithm that can determine whether two arbitrary four-manifolds are homeomorphic. On the
other hand, simply connected compact topological four-manifolds are classifiable in terms of Casson
handles [61], which can be applied in functional integrals in Euclidean gravity. For simplicity, we will
further assume that all global topological effects can be ignored, so, in particular, we assume that our
space Mi is compact and its tangent bundle is topologically trivial.

To avoid issues related to renormalization of non-physical sectors (i.e., Faddeev–Popov ghosts
and longitudinal components of the metric field), it will be convenient in our forthcoming reasonings
to employ the York decomposition of the metric fluctuations hμν defined as

gμν = g(0)μν + hμν (15)

where we have denoted the background metric as g(0)μν . The York decomposition is then implemented
in two steps [44]. In the first step, we rewrite the metric fluctuations as

hμν = h̄μν + 1
4 gμνh , (16)

where h is a trace part of hμν and h̄μν is the corresponding traceless part. More specifically,

g(0)μν h̄μν = h̄μ
μ = 0 , h = g(0)μνhμν = hμ

μ . (17)

We will always tacitly assume that the Lorentz indices are raised or lowered via the background metric,
i.e., via g(0)μν or g(0)μν, respectively. In addition, all covariant derivatives ∇μ below will be understood
as taken with respect to the background metric. In the following, the operator � will denote the
so-called Bochner Laplacian operator [44], i.e., the covariant operator defined as � ≡ ∇μ∇μ.

In the second step, we decompose the traceless part into the transverse, traceless tensor h̄⊥μν and
to parts carrying the longitudinal (i.e., unphysical) degrees of freedom, namely

h̄μν = h̄⊥μν + ∇μη⊥
ν + ∇νη⊥

μ + ∇μ∇νσ − 1
4 gμν�σ . (18)
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These mixed-longitudinal (and traceless) parts are written in terms of an arbitrary transverse
vector field η⊥

μ and a scalar (trace) degree of freedom σ. The last fields must satisfy the usual conditions
of transversality and tracelessness, i.e.,

∇μ h̄⊥μν = 0, ∇μη⊥
μ = 0, h̄⊥μ

μ = 0 . (19)

The true propagating degrees of field in QWG are associated with the transverse and traceless
field h̄⊥μν ≡ hTT

μν . Indeed, from the second variation of the Weyl action expanded around a generic
background, it can be seen that h̄⊥μν is the only field component that propagates on quantum level.
The vector field η⊥

μ and two scalar fields h and σ completely drop out from the expansion due to
diffeomorphism and conformal invariance, respectively [62]. Some explicit examples will be given in
Section 4.

3. Exact RG Flow for Quantum Weyl Gravity

For convenience sake, our subsequent reasonings will be done in an d = 4 Euclidean space
dimensions as this is a typical framework in which the FRG treatment is done. By performing Wick
rotation from Minkowski space to Euclidean space, the question of the resulting metric signature arises.
When one does, in a standard way, only the change of the time coordinate t → −itE, (where tE is
the name of the first coordinate in the Euclidean characterization of space) the resulting signature
of the metric of space is completely negative, that is (−,−,−,−). It seems natural to define the
corresponding GR-covariant d’Alembert operator as �E = −∇μ∇μ, where the generalization to
curved Euclidean space is done by using Bochner Laplacian. However, in all formulas that follow,
we find more convenient to use the following definition in the Euclidean signature � = ∇μ∇μ.
We also remark that this last operator �, if analyzed on the flat space background, has negative
semi-definite spectrum. We will also use a definition of the covariant Euclidean box operator (covariant
Laplacian) Δ = � = −�E and this last operator in the Euclidean flat space case has a spectrum which
is characterized by −k2, the d = 4 Euclidean negative square of a 4-momentum vector kμ. Accordingly,
the signature of the metric in Euclidean space will be taken to be (+,+,+,+).

The aim of this section is to explore the IR behavior of the QWG by starting from the presumed
UV FP where the QWG is exact. Existence of such a UV FP was self-consistently checked in Ref. [16].
To this end, we will solve the FRG flow equation [39–42] for the effective average action Γk, which reads

∂tΓk =
1
2

Tr
[
∂tRk(Γ

(2) + Rk)
−1
]

. (20)

The IR-cutoff Rk suppresses the contribution of modes with small eigenvalues of the covariant
Laplacian −Δ � k2, while the factor ∂tRk removes contributions from large eigenvalues of −Δ � k2.
In this way, the loop integrals are both IR- and UV-finite [63]. The second variational derivative of the
effective action—Γ(2) depends on the background metric g(0)μν , which is the argument of the running
effective action Γk, while k is the running energy (momentum) scale or the momentum of a mode in
the Fourier space. We also employ the notational convention ∂t = k∂k.

Ideally, Equation (20) would require calculation of the full resummed and RG-invariant effective
action. It is, however, difficult to proceed analytically in this way so we make ourselves content here
with the conventional procedure, according to which one should employ some well motivated ansatz
for the effective action. In particular, in order to evaluate the RHS of Equation (20), we employ the
(Euclidean) effective action in the enhanced one-loop scheme. By the enhanced one-loop scheme,
we mean one-loop effective action in which also effects of the anomalous dimension and threshold
phenomena are included. Corresponding truncation will thus inevitably go beyond the usual
polynomial ansatz. On the other hand, for the LHS of (20), we project the flow on the subspace
of the three invariants containing precisely four derivatives of the metric (Equations (3) and (4) and R2

invariant). The reason why we consider effective action on the RHS being different from the effective
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action on the LHS is dictated by technical convenience. Namely, the RHS acts as source for the RG
flow, while the LHS contains the desired structure of the effective action that is appropriate for the
extraction of the β-functions.

Let us now briefly describe the basic steps that are used in solving the FRG flow equation.
Further technical details as well as necessary derivations can be found in our recent paper [16] and in
its supplemental material [64]. On the other hand, our final results will be discussed in more detail in
the following section.

The first step is the construction of the one-loop partition function for QWG. It is important here
to choose a convenient class of backgrounds and use a background field method. This method is quite
standard and widely used in higher derivative gravitational theories and in the FRG context it was first
pioneered by Benedetti et al. in Ref. [65]. We selected maximally symmetric spaces (MSS) and Ricci-flat
backgrounds, knowing that both of them are also Bach-flat, so they are classical exact solutions to the
Bach equation (i.e., vacuum equations in WG) [66]. The partition function is computed from action
phrased in terms of York degrees of freedom (recall that metric fluctuations are decomposed into
a transverse-traceless part, trace part, and gauge part). A clear advantage of phrasing action in terms of
the York decomposition is that the Hessian from the Bach action (that is needed for one-loop effective
action) contains neither gauge part nor trace modes due to Weyl symmetry. Therefore, the functional
integration over the gauge and trace degrees of freedom can be performed trivially. When quantized,
one must, of course, define the functional integral measure, so as to not overcount physical degrees of
freedom. This is done via FP procedure, i.e., by Faddeev–Popov gauge fixing of the gauge symmetry
Diff × Weyl plus FP determinant. We must also change variables (to York ones) under the functional
integral and include corresponding Jacobian. Finally one must also exclude the contribution from
zero modes, which are unwanted. As a double-check, one can verify that all these one-loop partition
functions provide six propagating degrees of freedom in QWG as expected. More explicit technical
exposition can be found in Refs. [16,44,62].

In the second step, we analyze the general β-functional of the theory considered on our general
backgrounds (MSS and Ricci-flat). We ask and address the question about information which can be
extracted on these backgrounds about the β-functions of involved couplings. Due to various relations
between curvature tensors and between square of tensors, we find that we are able to extract only two
combinations of couplings: either βR + 1

6 βGB on MSS, or βC + βGB on Ricci-flat background. It can be
also checked that the usage of general Einstein spaces as on-shell backgrounds does not improve on
this situation. However, in a general theory to the quadratic order in curvatures, we may set up an
ansatz for the effective average action Γ built out of three couplings ωC, ωGB, and ωR corresponding
to three quadratic invariants C2 term, G = GB term, and R2 term [67]. We address this potential
inconsistency of the RG system (three couplings and only two extractable β-functions) in the final step
of our method of solving the FRG.

The most important part consists of building and solving the FRG flow equation. In Ref. [16],
we found a novel form of the FRG flow equation based on the expressions for factors appearing in the
quantum partition function of the theory. These factors mimic the simple scalar two-derivative kinetic
sectors of the theory; however, they may appear both in the numerator and in the denominator of the
partition function and with various mass square parameters (which can also be negative). We take
into account quantum wave-function renormalization of quantum fields and add to the flow equation
the anomalous dimension η for all fields participating in the quantum dynamics at the one-loop level.
To do the IR-suppression of modes in each factor, we should add a suitable cutoff kernel function
Rk(z). When all these operations are done, the final form of the FRG flow equation reads

∂tΓL,k =
1
2 ∑

i
∑

j
± Trφi

(
(∂tRk − ηRk) 1̂I
�̂+ Rk1̂I − Yi,j

)
, (21)
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where Yi,j are mass square parameters of the modes φi and the functional trace is done over space of
the same modes, which may also contain some traces over internal indices of the fields. The frontal
plus/minus sign in (21) originates from the initial position of the factor in the partition function
(whether it was in the denominator, or in the numerator of the partition function, respectively).

The final step consists of choosing the truncation ansatz for the action, whose FRG flow we try to
determine. To write the RHS of the flow equation, we explicitly reflect the fact that our theory is QWG
theory, where we could add a topological GB term, therefore not influencing at all the perturbative
one-loop partition function. On the LHS, we could analyze the flow of the general action quadratic
in curvatures with the structure of the Lagrangian ωCC2 + ωGBG + ωRR2. However, in perturbative
QWG at the one-loop level, there is a very interesting and special simplification since at this quantum
level the R2 term is not needed, and we know that perturbatively its one-loop β-function βR vanishes.
We utilize this hierarchy of β-functions in QWG and employ consistently the truncation ansatz without
the problematic R2 term. Therefore, we have two combinations of β-functions ( 1

6 βGB and βC + βGB)
and two couplings ωC and ωGB, so the system is consistent and possible to be solved algebraically for
the β-functions involved.

This solving we do in the last technical step, where we evaluate all the functional traces (both in
internal space and spacetime volume integrals). We perform the traces using the heat kernel method
and Barvinsky–Vilkovisky trace technology. In order to have an analytic control over all formulas,
we decide to choose a particular form of the cutoff kernel function Rk ≡ Rk(z) =

(
k2 − z

)
θ
(
k2 − z

)
due to Litim [68,69]. The main point of using the Wetterich Equation (20) is to take into account
massive modes which slow down the RG flow in the IR regime. We achieve this by adding cutoff
kernels Rk in mass-dependent renormalization scheme of Wilsonian character. This lets us obtain
one-loop RG-improved expressions for the two β-functions of the theory with all quantum effects due
to anomalous dimension η and IR threshold phenomena included.

4. Analysis of β-Functions and RG Fixed Points

We now discuss the system of β-functions of the theory considered at the one-loop level improved
by the usage of FRG methods. Based on the computation presented in Ref. [16], the explicit form of
β-functions reads

βGB =
1
2
(2 − η)

⎡⎣−21
40

(
1 −

2
3 Λ
k2

)−1

+
9

40

(
1 −

4
3 Λ
k2

)−1

− 179
45

(
1 +

Λ
k2

)−1

− 59
90

(
1 +

1
3 Λ
k2

)−1

+
479
360

(
1 +

2Λ
k2

)−1
− 269

360

(
1 +

4
3 Λ
k2

)−1
⎤⎦ , (22)

and

βC + βGB =
2 − η

2
137
60

, (23)

with the anomalous dimension of the graviton field given by

η = − 1
ωC

βC , (24)

to the one-loop level of accuracy. By ωC = ωC(k), we here denote a running coupling parameter in
front of the C2 term in the action (1)—the so-called Weyl coupling. It is important to notice that the
β-functions were computed by the background field method in two distinct Bach-flat backgrounds
specified above. This is a standard technique pioneered by Benedetti et al. [65]. In spite of this,
the β-functions are in general background dependent in the IR regime, we should emphasize that the
existence of FP of RG and some other properties (related to critical exponents, the dimensionality of
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the critical surface or to anomalous dimensions of some CFT operators) are universal and independent
of the background chosen. These are indeed the aspects we will be interested in, so that as far as they
are concerned we can ignore the explicit dependence of the β-functions on the background spacetime.

The above two β-functions, βC and βGB, follow from the FRG with the truncation ansatz motivated
by the one-loop level and with both the threshold phenomena and non-trivial anomalous dimension
of the quantum graviton included. We thus call them one-loop RG-improved. The effects of threshold
phenomena are present explicitly only in the expression (22) for βGB. However, due to the combination
in (23), the solution for βC will also inherit these threshold factors. Finally, we observe that the
anomalous dimension η enters only multiplicatively in the system of β-functions (22) and (23). This has
some simplifying consequences for a search for FP’s of the coupled system, both in the UV as well as
in the IR regimes.

Let us now discuss the reasons for the presence of threshold phenomena in our system. As it could
be seen from the expressions for the one-loop partition functions of the system [16] on MSS,

Z2
1−loop =

det2
1
(
�̂+ Λ1̂I

)
det1

(
�̂+ 1

3 Λ1̂I
)

det0

(
�̂+ 4

3 Λ1̂I
)

det2T
(
�̂− 2

3 Λ1̂I
)

det2T

(
�̂− 4

3 Λ1̂I
)

det0
(
�̂+ 2Λ1̂I

) , (25)

and on Ricci-flat background

Z2
1−loop =

det3
1�̂det2

0�̂
det2

2
(
�̂− 2Ĉ

) (26)

the box-kinetic operator of all quantum modes is shifted only in the case of MSS background1.
This is the reason to produce IR thresholds. The shift by a matrix of a Weyl tensor Ĉ on the
Ricci-flat background does not generate any threshold because of the tracelessness of the Weyl tensor.
These shifts in the factors in the partition function (25) on MSS backgrounds are analogous to massive
modes in standard QFT. Their role is to effectively slow down the RG flow in the IR regime since there
the quantum fields become heavy (with mass).

We can further simplify the system of Equations (22) and (23) for the two β-functions. In particular,
we do not wish to solve explicitly the system (22) and (23). We just concentrate on the corresponding
FP’s. This is a much simpler task as we can solve the system of β-functions algebraically. This gives

βC =
b −X

1 + y(X − b)
, βGB =

X
1 + y(X − b)

, (27)

where

X = − 21
40

(
1 −

2
3 Λ
k2

)−1

+
9
40

(
1 −

4
3 Λ
k2

)−1

− 179
45

(
1 +

Λ
k2

)−1
− 59

90

(
1 +

1
3 Λ
k2

)−1

+
479
360

(
1 +

2Λ
k2

)−1
− 269

360

(
1 +

4
3 Λ
k2

)−1

, (28)

with b = 137/60 and y = 1/ωC. The origin of the common denominator 1 + y(X − b) is entirely due
to the inclusion of the graviton’s anomalous dimension η. When η is neglected, the latter is unity.
This is the regime in which the Weyl coupling ωC is big (ωC → ∞, so y → 0). This corresponds to

1 Let us stress once more that both (25) and (26) were obtained by first rewriting the action in York variables and then
following the standard Faddeev–Popov quantization procedure which involves the computation of the determinants for the
ghost fields associated with diffeomorphism and conformal invariance.
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the perturbative regime of the theory (in terms of αC). When one decides to neglect these common
denominators, one gets simplified expressions,

βC = b −X , βGB = X , (29)

which are already sufficient to shed light on the issue of existence and character of FP’s of the FRG
flow. The equations in (29) still include the effects of threshold phenomena. When we neglect the
threshold phenomena in our description, then the system of β-functions acquires the form of one-loop
perturbative system as derived in [45] for QWG in dimensional regularization scheme. Actually,
all these threshold phenomena are contained in the expression called X above. When one takes the
limit Λ/k2 to zero, then all threshold factors are indeed removed, and the expression X reduces to just
a number βFT

GB = −87/20.

4.1. Ultraviolet Asymptotic Freedom in All Couplings

When κ = k/
√
|Λ| � 1, the threshold phenomena are completely irrelevant and can be neglected,

cf. Equation (22). Irrespectively of the initial values of the couplings ωC0 = ωC(t0) and ωGB0 = ωGB(t0)

(look also at an analysis in the next paragraph), the leading RG running behavior in the UV regime
(for t � 1) is ωC ∼ tβFT

C and ωGB ∼ tβFT
GB. This signifies that the absolute values of the couplings

must necessarily grow in the UV. It might be argued that in the UV regime one can also neglect the
effects of the anomalous dimension η, cf. Equation (24), since it is suppressed by big values of the ωC
coupling in the UV. For the UV-running (t → +∞ equivalent to k � k0), it suffices to use only the
non-RG-improved one-loop perturbation results (29) from above.

Fradkin and Tseytlin [45] were the first to find that the one-loop β-functions for ω-couplings are
constants with values

βC =
199
30

and βGB = −87
20

. (30)

This leads to an asymptotic freedom at the UV FP for all two couplings as we shall prove below.
Since βC > 0, it is natural to assume that the initial condition of the flow is such that ωC (t0) > 0
and similarly, since βGB < 0, then ωGB (t0) < 0. If one chooses the opposite condition, then the RG
flow tends to decrease the absolute value of the ω-coupling, the coupling crosses zero, and finally
it goes on the other side, where the initial conditions are natural in a sense mentioned above. This is
because one-loop RG flow in the UV forces the β-functions to be constants, so the increments of the
couplings (positive for ωC and negative for ωGB) are regular and linear in the UV regime. Hence, in the
deep UV (close to the UV FP), we can assume that ωC > 0 and also that ωGB < 0.

All these arguments are self-consistent and lead to the conclusion that the UV fixed point of
RG inevitably exists and realizes the asymptotic freedom (AF) scenario (in much the same way
as in non-Abelian gauge theories). Our perturbation analysis is carried out in terms of the coupling
g2 ∝ 1/ω, so this and the fact that, in the UV regime, ωC → +∞ bolsters the correctness of our
perturbative one-loop results even more. Actually, near the UV Gaussian FP, it is the coupling g
(analogous to the YM coupling constant) that goes to zero.

The AF characterization of the FP comes when the RG flow is analyzed in terms of g-like couplings.
We define them, taking into account above signs of ωC0 and ωGB0, in the following way:

ωC =
1

g2
C

=
1

4α2 and ωGB = − 1
g2

GB
, (31)

and with the inverse relations

gC =
1√
ωC

and gGB =
1√
|ωGB|

=
1√−ωGB

. (32)
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In this way, we are sure that both g-couplings are non-negative. Now, one can easily derive
by differentiation

βC = ∂tωC = − 2
g3

C
∂tgC = − 2

g3
C

βgC , (33)

and

βGB = ∂tωGB =
2

g3
GB

∂tgGB =
2

g3
GB

βgGB , (34)

(mind the sign in the second equation). Then, the β-functions of these couplings are expressed as

βgC = −1
2

g3
CβC and βgGB =

1
2

g3
GBβGB (35)

which to one-loop accuracy read

βgC = −199
60

g3
C and βgGB = −87

40
g3

GB . (36)

For vanishing values of the g-couplings, we find that the above β-functions vanish too, so in this
situation we have a trivial Gaussian FP of the RG flow. We also see that, for the positive values of the
couplings that is gC > 0 and gGB > 0, we have that both β-functions βgC and βgGB are negative which
signifies that in the UV we meet a FP (asymptotically free theory) in basically the same way like this
happens in QCD.

4.2. Scheme Independence of IR Fixed Point

In the paper [16], the detailed analysis of the situation with FP’s in the IR was presented. We found
both a turning point of the RG flow at some finite energy scale k and also a true IR FP at k = 0, so in
the deep IR regime. The genuine IR FP has a non-trivial (non-Gaussian) character and it allows for
defining the theory in the non-perturbative way, which is free from any IR-type of divergences and it
therefore realizes Weinberg asymptotic safety, but in the infrared. The turning point (TP) of the RG
flow is related to the non-analytic behavior of the β-functions in terms of running coupling parameters.
This in turn corresponds to a very interesting cosmological bounce scenario, when analyzed from
the AdS/CFT correspondence point of view. In this subsection, we discuss some universal features
of the TP of RG and of its location, while, in the next Section 4.3, we prove the relation between the
non-analytic behavior of β-functions and the bounce happening at finite k.

One can easily see that qualitative features of the RG flow presented above do not depend
on the details of the regularization and renormalization procedures. For example, taking a closer
look at the plot (cf. Figure 1 from [16]) of the dependence of the β-functions on the energy scale,
one can convince oneself that the asymptotics in the UV limit of the flow and an existence of the
location of the first zero of the RG flow counting from UV direction are universal. Firstly, we would
like to discuss the UV regime of the RG flow. The asymptotics in the UV limit are described by
one-loop β-functions computed by Fradkin and Tseytlin for four-dimensional conformal gravity and
our exact (or rather FRG-improved) β-functions tend asymptotically to these constant values (if the
β-functions for ω-type of couplings are considered). (Here, we also suppressed the contribution from
the anomalous dimension η since we know that this goes as some inverse powers of the ωC coupling
and should be accurately included only when higher-loop computation accuracy is required. We have
η � 1 and effectively we can take η = 0, which is a judicious assumption in the UV regime of the flow
towards asymptotically free point.) As a matter of fact, we see that the β-function of the ωC is positive
(with the precise value βC = 199

30 ), while the β-function of the coupling ωGB is negative (with the precise
value βGB = − 87

20 ). Since in this regime we reach an asymptotically free UV FP, where the g-couplings
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go to zero (and correspondingly ω-couplings tend to infinite values), any RG flow towards such a FP
should coalesce with the perturbative one-loop RG flow for small values of the g-couplings. We also
see this as a feature of our improved RG flows. Therefore, the locations of horizontal asymptotes of the
RG flow from the right (so for k → +∞) are universal and scheme-independent.

In the paper [16], we studied the energy evolution of the running couplings towards the IR regime
of the flow, concentrating on the IR fixed points of the system. The inclusion of threshold phenomena,
which are present in any mass-dependent renormalization, is of crucial importance in our analysis.
In fact, if we have studied only the simplified system of β-functions (29), we would not find any
interesting behavior of the RG flow in the infrared (similarly to the case of QCD in the IR regime where
the coupling grows stronger and gets out of the perturbative regime). We do not find any IR FP in such
a simplified scheme. The β-functions from the system (29) for X = const are always constant, at any
energy scale. To search for some non-trivial behavior in the IR, we must thus include some additional
non-perturbative effects. This feature is brought about by our usage of FRG methods and account of
decoupling of massive modes in the IR domain.

In order to find the FP’s of the system in the IR regime, we must solve equations βC(k) = 0 and
βGB(k) = 0. One can see a big simplification here because, in order to find zeros, we do not need to
solve the full system (27). Actually, we can completely forget the denominators in (27) and solve
only Equation (29), where threshold effects embodied in the factors Λ/k2 are still taken into account.
We also notice that the anomalous dimension η does not influence the locations of the possible IR FP’s,
within the limits implied by our truncation ansatz used in FRG.

Numerical solutions of the equations βC(κ) = 0 and βGB(κ) = 0 reveal that they are both satisfied
at (approximately) simultaneous values of the rescaled energy scale κ = k/

√
|Λ|. This is a smoking

gun for the fixed point of the RG flow. These zeros are automatically zeros of the exact system (27).
Moreover, the location of the zeros is almost identical (up to 2% accuracy) for the couplings ωC and
ωGB for both cases of Λ > 0 and Λ < 0. The inclusion of higher-loop effects or extension of our
truncation ansatz will make this agreement even stronger, so that in an exact fully non-perturbative
theory, the locations of two zeros coalesce into the one unique location of a genuine FP for both
couplings, in the infrared regime.

As we remarked above, the non-trivial form of the running arises because we have included
the effects of threshold phenomena. Let us, for definiteness, analyze closer the case of the parameter
Λ > 0. It is straightforward to understand the behavior of the exact β-functions βC and βGB regarding
their zeros and ensuing non-trivial FP’s in the IR domain. For this, it is important to find the behavior
of the MSS one-loop partition function treated as a rational function of the energy scale k. The first
pole/zero of the partition function (when one is coming from large values of k) we find at k2 = 4

3 Λ,

and this is due to the factor det2T

(
�̂− 4

3 Λ1̂I
)

, which is present in the denominator of the partition
function (25). This latter implies that this factor appears in the FRG flow equation with the positive
coefficient because it was a pole (not a zero) of the partition function. As it was explained earlier, for the
contribution of this factor to the Wetterich equation, we need to evaluate the following functional trace

Tr2T

(
(∂tRk − ηRk) 1̂I
�̂+ Rk1̂I − 4

3 Λ1̂I

)
, (37)

which in the RG flow is with the coefficient +1. For details of the structure of the FRG flow
equation, the reader is referred to [16] and the Formula (47) there. Here, we meet the moment
where we see the dependence on the cut-off kernel function Rk = Rk(z), thus the dependence on
the scheme of renormalization. We will now show that for the qualitative features of the flow
important for the existence of non-trivial FP this dependence is immaterial. First, the trace in
(37) leads to the expression in terms of the heat-kernel B4 expansion coefficient of the operator,

namely to
(

1 − 4
3 Λk−2

)−1
B4

(
�̂2T − 4

3 Λ1̂I2T

)
, again with positive front coefficient. To get the

front factor of the above expression, we used the optimized (Litim) form of the cutoff kernel,
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Rk(z) = (k2 − z)θ(k2 − z) [68], and we will comment on other possible choices below. One can
check that the B4 coefficient of such an operator is also positive. Indeed, we find

b4

(
�̂2T − 4

3
Λ1̂I2T

)
=

3
5

Λ2 , (38)

which is valid on MSS background and under the space volume integral (to produce the integrated
B4 coefficient). This implies that in the flow of the action ∂tΓL

k (as evaluated on MSS background),

we have the term
(

1 − 4
3 Λk−2

)−1 ( 3
5 Λ2), again with the positive sign. Hence, the expression for the

β-function βGB, which is the only one that can be read from the situation on MSS background, contains

the factor 9
40

(
1 − 4

3 Λk−2
)−1

, when we again emphasize the positive sign.
By solving algebraically the linear system of the β-functions (29), we also derive that, consequently,

the β-function βC contains in turn the factor 9
40

(
1 − 4

3 Λk−2
)−1

, but with the minus sign. This opposite
sign is the aftermath of the form of the equations in the system: from MSS, we derive only βGB where
the threshold factors reside, while on Ricci-flat background we find only the combination βC + βGB
without threshold factors. Therefore, the threshold factors are inherited by the β-function βC solved
algebraically but with the minus sign. The appearance of the anomalous dimension η (important
for quantitative description of the flow) does not change anything for what regards the zero of the
system of β-functions as we remarked before in [16] (provided that it is always negative η � 0).

The factor
(

1 − 4
3 Λk−2

)−1
is the first one, which decides about the location of a vertical asymptote of

the β-functions βC and βGB, as seen on the plot of Figure 1 in [16], when the flow comes from the UV
direction. In general, the positions of vertical asymptotes of the flow decide the factors in the partition
function (both in the denominator and in the numerator).

Now, one can look at this factor from the broader perspective. It describes the decoupling (due to
threshold phenomena) of the massive modes with the mass square parameter on MSS background
given by 4

3 Λ. The coefficient in front is related to the B4 coefficient of the corresponding operator and
that is why it is positive. In a general renormalization scheme, this coefficient is also positive and the

threshold factor
(

1 − 4
3 Λk−2

)−1
which shows the pole, precisely at k2 = 4

3 Λ, must be present in this
form or in another more general one, but still in a form exhibiting the pole in the same place. This is
due to the gauge-invariant and universal fact that on MSS background in Weyl conformal gravity we
find stable (non-tachyonic) 2T modes (spin-2 traceless) with the mass square given by 4

3 Λ. In addition,
this is the highest mass square parameter in the spectrum of all modes there. In a general framework,
the general threshold factor could look like this

a f

((
1 − 4

3
Λk−2

)−1
)

, (39)

where a is a positive constant and f (x) is some smooth, regular and positive function at x � 0. For the
β-function βC this threshold factor appears as

b f

((
1 − 4

3
Λk−2

)−1
)

, (40)

with a constant b < 0. This form manifests all universal features that we have discussed above.
Now, it is a matter of simple analysis of functions that for the GB term coupling ωGB, if a > 0 and
βGB→− 87

20 < 0, when k → +∞, then the running β-function βGB(k) must meet a zero for some√
4
3 Λ < kE < +∞, because a ·

(
1 − 4

3 Λk−2
)−1

→ + ∞, when k →
√

4
3 Λ

+
. In the latter, the “+”

superscript signifies that we approach the respective value from the above. Similarly, for the Weyl term
coupling ωC, if b < 0 and βC→ 199

30 > 0, when k → +∞, then the running β-function βC(k) must meet
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a zero for some
√

4
3 Λ < kC < +∞, because b ·

(
1 − 4

3 Λk−2
)−1

→− ∞, when k →
√

4
3 Λ

+
. These are

the invariant features of the flow and that is why the IR FP (for k = kGB for the ωGB coupling and
for k = kC for the ωC coupling) is universally present in any renormalization scheme that aims at
properly taking into account threshold phenomena. It is obvious that any mass-dependent scheme
comes with its own form of the function f = f (x), positive for x � 0, to supply the correct decoupling
of heavy, massive modes in the IR regime. (As such a renormalization scheme, we cannot, for example,
select a DIMREG because it is mass-independent.)

