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Editorial

Electronics, Close-Range Sensors and Artificial Intelligence
in Forestry

Stelian Alexandru Borz 1,* , Andrea Rosario Proto 2 , Robert Keefe 3 and Mihai Daniel Niţă 1

1 Department of Forest Engineering, Forest Management Planning and Terrestrial Measurements,
Faculty of Silviculture and Forest Engineering, Transilvania University of Brasov, 500123 Brasov, Romania

2 Department of AGRARIA, Mediterranean University of Reggio Calabria, 89122 Reggio Calabria, Italy
3 College of Natural Resources, University of Idaho Experimental Forest, Moscow, ID 83844, USA
* Correspondence: stelian.borz@unitbv.ro; Tel.: +40-742-042-455

The use of electronics, close-range sensing and artificial intelligence has changed
the management paradigm in many of the current industries in which big data analytics
by automated processes has become the backbone of decision making and improvement.
Acknowledging the integration of electronics, devices, sensors and intelligent algorithms
in much of the equipment used in forest operations, as well as their use in various forestry-
related applications, we are still seeing that many disciplines within forestry and forest
science still rely on data collected traditionally, which is resource-intensive. In turn, this
brings limitations in characterizing the specific behaviors of the forest product systems and
wood supply chains, and often prevents the development of solutions for improvement or
inferring the laws behind the operation and management of such systems.

Undoubtedly, many solutions still need to be developed in the future to provide the
technology required for the effective management of forests. In this regard, the Special
Issue “Electronics, Close-Range Sensors and Artificial Intelligence in Forestry” highlights
many examples of how technological improvements can be brought to forestry and to other
related fields of science and practice.

For instance, the work of [1] has shown a new approach on how to improve tree ring
identification technology which, in turn, supports the science in many scientific topics,
including forest growth and dendrochronology, and the effect that climate changes have on
forests. The work of [2] describes a solution for the long-term monitoring of sawmilling
operations by developing a highly accurate machine learning framework which works on
limited amounts of data and enables the use of inexpensive sensors for extended periods of
time. Changing the existing modalities of accounting for quantitative estimates in the wood
supply chain has been found to be one of the drivers of automation in forestry which will
support a more effective management. The comparative study of [3] concluded that there
is a lot of potential in using affordable digital solutions in wood measurement applications,
which could be a feasible alternative when balancing the running costs and the ergonomics
of wood measurement activities. The management of future forests would have to rely
on high amounts of data collected in real time. In turn, this would have to use proper
protocols to extract useful information. To support such needs, the work of [4] describes
and operationalizes a concept to support data curation for Tree-Talker-based applications.
Prototyping technologies that meet practical and scientific sampling purposes is one of
the challenges in many scientific disciplines. The work of [5] describes the design of an
Unoccupied Aircraft System with a lot of potential in physical sampling, thereby enhancing
our ability to obtain samples from rather inaccessible parts of the trees. Remote sensing
coupled with statistical learning may support large-scale spatial forest management. The
work of [6] successfully tests these solutions for dense forests with the aim of removing the
bottlenecks brought by traditional field sampling in estimating the aboveground biomass of
trees. Understanding the drivers behind the land use change, including forest loss, may help
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in designing better policies and practices. The work of [7] evaluates the drivers of forest loss
using a machine learning approach in a spatially heterogeneous space. LiDAR technology
has been proved to support many applications and decisions in forestry. LiDAR-based
data twinning may even be a prerequisite in our attempt to create virtual copies of forests
in the future. The work of [8] describes a non-biased highly accurate tree-segmentation
platform which supports the extraction of tree-level attributes such as diameter at breast
height (DBH), tree height and estimates of tree volume. At our level of development,
forest management is not possible without a well-designed road infrastructure, which
should provide the connectivity to resources, and should enable mobility for various
purposes. The management of forest roads by monitoring provides the possibility to take
early action and requires advanced solutions to support management’s responsivity. The
work of [9] proposes an ultrasound-based solution which has strong potential for road
monitoring, with a road geometry interpretation rate of up to 91.2%. Forest disturbances,
including forest fires, are shaping our forests in ways that can hinder their sustainability.
For this reason, the early detection of fire can contribute to taking responsive measures in
order to prevent losses due to damage. In this regard, and based on convolutional neural
networks, the work of [10] provides a competitive solution for fire detection. The work
of [11] provides a solution for monitoring motor-manual operations, in order to remove the
effects brought by the variability in placement of acceleration sensors; although the solution
was tested on a specific equipment, the approach has the potential of being adapted to
many other applications in which motor-manual tools are used in operations. Last, but
not least, the technique of ensemble learning may help discover patterns that are rather
inaccessible to conventional machine learning. Guided by this, the work of [12] describes a
novel ensemble learning method to detect forest fires in various scenarios, which improves
detection performance by 2.5%–10.9%.

In summary, to promote a better understanding of the usefulness of advanced so-
lutions in forest management, the Special Issue “Electronics, Close-Range Sensors and
Artificial Intelligence in Forestry” compiled advanced knowledge, techniques and solu-
tions specific to several disciplines, starting with the monitoring of forest resources and
infrastructure, and ending with the tools needed in disturbance management, sampling,
and operational forestry.
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Article

Research on Tree Ring Micro-Destructive Detection Technology
Based on Digital Micro-Drilling Resistance Method

Xueyang Hu 1,2,3 , Yili Zheng 1,2,3,*, Da Xing 1,2,3 and Qingfeng Sun 1,2,3

1 School of Technology, Beijing Forestry University, Beijing 100083, China; huxueyang@bjfu.edu.cn (X.H.);
xingda@bjfu.edu.cn (D.X.); qf3210261@bjfu.edu.cn (Q.S.)

2 Beijing Laboratory of Urban and Rural Ecological Environment, Beijing 100083, China
3 Key Lab of State Forestry Administration for Forestry Equipment and Automation, Beijing 100083, China
* Correspondence: zhengyili@bjfu.edu.cn

Abstract: Micro-drilling resistance method is a widely used tree ring micro-destructive detection
technology. To solve the problem that the detection signal of the analog micro-drilling resistance
method has excessive noise interference and cannot intuitively identify tree ring information, this
research proposes a digital micro-drilling resistance method and provides a recommended hardware
implementation. The digital micro-drilling resistance method adopts the photoelectric encoder
instead of ADC as the signal sampling module. Through the theoretical analysis of the DC motor
characteristic, the PWM closed-loop speed control, the detection principle of the digital method
is given. Additionally, the experimental equipment that can complete the detection of the digital
method and the analog method simultaneously is designed to carry out comparative experiments.
The experimental results show that: (1) The detection results of the digital method have a better-
quality signal which can intuitively identify the tree rings. (2) The average correlation coefficient
reaches 0.9365 between the detection results of the digital method and the analog method. (3) The
average Signal-to-Noise Ratio (SNR) of the digital method is 39.0145 dB, which is 19.2590 dB higher
than that of the analog method. The average noise interference energy in the detection result of
the digital method is only 1.27% of the analog method. In summary, hardware implementation
of the digital micro-drilling resistance method can correctly reflect the tree ring information and
significantly improve the signal quality of the micro-drilling resistance technology. This research is
helping to improve the identification accuracy of micro-drilling resistance technology, and to develop
the application of tree ring micro-destructive detection technology in the high-precision field.

Keywords: tree ring; forestry detection; resistance sensor; micro-drilling resistance method; signal
processing; Signal-to-Noise Ratio (SNR)

1. Introduction

Tree rings are the chronology of tree growth. The detection of tree rings can reveal
the growth of trees, judge their age, and provide an important basis for the cultivation,
utilization, and protection of trees [1]. In addition, tree rings also record the impact of
external factors such as environment and climate on tree growth [2]. Tree ring detection
has become an important way of obtaining forest growth and ecological environment
information [3–6]. Dendrochronology which is widely used in archaeology, climatology,
ecology, and geomorphology, has also become an interdisciplinary subject [7].

Facing the goal of developing better-quality forestry, it is imperative to develop
modern and smart forestry and improve the level of digitalization and intelligence [8,9].
Electronic and intelligent tools are constantly being applied to tree ring detection. In
the traditional tree ring detection method of tree disc sampling, the STD4800 scanner is
introduced to obtain high-definition tree disk images [10]. Then digital image recognition
is carried out through a special tree ring analysis system such as WinDendro [11–14]. It also
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can use the LINTAB CNC measuring platform and TSAP standard annual ring analysis
software to observe the tree disk by the high-resolution microscope [15–18]. With the
support of electronic tools, the detection accuracy of the tree disc sampling method is
very satisfactory. However, the great damage caused by felling trees is unavoidable with
the tree disk sampling method. The increment borer sampling method is an improved
method [19,20]. Taking the widely used HAGLOF increment borer as an example, it drills
a hollow cone tube with a diameter of 5~12 mm into the tree trunk to obtain tree core
samples [21–23]. However, the penetrating wound left on the trunk after the increment
borer sampling greatly increases the risk of disease infection of the tree, which causes great
damage [24].

With the strengthening of forest protection, the tree-ring detection technology is
developing in the direction of reducing the detection damage, and the non-destructive or
micro-destructive detection method of tree rings has attracted more and more attention.
From the traditional tree disk sampling method and the increment borer sampling method
to the computer tomography technology and the micro-drilling resistance technology,
the detection of tree rings is constantly trying new methods and technologies in forestry
operations [25,26]. However, the non-destructive tree ring detection equipment represented
by computer tomography has the disadvantages of high cost and large equipment size, so it
is difficult to be widely used in wild forestry practice [27–29]. Therefore, the micro-drilling
resistance tree ring detection technology has high expectations and has become a widely
used technology in the micro-destructive detection of tree rings.

The micro-drilling resistance tree ring detection technology refers to using a slender
drill needle to drill into the tree’s interior using a motor drive, detecting the tree ring by
sensing the resistance change during the drilling process [30]. The essence of micro-drilling
resistance technology is to build a sensor system that measures the change in density and
resistance caused by tree ring distribution [31]. The diameter of the micro-drill drilled
into the tree is generally less than 3 mm [32], so the damage to the tree’s phloem will
be significantly reduced, and the sieve tube that transports nutrients will not affect the
growth of the entire tree due to individual damage. Therefore, the micro-drilling resistance
technology can be regarded as a method of tree ring micro-destructive detection. With the
application of electrical recording in micro-drilling resistance equipment, research on tree
rings, internal structure, density, elastic modulus, etc., has been gradually carried out by
analyzing resistance signal waveforms [33–36]. The device, capable of acquiring resistance
waveforms, was named Resistograph by Rinntech.

Concerning the requirements of micro-destructive detection, obtaining a higher quality
signal and higher detection accuracy has become a research hotspot of the micro-drilling
resistance method. Rinn, F gives the recommended micro-drill bit shape and mechanical
structure to improve the tree rings sensitivity of the drill pin and reduce the interference
of mechanical vibration in the detection process [37]. Cao, Y et al. attempt to improve
detection accuracy by selecting the best detection path concerning the tree pith [38]. Oh, J
et al. showed the most proper feed speed to better evaluate the number of tree rings for
each tree species [15].

For the widely used and fully disclosed analog micro-drilling resistance method, the
main factor that affects the detection and identification accuracy is the excessive noise
interference in the output signal [39,40]. The signal in the analog method transmits in
analog quantities form, which results in poor anti-interference ability. And the complex
signal sampling process inevitably introduces noise interference, which causes poor signal
quality. These shortcomings, determined by the principle of the analog method, limit the
detection accuracy and mean the original waveform cannot be visually identified, so the
original waveform has to be processed by a filtering algorithm to identify the tree rings.
The researchers use various filtering algorithms to improve the original detection signal
from the analog method. For example, Pan H’s research uses Kalman filtering to process
the detection signal, and the processed signal is used to evaluate the tree age [41]. The
research of Yao, J et al. use an adaptive filtering algorithm to improve the accuracy of tree
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ring identification [42]. The research of Hu, X et al. uses the FIR filtering algorithm and
IIR filtering algorithm to process the output signals and evaluate the filtering results [43].
However, the filtering algorithms can only reduce the influence of noise interference but
cannot eliminate it. At the same time, the filtering process also brings side effects. On the
one hand, the complex filtering algorithm reduces the real-time performance of the result.
On the other hand, the threshold setting of filtering parameters is still quite difficult. The
strict filtering parameter settings will lead to the lack of effective signal, while the loose
filtering parameter settings will lead to difficulties in tree ring identification, which will
greatly reduce detection accuracy.

To solve the problem that the detection signal of the analog micro-drilling resistance
method has excessive noise interference and cannot intuitively identify the tree ring in-
formation, this research proposes a digital micro-drilling resistance method. The digital
micro-drilling resistance method attempts to design a new detection principle and hard-
ware implementation to realize the transmission of the signals in the digital quantities form,
fundamentally eliminate part of the noise interference, and improve the signal quality.
Compared with the analog method, the digital method has the advantages of less noise
interference, a simple detection circuit, and easy identification of tree rings.

This research aims to improve the signal quality and the detection accuracy of tree
ring micro-drilling detection technology, and to develop the application of tree ring micro-
destructive detection technology in the high-precision field. By reading this article, readers
will acquire the sensor principle and hardware implementation of the digital micro-drilling
resistance method, which has better signal quality and more easily identifiable waveforms
than the widely used analog micro-drilling resistance method.

2. Background

2.1. Dendrochronological Basis for Micro-Drilling Resistance Technology

Tree rings refer to the concentric rings on the cross-section of the tree trunk, and their
density and resistance characteristics are the basic principles of micro-drilling resistance
technology. Each round consists of earlywood and latewood, generally representing
secondary wood formed within a year.

The climate in spring and summer is warm and humid, which is suitable for tree
growth. The cambium cells grow and divide rapidly, and the formed xylem cells have
a larger size, thinner cell wall, less fiber content, and more ducts for transporting water.
Therefore, this part of the tree ring is loose in texture with a lighter color, and it is used
to be called earlywood or spring wood. On the contrary, the activity of cambium cells is
significantly weakened in autumn and winter, and the formed xylem cells become narrow,
thick, and fiber-rich. Therefore, the part of the tree ring in autumn and winter is dense in
texture with a darker color, habitually called latewood or autumn wood [39].

The microscopic structure of conifers is simple and regular, and mainly composed
of tracheids and xylem rays. The xylem rays of conifers are very thin and invisible to the
naked eye. In general, the tree ring circle of a coniferous tree is obvious, and the difference
between early and late wood is obvious. The earlywood has a thin wall with a large
cavity and a lighter color, while the latewood has a thick wall with a small cavity and a
darker color.

The broad-leaved wood is mainly composed of vessel, wood fiber, axial parenchyma,
and xylem ray. The structure is complicated. The size and distribution of the vessel holes
are divided into ring-porous trees, diffuse-porous trees, and semi-ring-porous trees. In the
ring-porous trees, the diameter of the vessels in the earlywood is significantly larger, while
the vessels in the latewood are quite small, so the density differences are very obvious
and the tree rings are easy to identify. The vessel size and distribution of diffuse-porous
trees reflect consistency or slight graduality. Therefore, there is no significant boundary
from earlywood to latewood; only a thin boundary exists between the latewood of the
previous growing season and the earlywood of the next growing season, so it is not easy to
distinguish. The semi-ring-porous trees are an intermediate type between the ring-porous

7



Forests 2022, 13, 1139

and the diffuse-porous. In the earlywood part, there will be bands formed by large vessels,
or rings formed by many small vessels, making the earlywood more obvious [44,45].

The micro-drilling resistance technology can reflect the density during the drilling
process and distinguish the earlywood and the latewood through the obvious change in
the wood density. Then the operator can carry out tree ring identification and analysis to
infer the tree’s age.

2.2. Classification of Micro-Drilling Resistance Method

According to the different sensor principles for determining resistance changes, this
research divides the micro-drilling resistance technology into three types: mechanical
method, analog method, and digital method.

2.2.1. Mechanical Micro-Drilling Resistance Method

The mechanical micro-drilling resistance method refers to driving the micro-drill using
a DC motor on a constant voltage and relying on the mechanical vibration to perceive the
measurement results and identify the change in the tree’s internal resistance. The sensor
principle of the method is based on the mechanical characteristic of the DC motor. And
the motor running at a constant voltage can be called the open-loop control mode. When
the wood density contacted by the micro-drill increases or decreases, the output torque
of the DC motor will increase or decrease accordingly, and the drilling needle driven by
the DC motor will suddenly decelerate or accelerate. This sudden speed change can be
perceived by the user through the instrument’s mechanical vibration or be recorded by the
spring-loader [46]. The mechanical method does not set up a signal detection circuit, so the
measurement results cannot be quantified. Therefore, the mechanical method is difficult to
identify the subtle resistance changes caused by the tree rings and gradually withdraws
from the application of tree ring detection. As the first micro-drilling resistance detec-
tion method, the mechanical method realizes the micro-destructive detection of the tree’s
internal material by simple equipment and sensor principles. IML-RESI MD300 is a repre-
sentative micro-destructive detection equipment based on the mechanical micro-drilling
resistance method [47]. MD300 is a drilling instrument working purely mechanically that
does not electronically record a measurement curve. The user feels the result and can read
the penetration depth on the 300 mm scale. Often an abrupt and fast penetration is percep-
tible when the instrument detects a rot zone. It is currently used in the detection of hollows,
rots, and cracks in trees, and other fields which do not require high precision. Since the
mechanical method is replaced by the analog method in tree ring detection, the mechanical
method will not be involved in the following experiments and comparative analysis.

2.2.2. Analog Micro-Drilling Resistance Method

To solve the problem acknowledging that the measurement results of the mechanical
method cannot be quantified and the automation degree of the detection process is low,
the analog micro-drilling resistance method came into being. The analog micro-drilling
resistance method refers to using a closed-loop control motor to drive the micro-drill rotated
at a constant speed, converting the resistance amplitude into an analog signal by connecting
a sampling resistor in the motor armature circuit, and finally transferring the signal to
SoC (System-on-a-Chip) by the ADC (Analog-to-Digital Converter) sampling module. The
analog method solves the disadvantage that the mechanical method cannot quantify the
results and has become a widely used method for micro-drilling resistance technology.
The design principle of the tree ring micro-destructive detection equipment published by
Hu, X and Chen, X can be considered the analog method [39,40]. Currently, the tree ring
micro-destructive detection system designed by Beijing Forestry University (BJFU) and
the tree-ring acupuncture instrument designed by the Chinese Academy of Forestry (CAF)
are both designed by the analog micro-drilling resistance method. Using the equipment
based on the analog method, the operator can automatically complete the drilling and
simply obtain the result data by sending control commands through the button. And in

8



Forests 2022, 13, 1139

the process of detection, the results can be printed on wax paper in real-time waveforms
or stored on an SD card. The distribution of earlywood and latewood in tree rings was
analyzed by the peaks and troughs of the waveform. The analog method that can quantify
the measurement results ensures the feasibility of the micro-drilling resistance method for
tree ring detection [48,49].

2.2.3. Digital Micro-Drilling Resistance Method

The digital micro-drilling resistance method proposed in this research is a new micro-
drilling resistance tree ring detection method, which is based on the principle of the
DC motor output characteristic and the PWM closed-loop speed control. The digital
micro-drilling resistance method uses a photoelectric encoder to obtain digital signals for
transmission, which is different from the widely used analog method and does not need to
use the ADC conversion module, which avoids noise interference during signal sampling
and improves the anti-interference ability of the signal. Compared with the analog method,
the digital method has the advantages of less noise interference, a simple detection circuit,
and easy identification of tree rings.

Table 1 shows the comparison of the mechanical method, the analog method, and the
digital method proposed in this research.

Table 1. Comparison of the mechanical method, the analog method, and the digital method.

Characteristic Mechanical Analog Digital

Quantification of results No Yes Yes

Circuit complexity Simple Complex Simple

Motor control Open-loop Closed-loop Closed-loop

Sampling module Mechanical vibration ADC Photoelectric encoder

Signal type Mechanical Analog Digital

Anti-interference ability Weak Weak Strong

Signal quality Weak Poor Good

3. Materials and Methods

In this section, the principle of the digital micro-drilling resistance method is firstly
deduced by formula. The recommended hardware implementation of the digital micro-
drilling resistance method is also given. The experimental equipment which can complete
the detection of the digital method and the analog method is designed to simultaneously
carry out comparative experiments. Finally, the experimental sample is introduced.

3.1. Principle of Digital Micro-Drilling Resistance Method

The digital micro-destructive resistance method proposed in this research is based on
the output torque characteristic of the DC motor and the PWM closed-loop speed control.
It uses the photoelectric encoder to obtain the detection data. The formula is derived
as follows.

The digital micro-drilling resistance method detects the resistance torque given by the
tree rings on the micro-drill bit to obtain the density change of the tree rings.

Equation (1) is the theorem of rigid body rotation with a fixed axis:

→
M = J

→
β = J

d
→
ω

dt
(1)

M: combined external torque acting on the drill; J: moment of Inertia of the drill; β:
angular acceleration of the drill; ω: angular velocity of the drill; t: time.
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The moment of inertia J of the drill needle is determined by three factors: the quality,
the mass distribution, and the position of the rotating axis. During the detection, the
moment of inertia J of the drill is a constant value.

Equation (2) is derived from the force analysis of the micro-drill:

→
M =

→
T +

→
TL +

→
T0 (2)

→
T : electromagnetic torque;

→
TL: load torque or resistance torque;

→
T0: no-load torque.

The direction of electromagnetic torque
→
T is opposite to the direction of resistance

torque
→
TL and no-load torque

→
T0. Therefore, the scalarized Equation (2) combines with

Equation (1) to form Equation (3):

T − TL − T0 = Jβ =
dω

dt
(3)

Shift the terms of Equation (3) to get the value of load torque TL:

TL = T − T0 −
dω

dt
(4)

To obtain a linear relationship between the TL and the T, the angular acceleration of
the micro-drill must always be equal to zero—that is, the derivative of the angular velocity
with time is always equal to zero. The drill needle must move at a constant angular velocity
during the drilling process. In this case, Equation (4) can be simplified to Equation (5):

TL = T − T0 (5)

The no-load torque T0 of the motor is much smaller than the resistance torque TL

during drilling, so T0 can be ignored. Under the condition that the drill needle is kept
moving at a constant angular velocity and the load torque T0 is ignored, the Equation (5)
can be approximated as:

TL ≈ T (6)

The above derivation converts the resistance torque TL into the measurement of the
electromagnetic torque T of the motor and provides an electrical way to measure the
resistance torque TL.

Equation (7) is the torque characteristic of the DC brush motor:

T = CtφIa (7)

Ct: torque constant; φ: flux per pole, determined by the characteristic of the motor; Ia:
armature current.

Equation (8) can be obtained by combining Equations (6) and (7):

TL = CtφIa (8)

Equation (8) shows that the armature current Ia is linearly proportional to the resistance
torque TL. Through the value of the armature current Ia, the resistance change in the drilling
process can be obtained, and the tree ring detection can be realized.

Different from the analog method in which the armature current Ia is obtained by
the sampling resistance method, the digital method converts Ia into a digital signal and
transmits it to the SoC.

The DC motor voltage balance equation is shown in Equation (9):

U = E + IaRa (9)

U: armature voltage; E: armature electromotive force; Ra armature resistance.
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The principle of electromagnetics shows that the relationship between the motor speed
n and the armature electromotive force E is shown in Equation (10):

E = Ceφn (10)

Ce: potential coefficient.
The relationship between the motor speed n and the rotational angular velocity ω is

shown in Equation (11):
ω = 2πn (11)

The prerequisite of Equation (8) is that the angular velocity ω is a constant value,
so during the detection process, the motor speed n is a constant value, and the armature
electromotive force E is also a constant value.

The PID algorithm and PWM technology control a constant angular velocity ω of the
micro-drill during the detection process. PWM is a method for the SoC to control analog
circuits by outputting digital signals [50,51]. And PWM control technology obtains the
required waveform or equivalent amplitude according to the principle of area equivalence
by modulating the width of the pulse. The rectangular wave voltage PWM is shown in
Equation (12):

U = DPWMUm (12)

DPWM: PWM duty ratio; Um: maximum voltage.
Equation (13) can be derived from Equations (8)–(10):

TL = Ctφ
DPWMUm − Ceφn

Ra
(13)

The PID algorithm is a method of control by deviation, where P means proportional,
I means integral, and D means differential. The algorithm is simple, robust, reliable, and
widely used in various control fields [52–54]. And Figure 1 shows the structure diagram of
the PID speed closed-loop control algorithm.

𝑛 𝐸𝐸 = 𝐶𝑒𝜙𝑛𝐶𝑒 𝑛 𝜔
𝜔 = 2𝜋𝑛 𝜔𝑛𝐸 𝜔

𝑈 = 𝐷𝑃𝑊𝑀𝑈𝑚𝐷𝑃𝑊𝑀 𝑈𝑚
–𝑇𝐿 = 𝐶𝑡𝜙𝐷𝑃𝑊𝑀𝑈𝑚 − 𝐶𝑒𝜙𝑛𝑅𝑎

–

Proportional 

Adjustment

Integral 

Adjustment

Differential 

Adjustment

Motor Driver

Photoelectric 

Encoder

DC Motor

Set Speed Speed

+

-

𝐷𝑃𝑊𝑀
𝐷𝑃𝑊𝑀 = 𝑇𝑜𝑛𝑇 = 𝐾𝑝𝑒(𝑘) + 𝐾𝑖 ∑ 𝑒(𝑘) + 𝐾𝑑(𝑒(𝑘) − 𝑒(𝑘 − 1))𝑘𝑛=0 𝑇𝑇𝑜𝑛 𝑇 𝑒(𝑘) 𝐾𝑝𝐾𝑖 𝐾𝑑𝑇𝑒(𝑘)

Figure 1. The structure diagram of the PID speed closed-loop control algorithm.

DPWM is calculated by SoC according to PID speed closed-loop control algorithm and
speed error, as shown in Equation (14):

DPWM =
Ton

T
=

Kpe(k) + Ki ∑
k
n=0 e(k) + Kd(e(k)− e(k− 1))

T
(14)

Ton: pulse width time; T: cycle time of PWM; e(k): speed error; Kp: proportional adjust-
ment coefficient; Ki: integral adjustment coefficient: Kd: differential adjustment coefficient.

The PWM cycle time T is a constant value during the control process, and the rotational
speed error e(k) is calculated by the photoelectric encoder.
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The above formula derivation proves the relationship shown in Equation (15):

TL ∝ DPWM ∝ Ton (15)

DPWM and Ton are proportional to the resistance torque TL, and the resistance change
can be reflected by the value change of DPWM or Ton. The detection signal is sampled
and transmitted as a digital signal, and ADC is not used in the whole signal flow process.
Therefore, this research named the method “digital micro-drilling resistance method”.

3.2. Hardware Implementation of Digital Micro-Drilling Resistance Method

According to the principle of the digital micro-drilling resistance method, we give
the recommended hardware system architecture and hardware implementation scheme.
The hardware system architecture of the digital micro-drilling resistance method is shown
in Figure 2, which consists of a SoC module, a DC motor drive module, a digital signal
sampling module, and a data transmission module.

𝑇𝐿 ∝ 𝐷𝑃𝑊𝑀 ∝ 𝑇𝑜𝑛𝐷𝑃𝑊𝑀 𝑇𝑜𝑛 𝑇𝐿𝐷𝑃𝑊𝑀 𝑇𝑜𝑛
. Therefore, this research named the method “digital micro

method”.
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PWM QEP SCI

H-bridge

DC Motor
Photoelectric 

Encoder

Motor Driver

Module

SD Card Bluetooth

SoC Module

Digital Signal 
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Module

Data 

Transmission 

Module

 

Figure 2. The hardware system architecture.

3.2.1. SoC Module

The SoC module is composed of DSP chip and peripheral circuits. As the core of the
detection and control circuit, the DSP chip adopts a TMS320F2812 high-speed real-time
digital signal processing chip. The chip is a high-performance 32-bit data processor with
excellent digital signal processing and motion control capabilities. Abundant peripheral
functions and interfaces can meet the needs of digital micro-drilling resistance methods.
The PWM function realizes the control of the DC motor, the Serial Communication Interface
(SCI) realizes the transmission of detection data, and the Quadrature Encoder Pulse (QEP)
module is used for digital encoder signal sampling [55,56].

3.2.2. H-Bridge Motor Driver Module

The RE35 DC motor is selected as the drive motor for the high-speed rotation of the
micro-drill. The motor has the characteristics of low-speed fluctuation, high conversion
efficiency, high operation stability, and easy control.

In the process of drilling into the tree and exiting the tree, the micro-drill needs to rotate
in the opposite direction, so the first control requirement for the motor is to realize forward
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and reverse control. At the same time, the principle of the micro-drilling resistance method
requires that the motor must rotate at a constant angular velocity to ensure the validity
of tree ring identification. Therefore, the second control requirement for the motor is to
realize speed control. Further, the principle of the digital micro-drilling resistance method
requires the use of a PWM voltage modulation signal to control the speed of the motor. For
this purpose, the H-bridge motor driver circuit, as shown in Figure 3, is designed.
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Figure 3. The H-bridge motor driver circuit.

The H-bridge motor driver circuit is composed of 4 MOSFETs distributed on 4 bridge
arms, and the on and off of the MOSFET is controlled by the PWM signal [57]. The
PWM control signals of MOS1 and MOS3, MOS2 and MOS4, are complementary channels.
PWM1 and PWM2 are a pair of control signals with opposite polarities but the same
period and duty cycle so that the two MOSFETs on the diagonal can be turned on and off
simultaneously. The H-bridge motor driver circuit can control the forward and reverse
rotation of the motor and has the advantages of small speed regulation static difference,
large range, and fast dynamic response, which meets the control requirements of the
micro-drill drive motor.

The maximum output voltage of the DSP pin is 3.3 V, which cannot meet the turn-on
requirements of driving the upper bridge arm. It is necessary to use a bootstrap circuit to
boost the PWM signal to control the MOSFET. The bootstrap circuit comprises a half-bridge
driver chip IR2104S, a bootstrap diode, and a bootstrap capacitor. IR2104S can output a
pair of complementary drive levels with a dead zone only by inputting one PWM control
signal. The DSP outputs PWM1 and PWM2, two control signals to control two IR2104S
chips, achieve the control of the four MOS tubes in the H-bridge circuit, and realize the
adjustment of the motor speed and steering.

3.2.3. Digital Signal Sampling Module

A HEDL-5540 1024-line incremental photoelectric encoder is installed at the rear of
the RE35 DC motor, as shown in Figure 4.

Figure 4. The RE35 DC motor with HEDL-5540 photoelectric encoder.

The digital signal sampling module is used to receive the rotational speed digital
signal transmitted by the HEDL-5540 1024-line incremental photoelectric encoder. The
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HEDL-5540 encoder is a device that converts the mechanical geometric displacement on
the output shaft of the motor into a digital pulse signal through photoelectric conversion.
There are three square wave pulse output signals: A, B, and I. Pulse A and B measure the
rotation direction and speed, and their phase difference is 90◦. Pulse I is used to locate the
reference point. The square wave pulses A, B, and I output by the encoder are respectively
connected with the QEP1, QEP2, and QEPI pins of the DSP, and the digital signal of the
rotational speed detected by the encoder is transmitted to the DSP.

The number of pulses sent by the HEDL-5540 encoder per motor revolution is 1024.
Assuming that the total number of pulses measured within a fixed time interval T is m, the
calculation formula of the motor speed per minute n is shown in Equation (16):

n =
60m

1024T
(16)

In the specific implementation, the DSP timer works in the directional increase/decrease
mode, the clock source is set to the QEP circuit module, and the initial value of the timer’s
count register is set to the intermediate value 0x7FFF. If the phase of the pulse signal A
input by the QEP1 pin is ahead of the pulse signal B input by the QEP2 pin, the count
register will count up; otherwise, the count register will count down. The motor direction
is judged by the sign of the difference between the end value of the count register and the
initial value within a fixed time interval, and the speed value is judged by the absolute
value. It should be noted that the QEP module of the DSP counts both the upper and lower
edges of the pulse, so the clock input frequency generated by the QEP module is 4 times
the frequency of the A or B pulse signal.

3.3. Experimental Equipment

To verify the theoretical derivation of the digital micro-drilling resistance method, and
compare the difference in detection results between the digital and analog methods under
the same condition, a tree ring detection experimental equipment which can complete the
detection of the digital method and the analog method simultaneously is designed to carry
out comparative experiments.

3.3.1. Mechanical Structure

The experimental equipment adopts the hand-held mechanical structure and dual-
motor transmission structure shown in Figures 5 and 6, similar to the mechanical structure
proposed by Hu X. in [39].

𝑇 𝑚𝑛𝑛 = 60𝑚1024𝑇
’

Figure 5. The hand-held mechanical structure.

The DC motor drives the micro-drill to rotate at high speed. The stepping motor drives
the forward and backward of the micro-drill. The maximum diameter of the micro-drill
is 3 mm. The operator points the equipment at the tree trunk and then uses the button to
send instructions and detect tree rings.
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Figure 6. The dual-motor transmission structure. (1. Stepper motor; 2. Sliding base; 3. DC motor;
4. Motor base; 5. Drill clip; 6. Micro-drill; 7. Lead screw).

3.3.2. Hardware Circuit

To compare the difference in detection results between the digital and the analog
micro-drilling resistance methods, a special hardware circuit with both detection methods
is designed for the experiment. The special hardware circuit can output the detection
results of digital and analog methods at the same time, effectively controlling the influence
of irrelevant variables on the detection results.

The experimental hardware circuit is based on the hardware implementation of the
digital micro-drilling resistance method, and an analog signal sampling module is added.
The hardware architecture is shown in Figure 7.
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Figure 7. The experimental hardware architecture.

To realize the output of analog detection results, a sampling resistor is added to the
armature of the H-bridge motor driver circuit. The INA282 bi-directional current sense
amplifier is connected to the sampling resistor. The amplified current signal is transmitted
to the ADC pin of the DSP to obtain the detection result. During the detection process, the
digital and analog detection circuits operate simultaneously. The analog results sampled by
ADC and the digital results calculated by the photoelectric encoder are both stored in the SD
card or sent out by SCI. In the detection, the analog and digital detection results are output
simultaneously to ensure the consistency of the measurement object and the measurement
environment, which reduces the interference of various uncontrollable factors and provides
reliable hardware for the comparison experiments carried out in this research.
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3.4. Experimental Sample

In this research, tree disk samples were used for the micro-drilling resistance method
detection experiment to compare with the actual tree rings. The tree disk samples used in
this experiment are sampled from the Jingouling Forest Farm in Wangqing County, Yanbian
Prefecture, Jilin Province, China. The Jingouling Forest Farm is located in the upper reaches
of the Tumen River on the northwest slope of the Changbai Mountains, located at E 130◦5′

to 130◦20′ and N 43◦17′ to 43◦25′, and the altitude spans from 550 m to 1100 m [58]. The
forest vegetation in this area is stratified in the vertical direction. The climate in this region
is affected by tropical marine air mass or degenerated marine air mass from May to August
every year and is affected by Siberia continental air mass from October to March of the
following year, and the seasonal climate cycle changes significantly. The growing season of
trees is mainly concentrated in the summer, from July to September, when the temperature
is suitable and the rainfall is sufficient. In winter, there is a freezing period of more than
4.5 months. This makes the growth rate of plants in the area cyclically change, so tree rings
generally grow one ring per year.

In the experiment, Larch and Fir tree discs from Jingouling Forest Farm were selected
as samples. Larch (Larix gmelinii (Rupr.) Kuzen) is a deciduous tree of the Pinaceae
and Larix genus. Larch is the main forest species in Northeast China, widely used for
afforestation and forest regeneration, as well as for various wood and industrial materials.
The density of the tree rings changes sharply in the earlywood and latewood, making
the growth rings clearly visible, the wood grain is straight, and the structure is thicker,
which makes it easy to identify the tree rings. Fir (Abies nephrolepis (Trautv.) Maxim.) is
a Pinaceae and Abies genus tree with strong adaptability and a preference for cold and
wet environments. The density difference between the earlywood and latewood of Fir is
smaller than that of Larch, which requires higher detection accuracy.

4. Results

In the experiment, Larch and Fir discs are detected 4 times using the above-mentioned
experimental equipment, which can complete the detection of the digital method and the
analog method simultaneously. The information of the experimental discs is shown in
Table 2, and the detection results of Larch SN. 29-1043-52471 and Fir SN. 30-1013-34894 are
selected to show the analysis process.

Table 2. The information of the experimental discs.

Serial Number (SN) Tree Specie Diameter/cm

29-1043-52471 Larch 21.5
29-1043-52472 Larch 21.3
29-1257-48683 Larch 17.5
29-1903-44540 Larch 14.5

30-1013-34894 Fir 14.3
30-1512-18696 Fir 15.3
30-1849-16448 Fir 16.8
30-1911-50929 Fir 23.3

4.1. Original Detection Results

Figure 8 shows the waveforms of the original detection results for the digital and
analog outputs of the Larch disc (SN. 29-1043-52471). LD refers to the detection result of
the Larch disc, shown in red. LA refers to the detection result of the Larch disc, shown
in blue. Figure 9 shows the waveforms of the original detection results of the digital and
analog outputs of the Fir disc (SN. 30-1013-34894). FD refers to the detection result of the
Fir disc, shown in red. FA refers to the detection result of the Fir disc, shown in blue.
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Figure 8. The waveforms of the original detection results for the digital and analog outputs of the
Larch disc (SN. 29-1043-52471).

 

Figure 9. The waveforms of the original detection results of the digital and analog outputs of the Fir
disc (SN. 30-1013-34894).

Figure 9 shows the waveforms of the original detection results of the digital and analog
outputs of the Fir disc (SN. 30-1013-34894). FD refers to the detection result of the Fir disc,
shown in red. FA refers to the detection result of the Fir disc, shown in blue.

4.2. Result of Preprocessing and Correlation Analysis

It can be seen from the original signal waveforms of Figures 8 and 9 that the digital and
analog methods obtain the same number of sampling points, indicating the two detection
methods are running simultaneously during the experiment. However, the amplitudes of
the detection results obtained by the two methods are not the same because of the different
sampling methods, which have different physical meanings. According to the analysis of
the formula, the detection results of the digital method and the analog method are both
proportional to the tree ring resistance. Therefore, this research attempts to convert the
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amplitudes of the digital and analog detection results to the same benchmark through
preprocessing. If the detection results converted to the same benchmark have the same
characteristics, the consistency of the two test results and the correctness of the digital
method can be proved. The operation of preprocessing is as follows.

The detection signal is first fitted linearly using the least squares method. The fitted
target polynomial p(x) is shown in Equation (17):

p(x) = p1x + p2 (17)

p1: 1th-degree coefficient; p2: constant coefficient.
p1 and p2 can be calculated by Equation (18):
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The fitted polynomial of LD (pLD) is:

pLD (x) = 0.0016x + 4687.3968 (19)

The fitted polynomial of LA (pLA) is:

pLA (x) = 0.0016x + 1248.1110 (20)

Figure 10 shows the digital and analog original signals and the fitted polynomial
waveforms of Larch.

 

Figure 10. The digital and analog original signals and the fitted polynomial waveforms of Larch (SN.
29-1043-52471).

The fitted polynomial of FD (pFD) is:

pFD (x) = −0.0007x + 4677.2159 (21)

The fitted polynomial of FA (pFA) is:

pFA (x) = −0.0009x + 1255.9182 (22)
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Figure 11 shows the digital and analog original signals and the fitted polynomial
waveforms of Fir.

𝑝(𝑥) 𝑝(𝑥) = 𝑝1𝑥 + 𝑝2𝑝1 𝑝2𝑝1 𝑝2

(  
 𝑛 ∑𝑥𝑖𝑛

𝑖=1∑𝑥𝑖𝑛
𝑖=1 ∑𝑥𝑖2𝑛

𝑖=1 )  
 (𝑝2𝑝1) = ( ∑ 𝑦𝑖𝑛𝑖=1∑ 𝑥𝑖𝑦𝑖𝑛𝑖=1 )

𝑝LD 𝑝LD (𝑥) = 0.0016𝑥 + 4687.3968𝑝LA 𝑝LA (𝑥) = 0.0016𝑥 + 1248.1110
𝑝FD 𝑝FD (𝑥) = −0.0007𝑥 + 4677.2159𝑝FA 𝑝FA (𝑥) = −0.0009𝑥 + 1255.9182

 

Figure 11. The digital and analog original signals and the fitted polynomial waveforms of Fir (SN.
30-1013-34894).

Subtract the fitted polynomial from the original signal to get the detrended detection
signals shown in Figures 12 and 13.

 

𝜌𝐷𝐴 = Cov(𝐷, 𝐴)𝜎𝐷𝜎𝐴Cov 𝜎 𝐷𝐴

Figure 12. The detrended Larch digital (dLD) detection result waveform and detrended Larch analog
(dLA) detection result waveform (SN. 29-1043-52471).

The amplitude and trend of the detrended digital detection results and the detrended
analog detection results are very similar. However, it is still difficult to intuitively determine
their consistency due to the large amount of interference contained in the detrended analog
detection results.
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𝜌𝐷𝐴 = Cov(𝐷, 𝐴)𝜎𝐷𝜎𝐴Cov 𝜎 𝐷𝐴

Figure 13. The detrended Fir digital (dFD) detection result waveform and detrended Fir analog (dFA)
detection result waveform (SN. 30-1013-34894).

To determine the consistency of the two detection results, a correlation coefficient
was introduced for quantitative analysis [59]. The correlation coefficient is defined in
Equation (23)

ρDA =
Cov(D, A)

σDσA
(23)

Cov: covariance; σ: standard deviation; D: digital detection result after detrending; A:
analog detection result after detrending.

The correlation coefficients ρDA of each sample are shown in Table 3.

Table 3. The correlation coefficients and average correlation coefficients.

Serial Number (SN) Correlation Coefficient Average

29-1043-52471 0.9576

0.9413

0.9365

29-1043-52472 0.9484
29-1257-48683 0.9287
29-1903-44540 0.9305

30-1013-34894 0.9028

0.9317
30-1512-18696 0.9376
30-1849-16448 0.9187
30-1911-50929 0.9678

The value range of the correlation coefficient is between −1 to 1. Generally, when the
correlation coefficient is greater than 0.9, the two signals can be considered to have a strong
positive correlation. The correlation coefficients of the two detection results shown in
Table 3 are all greater than 0.9, and the average correlation coefficient of Larch is 0.9413, the
average correlation coefficient of Fir is 0.9317, and the overall average is 0.9365. Therefore,
the detection results of the digital method and the analog method have a strong correlation,
and it can be considered that the detection results output by the two methods are consistent.
Based on the above correlation analysis, it can be proved that the detection results of the
digital method have the same correctness as the analog method.
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4.3. Power Spectrum Analysis and SNR

In the time domain, the digital micro-drilling resistance detection signal is obviously
clearer and easier to identify than the analog. The spectrum analysis can be performed on
the signal so that it can be seen more intuitively that the digital signal contains less noise
interference than the analog signal.

Normalize the power of the digital and the analog detection results according to
Equation (24):

f (x)′ =
f (x)√

XPower
=

f (x)
√

∑
n
i=1 f (xi)

2
(24)

The power-normalized digital results are denoted as D′, and the power-normalized
analog results are denoted as A′. The signal DG is obtained by filtering the power-
normalized digital detection results using a Gaussian filter. Latewood points in the DG are
marked with an asterisk by the identification algorithm. Taking the results of SN.29-1043-
52471 as an example, its latewood marking points are shown in Figure 14.

𝜌𝐷𝐴

−

𝑓(𝑥)′ = 𝑓(𝑥)√𝑋𝑃𝑜𝑤𝑒𝑟 = 𝑓(𝑥)√∑ 𝑓(𝑥𝑖)2𝑛𝑖=1 𝐷′𝐴′ 𝐷𝐺 𝐷𝐺

 

Figure 14. The tree ring latewood identification mark diagram based on the digital detection result
after Gaussian filtering (SN. 29-1043-52471).

It can be seen from Figure 14 that the signal is clear and easy to identify, and the
latewood points of the tree rings identified automatically by the algorithm have high
accuracy and can correspond to the actual tree rings. Therefore, in this study, the DG is
approximately regarded as a noise-free tree ring detection signal, called the desired signal.

Display the power spectrums of the digital method signal D′, the analog method
signal A′, and the useful signal DG. The result of SN. 29-1043-52471 is shown in Figure 15,
and the result of SN. 30-1013-34894 is shown in Figure 16.

It can be seen in Figures 15 and 16 that the power spectrum waveforms characteristics
of Larch and Fir are similar. The three waveforms coincide in the low-frequency band,
and their energy is concentrated in the low-frequency band, reflecting the change in tree
ring resistance. Then the amplitude of the DG waveform drops rapidly and separates
from D′ and A′. Since DG is the desired signal that does not contain noise signals; the
separated part represents the noise interference introduced in the detection process. In the
separation part, the difference between the D′ signal and DG is significantly smaller than
the difference between the A′ signal and DG, indicating that the noise interference level of
the digital method is significantly lower than that of the analog method. In addition, there
are required noise spikes in A′, and the number of noise spikes in D′ is also significantly
reduced, indicating that the digital method completely avoids noise interference in some
frequency bands.

21



Forests 2022, 13, 1139

𝐷𝐺𝐷′𝐴′ 𝐷𝐺

 

𝐷𝐺𝐷′ 𝐴′ 𝐷𝐺

Figure 15. The power spectrums of Larch SN. 30-1013-34894.

𝐷𝐺𝐷′𝐴′ 𝐷𝐺
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Figure 16. The power spectrums of Fir SN. 29-1043-52471.

To quantify the improvement of the signal quality by the digital method, this research
introduces the Signal-to-Noise Ratio (SNR) indicator, which can also be called the Signal-to-
Interference and Noise Ratio (SINR) indicator. The SNR refers to the ratio of the desired
signal power (DGPower) to the noise and interference signal power (nPower), usually in
dB. The calculation formula of SNR is shown in Equation (25):

SNR = 10lg
DGPower

nPower
= 10lg

DGPower

nPower
= 10lg

DGPower

XPower− DGPower
(25)

XPower refers to D′Power when calculating SNR for the digital method, XPower refers
to A′Power when calculating SNR for the analog method.

The SNR for the digital method and the analog method of each sample are shown in
Table 4. All the SNR are in dB. SNR (DM) refers to the SNR for the digital method, and SNR
(AM) refers to the SNR for the analog method. SNR Improvement refers to the difference
between the SNR of the digital method and the SNR of the analog method.
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Table 4. The SNR for the digital method (DM) and the analog method (AM).

Serial Number
(SN)

SNR
(DM)

Average SNR
(DM)

SNR
(AM)

Average SNR
(AM)

SNR
Improvement

Average SNR
Improvement

29-1043-52471 39.2524

39.3461

39.0145

18.3452

18.6280

19.7555

20.9072

20.7163

19.2590

29-1043-52472 39.2172 18.6373 20.5799
29-1257-48683 40.3822 18.7451 21.6371
29-1903-44540 38.5327 18.7918 19.7409

30-1013-34894 40.4539

38.6829

21.9157

20.8812

18.5382

17.8017
30-1512-18696 38.6922 20.3393 18.3529
30-1849-16448 37.7802 21.1697 16.6105
30-1911-50929 37.8054 20.1002 17.7052

The larger the SNR, the smaller the noise interference mixed in the signal and the
higher the signal quality; otherwise, the opposite is true. In the eight sample experiments,
the average SNR of the digital method is 39.0145 dB, and the average SNR of the analog
method is 19.7555 dB. The SNR of the digital method is 19.2590 dB higher than that of the
analog method.

Converting the SNR to the percentage Pn of digital method noise interference energy
to analog method noise interference energy is shown in Equation (26):

Pn =
nPower(DM)

nPower(AM)
= 10

SNR(AM)−SNR(DM)
10 % (26)

The Pn for the digital method and the analog method of each sample are shown in
Table 5.

Table 5. The correlation coefficients and average correlation coefficients.

Serial Number (SN) Pn Average

29-1043-52471 0.81%

0.86%

1.27%

29-1043-52472 0.88%
29-1257-48683 0.69%
29-1903-44540 1.06%

30-1013-34894 1.40%

1.69%
30-1512-18696 1.46%
30-1849-16448 2.18%
30-1911-50929 1.70%

Table 5 shows that the average noise interference energy of the digital method is only
1.27% of that of the analog method. Therefore, the digital method greatly reduces the
introduced noise interference and significantly improves signal quality.

5. Discussion

The experimental results can be discussed from two perspectives; time domain and
frequency domain. For analysis in the time domain, the first focus is on waveform and
amplitude. The waveform of the digital method is clear, which can intuitively identify the
tree rings of earlywood and latewood and evaluate the tree age, while the waveform of
the analog method fluctuates violently, and the effective tree ring information cannot be
identified. This is the signal quality improvement of the digital method, directly reflected
from the time domain waveform. There is a significant difference in amplitude between the
two signals due to differences in the calculation of the two detection methods. Although
their amplitudes are different, they are all used to measure the change of resistance, so if the
calculation formula of the digital method is correct, the digital and analog detection signals
should have a strong correlation. As the experimental results show, the average correlation
coefficient of the two detection methods reaches 0.9365, which means the results obtained
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by the two have high consistency, and verifies the correctness of the digital method from
the perspective of experimental results. Through the flow of the measured signal, the
consistency of the detection results can also be proved. The signal flow diagram of the
digital method and the analog method is shown in Figure 17.
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Figure 17. The signal flow diagram of the digital method and the analog method.

It can be seen from Figure 17 that both methods complete the first three steps of signal
flow based on the proportional relationship between the armature current and the change
in tree ring density. The flow after the armature current starts to differ between the digital
method and the analog method, so both detection results should be related to the armature
circuit. The analog method is a widely used and correct method of micro-drilling resistance
technology, so the detection results of the digital method are strongly related to the analog
method, which can verify the correctness of the digital method.

In the analysis of the frequency domain, this study uses SNR to quantify the improve-
ment of signal quality. Compared with the analog method, the digital method has an
excellent performance, the average SNR improves by 19.2590 dB, and the average noise
interference energy is only 1.27% of the analog method. Such excellent performance can be
obtained because the digital method does not take measures to reduce the influence of noise
interference but cuts off the way of noise interference in principle. Figure 17 also shows the
approach to noise intervention. Comparing the noise intervention of the two methods, the
digital method samples the non-electrical quantity speed, which avoids the line crosstalk
caused by high-frequency electronic signals such as PWM signals and serial transmission.
An amplifier isn’t needed in the digital method, so there is no nonlinear amplification
interference. At the same time, the digital method uses a photoelectric encoder instead
of ADC for sampling. The digital pulse signal output by the photoelectric encoder has a
strong anti-interference ability and will not be affected by thermal noise and power-supply
ripple waves interference.

There are also some limitations and further research directions on the digital micro-
drilling resistance method. The first limitation is the micro-drilling resistance method is
used to identify tree rings by density difference. Hence, it’s more suitable for the coniferous
and ring-porous trees, which have clearly separated tree rings into earlywood and latewood,
but not very suitable for the diffuse-porous trees. To compare the performance of the two
different micro-drilling resistance methods under the best conditions, the two experimental
tree species are coniferous. Experimental on some ring-porous trees or semi-ring-porous
trees is a further research direction.

Secondly, the correctness of the digital method was confirmed by the consistency
study. To obtain accurate detection more intuitively, the results can also be compared with
dendrochronological methods.

The third direction is the changes in reference voltage for digital detection results. In
forest operations, batteries are usually used to power equipment, and the output voltage
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of the batteries will gradually decrease. The output voltage of the battery will be directly
connected to the upper and lower bridge arms of the H-bridge motor drive circuit as
Um. The digital method that uses the PWM duty ratio DPWM or pulse width time Ton

as the output detection result will be affected by the changes in the amplitude of Um, so
Um can be regarded as a reference voltage. During a single detection process, the power
consumption of the battery is very limited, so the change in Um is very small, and the
impact on the average amplitude of the detection results can be ignored. However, for
the two detections with a large difference in battery power, the average amplitude of the
output results will be greatly affected by Um. Taking the detection of the same tree disk
sample as an example, when the battery power is sufficient, Um is larger, which makes
the average amplitude of the detection results smaller; when the battery power is low, Um

is small, so that the average amplitude of the average detection results increases. For the
same detection sample, this will lead to inconsistent results of multiple detection. And for
different detection samples, this will lead to misjudgment as the difference is caused by the
difference in the average density of the detection samples. Since the experiments carried
out in this research all use a constant voltage source for supplying stable power, it is not
affected by the above-mentioned voltage reference problem, but this problem should be
paid attention to when the digital method is used in the case of battery power supply.

Finally, the small amount of noise still present in the digital method can be a further
research direction. Part of the noise is introduced from the first three steps of signal flow
due to the digital method starting after the third step. Another reason is the subtle noise
interference that may be introduced by the sampling process of digital detection methods.
Further research can analyze the above two types of noise interference, and try to reduce or
eliminate their influence to obtain a better-quality signal.

6. Conclusions

In this research, a digital micro-drilling resistance method is proposed. The theoret-
ical analysis and comparative experiments show that hardware implementation of the
digital micro-drilling resistance method can correctly reflect the tree ring information and
significantly improve the signal quality of the micro-drilling resistance technology. This
research shows that the digital micro-drilling resistance method has an obvious advantage
in signal quality.

Looking forward, the digital micro-drilling resistance method will help improve
the identification accuracy of the micro-drilling resistance method, and to develop the
application of tree ring micro-destructive detection technology in the high-precision field.
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Abstract: Monitoring the operational performance of the sawmilling industry has become important
for many applications including strategic and tactical planning. Small-scale sawmilling facilities do
not hold automatic production management capabilities mainly due to using obsolete technology
which is an effect of low financial capacity and focus their strategy on increasing value recovery
and saving resources and energy. Based on triaxial acceleration data collected over five days at a
sampling rate of 1 Hz, a robust machine learning model was developed with the purpose of using
it to infer the operational events based on lower sampling rates adopted as a strategy to collect
long-term data. Among its performance metrics, the model was characterized in its training phase
by a very high overall classification accuracy (CA = 98.7%), F1 score (98.4%) and a very low error
rate (LOG LOSS = 5.6%). For a three-class problem, it worked very well in classifying the main
events related to the operation of the machine, with active work being characterized by an F1 score
of 99.6% and an error of 3.6%. By accounting for the same metrics, the model was proven to be
invariant to the sampling rates of up to 0.05 Hz (20 s) and produced even better results in the testing
phase (CA = 98.9%, F1 = 98.6%, LOG LOSS = 5.5%, for a testing sample extracted at 0.05 Hz), while
there were no differences in the share of class data irrespective of the sampling rate. The developed
model not only preserves a high classification performance in the training and testing phases but
it also seems to be invariant to lower sampling rates, making it useful for prediction over data
collected at low sampling rates. In turn, this would enable the use of cheap data collectors to be
operated for extended periods of time in various locations and will save human resources and money
associated with data collection. Further tests would be required only for validation and they could be
supported by collecting and feeding new data to the model to infer the long-term performance of
similar sawmilling machines.

Keywords: forestry 4.0; automation; artificial intelligence; wood technology; sawmilling; productivity;
prediction; long-term

1. Introduction

Sawmilling facilities represent one of the key components of the wood supply chain,
because they enable the first important transformation of roundwood into finite products,
acting as a hub between the provision of raw wood materials and the markets [1]. With
the growing demand for wood products and globalization in a relatively stable market,
important changes occurred in the technology used to process the wood, favoring the
establishment of large stakeholders who followed a trend of automating their business to a
large extent. However, to be both resilient and efficient, such facilities depend largely on a
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steady supply and resource availability, therefore, they could be less flexible to significant
fluctuations in provision.

On the opposite side, there are the small to medium-sized sawmilling facilities charac-
terized by low processing capacities [2] and, typically, by the absence of automation [3,4].
With some exceptions, these use rather obsolete technology, are operated by a small number
of workers and do not hold production planning and management capabilities [5–8]. Still,
they support local economies by providing added value and by diversification in opportu-
nities for employment, while also complementing the sawmilling capabilities of a region to
valorize wood assortments which are less demanded by large processing facilities [9,10].

Due to the lack of production monitoring systems that comes with using obsolete
technology, as well as due to limited financial ability to procure updated technology, such
small to medium businesses may become fragile in a dynamic, changing and competi-
tive market. The main reasons for still operating are those related to cutting down the
investments in updated technology and struggling in value recovery and energy saving,
which generally characterize the sawmilling operations [11,12] and which have lately
turned out to be important parameters for optimization, particularly when facing new
challenges in energy and resource security. In addition, these challenges might not be area-
or technology-specific since some have found efficiency issues in rather well-established
wood industries [13]. Consequently, the above-mentioned were among the reasons for
which the usefulness of cheap solutions was researched in previous studies with the aim
of providing data and tools to support operational planning and management, although
they were externally generated and implemented. The rationale behind developing them
was that once data could be extracted, or part of the functions of a system could be auto-
mated, they would positively be contributing to the overall efficiency, either by developing
models in a traditional way with the aim of predicting efficiency or as an effect of function
automation, as proved by other studies [14]. For instance, concepts of using different
kinds of sensors to automate the extraction of useful data were described for rather more
complicated operations and equipment [15,16]. In relation to sawmilling operations, the
beginning of operational monitoring was most likely characterized by the use of manual
solutions based on the concepts of traditional time-and-motion studies [17,18], which aimed
at characterizing the productive performance in small-to-medium sawmilling operations
of various configurations [3,5–8,19]. However, these became less practical to implement
due to the resources spent to collect and process large amounts of data [20], the reluctance
of operators when facing observation, and the capability limits of the observers [21]; in
addition, manual data collection procedures hold a limited ability to capture the pattern in
operational performance over a long term, restricting the applicability of the developed
statistics in a range of variations from which they were built [18]. As potential solutions
to the above limitations, cheap sensor systems [4] and methods of computer vision [22]
associated with machine learning techniques were tested. Although they were found to be
very useful and accurate, by their application, they were intended to externally monitor the
sawmilling performance, serving more the science, although practical applications could
have been supported, assuming that business holders were willing to internally implement
such systems to monitor their operations. While this may not change, and despite the fact
that it is not formally acknowledged, the interest in monitoring the long-term performance
of several facilities and operations has increased lately, mainly because such information
is required in strategic and tactical planning of the wood processing sector. In addition,
getting long-term data at a low cost would support optimization or at least help in identify-
ing and characterizing in the time frame those factors which cause variation in sawmilling
efficiency. However, this would require several systems or data loggers and significant
resources to be spent by researchers conducting observations in several locations when
opting for a very fine sampling rate.