As we have argued, the form of the function f (x) is irrelevant and the IR TP is
scheme-independent. Mathematically, the zeros of threshold factors which appear in the expressions
for the FRG-improved β-functions are the results of the continuity of the function f (x) and of the
existence of the first vertical asymptote at k2 = 4

3 Λ, and of the way it is approached by β-functions. It is

also of crucial importance that the factor
(

k2 − 4
3 Λ
)

first appeared in the denominator of the partition
function (25), so the sign was favorable to enforce the change of the sign of the βGB, when moving
from negative universal one-loop value in the UV towards lower energies. This happens also because
the vertical asymptote is approached from the right (higher energies) to +∞. The change of the
sign of βGB must occur between two regimes: UV (when βGB < 0), and IR near the first vertical
asymptote (when βGB → +∞), so the zero line must be crossed for some energy scale k = kGB.
A similar conclusion holds for the βC with inherited threshold phenomena obtained from the system
(23). Moreover, it is natural to expect that kGB ≈ kC since the difference can be associated only with
higher-loop accuracy error as one can easily see by comparing the numerical values, which are quoted
below for Λ > 0:

kC ≈ 1.17709
√

Λ and kGB ≈ 1.19163
√

Λ . (41)

Finally, one sees that the values of the energy characterizing the IR TP are very close to the lower bound

given by k =
√

4
3 Λ ≈ 1.1547

√
Λ. This means that we must inevitably find a FP in the infrared regime.

Therefore, the existence of the IR TP is a universal feature of the exact (improved) RG flow, while the
details of its location, slopes, and speeds of approaching the FP, etc., depend on the particular choice of
the renormalization scheme (or in FRG terminology on the choice of the cut-off kernel function Rk(z)).

4.3. Non-Analyticity Near Turning Point

Let us now observe that the system of β-functions Equations (27) and (28) is not autonomous
because the equations depend on the initial conditions of the flow, not only on the actual values of
the couplings. In other words, we can see that these flow equations depend explicitly on the RG-time
t parameter, or on its exponential version k = k0et. In the autonomous system, which is the case,
for instance, for one loop in QED, in the dimensional regularization scheme or in simple momentum
subtraction renormalization scheme, one has that β = β(ω) are functions of the actual values of
couplings only. When one includes threshold phenomena for massive modes, then the autonomy of
the system of RG flow equations is typically lost. This can be observed also in our case. This conclusion
is based on the comparison of the RG running of the same β-functions, obtained for different initial
conditions of the flow. We see that even in the situation where the actual values of the couplings are
identical the corresponding β-functions for two such flows are unequal. Viewed differently, we can
observe that the same values of the β-functions are attained for different values of the actual couplings
ω, so the parameter t must also enter into dependence of the β-functions.

The lack of autonomy of the system of β-functions is the main obstacle against the possibility to
express the β-functions in terms of couplings only. We remark that in more standard applications of
FRG, FP’s of the RG flow are looked for such systems β = β(ω) and conditions for FP’s are conditions
on the values of the couplings attained at the FP. In our case, for a genuine IR FP, we must have the
additional condition that t → −∞. As explained in [16], we were able to find a TP for some finite
energy scale and a true IR FP for any value of the couplings ωC and ωGB. Therefore, in our case, we do
not have any condition on the couplings at the FP—they are fully unconstrained, or if analyzed in the
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space of all possible couplings, we have found not a single-point FP, but a two-dimensional surface of
FP’s of the RG flow.

Here, we present the analysis near the turning point of the RG flow, where β = 0, which occurs
at t = t∗ and with the value of the coupling which is ω = ω∗ (this value of the coupling ω∗ depends
on the initial condition of the flow that is on ω0 = ω(t0) and t0, while t∗ is independent of them).
We analyze the general situation for one representative coupling, but we can think of the TP as found
in the system of ωC, ωGB couplings for κ∗ ≈ 1.18. In the linear Taylor approximation, due to the
regularity of the β-function at the zero point understood as a function of the t variable only, we can
generically write β = A(t − t∗) for a constant coefficient A and this leads to the equation

dω

dt
= A(t − t∗) , (42)

which is solved by

ω − ω∗ =
A
2
(t − t∗)

2 (43)

with the initial condition of ODE that ω(t∗) = ω∗. The above solution shows that there is a minimum
of the coupling for the value ω∗ at t = t∗ for A > 0 (it is a local maximum when the constant coefficient
A < 0). The case A > 0 we meet for the ωC coupling, while for ωGB we have the opposite behavior
(due to (23)), so A < 0 there. For definiteness, here we consider the case A > 0. Inverting the relation
in (43), we get that t − t∗ ∼ √

ω − ω∗, so the linearized β-function in terms of the ω-coupling has
the non-analytic form β =

√
2A(ω − ω∗). This signifies that there are two branches of the couplings

(before and after the minimum of the ω coupling is reached). Due to the square root involved, at TP,
there is a cusp-singularity in the local expression β = β(ω). The RG flow of the running coupling
ω = ω(t) has here a turning point because, when t is decreased, the coupling ω first decreases and
reaches a local minimum, to finally start growing again and going through the same values of ω

for t < t∗. The β-function as function of t smoothly crosses the zero line, while β = β(ω) has the
cusp-behavior at ω = ω∗ and the double-valued behavior for ω > ω∗ with two (initially perfectly)
locally symmetric branches of β with opposite signs. One could also consider the stability matrix of
the linearized RG flow here at the TP. One of its eigenvalue could be finite

√
2A, but ∂β

∂ω at ω = ω∗
is formally positive infinity on the upper branch, so strictly speaking there are no eigenvalues of the
linearized RG flow around this point. On the lower branch, we have the opposite situation with formal
negative infinity due to the existence of the cusp. This signals the failure of the linearization of the
flow β = β(ω) around such a point. The flow is non-analytic at t = t∗.

Actually, for the β-function of the GB term, the coefficient A < 0 because the zero of βGB is reached
from the other side, so, instead of the local minimum for the coupling ωC, here there is a local maximum
for the coupling ωGB. Moreover, there is again formally a negative/positive infinite eigenvalue of
the RG flow (depending on which branch one is moving on), hence the stability matrix cannot be
properly defined. When we consider two couplings at the same time at TP, a question arises which
coupling (only one) has to be chosen to locally eliminate the t variable from the system of β-functions.
We decided to remove t in favor of the ωC coupling. If the β-function of the GB term, at the common
TP (placed conventionally at κ = κC), is analyzed as a function of ωC, not of the additional RG-time
t variable, and not of the ωGB coupling, then there is a finite positive off-diagonal value of the linearized
RG flow matrix because βGB ∼ ωC − ωC∗ with some finite coefficient. This is due to the fact that
κGB > κC and that βGB(κC) > 0. Here, at the TP, we have a relation that ωC − ωC∗ is proportional
to (t − t∗)2 with a positive coefficient from (43), hence then the two eigenvalues of the system are
zero for the GB coupling and formally positive infinity for the ωC coupling, and these two couplings
formally are exact eigenvectors of the matrix of the RG flow. Again, even in the case of two couplings,
the stability matrix cannot be determined.
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The reader can easily see that the analysis presented above hinges on the fact that the location
of the TP of the RG flow in RG-time coordinate t∗ is finite. If formally t∗ → ±∞, then the initial
assumption about the local behavior of the β-function β = A(t − t∗) does not make any sense. Hence,
the solution in (43) is not realized in this form. As it is known from the general theory of true FP’s of the
RG flows, they may only appear at the abstract theoretical RG-scale coordinate t∗ → ±∞. Then, there
are various theoretical ways how the asymptotics of the function β(t) → 0 is realized, but, in most of
the cases, it is possible to linearize the RG flow near the FP, when the β-functions are expressed entirely
via the ω-couplings. At such FP, we generically find that β(ω) = A(ω − ω∗) to the first infinitesimal
level. Therefore, the flow is analytic and can be linearized to obtain finite derivative ∂β

∂ω (in the case
when we have many couplings, this is a linear matrix) giving us the stability coefficient. The form of
the solutions ω = ω(t) near the true FP’s is typically exponential in t variable and moreover they do
not depend on the particular initial values of the flow ω0 = ω(t0), hence the system of the β-functions
in the UV/IR becomes effectively autonomous. All the above statements about FP’s are equivalent to
each other and they show a clear distinction from the charasteristic of the RG flow at the stop of the
flow which happens at TP’s.

In addition, in the case of TP’s, the statements about the finiteness of t∗, the linearity of β = β(t) to
the first order in t− t∗, the non-analyticity and the square-root-like singularity of the function β = β(ω),
the lack of autonomy of the system of β-functions, and finally the impossibility to linearize the RG
flow near TP and to define the stability matrix there are equivalent. For their derivation, we have not
used any additional assumption and this is the reason why in the proof of these equivalences one can
easily go both ways. For example, from the non-analytic form of the β-function β =

√
2A(ω − ω∗),

one derives the local behavior of the β-function near the TP in t variables: β = A(t − t∗), which makes
sense only for t∗ finite. This is why all the characteristics of the TP as the special point of the RG
flow are tightly related and it differs from a true FP of RG. Similarly, from the AdS/CFT point of
view, true FP’s of RG (both in IR or in UV) correspond to AdS backgrounds in asymptotic conformal
regions of the gravitationally dual bulk spacetime, while the TP’s correspond to bounce solutions
holding in intermediate finite regions of spacetime characterized by some finite values of the AdS-like
radial coordinate.

Following the above distinction between TP’s and FP’s, in the paper [16], we continued the search
for true IR FP’s. For this purpose, we used the established fact that at κ ≈ 1.18 we found a common
TP of the RG system. We exploited the infinitesimal form of the flow at TP and analytically extended
it beyond the TP. We treated the TP as a good point from which we could start a new perturbation
calculus driven towards the IR regime. Assuming perturbativity (in different couplings than in the
UV FP), we were eventually able to find a genuine IR FP at t → −∞. We characterized this FP as
non-trivial and non-Gaussian and computed the characteristic values of the couplings there, so called
ωC∗∗ and ωGB∗∗, which revealed to be non-vanishing. Moreover, we found that this IR FP is stable for
both perturbation directions given by the couplings ωC and ωGB. The IR-stable true IR FP is the main
result to be used for further cosmological and conformal symmetry breakdown related applications of
the QWG theory, see also Section 6.

4.4. Extension of the RG Analysis to Two-Loop Order

In this subsection, we attempt to give a preliminary analysis of the RG system of running
coupling parameters in QWG, at the two-loop level. We base our considerations only on algebraic,
dimensional-analytic, and combinatorial arguments since a detailed computation of UV-divergences
and β-functions at this level is still beyond our computational capabilities. We assume that numbers,
we are dealing below with, are generic and they do not vanish, and we discuss the general structure
of the RG system. In particular, we touched upon the issue of the “new” β-function βR, which is
expected to be generated first time at the two-loop level. We analyze its suppression compared to
other β-functions in the system and establish the hierarchy of them. Moreover, we also look at the
universality properties of the β-functions for all three couplings ωC, ωGB and new ωR at this level and
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in this way we strengthten and extend the well known results from the one-loop quantum level to
QWG theory at two loops.

As remarked, in the paper [16], the first paper to deal with the divergences issue at the two-loop
level in QWG, was the one by Fradkin and Tseytlin from 1984 [70]. However, the computation
presented there is not complete, since only a subset of two-loop diagrams is analyzed. Nevertheless,
we agree with the authors’ conclusion that it is very probable that the R2 divergence shows up
for the first time at the two-loop accuracy. This is in contradiction to the conjecture of ‘t Hooft
and Mannheim [52], who instead expect that the conformal symmetry on the quantum level is so
powerful that this non-conformal β-function βR is vanishing to all orders and also non-perturbatively.
This would be true, if the conformality was fully present at the quantum level (not only at the one-loop
level, where it forces βR = 0). We do not think this to be so, in accordance with [46,70], because of the
presence of conformal anomaly, already at the one-loop perturbative level. We discuss more issues
related to the conformal anomaly in the special discussion Section 5.

4.4.1. Two-Loop Suppression of β-Functions

Let us remind that the one-loop action for QWG reads

S =
∫

d4x
√
|g|

(
ωCC2 + ωGBG

)
. (44)

This also served us as the truncation ansatz for the effective action Γ that we used for the FRG
computation. We re-emphasize that the term R2 with the coupling ωR2 is consistently not included at
the tree-level and in the one-loop motivated RG flow equation because such a term is not generated
by any quantum correction at the one-loop level. In the original one-loop computation by Fradkin
and Tseytlin [45], the quantities which are assumed to be small are 1

ωC
and 1

ωGB
. The loop expansion is

precisely in these quantities that is at the one-loop level we have

β
(1)
C = βFT

C and β
(1)
GB = βFT

GB , (45)

where the coefficients βFT
C , βFT

GB are simple numbers (30), while up to the two-loop order we must find

β
(2)
C = βFT

C + a(2)C,C
1

ωC
+ a(2)C,GB

1
ωGB

, (46)

and

β
(2)
GB = βFT

GB + a(2)GB,C
1

ωC
+ a(2)GB,GB

1
ωGB

, (47)

where the numerical coefficients a(2)C,C, a(2)C,GB, a(2)GB,C, and a(2)GB,GB are presently unknown, but it is certain
that they do not depend on the couplings ωC, ωGB. The two-loop form of the RG system presented
above is the result of assuming the perturbative expansion in 1

ωC
and 1

ωGB
variables.

The UV-divergent part of the effective action at the one-loop level is given schematically by

Γ(1) =
∫

d4x
√
|g|

(
β
(1)
C C2 + β

(1)
GBG + β

(1)
R R2

)
, (48)

where we find that to one-loop accuracy we have

β
(1)
R = βFT

R = 0 , (49)
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due to (partial) conformal symmetry still preserved at the quantum one-loop level. This fact can be
viewed as the one-loop remnant of full conformal symmetry present in the action at the tree-level (44).
At the two-loop level, we expect β

(2)
R not to vanish and be given analogously by

β
(2)
R = βFT

R + a(2)R,C
1

ωC
+ a(2)R,GB

1
ωGB

= a(2)R,C
1

ωC
+ a(2)R,GB

1
ωGB

, (50)

where the coefficients a(2)R,C, a(2)R,GB are presently unknown numbers, whose non-vanishing (even of one
of them), if unambiguously computed, would completely prove the conjecture of [70]. We explain
that the possible structure term a(2)R,Rω−1

R is not present since only ωC and ωGB are the couplings in the
original (and also one-loop level) action. The coupling ωR has to be introduced (and renormalized)
only from the two-loop level only. Actually, the reason for its introduction at the two-loop level action
is the presence of the R2 counterterm in Γ(2). We need to absorb such a covariant UV-divergent term
and for this we need to include the ωRR2 term in the bare action. This also means that, for perturbative
computations at the level of three loops and higher, we must use the bare action (44) corrected by
the presence of this new term ωRR2 with arbitrary coefficient ωR (however, due to hierarchy and
suppression of β-functions, as explained below, we should assume that its value is parametrically
smaller than the values of other couplings ωC and ωGB present in (44) that is we should use ωR �
ωC, ωGB). For full one- and two-loop level quantum computations, we can use the bare action as given
in (44) and this is reflected in the results for the β-functions to this accuracy given in (46), (47), and (50).
It is conceivable that, if one wants to theoretically go to three-loop expressions for the β-functions of
any of the coupling X, Y = ωC, ωGB, or ωR, then the terms with the structure a(3)X,Y,Rω−1

Y ω−1
R could

appear in β
(3)
X with non-vanishing coefficients a(3)X,Y,R.

The two-loop level UV-divergent part of the effective action then takes the form

Γ(2) =
∫

d4x
√
|g|

(
β̃
(2)
C C2 + β̃

(2)
GBG + β̃

(2)
R R2

)
(51)

so the new term R2 is generated with the coefficient β̃
(2)
R , which is always suppressed by one power

of the small coupling 1
ωC

or 1
ωGB

, as in (50). Compared to the one-loop level action (48), where the
counterterms were multiplied by only numerical coefficients βFT

C and βFT
GB, this is a suppression by

additional power of small coupling. We conclude here that the β-function βR when it finally shows up
at the two-loop level is additionally suppressed with respect to other β-functions in the RG system.
This signifies that the hierarchy of the β-functions is evident and the running of the ωR coupling is
very small, and that it was fully consistent to assume to the one-loop accuracy that ωR = 0. This was
the fact that we took advantage of in the truncation ansatz for Γ that we used to model FRG to the
one-loop level. Sincerely speaking, the significant R2 term could be generated in the truncation ansatz
Γ, but this does not happen immediately, and it requires a long RG-time since the running of ωR is
very slow. Our truncation ansatz for QWG is therefore internally consistent, at least in a big vicinity of
the UV FP of RG. We just remark that we took care of the fact that at the two- and higher-loop level
coefficients of UV-divergences are not the same as higher-loop β-functions of couplings (but they are
in strict relations) and therefore we decorate the terms in (51) by additional tildes.

If one uses the electric charge-like couplings defined for any coupling ω (from the set ωC, ωGB,
and ωR) (cf., also the analysis in Section 4.1) by

ωi =
1
g2

i
, (52)

then the corresponding β-function reads

βi = βgi

dωi
dgi

= −2g−3
i βgi . (53)
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Consequently, we find that, for the one-loop level accuracy

β
(1)
C = −2g−3

C β
(1)
gC and β

(1)
GB = 2g−3

GB β
(1)
gGB , (54)

and hence β
(1)
gC ∝ g3

C , β
(1)
gGB ∝ g3

GB , and finally β
(1)
gR = 0. Similarly, based on Equations (46) and (52),

up to the two-loop level, we find

β
(2)
C = −2g−3

C β
(2)
gC = β

(1)
C + a(2)C,C g2

C + a(2)C,GB g2
GB , (55)

which implies that

β
(2)
gC = −1

2
g3

C

(
β
(1)
C + a(2)C,C g2

C + a(2)C,GB g2
GB

)
= −1

2

(
g3

C β
(1)
C + a(2)C,C g5

C + a(2)C,GB g3
C g2

GB

)
. (56)

We repeat verbatim for the GB term coupling:

β
(2)
gGB = −1

2

(
g3

GB β
(1)
GB + a(2)GB,C g2

C g3
GB + a(2)GB,GB g5

GB

)
, (57)

and for the ωR coupling (remembering that β
(1)
gR = 0):

β
(2)
gR = −1

2

(
a(2)R,C g2

C g3
R + a(2)R,GB g2

GB g3
R

)
= O

(
g5
)

. (58)

We see that at the leading order the β-function βgR is proportional to the fifth power of the g-couplings.
Again, compared to the expressions for βgC and βgGB , which to the leading order (which is a one-loop
order) go like g3, this is a two-loop suppression. We derive that this suppression is present
independently of the form of the couplings used in QWG theory.

When using electric-like-couplings gi, we are in a comfortable situation in which perturbative
calculus is conveniently done in these couplings (compare to a different case for ω-like couplings).
For example, we write the one-loop effective action Γ(1) ∝ O(g0) as a perturbation in small couplings
gi to the classical action S ∝ O(g−2), and then the genuine corrections at the two-loop level are

Γ(2) ∝ O(g2) . (59)

The coupling of the R2 term in the effective action Γ for QWG is generated from the level of (at
least) two loops and its first coefficient is proportional to g2, so compared to other terms like C2

or E present at the one-loop level and multiplied by the coefficients of order g0, this coefficient is
again highly suppressed. We also draw a parallel that, analogously like in QWG considered above,
in QCD, the β-functions scale like: β

(1)
g ∼ g3 for the one-loop level and β

(2)
g ∼ g5 for the two-loop level,

and similarly the tree-level action scales as S ∝ O(g−2), the one-loop level effective action scales as
Γ(1) ∝ O(g0), and the two-loop effective action scales as Γ(2) ∝ O(g2), where g is the Yang–Mills
coupling parameter.

4.4.2. Universality of Two-Loop Order β-Functions in Weyl Gravity

Let us now present a general argument for the universal properties of the RG system of β-functions
of all three couplings ωC, ωGB, and ωR in QWG at the second loop level. Our exposition is loosely based
on Ref. [71]. First, we recall that to the one-loop accuracy all β-functions of perturbative couplings are
universal and do not depend on the choice of the renormalization scheme, and are also gauge-fixing
independent, if the corresponding couplings are in front of dimension four gauge-invariant terms in the
action. Of course, the form of the β-functions depend on the version of the couplings used (whether this
is an ω-type coupling, or g-like coupling, or something else) as clearly seen in the formulas from
the last subsection. Here, we analyze the change of the β-functions under a general redefinition
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of the couplings. Such redefinition mimics the change done by using a different regularization
or renormalization scheme, or the change of the gauge-fixing conditions. Provided that this change is
continuously connected to the point gi = 0 and that it is analytic in the couplings gi, we find that the
type of the coupling is preserved. (We remark that the change between ω-type and g-type couplings is
not regular at the point g = 0, hence it does not satisfy the above criterion, and as can be clearly seen
from expressions in Equations (30) and (36), the corresponding β-functions are different, though they
are obviously related to each other.) For the analysis in QWG, we also use the fact that ωGB coupling
cannot appear in any Feynman diagram computation, since it multiplies the Gauss–Bonnet term,
which is a total derivative in d = 4. Hence, there cannot be any dependence on ωGB in any perturbative
β-function of the theory. This observation simplifies also the analysis of the previous subsection,
where we can effectively set everywhere 1/ωGB → 0.

The β-function of the R2 term is expected first to show up at the two-loop level and in the form

β
(2)
R =

dωR
dt

= a
1

ωC
, (60)

where a ≡ a(2)R,C is some constant coefficient, which has not yet been computed. Effectively, we
have here the system of two couplings ωR and ωC and three β-functions. (In accordance with the
remark made above, we do not have ωGB as the coupling on which these β-functions could depend.)
First, the β-function of the coupling ωC is in its sector universal (it is behaving effectively like the
only coupling in the town). By looking at the formula in Equation (46) when we set a(2)C,GB to zero,
we see that this RG sector is identical with a two-loop sector of a theory with only one coupling ωC.
As it is known from [71], two-loop β-function for any QFT system of only one unique coupling is also
invariant under the general coupling redefinition transformations.

Now, the question is only about the β-function βR. We prove below that its two-loop value is
also universal. In the two-couplings system (ωR, ωC), we are allowed to change couplings only in the
following way, written to the leading order ω0,

ω′
R = ωR + A0 + A

ωR
ωC

+ B
ωC
ωR

+ O
(

ω−1
)

, (61)

ω′
C = ωC + C0 + C

ωR
ωC

+ D
ωC
ωR

+ O
(

ω−1
)

. (62)

However, there exists a requirement that, in any gauge choice or parametrization method,
the β-functions β′

R and β′
C, when expressed in terms of primed couplings, cannot depend on ω′

R
because there are no Feynman diagrams depending on this coupling (here on ω′

R) needed to be
considered to the two-loop level of accuracy. (The bare action to the two-loop level contains only
one term ωCC2.) Hence, one can check that the only possible changes of the couplings are shifts
according to:

ω′
R = ωR + A0 , (63)

ω′
C = ωC + C0 , (64)

and then, of course, we have that the transformed β-functions read

β′
R = βR = a

1
ωC

= a
1

ω′
C

+ O
(

1
ω‘2

C

)
, (65)

β′
C = βC = βFT

C + aC,C
1

ωC
= βFT

C + aC,C
1

ω′
C

+ O
(

1
ω‘2

C

)
, (66)
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to the quadratic order in the coupling ω′
C. This proves the universality in the ωR and ωC sector of the

expressions for the two-loop β-functions of these couplings of the theory.
Similarly, we find the Gauss–Bonnet coupling ωGB, which does not appear in any perturbative

Feynman rule of the theory, so none of the β-functions can depend on it. Hence, the only permissible
changes of couplings are given by

ω′
C = ωC + C0 , (67)

ω′
GB = ωGB + D0 . (68)

Then, according to (47), the β-function is to two-loop order accuracy

β
(2)
GB = βFT

GB + a(2)GB,C
1

ωC
, (69)

and a transformed β-function is

β′
GB = βFT

GB + a(2)GB,C
1

ωC
= βFT

GB + a(2)GB,C
1

ω′
C

+ O
(

1
ω‘2

C

)
, (70)

so again there is a universality of this two-loop expression for β
(2)
GB.

In conclusion of this subsection, we note that all three β-functions βC, βGB, and βR are universal to
two-loop level of accuracy. This, in particular, means that, if one finds the a coefficient non-zero
by explicit computation, then the appearance of the R2 term in the two-loop effective action is
unambiguous and universal fact, which cannot be removed by any gauge transformation, change of
the scheme of RG, or redefinition of couplings. Ensuing consequences for conformal symmetry in
QWG are very significant and intimately related to the conformal anomaly problem.

Basically, all the couplings in QWG at the two-loop level, behave as if they were in separate
one-coupling sectors of the couplings’ space of the theory. Everything boils down to the fact that the
RG system of β-functions at two-loop level depends only on one coupling ωC. This is a special feature
of QWG that, on the two-loop level, we need only to deal with one coupling of the Weyl square term,
the GB term will not have any impact perturbatively and only from the third loop we need to include
the new coupling ωR of the R2 term. This new term ωRR2 in the bare action is also heralded by the
presence of trace anomaly already at the one-loop level, for which we turn now for discussion.

5. Discussion of the Trace Anomaly Issue

Let us now discuss the issue of the trace (or conformal) anomaly. Firstly, we recall the following
fact about trace anomaly in ordinary Yang–Mills gauge theories in d = 4 spacetime dimensions.
Standard YM theories are described by the action Sg = − 1

2

∫
d4x tr(F2

μν). This entails that, on the
classical level, the theory is conformally invariant and hence the trace anomaly on this level vanishes.
One could compute the trace of the classical energy-momentum tensor (obtained by the Hilbert method
of variation with respect to some fiducial metric tensor of any curved background) and then it is found
to vanish in agreement with conformal symmetry. On the other hand, if the theory is not very special,
then for a generic situation at the quantum (loop) level there is a non-vanishing β-function β of the YM
coupling, which is a signal of the presence of trace anomaly. Due to the RG-invariance in the effective
action of the YM model at the one-loop level, we have the term

tr
(

Fμν log
(

D2

μ2

)
Fμν

)
, (71)

where D2 is the square of the gauge-covariant derivative operator and μ is this renormalization scale
which was also used to put renormalization conditions for fields and compensate μ−dependence of
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the running dimensionless YM coupling. This RG running is in an invariant manner (and universal
to one-loop level) described by the non-vanishing β-function β. One could ask for the conformal
properties of the newly generated term (71) in the finite pieces of the effective action. Clearly, it is not
even scale-invariant due to the presence of the dimensionful renormalization energy scale μ. Hence,
this term cannot be conformally invariant. If one tries to evaluate the trace of the energy-momentum
tensor coming from this term, it is definitely non-zero, hence there is a trace anomaly due to quantum
effects. The trace was zero on the classical level (as the consequence of the presence and full realization
of conformal symmetry), but it is non-zero on the quantum level, so there is an anomaly related to
the fact that on quantum level there is no conformal symmetry anymore in this model. As it was
elucidated above, this fact is in tight links with the presence of non-vanishing β-functions of the model.
To one-loop level, the value of the β-function is universal, but as better observables we could choose
scattering amplitudes in this model. While they are constrained by scale-invariance on the tree-level,
due to the presence of the term (71) at one-loop level, the scattering amplitudes show behavior which
explicitly breaks scale-invariance (and conformal-invariance in particular too). Simply, the amplitudes
depend on the energy scale, while at tree-level they do not. For example, the 4-gluon scattering
amplitude on tree-level is expressed only by the square of the constant value of the YM coupling at
tree-level and there is no any dependence on the incoming gluon energies. After inclusion of the
finite corrections, like the term (71), in the effective action, the resulting 4-gluon scattering amplitudes
do show dependence on energies, as a consequence of the presence of the scale μ in the term (71).
These are the observable results and we just interpret them that the scale-invariance is not present on
the quantum level of this model and does not constrain amplitudes anymore. Simply saying, quantum
physics of standard pure gauge theories is more complicated and more interesting than just what
was on the tree-level constrained by scale-invariance. The amplitudes are more complicated and
show more intricate behavior with energy scales as the result of freedom from conformal symmetry.
The trace anomaly is not here a problem and can be used to generate some terms in the effective
action. Actually, it signals that quantum gauge field theory are more interesting and worth studying.
Here, conformal symmetry was never meant to be used as local gauge symmetry hence its lack after
inclusion of quantum corrections (due to polarization effects of gluons) is not problematic. We could
say that conformal symmetry was an accidental symmetry of the tree-level (classical) generic YM
theory and at the quantum level we have seen that it is not there anymore. Since we do not put
much of emphasis to this symmetry in gauge field theories, then its loss it is not a big deal like this
happens with other accidental symmetries. We can sacrifice easily this conformal invariance and we
shall not regret it (although now the computations on the quantum level are much more involved).
This is the physics of YM theories, and still it is fully consistent without conformal invariance on the
quantum level.

There is a completely different attitude for quantum conformal gravity theories, since there by
definition we want to use the conformal symmetry with its fundamental and not accidental role.
This fundamental role is signified in that we want to use this symmetry to constrain the form of all
possible terms in the gravitational action (only C2 action is acceptable in d = 4 dimensions), to constrain
the spectrum of the model, which then is different from a generic spectrum of four-derivative
gravitational theory. These things shall not be understood as accidents due to conformal symmetry, they
are definite virtues. In addition, the fact that they happen is not surprising but rather demanded and
expected from the fundamental role of conformal symmetry in constraining gravitational interactions.
We want to use full conformal group as the gauge symmetry group of conformal-gravitational
interactions. By gauging a full 15-parameter conformal group, we give the decisive and fundamental
role to both the local Poincaré and local conformal symmetries. Only together could they be used to
put a control over quantum theory of gravitational interactions.
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Let us now return to the issue of the trace (or conformal) anomaly. For the energy-momentum
tensor of the total system (matter + gravity), we define the trace in the classical and quantum cases
respectively as

T = gμνTμν or 〈T〉 = 〈gμνT̂μν〉 . (72)

For quantum conformally invariant theories, we should find that 〈gμνT̂μν〉 = 0. By explicit computation
on the classical level for conformal models, we find that T = 0, but, on the quantum level, one can find
〈T〉 �= 0, namely by general arguments [72]

〈T〉 = cC2 + aG + aPP + aL�R , (73)

where P = εμνλζ Rμν
ρσRρσλζ is the parity-odd Pontryagin density, which can be a priori excluded

in parity-preserving theories (as QWG is), and the last term is ambiguous as it depends on the
renormalization prescription. Coefficients a and c are the central charges that can be directly
related to the corresponding β-functions studied in the previous subsections (namely c and a are
gauge-dependent for spin 3/2 and 2 but c + a is not [73,74]). One can find a straightforward relation
between the logarithmically divergent part of the quantum effective action and the anomalous terms
above. In particular, at one loop, one can check that

〈T〉 =
1

(4π)2 b4 , (74)

so that c = β
(1)
C and a = β

(1)
GB. In our case, this anomaly poses a problem: the classical theory (before

quantization) was with local conformal symmetry, while quantum theory is without it. Quantum
effects break the gauge symmetry of the model on the full quantum level (e.g., conformal analogues
of Slavnov–Taylor identities are not satisfied). Consequently, the symmetry is without any power
to constrain UV-divergences, Green functions, the form of the quantum corrections to the effective
action or scattering amplitudes. Thus, in order to get a better grasp on the trace anomaly issue, it is
imperative to use the effective action Γ rather than semiclassical arguments.

First, in pure C2 gravity, we note that the β-function of Weyl coupling βC is non-vanishing at the
quantum level (starting from first loop). Hence, in the effective action Γfin, we must have a term

βCC log
( �

μ2

)
C , (75)

with μ being an arbitrary renormalization scale. This is due to RG-invariance of the total effective
action Γ and the β-function βC. In conclusion, the total action in d = 4 is

Γtot = ΓC2 + Γeff ⊃
√

g
[

C2 + βCC log
( �

μ2

)
C
]

. (76)

Relevant observation pertaining to it is that Γtot is not conformally invariant action in d = 4! Definitely,
conformal symmetry is not present on the quantum level in Weyl square gravity.

There is the perturbative trace anomaly issue, but the problem is also at non-perturbative level.
This means that the theory, despite being perturbatively renormalizable is, however, non-perturbatively
non-renormalizable [46]. This is because the radiative correction break Weyl symmetry in a dramatic
way. Pure C2 gravity is anomalous. In other words, there is RG running (towards IR) as explained
in this work, but the problem is at high energies (UV-limit) for overall consistency of the model of
conformal gravity. It is very important to cancel this anomaly since conformal symmetry appears in
a local (gauged) version. Similarly, like in gauge theory models, we have to ascertain that there are
no gauge anomalies due to fermions in the matter sector since the presence of such anomaly would
be disastrous for the gauge symmetry on the quantum level. Theory would be inconsistent again
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because of lack of symmetry on the quantum level. In a perturbative vein, there would be pop up
perturbative UV-divergences that we will not be able to absorb in any form of counterterms possible
in gauge-invariant actions. These counterterms would not be gauge-invariant since on the quantum
level there is no any symmetry constraining their form. In addition, if there is not a constraining
(or forbidding) symmetry law on the quantum level in QFT, everything that is possible to be generated
is generated (according to the QFT’s Murphy’s law).

The possible trace anomaly resolution is given below. It is known that there exists special matter
content coupled to C2 gravity such that βC = 0 (and all other β-functions in the matter sector vanish
too) and then the terms C log�C in the effective action Γ are not generated at all. For example, in the
case of N = 4 supergravity, Fradkin and Tseytlin [70] showed this can be achieved by coupling it
to N = 4 super-YM (SYM) gauge field theory model, which is known to be conformal on flat spacetime.
This is brought by example from coupling N = 4 supergravity due to Fradkin and Tseytlin to N = 4
SYM gauge field theory model, which is known to be conformal on flat spacetime. Then, the quantum
conformality is present in the coupled model and the anomaly is canceled due to mutual interactions
between gravitational and SYM sectors. Both of these sectors are necessary for the successful trace
anomaly cancellation. Then, if we have secured the presence of conformal symmetry on the quantum
level, we can exploit the possibility to constrain scattering amplitudes, correlation functions, form of
the effective action Γ, etc. It is well known that conformal symmetry is omnipotent in constraining the
form of the terms in the effective action Γ because, in a fixed dimensionality of spacetime, only a few
terms (finite number of them!) are conformally invariant compared with an infinite number of terms
which are consistent with gauge symmetry or coordinate diffeomorphism invariance. The theory
could be so powerful that the quantum effective action is idempotent with respect to quantization
procedure (understood as going from classical tree-level action functional S to the fully quantum
effective action functional Γ). Moreover, this also opens the possibility to resolve GR-like singularities
using conformal symmetry of some exact solutions of quantum Γ, which now are also exact solutions
of the classical theory.

From a different perspective, if there is no conformal (gauged) anomaly on the quantum level, then
the theory is endowed with quantum scale-invariance, there are no non-zero β-functions, no RG flow
and the theory sits at the UV FP of RG. This is a situation that has to be secured in UV by embedding
the quantum Weyl gravity theory in the bigger picture, e.g., in the N = 4 supergravity or in a twistor
superstring theory of Berkovits and Witten. Another possibility is that the theory reaches in the UV
regime a non-trivial (non-Gaussian) FP of RG. With the additional conditions that the dimension of
the critical surface on which putative UV FP lies is finite, this realizes the Weinberg’s Asymptotic
Safety scenario (AS). In these circumstances, the UV-divergence problem is avoided and there are no
β-functions (even on the non-perturbative level) since the theory sits at the FP. There is no RG flow
and scale-invariance of the situation is enhanced to full conformal invariance and the UV-action that
describes such a FP is an action of conformal field theory (CFT). There is a whole discipline of studies
of CFT’s but little is known about CFT when the gravity is quantum and dynamical. However, this
is a desired CFT that describes the quantum theory of conformal gravitational interactions at very
high energies. As with any other CFT to fully describe it, we would need to give the set of primary
conformal operators and their anomalous dimensions (conformal weights). This constitutes the set of
CFT data. Based on it, we could describe any correlation function within this gravitational CFT. To get
away from the FP and start RG flow at lower energies, some deformation operator must be added to
such CFT. That is, we think that, by deforming CFT by adding an operator which is not conformally
invariant, we start a non-trivial RG flow away from the UV FP. In addition, then following the flow,
we can reach even the domain of low-energy physics.

As it was pointed out long ago, the pure C2 theory may reveal to be non-renormalizable from the
level of two loops onward. This is due to the presence of Weyl anomaly [46]. Therefore, some authors
claim that because of the non-zero trace anomaly C2 gravity does not survive quantization and hence it
is inconsistent on the quantum level until the conformal anomaly (CA) is made vanish. Its most direct
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effect may be the presence of the R2 term in the divergent part of the effective action. (Such term does
not show up at one-loop, but it is expected at the two-loop level because all symmetries that could
forbid its presence there are not realized on the quantum level). The UV-divergences which could be
covariantly collected in the term R2 are not absorbable by the counterterms of the original Weyl theory
and that is why the theory may show up to be perturbatively non-renormalizable, when a definite
answer will be given to the presence or not of the R2 term on the two-loop level [70].

We emphasized that, in our work [16], we worked in the fixed-dimension regularization
scheme in d = 4 because this should not produce any spurious (e.g., dimension dependent)
Weyl-symmetry violating terms in the effective action. Thus, we confined ourselves to the cutoff
scheme at fixed dimensionality of spacetime. In this way, we do not discard or avoid the trace
anomaly (which indeed shows up already at the one-loop level), and the statement of its existence is
scheme-independent. Strictly speaking, the onset of the trace anomaly is renormalization prescription
independent because the β-function is zero only at the fixed point and the existence of the fixed point
is indeed renormalization prescription independent. On the other hand, the actual non-zero value of
the trace of the energy-momentum (i.e., trace anomaly) is renormalization prescription dependent,
since the β-function is universal only to the second order in the coupling constant. The one-loop
value is scheme-independent but from two loops on we expect that such dependence will start to
develop. The conformal anomaly is proportional to the β-functions of the model. In a different vein,
these β-functions can be read off from perturbative UV-divergences of the effective action, hence the
problem of trace anomaly is a problem rooted in the UV regime or, in other words, in an UV-completion
of the theory.

At the UV FP which is asymptotically free for pure C2 gravity, the conformal anomaly is still there.
The β-functions for omega-type couplings are not vanishing at this FP (couplings multiplying directly
invariants like C2 or G). Only β-functions in alpha-type couplings (similar to electric charge-like
couplings) vanish, but the anomaly in terms of ωC and ωGB is non-zero even in the UV FP.

Let us summarize here our approach towards the quantization of C2 theory and RG running
towards the IR limit. We start in the UV fixed point where theory is exactly Weyl-invariant (just a single
dimensionless coupling) and the renormalization group flow deforms the theory (i.e., induces other
terms) as the theory flows towards IR fixed point. It turns out that the theory has a non-trivial
(non-Gaussian) fixed point in IR and hence it is asymptotically safe in IR or, in another words, it is
non-perturbatively renormalizable in IR. This AS is in accordance with Weinberg definition [75],
but this time for the IR, rather than UV sector. Our situation with the issue of trace anomaly is slightly
different since we have asymptotic safety in IR. Thus, we do not assume that theory is valid at all energy
scales down to IR. It very quickly flows to the IR FP that is so close to the UV FP that the R2 term does
not even have enough (RG-)time to appear in the effective action (it does not appear there at one-loop
level), and after IR FP is reached we do not have anymore scale invariance. In other words, we surpass
the problem of perturbative non-renormalizability by non-perturbative renormalizability in the IR
regime. In passing, we should stress that the presented IR AS scenario is conceptually very different
from the conventional UV AS known from Einstein [75] and higher-derivative gravity [17,76,77].

One may wonder whether following RG trajectory towards lower energy one ends up at
a reasonable point (be it Gaussian-like or Banks–Zaks FP) or diverge. In the latter case, the theory
would need some kind of IR-completion or protection against infrared problems and IR-divergences.
For this, if we have AS in IR, then the theory is non-perturbatively renormalizable and thus solves all
such problems near IR FP.

As already mentioned, the problems related to conformal anomaly are essentially related to the
UV regime. One might thus guess that having AS in IR FP does not a priori help in solving UV
problems. For this, we need to provide evidence for a separate UV FP. In addition, it is obvious that
looking locally in the parameter space the existence of IR FP does not imply anything for the existence
of any UV FP. One possible scenario that can allow for inferring possible existence of UV FP for QWG is
to embed the theory in a broader context of more fundamental (a better behaved) theories like twistor
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string theory or N = 4 conformal supergravity. In particular, the bosonic C2 sector that we consider
here can be understand as a truncation of the anomaly-free N = 4 supergravity of Fradkin and
Tseytlin [45]. The super N = 4 case of Fradkin and Tsetylin was later seen to provide the exceptional
solution to the issue of trace anomaly [45] (however, it seems that there is still a unitarity problem
for this model). It is the latter theory which is in the UV without any problem, there is no conformal
anomaly, and no non-trivial β-functions. This theory is perturbatively renormalizable and UV-finite
and hence there are not any problems with quantization. In our previous work [16], we consider the
IR version of QWG when we reduce and consistently integrate out degrees of freedom and we study
only the bosonic spin-2 sector. From a different perspective, QWG appears as the low energy limit of
twistor string theory where there are not apparent problems with conformal anomaly. The conformal
anomaly is simply a problem of the UV regime, but we assume that somehow this problem is solved
there and we start with the theory, which is consistently reduced, in the intermediate energies. We
assume that such UV FP exists and somehow addresses the anomaly issue, and then we try to see if
such a postulate is consistent. At the same time, there is a subtle difference with what some people
typically mean by a UV problem of conformal gravity. We believe that most practitioners just start
perturbatively from IR FP (hence assume Gaussian or Banks–Zaks IR FP) and deduce the problem in
UV by increasing energies in the RG flows. Natural questions arise: what about if one cannot even start
perturbatively from IR as in our case (and also, e.g., in QCD). What then one can say about UV FP?
We offer a plausible scenario that is logically consistent and reasonably well motivated. We assume
that UV FP is just a full-fledged critical point in a series of hypothetical phase transitions that the
Universe has undergone in its very early stage. It might be FP that descends from the spontaneous
symmetry breaking (SSB) phase of twistor string theory or N = 4 conformal supergravity. In any
case, SSB FP has exact conformal symmetry and the simplest theory in d = 4 that lives at that critical
manifold is QWG (only one coupling ωC). Then, we may hypothesize about UV-completion in a form
of string theory or something similar but clearly we do not have to do this now, if we have some strong
evidence for UV FP and for solving some UV problems there. Moreover, if someone would like to
see the RG evolution from IR FP towards UV, then he would probably need to go through horrible
technical problems that would be even more complicated than in QCD. We are more like physicists,
who start with asympotically free (deconfined) QCD and then deduce non-perturbative (confining) IR
phase. This way is far simpler than going vice versa.

It should be stressed that when using FRG we do not a priori assume that there is any IR FP.
This is a clear advantage of FRG approach. We just chose the truncation ansatz, which in our case is
motivated by perturbative one-loop results. If we had known the higher-loop (or even better the full
non-perturbative) effective action, then we could have utilized its form and set up a more informed
truncation ansatz, which in turn could have provided more reliable (or more refined) results.

6. Physics beyond an IR Critical Point

In this section, we study the physics of the 2nd order phase transition that is associated with the
IR FP of QWG discussed in Section 4. The characteristic (in fact defining) feature of 2nd order phase
transitions is the existence of the order parameter field that has zero vacuum expectation value (VEV)
in the symmetric phase and non-zero VEV in the broken phase. A typical method used in this context
is the theory of effective potentials. This approach will be presented in the following two subsections:
In Section 6.3, we will see that one can harness the conformal anomaly to say something more on the
structure of an actual critical point and corresponding phases in its vicinity.
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6.1. Composite Hubbard–Stratonovich Field as an Order-Parameter Field, Emergent Starobinsky Model

Because we require that our theory should induce Einstein action in the low-energy limit,
we rewrite the R2-part in the Bach action (11) with the help of the Hubbard–Stratonovich
transformation [78–80] as

exp(iSR2) ≡ exp
(

i
6α2

∫
d4x

√
|g|R2

)
=

∫
Dσ exp

[
−i
∫

d4x
√
|g|

(
σR
2

+
3

32ωC
σ2
)]

. (77)

It is clear that the HS transformation (77) is nothing but a simple identity based on a functional Gaussian
integral. Although the auxiliary HS field σ(x) does not have a bare kinetic term, one might expect
that, due to loop corrections, the renormalized action will develop in the IR regime a gradient term,
which then allows for identifying the HS boson with a bona fide propagating mode. This mechanism
is well-known from condensed matter theory [81,82] and particle physics [83–86]. A typical example
is obtained when the BCS superconductivity is reduced to its low-energy effective level. There the
HS boson coincides with the disordered field whose dynamics is described via the Ginzburg–Landau
equation [87].

The σ field in (77) can be separated into a background field σ̄ ≡ 〈σ〉 corresponding to VEV of σ

plus fluctuations δσ. Since σ̄ is dimensional, it must be zero in the case when the theory is (globally)
Weyl-invariant. On the other hand, when the Weyl symmetry is broken, σ̄ develops a non-zero value.
Thus, the σ field plays the role of the order-parameter field. With the benefit of hindsight, we further
introduce an arbitrary (hyperbolic) mixing angle ϑ ∈ R and make the following splitting

SR2 = SR2 cosh2ϑ − SR2 sinh2ϑ . (78)

If we now apply the HS transformation only to the SR2 sinh2ϑ part of the action (11), we obtain

SR2 =
∫

d4x
√
|g|

[
−σ

2
R +

2ωC cosh2ϑ

3
R2 +

3
32ωC sinh2ϑ

σ2

]
, (79)

and hence the full action (1) can be rewritten (modulo topological term) as

S =
∫

d4x
√
|g|

[
−2ωCR2

μν − σ

2
R +

2ωC cosh2ϑ

3
R2 +

3
32ωC sinh2ϑ

σ2

]
. (80)

By employing the Weyl symmetry, one can formally generate a gradient term for the σ field already on
the level of a bare-action. In fact, if we perform the Weyl rescaling of the form gμν = |σ|−1 g̃μν we get
the gradient term

−
√
|g̃| 3

2
σ�σ

σ2 + . . . , (81)

(dots refer to higher order derivative terms of the σ field). It should be, however, clear that such
a gradient term cannot define genuine propagating mode since it depends on the conformal scaling
and hence it is a gauge dependent concept. This is actually consistent with the fact that the WG has
no propagating scalar degree of freedom on the bare-action level. On the other hand, when the scale
symmetry is broken, then the σ-field will be trapped in a particular broken phase with specific kinetic
as well as potential term, cf. Equation (87).

Although the full theory described by the action S is manifestly independent of the mixing angle
ϑ, truncation of the perturbation series at a finite loop order will inevitably destroy this independence.
The optimal result can be reached via the principle of minimal sensitivity [88–90], which posits that
if a perturbation theory depends on some unphysical parameter (e.g., sinh2 ϑ in our case) the best
result is achieved if each perturbation order has the weakest possible dependence on the parameter ϑ.
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As a result, the value of ϑ is determined at each loop order from the vanishing of the corresponding
derivative of effective action.

Let us now see that the VEV σ̄ indeed acquires a non-zero value at low enough energies. Since
the corresponding phase transition must be of 2nd order (σ̄ must change continuously from zero in
symmetric phase to non-zero in broken phase), this is tantamount to showing that the IR FP must exist
and that it is associated with the (global) scale-symmetry breakdown. To this end, we employ the
standard effective-action methodology in the mean field approximation. In particular, we replace in
(80) all σ fields with their VEV σ̄ and compute the effective potential by integrating over metric-field
fluctuations. This can be done again in the framework of the York decomposition discussed in
Section 2.2. In order to simplify our computations, we use as the background the Minkowski flat
spacetime. This in turn means that our computations serve only as proof of the principle that one
should expect a phase transition in QWG with interesting cosmological implications in its broken phase.
For more precise cosmological analysis, one should, of course, use cosmologically more pertinent
classes of Bach-flat backgrounds.

As discussed in [78], the one loop-effective potential acquires the form

Veff(σ̄, ϑ) = − 9
44π2ω2

C

σ̄2

(4 sinh2 ϑ + 1)2

[
log

(
3σ̄

2ωC(4 sinh2 ϑ + 1)μ2

)
− 3

2

]

+
3σ̄2

43π2ω2
C

[
log

(
σ̄

2ωCμ2

)
− 3

2

]
− 3σ̄2

42ωC sinh2 ϑ
, (82)

and this result is true both in dimensional [78] and ζ-function [91] renormalization scheme. Here, μ is
the renormalization scale.

The corresponding VEV σ̄ is obtained through minimizing Veff which gives

σ̄(ϑ) = 2ωCμ2 exp

⎡⎣3 sinh2 ϑ log
(

3
4 sinh2 ϑ + 1

)
+ 16π2ωC(4 sinh2 ϑ + 1)2

sinh2 ϑ(32 sinh4 ϑ + 16 sinh2 ϑ − 1)
+ 1

⎤⎦ . (83)

We might note that the value σ̄ = 0 is not a local minimum for Veff when sinh2 ϑ > (
√

6− 2)/8 because
in such a case Veff < 0, while for σ̄ = 0 one has Veff = 0. In order to see whether a situation with σ̄ �= 0
can be realized, we employ the principle of minimal sensitivity, namely we require that

0 =
dVeff(σ̄(ϑ), ϑ)

d sinh2 ϑ
=

∂σ̄(ϑ)

∂ sinh2 ϑ

∂Veff
∂σ̄

+
∂Veff

∂ sinh2 ϑ
=

∂Veff

∂ sinh2 ϑ
. (84)

This equation admits two branches of real solutions [78]. The branch that corresponds to the symmetric
phase (σ̄ = 0) corresponds to small values of sinh2 ϑ and can be approximately written as sinh2 ϑ =

0.02592337 − 0.0000197α2 +O(α2). The broken-phase branch (σ̄ �= 0) corresponds to large values
of sinh2 ϑ with actual value depending on ωC. Consequently, we can rewrite to order O(1/ sinh4 ϑ)

Equation (83) as

σ̄(ϑ) = 2ωCμ2 exp

[
1 +

8π2ωC

sinh2 ϑ(ωC)

]
. (85)

In particular, for any value of the dimensionless coupling ωC, we can choose the renormalization scale
μ, in such a way that σ̄ ∼ 1/κ2, which in turn will guarantee phenomenologically correct gravitational
forces at long distances. Consequently, Newton’s constant κ2 is dynamically generated. Owing to the
last term in (79)–(80), the appearance of a cosmological constant in the low-energy limit of the broken
phase is also a consequence of QWG. In the following, it will be convenient to rescale σ �→ σ/κ2 so
that σ̄ ∼ 1 and the field itself is dimensionless.
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As already mentioned in Section 2.2, the local scale symmetry dictates that the scalar degree of
freedom must decouple from the on-shell spectrum of QWG. When the conformal symmetry is broken
the scalar field reappears in action through a radiatively induced gradient term of the HS field σ.
The explicit form of the kinetic term can be decided from the momentum-dependent part of the σ-field
self-energy Σσ. In Ref. [78], it was shown that the corresponding leading order gradient term is of the
form 1

2κ2σ̄
∂μσ∂μσ. By assuming that in the broken phase a cosmologically relevant metric is that of the

Friedmann–Robertson–Walker (FRW), then, modulo a topological term, the additional constraint∫
d4x

√
|g|3R2

μν =
∫

d4x
√
|g|R2 , (86)

holds due to a conformal flatness of the FRW metric [92]. It was argued in [78] that from (11) and (79)
one obtains in the broken phase the steepest descent (or WKB) gravitational action of the form

Sb.p.,σ = − 1
2κ2

∫
d4x

√
|g|

(
σR − ξ2R2 − (∂μσ)2

σ̄
− 2Λσ2

)
, (87)

In the long-wave limit, one can neglect fluctuations of the σ field and consider that σ is basically
described by its VEV, i.e., σ = σ̄. This yields in the broken-phase the mean-field effective action

Sb.p.,σ̄ = − 1
2κ2

∫
d4x

√
|g|(R − ξ2R2 − 2Λ) , (88)

By comparing (88) with (80), we obtain that

Λ =
3

32ωCκ2 sinh2ϑ
, ξ2 =

4ωCκ2 sinh2ϑ

3
⇒ Λ =

1
8ξ2 , (89)

The action (88) is nothing but the Starobinsky action with the cosmological constant. In the
Starobinsky model (SM), the linear Einstein term determines the long-wavelength behavior while the
R2-term dominates short distances and drives inflation [93], which is followed by the gravitational
reheating with the decrease of R2 [94]. In phenomenological cosmology, the SM represents metric
gravity with a curvature-driven inflation. In particular, it does not contain any fundamental scalar field
that could play the role of an inflaton field, even though a scalar field/inflaton formally appears when
transforming the SM to the Einstein frame [95]. We stress that the cosmological constant Λ is entirely
of a geometric origin (it descends from the QWG) and it enters with the opposite sign in comparison
with the usual matter-sector induced (i.e., de Sitter) cosmological constant. In the following, we will
call such gravitation-induced cosmological constant as gravi-cosmological constant and it represents
what we call the dark side of QWG.

In this connection, the following point deserves mentioning. Since the conformal symmetry
prohibits the existence of a (scale-full) cosmological constant, the gravi-cosmological constant must
correspond to a scale at which the conformal symmetry breaks, which in turn determines the cut-off
scale of the σ-field. The magnitude of ξ in the SM is closely linked to the scale of inflation [46]. Using the
values relevant for the Cosmic Microwave Background radiation (CMB) with 50–60 e-foldings,
the Planck data [96,97] require that ξ ∼ 10−13 GeV−1 or equivalently ξ/κ ∼ 105. The vacuum
energy density is thus ρΛ ≡ Λ/κ2 ∼ 10−10(1018 GeV)4, which corresponds to a zero-point energy
density of a scalaron with an ultraviolet cut-off at about 1015–1016 GeV. This coincides with a range of
the GUT inflationary scale. For compatibility with an inflationary-induced large structure formation,
the conformal symmetry should be broken before (or during) inflation. We will further discuss this
issue in the following section.
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6.2. Broken Phase QWG and Hybrid Inflation

By now, it is well recognized that the scalar cosmological perturbations are (nearly) scale-invariant
with the value of the spectral index ns = 0.97, which is tantalizingly close to 1—exact scale
invariance [78,98]. The combination of data from Planck and BICEP2/Keck Array BK15 [97] tightens
the upper bound on the tensor-to-scalar ratio to obtain: r < 0.056 at 95% CL. These include, e.g., the SM,
the non-minimally coupled model (∝ φ2R/2) with a V(φ) ∝ φ4-potential, inflation model based on
a Higgs field and the so-called universal attractor models [97].

In the previous subsection, we have seen that the long-wave limit of QWG approaches in the
broken phase the SM. It might thus be interesting to see what inflationary cosmology can be deduced
from the action (87). In particular, we would like to see to that what extends the predictions of CMB
perturbations based on the Lagrangian (87) is compatible with Planck and BICEP2/Keck Array BK15
cosmological data.

To this end, one can set up for Sb.p.,σ a dual description in terms of a non-minimally coupled
auxiliary scalar field λ with the action [94,95]

S{σ,λ},J = − 1
κ2

∫
d4x

√
|g|

(
σ + 2ξλ

2
R +

λ2

2
− (∂μσ)2

2σ̄
− Λσ2

)
. (90)

This is basically an HS-transformed Sb.p.,σ with λ being the HS-field. To analyze (90), we choose
to switch from the Jordan frame to the Einstein frame [94] where the curvature R enters without a
non-minimally coupled fields σ and λ. This is obtained via rescaling: gμν �→ (σ + 2ξλ)−1gμν, giving

S{σ,λ},E = − 1
κ2

∫
d4x

√
|g|

[
R̃
2
− 3ξ2(∂μλ)2

(σ + 2ξλ)2 − 3ξ(∂μλ)(∂μσ)

(σ + 2ξλ)2 − (∂μσ)2

2λ̄(σ + 2ξλ)

− 3(∂μσ)2

4(σ + 2ξλ)2 +
λ2

2(σ + 2ξλ)2 − Λσ2

(σ + 2ξλ)2

]
. (91)

The above metric rescaling is valid only for (σ + 2ξλ) > 0. The action (91) can be brought into
a diagonal form if we pass from fields {σ, λ} to {σ, ψ} where the new field ψ is obtained via the
redefinition λ = [exp(

√
2/3|ψ|)− σ]/(2ξ). In terms of ψ, the action reads

Sψ,E = − 1
κ2

∫
d4x

√
|g|

[
R̃
2
− 1

2
(∂μψ)2 + V(ψ, σ) − e−

√
2/3|ψ| (∂μσ)2

2σ̄

]
, (92)

where V(ψ, σ) = 1
8ξ2

(
1 − 2σe−

√
2/3|ψ|

)
. The strength of σ-field oscillations is controlled by the size of

a coefficient in front of the σ-gradient term, i.e., e−
√

2/3|ψ|/κ2. In particular, the local squared amplitude
of the σ-field fluctuations on energy scale E is of order

δσ2(x) = 〈(σ(x)− σ̄)2〉 ∼ κ2E2e
√

2/3|ψ(x)| . (93)

At large values of the dimensionless scalar field ψ, i.e., at values of the dimensionful field ψ̃ = ψ/κ

that are large compared to the Planck scale, the gradient coefficient is very small and σ-field rapidly
fluctuates. Assuming that QWG was broken before the beginning of inflation, then after a brief period
of fierce oscillations the σ-fluctuations are strongly damped at around the value ψ � 10 (i.e., ψ̃ � 10mp).
Indeed, if the fluctuations

√
δσ2(x) are smaller that 10−17, i.e., smaller than the GUT inflationary

scale, then

κ exp

(
1
2

√
2
3
|ψ(x)|

)
� 10−17 ⇒ ψ̃ � 10mp . (94)
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From that period on, the σ-field settles at its potential minimum at σ̄ = 1. Note that V(ψ, σ̄) ≤
1/(8ξ2) � m2

p, which is a necessary condition for a successful inflation. At values of ψ̃ ∼ 10mp,
the potential V(ψ, σ̄) is sufficiently flat to produce the phenomenologically acceptable slow-roll
inflation, with the inflaton field ψ. From the inflationary potential in the Einstein frame, we can
infer that this case represents hybrid inflation, in the sense that the inflationary potential is due to
non-zero σ̄. Using the slow-roll parameters

ε =
1
2

m2
p

(
∂ψV(ψ, σ̄)

V(ψ, σ̄)

)2

, η = m2
p

∂2
ψV(ψ, σ̄)

V(ψ, σ̄)
, (95)

(∂ψ ≡ ∂/∂ψ) one can write down the tensor-to-scalar ratio r and the spectral index ns in the slow-role
approximation as [97]

r = 16ε, ns = 1 − 6ε + 2η . (96)

In terms of the number N of e-folds left to the end of inflation,

N = −κ2
∫ ψ f

ψ
dψ

V(ψ, σ̄)

∂ψV(ψ, σ̄)
≈ 3

4σ̄
e
√

2/3|ψ| , (97)

(ψ f represents the values of the inflaton at the end of inflation, i.e., when e−
√

2/3|ψ| ∼ 1) one gets

ns ≈ 1 − 2
N

, r ≈ 12
N2 , (98)

which for N = 50 ÷ 60 (i.e., values relevant for the CMB) is remarkably consistent with Planck
data [96,97].