A typical example is that of using accelerometer data loggers, which were found to
be very sensitive to motion and vibration, making them very versatile in getting useful
information in many disciplines. There are already many examples of studies using ac-
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celerometer data, which were implemented in forestry and other sectors with the aim of
solving specific problems, mainly those related to operational activity recognition [4,23–30],
proving that acceleration data may be successfully used in many tasks. As a fact, electron-
ics have increasingly been used in forestry [31] to find efficient solutions to the current
challenges. For some applications which are known to yield high vibrations, which are
typical of many sawmilling configurations, patterns in acceleration were found to be useful
in inferring specific events, as well as to feed machine learning algorithms able to predict
the operational behavior in sawmilling operations [24,25,32,33]. Once an accurate machine
learning model is trained, more data could be brought on a regular basis to feed the models
and to build an overview of performance over very long time periods and at low costs.
This would require a robust model which nowadays can be built by using freely available
tools [34,35] as well as some lower degree programming in commonly used office tools
such as Microsoft Excel® (Microsoft, Redmond, WA, USA). In relation to data collectors,
however, this would require enough memory on a given device and a sufficient life span of
the power source to be able to run the observation in the long term. Currently, most of the
affordable offline data loggers come with rather a limited memory availability and time
span of the batteries. With the above-mentioned in mind, solutions need to be researched so
as to build a robust machine learning model able to accurately classify the most important
events in the time domain while being invariant to the data collection location. In addition,
it is important to check what sampling rate would be sufficient to enhance the performance
in memory and battery use while preserving the timeshare of events, which is typically
dependent on the monitored equipment and underlying process [36].

Previous studies integrating signal data collection and machine learning have focused
on rather more flexible band saws [4,22], which tend to replace the older, fixed sawmilling
equipment due to the possibility of enhancing value recovery. However, they could require
more energy to be spent per processed unit, given their typical operational pattern which
requires returning the cutting frames before starting new cuts and readjusting the logs
during processing [3,4,22]. On the other hand, fixed-post cutting frame equipment holds
the advantage of feeding the logs into the sawing blades, therefore log processing is carried
out in one turn, although the sawing speed may be lower. Such sawmilling machines are
made of a steel frame that supports the vertical cutting device, enabling the adjustment of
the sawing thickness by the distance at which the blades are fixed on a vertically moving
frame, therefore they require a rather exact sawing pattern that is established a priori.

The goal of this study was to explore the possibility of building a robust machine
learning model able to accurately work in classifying triaxially collected acceleration data
to predict three main operational events which are characteristic of fixed-post, multi-blade
vertical sawing machines while providing the opportunity for collecting long-term data.
The first objective was that of inferring the best machine learning model and its architecture
by a trial-and-error hyperparameter tuning of two popular machine learning model classes,
namely Neural Network (NN) and Random Forest (RF). The second objective was to see
how much variation would be in the classification performance in relation to the amount
of data used to train the model, and if there are significant differences in classification
performance between the training and testing phases brought by the amount of data used,
with the aim of validating the general model. The third objective was to check if there are
high variations in classification performance due to the variation in sampling rate with the
aim of extending data collection capabilities to longer periods of time.

2. Materials and Methods

2.1. Machine Description, Observed Functions and Data Collection

A fixed-post electrically-powered, multi-blade vertical sawing machine (Figure 1)
was selected for observation based on two reasons. First of all, in Romania, this kind of
equipment still accounts for an important share in use in both private and state companies;
secondly, this kind of equipment is lacking the functions of operational monitoring and
production management.
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Figure 1. Sawmilling machine used in study and the placement of the triaxial acceleration data logger;
(a) Main components of the machine: 1—multi-blade steel frame, 2—degrees of movement restricted
to the vertical plane, 3—steel blades, 4—exhausting and guiding rollers, 5—sawn wood, 6—exhaust
direction; (b) Data logger placement: 1—triaxial acceleration data logger placed on the steel frame at
the log-feeding part of the machine, 2—log feeding direction.

For this type of machine, during operation, the logs are continuously fed into a vertical
go-forth displacing blade frame that converts them into pre-processed lumber. Width of
the resulting lumber can be adjusted by the way and distance at which the blades are fixed
on the frame. For a given time window, the machine can be identified in four possible
states related to its operation, namely off, when the engine is off and the blades are not
moving (hereafter, OFF), turning on—the engine is turned on and the blades start to move
until full speed and displacement (hereafter, TON), on—the engine is turned on and the
blades are moving at full speed and displacement, which is the operational state in which
the machine is working and the logs are sawn (hereafter, WORK), and turning off—the
engine is turned off and the speed and displacement of the blades start to decrease until
full stop (hereafter, TOFF). For simplicity, TON and TOFF events were merged together in
a machine state switching event (hereafter SWITCH).

Machine monitoring data were collected over five operational days by the means of a
VB300 tri-axial acceleration data logger (Extech® Instruments, FLIR Commercial Systems
Inc., Nashua, NH, USA). The data logger was set to collect time-labeled acceleration data at
1 Hz, and it was placed on the machine’s frame (Figure 1) in a location that was chosen
by considering several criteria such as that of collecting a good signal characterizing the
underlying process (closeness to the active blades), possibility to reproduce the experiment
in each day of observation as well as on long term, avoiding the variance in the collected
signal by using the same location of the data logger and avoiding the obstruction of
operations. In parallel, an HD 1080 Pro Black Box digital camera (Shenzen AISHINE
Electronics Co. Ltd., Shenzen, China) was set up and used to continuously collect time-
labeled video data over the observed period. It was placed in a location that enabled
convenient monitoring of the machine.
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2.2. Data Processing

The data collected by the accelerometer and video camera were downloaded to a
personal computer at the end of each day of observation. A Microsoft Excel® spreadsheet
(Microsoft, Redmond, USA) was used to merge, store the original tri-axial acceleration data
and label the machine’s operational state for each observation. Following the removal of
that data covering the setup and placement, as well as taking down the data logger from
the machine, the labeled dataset contained a number of 78,707 observations, accounting
for approximately 22 h of observation (Table 1). It included the identification number,
responses on the x, y and z axis, vector magnitude (Euclidian Norm, which is the squared
root of the sum of squared axial responses), measurement unit of acceleration (g) and a
time and date label for each observation.

Table 1. Main statistics of the triaxial acceleration data in the labeled dataset.

Day of
Observation

Number of Observations
(Samples Taken at 1 Hz)

Share in the
Dataset (%)

Time Covered (h)

Day 1 15,646 19.88 4.35
Day 2 15,817 20.09 4.39
Day 3 15,780 20.05 4.38
Day 4 15,701 19.95 4.36
Day 5 15,763 20.03 4.38
Total 78,707 100.00 21.86

As shown in Table 1, the size of the daily collected datasets was relatively even in
terms of number of observations collected and share in the labeled dataset. The data also
show a rather low machine utilization rate (approximately 50% of the shift time), which is
typical for such facilities and level of technology used. Data collected in the five days of
observation were merged into a single file by keeping the order of data collection. Data
labeling comprised a visual analysis of video files in the sequence used to collect them at
the sawmilling facility as well as of the patterns in data (magnitude of Euclidian Norm
plotted in the time domain), followed by data coding to account for the three operational
states (OFF, SWITCH, WORK).

In data processing and machine learning tasks, the data in the form of Euclidian Norm
(hereafter EN, g) was used as a feature and the classes OFF, SWITCH and WORK were
used as target variables. Hereafter, this dataset was called the initial dataset (ID).

To answer the first objective of the study, a first data processing workflow (hereafter
WF1, Figure 2) was that of using the initial dataset (ID) for checking which machine learning
algorithm and what kind of architecture set for it could produce the best classification
performance. For that reason, the ID’s data were fed into two popular machine learning
algorithms (neural network and random forest, respectively) which were tuned by a trial-
and-error approach, as described in Section 2.3, and the results were evaluated based on
the performance indicators described in Section 2.4.

The best-performing machine learning architecture was then used to achieve the sec-
ond objective of the study by implementing a second data processing workflow (hereafter
WF2, Figure 3) which consisted of an iterative splitting of the initial dataset into a training
(hereafter TRAIN) and a testing (hereafter TEST) subset. Data partitioning was based on
a step of 10% of the data and was applied over the same sequence of data contained in
the initial dataset. The procedure started by allocating the first 20% of the initial data to
the TRAIN and the rest (80%) to the TEST subset, then it added and subtracted 10% of
the data to and from the TRAIN and TEST datasets, respectively, resulting in a proportion
of 30 to 70%, and so forth until reaching a proportion from 80 to 20% of the data in the
TRAIN and TEST datasets, respectively. By doing so, in total, 7 new pairs of subsets were
created and each time the best machine learning architecture was trained and tested on the
respective subsets (Figure 3). Evaluation of the classification performance was carried out
by the metrics described in Section 2.4 for both the training and testing phases.
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Figure 2. Description of Workflow 1 (WF1) used to infer the best model architecture. Legend:
ID—input dataset; NN—neural network; RF—random forest; Identity, Logistic, Tangent and
ReLU—activation functions used for NN; α—regularization parameter used for NN, NT—number of
trees used for RF; Depth—parameter controlling the depth of the RF, Split—parameter controlling the
number of observations when splitting the data; PM—performance metrics; BPA—best-performing
architecture; SGM—save general model; GM—general model characterizing the best-performing
architecture, trained over all data from ID. Note: input datasets are represented in green, architecture
of the machine learning algorithms including hyperparameter tunning options are represented in
orange, performance metrics are represented in light brown, the purpose of the workflow is rep-
resented in red, actions taken are represented in yellow and the produced models are represented
in dark brown. Architecture of the machine learning options used is described in Section 2.3 and
performance metrics used to choose the best architecture are described in Section 2.4.

Finally, to check the last objective of the study, a third data processing workflow (here-
after WF3, Figure 4) was implemented. The initial dataset was systematically resampled at
0.500, 0.333, 0.250, 0.200, 0.167, 0.143, 0.125, 0.111, 0.100, 0.067 and 0.050 Hz (from 2 to 10 s at
a step of 1 s, 15 and 20 s, respectively). Then, the best-performing machine learning model
obtained from WF1 (Figure 1) was used for testing the data from the newly created datasets
(11 datasets); the evaluation of the classification performance considered the performance
indicators described in Section 2.4.
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Figure 3. Description of Workflow 2 (WF2) used to infer the best ratio of data partitioning in training
and testing subsets. Legend: ID—input dataset; D—division of input dataset; TRAIN—training
sample (the shares following the TRAIN word stand for the amount of data used in the training
samples); TEST—testing sample (the shares following the TEST word stand for the amount of data
used in the training samples); BPA—best-performing architecture; SM1 to SM7—saving models 1 to
7; M1 to M7—saved models 1 to 7, trained on their respective training datasets; PM—performance
metrics; BRTT—best ratio of training to testing datasets. Note: input, training and testing datasets
are represented in green, architecture of the algorithm is represented in red; performance metrics
are represented in light brown, the purpose of the workflow is represented in red at the end of the
workflow, actions taken are represented in yellow and the produced models are represented in dark
brown. Architecture of the machine learning options used is described in Section 2.3 and performance
metrics used to choose the best architecture are described in Section 2.4.

2.3. Machine Learning Algorithms

Two machine learning algorithms were considered, namely the Artificial Neural
Networks (hereafter, NN) and Random Forests (hereafter, RF). The choice was based on the
popularity of these two machine learning techniques [4,22–24,26,30,37] as well as on the
capabilities and functionalities of the software used [34] to tune, train and test the models
(Section 2.4). By the software used, NN models are implemented in the form of multilayer
perceptrons with backpropagation [34,38]. They require tunning of several parameters,
many of which were developed so as to increase the computational performance. RF is a
machine learning algorithm proposed by Ho [39] and further developed by Breiman [40]. It
has the advance of working well on high dimensional data and fast training. Both machine
learning algorithms may be used for classification tasks.

Architecture of the NN machine learning algorithms is commonly described by the
depth and width, where the depth stands for the number of hidden layers and the width
stands for the number of neurons stored in the hidden layers. Recent findings on testing the
performance of NNs over acceleration signal data [41] have indicated that developing the
architecture towards a maximal one (i.e., increasing the number of neurons and of hidden
layers) may contribute to increments in classification performance. In addition, neural nets
were found to increase their representational capacity by increasing the number of neurons
in them [42]. The maximum depth and width of the NN was used, as enabled by the used
software [34], namely the number of hidden layers was set at 3 and the number of neurons
was set at 100 per hidden layer. Providing a better chance to learn was also considered
by setting the number of iterations to the maximal one enabled by the software [34], that
is 1,000,000 iterations. Adam solver (the stochastic gradient descent optimizer) was set
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and used for all scenarios due to its enhanced performance [43]. Learning process of the
NNs is typically controlled by the type of activation (transfer) function used, and by the
value set for the regularization parameter. The activation function controls whether or not
a neuron will produce an output. The software used for training and testing purposes
enables the use of both linear and nonlinear activation functions [34]. In the first category,
the software provides the Identity (Linear) activation function (hereafter Identity) whose
output is not confined in a given range [44]. In the second category, the software enables the
use of Logistic (hereafter Logistic), Hyperbolic Tangent (hereafter Tangent) and Rectified
Linear Unit (ReLU, hereafter ReLU) activation functions. Logistic and Tangent activation
functions hold output ranges between 0 and 1 and -1 and 1, respectively [44]. ReLU
has become the most used activation function due to its high performance [45,46]. For
values less than 0 it returns 0 and for values higher than 0, it returns the actual value [44].
All of the above-described functions were considered in the first workflow used to infer
the best architecture of the NN model. The second component of the learning process
is the regularization parameter, a hyperparameter which controls the shape of decision
functions [44]. For the NN machine learning model, and for all the activation functions, the
parameter of the regularization term (α) was tuned to take values of 0.0001, 0.001, 0.01, 0.1,
1 and 10 (Figure 2).

Figure 4. Description of Workflow 3 (WF3) used to evaluate the invariance of the best model
architecture to the sampling rate. Legend: ID—input dataset; S—systematic sampling of input dataset;
GM—general model developed in WF1 (Figure 2); TEST—systematically sampled testing sample
(sampling rate is given both in seconds and Hz); PM—performance metrics; ISR—invariance in
performance to sampling rate. Note: input and testing datasets are represented in green, performance
metrics are represented in light brown, the purpose of the workflow is represented in red, actions
taken are represented in yellow and the input models are represented in dark brown. Architecture
of the machine learning options used is described in Section 2.3 and performance metrics used to
choose the best architecture are described in Section 2.4.

Typically, the architecture of the RF algorithm may be controlled at two levels, namely
the tree and the forest level. There is a set of hyperparameters that can affect the perfor-
mance of the model [47]. For instance, the depth of the RF algorithm is characterized
by longest path between the root and leaf nodes, and higher depths may contribute to
performance enhancement in the training phase but may also overfit the model. If not
controlled, the number of splits that can happen in a model may reach to nodes which
are completely pure, resulting in tree growth and model overfitting. Number of trees is
an important parameter in RF, as more trees would help producing a more generalized
result [47]. However, as the number of trees increases, similar to the depth and size of
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the NNs, the time complexity of the model will increase [47]. In this study, the number of
attributes considered at each split was kept at the default value provided by the software,
which is the square root of the number of attributes present in the data [48]. The models
were trained by controlling two parameters of tree growth, namely the depth, which was
set successively at 10, 20 and 30 nodes, and the subset splitting restriction, which was
set successively at 10, 50, 100, 500 and 1000 observations (Figure 2). Acknowledging that
significant changes in performance could be produced when using smaller numbers of trees,
this parameter was varied from 10 to 50 with a step of 10, from 50 to 250 with a step of 50,
from 250 to 1000 with a step of 250 and from 1000 to 5000 with a step of 1000 (Figure 2).

In total, 24 (4 activation functions × 6 values set for α) models were trained in the
case of NN algorithm, and 240 (6 options for the number of trees × 3 values for the tree
depth × 5 values for the split control) models were trained for RF which, together, took
a computational time of close to 97 h. In both cases a cross-validation by five folds was
used to evaluate the training performance. Evaluation of the best model architecture from
each class as well as choosing the best model architecture were mainly based on the overall
values of the log loss error function which was the first criterion to differentiate among the
264 models. The minimum values were those indicating the model to choose and, in case
of ties, the values of F1 score were used for differentiation (maximum values). When there
was a tie also for F1 score, the selection algorithm was repeated at the class level in the order
WORK–OFF–SWITCH. Although the log loss error and F1 metric were used for selection,
several other performance metrics such as the classification accuracy, precision, recall, and
sensitivity were estimated as well (Section 2.4). Once the best architecture was inferred
it was used over the training datasets from WF2 (Figure 3). For this purpose, the tuned
parameters of the best-performing architecture were kept the same during the tests. Each
time, and for each ratio of data in the training and testing datasets, a new model was saved
with the purpose of testing it. Additionally, a general model was saved characterizing
the inferred best architecture (Figure 2), which was then used to test the invariance of
classification performance to systematic data sampling (Figure 4). For this purpose, the
general model was tested over the systematically sampled datasets.

2.4. Computer Architecture and Software Used—Performance Evaluation

The tasks of training and testing the machine learning models were performed on a
computer architecture that included the following features: system type—Alienware 17 R3,
processor—Intel® Core™ i7-6700HQ CPU, 2.60 GHz, 2592 MHz, 4 cores, 8 Logical Proces-
sors, installed physical memory (RAM)—16 GB, operating system—Microsoft Windows 10
Home. Microsoft Excel ® (Microsoft, Redmond, WA, USA) was used to store and preprocess
the data, including the tasks of dividing data into the necessary subsets, performing simple
computations, and of resampling the data. Part of the artwork used in this study was built
with the same software. The software used to train and test the machine learning models,
as well as to build a part of the artwork, was the Orange Visual Programming Software,
version 3.31.1 [34], which holds the necessary functionalities for building and running
NN (multi-layer perceptron models with backpropagation) and RF models based on the
creation of widget-based workflows. Data, Neural Network, Random Forest, Test and
Score, Save Model, Load Model and Predictions widgets were used for training and testing
purposes. Based on the multidimensional input data, Scatter Plot widget including its
“color regions” and “jittering” graphical features were used to depict the relations between
the parameter tuning options and key-selected classification performance metrics for both,
NN and RF architectures.

Orange Visual Programming Software enables the computation of several classification
performance metrics. The full list of metrics computed for the training and testing phases
includes the training and testing time, area under the ROC (receiver operating characteristic,
hereafter AUC), classification accuracy (hereafter CA), F1 score, which is the harmonic
mean of the classification’s precision and recall (hereafter F1), precision (hereafter PREC),
recall (hereafter REC), log loss (cross-entropy) error (hereafter LOG LOSS) and specificity
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(hereafter SPEC). All of these metrics were computed for all the training and testing
tasks and the most important ones were reported where appropriate. For exemplification,
however, performance metrics such as the LOG LOSS, F1 score and CA, were compared in
more detail in the results section of the paper, including their differences as an effect of the
parameters used for tuning (WF1), partition of the data in training and testing subsamples
(WF2) and data resampling in the testing subsets (WF3), respectively. For reference, the
performance of classifiers is discussed, for instance, in [49]. References on definitions and
explanations of the classification performance metrics are given in [50]. Classification
accuracy (CA) is one of the important metrics used for evaluating classification models. It is
defined as the ratio of correct predictions to the total number of predictions. Recall (REC), or
the hit rate [49,50], is defined as the ratio of correctly classified true positives (true positives)
to the total number of positives (true positives + false negatives). Precision (PREC) is
the ratio of correctly classified positives (true positives) to the total predicted positives
(true positives + false positives) [49,50]. F1 score is a metric that balances precision and
recall, being better adapted to class imbalance [50]. Orange Visual Programming software
computes the LOG LOSS according to the equation given in [51]. Class level and overall
ratio values of the performance metrics which characterize the training and testing datasets
are typically multiplied by 100 to obtain a percent-based overview of the classification
performance [50], an approach that was used in the Results and Discussion section.

In the testing phase, a given model operates over the test data by providing the
probability of each instance being classified in a true class. Given the one-dimensionality of
the input data, such probabilities were assigned to EN (Euclidian Norm) of the data in the
testing datasets to map each instance in a given class (WORK, SWITCH, OFF).

3. Results

3.1. Best-Performing Model Architecture

The variation of the main classification performance metrics as a function of the models’
architecture is shown in Figures 5–9. Figure 5, for instance, plots the LOG LOSS values
against the activation functions and regularization terms used in the NN architecture.

There were no major differences in LOG LOSS except those returned by the Logistic
activation function when using regularization terms set at 1 and 10 (less complex decision
functions). In general, the values of LOG LOSS were in the range of between 5.6 and 6.3%
for the 24 trained NN models. Figure 6 shows the variation in F1 score as a function of the
models’ architecture, indicating a similar trend. In general, the values of the F1 score varied
between 97.9 and 98.4%, indicating a high classification performance of the NN models. A
similar data organization is shown in Figures 7–9 for the RF model, where each dot stands
for a model of a given architecture by jittering the data so as to be visible in the plots. Lower
depths (Depth) of the RF model coupled with higher amounts of data preserved at node
splitting (Split) were among the highest contributors to lower LOG LOSS errors (Figure 7),
which was also generally true for the highest values of the F1 score (Figure 8). In terms of
model specificity (Figure 9), there were found two classes, in which highly specific models
were generally shaped by lower amounts of data preserved at splits. In general, the LOG
LOSS values decreased as a function of the number of trees used to train the models. LOG
LOSS and F1 score values varied between 5.8 and 6.9% and 98.3 and 98.4%, respectively.
Based on the fixed parameters and criteria described in the Materials and Methods section,
the best-performing architecture was identified for a NN machine learning model when
using the ReLU activation function and the regularization parameter set at α = 0.01.
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Figure 5. Variation in LOG LOSS as a function of NN architecture in WF1. Note: legend at the bottom
right part of the figure describes the values of the LOG LOSS error.

Figure 6. Variation in F1 score as a function of NN architecture in WF1. Note: the legend at the
bottom right part of the figure describes the values of the F1 score.
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Figure 7. Variation in LOG LOSS as a function of RF architecture in WF1. Note: legend at the bottom
right part of the figure describes the values of the LOG LOSS error; size of the dots stands for the
number of trees used (i.e., more trees correspond to bigger dots).

Figure 8. Variation in F1 score as a function of RF architecture in WF1. Note: the legend at the bottom
right part of the figure describes the values of the F1 score; size of the dots stands for the number of
trees used (i.e., more trees correspond to bigger dots).
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Figure 9. Variation in specificity (SPEC) as a function of RF architecture in WF1. Note: the legend at
the bottom right part of the figure describes the values of the specificity; size of the dots stands for
the number of trees used (i.e., more trees correspond to bigger dots).

3.2. Effect of Data Share in the Training and Testing Subsets on Classification Performance

The results shown in Figures 10–12 and in Table 2 are consistent with the rule of thumb
of using a high share of data in the training (TRAIN, TR) as opposed to the testing (TEST,
TE) dataset. For instance, Figure 10 shows the variation in LOG LOSS error in the training
and testing datasets as well as the absolute differences in values as a function of the share
of data used in the subsets divided according to WF2 (Figure 3). A share of 20%–80% has
produced the most contrasting results in terms of LOG LOSS error, which was close to 11%
in the dataset used for training and close to 6% in the dataset used for testing. However, a
model trained on a small data partition (20%) was able to generalize very well on the rest
of the data, as proved by the absolute differences between the training and testing values
of LOG LOSS error, which was the highest among the tested options (5.4%).

As the share of data used for training increased, the classification error decreased,
reaching a value of 6% for a share of 80%–20% in the training and testing datasets in the
training phase, respectively (Figure 10). The range of LOG LOSS values also decreased
as the amount of data used in the training sample increased. Irrespective of the share of
data used for training and testing, the results show that the errors of the testing phase
were much lower compared to those of the training phase (Figure 10), ranging from 2
(80%TR-20%TE) to 5.5% (20%TR-80%TE), a fact that proves that the learned models had a
high generalization ability. This can be seen also in the variation of F1 (Figure 11) and CA
(Figure 12) values which followed a similar trend of improvement as more data were fed
into the training sample, with the most important differences occurring up to a data share
of 50 to 50%. However, the absolute differences were smaller accounting for 0.7 to 2.3%
in the case of F1 score (Figure 11) and for 0.5 to 1.6% in the case of classification accuracy
(CA, Figure 12).
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Table 2. Summary of the classification performance metrics and of their differences as a function of
the data shared in the training (TRAIN) and testing (TEST) datasets.

Dataset and Share of Data
Classification Performance Metrics

AUC CA F1 PREC REC LOGLOSS SPEC

TRAIN 20% 0.979 0.973 0.966 0.967 0.973 0.109 0.969
TEST 80% 0.991 0.989 0.989 0.988 0.989 0.054 0.970
Difference −0.012 −0.016 −0.023 −0.021 −0.016 0.055 −0.001

TRAIN 30% 0.981 0.979 0.973 0.974 0.979 0.087 0.964
TEST 70% 0.991 0.988 0.987 0.987 0.988 0.051 0.962
Difference −0.010 −0.009 −0.014 −0.013 −0.009 0.036 0.002

TRAIN 40% 0.983 0.980 0.974 0.975 0.980 0.083 0.965
TEST 60% 0.991 0.991 0.991 0.990 0.991 0.041 0.964
Difference −0.008 −0.011 −0.017 −0.015 −0.011 0.042 0.001

TRAIN 50% 0.985 0.981 0.977 0.977 0.981 0.078 0.967
TEST 50% 0.991 0.993 0.992 0.991 0.993 0.034 0.963
Difference −0.006 −0.012 −0.015 −0.014 −0.012 0.044 0.004

TRAIN 60% 0.985 0.982 0.978 0.978 0.982 0.074 0.967
TEST 40% 0.990 0.994 0.993 0.992 0.994 0.030 0.956
Difference −0.005 −0.012 −0.015 −0.014 −0.012 0.044 0.011

TRAIN 70% 0.986 0.985 0.981 0.981 0.985 0.065 0.966
TEST 30% 0.990 0.992 0.991 0.991 0.992 0.035 0.959
Difference −0.004 −0.007 −0.010 −0.010 −0.007 0.030 0.007

TRAIN 80% 0.988 0.986 0.982 0.983 0.986 0.060 0.967
TEST 20% 0.983 0.991 0.989 0.991 0.991 0.040 0.932
Difference 0.005 −0.005 −0.007 −0.008 −0.005 0.020 0.035

Figure 10. Variation of LOG LOSS error and of its absolute difference in the training (TRAIN) and
testing (TEST) datasets as a function of data shared in the training (TR) and testing (TE) datasets.
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Figure 11. Variation of F1 score and of its absolute difference in the training (TRAIN) and testing
(TEST) datasets as a function of data shared in the training (TR) and testing (TE) datasets.

Figure 12. Variation of classification accuracy (CA) and of its absolute difference in the training
(TRAIN) and testing (TEST) datasets as a function of data shared in the training (TR) and testing
(TE) datasets.
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Table 2 summarizes the values of the main classification performance metrics com-
puted for the two datasets and data sharing strategy, including the differences found
between the values of the metrics.

Precision (PREC) and recall (REC), which are used to compute the F1 score, followed a
similar trend in values and in differences as the F1 and CA did. In all, CA, F1, PREC, REC
and LOG LOSS, the most important differences were between using a share of 20 to 80%.
For the rest of the data partitioning strategies, the differences were much less, typically
less than 1% in the case of TRAIN datasets and less than 0.5% in the case of TEST datasets.
Altogether, these trends indicate important improvements, sustain the practice rules of data
partitioning, show the variance of classification performance as a function of the strategy
used for data partitioning and are useful in providing hints for data partitioning attempts.

3.3. Effect of Sampling Rate on Classification Performance

By resampling, the original dataset (ID) used to train the general model (WF1, Figure 2)
was progressively reduced in size from 78,707 (100%) to 3953 instances (5%). The reduction
in size compared to ID is illustrated in Figure 13, which shows the 11 newly created testing
datasets (WF3, Figure 4) plotted in the time domain. Figure 14, on the other hand, shows
the size of the systematically sampled datasets relative to the original dataset (ID).

Figure 13. A representation of the original (brown) and resampled (green) datasets in the time domain.
Legend: in brown is given the original dataset (ID, Train) and in green (2 to 20 s) are represented the
systematically resampled datasets; red arrows placed near the bottom of each dataset indicate the
occurrence of the OFF event, while yellow (middle) and green (up) arrows indicate the occurrence of
the SWITCH and WORK events, respectively.

For example, by systematically resampling ID at 15 and 20 s, respectively, the amount
of data in the testing sets was reduced to less than 7%. However, the used sampling
procedure has preserved the share of data on true classes which differed between the
original (ID) and sampled datasets by less than 0.1% in all classes. Therefore, a relative data
share of ca. 14%–1%–85% was preserved in all datasets for the OFF, SWITCH and WORK
classes, respectively.
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Figure 14. Share of the data in the original (ID, TRAIN) and resampled (TEST) datasets and their
relative size.

The results summarized in Table 3 prove the invariance of classification performance
metrics of the testing phase to the amount of data used in the testing datasets. Differences
brought by the testing sample size in LOG LOSS error are illustrated in Figure 15. Although
they were both positive and negative, they were only minor, accounting for a maximum
absolute value of 0.2%. Figures 16 and 17 indicate similar trends of differences in F1
score and classification accuracy, which did not exceed an absolute value of 0.2%. As
observed (Table 3, Figures 15–17), there were no evident increasing or decreasing trends
in the differences between LOG LOSS, F1 and CA as a function of the sampling rate used,
although higher differences were found for F1 and CA in the TEST 20 s data subset as
compared to the initial dataset (ID, TRAIN).

Table 3. Summary of the classification performance metrics in the systematically sampled testing
(TEST) datasets.

Dataset Share
Number of

Observations

Classification Performance Metrics

AUC CA F1 PREC REC LOGLOSS SPEC

TRAIN 100.00 78,707 0.987 0.987 0.984 0.984 0.987 0.056 0.964
TEST 2 s (0.500 Hz) 50.00 39,353 0.988 0.987 0.984 0.985 0.987 0.054 0.964
TEST 3 s (0.333 Hz) 33.33 26,235 0.987 0.987 0.984 0.985 0.987 0.055 0.964
TEST 4 s (0.250 Hz) 25.00 19,676 0.988 0.988 0.985 0.986 0.988 0.055 0.965
TEST 5 s (0.200 Hz) 20.00 15,741 0.988 0.987 0.984 0.985 0.987 0.055 0.965
TEST 6 s (0.167 Hz) 16.67 13,117 0.987 0.988 0.985 0.986 0.988 0.054 0.964
TEST 7 s (0.143 Hz) 14.28 11,243 0.988 0.988 0.985 0.986 0.988 0.056 0.964
TEST 8 s (0.125 Hz) 12.50 9838 0.988 0.988 0.985 0.986 0.988 0.055 0.965
TEST 9 s (0.111 Hz) 11.11 8745 0.986 0.987 0.984 0.984 0.987 0.057 0.961

TEST 10 s (0.100 Hz) 10.00 7870 0.987 0.988 0.985 0.986 0.988 0.057 0.966
TEST 15 s (0.067 Hz) 6.67 5247 0.986 0.987 0.984 0.985 0.987 0.058 0.963
TEST 20 s (0.050 Hz) 5.00 3935 0.986 0.989 0.986 0.988 0.989 0.055 0.969
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Figure 15. Differences in LOG LOSS error of the testing datasets as opposed to the initial dataset
(ID, TRAIN).

Figure 16. Differences in F1 score of the testing datasets as opposed to the initial dataset (ID, TRAIN).

Figure 17. Differences in classification accuracy (CA) of the testing datasets as opposed to the initial
dataset (ID, TRAIN).

These results illustrate well the invariance of the general model in terms of classifi-
cation performance when performing on newly generated datasets, although they were
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artificially created. In particular, the differences in terms of LOG LOSS, F1 and CA were
minor, accounting for up to 0.2% for that case in which the data sample used for testing
was the smallest one. Taking as a reference the general model built by the WF1, it correctly
classified close to 99% of the data. The F1 score which balances the precision (PREC) and
recall (REC) also indicated a high performance, accounting for 98.4%, while LOGLOSS was
5.6%. With minor differences (up to 0.2%) this classification performance was preserved in
all of the testing models.

4. Discussion

Several studies have tested the capability of NN models in correctly predicting class-
based outcomes with various applications in forestry, some of which have focused on
using acceleration signals to make predictions by machine learning [4,24,52]. Most of them
agree that general classification accuracies of up to 100% may be achieved depending
on several factors such as the complexity of classification, signal quality and accuracy of
data labeling. In contrast, some have opted for using RF machine learning algorithms for
classification purposes [23,26], finding also highly accurate classifications when collecting
data multimodally. Unless a given device holds the capabilities and can be used to collect
data multimodally by integrating several sensors, the procurement of separate devices
would incur more costs, limiting the economic efficiency of data collection. Nevertheless,
by the use of a multimodal approach and RF algorithms, the classification outcomes
were found to be similar to those provided by NN, with values of between 97.7 and
99.6% [23,26]. Therefore, it is obvious that when several machine learning algorithms
enable classification over a given signal typology, several options need to be checked to
evaluate their performance.

With some minor exceptions in regard to the activation function used for NN and
the amount of data preserved at a node and the depth of the trees, the classification
performance measured by the LOG LOSS error, F1 score and classification accuracy did
not vary widely and returned no evident contrasts as an effect of the machine learning
architectures used. Therefore, the best model architecture was selected using the first
criterion, namely the error during training which was found to be the lowest for an NN
architecture when using the ReLU activation function and α set at 0.01. It turns out that
the best-performing models reported in other studies checking the effect of classification
performance on acceleration data had similar architectures, placing the use of the ReLU
activation function and of the regularization terms of up to 0.1 among the best options
in terms of classification performance [24,52]. However, the performance of NN depends
also on several other factors [53,54], including signal quality and other issues specific to
classification tasks such as intra-class variability and inter-class similarity. Altogether, the
classification performance of the selected architecture was very high, with a classification
accuracy of 98.7%, an F1 score of 98.4%, a precision of 98.4% a recall of 98.7% and an
error of 5.6%. Transition parts in the acceleration signal (SWITCH) were poorly classified
compared to OFF (CA = 99.4%, F1 = 98.0%, PREC = 99.4%, REC = 99.4%, LOG LOSS = 2.2%)
and WORK (CA = 99.3%, F1 = 99.6%, PREC = 99.2%, REC = 99.9%, LOG LOSS = 3.6%)
events, although their classification error was still low (LOG LOSS = 5.2%). In addition,
there was an evident class imbalance with a relative data share of ca. 14%–1%–85% for
OFF, SWITCH and WORK events, respectively. This may raise the question of how the
developed model would perform in cases in which the data collection will be deployed
for longer periods of time. In this regard, it is likely that the share of SWITCH events
will decrease in the data samples, mainly at the expense of increasing the share of OFF
events since the data loggers would also need to operate during the night, at weekends and
during legal holidays. As such, the two classes characterized by the highest performance
will dominate the data, potentially making the model more effective in classification. In
relation to the SWITCH events which were poorly classified, previous studies have already
described how the inter-class similarity, which was typical to this event, may affect the
classification performance [4,24,52].
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The general rule of using most of the data in the training phase held true. However,
the differences in performance were not particularly contrasting in relation to the share of
data used in the training and testing subsets, although the LOG LOSS error in the training
dataset decreased as it contained more data. Along with improved values of the F1 score
and of the classification accuracy as more data were added to the training data subset, this
indicates that a model trained over all data would hold better predictive capabilities. What
is to be emphasized is that the generalization ability (testing phase) measured by the value
of the LOG LOSS error, F1 score and classification accuracy was improved. Accordingly,
the LOG LOSS was lower in the testing phase from 2 to 5.5%, while the F1 score and
classification accuracy were higher in the testing phase from 0.7 to 2.3 and 0.5 to 1.6%,
respectively. All of these results are coming in high contrast to those of the previous studies
which have found either similar [4] or higher values of classification errors and lower
values in terms of classification accuracy in the testing phase [24,52].

The battery life of a data logger such as that used herein is assumed to be ca. 1000 h
while its internal memory (4 MB) can hold 168,042 readings made in the normal data
collection mode [55]. More or less this means that, in theory, one can cover close to two
days of observation at a sampling rate of 1 s (1 Hz) before downloading the data. However,
the data collection time frame can be effectively managed by assuming that a higher
sampling rate would still accurately reflect the operational pattern in the collected data. By
their functional construction, machines such as that described herein may be characterized
by relatively long events of working intercalated by short events of switching and long
events of being off. With the capabilities of the data logger in mind, a sampling rate of
2 s would double data collection capabilities, while sampling rates of 10 and 20 s would
extend the data collection period by ca. 5 to 20 times, meaning that sampling at 20 s
would cover a timeframe of more than one month. Therefore, increasing the value of the
sampling rate will only prolong further the memory and battery availability. In this regard,
by systematically sampling the initial dataset at rates of 2 to 20 s, the share of classes was
preserved. Moreover, the general model performed better and similarly in the testing
phase, irrespective of the testing dataset used, which is an indication that further data
sampled at different rates may be fed into the model which would be able to output a high
classification performance. Overall, the generalization errors were improved in the testing
phases by up to 0.2% and only in three cases did the testing phase yield higher values of
the LOG LOSS. Similar patterns were found in the F1 score and classification accuracies
which were generally either the same or higher in values at the testing phase.

As in any other studies on the topic, there are some limitations to be addressed. A first
limitation is that of collecting the acceleration data by considering only coniferous logs.
As known, a given acceleration signal contains three important components: movement,
gravity and noise [56]. Therefore, in the case of processing hardwoods, it is likely to obtain
a more differentiated (higher) response in the magnitude of acceleration during the WORK
events as the interaction between the logs and blades will produce more vibration. If this
does occur, the performance of the model could be an issue that may need additional
checking. However, the NN tools of the software used perform by default a normalization
procedure over the data before feeding it to the model [57], a fact that serves in weighting
the importance of high magnitude data and still preserving the relationships between the
original data [58,59]. The same may apply to the variance in log dimensions, particularly
to their diameters by reducing or increasing the contact area between the blades and logs
which, in theory, would decrease or increase the amount of vibration. On the opposite
side, a validation of the model would be required by feeding it with long-term collected,
unseen data. In this regard, and based on the performance of the selected machine learning
architecture, it is likely to obtain a high classification performance in such a validation
phase. Once proved to have a high performance on new datasets, the rest of the steps
required to automatically extract and systematize the data, as well as those required for
prediction, could be easily managed by the software components described in the Material
and Methods section.

48



Forests 2022, 13, 1115

Last but not least, the applicability of the described methods may be extended to
other sawmilling machines assuming a similar operational pattern in the time domain.
This is because, by their construction, they produce vibration during working events.
However, the quality of the milled lumber has become of great concern lately [60] and
this will possibly become a driver of technological change. Until such changes occur, the
proposed model could solve the problems of long-term operational monitoring while after
that it could serve, by adaptation, in monitoring operations when such capabilities are not
embodied in the sawmilling equipment.

5. Conclusions

Monitoring the operational performance of sawmilling facilities is important for both
science and practice. Accordingly, the tools used to obtain useful information need to be
adapted to extend data collection and inference capabilities. A robust machine learning
model was developed with the purpose of using it to infer the operational events based
on lower sampling rates, so as to be able to extend data collection capabilities by low-cost
acceleration sensors.

The results indicate a high performance of the model which was less sensitive to
the amount of data used to train it, although some variation was found. In this regard,
neural networks performed better than random forest algorithms in terms of classification
performance. Indeed, they needed more training time, but at this point, this cannot be
seen as a limitation since the model is readily available for feeding with new data. The
developed model not only preserves a high classification performance in the training and
testing phases but it also seems to be invariant to lower sampling rates, making it useful
for prediction over long-term collected data. These model properties indicate a high degree
of stability to the data potentially fed to the model, as well as a capability enhancement in
the sense of lowering the sampling rate of the data to be fed into it.

Altogether, the proposed approach is promising in enabling the use of cheap data
collectors to be operated for extended periods in various locations and has the capability of
saving human resources and money associated with data collection. Further tests would
be required to validate the model, which could be straightforward given the relatively
high differentiation which was found at the class level, enabling a visual judgment of
predicted classes.
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Abstract: Wood measurement is an important process in the wood supply chain, which requires
advanced solutions to cope with the current challenges. Several general-utility measurement options
have become available by the developments in LiDAR or similar-capability sensors and Augmented
Reality. This study tests the accuracy of the Measure App developed by Apple, running by integration
into Augmented Reality and LiDAR technologies, in estimating the main biometrics of the logs. In
a first experiment (E1), an iPhone 12 Pro Max running the Measure App was used to measure the
diameter at one end and the length of 267 spruce logs by a free-eye measurement approach, then
reference data was obtained by taking conventional measurements on the same logs. In a second
experiment (E2), an iPhone 13 Pro Max equipped with the same features was used to measure the
diameter at one end and the length of 200 spruce logs by a marking-guided approach, and the
reference data was obtained similar to E1. The data were compared by a Bland and Altman analysis
which was complemented by the estimation of the mean absolute error (MAE), root mean squared
error (RMSE) and normalized root mean square error (NRMSE). In E1, nearly 86% of phone-based log
diameter measurements were within±1 cm compared to the reference data, of which 37% represented
a perfect match. Of the phone-based log length measurements, 94% were within ±5 cm compared
to the reference data, of which approximately 22% represented a perfect match. MAE, RMSE, and
NRMSE of the log diameter and length were of 0.68, 0.96, and 0.02 cm, and of 1.81, 2.55, and 0.10 cm,
respectively. Results from E2 were better, with 95% of the phone-based log diameter agreeing
within ±1 cm, of which 44% represented a perfect match. As well, 99% of the phone-based length
measurements were within ±5 cm, of which approximately 27% were a perfect match. MAE, RMSE,
and NRMSE of the log diameter and length were of 0.65, 0.92, and 0.03 cm, and 1.46, 1.93, and 0.04 cm,
respectively. The results indicated a high potential of replacing the conventional measurements for
non-piled logs of ca. 3 m in length, but the applicability of phone-based measurement could be
readily extended to log-end diameter measurement of the piled wood. Further studies could check if
the accuracy of measurements would be enhanced by larger samples and if the approach has good
replicability. Finding a balance between capability and measurement accuracy by extending the study
to longer log lengths, different species and operating conditions would be important to characterize
the technical limitations of the tested method.

Keywords: wood; diameter; length; close-range sensing; LiDAR; Augmented Reality; comparison;
accuracy; effectiveness; potential

1. Introduction

Measurement and grading are important activities in the wood value chain because
they provide essential quantitative and qualitative information for transactions. The wood
is commonly delivered to the industry as roundwood [1–5], for which a volume estimation
is required to document the delivered quantity and to form the basis for payment. Ideally,
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a single measurement done in the forest could act as a transaction interface between the
suppliers and customers [6–8] and would ease the effort and resources spent in these activi-
ties. However, in complex wood supply chains (e.g., [9]) characterized by a low integration
of technology, as well as for reasons such as removing public suspicion, preventing illegal
logging, enabling traceability, and building trust, supplementary checks of the wood may
be required, particularly by third parties such as the public authorities. In Romania, for
instance, a typical example is that of taking custody over the wood by a carrier, which
requires detailed measurement, grading, and reporting in a wood tracking system at the
landing, before making the delivery [10] and, in case of suspicion, additional checks may
be in question within the wood value chain. There are many other examples in practice
and science in which wood measurement is required. In felling areas or at the landings,
a pre-grading of the wood which includes measurement, is required for optimal bucking
by motor-manual means [1]. In forestry-related scientific applications of time and motion
study wood measurement is a prerequisite for estimating the amount of production and
characterizing the productivity in relation to operational factors [11–16].

There are many methods that can be used to estimate the volume of individual logs.
Depending on the procedures used to measure the required parameters, and in particular,
on the type of contact between the measuring instrument and the log under measurement,
they can be fairly categorized into two groups: direct and remotely-sensed measurements.
Direct measurement methods include the estimation of wood volume by hydrostatics [17],
gravimetry [17], and water displacement [17–19], as well as conventionally by a tape and
a caliper. Measurement by hydrostatics, gravimetry, and water displacement is typically
constrained to scientific applications and it is limited by the size of the logs and infrastruc-
ture needed [17]. Estimating the volume of a log by conventional methods is commonly
used in practice and requires biometric information about the length and diameter(s) of
the log. Depending on the concept used to estimate the volume, log diameter may be
measured at both ends or at the middle, then the log is typically assimilated to a cylinder
when making the mathematical computations to estimate its volume [17]. Measuring wood
biometrics such as the diameter, height, or volume by remote sensing includes the use
of photogrammetric [20,21], time of flight (ToF) [21,22], and Light Detection and Ranging
(LiDAR) [23] based methods, many of which still share some limitations, namely the need
to post-process the data and the high data acquisition costs incurred by the instruments
and software used. Although phone-based compact solutions integrating remote sensing
technologies were developed specifically to provide real- or near-real time estimates on
some biometrics of standing trees [24] and logs [22], in our knowledge, solutions dedicated
to replace measuring tapes and calipers for length and diameter measurement of the logs
were not developed, meaning that in many geographical areas this activity still needs to
rely on manual, direct-contact measurements, which are typically done in challenging
environments such as in the felling areas, or in conditions which constrain the access to
logs, such as those characterizing the wood piled at the landing.

The developments in mobile phone technology by the integration of common-use
measuring applications based solely on the performance of phone cameras or integrating
also the capabilities of LiDAR technology and Augmented Reality (AR) environments has
opened new doors for potential applications in forestry. Apple’s Measure app [25], for
instance, could be a potential alternative to measuring log biometrics (diameter and length),
which could provide the benefits of excluding rather uncomfortable to carry equipment
such as the forest tapes and calipers while including their capabilities into a single device.
Currently, the Measure app uses AR technology and it was first released for free without
the support of LiDAR sensors, which became an integrant part of the iPhone devices
starting with the 12th version, namely the iPhone 12 Pro and iPhone 12 Pro Max; in turn,
the integration of LiDAR sensors resulted in improved accuracy and quicker measurement
capabilities as claimed by the producing company. The application enables making several
measurements, and copying and pasting the results into external applications for further
use [25], making it suitable for saving the results of measurement. Still, its suitability in
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providing accurate results in log measurement was not tested. In this regard, only one
study was found on the topic of using the Measure app for estimating the breast height
diameter of the trees [26], but the device used has not been equipped with a LiDAR sensor.

The goal of this study was to compare the measurements taken on the diameter and
length of coniferous logs by the use of the Measure app supported by a LiDAR sensor and
AR (hereafter phone measurement, PM) with those taken by conventional means (hereafter
conventional measurements, CM), namely a tape and a caliper, in two experiments. A first
experiment was set up to emulate the real-world measurement conditions by taking the
PM by a free-eye approach, meaning that no guiding marks were placed on the logs to
support picking up the starting and ending points of a given PM. In a second experiment,
PM were guided by marks placed on the logs at the points at which the CM on diameter
and length were taken. Two objectives were pursued by this study. The first was to check
the agreement between PM and CM in both experiments having as a reference the CM data
and the second was to check the accuracy of PM in both experiments, having as a reference
the CM data.

2. Materials and Methods

2.1. Study Location and Data Collection

Data used in this study were collected in the sawmilling facility of the HS Timber
Productions Reci S.R.L., which is located near the village of Reci, Covasna, Romania at the
coordinates of 45◦51′01′′ N–25◦56′52′′ E. The company processes coniferous logs, mostly of
Norway spruce (Picea abies, L. (Karst)), which is one of the dominant coniferous species in
Romania [27]. Typically, the logs are delivered at the factory gate in lengths of 3 to 4 m. In the
period used to collect the data, the sky was mostly clear and the weather was relatively cold.

Two experiments (hereafter E1 and E2) were set up to collect the data for this study. In
E1, the main approach of phone-based measurements was that of emulating the real-world
measurement conditions in which no guiding marks are available on the logs, therefore
the measurement needs to rely on the experience of the operator in setting the starting and
ending points to measure the diameters and the lengths of the logs. For this experiment,
the field data collection was done on the 14, 15, and 17 February 2022, by considering a
total number of 267 logs.

To facilitate log measurement by using both, a measurement tape and a forest caliper
(CM) and the phone-based Measure app (PM), the logs measured in each of the three
days were placed on transversal logs and spaced at ca. 60 cm apart (Figure 1). Then, an
identification number (hereafter ID) was painted on each log taken into the study (Figure 1)
and the logs were marked at half-meter intervals starting from the painted end with the aim
of preventing accidental measurement errors and supporting data collection. Where/When
was the case, the additional length which was less than half a meter was painted on the
opposite end. Conventional measurement (CM) was done to the nearest centimeter by a
field researcher using a forestry caliper and a measurement tape. For comparison purposes,
one diameter was measured for each log at the end painted with the identification number
(hereafter Dman, cm), by approaching the log with the caliper placed perpendicularly on
the log axis, in a vertical plane, with arms oriented downwards. The length (hereafter
Lman, cm) was measured by a forestry tape on the upper part of each log. Data on log
ID, Dman, and Lman was noted in a field book. To estimate the volume of each log by
conventional measurement and formulae, the diameter at the middle (cm) and at the second
end (cm) of each log were measured by the same procedures and noted accordingly in the
field book. As the conventional measurement progressed, the Measure app installed on
an iPhone 12 Pro Max smart phone device developed by Apple was used to measure the
diameter at the end painted with the log ID (hereafter Dmeas, cm) and the length of the log
(hereafter Lmeas, cm). The measurements were taken by a free-eye approach, meaning that
no marking signs were placed on the logs to delimitate the starting and ending points of
the measurement. The functionalities of the application used are given in Figure 2 by some
examples. Dmeas was taken in a direction that was as close as possible to the parallel to the
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ground, by a line that followed the diameter of the log, and Lmeas was taken between the
middle points of the log’s ends located at the upper part of each log.

 

Figure 1. An example of log placement to facilitate measurements. Note: numbers painted in red
stand for the identification numbers of the logs.

   
(a) (b) (c) 

Figure 2. Examples of diameter and length measurements by the Measure app of iPhone in the
first experiment (E1): (a) an example of using the Measure app and AR for diameter measurement;
(b) an example of using the Measure app and AR for length measurement; (c) perspective in AR over
a group of logs and a measurement on log length.

Diameters (Dmeas) were measured from a distance of up to 0.5 m and the lengths
(Lmeas) were measured by walking along the log at a slow walking speed. Initial and final
measurement points of the Dmeas and Lmeas were taken from a close perspective to the
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log. For Dmeas, these measurement points were taken as close as possible to the log ends
on its diameter (over the bark) while for Lmeas they were taken as close as possible to the
log ends. Although the AR environment enables adjustments of the measurements, for
simplicity and for keeping the procedure as close as possible to that eventually used in
practice, such adjustments were not done over the measurements. Once the measurements
over Dmeas and Lmeas were done, their results were noted in the field book.

In E2, the main approach of the experiment was to guide the researcher in placing
the initial and final PM points for both diameter and length measurements. The data of
E2 was collected in the same location between the 11 and 15 April 2022 and accounted for
a number of 200 logs. The procedures used to conventionally measure the log diameters
and lengths were complemented by marking with dots (ca. 1 cm in diameter, Figure 3) the
points at which the caliper arms were tangent to the log end when measuring the diameters,
as well as the end points located at the top of the log, which were used as starting and
ending points to measure its length by the tape.

  
(a) (b) 

Figure 3. Examples of diameter measurements by the Measure app of iPhone in the second experi-
ment (E2): (a) an example of log with marks placed; (b) an example of measurement over the log’s
end diameter: 1—starting and ending points of measurement, 2—dot marked as the starting point of
measurement for log length.

In this experiment, measurements on the mid and opposite diameters of the log
were disregarded. However, the rest of the experimental design used for conventional
measurement was kept the same and it included the activities of placing marks at a 0.5 m
interval and painting the excess length on the opposite end when it was less than 0.5 m.
Also, the platform used for PM was an iPhone 13 Pro Max. In both experiments and for
both methods, the measurements were taken at the nearest centimeter.

2.2. Data Processing and Statistical Analysis

In experiment 1 (E1) the data collected by the two measurement methods were manu-
ally transferred into a Microsoft Excel® spreadsheet equipped with a Real Statistics add-in,
where further processing steps were taken to estimate the volume of each log by the Huber’s
(hereafter VH, m3) and Smalian’s (hereafter VS, m3) formulae. The statistical steps used to
compare the data consisted of running a normality check by the means of a Shapiro-Wilk
test, developing the main descriptive statistics for the variables taken into study (Dman,
Lman, Dmeas, Lmeas, VH, and VS) followed by a graphical comparison of the volume
estimates, and a comparison of the two measurement methods by the means of Bland and
Altman’s method [28] applied to the diameters (Dmeas vs. Dman) and lengths (Lmeas vs.
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Lman) and having as a reference the values collected by the conventional method (CM).
Where relevant, a confidence level of 95% (α < 0.05) was assumed.

The method developed by Bland and Altman is typically used to compare two mea-
surements of the same variable in terms of agreement assuming that each measurement
is affected by errors [29]. As such, the method may be used when one attempts to test
or introduce a new measurement method, procedure, or instrument, being applicable
when the acceptable limits of agreement can be defined a priori [28,29]. At its core, the
method is based on a plot that compares the means of each pair of measurements against
the differences between them in a space characterized by the mean of differences (bias)
and a 95% prediction interval called the limits of agreement (upper and lower limits of
agreement) [28]. Measurement agreement between the methods is typically achieved when
the values of differences are clustered around the bias within two standard deviations
of their mean [28,29]. The method assumes that the values of differences between the
compared pairs are normally distributed, although failing a normality test is seen to be not
as serious as in other statistical contexts [28], and requires checking and applying various
methods to deal with heteroskedastic data [29].

The procedures used to run the analysis consisted in calculating the differences be-
tween paired measurements of diameters (hereafter ∆D) and lengths (hereafter ∆L), com-
puting the bias as the mean of differences, setting the limits of agreement within two
standard deviations of differences, checking for normality in differences and plotting
the data. In addition to the development and visual analysis of the Bland and Altman
plots, testing for homoskedasticity was done by plotting the squared residuals of the CM
(Dman, Lman) data against the predicted values of PM data (Dmeas, Lmeas), followed by
a Breusch-Pagan test for homoskedasticity [30,31]. In addition to Bland and Altman plots,
graphs showing the absolute frequencies of differences were developed to characterize
their frequency and magnitude. Also, the data collected by CM and PM were pairwise
compared in graphs showing the equality lines [28] and regression through the origin (RTO)
which fitted the PM as response and CM as explanatory variables.

Finally, error metrics such as the mean absolute error (MAE), root mean square error
(RMSE) and the normalized root mean squared error (NRMSE) were estimated having
as a reference the datasets collected by CM, with the aim of quantifying the differences
between the two methods. MAE is defined as the ratio of the sum of absolute differences
between the reference and measured data to the number of observations in a given sample,
RMSE takes the square root of the ratio of squared differences between the reference and
measured data to the number of observations in a given sample and the NRMSE is the
ratio of RMSE to the data range in a given sample. These error metrics are commonly
used to compare among paired values of the same variable as they stand for the average
difference rather than average error when no set of estimates is known to be the most
reliable [32]. As such, in this study, they were used to point out the differences between the
two measurement methods. Excluding the volume estimation and comparison, processing
and statistical analysis of the data from E2 followed the same procedural steps.

3. Results

3.1. Experiment 1 (E1): Free-Eye Measurement

3.1.1. Descriptive Statistics of E1

Table A1 shows the results of the normality check which was carried out by the means
of the Shapiro–Wilk test. As shown, none of the variables taken into study followed a
normal distribution. The main descriptive statistics of the log volume estimates by Huber’s
(HV) and Smalian’s (VS) formulae are given in Figure 4b in the form of a boxplot. On aver-
age, the values estimated by the two formulae were close (VH = 0.132 and VS = 0.135 m3),
but the data range was wider in the case of VS (0.655 m3) as compared to VH (0.501 m3).
This came largely from the maximum values which were higher in the case of VS (0.688 m3)
as compared to VH (0.531 m3).
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Figure 4. Descriptive statistics of the estimated log volume (E1): (a) A comparison between VS and
VH, where the red dashed line stands for perfect agreement (equality line) and the green dot-dash
line stands for the dependence relation between VS and VH fitted by RTO; (b) boxplots showing the
summary of data distribution and the main descriptive statistics of the volume estimates, including
the minimum, mean, median and maximum value.

As shown in Figure 4a, there was a relative agreement between the two volume
estimates based on the same measurements, at least for the data range from ca. 0.030 to ca.
0.130 m3. Beyond this threshold, the disagreement started to increase relative proportionally
to the magnitude of volume.

Figure 5 shows the main descriptive statistics of the diameter and length measurements
done by the two methods. The mean values of Dman and Dmeas diameters were of 22.86
and 22.89 cm, respectively, and the median values were of 22 cm. In the same order, the
minimum values were of 10 and 9 cm, respectively, while the maximum ones were of 61
and 58 cm, respectively. On average, the values of log lengths were close, with a mean
value of 306.27 in the case of Lman and a mean value of 305.92 cm in the case of Lmeas.
Minimum and maximum values were also close, with values of 291, 290, 314, and 315 cm
for Lman and Lmeas, respectively. For both variables, data ranges were close as values
among the methods.
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Figure 5. Descriptive statistics of the variables measured in E1: (a) Boxplots showing the main
descriptive statistics for diameters; (b) Boxplots showing the main descriptive statistics for lengths.
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3.1.2. Agreement between the Measurement Methods in E1

In terms of diameters, and taking as a reference the CM data, ca. 37% (99) of the
observations were found in perfect agreement, 43% (116) were underestimated by 1 cm and
ca. 6% (15) were overestimated by 1 cm (Figure 6). Approximately 86% of the observations
were found in a difference range of ±1 cm, while the maximum absolute difference between
the two methods was of 4 cm, in the form of an overestimation produced by the PM. The bias
of the measurements was of 0.6 cm, meaning that the PM measured, on average, 0.6 cm less
than the CM, and ca. 98% of the measurements were found between the limits of agreement.
As proved by a Shapiro-Wilk test, data on differences did not follow a normal distribution.
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Figure 6. Agreement between the methods in terms of diameter measurement (E1): (a) Absolute
frequency of differences (∆D) between Dman and Dmeas; (b) Bland-Altman plot showing the
differences plotted against the mean of paired measurements, the bias (green line), and the lower and
upper limits of agreement (red dashed lines).

Figure 7, on the other hand, shows two important findings of data comparison. First
of them is that the two datasets were strongly linearly-related as proven by the coefficient
of determination (R2 = 99.9), while the slope of regression through the origin equation was
close to that of 1:1 represented by the red dashed line which stands for a perfect agreement
(line of equality) between the two methods. Checking the data for heteroskedasticity by the
Breusch-Pagan test indicated that the data was homoskedastic (p > 0.05), therefore it can be
said with a confidence of 95% that the differences between measurements were not affected
by other factors than the measurement methods themselves. This can be seen in Figure A1a
which plots the squared residuals against the predicted Dmeas; as shown there was no
increasing, decreasing, or other kind of trend in data as a function of predicted Dmeas.

Results of agreement between the two methods in terms of length are given following a
similar data representation in Figures 8 and 9. More than 22% (60 observations) of the data indi-
cated a perfect agreement between the two methods, close to 56% of the data (149 observations)
were found to disagree by up to ±1 cm, and more than 95% (254 observations) were found to
disagree by up to ±5 cm. The bias was of 0.3 cm, meaning that, on average, PM measured
less by 0.3 cm. Approximately 94% (251 observations) were found in between the limits of
agreement. Although there was a strong dependence relation between the length measured
by the two methods (R2 close to 1) and the slope of the regression line was very close to that of
the perfect agreement, the data was quite spread indicating a higher degree of disagreement
as compared to diameter measurement.
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Figure 7. Relation between the diameters measured by the two methods (E1). Legend: red dashed
line stands for perfect agreement and the green dashed line stands for the dependence relation
between Dmeas and Dman fitted by RTO.
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Figure 9. Relation between the lengths measured by the two methods (E1). Legend: red dashed
line stands for perfect agreement and green dashed line stands for the dependence relation between
Lmeas and Lman fitted by RTO.

Similar to the diameter measurement, the data on differences between the measure-
ments of length did not follow a normal distribution; by the results of the Breusch-Pagan
test the data was found to be homoskedastic (p > 0.05, Figure A1b).

3.1.3. Measurement Errors in E1

Table 1 shows the results of the error metrics for the first experiment (E1). Mean
absolute error (MAE), Root Mean Squared Error (RMSE) and the Normalized Root Mean
Squared Error (NRMSE) had values of less than 1 cm in the case of diameter measurements.

Table 1. Results on errors for the first experiment (E1).

Error Metric Diameter (cm) Length (cm)

MAE 0.68 1.81
RMSE 0.96 2.55

NRMSE 0.02 0.10

For length measurement, MAE was less than 2 cm, RMSE was close to 2.5 cm and
NRMSE was less than 1 cm. On average, these results indicate very low differences,
therefore supporting a high agreement between the two methods, when approaching the
problem at the sample size.

3.2. Experiment 2 (E2): Guided Measurement

3.2.1. Descriptive Statistics of E2

Table A2 shows the results of the normality check over the diameter and length
variables for the second experiment (E2). Similar to the first experiment, none of the
variables met the normality assumption. Figure 10, on the other hand, shows the descriptive
statistics of the diameter and length variables as specific to the second experiment.
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Figure 10. Descriptive statistics of the measured variables (E2): (a) Boxplots showing the main
descriptive statistics for diameters; (b) Boxplots showing the main descriptive statistics for lengths.

The mean diameters from CM and PM were close in value (21.3 and 21.2 cm, respec-
tively); they were lower by approximately 1 cm compared to those from the first experiment,
and varied in a lower range compared to E1. Lengths were also close in mean values be-
tween CM and PM (308.3 and 307.3 cm, respectively) and higher by approximately 2 cm
compared to their counterparts from the first experiment. They varied in a wider range as
opposed to E1.

3.2.2. Agreement between the Measurement Methods in E2

Figure 11 shows the results on absolute differences and agreement between diameter
measurements as specific to the second experiment (E2). In terms of absolute differences,
approximately 44% of the data was in perfect agreement, and close to 95% of the data was
in a difference range of ±1 cm. These results indicate a greater agreement as opposed to
that from E1. As proved by a Shapiro-Wilk test, data on differences did not follow a normal
distribution (Table A2).
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Figure 11. Agreement of diameter measurement methods in E2: (a) Absolute frequency of differences
(∆D) between Dman and Dmeas; (b) Bland-Altman plot showing the differences plotted against the
mean of paired measurements, the bias (green line), and the lower and upper limits of agreement
(red dashed lines).

The bias was of 0.2 (Figure 11b), meaning that, on average, PM measured less by
0.2 cm, which was better than in E1 (one-third of the bias in E1), and close to 94% of the
observations were found between the limits of agreement, which was similar to E1. The
two datasets (Dman, Dmeas, Figure 12) were strongly linearly-related as proven by the
coefficient of determination (R2 = 99.8), while the slope of regression through the origin
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equation was close to 1 which indicates a high agreement between the two methods. Similar
to E1, data was found to be homoskedastic (Figure A2a).
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Figure 12. Relation between the diameters measured by the two methods (E2). Legend: red dashed
line stands for perfect agreement and green dashed line stands for the dependence relation between
Dmeas and Dman fitted by RTO.

Similar to diameters, the results of length measurement were better in terms of agreement
(Figures 13 and 14) compared to those from E1. Close to 26% (53 observations) were in full
agreement, which was higher compared to E1, 55% of the data (110 observations) were found
to disagree by up to ±1 cm, which was close to E1, and 99% (198 observations) were found to
disagree by up to ±5 cm. The bias was of 0.3 cm, meaning that, on average, PM measured less
by 0.3 cm, which was the same as in E1, and 97% of the data (194 observations) were found
within the limits of agreement. Similar to E1, there was a strong dependence relation between
the length measured by the two methods (R2 close to 1), and the slope of the regression line
was very close to that of the perfect agreement; however, the data was quite spread indicating a
higher degree of disagreement as compared to diameter measurement. The data on differences
between the measurements of length did not follow a normal distribution; by the results of the
Breusch-Pagan test the data was found to be homoskedastic (p > 0.05, Figure A2b).
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Figure 14. Relation between the lengths measured by the two methods (E2). Legend: red dashed
line stands for perfect agreement and green dashed line stands for the dependence relation between
Lmeas and Lman fitted by RTO.

3.2.3. Measurement Errors in E2

The results of measurement errors estimated for the second experiment (E2) are shown
in Table 2. For both, diameter and length measurements they were lower although close to
that of E1, with a diameter MAE, RMSE, and NRMSE of 0.65, 0.92, and 0.03 cm, respectively,
and a length MAE, RMSE, and NRSME of 1.46, 1.93 and 0.04 cm, respectively.

Table 2. Results on errors for the second experiment (E2).

Error Metric Diameter (cm) Length (cm)

MAE 0.65 1.46
RMSE 0.92 1.93

NRMSE 0.03 0.04

The highest differences in errors of the E2 were those of length measurements. How-
ever, they accounted for less by 0.35 (MAE), 0.62 (RMSE), and 0.06 (NRMSE) cm, respec-
tively, as compared to E1. Differences in the measurement errors of diameters were in range
of 0.01 to 0.04 cm. Altogether, these results indicate that, at a sample level, the disagreement
between the two ways of measuring the logs by the Measure app was rather small.

4. Discussion

The last decade has been characterized by a significant diversification in the devel-
opment and testing of the non-conventional measurement tools, particularly in the tree
biometrics measurement. LiDAR technology has been increasingly used in the form of
highly-accurate expensive equipment to detect and measure biometrical characteristics of
the individual trees, although several challenges related to the protocols to be used and
to the diversity in forest conditions still remain [23,33], in addition to its high costs. Most
likely, lower costs, equipment compactness, large-scale availability, and polyfunctionality,
have led scholars to testing small-sized alternatives in tree [21,26,34,35] and log measure-
ment [36]. Only some limited research has documented the accuracy of equipment capable
of instantly provide the measurement results (e.g., [26]), and there is a lack of studies on
the applicability and accuracy of close-range compact solutions to log measurement [36].
As a fact, most of the tested platforms still require more or less complicated workflows to
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process the data before producing the biometric estimates. The above-mentioned motivated
this study to check if the general-purpose Measure application integrated with AR and
LiDAR technologies could be a feasible solution to log biometrics measurement.

A first performance parameter that needs to be discussed in the measurement bias,
characterizing the agreement between the conventional (CM) and phone-based (PM) mea-
surements. For diameter measurement in E1, and E2 the bias was 0.6 and 0.2 cm, respectively,
meaning that, on average, PM measured less (underestimated) than CM, irrespective of the
experimental setup. This difference could be largely attributed to the fact that it was almost
impossible to place the starting and ending points of the measurement right at the opposed
ends of the log, characterizing a given diameter line. However, this may be changed by adjust-
ing the positions of the starting and ending measurement points right after a measurement is
done, therefore would require more time for measuring. While this approach was not taken
in this study, it could hold the ability of improving the measurement agreement, by providing
estimates close to those measured conventionally. In E1, the bias (0.6) was three times higher
compared to E2 (0.2). Excluding random errors which could have been characterizing the CM
and PM, as well as the effect of rounding the results of CM to the nearest centimeter, in E1
the higher bias value can largely come from the fact that there was not a perfect agreement
among the points at which the log was touched by the caliper and those used to measure the
diameter by the phone. As such, for scientific reference, the bias from E2 could be closer to the
real agreement. For length measurements, there were no apparent differences between E1 and
E2 in terms of bias. In both cases it was 0.3, which can be explained by fewer dimensional
deviations as the end-edges of the log at its top were easier to appreciate visually, irrespectively
of setting or not guiding marks. Still, there was an underestimation which can be attributed to
at least two factors: the impossibility to place the measurement points exactly at the edges
and the length of the log along the taper which could have been systematically higher in the
mechanical measurement by tape. In relation to both, diameter and length estimates, ovality,
curvature, and buttress of the logs may be additional factors explaining the differences found
by this study.

There were significant differences in terms of diameter measurement agreement be-
tween E1 and E2. Guided measurement (E2) has led to 95% of the observations falling in a
±1 cm agreement range, while free-eye measurement (E1) accounted for 86% of the obser-
vations in this range. On the other hand, close to 98% of the data has fallen in an agreement
range of ±2 cm, irrespective of the experiment, therefore the effect of the experimental
setup was lower for this range of agreement. The frequency of observations falling in a
±5 cm agreement range for length measurement was close between E1 (95%) and E2 (99%).
Since the data on both, diameter and length measurement differences has been proved
to be homoskedastic, higher differences between measurements could be due to random
errors in CM or to an improper setup of the starting and ending measurement points in PM.
In addition, the condition of the logs under measurement could have been influenced by
the PM accuracy since some logs were either wet or partially covered by snow (Figure 1).

Error metrics used in this study have indicated that there were no high differences
between the experiments in terms of diameter measurement. Mean absolute error (MAE) was
found to be of 0.68 and 0.65 cm for E1 and E2, respectively. This means that, on average, there
was an absolute difference of close to 0.7 cm between CM and PM. Root mean squared errors
(RMSE), on the other hand, were higher, accounting for close to 1 cm. However, RMSE error
metrics are known to be driven in their magnitude by outlying data such as that characterizing
high differences, as well as by the number of observations in a given sample [32]. Therefore,
the values of MAE could be more closer estimates of the real differences. While for diameter
measurement they were less than 0.7, for length measurement they were approximately two
times higher, accounting for 1.81 and 1.46 cm in E1 and E2, respectively.

Compared to the results reported by other studies using mobile general-use platforms,
the differences in terms of bias or error metrics found by this study were, in general, less.
The study of [26] has reported biases of 0.3 to 0.36 cm for DBH measurements taken by a
phone at a distance of 1.5 m. Their results agree with those of length measurements from
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this study, but were higher compared to those from the guided experiment (E2) for diameter
measurement. RMSE values of 1.12 and 1.83–1.91 cm were found by [21] when estimating
the DBH based on close-range photogrammetry and Google Tango technology embodied in
mobile platforms, respectively. Also, by tree reconstruction from photographs taken with a
mobile phone, the study of [35] indicated a general RMSE of 1.9 cm in DBH measurement,
while the study of [34] has found RMSE and bias values in the range of 3.13–4.51 and
−0.58 to 1.03, respectively, when extracting the DBH from point clouds collected with three
applications installed on an iPad device. Having in mind the limitations of the RMSE as an
error metric [32], a comparison with the above-mentioned studies indicates that the PM
errors for diameter and length measurement were less and close, respectively, to the values
indicated by other studies for DBH measurement.

Finally, a general evaluation of the applicability of the Measure app in log measurement
needs to be considered. Given the results of this study, it seems that the PM option would
be suitable for producing general estimates on log volume assuming that logs are piled and
there is no access to them so as to properly implement CM. This is typical of landings where
log piles are formed to save space and to facilitate loading and transportation of wood, and
where a quantitative estimation of the wood could be in question before loading [1]. For
such log grouping conditions, PM could prove indeed valuable for quickly measuring the
diameters at the log ends. Assuming a bias of 0.6 cm, the measurements taken by PM could
be corrected to better reflect reality, or other calibrations between the measurements could
be in question depending also on the personal skills of the operators. However, for piled
wood, there are some limits in capability which need to be addressed. First of all, the LiDAR
range of the used platform is of 5 m, while the used app may take measurements only at ca.
2.5 m, as proved by some indoor experiments carried out by the authors. This means that
the diameter of piled logs which are not accessible in this range cannot be measured by
the tested solution. Secondly, for tall piles, it would be impossible to accurately locate both
ends of a given log. Producing the final assortments at the felling area requires information
about diameters and lengths of the logs [1], therefore PM could be used to pre-grade the
delimbed stems before bucking. Of course, this would require diameter measurement taken
over the felled stems, a measurement option which is different from that explored in this
study. However, the accuracy for such applications seems to be acceptable based on the
results of [26]. Accuracy in length, on the other hand, needs extra caution since failing to
provide a length required for a given assortment may lead to downgrading a given log.

Log measuring is commonly done in hazardous work environments and it may
burden the workers with the need to carry, use and store rather uncomfortable equipment.
From these points of view, the use of the Measure app can add value by integrating
the commonly used log measurement tools in a single lightweight device in which the
personal functionalities can be extended by integrating those required by the measuring
job. It also gives the possibility of saving the measurements and, more importantly, its
use does not require direct contact with the logs, therefore it can contribute to safety
enhancements. Compared to other apps and platforms such as those able to collect point
clouds [22,24,36–38], the tested solution still shares some limitations in terms of data
transfer, wood traceability, and transparency in the wood supply.

In relation to the experiments of this study, there are several other research directions
that may be approached in the future. First of all, similar experiments should be set up to
extend the sample size and to better infer the disagreements between the methods. Close to
500 logs were used in this study; however, it is likely that larger sample sizes will improve
the rate of agreement between the methods by moving more pairwise measurements
in higher agreement ranges. Accordingly, it is less likely that the bias between the two
methods would change significantly, due to the reasons discussed above. Since replicability
is of first importance in extending the PM, further studies could focus on the agreement
of measurements as done by different operators. The logs measured in this study were
limited to approximately 3 m in length and they were all processed from coniferous trees.
To what extent the measuring capability may be extended to longer lengths, and how the
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measurement accuracy would respond to different species and operating conditions, need
to be checked in the future to find a balance between the accuracy and capabilities of the
measuring device.

5. Conclusions

Moving to digital solutions in log measurement is of the first importance for an effi-
cient wood supply. Through two experiments, this study evaluated the agreement between
the conventional and phone-based measurement having at its core the general-purpose
Measure app developed by Apple, Augmented Reality, and LiDAR sensing capabilities of
the iPhone 12 and 13 Pro Max platforms. The results indicate a good agreement between
measurements, making this digital solution useful for several log-measurement applica-
tions, mainly by providing accurate results, improving ergonomics, and safety of measuring
operations. Further studies could check if the accuracy of measurements would be en-
hanced by larger log samples and if there would be a good replicability of the method as of
different operators. Also, finding a balance between capability and measurement accuracy
by extending the study to longer log lengths, different species and operating conditions
would be important to characterize the technical limitations of the tested method.
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Appendix A

Table A1. Results of normality check for the first experiment (E1).

Statistic VH VS Dman Dmeas Lman Lmeas

W-stat 0.861984 0.831085 0.931375 0.938037 0.942384 0.966199
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

α 0.05 0.05 0.05 0.05 0.05 0.05
Diagnose no no no no no no
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Figure A1. Results of the test for homoskedasticity (E1): (a) Plot of squared residuals against the
predicted Dmeas (Note: data was homoskedastic by Breusch-Pagan test, p > 0.05); (b) Plot of squared
residuals against the predicted Lmeas (Note: data was homoskedastic by Breusch-Pagan test, p > 0.05).

Table A2. Results of normality check for the second experiment (E2).

Statistic Dman Dmeas Lman Lmeas

W-stat 0.951711 0.83517 0.943546 0.824777
p-value <0.001 <0.001 <0.001 <0.001

α 0.05 0.05 0.05 0.05
Diagnose no no no no
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Figure A2. Results of the test for homoskedasticity (E2): (a) Plot of squared residuals against the
predicted Dmeas (Note: data was homoskedastic by Breusch-Pagan test, p > 0.05); (b) Plot of squared
residuals against the predicted Lmeas (Note: data was homoskedastic by Breusch-Pagan test, p > 0.05).
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Abstract: The Internet of Things (IoT) development is revolutionizing environmental monitoring
and research in macroecology. This technology allows for the deployment of sizeable diffuse sensing
networks capable of continuous monitoring. Because of this property, the data collected from IoT
networks can provide a testbed for scientific hypotheses across large spatial and temporal scales. Nev-
ertheless, data curation is a necessary step to make large and heterogeneous datasets exploitable for
synthesis analyses. This process includes data retrieval, quality assurance, standardized formatting,
storage, and documentation. TreeTalkers are an excellent example of IoT applied to ecology. These are
smart devices for synchronously measuring trees’ physiological and environmental parameters. A set
of devices can be organized in a mesh and permit data collection from a single tree to plot or transect
scale. The deployment of such devices over large-scale networks needs a standardized approach for
data curation. For this reason, we developed a unified processing workflow according to the user
manual. In this paper, we first introduce the concept of a unified TreeTalker data curation process.
The idea was formalized into an R-package, and it is freely available as open software. Secondly,
we present the different functions available in “ttalkR”, and, lastly, we illustrate the application
with a demonstration dataset. With such a unified processing approach, we propose a necessary
data curation step to establish a new environmental cyberinfrastructure and allow for synthesis
activities across environmental monitoring networks. Our data curation concept is the first step for
supporting the TreeTalker data life cycle by improving accessibility and thus creating unprecedented
opportunities for TreeTalker-based macroecological analyses.

Keywords: IoT; forest ecology; big data; accessibility

1. Introduction

Technological innovation has frequently been an accelerator for gaining new knowl-
edge in many fields of ecology [1]. The development of Wireless Sensor Network (WSN)
technology, combined with the advancements in low-power, high range data transmission,
is revolutionizing the approach to environmental monitoring [2]. Such developments,
combined with cellular networks capable of supporting massive connectivity with efficient
schemes for tethering billions of devices globally, enable Internet of Things (IoT) appli-
cations in many fields of science, including ecology [3,4]. This is further advantaged by
increasingly ubiquitous connectivity and the extensive coverage provided by the latest gen-
erations of communication networks [5]. Thus, such technologies offer new opportunities
for collecting continuously consistent environmental and ecophysiological parameters with
high temporal frequency across broad spatialized networks [6–8].

The ecological applications of IoT provide different advantages compared to other
approaches for environmental monitoring by empowering ecologists to address massive
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data retrieval in situations where manual collection from multiple and heterogeneous
sensors would be time consuming and error-prone. At the same time, diffused networks of
environmental sensors allow for conducting measurements with high temporal frequency,
even in rough environments or remote experimental sites [9]. Additionally, WSN-based
experiments have the possibility for integration with adjacent networks and even with
other data streams such as remote sensing [10].

The need for several sensors to be implemented in extended networks requires the
usage of low-cost solutions. Such requirement boosts the implementation of open solutions,
including open hardware and open software. As a result, IoT technology generally bears
unprecedented opportunities for ad hoc customization and community-based develop-
ment, contributing to the fast diffusion and enhancement of IoT usage in environmental
applications [11].

Several smart devices have already supplanted traditional monitoring systems relying
on discrete or manual methodologies, giving real-time, continually analyzed, and wirelessly
provided data, but different challenges remain unsolved [12]. As a matter of fact, in parallel
to increasing ecological data availability, there is a new need to establish and deploy
appropriate cyberinfrastructures [8] to enable data science-based research. The first step
in designing such an infrastructure is the definition of data curation strategies, including
device and data monitoring, quality assurance, storage, analysis, and accessibility. Firstly, a
network with many sensors needs the constant monitoring of functionality, especially in
harsh environments where an accurate and regular automated control can promptly permit
the network manager to act in the case of failure [13]. Additionally, the following crucial
step is quality assurance, because the data might suffer from different disturbing factors
such as sensor degradation, unstable power availability, and transmission issues [11]. Such
factors might generate a disturbed measured signal but could also be the source of missing
data or generate duplicates. Secondly, data sourcing from multiple sensors across regional
networks needs to include proper and consistent formats [14]. This means adopting
self-documenting and recognized standards. This step is of paramount importance for
supporting data-sharing and for enabling the final user to proceed with further analyses [15].
Lastly, data are required to be documented, and data access policies should be defined
to allow for distribution and accessibility. In detail, accessibility establishes the degree
to which researchers can use data. This means that accessible data are not only available
but also usable. Therefore, accessibility requires the usage of standard—and possibly self-
documenting—formats. In this context, the adoption of a standardized curation approach
is fundamental for any Research Data Management plan [16], and it is a milestone for any
research hypothesis making use of experimental “big-data” collected across large areas
and across different research groups [17]. As mentioned by [18], there is an urgent need
for ecologists to establish networks across institutional boundaries to pursue broad scale
questions. Thus, in the past few years, the rising data-sharing culture binned uniformed
data gathering methods together with data and metadata formats permitted to address
regional- to global-scale questions. A good-practice example is the ICOS network, where in
situ observations of carbon and other greenhouse gasses (GHG) are continuously collected
across 140 measurement stations and 12 European countries according to standardized
protocols, processed with a unified processing workflow, and provided to the final user as
ICOS data products in a standardized data format [19].

This reasoning showed us the opportunity to develop an open-source toolbox imple-
menting a unified processing workflow for the broad deployment of TreeTalkers (Nature 4.0
SB srl) data within the scientific community. As already demonstrated by the ICOS project
in the context of GHG emissions, the presented workflow will support data-sound model
development and the inference of forest attributes through the integration of TreeTalker
data with complementary data streams [10] and their ultimate feeding into artificial in-
telligence systems for forestry applications and, eventually, for their contribution to the
creation of forest digital twins [20].
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2. The TreeTalker

The need to protect forests and technological developments have permitted the de-
velopment of novel IoT devices for specific applications such as fire and deforestation
monitoring. For example, the SeaForest solution is a system for detecting fire, pollution
sources, or illegal deforestation based on IoT devices. [21,22] revises the available systems
for forest fire detection applications and proposes a novel method based on multi-sensors
and cameras. On the other hand, such systems can be deployed to monitor the environment
but not multiple parameters related to tree ecophysiology. A more comprehensive approach
is required for a better understanding of the resilience of forests to extreme events. The
TreeTalker technology provides this opportunity because it is capable of measuring with
high frequency and in nearly real-time key processes such as the water consumption, the
growth of biomass (diameter), and the health of the leaves. The device consists of a logger
enclosed in a plastic case that acquires signals from various sensors (Figure 1). The device
is typically installed on a tree trunk at breast height. The current version of the system is
described by [6]. It runs on batteries, and it has an average autonomy of up to three months
with the default measurement frequency. A separated device equipped solely with a ther-
mohygrometer and a multi-band spectrometer (TT-R) can be placed outside of the canopy
for reference. The user can freely program the acquisition rate, which is by default set to
hourly, allowing for adaptable and continuous high-frequency environmental monitoring.
Raw data are collected via Long Range connection (LoRa) by a master node (the so-called
TT-Cloud) and transmitted via the Global System for Mobile Communications (GSM) to a
central server. The collected data are centrally saved as digital numbers and require further
conversions to be expressed in physical units.

 

Thirdly, basic quality assurance procedures are applied (i.e., outliers’ removal and basic 

conducted according to the TreeTalkers’ user manual

Figure 1. A beech tree monitored with a TreeTalker (power supply not shown).

3. The ttalkR Concept

The ttalkR workflow consists of four subsequential steps (Figure 2). Firstly, it is
necessary to retrieve the data relative to a specific mesh of sensors from one or more servers.
Secondly, the datasets are merged into four dedicated tables containing detailed information
from different classes of devices or specific sensors. One table is for the TT-Cloud, one
table is for the data collected from the embedded spectrometers, one table includes all
the communication diagnostics, and the last table collects data from all the other sensors.
Thirdly, basic quality assurance procedures are applied (i.e., outliers’ removal and basic
gap filling), followed by the conversions from digital numbers to physical units, which
are conducted according to the TreeTalkers’ user manual (TT+manual ver. 3.2, September
2020). Lastly, the derived variables are plotted for visualization and saved locally into an
SQLite database for further processing.
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The “ttalkR” package is a collection of functions for curating TreeTalker data. The 

’

the devices’ producer

Figure 2. Conceptual workflow of the data curation process within the ttalkR package from the data
download to the figures and data saving.

4. Functions of ttalkR

The “ttalkR” package is a collection of functions for curating TreeTalker data. The
package is organized in dedicated functions addressing each measured parameter by a
TreeTalker device (Figure 3). Such functions are usable between the input function named
ttScrape() and the output function named ttOutput(). The plotting utilities permit the user
to visualize the measured parameters’ canopy/mesh scale but also the single tree level.
While the first approach is useful for gaining an overview at the measurement site, the
second approach allows for the identification of anomalous trees and can be used for
diagnostic purposes (e.g., for identifying interesting patterns and, eventually, for spotting
faulty sensors). Thus, the package can also be deployed for operational site functioning
monitoring and maintenance, repair, and operation (MRO).

The “ttalkR” package is a collection of functions for curating TreeTalker data. The 

’

the devices’ producer

Figure 3. Detailed structure and functions of the ttalkR package. I/O functions are highlighted
in green.

4.1. Data Download

The core of the package is formed by the ttScrape() function. It downloads TreeTalkers
data from specific servers and organizes the different strings into the four aforementioned
tables, which are required for further processing. The package was initially developed for
the Italian Treetalker network, which also makes use of the standard server initialized by
the devices’ producer, but it can be deployed for any hosting server by adapting the source
URL. The derived tables include information about the (i) status of the master (e.g., battery
level and GSM metrics), (ii) communication diagnostics for the connected TreeTalkers (i.e.,
radio signal strength), (iii) raw data acquired by the spectrometers, and (iv) raw data from
all the other attached sensors. The function ttScrape() includes a first-tagging of the missing
data and removes duplicated fields. Further quality assurance steps are executed in the
parameter-specific functions.
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4.2. Battery Voltage

The battery voltage of the TreeTalkers within a mesh and the associated master
(TTcloud) can be monitored for MRO purposes. Like all the following functions, ttBattery()
makes use of the data frames created by the ttScrape() function. For each TreeTalker, it
calculates and plots the battery level consistently with the programmed measurement
frequency (Figure 4A). The function considers the bandgap voltage reference of the mi-
crocontroller (1.1.v) and the analogue to digital conversion (ADC) values of the bandgap
and the battery. No quality assurance is applied to these parameters. As indicated by the
producer, the batteries should be recharged at 3500 mV because, below such threshold, the
proper functioning of the sensors is not guaranteed (Figure 4A).

Figure 4. Output of the “ttalkR” plotting utility. (A) battery voltage with the indication

–

–

━ TreeTalker Nr. 1 

━ TreeTalker Nr. 2 

━ TreeTalker Nr. 3 

━ TreeTalker Nr. 4 

━ TT-R 

━ TT-Cloud 

━ 3500 mV 

Timestamp 

Figure 4. Output of the “ttalkR” plotting utility. (A) battery voltage with the indication of the warning
threshold (3500 mV); (B) sap flow; (C) under canopy radiation; (D) relative humidity. The example
data refer to four TreeTalkers and a TT-R for the period between 14 June 2021 and 14 July 2021. In (B),
the data from the TT-R are missing because it is a reference device outside of the canopy which is not
equipped with the corresponding sensors.

4.3. Sap Flow

Transpiration is a critical process that links the exchange of water, carbon, and en-
ergy between the land and the atmosphere, influencing various vegetation–atmosphere
feedbacks. Water transfer from the roots to the leaves is driven by transpiration in the
form of sap flow through the plant’s xylem pathway, and this sap flow influences heat
transport in the xylem [23]. The current version (3.2) of the TreeTalker device uses the
thermal dissipation method [24] with repeated heating cycles. The default settings foresee
10 min of heating and 50 min of cooling. Probe pairs are inserted in the tree stem with a
vertical separation of 10 cm. Normally, the probes are positioned facing north to avoid
direct solar heating. Firstly, the function ttGranier() converts the voltages from the reference
and heat probes into temperatures (Figure 4B). Then, it smooths the time series applying a
Savytsky–Golay filter [25] by removing high-frequency components (e.g., electric noise).
The function replaces the missing values for the gaps up to 12 h by interpolation. Lately, it
estimates the sap flow density for each TreeTalker in a mesh by applying the conversion
described by [26], which is assumed to be species independent.
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4.4. Under Canopy Radiance

Understanding the spectrum quality of light transmission across the forest canopy
can have a significant impact on the design and validation of new forest radiative transfer
models. These can be used to better characterize forest–climate interactions or forest pro-
duction or as a tool to evaluate earth observations [27]. A proper description of the spectral
transmittance of forest canopies will enhance our understanding of forest vegetation pheno-
logical mechanisms. Each TreeTalker is equipped with two AMS chips (ams-OSRAM AG),
the model AS7262 for the visible range and the model AS7263 for the near infra-red range
(TT+manual ver. 3.2, September 2020). Each chip can measure six bands. The AS7262 (cen-
tral wavelengths: 450, 500, 550, 570, 600, 650) has a full width at half maximum (FWHM) of
40 nm, while the with the AS7263 (central wavelengths: 610, 680, 730, 760, 810, 860 nm) has
a FWHM of 20nm. The function ttLight() makes use of a dedicated data frame created by
the ttScrape() function. It requires the site coordinates as input arguments, which are used
to estimate the sun’s position in the sky vault. Firstly, the function smooths the time series
for each of the twelve measured spectral bands by applying a Savytsky–Golay filter [25] for
removing high-frequency components. Secondly, it filters the spectrometer data according
to solar geometry by keeping the measurements acquired with the sun azimuth between
+/−30 degrees from the local solar noon. Lastly, it aggregates daily values and plots the
spectrometer data from a TreeTalkers mesh for a specific band (Figure 4C). The function
does not account for the shading effects related to the site topography.

4.5. Relative Humidity and Air Temperature

Forest canopies act as a thermal insulator, cooling the understory when the weather
is hot and warming the understory when the weather is cold [28]. These dynamics affect
the relative humidity, and these factors act concurrently with the regulation of the ecolog-
ical processes occurring below the canopy in natural and urban environments [29]. The
function ttRH() and the function ttAir() make use of the data from the thermohygrometer
NXP/Freescale, Model: Si7006 (TT+manual ver. 3.2, September 2020). The relative humid-
ity data (Figure 4D) are filtered for a plausibility range, and the gaps up to 12 h are filled by
interpolation, while no quality assurance is applied to the temperature data (Figure 5A).

4.6. Tree Stability

Tree stability is an essential characteristic to be monitored because it can provide
information about the resilience of aingle trees as well as of the whole forest ecosystem
to abiotic disturbances such as windstorms [30,31]. Accelerometers mounted on a tree
trunk can record the sway movement of the tree. The tree sway is affected by tree traits
such as the mass, wood density, elasticity, and drag coefficient [32] but also by canopy
characteristics such as the closure and roughness. Understanding the behavior of this
parameter is crucial in forestry for understanding the response to wind, as storm damage
can be a large source of economic loss [33]. TreeTalkers measure the trunk movements
by a Silicon Labs MMA8451Q 3-Axis Accelerometer equipped with a very low-power,
low-profile capacitive MEMS sensor (TT+manual ver. 3.2, September 2020). The ttStability()
function processes the oscillation of trees due to gravity with a spherical coordinate system.
With basic trigonometry, the angle between the gravity vector and the TreeTalker z-axis are
assessed by taking in account variations in the angle of tilt in the xy-plane, as described
by [34] (Figure 5B). A positive angle means that the corresponding sensor axis is pointed
above the relative horizon (referred to in the standard installation settings), whereas a
negative angle indicates that the axis is pointed below the relative horizon.
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Figure 5. Output of the “ttalkR” plotting utility. (A) Air temperature with the reference minimum
(dashed blue line) and maximum temperature (dashed red line); (B) inclination of the devices;
(C) stem volumetric content; (D) radial growth. The example data refer to four TreeTalkers and
a TT-R for the period between 14 June 2021 and 14 July 2021. In (C,D), the data from the TT-R
are missing because it is a reference device outside of the canopy which is not equipped with the
corresponding sensors.

4.7. Stem Volumetric Water Content

The water content in trees varies with diel and seasonal cycles, and it is a reservoir
for transpiration [35], with sapwood being the most important storage site [36]. Because
of the lack of experimental data, the most often-used models for investigating the water
balance of vegetated regions do not take into account differences in plant water storage or
their influence on the pathways of the transport in the soil–plant–atmosphere system [37].
TreeTalkers make use of a capacitive sensor (MicroPCB) with copper plates (TT+manual
ver. 3.2, September 2020) for measuring stem volumetric water content and its dynamics.
The method is based on frequency domain measurements and has been demonstrated to
be effective for different tree species, but it requires species-specific calibration [38]. The
function ttStWC() converts the frequency domain measurements into volumetric water
content (Figure 5C) by adopting the calibration functions provided by [39]. Because of the
necessary temperature dependence correction, we applied a Savytsky–Golay filter [25] to
the temperature data in order to remove high-frequency components, and we used a linear
interpolation for gaps up to 12 h.

4.8. Radial Growth

The growth of forests is affected by environmental factors [40], and it is a crucial
ecophysiological parameter for quantifying the carbon sink of forests [41]. Radial stem
growth occurs based on xylem increments on structures already formed, so trees increase
in size with age. The function ttGrowth() makes use of data frames created by the ttScrape()
function. It processes the data from GP2Y0A21 Sharp distance sensors. The sensors are
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deployed as point dendrometers. The distance sensor is positioned at a few centimeters
(typically 3 to 4 cm) away from the tree trunk’s surface and is kept in place by a carbon fiber
stick anchored in the xylem. The function converts the digital numbers into distance (mm)
with a second-degree polynomial regression model provided by the producer (TT+manual
ver. 3.2, September 2020), and it applies a temporal averaging (median) on a weekly basis
in order to remove the signal noise affecting the hourly measurements (Figure 5D).

4.9. Output

Interacting with databases via scripted languages has advantages over querying
databases via a graphical user interface. In fact, data manipulations are preserved in the
code, and the aggregates, summaries, and other database operations are not lost. As a result,
those pre-analysis data manipulation steps are held and can be replicated. The ttOutput()
function ingests the output from all the previous functions and creates a new database and
an associated structure. In addition to the specific measured variables, each table in the
database (Table 1) contains references to time and to a unique TreeTalker identifier (ID).

Table 1. Tables and content of the database created by means of the function ttOutput().

Name Content

df_ttBattery timestamp, battery voltage, TreeTalker ID
df_ttGranier timestamp, sap flow density, TreeTalker ID

df_ttLight date, daily average counts per band, TreeTalker ID
df_ttRH timestamp, relative humidity, TreeTalker ID
df_ttAir timestamp, air temperature, TreeTalker ID

df_ttStability timestamp, Tree stability, TreeTalker ID
df_ttSTtWC timestamp, Stem volumetric water content, TreeTalker ID
df_ttGrowth timestamp, Radial growth, TreeTalker ID

We selected the SQLite format because it is self-contained, stand-alone, and the rec-
ognized standard for storage and is therefore suitable for making the data accessible to
a broad community for further processing and analysis. Additionally, this format is not
software-specific, and it provides the benefits of an easy user setup and the absence of the
need to configure or manage a server process.

5. Conclusions

In this article, we proposed and demonstrated the ttalkR package as the first step
toward a unified TreeTalker data curation and, therefore, as a crucial advancement toward
more formal time series analyses and data interpretation. The ttalkR package was first
designed as a toolbox for assisting TreeTalker users in MRO activities and for the unified
preprocessing of collected data to allow for cross-site analysis. The toolbox was planned as
user-friendly and envisages scientists deploying TreeTalkers and pursuing data formatting
for research purposes in a standardized but customizable fashion within the R program-
ming language. The ttalkR package provides an approach to TreeTalker data curation by
implementing a workflow for a unified conversion from raw numbers to physical units
according to the TreeTalker user manual (TT+manual ver. 3.2, September 2020). The concept
behind the package is modular, with I/O functions and parameter dedicated functions. We
conceived the general package architecture to be adaptable to further hardware develop-
ments (i.e., sensor substitution and addition). At the same time, an open code provides
possibilities for implementing advanced quality assurance algorithms and new conversion
and calibration procedures. Additionally, we adopted a self-contained and stand-alone
relational database as the final output format for facilitating data exchange. In the future,
the “ttalkR” package can be extended by including the possibility to curate data from older
and newer TreeTalker versions. Furthermore, a finer data elaboration level could be added
to provide derived indexes and parameters, which will be helpful for forest modelling and
the integration with complementary data streams.
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In conclusion, our approach provides new opportunities for synthesis analyses based
on the TreeTalker data from large-scale networks and their integration with other data
streams such as meteorological information and earth observations. Such an approach
is a first step for supporting the TreeTalker data life cycle and is suitable for making the
collected data accessible. Ultimately, a unified approach for data curation will enable the
exploitation of collected information for data-sound model development, the inference of
forest attributes, and for addressing novel and broad research questions in macroecology.
Yet, a unified processing of TreeTalker data will be the basis for a new environmental
cyberinfrastructure across regional and possibly global research networks.
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Abstract: Unoccupied Aircraft Systems (UAS) are beginning to replace conventional forest plot
mensuration through their use as low-cost and powerful remote sensing tools for monitoring growth,
estimating biomass, evaluating carbon stocks and detecting weeds; however, physical samples
remain mostly collected through time-consuming, expensive and potentially dangerous conventional
techniques. Such conventional techniques include the use of arborists to climb the trees to retrieve
samples, shooting branches with firearms from the ground, canopy cranes or the use of pole-mounted
saws to access lower branches. UAS hold much potential to improve the safety, efficiency, and reduce
the cost of acquiring canopy samples. In this work, we describe and demonstrate four iterations of
3D printed canopy sampling UAS. This work includes detailed explanations of designs and how each
iteration informed the design decisions in the subsequent iteration. The fourth iteration of the aircraft
was tested for the collection of 30 canopy samples from three tree species: eucalyptus pulchella,
eucalyptus globulus and acacia dealbata trees. The collection times ranged from 1 min and 23 s, up to
3 min and 41 s for more distant and challenging to capture samples. A vision for the next iteration of
this design is also provided. Future work may explore the integration of advanced remote sensing
techniques with UAS-based canopy sampling to progress towards a fully-automated and holistic
forest information capture system.

Keywords: canopy; drone; leaf; leaves; foliar; samples; sampling; Aerial robotics; UAS; UAV

1. Introduction

Climate change is having a complex variety of effects on our forests from increased
atmospheric carbon dioxide levels [1,2], environmental changes such as increasing drought
severity and frequency [3–5], and more frequent and severe bushfires [6]. In some cases,
local environmental changes are becoming sufficiently persistent and significant enough to
shift conditions beyond the tolerable limits of some species, causing the large scale loss of
forests and even threatening some species with extinction without assisted migration [7,8].
Scalable and high-fidelity measurements are of considerable importance to furthering our
understanding of these changing conditions and their associated impacts on our forests.
Forest information will play an important role in enabling evidence-based policy decisions
to be made regarding the mitigation of and adaptation to such climate impacts. The
enhancement of the tools available for sampling and monitoring our forests will enable
larger scale and lower cost collection of forest information.

Unoccupied Aircraft Systems (UAS), remote-sensing and deep-learning technologies
have been revolutionising the way we can monitor the structure of forests and quantify
carbon stores [9–18] for use in climate models; however, physical samples remain important
for calibrating some remote sensing techniques [19,20], directly measuring foliar nutrients,
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collecting genetic samples, monitoring pests/diseases and studying physical plant traits.
Canopy and sub-canopy physical samples can be used to answer questions related to plant,
ecosystem, and environmental health. These samples can provide a valuable source of
feedback to forest growers and researchers to further optimize and inform the management
of our forest resources, but obtaining these samples remains a challenge.

Canopy samples are typically collected with considerable effort through the use of
canopy cranes [21–23], arborists, shotguns, crossbows [24,25], line launchers and pole
pruners [26]. These techniques can be time-consuming, expensive and in some cases
dangerous. Aerial robots/UAS have the potential to help us obtain these samples more
safely, cheaply, and rapidly, but to do so, they need to be able to physically interact with
trees. Promising research is ongoing to develop platforms such as [27–31] to enable UAS to
precisely interact with objects; however, further research is needed to bring this technology
to forest sampling. Such robotic systems present an interesting opportunity to improve the
way we collect samples and physically interact with forest canopies.

The canopy sampling or pruning designs in the literature fit into three main categories.
The most common design category involves a sampling tool that hangs underneath the UAS
on a long pole [32–38]. This approach is most suitable for sampling the tops of canopies and
is unaffected by a closed canopy, provided that the local UAS regulations around line-of-
sight operations and field conditions make this possible. The second most common design
category includes those which are lateral reaching [39–42], i.e., the sampling tool protrudes
in front of the aircraft rather than hanging beneath it. These systems approach trees from
the side rather than from above, so they are able to access locations that the hanging designs
cannot reach, such as those which are not at the very top of the tree or locations beneath
a closed canopy. Such an approach ideally needs a counterweight to ensure the centre of
gravity remains in line with the centre of thrust to avoid wasted performance, instability
and other control related issues. Lastly, there is an example of a UAS which approaches
from underneath branches, with the cutting tool above it [43]. The latter system is intended
for pruning rather than sampling, however, it would still enable leaf sampling and is
therefore relevant to this discussion. This design is unable to sample from the top or the
side, requiring a vegetation-free section of the branch to fly underneath and hook onto. The
tools used to cut the sample or branch by all previous studies identified included circular
saws [32–34,41,43], electrically powered [39,42] or spring-loaded secateurs [35] or a simple
razor blade [40].

Two studies were particularly noteworthy for their use of computer vision to simplify
the task of choosing a branch and making the cut. One demonstration uses machine
learning and computer vision to identify stems and branches in real-time and robotically
cut them with a secateur style pruning tool [42,44]. Another more recent study used
computer vision techniques on a depth image to select a target branch and actively assist
the pilot in collecting the sample [37].

With the exception of [42], which had a small propeller guard at the front of the
aircraft, and [40], which used off-the-shelf propeller guards, collision tolerance was not
present in the existing designs. While this is not a problem for hanging designs, lateral
reaching designs are frequently in close proximity to the canopy when cutting/collecting a
sample, which puts the aircraft at risk of colliding propellers with branches/leaves and
crashing. The two above-mentioned systems with propeller guards may have had some
protection from stems and other solid vertical surfaces; however, these systems would not
have protection from branches and leaves, which tend to move and do not provide much
resistance when flying into them. Collision tolerance which can stop such a lateral reaching
UAS from flying too deeply into the canopy would be useful in preventing crashes and
would reduce the stress of the sampling operation on the pilot; however, a large surface area
is needed to provide sufficient resistance to prevent flying deep into the canopy. Providing
such a large surface area for collision presents challenges with regard to aircraft weight and
aerodynamics.
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In this article, we describe our approach to rapidly prototype a purpose-built UAS for
the collection of canopy samples, which was collision tolerant and able to collect samples
from the side of trees. Four novel design iterations are presented, with design decisions
and justifications described throughout. The designs we present are not intended to replace
hanging sampler designs, which are a very logical approach for capturing samples from the
top of the canopy. Instead, the goal was to provide the capability of capturing samples from
locations from which a hanging design cannot reach, such as from underneath a canopy,
from the side of a canopy, inside a forest with a closed canopy or from the side of vertical
or overhanging cliff faces.

2. Materials and Methods

The structure of the methodology is as follows: first, the common system components
and ideas used in all iterations of the canopy sampling UAS are described. The design
process in this study was highly iterative and made extensive use of 3D printing in order
to rapidly prototype and test new ideas as different challenges were identified through
field testing. In this article, each iteration is presented in order of creation, with lessons
learnt from the first design informing the design decisions made for the subsequent design
iterations. Lastly, the details of the field testing to evaluate the utility of the approach are
described, along with a discussion of relevant safety considerations within the context of
existing sampling techniques.

2.1. Overall System Design Considerations and Components

As hanging designs are generally limited to sampling the very tops of trees, and as
there are already successful designs for this task such as DeLeaves [32], our design was
intended to access samples that would not be accessible with a hanging design, so the first
major design goal was to develop a lateral reaching design which was capable of tolerating
collisions with the canopy. Further, by having the propellers in line with the sampling tool,
the considerable prop-wash does not blow directly into the sample to be captured. If the
sample was beneath this aircraft, it would always be a moving target, though a sufficiently
long pole can reduce this effect, as demonstrated in other designs.

Lateral reaching designs result in a relatively heavy sampling tool being extended
far in front of the centre of gravity, so it is necessary to counterbalance this offset mass to
maintain alignment of the centre of gravity with the centre of thrust. It was noted in [32]
that there was a need for a counterweight in a lateral reaching design, and this is generally
correct; however, it is important to note that the counterweight does not need to be dead
weight and does not necessarily reduce the flight time due to weight. Most UAS are already
carrying a relatively heavy battery, so it makes sense to use this and/or other components
already required by the aircraft as the counterweight for the lateral payload. While this
avoids unnecessary weight, it must be acknowledged that a lateral design also means an
increase in the moment of inertia about the pitch axis, which does require more energy for
a given attitude change. An example of how this counterweight is employed is depicted in
Figure 1. Any collisions between the vegetation and the propellers can quickly result in
a crash, so a design goal was to keep the sampling tool as far forward as practicable, and
therefore keep the vegetation away from the propellers.

Keeping the sampling tool as far in front of the centre of gravity as possible is the first
step for avoiding propeller–branch collisions; however, it has limited efficacy on its own.
Intelligent sensing of the surrounding environment in order to avoid propeller-branch
collisions would be a solution; however, reliable and precise detection and avoidance of
small, dynamic obstacles (such as leaves and branches) remains a particularly challenging
robotics problem at this time. Consequently, the system was designed to passively tolerate
minor collisions with branches rather than attempt to avoid them entirely. The primary risk
of these low-speed and minor collisions to the aircraft is the propellers striking branches and
being slowed or stopped as a result. This can lead to a loss of thrust/control of that motor,
often causing the aircraft to propel itself further into the branch and resulting in the loss of
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the aircraft. While the UAS designs presented in this work were able to descend safely in
the event of losing a single motor, performance is considerably degraded if this occurs.

Figure 1. Our designs compensate for the offset payload mass by using the battery as a counterweight.
With the battery weighing approximately 2 kg and the payload weighing approximately 1 kg, the
payload can be further from the centre of mass than the battery, keeping the sampling operation as
far in front of the propellers as practicable.

All iterations of the aircraft used the same base components as described in Table 1,
and all used the battery as a counterweight to the sampling payload to ensure that the
center of gravity was aligned with the center of thrust. The power components such as
the battery, motors and propellers were not our first component choices, as the COVID-19
pandemic had impacted supply chains and greatly limited part availability for this project.
A smaller aircraft was preferable, but smaller, suitable combinations of motors, propellers
and batteries were unable to be acquired during the project. The resulting airframe was a
coaxial octocopter to keep the footprint of the aircraft as small as possible while providing
enough thrust to carry the cutting tool payloads.

Table 1. Common UAS components used for all iterations of this system.

Component Type Model

Flight Controller Holybro Pixhawk 4—PX4 Firmware
Motors T-Motor MN4014-11, 330 KV

Propellers Carbon fibre 431.8 mm diameter, 140 mm pitch
Battery Turnigy 16 Ah, 6S (Lithium Polymer)

Airframe

Custom 3D printed designs with carbon fibre tubing. Printed
using Polylactic Acid (PLA) filament for all components

except the motor mounts, which were printed in Polyethylene
terephthalate glycol (PETG) for the higher glass transition
temperature underneath the motors. Past experience has

found that PLA motor mounts can soften and fail
catastrophically from motor heat loads.

Companion Computer

Nvidia Jetson Tegra X2 (Nvidia, Santa Clara, California,
United States of America) with Auvidea J120 development
board (Auvidea, Denklingen, Germany). Note: used from

version 3.0 onwards.

Visual Inertial Odometry Sensor Intel Realsense T265 (Intel, Santa Clara, California, United
States of America). Note: used from version 3.0 onwards.

Many prior works made use of entirely custom tooling for the sampling operation;
however, our approach was to purchase existing, low-cost power tools and modify them
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for the task. The penalty of this approach was the additional weight when compared to
a custom tool, but the advantages included the ability to rapidly change the approach
while also saving considerable engineering effort, time and manufacturing costs during the
development of a suitable approach.

2.2. Version 1—Full Collision Box with Electric Secateurs

The first design iteration involved a cage-like structure that was integrated into the
airframe, with the intent to cover this in tough plastic meshing. The sampling tool
consisted of an electrically powered secateur tool (Ryobi 18 Volt One+ Lopper, https:
//www.ryobitools.com/outdoor/products/details/18v-one-plus-lopper, last accessed on
10 March 2021) which consisted of sharp jaws driven by a linear actuator and was capable
of cutting branches of up to 30 mm in diameter. To adapt the tool for this application,
a Pulse Width Modulation (PWM) controlled relay was wired in parallel with the tool’s
trigger switch, allowing the tool to be controlled using the radio control (RC) transmitter.
This version was successful in trimming off sample branches; however, it was difficult
to aim due to the small cutting area of the tool. While it was possible to guide the tool
into place with rods protruding from the front of the tool [35,39], it was decided that the
retrieval of the sample would be greatly preferable to dropping the sample, as it may be
challenging to find the trimmed branch, or it may not even fall all the way to the ground.
This first version is shown in Figure 2.

 

Figure 2. Version 1 was most similar to [39]. The first sampling approach used powered secateurs to
drop branches of up to 30 mm in diameter to the ground for retrieval. This required precise aiming
and flight control during cutting, and while it was functional, a more practical approach that required
less precise flight control was sought.

In addition to being challenging to aim, this design was limited to branches with
sufficient space for the UAS to fly alongside it with the tool perpendicular to the branch to
make the cut. In practice, meeting this requirement was found to be more difficult than
initially expected. Further, triggering the cutting mechanism while a branch was in the jaws

89



Forests 2022, 13, 153

required both good timing and strong pilot skills; both undesirable traits for a system that
needs to be simple to use. Figure 3 show this version trimming a branch sample, though
this can be more clearly seen in the provided video in the results section.

 

Figure 3. Version 1 of the canopy sampling drone trimming off a sample branch. This design was
functional but difficult to aim, and it dropped the sample; resulting in the pursuit of a different
approach.

While the secateur-based approach did work, and there are other examples of a similar
approach being used [35,39,42], it was decided that an alternative approach that required
less precise flight control was desirable; especially one with the means to retrieve samples
instead of dropping them to the ground (where they may be difficult to identify). To reduce
the difficulty of the sample capture process, a simpler approach was sought.

2.3. Version 2—Full Collision Box with Electric Hedge Trimmer

A number of tools were considered, such as small chainsaws and circular saws;
however, reacting to the forces required to operate these tools effectively was of concern.
Further, it was preferable to avoid the risks associated with getting a saw or secateur-based
tool stuck in a branch. While hanging designs such as DeLeaves [32] are able to be released
in an emergency, a lateral reaching design does not easily allow for this capability. A single-
handed electric hedge trimmer was considered instead, which uses a shearing method of
cutting which reacts with its own cutting forces. Further, the blades are designed to limit
the size of the branches that can enter the cutting region to a size that should be safely
cuttable by the tool: minimising the risks of a stuck tool while sampling. A hedge trimmer
also forces the samples to be accumulated slowly and gently into the sample container,
minimising the risk of a sample being too heavy (potentially catching the operator by
surprise) and shifting the centre of gravity too far from the centre of thrust or overcoming
the maximum weight limit of the aircraft.
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A low-cost, cordless hedge trimmer (Ryobi 18 Volt “Shrubber” (https://www.ryobitools.
com/products/details/18v-one-plus-grass-shear-and-shrubber, last accessed on 10 March
2021), was disassembled and placed into a custom, 3D printed housing with a removable
sampling container. As this device did not require any logic-based control, the original elec-
tronics were not retained, being replaced with a simple PWM controlled relay for controlling
the motor. Figure 4 show this hedge trimmer-based sampling payload. A safety switch was
also added to allow the operator to manually prevent the tool from activating unexpectedly,
though this aircraft should not be manually handled while powered.

 

Figure 4. A single-handed hedge trimmer was modified and integrated into a custom 3D printed
housing with a removable sample container. A manual safety switch is shown in the top-right of the
left image, which allows the operator to prevent the tool from running unexpectedly. Right shows a
camera view of the tool while in flight, about to collect a canopy sample.

This payload was designed to easily fit onto the existing frame in place of the previ-
ously tested tool. From the first test of this alternative approach, it was clear that this was
considerably easier to operate and more effective than the secateur-style approach. The
second sample collection test with this system is shown in Figure 5.
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Figure 5. Version 2 of the canopy sampling drone made use of a hedge trimmer-based sampling tool.
This tool was considerably easier to operate than the previous, secateur-based design. Left and right
images show the before and after the collection of a canopy sample, respectively.

The sampling operation requires the front of the aircraft to be flown underneath a
branch of interest, then hold a horizontal position while gently raising altitude until the
hedge trimmer cuts through the required sample. The collision protecting mesh had not
yet been installed on Version 2, so additional care was required not to fly the tool too deep
into the canopy, or a crash would be almost guaranteed. The operation of the sampling tool
is visualised in Figure 6.
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Figure 6. A visualisation and photos showing how canopy samples are collected using this hedge
trimmer based approach. Holding altitude, the UAS is piloted gently forward into the vegetation
until the collision shield prevents forward motion. The pilot then holds horizontal position while
gently raising the altitude until the UAS has cut through to the top of the sample region. The sample
will fall into the sample container for retrieval upon landing. Version 3.1 is visualised here due to
better photos of operation, but all hedge trimmer based designs in this study used this same sampling
approach.

Version 2 has successfully demonstrated the approach was feasible; however, the size
of the aircraft required a large vehicle for transportation. Thus a foldable and more portable
design was sought.

2.4. Version 3.0—Foldable Airframe with Ducted Fans

Version 3.0 made use of 3D printed ducts to provide protection to the propellers while
also allowing the aircraft to fold in half for ease of transport, shown in Figure 7. The
eCalc multirotor design tool [45] was used as a tool for estimating the performance of a
potential UAS configuration; however, the predictions were found to be too optimistic for
this configuration. This version was too heavy for the components used, and while able
to hover, was unable to fly out of ground effect, which was approximately 1 m above the
ground. The propellers used in this configuration were smaller (407 mm diameter) than
the rest of the configurations, as the duct diameter was limited by the print volume of the
available 3D printer.

The ducts on this system weighed 600 g each, so these were removed to enable the use
of the larger diameter propellers and a considerable mass reduction of 2.4 kg.
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Figure 7. Version 3.0 protected the propellers with the use of 3D printed ducts. The design was
capable of folding for ease of transport. The calculations used for estimating flight performance were
found to be optimistic, with the system unable to fly out of ground effect.