While during the inflation, the σ-field is constant (due to a large coefficient in front of the gradient
term), allowing a large-valued inflaton field to descend slowly from the potential plateau, inflation ends
gradually when σ regains its canonical kinetic term, and a small-valued inflaton field picks up kinetic
energy. From (92), the dominant interaction channel at small |ψ| is (∂μσ)2|ψ|, hence the vacuum energy
density stored in the inflaton field is transferred to the σ field via inflaton decay ψ → σ + σ (reheating),
possibly preceded by a non-perturbative stage (preheating). Note also that the gravi-cosmological
constant Λ that was instrumental in setting the inflaton potential in (92) has the opposite sign when
compared with ordinary (matter-sector induced) cosmological constant.

An inflationary scheme discussed can be naturally incorporated in a broader theoretical context
of “conformal inflation” model, which has been the subject of much recent investigation [99–102].
Setting the inflation period around the time of Weyl-symmetry breakdown brings about a number
of attractive features, including: natural justification for inflation models with a plateau, technically
accessible inflationary correlators, specific predictions for the B-mode vorticity fluctuations in CMB
power spectra, etc. Let us also notice that the existence of a single scalar field with cutoff at around the
GUT scale and coupled to broken phase of QWG (e.g., our σ or GUT Higgs field) would contribute
with a positive zero-point energy that could offset gravi-cosmological Λ and leave behind a small
observable cosmological constant. This could provide a viable mechanism for breaking down 120
orders of magnitude difference that presently exists between theoretical predictions and astronomical
observations of Λ. Consequently, the dark side of QWG would not be ultimately so dark.

6.3. Some Reflections on Anomaly Matching

We have seen that the effective potential approach provides a powerful method for discussing
physics in both broken and unbroken phase. Unfortunately, the physics in the immediate vicinity
of the critical point is poorly grasped by this approach. The point is that, due to the appearance of
long-range correlations, perturbative approaches are quite unreliable. It might seem rather surprising
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that the physics in the vicinity of the critical point might be for CFT’s discussed in terms of conformal
anomaly. The reason for this is basically twofold. First, conformal anomaly has an universal structure
phrased in terms of two central charges (see Section 5). Second, there is a powerful theorem [103] that
ensures that there is an anomaly matching across the critical point of the 2nd order phase transition.

In Section 4, we have considered an RG flow of QWG, which ends up in an IR FP that is associated
with a CFT. Thus, one could wonder how this IR FP should be associated with low-energy gravity
where the scale symmetry is absent. One intriguing possibility is that the IR CFT has a moduli
space of vacua, such that in all of them but the one at the “origin” conformal (or scale) invariance is
spontaneously broken. Such examples are known, expecially in superconformal field theories [104].
This allows for identifying a broken phase of the theory where the analytic structure of the amplitudes
is not constrained by conformal invariance, but still the numerical value of the trace anomalies can be
possibly matched (as proven, e.g., in Ref. [103] for CFT’s with global conformal invariance). This poses
strong constraints on the broken phase theory that is in spirit very similarly to what happens in ’t Hooft
anomaly matching [105]. In particular, requiring for the two cental charges

c< = c> a< = a> (99)

(“>” refers to physical energy scales above the FP in question and “<” refers to physical energy scales
below the FP2) it was shown to be possible to determine the couplings of the action for the dilaton which
emerges in the broken phase as (potentially composite) Goldstone boson related to the spontaneously
or dynamically broken conformal symmetry [103]. Actually, in a supersymmetric scenario where
the trace anomaly is in the same supermultiplet as R-symmetry charge; this boils down to the usual
’t Hooft anomaly matching condition for which the generating functional of amplitudes accounting for
anomalies is well understood. This could make it possible to understand the IR regime in the broken
phase in a quite novel way. We leave this interesting and important topic for our future investigation.

7. Conclusions

In this paper, based on the approach of functional renormalization group, we have mainly
investigated the IR physics of the quantum Weyl gravity, which turns out to be surprisingly
rich and interesting, in particular in connection with the structure of its IR FP and related
cosmological implications.

An important point that we have utilized here was the fact that at one loop the R2-infinities of the
effective action are absent so that we do not observe the appearance of the anomalous conformal mode.
We point out, however, that the validity of this result goes beyond the usual one-loop order of the
perturbation expansion since it was derived in an enhanced one-loop scheme where the effects of both
anomalous dimensions and the threshold phenomena were also taken into account. Although it is
expected that such situation will change at two loops (contrary to chiral anomalies, which are one-loop
exact), one can still view this fact as an indication of a specific feature of the model that could potentially
persist even to higher loops, where conclusive calculations are still missing. In our FRG approach,
the IR FP (for the two involved couplings) develops already at the enhanced one-loop level and hence
the prospective observational consequences of the trace anomaly do not take over before the Weyl
symmetry is dynamically broken. Furthermore, we proved the suppression of β-functions at two-loop
order and the fact that the possible presence of the R2-infinity at two loops, albeit unambiguous,
will modify the β-functions system only at three loops. We can thus judiciously assume that the results
obtained in the enhanced one-loop scheme (e.g., existence of IR FP, bounce behavior, etc.) are quite
robust and valid even when higher-loop orders would be included.

2 Here, we should stress that physical scale is not the same as the running scale in the RG flow. The running RG-flow scale is
always re-parameterized so that it reaches its limiting value (±∞) at the FP. In physics, the critical point that is represented
by an RG FP always happens at some finite energy scale—phase transition scale.
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A problem that typically besets higher-derivative gravity theories is the unitarity issue. For QWG,
this is commonly phrased in terms of spin-2 ghost field. As already mentioned in the Introduction,
there exist various remedies to this issue in the literature. If unresolved, the ghost problem prevents
QWG from being a possible UV completion of Einstein’s general relativity. However, this conclusion is
based solely on the analysis of a classical Hamiltonian or on the structure of tree-level propagators.
Basically, for any physical process that explicitly manifests the ghost problem, there is usually an
implicit assumption that the perturbative analysis reflects the true physical spectrum. It is quite
instructive to compare QWG with QCD. The latter is also renormalizable and asymptotically free
theory, but, in this case, one is accustomed to the fact that the physical spectrum bears no resemblance
to the perturbative degrees of freedom. In particular, the gluon is not in the physical spectrum. This is
a consequence of confinement, but it is also understood more directly in terms of the behavior of the
full gluon propagator. Essentially, there is an IR suppression of the propagator that is sufficient to
remove the gluon pole. Similarly, we have seen that the FRG analysis of QWG shows that the IR FP is
non-Gaussian; hence, QWG theory is non-perturbatively renormalizable in IR.

The presence of ghosts in the linearized spectrum and the quantum breaking of conformal
invariance (trace anomaly) can, however, be seen as an indication that QWG should be understood in
the context of a more fundamental theory. One such theory could be the d = 4 twistor string [106,107],
where superconformal symmetry in spacetime is explicitly preserved contrary to ordinary string theory.
In fact, it was found in Ref. [47] that its spectrum includes to the one of the N = 4 superconformal
gravity, which is made up of 2 N = 4 graviton multiplets and 4 gravitini supermultiplets. One of
the graviton multiplets is in the non-standard ghost-like sector. The gravitini supermultiplets contain
the 15 gauge bosons of the local SU(4)R symmetry. The SU(4)R symmetry is potentially anomalous
because its coupling is chiral and, as it is gauged, its cancellation requires the dimension of the gauge
group G be 4. Thus, one gets the conclusion that G = SU(2)× U(1) or U(1)4. An analogous condition
is consistent with, but not implied by worldsheet arguments based on the worldhsheet conformal
anomaly. Apart from the SU(4)3

R, also spacetime conformal anomaly is possible and it has actually
been argued that N = 4 superconformal gravity can be made UV-finite and therefore anomaly-free
by coupling it to exactly four N = 4 super Maxwell multiplets [70]. The computation was carried
out at one-loop order, but the result should hold at all orders as the β-function in N > 1 CSG and
conformal anomaly of super YM may receive contributions only from one loop. In the case of pure
extended supergravity, it would actually be quite interesting to perform the analysis of functional
RG in a situation where a nontrivial IR FP at one-loop order would be an exact result and where also
the absence of an R2 would be granted at any perturbative order. It is a known fact that, in N > 1
CSG, a non-renormalization theorem based on formal superspace arguments implies UV-finiteness
from two loops on [108], so that the R2-infinity at two loops could not be generated. Whereas the
presence of the trace anomaly could itself affect the argument, it is still possible to conjecture that
the R2-term could not exist in theories with N � 3 [45]. In the case of N = 4, one-loop exactness
is also a consequence of the fact that all these anomalies are related by supersymmetry, and vanish
when the SU(4)3

R anomaly does. As the latter is a chiral one-loop exact anomaly, its cancellation
should entail the cancellation of conformal anomalies and other anomalies to all order. The version of
N = 4 CSG that was actually found in the context of twistor-string is a “non-minimal” one where the
4-derivative complex scalar φ couples to the Weyl graviton through a term of the kind f (φ)

(
Cμνρσ

)2.
Imposing a manifest SU(1, 1) � SL(2, R) invariance requires f to be a constant so that one can
recover the “minimal” version of CSG. It is quite interesting that only recently explicit actions for
these theories have been constructed [109–111] making an RG flow analysis viable. The anomaly-free
theory described above could be related to the Gaussian UV FP of QWG. We also would like to
point out that the role of superconformal symmetry in cosmological applications has found large
resonance in recent years [112,113] and in this context the relation between higher derivative terms
and emergent order-parameter fields as discussed in Section 6.1 has also been highlighted (cf., e.g.,
Ref. [114]). It would, of course, be very interesting to investigate whether a non-Gaussian IR FP can
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also be identified through RG flow analysis in such scenarios. We would like however to point out
that, once we are able to construct a model which contemplates QWG at some intermediate energy, we
think the study presented in this paper (conducted through RG flow methods) can find interesting
applications in a lot of physically viable models of QG.

In passing, we note that trace anomalies have also been recently discussed as valuable instruments
to follow the violation of conformal symmetry along the RG flow. In particular, in four dimensions,
any such flow can be reinterpreted in terms of a spontaneously or dynamically broken conformal
symmetry. This has led to a deeper understanding of the a-theorem [103,115], and it would be definitely
interesting to understand also the RG flow of QWG in this framework.

Apart from these more conceptual issues, we also discussed a cosmology that is implied by the
broken phase of QWG. In the one-loop approaximation, we have been able to map the broken-phase
effective action on a two-field hybrid inflationary model that, in its low-energy phase, approaches
the Starobinsky f (R) model with a gravi-cosmological constant. In particular, the inflationary
potential obtained contains two scalar fields that interact via derivative coupling: scalaron ψ and
Hubbard–Stratonovich order-parameter field σ (basically dilaton). The scalaron appears when we
transform the broken-phase effective action to the Einstein frame and due to its slow-role potential it
plays the role of an inflaton. The Hubbard–Stratonovich scalar, on the other hand, results from
the dynamical transmutation of the spurion HS field and it mediates the inflationary potential.
The derivative interaction between the two scalars provides a viable mechanism for a reheating
scenario and graceful exit. The requirement that Einstein’s R term in the low energy actions must
have a coupling constant 1/2κ2 ties up the values of Starobinsky’s inflation parameter ξ and the
gravi-cosmological constant Λ. This in turn fixes the symmetry-breakdown scale for QWG to be
at about the GUT inflationary scale. Moreover, the existence of a regime where gravity is approximately
scale invariant (fixed-point regime and departure of the RG flow from it) provides a simple and natural
interpretation for the nearly-scale-invariant power spectrum of temperature fluctuations in the CMB.
In this connection, we have seen that the physics in the vicinity of the critical point (and, in particular,
in the broken phase) can be analyzed in terms of conformal anomaly matching. Since trace anomaly
is a fundamental property of QWG, this is clearly worth addressing. The study on simple Bach-flat
backgrounds could be instrumental in understanding the importance of the trace anomaly for the
early Universe cosmology, e.g., in setting up a specific cosmologically relevant inflationary potential.
This adds up to the list of topics indicating that QWG with its rich spectrum of cosmological predictions
could be considered as a viable theory of quantum gravity.

It should be stressed that, for simplicity’s sake, our cosmological considerations were done in
flat Minkowski background. In order to get more refined (and also more realistic) information on the
inflationary potential, we should perform explicit computations of the broken-phase effective potential,
in a non-trivial but cosmologically pertinent background, namely on MSS. These backgrounds are
tailor-made for treatment of inflation and, in addition, they can provide us with some further guidance
for the possible resolution of the cosmological constant problem on de Sitter spacetime. Work along
these lines is presently in progress.
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Abbreviations

The following abbreviations are used in this manuscript:

FNSPE Faculty of Nuclear Sciences and Physical Engineering
WG Weyl Gravity
YM Yang–Mills
QWG Quantum Weyl Gravity
RG Renormalization group
FRG Functional Renormalization Group
FP Fixed Point
TP Turning Point
GB Gauss–Bonnet
HS Hubbard–Stratonovich
UV Ultraviolet
IR Infrared
MSS Maximally Symmetric Spaces
CSG Conformal Supergravity
SYM Super–Yang–Mills
HDG Higher Derivative Gravity
QG Quantum Gravity
CA Conformal Anomaly
AS Asymptotic Safety
CFT Conformal Field Theory
SM Starobinsky Model
QFT Quantum Field Theory
RHS Right Hand Side
LHS Left Hand Side
QCD Quantum Chromodynamics
QED Quantum Electrodynamics
AF Asymptotic Freedom
AdS Anti-de Sitter
EOM Equation of Motion
DIMREG Dimensional Regularization
ODE Ordinary Differential Equation
FT Fradkin–Tseytlin
GR General Relativity
SSB Spontaneous Symmetry Breaking
FRW Friedmann–Robertson–Walker
CMB Cosmic Microwave Background
VEV Vacuum Expectation Value
GUT Grand Unified Theory
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Abstract: We review consequences for the radiation and dark sectors of the cosmological model
arising from the postulate that the Cosmic Microwave Background (CMB) is governed by an SU(2)
rather than a U(1) gauge principle. We also speculate on the possibility of actively assisted structure
formation due to the de-percolation of lump-like configurations of condensed ultralight axions with
a Peccei–Quinn scale comparable to the Planck mass. The chiral-anomaly induced potential of
the axion condensate receives contributions from SU(2)/SU(3) Yang–Mills factors of hierarchically
separated scales which act in a screened (reduced) way in confining phases.

Keywords: light scalar fields; axial anomaly; SU(2) Yang–Mills thermodynamics; de-percolation of
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1. Introduction

Judged by decently accurate agreement of cosmological parameter values extracted from (i)
large-scale structure observing campaigns on galaxy- and shear-correlation functions as well as
redshift-space distortions towards a redshift of unity by photometric/spectroscopic surveys (sensitive
to Baryonic Accoustic Oscillations (BAO), the evolution of Dark Energy, and non-linear structure
growth), for recent, ongoing, and future projects see, e.g., [1–5]; (ii) fits of various CMB angular
power spectra based on frequency-band optimised intensity and polarisation data collected by satellite
missions [6–8]; and (iii) fits to cosmologically local luminosity-distance redshift data for Supernovae
Ia (SNeIa) [9,10] the spatially flat standard Lambda Cold Dark Matter (ΛCDM) cosmological model
is a good, robust starting point to address the evolution of our Universe. About twenty years ago,
the success of this model has triggered a change in paradigm in accepting a present state of accelerated
expansion induced by an essentially dark Universe made of 70% Dark Energy and 25% Dark Matter.

While (i) and (ii) are anchored on comparably large cosmological standard-ruler co-moving
distance scales, the sound horizons rs,d and rs,∗, which emerge at baryon-velocity freeze-out
and recombination, respectively, during the epoch of CMB decoupling and therefore refer to
very-high-redshift physics (z > 1000), (iii) is based on direct distance ladders linking to host galaxies
at redshifts of say, 0.01 < z < 2.3, which do not significantly depend on the assumed model for Dark
Energy [11] and are robust against sample variance, local matter-density fluctuations, and directional
bias [12–15].

Thanks to growing data quality and increased data-analysis sophistication to identify
SNeIa [16] and SNeII [17] spectroscopically, to establish precise and independent geometric distance
indicators [18,19] (e.g., Milky Way parallaxes, Large Magellanic Cloud (LMC) detached eclipsing
binaries, and masers in NGC 4258), tightly calibrated period-to-luminosity relations for LMC cepheids
and cepheids in SNeIa host galaxies [19], the use of the Tip of the Red Giant Branch (TRGB) [20,21] or the
Asymptotic Giant Branch (AGB, Mira) [22] to connect to the distance ladder independently of cepheids,
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the high value of the basic cosmological parameter H0 (Hubble expansion rate today) has (see [21],
however), over the last decade and within ΛCDM, developed a tension of up to ∼4.4 σ [19] in SNeIa
distance-redshift fits using the LMC geometrically calibrated cepheid distance ladder compared to
its low value extracted from statistically and systematically accurate medium-to-high-l CMB angular
power spectra [7,8] and the BAO method [3]. Both, the CMB and BAO probe the evolution of small
radiation and matter density fluctuations in global cosmology: Fluctuations are triggered by an initial,
very-high-redshift (primordial) spectrum of scalar/tensor curvature perturbations which, upon horizon
entry, evolve linearly [23] up to late times when structure formation generates non-linear contributions
in the galaxy spectra [2,3] and subjects the CMB to gravitational lensing [24].

Recently, a cosmographic way of extracting H0 through time delays of strongly lensed
high-redshift quasars, see e.g., [25,26], almost matches the precision of the presently most
accurate SNeIa distance-redshift fits [19]—H0 = 71.9+2.4

−3.0 km s−1 Mpc−1 vs. H0 = (74.22 ±
1.82) km s−1 Mpc−1—
supporting a high local value of the Hubble constant and rendering the local-global tension even
more significant [27]. The high local value of H0 = (72 · · · 74) km s−1 Mpc−1 [19,27] (compared
to the global value of H0 = (67.4 ± 0.5) km s−1 Mpc−1 [8]) is stable to sources of systematic
uncertainty such as line-of-sight effects, peculiar motion (stellar kinematics), and assumptions made
in the lens model. There is good reason to expect that an improved localisation of sources for
gravitational-wave emission without an electromagnetic counterpart and the increase of statistics
in gravitational-wave events accompanied by photon bursts (standard sirenes) within specific host
galaxies will lead to luminosity-distance-high-redshift data producing errors in H0 comparable of
those of [19], independently of any distance-ladder calibration [28], see also [29].

Apart from the Hubble tension, there are smaller local-global but possibly also tensions between
BAO and the CMB in other cosmological parameters such as the amplitude of the density fluctuation
power spectrum (σ8) and the matter content (Ωm), see [30]. Finally, there are persistent large-angle
anomalies in the CMB, already seen by the Cosmic Background Explorer (COBE) and strengthened by
the Wilkinson Microwave Anisotropy Probe (WMAP) and Planck satellite, whose atoms (a) lack of
correlation in the TT two-point function, (b) a rather significant alignment of the low multipoles
(p-values of below 0.1%), and (c) a dipolar modulation, which is independent of the multipole
alignment (b), indicate a breaking of statistical isotropy at low angular resolution, see [31] for
a comprehensive and complete review.

The present work intends to review and discuss a theoretical framework addressing a possibility
to resolve the above-sketched situation. The starting point is to subject the CMB to the thermodynamics
of an extended gauge principle in replacing the conventional group U(1) by SU(2). Motivated [32]
by explaining an excess in CMB line temperature at radio frequencies, see [33] and references therein,
this postulate implies a modified temperature-redshift relation which places CMB recombination at
a redshift of ∼1700 rather than ∼1100 and therefore significantly reduces the density of matter at that
epoch. To match ΛCDM at low z, one requires a release of Dark Matter from early Dark Energy within
the dark ages at a redshift zp: lumps and vortices, formely tighly correlated within a condensate of
ultralight axion particles, de-percolate into independent pressureless (and selfgravitating) solitons due
to cosmological expansion, thereby contributing actively to non-linear structure formation at low z.
A fit to CMB angular power spectra of a cosmological model, which incorporates these SU(2) features
on the perfect-fluid level but neglects low-z radiative effects in SU(2) [34], over-estimates TT power on
large angular scales but generates a precise fit to the data for l ≥ 30. With zp ∼ 53 a locally favoured
value of H0 ∼ 74 km s−1 Mpc−1 and a low baryon density ωb,0 ∼ 0.017 are obtained. Moreover,
the conventionally extracted near scale invariance of adiabatic, scalar curvature perturbations comes
out to be significantly broken by an infrared enhancement of their power spectrum. Finally, the fitted
redshift ∼6 of re-ionisation is compatible with the detection of the Gunn-Peterson-trough in the spectra
of high-z quasars [35] and distinctly differs from the high value of CMB fits to ΛCDM [7,8].
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As of yet, there are loose ends to the SU(2) based scenario. Namely, the physics of de-percolation
requires extra initial conditions for matter density fluctuations at zp. In the absence of a precise
modelling of the ’microscopics’ of the associated soliton ensembles1 it is only a guess that these
fluctuations instantaneously follow the density fluctuations of primordial Dark Matter as assumed
in [34]. Moreover, it is necessary to investigate to what extent profiles of the axion field (lumps
of localised energy density) actively seed non-linear structure formation and whether their role
in galactic halo formation and baryon accretion meets the observational constraints (Tully–Fisher
relation, etc.). Furthermore, radiative effects on thermal photon propagation at low z [36], which are
expected to contribute or even explain the above-mentioned atoms (a), (b), and (c) of the CMB
large-angle anomalies, see [37], and which could reduce the excess in low-l TT power of [34] to
realistic levels, need to be incorporated into the model. They require analyses in terms of Maxwell’s
multipole-vector formalism [31] and/or other robust and intuitive statistics to characterise multipole
alignment and the large-angle suppression of TT.

This review-type paper is organised as follows. In Section 2 we briefly discuss the main
distinguishing features between the conventional ΛCDM model and cosmology based on a CMB
which obeys deconfining SU(2) Yang–Mills thermodynamics. A presentation of our recent results
on angular-power-spectra fits to Planck data is carried out Section 3, including a discussion of the
parameters H0, ns, σ8, zre, and ωb,0. In Section 4 we interpret the rough characteristics of the Dark
Sector employed in [34] to match ΛCDM at low z. In particular, we point out that the value of zp

seems to be consistent with the typical dark-matter densities in the Milky Way. Finally, in Section 5
we sketch what needs to be done to arrive at a solid, observationally well backed-up judgement of
whether SU(2)CMB based cosmology (and its extension to SU(2) and SU(3) factors of hierarchically
larger Yang–Mills scales including their nonthermal phase transitions) may provide a future paradigm
to connect local cosmology with the very early Universe. Throughout the article, super-natural units
h̄ = kB = c = 1 are used.

2. SU(2)CMB vs. Conventional CMB Photon Gas in ΛCDM

The introduction of an SU(2) gauge principle for the description of the CMB is motivated
theoretically by the fact that the deconfining thermodynamics of such a Yang–Mills theory exhibits
a thermal ground state, composed of densely packed (anti)caloron [38] centers with overlapping
peripheries [39,40], which breaks SU(2) to U(1) in terms of an adjoint Higgs mechanism [41]. Therefore,
the spectrum of excitations consists of one massless gauge mode, which can be identified with the
CMB photon, and two massive vector modes of a temperature-dependent mass on tree level: thermal
quasi-particle excitations. The interaction between these excitations is feeble [41]. This is exemplified
by the one-loop polarisation tensor of the massless mode [36,42,43]. As a function of temperature,
polarisation effects peak at about twice the critical temperature Tc for the deconfining-preconfining
transition. As a function of increasing photon momentum, there are regimes of radiative screening/
antiscreening, the latter being subject to an exponential fall-off [36]. At the phase boundary
(T ∼ Tc) electric monopoles [41], which occur as isolated and unresolved defects deeply in the
deconfining phase, become massless by virtue of screening due to transient dipoles [44] and therefore
condense to endow the formely massless gauge mode with a quasiparticle Meissner mass mγ.
This mass rises critically (with mean-field exponent) as T falls below Tc [41]. Both, (i) radiative
screening/antiscreening of massless modes and (ii) their Meissner effect are important handles in
linking SU(2)CMB to the CMB: while (i) induces large-ange anomalies into the TT correlation [37]
and contributes dynamically to the CMB dipole [45,46] (ii) gives rise to a nonthermal spectrum

1 Lump sizes could well match those of galactic dark-matter halos, see Section 4.
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of evanescent modes2 for frequencies ω < mγ once T falls below Tc. This theoretical anomaly of
the blackbody spectrum in the Rayleigh–Jeans regime can be considered to explain the excess in
CMB radio power below 1 GHz, see [33] and references therein, thereby fixing Tc = 2.725 K and,
as a consequence of λc = 13.87 = 2πTc

ΛCMB
[41], the Yang–Mills scale of SU(2)CMB to ΛCMB ∼ 10−4 eV [32].

Having discussed the low-frequency deviations of SU(2)CMB from the conventional Rayleigh–Jeans
spectrum, which fix the Yang–Mills scale and associate with large-angle anomalies, we would now like
to review its implications for the cosmological model. Of paramount importance for the set-up of such
a model is the observtion that SU(2)CMB implies a modified temperature (T)-redshift (z) relation for the
CMB which is derived from energy conservation of the SU(2)CMB fluid in the deconfining phase in an
FLRW universe with scale factor a normalised to unity today [47]. Denoting by Tc = T0 = 2.725 K [32]
the present CMB baseline temperature [6] and by ρSU(2)CMB

and PSU(2)CMB
energy density and pressure,

respectively, of SU(2)CMB, one has

a ≡ 1
z + 1

= exp

(
−1

3
log

(
sSU(2)CMB

(T)

sSU(2)CMB
(T0)

))
, (1)

where the entropy density sSU(2)CMB
is defined by

sSU(2)CMB
≡

ρSU(2)CMB
+ PSU(2)CMB

T
. (2)

For T � T0, Equation (1) simplifies to

T =

(
1
4

)1/3
T0(z + 1) ≈ 0.63 T0(z + 1) . (3)

For arbitrary T ≥ T0, a multiplicative deviation S(z) from linear scaling in z + 1 can be introduced as

S(z) =
(

ρSU(2)CMB
(z = 0) + PSU(2)CMB

(z = 0)

ρSU(2)CMB
(z) + PSU(2)CMB

(z)
T4(z)

T4
0

)1/3

. (4)

Therefore,
T = S(z) T0(z + 1) . (5)

Figure 1 depicts function S(z).
Amusingly, the asymptotic T-z relation of Equation (3) also holds for the relation between

ρSU(2)CMB
(z) and the conventional CMB energy density ργ(z) in ΛCDM (the energy density of a thermal

U(1) photon gas, using the T-z relation T = T0(z + 1)). Namely,

ρSU(2)CMB
(z) = 4

(
1
4

)4/3
ργ(z) =

(
1
4

)1/3
ργ(z) (z � 1) . (6)

Therefore, the (gravitating) energy density of the CMB in SU(2)CMB is, at the same redshift z � 1,
by a factor of ∼0.63 smaller than that of the ΛCDM model even though there are eight (two plus
two times three) gauge-mode polarisations in SU(2)CMB and only two such polarisations in the U(1)
photon gas.

2 That the deep Rayleigh–Jeans regime is indeed subject to classical wave propagation is assured by the fact that wavelengths
that are greater than the spatial scale s ≡ πT|φ|−2, separating a(n) (anti)caloron center from its periphery where
its (anti)selfdual gauge field is that of a dipole [40]. The expression for s contains the modulus |φ| =

√
Λ3

CMB/(2πT)
of the emergent, adjoint Higgs field φ (ΛCMB ∼ 10−4 eV the Yang–Mills scale of SU(2)CMB), associated with densely packed
(anti)caloron centers, and, explicitely, temperature T.
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Figure 1. The function S(z) of Equation (4), indicating the (multiplicative) deviation from the
asymptotic T-z relation in Equation (3). Curvature in S(z) for low z arises from a breaking of scale

invariance for T ∼ T0 = Tc. There is a rapid approach towards the asymptotics
(

1
4

)1/3
≈ 0.63 with

increasing z. Figure adopted from [34].

Not yet considering linear and next-to-linear perturbations in SU(2)CMB to shape typical CMB
large-angle anomalies in terms of late-time screening/antiscreening effects [37], Equation (5) has
implications for the Dark Sector if one wishes to maintain the successes of the standard cosmological
model at low z where local cosmography and fits to distance-redshift curves produce a consistent
framework within ΛCDM. As it was shown in [34], the assumption of matter domination
at recombination, which is not unrealistic even for SU(2)CMB [34], implies that

zΛCDM,∗ ∼
(

1
4

)1/3
zSU(2)CMB,∗ (7)

and, as a consequence,
ΩΛCDM,m,0 ≈ 4 ΩSU(2)CMB,m,0 , (8)

where Ωm,0 denotes today’s density parameter for nonrelativistic matter (Dark Matter plus baryons),
and z∗ is the redshift of CMB photon decoupling in either model. Since the matter sector of the SU(2)CMB

model, as roughly represented by Equation (8), contradicts ΛCDM at low z one needs to allow
for a transition between the two somewhere in the dark ages as z decreases. In [34] a simple
model, where the transition is sudden at a redshift zp and maintains a small dark-energy residual,
was introduced: a coherent axion field—a dark-energy like condensate of ultralight axion particles,
whose masses derive from U(1)A anomalies [48–52] invoked by the topological charges of (anti)caloron
centers in the thermal ground state of SU(2)CMB and, in a screened way, SU(2)/SU(3) Yang–Mills
factors of higher scales—releases solitonic lumps by de-percolation due to the Universe’s expansion.
Accordingly, we have

Ωds(z) = ΩΛ + Ωpdm,0(z + 1)3 + Ωedm,0

{ (
z + 1

)3 , z < zp(
zp + 1

)3 , z ≥ zp
. (9)

Here ΩΛ and Ωpdm,0 + Ωedm,0 ≡ Ωcdm,0 represent today’s density parameters for Dark Energy
and Dark Matter, respectively, Ωpdm,0 refers to primordial Dark Matter (that is, dark matter that existed
before the initial redshift of zi ∼ 104 used in the CMB Boltzmann code) for all z and Ωedm,0 to emergent
Dark Matter for z < zp. In [34] the initial conditions for the evolution of density and velocity
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perturbations of the emergent Dark-Matter portion at zp are, up to a rescaling of order unity, assumed
to follow those of the primordial Dark Matter.