2.5. Version 3.1—Foldable with Collision Shield

Full protection of the propellers remains highly desirable; however, it is the front of the
aircraft at the greatest risk of collisions with leaves/branches during the sampling operation.
Therefore, a lightweight (approximately 300 g), forward-facing shield was implemented
in place of the ducts on the same foldable airframe as shown in Version 3.0. The shield is
angled backwards to minimise the risk of the top of the shield catching on a branch while
cutting a sample. The offset mass of the shield is counterbalanced by adjusting the battery
position to keep the centre of gravity in line with the centre of thrust. This version is shown
in Figure 8.

 

Figure 8. Version 3.1 of the canopy sampling UAS replaced the heavy, ducted fan system with a
simple and lightweight, forward-facing shield to prevent collisions between the propellers and the
canopy.

The first two iterations required completely manual control of the aircraft during
sampling; however, this required considerably more pilot skill and concentration to operate
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than most modern UAS due to a lack of a precise position holding mode/capability. A
means of precise movement control was desired to assist the pilot, so Visual Inertial
Odometry (VIO) and a position hold mode which made use of this, was added to the
system. VIO was provided by an Intel Realsense T265, which uses a stereo camera and
Inertial Measurement Unit (IMU) to precisely track the position and orientation (pose) of
the aircraft. An Nvidia Tegra X2 companion computer running Robot Operating System
(ROS) [46] provided this information to the Pixhawk 4 flight controller, which used this
information for holding a set position.

The VIO sensor was mounted on the rear of the aircraft, as the front of the aircraft
was to be intentionally flown into vegetation, which would block the cameras and prevent
useful visual tracking. Downward facing VIO was also briefly tested; however, frequently
lost position tracking. It was suspected that this was a result of the vegetation beneath this
aircraft moving erratically in the propeller wash of the aircraft. The sensor was initially
mounted rigidly; however, the frame vibrations from propellers and the hedge trimmer
were too severe for the sensor to function correctly, causing a loss of position tracking.
This sensor was highly sensitive to vibration and had to be soft mounted with vibration-
damping, double-sided tape. The VIO sensor can be seen on the back of the aircraft in
Figure 9, with the companion computer hardware inside the centre of the aircraft.

 

Figure 9. Visual Inertial Odometry (VIO) was used to provide precise flight control to Version 3.1
of the UAS. The VIO sensor was an Intel Realsense T265 and was soft mounted on the rear of the
aircraft.

Tuning the flight controller to safely use VIO was particularly challenging for this
aircraft, as the large moment of inertia about the pitch axis caused the pitch response to
be sluggish. While it could be tuned for stable flight in still conditions, even gentle gusts
of wind would cause oscillations about the pitch axis, compromising the efficacy of the
sampling operation, even in a gentle breeze. While any breeze is undesirable during a
canopy sampling operation due to the canopy becoming a moving target, this design placed
too strict of a requirement on the absence of a breeze. To address this, a way of decoupling
the pitch of the airframe (for control) from the large moment of inertia about the pitch axis
for the payload was sought.

2.6. Version 4—Pitch-Decoupled Hedge Trimmer and Battery

There was no requirement for the battery or sampling payload to be rigidly connected
to the airframe, so a novel approach of decoupling the pitch axis of the battery and hedge
trimmer from the main airframe was designed. The goal was to allow the aircraft to
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respond to disturbances (i.e., wind and physical interactions with the canopy) rapidly in
the pitch axis while avoiding the need to rotationally accelerate and decelerate the heaviest
components of the aircraft, which may also be restrained by the canopy being sampled.
This joint should constrain yaw and roll movements; however, the system should also
keep a short lever arm for the mass in the roll axis (i.e., keep the roll moment of inertia
small). Further, the hedge trimmer should ideally remain level during sampling. The
chosen solution was a pinned joint from which the battery and hedge trimmer could hang
from, as depicted in Figure 10.

 

Figure 10. The battery, landing gear and hedge-trimmer sampling system were decoupled in the
pitch axis from the flight controller and motors. The result was a highly responsive aircraft with the
additional benefit of allowing landing on sloped ground. The prior version required flat ground,
which was difficult to come by in the chosen test site.

While designing this aircraft to decouple the main airframe from the payload, an
opportunity to provide the aircraft with passive adaptive landing gear was identified and
implemented. By putting the landing gear beneath the pivot point, the aircraft was able to
safely take-off and land on sloped surfaces, facing either up-slope or down-slope, removing
the strict requirements of the previous iterations for a flat landing site. All four legs were
able to make contact with a sloped surface while maintaining a vertical thrust vector.

In practice, this idea was found to be highly effective, albeit slightly unusual to pilot,
as such a large portion of the aircraft does not respond directly to the control inputs as
would typically be expected on a more conventional multirotor UAS. The system was able
to land facing upslope on a surface of approximately 25 degrees from the horizontal and
downslope to approximately a 20-degree slope while maintaining a vertical thrust vector.
The difference is due to the offset mass of the collision shield on the main airframe, which
shifts the centre of gravity forward. A sequence of taking off and landing from upward
and downward sloped surfaces is shown in Figure 11.
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Figure 11. Real-world testing of the landing gear concept found it was highly effective on both
upward and downward slopes, albeit unusual to pilot due to the large portion of the aircraft not
responding directly to the control input.

While the flight controller assumes rigid body motion, the controller caused no issues
in the slow control regime this aircraft was intended for; provided the Proportional, Integral,
Derivative (PID) controllers were appropriately tuned. The lower section does act as a
pendulum; however, the slow natural frequency meant that it was not an issue in practice.
That said, the pilot is required to fly gently, as aggressive flying will cause the lower
section to oscillate and potentially reach the angle limit stops (±30 degrees), imparting an
undesirable pitching moment on the main airframe.

An additional challenge with lateral reaching canopy sampling UAS which collect
samples is that the sample weight shifts the centre of gravity forward, leading to reduced
performance and potentially leading to instability. With this pitch-decoupled design, the
lower section passively adjusts the weight distribution as samples are captured, keeping
the centre of gravity in line with the centre of thrust at all times, an important consideration
for any UAS.

2.7. Safety Considerations

Throughout discussion with members of the forestry industry and public, a frequently
raised concern about a canopy sampling UAS with a power tool is that it is perceived to be
a particularly dangerous creation. These concerns are often raised by people who are not
operators of UAS, and perhaps underestimate the severity of the hazard already presented
by the propellers on any UAS. While power tools must certainly be respected, we argue
that the propellers of any large UAS represent a greater hazard than a hedge trimmer;
particularly if someone was particularly cautious of the hedge trimmer but perhaps not
so concerned about the propellers. Adult fingers would be unable to fit into the cutting
area of this hedge trimmer, and with the exception of a high-energy collision with the
tool, the hedge trimmer would be unlikely to cause severe injuries even with skin contact.
Large carbon-fibre propellers, on the other hand, contain considerable rotational kinetic
energy, are almost invisible when in operation, and may cause large and severe lacerations
or even amputations. Thus, we argue that this UAS is no more dangerous than any other
similarly sized UAS. That said, any physical interaction with the canopy using a UAS does
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constitute a greater risk of a crash than one used for remote sensing applications, so it must
be operated with care and by an appropriately skilled pilot.

The risks associated with UAS based sampling must also be considered within the
context of other, more conventional canopy sampling techniques. The use of pole saws can
involve the risk of the cut branch falling on the operator. The use of arborists for sample
collection may involve the use of chainsaws at height, while the rope access itself comes
with potentially fatal consequences in the event of an accident. Discharging firearms into
the air to knock down samples comes with the risk of missing a targeted branch, and
while this has a low probability of hitting a bystander, the consequences of which could
be fatal. When operated with appropriate skill and caution, and within UAS operational
laws, a UAS is highly unlikely to collide with a human, even in the event of a crash since
the physical interaction with the canopy, the most likely cause of a crash in the operation,
occurs at a considerable distance from the operator.

2.8. Test Site

This study took place in a private forest near Hobart, Tasmania, Australia. The sampled
trees consisted of eucalyptus pulchella, eucalyptus globulus and acacia dealbata. The site is
steep, with an average slope of approximately 24 degrees.

2.9. Sample Collection Test

To understand the range of sampling times for this system, 30 samples were collected
using the final iteration (Version 4) of the aircraft. All samples were within a 50 m horizontal
radius from the pilot in these tests, as an unaided line of sight was required to be maintained
at all times for both operational reasons and to ensure compliance with Australian UAS
regulations. Sampling times were measured using the transmitter/ground station, with a
timer automatically starting upon arming and finishing upon disarming the aircraft. An
additional 5–10 min was required for both set up and pack down at each field site; however,
the typical use case would involve the collection of multiple samples per site.

2.10. Demonstration Video

To demonstrate the effectiveness of the presented systems, a video demonstration of
all iterations of the aircraft (excluding Version 3.0) is provided.

3. Results

3.1. Sample Collection Test

Sampling times ranged from 1 min and 23 s, up to 3 min and 41 s, with the main factor
being proximity to the pilot. The mean and median sampling times were 2 min, 25 s and
2 min, 20 s, respectively. The distribution of the sampling times is shown in Figure 12.
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Figure 12. The distribution of the times taken to collect a canopy sample from arming to disarming
the aircraft (n = 30). An additional 5–10 min is required at the start and end of any sampling session
to set up and pack away the equipment.

Ten of the canopy samples collected during this testing are shown in Figure 13.

 

Figure 13. A collection of samples captured using Version 4 of our canopy sampling UAS. Samples
were collected from eucalyptus pulchella, eucalyptus globulus and acacia dealbata species.

The set up and pack down of the system requires an additional 5–10 min; however,
multiple flights would typically be performed at each site. The individual flight times are
provided in Table A1 in the Appendix A. Version 4 of the aircraft was capable of flying for
approximately 12 min, which enables 3–6 samples to be collected per battery, depending
on proximity to the take-off/landing site. While the aircraft had a first-person view (FPV)
camera on-board, with a live video feed displayed on the ground control station to aid
the pilot, a high level of situational awareness was critical during the sampling procedure
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due to the cluttered environment around the aircraft. Direct line of sight (LOS) is also
required by law in Australia (without complex approval processes), so the aircraft was
operated by line of sight with only brief checks of the FPV view to assist with aiming
of the sampling tool. Most samples were collected by LOS only, without the use of the
FPV view; however, this approach becomes increasingly difficult with increasing distance
from the pilot, leading to an increased reliance on the FPV system for the sampling action.
Stereoscopic depth perception degrades with increasing distance, which makes the precise
flying during sample capture considerably more challenging as the distance from the pilot
increases. The additional difficulty likely increased the sampling time more than just the
added distance to fly to and from the sample location.

3.2. Demonstration Video

An accompanying demonstration video is provided here: https://youtu.be/iM0
RSLVlETY, last accessed on 30 October 2021, which shows all of the designs presented in
action.

4. Discussion

As seen in the demonstration video, the described system is capable of rapidly and
easily collecting samples from most locations on most trees. By using Visual Inertial
Odometry (VIO) and Robotic Operating System (ROS) to provide position control of our
aircraft, it was possible to facilitate precise cutting movements with the aircraft, while the
simple collision shield reduced the risk of branch-propeller interactions and prevented the
aircraft from flying too deeply into the canopy. Precision flight capabilities are not critical
for this application, as the hedge trimmer sample collection approach is relatively simple
for an adequately skilled pilot to perform in calm conditions; however, VIO based position
control makes this operation considerably safer, simpler, and more precise, especially at
greater distances from the pilot.

This project has successfully demonstrated an alternative approach to other canopy
sampling UAS seen in the literature to date [32–43]. We do not view our approach as a
replacement to approaches such as DeLeaves [32], but rather as an alternative tool for forest
researchers, which is able to collect samples that tools such as DeLeaves could not reach;
notably samples on the side of trees, the side of cliff faces, or those with objects above them
which would prevent a hanging pole design from accessing them. Our system is currently
limited to sampling from the side of the canopy, which does cover most regions of a tree;
however, if the highest tip of the tree is desired, or if the canopy is closed, something such
as DeLeaves may be more suitable. On the other hand, if samples beneath a closed canopy
are desired, our presented system would be capable of sampling areas which a hanging
pole design could not, provided that the UAS can physically fit between the gaps to reach
the desired sampling location. Manual sampling of canopies with pole saws would remain
more practical when samples are easily reached from the ground. Extremely dense forests,
such as unpruned and unthinned plantations, without room for flying a UAS would also
be unsuitable for the proposed approach, and hanging sampling systems such as DeLeaves
would be necessary.

This study was limited to a single site, with three native Australian tree species
sampled; however, as long as a hedge trimmer is capable of cutting the vegetation on a
tree, the species should not matter. Further work should explore the effects that differently
shaped tree crowns have upon the sampling operation, as the three species this system was
tested upon were relatively similar in crown structure. The design presented is suitable for
research use, where operators have sufficient expertise with UAS to operate and maintain
the system; however, it is not yet sufficiently refined for widespread adoption in forestry.
To reach a mature state for industrial adoption, more robust position tracking/holding and
a higher quality FPV system would be required for longer-range operations.

There is considerable scope for future work in this space. If this project continues,
the next iteration of this system will use an approach inspired by Voliro [27]. It would
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replace the passive hanging system by actively pivoting the motors about the pitch axis
using servos. This would address the issues with the large moment of inertia about the
pitch axis, improve yaw responsiveness and still enable safe landing on sloped terrain. As
the hedge trimmer based tool was found to be highly effective and practical, we would
use this concept to build a dedicated design to reduce weight and reduce non-cutting
contact area (i.e., minimise the size of the black box holding the motor or move it out of
the way) to minimise drag against the canopy during upward cutting operations. VIO
would still be used; however, a pair of VIO sensors (one pointing down and one pointing
rearwards) would be used for enhanced robustness, as our current implementation lost
track of position occasionally (particularly while flying high up or in a breeze). Our system
used the default Intel Realsense VIO package for ROS; however, other VIO packages may be
more robust to the conditions. Other aspects of the design would remain similar to Version
4, such as the battery mount with integrated landing gear and the style of collision shield
on the front of the aircraft, though landing gear would be integrated into this collision
shield to further reduce the part count and weight. This proposed “Version 5” is depicted
in Figure 14.

Figure 14. Our vision for the 5th iteration of this aircraft is inspired by Voliro [27], and would actively
pivot the motor mounts about the pitch axis to separate forward and rearward movements from
the pitch attitude of the entire airframe. This would likely be a better way to address the issues
caused by the large moment of inertia about the pitch axis while also enabling take-off and landing
on sloped terrain.

Additional, near-future work could see the design of a sample container for collecting
multiple samples per flight. This could be achieved by using divided containers, which
could rotate into place underneath the hedge trimmer for each sample, analogous to the
working mechanism of a revolver. It is also suggested to add the functionality to record
the GPS position when the tool is turned on and off to easily provide a GPS position for
each sample.

Looking considerably further forward into the future, we could envision a system
where remote sensing and physical sampling or other physical interactions could be com-
bined. A UAS with Simultaneous Localisation and Mapping (SLAM) capabilities may not
only capture a high-fidelity digital twin of the forest (in the form of a point cloud) but could
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also collect physical canopy samples during the process. These physical sample locations
could then be localised in the captured point cloud, enabling more advanced research of
canopy and leaf traits throughout a forest. Alternatively, a sampling location could be
selected in a previously captured point cloud, with the UAS able to autonomously go to
that position and retrieve a sample. This concept is depicted in Figure 15.

 

Figure 15. A visual depiction of where this technology may be headed. Advanced remote sensing
techniques could be used in conjunction with autonomous sample capture UAS, automating the
sample collection process and reducing the human skill required to operate such a system.

Such an approach would need to be able to tolerate the complexities and uncertainties
present within point clouds caused by factors such as beam divergence, point cloud reg-
istration errors caused by wind during the sensing process, noise and variable scanning
resolutions. Deep learning-based approaches such as [47] appear promising for addressing
such a challenge.

5. Conclusions

A series of novel canopy sampling UAS were presented, with detailed explanations as
to how each iteration informed the design of its successor. These aircraft demonstrated a
reliable and rapid method for the capture of canopy samples using a novel hedge trimmer
based design not yet seen in the literature. The final prototype was tested for capturing
30 samples, with sample collection times ranging from 1 min and 23 s, up to 3 min and
41 s, depending on the forest conditions and distance from the take-off/landing site to the
tree. This design was demonstrated to be capable of rapidly and safely collecting canopy
samples that were previously either too difficult, dangerous or expensive to capture or
where existing techniques were not suitable. Future work should see to the development of
a purpose-built sampling tool based upon a hedge-trimmer-like design, as well as reducing
the weight and size of the aircraft carrying it. This approach should also be tested on other
types of trees, such as conifers. Looking further forward, fully-autonomous sample capture
and simultaneous point cloud capture could be integrated, resulting in a holistic physical
and digital sample collection tool for forest research.
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Appendix A

Table A1. Time to collect canopy samples from arming of the aircraft to disarming.

Time to Collect Sample (Arm to Disarm)
Sample Number Minutes:Seconds Decimal Minutes

1 1:35 1.58
2 1:23 1.38
3 2:12 2.20
4 3:02 3.03
5 2:39 2.65
6 1:41 1.68
7 2:58 2.97
8 2:22 2.37
9 1:41 1.68
10 1:48 1.80
11 1:45 1.75
12 2:28 2.47
13 3:20 3.33
14 1:58 1.97
15 2:24 3.40
16 2:19 2.32
17 1:59 1.98
18 2:41 2.68
19 1:53 1.88
20 1:30 1.50
21 2:01 2.02
22 3:09 3.15
23 3:27 3.45
24 3:41 3.68
25 2:23 2.38
26 2:52 2.87
27 2:49 2.82
28 1:52 1.87
29 3:09 3.15
30 2:19 2.32

References

1. Stinziano, J.R.; Way, D.A. Combined effects of rising [CO2] and temperature on boreal forests: Growth, physiology and limitations.
Botany 2014, 92, 425–436. [CrossRef]

2. Lloyd, J.; Farquhar, G.D. Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philos. Trans. R. Soc. B

Biol. Sci. 2008, 363, 1811–1817. [CrossRef]

103



Forests 2022, 13, 153

3. Loukas, A.; Vasiliades, L.; Tzabiras, J. Climate change effects on drought severity. Adv. Geosci. 2008, 17, 23–29. [CrossRef]
4. Pokhrel, Y.; Felfelani, F.; Satoh, Y.; Boulange, J.; Burek, P.; Gädeke, A.; Gerten, D.; Gosling, S.N.; Grillakis, M.; Gudmundsson, L.;

et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Chang. 2021, 11, 226–233. [CrossRef]
5. Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in

drought. Nat. Clim. Chang. 2014, 4, 17–22. [CrossRef]
6. Hennessy, K.; Lucas, C.; Nicholls, N.; Bathols, J.; Suppiah, R.; Ricketts, J. Climate Change Impacts on Fire-Weather in South-East

Australia; Climate Impacts Group, CSIRO Atmospheric Research and the Australian Government Bureau of Meteorology:
Aspendale, Australia, 2005.

7. Williams, M.I.; Dumroese, R.K. Preparing for Climate Change: Forestry and Assisted Migration. J. For. 2013, 111, 287–297.
[CrossRef]

8. Sáenz-Romero, C.; Lindig-Cisneros, R.A.; Joyce, D.G.; Beaulieu, J.; St Clair, J.B.; Jaquish, B.C. Assisted migration of forest
populations for adapting trees to climate change. Rev. Chapingo Ser. Cienc. For. Ambiente 2016, 22, 303–323.

9. Kuželka, K.; Surový, P. Mapping Forest Structure Using UAS inside Flight Capabilities. Sensors 2018, 18, 2245. [CrossRef]
[PubMed]

10. Windrim, L.; Bryson, M. Detection, Segmentation, and Model Fitting of Individual Tree Stems from Airborne Laser Scanning of
Forests Using Deep Learning. Remote Sens. 2020, 12, 1469. [CrossRef]

11. Gonzalez de Tanago, J.; Lau, A.; Bartholomeus, H.; Herold, M.; Avitabile, V.; Raumonen, P.; Martius, C.; Goodman, R.C.; Disney,
M.; Manuri, S.; et al. Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol. Evol. 2018,
9, 223–234. [CrossRef]

12. Asner, G.P.; Mascaro, J.; Muller-Landau, H.C.; Vieilledent, G.; Vaudry, R.; Rasamoelina, M.; Hall, J.S.; Van Breugel, M. A universal
airborne LiDAR approach for tropical forest carbon mapping. Oecologia 2012, 168, 1147–1160. [CrossRef]

13. Asner, G.; Clark, J.K.; Mascaro, J.; Galindo García, G.A.; Chadwick, K.D.; Navarrete Encinales, D.A.; Paez-Acosta, G.; Cabrera
Montenegro, E.; Kennedy-Bowdoin, T.; Duque, Á.; et al. High-resolution mapping of forest carbon stocks in the Colombian
Amazon. Biogeosciences 2012, 9, 2683–2696. [CrossRef]

14. Stephens, P.R.; Kimberley, M.O.; Beets, P.N.; Paul, T.S.; Searles, N.; Bell, A.; Brack, C.; Broadley, J. Airborne scanning LiDAR in a
double sampling forest carbon inventory. Remote Sens. Environ. 2012, 117, 348–357. [CrossRef]

15. Le Toan, T.; Quegan, S.; Davidson MW, J.; Balzter, H.; Paillou, P.; Papathanassiou, K.; Rocca, S.P.; Saatchi, S.; Shugart, H.; Ulander,
L. The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens. Environ.

2011, 115, 2850–2860. [CrossRef]
16. Shugart, H.H.; Saatchi, S.; Hall, F.G. Importance of structure and its measurement in quantifying function of forest ecosystems. J.

Geophys. Res. Biogeosciences 2010, 115. [CrossRef]
17. Krisanski, S.; Taskhiri, M.S.; Turner, P. Enhancing Methods for Under-Canopy Unmanned Aircraft System Based Photogrammetry

in Complex Forests for Tree Diameter Measurement. Remote Sens. 2020, 12, 1652. [CrossRef]
18. Krisanski, S.; Taskhiri, M.S.; Gonzalez Aracil, S.; Herries, D.; Muneri, A.; Gurung, M.B.; Montgomery, J.; Turner, P. Forest

Structural Complexity Tool—An Open Source, Fully-Automated Tool for Measuring Forest Point Clouds. Remote Sens. 2021, 13,
4677. [CrossRef]

19. Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ. 1989, 30, 271–278. [CrossRef]
20. Martin, M.E.; Aber, J.D. High spectral resolution remote sensing of forest canopy lignin, nitrogen, and ecosystem processes. Ecol.

Appl. 1997, 7, 431–443. [CrossRef]
21. Stork, N.E. Australian tropical forest canopy crane: New tools for new frontiers. Austral Ecol. 2007, 32, 4–9. [CrossRef]
22. Gottsberger, G. Canopy Operation Permanent Access System: A novel tool for working in the canopy of tropical forests: History,

development, technology and perspectives. Trees 2017, 31, 791–812. [CrossRef]
23. McCaig, T.; Sam, L.; Nakamura, A.; Stork, N.E. Is insect vertical distribution in rainforests better explained by distance from the

canopy top or distance from the ground? Biodivers. Conserv. 2020, 29, 1081–1103. [CrossRef]
24. Gara, T.W.; Darvishzadeh, R.; Skidmore, A.K.; Wang, T.; Heurich, M. Accurate modelling of canopy traits from seasonal Sentinel-2

imagery based on the vertical distribution of leaf traits. ISPRS J. Photogramm. Remote Sens. 2019, 157, 108–123. [CrossRef]
25. Gara, T.W.; Darvishzadeh, R.; Skidmore, A.K.; Wang, T.; Heurich, M. Evaluating the performance of PROSPECT in the retrieval of

leaf traits across canopy throughout the growing season. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101919. [CrossRef]
26. Kamoske, A.G.; Dahlin, K.M.; Serbin, S.P.; Stark, S.C. Leaf traits and canopy structure together explain canopy functional diversity:

An airborne remote sensing approach. Ecol. Appl. 2021, 31, e02230. [CrossRef] [PubMed]
27. Kamel, M.; Verling, S.; Elkhatib, O.; Sprecher, C.; Wulkop, P.; Taylor, Z.; Siegwart, R.; Gilitschenski, I. The Voliro Omniorientational

Hexacopter: An Agile and Maneuverable Tiltable-Rotor Aerial Vehicle. IEEE Robot. Autom. Mag. 2018, 25, 34–44. [CrossRef]
28. Kim, S.; Choi, S.; Kim, H.J. Aerial manipulation using a quadrotor with a two DOF robotic arm. In Proceedings of the 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013.
29. Fumagalli, M.; Naldi, R.; Macchelli, A.; Carloni, R.; Stramigioli, S.; Marconi, L. Modeling and control of a flying robot for contact

inspection. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve,
Portugal, 7–12 October 2012.

104



Forests 2022, 13, 153

30. Jimenez-Cano, A.E.; Braga, J.; Heredia, G.; Ollero, A. Aerial manipulator for structure inspection by contact from the underside.
In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28
September–2 October 2015.

31. Paul, H.; Ono, K.; Ladig, R.; Shimonomura, K. A multirotor platform employing a three-axis vertical articulated robotic arm for
aerial manipulation tasks. In Proceedings of the 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(AIM), Auckland, New Zealand, 9–12 July 2018.

32. Charron, G.; Robichaud-Courteau, T.; La Vigne, H.; Weintraub, S.; Hill, A.; Justice, D.; Bélanger, N.; Lussier Desbiens, A. The
DeLeaves: A UAV device for efficient tree canopy sampling. J. Unmanned Veh. Syst. 2020, 8, 245–264. [CrossRef]

33. Hyneman, J. Jamie Hyneman’s ‘Arborist’ Quadcopter Test. 2015. Available online: https://www.youtube.com/watch?v=1fe9
IDx3vCs (accessed on 1 February 2020).

34. Käslin, F.; Baur, T.; Meier, P.; Koller, P.; Buchmann, N.; D’Odorico, P.; Eugster, W. Novel Twig Sampling Method by Unmanned
Aerial Vehicle (UAV). Front. For. Glob. Chang. 2018, 1, 2. [CrossRef]

35. Finžgar, D.; Bajc, M.; Brezovar, J.; Kladnik, A.; Capuder, R.; Kraigher, H. Development of a patented unmanned aerial vehicle
based system for tree canopy sampling. Folia Biol. Geol. 2016, 57, 35–39. [CrossRef]

36. Schweiger, A.K.; Lussier Desbiens, A.; Charron, G.; La Vigne, H.; Laliberté, E. Foliar sampling with an unmanned aerial system
(UAS) reveals spectral and functional trait differences within tree crowns. Can. J. For. Res. 2020, 50, 966–974. [CrossRef]

37. La Vigne, H.; Charron, G.; Hovington, S.; Desbiens, A.L. Assisted Canopy Sampling Using Unmanned Aerial Vehicles (UAVs). In
Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021.

38. Bailey, W.; Bryce, M.; Colin, A.; Max, D.; James, F. Sampler Drone for Plant Physiology and Tissue Research. 2018. Available
online: https://capstone.engineering.ucsb.edu/projects/dantonio-and-oono-labs-sampler-drone (accessed on 1 February 2020).

39. Hyneman, J.; Colin, C. How Mythbuster Jamie Hyneman Hacked a Drone to Trim His Trees. 2017. Available online: https:
//www.popularmechanics.com/flight/drones/a26102/jamie-hyneman-drone-plants/ (accessed on 1 February 2020).

40. UC Berkeley Forest Pathology and Mycology Lab. Sampler Drones for Forestry Research. 2015. Available online: https:
//nature.berkeley.edu/garbelottowp/?p=1801 (accessed on 1 February 2020).

41. Xu, C.; Yang, Z.; Jiang, Y.; Zhang, Q.; Xu, H.; Xu, X. The Design and Control of a Double-saw Cutter on the Aerial Trees-pruning
Robot. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia,
12–15 December 2018.

42. David Lee, W.M.; Beeston, S.; Bates, S.; Schofield, S.; Edwards, M.; Green, R. Autonomous Pruning at Mcleans Island. 2019.
Available online: https://www.youtube.com/watch?v=5MERY8vjLqA (accessed on 6 April 2021).

43. Molina, J.; Hirai, S. Aerial pruning mechanism, initial real environment test. In Proceedings of the 2017 IEEE International
Conference on Real-Time Computing and Robotics (RCAR), Okinawa, Japan, 14–18 July 2017.

44. Lee, D.; Muir, W.; Beeston, S.; Bates, S.; Schofield, S.D.; Edwards, M.J.; Green, R.D. Analysing Forests Using Dense Point Clouds.
In Proceedings of the 2018 International Conference on Image and Vision Computing New Zealand (IVCNZ), Auckland, New
Zealand, 19–21 November 2018.

45. Müller, M. eCalc—xcopterCalc—The Most Reliable Multicopter Calculator on the Web. 2020. Available online: https://www.
ecalc.ch/xcoptercalc.php (accessed on 14 April 2020).

46. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot
Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009.

47. Chen, X.; Jiang, K.; Zhu, Y.; Wang, X.; Yun, T. Individual Tree Crown Segmentation Directly from UAV-Borne LiDAR Data Using
the PointNet of Deep Learning. Forests 2021, 12, 131. [CrossRef]

105





Citation: Moradi, F.; Darvishsefat,

A.A.; Pourrahmati, M.R.; Deljouei, A.;

Borz, S.A. Estimating Aboveground

Biomass in Dense Hyrcanian Forests

by the Use of Sentinel-2 Data. Forests

2022, 13, 104. https://doi.org/

10.3390/f13010104

Academic Editor: Olga Viedma

Received: 13 December 2021

Accepted: 10 January 2022

Published: 12 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Estimating Aboveground Biomass in Dense Hyrcanian Forests
by the Use of Sentinel-2 Data

Fardin Moradi 1,* , Ali Asghar Darvishsefat 1 , Manizheh Rajab Pourrahmati 1, Azade Deljouei 2

and Stelian Alexandru Borz 2,*

1 Department of Forestry and Forest Economics, Faculty of Natural Resources, University of Tehran,
Karaj P.O. Box 1417643184, Iran; adarvish@ut.ac.ir (A.A.D.); mrajabpour@ut.ac.ir (M.R.P.)

2 Department of Forest Engineering, Forest Management Planning and Terrestrial Measurements,
Faculty of Silviculture and Forest Engineering, Transilvania University of Brasov, Şirul Beethoven 1,
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Abstract: Due to the challenges brought by field measurements to estimate the aboveground biomass
(AGB), such as the remote locations and difficulties in walking in these areas, more accurate and
cost-effective methods are required, by the use of remote sensing. In this study, Sentinel-2 data were
used for estimating the AGB in pure stands of Carpinus betulus (L., common hornbeam) located in the
Hyrcanian forests, northern Iran. For this purpose, the diameter at breast height (DBH) of all trees
thicker than 7.5 cm was measured in 55 square plots (45 × 45 m). In situ AGB was estimated using
a local volume table and the specific density of wood. To estimate the AGB from remotely sensed
data, parametric and nonparametric methods, including Multiple Regression (MR), Artificial Neural
Network (ANN), k-Nearest Neighbor (kNN), and Random Forest (RF), were applied to a single
image of the Sentinel-2, having as a reference the estimations produced by in situ measurements
and their corresponding spectral values of the original spectral (B2, B3, B4, B5, B6, B7, B8, B8a,
B11, and B12) and derived synthetic (IPVI, IRECI, GEMI, GNDVI, NDVI, DVI, PSSRA, and RVI)
bands. Band 6 located in the red-edge region (0.740 nm) showed the highest correlation with AGB
(r = −0.723). A comparison of the machine learning methods indicated that the ANN algorithm
returned the best ABG-estimating performance (%RMSE = 19.9). This study demonstrates that simple
vegetation indices extracted from Sentinel-2 multispectral imagery can provide good results in the
AGB estimation of C. betulus trees of the Hyrcanian forests. The approach used in this study may be
extended to similar areas located in temperate forests.

Keywords: aboveground biomass; estimation; remote sensing; Sentinel-2; Iran; multiple regression;
artificial neural network; k-nearest neighbor; random forest; performance

1. Introduction

Forests are an essential component of the carbon cycle, as they are both storing and
releasing carbon through their biomass into the atmosphere. Globally, forest ecosystems
contain approximately 80% of the aboveground and 40% of the underground biomass [1].
Knowledge on the amount of biomass and carbon storage is essential for forest man-
agement and planning [2]. Quantifying biomass availability in the forests through field
measurements is commonly resource-intensive. Remote sensing techniques integrated
with geographic information systems (GISs) provide quick access to useful information,
typically available for short cycle times and at lower costs [3]. Combining remotely sensed
data with nonspectral ancillary data such as those produced by field sampling has been
suggested by many studies as a way to reach better estimates [4]. A variety of remotely
sensed data, such as those coming from Landsat, Sentinel, Spot, and ALOS missions, have
been used to estimate the volume of wood and biomass stocked in the forests [5–13].
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Aboveground biomass (AGB) estimation methods include field measurements and
remote sensing approaches [14,15]. There are mainly two methods used in field measure-
ment to estimate the AGB, namely destructive (harvesting) and nondestructive methods.
Although the destructive method is useful and accurate in developing equations for the
assessment of aboveground biomass over larger areas, it is often constrained to few trees,
being time consuming, difficult to implement, and expensive [16]. A nondestructive
method is an alternative to estimate the AGB. It is implemented either by climbing to make
measurements in different tree parts or, more commonly, by measuring the diameter at the
breast height (DBH) and tree height; other options include the estimation of volume and
density using allometric equations or remote imagery [17,18]. As a nondestructive method,
remote sensing is based on previously developed allometric equations.

The techniques used for estimating the AGB of forests based on remotely sensed data
can be divided into two categories, namely those using parametric (statistical regression
methods) and nonparametric algorithms, respectively [7]. Nonparametric techniques,
including Machine Learning (ML) algorithms such as the k-Nearest Neighbor (kNN),
Artificial Neural Networks (ANNs), and Random Forests (RFs), were found to hold a better
ability of identifying complex relations between the used predictors and the AGB [7,19].
For instance, ANNs are being considered to be important nonparametric algorithms for
estimating forest-related parameters [20]. In addition, the kNN algorithm has received
considerable attention because it is easily accessible, and some literature reviews have
shown that it holds an excellent capability to increase the precision when estimating
vegetation parameters [21–23]. RF regression algorithms have also been widely used for
quantifying forest biophysical parameters [5,24–26], standing for an ensemble learning
algorithm with applications in classification and regression problems. The RF algorithm
was developed by Breiman [27] and can be used to predict continuous and categorical
dependent variables. A random subset of observations with replacement, as well as a
random set of explanatory variables, are used to build each regression tree [28].

Traditionally, in any part of the world, AGB is estimated by destructive methods,
which are used to develop allometric equations based on measured parameters collected
from harvested trees (e.g., DBH, tree height, and timber volume) [29]. However, applying
allometric equations across a large study area is cumbersome and sometimes impractical as
the field measurement input parameters are rare and sometimes unavailable. In comparison,
remote sensing techniques can provide large-scale and accurate biophysical information
for forest inventory data. Hence, remote sensing data combined with machine learning
techniques (i.e., parametric and nonparametric algorithms) have been widely used to
estimate forest AGB in the past decade. For example, Muukkonen and Heiskanen [30]
predicted the AGB in boreal forests using ANNs applied to ASTER (Advanced Spaceborne
Thermal Emission and Reflection Radiometer) data. IRS P6 LISS-III (Indian Remote-Sensing
Satellite-P6 Linear Imaging Self-Scanning Sensor-3) data were used by Yadav et al. [31] to
estimate the AGB in the Timli forests of India. In their research, the kNN method based on
Mahalanobis distance outputted a RMSE of 42.25 Mg/ha, while the distance metric used
was found to be best, being followed by the fuzzy and Euclidean distances, with RMSE of
44.23 Mg/ha and 45.13 Mg/ha, respectively. Lu et al. [32] showed that the estimation of
AGB in Amazon forests using Landsat-5 TM data is more accurate in young than in mature
stands. Ronoud et al. [33] found that the Landsat-5 TM NIR (near-infrared) band exhibited
the highest correlation with AGB (r = 0.427). Several studies have used Sentinel-2 data
to estimate AGB in various ecosystems, including semiarid [34], Mediterranean [35,36],
temperate [7,37,38], tropical [37,39,40], subtropical [41,42] and boreal [43,44] forests, and
grasslands [45]. For example, Chrysafis et al. [46] compared Sentinel-2 MSI (MultiSpectral
Instrument) and Landsat-8 OLI (Operational Land Imager) imagery for forest growing stock
volume (GSV) estimation in a mixed Mediterranean forest in northeastern Greece. GSV was
modeled using RF regression based on spectral bands and vegetation indices. They have
shown that to estimate the AGB, Sentinel-2 data with an R2 = 0.63 and RMSE = 63.11 m3/ha
were better than Landsat-8 OLI data with an R2 = 0.62 and RMSE = 64.40 m3/ha. According
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to Castillo et al. [37], red and red edge bands produced by Sentinel-2 data combined with
elevation data provided the best estimates of AGB in Philippine’s mangrove forests when
using machine learning methods. Nuthammachot et al. [47] assessed the potential of seven
vegetation indices derived from Sentinel-2 images for estimating the AGB in a private forest
of Indonesia. They found that, among other indices, including the Normalized Difference
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Modified Simple Ratio (MSR),
Simple Ratio (SR), Sentinel-2 Red-Edge Position (S2REP), and Greenness Normalized
Difference Vegetation Index (GNDVI), the Normalized Difference Index (NDI45) exhibited
the strongest correlation with AGB (r = 0.89, R2 = 0.79). In addition, they found that the
NIR spectral band of the Sentinel-2 was the most effective variable in retrieving forest
standing volume when using the kNN algorithm. They estimated the standing volume
with a relative RMSE of 22.94%. Research by Pandit et al. [42] evaluated the usefulness
of Sentinel-2 data for estimating the AGB in protected forests from Nepal using the RF
algorithm. The effect of the number of input variables, including spectral band values
and spectral-derived vegetation indices on the AGB prediction, was also investigated. The
model using all spectral bands, in addition to the derived vegetation indices, provided
better AGB estimates (R2 = 0.81 and RMSE = 25.57 t/ha). Vafaei et al. [48] assessed ALOS-2
(Advanced Land Observing Satellite 2) and Sentinel-2 data for AGB estimation in the
Asalem forests of Iran using four machine learning methods, namely the Gaussian process
(GP), support vector regression (SVR), RF, and Multi-Layer Perceptron Neural Networks
(MLP Neural Nets, MLP NNs). In their study, a SVR model using combined Sentinel-2
spectral information (including blue, green, red, and NIR bands) and six vegetation indices,
namely SVI (Simple Vegetation Index), RVI (Ratio Vegetation Index), NDVI (Normalized
Difference Vegetation Index), EVI-2 (Enhanced Vegetation Index 2), PVI-2 (Perpendicular
Vegetation Index 2), and SAVI (Soil Adjusted Vegetation Index) based on ALOS-2 PALSAR2
(Advanced Land Observing Satellite 2, Phased-Array-type L-band Synthetic Aperture
Radar 2) imagery, HH (horizontal transmit and horizontal receive), HV (horizontal transmit
and vertical receive), VV (vertical transmit and vertical receive), and VH (vertical and
horizontal receive), yielded the best performance to estimate the forest AGB.

Data saturation often causes problems in estimating forest AGB when dealing with
high amounts of biomass or high-canopy-density areas [49]. This problem was addressed by
combining Sentinel-2 and ALOS2-PALSAR2 data [48]. The studies mentioned above, which
evaluated the utility of remotely sensed data for estimating the forest standing volume
and AGB, do not show consistency in performance and outcomes, due to the variety of
forest conditions, satellite data used, applied methodology, and due to the inherent, specific
limitations of each study.

In Iran, an area of ~10.7 million hectares is covered by forests accounting for ca. 7.4%
of the country’s territory [50]. Hyrcanian forests are the most important forests among
the five vegetation regions in Iran due to the density, canopy cover, and diversity in this
ecoregion [51,52]. They cover ~2 million hectares and are located on the south coast of the
Caspian sea [53]. For these forests, management plans are updated in terms of qualitative
and quantitative attributes every ten years, in which collecting data and information are
time-consuming and cost-intensive. In contrast, remotely sensed imagery holds a promising
potential for monitoring and continuously predicting forest attributes. In conjunction with
satellite data, field data can be used to create a continuous map of forest attributes through
classification or regression. Therefore, forest attributes have been estimated from remote
sensing data with various spatial resolutions, ranging from very high to medium.

To the best of our knowledge, this is the first study attempting to estimate the AGB
by the use of remotely sensed data and machine learning algorithms in pure common
hornbeam (Carpinus betulus L.) forests, as a typical forest type in the temperate forest region
of many European and Asian countries. This study was guided by the above mentioned,
as well as the fact that pure stands of common hornbeam are distributed from 200 to 1800
m a.s.l., from the western part, characterized by a very humid climate, to the eastern part
of the Hyrcanian region, which is characterized by a humid climate [54]. Accordingly,

109



Forests 2022, 13, 104

this study aimed to evaluate the usefulness of Sentinel-2 imagery and several machine
learning algorithms for estimating the AGB of C. betulus forests located in the Patom and
Namkhane districts of Kheyrud forest, Northern Iran. The objectives of the study were
the following: (i) comparing the performance of different AGB estimation approaches
including parametric (i.e., Multiple Regression—MR) and nonparametric algorithms (ANN,
kNN, and RF), and (ii) investigating the potential and capability of Sentinel-2 imagery in
improving the accuracy of the AGB estimation under the given conditions of the study.

2. Materials and Methods

2.1. Study Site

The study area is located in the Kheyrud forest as part of the mountainous deciduous
forests of the Hyrcanian ecoregion, north of Iran (longitude: 51◦34′53′ ′ to 51◦35′28′ ′ E
and latitude: 36◦36′14′ ′ to 36◦35′28′ ′ N). Kheyrud forest covers a total area of ~8000 ha,
and it is a natural and mature forest with uneven-aged and dense to semi-dense stands
consisting of seven management districts. Two study sites were selected in Patom and
Namkhane districts (Figure 1). The elevation of the selected areas ranges from 480 to
630 m a.s.l. in Patom and from 950 to 1110 m a.s.l. in Namkhane district. According
to the Nowshahr synoptic station [51,55], the climate of the area is sub-Mediterranean
with an annual temperature averaging 9 ◦C and a total annual precipitation of 1300 mm.
Tilio-buxetum, Querco-carpinetum, Fageto-carpinetum, and Rusco-Fagetum are the main
forest communities in the Patom district. Namkhane district contains forest communities
of Querco-carpinetum, Fageto-carpinetum, Fagetum mixed, and Fagetum-hyrcanum [34].
Sample plots were selected on flat areas, in pure stands of C. betulus to minimize the spectral
interference of other species [56]. The stock of C. betulus stands based on our plot-level
measurements ranged from 174 to 470 m3 ha−1.

′ ″ ′ ″
′ ″ ′ ″

−

 

Figure 1. The geographic location of the study sites.

2.2. Remote Sensed Data and Data Preprocessing

Sentinel-2 satellite data (dated 17 July 2016) were obtained from the US Geological
Survey (USGS) website (https://earthexplorer.usgs.gov/; accessed on 25 March 2017) and
used for AGB estimation. Sentinel-2 carries the Multispectral Imager (MSI) that delivers 13
spectral bands with a spatial resolution ranging from 10 to 60 m. Sentinel-2 10 m spatial
resolution bands including B2 (490 nm), B3 (560 nm), B4 (665 nm), and B8 (842 nm), and 20
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m spatial resolution bands of B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610
nm), and B12 (2190 nm) were used for analysis. The three 60 m bands (bands 1, 9, and 10),
which are mainly focused toward cloud screening and atmospheric correction [57], have
not been taken into consideration in this study. The digital topographic maps available at a
scale of 1:25,000 and provided by the National Cartographic Center (NCC) of Iran were
used to evaluate the geometric accuracy of the satellite image, which was evaluated based
on road features extracted from topographic maps.

The sixth version of the Sentinel Application Platform (SNAP) software developed
by the European Space Agency (ESA) was used to process the Sentinel-2 data. A visual
assessment of radiometric quality was also performed concerning the presence of cloud
cover, a scanning line, and duplicated pixels. Then, the two well-known processing
methods, namely Principal Component Analysis (PCA) and the spectral band ratio, were
applied to all original spectral bands of the images. Table 1 describes the vegetation indices
extracted using band rationing.

Table 1. Vegetation indices extracted from Sentinel-2 data.

Index Equation Reference

Infrared Percentage Vegetation Index (IPVI) NIR 1/(NIR + RED 2) [58]
Inverted Red-Edge Chlorophyll Index (IRECI) (NIR − RED)/(RED/RED) [59]
Global Environment Monitoring Index (GEMI) n 3 × (1 − 0.25 × n) − (RED − 0.125)/(1 − RED) [60]

Green Normalized Difference Vegetation Index (GNDVI) (NIR − GREEN 4)/(NIR + GREEN) [61]
Normalized Difference Vegetation Index (NDVI) (NIR − RED)/(NIR + RED) [62]

Difference Vegetation Index (DVI) NIR − RED [63]
Pigment Specific Simple Ratio (PSSRA) NIR/RED [64]

Ratio Vegetation Index (RVI) NIR/RED [65]

Note: 1 NIR = near-infrared band, 2 Red = red band, 3 n = (2 × (NIR2 − RED2) + 1.5 × NIR + 0.5 × RED)/(NIR +
RED + 0.5), 4 GREEN = green band.

2.3. In Situ Measurements

Field measurements were conducted to estimate the AGB in August 2016, and in
situ data were collected over 55 plots (45 × 45 m; Figure A1) that were navigated by GPS
(Garmin Colorado 300; Olathe, KS, USA). Sample plots were distributed selectively to meet
the homogeneity of plots in terms of species, terrain slope, and aspect due to the diverse
topographic conditions and small extent of pure C. betulus stands over the study sites. The
DBHs of all trees having a diameter greater than 7.5 cm and species were recorded for
each plot. The volume of individual trees was estimated using a local tarif volume table
and aggregated at the plot level. Then, AGB (t/ha) was estimated for each plot using
Equation (1) [66].

AGB = Volume×WD (1)

where Volume is the volume per hectare derived from the local tariff table, and WD (t/m3)
is the wood density. The value of 0.68 t/m3 was used for C. betulus as a WD [67].

2.4. Methods

The flowchart of AGB estimation is shown in Figure 2. Pearson’s correlation was
used to describe the association between AGB and the corresponding spectral values. The
AGB (dependent variable) was modeled based on the remote sensing metrics (independent
variables) using the parametric method of MR, as well as the well-known nonparametric
algorithms of ANNs, kNN [68], and RF [28]. In the MR method, the model was fitted
using all variables (main and synthetic spectral imagery). The suitable remote sensing
variables that had a strong correlation with AGB were identified by the means of backward
elimination and stepwise selection procedures [69]. Before implementing the MR, the
normality of the dataset was evaluated using the Kolmogorov—Smirnov test [70].
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In

 Figure 2. The flowchart of AGB estimation methods used in the study.

Typically, the ANN contains a large number of interconnected nodes and uses mathe-
matical algorithms to model nonlinear problems such as modeling the forest biomass. The
MLP (MultiLayer Perceptron) NN model is one of the most commonly used neural network
algorithms for environmental modeling, monitoring, mapping of forests, and estimating
the forest biomass [69,71,72]. The typical architecture of the MLP NN consists of at least
three layers and includes the input, hidden, and output layers. Each layer is composed of
several nodes or neurons. The number of neurons used in the input layer was that of the
number of input explanatory variables. A significant influence on the performance of the
MLP NN model is given by the connection weights between the input and hidden layers, as
well as the connection weights between the hidden and output layers. Nonetheless, there
is no rule that allows previous decisions to determine the number of neurons in the hidden
layer or the number of hidden layers. Some have reported that an insufficient number of
hidden neurons made the network learning difficult [73], whereas an excessive number of
hidden neurons might lead to unnecessary training time [74]. Therefore, the commonly
used strategy to reach the optimum number of neurons in the hidden layer is by trial
and error [75]. The output layer contained one neuron and was used to output estimated
values of the AGB. The weights assigned at the connections between the input, hidden, and
output layers were updated in the training phase and were based on a back-propagation
algorithm [76] that minimized the differences between the AGB value estimated by the
MLP NN and that produced from AGB in situ inventories. The process was repeated until
reaching a predefined accuracy level or the maximum number of iterations.

To develop the architecture of the MLP NN model, in this study, the number of selected
hidden neurons was significantly impacting the estimation of AGB [72], as defined by [77].
As a result, by varying the number of neurons against the root-mean-square error (RMSE)
based on the data contained in the training dataset, the best MLP NN models were reached.
These best models were described by the highest R2 and the lowest RMSE. Accordingly, the
best MLP NN model was found to be that characterized by two hidden layers containing
four neurons in the first and two neurons in the second layer. The model was trained using
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70% of the dataset, and the remaining data (30%) were split in half for validation (15%) and
testing (15%). The steps described above were implemented in the Statistica software (Ver.
10).

For the kNN algorithm, the choice of the k value, distance metric, and weighting
function are critical factors affecting the estimation accuracy [32]. The model performance
was tested by the use of k values from 1 to 40 to find the optimum one for implementing
the kNN algorithm [23,78]. Moreover, for an efficient comparison of the distance metrics in
the kNN implementation, the four distance metrics available in Statistica software (StatSoft.
Inc., Tulsa, OK, USA), including the Euclidean, squared Euclidean, Manhattan (city block),
and Chebychev distances (Equations (2)–(5)), were used, and their results were compared
against each other [78].

The most frequently used distance metric is the Euclidean distance, standing for
a simple geometric distance in a multidimensional space [79]. In the case of squared
Euclidean distance, the distance between the target and reference units would be squared
to give progressively greater weights to data points that are closer or more similar. Absolute
distances are considered when using the Manhattan distance metric, although the effect of
single large differences (i.e., outlier data) is dampened whether they are not squared [79].
The absolute magnitude of differences between coordinates of a pair of data points was
examined by Chebychev’s distance metric. This metric can be used for both ordinal and
quantitative variables and it is appropriated when one would like to term two data points
as “different” if they are different on any one of their dimensions.

D(x, p) =

√

(x− p)2 (2)

D(x, p) = (x− p)2 (3)

D(x, p) = abs(x− p) (4)

D(x, p) = max(|x− p|) (5)

where D is the distance between the target and reference units, x is the target unit, and p is
the reference unit in all equations. The squared Euclidean distance is the most commonly
used distance metric among the four mentioned above [78,80–82].

RF is an efficient machine learning algorithm that was developed by Breiman [28],
currently being used for classification and regression problems. Typically, its use yields
high accuracy, being robust in finding outliers and noise, computes quickly, and shows
the relative importance of the input variables [83]. A bagging algorithm [84] is used to
generate n sub-datasets (which is called a bootstrap dataset) from the training dataset. By
the Classification And Regression Tree (CART) algorithm, each bootstrap dataset is used to
construct a base-decision tree [85]. Finally, the RF model is generated by grouping base-
decision trees to form a forest. Two-thirds of the total samples from the training dataset,
called “in bag” data, should be contained in these bootstrap datasets. Approximately one-
third of observations (out-of-bag, OOB) are used to evaluate the RF model [86]. The number
of base-decision trees should be selected carefully because the RF model’s performance
depends on this parameter. In this study, 500 base-decision trees were selected to ensure
the stability of the RF model’s results, as suggested by Stevens et al. [87], and they were
used to produce a graph showing the average squared error rates against each number
of trees for training and testing samples, as a robust analytical tool to explore data and to
verify the optimal number of trees within RFs. In such graphs, the optimal number of trees
is determined based on the number of trees that produces a stable error [55]. Following
this, we repeated the RF implementation using this optimal number of trees and other fixed
parameters.

2.5. Statistical Analysis and Modeling Performance

PCA analysis was used in this study to identify the main components and to help
analyze a subset of features by a dimensionality reduction. PCA is widely used to eliminate
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waste data in remote sensing studies [88]. In this study, PCA was computed from the
bands of the Sentinel-2 image, and it was used for AGB modeling by the means of Statistica
(version 10) software. The first component of all bands, except band 10, was included in the
PCA analysis. In addition, a sensitivity analysis was used to determine the most effective
model parameters [89].

Model testing and validation was performed by using 30% of all observations. The
estimated performance metrics of the models were developed in the form of statistics
such as the root-mean-square error (RMSE), relative RMSE (%RMSE), which were also
used to choose the best model, adjusted coefficient of determination (R2

adj), and standard
error of estimates (SEE). R2

adj and SEE were calculated only for regression models, while
RMSE and relative RSME were used to evaluate the performance of both parametric and
nonparametric models (Equations (6)–(9)).

RMSE =

√

√

√

√

√

n

∑
n−1

(AGB− AGBi)
2

n
(6)

%RMSE =
RMSE× 100

y
(7)

R2
adj = 1− (1− R2)(N − 1)

N − p− 1
(8)

SEE =
σ√
n

(9)

where AGB and AGBi stand for the estimated and observed AGB per plot, respectively, n is
the total number of samples, y is the average of the testing phase data, R2 is the coefficient
of determination, N is the number of samples, p is the number of predictor variables, and σ

is the standard deviation.

3. Results

Based on the in situ measurements, the minimum, maximum, and mean values of the
AGB for C. betulus stands were estimated at 118, 320, and 210 t/ha, respectively, with a
standard deviation of 60 t/ha (Figure 3; Table A1); there was a high variance (3588 t/ha),
indicating that the data were spread out from the mean, and from one another (Table A1).
The results of the normality test indicated a normal distribution of both in situ and remotely
sensed data. Based on Pearson’s correlation coefficient, a negative association was found
between spectral information and in situ AGB (Table 2). Band 6 of the Sentinel-2 data
outputted the highest correlation with in situ AGB (r = −0.723; Table 2).−
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Figure 3. The value of the aboveground biomass for each plot. The red line shows the mean value of
aboveground biomass (AGB) at the study level.
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Table 2. Pearson’s correlation coefficient (r) between spectral information and the aboveground
biomass (AGB).

Variable r Variable r

B2 −0.519 ** IPVI −0.506 **
B3 −0.541 ** IRECI −0.567 **
B4 −0.580 ** GEMI −0.666 **
B5 −0.515 ** PC1 1 −0.686 **
B6 −0.723 ** GNDVI −0.322 **
B7 −0.682 ** NDVI −0.506 **
B8 −0.691 ** DVI −0.682 **
B8a −0.674 ** PSSRA −0.425 **
B11 −0.716 **

RVI −0.510 **B12 −0.594 **

Note: ** Significance level: 0.01, 1 PC1 = first component of PCA.

The result of the AGB prediction using MR indicated that the backward elimination
procedure (R2

adj = 0.65, %RMSE = 24.72) outperformed the linear regression that used all
the variables, as well as the stepwise regression model (Table 3).

Table 3. Performance of the best parametric models for estimating the AGB.

Regression
Method

SEE R2 R2
adj %RMSE Variable

Multiple 40.35 0.757 0.588 29.72 All variables
Stepwise 42.89 0.547 0.535 30.99 B6

Backward 35.73 0.722 0.650 24.72 B2, B4, B5, B6, B7, B11, PCA,
GNDVI, NDVI, PSSRA, IRECI, DVI

Table 4 shows the performance of the kNN models that included all the variables and
used four distance metrics (Euclidean, Squared Euclidean, Manhattan, and Chebychev).
The best distance metric for the kNN algorithm was the Manhattan distance, which returned
the lowest %RMSE and the highest R2 (Table 4).

Table 4. Performance of aboveground biomass estimates using the kNN algorithm.

Range of k Distance Metric R2 %RMSE The Optimal k Value

1–40 Euclidean 0.67 23.90 27

1–40 Squared
Euclidean 0.72 22.94 29

1–40 Manhattan 0.73 21.85 25
1–40 Chebychev 0.67 23.87 24

The ANN fitted by a MLP NN model with an input layer containing all variables
and two hidden layers produced a relative RMSE of 19.93% during the validation phase
(Table 5). The sensitivity analysis indicated that PC1 was the most effective variable for
estimating AGB.

Table 5. Training and validation results of the aboveground biomass (AGB) using the MLP NN and
RF models.

AGB Model
Training Dataset Validation

R2 %RMSE R2 %RMSE

MLP NN 0.89 8.79 0.65 19.93
RF 0.69 19.52 0.60 22.55
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As mentioned before, the performance of the RF algorithm depends on choosing the
optimal number of trees and numbers of predictors (k) in each node for producing a good
response in estimations. For instance, Figure 4 shows the average squared error rates
against the number of trees used for AGB estimation when using RF during the training
and testing phases. The optimal number of trees is assigned to the point where the error rate
does not change by increasing the number of trees (Figure 4). The improvement in accuracy
was slow after about 220 trees; therefore, this number was used as a good estimation for
an optimum number to use (Figure 4). Based on the variable importance value obtained
from the sensitivity analysis, spectral band 6 of Sentinel-2 was the most effective variable.
In this study, the best RF model estimated AGB with a relative RMSE of 22.55% for k set at
6 (Table 5).
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Figure 4. Random Forest error testing graph—the average squared error of aboveground biomass
outputted by the Random Forest algorithm, plotted against the number of trees using the training
and testing datasets.

4. Discussion

Previous studies have found that remote sensing-based models for AGB estimation
are more accurate than empirical-based and GIS-based models [32]. In this study, Sentinel-2
data were used to estimate the AGB in pure stands of C. betulus in a part of the Hyrcanian
forest, Iran. A total of 19 variables, including original spectral bands, vegetation indices,
and the first principal component of PCA (applied to all original bands), were used for
estimation. In situ AGB was found to be negatively correlated with all variables. The
highest correlation was between the AGB and the two spectral bands located at the red
edge (0.731–0.749 nm wavelength) and shortwave infrared (1.539–1.681 nm wavelength),
with values of R2 of −0.723 and −0.716, respectively. The negative correlation between
biomass and spectral values has been discussed in many studies [9–11,90], expected to be
caused by the canopy shadowing of trees, canopy size, stand volume and density, and
consequently, by a more complex vertical structure of the forests. Shadowing is a factor
influencing the reduction in spectral reflectance of forests [91]. In addition, the fraction
of vegetation cover (FVC) of the ground at the pixel level is another reason affecting the
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radiation behavior at the canopy level, particularly in taller stands [92,93], which was the
case of forests from this study.

The higher spectral radiances of low-density forests characterized by less biomass can
be partially explained by a smaller amount of shadows resulting in a higher contribution
of the soil to the spectral radiance [12,91]. The age of the studied stands could be another
reason for the negative correlation between the amount of AGB and their corresponding
spectral values [13,94]. At higher ages, which was the case of this study, the size of the
canopy is rising [95], which increases the canopy surface area, size, and number of holes in
the canopy [8,94]. Increasing the canopy surface area can reduce the amount of reflection
due to the holes created in the tree crowns that is causing the electromagnetic waves to
spread through the crown and reduces reflection [94]. In addition, as the age of the trees
increases, their requirements for water will increase. As the amount of water increases
in the leaves, it will absorb electromagnetic waves and will thus reduce reflection. Fur-
thermore, as the age of the forest stands increases, the number of stories usually develops,
causing more propagation of the electromagnetic waves and ultimately a reduction in
spectral reflection [10,96]. On the other hand, a positive correlation between biomass and
spectral reflectance was reported by different researchers [33,47] and explained by specific
characteristics of the study site such as the vertical structure of forest stands, canopy cover
percentage, forest health and vitality, species composition, and soil properties. In this study,
we found that the relatively strong correlation between AGB and B6, though negative,
preserved the presence of this variable in the backward and stepwise regression models
(Table 3).

Our results indicated that nonparametric models performed better than MR, and the
best result was obtained when using an ANN that outputted a relative RMSE of 19.93%.
This is in agreement with the findings of Vafaei et al. [48] (relative RMSE = 19.17%) and close
to those of Gao et al. [19] (relative RMSE = 28.8%). The ability to learn during training and
to generalize on new datasets makes ANN more powerful and flexible than MR [7,97]. Past
research has suggested that whenever an insufficient number of sample plots is available,
parametric models can result in a poor performance, while nonparametric models may lead
to more accurate predictions [98]. The ANN, as a nonparametric mathematical model, is
conceptually similar to biological neural networks and holds excellent linear and nonlinear
fitting capabilities [7]. Nevertheless, this is mainly due to the fact that the nonparametric
models are able to handle nonlinear relations between variables from multiple sources [34].
By comparing the performance of algorithms for forest AGB estimation on ALOS PALSAR
and Landsat data, Gao et al. [19] concluded that ANN performed better than RF. For
the temperate forest of China, Chen et al. [7] concluded that ANN was most accurate in
assessing the biomass of broadleaved deciduous forests as opposed to regression, SVR,
and RF algorithms. As shown by this study, the higher performance of nonparametric
algorithms could be due to the complex relations established between AGB and remote
sensing variables, which are difficult to understand and explain by parametric algorithms.
In addition, nonparametric algorithms are more flexible, by removing some limitations
such as the hypotheses on data distribution and the functional form of the mathematical
relation between independent and dependent variables. For instance, Lu et al. [32] believed
that nonparametric algorithms are more adapted in creating complicated nonlinear biomass
models because they do not explicitly predefine the model structure but determine it in a
data-driven manner.

As in many other studies, addressing data uncertainty is important. In this study, data
uncertainty may be associated with the GPS errors in locating the sample plots, possible
errors of the local volume table, the inappropriateness of the available allometric models
to calculate the AGB, and spectral interference of other species that existed in the plots.
In addition, optical data produced by the Sentinel-2 mission cannot penetrate the forest
canopy, preventing it from capturing information about wooden understories. On the
one hand, extending the canopy surface will increase the size and number of holes in the
canopy. Tree growth will increase in terms of volume, so trees will make a shadow that will
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cause a reduction in reflection [99]. On the other hand, spreading water on the leaves and
increasing the water availability will also reduce the reflectance [99].

Many studies have indicated that integrating multisensor information from optical,
radar, and lidar platforms can improve biomass estimation accuracy [32,100]. Further-
more, to improve the estimation of AGB by Sentinel-2 optical data, some points must
be considered. Due to the fact that vegetation cover and trees with DBHs less than 7.5
cm are not typically considered in the calculation of the stand volume, studies should be
carried out in areas without vegetation cover and small trees, or they should be carried out
during the time of year when the vegetation cover is missing. The amount of reflection
during the year varies due to the changes in the color of the leaves, water availability, and
changes in stand structure; therefore, in situ measurements should be performed close
to the time of satellite image acquisition. In addition, further studies should be carried
out to clarify the effects of water availability, saturation, canopy cover, vegetation cover,
and undergrowth vegetation on the canopy reflectance in a continuum of canopy closure.
As one characteristic of our study was the limited number of plots that provided data for
modeling and assessment, further studies should be carried out to check the effect of field
sampling effort on the improvements in accuracy of the estimates, as one option. Another
option would be using a leave-one-out cross-validation (LOOCV) procedure to improve the
results [101]. Nevertheless, the approach described herein was commonly used in previous
studies [102–105].

5. Conclusions

According to this study, freely available, high-spatial, -temporal, and -resolution
multispectral Sentinel-2 data are suitable for estimating C. betulus AGB at a small scale
over large areas. Our findings showed that in situ AGB is negatively correlated with 19
variables (original spectral bands, vegetation indices, and the first principal component of
PCA) extracted from Sentinel-2 data. This negative association was expected to be caused
by an increased canopy shadowing of trees, canopy size, stand volume and density, and
consequently, a more complex vertical structure. We conclude that nonparametric models
(ANN, kNN, and RF) performed slightly better than MR to estimate AGB, because these
models are able to account for nonlinear relations between the forest features and AGB.
From the group of nonparametric models tested in this study, the use of ANN returned
the best result. Therefore, Sentinel-2 data stand as an important information source for
assessing and monitoring forest biomass at local and regional scales in complex forest
stands. In addition, the efficiency of the models used in this study can inform the selection
of predictive mapping techniques for forest AGB modeling.
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Appendix A
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Figure A1. Map of Iran (a); location of sample plots in Patom and Namkhaneh district (b); location of
sample plots over the Sentiel-2 image (c).

Table A1. Number of trees, mean value of DBH, volume, and AGB estimation per sample plot.

Plot No.
Number of

Trees
Mean Value of

DBH (cm)
Volume (m3/ha) AGB (t/ha)

1 36 39 326 221
2 46 41 439 298
3 46 41 399 271
4 48 39 463 315
5 57 37 316 215
6 70 32 463 315
7 45 35 292 198
8 56 30 420 286
9 88 30 353 240
10 32 50 305 208
11 30 35 390 266
12 42 30 236 160
13 60 22 174 118
14 97 20 366 249
15 88 20 190 129
16 94 24 273 185
17 87 30 284 193
18 60 27 240 163
19 61 26 229 155
20 95 23 260 177
21 81 23 188 128
22 92 26 224 152
23 72 26 337 229
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Table A1. Cont.

Plot No.
Number of

Trees
Mean Value of

DBH (cm)
Volume (m3/ha) AGB (t/ha)

24 62 35 183 124
25 52 27 234 159
26 61 32 403 274
27 42 46 385 262
28 26 44 304 207
29 32 53 184 125
30 29 41 234 159
31 36 31 470 320
32 30 36 295 201
33 40 33 428 291
34 40 44 338 230
35 27 40 261 178
36 45 34 338 230
37 38 32 189 128
38 48 32 240 163
39 55 38 189 128
40 35 28 461 314
41 50 42 358 244
42 34 30 368 250
43 29 40 272 185
44 36 34 276 188
45 66 47 304 207
46 28 34 452 307
47 57 41 338 230
48 29 36 307 209
49 45 34 218 148
50 50 43 319 217
51 49 43 344 234
52 47 31 278 189
53 55 31 207 141
54 75 29 175 119
55 61 21 446 303

Minimum 26 20 174 118
Maximum 97 53 470 320

Mean 52.58 33.96 308.45 209.73
Variance 397.62 59.85 7752.70 3598.24

Standard Deviation 19.94 7.74 88.05 59.99
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Abstract: Analyzing the current status of forest loss and its causes is crucial for understanding and
preparing for future forest changes and the spatial pattern of forest loss. We investigated spatial
patterns of forest loss in South Korea and assessed the effects of various factors on forest loss based on
spatial heterogeneity. We used the local Moran’s I to classify forest loss spatial patterns as high–high
clusters, low–low clusters, high–low outliers, and high–low outliers. Additionally, to assess the effect
of factors on forest loss, two statistical models (i.e., ordinary least squares regression (OLS) and
geographically weighted regression (GWR) models) and one machine-learning model (i.e., random
forest (RF) model) were used. The accuracy of each model was determined using the R2, RMSE,
MAE, and AICc. Across South Korea, the forest loss rate was highest in the Seoul–Incheon–Gyeonggi
region. Moreover, high–high spatial clusters were found in the Seoul–Incheon–Gyeonggi and Daejeon–
Chungnam regions. Among the models, the GWR model was the most accurate. Notably, according
to the GWR model, the main factors driving forest loss were road density, cropland area, number of
households, and number of tertiary industry establishments. However, the factors driving forest loss
had varying degrees of influence depending on the location. Therefore, our findings suggest that
spatial heterogeneity should be considered when developing policies to reduce forest loss.

Keywords: forest loss; land-cover change; machine learning; spatial heterogeneity; random forest
model; geographically weighted regression

1. Introduction

The global forested area is 4.06 billion ha, which accounts for approximately 31% of
the total land area; global forest loss since the 1990s has reached approximately 0.42 billion
ha [1]. Forest loss increases ground surface temperatures, reduces ecosystem services, and
exacerbates climate change [2]. Climate change is caused by factors such as construction
and transportation [3,4]. Forest loss can be driven by human activity and biophysical
characteristics (i.e., roads, construction, expansion of settlements, industry, wildfires, agri-
cultural activities, mining, industrial logging, etc.) that directly affect forests and cause
canopy loss [5]. In particular, the expansion of urban infrastructures, such as roads, trans-
portation, and settlements, causes permanent forest loss [6,7]. Additionally, demand for
forest products and the conversion of native forests into commercial forests can simplify
forest vegetation structure and reduce biodiversity [8,9]. Therefore, reducing forest loss is
necessary to restore and improve the function of forests [10].

In South Korea, the ratio of forest area is about 63%, which is the fourth highest among
OECD countries, following Finland, Sweden, and Japan, with a high forest area ratio
compared to the global average forest area ratio [11]. However, the forest cover decreased
by approximately 3% in 2019 compared to in 1990, with a mean annual decline of 0.1% [12].
This is a higher figure than the 1.7% decrease in the global forest area ratio over the past
30 years, so it is necessary to reduce it by analyzing the causes of forest loss [1]. According
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to Kim and Hwang, continuous damage to the forest in South Korea has been reported due
to tourist sites, golf courses, industrial complexes, housing areas, road construction, and
various other factors [13]. To decrease the rate of forest loss, it is necessary to quantitatively
analyze the area of forest loss. Additionally, human socioeconomic factors associated with
forest loss need to be determined [14]. Recent improvements to geographic information
system (GIS) and remote sensing (RS) tools have enabled the rapid collection of data
regarding regional forest conversion and loss [15]. The collected data can be analyzed
using various techniques, including statistical approaches and machine-learning models,
to examine the spatial distribution characteristics of forest loss and the causes of forest
loss [16]. Forest loss can occur due to the conversion of forest to many different land uses,
and this process is affected by various spatial and socioeconomic factors. Verburg et al. [17]
showed that road construction increases human movement and economic activities, which
increases the conversion of forest to croplands and grasslands. Damnyag et al. [18] found
that, in Ghana, croplands affected forest loss. Scullion et al. [19] pointed out that pasture
expansion is the direct cause of forest loss worldwide, with the causes varying among each
continent. Echeverria et al. [20] showed that forests closer to rivers were more likely to be
lost. Forest in lower altitudes is less accessible; therefore, forest loss is less likely to occur.
Similarly, Gayen and Saha [21] showed that forest with a higher slope is less accessible and
less likely to experience forest loss. Sharma et al. [22] showed that commercial land use
(mining and transportation development) and infrastructure development increased forest
loss due to the expansion of surrounding urban areas.

Given that the factors mentioned above vary spatially [23–25], their spatial heterogene-
ity should be considered when determining their impact on forest loss [26,27]. Therefore,
the spatial distribution of forest loss and the relationship between forest loss and its oc-
currence factors should be analyzed. Regional spatial patterns of forest cover can be
quantitatively analyzed using the local Moran’s I, first proposed by Anselin [28]. This tech-
nique enables statistically significant spatial clusters and outliers to be measured according
to characteristics of the forest loss rate of a given area to quantitatively determine the forest
loss rate [29]. Correlations between forest loss and various factors have been conducted
using statistical models (e.g., ordinary least squares regression (OLS) and geographically
weighted regression (GWR) models) and machine-learning model (e.g., random forest (RF)
model) [30–32]. The OLS model does not consider the spatial heterogeneity of the area
when analyzing correlations among factors, whereas GWR incorporates spatial heterogene-
ity and, therefore, can provide useful visual information to identify factors impacting forest
loss [33]. The GWR model estimates discrete parameters by providing the higher weighted
value closer to the observation location [34]. The RF model does not consider spatial
heterogeneity; they are similar to the OLS model that provides a single result for the entire
range of the research area with high predictive accuracy and efficiency [35,36]. However,
the RF model can be used for both classification and regression, which is advantageous for
obtaining results very quickly [37]. Nevertheless, the OLS and RF models have rarely been
applied to analyze the factors affecting forest loss in South Korea.

In this study, we analyzed the areas of forest loss in South Korea and the factors
driving this forest loss. The specific goals were as follows: (1) The distribution of the forest
loss area was analyzed using local Moran’s I. (2) The suitability of models (OLS, GWR, and
RF) to evaluate factors affecting the forest loss rate was compared. (3) Factors affecting
forest loss in each region were analyzed. Understanding the causes of forest loss and forest
distribution status may contribute to the development of measures that prevent forest loss.
In the future, this study can be used to establish forest management policies to prevent
forest loss.

2. Materials and Methods

2.1. Study Site

The study was conducted in South Korea at 125◦–131◦ longitude and 33◦–38◦ latitude
and included administrative districts, as well as one special city, one special self-governing
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city, six metropolitan cities, eight provinces, and one special self-governing province. The
total area of the study site comprised approximately 10.04 million ha with 63% forest.
The highest forest area % of land area was in the Gangwon region (81%), followed by
the Daegu–Gyeongbuk (69%) and Busan–Ulsan–Gyeongnam (65%) regions. Forests in
the north and east were generally at higher altitudes, and those in the west and south
were generally at lower altitudes; however, there were substantial variations in the mean
altitude and slope [38]. The study site was divided into eight “spatial regions” containing
152 “spatial areas”, based on eight provinces to which each of the seven metropolitan
cities belonged (Table 1 and Figure 1). To analyze forest loss and the factors impacting
forest loss from a macroscopic perspective, spatial regions were defined by classifying
metropolitan cities and provinces by region. Then, for a more detailed analysis, spatial
areas were defined to analyze Seoul and other metropolitan cities and the special self-
governing city under the same parameters as those used for general cities. Each spatial
area was quantitatively analyzed as an independent unit, irrespective of the size of the
cities or provinces. Additionally, Seogwipo-si, Jeju-si in the Jeju Special Self-Governing
Province, and Ulleung-gun in Gyeongsangbuk-do, which are geographically remote islands,
were excluded from analysis because they are distant from other regions, limiting the
weighting in spatial pattern analysis [39]. Furthermore, Sejong Special Autonomous City,
an administrative district designated in 2012, was excluded from the analysis due to a lack
of statistical data from 2005 [40,41].

Table 1. Number of spatial areas and forest rate in each spatial region. For the study, “spatial regions” were defined and
split into “spatial areas” (see Figure 1).

Spatial
Region

Seoul–Incheon–
Gyeonggi

Region

Gangwon
Region

Busan–
Ulsan–

Gyeongnam Region

Daegu
Gyeongbuk

Region

Gwangju–
Jeonnam
Region

Jeonbuk
Region

Daejeon–
Chungnam

Region

Chungbuk
Region

Spatial area (n) 32 15 20 22 22 14 16 11
Forest rate (%) 46 81 65 69 54 51 51 64

 

      

(a) (b) (c) 

Figure 1. Study area location in South Korea. (a) Administrative boundaries at the Metropolitan City·Do level and
Si·Gun·Gu level; (b) boundaries of spatial regions and spatial areas defined for the study; and (c) forest rate in each spatial
area in 2015.

2.2. Data Collection

The data used in the status analysis of the spatial distribution of forest loss areas were
obtained from the Forest Basic Statistics (FBS), which provides statistics on the current status
of national forests in South Korea [42,43]. The FBS data included information regarding
the forest type (coniferous forest, deciduous forest, or mixed forest) and age [44,45]. The
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FBS data are published every five years; the 2015 and 2005 data were used to analyze
changes in forest cover over a ten-year period. Census data and spatial data were used
to determine factors affecting forest loss. Census data were obtained from the Cadastral
Statistics Chronology [46,47]; the Agricultural Area Survey and the Agriculture, Forestry
and Fishery Survey [48–51]; and the Survey of Establishments [52,53]. Spatial data were
obtained from the road network map and the railway network map, which were produced
in 2005 and 2015 by the Ministry of Land, Infrastructure and Transport (MOLIT). The
Cadastral Statistics Chronology includes the area of 28 land categories, including forests,
crop fields, paddies, and house sites, for each administrative district [54]. The Agricultural
Area Survey provides data on the current status of agricultural land and cultivation
within a selected sample area. The Agriculture, Forestry and Fishery Survey analyzes
the distribution of agriculture, forestry, and fishery households, number of household
members, and farms to construct the data in a cycle of one year and five years [55–57].
The Survey of Establishments collects annual data of each region’s establishments, such as
size, distribution, industry type, and employees [58]. The road and railway network maps
provide the current status of roads and railways across the nation [59] (Table 2).

Table 2. Sources of data for factors affecting forest loss.

Category Data Institution
Year of Data
Collection

Detailed Data

Census Data

Forest Basic Statistics Korea Forest Service (KFS)

2005, 2015

Forested area,
accumulation of standing

Cadastral Statistics
Chronology

Ministry of Land,
Infrastructure and
Transport (MOLIT)

28 land categories, including
Forestry, Dry paddy-field,

Paddy-field, and
Building site

Agricultural Area Survey

Statistics Korea (KOSTAT)

Current status of
agricultural land

Agriculture, Forestry and
Fishery Survey

Number of household
members, and farms

Survey of Establishments Ministry of Employment
and Labor (MOEL)

Size, distribution of industry,
industry type,

Spatial Data Road network map
MOLIT Spatial data

Railway network map

2.3. Study Method

In this study, a spatial database was constructed to analyze the forest loss rate for
2005–2015 and the spatial patterns of forest loss. Then, a spatial database for the factors
potentially influencing forest loss was constructed. The impact of these factors on forest
loss was then analyzed using statistical and machine-learning models (Figure 2).
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Figure 2. Workflow for analyzing the effects of factors on forest loss.

2.3.1. Construction of the Spatial DB for Forest Loss and Current Status Analysis

For the forest loss area, the data of forest area per spatial area were extracted from
the 2005 and 2015 FBS data, and using Equation (1), the rate of change in the forest area
was estimated. The rate of change in the forest area was negative (−) if the forest area
had decreased, and the negative values were converted into positive (+) values to clearly
identify the characteristics of forest loss area, while the spatial areas without a decrease in
forest area were excluded from the analysis (Equation (1)).

∆vt =
(vt − vt−1)

vt−1
(1)

∆vt: Forest loss rate at t time; vt: Forest rate at t time;
vt−1 : Forest rate at t − 1 time; v: Forest rate.

2.3.2. Analysis of Spatial Pattern on Forest Loss Area

The spatial autocorrelation patterns of the forest loss in each area were analyzed using
global Moran’s I. A Moran’s I value >0 indicates that the forest loss area is clustered, and
a value <0 indicates that the forest loss area is dispersed [60,61] (Equation (2)). The local
Moran’s I identifies spatial clusters and outliers based on proximity, which is fundamentally
different from the hotspot method but may contribute as a complementary concept because
the Moran’s I is a high or low level of similarity to the spatial area in the vicinity [62,63]. In
the case of proximity, the Euclidean distance was used to measure the distance between
features, and similarity with the neighboring area was analyzed based on the result. Based
on this, spatial areas were categorized into the following four spatial patterns: high–high
(HH) spatial clusters, high–low (HL) spatial outliers, low–low (LL) spatial clusters, and
low–high (LH) spatial outliers (Figure 3) [64]. The local Moran’s I assigns a weight to a
given area based on the spatial proximity among the areas in a cluster, and to analyze the
consequent patterns, the range and distance of the weight should be determined. We used a
fixed bandwidth to determine the weight range of the local Moran’s I in this study [65], and
the Euclidean distance was applied for the distance between areas [66,67] (Equation (3)).
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Figure 3. Local Moran’s I for spatial clusters and spatial outliers. (a) High–high (HH) spatial
cluster, (b) high–low (HL) spatial outlier, (c) low–high (LH) spatial outlier, and (d) low–low (LL)
spatial cluster.

I =
n ∑

n
i=1 ∑

n
j=1 Wij(d)(xi − x)

(

xj − x
)

∑
n
i=1 ∑

n
j=1 Wij(d)∑

n
i (xi − x)2 (2)

Ii=
(xi − x)∑j Wij

(

xj − x
)

S2 (3)

xi: forest loss rate at ith area; xj : forest loss rate at jth area;
x: the mean of the forest loss rate; Wij : weight index for the location of i relative to j;
S2: variance; n: number of areas.

2.3.3. Selection of Impact Factors

For the variables that influence forest loss, a total of 11 variables were selected in
reference to previous studies conducted in South Korea and overseas (Table 3). The se-
lected variables were as follows: road density [68], cropland area [69], grassland area [70],
settlement area [71], number of households [72], population [73], and industry employees
and establishments [74]. The “industry employees and establishments” variable was ana-
lyzed by first recategorizing the industry types in the Survey of Establishments [52,53] that
follows the Fisher–Clark categorization of industry (agriculture, forestry, fishery, mining,
manufacturing, electricity, gas and waterwork, transportation, and communication) into
primary, secondary, and tertiary industries, then counting the employees and establish-
ments in each class of industry [75]. For each variable, the rate of change for each spatial
area was estimated following the same method used to determine changes in forest rate.
Next, the multicollinearity of variables was determined, and the variables were excluded
from further analyses if the variance inflation factor (VIF) was ≥10 [76].
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Table 3. Impact factors of forest loss.

Factor Description Unit Data Source

Road density (Rd) Forest loss is caused by the increased
accessibility due to high road density m/ha Mena et al., 2006 [68]

Cropland area (Ca) Forest loss is caused by the expansion of farms
leading to increase in population and poverty

%

Ngwira and Watanbe, 2019 [69]

Grassland area (Ga)
Forest loss is caused by the expansion of
industry to meet the increased demand for
livestock animals

Walker et al., 2013 [70]

Settlement area (Sa) Forest loss is caused by the settlement and
construction of infrastructure Jayathilake et al., 2020 [71]

Number of households (Nh) Forest loss is caused by increase in number of
households leading to expansion of croplands n Godoy et al., 1997 [72]

Population (P)
Forest loss is caused by increase in population
leading to increased demand for food
and housing

n Biswas et al., 2012 [73]

Primary industry number of
Employees (Pm)

Forest loss is caused by industrialization and
subsequent population pressure n Lata et al., 2018 [74]

Primary industry
Establishments (Pe)

Secondary industry number of
Employees (Sm)

Secondary industry number of
Establishments (Se)

Tertiary industry
Employees (Tm)

Tertiary industry
Establishments (Te)

2.3.4. Concept of Statistical Learning (OLS and GWR Models)

The OLS and GWR models were used to analyze the spatial correlation between forest
loss and human activity. The OLS model is a global model that estimates the influence of a
given variable as identical across all study areas, based on the assumption that the variables
would have identical correlations in any space. Therefore, the OLS model can be used to
confirm the influence of variables on the whole study area [77]. Meanwhile, the global
correlation determined through the OLS model may deviate from the locally analyzed
correlation so that the estimated correlation may differ from the actual correlation [78]. The
estimation equations of OLS are shown in Equations (4) and (5). Thus, the OLS model was
used to analyze the global impact factors of forest loss.

y = β0 +
n

∑
k=1

βkxk + ε (4)

β̂ =
(

X′X
)−1

X′Y (5)

y: dependent variable; β0: intercept; βk: regression coefficient; xk: kth independent variable;
ε: error; β̂: estimated regression coefficient; X′: transpose matrix of variable; X: matrix of
variable; Y: vector of the dependent variable.

The GWR model allows for estimation of local parameters as a regional model, en-
abling estimation of the influence of variables by region. In contrast to the OLS model, the
influence of the variable within the study area was estimated per area, and the results of
the model were applied to each area [79]. This suggests that the GWR produces a more
reliable performance than the OLS because local influences are analyzed to allow the study
of spatial migration of variables and as the influence is analyzed per area [80,81]. The
weight in the GWR model is assigned through kernel functions based on distance [82]. The
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bandwidth is divided into fixed and adaptive kernels based on how the bandwidth is set
as the weight range. For a fixed kernel, the distribution shows bandwidths of consistent
size. For adaptive kernels, the distribution varies according to the data density [83]. The
weights were assigned via an adaptive kernel. The estimation equations for the GWR are
shown in Equations (6)–(8). Thus, the GWR model was used to analyze the impact factors
of forest loss in the dimension of areas (units of spatial areas).

yi = β0(ui, vi) + ∑
n

k=1 βk(ui, vi)xki + εi (6)

β̂i=
(

X′WiX
)−1

X′WiY (7)

w(ui, vi) =







wi1 · · · 0
...

. . .
...

0 · · · wik






(8)

β0: intercept; βk: estimate coefficient for independent variable; yi: dependent variable; xk:
kth independent variable; (ui, vi): longitude and latitude coordinates of ith area; βk(ui, vi):
estimate coefficient for the location of ith area; εi: error; β̂i: estimated coefficient for the
location of ith area; X′: transpose matrix of variable; X: matrix of variable; Y: vector of the
dependent variable; Wi: weighted matrix for the location of ith area

2.3.5. Machine-Learning Model (RF Model)

The performance of a machine-learning model and importance of each impact factor
were estimated with respect to forest loss for a comparative analysis concept of statistical
learning. The RF model was used because it is a representative machine-learning model
which is well-known for its simplicity and efficiency [84]. The RF model was implemented
using Python’s scikit-learn library. A variable is selected at each node, and randomness
is exhibited by the learning data at each tree to create an ensemble model of myriads of
decision trees [85]. In general, the prediction accuracy and efficiency of the RF model
are high, with a low probability of overfitting for learning data [35,86]. The RF model
was analyzed using n_estimators, max_depth, min_samples_split, and min_samples_leaf as
hyperparameters, as shown in Table 4. n_estimators is the number of regression trees in
the model. As n_estimators increases, the fitting effect decreases; therefore, n_estimators is
often set to 100 [87]. In addition, in reference to previous studies which reported the use of
the basic hyperparameter values leading to a high level of accuracy, n_estimators was set
as 100, min_samples_split as 2, max_depth as 0, and min_samples_leaf as 1 [88,89] (Figure 4).
We analyzed the hyperparameter as the default value by referring to previous research
when evaluating the relationship between dependent and independent variables as well as
statistical models [88] (Table 4).
Table 4. Hyperparameters of the random forest (RF) model.

Hyperparameter Value

n_estimators 100
Max_depth None

Min_sample_split 2
Min_samples_leaf 1
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Figure 4. Regression tree node based on RF model.

2.3.6. Model Fitness

The coefficient of determination (R2), root mean squared error (RMSE), mean absolute
error (MAE), and Akaike’s information corrected criterion (AICc) were used to test the
performance of the statistical and machine-learning models. The R2 was used to analyze
the predictive power of the models. RMSE is a scale that represents the differences between
the model-predicted values and the actual observed values and is used to evaluate the
accuracy of spatial analyses and remote sensing with error distributions [90,91]. MAE is the
mean value for the absolute difference between the model-predicted value and actual value,
which indicates the mean error size. As in the RMSE, smaller estimates indicate smaller
errors, which verifies a higher prediction accuracy [92,93]. AICc allows the estimation of
the relative quantity of data lost in the statistical model. Smaller values indicate a higher
model fitness. In general, AICc provides the solution to overfitting when the sample size is
small; thus, it is more useful than AIC [94]. The R2, RMSE, MAE, and AICc values were
obtained using Equations (9)–(12), respectively. Additionally, the influence and importance
of variables were analyzed based on the regression coefficients from the statistical models
and the IncMSE from the machine-learning model. The regression coefficient is indicative
of the influence of the impact of factors on forest loss, and a positive or negative value
indicates a positive or negative, respectively [95]. The % IncMSE is indicative of an increase
in the mean squared error, and a higher value indicates a more critical variable within the
RF model [96].

R2 = 1− ∑
n
i=1(yi − ŷi)

∑
n
i=1 (yi − y)2 (9)

RMSE =

√

1
n ∑

n

i=1 (yi − ŷi)
2 (10)

MAE =
1
n ∑

n

i=1|yi − ŷi| (11)
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AICc = 2nloge(σ̂) + nloge(2π) + n

(

n + tr(s)

n− 2− tr(s)

)

(S =
ŷi

yi
) (12)

yi: dependent variable; ŷi: estimated value of dependent variables; yi: mean of dependent
variables; σ: residual standard error ; σ̂: estimated value of residual standard error; n:
number of variables; tr(s): trace of the hat matrix.

3. Results and Discussion

3.1. Spatial Distribution of Forest Loss during 2005–2015

The forest rate in South Korea decreased by approximately 1% in 2015 compared
to 2005, with significant differences among spatial regions. The highest forest loss rate
was observed in the Seoul–Incheon–Gyeonggi region, and the lowest forest loss rate was
observed in the Gangwon region (Table 5). The mean forest loss rate in the Seoul–Incheon–
Gyeonggi region was 3.3%, which was 1.8-fold higher than the mean national rate of forest
loss and approximately 5-fold higher than the Gangwon region with the lowest forest
loss rate. In particular, the Seoul–Incheon–Gyeonggi region exhibited a 14.4% maximum
forest loss rate, a level far higher than other spatial regions. This result indicated that
forest loss caused by forest conversion and land use change was concentrated in the Seoul
region over the past decade (Figure 5a). Such changes in forest conversion and land use
seem to have occurred due to urbanization such as the expansion of road network and the
construction of various infrastructure facilities centered on the metropolitan area where the
altitude of the sea level is relatively low due to the cancellation policy of the development
restriction area in the metropolitan area [97]. This is similar to the case of China, which is
geographically neighboring. In order to analyze the impact of development due to urban
expansion on forest loss, Zhou et al. [98] analyzed the impact of urbanization on forest loss
in six major urban megaregions of China, including Beijing–Tianjin–Hebei (BTH), Yangtze
River Delta (YRD), Pearl River Delta (PRD), Wuhan (WH), and Chengdu–Chongqing (CY).
As a result, forest loss was slightly different in each region, but urban expansion showed
a major impact on forest loss [98]. Conversely, the standard deviation was 3.3% for the
Seoul region, which was higher than all other spatial regions, with 14.4% maximum and
0.1% minimum forest loss rates, indicating that forest loss occurred intensively in the
Seoul–Incheon–Gyeonggi region and its surrounding regions. However, the deviation in
forest loss among spatial areas was substantially higher than other spatial regions. On the
other hand, one area in the Seoul–Incheon–Gyeonggi region, three in Gangwon region, one
in the Daegu–Gyeongsangbuk region, and one in the Gwangju–Jeonnam region showed
increases in forest area during 2005–2015. These areas were excluded from the analyses of
the spatial clusters and outliers of forest loss areas and the factors influencing forest loss
(Figure 5b).

Table 5. Distribution of forest loss rate across spatial regions.

Category
Minimum

Forest Loss Rate
Mean

Forest Loss Rate
Maximum

Forest Loss Rate
Standard
Deviation

Seoul–Incheon–Gyeonggi region 0.1% 3.3% 14.4% 3.3%
Gangwon region 0.2% 0.6% 1.5% 0.4%

Busan–Ulsan–Gyeongnam region 0.2% 1.1% 2.6% 0.8%
Daegu–Gyeongbuk region 0.1% 0.8% 2.8% 0.6%
Gwangju–Jeonnam region 0.1% 1.6% 7.7% 1.9%

Jeonbuk region 0.3% 1.7% 3.8% 1.0%
Daejeon–Chungnam region 0.3% 2.7% 8.1% 2.0%

Chungbuk region 0.1% 1.5% 5.3% 1.5%
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(a) (b) 

Figure 5. Forest loss area and forest increase area by spatial region and spatial area: (a) forest loss areas per spatial region
and area; (b) forest increase areas per spatial region and area.

3.2. Spatial Patterns of Forest Loss

The spatial distribution characteristics of forest loss are shown in Figure 6. Forest
loss showed significant positive spatial autocorrelation (global Moran’s I = 0.29, p < 0.01),
indicating that forest loss was clustered. A high number of HH clusters occurred in the
Seoul–Incheon–Gyeonggi region, approximately 77% of all HH clusters. Seoul-si, Incheon-
si, Gimpo-si, Hwaseong-si, and Pyeongtaek-si, which are in the capital region, had many
large-scale development projects (e.g., for housing, urban development, multicomplexes,
free economic zones, etc.), which were either ongoing or completed in 2021. This is
presumed to have led to the higher rate of forest loss in this region compared with other
spatial regions. The possibility of continuous forest loss is also predicted to be high in this
region [99]. Approximately 42% of clusters in the Gangwon region were LL clusters, and
the mean forest loss rate was 0.6%, which was 1.2% lower than the mean forest loss rate
across all spatial areas (1.8%). HL spatial outliers were mostly found close to LL clusters,
whereas LH spatial outliers were mostly found close to HH clusters. The forest loss rate in
the areas with HL outliers was 1.9%, which was 0.1% higher than the mean forest loss rate
across all spatial areas (1.8%). This is presumably because the distribution of forest loss
rate in the neighboring regions (i.e., Daegu-si, Gumi-si, Gimcheon-si, Gunwui-gun, and
Seongju-gun; 0.6%) was 1.2% lower than the mean forest loss rate across all areas. Most LH
spatial outliers were found in the Seoul–Incheon–Gyeonggi region, presumably due to the
presence of HH clusters in the surrounding areas (Figure 6).

135



Forests 2021, 12, 1636

  

≤

−
−

−
− −
− −

− −
− − −
− −
− −

− − −
− − −

Figure 6. Map of spatial clusters and spatial outliers in forest loss area in South Korea.

3.3. Assessment of Factors Impacting Forest Loss

3.3.1. Selection of Variables Related to the Factors Impacting Forest Loss

Prior to the selection of variables related to the impact factors of forest loss, multi-
collinearity and correlation analyses were performed for the variables. As shown in Table 5,
the population and number of households showed VIFs of approximately 28 and 26, re-
spectively; therefore, reanalysis was conducted after excluding the population. The results
of the reanalysis showed that the multicollinearity was reduced to ≤10, and the remaining
variables were selected as the final variables. (Table 6).

Table 6. Correlation coefficients and variance inflation factors (VIFs) among variables potentially influencing forest loss. See
Table 3 for variable abbreviations.

Category Rd Ca Ga Sa P Nh Pm Pe Sm Se Tm Te VIF

Rd 1 - - - - - - 1.3
Ca −0.312 ** 1 - - - - - - - - - - 1.5
Ga −0.059 0.143 1 - - - - - - - - - 1.0
Sa 0.047 0.145 −0.044 1 - - - - - - - - 1.6
P 0.333 ** −0.267 ** −0.166 * 0.448 ** 1 - - - - - - - 28.7

Nh 0.347 ** −0.328 ** −0.168 * 0.455 ** 0.976 ** 1 - - - - - - 26.5
Pm −0.039 0.093 0.025 0.089 0.011 −0.012 1 - - - - - 3.1
Pe −0.121 0.174 0.025 0.097 −0.036 −0.067 0.812 ** 1 - - - - 3.2
Sm −0.033 0.138 −0.033 0.340 ** 0.206 * 0.177 * 0.058 0.049 1 - - - 1.8
Se −0.171 * 0.186 * −0.011 0.246 ** 0.186 * 0.153 0.092 0.176 * 0.624 ** 1 - - 2.0
Tm 0.340 ** −0.183 * −0.171* 0.373 ** 0.811 ** 0.769 ** 0.049 −0.032 0.245 ** 0.292 ** 1 - 6.7
Te 0.351 ** −0.288 ** −0.197* 0.321 ** 0.855 ** 0.830 ** 0.050 −0.036 0.243 ** 0.278 ** 0.910 ** 1 8.6

* p < 0.10, ** p < 0.05.
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3.3.2. Model Fitness Test

The fitness of each of the three models is presented in Table 7. The GWR model showed
better performance than the OLS model and the RF model in explaining the correlation
between forest loss and its impact factors. The R2 of the GWR model was 0.69, which was
1.4-fold higher than the OLS model and equivalent to the RF model. The RMSE of the GWR
model was 1.17, which was 0.37 lower than the OLS model but equivalent to the RF model.
The MAE of the GWR model was 0.85, which was 0.2 and 0.03 lower than that of the OLS
and RF models, respectively. The AICc of the GWR was lower than that of the OLS model
by approximately 48. The GWR model was similar to the RF model with respect to R2 and
RMSE; however, a lower MAE meant that the GWR model most accurately explained the
relationship between the variables and forest loss (Table 7).

Table 7. Model fitness test of the statistical models and machine-learning model.

Model R2 RMSE MAE AICc

OLS 0.48 1.54 1.05 591.4
GWR 0.69 1.17 0.85 543.9

RF 0.69 1.17 0.88 -

Our results suggest that the GWR model is more suitable than the OLS model, and
unlike the OLS model, it is possible to emphasize the relationship between forest loss
and impact factors by deriving results according to geographical location and regional
characteristics [100,101]. In addition, as with the OLS model, the RF model analyzes the
relationship between forest loss and impact factors across the entire range of research
areas, so it is limited to analyze the effects of regional characteristics [36]. The GWR
model is considered to be the best explanation for the relationship between forest loss and
impact factors.

Table 8 shows the influence of the OLS, GWR, and RF models. The influence and
importance of the models reflect the quantitative degree of the effect of independent
variables on forest loss in each model. In the OLS model, the variables with the highest
influence (≥0.01) on forest loss were the number of households, number of tertiary industry
establishments, grassland area, and road density, whereas the variables with the lowest
influence (<0.001) were the number of secondary industry establishments, number of
primary industry establishments, number of secondary industry employees, and number
of tertiary industry employees. In the GWR model, the variables with the highest influence
(≥0.01) on forest loss were road density, number of households, cropland area, and number
of tertiary industry establishments, whereas the variables with the lowest influence (<0.001)
were grassland area, number of primary industry employees, and number of tertiary
industry employees. In the RF model, the variables with the highest influence (≥0.01)
on forest loss were road density, number of households, and number of tertiary industry
establishments, whereas the variables with the lowest influence (<0.03) were cropland
area, grassland area, number of primary industry employees, and number of secondary
industry employees. Therefore, three variables (road density, number of households, and
number of tertiary industry establishments) were the most influential variables across the
three models.
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Table 8. The influence of each variable on forest loss in the statistical (OLS and GWR) and machine-
learning (RF) models. See Table 3 for variable abbreviations.

OLS Model GWR Model RF Model

Rd 0.016 0.0400 0.278
Ca 0.009 0.0245 0.012
Ga 0.019 0.0009 0.025
Sa 0.008 −0.0013 0.057
Nh 0.033 0.0253 0.258
Pm −0.000 −0.0002 0.020
Pe −0.000 −0.0009 0.039
Sm 0.000 0.0056 0.022
Se −0.001 −0.0042 0.046
Tm 0.000 0.0008 0.097
Te 0.023 0.0167 0.141

3.3.3. Assessment of Factors Impacting Forest Loss Areas in Each Spatial Region

Since the OLS model and the RF model are global models that cannot deal with spatial
heterogeneity, the GWR model was used to determine the influence of factors on forest loss
in each spatial region [36,90]. Figure 7 shows the results of the GWR model for each spatial
area. The factors that affect the forest loss by each spatial region through the GWR model
show the following characteristics.

      

(a) (b) (c) 

Figure 7. Cont.
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(d) (e) (f) 

      

(g) (h) (i) 

    

 

(j) (k)  

Figure 7. Distribution map of regression coefficients for the forest loss impact factors in the GWR model: (a) road density, (b) cropland
area, (c) grassland area, (d) settlement area, (e) number of households, (f) primary industry number of employees, (g) primary industry
establishment, (h) secondary industry number of employees, (i) secondary industry establishment, (j) tertiary industry number of
employees, and (k) tertiary industry establishment.
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Road density showed a major influence on forest loss in the Seoul–Incheon–Gyeonggi
region, but on the contrary, a low influence in the Gwangju–Jeonnam region. The rate
of increase in road density and mean rate of forest loss during 2005–2015 in the Seoul–
Incheon–Gyeonggi region were 54.1% and 3.2%, respectively, both of which were the
highest across the nation. The higher rate of forest loss in this region compared with
other spatial regions may be attributed to the high road density in Seoul-si, Incheon-si,
and Gyeonggi-do, which are categorized as the capital regions of South Korea within the
Seoul–Incheon—yeonggi region, which accounted for 60% of the top 22 spatial areas with
reported high road densities in 2010 [102]. The cropland area was the main cause of forest
loss in the Seoul–Incheon–Gyeonggi region, but not the main cause of forest loss in the
Gwangju–Jeonnam and Jeonbuk regions. The grassland area was closely related to forest
loss in Gwangju–Jeonnam and Jeonbuk regions, but the relationship between forest loss
and the grassland area was weak in the Seoul–Incheon–Gyeonggi and Gangwon regions.
The settlement area showed a high influence on forest loss in the Busan–Ulsan–Gyeongnam
region, but it showed a low influence in the Daejeon–Chungnam region. The number of
households was the main factor of forest loss compared to other regions in the Daejeon–
Chungnam region, whereas the number of households in the Busan–Ulsan–Gyeongnam
region was not enough to factor for forest loss. Of all the metropolitan cities and provinces,
Daejeon-si and Chungcheongnam-do, which belong to the Daejeon–Chungnam region,
had the highest rate of increase in the number of households during 2000–2010, followed
by Gyeonggi-do. This is presumed to be the reason for the high rate of forest loss in the
Daejeon–Chungnam region [103].

Regarding the number of industry employees and establishments, the number of
primary industry employees had a high positive effect on forest loss in the Gwangju–
Jeonnam region but a negative effect in certain spatial areas in the Daejeon–Chungnam
region. The number of primary industry establishments did not have much effect on the
forest loss in the Gwangju–Jeonnam region. The number of secondary industry employees
was the main cause of forest loss in the Daejeon–Chungnam region, but not in Gwangju–
Jeonnam region. In the Chungcheongnam-do area of the Daejeon–Chungnam region, the
manufacturing industry contributed to 46.9% of the gross domestic regional production in
2006, which was higher than the national average (28.2%) [104]. Therefore, it is presumed
that the increase in secondary industry employees had an impact on forest loss. The
number of secondary industry establishments showed a high influence on forest loss in
certain spatial areas of the Gwangju–Jeonnam region, but a low influence in the Daejeon–
Chungnam region. The number of tertiary industry employees was analyzed as the
main factor causing forest loss in the Daegu–Gyeongbuk region, but the influence was
relatively insufficient in the Gwangju–Jeonnam region. The number of tertiary industry
establishments had a high influence on forest loss in the Gwangju–Jeonnam region, but
a low influence in the Daejeon–Chungnam area. Mo and Lee [105] reported that in 2015,
Gwangju-si in the Gwangju–Jeonnam region specialized in tertiary industries, with a
high number of wholesale, retail, accommodation, food service, banking, insurance, real
estate, and lease service establishments, among other tertiary industries. This is thought
to have resulted in the high positive effect of tertiary industry establishments in the
Gwangju–Jeonnam region. The effects of variables on forest loss differed among the spatial
regions. For example, in the Seoul–Incheon–Gyeonggi region, in which there was a higher
rate of forest loss, road density and number of households had a strong effect on forest
loss. Conversely, in the Daejeon–Chungnam region, the number of secondary industry
employees had a strong effect on forest loss (Figure 7).

The effect of these factors on forest loss is due to urbanization [106,107]. Urbanization
causes forest loss by generating high demand for residential facilities and infrastructure
facilities in neighboring areas, especially in the development area, as the population
and the number of households increase beyond simple regional development [108,109].
This is consistent with the results of Chen et al. that forest loss occurred due to urban
development including the increase of roads and residential areas [110]. Urbanization and
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development are likely to continue in the future, so it is necessary to prepare measures
to maintain the balance of forest conservation and forest loss between urbanization and
regional development.

On the other hand, the causes of forest loss are different according to the region, as
in our research [98]. In developing countries, rapid agricultural expansion and excessive
use of forest resources are the main causes of forest loss, resulting in forest loss due to
food demand problems and agricultural investment [111,112]. For example, in Malawi,
the expansion of agricultural land such as corn farm expansion, tobacco cultivation, and
brick production is one of the main causes of forest loss [113]. Myanmar’s expansion
of agricultural land following rapid agricultural investment and expansion of the city is
among the main causes of forest loss. Then, the factors for forest loss differ according to
the region [69,114]. In addition, in countries such as Bhutan, Laos, Nepal, Sri Lanka, and
Vietnam, topographical conditions (altitude, slope) and biophysical requirements such
as temperature and precipitation were also among the main factors in the loss of forest
area [115]. In the United States, factories, houses, and roads have had a great impact
on forest loss, which is also the difference in accessibility, lifestyle, and institution [116].
As the relationship between forest loss and impact factors differs by country and region,
studies are being conducted on various regions. Mwangi et al. analyzed the relationship
between forest loss and impact factors on randomly selected sites using land coverage
maps in the Central Region and analyzed that topographic factors (altitude, slope), distance
from roads and distance from rivers are the main causes of forest loss [117]. This study
analyzed the influence of topographic factors and forest loss, unlike our research, which
showed that the closer the distance from the road and the closer the river, the easier the
transportation, resulting in forest loss. Santos et al. [118] analyzed the relationship between
forest loss and impact factors in the Amazon region of Brazil and confirmed that the
rapid expansion of roads, ranches, and agricultural products affected the loss of forest.
This means that the increase in roads increases accessibility, which is believed to have
promoted the change of forest into cropland and pasture [9,118]. In addition, Mas and
Cuevas analyzed the forest loss status based on the municipality, and then analyzed the
effect on forest loss using the GWR model, and confirmed that the same factors could have
different effects depending on the region. On the other hand, the forest loss and its impact
factors were also conducted through preceding research. Geist and Lambin analyzed the
causes of forest loss by dividing them into proximate causes and underlying driving forces
through preceding research review and analyzed that the impact of the forest loss was
on agricultural expansion, the use of timber and infrastructure expansion, economic and
commercialization, and institutional and demographic factors [23]. In addition, Armenteras
et al. [119] analyzed the previous studies conducted on Latin American countries to analyze
the factors affecting forest loss and its impacts and confirmed that access to markets and
agricultural and forest activities had a major impact on forest loss. As the factors of forest
loss and its impact differ by region, studies are being conducted on various continents
and regions. Forests are decreased by the above-mentioned factors, and this is affected
by regional socioeconomic factors, institutional factors, and topographic factors, so they
should be analyzed considering these factors. Therefore, causes of forest loss are different
in each region, which is judged to be due to the differences in socioeconomic, biophysical
characteristics, policies, and institutions of each region [19,22,100,120].

3.4. Limitations of the Study

Meanwhile, this study has certain limitations. First, we analyzed forest loss and factors
at the administrative district level. However, spatial analyses using grids or micropolygon
units can provide more details regarding the effects of factors on forests [121,122]. Another
limitation was the selection of factors influencing forest loss. We did not include several
variables that have recently been found to affect forest loss in South Korea, such as altitude,
slope, and photovoltaic solar plants [123,124]. The lower the altitude and slope, the easier
the accessibility, so the agricultural forest clearing is advantageous, and the forest loss
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appears. However, the altitude and slope were not used in this study because securing the
time-series data was limited compared to other forest loss factors [123]. In the case of the
photovoltaic solar plants, according to Mori and Tabata [125], there are benefits such as
mitigation of climate change and economic benefits, but it can cause biodiversity due to
forest loss, loss of carbon sinks, and risk of landslides. However, this study did not utilize it
due to the limitation of securing time-series data. Therefore, future studies need to discuss
the effects of geographical factors (high altitude, slope), photovoltaic solar plants, etc., on
forest loss and the problems that can be caused.

Therefore, considerable efforts are required to more clearly predict factors affecting
forest loss by including suitable factors in each spatial area. Results of this study may
contribute to the development of policies for reducing forest loss and provide valuable
data on the correlation between forest loss and the factors impacting this process. Further
studies are needed to address the limitations of this study to enhance the applicability of
the results.

4. Conclusions

We analyzed the spatial distribution of forest loss in Korea and the factors affecting
forest loss. The results of this study showed that forest loss occurred in large quantities
mainly in the Seoul–Incheon–Gyeonggi region and was 1.8 times higher than the average
forest loss in South Korea. As a result of Moran’s I analysis, HH clusters occurred mainly
in the Seoul–Incheon–Gyeonggi region, which shows that forest loss occurred mainly in
the Seoul–Incheon–Gyeonggi region. The forest loss and its impact factors were analyzed
using OLS, GWR, and RF models. The GWR model had a 1.4-fold higher R2 than the
OLS model, and the AICc was about 48 less. In addition, the MAE was lower than the
RF model, showing the highest model suitability. This means that the GWR model can
perform a better regional approach to forest loss and its impact compared to the OLS model
and the RF model, and it suggests that the GWR model is easy to analyze according to
regional differences. The most frequent forest loss in the Seoul–Incheon–Gyeonggi region
was found to have a strong impact on road density and number of households. This is
due to the progress of road construction and infrastructure installation as urbanization
progresses mainly in the Seoul–Incheon–Gyeonggi region between 2005 and 2015. In
particular, according to Liu et al. [126], infrastructure construction and economic growth
are the main causes of forest loss, and forest loss appears to have occurred as developments
have progressed around the region.

On the other hand, since forest loss varies according to regional characteristics, re-
search needs to be conducted based on background knowledge of the region [101]. There-
fore, the analysis of factors affecting forest loss should be carried out in consideration of
the situation of each country and region as in the previous studies, and both biophysical
and socioeconomic factors should be considered as much as possible. The GWR model
is useful for quantitative analysis of forest loss factors by region, and it is expected to be
useful for policy design and evaluation of forest loss by using it together with qualitative
analysis. In addition, if we analyze the changes in the forest loss and its impact factors,
which were mentioned earlier, it will be useful data for policy setting. Therefore, in future
studies, it is necessary to analyze the changes and causes of forest loss over time using the
local Moran’s I, time-series and hotspot analysis, and GWR model. Clearing the factors
affecting forest loss will be useful for establishing forest management plans and improving
forest protection systems.
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Abstract: Climate-smart forestry is a sustainable forest management approach for increasing positive
climate impacts on society. As climate-smart forestry is focusing on more sustainable solutions that
are resource-efficient and circular, digitalization plays an important role in its implementation. The
article aimed to validate an automatic workflow of processing 3D pointclouds to produce digital
twins for every tree on large 1-ha sample plots using a GeoSLAM mobile LiDAR scanner and VirtSilv
AI platform. Specific objectives were to test the efficiency of segmentation technique developed in the
platform for individual trees from an initial cloud of 3D points observed in the field and to quantify
the efficiency of digital twinning by comparing the automatically generated results of (DBH, H, and
Volume) with traditional measurements. A number of 1399 trees were scanned with LiDAR to create
digital twins and, for validation, were measured with traditional tools such as forest tape and vertex.
The segmentation algorithm developed in the platform to extract individual 3D trees recorded an
accuracy varying between 95 and 98%. This result was higher in accuracy than reported by other
solutions. When compared to traditional measurements the bias for diameter at breast height (DBH)
and height was not significant. Digital twinning offers a blockchain solution for digitalization, and
AI platforms are able to provide technological advantage in preserving and restoring biodiversity
with sustainable forest management.

Keywords: digital twinning; climate smart; LiDAR; artificial intelligence; digitalization

1. Introduction

Technology-based on digital twins extends well beyond the initial design to the
merging of the world of IoT (Internet of Things), AI (artificial intelligence), and big data
analytics [1]. Digitally replicating the real world, as more data becomes available, empow-
ers data scientists and other IT specialists to optimize deployments for peak efficiency, as
well as create other potential what-if scenarios [2]. Buildings, factories, and even entire
cities are now digitally represented as digital twins [3]. Some have suggested even people,
processes, and organizations have digital twins, expanding the concept of digital twins
even further [4].

Known as the part of world who harbors the highest biodiversity, forests are one of
the most complex systems from a structural and functional point of view. In addition to
their role as recreational resources, wood products, and material and energy providers,
forests and the forest sector are fundamental in reducing greenhouse gas emissions by
capturing carbon dioxide in tree biomass. [5]. Climate-smart forestry is a sustainable forest
management approach for increasing these positive climate impacts on society [6]. In
response to climate change, the approach intends to reduce greenhouse gas emissions,
adapt forest management to create resilient forests and focus on active forest management
with the goal of sustainability by increasing productivity while simultaneously offering
forest benefits [7,8]. With two big challenges ahead, a green and digital transition, digital
twinning in forestry is the next development step [9]. Digitalization plays a key role in
climate-smart forestry’s focus on sustainable, resource-efficiency, and circular solutions [10].
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In forests, we observe extensive vertical stratification, making them among the world’s
most complex ecosystems [11]. Forests containing conifers are the simplest as they consist of
a tree layer reaching about 30 m in height, a shrub layer that often is spotty, and a soil layer
covered with mosses and lichens [12]. Forests with deciduous foliage are more complex;
a rainforest canopy consists of at least three different layers, while deciduous trees have
a separate upper and lower layer [13]. Due to this complexity, accurate characterization
of forests using precise inventory remains one of the most challenging activities in the
digitalization of forestry [14,15].

Equipment and techniques have become more affordable and accessible in recent
years. With the development of technology to generate 3D scenes from measurements,
LIDAR has become more portable and more affordable [16]. This has enabled the building
of virtual worlds that reflect natural landscapes using precision measurements. Particularly,
terrestrial lidar systems collect large amounts of data varying from tens of thousands to
billions of 3D points to determine the 3D space surrounding a given point in 3D [17].

In forest inventories, a TLS (terrestrial lidars scanner) can document forests rapidly,
automatically, and provide inch-by-inch details in minutes. Early work related to forest
inventory estimation via TLS started with the development of Cyra Technologies’ TLS
system around 2000; and it was later acquired by Leica in 2001 [18–21]. Forest inventories
used TLS as a way to improve harvest efficiency by replacing manual measurements with
measurements derived from TLS data in the forest plots [22]. As a result, TLS has been
used in collecting basic attributes such as DBH (diameter at breast height), tree height,
and tree position in forest sample plots [23,24]. A scientifically confirmed fact is that the
measuring diameter and height of a tree are affected by an error of at least 5.6% and the
measurement bias of DBH and H affects estimation up to 26.4% [25–27]. Therefore, using
classical methods for estimating volume and biomass are not suitable for modern needs in
the context of a circular economy.

Virtual tree measurements are achieved today by using software applications and
allometric approaches [28–33]. However, the quality of results and maturity of these
algorithms are still low [34,35]. Furthermore, there is no digitalization workflow on the
market that would be able to provide a complete set of solutions to the problem, from the
measurements in the forest to creating digital twins of each tree [36]. There are several
challenges in the field of measuring trees in the real world, and multiple scans are needed
from a variety of angles to capture all trees in the area of interest in their full height if
possible [37,38]. Another aspect is the problem of segmentation of individual trees and
the delimitation of the soil surface [35,39]. These are crucial for the entire process of forest
digital twinning, and current solutions often fail due to certain oblique orientations of
the trunks, the presence of shrubs in the soil, and other obstructions present in various
cases [40,41]. With regards to biometric data extraction, most known methods use overly
simplified models that aspire to approximate trunk geometry through cylinders or cones
and excessively complex models that try to model the observational data with as much
precision as possible [36,40].

Among other software that provide partial or total solution to digital twinning (e.g.,
3D Forest, OPALS, TreeQSM), VirtSilv is a newly developed platform that responds to the
realities of the forest and provides industry-specific services in all segments [42]. VirtSilv is
an online platform that uses AI customizable algorithms to produce unique shapes of trees
as digital support for a fully automated traceability IT circuit between forest management,
transport, and the wood industry.

In the current context of software development there is a need to validate an entire
workflow starting with data collection and finishing with providing digital twins usable
in forestry, easily accessible to decision makers. The article aims to validate an automatic
workflow of processing 3D pointclouds to produce digital twins for every tree in a specific
forest using GeoSLAM mobile LiDAR scanner and VirtSilv AI platform. The specific goals
were: (1) to test the efficiency of segmentation technique developed in the platform for
individual trees from an initial cloud of 3D points observed in the field; and (2) to quantify
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the efficiency of digital twinning by comparing the automatically generated results of
(DBH, H and volume) with traditional measurements.