3. SU(2)CMB Fit of Cosmological Parameters to Planck Data

In [34] a simulation of the new cosmological model subject to SU(2)CMB and the Dark Sector of
Equation (9) was performed using a modified version of the Cosmic Linear Anisotropy Solving System
(CLASS) Boltzmann code [53]. Best fits to the 2015 Planck data [8] on the angular power spectra
of the two-point correlation functions temperature–temperature (TT), electric-mode polarisation–
electric-mode polarisation (EE), and temperature–electric-mode polarisation (TE), subject to typical
likelihood functions used by the Planck collaboration, were performed. Because temperature
perturbations can only be coherently propagated by (low-frequency) massless modes in SU(2)CMB [40]
the propagation of the (massive) vector modes was excluded in one version of the code (physically
favoured). Furthermore, entropy conservation in e+e− annihilation invokes a slightly different
counting of relativistic degrees of freedom in SU(2)CMB for this epoch [54]. As a consequence, we have
a z-dependent density parameter for (massless) neutrinos given as [34]

Ων(z) =
7
8

Neff

(
16
23

) 4
3

ΩSU(2)CMB,γ(z) , (10)

where Neff refers to the effective number of neutrino flavours (or any other extra relativistic,
free-streaming, fermionic species), and ΩSU(2)CMB,γ is the density parameter associated with the massless
mode only in the expression for ρSU(2)CMB

(z) of Equation (6). The value Neff = 3.046 of the Planck result
was used as a fixed input in [34]. The statistical goodness of the best fit was found to be comparable to
the one obtained by the Planck collaboration [8], see Figure 2 as well as the lower part of Table 1. There
is an excess of power in TT for 7 ≤ l ≤ 30, however.

l

(
+

) C

× −9

( )CMB

( )CMB + ±

Figure 2. Normalised power spectra of TT correlator for best-fit parameter values quoted in Table 1:
Dashed, dotted, and solid lines represent ΛCDM, SU(2)CMB + V± (not considered in in the present work),
and SU(2)CMB, respectively. For l ≤ 29 the 2015 Planck data points are unbinned and carry error bars,
for l ≥ 30 grey points represent unbinned spectral power. Figure adopted from [34].

This excess could be attributable to the omission of radiative effects in the low-z propagation of
the massless mode. The consideration of the modified dispersion law into the CMB Boltzmann code
presently is under way. The following table was obtained in [34]:

170



Universe 2020, 6, 135

Table 1. Best-fit cosmological parameters of the SU(2)CMB and the ΛCDM model as obtained in [34].
The best-fit parameters of ΛCDM together with their 68% confidence intervals are taken from [8],
employing the TT,TE,EE+lowP+lensing likelihoods. For SU(2)CMB the HiLLiPOP+lowTEB+lensing
likelihood (lowP and lowTEB are pixel-based likelihoods) was used, see [55]. The central values
associate with χ2 = χ2

ll + χ2
hl (best fit) as quoted in the lower part of the Table.

Parameter SU(2)CMB ΛCDM

ωb,0 0.0173 ± 0.0002 0.0225 ± 0.00016
ωpdm,0 0.113 ± 0.002 −
ωedm,0 0.0771 ± 0.0012 −
100 θ∗ 1.0418 ± 0.0022 1.0408 ± 0.00032
τre 0.02632 ± 0.00218 0.079 ± 0.017
ln(1010 As) 2.858 ± 0.009 3.094 ± 0.034
ns 0.7261 ± 0.0058 0.9645 ± 0.0049
zp 52.88 ± 4.06 −
β 0.811 ± 0.058 −

H0/km s−1Mpc−1 74.24 ± 1.46 67.27 ± 0.66
zre 6.23+0.41

−0.42 10+1.7
−1.5

z∗ 1715.19 ± 0.19 1090.06 ± 0.30
zd 1640.87 ± 0.27 1059.65 ± 0.31
ωcdm,0 0.1901 ± 0.0023 0.1198 ± 0.0015
ΩΛ 0.616 ± 0.006 0.6844 ± 0.0091
Ωm,0 0.384 ± 0.006 0.3156 ± 0.0091
σ8 0.709 ± 0.020 0.8150 ± 0.0087
Age/Gyr 11.91 ± 0.10 13.799 ± 0.021

χ2
ll 10,640 10,495

ndof,ll 9207 9210
χ2

ll
ndof,ll

1.156 1.140

χ2
hl 10,552.6 9951.47

ndof,hl 9547 9550
χ2

hl
ndof,hl

1.105 1.042

We would like to discuss the following parameters (the value of zp will be discussed in
Section 4): (i) H0, (ii) ns, (iii) σ8, (iv) zre, and (v) ωb,0. (i): The fitted value of H0 is in agreement
with local-cosmology observation [19,27] but discrepant at the 4.5 σ level with the value H0 ∼
(67.4 ± 0.5) km Mpc−1 s−1 in ΛCDM of global-cosmology fits as extracted by the Planck collaboration
[8], a galaxy-custering survey—the Baryonic Oscillation Spectroscopy Survey (BOSS) [3]—and a
galaxy-custering-weak-lensing survey—the Dark Energy Survey (DES) [2]—whose distances are
derived from inverse distance ladders using the sound horizons at CMB decoupling or baryon drag
as references. Such anchors assume the validy of ΛCDM (or a variant thereof with variable Dark
Energy) at high z, and the data analysis employs fiducial cosmologies that are close to those of CMB
fits. As a rule of thumb, the inclusion of extra relativistic degrees of freedom within reasonable
bounds [2,3] but also sample variance, local matter-density fluctuations, or a directional bias in SNa
Ia observations [12–15] cannot explain the above-quoted tension in H0. Note that the DES Y1 data
on three two-point functions (cosmic shear auto correlation, galaxy angular auto correlation, and
galaxy-shear cross correlation in up to five redshift bins with z ≤ 1.3), which are most sensitive to
Ωm and σ8 (or S8 = σ8/Ωm), cannot usefully constrain H0 by itself. However, the combination of DES
1Y data with those of Planck (no lensing) yields an increases in H0 on the 1-2 σ level compared to the
Planck (no lensing) data alone, and a similar tendency is seen when BAO data [3] are enriched with
those of DES Y1, see Table II in [2]. Loosely speaking, one thus may state a mild increase of H0 with an
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increasing portion of late-time (local-cosmology) information in the data. (ii): The index of the initial
spectrum of adiabatic, scalar curvature perturbations ns is unusually low, expressing an enhancement
of infrared modes as compared to the ultraviolet ones (violation of scale invariance). As discussed
in [34], such a tilted spectrum is not consistent with single-field slow-roll inflation and implies that
the Hubble parameter during the inflationary epoch has changed appreciably. (iii): There is a low
value of σ8 (initial amplitude of matter-density power spectrum at comoving wavelength 8 h−1 Mpc
with H0 ≡ h 100 km s−1Mpc−1) compared to CMB fits [8] and BAO [3] although the DES Y1 fit to
cosmic shear data alone would allow for a value σ8 ∼ 0.71 within the 1-σ margin [2]. This goes also
for our high value of today’s matter density parameter Ωm,0 (the ratio of physical matter density to
the critical density). (iv): The low value of the redshift to (instantaneous) re-ionisation zre (and the
correspondingly low optical depth τre) compared to values obtained in CMB fits [8] is consistent with
the one extracted from the observation of the Gunn-Peterson trough in the spectra of high-redshift
quasars [35]. (v): The low value of ωb,0—today’s physical baryon density—could provide a theoretical
solution of the missing baryon problem [34] (missing compared to CMB fits to ΛCDM (CMB fits)
and the primordial D/H (Deuterium-to-Hydrogen) ratio in Big-Bang Nucleosynthesis (BBN), the latter
yielding ωb,0 = 0.02156± 0.00020 [56] which is by 2.3 σ lower than the Planck value of 0.0225± 0.00016
in Table 1). If this low value of ωb,0 could be consolidated observationally than either the idea that BBN
is determined by isolated nuclear reaction cross sections only or the observation of a truly primordial
D/H in metal-poor environments or both will have to be questioned in future ivestigations. There is
a recent claim, however, that the missing 30–40% of baryons were observed in highly ionized oxygen
absorbers representing the warm-hot intergalactic medium when illuminated by the X-ray spectrum
of a quasar with z > 0.4 [57]. This results is disputed in [58]. In [59] the missing baryon problem is
addressed by the measurement of electron column density within the intergalactic medium using
the dispersion of localised radio bursts with z ≤ 0.522. In projecting electron density the measurement
appeals to a flat ΛCDM CMB-fitted model (Planck collaboration [8]). Presently, ωb,0 is extracted from
the ASKAP data in [59] to be consistent with CMB fits and BBN albeit subject to a 50% error which is
expected to decrease with the advent of more powerful radio observatories such as SKA.

4. Axionic Dark Sector and Galactic Dark-Matter Densities

The model for the Dark Sector in Equation (9) is motivated by the possibility that a coherent
condensate of ultra-light particles—an axion field [52]—forms selfgravitating lumps or vortices
in the course of nonthermal (Hagedorn) phase transitions due to SU(2)/SU(3) Yang–Mills factors,
governing the radiation and matter content of the very early Universe, going confining. A portion
of the thus created, large abundance of such solitons percolates into a dark-energy like state:
the contributions ΩΛ and Ωedm,0(zp + 1)3 in Equation (9) of which the latter may de-percolate at
z = zp into a dark-matter like component Ωedm,0(z + 1)3 for z < zp, the expansion of the Universe
increasing the average distance between the centers of neighbouring solitons. By virtue of the U(1)A
anomaly, mediated by topological charge density [48–51], residing in turn within the ground state of
an SU(2)/SU(3) Yang–Mills theory [41], the mass ma of an axion particle due to a single such theory of
Yang–Mills scale Λ is given as [52]

ma =
Λ2

MP
, (11)

where we have assumed that the so-called Peccei–Quinn scale, which associates with a dynamical
chiral-symmetry breaking, was set equal to the Planck mass MP = 1.221 × 1028 eV, see [60,61]
for motivations. Let (natural units: c = h̄ = 1)

rc ≡ 1/ma (12)

denote the Compton wavelength,

rB ≡ M2
P

M
m−2

a (13)
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the gravitational Bohr radius, where M ∼ 1012 M is the total dark mass of a typical (spiral) galaxy
like the Milky Way, and

da ≡
(

ma

ρdm

)1/3
(14)

the interparticle distance where ρdm indicates the typical mean energy density in Dark Matter of
a spiral. Following [62], we assume

ρdm = (0.2 · · · 0.4)GeV cm−3 . (15)

For the concept of a gravitational Bohr radius in a selfconsistent, non-relativistic potential model to
apply, the axion-particle velocity va in the condensate should be much small than unity. Appealing to

the virial theorem at a distance to the gravitational center of rB, one has va ∼
(

Mma
M2

P

)2
[63]. In [63],

where a selfgravitating axion condensate was treated non-relativistically by means of a non-linear
and non-local Schrödinger equation to represent a typical galactic dark-matter halo, the following
citeria on the validity of such an approach were put forward (natural units: c = h̄ = 1): (i) va � 1.
(ii) da � rc is required for the description of axion particles in terms of a coherent Bose condensate
to be realistic. (iii) rB should be the typical extent of a galactic Dark-Matter halo: rB ∼ 100–300 kpc.
With ΛCMB ∼ 10−4 eV one obtains ma = 8.2 × 10−37 eV, da = (4.1 · · · 5.2)× 10−34 pc, rc = 3.2 × 1025 pc,
and rB ∼ 8 × 1024 kpc. While (i) and (ii) are extremely well satified with va ∼ 10−28 and da

rc
∼ 10−59

point (iii) is badly violated. (rB is about 2 × 1018 the size of the visible Universe).
Therefore, the Yang–Mills scale responsible for the axion mass that associates with dark-matter

halos of galaxies must be dramatically larger. Indeed, setting Λ = 10−2Λe where Λe = me
118.6 is

the Yang–Mills scale of an SU(2) theory that could associate with the emergence of the electron of mass
me = 511 keV [64,65], one obtains ma = 1.5 × 10−25 eV, da = (2.3 · · · 2.9)× 10−30 pc, rc = 1.7 × 1014 pc,
and rB ∼ 232 kpc. In addition to (i) and (ii) with va ∼ 10−4 and da

rc
∼ 10−44 also point (iii) is now well

satisfied. If the explicit Yang–Mills scale of an SU(2) theory, which is directly imprinted in the spectra
of the excitations in the pre - and deconfining phases, acts only in a screened way in the confining
phase as far as the axial anomaly is concerned—reducing its value by a factor of one hundred or
so—then the above axionic Dark-Sector scenario would link the theory responsible for the emergence
of the electron with galactic dark-matter halos! In addition, the axions of SU(2)

CMB
would provide the

Dark-Energy density ΩΛ of such a scenario.
Finally, we wish to point out that the de-percolation mechanism of axionic solitons (lumps

forming out of former Dark-Energy density) in the cosmological model based on SU(2)CMB, which
may be considered to underly the transition in the Dark Sector at zp = 53 described by Equation (9), is
consistent with the Dark-Matter density in the Milky Way. Namely, working with H0 = 74 km s−1 Mpc−1,
see Table 1 and [19], the total (critical) energy density ρc,0 of our spatially flat Universe is at present

ρc,0 =
3

8π
M2

P H2
0 = 1.75 × 10−9 eV4 . (16)

The portion of cosmological Dark Matter ρcdm,0 then is, see Table 1,

ρcdm,0 ∼ 0.35 ρc,0 (17)

which yields a cosmological energy scale Ecdm,0 in association with Dark Matter of

Ecdm,0 ≡ ρ1/4
DM,0 ∼ 0.00497 eV . (18)

On the other hand, we may imagine the percolate of axionic field profiles, which dissolves at zp,
to be associated with densely packed dark-matter halos typical of today’s galaxies. Namely, scaling
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the typical Dark-Matter energy density of the Milky Way ρdm of Equation (15) from zp (at zp + 0
ρdm yet behaves like a cosmological constant) down to z = 0 and allowing for a factor of (ωpdm,0 +

ωedm,0)/ωedm,0 = 2.47, see Table 1, one extracts the energy scale for cosmological Dark Matter EG,0 in
association with galactic Dark-Matter halos and primordial dark matter as

EG,0 ≡
(

2.47ρdm

(zp + 1)3

)1/4
= (0.00879 · · · 0.0105) eV . (19)

A comparison of Equations (18) and (19) reveals that Ecdm,0 is smaller but comparable to EG,0.
This could be due to the neglect of galactic-halo compactification through the missing pull by
neighbouring profiles in the axionic percolate and because of the omission of selfgravitation
and baryonic-matter accretion/gravitation during the evolution from zp = 53 to present (that is,
the use of the values of Equation (15) in Equation (19) overestimates the homogeneous energy density
in the percolate). The de-percolation of axionic solitons at zp, whose mean, selfgravitating energy
density ρdm in Dark Matter is nearly independent of cosmological expansion but subject to local
gravitation, could therefore be linked to cosmological Dark Matter today within the Dark-Sector model
of Equation (9).

5. Conclusions

The present article’s goal was to address some tensions between local and global cosmology on
the basis of the ΛCDM standard model. Cracks in this model could be identified during the last few
years thanks to independent tests resting on precise observational data and their sophisticated analysis.
To reconcile these results, a change of ΛCDM likely is required before the onset of the formation of
non-linear, large-scale structure. Here, we have reviewed a proposal made in [34], which assumes
thermal photons to be governed by an SU(2) rather than a U(1) gauge principle, and we have
discussed the SU(2)CMB-implied changes in cosmological parameters and the structure of the Dark
Sector. Noticeably, the tensions in H0, the baryonic density, and the redshift for re-ionisation are
addressed in favour of local measurements. High-z inputs to CMB and BAO simulations, such as
ns and σ8, are sizeably reduced as compared to their fitted values in ΛCDM. The Dark Sector now
invokes a de-percolation of axionic field profiles at a redshift of zp ∼ 53. This idea is roughly consistent
with typical galactic Dark-Matter halos today, such as the one of the Milky Way, being released from
the percolate. Axionic field profiles, in turn, appear to be compatible with Dark-Matter halos in typical
galaxies if (confining) Yang–Mills dynamics subject to a much higher mass scales than that of SU(2)CMB

is considered to produce the axion mass.
To consolidate such a scenario two immediate fields of investigation suggest themselves:

(i) A deep understanding of possible selfgravitating profiles needs to be gained towards their role
in actively assisted large-scale structure formation as well as in quasar emergence, strong lensing,
cosmic shear, galaxy clustering, and galaxy phenomenology (Tully–Fisher, rotation curves, etc.),
distinguishing spirals from ellipticals and satellites from hosts. (ii) More directly, the CMB large-angle
anomalies require an addressation in terms of radiative effects in SU(2)CMB, playing out at low redshifts,
which includes a re-investigation of the CMB dipole.
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Abstract: Background. We investigate possible correlations between neutron star observables and
properties of atomic nuclei. In particular, we explore how the tidal deformability of a 1.4 solar mass
neutron star, M1.4, and the neutron-skin thickness of 48Ca and 208Pb are related to the stellar radius
and the stiffness of the symmetry energy. Methods. We examine a large set of nuclear equations of
state based on phenomenological models (Skyrme, NLWM, DDM) and ab initio theoretical methods
(BBG, Dirac–Brueckner, Variational, Quantum Monte Carlo). Results: We find strong correlations
between tidal deformability and NS radius, whereas a weaker correlation does exist with the stiffness
of the symmetry energy. Regarding the neutron-skin thickness, weak correlations appear both with
the stiffness of the symmetry energy, and the radius of a M1.4. Our results show that whereas the
considered EoS are compatible with the largest masses observed up to now, only five microscopic
models and four Skyrme forces are simultaneously compatible with the present constraints on L
and the PREX experimental data on the 208Pb neutron-skin thickness. We find that all the NLWM
and DDM models and the majority of the Skyrme forces are excluded by these two experimental
constraints, and that the analysis of the data collected by the NICER mission excludes most of the
NLWM considered. Conclusion. The tidal deformability of a M1.4 and the neutron-skin thickness
of atomic nuclei show some degree of correlation with nuclear and astrophysical observables,
which however depends on the ensemble of adopted EoS.

Keywords: neutron star; equation of state; many-body methods of nuclear matter; neutron-skin
thickness; GW170817

1. Introduction

The equation of state (EoS) of isospin asymmetric nuclear matter plays a major role in many
different realms of modern physics, being the fundamental ingredient for the description of
heavy-ion collision dynamics, nuclear structure, static and dynamical properties of neutron stars (NS),
core-collapse supernova and binary compact-star mergers [1,2]. In principle, it can be expected that in
heavy-ion collisions at large enough energy nuclear matter is compressed at density a few times larger
than the nuclear saturation density, and that at the same time, the two collision partners produce flows
of matter, which should be connected with the nuclear EoS. In the physics of compact objects, the central
density likely reached in the inner core of a NS may reach values up to one order of magnitude larger
than the saturation density, and this poses several theoretical problems because a complete theory
of nuclear interactions at arbitrarily large values of density, temperature and asymmetry, should in
principle be derived from the quantum chromodynamics (QCD), and this is a very difficult task which
presently cannot be realized. Therefore, theoretical models and methods of the nuclear many-body
theory are required to build the EoS, which has to be applied and tested in terrestrial laboratories
for the description of ordinary nuclear structure, and in astrophysical observations for the study of
compact objects.
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Among possible observables regarding NS, the mass and radius are the most promising since
they encode unique information on the EoS at supranuclear densities. Currently the masses of several
NSs are known with good precision [3–7], but the information on their radii is less accurate [8,9].
The recent observations of NICER [10,11] have reached a larger accuracy for the radius, but future
planned missions like eXTP [12] will allow us to statistically infer NS-mass and radius to within a
few percent.

A big step forward is represented by the recent detection by the Advanced LIGO and VIRGO
collaborations of gravitational waves emitted during the GW170817 NS merger event [13–15]. This has
provided important new insights on the mass and radii of these objects by means of the measurement
of the tidal deformability [16,17], and allowed to deduce upper and lower limits on it [14,18].

In this paper, we analyze the constraints on the nuclear EoS obtained from the analysis of the
NS merger event GW170817, and try to select the most compatible EoS chosen among those derived
from both phenomenological and ab initio theoretical models. We also examine possible correlations
among properties of nuclear matter close to saturation with the observational quantities deduced from
GW170817 and nuclear physics experiments. In particular, we concentrate on the tidal deformability
of NS, and the neutron-skin thickness in finite nuclei, thus connecting astrophysical observables with
laboratory nuclear physics. The present work is complementary to the recent analysis of Horowitz
made in Ref. [19].

The paper is organized as follows. In Section 2 we give a schematic overview of NS
phenomenology, whereas in Section 3 we explain the role of the equation of state in determining
the main properties of NS, and illustrate the ones we adopt in the present study. The experimental
constraints on the nuclear EoS are presented in Section 3.1 whereas the astrophysical ones are discussed
in Section 3.2. A brief overview of different EoS of β-stable matter is given in Section 4, along with
numerical results. In Section 5 we briefly discuss the NS tidal deformability, and its connection to the
neutron-skin thickness in Section 6. Conclusions are drawn in Section 7.

2. Neutron Stars in a Nutshell

Neutron stars are a type of stellar compact remnant that can result from the gravitational collapse
of an ordinary star with a mass in the range 8–25M (with M ≈ 2× 1033g the mass of the Sun) during
a Type II, Ib or Ic supernova event. A supernova explosion will occur when the star has exhausted
its possibilities for energy production by nuclear fusion. Then, the pressure gradient provided by
the radiation is not sufficient to balance the gravitational attraction, becoming the star unstable and,
eventually, collapsing. The inner regions of the star collapse first and the gravitational energy is
released and transferred to the outer layers of the star blowing them away.

NS are supported against gravitational collapse mainly by the neutron degeneracy pressure and
may have masses in the range M ∼ 1–2M and radii of about 10–12 km. A schematic cross section of
the predicted “onion“-like structure of the NS interior is shown in Figure 1. At the surface, densities are
typically ρ < 106 g/cm3. The outer crust, with densities ranging from 106 g/cm3 to 1011 g/cm3 is a
solid region where heavy nuclei, mainly around the iron mass number, in a Coulomb lattice coexist in
β-equilibrium (i.e., in equilibrium with respect to weak interaction processes) with an electron gas.
Moving towards the center the density increases and the electron chemical potentials increases, and
the electron capture processes on nuclei

e− +A Z →A (Z − 1) + νe , (1)

opens and the nuclei become more and more neutron-rich. At densities of ∼4.3 × 1011 g/cm3 the only
available levels for the neutrons are in the continuum and they start to “drip out” of the nuclei. We have
then reached the inner crust region, where matter consist of a Coulomb lattice of very neutron-rich
nuclei together with a superfluid neutron gas and an electron gas. In addition, due to the competition
between the nuclear and Coulomb forces, nuclei in this region lose their spherical shapes and present
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more exotic topologies (droplets, rods, cross-rods, slabs, tubes, bubbles) giving rise to what has been
called “nuclear pasta” phase [20]. At densities of ∼1014 g/cm3 nuclei start to dissolve, and one
enters the outer core. In this region matter is mainly composed of superfluid neutrons with a smaller
concentration of superconducting protons and normal electrons and muons. In the deepest region of
the star, the inner core, the density can reach values of ∼1015 g/cm3. The composition of this region,
however, is not known, and it is still subject of speculation. Suggestions range from hyperonic matter,
meson condensates, or deconfined quark matter.

"pasta" structures
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Outer crust:
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?
?

?
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Meson condensates ?
Inner core:

Figure 1. A schematic cross section of a neutron star illustrating the various regions discussed in the
text. The different regions shown are not drawn on scale.

The observation of NS requires different types of ground-based and on-board telescopes covering
all bands of the electromagnetic spectrum. Radio observations are carried out with ground-based
antennas located in different places of the Earth. Three examples of these radio telescopes are the
Arecibo radio telescope in Puerto Rico, the Green Bank Observatory in West Virginia, and the Nançay
decimetric radio telescope in France. Observations in the near infrared and the optical bands can be
performed with the use of large ground-based telescopes such as the Very Large Telescope (VLT) in
the Atacama Desert in Chile. The Hubble-Space Telescope (HST) can be used to cover the optical and
ultraviolet regions. Observations in the extreme ultraviolet, X-ray and γ-ray require the use of space
observatories such as the Chandra X-ray Observatory (CXO), the X-ray Multi Mirror (XMM-Newton) and
the Rossi X-ray Timing Explorer (RXTE) in the case of X-ray observations; and the High Energy Transient
Explorer (HETE-2), the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) and the Fermi
Gamma-ray Space Telescope (FGST), in the case of γ-ray ones.

Information on the properties of NS additional to that obtained from the observation of their
electromagnetic radiation can be provided from the detection of the neutrinos emitted during the
supernova explosion that signals the birth of the star. Examples of neutrino observatories are:
the under-ice IceCube observatory placed in the South Pole; the under-water projects ANTARES
(Astronomy with a Neutrino Telescope and Abyss environmental REsearch) and the future KM3NET (Cubic
Kilometre Neutrino Telescope) in the Mediterranean sea; and the underground observatories SNO
(Sudbury Neutrino Observatory) located 2100 m underground in the Vale’s Creighton Mine in Canada,
and the Kamioka observatory placed at the Mozumi Mine near the city of Hida in Japan.

The detection of gravitational waves, originated during the coalescence of two NS as
in the GW170817 event recently detected by the Advanced LIGO and Advanced VIRGO
collaborations [13–15] or from the oscillation modes of NS, represents presently a new way of observing

181



Universe 2020, 6, 119

these objects and constitutes a very valuable new source of information. In particular, observations
of NS mergers can potentially provide stringent constraints on the nuclear EoS by comparing model
predictions with the precise shape of the detected gravitational wave signal. The interested reader is
referred to Ref. [21] for a recent review of this hot and exciting topic.

3. The Nuclear Equation of State

The theoretical description of nuclear matter under extreme density conditions is a very
challenging task. Theoretical predictions in this regime are diverse, ranging from purely nucleonic
matter with high neutron-proton asymmetry, to baryonic strange matter or a quark deconfined phase
of matter. In this work we adopt a conventional description by assuming that the most relevant degrees
of freedom are nucleons. Theoretical approaches to determine the nuclear EoS can be classified in two
categories: phenomenological and microscopic (ab initio).

Phenomenological approaches, either non-relativistic or relativistic, are based on effective interactions
that are frequently built to reproduce the properties of nuclei [22]. Skyrme interactions [23,24] and
relativistic mean-field (RMF) models [25] are among the most used ones. Many of such interactions
are built to describe finite nuclei in their ground state, i.e., close to the isospin symmetric case and,
therefore, predictions at high isospin asymmetries should be taken with care. For instance, most Skyrme
forces are, by construction, well behaved close to nuclear saturation density ρ0 ≈ 0.15–0.16 fm−3 and
moderate values of the isospin asymmetry, but predict very different EoS for pure neutron matter,
and therefore give different predictions for NS observables. In this work we use the 27 Skyrme forces
that passed the restrictive tests imposed by Stone et al. in Ref. [22] over almost 90 existing Skyrme
parametrizations. These forces are: GS and Rs [26], SGI [27], SLy0-SLy10 [28] and SLy230a [29,30] of
the Lyon group, the old SV [31], SkI1-Sk5 [32] and SkI6 [33] of the SkI family, SkMP [34], SkO and
SkO’ [35], and SkT4 and SkT5 [36].

Similarly, relativistic mean-field models are based on effective Lagrangian densities where the
interaction between baryons is described in terms of meson exchanges. The couplings of nucleons
with mesons are usually fixed by fitting masses and radii of nuclei and the bulk properties of
nuclear matter, whereas those of other baryons, like hyperons, are fixed by symmetry relations
and hypernuclear observables. In this work we consider two types of RMF models: models with
constant meson-baryon couplings described by the Lagrangian density of the nonlinear Walecka model
(NLWM), and models with density-dependent couplings [hereafter referred to as density-dependent
models (DDM)]. In particular, within the first type, we consider the models GM1 and GM3 [37],
TM1 [38], NL3 and NL3-II [39], and NL-SH [40]. For the DDM, we consider the models DDME1 and
DDME2 [41], TW99 [42], and the models PK1, PK1R and PKDD of the Pekin group [43].

Microscopic approaches, on other hand, are based on realistic two- and three-body forces that
describe nucleon scattering data in free space and the properties of the deuteron. These interactions
are based on meson-exchange theory [44,45] or, very recently, on chiral perturbation theory [46–49].
Then one must solve the complicated many-body problem [50] to obtain the nuclear EoS. The main
difficulty is the treatment of the short-range repulsive core of the nucleon-nucleon interaction.
Different many-body approaches have been devised for the construction of the nuclear matter EoS,
e.g., the Brueckner–Hartree–Fock (BHF) [51] and the Dirac–Brueckner–Hartree–Fock (DBHF) [52–54]
theories, the variational method [55], the correlated basis function formalism [56], the self-consistent
Green’s function technique [57,58], the Vlow k approach [59] or Quantum Monte Carlo techniques [60,61].