2. Materials and Methods

2.1. Study Area

Several measurement campaigns were carried out, using both a mobile LIDAR device
and traditional forest inventory tools (forestry tape for DBH—diameter at breast height
and vertex logger IV for tree height), focusing on three plots of 1 ha size in Carpathian
Mountains, Ciucas Massif (Figure 1). For this part of the Carpathians, according to the
WorldClim global database on weather and climate data [43], elevations range between
800 and 2400 m a.s.l. and the climate is temperate-continental, with wet summers and cold
winters. The same source mentions for this area mean annual precipitation from 615.4 mm
to 1095 mm (overall annual mean 793.4 mm; standard deviation 84.7) and mean annual
temperature between 1.2 and 9.2 ◦C.

Figure 1. Location of the study.

The 1-ha size plots were selected based on the tree density, geo-spatial distribution,
focusing on the forests of economic interest planned for thinnings and selective logging.

2.2. Data

The plots were scanned using ZEB Horizon, a scanner based on LiDAR technology,
and included in the category of terrestrial laser scanners (TLS). This is a 3D scanner of high-
speed used for measurements that require recording of details. A ZEB Horizon Scanner
uses laser technology, weighing 1.3 kg it is designed for outdoor applications that require
scanning up to 100 m and at an accuracy of 1–3 cm. The scanner uses a rotating mirror to
beam around the area that is scanned. The measurement characteristics consist of up to
300,000 repetitions per second. Data acquired using GEOSLAM Horizon technology is a
point cloud in the form of three-dimensional data compiled using SLAM (simultaneous
localization and mapping). The scanning time suitable to produce dense pointclouds was
on an average of approximately 20 min/hectare for each plot.
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Data collection was carried out in mixed forests, predominated by spruce and beech.
This results in a point cloud made representing the scanner’s environment in a three-
dimensional dataset (Figure 2). Later, the point cloud is mentioned as the laser scan (or
simply scan).

Figure 2. Methodology workflow.

The traditional inventory was made by two teams consisting of two forest engineers.
The average processing time per team was on average of 8 h/hectare.

2.3. Tree Segmentation

The raw data generated during the scanning process enables the visual identification
of individual tree structures, but they are not yet quantitatively differentiated. To create
individual raw material for digital twin, VirtSilv first separates the ground from the trees,
and then it reconstructs each tree separately (Figure 2). The algorithm takes three steps
to estimate each tree’s footprint simultaneously. The algorithm begins at a large nucleus
of points with high density and then grows by accretion until it meets neighboring trees.
As a result, the operator is given many options to customize the algorithm and is given
the option to change data sets according to their needs. The average processing time of
segmentation was 30 min for a 1-ha plot.

2.4. Digital Twinning Process

When all of the individual tree segments are identified, the remaining task is to
recognize tree trunks and model their numerical dimensions on a simple and flexible basis,
thereby giving the potential for the digital twinning process. To overcome the limitations
of current techniques, VirtSilv algorithms are designed around the following principles:

• The trunk shape of segments of sufficiently small height can be approximated very
well by inclined cone trunks;

• The vertical projection of the data obtained from segments of sufficiently small height
can be approximated by a ring of points with relatively high density;

• Generally, the successive segments in the vertical array are very well aligned, in the
sense that the angle and bending of each segment, concerning that vertical changes
are low.

Thus, the VirtSilv algorithm is focused on extracting chains of cone trunks as a numer-
ical model for trunks. The average time of producing the 3D model of a tree digital twin is
less than one minute.
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2.5. Validation, Accuracy Assessment, Robustness Check

For validation, a Bland–Altman test was used. These plots are extensively used to
evaluate the agreement among two different instruments or two measurement techniques.
Bland–Altman plots allow identification of any systematic difference between the measure-
ments (i.e., fixed bias) or possible outliers. This can be carried out by Bland and Altman’s
approximate method or by more precise methods [44,45].

For detecting heteroskedasticity the Breusch-Pagan test was used. It involved using a
variance function and using a χ2-squared test: the test statistic is distributed nχ2 with k degrees
of freedom. If the test statistic has a p-value below an appropriate threshold (e.g., p < 0.05)
then the null hypothesis of homoskedasticity is rejected and heteroskedasticity assumed.

The boundaries of Bland and Altman’s agreement have traditionally been used to eval-
uate the agreement between different methods of measuring discrete variables. However,
when the variances of the measurement errors of different methods are similar, Bland and
Altman’s plot can be misleading. Therefore, it was used the R package “MethodCompare”
to generate a bias plot and a precision plot based [46].

3. Results

After the traditional inventory was realized, a total number of 1369 trees were sampled
in the three forest plots (Figure 3). Plot 442 had the highest tree density of 739 per hectare,
average DBH of 32.54 cm, average height 29.8, average tree volume 1.25 m3, and a total
volume of 923.06 m3/ha. Plot 051A had a tree density of 373 per hectare, average DBH
of 52.14 cm, average height 36.4, average tree volume 3.65 m3, and a total volume of
1363.35 m3/ha. Plot 050A had the lowest tree density of 258 per hectare, average DBH
of 56.13 cm, average height 38.9, average tree volume 4.32 m3, and a total volume of
1112.57 m3/ha.

VirtSilv automatically segmented 1339 with an overall accuracy of segmentation of
97.8% (Figure 3). In plot 442 the accuracy of segmentation was 99.1%, in plot 051A was
95.2%, and 98.1% in plot 050A.

Out of 30 trees which were unsegmented/missed by the segmentation algorithm of
VirtSilv, the distribution per species was represented by Spruce 37%, Beech 37%, Sycamore
17%, and Fir 10%. Overall, an approximate balance between coniferous and deciduous was
maintained. In the case of beech trees, the average DBH was 16.6 lower than the average
27.6. For spruce, the DBH was 42.4, closer to the average 40.9 especially due to the sample
size, as spruce is the most represented in all three plots.

As a result of the digital twinning process, VirtSilv reconstructed 1339 trees, a pop-
ulation of data described by average DBH and H almost similar to the ones recorded
in traditional measurements (Table 1). Regarding the volume, the average values were
slightly different mostly to the fact that the volume calculated with VirtSilv was based
on the unique 3D shape of each tree, unlike the traditional volume which was calculated
using the specific equation based on species, DBH, and height. In terms of all descriptive
statistics, both traditional (DBH_t, H_t, Vol_t) and virtual measurements (DBH_v, H_v,
Vol_v) presented similar results (Table 1).

Statistical populations differ in the way they are measured based on different tech-
niques used when measuring either traditional or virtual. As for DBH and H characteristics,
both the traditional and virtual measurements are applying the same mathematical ap-
proach. This similar approach is seen in the standard error, median, mode, standard
deviation, and curve distribution characteristics, as they are close to each other on both
traditional and virtual measurements (Table 1). In the case of volumes, the characteristics
of the populations are slightly different as the mathematical approach is different between
traditional and virtual measurements. The traditional approach did not involve measuring
the volume of the trees, as the formula for calculating the volume derives from trees’
species, DBH, and height. These different approach changes are observed in the different
range values, with a difference of 10%, or in a very high (75%) difference between the
minimum values of volume populations (Table 1).
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Figure 3. Results of segmentation for three plots, maps produced based on traditional measurements
(left column), and 3D maps with digital twins produced with VirtSilv AI platform (right column).

Table 1. Results for parameters extracted (DBH, height, volume).

DBH_t DBH_v H_t H_v Vol_t Vol_v

Mean 42.57 43.24 33.50 33.66 2.50 2.76
Standard Error 0.43 0.39 0.19 0.18 0.05 0.06

Median 39.40 40.60 33.80 33.79 1.78 2.04
Mode 34.80 33.00 30.80 28.02 0.65 1.44

Standard Deviation 15.65 14.10 6.87 6.41 2.00 2.14
Sample Variance 244.82 198.83 47.24 41.11 4.00 4.56

Kurtosis −0.21 0.08 2.01 2.79 1.84 1.43
Skewness 0.58 0.67 −1.00 −0.97 1.33 1.31

Range 94.30 79.80 42.30 42.86 13.25 11.95
Minimum 10.00 13.30 5.00 5.82 0.02 0.08
Maximum 104.30 93.10 47.30 48.68 13.27 12.03

Sum 57,005.30 57,901.20 44,849.93 45,072.73 3353.35 3696.87
Count 1339.00 1339.00 1339.00 1339.00 1339.00 1339.00

Confidence Level (95.0%) 0.84 0.76 0.37 0.34 0.11 0.11

According to the Breusch-Pagan test used on all measurements (DBH, H, and volume),
heteroskedasticity is not present. The variance function and the χ2-test were used to test
the null hypothesis that heteroskedasticity is not present, and they show that the variability
of the random disturbance is not different across elements of the vector (Table A1).
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The Pearson correlation coefficient used to examine the strength and direction of
the linear relationship between classical and virtual measurement continuous variables
indicates values over 0.9 (very close to the absolute value of 1), which indicates a perfect
linear relationship. The relationship with the highest correlation coefficient was identified
at DBH measurements of 0.96 and the lowest was identified at height measurements of 0.9
(Figure 4).

Figure 4. Correlations between classical measurements and virtual measurements.

The lower R value in height measurements is given by an overestimation in the virtual
environment at dominated trees, as in some cases additional branches from neighboring
trees interfered with the measurement process. In case of DBH, it can be observed that a
cluster of Fagus sylvatica trees with lower diameters than 25 were overestimated due to
high density of branches at 1.3 m on the stem (Figure 3).

The p-values for the correlation between classical and virtual measurements are less
than the significance level of 0.05, which indicates that the correlation coefficients are
significant (Figure 4).

Bland and Altman’s limits of agreement plot (LoA) described how far apart measure-
ments by two methods were more likely to be for most individuals. Inside LoA there
were calculated the mean difference, the estimated bias, and the standard deviations of

155



Forests 2021, 12, 1576

the differences to measure the random fluctuations around the mean. The mean value
of the difference does not differ significantly from 0 on all observed characteristics. The
differences within a mean of ± 1.96 SD appeared as not important, most of them remaining
in the 95% limits of agreement for each comparison, concluding that the two methods may
be used interchangeably and practically estimate the same results (Figure 5).

Figure 5. Bland and Altman plot for DBH, height, and volume.
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To visually appraise the performance of the new method in the spirit of Bland and
Altman’s limits of the agreement, the bias plot and the precision plot were generated. These
plots allow the visualization of the bias-corrected values (i.e., recalibrated values, variable
y1_corr) of the new measurement method (Figure 5).

In the case of DBH, compared to the reference method, the new method has a differ-
ential bias of 6.098 and a proportional bias of 0.873. The variance of the new method is
smaller than the one for the reference method. The scatter plot of the new method (virtual
measurements) and reference method (traditional measurements) versus the best linear
prediction (BLUP) with the two regression lines shows that the bias is decreasing with the
increase of the DBH. The red bias line shows an inverse proportional trend as the bias of
DBH is decreasing with the value from 4 cm in smaller diameters than 20 cm, to −4 cm
in larger diameters over 80 cm. This shows a limitation of the virtual measurements as
in younger trees the number of branches at 1.3 m is higher and affects the precision of
measurement. The precision plot of the new measurement method shows that the standard
deviation of measurement error is increasing with the increase of DBH (Figure 6).

Figure 6. Bias and precision plot.
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For height, compared to the reference method (traditional measurements), the new
method (virtual measurement) has a differential bias of 4.952 and a proportional bias of
0.857. The red bias line shows an inverse proportional trend as the bias of H is decreasing
with the value from 3 m in smaller heights than 15 m, to −1 m in higher trees over 40 m.
The standard deviation of measurement error trend shows that it is decreasing with the
increase of DBH (Figure 6).

For tree volume, compared with the traditional method, the virtual measurement has a
differential bias of 0.177 and a proportional bias of 1.033. The red line bias is showing that it
is increasing with the increase of volume and the standard deviation of measurement error
is increasing with the increase of tree volume. The increase of bias with volume is explained
by the different approach in calculating the volume, as for traditional measurements the
generalized formula is not taking into consideration local sites conditions and stand density
and mixture which in many cases leads to an underestimation of volume.

4. Discussion

The forestry sector is well-positioned to play a strong role in reaching the objectives of
the European Green Deal, including the EU Biodiversity Strategy 2030, the new EU Strat-
egy on Adaptation to Climate Change, and the upcoming new Forest Strategy (H1 2021).
Climate-smart forestry principles include maintaining and enhancing environmental bene-
fits, biodiversity, and ecosystem services, as well as specific actions for maintaining and
enhancing forest characteristics, biodiversity, and ecosystem services. Moreover, the EU’s
Digital Strategy (launched in 2020) plans on transforming Europe into a digital single mar-
ket by 2030. This strategy which covers the forestry sector should revolve around four key
pillars: government, skills, infrastructure, and businesses. About 75% of EU businesses are
expected to use cloud technology, artificial intelligence (AI), or big data by 2030, with more
than 90% of SMEs expected to have at least a basic level of digital intensity by 2030 [47].

With two big challenges ahead (i.e., a green and digital transition) digital twinning
and AI solutions in forestry are the next steps for more sustainable solutions that are
resource-efficient and circular. At the same time, digital twinning will contribute to the
European commitment to climate neutrality by 2050 [48]. Investing digital capabilities
(including machine learning, artificial intelligence, and blockchain) may contribute to
achieving EU Green Deals and digital transition objectives, including the forestry sector.
Many global forestry operators and enterprises have already pioneered the progressive use
of advanced technologies to enhance forest management results, particularly in plantation
forestry, an approach that has become known as “precision forestry”. However, it has
not yet become an established part of business-as-usual sustainable forest management
practices, especially due to the lack of key components such as mobile scanners and
complete solutions for analysis.

In this context, the present paper validates a workflow in supporting the digitalization
process of the forestry sector to better inform and enhance the implementation of climate-
smart forestry sustainable management practices. Currently, it has been demonstrated that
digital twinning in forestry can be carried out on large areas using terrestrial perspective,
producing accurate and complete digital twins for each tree [49]. Despite the capacity
of ALS (airborne lidar scanning) to cover large areas, TLS remains the complete solution
for complex forests with multiple stories [17,29]. The terrestrial perspective is giving the
optimal results in producing the complete 3D pointclouds of trees since the understory eye-
of-sight is increasing the visibility of the scanned objects such as trunks and lower branches.

In this paper it was demonstrated that for digital twinning in forestry the entire
workflow needs to take into consideration both the field measurements as they are the
most important part of digital twinning. The efficiency of the segmentation technique
developed in the VirtSilv platform for individual trees from an initial cloud of 3D points
observed in the field proved to be very high. The capacity of VirtSilv AI algorithms to be
customized into a user-friendly interface improved the results of segmentation. Therefore,
the AI algorithms integrated into the system successfully identified unique tree shapes from
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complex forest environments such as natural mixed beech, spruce, and fir forest. Moreover,
the quality of the digital twins in terms of comparing the traditional tree inventory values
(DBH, height, volume) was very high and accurate. VirtSilv AI platform proved to be
a reliable solution in setting up an automatic workflow of processing 3D pointclouds to
produce digital twins for every tree in a specific large area forest. When combined with a
fast mobile LIDAR scanner such as Zeb Horizon, the digital twinning process was reduced
to several hours. This method, compared with traditional inventory, reduced the processing
and analysis time by approximately four-fold.

For the segmentation technique developed in the platform to extract individual trees
using 3D points observed in the field, an accuracy varying between 95 and 98% was
recorded. This result was higher in accuracy than reported by other solutions such as 3D
Forest (85%–89.9%) [50].

The 1339 digital twins produced by the platform were similar in terms of DBH, H, and
volume derived from traditional measurements. Even though it has had a non-significant
influence on the results, the bias of DBH and H was decreasing with the increase of the
values. It was found that both the scanning device and segmentation procedure had
some limitations. It has been documented in other papers that the higher bias on lower
values in DBH is mainly due to the noise in the pointcloud generated by the mobile
scanner [41,49,51,52]. This bias is explained by noise effects especially on lower DBH. In
the case of height, the bias is explained mostly by the segmentation technique which is
influenced by the quality of the pointclouds. At lower heights, the digital twin can be
contaminated with points from a neighboring taller tree, and this explains the descending
trend of the bias with the increase of the tree height.

The upper canopy (branches and leaves) obscures some of the visible parts of the trunk,
resulting in incomplete records. This is a common problem caused by the lack of vertical
visibility. In terms of forest management, the upper part of the trunk does not usually have
an industrial value, this being too thin in diameter. Still, this limitation remains an issue
when managing other forest ecosystem services which rely on finer information. This study
demonstrated that the visibility problem can be solved with a mobile laser and leaf-off
scanning season, which is effective even in mixed coniferous-deciduous stands (as revealed
in other studies as well) [49,53].

The European Union policy framework on forests aims to preserve and restore biodi-
versity with sustainable forest management. The sustainability principles will cover the
entire forest cycle, seeking further knowledge on the optimum integration of all forest ser-
vices. Digital twinning offers a strong informational background to achieve this principle,
extending the knowledge on forests to decision makers and managers, and AI platforms
will be the digital backbone for implementing this strategy.

5. Conclusions

The future of digitalization relies on the high capacity and adaptability of mobile
scanners to produce complete and accurate pointclouds over large areas of forests and the
speed and accuracy of A.I. platforms to translate the raw data into products for decision-
makers. The workflow based on this technology is now validated using GeoSLAM scanner
and VirtSilv platform to produce results comparable with methodologies which were
previously only for research due to their difficulty and high production costs. This new
approach brings the forest sector one step closer to the big data needed for climate-smart
sustainable forest management.
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Appendix A

Table A1. Breusch-Pagan test.

Variable Breusch-Pagan Test

DBH

Residuals:
Min 1Q Median 3Q Max

−22.87 −12.82 −10.46 −6.96 1535.81
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.1133 5.9225 0.357 0.7213

dbh_v 0.2751 0.1302 2.112 0.0348 *
Residual standard error: 67.16 on 1337 degrees of freedom

Multiple R-squared: 0.003326, Adjusted R-squared: 0.002581
F-statistic: 4.462 on 1 and 1337 DF, p-value: 0.03484

Height

Residuals:
Min 1Q Median 3Q Max

−35.73 −9.78 −3.73 3.11 783.40
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 51.7973 5.9211 8.748 < 2 × 10−16 ***

h_v −1.3065 0.1728 −7.561 7.41 × 10−14 ***
Residual standard error: 40.53 on 1337 degrees of freedom

Multiple R-squared: 0.041, Adjusted R-squared: 0.04029
F-statistic: 57.16 on 1 and 1337 DF, p-value: 7.412 × 10−14

Volume

Residuals:
Min 1Q Median 3Q Max

−1.766 −0.382 −0.219 −0.093 54.220
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) −0.05168 0.10338 −0.500 0.617
vol_v 0.17775 0.02962 6.002 2.51 × 10−9 ***

Residual standard error: 2.315 on 1337 degrees of freedom
Multiple R-squared: 0.02624, Adjusted R-squared: 0.02551
F-statistic: 36.02 on 1 and 1337 DF, p-value: 2.509 × 10−9

* p < 0.1, *** p < 0.01.
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Abstract: Forest roads are an important element in forest management as they provide infrastructure
for different forest stakeholder groups. Over time, a variety of road assessment concepts for better
planning were initiated. The monitoring of the surface cross-section profile of forest roads particularly
offers the possibility to take early action in restoring a road segment and avoiding higher future
costs. One vehicle-based monitoring system that relies on ultrasound sensors addresses this topic.
With advantages in its dirt influence tolerance and high temporal resolution, but shortcomings in
horizontal and vertical measuring accuracy, the system was tested against high resolution terrestrial
laser scanner (TLS) data to find and assess working scenarios that fit the low- resolution measuring
principle. In a related field test, we found low correct road geometry interpretation rates of 54.3% but
rising to 91.2% under distinctive geometric properties. The further applied line- and segment-based
method used to transform the TLS data to fit the road scanner measuring method allows the transfer
of the road scanner evaluation principle to point-cloud or raster data of different origins.

Keywords: ultrasound sensors; road scanner; terrestrial laser scanning; TLS; forest road maintenance;
forest road monitoring; crowned road surface

1. Introduction

Information about forest road condition has become increasingly important. Not only
basic road accessibility, but also an intensified use of forest roads by other forest stakeholder
groups [1] can thereby influence the need for maintenance intensity and frequency [2].
Questions, from basic usability and stability, up to the assessment of high- quality road
construction standards needed for, e.g., recreational aspects [3,4], can therefore be driving
factors for collecting additional information about a road condition status to be able to take
action within given financial constraints [2].

The therefore selected parameters describing the road condition vary with the quality
standards and maintenance concepts. Thus, destruction-free monitoring concepts can
include the road surface roughness in its different definitions and recording methods [3,5,6],
direct wear expressions of the road surface [7–9], or the road geometry in comparison
with a targeted road design. The road geometry, however, is an especially important part
of road quality assessment. Its design determines the drainage of the road surface and
is crucial for avoiding longitudinal water accumulation which can result in accelerated
erosion effects [4,10–12]. Thus, it helps to identify potential construction problems even
before severe damage in the form of wear expressions on a forest road surface appears.

One data source that is used to describe forest road geometries is originated from
airborne laser scanning. Caused by the given spatial resolution, the area of application is
found on larger-scale road geometries [13] or focuses on strong geometrical expressions
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such as the ditch as drainage system [7]. Higher potential and more possibilities in monitor-
ing the road geometries can be achieved by changing the recording distance, and therefore
the resolution of the data [14]. Specially equipped vehicles for road condition monitoring
which are mostly based on LiDAR systems already exist, but are mostly designed for sealed
road surfaces [15], creating data with low temporal resolution, as a separate, cost-intensive
measuring vehicle is required for data collection. To utilise the advantage of the close-range
recording with higher temporal resolution, alternative measuring principles have emerged
in the forest sector with the aim to close the gap between temporal and spatial resolution
to serve alternative monitoring concepts.

In this context, a different vehicle-based and low-cost road scanning concept, which
is applied as an ultrasound sensor-based setup, was developed [16,17]. The aim of this
system is to be used in the day-to-day business when mounted on the back of a forester’s
car to collect frequent information about the road condition status by describing the road
surface geometry in combination with its surface roughness. In comparison with other
near-range sensor setups suitable for forest use, most of which are based on LiDAR or
photogrammetric systems [3,9], this system alternatively operates with ultrasound distance
sensors to detect the cross-section profile of a forest road’s carriageway surface, and so
addresses annual maintenance concepts to detect and further restore a functional lateral
water drainage of the carriageway [18]. The lens-less ultrasound measurement principle
allows the user to continue measurements under muddy or dusty measuring conditions,
but again limits the resolution of the measurement. This drawback was already noted in
earlier tests conducted under laboratory conditions [19].

The present study focuses on the recording of the carriageway cross-section profiles
on forest roads, particularly of a single-laned design. In a field testing, vehicle-based data
from the ultrasound sensor setup of the road scanner are compared with high resolution
data collected with a terrestrial laser scanning (TLS) system, to find areas of application to
substitute high resolution data with low-cost and -quality data of high temporal resolution.
For the data comparison, the recording method of the road scanner was adopted to TLS
data to describe cross-sections within defined road segments in order to assess lateral water
flow over parallel lane sections. The specific objectives of the study were:

(a) to adopt the lane-based measuring principle of the ultrasound sensor-based road
scanner to high resolution LiDAR data, to assess the quality of the lower resolution
data of the road scanner, and to transfer the lane-based recording method to other
data sources; and

(b) to use data filtering to identify data application scenarios for using the road scanner
setup for forest road surface monitoring purposes.

2. Materials and Methods

For the study, a gravel road surface was recorded with two measurement principles:
the ultrasound-sensor-based, low resolution road scanner, installed at the back of a car and
measuring in movement, and the terrestrial laser scanner in a static measuring setup. To
accommodate the different data resolutions, the road was split into equally sized segments
in longitudinal direction to obtain comparable road segments for further evaluation. The
road characteristic per segment was then described through the height differences between
sensor position related lanes on the road surface that are used to describe an inclined or
crowned road surface profile. Subsequently, the algebraic sign of the lateral road inclination
was compared between the measurement principles to describe the direction of potential
water flow. The percentage of equal classification of both principles was then evaluated to
find a comparable road description setup.

The study was carried out in Switzerland on a gravel road (46◦59′27.6′′ N 7◦27′50.4′′ E),
separating two agricultural fields in an open area on flat terrain (∆zmax = 3.35 m for the
whole road), to focus on the surface recording principle and to rule out forest canopy
influences. The road had a total length of 440 m and a width of 2.2 m (outer edges of the
visible lanes). It was straight, but with one 90-degree-exceeding corner at two thirds of the

164



Forests 2021, 12, 1191

length (segments no. 29, 30). The cross-section profile did not follow a distinct crowned
profile, but was characterized by existing or emerging vegetation in the middle of the road,
combined with a beginning of rut expression. In the area of two local vertical drainage
installations (segments no. 19, 29), road surface erosion expressions started appearing.
There was no subsequent water drainage for lateral nor longitudinal direction.

The road was first measured with a TLS system followed by the low-resolution ultra-
sound sensors (US). With 5 US (MaxBotics Inc., Fort Mill, Brainerd, MN, USA: MaxSonar
MB7040) that are built into the road scanner [19,20], the vertical distance between the
scanner bar and the road surface was measured and the cross-section profile of the road
recorded. The sensor distance was equally set up with a 0.45 m spacing (Figure 1) and
the scanner was mounted in a height of 0.4 m on the car hitch for vertical measuring
towards the road surface. Four of the sensors used were the MB7040 XLI2C-MaxSonar-WR
type. At position 4, a MB7040 XLI2C-MaxSonar-WRC sensor equipped with a ceramic
cone head was mounted and expected to provide a more focused measuring cone of the
road surface. The sensors were triggered in a round-robin measurement principle and a
10 Hz trigger frequency of each sensor to minimize reflection interference between the
sensors. All sensors provided a resolution of 1 cm in vertical direction [20] where the
distance value is calculated by the sensor internally in a pre-processing step. Erratic values
above 0.65 m were excluded in advance of the data evaluation step, as these values relate
to technical errors and cannot be explained by specific, distance-related situations. With
a u-blox NEO-M8N GNSS sensor, the spatial reference was added simultaneously to the
measurements in a 1 Hz resolution, with location interpolation for in-between recordings.
For higher accuracy, an external active magnetic antenna was used, which was mounted
on the car roof. This setup reaches an accuracy of at least 1.5 m in driving direction, which
was verified by a shock-inducing control point for the built-in acceleration sensor, that was
placed on the test track. The road was then recorded in 14 overall passes (repetitions) at a
strived constant driving speed of 20 km h−1. In total, 13 passes contained valid GPS values
for the further spatial evaluation.

′ ″ ′ ″
∆

−

Figure 1. Ultrasonic sensor setup and dimensions of the mounted road scanner bar (cm), including
the spacing of the ultrasound sensors (red), with a central mounting point at sensor 3, in combination
with their maximal detection beam width (grey).

For reference measurements, the road was scanned with a TLS system FARO 3D X330
in a chained scanning setup of 21 scans, positioned on the carriageway in a scanning height
of 1.5 m and a varying scanning distance of around 25 m. For the point-cloud registration
and to improve the basic internal GPS referencing, the position of 13 scanning targets were
additionally calculated from theodolite measurements, referenced to an official geographic
survey point, located near the road entrance.

After the separate scans were combined to a single point cloud, road scanner related
sensor lanes were constructed following the known sensor spacings built up after one
manually defined sensor lane. After the lanes were located, subsets of the point cloud were
extracted as 0.05 m wide strips (Figure 2).
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Figure 2. Data processing and evaluation steps: (a) combination of terrestrial laser scanning (TLS, grey background area)
and road scanner measurements (orange); (b) reference sensor lane extraction (black) from the TLS data background (grey);
(c) longitudinal segmentation of both data sources with 2 m spacing; and (d) calculating the mean height difference (dz) to
represent the lateral water-flow between two sensor lanes, visualized between sensor 4 (S4) and sensor 5 (S5) of one segment.

Next, the recordings of both measurement types were similarly segmented into
44 sections of 8 m with a spacing of 2 m between the segments. The spacing was used to
minimize GPS inaccuracies that may influence adjacent sections and could not be excluded
with the open field setup. The minimum segment length of 8 m is limited by the number of
sample points that are collected by the road scanner and are expected to be counted within
one road segment. Despite the multiple repetition of the measurements of the road scanner,
the created input data are differently characterised by number of data points, referenced to
all 44 road segments (Table 1).

Table 1. Overview of the collected data, including the number of valid data points per sensor lane
within the defined segments.

TLS Measurements Road Scanner Measurements

Recording date 4 July 2019 5 July 2019

Number of scans 21 single scans 13 repetitions

Number of segments 44 44

Number of data points 769′537 (for extr. sensor lanes) 25′814

Sum of valid data points Sensor 1→ 174′711 Sensor 1→ 5′473

Sensor 2→ 145′448 Sensor 2→ 4′996

Sensor 3→ 137′993 Sensor 3→ 5′039

Sensor 4→ 140′674 Sensor 4→ 5′324

Sensor 5→ 170′711 Sensor 5→ 4′982

As the lateral geometrical expression of the road is the focus of the study, the relative
height differences in z direction (dz) between the mean sensor values of two sensors
each were compared (Figure 2). For each segment separately, the result could then be
interpreted as direction for a potential lateral waterflow between the related two sensor
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lanes with an information gap reflecting uncertainty in between the sensor lanes and the
data averaging for the segment length. For the evaluation, the algebraic sign of the dz
value from the different data sources was used. This characterises the inclination direction
with the minimum required resolution for water flow interpretation. When comparing the
different data sources, a “positive match” was noted in case of a match of the sign of the
relative heights. This means, for the US sensor data, respectively the TLS sensor lanes n,
k = 1,2,3,4,5:

(STLS (n) − STLS (k))·(SUS (n) − SUS (k)) > 0⇒ pos. match (1), with n < k, (1)

(STLS (n) − STLS (k))·(SUS (n) − SUS (k)) < 0⇒ no match (0), with n < k, (2)

with S(n) as relative mean z value per segment of the road surface of the first, and S(k) the
mean elevation of the second sensor (lane) considered.

As a last evaluation step, and to overcome low mean detection percentage, the intro-
duction of an evaluation threshold as data filter was further tested. For this, all sensor
combinations and segments were grouped for a combined dataset to separate thresholds
that influence the height difference recognition.

All statistical analyses were carried out with the statistic software R (R Development
Core Team 2020). To check the repetition accuracy of the recordings, the Dunnett’s Test was
used for multi-group comparison. Further, the effects of different scenarios that influence
the matching rate of the data were tested with the Wilcoxon Rank Sum Test, which suited
the testing preconditions.

3. Results

3.1. Data Quality and Mean Detection Rate

On average, 9.75 values (SD = 13.2, min = 1, max = 273, 1.22 points m−1) per segment,
repetition, and sensor were recorded with the road scanner. This point density equals
24.4 points m−2, upscaled from the sensor lane area and ignoring spaces between the
sensor lanes. For the TLS data, 3497.9 (SD = 3997.6, min = 45, max = 18549) values per
segment and sensor lane (8745 points m−2) were taken. The difference between the mean
values of the segments were characterized with a SD = 2.17 cm for the road scanner and
SD = 3.06 cm for the TLS data.

The repetition accuracy of the road scanner shows constant results. For all sensors, the
repetition measurements do not differ significantly (p < 0.05) regarding the mean values
per segment (Dunnett’s Test, with first recording as control data). In a confidence interval
with α = 0.1, sensor 4 with the ceramic cone shows significant differences in the repetition
in two cases. It has the lowest SD = 1.89 cm of vertical values compared to the other sensors
(total sensor SD = 2.06 cm).

The average recorded height differences between the sensors and recording types
for the entire road are shown in Figure 3 and Table 2. The crown profile (S1_3 and
S3_5) is expressed with, on average, 3.54 cm between these sensor lanes, which equals a
lateral inclination of 3.93% of the carriageway from the highest point in the middle to the
lowest point on the outer lane. The related ultrasound sensors recognized a lateral height
difference of 1.23 cm on average, with its highest peak on sensor 2 showing a different
picture (Figure 3). The TLS-derived mean profile shows higher inter-quantile ranges for all
sensors compared to the US-derived road profile.

For all possible sensor combinations, a matching of the sensor pairs of the different
data origins averaged 54.3% (SD = 22.3) for the mean segment values. A possible connection
between the detection percentage and the mean dz value is visible for the higher correlated
sensors referring to a maximum expected dz value (S1_3, S3_5, Table 2, Figure 4). These
sensor combinations reach a detection percentage of 72.1%.
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Figure 3. Visualization of the mean road cross-section profiles for the whole road of the different
recording types: (a) low-resolution, ultrasound measurement and (b) TLS measurement.

Table 2. Mean sensor (S) height differences (Sn_k = Sn − Sk) of the recording type road scanner (US), and terrestrial laser
scanner (TLS), and the compartment on positive matches of sensor pairs considering a positive or negative height difference.

Sensor
Combination

S1_2 S1_3 S1_4 S1_5 S2_3 S2_4 S2_5 S3_4 S3_5 S4_5

US data (cm) −0.998 −0.637 1.510 1.191 0.361 2.508 2.189 2.146 1.828 −0.319

TLS data (cm) −1.545 −3.497 −2.003 0.081 −1.952 −0.459 1.626 1.493 3.578 2.084

Correlation
between US and

TLS datasets
0.24 0.17 0.02 −0.06 0.01 −0.01 0.08 0.21 0.21 0.06

Positive
detections (%)

67.3 71.3 31.2 43.6 38.2 44.7 55.1 72.3 73.0 46.3

− −

Figure 4. Positive inclination matches of sensor height differences between road scanner and TLS
data, per repetition and segment (dashed line), including the absolute height difference (cm) derived
from the TLS data (red) and from the road scanner data (grey crosses) for sensor combination S1_2
(mean dzTLS = −1.54 cm, dzUS = −1.00 cm with 67.3% detection rate).
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When plotting the dz value and the detection percentage of only one sensor pair, the
correlation behaviour between the TLS and the US data becomes visible (Figure 4). When a
certain dz value is exceeded, the detection rate tends to sharply increase (segments 17–24,
Figure 4). A moderate positive correlation between the absolute, mean TLS–dz values per
sensor pair and the matching percentage (0.48) supports this connection.

3.2. Threshold Value Filtering Effects

For a minimum evaluated mean difference of +1 cm, the detection rate rises signifi-
cantly from 54.3% to 78.8% (p = 0.005, Wilcox Test) (Figure 5a). When applying an absolute
value as a filter to consider negative and positive deviations, or setting the filter on the
US data, no further sudden increments of the rate of detection matches are observed. The
difference of setting filters on positive or absolute values on the lower resolution road
scanner data has a minor effect compared on the TLS data, and is still characterized by a
high standard deviation of values.

  

  

Figure 5. Development of positive matches (solid line boxes, cross marks the mean of all observations) and remaining
sample segments (dash-lined boxes) between the ultrasound sensor data and the TLS data, when setting filters on a dz
value for (a) only positive dz values of the TLS data, (b) only positive dz values on the ultrasound data, (c) absolute values
of the TLS data, and (d) absolute values of the ultrasound data.

As for application purposes only internal data filter are usable; a maximum detection
percentage with 62.5% can be reached by applying a 2.5 cm threshold for evaluation.

3.3. Sensor Lane Filtering Effect

As some sensor combinations are expected to show no height differences due to the
road profile expression, these combinations can be excluded before applying the system
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when the basic road geometry is known. In a single-laned, crowned road profile, these
combinations are the same height levelled sensor-pair 1 and 5 and, respectively, sensor-pair
2 and 4. The best results can thus be reached with 71.6% in combination with a 3 cm height
difference filter (Figure 6).

  

−

Figure 6. Development of positive matches (solid line box) and remaining sample size between the ultrasound sensor data
and the TLS data, when setting filters on a dz value and (a) excluding horizontally aligned sensor pairs (S1_5 and S2_4) or
(b) only considering max dz value sensor pairs (S1_3 and S3_5).

When differently applied, the maximum expected height difference of a crowned road
profile is observed with the system over the highest and the lowest sensor point locations
(S1_3 and S3_5), the detection rate rises from 54.3% without filter to 72.2%, and reaches
a maximum of 91.2% with an additional 4 cm dz filter applied. For higher filter rates,
the remaining sample size (n = 35) cannot be considered as high enough to keep up the
trend. Evaluating a filter up to 4 cm, the according regression model shows a 5.2% higher
matching rate per 1 cm dz filtering (adj. R-squared = 0.97, p < 0.000).

4. Discussion

With the segment- and lane-based method applied, we presented a way to simplify
LiDAR data and make it comparable with different data sources as the road scanner
measurements. The concept of directly describing the lateral inclination thereby substitutes
the method of data comparison over quality parameters as used in further studies [21]
due to the earlier integration of false positive and false negative values considered as
incorrect interpretation.

Longitudinal geometry parameters that could override lateral geometry expressions in
the evaluation process are minimized in advance, as the road inclination in driving direction
is considered equal for all lanes. A balanced distribution of datapoints in longitudinal
direction is thereby important for a successful data preparation. With the point density of
24.4 points per square meter, upscaled from an assumed 5 cm sample-stripe that represents
the minimal detection width of the sensor, the road scanner data point density was relatively
high in comparison with airborne laser scanning (ALS) data with up to 16 points per m2 [22].
This sample drawing method could therefore also be a possible enhancement of ALS-based
evaluation concepts in steeper terrain [8].

Between the different data sources, the mean road profiles showed basic similarities
in their geometric expression, but with lower average values in z direction at the middle
sensor position of the ultrasound sensor data. As this sensor lane was partly influenced
by emerging vegetation, the relation between the ultrasound measuring principle and
the vegetation could have caused that effect. This observation is supported by the results
of earlier tests under laboratory conditions, where the detection of vegetation with the
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ultrasound sensors was also not possible [19]. This difference in the measuring principles
between ultrasound and LiDAR can lead to an advantage of this sensor selection, as the
direct road surface can potentially be separated with the ultrasound measurements.

The limited vertical resolution of the US sensors, caused by the sensor-internal distance
calculation, made the comparison of the measurement principles challenging. When a filter
from −1 to +1 cm as factory resolution of the sensor was set separately on each dataset,
only small improvements of the matching data percentage were observed. Only with the
filter set exclusively on positive height difference expressions did a significant rise of the
matching percentage appear. This can be caused by multiple influence factors, such as a
missing homogenous distribution of the sample data within the segments, in combination
with a longitudinal road inclination, a broken sensor, or a missing horizontal alignment
of the scanner bar. As no one-sided expressed road inclination was noted, and the sensor
data showed no inconsistencies, the alignment of the scanner bar seems to cause the trend
of the measured data.

To discuss a suitable application of the system with the identified measuring pecu-
liarities, the consideration of typical forest influences and deviating road construction
parameters seem necessary. As the study was conducted in open terrain, the aimed ad-
vantage of high accuracies achieved within the spatial referencing exceeded accuracies
reachable under forest canopy conditions [23]. As the lane-based information of the road
scanner is relative information dependent on the sensor spacing, this issue only affects
the allocation accuracy in driving direction, or the basic spatial join of the data with the
road assessed. Accuracy limitations are, thus, not crucial for an implementation of the
system, as segment lengths can be adjusted independently of statistical evaluation intervals.
Furthermore, to transfer the road scanner results to forest conditions, common lateral road
inclinations of forest roads must also be known, as road construction variants that can influ-
ence the earlier noted data quality are common, related to the expressed dz values observed.
Former studies mention that, in road construction, a carriageway inclination in lateral
direction should be expressed with a slope of 5–8% for crowned road surfaces [24,25]. For
the given sensor spacing, this would imply an expected dz value of 2.25 cm for neighboured
sensor pairs, or 4.5 cm when only every second sensor is considered. In the present study,
the mean dz value of the road was below 1.77 cm. The reference road that was selected
for this study can thus be rated as ambitious, regarding its overall profile characteristics
and the given measuring behaviour of the system. When applying the system in these
situations, higher detection rates related to the raw data can therefore be assumed.

As a further measure to raise data reliability, filters can alternatively be set on dz values
for specific sensor combinations to focus on the road’s maximum dz expressions. When
the road is designed as a single driving lane, and the vehicle used for the measurement
can pass the road in the middle of the crowned surface profile, the highest dz values
are given between the middle sensor and the outer sensors. Applied in this manner, the
previously mentioned skipping of one sensor lane raised the detection percentages of the
true geometry up to over 91%, and with this showed good results for application. On the
downside, geometric information in between the longer sensor distances is thereby lost,
which needs to be considered in the overall monitoring purpose.

A fundamental absence of a crowned profile, however, makes the application of the
system challenging. As the detection rates rise with dz filters used, the targeted geometry
or road damage of the observation must at least exceed the thresholds of the filters applied.
Additionally, the valuably recognized sensor-skipping approach to raise the dz value can
no longer be used, which forces the system to be used with US data filtering only.

5. Conclusions

The method of a striped and segment-based analysis for assessing different cross-
section monitoring principles was demonstrated to also be possible on a LiDAR-based
road recording concept. This method can be especially helpful for comparing measurement
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principles with one dataset missing exact horizontal spatial reference, or for overcoming
longitudinal inclination influences on existing methods.

The road scanner presented itself as diverse working system. With its characteristic to
screen vegetation on the road surface, advantages in comparison with the reference TLS
measurements occurred that need further attention. Satisfying data quality for application
was found for a geometry expression threshold of 3.5 cm. This is in accordance with
literature-based suggestions of a lateral road inclination for single laned crowned road
profiles in the existing sensor setup, which makes the system best fitted for these situations
to record a forest road carriageway geometry with high temporal resolution.
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Abstract: Forest fires are serious disasters that affect countries all over the world. With the progress of
image processing, numerous image-based surveillance systems for fires have been installed in forests.
The rapid and accurate detection and grading of fire smoke can provide useful information, which
helps humans to quickly control and reduce forest losses. Currently, convolutional neural networks
(CNN) have yielded excellent performance in image recognition. Previous studies mostly paid
attention to CNN-based image classification for fire detection. However, the research of CNN-based
region detection and grading of fire is extremely scarce due to a challenging task which locates and
segments fire regions using image-level annotations instead of inaccessible pixel-level labels. This
paper presents a novel collaborative region detection and grading framework for fire smoke using a
weakly supervised fine segmentation and a lightweight Faster R-CNN. The multi-task framework
can simultaneously implement the early-stage alarm, region detection, classification, and grading of
fire smoke. To provide an accurate segmentation on image-level, we propose the weakly supervised
fine segmentation method, which consists of a segmentation network and a decision network. We
aggregate image-level information, instead of expensive pixel-level labels, from all training images
into the segmentation network, which simultaneously locates and segments fire smoke regions.
To train the segmentation network using only image-level annotations, we propose a two-stage
weakly supervised learning strategy, in which a novel weakly supervised loss is proposed to roughly
detect the region of fire smoke, and a new region-refining segmentation algorithm is further used
to accurately identify this region. The decision network incorporating a residual spatial attention
module is utilized to predict the category of forest fire smoke. To reduce the complexity of the Faster
R-CNN, we first introduced a knowledge distillation technique to compress the structure of this
model. To grade forest fire smoke, we used a 3-input/1-output fuzzy system to evaluate the severity
level. We evaluated the proposed approach using a developed fire smoke dataset, which included
five different scenes varying by the fire smoke level. The proposed method exhibited competitive
performance compared to state-of-the-art methods.

Keywords: region detection of forest fire; grading of forest fire; weakly supervised loss; fine segmen-
tation; region-refining segmentation; lightweight Faster R-CNN

1. Introduction

Forest fires have become one of the major disasters causing serious ecological, social,
and economic damage, as well as personal casualty loss [1–3]. In 2013, a forest fire burned a
land area of approximately 1042 km2 in California, causing USD 127.35 million of damage.
In China, 214 forest fire events occurred alone in the Huichang County of the JiangXi
province from 1986 to 2009, with an area of more than 460 km2 being affected [4]. The
statistical data provided in [5] show that fire disasters alone caused an overall damage of
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USD 3.1 billion in 2015. To monitor the fire smoke, numerous image-based surveillance
systems have been installed in forests. Therefore, rapid and accurate detection and grading
of fire smoke is crucial and helpful for preventing and reducing the forest losses.

Forest fires commonly spread quickly and are difficult to rapidly control. Accurately
identifying the fire region and evaluating the fire smoke severity, which helps firefighters
to take proper measures and quickly control a fire’s spreading, is a very challenging
task. Moreover, most firefighters will need to decide how many resources to allocate to
a particular forest fire according to useful extinguishing information, which contains the
region, the location, and the severity (i.e., the grading of risk) of fire smoke. Therefore,
a technique for a fire surveillance system which can give an early region detection of fire or
smoke and evaluate the severity of fire or smoke is indispensable.

The traditional technologies for detecting fire and smoke use various sensors. A point
sensor [6–8] works best in indoor spaces, as it only covers a small area, and is insensitive to
fire in the outdoors and over a large range. An Unmanned Aerial Vehicle (UAV) technique
can also be used to monitor forest fires [9]. Additionally, such techniques cannot provide
important vision information to help firefighters quickly evaluate the severity of the fire and
make appropriate decisions. Satellite sensors [10] only detect a large fire in a wide range,
and they are not useful for the early detection of fire and smoke. Currently, with a large
amount of image surveillance systems installed in forests, there is an appropriate alternative
to the traditional techniques, and vison-based inspecting technologies for fires and smoke
have been widely adopted due to their easy deployment and lower cost, insusceptibility to
the weather, and long and short availability.

Vision-based technologies make full use of color and motion features for fire detection.
Due to the conspicuous color of fire, Chen et al. [11] proposed RGB- and HIS-based color
models are used to examine the dynamic behavior of fires, which can be applied to detect
the irregular properties of fire. Additionally, the YUV color [12], RGB [13], and YCbCr color
space [14], have been explored to classify the pixels in fire and non-fire regions. However,
such methods have many limitations in various situations, e.g., due to the complexity of
wild scenes, the diversity of fire and smoke in forests, irregular lighting, and low-contrast
flame and smoke.

In recent years, convolutional neural networks (CNNs) have attracted attention due
to their outstanding performance in image recognition. Some scholars have introduced
CNN models—for example, AlexNet [15], GoogleNet [16], ZF-Net [17], VGG [18], and
ResNet [19], into the field of the vision detection of fires. Regarding the use of these
models, some scholars have also proposed improved CNN-based methods for fire or
smoke detection, such as, smoke detection in a video based on a deep belief network
using energy and intensity features [20], a video-based detection system using an object
segmentation and efficient symmetrical features [21], a two-stream CNN model with the
adaptive adjustment of the receptive field [22], and an object detection model incorporating
environmental information [23]. Additionally, Liu et al. [24] also proposed a forest fire
detection system based on ensemble learning to reduce false alarms. Nevertheless, the
aforementioned methods are only applicable for the recognition of whether fire or smoke
exists in an image, but such methods cannot provide more detailed information about fires,
such as their location, shape, size, etc., which can be used to grade the level of fires or
smoke. Sometimes, we need to focus on the fire/smoke spreading or the emerging regions;
thus, the region detection of fire or smoke is a better solution to this issue.

Recently, rapid progress in this technology has been made using powerful models,
such as DeepLab [25], U-Net [26], and fully convolutional networks (FCNs) [27]. However,
the performance of these deep models heavily depends on a large amount of training
data with expensive pixel labels. Due to the uncertain, complex, and changeable shape
of fires and smoke, annotating such training data has become a bottleneck in applying
these models to forest fire detection, as it is a time-consuming and arduous task to label
each pixel on a large amount of fire images. One objective of our work was to loosen the
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supervision, i.e., by performing weakly supervised segmentation for forest fire detection
using only image-level supervision.

It is well known that multi-model cooperation can improve the performance of any
machine-learning algorithm. Therefore, model selection and collaborative strategies need
to be considered carefully. To grade forest fire smoke, we need to collect and consider
various factors, such as the fire region size, fire shape, location, etc., which may influence
fire smoke and cause fires to change and spread.

Our work mainly concentrated on a region detection of forest fires or smoke at an
early-stage and evaluation of the fires’ smoke severity, thereby proposing a collaborative
region detection and grading framework for forest fire smoke using a weakly supervised
fine segmentation and a lightweight Faster R-CNN.

Our other contributions can also be summarized as follows.

(1) We proposed the weakly supervised fine-segmentation method, which consists of
a segmentation network (LS-Net), used to simultaneously and accurately detect
the region of forest fire smoke, and a novel two-stage weakly supervised leaning
strategy, which includes a weakly supervised loss (WSL), a region-refining segmen-
tation (RRS) algorithm, and an attention-based decision network (AD-Net) for fire
smoke classification.

(2) To reduce the complexity of the Faster R-CNN, we introduce a knowledge distillation
process to compress this model into a simple model. We also proposed a distillation
strategy for this model. Moreover, we used a 3-input/1-output fuzzy system based
on fuzzy logic to grade forest fire smoke.

(3) We developed a forest fire dataset from public resources to evaluate our method,
which is composed of various situations, including large fires, small fires, dense
smoke, light smoke, and other scenes.

The remainder of this paper is organized as follows. Section 2 introduces related
work. Section 3 describes the proposed framework, including weakly supervised fine
segmentation, lightweight Faster R-CNN, a collaborative learning strategy, and the grading
method. Section 4 presents the experimental results and a discussion of them. Section 5
concludes the paper.

2. Related Work

The accurate and timely recognition of the region of forest fire smoke is an important
task in preventing forest disasters and protecting the environment. To address this issue,
many researchers have developed various techniques, such as wireless network sensors
and satellite systems [8,10,28], robotic systems [29], intelligent techniques [30], and image
processing techniques [11–14]. Due to the factors of deployment, utilization convenience
of use, and a high detection rate, the image techniques have been used widely and have
attracted the attention of many researchers, as they are more suitable for forest fire detection.
Nevertheless, there are some limitations of the traditional image technologies that are used
in real-world applications [11–14]. Recently, DL-based methods have become a mainstream
technology for intelligent fire detection based on vision [23,31–35].

To improve the performance of fire detection, a deep normalization and convolutional
neural network was proposed for automatic feature extraction and classification, avoiding
hard-crafted features [31]. Different classic CNN models, Namozov et al. [32], proposed the
use of an adaptive piecewise linear unit, instead of using traditional rectified linear units in
the hidden layers of the network. In previous work [33], the authors tackled the overfitting
and accuracy of CNN-based fire detection using a limited dataset and a deep convolutional
generative adversarial network, which achieved a high accuracy in visual fire detection.
To improve its implementation in a real-world surveillance network, Baik et al. [34] pre-
sented an energy-friendly and computationally efficient CNN architecture for the detection,
localization, and scene understanding of fires. This model reduces the computational
requirements to a minimum and obtains a better accuracy due to its increased depth.
Furthermore, the authors proposed that an efficient CNN model via edge intelligence
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could be used to detect fires in uncertain surveillance scenarios [35]. This model utilized a
lightweight deep network, instead of dense fully connected layers, which require expensive
computation. Nevertheless, the CNN models have only been applied to classification tasks
to predict whether fires exist in an image or not. Zhang et al. [23] proposed a forest fire
smoke recognition method based on an anchor box adaptive generation.

The most important objective in predicting forest fire risk is to obtain more information
regarding a fire in an image, such as its shape, size and location, and the CNN-based image
segmentation techniques are a better solution for addressing this issue. Recently, several
powerful baseline systems, such as the Fast/Faster/Mask R-CNN [36–38], have been
proposed to drive the rapid progress in instance segmentation. Semantic segmentation
methods highly related to instance segmentation, such as DeepLab [25] and U-Net [26],
only recognize the category of each pixel, without distinguishing different detection object
instances. While fully supervised methods can achieve an outstanding performance,
they require a large amount of training data with expensive annotations, which causes
inconvenience in practical applications. Thus, weakly supervised image segmentation
using relaxed supervision—i.e., image-level annotations—is a better solution to the issues.

Weak supervision is an inexact pattern [39]. Every pixel in an image should ideally be
annotated in image segmentation. However, we usually have only coarse-grained labels,
instead of pixel-wise labels. Weakly supervised image segmentation refers to the training of
models with coarse-grained labels to obtain pixel-wise segmentation results. This has been
explored in image segmentation primarily to reduce the effort of establishing training data.
Many multiple instance learning (MIL) techniques have been investigated for weakly super-
vised image segmentation. Pathak et al. [40] proposed an MIL formulation of multi-class
semantic segmentation learning using a fully convolutional network. Pinheiro et al. [41]
investigated a CNN-based model with MIL, which was constrained during training to put
more weight on the pixels that were important for classifying an image.

To further accurately segment objects, graphical energy minimization techniques have
been extensively used to regularize image segmentation due to their inherent optimality
guarantees. In previous studies, many researchers have proposed diverse solutions for
image segmentation using this technique. Boykov et al. [42] used graph cuts to find the
globally optimal segmentation position. A GrubCut method was proposed to segment
images with bounding box annotations by iteratively updating the parameters of a Gaussian
mixture model (GMM) [43]. Fully connected CRF models were implemented by an efficient
inference algorithm, defining pairwise edge potentials by a linear combination of Gaussian
kernels [44]. To overcome the poor localization property of deep networks, Chen et al. [45]
proposed a new final layer to be combined with DenseCRF.

3. Methods

In this paper, we focus on the region detection of forest fire smoke and the grading of
fire smoke severity in a surveillance image. Considering a better solution which integrates
several simple models into a framework to obtain a better performance, we propose a
novel collaborative region detection and grading framework for forest fire smoke using a
weakly supervised fine segmentation and a lightweight Faster R-CNN (called FireDGWF),
as shown in Figure 1. This framework consists of a detection process and a grading process.

In the detection process, we use 3 different models— classification (for example,
ShuffleNet [46]), region detection (weakly supervised fine segmentation, also known
as WSFS), and region-proposal (lightweight Faster R-CNN) methods, which can locate,
segment, and predict the location, region, and category of forest fire or smoke in an
input image.
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Figure 1. Our proposed framework.

Moreover, compared with the approach that some scholars proposed of using a
bounding box to achieve relaxed supervision [47,48], we propose the weakly supervised
fine segmentation to obtain a greater segmentation accuracy, which is achieved by applying
“pixel-level labels” in our method.

The Faster R-CNN has better detection accuracy than does the one-stage object detec-
tion, such as YOLOv3 [49], SSD [50], DSSD [51], and RefineNet [52]. However, the greater
number of parameters and time-consuming training has become a bottleneck in applying
this method to fire smoke detection in forests. In this paper, we first introduce a knowledge
distillation approach, which was proposed by Hinton [53], to reduce the complexity of this
model, i.e., the lightweight Faster R-CNN.

For the grading process, we utilize a fuzzy evaluation system, which can synthetically
evaluate the fire smoke level based on 3 inputs, including the classification prediction, the
region detection (segmentation result), and the location.

In the following section, we separately introduce the region detection using the WSFS,
lightweight Faster R-CNN, collaborative learning strategy, and grading method with
fuzzy logic.

3.1. Region Detection Using Weakly Supervised Fine Segmentation

The time-consuming effort involved in pixel-wise annotations makes the identification
of forest fire regions an inconvenient and challenging task in real-world applications. To
address this issue, we propose the novel weakly supervised fine segmentation approach
for the detection of the region of forest fire smoke, including the segmentation network
(LS-Net) and the decision network (AD-Net), as shown in Figure 2. LS-Net obtains pixel-
level segmentation results for fire or smoke regions that are difficult to identify in complex
forest scenarios and provides good semantic features for AD-Net. AD-Net uses the deepest
feature and the segmentation results of LS-Net and predicts the probability of fire smoke
existing in an image. To improve the classification performance, AD-Net focuses on the fire
or smoke pixels, the weights of which are determined by the segmentation results provided
by LS-Net.

To address the problem that pixel-wise annotations are expensive, we introduce the
two-stage weakly supervised learning strategy, including the weakly supervised loss
(WSL) and the region-refining segmentation (RRS). LS-Net can only roughly locate fire or
smoke regions using the weakly supervised loss only with image-level labels. However,
using weak annotation solely at the image level is insufficient for training a high-quality
segmentation model. After training the model with the weakly supervised loss, we propose
the RRS to fine-tune LS-Net for accurate region segmentation.
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Figure 2. Proposed framework for weakly supervised fine segmentation.

3.1.1. Structure of LS-Net

Table 1 lists the structural parameters of LS-Net. The segmentation network (LS-Net),
based on the U-Net structure, is composed of an encoder and decoder, and the encoder is
improved using a modified ResNet18 [54]. The encoder uses a hierarchical structure and
residual connections to extract multi-level features from an input image, and these have
different spatial sizes and semantic information. The first convolutional layer in the original
ResNet18 used a 7 × 7 kernel, with a step size of 2. We use 3 3 × 3 convolutional layers,
with a step size of 1, to reduce computational costs and maintain the spatial size. The other
layers are the same as in the original ResNet18. In the forward process, features of different
sizes are outputted from the encoder. The decoder makes full use of the multi-level features
of the encoder and outputs a single-channel image to segment fires at the pixel level.
The decoder has 4 upsampling layers and multiple convolutional layers. Upsampling is
implemented with bilinear interpolation. To capture small fires, each convolutional layer
uses a 3 × 3 kernel, with a step size of 1. Batch normalization and nonlinear ReLU layers
are included after each convolutional layer.

Table 1. LS-Net architecture.

Encoder Decoder

Name Layers Output Size Name Layers Output Size

Layer1 Conv3_3 × 3 [h, w] Layer1 Upsampling, Conv3_3 × 2 [h//8, w//8]
Layer2 Residual block × 2 [h//2, w//2] Layer2 Upsampling, Conv3_3 × 2 [h//4, w//4]
Layer3 Residual block × 2 [h//4, w//4] Layer3 Upsampling, Conv3_3 × 2 [h//2, w//2]
Layer4 Residual block × 2 [h//8, w//8] Layer4 Upsampling, Conv3_3 × 2 [h, w]
Layer5 Residual block × 2 [h//16, w//16] Out-layer Conv1_1, Sigmoid [h, w]

3.1.2. Structure of AD-Net

Table 2 shows the structure of AD-Net. In this study, an attention mask is introduced
into the residual branch of a residual spatial attention model (RSAM) to focus more
attention on heavily weighted regions, as shown in Figure 2. The RSAM modules utilize
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the results of LS-Net as an attention mask to cause AD-Net to focus more on small object
regions from the segmentation results. The number of RSAM modules is increased from 1
to 5 to enhance the contrast between fire and non-fire regions. In Figure 2, AD-Net includes
5 RSAM modules, 1 global average pooling layer (RRS) and 1 fully connected layer. As in
LS-Net, batch normalization and ReLU are used. This pooling layer squeezes the spatial
dimensions and extracts abstract semantic information. Because the output features only
depend on the channel of the input feature for this pooling layer, a fixed input image size
is unnecessary. The fully connected layer with a sigmoid activation function takes the
output of this pooling layer as the input and predicts the probability that an object exists in
an image.

Table 2. AD-Net architecture.

Name Layers Output Size

Layer1 RSAM [h//16, h//16]
Layer2 RSAM [h//32, h//32]
Layer3 RSAM [h//32, h//32]
Layer4 RSAM [h//64, h//64]
Layer5 RSAM [h//64, h//64]
Layer6 GAP -
Layer7 Denser Layer -

3.1.3. Weakly Supervised Loss

In this section, we introduce the novel weakly supervised loss. To simplify the
description, Table 3 firstly presents the variables and descriptions used in this loss.

Table 3. Variables and descriptions.

Variable Description

X Input image
Y(X) Image label for X

Φ Model parameters
p(Y|(X, Φ)) Predicted model for X

w, h Height and width of X
χ Pixel set for X
xi A pixel in χ
yi Pixel label for xi

q(yi|(xi, Φ)) Predicted model for xi

This weakly supervised loss is used to train LS-Net from scratch with only image-
level annotations to simultaneously locate and segment the fire or smoke regions. This
loss includes a positive loss, negative loss, image-level loss, and pixel-level loss. The
positive and negative losses are used for positive (fire or smoke) and negative (non-fire or
non-smoke) samples, respectively, during training. The positive and negative loss guides
LS-Net to recognize object (fire or smoke) and non-object pixels. The image-level loss
allows for an easier and faster convergence [55,56], and the pixel-level loss forces LS-Net to
provide a clear prediction for each pixel. The weakly supervised loss can be written as:

LossWSL = Lossnegative ∗ β + Losspositive + Lossimage + Losspixel (1)

where Lossnegative is the target loss for negative samples. Since there are only non-object
pixels in negative samples, Lossnegative is proposed to guide LS-Net to classify the pixels in
negative samples as non-objects. The negative samples satisfy Y(X) = 0, yi = Y(X) = 0,
∀(xi, yi) ∈ (X ,Y). The cross-entropy loss is used to optimize the negative samples, and
the negative loss can be rewritten as:

Lossnegative = (1−Y(X)) ∗ E(xi ,yi)∈(X ,Y) − log(1− p(yi|xi, Φ)) (2)
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where Losspositive is the target loss for positive samples. We know that both object and
non-object pixels exist in the positive sample image. We sort the pixels in positive samples
by their prediction values from LS-Net and assume that the largest α proportion pixels are
fire or smoke. α is defined as the ratio of the area of fire or smoke pixels to the total area.
We choose the largest double α proportion as the region of interest R. Let R denote the set
of pixels in XR. YR is the set of labels corresponding to XR. When all the predictions in
the positive sample are correct, the expectation entropy corresponding to XR reaches its
maximum. This can be expressed as:

Losspositive =

[

P(YR|XR, Φ) log(P(YR|XR, Φ) )
+(1− P(YR|XR, Φ) )(log(P(YR|XR, Φ) ))

]

∗ Y(X), (3)

where the prediction expectation corresponding to XR is:

P(YR|XR, Φ) = E(xi ,yi)∈(XR,YR)
p(yi|x, Φ) . (4)

where Lossimage is the image-level loss. For positive samples, at least one pixel should be
labeled as fire or smoke. No pixels in negative samples should be labeled as objects. Based
on this idea, we minimize the KL divergence of image-level labels and the maximum of the
image’s segmentation result by cross-entropy loss. This can be expressed as:

Lossimage = Y ∗ log(pM) + (1−Y) ∗ log(1− pM), (5)

where pM = Max(xi ,yi)∈(X , Y)(p(yi|xi, Φ )) is the maximum of an image’s pixel predictions.
Ideally, each pixel in an image is an object (fire or smoke) or non-object; i.e., each

value segmentation result should be close to 1 or 0. To ensure that LS-Net provides a
clear prediction for each pixel, we minimize the entropy values of pixel predictions during
training. This can be expressed as:

Losspixel = E(xi ,yi)∈(X ,Y) H[ p(yi|xi, Φ) ] =
1

h ∗ w

w∗h
∑
i=1

H[ p(yi|xi, Φ) ], (6)

where the entropy of pixel (xi, yi) is:

H[ p(yi|xi, Φ) ] = −p(yi|xi, Φ) log(p(yi|xi, Φ) )−
(1− p(yi|xi, Φ) )(log(1− p(yi|xi, Φ) )).

(7)

3.1.4. Region-Refining Segmentation

The region detection (segmentation result) using LS-Net only identifies the rough
regions of fire and smoke. Furthermore, the fine segmentation results are implemented
on the RRS algorithm, which is proposed to fine-tune LS-Net. This can be regarded as
an iterative energy minimization method like GrubCut [43]. We build a DenseCRF on
LS-Net, and based on these methods, we formulate an energy minimization problem
to estimate the latent pixel labels, which are called pseudo-pixel labels. We consider
these as the supervision to fine-tune LS-Net with a small learning rate. RRS alternates
between estimating pseudo-pixel labels and using them to optimize LS-Net. In other
words, DenseCRF improves the segmentation results, and RRS training can be seen as a
self-evolution process of LS-Net, as shown in Figure 3.
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Figure 3. Proposed region-refining segmentation (RRS) algorithm.

The training stage has two key phases: label estimation and model updating.
In the label estimation stage, DenseCRF is built, and pseudo-pixel labels can be

acquired by minimizing the energy function [44].

E(x) = ∑i
ψu( fi) + ∑i<j

ψp

(

fi, f j

)

(8)

The pairwise regularization term ψp

(

fi, f j

)

penalizes label differences for pixels i and
j, and typically has the form:

ψp

(

fi, f j

)

= µ
(

xi, xj

)

∗ k
(

vi, vj

)

(9)

where µ is a label compatibility function given by the Potts model, µ
(

xi, xj

)

=
[

xi 6= xj

]

,
and k represents the linear combinations of Gaussian kernels [44].

In the model updating phase, LS-Net is fine-tuned using the pseudo-pixel labels as
supervision. We know that all pixels in negative samples are non-fire or non-smoke, so
those pixel labels are set to zero, and pseudo-pixel labels are not used. The detailed process
of this algorithm is described in Algorithm 1.

Algorithm 1. Region-Refining Segmentation algorithm (RRS)

Input: dataset D = {xi}N
i=1, y(xi) ∈ [0, 1]

Initialization: model Φ trained by the weakly supervised loss; parameters of RRS ωa, ωs, θα, θβ,
and θγ; number of steps N; learning rate lr; batch size b;
For step = 1, 2, . . . , N do:
← sample b images x from D

Predict labels y(x) of samples with Φ

Get pseudo-pixel labels ý(x) with DenseCRF
update Φ by minimizing loss of y(x) and ý(x)
End for

3.1.5. Training Strategy

Our method has a phased training strategy for the WSFS. The LS-Net is trained with
the weakly supervised loss and the region-refining segmentation algorithm successively,
and it obtains a good initialization, so it can accurately locate and segment fire or smoke
pixels. The next step is to train the AD-Net, during which the LS-Net outputs remain
unchanged, and the cross-entropy loss is used.
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3.2. Lightweight Faster R-CNN

In this section, we introduce a knowledge distillation technique to simplify the com-
plexity of the Faster R-CNN.

3.2.1. Knowledge Distillation

Knowledge distillation [55] aims to compress a complex model into a simpler model
that is much easier to deploy. The main goal of knowledge distillation is to train a small
network model to imitate a pre-trained effective and complex network. Our proposed
lightweight Faster R-CNN is implemented using a teacher stream and a student stream.
For the sake of simplicity, we define the key components of the two streams as follows:

The teacher stream uses a complex CNN structure, with a set of parameters pre-trained
as a feature extractor. Here, we assume that this model has absorbed the rich knowledge
encoded in generous high-resolution forest fire smoke images with labels. Generally, the
training dataset is very large and may be invisible to the student stream. The student
stream is a much simpler CNN network that does not need too many parameters for
recognizing low-resolution forest fire smoke.

In contrast to the classical Faster R-CNN, we use the ResNet 50 as the teacher stream
and the ResNet 18 as the student stream to substitute for VGG-16 for proposal and detection.
The features extracted by the teacher stream are used to distill the knowledge. The feature
loss—i.e., L2 loss—is based on both the eigenvectors obtained from the student stream and
the eigenvectors distilled from the teacher stream. In the process of forward propagation,
the loss of the whole network includes the feature loss, RPN loss, and RCNN loss.

3.2.2. Loss Function

To train the lightweight Faster R-CNN, we propose a novel loss Lossall , which includes
LossRPN , LossRCN , and Lossbackbone. LossRPN and LossRCN represent the loss of the RPN
module and the loss of the RCNN module, respectively. Lossbackbone is the loss in extracting
features, which is expressed as

Lossall = LossRPN + LossRCN + Lossbackbone (10)

Specially, LossRPN and LossRCN are the classification loss and object regression loss,
respectively, which are defined as

LossRPN = 1
Ncls

∑ LossRPN
cls + λ 1

Nreg
∑ p∗LossRPN

reg

LossRCN = 1
Mcls

∑ LossRCN
cls + λ 1

Mreg
∑ p∗LossRCN

reg

(11)

where p∗ = 1 while an anchor is positive; and p∗=0 while an anchor is negative. Ncls and
Nreg are the batch size of the RPN and anchor location, respectively; Mcls and Mreg are the
batch size of the RCNN and anchor location, respectively.

The classification loss of RPN and RCNN can use a cross-entropy loss. The regression
loss of RPN and RCNN is calculated using a smooth L1 loss. A parameter is added to
control the smooth area, which is expressed as:

smoothL1(x) =

{

0.5x2 i f |x| < 1σ2

|x| − 0.5
σ2 otherwise

(12)

Lossbackbone is based on a calculation of the KL divergence between the teacher network
and the student network. However, before calculating the KL divergence, it is necessary
to ensure that the dimensions of the feature map between the teacher network and the
student network are consistent:

Lossbackbone(yT , yS) =
n

∑
i=1

ySi
× log(

ySi

yTi

) (13)
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where yt is the output feature of the teacher network, and ys is the output feature of the
student network.

The distilling process of the lightweight Faster R-CNN is shown in Algorithm 2.

Algorithm 2. Distilling Process of Faster R-CNN

Input: Parameters of the features of the teacher network: T_Parameter, Dataset with labels:
S_Input{P, T}
Procedure Iteration process
1. Get map from Teacher-Net: T_Feature = Teacher_backbone(T_Parameter)
2. Transform dimension: T_Map_trans = Trans (T_ Feature)
3. Generate map from Student-Net: S_Map = Student_backbone(S_Input)
4. Caculate distill_loss with L2loss: Lossbackbone = LT→S(T_Map, S_Map)
5. Compute the loss of detection with RPN and RCN: Lossrpn = RPN (Pi, S_Map, Ti), LossRCN =
RCN (Si, S_Map, Ti)
6. Reverse the loss Lall = LRPN + LRCN + Lbackbone for the student network
7. Update the parameters and continue

3.3. Collaborative Learning Strategy

In the detection process, we adopt 3 different methods, which are the classification-
based model (ShuffleNet [46]), segmentation-based model (WSFS), and the region-proposal-
based model (lightweight Faster R-CNN), to predict the probability of fire smoke existing
in an image. The final result is determined by the estimation of 3 model reasoning results,
which are the classification result 1, the classification result 2, and the classification result 3,
as shown in Figure 1.

Thus, the final prediction results can be calculated using a logistic regression, which is
expressed as

P = α +
n

∑
i=1

βi × xi (14)

where P is the final prediction; xi (i = 1, 2, . . . , n) is the deterministic variables related to
the probability of a model; α is a constant; βi (i = 1, 2, . . . , n) is a coefficient in Equation
(14); and i represents the i-th model. In this paper, the 3 models are combined to predict the
results. Therefore, we need to determine the 3 coefficients, β1, β2, and β3, corresponding
to the 3 inputs of models x1, x2, and x3. Thus, we proposed a learning strategy, which is
based on a stacking method [57], to fit Equation (14) in order to compute these coefficients.

We can perform a 5-fold cross validation on the training dataset, assuming that the
training dataset includes 500 images which are divided into 5 subsets represented as Tdata1,
Tdata2, Tdata3, Tdata4, and Tdata5, and that each subset includes 100 images. The testing
dataset also includes 100 images. The models to be combined are represented as C, S, and
R corresponding to the classification-based model, the segmentation-based model, and the
region proposal-based model, respectively.

Eventually, datasets TC, TS, and TR are considered as the input value. Then, taking
a real label as a guide, the models C, S, and R can learn the importance of the different
models, and the models are assigned the weight of every algorithm (β1, β2, and β3). The
datasets DC, DS, and DR are further used to verify the models to achieve the best results.
The detailed process of this strategy is described in Algorithm 3.
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Algorithm 3. Collaborative Learning Strategy

Input: Five training subsets and one test dataset
Procedure Learning process for model x = C//x indicates C, S, and R.
1: Utilize Tdata2-Tdata5 to train model x. Tdata1 is used as the test data, the obtained result is saved
as TC1, and the verified result of the test dataset is saved as DS1;
2: Utilize Tdata1 and Tdata3-Tdata5 to train model x. Tdata2 is used as the test data, the obtained
result is saved as TC2, and the verified result of the test dataset is saved as DS2;
3: Continue to train and verify model x through the above process, and datasets TC3, TC4, and
TC5, as well as DS3, DS4, and DS5, are obtained;
4: Compute the average value of TC1 to TC5 stored as Taverage;
5. The results of 5-fold cross validation is saved as TC = [TC1, TC2, TC3, TC4, TC5];
6. Calculate the average value of DS1 to DS5 and obtain DC;
7: Repeat this process for model S and R and obtain TS, TR, DS, and DR.

3.4. Grading Method Using Fuzzy Logic

The influencing factors of the level of fire or smoke include many aspects, such as the
category (fire or smoke), region size, location, temperature, and wind, among others. In
this paper, we only study the fire or smoke category (CT), region size (RS), and location
(LT). The former category is predicted by Equation (14). The value of the region size is
computed by Equation (16). The value of the location is divided into two types: dry forest
or wet forest, which is determined by the color in the background of the input image, where
yellow and green correspond to dry or wet forest, respectively.

The value of region size is expressed as:

Sseg = Areasegmentaion ∩ Arearegion−proposal (15)

Region f ire or smoke =

{

FV, Sseg > θ

0, other
j = 1, 2, . . . , m (16)

where Sseg represents the size of segmentation. Area f ire or smoke is calculated by the segmen-
tation results using the WSFS. Arearegion−proposal is taken from the segmentation results
using Lightweight Faster R-CNN; Region f ire or smoke represents the region size of fire or
smoke; FV is the corresponding value of this region; and FV ∈ [big, middle, small]. θ is an
empiric value.

To assess the fire or smoke level, a fuzzy strategy is designed to weigh the variables
CT, RS, and LT. This strategy is similar to that employed in our previous work [58,59]. The
ambiguity Level = f (i) ∈ [0, 1, 2, 3, 4, 5] guides the evaluation of the possibility of fire or
smoke level. Here, the numbers correspond to the fire or smoke level as follows: 0 = very
high, 1 = high, 2 = middle, 3 = low, 4 = very low, and 5 = no fire/no smoke. The CT is
developed by defining extreme alarm (i.e., fire, H_fire), alarm (i.e., smoke, M_smoke), and
normal situation (Norm) fuzzy sets. The RS is developed by defining large, middle, and
small fuzzy sets. The LT is developed by defining high (yellow) and low (green) fuzzy
sets. A conventional trapezoid or triangle is selected as the membership function, since
they have few parameters and are easily optimized. The ambiguity term Level determines
the final fire smoke level. The Mamdani model is applied as a reasoning engine [58,59],
because it is suitable for capturing and coding expert-based knowledge.

4. Experiments

4.1. Dataset Description

We evaluated our approach on a developed forest fire smoke dataset, named FS-data,
which was set up using some image search engines, such as Google and Baidu. The entire
fire dataset contains 4856 samples distributed into 5 categories: large fire, small fire, dense
smoke, small smoke, and other scenes, e.g., scenes of forests in different seasons. Some
examples are shown in Figure 4.
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Figure 4. Samples of the forest fire dataset (the first row shows normal images (non-fire), and the other images show fire
and smoke, which are, from top left to bottom right, large fire, dense smoke1, dense smoke2, light smoke, small fire, and
other scenes).

The first and second rows in Figure 4 contain non-fire negative samples and positive
samples for fires and smoke. Each image was labeled at the pixel level. These images had a
resolution of 256 × 256 pixels, and 1323 images clearly exhibited visible fire or smoke and
served as positive samples. The remaining 3533 images were non-fire negative samples.
We divided the dataset into training and testing examples, as shown in Table 4.

Table 4. Distribution of training and testing examples in the datasets.

Dataset
Training Examples Testing Examples

Positive Negative Positive Negative

Subset A (large fire) 150 309 41 138
Subset B (small fire) 176 454 48 197

Subset C (dense smoke) 245 546 65 207
Subset D (light smoke) 280 755 78 267
Subset E (other scenes) 201 455 39 205

4.2. Performance Metrics

In this section, to obtain a better evaluation of our proposed method, 2 indicators,
which are intersection over union (IOU) and average precision (AP), are used for the model
performance evolution.

The intersection over union (IOU) [60,61] is a commonly used performance metric
for semantic segmentation tasks. The decision prediction is based on the construction of a
confusion matrix. True positives (TP) and true negatives (TN) belong to correct predictions.
False positives (FP) are negative samples misreported as positive (fire), and false negatives
(FN) are positive samples misreported as negative (non-fire). Our segmentation metrics are
IOU = TP/(TP + FN + FP).

The average precision (AP) is used to assess the classification accuracy [23]. AP is
determined using the calculated area under the precision-recall curve to obtain a precise rep-
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resentation of the comprehensive model performance at different thresholds, particularly
when the dataset contains large numbers of negative (non-fire) samples.

4.3. Experiment Environment

We conducted the experiments with the Python language under Pycharm,
and the network model was implemented in Pytorch. We used PyDenseCRF
(https://github.com/lucasb-eyer/pydensecrf, accessed on 12 September 2020) to con-
struct a DenseCRF model. The simulations were conducted on a PC with an Intel Core
i7-7820X CPU running Windows 10, with two GTX1080Ti GPUs (total 22 GHz) and 32 GB
of RAM.

4.4. Evaluation of WSFS

In this section, we evaluate the performance of our WSFS approach on FS-data. The
WSFS consists of LS-Net and AD-Net. Therefore, we conducted several experiments to
validate the performance of LS-Net with WSL and RRS, as well as AD-Net.

4.4.1. The Region Detection Result Using LS-Net with WSL and RRS

We conducted experiments using FS-data to validate the performance of the weakly
supervised loss (WSL) by visualizing the segmentation results (region detection) and
comparing them with the evaluation index mentioned above. After training with the
weakly supervised loss, LS-Net could roughly locate fire areas.

Figure 5 shows the visualization results of FS-data using our method to segment fire
or smoke from an original image. In Figure 5, the red region represents the fire region
(segmentation result), and the gray region represents the smoke area segmented by LS-Net.
The first and second columns show the original images and pixel labels annotated manually,
respectively. Columns 3–8 show that the segmentation regions change at different α values
of 0.01, 0.02, 0.04, 0.06, 0.08, and 0.1, respectively. The results shown in Figure 5 indicate
that LS-Net can predict fire regions under the guidance of the weakly supervised loss, and
that the areas of fire regions and α values are positively correlated.

Figure 5. Segmentation results of the weakly supervised loss on FS-data.

We also used the IOU to evaluate the performance (segmentation accuracy). In
Figure 6, the graph shows variations in IOU value at different values of α. The IOU value
increases initially and then decreases with an increase in α. The IOU value is at a maximum
at α = 0.004, which means that the segmentation accuracy is the best. The IOU then
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decreases with an increase in α, because an increasing number of pixels around the fire
regions are wrongly identified as fires. This illustrates that the WSL can effectively identify
fire or smoke pixels.

Figure 6. Changes in IOU at different α value.

However, the rough regions were only implemented using LS-Net. To further refine
the detection region, we also implemented region-refining segmentation (RRS) on the
FS-data. To evaluate the performance of RRS, the related algorithms were tested for
comparison. These algorithms included 2 supervised learning segmentation methods,
DeepLabV3+ [25] and U-Net [26]. The third method was the use of the weakly supervised
loss alone. The fourth method adopted RRS to post-process the results of the weakly
supervised loss. The same configurations were used in all experiments.

The detection results and metrics are shown in Figure 7. The first and second columns
show the original images and pixel labels, respectively. The third and fourth columns show
the results of a segmentation network trained in a supervised mode (U-Net) and a new
supervised segmentation model, e.g., DeepLab V 3+. The segmentation results of LS-Net
trained only using WSL are shown in column 5. The last column shows the segmentation
results of WSFS trained successively using the 2-stage training strategy (WSL and RRS).
The results show that our method, WSFS, has obtained a competitive performance in the
segmentation result of fire or smoke.

The performance of these methods, evaluated using Boxplot descriptions, is shown
in Figure 8. According to Figure 8, the U-Net method using pixel-wise labels obtains the
maximum IOU for FS-data. The use of WSL alone returns the worst results, and RRS
greatly improves the segmentation results of training with WSL; its results are closest to
those of supervised training.
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Figure 7. Visualization of the segmentation results of different methods. The (a,b) show the original images and pixel labels,
respectively. (c–f) represent the experimental results using various methods which are U-Net, DeepLabV3+, WSL, and
WSFS from the third column to the last column, respectively. (The red region represents the fire region, and the gray region
represents the smoke area, which regions are segmented using the methods).

4.4.2. AD-Net

In this section, we performed controlled trials on FS-data to evaluate the classification
performance of the AD-Net, while the ResNet18 and the ShuffleNet were selected as
comparison methods. AP was used as an evaluation indicator, with values from the
FS-data, as shown in Figure 9.

In Figure 9, the AP values of ResNet18, ShuffleNet, and our proposed method show
better results for Subset A, Subset B and Subset C, in which the AP values are 99.9%,98.8%,
and 98.9%, respectively. However, the AP value of these methods show worse results for
Subset E and Subset D. The reason is that the image from Subset D and Subset E has a
complex background, with low-contrast between objects and the background compared
with other subsets. The AD-Net with the RSAM module built according to the result of
LS-Net have shown the best performance for the five subsets.
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Figure 8. Boxplots of the segmentation results of different training methods: MB-U-Net, MC-
DeepLabV3+, MD WSL (Ours), and ME- WSFS (Ours).

Figure 9. Comparison of the classification results of the different models on the FS-data.
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4.5. Comparison with State-of-the Art Methods

We compared several state-of-the-art approaches with our method. For a fair com-
parison, the data and training setups were kept the same. The numerical experimental
results for the fire dataset are summarized in Table 5, which involved the same experimen-
tal configurations.

Table 5. Comparison of our method with other methods using the FS-data.

Method mIOU(%) AP (%)

U-Net [26] 69.6 96.1
DeepLab v3+ [25] 67.4 98.4

Segmentation decision approach [62] 98.2
WSL (Ours) 60.5 97.9
WSFS (Ours) 68.8 98.6

FireDGWF (Ours) 70.2 99.6

Table 5 shows that the performance of region detection for DeepLabe V3+ is the worst
of the tested methods and 67.4% in mIOU. The WSL methods achieve at 60.5% in mIOU.
A small improvement of 8.3% is obtained by WSFS, due to RRS adopted by this method.
However, the best performance of region detection, which reaches 70.2% in mIOU, is
achieved by FireDGWF because the intersection between the detection regions obtained
with the two methods (WSFS and lightweight Faster R-CNN) corresponds to the results.

The U-Net-based segmentation decision network produces an AP of 96.1%. The
segmentation decision method based on DeepLab v3 + produces an average accuracy of
98.4%. Tabernik et al. [62] proposed a supervised 2-stage segmentation-based network
that was trained with pixel labels to improve its classification performance. The WSL
method obtains 97.9% in AP. Compared to these methods, the proposed method (WSFS)
achieves 98.6% in AP. Moreover, FireGDWF shows a better ability to discriminate between
fire-objects and non-fire objects, with an accuracy of 99.6% for 763 images from the FS-data.
These results show that multi models can improve the performance of the algorithms.

4.6. Result for Grading of Forest Fire and Smoke

To evaluate forest fire severity, we designed a 3-input/1-output fuzzy evaluation
system. These 3-inputs included the classification results, the segmentation region size,
and the location. The single output was the forest fire smoke level: level 0, level 1, . . . ,
level 5. In our fuzzy evaluation system, the membership function must be decided first,
which is similar to our previous work [58,59]. Once the membership degree of every input
has been determined, a set of rules, which are defined in the system, as shown in Table 6,
can be used to explain the evaluation results. Then, the detailed procedure for the example
using the fuzzy evaluation system to grade the forest fire smoke level can be provided.

Table 6. Examples of the knowledge rules.

Rule No Knowledge Rule

Rule1 If CT is H_fire and RS is Big and LT is Low, then Level = 0
Rule2 If CT is H_fire and RS is Big and LT is High, then Level = 1
Rule3 If CT is H_fire and RS is Middle and LT is Low, then Level = 1
Rule4 If CT is H_fire and RS is Middle and LT is Hight, then Level = 2
Rule5 If CT is H_fire and RS is Small and LT is Low, then Level = 2
Rule6 If CT is H_fire and RS is Small and LT is High, then Level = 1
Rule7 If CT is M_smoke and RS is Big and LT is Low, then Level = 2
Rule8 If CT is M_smoke and RS is Middle and LT is Low, then Level = 3
Rule9 If CT is M_smoke and RS is Small and LT is High, then Level = 3
Rule10 If CT is M_smoke and RS is Small and LT is Low, then Level = 4
Rule11 If CT is Norm, then Level = 5
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When the system was run at a point of CT = fire, RS = 21,845 (pixel number), and
LT = dry forest, and Rule 1 was activated (see Table 6), then, the result was put into the
implication process and used to determine the output fuzzy set. The result given by
the defuzzication process indicated that the output was Level = 0, as shown in Figure 10.
Thus, we used the fuzzy evaluation system to determine different scenes of forest fire
smoke, which could assess these fire smoke levels from level 1 to level 4. Level 5 indicates
non-fire/non-smoke. These processes are shown in Figure 10.

Figure 10. An example of grading forest fire smoke using the fuzzy evolution system.

Additionally, the response time to region detection of forest fire using our FireDGWF
was evaluated on FS-data. The experimental results are shown in Table 7. Our method,
FireDGWF, included 2 processes: detection and grading. The detecting time of FireDGWF
for an image is 0.128 s, which is the maximum time among the 3 methods, and the grading
time for an image is 0.023 s. Therefore, a total response time to region detection and grading
of forest fire is 0.151 s.

Table 7. Response time to detection and grading of forest fire using our method.

Method Detecting Time Grading Time

FireDGWF 0.128 s 0.023 s

4.7. Analysis and Discussion

Several experiments were conducted using our proposed approach, and its perfor-
mance was evaluated, indicating that our approach performed competitively for the region
detection and grading of forest fire and smoke. In the detection process, we proposed a
weakly supervised fine segmentation method to effectively detect fire regions in a coarse-
to-fine way, similar to a human-like recognition process. A two-stage weakly supervised
learning strategy consisting of a weakly supersized loss and a region-refining segmentation
algorithm was proposed to train the segmentation network. The negative and positive loss
allowed the segmentation network to identify fire areas that differed from the background
(forest) in training. Our method (WSFS) has achieved a better segmentation result, with a
68.8% mIOU. Experiments on the FS-data demonstrated that the region-refining segmenta-
tion algorithm obviously improved the performance of the segmentation network, without
increasing the inference time. To further improve segmentation performance, we combined
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the Lightweight Faster R-CNN with the model to obtain a small improvement of 8.3%, for
the mIOU values.

We also evaluated the decision network on the FS-data and compared it to state-of-
the-art CNN-based models. Our method has obtained a competitive performance in the
prediction of the category of an input image. This is because the RSAM module utilizes
the segmentation result of LS-Net as an attention mask to cause AD-Net to focus more on
object regions.

In the grading process, a 3-input and 1-out fuzzy system was developed to assess
the level of forest fire, with the classification result, the region detection results, and the
location as input values of the system.

The experimental results showed that multi models can improve the performance
of our algorithm in terms of the detection accuracy and segmentation accuracy. We syn-
thetically utilized three values: the classification result, the segmentation region, and the
location. These were fed into our designed fuzzy evaluation system to obtain the forest
fire smoke level, which could help humans to take proper precautionary measures in a
timely manner.

5. Conclusions

In this paper, we introduced a collaborative region detection and grading framework
for forest fire and smoke using a weakly supervised fine segmentation and a lightweight
Faster R-CNN. This framework can detect the region and grade of fire and smoke in forests.
To obtain the accurate region of fire and smoke, we propose a weakly supervised fire-
segmentation model, which is trained using only image-level labels. A distillation strategy
is used to reduce the complexity of the Faster R-CNN. Our proposed method has achieved
an excellent performance and outperformed state-of-the-art CNN-based models in terms
of detection accuracy (99.6%) and segmentation accuracy (70.2%). The final latency of
our proposed method is only 151ms, which shows an excellent balance between detection
performance and efficiency. Moreover, our fuzzy evaluation system can be used to assess
the forest fire smoke level in a timely manner.

In future works, we plan to study an attention mechanism to improve the weakly
supervised fine-segmentation method in the detection performance. To overcome the
insufficient training data in a real-world application, a data augmentation technique, which
is based on a Generative Adversarial Networks [63], will be introduced into our model.
Furthermore, a possible improvement to our method is the incorporation of Multi-scale
Adversarial Erase to substantially improve the detection rate. Additionally, we will work
on developing a forest fire and smoke assessment system for risk level, which can identify
different types, locations, sizes, and levels of fires or smoke. This system can track the
evolution, spread, and grade of forest fires and smoke.
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Abstract: Motor-manual operations are commonly implemented in the traditional and short rotation
forestry. Deep knowledge of their performance is needed for various strategic, tactical and operational
decisions that rely on large amounts of data. To overcome the limitations of traditional analytical
methods, Artificial Intelligence (AI) has been lately used to deal with various types of signals and
problems to be solved. However, the reliability of AI models depends largely on the quality of
the signals and on the sensing modalities used. Multimodal sensing was found to be suitable in
developing AI models able to learn time and location-related data dependencies. For many reasons,
such as the uncertainty of preserving the sensing location and the inter- and intra-variability of
operational conditions and work behavior, the approach is particularly useful for monitoring motor-
manual operations. The main aim of this study was to check if the use of acceleration data sensed at
two locations on a brush cutter could provide a robust AI model characterized by invariance to data
sensing location. As such, a Multi-Layer Perceptron (MLP) with backpropagation was developed
and used to learn and classify operational events from bimodally-collected acceleration data. The
data needed for training and testing was collected in the central part of Romania. Data collection
modalities were treated by fusion in the training dataset, then four single-modality testing datasets
were used to check the performance of the model on a binary classification problem. Fine tuning of
the regularization parameters (α term) has led to acceptable testing and generalization errors of the
model measured as the binary cross-entropy (log loss). Irrespective of the hyperparameters’ tunning
strategy, the classification accuracy (CA) was found to be very high, in many cases approaching
100%. However, the best models were those characterized by α set at 0.0001 and 0.1, for which the
CA in the test datasets ranged from 99.1% to 99.9% and from 99.5% to 99.9%, respectively. Hence,
data fusion in the training set was found to be a good strategy to build a robust model, able to deal
with data collected by single modalities. As such, the developed MLP model not only removes the
problem of sensor placement in such applications, but also automatically classifies the events in
the time domain, enabling the integration of data collection, handling and analysis in a simple less
resource-demanding workflow, and making it a feasible alternative to the traditional approach to
the problem.

Keywords: big data; automation; artificial intelligence; multi-modality; acceleration; classification;
events; performance; motor-manual felling; willow; Romania

1. Introduction

Short-rotation willow crops (SRWC) are seen nowadays as a valuable alternative
to produce renewable energy, contributing also to the rural development, job market
diversification, carbon sink, biodiversity and diversification of agricultural crops and bio-
products. They are commonly established on agricultural lands and share many features
with the traditional forestry, in particular the silvicultural practices [1]. Moreover, willow
was found to be suitable for other engineering purposes, commonly exhibiting features

199



Forests 2021, 12, 406

such as a rapid growth rate, high biomass production, increased coppicing ability and
tolerance to high planting densities [2].

When grown to produce biomass as a feedstock for the energy industry, one of the
final SRWC production steps consists of harvesting operations. Several fully-mechanized
operational systems were developed, tested and are currently in use for large-scale commer-
cial willow harvesting purposes [3,4]. Still, the increased costs associated with harvesting
operations [5] are seen as a limiting factor of profitability, which requires optimization [6].
While other operations which are common to SRWC cultivation can be done directly by
their owners using equipment and machines of general agricultural purpose, it has been
shown that, irrespective of the SRWC scale, the farmers cannot afford to own and operate
expensive harvesting equipment [3,5]. In many cases, the lack or the limited availability
of such equipment [7] has been tackled by the use of motor-manual means [8,9], which
seem to be more adapted to harvesting operations carried out on small and dispersed
plots [10], especially in those geographic regions in which the cost of the manual labor is
still affordable, and may compensate for lower productivities [11].

Irrespective of the harvesting system used, its optimization requires at least data on
production outputs and resources used (i.e., time, fuel, money) [12], and it is quite typical
to implement time studies to evaluate its operational performance [13] as a common input
for optimization. There are many examples, including those referenced in this paper, of
using time-and-motion studies to evaluate the performance of operations. Unfortunately,
most of the currently used methods to get time consumption data are resource inten-
sive [14], requiring qualified personnel and specific logistics to collect, process, analyze
and interpret it.

In relation to the use of motor-manual equipment to harvest SRWCs, some progress
has been made by the use of dataloggers equipped with acceleration sensors to automate
field data collection, which was then coupled with Global Positioning System’s (GPS) data
to infer the operational behavior in such operations [7,10]. In those studies, the analytical
procedures of accounting and categorizing the time consumption on operational tasks
were done by human intervention, requiring prior knowledge of the process mechanics
and sensors’ response and, more importantly, a hands-on approach to data processing,
summarization and categorization. To eliminate much of that effort, Artificial Intelligence
(AI) techniques have been lately used for a number of applications with excellent results
in the recognition and classification of operational time, based on signals produced by
various sensors, including accelerometers [15–18]. Nevertheless, the applicability of the
developed models stays well inside their intended application, mainly due to the labelling
outcomes, which are application-specific, and to the sensing modality which could produce
contrasting responses in magnitude, calling for the location preservation when using
unimodal sensing designs [17,18]. To this end, a sensing modality could be characterized
by the type of physical parameter measured by a sensor and by the location of sensing it
on a given study object. As such, multimodal sensing may involve the use of at least two
sensors measuring the same physical parameter at different locations or the use of at least
two sensors measuring different physical parameters at the same location.

Going back to the use of accelerometers to collect signals which may be useful for
operational activity recognition in motor-manual felling of willow, unimodal sensing
becomes important to save resources, and the use of a single sensor is desirable and
affordable. However, there are many possible locations in which an accelerometer could be
placed on a given tool, such as a brush cutter, making it likely to get signals characterized
by a high variability in magnitude due to the sensing location. In addition, there is a
high variability given by the operational conditions themselves, which may change even
in the same harvested plot, and by the operational behavior of the workers. In such
conditions, the models developed by training an AI algorithm need to have an acceptable
generalization ability, in such a way that at least the location of signal collection would
become irrelevant for a given classification algorithm. In our knowledge, a robust model
able to reliably deal with unimodally sensed acceleration signals, i.e., acceleration sensed
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at a single location on the tool irrespective of the location, was not studied so far, while
developing it from multimodally sensed data could help overcome the limitations stated
above; if such a model would prove to be reliable irrespective of the sensing location,
then it will contribute to resource saving while easing the data collection, handling and
analysis workflow.

The goal of this study was to develop a modality-invariant operational prediction
model with application in motor-manual felling of willow by brush cutters. The problem
was approached by the means of training and testing a Multi-Layer Perceptron (MLP) with
backpropagation on acceleration signals. Acknowledging that there could be many other
approaches to the problem, the choice of the MLP as a technique to be used, as well as of
the acceleration data as input signals, was mainly based on the author’s experience with
the MLP algorithms and the availability of acceleration signal data; in addition, the choice
was guided by the findings of recent work, repeatedly showing excellent results in task
recognition applications when using acceleration signals as inputs in the AI algorithms. By
a modality-invariant model we are referring to a model able to acceptably generalize from
any acceleration signal collected by the same sensor type, anywhere of an observed tool,
while preserving the highest possible classification performance and the lowest possible
generalization error.

2. Materials and Methods

2.1. Data Collection

2.1.1. Study Location and Crop Layout

The data used in this study were collected in the center of Romania, from three
locations (Table 1), where motor-manual willow felling operations were observed in the
Spring of 2017. The plots taken into study were located in an intra-mountainous depression
at an altitude of ca. 600 m a.s.l. The climate in the area is characterized by a strong
continentalism with warm summers and cold winters. All the plots (Poian 1, Poian 2
and Belani, Covasna County, Romania) were planted according to the European willow
planting layout, in which the planting is done in twin rows distanced at 75 cm, and each
twin row is distanced at 1.5 m from the next one; commonly, the distance between the
cuttings used for planting is of 60 cm [19].

Table 1. Locations of data collection and the summarized description of the datasets.

Location Dataset a Size b [s]
Date of

Collection
Coordinates

Poian 1
TRAIN_E 18,377 04/11/2017 46◦04.373′

N–26◦10.924′ E

TRAIN_S 18,377 04/11/2017 46◦04.373′

N–26◦10.924′ E

Poian 2
TEST_E1 26,493 02/27/2017 46◦04.354′

N–26◦10.904′ E

TEST_S1 22,885 02/27/2017 46◦04.354′

N–26◦10.904′ E

Belani
TEST_E2 11,859 03/02/2017 46◦03.362′

N–26◦11.208′ E

TEST_S2 9285 03/02/2017 46◦03.362′

N–26◦11.208′ E

TOTAL - 107,276 - -
Note: a TRAIN means that the dataset was used in the training phase of the MLP, TEST means that the dataset
was used in the testing phase of the MLP, E means that the data was collected by datalogger placement on the
tool’s engine, S means that the data was collected by the datalogger placement on the tool’s transmission shaft, 1
means that the dataset was the first of the same modality class, 2 means that the dataset was the second of the
same modality class; b size refers to the number of one-second sampled observations retained in the training and
testing datasets.
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Willow crops are becoming a common land use feature in the landscape of the study
area, though they are typically established on small and dispersed plots whose previous
use was agricultural [20]. In addition to the size and dispersion of the plots, the cultivation
practice in the area is strongly influenced by the available technology for planting, cutback
and harvesting operations, which are partly mechanized [7,9,10,19–21]; many of them, such
as harvesting, are relying to a great extent on motor-manual operations which are usually
done by the use of brush cutters [7,9,10]. This situation is often leading to practicing rota-
tions of 2–3 years, and typical for the area is that motor-manual willow felling operations
are done in the early spring. Most of the operations related to willow cultivation in the
area are done by employing local people on a daily basis.

2.1.2. Tool Description, Work Organization and Relevant Process Mechanics

The tool used for felling was a brush cutter made by Husqvarna (Model 545 RX,
Husqvarna AB, Stockholm, Sweden), featuring an engine output of 2.1 kW at 9000 rpm
and a transmission shaft that enables the connection and power transfer between the
engine and the cutting device (Figure 1); tools from this class are assumed to produce a
noise level of 100 db(A) [22]. Harvesting work is typically done by motor-manual felling
followed by manual bunching, transportation and chipping at a biomass terminal, or by
bunching and chipping on site [23]. Brushcutters are commonly used in the study area to
motor-manually fell the willow, being tools that can be adapted easily to a variety of jobs,
simply by changing their active cutting devices [22,24]; when used for willow felling, they
are usually equipped with steel saw blades (discs).

Figure 1. Work organization, tool description and instrumentation of data collection. Legend: (a)—the typical work
organization (1—bunch of stems to be felled, 2—bunches of felled stems, 3—wooden stick used to direct the felling,
4—throttling control, 5—engine, 6—transmission shaft, 7—steel blade, 8—triaxial accelerometer, 9—helmet equipped with a
sound pressure level datalogger), (b)—the general layout of the felling operations (example from Poian 1 location, close to
finishing the felling work in a plot), (c)—detail of the acceleration datalogger (8) placed on the shaft, (d)—details on the
instrumentation used to collect the data (8—triaxial accelerometers, 9—sound pressure level datalogger).

The felling work is commonly done by two workers (Figure 1) of which one is the
brush cutter operator who is in charge of the mechanical felling tasks and tool maintenance,
and the other one assists the felling by a wooden stick [7,9,10,19].
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While being rather simple, the organization of felling work is influenced by the
capability limits of the used tools, layout of the crops and weather conditions [7,19], and it
needs to be done with much attention and caution to ensure the safety of both workers. As
such, felling direction is commonly adopted toward the exterior of the crop, felling work is
progressing on a single row (one of the twins), and in such cases in which the length of the
crop is very long, transversal corridors are often practiced to shorten the distances covered
per turn, to be able to refuel and maintain the tool [19]. The assistant needs to place himself
at a considerable distance behind the feller and he interacts with the stems to be felled
only by the wooden stick, while the feller needs to be able to coordinate and control his
motions on very short trajectories. The relevant work elements which may occur in such
operations are the effective on-row felling, moving at the headlands or on a transversal
corridor to approach a new willow row at the opposite side of the crop, maintenance and
refueling, rest and meal breaks, as well as other kind of delays [7,9]. The distinctive feature
of these operations is that, excepting the felling, the rest of work elements are typically
characterized by engine non-use. Therefore, monitoring the engine working time makes
it possible to accurately monitor the main work time consumption, which stands for a
category of time in which the direct transformation of the work object takes place [13], and
which is also useful and important to account for the fuel intake as specific to motor-manual
operations [24,25].

Looking at a finer scale, however, the felling consists of worker’s advancement on the
row with various engine running regimes, combined with movements of the active cutting
device of the tool toward outside and inside the crop to make the cuts, which are likely to
produce variability in the responses given by the use of various sensors. Another relevant
issue is the placement location of the dataloggers. For instance, accelerometer dataloggers
could be placed at different locations on the engine block, as well as at different locations of
the transmission shaft, therefore making it possible to receive different magnitudes of the
acceleration during engine use; however, when the engine is switched off, the responses
collected by accelerometers placed at different locations of the tool could be similar.

In the study area, felling work is always done by workers having an extensive ex-
perience in SRWC felling operations, gained on already more than a decade of SRWC
management in Romania. Field data collection, which was done in 2017, was based on the
informed consent of the observed workers and of the SRWCs’ owner. They were informed
about the intended use of the data and agreed to be observed when performing their jobs.

2.1.3. Instrumentation

Two datalogger types were used to collect the field data used in this study. Accel-
eration response, as the main data stream used, was measured and recorded using two
Extech® VB300 triaxial dataloggers (Extech Instruments, FLIR Commercial Systems Inc.,
Nashua, NH, USA). Irrespective of the study location, the acceleration dataloggers were set
by the use of the dedicated software to collect data in the motion detection mode (threshold
of 1 g), at a sampling rate of one second. One of them was placed on the engine’s block and
the other one was placed on the transmission shaft, at locations that were chosen carefully
in such a way that they would not interfere with work safety. Both dataloggers were
reinforced on the tool using highly-resistant plastic straps and were checked for holding
before running the experiments and during the work breaks. An Extech® 407,760 sound
pressure level datalogger (Extech Instruments, FLIR Commercial Systems Inc., Nashua,
NH, USA) was used to collect additional data needed for labelling purposes. It was set
to continuously collect the sound pressure level on the dB(A) scale, at a sampling rate
of one second, and it was placed on the helmet worn by the brush cutter operator. The
main technical features of the used dataloggers are available on the producing company’s
website [26,27]. Figure 1 shows the approach used to equip the tool and the worker with
the used dataloggers.
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2.1.4. Datasets

Six acceleration datasets were collected in the three locations taken into study (Table 1)
and the intention was to get for each of them a time overlapping sound pressure level
dataset. However, due to a battery malfunction, sound pressure level data was lost in the
case of Belani location. By the construction and setup of the acceleration dataloggers, the
data is collected and stored as discrete triaxial (X, Y and Z) time-labelled responses; they
are further summarized in the form of vector magnitudes, also known as the Euclidian
Norm (EN), which is some sort of data fusion [28], and which is enabled by the dedicated
software. The EN, which is named by the dedicated software under the generic term of
“vector sum”, may be written as in Equation (1) and it allows for a first normalization of
the data, making it invariant to the axis movement. In fact, raw acceleration signals contain
movement, gravity and noise components [29], while the instruments used to collect them
respond well to vibration, a property which was used in this study.

Ai =
√

x2
i + y2

i + z2
i (1)

where Ai is a discrete value, in the form of Euclidian Norm (vector magnitude, vector
sum), computed for a given sampling rate (adopted to one second in this study), and xi, yi

and zi are the accelerometer’s raw responses on the axis X, Y and Z, respectively, for the
observation i.

Sound pressure level data was collected and outputted in a similar way, being time
and date labelled, and showing the sound pressure level measured in dB(A) at a sampling
rate set at one second. In addition, both dataloggers can output data in computer-friendly
formats such as the Microsoft Excel® (Microsoft, Redmond, WA, USA). CSV files, and both
of them provide data ID’s and some summary statistics placed at the beginning of each file.
Figures A1–A5 are showing the patterns of Ai in the datasets used for training and testing
of the MLP, emphasizing the amplitude and magnitude differences due to the location of
the datalogger and engine working regimes.

2.2. Data Preprocessing Workflow

2.2.1. Data Pairing, Segmentation and Labelling

To ease the effort of labelling the training data, as well as to compare the multimodal
responses collected by the two acceleration dataloggers placed on the same tool, data
pairing procedures were applied to the first two datasets (TRAIN_E and TRAIN_S) based
on their time labels. This procedure was necessary to be able to label both datasets at
once. Data pairing was done in Microsoft Excel®, and it accounted for those observations
which were present in both datasets and shared the same time label, an issue which was
computationally approached, assessed and solved using logical functions. For example, if
an observation from a given training dataset did not have had a corresponding time-labeled
observation in the other training dataset, then it was deleted. This process was also run
vice versa, until reaching a double set of observations sharing their time labels.

Labelling of the training datasets was done by considering the responses recorded
by the acceleration and sound pressure level dataloggers (Figure 2), based on known
experience on their responses in terms of magnitude. Two states were documented by
labelling and segmentation, namely the engine running (labelled in the database by the
string code ON) and the engine turned off (labelled in the database by the string code OFF).
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Figure 2. A sample from the acceleration and sound pressure level datasets used jointly to label the data. Note: for
convenience, the sound pressure level data was downscaled by a factor of 100 to help in data comparison and labelling tasks.
Legend: TRAIN_E stands for the training dataset collected by the placement of acceleration datalogger on the tool’s engine,
TRAIN_S stands for the training dataset collected by the placement of acceleration datalogger on the tool’s transmission
shaft, LABELLING stands for the sound pressure level data downscaled by a factor of 100; Events: 1—engine off and no
movement of the worker (labelled as OFF), 2—engine on and felling (labelled as ON), 3—engine on and not felling (labelled
as ON), 4—engine off and movement of the worker (labelled OFF), 5—data segments which were transient (inter-class
variability) between the two engine states (labelled as ON).

For instance, sound pressure levels close to those described by the manufacturer for
the operation of the tool (ca. 100 dB(A)) have pointed that the engine was on and throttled,
therefore indicating that the worker was engaged in the effective felling operations. Drops
in the magnitude of the sound pressure level (as shown in Figure 2 by the data labelled with
3), were considered to be the events in which the engine was on but no felling was done
(idle running); these events were labelled as ON. Moreover, acceleration responses in the
range of 1.1–3.0 g were compared to the data on sound pressure level, generally leading to
their classification as engine OFF events. Transient events (Figure 2, data labelled by 5) were
included in the engine working category as well. However, due to the acceleration data
collection mode (motion detection) and pairing procedures used, which have led to some
missing data, the sound pressure level dataset was paired by doing some adaptations in the
time domain such as removing some data or moving some data segments to pair them with
the acceleration data. This was done for approximately 10% of the joint dataset, then the
patterns generated by the magnitude of acceleration data were used for further labelling.

Based on the experience gained during the labelling and segmentation tasks done on
the training dataset, the distributions of data in specific patterns were used as a condition to
label the data in the rest of the datasets, which were used for MLP testing (Figures A2–A5).
Prior to the labelling and segmentation tasks, these datasets were preserved to their
original number of observations, as they were outputted by the acceleration dataloggers.
Therefore, the datasets shown in Figures A1–A5 contained the final number of one-second
observations as described in Table 1, and each observation contained in them was the
Euclidian Norm computed according to the Equation (1).
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2.2.2. Fusion of the Training Datasets

All the datasets used in this study were subjected to early data fusion by the computa-
tion of Euclidian Norm. However, to simultaneously capture both the local dependencies
over time and the spatial dependencies over modalities of collection, the approach was
similar to that described in [30], and consisted of fusing the training datasets by a procedure
referred as vertical stacking [28]. In particular, it was assumed that a more accurate data
representation in the trained model, which could be achieved by the inclusion of spatial
dependencies over the modalities of collection, could be important for the evaluation of
datasets coming from other experiments using a single modality for field data collection,
enhancing the trained model’s recognition capacity. In addition, the procedure was as-
sumed to improve the data representation in the trained model by actually doubling the
size of the training dataset.

Procedurally, data fusion followed a simple procedure, by keeping the dataset col-
lected on the engine as it was, and by merging the dataset collected on the transmission
shaft at the end of the first dataset, resulting in the fused dataset (Figure A1). Following
data merging, the ID’s of the observations were updated, and the resulting data vector was
used as input for data normalization.

2.2.3. Data Normalization

Data normalization is commonly done by transforming the original data, and it aims at
giving all the attributes an equal weight; in MLP applications with backpropagation it also
helps in speeding up the learning process [31]. A min-max normalization procedure was
used in this study, according to the Equation (2), which performs a linear transformation of
the data, outputting values in a new range (0, 1), while preserving the relationships among
the original data values [31]. Although there are many other procedures that may be used
to scale the data, the choice of this normalization procedure was based on its simplicity
and ease of use.

Anij = (Aij − Aminj)/(Amaxj − Aminj) (2)

where Anij is the normalized value of observation i coming from the dataset j (Anij can
takes values between 0 and 1, inclusively), Aij is the Euclidian Norm of the observation
i coming from the dataset j, Aminj is the minimum value of the Euclidian Norm coming
from the dataset j, Amaxj is the maximum value of the Euclidian Norm coming from the
dataset j.

The use of Equation (2) required the computation of the minimum and maximum
values of Ai in each dataset j (j = 5), then it was applied to all observations from each dataset,
using for this purpose the Microsoft Excel® software. The transformed data was saved as
new datasets, then it was used for training and testing purposes of the MLP model.

2.3. Setup of the MLP

2.3.1. Software Used and General Architecture of the MLP

The software used for training and testing of the MLP was the freely-available open-
source Orange Visual Programming Software (version 3.27.1) [32], which holds function-
alities of implementing a multi-layer perceptron with backpropagation. All the training
and testing tasks were run on a computer architecture that included the following features:
system type—Alienware 17 R3, processor—Intel® Core™ i7-6700 HQ CPU, 2.60 GHz,
2592 MHz, 4 cores, 8 Logical Processors, installed physical memory (RAM)—16 GB, operat-
ing system—Microsoft Windows 10 Home.

The size of the MLP was set in advance of the training and testing tasks to the highest
values of depth and width enabled by the software used, based on the author’s experience,
practical recommendations formulated by [33], and recent results showing the effect of
MLP’s architecture on the classification performance for similar equipment [16]. Three
hidden layers (depth) of 100 units each (width, as the number of neurons) were set for
the MLP’s architecture, and the number of iterations was set at 1,000,000. Training and
scoring were done by cross-validation using a stratified approach and a number of folds
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set at 20. The recommendations of [33], as well as the information available in the recent
literature, were used to choose the activation function and the optimization algorithm. One
of the most popular activation functions in the rectified linear unit function (ReLu), which
is supposed to provide high performances in solving complex, nonlinear problems [34,35],
and it was chosen for this study. In simple words, an activation function takes the weighted
inputs of a node (neuron), adds a bias and based on its result decides whether or not that
node should be activated (fired); typically, ReLu makes such decisions when the results are
positive. The optimization algorithm chosen for the MLP architecture was the stochastic
gradient descent-based optimizer (Adam), which is one of the recently developed and used
solvers due to its low training costs [36].

2.3.2. Tunning and Error Metric Used to Evaluate the Generalization Ability

A manual tuning approach was taken to check the training and testing performance
of the MLP, and it aimed at altering the α parameter of the regularization term (L2 penalty
regularization), by a trial-and-error approach. By doing so, the intention was to check what
regularization strategy would reduce the generalization error [33] in combination with
the architecture of the MLP and hyperparameters already set as described in Section 2.3.1.
In MPL applications, the regularization term helps in avoiding overfitting by penalizing
weights with large magnitudes; α is a parameter of the regularization term, whose increased
values may fix high variance while decreased values may fix high bias [33,37]. Values
of the α parameter were set successively at 0.0001, 0.001, 0.01, 0.1, 1 and 10, then MLPs
were trained and tested over all four testing datasets, accounting each time for the training
and generalization error. The error metric chosen for the evaluation of generalization
ability was the binary cross-entropy (Equation (3)), which is commonly used in binary
classification problems. A detailed worked example can be found at [38]. Its calculation is
enabled by the used software and it works based on predicted probabilities assigned to
the observations.

Hp(q) = − 1
N

N

∑
i = 1

li × log(p(li)) + (1− li) × log(1− p(li)) (3)

where Hp(q) is the binary cross-entropy (log loss) function, N is the number of observations
in a given dataset, li is the label of a given observation i (i = 0, 1), and p(li) is the predicted
probability of an observation being ON for all the observations (N). Note: the label ON
received the value of 1 and the label OFF received the value of 0.

For instance, if the label of an observation is ON, therefore li = 1, then Equation (3)
will add log (p(li)) to the loss, which is the probability of that instance of being ON; if the
label of an observation is OFF, therefore li = 0, then it will add log (1−p(li)) to the loss,
which is the probability of that instance of being OFF. Training and testing results of the
binary cross-entropy function were used in conjunction to choose the best model in terms
of training and testing generalization capacity. Since training and testing was run on a
number of 5 models (1 for training and 4 for testing), the values of binary cross-entropy
were plotted against those of the tuned α parameter. Then, minimum and maximum
values of each repetition done for each α value were computed, and the range found at the
minimum value was used as a criterion to keep the best performing models.

2.3.3. Classification Performance Metrics

In addition to the log loss function, the software used for training and testing enables
the computation of the training and testing time, area under curve (AUC), classification
accuracy (CA), F1 metric, precision (PREC), recall (REC) and specificity (SPEC). The mean-
ing and the possibility of use for these metrics is comprehensibly described in papers such
as [39,40], therefore their complete definitions and formulae are not given herein. While
all of these metrics were computed at the class (ON, OFF) and overall (dataset) level, in
both, training and testing phase, the focus was on the classification accuracy (CA) and
recall (REC) metrics; in binary classification problems, the first one stands for the number
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of correctly classified true positives and negatives of the total number of observations in a
dataset, and the second one stands for the number of true positives classified as such of the
total number of positives in a given dataset [39,40].

2.4. Evaluation

The best performing models in terms of error rate minimization and generalization
ability were retained as final and selected for an additional evaluation. The additional
evaluation consisted of a more detailed description of the misclassifications in the training
and testing datasets as well as of developing plots to depict the predicted probabilities of the
data. Misclassification issues were addressed by exporting the outputs of the training and
testing phases into Microsoft Excel® files, followed by the application of logical functions to
extract the number of correctly classified datapoints (true positives—TP and true negatives—
TN), false positives (FP) and false negatives (FN), based on a paired comparison of the
ground truth against the predictions made on the training and testing datasets. This new
data was summarized in the form of tables and plotted as graphs in the time domain, in the
form of Euclidian Norm (Equation (1)) against misclassifications. Probability plots were
developed by mapping the original data on Euclidian Norms (Equation (1)) against their
predicted probability of falling in either the ON or OFF classes.