As far as the microscopic approaches are concerned, in this paper we adopt several BHF EoS
based on different nucleon-nucleon potentials, namely the Bonn B (BOB) [44,62], the Nijmegen 93
(N93) [63], and the Argonne V18 (V18) [64]. In all those cases, the two-body forces are supplemented by
nucleonic three-body forces (TBF), which are needed to correctly reproduce the saturation properties
of nuclear matter. Currently a complete ab initio theory of TBF is not available yet, and therefore we
adopt either phenomenological or microscopic models [65–68]. The microscopic TBF employed in
this paper are described in detail in Refs. [68,69], whereas a phenomenological approach based on the
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Urbana model [66,70,71], is also adopted. In this case, the corresponding EoS is labelled UIX in Table 1.
Within the same theoretical framework, we also studied an EoS based on a potential model which
includes explicitly the quark-gluon degrees of freedom, named FSS2 [72,73]. This correctly reproduces
the saturation point of symmetric matter and the binding energy of few-nucleon systems without the
need for introducing TBF. In the following we use two different EoS versions labelled respectively
as FSS2CC and FSS2GC. Moreover, we compare these BHF EoSs with the often-used results of the
Dirac-BHF method (DBHF) [54], which employs the Bonn A potential, the APR EoS [55] based on the
variational method and the V18 potential, and a parametrization of a recent Auxiliary Field diffusion
Monte Carlo (AFDMC) calculation of Gandolfi et al. given in Ref. [74].

The above-mentioned methods provide EoSs for homogeneous nuclear matter, ρ > ρt ≈
0.08 fm−3. For the low-density inhomogeneous part we adopt the well-known Negele–Vautherin
EoS [75] for the inner crust in the medium-density regime (0.001 fm−3 < ρ < 0.08 fm−3), and the
ones by Baym–Pethick–Sutherland [76] and Feynman–Metropolis–Teller [77] for the outer crust
(ρ < 0.001 fm−3).

3.1. Laboratory Constraints on the Nuclear EoS

Around saturation density ρ0 and isospin asymmetry δ ≡ (N − Z)/(N + Z) = 0 [being N(Z) the
number of neutrons (protons)], the nuclear EoS can be characterized by a set of a few isoscalar (E0, K0)
and isovector (S0, L, Ksym) parameters. These parameters can be constrained by nuclear experiments
and are related to the coefficients of a Taylor expansion of the energy per particle of asymmetric nuclear
matter as a function of density and isospin asymmetry

E(ρ, δ) = ESNM(ρ) + Esym(ρ)δ2 , (2)

ESNM(ρ) = E0 +
K0

2
x2 , (3)

Esym(ρ) = S0 + Lx +
Ksym

2
x2 , (4)

where x ≡ (ρ − ρ0)/3ρ0, E0 is the energy per particle of symmetric nuclear matter at ρ0, K0 the
incompressibility and S0 ≡ Esym(ρ0) is the symmetry energy coefficient at saturation. The parameters
L and Ksym characterize the density dependence of the symmetry energy around saturation.
These parameters are defined as

K0 ≡ 9ρ2
0

d2ESNM

dρ2 (ρ0) , (5)

S0 ≡ 1
2

∂2E
∂δ2 (ρ0, 0) , (6)

L ≡ 3ρ0
dEsym

dρ
(ρ0) , (7)

Ksym ≡ 9ρ2
0

d2Esym

dρ2 (ρ0) . (8)

The incompressibility K0 gives the curvature of E(ρ) at ρ = ρ0, whereas S0 determines the increase
of the energy per nucleon due to a small asymmetry δ.

Properties of the various considered EoSs are listed in Table 1, namely the value of the saturation
density ρ0, the binding energy per particle E0, the incompressibility K0, the symmetry energy S0,
and its derivative L at ρ0. Measurements of nuclear masses [78] and density distributions [79] yield
E0 = −16 ± 1 MeV and ρ0 = 0.14 − 0.17 fm−3, respectively. The value of K0 can be extracted from
the analysis of isoscalar giant monopole resonances in heavy nuclei, and results of Ref. [80] suggest
K0 = 240 ± 10 MeV, whereas in Ref. [81] a value of K = 248 ± 8 MeV is reported. Even heavy-ion
collision experiments point to a “soft” EoS, i.e., a low value of K0, though the constraints inferred from
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heavy-ion collisions are model dependent because the analysis of the measured data requires the use
of transport models [82]. Experimental information on the symmetry energy at saturation S0 and its
derivative L can be obtained from several sources such as the analysis of giant [83] and pygmy [84,85]
dipole resonances, isospin diffusion measurements [86], isobaric analog states [87], measurements of
the neutron-skin thickness in heavy nuclei [88–92] and meson production in heavy-ion collisions [93].
However, whereas S0 is more or less well established (≈30 MeV), the values of L (30 MeV < L <

87 MeV), and especially those of Ksym (−400 MeV < Ksym < 100 MeV) are still quite uncertain and
poorly constrained [94,95]. The reason why the isospin dependent part of the nuclear EoS is so
uncertain is still an open question, very likely related to our limited knowledge of the nuclear forces
and, in particular, to its spin and isospin dependence.

From Table 1, we notice that all the adopted EoSs in this work agree fairly well with the empirical
values. Marginal cases are the slightly too low E0 and K0 for V18, too large S0 for N93, and too low K0

for UIX and FSS2GC. We notice that the L parameter does not exclude any of the microscopic EoSs,
whereas several phenomenological models predict too large L values.

3.2. Astrophysical Constraints on the Nuclear EoS

The main astrophysical constraints on the nuclear EoS are those arising from the observation of
NS. An enormous amount of data on different NS observables have been collected after 50 years of NS
observations. These observables include masses, radii, rotational periods, surface temperatures,
gravitational redshifts, quasi-periodic oscillations, magnetic fields, glitches, timing noise and,
very recently, gravitational waves. In the next lines we briefly review how masses and radii
are measured. Observational constraints derived from the recent observation of the gravitational
wave signal from the merger of two NS detected by the Advanced LIGO and Advanced VIRGO
collaborations [13–15] will be discussed in detail in Section 5.

NS masses can be directly measured from observations of binary systems. There are five orbital
parameters, also known as Keplerian parameters, which can be precisely measured. They are the
projection of the pulsar’s semi-major axis (a1) on the line of sight (x ≡ a1sin i/c, where i is inclination
of the orbit), the eccentricity of the orbit (e), the orbital period (Pb), and the time (T0) and longitude (ω0)
of the periastron. With the use of Kepler’s Third Law, these parameters can be related to the masses of
the NS (Mp) and its companion (Mc) though the so-called mass function

f (Mp, Mc, i) =
(Mc sin i)3

(Mp + Mc)2 =
Pbv3

1
2πG

(9)

where v1 = 2πa1sin i/Pb is the projection of the orbital velocity of the NS along the line of sight.
The individual masses of the two components of the system cannot be obtained if only the mass
function is determined. Additional information is required. Fortunately, deviations from the Keplerian
orbit due to general relativity effects can be detected. The relativistic corrections to the orbit are
parametrized in terms of one or more parameters called post-Keplerian. The most significant ones
are: the combined effect of variations in the transverse Doppler shift and gravitational redshift around
an elliptical orbit (γ), the range (r) and shape (s) parameters that characterize the Shapiro time delay
of the pulsar signal as it propagates through the gravitational field of its companion, the advance of
the periastron of the orbit (ω̇) and the orbital decay due to the emission of quadrupole gravitational
radiation (Ṗb). These post-Keplerian parameters can be written in terms of measured quantities and the
masses of the star and its companion (see e.g., Ref. [100] for specific expressions). The measurement of
any two of these post-Keplerian parameters together with the mass function f is sufficient to determine
uniquely the masses of the two components of the system.

As the reader can imagine NS radii are very difficult to measure, the reason being that NS are
very small objects and are very far away from us (e.g., the closest NS is the object RX J1856.5-3754 in
the constellation Corona Australis which is about 400 light-years from the Earth). That is the reason
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Table 1. Saturation properties predicted by the considered EoSs. Experimental nuclear parameters are
listed for comparison. See text for details.

Model Class EoS ρ0[ fm−3] −E0[MeV] K0[MeV] S0[MeV] L[MeV]

Skyrme

Gs 0.158 14.68 239.34 39.55 93.55
Rs 0.158 14.01 248.33 38.45 86.41

SGI 0.155 14.67 265.35 34.32 63.85
SLy0 0.16 15.28 226.42 34.82 45.37
SLy1 0.161 15.23 233.25 36.21 48.88
SLy2 0.161 15.16 234.54 36.01 48.84
SLy3 0.161 15.22 232.85 35.45 45.56
SLy4 0.16 15.18 232.19 35.26 45.38
SLy5 0.161 15.25 232.03 36.44 50.34
SLy6 0.159 15.10 230.09 34.74 45.21
SLy7 0.159 15.05 233.10 36.18 48.11
SLy8 0.161 15.22 233.34 34.84 45.36
SLy9 0.151 14.53 228.95 37.72 55.37

SLy10 0.156 14.92 231.75 35.32 39.24
SLy230a 0.16 15.22 229.98 35.26 43.99

SV 0.155 14.65 304.99 42.42 96.51
SkI1 0.161 15.59 233.87 51.24 160.46
SkI2 0.158 14.78 245.14 43.38 105.72
SkI3 0.158 14.99 259.44 44.32 101.16
SkI4 0.16 15.42 238.92 34.21 59.34
SkI5 0.156 14.73 257.41 49.44 129.29
SkI6 0.158 14.98 243.93 41.62 81.76

SkMP 0.157 14.66 230.16 35.88 69.7
SkO 0.161 15.04 228.10 38.52 79.92
SkO’ 0.16 14.99 222.28 37.66 69.68
SkT4 0.159 15.12 235.48 43.19 93.48
SkT5 0.164 15.48 201.66 44.88 100.32

NLWM

GM1 0.153 16.34 300.28 32.49 93.92
GM3 0.153 16.36 240.53 32.54 89.83
TM1 0.145 16.26 281.16 36.89 110.79
NL3 0.148 16.24 271.54 37.4 118.53

NL3-II 0.149 16.26 271.74 37.70 119.71
NL-Sh 0.146 16.36 355.65 36.13 113.68

DDM

DDME1 0.152 16.2 244.72 33.067 55.46
DDME2 0.152 16.14 250.9 32.3 51.26
TW99 0.153 16.25 240.26 32.766 55.31
PK1 0.148 16.27 282.7 37.64 115.88

PK1R 0.148 16.27 283.68 37.83 116.5
PKDD 0.149 16.27 262.19 36.79 90.21

Microscopic

BOB 0.170 15.4 238 33.7 70
V18 0.178 13.9 207 32.3 67
N93 0.185 16.1 229 36.5 77
UIX 0.171 14.9 171 33.5 61

FSS2CC 0.157 16.3 219 31.8 52
FSS2GC 0.170 15.6 185 31.0 51
DBHF 0.181 16.2 218 34.4 69
APR 0.159 15.9 233 33.4 51

AFDMC 0.160 16.0 239 31.3 60

Exp. ∼ 0.14–0.17 ∼ 15–17 220–260 28.5–34.9 30–87
Ref. [96] [96] [97,98] [1,99] [1,99]
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why direct measurements of NS radii do not exist yet. Nevertheless, it is possible to determine them
by using the thermal emission of low-mass X-ray binaries (systems where one of the components is
a NS and the companion a less massive object (Mc < M) which can be a main sequence star, a red
giant or a white dwarf). The observed X-ray flux (F) and estimated surface temperature (T) together
with a determination of the distance (D) of the star, can be used to obtain the radius of the NS through
the implicit relation

R =

√
FD2

σT4

(
1 − 2GM

c2R

)
. (10)

Here σ is the Stefan–Boltzmann constant and M the mass of the NS. The major uncertainties in
the measurement of the radius through Equation (10) come from the determination of the temperature,
which requires the assumption of an atmospheric model, and the estimation of the distance of the
star. However, the analysis of present observations from quiescent low-mass X-ray binaries is still
controversial (see e.g., Refs. [101,102]).

We notice that the simultaneous measurement of both mass and radius of the same NS would
provide the most definite observational constraint on the nuclear EoS. Very recently the NICER
(Neutron Star Interior Composition Explorer) mission has reported a Bayesian parameter estimation
of the mass and equatorial radius of the millisecond pulsar PSR J0030+0451 [10,11]. The values
inferred from two Bayesian analysis of the collected data are (1.34+0.15

−0.16 M, 12.71+1.14
−1.19 km) [10] and

(1.44+0.15
−0.14 M, 13.02+1.24

−1.09 km) [11].

4. EoS for β-Stable Matter

To study the structure of the NS core, we must calculate the composition and the EoS of cold,
neutrino-free, catalyzed matter. As stated before, we consider a NS with a core of nucleonic matter
without hyperons or other exotic particles. We require that it contains charge neutral matter consisting
of neutrons, protons, and leptons (e−, μ−) in β-equilibrium, and compute the EoS for charge neutral
and β-stable matter in the following standard way [103]. The output of the many-body calculation is
the energy density of lepton/baryon matter as a function of the different densities ρi of the species
i = n, p, e, μ ,

ε(ρn, ρp, ρe, ρμ) = (ρnmn + ρpmp) + (ρn + ρp)E(ρn, ρp) + ε(ρe) + ε(ρμ) , (11)

where mi are the corresponding masses, and E(ρn, ρp) is the energy per particle of asymmetric nuclear
matter. We have used ultrarelativistic and relativistic expressions for the energy densities of electrons
ε(ρe) and muons ε(ρμ), respectively [103]. Since microscopic calculations are very time consuming in
the case of these models we have used the parabolic approximation [104–108] of the energy per particle
of asymmetric nuclear matter given in Equation (2) with the symmetry energy calculated simply as the
difference between the energy per particle of pure neutron matter E(ρn = ρ, ρp = 0) and symmetric
nuclear matter E(ρn = ρ

2 , ρp = ρ
2 )

Esym(ρ) ≈ E(ρn = ρ, ρp = 0)− E(ρn =
ρ

2
, ρp =

ρ

2
) . (12)

Once the energy density (Equation (11)) is known the various chemical potentials can be computed
straightforwardly,

μi =
∂ε

∂ρi
, (13)

and solving the equations for β-equilibrium,

μi = biμn − qiμe , (14)
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(bi and qi denoting baryon number and charge of species i) along with the charge neutrality condition,

∑
i

ρiqi = 0 , (15)

allows one to find the equilibrium composition ρi at fixed baryon density ρ, and finally the EoS,

P(ε) = ρ2 d
dρ

ε(ρi(ρ))

dρ
= ρ

dε

dρ
− ε = ρμn − ε . (16)
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Figure 2. Equation of state of β-stable matter for the four model classes reported in Table 1.

Once the EoS of β-stable matter is known, one can determine the hydrostatical equilibrium
configurations just solving the Tolman–Oppenheimer–Volkoff (TOV) [103] equations which describe
the structure of a non-rotating spherically symmetric star in general relativity:

dP
dr

= −G
εm
r2

(
1 +

P
ε

)(
1 +

4πPr3

m

)(
1 − 2Gm

r

)−1

dm
dr

= 4πr2ε , (17)

where G is the gravitational constant, P the pressure, ε the energy density, m the mass enclosed within
a sphere of radius r. The TOV equations have an easy interpretation. Consider a spherical shell of
matter of radius r and thickness dr. The second equation gives the mass in this shell whereas the
left-hand side of the first one is the net force acting on the surface of the shell by the pressure difference
dP(r). The first factor of the right-hand side of this equation is the attractive Newtonian force of
gravity acting on the shell by the mass interior to it. The remaining three factors result from the
correction of general relativity. So the TOV equations express the balance at each r between the internal
pressure as it supports the overlying material against the gravitational attraction of the mass interior
to r. The integration of the TOV equations gives the mass and radius of the star for a given central
density. It turns out that the mass of the NS has a maximum value as a function of radius (or central
density), above which the star is unstable against collapse to a black hole. The value of the maximum
mass depends on the nuclear EoS, so that the observation of a mass higher than the maximum mass
allowed by a given EoS simply rules out that EoS.
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We now turn to the discussion of some results. We display in Figure 2 the β-stable matter EoS
obtained for some of the models illustrated in Table 1, a limited sample of each class being plotted in
one single panel. We see that the pressure is a monotonically increasing function of the energy density
for all EoS. Each EoS is characterized by a given stiffness, which determines the maximum mass value
of a NS: the stiffer the EoS the larger the maximum mass predicted.

The corresponding mass-radius relation is displayed in Figure 3. The observed trend is consistent
with the EoS displayed in Figure 2. As expected, when the EoS stiffness increases the NS maximum
mass increases as well. The considered EoS are compatible with the largest masses observed up to now,
Mmax > 2.14+0.10

−0.09 [7] for the object PSR J0740+6620 (cyan hatched area), and PSR J0348+0432 [6], MG =

2.01 ± 0.04 M (red hatched area). We notice that recent analysis of the GW170817 event also indicate
an upper limit of the maximum mass of about 2.2–2.3 M [109–112], with which most of the models
shown in the figure are compatible. The symbols with the error bars show the estimation of the mass
and equatorial radius of the millisecond pulsar PSR J0030+0451 inferred from two Bayesian analysis
of the data collected by the NICER mission: (1.34+0.15

−0.16 M, 12.71+1.14
−1.19 km) [10] and (1.44+0.15

−0.14 M,
13.02+1.24

−1.09 km) [11]. Please note that this constraint excludes most of the NLWM EoS considered in
this work.

0

0.5

1

1.5

2

2.5

3

G
ra

vi
ta

tio
na

l M
as

s 
[M

su
n]

Gs
SGI
SLy230a
SV
SKI5
SKO

GM1
GM3
TM1
NL3
NL3-II
NL3-Sh

5 10 15 20
Radius [km]

0

0.5

1

1.5

2

2.5

3

G
ra

vi
ta

tio
na

l M
as

s 
[M

su
n]

DDME1
DDME2
TW99
PK1
PK1R
PKDD

5 10 15 20
Radius [km]

APR
AFDMC
V18
UIX
DBHF
FSS2CC

Skyrme NLWM

DDM Microscopic

PSR J0740+6620

PSR J0348+0432

Figure 3. Mass-radius relation predicted by the different EoS displayed in Figure 2. The observed
masses of the millisecond pulsars PSR J0740+6620 [4] and PSR J0348+0432 [6] are also shown.
The symbols with the error bars show the values of the mass and equatorial radius of the millisecond
pulsar PSR J0030+0451inferred from two analysis of the observations reported by the NICER mission:
(1.34+0.15

−0.16 M, 12.71+1.14
−1.19 km) [10] and (1.44+0.15

−0.14 M, 13.02+1.24
−1.09 km) [11]. See text for details.

5. The Neutron Star Tidal Deformability

Recently the tidal deformability λ, or equivalently the tidal Love number k2 of a NS [113–115],
has been recognized to provide valuable information and constraints on the related EoS, because it
strongly depends on the compactness of the object, i.e., β ≡ M/R. More specifically, the Love number

k2 =
3
2

λ

R5 =
3
2

β5Λ =
8
5

β5z
F

, (18)

z ≡ (1 − 2β)2[2 − yR + 2β(yR − 1)] ,

F ≡ 6β(2 − yR) + 6β2(5yR − 8) + 4β3(13 − 11yR)

+ 4β4(3yR − 2) + 8β5(1 + yR) + 3z ln(1 − 2β)
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with Λ ≡ λ/M5, can be obtained by solving the TOV equations (17), along with the following
first-order differential equation [116],

dy
dr

= −y2

r
− y − 6

r − 2m
− rQ ,

Q ≡ 4π
(5 − y)ε + (9 + y)P + (ε + P)/c2

s
1 − 2m/r

−
[

2(m + 4πr3P)
r(r − 2m)

]2

, (19)

with the EoS P(ε) as input, c2
s = dP/dε the speed of sound, and boundary conditions given by

[P, m, y](r = 0) = [Pc, 0, 2] , (20)

being yR ≡ y(R), and the mass-radius relation M(R) provided by the condition P(R) = 0 for varying
central pressure Pc.

For an asymmetric binary NS system, (M, R)1 + (M, R)2, with mass asymmetry q = M2/M1,
and known chirp mass Mc, which characterizes the GW signal waveform,

Mc =
(M1M2)

3/5

(M1 + M2)1/5 , (21)

the average tidal deformability is defined by

Λ̃ =
16
13

(1 + 12q)Λ1 + (q + 12)Λ2

(1 + q)5 (22)

with
[M1, M2]

Mc
=

297
250

(1 + q)1/5[q−3/5, q2/5] . (23)

From the analysis of the GW170817 event [13–15], a value of Mc = 1.186+0.001
−0.001 M was obtained,

corresponding to M1 = M2 = 1.36 M for a symmetric binary system, q = 0.73–1 and Λ̃ < 730 from
the phase-shift analysis of the observed signal. It turns out that requiring both NSs to have the same
EoS, leads to constraints 70 < Λ1.4 < 580 and 10.5 < R1.4 < 13.3 km [14] for a 1.4 solar mass NS.

However, the high luminosity of the kilonova AT2017gfo following the NS merger event,
imposes a lower limit on the average tidal deformability, Equation (22), Λ̃ > 400, which was deduced
to justify the amount of ejected material heavier than 0.05 M. This constraint could indicate that
R1.4 � 12 km, which was used in Refs. [117–120] to constrain the EoS. This lower limit must be taken
with great care and, in fact, it has been recently revised to Λ̃ � 300 [121], but considered of limited
significance in Ref. [122]. We notice that the determination of the average tidal deformability of the
binary neutron star system GW170817 has imposed constraints for the neutron star radii, thus finding
compatible radii between 12 and 13 km [123]. This is complementary to the M-R measurement by
NICER, and contributes to selecting the suitable equations of state.
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Figure 4. In the left panel the tidal deformability of a 1.4 solar mass NS Λ1.4 is plotted vs. the symmetry
energy derivative at saturation density L, whereas in the right panel it is displayed as a function of
the radius of a 1.4 solar mass NS, R1.4, for the different EoS shown in Table 1. The orange box indicate
the experimental and observational constraints on L (see Table 1) and Λ1.4 and R1.4 from Ref. [14].
Updated values of Λ1.4 and R1.4 from the works of Capano et al. [124] and De et al. [125] are shown
by the black and red open boxes (left panel) and by the black and red stars with error bars (right
panel). The continuous violet line in the left (right) panel shows a linear (quadratic) fit of the EoS data.
The dashed one in the right panel shows an alternative fit of the EoS data of the type Λ1.4 ∼ R6.47

1.4 .
The values of the corresponding correlation factors are also given. See text for details.

One of the main theoretical issues, following the detection of gravitational waves from NS
mergers, regards the possibility of finding correlations between properties of nuclear matter and NS
observables [126]. Along this same line, we further explore this issue, and using the set of microscopic
EoS and the several Skyrme forces and relativistic models listed in Table 1, in the left panel of Figure 4
we show the tidal deformability of a 1.4 solar mass NS as a function the symmetry energy parameter L
at saturation density. The orange box shows the constraint on Λ1.4 inferred from the observational data
of the GW170817 event [14] together with the experimental limits of L reported in Table 1. We observe
some degree of correlation between the tidal deformability and L , for which we can estimate the
so-called correlation factor r, defined as

r(L, Λ1.4) =
1

n − 1
∑L ∑Λ1.4

(L − L̄)(Λ1.4 − Λ̄1.4)

σLσΛ1.4

, (24)

being n the number of data pairs, L̄ and Λ̄1.4 the mean values of L and Λ1.4 over the data set; and σLand
σΛ1.4 their standard deviations. We get a value r = 0.817, which indicates a weak correlation. We note
that several EoS lie outside the orange observational band. In particular, we notice that all DDM EoS
(blue diamonds), except TW99, are not compatible with the data, as well as all the NLWM EoS (red
squares). On the other hand, most of the Skyrme interactions lie within the orange band, with a few
cases incompatible with observations because the predicted L values lie outside the experimental
range, and some other are marginally compatible. As far as microscopic calculations are concerned,
they are all in agreement with GW observations, except the DBHF EoS.

In the right panel of Figure 4 we report the tidal deformability as a function of the radius for a
1.4 solar mass NS, R1.4, for the same set of EoS. The observational constraints on Λ1.4 and R1.4 from
GW170817 of Ref. [14] are shown by the orange box. Updated values on these quantities from the
works of Capano et al. [124] and De et al. [125] are shown by the black and red open boxes (left panel)
and by the black and red stars with error bars (right panel). We note that the stronger constraint on
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R1.4 from Capano et al. [124] excludes all the NLWM models and all, but one (TW99), of the DDM
ones, whereas 6 microscopic models (V18, UIX, FSS2CC, FSS2GC,APR,AFDMC) and 11 Skyrme forces
(SLy0-SLy8,SLy10,SLy230a) are compatible with it. Contrary to the weak Λ1.4 − L correlation found,
we observe a strong correlation between Λ1.4 and R1.4. This strong correlation was already noticed
by Zhao and Lattimer in Ref. [127] who found it to be of the form Λ1.4 ∼ R6

1.4, and later by Tsang et
al. in Ref. [128] using a different set of EoS based again on Skyrme and relativistic mean-field models.
In this work we find that the EoS data can be fitted assuming a power law (dashed line) of the form
Λ1.4 = 3.65 × 10−5R6.47

1.4 , in agreement with the work of Refs. [127,128]. We note, however, that a
quadratic function (continuous) Λ1.4 = 9922.02 − 1757.55R1.4 + 79.91R2

1.4 fits equally well the data.
In both cases we find a very similar correlation factor: r = 0.985 for the power law fit and r = 0.986 for
the quadratic one. The behavior of the microscopic and phenomenological EoS look very similar.

We notice that since Λ1.4 is not sensitive to the EoS details at very high density regions, a possible
alternative in the analysis of correlations is offered by the use of parameterized EoS above a few times
ρ0 [127–130]. Those can explore large variations of the matter properties above ρ0, and determine
systematic uncertainties related to it. However, this approach does not improve our knowledge
of the nuclear interaction in the medium under extreme conditions, simply because those simple
parameterizations are not based on any particular model, and therefore they are unable to explain the
observational data in terms of the microphysics.

6. The Neutron-Skin Thickness

As stated in the previous Section, correlations between astrophysical observations and microscopic
constraints from nuclear measurements, could help to better understand the properties of nuclear
matter. For this purpose, the limits derived for the tidal deformability in GW170817 could be very
valuable and exploited for studying the neutron-skin thickness, defined as the difference between the

neutron (Rn) and proton (Rp ) root-mean-square radii: δR =
√
〈r2

n〉 −
√
〈r2

p〉. It has been shown that
this is strongly correlated with both L and to the radius of low-mass NS, since the size of a NS and the
neutron-skin thickness originate both from the pressure of neutron-rich matter, and are sensitive to the
same EoS. As shown by Brown and Typel [88,89], and confirmed later by other authors [90,131–134],
the neutron-skin thickness calculated in mean-field models with either non-relativistic or relativistic
effective interactions, is very sensitive to the density dependence of the nuclear symmetry energy,
and, in particular, to the slope parameter L at normal nuclear saturation density. Using the Brueckner
approach and the several Skyrme forces and relativistic models considered here, the authors of
Ref. [135] made an estimation of the neutron-skin thickness of 208Pb and 132Sn, adopting the suggestion
of Steiner et al. in Ref. [131], where δR is calculated to lowest order in the diffuseness corrections as

δR ∼
√

3
5 t, being t the thickness of semi-infinite asymmetric nuclear matter

t =
δc

ρ0(δc)(1 − δ2
c )

Es

4πr2
0

∫ ρ0(δc)
0 ρ1/2[S0/Esym(ρ)− 1][ESNM(ρ)− E0]

−1/2dρ∫ ρ0(δc)
0 ρ1/2[ESNM(ρ)− E0]1/2dρ

. (25)
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Figure 5. The neutron-skin thickness is displayed as a function of the symmetry energy derivative at
saturation density L (upper panels) and of the radius of a 1.4M NS (lower panels) for the different
EoS displayed in Table 1. In the left (right) panel calculations are shown for 48Ca (208Pb). The band
on the left panel shows the experimental constraint on L, whereas the box on the right one shows in
addition the constraint from the PREX experiment [136]. The violet line indicates a linear fit of the EoS
data, Equation (25). The values of the corresponding correlation factors are also given.

In the above expression Es is the surface energy taken from the semi-empirical mass formula equal
to 17.23 MeV, r0 is obtained from the normalization condition (4πr3

0/3)(0.16) = 1, and δc is the isospin
asymmetry in the center of the nucleus taken as δc = δ/2 according to Thomas-Fermi calculations.
In this paper, we use the same prescription for the calculation of the neutron-skin thickness of 208Pb
and 48Ca, and we show the results in Figure 5. The orange bands represent the predicted data for 48Ca
(left panels) for which the Calcium Radius Experiment (CREX) has not been run yet [137], whereas in
the right panels experimental data obtained in the Lead Radius Experiment (PREX) [136] for 208Pb,
δR = 0.33+0.16

−0.18 fm, are plotted. In the upper panels, results are shown for the neutron-skin thickness as
a function of the derivative of the symmetry energy L. We notice that all the theoretical predictions
from phenomenological models and some of the microscopic ones show some correlation between
the neutron-skin thickness and L, as indicated by the linear fits (violet curve) and by the value of the
correlation coefficient, r = 0.803 for 48Ca (r = 0.800 for 208Pb ). Almost all the microscopic EoS turn
out to be compatible with the PREX experimental data, whereas some phenomenological models,
e.g., those of the NLWM class, give predictions out of the experimental range. The linear increase
of δR with L is not surprising since the thickness of the neutron skin in heavy nuclei is determined
by the pressure difference between neutrons and protons, which is proportional to the parameter L,
i.e., P(ρ0, δ) ≈ Lρ0δ2/3. On the other hand, in the lower panels, the neutron-skin thickness is displayed
as a function of R1.4, and in both cases the correlation is very scarce, r = 0.691 for 48Ca (r = 0.689 for
208Pb ), with a few Skyrme, DDM and all the NLWM EoS incompatible with the observational data.
The experimental data from PREX [136], and the upcoming campaigns: PREX-II at Jefferson Lab and
the Mainz Radius Experiment (MREX) [138] at the future Mainz Energy-Recovering Superconductor
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Accelerator, can put further strong constraints on the nuclear matter properties, thus selecting the most
compatible EoS.

7. Conclusions

In this work we have analyzed the existence of possible correlations between NS observables and
properties of atomic nuclei. In particular, we have examined correlations of the tidal deformability Λ1.4

of a 1.4 M NS and the neutron-skin thickness δR of 48Ca and 208Pb with the stellar radius R1.4 and
the symmetry energy derivative L. To such end we have used a large set of different models for the
nuclear equation of state that include microscopic calculations based on the Brueckner–Hartree–Fock
and Dirac–Brueckner–Hartree–Fock theories, the variational method and Quantum Monte Carlo
techniques, and several phenomenological Skyrme and relativistic mean-field models. We have found
a strong quadratic correlation between Λ1.4 and R1.4 in agreement with the results of the recent work
by Tsang et al. [128]. On the contrary, we have observed a weaker linear correlation between Λ1.4 and
L. Our results have confirmed the existence of a quite linear correlation between the neutron-skin
thickness of 48Ca and 208Pb with L, already pointed out by several authors using non-relativistic and
relativistic phenomenological models. A much weaker correlation has been found between δR and
R1.4. The existence of these correlations, predicted by models based on approaches of different nature,
suggest that their origin goes beyond the mean-field character of the models employed.

To select the most compatible EoS among the ones predicted by the different models considered in
this work, we have employed the experimental constraints on L and δR together with the observational
ones on the mass, radius and tidal deformability imposed by the mass measurement of the millisecond
pulsars PSR J1614-2230 [4] and PSR J0348+0432 [6], the GW170817 NS merger event [13–15] and the
data of the NICER mission [10,11]. Our results have shown that only five microscopic models (BOB,
V18, N93, UIX and DBHF) and four Skyrme forces (SGI, SkMP, SkO and SkO’) are simultaneously
compatible with the present constraints on L (30 MeV < L < 87 MeV) and the PREX experimental data
on the 208Pb neutron-skin thickness. All the NLWM and DDM models and the majority of the Skyrme
forces are excluded by these two experimental constraints. We have also found that almost all the
models considered are compatible with the largest masses observed up to now, Mmax > 2.14+0.10

−0.09 [7]
for the object PSR J0740+6620, and PSR J0348+0432 [6], MG = 2.01 ± 0.04 M, and with the upper
limit of the maximum mass of about 2.2–2.3 M [109–112] deduced from the analysis of the GW170817
event. Finally, we have seen that the estimation of the mass (1.34+0.15

−0.16 M) and equatorial radius
(12.71+1.14

−1.19 km) of the millisecond pulsar PSR J0030+0451 inferred from the Bayesian analysis of the
data collected by the NICER mission [10,11] excludes most of the NLWM EoS considered in this work.

We would like to stress that the current study on correlations does not allow us to select the best
EoS, but only limit the number of EoS models.

The major experimental, observational and theoretical advances on understanding the nuclear EoS
done in recent decades have led to constrain rather well its isoscalar part. Nevertheless, the isovector
part of the nuclear EoS is less well constraint due mainly to our still limited knowledge of the
nuclear force and, in particular, of its in-medium modifications and its spin and isospin dependence.
Future laboratory experiments being planned in existing or next-generation radioactive ion beam
facilities together with further NS observations, particularly a precise simultaneous measurement of
the mass and radius of a single object, are fundamental to provide more stringent constraints on the
nuclear EoS, and are very much awaited.
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Abstract: Various phase transitions could have taken place in the early universe, and may occur in
the course of heavy-ion collisions and supernova explosions, in proto-neutron stars, in cold compact
stars, and in the condensed matter at terrestrial conditions. Most generally, the dynamics of the
density and temperature at first- and second-order phase transitions can be described with the
help of the equations of non-ideal hydrodynamics. In the given work, some novel solutions are
found describing the evolution of quasiperiodic structures that are formed in the course of the phase
transitions. Although this consideration is very general, particular examples of quark-hadron and
nuclear liquid-gas first-order phase transitions to the uniform k0 = 0 state and of a pion-condensate
second-order phase transition to a non-uniform k0 �= 0 state in dense baryon matter are considered.

Keywords: dynamics of phase transitions; spinodal instability; heavy-ion collisions; neutron stars

1. Introduction

Cosmological observations of the two last decades [1] have supplied us with some extraordinary
results and puzzles. Particularly important is the fact that the universe undergoes an accelerated
expansion and the fact that only 5% of its mass is contained in baryons, 26% is in dark matter, and the
remaining part is in dark energy. It is commonly believed that at least two cosmic phase transitions
occurred in the early universe, the electro-weak and the QCD phase transitions [2,3]. The standard
model of particle physics predicts that, after the inflation, the hot expanding universe was filled with
deconfined quarks in the state of quark-gluon plasma [4]. The quark-gluon plasma in baryon-poor
matter persists down to a temperature of T � 160 MeV. Whether the quark-hadron transition is a
first-order phase transition, a second-order transition, or a crossover is still not completely settled. This
view on the early universe is supported by simulations done in various cosmological and relativistic
heavy-ion collision models [5,6] and by the lattice calculations. The latter calculations support the
QCD crossover transition obtained by the HotQCD Collaboration [7,8]. Nucleosynthesis is affected
by remnant inhomogeneities in the baryon-to-entropy ratio and in isospin [9]. These problems can
be considered within the standard model. However, the standard model does not account for the
presence of the dark matter with which additional cosmic phase transitions may be associated during
the cooling of the expanding universe to its present temperature T � 2.7 K, cf. [10].

Another piece of important information about strongly interacting matter can be extracted from
neutrino and photon radiation of compact stars formed in supernova events [11,12] and from analysis
of gravitational waves in gamma ray bursts. A strong phase transition may result in a second neutrino
burst occurring during a supernova explosion and a hot neutron star formation with a typical minute
time delay. It might be also associated with a larger time delay related to the slow heat transport to the
neutron-star surface, if the system is close to the pion-condensate phase transition [12,13]. Recently,
new arguments have been expressed showing that indeed two neutrino bursts were measured during
the 1987A explosion, and that one delayed respectively the other by 4.7 h, cf. [14]. The second burst
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and a blowing of some amount of matter could then be related to the phase transition of the neutron
star to the pion-condensate state. A first-order deconfinement transition can serve as an explosion
mechanism for massive blue supergiant stars of M ∼ 50M, for which so far no explosion mechanism
is known [15]. In old neutron stars, the first-order phase transition, if it occurs, could result in a
blowing of matter or in a strong star-quake [12,16]. The detection of merging compact stars in the
gravitational wave spectra [17] and the detection of massive compact stars [18–21] provide constraints
on the equation of state of strongly interacting dense matter and strong phase transitions in it. The
dominant postmerger gravitational-wave frequency fpeak may exhibit a significant deviation from an
empirical relation between fpeak and the tidal deformability, if a strong first-order phase transition leads
to the formation of a gravitationally stable extended quark matter core in the postmerger remnant [22].
Thus, one may feasibly identify observable imprints of a first-order hadron-quark phase transition at
supranuclear densities on the gravitational-wave emission of neutron star mergers.

An experimental study of the ultrarelativistic heavy-ion collisions helps to simulate at the
terrestrial conditions the processes that have occurred in the very early universe, in supernova
explosions and in gamma ray bursts. Experimental data and lattice calculations [7,8] indicate that the
hadron-quark transition in heavy-ion collisions at RHIC and LHC collision energies is the crossover
transition, cf. [23–25]. For lower collision energies relevant for NICA and FAIR facilities, one expects
to find signatures of the strong first-order quark-hadron phase transition [26]. There are experimental
evidences that, in the very low-energetic heavy-ion collisions of approximately isospin-symmetrical
nuclei, there is a first-order nuclear liquid-gas phase transition (for temperatures T <∼ 20 MeV and
baryon densities n <∼ 0.7n0, where n0 is the nuclear saturation density) [27–29].

In a many-component system, a mechanical instability is accompanied by a chemical instability,
see [30,31]. The inclusion of the Coulomb interaction, see [32,33], leads to a possibility of the pasta
phase in the neutron star crusts for densities 0.3n0

<∼ n <∼ 0.7n0. For higher densities in dense neutron
star interiors, there may be phase transitions to the pion [12,34], kaon [35,36], and charged rho [37]
condensate states and to the quark matter [35,38–41]. The quark-hadron, pion, kaon, and charged
rho-meson condensate phase transitions may occur during the iso-entropical falling of the baryon-rich
matter in supernova explosions [11], in proto-neutron stars, and in cold compact stars, cf. [12]. In some
models, these phase transitions are considered first-order phase transitions leading to mixed phases
in dense matter. The formation of the pasta non-uniform phases is one of the possibilities [36,40,41].
We can add here the possibilities of the phase transitions between various superfluid [42,43] and
ferromagnetic-superfluid [44] phases in the cold neutron stars and in the color-superconducting hybrid
compact stars [45], as well as numerous possibilities of the phase transitions in the condensed matter
physics at terrestrial conditions, such as liquid-gas, liquid-glass, and glass-metal transitions.

The liquid-gas phase transition, the transition to the superfluid state in quantum liquids, and
many other transitions occur in a uniform state characterized by the wave number k0 = 0. Other phase
transitions, such as the transitions in solids and liquid crystals, are transitions to inhomogeneous states
characterized by the non-zero wave-vectors,�k0,i �= 0, cf. [46,47]. In glasses, the order, characterized by
k0 �= 0, appears at rather short distances but disappears at long distances [47]. The phase transition to
the pion-condensate state [12,34] possible in the interiors of neutron stars may occur due to a strong
p-wave pion-baryon attraction, which increases with the increase of the baryon density. Thereby, the
pion-condensation occurs in a non-uniform state, k0 �= 0. Chiral condensate, which is constant in
a vacuum, may also become spatially modulated at high densities, where, in the traditional picture
of the QCD phase diagram, a first-order chiral phase transition occurs. Examples of inhomogeneous
phases are the chiral density wave, the Skyrme crystal, and crystalline color superconductors, cf. [48].
Perhaps the antikaon condensation in dense baryon matter also occurs in the non-uniform state, k0 �= 0,
cf. [49].

Some of the mentioned phase transitions, such as the transition of the normal matter to superfluid
in metals and in 4He, are transitions of the second order [50]. Other phase transitions mentioned above,
such as the liquid-gas phase transition, are transitions of the first order. The search for the critical
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endpoint separating the crossover and first-order quark-hadron transitions is one of the benchmarks
for future experiments at NICA and FAIR.

Finite size structures are important in the context of the general relativistic evolution of density
perturbations in the early universe [10]. Even the simple case of dust baryon matter gives the right
order of magnitude for globular star clusters with the corresponding Jeans mass and wavelength.
The presence of a substantial amount of homogeneous scalar field energy density at low redshifts
inhibits the growth of perturbations in the baryonic fluid [51]. For example, dark matter may result
from the transition of a non-minimally coupled scalar field from radiation to collision-less matter.
Dynamical instabilities of the field fluctuations, which are typical for oscillatory scalar field regimes,
can be amplified and transmitted by the coupling to dark matter perturbations, cf. [52]. The presence
of the dark matter may also trigger strong electro-weak phase transition in the early universe [53].

In the early universe, at the processes of the formation of compact stars in supernova explosions,
collisions of compact binary stars, and in heavy-ion collisions, one deals with a rapid thermalization
of a strongly interacting quark-gluon matter and then the hadronic matter. These processes can be
described within non-ideal hydrodynamics, where viscosity and thermal conductivity effects are of
crucial importance. The dynamics of the phase transitions can also be considered within non-ideal
hydrodynamics, cf. [47,54–56].

Below, some novel solutions will be found describing the evolution of periodic structures at
second-order phase transitions to the non-uniform state with the wave number k0 �= 0. Quasiperiodic
time-dependent structures appear in the course of the spinodal instabilities at the first-order phase
transitions to the uniform state with k0 = 0 and in the dynamics of the second-order phase transitions
occurring in the uniform state. Although consideration is very general, quark-hadron and nuclear
liquid-gas first-order phase transitions and the pion condensation second-order transition will be
considered as examples.

The presentation is organized as follows. In Section 2, the main features of the van der Waals-like
equation of state are reviewed. In Section 3, a hydrodynamical description of the first- and second-order
phase transitions to the uniform, k0 = 0 state and for the second-order phase transition to the
nonuniform, k0 �= 0 state is formulated assuming a small overcriticality. The dynamics of seeds at
the first-order phase transition from a metastable to the stable state is considered in Section 4. The
dynamics of fluctuations in the unstable region is studied in Section 5. Some novel solutions describing
the time evolution of quasiperiodic and periodic structures are found. Section 6 contains concluding
remarks.

2. Van Der Waals-Like Equation of State for a Description of First-Order Phase Transitions

The dynamical trajectories of the expanding baryon-rich matter in the heavy-ion collisions and
of the falling matter in supernova explosions before phase transition can be characterized by an
approximately constant entropy, while the volume V and the temperature T are time-dependent. A
description of the first-order phase transition is more involved. In the simplest case of one-component
matter, e.g., of the baryon matter, the pressure–baryon number density isotherms P(n)|T describing the
liquid-like (with a higher density) or gas-like (with a smaller density) states demonstrate a monotonous
behavior for the values of temperature T above the critical temperature of the first-order phase
transition of the liquid-gas type. However, for T values below the critical temperature, P(n)|T
isotherms acquire a convex-concave form [47], see Figure 1. The horizontal dashed line connecting
points A and D shows the Maxwell construction (MC) describing thermal equilibrium of phases. At
equilibrium, the baryon chemical potentials are μA = μD. The interval AB corresponds to a metastable
supercooled vapor (SV) and the interval CD relates to a metastable overheated liquid (OL). The interval
BC shows an unstable spinodal region.
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Figure 1. Schematic pressure isotherms as functions of the number density n at a liquid-gas-like phase
transition. Pcr, ncr, and Tcr are the pressure, density, and temperature at the critical point.

Adiabatic trajectories s̃cr and s̃m, where s̃ ≡ s/n � const, and s is the entropy density, are shown in
Figure 2 on the plot of T/Tcr = f (n/ncr) by the short dashed lines. The upper convex curve, MC, the
bold solid line, demonstrates the boundary of the MC, the bold dashed line, ITS, shows the boundary
of the isothermal spinodal region, and the bold dash-dotted curve, AS, indicates the boundary of the
adiabatic spinodal region. At the ITS line, u2

T = (∂P/∂ρ)T = 0; at the AS line, u2
s̃ = (∂P/∂ρ)s̃ = 0,

where uT and us̃ have the meaning of the isothermal and adiabatic sound velocities, respectively,
ρ = m∗n, and m∗ is the baryon quasiparticle mass. The supercooled vapor (SV) and the overheated
liquid (OL) regions are situated between the MC and the ITS curves, on the left and on the right,
respectively. For s̃cr > s̃ > s̃MC2, where s̃cr is the value of the specific entropy s̃ at the critical point and
the line with s̃MC2 in the example shown in Figure 2 passes through the point n/ncr = 3 at T = 0, the
system traverses the OL state (the region OL in Figure 2), the ITS region (below the ITS line), and the
AS region (below the AS line). For s̃ > s̃cr, the system trajectory passes through the SV state (the region
SV in Figure 2) and the ITS region.

Figure 2. The phase diagram of the van der Waals equation of state on the T(n)-plane. The bold solid,
dashed, and dash-dotted curves show the boundaries of the MC, the spinodal region at T =const, and
s̃ =const, respectively. The short dashed lines show two adiabatic trajectories of the system evolution:
the curve labeled s̃cr passes through the critical point; s̃max passes through the maximum pressure
point P(nP,max) on the P(n) plane, cf. [56].

Note that, in reality, for the quark-hadron first-order phase transition, the phase diagram looks
slightly different, since then Tcr increases with a decrease of the baryon density [57,58]. However, this
peculiarity does not change a general analysis given here.

When the adiabatic trajectory s̃ = const enters the region of the first-order phase transition (the
region below the solid curve in Figure 2), the approximation of the constant entropy fails, and a
further description of the dynamics of the system requires a solution of non-ideal hydrodynamical
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equations [54–56]. Similarly, the description of the dynamics of the second-order phase transition
requires a solution of non-ideal hydrodynamical equations in the case where the density and the
temperature (or entropy) can be considered appropriate order parameters.

3. Hydrodynamical Description of First- and Second-Order Phase Transitions at Small Overcriticality

Assume that the dynamics of a second-order phase transition and of a first-order phase transition
can be described by the variables n and s (or T), cf. [54–56]. Moreover, assume that the system is rather
close to the critical point of the phase transition. Since all the processes in the vicinity of the critical
point are slowed down, the velocity of a seed of a new phase prepared in the old phase, �u, is much
less than the mean thermal velocity, and thereby we may use equations of non-relativistic non-ideal
hydrodynamics: the Navier-Stokes equation, the continuity equation, and the equation for the heat
transport, even if we deal with violent heavy-ion collisions:

m∗n [∂tui + (�u∇)ui] = −∇iP +∇k

[
η

(
∇kui +∇iuk −

2
ν

δikdiv�u
)
+ ζδikdiv�u

]
, (1)

∂tn + div(n�u) = 0, (2)

T
[

∂s
∂t

+ div(s�u)
]

= div(κ∇T) + η

(
∇kui +∇iuk −

2
ν

δikdiv�u
)2

+ ζ(div�u)2 . (3)

Here, as above, n is the number density of the conserving charge, to be specific, the baryon density,
m∗ is the baryon quasiparticle mass, and P is the pressure. The quantities η and ζ are the shear and
bulk viscosities, ν = 3, 2, 1 shows the geometry of the seed under consideration (droplets, rods, and
slabs), and κ is the thermal conductivity. The treatment of the evolution of seeds within relativistic
hydrodynamics is more involved, but this is beyond our scope, cf. [55,59].

All thermodynamical quantities can be expanded near a reference point (nr, Tr), which we
assume to be close to the critical point but still outside the fluctuation region, which we assume to be
narrow. This circumstance is important for the determination of the specific heat density cV,r and, m.b.,
transport coefficients, which may diverge in the critical point, whereas other quantities are smooth
functions of n, T, and, by calculating them, one can have that nr = ncr, Tr = Tcr.

The Landau free energy, δFL, counted from the value at nr � ncr, Tr � Tcr in the variables
δn = n − ncr, δT = T − Tcr, and δ(δFL)/δ(δn) = P − Pf + PMC, can be presented as [54–56]

δFL =
∫ d3x

ncr

{
cm∗[∇(δn)]2

2
+

λm∗ 3(δn)4

4
− λv2m∗(δn)2

2
− εδn

}
+ δFL(k0), (4)

where ε = Pf − PMC � ncr(μi − μ f ) is expressed through the (final) value of the pressure after the
first-order phase transition has occurred, and the pressures at the MC, μi and μ f , are the chemical
potentials of the initial and final configurations (at fixed P and T). The quantity ε �= 0 if one deals with
a first-order phase transition, and ε = 0 if a transition is of the second order. The maximum of the
quantity ε is εm = 4λv3/(3

√
3). For the description of phase transitions to the uniform state, k = 0,

one may retain only the term ∝ c[∇(δn)]2 in the expansion of the free energy in the density gradients
using c > 0. For the description of phase transitions to the non-uniform state, k0 �= 0, one should
perform expansion retaining terms at least up to ∝ d[Δ(δn)]2 assuming c < 0 and d > 0. Therefore, the
last term in Equation (4) appears only if k = k0 �= 0 [47], as is the case for the phase transition to the
solid state, liquid crystal state, or pion-condensate state in dense nuclear matter. Thus, for k0 �= 0 and
c < 0, d > 0, we have

δFL(k0) =
∫ d3x

ncr

{
dm∗

2
(Δδn)2 −

(
cm∗k2

0
2

+
dm∗k4

0
2

)
(δn)2

}
, (5)
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where k2
0 = − c

2d > 0 follows from the minimization of δFL(k0). In the case of the phase transition
to the uniform state, one should have k0 = 0, d = 0 (then δFL(k0) = 0), and c > 0. Thus, the first term
∝ c in Equation (4) is associated with the positive surface tension, δFsurf

L = σS, where S is the surface
of the seed.

The Landau free energy density and pressure as functions of the order parameter δρ/v for the
equation of state determined by Equation (4) are shown in Figure 3. For ε = 0, two minima of the
Landau free energy coincide and correspond to the MC on the curve δP(1/ρ) (shown by horizontal
lines in the plot δP(δρ) in the right panel). If, in the initial state, (δρ)i = ρi − ρcr = 0, we deal with
the spontaneous symmetry breaking and the second-order phase transition. For (δρ)i = ρi − ρcr �= 0,
ε > 0, or ε < 0, we deal either with the first-order phase transition from the metastable to the stable
state, if ρi corresponds to the metastable state, or with the second-order phase transition either to the
metastable state or to the stable state. For ε > 0 (solid lines), the liquid state is stable and the gas state
is metastable (SV); for ε < 0 (dash-dotted lines), the liquid state is metastable (OL), whereas the gas
state is stable. The dynamics of the transition starting from a point within the spinodal region for ε �= 0
(but small) is described similarly to that for the second-order phase transition for ε = 0.

Figure 3. The Landau free energy density δFrel = δFL/FL(Tcr, ρcr) and the value δPrel =

ρcr
δ[FL(T,δρ)]

δ(δρ)
|T/P(Tcr, ρcr), as functions of the order parameter δρ = m∗δn for the EoS determined

by Equation (4), at T < Tcr. The dashed horizontal line (ε = 0) in the right panel shows MC, cf. [55].

For the purely van der Waals equation of state (in this case, k0 = 0), one obtains [55]:

v2(T) = −4
δTn2

crm∗ 2

Tcr
, σ = σ0

|δT|3/2

T3/2
cr

, σ2
0 = 32m∗n2

crTcrc. (6)

Applying operator div to Equation (1) and replacing div�u from Equation (2) for small δρ and u,
keeping only linear terms in u, which is legitimate, since near the critical point processes develop
slowly (v2 ∝ −δT), we rewrite Equation (1) as

−∂2δn
∂t2 = Δ

[
cΔδn + λv2δn − λm∗2(δn)3 + ε/m∗ − (m∗ncr)−1 (ν̃ηcr + ζcr)

∂δn
∂t

]
(7)

−Δ
[
dΔ2δn + (ck2

0 + dk4
0)δn

]
,

ν̃ = 2(ν − 1)/ν, cf. [12,47,55]. The second line in Equation (7) yields a non-zero term only for the
description of the condensation to the inhomogeneous state.
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Consider T < Tcr. In the dimensionless variables m∗δn = vψ, τ = t/t0, ξi = xi/l, i = 1, · · · , ν,
ν = 3 for seeds of spherical geometry, Equation (7) is presented as

−β
∂2ψ

∂τ2 = Δξ

(
Δξ ψ + 2ψ(1 − ψ2) + ε̃ − ∂ψ

∂τ
− λv2d

2c2 Δ2
ξ ψ +

2(ck2
0 + dk4

0)

λv2 ψ

)
, (8)

l =
(

2c
λv2

)1/2
, t0 =

2η̃r

λv2 , ε̃ =
2ε

λv3 , β =
c

η̃2
r

, η̃r =
(ν̃ηr + ζr)

m∗ncr
.

It is important to notice that, even for k0 = 0, Equation (8) differs in form from the standard
Ginzburg-Landau equation broadly exploited in the condensed matter physics, since Equation (8)
is of the second order in time derivatives, whereas the standard Ginzburg-Landau equation is of
the first order in time derivatives. The difference disappears if one sets the bracketed-term in the
r.h.s. of Equation (8) to zero. Such a procedure is, however, not legitimate at least for a description
of the order parameter on an initial time-stage, since two initial conditions, such as δn(t = 0,�r) = 0
and ∂tδn(t,�r)|t=0 � 0, should be fulfilled to describe the evolution of an initially formed fluctuation
(seed). Thereby, there exists at least an initial stage of the dynamics of seeds (for t <∼ tinit), which is
not described by the standard Ginzburg-Landau equation [54,55]. The bracketed term in the r.h.s. of
Equation (8) can indeed be set to zero, see below, if one considers an effectively very viscous medium
at τ � 1. Note also that Equation (8), with the bracketed term in the r.h.s. equal to zero, can be derived
from the first-gradient order kinetic equation of Kadanoff-Baym [60].

Equation (8) should be supplemented by Equation (3) for the heat transport, which, owing to
Equation (2) after its linearization, reads as

Tcr

[
∂tδs − scr(ncr)

−1∂tδn
]
= κrΔδT . (9)

The variation of the temperature is related to the variation of the entropy density s[n, T] by

δT � Tcr(cV,r)
−1 (δs − (∂s/∂n)T,crδn) , (10)

where cV is the density of the heat capacity.

3.1. Typical Time Scales

Let us perform some rough dimensional estimates of typical time scales in the problem. The
evolution of a seed of one phase in another phase is governed by the slowest mode (δρ or δs,
respectively). The time scale for the relaxation of the density following Equation (8) is t0 ∝ η̃. Thus,
the non-zero viscosity plays the role of the driving force managing the time evolution of the density
mode. Moreover, t0 ∝ 1/(Tcr − T). Thereby, the processes are slowed down near the critical point of
the phase transition. The time scale for the relaxation of the entropy/temperature mode, following
Equation (9), is

tT = R2
seedcV,r/κr ∝ R2

seed, (11)

i.e., the relaxation time of the temperature/entropy is proportional to the surface of the seed. Thus,
for tT(Rseed) < t0, i.e for Rseed < Rfog =

√
κrt0/cV,r, where Rfog is the typical size of the seed at

t ∼ t0 = tT , the dynamics of the seeds is controlled by Equation (8) for the density mode. For seeds
with sizes Rseed > Rfog, the quantity tT ∝ R2

seed exceeds t0, and the growth of seeds is slowed down.
Thereby, the number of seeds with the typical size Rseed ∼ Rfog is increased with the passage of time,
and a state of fog is formed. For the quark-hadron phase transition in energetic heavy-ion collisions,
one [55] estimates Rfog ∼ (0.1 − 1) fm and, for the nuclear liquid-gas transition at low energies,
Rfog ∼ (1 − 10) fm <∼ R(tf.o.), where R(tf.o.) is the size of the fireball at the freeze-out, and tf.o. is the
fireball evolution time until freeze-out.
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There are only two dimensionless parameters in Equation (8): ε̃ and β. The parameter ε̃ is
responsible for a difference between the Landau free energies of the metastable and stable states. For
t0 � tT (the isothermal stage), ε̃ � const and the dependence on this quantity disappears because of
Δξ ε̃ � 0. Then, the dynamics is controlled by the parameter β, which characterizes the inertia. It is
expressed in terms of the surface tension and the viscosity as

β = (32Tcr)
−1[ν̃ηr + ζr]

−2σ2
0 m∗. (12)

The larger viscosity and the smaller surface tension, the effectively more viscous (inertial) is the fluidity
of seeds. For β � 1, one deals with the regime of effectively viscous (inertial) fluidity and at β � 1,
one deals with the regime of almost perfect fluidity. Estimates [55] show that, for the nuclear liquid-gas
phase transition, typically β ∼ 0.01. For the quark-hadron transition, β ∼ 0.02 − 0.2, even for a very
low value of the η/s � 1/(4π) ratio. The latter quantity characterizes the fluidity of the matter at
ultra-relativistic heavy-ion collisions [25]. Thus, as we argued, in the case of baryon-rich matter, one
effectively deals with a very viscous (inertial) evolution of density fluctuations, in cases of nuclear
liquid-gas and quark-hadron phase transitions.

In neutron stars, an overcritical pion-condensate drop reaches a size R ∼ 0.1 km for t ∼ 10−3 s
by the growth of the density mode. Then, it may reach R ∼ (1 − 10) km for typical time tT varying
from ∼ 10 s for up to several hours (rather than for a typical collapse time ∼ 10−3 s). A delay appears
owing to neutrino heat transport to the surface (an effect of neutrino thermal conductivity), and
this delay strongly depends on the value of the pion softening, which is stronger for most massive
neutron stars [12]. One should also take into account that the bulk viscosity is significantly increased
in the presence of soft modes [61,62], e.g., near the pion condensation critical point [63]. Notice also
that the description of the dynamics of the pion-condensate phase transition is specific, since the
transition occurs to the inhomogeneous liquid-crystal-like state characterized by�k �= 0. The seeds of
the liquid-crystal-like state prove to be elongated in the process of their growth [47]. A similar effect is
observed in liquid crystals.

Thus, the interplay between viscosity, surface tension, and thermal conductivity effects is
responsible for the typical time and size scales of fluctuations.

3.2. Stationary Solutions

Now let us find stationary solutions of Equation (7). For the condensation in the state k �= 0, we
find a solution in the form

m∗δn = a[sin(kx + χ) +
c1ω̃2(k2)

ω̃2(9k2)
sin(3kx + χ) + ...] + O(ε) , (13)

where χ is a constant phase,

ω̃2(k2) = −λv2 + ck2 + dk4 − ck2
0 − dk4

0 . (14)

For the condensation in the uniform state k0 �= 0, c < 0, and d > 0, the gap ω̃2(k2) has a minimum
for k = k0. The phase transition arises for ω̃2(k2

0) < 0. Setting Equation (13) in Equation (7), we find

a2 = −4
3

ω̃2(k2
0)/λ > 0, c1 = −1/3 . (15)

Minimization of the free energy in k yields k = k0. ω̃2(k2
0) = −λv2, and ω̃2(k2

0) > 0 for T > Tcr.
ω̃2(k2

0) < 0 for T < Tcr. ω̃2(9k2
0) = −λv2 + 16c2/d � |ω̃2(k2

0)|. Thereby, with appropriate accuracy,
we may use δn � a[sin(k0x + χ), which yields δFL(k0) � −λv4V/(6m∗n) + O(ε2), where V is the
volume of the system. Thus, the solution expressed in Equation (13) describes the stationary state at
the second-order phase transition.
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For the condensation in the uniform state k0 = 0, we have [55]

ω̃2(k2) = −λv2 + ck2 , k2 < λv2/c , c > 0 . (16)

Two spatially constant stationary solutions minimizing the free energy for T < Tcr correspond to k = 0.
They describe metastable and stable states:

δnst � ±v/m∗ + ε/(2λv2m∗) . (17)

The free energy corresponding to these solutions is given by

δFL(k = 0, k0 = 0) � − λv4V
4m∗ncr

(
1 ± 4ε

λv3

)
. (18)

For k �= 0, solutions in the form of Equation (13) are valid for |ω̃2(k2)| � ω̃2(9k2). For k0 = 0,
they yield

δFL(k �= 0, k0 = 0) � −λv4(1 − ck2/(λv2))V
6m∗ncr

. (19)

Although the minimum of the free energy for k0 = 0 is given by Equation (18), corresponding
to solutions expressed in Equation (17) obtained for k = 0 rather than by solutions expressed in
Equation (13) corresponding to the free energy expressed in Equation (19), as we will demonstrate
below, solutions expressed in Equation (13) characterized by k �= 0 have a physical meaning.