3. Results

3.1. Description of the Labelled Datasets

The datasets used in this study accounted for a cumulated size of 107,276 s (ca. 30 h,
Table 2) of which the fused dataset used for training (TRAIN) represented ca. 34%. Datasets
used for testing accounted (in their order shown in Table 2), for ca. 25%, 21%, 11% and 9%,
respectively.

Table 2. Statistics of the used datasets.

Location Dataset a Size b [s]
Class Size [s] Class Share [%]

ON OFF ON OFF

Poian 1
TRAIN_E 18,377 13,980 4487 76.07 23.93
TRAIN_S 18,377 13,980 4487 76.07 23.93

TRAIN 36,754 27,960 8794 76.07 23.93

Poian 2
TEST_E1 26,493 20,579 5914 77.68 22.32
TEST_S1 22,885 20,404 2481 89.16 10.84

Belani
TEST_E2 11,859 6806 5053 57.39 42.61
TEST_S2 9285 5886 3399 63.39 36.61

TOTAL - 107,276 c 81,635 c 25,641 c - -

Note: a meaning is similar to that from Table 1; b size refers to the number of one-second sampled observations
retained in the training and testing datasets; c calculated on the basis of the fused training dataset (TRAIN) and
testing (TEST_E1, TEST_S1, TEST_E2, TEST_S2) datasets.

Excepting the dataset TEST_E2, data distribution on classes was found to preserve
different degrees of class imbalance. Irrespective of the dataset, more than 57% of the data
was labelled as ON, a class that accounted for ca. 90% of the TEST_S1 dataset’s size. While
from the perspective of developing robust MLPs, this is a common issue to be solved [28],
from an operational point of view this kind of data distributions emulates very well the
practice of motor-manual willow felling, where the effective felling itself dominates.

3.2. Model Selection and Classification Performance

Values returned by the binary cross-entropy error as a function of the regularization
parameter’s tunning are shown in Figure 3. Irrespective of the tunning strategy used, or the
dataset in question, up to a value of α set at 1, the training and generalization errors were
found to be less than 0.074 (7.4%, TEST_E2), showing, in general, a good generalization
ability of the trained model. For values of α set from 0.0001 to 0.1, both the training
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(TRAIN) and generalization (TEST_E1, TEST_S1, TEST_E2, TEST_S2) errors were low, with
the lowest ones found for α = 0.0001 and α = 0.1. Beyond this threshold (α = 0.1) the error
started to noticeably increase at least for one of the testing datasets (Figure 3, TEST_E2).
The lowest differences in terms of errors were found in the case of α = 0.0001 and α = 0.1
irrespective of the values compared (training and testing data or just testing data). For
instance, when setting α at 0.0001, the value of the log loss in the case of training data
was of 0.005 (0.5%) and it corresponded to a maximum value of 0.036 (3.6%) found in
the TEST_E2 dataset. The figures were similar for α = 0.1, for which the error found for
the training data was of 0.006 (0.6%), which corresponded to a maximum value of 0.037
(3.7%), found in the same testing dataset (TEST_E2). In term of errors, TRAIN and TEST_E1
datasets returned similar values for the range set for α between 0.0001 and 0.1. For the
same range set for α, TEST_S1 and TEST_S2 datasets have returned a similar pattern in
terms of errors.

Figure 3. Log loss (binary cross-entropy) of the training and testing data as a function of the regularization parameter
term (α). Legend: TRAIN—fused training dataset, TEST_E1 and TEST_E2—testing datasets collected on the tool’s engine,
TEST_S1 and TEST_S2—testing datasets collected on the tools’ transmission shaft. Note: Values shown are computed by
using Equation (3), based on the normalized data (Equation (2)); models retained for further analysis are bordered by green
dashed lines.

Figure 4 is showing a comparison of the classification accuracy (CA) metric for the
training and testing datasets, reflecting the effect that the value set for the α term had on
this metric. In the training phase, all of the attempts to tune the regularization parameter
term (α) returned very high classification accuracies. However, the classification accuracy
of the training phase was preserved at the highest values (0.999, 99.9%) only in the range
set for α between 0.0001 to 0.01, and it started to decrease as the regularization parameter
approached the value set at 10. Moreover, the classification performance of the testing
datasets was preserved to its highest values for α set in between 0.0001 and 0.01. However,
the models selected for further assessment were those having this parameter set at 0.0001
and 0.1, based on the results returned by the log loss function, which are shown in Figure 3.
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Figure 4. Classification accuracy scored at the training (TRAIN) and testing (TEST_E1, TEST_S1, TEST_E2, TEST_S2) phases,
as a function of the value of the regularization parameter (α).

Tables A1–A3 are showing the detailed classification performance metrics at the overall
(dataset) level, as well as on classes (ON, OFF). Irrespective of the class, the minimum
values of classification accuracy (CA) metric were of 0.944 (94%), indicating a high share of
correct predictions for the worst prediction case. The minimum values of the F1 metric,
which stands for the harmonic mean of precision (PREC) and recall (REC), were of 0.944
(94%), 0.948 (95%) and 0.938 (94%) for the overall, ON and OFF data. In the same order,
the minimum values of classification precision (PREC) and recall (REC) were of 0.950
(95%), 0.988 (99%), 0.884 (88%) and of 0.903 (90%), 0.903 (90%) and 0.988 (99%), respectively,
where precision stands for the fraction of true positives from the total of positives (TP
and FP) and recall stands for the fraction of correctly classified true positives from the
total positives. Accordingly, these metrics returned high values for the worst prediction
cases, with evident differences as a result of the regularization parameter tunning. Training
time of the MLP varied in between ca. 261 and 482 s, and it was of ca. 261 and 443 s for
the models trained for α = 0.0001 and 0.1, respectively. A more detailed comparison of
the classification accuracy for the former models is given in Table 3, showing some of the
highest values of the CA among the set of regularization terms used.

Table 3. Classification accuracy of the selected models.

Class
TRAIN TEST_E1 TEST_S1 TEST_E2 TEST_S2

α = 0.0001 α = 0.1 α = 0.0001 α = 0.1 α = 0.0001 α = 0.1 α = 0.0001 α = 0.1 α = 0.0001 α = 0.1

ON 0.999 0.998 0.999 0.999 0.996 0.995 0.994 0.994 0.991 0.995
OFF 0.999 0.998 0.999 0.999 0.996 0.995 0.994 0.994 0.991 0.995

OVERALL 0.999 0.998 0.999 0.999 0.996 0.995 0.994 0.994 0.991 0.995

Excepting the TEST_S2 dataset, no significant differences were found in terms of
classification accuracy as an effect of tuning the regularization parameter. In addition, clas-
sification performance was found to be very high in the case of most of the testing datasets,
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and in terms of classification accuracy (CA), its values ranged from 99.1% (TEST_S2,
α = 0.0001) to 99.9% (TEST_E1), proving a high generalization ability of the trained models.

3.3. Missclassification and Probability Plots

The correctly classified observations in the training dataset (TRAIN, Table 4) were
close in terms of relative frequency. In absolute numbers, however, the model using a
regularization term set at 0.1 misclassified more (25 observations) compared to that of α set
at 0.0001. When checked for the testing datasets (TEST_E1, TEST_S1, TEST_E2, Table 4), the
number of misclassifications was relatively tied in relation to the regularization parameter
term used, excepting the last testing dataset (TEST_S2, Table 4) which returned a better
performance for α set at 0.1. Figure 5 is giving a representation of misclassified data
points in the training and testing datasets for a regularization parameter term set at 0.0001.
Irrespective of the dataset, the misclassified datapoints shared a common feature, namely
their location in terms of magnitude in the transient data segments characterizing inter-
class variability. These segments were those mostly identified for operational events such
as turning on or off the tool’s engine, and which were formally included in the ON class.
However, no attempts were taken to separate another class given the results obtained on
classification performance and error metrics (Figures 3 and 4, Tables 3 and 4), which were
considered to be acceptable. In addition, the number of observations which were found to
be misclassified due to their belonging to these events is typically low in applications such
as that studied herein (Table 4).

Table 4. Descriptive statistics of misclassifications.

Regularization
Term

Dataset a Size b [s]
Correctly Classified

Misclassified as

False Positives False Negatives

N Share (%) N Share (%) N Share (%)

α = 0.0001

TRAIN 36,754 36,711 99.88 28 0.08 15 0.04
TEST_E1 26,493 26,465 99.89 2 0.01 26 0.10
TEST_S1 22,885 22,795 99.61 40 0.18 50 0.22
TEST_E2 11,859 11,788 99.40 15 0.13 56 0.47
TEST_S2 9285 9202 99.11 73 0.78 10 0.11
TOTAL 107,276 - - - - - -

α = 0.1

TRAIN 36,754 36,686 99.82 23 0.06 45 0.12
TEST_E1 26,493 26,469 99.90 12 0.05 12 0.05
TEST_S1 22,885 22,787 99.57 21 0.09 77 0.34
TEST_E2 11,859 11,784 99.37 8 0.07 67 0.56
TEST_S2 9285 9237 99.48 26 0.28 22 0.24
TOTAL 107,276 - - - - - -

Note: a meaning is similar to that from Table 1; b size refers to the number of one-second sampled observations retained in the training and
testing datasets.
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Figure 5. Distribution of misclassifications in the training (TRAIN) and testing (TEST_E1, TEST_S1, TEST_E2, TEST_S2)
datasets for a regularization term (α) set at 0.0001. Legend: green points stand for the Euclidian Norm (EN); red lines stand
for correctly classified datapoints when drawn horizontally at an EN of 0, and for misclassified datapoints when drawn
vertically. Note: for convenience the datasets were merged in their order of analysis.

Figure 6 is showing a selection of predicted probability plots in a comparative ap-
proach. The data shown stands for the dataset used for training (TRAIN), as well as for
datasets TEST_E2 and TEST_S1 used for testing. It compares the predicted probabilities of
the datapoints from the abovementioned datasets of belonging to the classes ON and OFF,
respectively, against the values of those datapoints computed according to the Equation (1).

For a value of the regularization parameter term set at 0.0001, the minimum values
of the Euclidian Norm found to be predicted as ON were close to 3 g in all the datasets
(detailed statistics are not shown herein, and Figure 6 shows only a selection of predicted
probability plots). Accordingly, the maximum values of the Euclidian Norm found to be
predicted as OFF were close to 3 g in most of the datasets. In comparison, for a value
of the regularization parameter term set at 0.1, the minimum and maximum threshold
values (as described above) of the Euclidian Norm were close to 4 g in most of the datasets.
These statistics can be followed quite easy in Figure 6, where in the left panels (α = 0.0001)
the predicted probability data is split for a probability set at 0.5 by a value close to 3.
Accordingly, the left panels of the figure (α = 0. 1) split the predicted probability data, at
the same probability threshold (0.5), by a value of the Euclidian Norm close to 4 g.
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left figure panels show the data for α = 0.0001 and the right figure panels show the data for α = 0.1.

α = 0.0001

α = 0. 1

Figure 6. Selected plots showing the predicted classification probability. Legend: P(OFF), shown in red, stands for the
predicted probabilities of the datapoints being OFF and P(ON), shown in green, stands for the predicted probabilities of the
datapoints being ON. Note: (a,b)—predicted classification probability for the TRAIN dataset; (c,d)—predicted classification
probability for the TEST_E2 dataset; (e,f)—predicted classification probability for the TEST_S1 dataset; left figure panels
show the data for α = 0.0001 and the right figure panels show the data for α = 0.1.
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4. Discussion

Monitoring the operational performance is one of the common ways to get the data
needed for sound decisions on running and improving the way that various businesses
work. It is already a fact that many manufacturing industries are currently collecting
sensor-based data to improve their operations and to respond by informed decisions
to various production anomalies and problems [41], enabling them to be more compet-
itive, responsive and resilient. In forest and SRWC operations, getting monitoring data
was traditionally based on observing workers, tools and machines by time-and-motion
studies [12–14], which have evolved from pen-and-paper to various sensing-based tech-
niques; the latter are often implementing an external rather than a built-in sensor system
e.g., [7,10,15,17,18,20,23,42–46] mainly due to their purpose for collecting such data, which
was often purely scientific. Although the modern machines may incorporate production
monitoring systems that may work in real time, there are still few options to collect and
handle such data for hand-operated tools. Recent studies have shown that the accelera-
tion sensors may be successfully used to collect long term operational monitoring data
e.g., [7,10,16,17,23,43,45,47] including by the use of platforms such as the smartphones [15].
In many cases, however, such data comes as modality-variant, unannotated sets, requir-
ing significant resources to process and analyze it [7,10,47]. In this regard, the merit of
this study is that it developed data collection invariant models able to automatically and
accurately classify, analyze and interpret signals collected by triaxial accelerometers, en-
abling the possibility to extend their applicability to new coming datasets. As such, the
implementation of MLP can serve to automatically classify new data recorded by triaxial
accelerometers, irrespective of the datalogger placement on the tool.

One of the relevant issues for discussion is the sensing modality itself. Dealing
with sensing modalities is not a new approach brought by this paper as it has been dis-
cussed [28] and used by other studies making use of sensors to measure various physical
variables [15,17,30,47,48]. However, as there is no certainty that in follow-up field data
collection activities the acceleration dataloggers will be placed at the same location each
time, the developed models need to produce classifications that are invariant to such issues.
By fusing the Euclidian Norm data collected on two of the most accessible parts of the tool,
this study has facilitated the attempt of making the models invariant to the data sensing
location. This is proven by the results obtained on the testing datasets, which returned in
all the cases excellent classification results (Tables A1–A3), irrespective of the datalogger
placement, operational variability or the individual handling of the tool. Moreover, the
developed models were found to deal very well with the intra-class variability of the
Euclidian Norm data (Figure 3, events labelled with 2 and 3 for a single sensing modality:
engine (TRAIN_E) or transmission shaft (TRAIN_S)), which was mostly generated by the
variation of operational behavior. As a fact, intra-class variability may be related to and
generated by the same or more individuals performing differently something in a given
activity [49]. In this study, intra-class variability was the effect of operational behavior
in relation to the crop layout, some portions requiring walking with engine in the idle
running, as well as the effect of other issues such as changes in the operational behavior
for similar operational conditions. For a comparison, the reader may consult, for instance,
Figures A2 and A4. However, a speculation that could be raised here is that the use of
vibration data sensed by a direct contact with the tool has more potential in generating
more clearly separable events; hence, it could stand for a good approach to eliminate much
of the intra-class variability which could be generated by different persons carrying on
the same task. Due to the vibration characteristics of the tools equipped with two-stroke
engines, the models developed and tested in this study might work well also on data
collected by sensor placement on the chainsaws to distinguish between engine working
(ON) and non-working states (OFF). For instance, the work of [16] has shown a similar data
pattern and vibration magnitudes for engine working states. However, further studies are
needed to check if the models would work on tools from other classes that are characterized
by contrasting constructive concepts.
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Class imbalance [28,49] and inter-class similarity [49] are common issues causing
classification problems in various applications of the human activity recognition. On
the one hand, class imbalance biases the prediction of conventional models toward the
classes holding the majority of data [28]. On the other hand, experiments that are purely
observational hold few if no ways to address this challenge [12,14], as the occurrence of
the datapoints in given classes is imposed by the operational conditions. Class imbalance
was a defining feature of the datasets used in this study, which have shown a data majority
attributed to the ON class (Table 2). Given the results of classification performance, however,
it seems that this characteristic had small effects on the datasets if compared, for instance,
to inter-class similarity (transient events such as turning on and of the engine), which
resulted in some misclassifications (Table 4, Figures 5 and 6).

Classification performance of the models was found to be very high, while keeping the
error rates at a low level in both the training and testing datasets. For instance, classification
accuracy was higher than 99% irrespective of the explored dataset, a value that is frequently
termed as being very good [40]. However, there was a tradeoff between achieving high
classification performances and keeping the generalization errors low, which in this study
was evaluated by a trial-and-error approach which tuned the regularization parameter and
lead to a selection of two final best-performing models. The final models (for α set at 0.0001
and 0.1, respectively), which were retained based on their lowest generalization errors,
shared similar classification accuracies, excepting that of the TEST_S2 dataset, a case in
which the model trained for α = 0.1 performed better. Given the similarity of classification
accuracy for the rest of comparisons (Table 3), this outcome could be attributed to the
functions and decision boundaries learned by the MLP model.

In addition to the hyperparameters’ tuning, classification performance is affected
by the architecture of the MLP (particularly the size) but also by the sensing modalities.
Most often, the size of the MLP is selected based on rules of thumb [50,51]. However,
the work of [16] has shown how an increasing depth (number of hidden layers) and
width (number of neurons in a hidden layer) of the MLP may output increasingly accurate
classification results for a case study run on triaxial acceleration data collected on a chainsaw.
Based on that, as well as on the recommendations of [33], the size of the MLP was set
to the maximum allowed by the used software. Sensing by two or more modalities may
increase the classification performance. For instance, the work of [15] has found that the
use of sound in addition to acceleration and gyroscope-collected data contributed to the
performance increment of a Random Forest algorithm by decreasing the classification
errors, while the work of [17] has found a better classification performance when fusing
the data on acceleration and sound pressure level by horizontal staking before feeding it
into MLPs, concluding that the preservation of sensing location may be of high importance
in developing more accurate classification models. By comparison, this study removes the
problem of sensing location by training the MLPs on dual-sensed signals collected at two
locations on the tool. While further studies would be needed to check it, by its specific
learning characteristics, the developed MLP could be invariant to the sampling rate of new
coming data, because it makes its predictions based on the functions learned and not based
on the sampling rate characteristics.

Collecting, processing, analyzing and interpreting large amounts of data is one of
the approaches taken today to better understand ecological, social and technical systems,
enabling a better decision making based on deeply informed grounds. There are several
approaches, techniques and technologies to the problem which have already been de-
scribed as being opportune for the general forestry [52]. Operational monitoring of SRWCs
may benefit from sensor-based data collection approaches coupled with the techniques of
artificial intelligence by removing the human error and the effort associated to the tradi-
tional observation [53,54]. Moreover, approaches such that described in this study could be
used to prevent the safety issues associated with collecting data near dangerous machines
and tools or in difficult outdoor conditions [12], being also less intrusive in applications
that aim at observing people at work. At the time of purchasing the dataloggers used in
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this study, they were considered to be very small and useful for operational monitoring
of motor-manual operations [47,48]. However, the technology of producing affordable
miniaturized sensors in ongoing and had a significant progress, since smaller sensors are
already released on the market, facilitating the transition to sensor-based operational moni-
toring. This progress has been reflected positively in various forestry applications requiring
close-range sensing [55], and there is a lot of unexplored potential for such techniques both
in forest and in WSRC operations.

There are two main limitations of this study. The first one is related to the MLP’s
misclassifications which were mainly found for those datapoints characterizing the so-
called transient events of turning on and off the tool’s engine (Table 4, Figure 5). The
second one is related to the fact that in this study the data was segmented only in two
classes, therefore the engine idle time was included in the same class as the effective willow
felling time. Both of these problems may be easily solved by adding more context by the
use of GPS units, an approach that has shown good results in previous studies on the
topic [7,10]. In addition, in the phase of data interpretation, one can treat misclassifications
as non-felling time having in mind the knowledge gained by this study. However, further
studies are needed to evaluate whether adding primary and derived GPS location data into
the MLP would help in designing applications able to look more deeply into the underlying
process of willow felling operations. For instance, GPS coordinates and speed were used
to infer the location and operational behavior of a feller by a traditional human-assisted
classification approach [7,10] and they could provide additional context for the design of a
multiclass MLP.

5. Conclusions

For a binary classification problem which emulates the most important operational
events in SRWCs’ motor-manual felling by brush cutters, the developed MLPs have re-
turned high classification accuracies (99.1% to 99.9%) which were invariant to the sensing
modality judged by the sensors’ location. While the study has addressed hyperparameter
tunning by the modification of the regularization parameter term, two final models were
retained as being able to (i) provide high classification accuracies, (ii) generalize well on
the testing datasets collected by single modalities and (iii) retain low errors in both, the
training and testing phases. Given the obtained results, the developed models are assumed
to be invariant to the new coming data, making them useful in classification applications
and enabling the automation of most of the workflow typically implemented to collect,
process, analyze and interpret large amounts of data. Further studies could bring new
interesting and valuable insights if focused on evaluating the classification performance
by the possibility of adding more context to the developed MLPs. This could be achieved
by fusing the triaxial acceleration data with that collected by miniaturized GPS units to be
able to classify and describe in more depth the operational tasks.
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Appendix A

Figure A1. Description of the dataset used for the training phase of the MLPs. Legend: (a) training dataset before fusion
showing the effect of modality on the acceleration’s (A) magnitude; (b) training dataset after data fusion: left—data collected
on the tool’s engine (TRAIN_E), right—data collected on the tool’s transmission shaft (TRAIN_S). Note: in both figure
panels data is given as the Euclidian Norm of acceleration responses (Equation (1)) in the time domain. Conventionally, a
value set at 0 (A = 0) indicates the labels and events documented as OFF, while a value set at 1 (A = 1) indicates the labels
and events documented as ON.
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Figure A2. Description of datasets used in the testing phase of the MLPs: TEST_E1. Note: conventionally, a value set at 0
(A = 0) indicates the events documented as OFF, while a value set at 1 (A = 1) indicates the events documented as ON.

Figure A3. Description of datasets used in the testing phase of the MLPs: TEST_S1. Note: conventionally, a value set at 0
(A = 0) indicates the events documented as OFF, while a value set at 1 (A = 1) indicates the events documented as ON.
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Figure A4. Description of datasets used in the testing phase of the MLPs: TEST_E2. Note: conventionally, a value set at 0
(A = 0) indicates the events documented as OFF, while a value set at 1 (A = 1) indicates the events documented as ON.

Figure A5. Description of datasets used in the testing phase of the MLPs: TEST_S2. Note: conventionally, a value set at 0
(A = 0) indicates the events documented as OFF, while a value set at 1 (A = 1) indicates the events documented as ON.
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Table A1. Classification performance metrics of the training and testing datasets.

Regularization
Parameter

(Training Time)
Dataset

Area under
Curve (AUC)

Classification
Accuracy (CA)

F1
Precision
(PREC)

Recall (REC)
Specificity

(SPEC)

α = 0.0001
(261 s) a

TRAIN 1.000 0.999 0.999 0.999 0.999 0.997
TEST_E1 1.000 0.999 0.999 0.999 0.999 0.996
TEST_S1 1.000 0.996 0.996 0.996 0.996 0.989
TEST_E2 0.999 0.994 0.994 0.994 0.994 0.995
TEST_S2 0.999 0.991 0.991 0.991 0.991 0.986

α = 0.001
(326 s)

TRAIN 1.000 0.999 0.999 0.999 0.999 0.998
TEST_E1 1.000 0.999 0.999 0.999 0.999 0.997
TEST_S1 1.000 0.996 0.996 0.996 0.996 0.992
TEST_E2 0.999 0.994 0.994 0.994 0.994 0.995
TEST_S2 0.999 0.995 0.995 0.995 0.995 0.993

α = 0.01
(480 s)

TRAIN 1.000 0.999 0.999 0.999 0.999 0.998
TEST_E1 1.000 0.999 0.999 0.999 0.999 0.997
TEST_S1 1.000 0.996 0.996 0.996 0.996 0.992
TEST_E2 0.999 0.994 0.994 0.994 0.994 0.995
TEST_S2 0.999 0.995 0.995 0.995 0.995 0.994

α = 0.1
(443 s) a

TRAIN 1.000 0.998 0.998 0.998 0.998 0.998
TEST_E1 1.000 0.999 0.999 0.999 0.999 0.998
TEST_S1 1.000 0.995 0.995 0.995 0.995 0.992
TEST_E2 0.999 0.994 0.994 0.994 0.994 0.995
TEST_S2 0.999 0.995 0.995 0.995 0.995 0.994

α = 1
(482 s)

TRAIN 1.000 0.997 0.997 0.997 0.997 0.998
TEST_E1 1.000 0.994 0.994 0.994 0.994 0.997
TEST_S1 1.000 0.994 0.994 0.995 0.994 0.994
TEST_E2 0.999 0.974 0.974 0.975 0.974 0.980
TEST_S2 0.999 0.994 0.994 0.994 0.994 0.994

α = 10
(269 s)

TRAIN 1.000 0.994 0.994 0.994 0.994 0.998
TEST_E1 1.000 0.990 0.990 0.991 0.990 0.996
TEST_S1 1.000 0.994 0.994 0.994 0.994 0.995
TEST_E2 0.999 0.944 0.944 0.950 0.944 0.958
TEST_S2 0.999 0.993 0.993 0.993 0.993 0.995

Note: a regularization terms which returned the lowest log losses.
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Table A2. Classification performance metrics of the training and testing datasets for ON events.

Regularization
Parameter

(Training Time)
Dataset

Area under
Curve (AUC)

Classification
Accuracy (CA)

F1
Precision
(PREC)

Recall (REC)
Specificity

(SPEC)

α = 0.0001
(261 s) a

TRAIN 1.000 0.999 0.999 0.999 0.999 0.997
TEST_E1 1.000 0.999 0.999 0.998 1.000 0.994
TEST_S1 1.000 0.996 0.998 0.999 0.997 0.988
TEST_E2 0.999 0.994 0.995 0.997 0.992 0.996
TEST_S2 0.999 0.991 0.993 0.988 0.998 0.979

α = 0.001
(326 s)

TRAIN 1.000 0.999 0.999 0.999 0.999 0.997
TEST_E1 1.000 0.999 0.999 0.999 1.000 0.996
TEST_S1 1.000 0.996 0.998 0.999 0.996 0.992
TEST_E2 0.999 0.994 0.995 0.998 0.992 0.998
TEST_S2 0.999 0.995 0.996 0.995 0.997 0.991

α = 0.01
(480 s)

TRAIN 1.000 0.999 0.999 0.999 0.999 0.997
TEST_E1 1.000 0.999 0.999 0.999 1.000 0.996
TEST_S1 1.000 0.996 0.997 0.999 0.996 0.992
TEST_E2 0.999 0.994 0.995 0.998 0.992 0.998
TEST_S2 0.999 0.995 0.996 0.995 0.996 0.992

α = 0.1
(443 s) a

TRAIN 1.000 0.998 0.999 0.999 0.998 0.997
TEST_E1 1.000 0.999 0.999 0.999 1.000 0.997
TEST_S1 1.000 0.995 0.997 0.999 0.996 0.992
TEST_E2 0.999 0.994 0.995 0.999 0.991 0.998
TEST_S2 0.999 0.995 0.996 0.996 0.996 0.994

α = 1
(482 s)

TRAIN 1.000 0.997 0.998 1.000 0.996 0.999
TEST_E1 1.000 0.994 0.996 1.000 0.993 0.998
TEST_S1 1.000 0.994 0.997 0.999 0.994 0.994
TEST_E2 0.999 0.974 0.997 0.999 0.956 0.999
TEST_S2 0.999 0.994 0.995 0.997 0.993 0.995

α = 10
(269 s)

TRAIN 1.000 0.994 0.996 1.000 0.993 0.999
TEST_E1 1.000 0.990 0.994 1.000 0.988 0.999
TEST_S1 1.000 0.994 0.997 0.999 0.994 0.996
TEST_E2 0.999 0.944 0.948 0.999 0.903 0.999
TEST_S2 0.999 0.993 0.995 0.998 0.992 0.996

Note: a regularization terms which returned the lowest log losses.
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Table A3. Classification performance metrics of the training and testing datasets for OFF events.

Regularization
Parameter

(Training Time)
Dataset

Area under
Curve (AUC)

Classification
Accuracy (CA)

F1
Precision
(PREC)

Recall (REC)
Specificity

(SPEC)

α = 0.0001
(261 s) a

TRAIN 1.000 0.999 0.998 0.998 0.997 0.999
TEST_E1 1.000 0.999 0.997 1.000 0.994 1.000
TEST_S1 1.000 0.996 0.982 0.976 0.988 0.997
TEST_E2 0.999 0.994 0.993 0.989 0.996 0.992
TEST_S2 0.999 0.991 0.988 0.997 0.979 0.998

α = 0.001
(326 s)

TRAIN 1.000 0.999 0.997 0.997 0.997 0.999
TEST_E1 1.000 0.999 0.998 1.000 0.996 1.000
TEST_S1 1.000 0.996 0.980 0.970 0.992 0.996
TEST_E2 0.999 0.994 0.993 0.989 0.998 0.992
TEST_S2 0.999 0.995 0.993 0.995 0.991 0.997

α = 0.01
(480 s)

TRAIN 1.000 0.999 0.998 0.998 0.997 0.999
TEST_E1 1.000 0.999 0.998 0.999 0.996 1.000
TEST_S1 1.000 0.996 0.980 0.968 0.992 0.996
TEST_E2 0.999 0.994 0.993 0.989 0.998 0.992
TEST_S2 0.999 0.995 0.993 0.994 0.992 0.996

α = 0.1
(443 s) a

TRAIN 1.000 0.998 0.996 0.995 0.997 0.998
TEST_E1 1.000 0.999 0.998 0.999 0.997 1.000
TEST_S1 1.000 0.995 0.979 0.965 0.992 0.996
TEST_E2 0.999 0.994 0.993 0.988 0.998 0.991
TEST_S2 0.999 0.995 0.993 0.993 0.994 0.996

α = 1
(482 s)

TRAIN 1.000 0.997 0.994 0.989 0.999 0.996
TEST_E1 1.000 0.994 0.987 0.976 0.998 0.993
TEST_S1 1.000 0.994 0.974 0.955 0.994 0.994
TEST_E2 0.999 0.974 0.970 0.944 0.999 0.956
TEST_S2 0.999 0.994 0.992 0.988 0.995 0.993

α = 10
(269 s)

TRAIN 1.000 0.994 0.988 0.977 0.999 0.993
TEST_E1 1.000 0.990 0.979 0.960 0.999 0.988
TEST_S1 1.000 0.994 0.974 0.953 0.996 0.994
TEST_E2 0.999 0.944 0.938 0.884 0.999 0.903
TEST_S2 0.999 0.993 0.991 0.986 0.996 0.992

Note: a regularization terms which returned the lowest log losses.
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10. Borz, S.A.; Talagai, N.; Cheţa, M.; Gavilanes Montoya, A.V.; Castillo Vizuete, D.D. Automating data collection in motor-manual
time and motion studies implemented in a willow short rotation coppice. Bioresources 2018, 13, 3236–3249. [CrossRef]

11. Vanbeveren, S.P.P.; Schweier, J.; Berhongaray, G.; Ceulemans, R. Operational short rotation woody crops plantations: Manual or
mechanized harvesting? Biomass Bioenerg. 2015, 72, 8–18. [CrossRef]

12. Acuna, M.; Bigot, M.; Guerra, S.; Hartsough, B.; Kanzian, C.; Kärhä, K.; Lindroos, O.; Magagnotti, N.; Roux, S.; Spinelli, R.; et al.
Good Practice Guidelines for Biomass Production Studies; Magagnotti, N., Spinelli, R., Eds.; CNR IVALSA: Sesto Fiorentino, Italy, 2012;
Available online: http://www.forestenergy.org/pages/cost-action-fp0902/good-practice-guidelines/ (accessed on 15 April
2018).

13. Björheden, R.; Apel, K.; Shiba, M.; Thompson, M. IUFRO Forest Work Study Nomenclature; Swedish University of Agricultural
Science, Department of Operational Efficiency: Grapenberg, Sweden, 1995.
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Abstract: Due to the various shapes, textures, and colors of fires, forest fire detection is a challenging
task. The traditional image processing method relies heavily on manmade features, which is not
universally applicable to all forest scenarios. In order to solve this problem, the deep learning
technology is applied to learn and extract features of forest fires adaptively. However, the limited
learning and perception ability of individual learners is not sufficient to make them perform well in
complex tasks. Furthermore, learners tend to focus too much on local information, namely ground
truth, but ignore global information, which may lead to false positives. In this paper, a novel ensemble
learning method is proposed to detect forest fires in different scenarios. Firstly, two individual
learners Yolov5 and EfficientDet are integrated to accomplish fire detection process. Secondly,
another individual learner EfficientNet is responsible for learning global information to avoid false
positives. Finally, detection results are made based on the decisions of three learners. Experiments on
our dataset show that the proposed method improves detection performance by 2.5% to 10.9%, and
decreases false positives by 51.3%, without any extra latency.

Keywords: forest fire detection; deep learning; ensemble learning; Yolov5; EfficientDet; EfficientNet

1. Introduction

With the change of the earth’s climate, forest fires occur frequently all over the world,
which not only cause serious economic losses and destroy the ecological environment, but
also pose a great threat to the safety of human life.

Forest fires usually spread quickly and are difficult to control in a short time. Therefore,
it is imperative to detect the early forest fire before it spreads out, but traditional detection
methods have obvious drawbacks in detecting it in open forest areas. Sensors-based [1–3]
detection systems have good performance in indoor space, but it is difficult to install them
outdoors, considering high coverage cost [4,5]. In addition, they cannot provide important
visual information which can help firefighters promptly grasp the situation of the fire
scene. Infrared or ultraviolet detectors [6,7] are easy to be interfered by the environment,
and considering their short detection distance, they are not suitable for large open areas.
Satellite remote sensing [8] is good at detecting large-scale forest fires, but it cannot detect
early regional fire.

Impressed by the rising computer vision technology, researchers start to seek an effi-
cient and effective fire detection model based on image processing. Chen et al. [9] proposed
an RGB (red, green, blue) model based chromatic and disorder measurement for extracting
fire-pixels in the video. The color information is responsible for extracting fire-pixels, and
dynamic information is used to verify if it is a real fire. Töreyin et al. [10] used 1D temporal
wavelet transform to detect flame flicker, and applied 2D spatial wavelet transform to
identify fire moving regions. This method, which integrated color and temporal variation
information, reduced false alarms in real-world scenes. Çelik et al. [11] studied diverse
video sequences and images, and proposed a fuzzy color model using statistical analysis.
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Combined with motion analysis, the model achieves a good discrimination between fire
and fire-like objects. Teng et al. [12] analyzed fire characteristics and proposed a real-time
fire detection method based on hidden Markov models (HMMs), which extracted candi-
date fire-pixels using moving pixel detection, fire-color inspection, and pixel clustering.
Chino et al. [13] found that most algorithms were designed for video, which had obvious
limitations. To solve this problem, a novel fire detection method named BowFire was
proposed. The method combined color features with superpixel texture discrimination to
detect fire in still images. In conclusion, most traditional fire detection methods based on
image processing focused on creating artificial features like color, motion, and texture to
detect fires.

However, powerful deep learners begin to replace human intelligence. They are better
at learning features than humans, and the features they extract contain much deeper
semantic information than manmade ones. Recently, deep learning has outperformed
traditional manmade features in many fields, and have been widely used in fire detection.
Zhang et al. [14] created a forest fire benchmark, and used Faster R-CNN (region-based
convolutional neural network) [15], Yolo (you only look once) [16–19], and SSD (single shot
multibox detector) [20] to detect fire. They found that SSD was better regarding efficiency,
detection accuracy, and early fire detection ability. Moreover, they proposed an improved
tiny-Yolo by adjusting the network architecture. Kim et al. [21] employed faster R-CNN to
detect fire and non-fire regions based on their spatial features. In addition, long short-term
memory (LSTM) is used to verify the reliability of fire alarm. Lee et al. [22] proposed a
video-based fire detection model, which used faster R-CNN to generate a fire candidate
region for each frame. Then, structural similarity (SSIM) and mean square error (MSE)
were calculated to determine similarity between adjacent frames. Final fire regions were
determined based on spatial and temporal features. Pan et al. [23] proposed a camera-based
wildfire detection system via transfer learning, in which block-based analysis strategy was
used to improve fire detection accuracy. Redundant filters, which had low energy impulse
response, were removed to ensure the model’s efficiency on edge devices. Wu et al. [24]
applied principal component analysis (PCA) to process forest fire images, and then fed
them into the training network. The combination of two models was proved to enhance
location results. In conclusion, faced with fire detection task, most researchers tend to only
assign individual learners to perform object detection tasks, which is considered unreliable,
since it may lead to false negatives.

In this paper, a novel method based on ensemble learning for forest fire detection is
proposed. First, forest fire detection is a complicated and difficult task, making it highly
impractical for individual learners to detect fires in diverse scenarios. Every individual
learner has its own expertise, and can extract different features from the image, so inte-
grating different individual learners can significantly improve the robustness of the model
and enhance detection performance. Therefore, two individual object detectors Yolov5 [25]
and EfficientDet [26] are integrated to detect the fire in parallel. These two learners work
synergistically in detecting different types of forest fires, thereby improving the detection
accuracy. Second, the object detectors only care about what fire is like, so they do not take
the whole image into consideration. In this case, fire-like objects will absolutely affect the
detection results. To solve this problem, the EfficientNet image classifier [27] is incorpo-
rated into our model, whose role is to enable the model to take full advantage of the global
information. Final detection results will be made through the decision strategy according
to results of these three learners, which will efficiently increase detection accuracy and
decrease the false positives.

2. Materials and Methods

2.1. Datasets

To ensure our learners can handle different kinds of forest fires (ground fire, trunk
fire, and canopy fire), we collected images from multiple public fire datasets: BowFire [28],
FD-dataset [29], ForestryImages [30], VisiFire [31], etc. After manual filtration, we created
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a single integrated forest fire dataset containing 10,581 images, with 2976 forest fire images
and 7605 non-fire images. Representative samples of our dataset are shown in Figures 1–3.
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Figure 1. Representative forest fire images in the fire section of our dataset, including (a) ground
fire 1, (b) ground fire 2, (c) trunk fire, and (d) canopy fire.
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Figure 2. Representative normal forest images in the non-fire section of our dataset, including
(a) normal forest scene 1, (b) normal forest scene 2, (c) normal forest scene 3, and (d) normal
forest scene 4. (a–d) illustrate normal forest scenes without fire objects.
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Figure 3. Representative images in the non-fire section of our dataset, including (a) wild scene
with sun 1, (b) wild scene with sun 2, (c) wild scene with sun 3, and (d) wild scene with sun 4.
(a–d) illustrate normal wild scenes containing fire-like object (e.g., sun).

2.2. Yolov5

Yolo is a state-of-the-art, real-time object detector, and Yolov5 is based on Yolov1-
Yolov4. Continuous improvements have made it achieve top performances on two official
object detection datasets: Pascal VOC (visual object classes) [32] and Microsoft COCO
(common objects in context) [33].

The network architecture of Yolov5 is shown in Figure 4. There are three reasons
why we choose Yolov5 as our first learner. Firstly, Yolov5 incorporated cross stage partial
network (CSPNet) [34] into Darknet, creating CSPDarknet as its backbone. CSPNet solves
the problems of repeated gradient information in large-scale backbones, and integrates
the gradient changes into the feature map, thereby decreasing the parameters and FLOPS
(floating-point operations per second) of model, which not only ensures the inference
speed and accuracy, but also reduces the model size. In forest fire detection task, detection
speed and accuracy is imperative, and compact model size also determines its inference
efficiency on resource-poor edge devices. Secondly, the Yolov5 applied path aggregation
network (PANet) [35] as its neck to boost information flow. PANet adopts a new feature
pyramid network (FPN) structure with enhanced bottom-up path, which improves the
propagation of low-level features. At the same time, adaptive feature pooling, which links
feature grid and all feature levels, is used to make useful information in each feature level
propagate directly to following subnetwork. PANet improves the utilization of accurate
localization signals in lower layers, which can obviously enhance the location accuracy of
the object. Thirdly, the head of Yolov5, namely the Yolo layer, generates 3 different sizes
(18× 18, 36× 36, 72× 72) of feature maps to achieve multi-scale [18] prediction, enabling
the model to handle small, medium, and big objects. A forest fire usually develops from
small-scale fire (ground fire) to medium-scale fire (trunk fire), then to big-scale fire (canopy
fire). Multi-scale detection ensures that the model can follow size changes in the process of
fire evolution.
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Figure 4. The network architecture of Yolov5. It consists of three parts: (1) Backbone: CSPDarknet, (2) Neck: PANet, and
(3) Head: Yolo Layer. The data are first input to CSPDarknet for feature extraction, and then fed to PANet for feature fusion.
Finally, Yolo Layer outputs detection results (class, score, location, size).

2.3. EfficientDet

EfficientDet is a new family of object detectors developed by Google, and it consistently
achieves better efficiency than prior art across a wide spectrum of resource constraints.
Similar to Yolov5, EfficientDet has also achieved remarkable performances in Pascal VOC
and Microsoft COCO tasks, and is widely used in real-world applications.

The network architecture of EfficientDet is shown in Figure 5. There are three reasons
why we choose EfficientDet as our second learner. Firstly, EfficientDet employed state-
of-the-art network EfficientNet [27] as its backbone, making that the model has sufficient
ability to learn the complex feature of diverse forest fires. Secondly, it applied an improved
PANet, named bi-directional feature pyramid network (Bi-FPN) as its neck, to allow easy
and fast multi-scale feature fusion. Bi-FPN introduces learnable weights, enabling network
to learn the importance of different input features, and repeatedly applies top-down and
bottom-up multi-scale feature fusion. Compared with Yolov5′s neck PANet, Bi-FPN has
better performances with less parameters and FLOPS. Meanwhile, different feature fusion
strategy brings different semantic information, thereby bringing different detection results.
Thirdly, similar to EfficientNet, it integrates a compound scaling method that uniformly
scales the resolution, depth, and width for all backbone, feature network, and box/class
prediction networks at the same time, which ensures the maximum accuracy and efficiency
under the limited computing resources. With more available resources, accuracy will be
consistently improved. Our second learner, EfficientDet, with different backbone, neck,
and head, can learn different information that Yolov5 cannot.
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Figure 5. The network architecture of EfficientDet. It consists of three parts: (1) Backbone: EfficientNet, (2) Neck: Bi-FPN,
(3) Head. Similar to Yolov5, the data are first input to EfficientNet for feature extraction, and then fed to Bi-FPN for feature
fusion. Finally, head outputs detection results (class, score, location, size).

2.4. EfficientNet

EfficientNet is a new efficient network proposed by Google. It applied a novel model
scaling strategy, namely compound scaling method, to balance network depth, network
width, and image resolution for better accuracy at a fixed resource budget. With this, Effi-
cientNet outperformed other hot networks like ResNet [36], DenseNet [37], ResNeXt [38]
with the highest Top-1 accuracy in ImageNet image classification task.

The network architecture of EfficientNet is shown in Figure 6. The reason why we
choose EfficientNet as our third learner is that it achieves a superior trade-off between
accuracy and efficiency. In our model, the third learner plays the most important role. It is
responsible for learning the whole image to guide the detection, meaning that its decisions
directly determine the final results. Meanwhile, it must be highly efficient, otherwise it will
slow down the speed of the entire model.
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Figure 6. The network architecture of EfficientNet. It can output a feature map with deep semantic information after the
input data flows through the multi-layer network.

2.5. Our Model

In real-world forest fire detection task, we need to handle different types of forest fires
like ground fire, trunk fire, canopy fire. These fires, influenced by the environment, are
diverse in shape, texture, or even color, bringing great difficulty for individual learner to
extract effective features. By careful observations, we find that Yolov5 is better at learning
long-area fires (Figure 7), but it sometimes misses objects (Figure 8). Meanwhile, even
though EfficientDet is not sensitive to long-area fires (Figure 7), it is more careful than
Yolov5, meaning that EfficientDet can make a complementary detection (Figure 8). There-
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fore, we consider that integrating these two efficient learners with different specialties to
make detection together can improve detection accuracy.
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Figure 7. Yolov5 is better at detecting long-area fires than EfficientDet. (a) True positive of Yolov5;
(b) true positive of Yolov5; (c) false negative of EfficientDet; (d) false negative of EfficientDet.
(a,b) illustrate that Yolov5 detect long-area fires successfully, while (c,d) show that EfficientDet fails
to detect them.
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Figure 8. EfficientDet is a more careful object detector than Yolov5, meaning that it seldom losses
potential objects easily. (a) Yolov5 fails to cover all fire areas; (b) Yolov5 misses two fire objects;
(c) EfficientDet covers all fire areas; (d) EfficientDet detects four fire objects.
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Another issue is that the ability of the object detector is limited. It only learns the fire
region, which is just a local pattern of the whole image, but ignores the other information
like background. As a result, the object detector may treat fire-like objects (e.g., sun) as fires
(Figure 9), thereby making false alarms. Therefore, a good leader EfficientNet that has a
full understanding of the whole image is needed to guide the detection process.
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Figure 9. Object detectors Yolov5 and EfficientDet are easy to be deceived by fire-like objects
(e.g., sun). (a) False positive of Yolov5 (confidence score: 0.63); (b) false positive of Yolov5 (confidence
score: 0.59); (c) false positive of EfficientDet (confidence score: 0.84); (d) false positive of EfficientDet
(confidence score: 0.71).

To address the above two issues and make sure our model is robust to diverse scenar-
ios, three deep learners are integrated to make decisions together (Figure 10). The first and
second learners Yolov5 and EfficientDet act as object detectors, to detect fire locations in
images by generating candidate boxes, respectively. Then, the non-maximum suppression
algorithm [39] (Algorithm 1) is employed to eliminate redundant boxes, preserving boxes
with top confidence. The third learner EfficientNet acts as a binary classifier, responsible
for learning the whole image to determine whether the image contains fire objects. Finally,
the object detection results, and image classification results are sent into a decision strategy
module, in which if the image is considered to contain fire objects, retaining object detection
results, otherwise ignoring them.

In addition, integrating multiple learners will not affect the overall efficiency of model,
because the three learners are structurally independent, and the whole model is executed
by multi processes, meaning that each learner has a separate process responsible for it.
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Figure 10. Structure of the proposed model in this paper. Three deep learners are ensembled in parallel. Two object
detectors Yolov5 and EfficientDet are integrated to perform object detection task, and the classifier EfficientNet is in charge
of discriminating whether the image contains fire objects. Final detection results are made based on the decisions of
three learners.

Algorithm 1. Non-Maximum Suppression (NMS)

INPUT: B = {b1, . . . , bN}, S = {s1, . . . , sN}, Nt
B is the list of initial detection boxes
S contains corresponding detection scores
Nt is the NMS threshold
Begin:
D← { }
while B 6= empty do

m ← argmax S
M ← bm
D ← D∪M; B← B−M

for bi in B do

if iou(M, bi) ≥ Nt then

B← B− bi; S← S− si
end

end

end

Return D, S
End

2.6. Model Evaluation

We evaluate models using Microsoft COCO criteria (Table 1), which is widely used in
object detection tasks. However, fire is a special object, which is diverse in shape, texture,
and color. Bounding box generated by object detectors may slightly differ from ground
truth (Figure 11), thereby influencing the calculation of average precision, but detectors do
identify the fire areas successfully. Therefore, to evaluate models more comprehensively,
we introduce two additional evaluation metrics, namely frame accuracy (FA) and false
positive rate (FPR). For one image, if the detector misses any fire object, we call it is a frame
false (FF), otherwise frame true (FT). If the detector treats any fire-like object as fire, we call
it is a false positive (FP), otherwise true positive (TP). Note that FA is calculated on the test
set containing 476 forest images, and FPR is calculated on our challenging non-fire dataset
containing 641 images with fire-like objects (e.g., sun). The FA and FPR can be calculated
as Equation (1) and Equation (2), respectively:

FA =
FT

FT + FF
× 100, (1)

FPR =
FP

FP + TP
× 100. (2)
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Table 1. Microsoft COCO criteria—commonly used in object detection task for evaluating the model
precision and recall across multiple scales.

Average Precision (AP)
AP0.5 AP at IoU = 0.5

AP Across Scales:

APS AP0.5 for small objects: area < 322

APM AP0.5 for medium objects: 322
< area < 962

APL AP0.5 for big objects: area > 962

Average Recall (AR)
AR0.5 AR at IoU = 0.5

AR Across Scales:

ARS AR0.5 for small objects: area < 322

ARM AR0.5 for medium objects: 322
< area < 962

ARL AR0.5 for big objects: area > 962                   
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Figure 11. Bounding boxes generated by (a) Yolov5, (b) EfficientDet, and (c) our model (3 learners)
are different from (d) ground truth, but still has good detection performance.

3. Results

3.1. Training

We applied different strategies to train our three learners: Yolov5, EfficientDet, and
EfficientNet. Object detectors, namely Yolov5 and EfficientDet, are trained with 2381 forest
fire images, and tested with 476 forest fire images. The image classifier, namely EfficientNet,
is trained with 2381 forest fire images and 5804 non-fire images, and tested with 476 forest
fire images and 1160 non-fire images. Note that non-fire images contain normal images,
and images with fire-like objects (e.g., sun). Each model is built up by Pytorch [40] and
trained on NVIDIA GTX 2080TI. The details of our training strategy are shown in Table 2.
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Table 2. Detailed training strategies of models.

Model Train Test Optimizer LR Batch Size Epoch

Yolov5 2381 476 SGD [41,42] 1× 10−2 8 300
EfficientDet 2381 476 AdamW [43] 1× 10−4 4 300
EfficientNet 8185 1636 SGD 1× 10−2 8 300

LR: learning rate, SGD: stochastic gradient descent, AdamW: Adam with decoupled weight decay.

3.2. Comparison

We compare our model with typical one-stage object detectors. As is shown in Table 3,
even though Yolov5 and EfficientDet are the most powerful detectors in this task, the
high false positive rate and missing detections cannot be ignored. By integrating them
(2 learners), all evaluation metrics are significantly improved, but the false positive rate
is increased to 51.6%, since the false positives come from both Yolov5 and EfficientDet.
Under the guide of our third learner EfficientNet, the false positive rate is reduced to
0.3%. What is also worth mentioning is that, after introducing the third learner, some
metrics are slightly decreased. It is because that EfficientNet wrongly treats some fire
images as non-fire ones, and then ignores the object detection results, but we consider it
is worthwhile to sacrifice a tiny decrease in average precision and recall for substantial
improvement in the false positive rate. To sum up, our model (3 learners) is superior in
AP0.5, APS, APM, APL, AR0.5, ARS, ARM, ARL, FPR, and FA compared with other typical
object detectors. Comprehensive improvements make the model have better performance
in detecting different types of forest fires: small-scale fires, medium-scale fires, big-scale
fires, ground fires, trunk fires, canopy fires, and fires at night (Figures 12 and 13). Faced
with fire-like objects (e.g., sun), our model will not be interfered. (Figure 14).

Table 3. Experiments on our dataset—evaluating models using Microsoft COCO criteria, FPR, FA, and latency.

Model AP0.5 APS APM APL AR0.5 ARS ARM ARL FPR FA Latency (ms)

SSD 66.8 37.8 42.4 78.6 70.1 39.1 45.7 82.7 45.6 92.6 88.8
Yolov3 66.4 26.0 44.6 78.1 71.1 26.1 52.5 82.5 22.9 88.0 15.6

Yolov3-SPP 68.3 56.3 49.9 76.7 73.9 60.9 56.6 81.9 30.7 93.3 15.6
Yolov4 69.6 53.7 48.9 78.4 75.5 60.9 57.5 83.9 61.9 94.1 20.5
Yolov5 70.5 51.9 53.7 79.2 75.6 56.5 61.2 83.0 22.6 94.7 28.0

EfficientDet 75.7 63.7 58.5 83.0 79.2 65.2 63.9 86.5 41.8 95.5 65.6
Ours (2 learners) 79.7 72.2 65.6 85.5 84.1 76.1 73.1 89.3 51.6 99.4 66.8
Ours (3 learners) 79.0 72.2 64.9 84.7 83.8 76.1 72.6 88.9 0.3 98.9 66.8

Note that AP0.5, APS, APM, APL, AR0.5, ARS, ARM, ARL, FPR, and FA are all percentages. The best figure of each metric are highlighted
in bold.                   
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Figure 12. Cont.

235



Forests 2021, 12, 217

                   
 

 

     
(a)  (b)  (c) 

     
(d)  (e)  (f) 

     
(g)  (h)  (i) 

                                       
                                           
                                    ‐
                                           

     

     
     

Figure 12. Our ensemble model (3 learners) has better performance on ground fires, trunk fires, and canopy fires. (a) Four
ground fires detected by Yolov5; (b) Yolov5 fails to detect the trunk fire; (c) three canopy fires detected by Yolov5; (d) four
ground fires detected by EfficientDet; (e) the trunk fire detected by EfficientDet; (f) two canopy fires detected by EfficientDet;
(g) six ground fires detected by our model; (h) the trunk fire detected by our model; (i) three canopy fires detected by
our model.
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Figure 13. Cont.
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Figure 13. Our improved model has better performance on small-scale, medium-scale, and big-scale fires at night.
(a) Medium-scale and big-scale fires detected by Yolov5; (b) medium-scale and big scale fires detected by Yolov5; (c) small-
scale, medium-scale and big-scale fires detected by Yolov5; (d) medium-scale and big-scale fires detected by EfficientDet;
(e) medium-scale and big scale fires detected by EfficientDet; (f) small-scale, medium-scale, and big-scale fires detected by
EfficientDet; (g) medium-scale and big-scale fires detected by our model; (h) medium-scale and big scale fires detected by
our model; (i) small-scale, medium-scale, and big-scale fires detected by our model.
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Figure 14. Under the guide of EfficientNet, our ensemble model has a good discriminability between
fire and fire-like objects (e.g., sun). (a) True negative of Yolov5; (b) false positive of Yolov5 (confidence
score: 0.59); (c) false positive of EfficientDet (confidence score 0.71); (d) true negative of EfficientDet;
(e) true negative of our model; (f) true negative of our model.
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4. Discussion

Compared with other common objects that have fixed form, forest fire is a dynamic
object [44]. In the real-world scenario, a forest fire usually starts from small-scale fire,
develops to medium-scale fire, and then to big-scale fire [45]. In terms of types, it starts
from ground fire, then spreads to the trunk, and finally to the canopy [46]. The various
shapes, sizes, textures, and colors of forest fires make the fire evolution a complex process,
and bring great difficulty in fire detection.

Therefore, it is highly imperative for detectors to be sensitive to different types of fires.
Through careful experimental comparisons, we find that no single detector that can handle
all kinds of fires. They have respective advantages and disadvantages. Yolov5 is excellent at
detecting long-area fires (Figure 7), but it frequently misses objects (Figure 8). EfficientDet
is a more careful detector, compared to Yolov5; even though it has a bad performance on
long-area fires (Figure 7), it can detect fires that Yolov5 cannot (Figure 8), meaning that it
is a good partner for Yolov5. Our model, which efficiently integrates decisions of these
two powerful learners, boost detection performance by 2.5–10.9%, in terms of AP0.5, APS,
APM, APL, AR0.5, ARS, ARM, ARL. The significant improvements of average precision
and average recall for small, medium, and big objects make the model more sensitive
to the size changes of fires, thereby enhancing detection performance on different types
of forest fires: ground fire, trunk fire, canopy fire, and fires at night in the fire evolution
(Figures 12 and 13).

Another problem is that the false positive rate of the improved model (2 learners)
becomes higher: 22.6% to 51.6% since the model also integrates wrong detection results
from both learners. To address this issue, we use 8185 images containing 2381 forest fire
images and 5804 non-fire images (containing fire-like images and normal forest images) to
train our third learner EfficientNet. Sufficient training sets enabled EfficientNet to show
a good discriminability between fire objects and fire-like objects, with 99.6% accuracy on
476 fire images, and 99.7% accuracy on 676 fire-like images. With the help of the leader
learner EfficientNet, wrong detection results are eliminated, and the false positive rate is
significantly decreased to 0.3% (Figure 14). Noticeably, the join of EfficientNet reduces
AP0.5, APM, APL, AR0.5, ARM, ARL by roughly 1%, which is because that EfficientNet
wrongly ignores 2 fire images containing medium-scale and big-scale fire objects.

In terms of latency, the Yolo family is superior compared to EfficientDet and SSD.
Excellent inference speed makes Yolo family widely used in real-world applications, but
experimental results show that they are not able to have a satisfactory performance on forest
fire detection tasks. The latency of EfficientDet is 65.6 ms, which is over twice that of Yolov5
(28.0 ms), but EfficientDet outperforms Yolov5 by over 5% regarding detection performance.
We ensemble these three learners Yolov5 (28.0 ms), EfficientDet (65.6 ms), EfficientNet
(31.3 ms) in parallel to make sure that our model can achieve the best performance without
any extra latency. The final latency of our model (3 learners) is 66.8 ms, which shows that
an excellent trade-off between detection performance and efficiency has been achieved,
and the model is applicable for real-time detection task.

For further improvement, we plan to study the labeling strategy for forest fires, since
the quality of training data directly determines the detection performance. Another inter-
esting extension is to investigate the network architecture of backbones, and modify them
to make sure that they are specially designed for forest fire detection task. Additionally, we
will work on developing a forest fire tracking system, which can classify different types of
forest fires: ground fire, trunk fire and canopy fire, to track the evolution and spread of
forest fires.

5. Conclusions

The successful application of convolutional neural networks significantly improves
the performance of object detection. However, forest fire is a dynamic object with no fixed
form, which the individual object detector cannot handle. In addition, object detectors are
easy to be deceived by fire-like objects and generate false positives due to their limited
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visual field. To address these problems, a novel ensemble learning method for real-time
forest fire detection is proposed in this paper. Two powerful object detectors (Yolov5 and
EfficientDet) with different expertise are integrated to make the whole model more robust
to diverse forest fire scenarios. Then, a leader (EfficientNet) is introduced to guide the
detection process to reduce false positives. Experimental results show that, compared with
other popular object detectors, our model achieves a superior trade-off among average
precision, average recall, false positive rate, frame accuracy, and latency. The significant
improvements make it possible for the model to perform well in real-world forestry
applications.
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