4. Dynamics of Seeds at a First-Order Phase Transition from a Metastable State to a Stable State

The rate of the formation of seeds in fluctuations has been extensively studied in the literature,
e.g., [9,59,64–66]. Let us assume that an initial seed of the new phase has been formed in a fluctuation
and consider its subsequent time evolution. Consider the limit of a high thermal conductivity, when, in
Equation (7), the temperature can be made constant. The solution expressed in Equation (7) describing
the dynamics of the initial density fluctuation developing from the metastable state to the stable state
is then presented in the form [56]

δn(t, r) � v(T)
m

[
±th

r − Rseed(t)
l

+
ε

2λv3(T)

]
+ (δn)cor, (20)

where the upper sign corresponds to the evolution of bubbles of the gas, the lower sign solution
describes the evolution of droplets of liquid for ν = 3, and the solution is valid for |ε/(λv3(T))| � 1.
Compensating correction (δn)cor is introduced to fulfill the baryon number conservation. Considering
spatial coordinate r in the vicinity of a bubble/droplet boundary, we obtain an equation describing the
evolution of the seed size [55,56]:

m∗2βt2
0

2l
d2Rseed

dt2 = m∗2
[

3ε

2λv3(T)
− 2l

Rseed

]
− m∗2t0

l
dRseed

dt
. (21)

This equation reminds us of Newton’s second law for a one-dimensional system, where the quantity

M =
m∗2βt2

0
2l ∝ (Tcr − T)−3/2 has the meaning of the mass, m∗2[ 3ε

2λv3(T) −
2l

Rseed
] is an external force,

and −m∗2t0
l

dRseed
dt is the friction force, with a viscous-friction coefficient that is proportional to an

effective viscosity and inversely proportional to
√

Tcr − T. Following Equation (21), a bubble of
an overcritical size Rseed > Rcr = 4lλv3(T)/(3ε) of the stable gas phase, or respectively a droplet
of the stable liquid phase, is initially prepared in a fluctuation inside a metastable phase and then
grows. In an early stage of the evolution, the size of the overcritical bubble/droplet Rseed(t) (for
Rseed > Rcr) grows with acceleration. Thus, it reaches a steady growth regime with a constant velocity
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uas = 3εl
λv3(T)t0

∝ |(Tcr − T)/Tcr|1/2. In the interior of the seed δn � ∓v(T)/m∗. The correction

(δn)cor � v(T)R3
seed(t)/(m

∗R3) is very small for Rseed(t) � R, where R is the radius of the whole
system. In cases of the quark-hadron and nuclear liquid-gas phase transitions in heavy-ion collisions,
R(t) is the radius of the expanding fireball. Usage of the isothermal approximation in Equation (20)
needs the fulfillment of inequality tρ ∼ Rseed(tf.o.)

uas
� tT . For Rseed ∼ Rcr and for ε ∼ εm, we obtain

tρ ∼ t0, and the isothermal approximation is valid for Rseed < Rfog. For ε � εm, we obtain tρ � t0,
and the isothermal approximation remains correct for seeds of the size Rseed < Rfogεm/ε.

Substituting Equation (20) in Equation (9) for T � const (which is correct in linear approximation),
we obtain

δs =
(

∂s
∂n

)
T

{
v(T)

m

[
±th

r − Rseed(t)
l

+
ε

2λcrv3(T)

]
+ (δn)cor

}
. (22)

Note that, for the description of the expanding fireball formed in heavy-ion collisions, the
approximation of a quasi-adiabatic expansion can be used even in the presence of a weak first-order
phase transition (for δs � s and δn � n). The evolution of droplets/bubbles in the metastable region
can be considered at a fixed size of the fireball, provided an expansion time lasting until freeze-out
tf.o. � (tρ, tT).

5. Dynamics of Fluctuations in Unstable Region

5.1. Growth of Fluctuations of Small Amplitude. Linear Regime

In this section, the “r” reference point can be taken as arbitrary, so we suppress the subscript “r.”
To find solutions of the linearized hydrodynamical equations, we have, cf. [56],

δn = δn0exp[γt + i�k�r]− ε

m∗λv2 , , δs = δs0exp[γt + i�k�r], T = T> + δT0exp[γt + i�k�r], (23)

where T> is the temperature of the uniform matter. For |δn| � | ε
m∗λv2 |, i.e., for ε � εm, the description

of the fluctuation in the spinodal region at the first-order phase transition and the description of the
second-order phase transition are the same. We may set ε → 0. Thus, from linearized equations of
non-ideal hydrodynamics, expressed in Equations (7) and (9), we find the increment γ(k), cf. [56],

γ2 = −k2

[
ω̃2(k2) + η̃γ +

u2
s̃ − u2

T
1 + κk2/(cVγ)

]
, (24)

where η̃ = (ν̃η+ζ)
m∗n . This equation differs from that derived in [67] by the presence of an extra surface

tension term, and it differs from that in [59], which was based on other assumptions. Equation (24) has
three solutions corresponding to the growth of the density and thermal modes. For κk2/(cV |γ|) � 1,
the temperature in the seed can be made constant, and we may deal with only one equation for the
density mode expressed in Equation (7), which yields

γ2 = −k2
[
ω̃2(k2) + η̃γ

]
, (25)

from which we find two solutions for the density modes,

γ1,2 = − k2η̃

2
±
√

k4η̃2

4
− k2ω̃2(k2) . (26)
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For ˜ω2(k2) < 0, which corresponds to the region of the phase transition, the upper-sign solution,
γ1 > 0, describes the growing mode, and the lower sign solution, γ2 < 0, describes the damping mode.
For k2η̃2/|ω̃2(k2)| � 1, we have

γ1 �
√
−k2ω̃2(k2)− k2η̃

2
+ O(k3η̃2/|ω̃(k2)|) (27)

for the growing mode. In the opposite limit k2η̃2/|ω̃2(k2)| � 1, we obtain

γ1 � −ω̃2(k2)/η̃ + O(ω̃4(k2)/(k2η̃3)) . (28)

Note that, in condensed matter physics, a transition from a liquid to a glass state can be interpreted as
a first-order phase transition occurring within a spinodal region at a very high viscosity [47]. Thus,
there is an order at a scale of several Å, which transforms in a disorder at larger distances.

For k0 = 0, c > 0, for the most rapidly growing mode (for γm = max{γ1} corresponding to
k = km), we find

γm � λv2

(2
√

β + 1)η̃
, k2

m � λv2√β

(2
√

β + 1)c
.

For k0 �= 0, c < 0, d > 0, the most rapidly growing mode corresponds to k = k0; thus, ω̃2(k2
0) < 0

and |ω̃2(k2
0)| as a function of k2 are the largest.

5.2. The Growth of Fluctuations of Arbitrary Amplitude: A Nonlinear Regime

Now we will find the solution to the non-linear Equation (7). We search the solution in the form

m∗δn = a f (t)
[

sin(kx + χ) +
c1ω̃2(k2)

ω̃2(9k2)
sin(3kx + χ) + ...

]
+ O(ε) , (29)

as Equation (13) with a2 = − 4ω̃2

3λ > 0, but now with f (t), satisfying

∂2
t f = −k2ω̃2(k2) f (1 − f 2)− k2η̃∂t f . (30)

For k2η̃2/|ω̃2(k2)| � 1, i.e., for β � 1 or η̃ � √
c, the term ∂2

t f on the l.h.s. of Equation (30) can be
dropped, and the amplitude

f (t) =
f0eγt√

1 + f 2
0 e2γt

(31)

fulfills the resulting Equation (30). f0/
√

1 + f 2
0 shows the amplitude of the fluctuation at t = 0, and

f0 is an arbitrary constant. For k ∼ km at k0 = 0, this solution holds for k2
mη̃2/|ω̃2(k2

m)| � 1. For
k = k0 �= 0, the criterion of applicability renders as k2

0η̃2/|ω̃2(k2
0)| � 1. In both cases k0 = 0 and

k0 �= 0, with the density distribution given by Equations (29) and (31), the free energy renders

δFL(t) = −Vω̃4(k2)

6λm∗n
f 2(t)

(
2 − f 2(t)

)
. (32)

For t → ∞, we have f (t → ∞) → 1, and δFL reaches the minimum. For k = k0, this value coincides
with Equation (19), which is given by the stationary solution.

In the general case, Equation (31) yields an interpolation between two approximate solutions that
are valid for the limit cases γt � 1 and γt � 1. Replacing Equation (31) in Equation (30), we obtain
then the same solutions expressed in Equation (26) as those in the linear case.
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Let first k0 = 0. For t → ∞, using Equation (31) at γ = γm = γ(km), we find

δFL(t → ∞) = − ω̃4(k2
m)V

6λm∗n
. (33)

For the case of a large effective viscosity/inertia, β � 1, we obtain δFL(t → ∞) � − λv4V
6m∗n , which

coincides with Equation (19) but is still larger than the value given by Equation (18). For the case of a
small effective viscosity/inertia, β � 1, we find δFL(t → ∞) � − λv4V

24m∗n , which is much higher than
the free energy given by both stationary solutions expressed in Equations (18) and (19). Thus, one may
expect that Equation (33) either describes a metastable state or a state that slowly varies on a time scale
tk � tγ ∼ 1/γm, reaching, for t � tk, the stationary state with the free energy given by Equation (18).
To show the latter possibility, consider the case β � 1 and assume k in Equation (29) to be a slow
function of time, i.e., k = k(t), for a typical time scale tk � tγ. One can see that, for Rseed � tk|uT |, the
quantity k(t) satisfies (d2k/dt2) = −k2η̃(dk/dt) with the solution

k(t) = k00[1 + η̃λv2t/(3c)]−1/2 (34)

such as k(t → ∞) → 0, and the free energy for t → ∞ indeed reaches the limit expressed in
Equation (18) provided we set sin χ �

√
3

2 −
√

3 m∗ ε̃
8 . From Equation (34), we easily find that the

typical time scale is tk ∼ βt0, and we confirm that indeed tk � tγ. For Rseed
>∼ tk|uT | ∼ l

√
β, the

solution expressed in Equation (29) with Equation (34) does not hold and should be modified.
For β � 1, k0 = 0, Equation (34) with a slowly varying k(t) does not hold. At realistic conditions,

convection and sticking processes (at sizes ∼ l) may be allowed, which destroy periodicity, and
owing to these processes the system may finally reach the ground state with the free energy given
by Equation (18). Thus, one possibility is that, for the typical time t ∼ tγ ∼ t0, the quasiperiodic
solution expressed in Equation (33) is formed with a typical k � km, corresponding to a metastable
state with the free energy given by Equation (19). Such a distribution is formed most rapidly. Another
possibility is that, for the typical time scale tunif > tγ in a system of a large size, an approximately
uniform solution, expressed in Equation (35), is developed. In the latter case, to proceed, consider
the case k ∼ 1/R � km, where R is the typical size of the system (R = Rf.o. for the fireball formed in
heavy-ion collisions). The spatially uniform solution of

Δξ ψ + 2ψ(1 − ψ2) + ε̃ = ∂τψ,

which follows from Equation (8) in this case (as well as for seeds of a size Rseed � R at β � 1, as we
have argued above), is given by

ψ(t) = ±1/
√

1 + e−τ(1 − ψ2
0)/ψ2

0 , (35)

where we, for simplicity, have ε̃ → 0. The typical time needed for the initial amplitude ψ0 � 1 to grow
to ψ(t → ∞) � ±1 is tunif ∼ t0 ln(1/ψ2

0) � tγ.
Thus, we found some novel solutions describing the evolution of fluctuations in the region of

instability in addition to the uniform solution expressed in Equation (35). For k =const �= 0, we found
periodic solutions given by Equations (29) and (31). For k = k0 �= 0, the solution yields the minimum
of the free energy for t → ∞. For k0 = 0, β � 1, we found quasiperiodic solutions expressed in
Equations (29) and (31) with k = k(t) from Equation (34), yielding the minimum of the free energy for
t → ∞.

6. Conclusions

According to our findings, signatures of QCD spinodal instabilities might in principle be observed
in experiments with heavy ions in a collision energy interval that corresponds to the first-order phase

212



Universe 2020, 6, 42

transition region of the QCD phase diagram. If the typical times of the growth of a fluctuation in
the unstable region tγ and of that of the fireball expansion tf.o. satisfy the condition tγ

<∼ tf.o., one of
the possible experimental signatures of the spinodal region would be a manifestation of a spatially
quasiperiodic structure with a typical period r � 2π/km. If the parameter characterizing effective
viscosity/inertia β were � 1, cf. Equation (12), then for tγ � tf.o. one of the possible experimental
signatures of the spinodal region would be a manifestation of spatially quasiperiodic fluctuations with
a typical size r ∼ 2π/k(tf.o.) � 2π/km. However, rough estimates made for the quark-hadron and
nuclear gas-liquid first-order phase transitions in heavy-ion collisions [54–56] indicate that β � 1.
Future experimental programs at NICA and FAIR will scan the collision energy interval, in which
various manifestations of the first-order quark-hadron phase transition are expected, including possible
signatures of quasiperiodic structures. It would also be interesting to search for the consequences of
the possible formation of quasiperiodic structures during the quark-hadron phase transition in the
early universe.

Concluding, we note that viscosity and thermal conductivity are the driving forces of the
first-order liquid-gas and quark-hadron phase transitions to the state with k0 = 0, and the spinodal
instability occurs for T below the ITS line. The manifestation of a spatially quasiperiodic structure with
a typical period of 2π/km, cf. Equation (29), in the rapidity spectra of heavy-ion collisions in a collision
energy interval could be interpreted as a signature of the occurrence of the spinodal instability at the
first-order phase transition. For the second-order phase transition to the state with k0 �= 0, as for the
case of the pion condensation in dense nuclear matter, the periodic solution expressed in Equation (29)
holds for k = k0 �= 0, where k0 does not depend on time.
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1. Introduction

The Bjorken scaling [1] is broken by a logarithmically dependent function [2,3] of the transverse
momentum Q2 and is due to the interaction of quarks and gluons inside the hadrons [2–16]. In this
article, we shall consider a possibility [9] that inside hadrons there are additional partons–tensorgluons,
which can carry a part of the proton momentum [17–24]. The extension of the Yang–Mills theory was
formulated in terms of the gauge invariant Lagrangian [18–21]. For tensorgluons of rank-2, it has the
following form [18–20]:

L =− 1
4

Ga
μνGa

μν −
1
4

Ga
μν,λGa

μν,λ − 1
4

Ga
μνGa

μν,λλ

+
1
4

Ga
μν,λGa

μλ,ν +
1
4

Ga
μν,νGa

μλ,λ +
1
2

Ga
μνGa

μλ,νλ + ...
(1)

where the field strength tensors have the form:

Ga
μν = ∂μ Aa

ν − ∂ν Aa
μ + g f abc Ab

μ Ac
ν,

Ga
μν,λ = ∂μ Aa

νλ − ∂ν Aa
μλ + g f abc( Ab

μ Ac
νλ + Ab

μλ Ac
ν ),

Ga
μν,λρ = ∂μ Aa

νλρ − ∂ν Aa
μλρ + g f abc( Ab

μ Ac
νλρ + Ab

μλ Ac
νρ + Ab

μρ Ac
νλ + Ab

μλρ Ac
ν ),

...................................................

(2)

The first term in (1) corresponds to the standard Yang–Mills Lagrangian. The expression for the full
Lagrangian can be found in [18–20]. For illustration purposes, we shall present the next term of the
Lagrangian that describes the interaction of the rank-3 tensorgluons

L = − 1
4

Ga
μν,λρGa

μν,λρ −
1
8

Ga
μν,λλGa

μν,ρρ −
1
2

Ga
μν,λGa

μν,λρρ −
1
8

Ga
μνGa

μν,λλρρ +

+
1
3

Ga
μν,λρGa

μλ,νρ +
1
3

Ga
μν,νλGa

μρ,ρλ +
1
3

Ga
μν,νλGa

μλ,ρρ + (3)

+
1
3

Ga
μν,λGa

μλ,νρρ +
2
3

Ga
μν,λGa

μρ,νλρ +
1
3

Ga
μν,νGa

μλ,λρρ +
1
3

Ga
μνGa

μλ,νλρρ.

A spinor helicity technique [25–42] was used to calculate tensorgluon scattering amplitudes [22] and to
extract the splitting amplitudes of gluons and tensorgluons [23]. The tensorgluon splitting amplitudes are
singular at the boundary values similar to the case of the standard splitting amplitudes in QCD, though the
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singularities are of higher order compared to the standard case and require a special regularisation
technique to be developed before they can be placed into the equations which are describing the evolution
of the generalised parton distribution functions (10). Here, we shall further develop a technique proposed
earlier in [9] which will allow for regularising the tensorgluon splitting amplitudes.

The present paper is organised as follows. In Section 2, the basic formulae for scattering amplitude
and splitting functions are recalled, definitions and notations are specified, and the details of the
regularisation scheme are presented. In Section 3, we derive the regularised evolution equations for
the parton distribution functions that take into account the creation of tensorgluons. Section 4 contains
concluding remarks and summarises the physical consequences of the tensorgluons’ hypothesis.

2. Splitting Functions

It was proposed in [9] that a possible emission of tensorgluons inside a hadron will produce a
tensorgluon “cloud” inside a hadron in addition to the quark and gluon “clouds”. Our goal here is
to specify the regularisation of the generalised evolution equations introduced in [9] such that it will
be consistent with the regularisation scheme used to regularised the DGLAP equations [4–8,10–12].
The splitting probabilities for tensorgluons have the form [9]:

PTG(z) = C2(G)

[
z2s+1

(1 − z)2s−1
+

+
(1 − z)2s+1

z2s−1

]
,

PGT(z) = C2(G)

[
1

z(1 − z)2s−1
+

+
(1 − z)2s+1

z

]
, (4)

PTT(z) = C2(G)

[
z2s+1

(1 − z)+
+

1
(1 − z)+z2s−1

]
.

The invariant operator C2 for the representation R is defined by the equation tata = C2(R) 1 and
tr(tatb) = T(R)δab. These functions satisfy the relations

PTG(z) = PTG(1 − z), PGT(z) = PTT(1 − z), z < 1. (5)

One should define the regularisation procedure for the singular factors (1 − z)−2s+1 and z−2s+1

reinterpreting them as the distributions (1 − z)−2s+1
+ and z−2s+1

+ . The regularisation has been defined in
the following way [9]:

∫ 1

0
dz

f (z)
(1 − z)2s−1

+

=
∫ 1

0
dz

f (z)− ∑2s−2
k=0

(−1)k

k! f (k)(1)(1 − z)k

(1 − z)2s−1 ,

∫ 1

0
dz

f (z)
z2s−1
+

=
∫ 1

0
dz

f (z)− ∑2s−2
k=0

1
k! f (k)(0)zk

z2s−1 , (6)

∫ 1

0
dz

f (z)
z+(1 − z)+

=
∫ 1

0
dz

f (z)− (1 − z) f (0)− z f (1)
z(1 − z)

,

where f (z) is an arbitrary test function that is sufficiently regular at the points z = 0 and z = 1 and, as
one can be convinced, the defined substraction guarantees the convergence of the integrals. Using the
same arguments as in the standard case [4], we will add the delta function terms into the definition
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of the diagonal kernels so that they will completely determine the behaviour of Pqq(z) , PGG(z) and
PTT(z) functions with the coefficients that can be determined by using the momentum sum rule [9]:

Pqq(z) = C2(R)
[

1 + z2

(1 − z)+
+

3
2

δ(z − 1)
]

,

PGG(z) = 2C2(G)

[
z

(1 − z)+
+

1 − z
z

+ z(1 − z)
]
+

∑s(12s2 − 1)C2(G)− 4n f T(R)
6

δ(z − 1),

PTT(z) = C2(G)

[
z2s+1

(1 − z)+
+

1
(1 − z)+z2s−1 +

2s+1

∑
j=1

1
j

δ(z − 1)

]
.

(7)

For completeness, we shall present also quark and gluon splitting functions [4]:

PGq(z) = C2(R)
1 + (1 − z)2

z
, (8)

PqG(z) = T(R)[z2 + (1 − z)2], (9)

where C2(G) = N, C2(R) = N2−1
2N , T(R) = 1

2 for the SU(N) groups.

3. Regularisation of Generalised DGLAP Equations

The deep inelastic structure functions can be expressed in terms of parton distribution
densities [4–8,10–12]. If qi(x, Q2) is the density of quarks of type i (summed over colors) inside a
nucleon target with fraction x of the proton longitudinal momentum in the infinite momentum frame,
then the unpolarised structure functions can be represented in the following form:

2F1(x, Q2) = F2(x, Q2)/x = ∑
i

e2
i [q

i(x, Q2) + q̄i(x, Q2)].

The Q2 dependence of the parton densities is described by the integro-differential equations for
quark qi(x, t) and gluon densities G(x, t), where t = ln(Q2/Q2

0) [4–8,10–12]. If there is an additional
emission of tensorgluons in the proton, then one should introduce the corresponding density T(x, t) of
tensorgluons and the integro-differential equations that describe the Q2 dependence of parton densities
in this general case has the following form [9]:

dqi(x, t)
dt

=
α(t)
2π

∫ 1

x

dy
y
[

2n f

∑
j=1

qj(y, t) Pqiqj(
x
y
) + G(y, t) PqiG(

x
y
)],

dG(x, t)
dt

=
α(t)
2π

∫ 1

x

dy
y
[

2n f

∑
j=1

qj(y, t) PGqj(
x
y
) + G(y, t) PGG(

x
y
) + T(y, t) PGT(

x
y
)],

dT(x, t)
dt

=
α(t)
2π

∫ 1

x

dy
y
[G(y, t) PTG(

x
y
) + T(y, t) PTT(

x
y
)].

(10)

In (10), we ignore contribution of the high-spin fermions q̃i of spin s + 1/2, which are the partners of
the standard quarks [18–21], supposing that they are even heavier than the top quark. In this article,
we shall limit ourselves by considering only emissions that always involve the standard gluons and
spin-2 tensorgluons ignoring infinite “stairs” of transitions between tensorgluons of higher spin. In
(10), the α(t) is the running coupling (α = g2/4π) and has the following form [17]:

α

α(t)
= 1 + b α t , (11)
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where

b =
∑s(−1)2s(12s2 − 1)C2(G)− 4n f T(R)

12π
, s = 0, 1/2, 1, 3/2, 2, ...... (12)

is the one-loop Callan–Symanzik coefficient [17]. In particular, the presence of the spin-two
tensorgluons in the proton will give

b =
58C2(G)− 4n f T(R)

12π
. (13)

The tensorgluon density T(x, t) changes when a gluon splits into two tensorgluons or when a
tensorgluon radiates a gluon. This process is described by the third equation in (10).

The tensorgluon kernels (4) are singular at the boundary values similar to the case of the standard
kernels (8), though the singularities are of higher order compared to the standard case. The ’+’
prescription in

P(z) =

⎛⎜⎝ Pqq(z) 2n f PqG(z) 0
PGq(z) PGG(z) PGT(z)

0 PTG(z) PTT(z)

⎞⎟⎠ (14)

is defined as

[g(x)]+ = g(x)− δ(1 − x)
∫ 1

0
g(z)dz, (15)

and so ∫ 1

x
f (z)[g(z)]+dz =

∫ 1

x
[ f (z)− f (1)]g(z)dz − f (1)

∫ 1

x
g(z)dz. (16)

Considering the splitting probabilities for spin two tensorgluons, we have to define ’+++’
prescription as

[g(x)]+++ =g(x)− δ(1 − x)
∫ 1

0
g(z)dz − δ

′
(1 − x)

∫ 1

0
g(z)(1 − z)dz−

− 1
2

δ
′′
(1 − x)

∫ 1

0
g(z)(1 − z)2dz,

(17)

and so ∫ 1

x
f (z)[g(z)]+++dz =

∫ 1

x
[ f (z)− f (1) + f

′
(1)(1 − z)− 1

2
f
′′
(1)(1 − z)2]g(z)dz−

−
∫ x

0
[ f (1)− f

′
(1)(1 − z) +

1
2

f
′′
(1)(1 − z)2]g(z)dz.

(18)

For the helicity-2 tensorgluons, the s = 2 in (4), we will have

PTG(z) = C2(G)

[
z5

(1 − z)3 +
(1 − z)5

z3

]
,

PGT(z) = C2(G)

[
1

z(1 − z)3 +
(1 − z)5

z

]
,

PTT(z) = C2(G)

[
z5

(1 − z)
+

1
(1 − z)z3 +

5

∑
j=1

1
j

δ(1 − z)

] (19)

220



Universe 2020, 6, 88

and the regularisation of these kernels can be performed using the regularisation prescription (18).
The regular splitting functions will take the following form:

∫ 1

x
PTG(z) f (

x
z
)dz =

∫ 1

x

[
z5

(1 − z)3
+++

+
(1 − z)5

z3

]
f (

x
z
)dz = I1 + I2 + I3,

I1 =
∫ 1

x

dz
(1 − z)3

(
z5 f (

x
z
)− f (x) + (5 f (x)− x f

′
(x))(1 − z)−

− (10 f (x)− 4x f
′
(x) +

1
2

x2 f
′′
(x))(1 − z)2

)
,

I2 = −
∫ x

0

dz
(1 − z)3

(
f (x)− (5 f (x)− x f

′
(x))(1 − z)+

+ (10 f (x)− 4x f
′
(x) +

1
2

x2 f
′′
(x))(1 − z)2

)
,

I3 =
∫ 1

x

(1 − z)5

z3 f (
x
z
)dz.

(20)

For the gluon–tensor splitting function, we will get:

∫ 1

x
PGT(z) f (

x
z
)dz =

∫ 1

x

[
3 − 3z + z2

(1 − z)3
+++

+
1 + (1 − z)5

z

]
f (

x
z
)dz = J1 + J2 + J3,

J1 =
∫ 1

x

1
(1 − z)3

(
(3 − 3z + z2) f (

x
z
)− f (x)− ( f (x) + x f

′
(x))(1 − z)−

− ( f (x) + 2x f
′
(x) +

1
2

x2 f
′′
(x))(1 − z)2

)
dz

J2 = −
∫ x

0

dz
(1 − z)3 [ f (x) + ( f (x) + x f

′
(x)(1 − z) + ( f (x) + 2x f

′
(x) +

1
2

x2 f
′′
(x)(1 − z)2]

J3 =
∫ 1

x

1 + (1 − z)5

z
f (

x
z
)dz.

(21)

Using the regularisation (16) for the tensor-tensor splitting function, we will get the following expression:

∫ 1

x
PTT(z) f (

x
z
)dz =

∫ 1

x

[
1 + z5

(1 − z)+
+

1 + z + z2

z3 +
5

∑
j=1

1
j

δ(1 − z)

]
f (

x
z
)dz

=
∫ 1

x

dz
(1 − z)

[
(1 + z5) f (

x
z
)− 2 f (x)

]
+ f (x)

[
2 ln(1 − x) +

137
60

]
+
∫ 1

x

1 + z + z2

z3 f (
x
z
)dz.

(22)

All new splitting functions which have been added to the standard evolution equation are now well
defined and can be calculated using the above Equations (20)–(22).

4. Discussion

The gluon density G(x, t) inside the hadrons is one of the least constrained functions since it does
not couple directly to the photon in deep-inelastic scattering measurements. The process of gluon
splitting leads to the emission of tensorgluons and therefore a part of the proton momentum that is
carried by the neutral constituents can be shared between gluons and tensorgluons and the density
of neutral partons is the sum of two density functions: G(x, t) + T(x, t). Because tensorgluons have
a larger spin, they can influence the spin structure of the nucleon. The details can be found in [9,43].
To disentangle the contributions of gluons and tensorgluons to the partons densities of a nucleon and
to decide which piece of the neutral partons is generated by gluons and which one by tensorgluons,
one should measure the helicities of the neutral components.
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In supersymmetric extensions of the Standard Model [44,45], the gluons and quarks have natural
partners–gluinos of spin s = 1/2 and squarks of spin s = 0. If the gluinos appear as elementary constituents
of the hadrons, then the theory predicts the existence of new hadronic states, the R-hadrons [46,47].
The experimental data provide the evidence that most probably they have to be very heavy [48,49].

The existence of tensorgluon partons inside the proton does not predict a new hadronic state, a proton
remains a proton. The tensorgluons will alternate the parton distribution functions of a proton. The question
is to which extent the tensorgluons will change the parton distribution functions. The regularisation of the
splitting amplitudes developed above (20)–(22) will allow for solving the generalised DGLAP evolution
Equation (10) for the parton distribution functions that takes into account the processes of emission of
tensorgluons by gluons. The integration can now be performed using the algorithms developed in [50–53]
and to find out the ratio of densities between gluons and tensorgluons.
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